Doctoral Thesis

Regio- and diastereo-selective multiple functionalizations of buckminsterfullerene

Author(s):
Cardullo, Francesca

Publication Date:
1997

Permanent Link:
https://doi.org/10.3929/ethz-a-001854935

Rights / License:
In Copyright - Non-Commercial Use Permitted
Regio- and Diastereo-Selective Multiple Functionalizations of Buckminsterfullerene

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH

for the degree of
Doctor of Natural Sciences

Presented by
Francesca Cardullo
Dott. Chim., University of Messina

born 19.10.1967 in Messina
citizen of the Republic of Italy

accepted on the recommendation of
Prof. Dr. François Diederich, examiner
Prof. Dr. Peter Chen, co-examiner

Zürich 1997
Abstract

The first part of this work (Chapter 3) presents the preparation of the fullerene-cryptate conjugate 109 • NaCl by DCC-mediated amide bond formation between methanofullerene carboxylic acid and amino[2B.2.2]cryptand, followed by metal ion complexation. In the fullerene-cryptate conjugate 109 • NaCl, the physical properties of the fullerene are combined with those of the metal complex. UV/VIS spectroscopy and electrochemical studies of the free and complexed cryptand 109 revealed that close proximity of a positively charged complex does not significantly affect the electronic structure of the fullerene chromophore. The electroreductive crystallization technique was applied to 109 • NaCl in an attempt to prepare the internal fulleride salt Na(109). Amphiphile 109 • NaCl, consisting of a hydrophilic ionophore moiety and a highly hydrophobic fullerene moiety of comparable size, forms monolayers at the air-water interface under Langmuir conditions.

The second part of this work (Chapter 4) describes the reversible tether-directed remote functionalization of C_{60}. This method allows the production of a single regioisomer in fullerene multiple functionalizations and represents an extension of the previously reported tether-directed remote functionalization of C_{60}. In particular, the removal of the tether-reactive group conjugate was developed. Application of this method provided access to the series of highly symmetrical bis- to tetrakis(methano)fullerenes 58c, 151, and 149, in which the methano moieties are progressively introduced along an equatorial belt of the fullerene sphere. In particular, the multiple adducts 149 and 151 exhibit addition patterns that would not be available by stepwise additions to the fullerene core. The X-ray crystal structure of 149 was solved, and revealed details of the reduced conjugated fullerene π-chromophore, which
Abstract

consists of two tetrabenzopyracylene substructures connected by four biphenyl type bonds. Further functionalization of the fullerene sphere, as well as chemical transformations of functional groups at the addends in fullerene multiple adducts were also investigated. These studies resulted in the synthesis of fullerene-acetylene hybrid derivatives, and of highly functionalized \(\text{C}_60 \) derivatives bearing long-chain alkyl esters, or mesogenic groups. The latter allowed the preparation of fullerene-containing thermotropic liquid-crystals.

Close inspection of the spectroscopic properties (UV/VIS, IR, NMR) and the chemical reactivity (Chapter 4), as well as electrochemical (CV and SSV) and computational (LUMO energies, electron affinities) studies (Chapter 6) for a series of fullerene multiple adducts revealed a strong dependency of the physical and chemical properties of fullerene derivatives on the degree and pattern of functionalization. Also, the nature of the fused addends affects the fullerene properties, with anellation by a cyclopropane ring causing a smaller perturbation of the fullerene \(\pi \)-chromophore than cyclohexene fusion. Among the multiple functionalizations, exclusive \(\epsilon \)-cyclopropanations along an equatorial belt (58c, 151, and 149) cause a remarkably small effect on the fullerene physical and chemical properties.

In the last part of this thesis (Chapter 5), the diastereoselective bis-functionalization (via double nucleophilic cyclopropanation) of \(\text{C}_60 \) using an enantiomerically pure tether is described. After removal of the tether, the
Abstract

Enantiomerically pure ($ee > 97\%$) fullerene bis-adduct 58b, whose chirality results exclusively from the addition pattern (cis-3), was formed, resulting in an overall enantioselective fullerene functionalization. The optical antipode ent-58b was also prepared for comparative studies. The chiroptical properties of 58b and ent-58b, and other bis-adducts having a chiral tether and either an achiral or chiral addition pattern, were investigated. The circular dichroism spectra for the bis-adducts with a chiral addition pattern exhibited strong Cotton effects, predominantly due to strong chiroptical contributions from the inherently chiral addition pattern. On the basis of computational studies, the absolute configurations ($^{(A)}$)-58b and ($^{(C)}$)-58b have been tentatively assigned to 58b and ent-58b, respectively.

