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Abstract

Inelastically scattered light of a laser was used to determine the velocity of surface
acoustic waves (SAW) in metallic thin film structures and doped, intermediate
valent SmS compounds. Generally, the light scattering on acoustic phonons is called
Brillouin spectroscopy.

Surface acoustic waves are a superposition of plane, acoustic waves, which
propagate along a surface plane and are exponentially damped perpendicular to
it. In single crystals the velocity depends on the orientation of the plane and the
direction of propagation. The determination of the SAW velocities in different
directions gives the so called angular dispersion. In thin film structures there is
additionally also a dependence on the product of the wave vector parallel to the
surface (gq) and the thickness of the film (d). The measurement of the velocity
depending on qd is called gd-dispersion. From both sorts of dispersion all elastic
constants of a sample (for a cubic symmetry Cy;, Cy2 and Cy) can be calculated
using an appropriate model function.

For thin film structures it is possible to get information about the quality of
the layers. All films described in this work were grown on a (111) oriented silicon
substrate. The elastic constants of the following samples have been determined:

e 3.5 um thick PbSe film. We found a drastic difference in the elastic constants

of the thin PbSe-film and of a single crystal of PbSe.

e CoSi; films with two different crystallographic strutures, one was a CaF; and
the other a defect CsCl structure. While the well known CaF, phase was
elastically anisotropic, the new defect CsCl phase behaved isotropically.

o CoSiy/Fe superlattice. The elastic constants of these structures depend strongly
on the exact parameters of the layer system.

The elastic constants of intermediate valent single crystals allow to conclude on

the electronic structure of the samples. One evidence of intermediate valence is a

negative value of Poisson’s ratio, which means that the crystal is extraordinarily



Abstract

instable and that its volume collapses already, when an uniaxial pressure is applied.
We measured doped SmS compounds, in which some of the Sm ions have been
substituted by La or Tm jons. We found a clear connection between the doping

concentration, the intermediate valence and the elastic behavior of the samples.



Kurzfassung

Inelastisch gestreutes Licht eines Lasers wurde benutzt, um die Geschwindigkeit
von Oberflichenschallwellen in metallischen Diinnschicht-Strukturen und dotierten
zwischenvalenten SmS-Verbindungen zu bestimmen.  Die Lichtstreuung an
akustischen Phononen wird Brillouin-Streuung genannt.

Oberflichenschallwellen sind eine Superposition von ebenen, akustischen Wellen,
welche an einer Oberflache entlanglaufen und senkrecht dazu exponentiel gedimpft
sind. In Einkristallen ist die Geschwindigkeit der Oberflichenschallwellen abhéingig
von der Orientierung der Oberfliche und der Ausbreitungsrichtung. Werden die
Schaligeschwindigkeiten in verschiedenen Richtungen bestimmt, nennt man das die
Winkeldispersion. In Dinnschicht-Strukturen kommt noch eine Abhingigkeit vom
Produkt des Wellenvektors parallel zur Oberfliche (¢) und der Schichtdicke (d) dazu.
Die Messungen der Geschwindigkeit in Abhéingikeit von diesem Produkt gd nennt
man qd-Dispersion. '

Aus beiden Dispersionsarten kbnnen mit einem geeigenten Modell alle elastischen
Konstanten einer Probe (im kubischen Fall Cy;1, C; und Cy4) berechnet werden. In
den Dilnnschicht-Strukturen kénnen damit Aussagen iiber die Qualitit der Schichten
gemacht werden. Alle in dieser Arbeit untersuchten Schichten wurden epitaktisch
auf (111)-orientiertes Silizium gewachsen. An folgenden Schichten wurden die
elastischen Konstanten bestimmt:

e 3.5 um dicke PbSe-Schicht. Hier zeigte sich ein drastischer Unterschied in den

elastischen Konstanten der Schichtstruktur und eines Einkristalls.

o CoSi; Schichten in zwei verschiedenen strukturellen Formen, CaF, and CsCl
mit Defekten. Wihrend die Schichten der bekannter CaFj-Form elastisch
anisotrop waren, zeigten die Proben der neuen defekten CsCl-Phase ein isotropes
Verhalten.

o CoSiy/Fe Supergitter. Die elastischen Konstanten dieser Proben héngen sehr
stark von den exakten Schichtparametern ab.



Kurzfassung

In zwischenvalenten Einkristallen konnen von den elastischen Konstanten
Schliisse auf die elektronische Struktur der Proben gezogen werden. Ein Beweis fir
Zwischenvalenz ist ein negatives Poisson Verhiltnis, das besagt, dass der Kristall
ausserordentlich weich ist und dass dessen Volumen schon bei einem uniaxial
angelegten Druck in allen Richtungen kollabiert. Wir haben SmS Verbindungen
untersucht, bei denen ein Teil der Sm-Ionen durch La- oder Tm-Ionen ersetzt wurde.
Wir konnten einen klaren Zusammenhang zwischen der Starke der Dotierung, der
Zwischenvalenz und dem elastischen Verhalten aufzeigen.