Also presented in this Chapter is the application of the same bis-functionalization methodology, via addition of tethered bis-malonate derivatives, to the synthesis of bis(methano)fullerenes with trans-addition patterns and, in particular, the selective synthesis of a 1,10-phenanthroline-bridged bis-adduct with a trans-3 addition pattern.
Riassunto

La prima parte di questo lavoro (Capitolo 3) presenta la preparazione del fullerene-criptato 109 • NaCl realizzata attraverso la formazione di un legame ammidico tra l’acido carbossilico del metanofullerene e l’ammino[2B.2.2]criptando, in presenza di DCC, e la successiva complessazione dello ione metallico sodio. Nel fullerene-criptato 109 • NaCl le proprietà fisiche del fullerene sono combinate con quelle del complesso metallico. Spettroscopia UV/VIS e studi elettrochimici condotti sul criptando 109, sia in forma libera che complessata, hanno mostrato che la vicinanza di un complesso carico positivamente non influenza in modo significante la struttura elettrochimica del cromoforo del fullerene. La tecnica di cristallizzazione elettroidrettiva è stata anche applicata a 109 • NaCl in un tentativo volto alla preparazione del sale interno del fullerene anione Na(109). Il fullerene-criptato 109 • NaCl, costituito da una unità idrofìlica (il complesso metallico) e da una altamente idrofobica (il fullerene) di dimensioni comparabili, mostra proprietà amfifìliche, e forma strati singoli all’interfaccia aria-acqua usando le condizioni di Langmuir.

La seconda parte di questo lavoro (Capitolo 4) descrive la funzionalizzazione reversibile del C60 controllata a distanza attraverso uno spaziatore molecolare. Questo metodo permette di preparare un singolo regioisomero in reazioni di addizione multiple al fullerene, e rappresenta una estensione del metodo di funzionalizzazione a distanza precedentemente pubblicato. In particolare, durante il presente studio, è stato sviluppato un protocollo per rimuovere il sistema costituito dallo spaziatore e dal gruppo reattivo prostetico. L’applicazione di questo metodo ha permesso la sintesi della serie di bis-, tris-, e tetrakis(metano)fullereni 58c, 151, e 149. In questi composti altamente simmetrici, anelli ciclopropanici sono introdotti progressivamente lungo un
equatore della sfera del fullerene. In particolare, gli addotti multipli 149 and 151 mostrano schemi di addizione che non possono essere ottenuti attraverso successive reazioni di addizione al fullerene. La determinazione della struttura cristallina ai raggi X di 149 ha fornito informazioni sul sistema π-coniugato, ridotto rispetto a quello del C_{60}, e costituito da due fragmenti tetrabenzoopiracilene collegati da quattro legami bifenilici. L’ulteriore funzionalizzazione ai doppi legami della sfera nei multipli addotti, così come trasformazioni chimiche dei gruppi funzionali presenti agli addendi, sono stati investigati. Questi studi hanno portato alla sintesi di derivati ibridi di fullerene-acetilene, e di composti altamente funzionalizzati del fullerene recanti esteri alchilici a lunga catena, o gruppi mesogenici. In particolare con gli ultimi sono stati ottenuti cristalli-liquidi termotropici.

Una investigazione dettagliata delle proprietà spettroscopiche (UV/VIS, IR, NMR) e reattività chimica (Capitolo 4), così come studi elettrochimici (CV e SSV) e computazionali (energie dei LUMO, affinità elettroniche) (Capitolo 6) per una serie di addotti multipli del fullerene, ha rivelato una forte dipendenza delle proprietà chimiche e fisiche dei composti del fullerene dal grado e dallo schema di funzionalizzazione. In più, è stato visto che la natura dell’addendo fuso al fullerene esercita anche un effetto sulle proprietà del fullerene stesso. Più esattamente, la ciclopropanazione genera una perturbazione minore del π-cromoforo del fullerene, rispetto alla fusione con un cicloeseno. Tra le funzionalizzazioni multiple, la ciclopropanazione lungo un equatore
della sfera, e con gli addendi in posizione relativa e (58c, 151, e 149) esercita un effetto particolarmente piccolo sulle proprietà del fullerene puro.

Nell'ultima parte della tesi (Capitolo 5) viene descritta la bis-funzionalizzazione diastereoselettiva (attraverso una doppia ciclopropanazione nucleofila) di C60 utilizzando, come connessione tra i due gruppi del reagente che prendono parte alla reazione col fullerene, uno spaziatore enantiotermicamente puro. In seguito, rimuovendo lo spaziatore chirale, si è ottenuto il bis-addotto 58b enantiotermicamente puro (ee > 97%) e nel quale la chiralità risulta unicamente dallo schema di addizione (cis:3). Quindi, nel suo insieme, si è ottenuta una funzionalizzazione del fullerene enantioselettiva. L'antipodo ottico ent-58b è stato anche preparato per studi comparativi. Le proprietà chirotiche di 58b e ent-58b, e di altri bis-addotti recanti uno spaziatore chirale e uno schema di addizione acriale o chirale, sono state esplorate. Gli spettri di dicroismo circolare per i bis-addotti con uno schema di addizione chirale mostrano forti effetti Cotton, perlopiù dovuti al forte contributo chirotico dello schema di addizione che è inerente-chirale. Sulla base di studi computazionali, le configurazioni assolute (fA)-58b e (fC)-58b sono state proposte per 58b e ent-58b, rispettivamente.

Nel Capitolo 5 è presentata anche l'applicazione della stessa metodologia (addizione di bis-malonati) alla sintesi di bis(metano)fullereni aventi uno schema di addizione trans e, in particolare, la sintesi selettiva di un bis-addotto con uno schema di addizione trans-3 e recante una 1,10-fenantrolina a ponte tra i due siti di funzionalizzazione al fullerene.