Chapter 1

Introduction

In modern solid state physics the characterization of new materials by its elastic
constants is important. The elastic behavior can give, e.g., information about the
quality of samples (thin film structures) or the electronic structure (intermediate
valence). One instrument to investigate the elastic properties of a material is the
ultrasonic technique. This is a very powerful and precise tool, but as soon as the
samples are quite small or only very thin it gets to its limits.

Another very elegant way, in a lot of aspects, is the use of Brillouin spectroscopy
to determine the elastic constants. Because of the very small laser spot (when
focused about ¢ = 20 pm) no large samples were needed. Samples of the size of 0.5
mm or less can still be investigated. Moreover, because of the lack of any mechanical
contact to the crystal, the Brillouin spectroscopy method can be used under a lot
of different conditions, e.g. the sample can be held in an inert atmosphere or in a
cryostat.

For Brillouin spectroscopy the monochromatic light of a laser is scattered
inelastically on acoustic phonons. Thereby the scattering shifts the energy or,
respectively, the frequency of the incident photon a little. This very small energy
shift (small only in the case of scattering on acoustic phonons) is detected and
measured with a Fabry-Pérot-interferometer. Since the scattering vector is very
small compared to the Brillouin zone, the dispersion relation of the acoustic mode
is still in the linear range and the velocity of the surface acoustic wave can be easily
calculated.

Depending on the optical quality of the samples, different sorts of acoustic waves
can be observed: On transparent materials, where the absorption is only small, the

normal bulk waves are detectable, but in metallic samples with their high reflectivity,
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this mode can not be measured, because of the only very small penetration depth of
light. Here the cross section for scattering on surface acoustic waves (SAW) becomes
more important. Generally surface acoustic waves are a superposition of plane waves,
which propagate along a surface and are exponentially damped perpendicular to the
surface. Thereby the scattering process is located just at the surface and occurs from
so called surface ripples. Nevertheless the penetration depth of a surface acoustic
wave is several micrometers deep and, despite its surface character, the SAW probes
the bulk of a sample in a good manner.

The measurement of the bulk wave velocities in the direction of a main symmetry
axis allows very simply the calculation of the elastic constants of the crystal. On
the other hand, due to the more complex nature of surface acoustic waves, the
calculation of the elastic constants from the measured velocity of a surface acoustic
wave is much more complicated, but nevertheless doable. E.g. in a crystal with a
cubic symmetry there are three independent elastic constants (Cyy, C)2 and Cy).
For the calculation either the dependence of the SAW velocity on the propagation
direction of the wave in the surface plane (angular dipsersion) or, alternatively — in
the case of a thin film structure on a substrate —, the dependence on the product
qd is used to fit the elastic constants (gd-dispersion). g stands for the wave vector
parallel to the surface and d for the thickness of the film.

In this work, we show, how the surface acoustic waves can be used to determine
the elastic constants of single crystals and thin film structures.

First, in chapter 2, the definitions of stress, strain and the tensors of the elastic
stiffness and the elastic compliance constants will be introduced. Then, after the
introduction of the elastic wave equation and bulk waves, the most simple solution
of the wave equation, the nature of the surface acoustic waves will be explained and
their behavior will be analyzed in detail for a SAW in a semi-infinite body and in
thin film structures on a substrate.

Chapter 3 will describe the scattering mechanism on acoustic waves. After the
introduction of the Stokes and the anti-Stokes process, the calculation of the phonon

velocity from a measured energy shift will be derived. Furthermore, the differences



of the scattering mechanism on a bulk wave and on a surface acoustic wave will be
discussed. Finally, the cross section for scattering on surface acoustic waves will be
given depending on the polarization of the incident and scattered photon and on
the angle of the incident laser beam.

In chapter 4 the principle of the used Sandercock 3+3 pass tandem Fabry-Pérot
interferometer will be explained. In the second part the experimental setup and its
parameters will be presented.

Chapter 5 will deal with the elastic constants of thin film structures. These
structure were all grown by molecular beam epitaxy on a (111) oriented silicon

substrate. Three different materials were examined:

¢ A PbSe film on silicon, where the elastic constants of the film are compared
with the elastic constants of a PbSe single crystal. The PbSe film was quite
thick (3.5 4m) and relaxed, but the remaining strain, induced by the different
lattice constant of the silicon substrate, changes the elastic constants drasti-
cally.

o CoSi, films with two different crystallographic structures, the well known CaF,
structure and the new defect CsCl structure. Opposite to the results of the
CaF; structure, the experiments and the calculation on the defect CsCl struc-
ture show, that this form of CoSi, behaves elastically isotropic and its structure
can be interpreted as an average of a polycrystalline, randomly oriented CaF,
structure, despite its well defined single crystalline form. The silicon atoms of
the CoSi, film have only a very small influence on the elastic behavior.

e On CoSi,/Fe superlattices the measurements show, that the elastic constants
depend strongly on the exact parameters of the single layers in the superlattice
(thickness of the CoSi; and the Fe layer, number of periods).

In chapter 6 the elastic constants of doped SmS crystals will be presented and
discussed. Under pressure SmS makes a semiconductor-metal transition. After this
transition SmS is in an intermediate valent state. SmS can also be brought into this
state without any applied pressure by substituting Sm by Y, La or Tm.

A strong evidence of intermediate valence is a negative Cj2 and a negative
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value of Poisson’s ratio, which can be calculated from the elastic constants. The
presented data will show, that depending on the doping concentration Sm;_,La,S
and Sm,;_;Tm,S have both a more or less negative Poisson’s ratio and are therefore
in the intermediate valent state.

We will show, that the mechanism leading to intermediate valence is different
for doping with La or T, due to the very different ionic radii. Since the Tm ion
is clearly smaller than the Sm ion, the substitution sets the SmS crystal under
an internal chemical pressure. On the other hand, La with its only minutely
smaller ionic radius can hardly set the crystal under an adequate pressure. Here the
intermediate valent behavior must be only the effect of the additional free electrons
in the 5d band, induced by building in trivalent La-atoms.



Chapter 2

Surface acoustic waves

To understand the theory of surface acoustic waves, the nature of vibration in a
solid body has to be analyzed first. For this consideration the atomic nature can be
neglected and the sample can be assumed as a continuum. The material properties,
which describe the quality of an acoustic wave, are the density p and the elastic

tensor c¢; gkl

2.1 Strain, stress, and elastic constants

In this section we will define the strain, the stress and the tensors of the elastic
stiffness and the compliance. Furthermore the widely used abbreviated notation is

introduced.

Fig. 2.1  0;; represents the stress on the i-plane in the j-direction
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2.1.1 Strain

The deformation of a solid body and therefore the movement of an infinitesimal
small particle can be described by the strain ¢;;.  The strain is defined as the
differential displacement of the particle out of its equilibrium position [1]:

1 [3u,- Ou;

=3 |5z, * s,

} 1,j=1,2,3 2.1

where u; is the displacement vector of the particle. Obviously ¢;; is a symmetric

3 X 3-matrix.

2.1.2 Stress

When a particle is moved out of its equilibrium position, elastic restoring forces
develop between neighboring particles. These forces can be described by internal
traction forces and stresses which act on the surface of a particle [1,2]. They are
represented by the stress tensor o;;, which is a symmetric 3 x 3-matrix as well.
The diagonal terms o; represent the stresses in the i-direction on the i-plane, while
the off-diagonal terms o;; (i # j) describe the traction forces on the i-plane in the
Jj-direction (Fig. 2.1).

2.1.3 Hook’s Law

Obviously any applied stress o;; produces a certain strain £y and vice versa.

Generally this can be written as:
eu="{ (0’,’5) and oi; = g(ekl) g= f—l 2.2

As long as the deformations are small the stress increases linearly with the strain.

With increasing deformation the relation between the stress and the strain becomes

10
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: Fracture
* point

strain

" >
: linear : nonlinear stress
=~ e e

»  plastic
.deformation :

elastic deformation

Fig. 2.2 typical stress-strain relation for a solid body [1]

more and more nonlinear, but still remains reversible. These regions are called
linear and nonlinear elastic deformation (Fig. 2.2). If the stress increases beyond
the elastic limit, which lies for the strain typically in the range of 1074 to 103, the
solid deforms plastically and permanently. At last it fractures.

For this study we assume to be always in the range of the linear elastic
deformations. Then, Eq. 2.2 can be written in a linear form called Hook’s Law
[

Oij Cijki * €kl 2.3

Eki = Sijk['d,‘j 2.4

The linear operator in Eq. 2.3, ciju, is called elastic stiffness constants or simply
elastic constants, whereas s;;q in Eq. 2.4 is called compliance constants. Both,

cijke and 8w, are tensors of 4™ rank with totally 81 elements and, of course,

ciikt = (sijt) "

In this work Einstein's convention of summing over repeated subscripts is used. E.g. Eq. 2.3 is equivalent
to

Uij=z

k=1

3
Cijkt * €kl

i
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ij, bl | 11]2233 | 12,21 | 13,31 | 23,32
L1233 4 | 5 ] 6

Table 2.1 The double subscripts ij and ki are replaced by the single subscripts I and J

2.1.4 Symmetry of the elastic and compliance tensors

With its 81 elements the stiffness and the compliance tensors are quite difficult
to handle. But fortunately not all elements are independent. Using symmetry

arguments the number of independent elements can be reduced rapidly.

Simple symmetries of Hook’s Law:

From the symmetry of the stress tensor (0;; = 0;;) and from Eq. 2.3 the symmetry
cijit = Cjit follows immediately [1,3). Similarly the symmetry of the strain tensor
leads to ¢y = cijic. Therefore the independent elements are reduced down to 36.

The same can be done with the compliance tensor s;jx.

Abbreviated subscripts notation:

In the literature an other notation is often used for oy;, €, cijur and 8;x. There
the symmetry is used to write the 3 X 3-matrix of the stress and the strain as a 6-
dimensional vector. Then, the 4"-rank tensor of the elastic and the compliance
constants is expressed by a 6 x 6-matrix. To do so abbreviated subscripts are
introduced. Therefore, one pair of a double index (#j or ki) is replaced by a single
subscript (I or J) {4], following the convention depicted in Table 2.1. Then a;j, Ekiy

ciji and sijg transform according to [1):

agr = Jij5 forI=1...6
_ Eij for I = 1,2,3
1= 2-ey; forI=4,56 2.5
C]]= Cijki fOl‘I,J=1...6
Siy = Sijkl forI,J=1...6

12
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Hook’s Law (Eq. 2.3 and Eq. 2.4) can then be simply written as:

or = Cry-€5 2.6

Siy- 04

54

Although the tensors with the abbreviated subscripts look like ordinary tensors, one
has to be very careful when transforming the base (e.g. rotating the coordinate-
system). This has to be done in the normal tensor notation. The law of

transformation is then for the stress and the strain [3]:

’
Gy = Qi * aﬂ c Okl 27

62]- = Q" aﬂ €kl 2.8
and for the elastic stiffness constants and the compliance constants:

’
Cijkt = @im " Qjn * Gko * Gip * Cmnop 2.9

U
Sijit = @im * Gjn * Gko * Gip * Smnop 2.10

where a;; is the orthogonal 3 x 3-transformation matrix.

Symmetry of the energy density:

Using the strain energy density, which is defined according to [2] as:
1
UE = §EI'CIJ'€,] 211

the symmetry of the elastic tensor matrix (Cy; = Cjr) can be easily verified. Thus,
the number of the independent elastic constants can be reduced from 36 down to

21. Cyy finally looks like:

Cii Ca Ci3 Cuu Cis Cis
Ci2 Cy Cu Cu Cp Cyp
Cis Cy Css Ca Cis Css
Ciy Cu Css Cu Cus Cuys
Cis Cos Css Cas Css Css
Cis Cuws Ci Cis Css Ces

2.12

13
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Crystal symmetry:

It is not possible to obtain further symmetries alone from the laws of the elasticity.
However, the crystal symmetry, which is given by its atomic structure, can effectively
simplify the tensor of the elastic constants. E.g. a crystal with a cubic symmetry

has only 3 independent terms unequal zero [1-3]:

Cy Cr Cy
Ciz Cu Ci2 0
Ciz Ciz Cn
Cu 2.13
0 Cyy

Cu

all other terms are equal zero. If the crystal is furthermore elastically isotropic — no
crystal direction can elastically be distinguished ~, C44 can be replaced by the term
%(C’n ~ Cy2). Ciy and its inverse, the compliance tensor, have always the same

number of independent elements.

2.2 Elastical properties of cubic crystals

In an experiment rarely the elastic constants Cy; can be measured directly. Often
only a function of Cy; is observed. Consequently, the following observables, which
describe the behavior of the solid body under certain circumstances, are defined in

the literature :

2.2.1 Bulk modulus

When a hydrostatic pressure is applied to a crystal, the isotherm compressibility
x describes the relative behavior of the volume (Fig. 2.3). The bulk modulus B is

14



2.2 Elastical properties of cubic crystals

\ hydrostatic
¥ pressure

Fig. 2.3 A hydrostatic pressure changes the volume of a material. Within the elastic limit the
bulk modulus is the proportionality factor between the applied pressure and the volume change.
the reciprocal of k and both are defined by the thermodynamical expression:

1 10V
BTV, Bla

For a cubic crystal, where in all directions the strain e; is equal (= ¢), the bulk

modulus can be expressed by Cr;, using the following identities:

ap = deZCIJ'EJ=E'(Cl1+2012)
OV = dVv=V-(1-e’-V=x-3V-¢

Then Eq. 2.14 becomes [2]

1
B = ; - (C11 +2Cyp) 2.15

wl»—'

The harder the material is, the bigger the bulk modulus becomes. Typical values

for B are several 10 GPa.

15
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uniaxial
pressure

Fig. 2.4  An uniaxzial pressure produces a negative strain (€3) parallel and a positive or negative
strain (e1and e2) perpendicular to the pressure. The ratio of the strains defines Poisson’s ratio.

2.2.2 Poisson’s ratio

When an uniaxial pressure is applied to a crystal, Poisson’s ratio o describes the
ratio between the strain parallel and perpendicular to the direction of pressure [1].
For a cubic material it can be defined only along a crystallographic main axis (Fig.
2.4):

€1 S1 Cra
V=——=—— =" 2.16
€3 S3  Cun+Ci

The values of v ranges from 0.5 down to -1. The maximum value describes an
absolute conservation of the volume when applying a uniaxial pressure. A negative
value expresses a collapsing of the solid body and can be observed in several complex
polymers and in intermediate valent single crystals [5-7]. For polymers it is an effect
of their complex geometry, whereas for intermediate valent materials, with their
often very simple chemical structure, this behavior is due to their special electronic

structure (see also chapter 6).
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2.3 Wave equation

Fig. 2.5  For a transversal wave, propagating in [110] direction, there are two different sound
velocities depending on the displacement.

2.2.3 Anisotropy

For a transverse acoustic wave, propagating in a [110] direction, there are different
sound velocities depending on the direction of the displacement (Fig. 2.5). In a cubic
system the two sound velocities vy, and vy, are given by Eq. 2.24 and Eq. 2.25 .
The anisotropy is then defined as [1,2]:

2
v 2. 044
=|—| = =5 2.17
¥ |:'UT2:| Cy — Chg

If the value of the anisotropy equals 1 ( vy, = vr,), the crystal is elastically isotropic
and directions can not be distinguished elastically. The knowledge of n > 1orn <1
is important for the calculation of the velocity of a surface acoustic wave since the

angular dispersion relation depends strongly on it (see also section 2.5).
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Chapter 2: Surface acoustic waves

2.3 Wave equation

The dynamics in a solid body is described by the wave equation. To derive it
one starts with Newton’s law F; = m - %ﬁ [1]. The mass m can be replaced by the
volume integral of the density p and, when external body forces are neglected, the

force F; can be written as the surface integral of the stress o;;. Then, Newton’s law

becomes:
%y

f 0y - ds; = / p%dv 2.18

&8 v
Using Gauss’ theorem this integral equation can be changed easily in its differential
form:

62'U,,‘
Vj ‘04 = pw 2.19

The stress can now be expressed by the strain (Eq. 2.3). With the symmetry of the
elastic constants and the definition of the strain (Eq. 2.1), Eq. 2.19 takes then the
form of the wave equation for a solid body [1-3]:

0%, %,

=t e g —
Po = S prdm 220

2.4 Bulkwaves

The simplest solutions of the wave equation (Eq. 2.20) are bulk waves. The
general acoustic wave is a superposition of three independent plane waves. The
displacement vectors of such plane waves are perpendicular to each other. For
propagation in special crystallographic directions the set of independent plane waves
consists of one longitudinal and two transverse or shear waves. Their propagation

velocities can be easily calculated. E.g. in a cubic body they are given by [2]:
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2.5 SAW in a semi infinite material

Propagation along [100] direction:

In this case the shear modes are degenerate and the velocities are:

v = @ 2.21
p
C

vp = 4 -2 2.22
P

Propagation along [110] direction:

Here the transverse modes are not degenerate because the displacement of the
first mode points into the [001] direction whereas the one of the second one points
into {110):

Cu +Ci2 +2Cy

= 4| — 2.
UL 2 23
o = g 224

p

_ [Cu—Cy

v, = % 2.25
Propagation along [111] direction:
Once more the transverse waves are degenerate:
4
v = Cy +2C12+4Cy 2.96
3p
op = Cn—Ci+Cy 9.7
3p
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Chapter 2: Surface acoustic waves

Fig. 2.6  SAW propagating along the surface with an exponentially damped amplitude

2.5 SAW in a semi infinite material

Beside the simple bulk waves there are so called surface acoustic waves (SAW)
as solution of the wave equation (Eq. 2.20). This sort of waves propagates along
surfaces and their displacement fields are localized in the vincinity of the surface.

There are several types of surface waves. The first type discovered was a surface
acoustic wave on the stress-free planar surface of a semi infinite, elastically isotropic
medium. These waves, called after their discoverer Lord Rayleigh [8], propagate
along the surface of the solid, but their amplitudes decay exponentially with
increasing distance perpendicular to the surface (Fig. 2.6). Stoneley [9] extended
the theory to anisotropic materials. He found a whole class of solutions, which are

now known as generalized Rayleigh waves.

2.5.1 Rayleigh type solution

The general solution of the wave equation (Eq. 2.20) are plane waves given by

the real part of:
u=ca-ezplig-(1-x—vt)] 2.28
where « is the vector of the amplitude, g is the length of the wave vector q and the

vector 1 is given by l; = ¢;/q. To determine the sound velocity v for a given q or

vice versa, Eq. 2.28 is entered into Eq. 2.20, which leads to a homogeneous set of
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2.5 SAW in a semi infinite material

Fig. 2.7  Coordinate system for the surface wave system.
equations (Christoffel equation) [4,10]:
(I",-j——éijopfvz) ‘(1,‘:0 ]=1,2,3 2.29

with Ty; = lgly - criji and &5 is the Kronecker function. Then the determinant of Eq.
2.29
|pi]. — 6 - va[ =0 2.30

2 and its roots are the squared velocities of three

defines a cubic equation in v
orthogonal waves. In an infinite medium with no further boundary conditions these
are the three well known bulk waves, one quasilongitudinal and two quasitransverse.

To get surface waves, the boundary conditions of a semi infinite medium have
to be added. For a Rayleigh type surface wave the first boundary condition is a

stress-free surface, which can be expressed by [9,10]:

03 = Caijk * % - =0 fori=1,2,3 2.31
and the second one is an exponential damping of the wave perpendicular to the
plane surface. To satisfy these boundary conditions (Eq. 2.31) the solution must be
a superposition of the waves defined by Eq. 2.28, where all amplitudes vanish with
increasing distance from the surface. The coordinate system is chosen so that the

axes z; and z, lie in the surface (Fig. 2.7) and the plane normal is given by z3. The

wave vector of the propagating surface wave is now defined in the (z;, z3)-plane by
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Chapter 2: Surface acoustic waves

its magnitude q and its projection ¢l, and gla (Eq. 2.28). Then one component of

the superposition can be written as:
u = o - exp (—qbzs) - exp (ig (121 + lazy — vt)) 2.32

where b = i - I3 is a damping constant. In the following the damping term is
treated as belonging to the amplitude and only the second exponential term of Eq.
2.32 describes the propagation of the wave. The value of b is initially unknown,
whereas the values of [; and I, are given by the direction of propagation.

The secular equation Eq. 2.30 can be regarded as a function of v? with b as
parameter or vice versa. The second approach is preferred for numerical calculations.
Because of the real value of I; and Iy, Eq. 2.30 describes an equation of 3™ degree
in 5. Any value of v and any of its roots b define a solution in the form of Eq. 2.32.
Such a solution satisfies the wave equation (Eq. 2.20), represents a wave travelling in
the plane and has a b-dependence in the zs-direction. From the 6 roots of b only the
three with the negative real part can be used to create a superposition of damped
waves:

3
u= Z ADa . exp (~gbz3) - exp (ig (hzy + oz — vt)) 2.33
i=1

Eq. 2.33 has now to satisfy the boundary conditions (Eq. 2.31). Substituting the
solution in Eq. 2.31 creates a new set of homogeneous equations in the unknown
weighting factor A®. To get a non trivial solution, the determinant of the coefficients

has to vanish. The determinant is given by [10]:

| Drm o

lcmSkl cQ

lafc") + [emsirhy + cmstals = i - cmatgb™] | = 0 for m,n = 1,2,3 2.34

As mentioned above for any randomly chosen velocity v the corresponding values
of lg"), respectively b, can be found. But it is very unlikely that the surface wave
calculated with Eq. 2.33 satisfies the boundary condition Eq. 2.34. Only in very
few cases (e.g. isotropic material), the whole problem can be solved analytically {9-

11). In most cases one has to use a computer program, that tries successive values

22



2.5 SAW in a semi infinite material

for the velocity v until the boundary conditions are satisfied. This velocity v is then

the velocity of the surface acoustic wave.

2.5.2 Angular Dispersion of an anisotropic cubic medium

In an anisotropic crystal the velocity of a Rayleigh surface acoustic wave depends
on the surface orientation and the direction of propagation in the plane. The latter
is called angular dispersion. Its form is determined by the anisotropy i (Eq. 2.17)of
the material. In the following the angular dispersion of two prototype materials,
single crystal copper (7 > 1) and PbS ( < 1), will be shown and discussed. The
curves are simulations, calculated with the elastic constants and the density of both
materials. In general the velocity of a real Rayleigh SAW is smaller than the velocity
of any bulk wave [10].

(001) plane:

As a consequence of the fourfold symmetry of a (001) surface it is enough to
measure the sound velocities in an azimuthal range of 45° from [100] to [110]. In
Fig. 2.8 and in Fig. 2.9 the dispersion relation of materials with n > 1 and < 1
is plotted.. Obviously the behavior of the materials is quite different. Copper
with an anisotropy greater than one shows a strong dependence on the direction of
propagation. On the other hand the SAW velocity of PbS varies only within a very
small range of about 1% and lies about 5% below the T; bulk mode [10]. A further
significant difference of these two materials is the angle § between the displacement
ellipse, defined by the two vectors a; and oy of the SAW displacement, and the
sagittal plane, the plane defined by the direction of propagation and the z3 axis (Fig.
2.10). In the material with n < 1, § varies only between 0° and about 7°. So the
displacement perpendicular to the direction of propagation lies mostly in the sagittal
plane. On the other hand, in copper the displacement ellipse of the SAW rotates
from 0° for propagation in [100] to 90° for propagation in [110] (Fig. 2.11). In other
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Dispersion of Cu in (001) plane
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~ 2600 |-
L
3 ]
g- 2400 - Pseudo SAW mode |
T a0l 1
°
g o} ]
1wor T, mode ]
1600 1 1 1 1 n L L L L]
130 s 10 15 20 25 30 35 45
(100} angle {110}

Fig. 2.8  Shear- and surface wave velocities for propagation in a (001) plane of copper. The
displacement of the Ty mode is always perpendicular to the plane, whereas the one of the Ty lies in
the plane. By turning the propagation direction into [110] the velocity of the pure SAW converges
to the velocity of the Ty mode. In the range from about 26° to 45° a so called pseudo SAW can be
observed.

Dispersion of PbS in (001) plane
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Fig. 2.9 Shear- and surface wave velocities for propagation in a (001) plane of PbS. The
displacement of the Ty mode is always perpendicular to the plane, whereas the one of the T lies in

the plane.
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2.5 SAW in a semi infinite material

Fig. 2.10 Angle § between the sagittal plane and the displacement plane definded by the
displacement o, perpendicular and o parallel to the direction of propagation.

Angle of displacement of Cu (001)

80 b

70

50 -

40 -

30

angle of displacement

20 -

SAW mode Pseudo SAW mode

1 1 1 ! 1 1 1 1 1 !

0 5 10 15 20 25 30 35 40
(100 angle

45
[110]
Fig. 2.11 Angle § between the sagittal plane and the displacement ellipse in copper.

words for a SAW travelling along [100] the displacement o, stands perpendicular
to the plane whereas along [110] it lies in the plane. As will be explained in chapter
3, light scattering on surface acoustic waves takes only place on so called surface
ripples, which are displacements of the surface in the z3 direction. So when the
displacement of the wave lies in the plane it can not be detected by the optical way
of Brillouin spectroscopy. And in fact from an azimuthal angle of more than 25° it
is nearly impossible to see a pure SAW (10, 12-15].

In Fig. 2.8 also the velocities of a pseudo SAW are plotted. This mode is called
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Dispersion of Cu in (011) plane

2800 - T, mode . J

g

sound velocity [m/s}

8
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Fig. 2.12 Shear- and surface wave velocities for propagation in a (011) plane of copper. The
SAW velocity is always smaller than the one of the transverse bulk modes.

pseudo because only two of its three partial waves are damped and propagate along
the plane surface. The third one is not damped and produces therefore an energy
flow into the bulk {10]. In Fig. 2.11 the angle § between the displacement ellipse of
the pseudo SAW and the sagittal plane is plotted, too. Here the displacement vector
a, turns with increasing azimuthal angle from the surface plane into the sagittal
plane and thereby it increases the scattering cross section. Indeed from about 28°
this pseudo SAW can be measured with Brillouin spectroscopy as the scattering on

it dominates.

(011) plane:

On a cubic (110) plane, because of its two fold symmetry, it has to be measured
along a range of 90°, from [0T1] to [100], to get the whole angular dispersion.
In Fig. 2.12 and Fig. 2.13 the SAW velocities of copper and PbS are plotted
together with the velocities of the two shear modes. In the (011) plane vsaw of
both materials is strongly depending on the azimuthal angle. But again the two
angular dispersion relations look very different depending on the anisotropy. The
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2.5 SAW in a semi infinite material

Dispersion of PbS in (011)

g 8

g

sound velocity (m/s]

0
fol1)

Fig. 2.13 Shear- and surface wave velocities for propagation in a (001) plane of PbS. The velocity
of the pure SAW converts with increasing angle to the T) mode. In the range from (& to about 20°
only a pseudo SAW is obeserved, but not the pure mode

angle of the displacement ellipse of copper varies now between about 35° and —18°
and a pure SAW can be measured over the whole angular range. In PbS with < 1
the displacement ellipse of the pure SAW lies for propagation in the [011] direction
in the surface plane and only a pseudo SAW can be detected [10]. At an angle of
about 20° from the [011] direction the pure SAW displacement component in the
sagittal plane becomes big enough to enable the observation of the pure Rayleigh

surface acoustic wave.
(111) plane:

On a (111) plane the surface acoustic waves do not depend on the anisotropy. For
both materials, copper and PbS, the angular dispersion shows the same form (Fig.
2.14). One has to look only at propagation directions from [110] to [122] (range of
30°) due to the symmetry.

The angle § of the displacement ellipse to the sagittal plane is for all materials
smaller than 45° along [110] and becomes § = 0 along [122].
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Dispersion of Cu in (111) plane
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Fig. 2.14 Shear- and surface wave velocities in a (111) copper plane. In the (111) plane the
angular dispersion is identical for materials with anisotropyn <1 orn>1.

2.5.3 Amplitude of a SAW

Beside travelling along the surface, the amplitude of a surface acoustic wave
intrudes into the bulk material. The depth of this penetration depends on the
damping constants b (Eq. 2.32). In Fig. 2.15 all three components of the
displacement amplitudes are plotted for different azimuthal angles in the (001)
copper plane. It can be clearly seen, that still up to two wavelengths (Argser = 514.5
nm) the displacement can not be neglected. For other materials or different oriented
surfaces the damping can even be much less and the penetration depth is much
larger. Therefore surface acoustic waves are probing, despite of their surface ﬂature,
the bulk material, as well [16].
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Fig. 2.15 The comp ts of the displ ts are plotted versus increasing distance (in
wavelengths of the detecting Laser, A = 514.4 nm) into the solid of copper from the [001] surface
at a fized time. p is the azimuthal angle ed from (100). The plots with p = 0°,10° and

20° show a pure Rayleigh SAW, whereas the one with ¢ = 45° shows a pseudo SAW. Up to two
wavelengths (= 1um) there are significant amplitudes.

2.6 SAW in a thin film

Beside single crystals with a cleaved surface thin films with thickness of about
100 — 10000 A on a substrate are also very interesting. As showen in the previous
section, the penetration depth of a SAW is more than 1 pm, therefore when
examining a thin film the substrate must not be neglected {12,17]. On the other
hand, a material coated with a thin film, can still be measured with surface acoustic
waves, when the coating is not too thick (< 1000 A) [6,7,18,19]. Of course both
materials have an influence on the surface acoustic wave and have to be taken into

consideration.
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d B
Surface
Layer

" ofa SAW

Fig. 2.16 A surface acoustic wave propagates along the plane surface with a displacement in
both, the thin film and the underlying substrat.

To deal with the complication of the thin film, the wave (Eq. 2.33) has to be
divided into two parts [17]:

Layer =
u:{u for 0<zz3<=d 9.35

uSubstrate g0 23 <=0
Where d is the thickness of the layer on the substrate (Fig. 2.16). Both, ufe¥"
and uS®strate have to fulfill independently the wave equation (Eq. 2.20) with the
elastic stiffness constants and the density of either the thin film or of the substrate,
respectively. While in the bulk the displacement u must describe a damped wave,
in the thin film this is not necessarily so [17]. Therefore, the general solution in the
layer consists of a superposition of six waves depending on all six roots lé") of Eq.
2.30. As was described in section 2.5.1 of this chapter, in the bulk body only the
three roots b (= i - l3) with negative real part can be used to build the necessary
damped wave.
Two additional conditions for z3 = d are added to the boundary condition of
the stress-free surface (z3 = 0) (Eq. 2.31): continuity of the stress and of the
displacement at the interface between the thin film and the bulk [17].

Layer Substrate

u; u; | 23=0 2.36
Layer __ Substrate
VT = oy - 2.37
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2.6 SAW in a thin film

Putting the Ansatz (Eq. 2.33) in the boundary conditions (Eq. 2.31, Eq. 2.36
and Eq. 2.37) a new set of 9 homogeneous linear equations are created. As described
in section 5.1 of this chapter, the sound velocity vg 4w will then be found numerically

in a way, that the determinant of the boundary condition matrix vanishes.

2.6.1 Angular dispersion

In isotropic systems, one distinguishes two different sorts of surface acoustic
waves. The first, called Love waves [17], describe a surface wave with displacement
only perpendicular to the sagittal plane. The second are called generalized Lamb-
or Rayleigh type waves [17]. Their displacement ellipse lies always in the sagittal
plane.

In an anisotropic material this clear distinction can not be done any more. Here
the displacement ellipse changes its angle to the sagittal plane depending on the -
direction of propagation. The SAW in an anisotropic semi infinite medium behaves
in the same way. Therefore every Love wave gets a component, that lies in the
sagittal plane and, vice versa, every Rayleigh like surface acoustic wave has a

component of the displacement vector perpendicular to the sagittal plane, too.

2.6.2 gd-dispersion

In contrast to the solution of a semi infinite body, in a thin layer on a substrate
the velocity of a surface acoustic wave depends strongly on the thickness d of the thin
film and of the g-vector. Because d and ¢ appear only as product ¢d in the solution,
the velocity can be plotted against ¢d (Fig. 2.17). The behavior of the velocity in
the qd-dispersion depends on the velocity of the shear waves of both, the substrate
material and the material of the thin film. Three cases can be distinguished:
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Iron on Silicon
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Fig. 2.17 Velocities of Rayleigh type surface acoustic waves on a silicon substrate with a thin Fe
film propagating along [100] in e (001) plane. Beside the Rayleigh SAW, two Sezawa modes are
plotted.

,v#ﬂ!le" > viubatrate:

In this case the substrate is stiffened by the film. Starting from the value of
viybstrate at gd = 0 the velocity of the surface acoustic wave increases monotonically
with gd. There exists only one Rayleigh like mode [17,19]. The increase of vgaw is
limited by the shear velocity in the substrate, which lies always over v54istate, For
values larger than the cutoff value gdcuiry no propagating surface acoustic wave

can be found.

Layer Substrate,
vp <wvp H

Here the layer loads the substrate and the velocity of the surface acoustic wave
decreases with increasing gd. As before the limit for gd — 0 is v§%2rste, but for
gd — oo the surface acoustic wave converts asymptotically to vgaw of the thin film.
Beside this solution there exists a whole set of other Rayleigh type waves, called
Sezawa modes (Fig. 2.17) {17]. In contrast to the Rayleigh solution all Sezawa
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2.7 SAW in a multi-film-system

Fig. 2.18 A surface acoustic propagating along the plane surface in a multi layer system.

modes have a cutoff value of gd, below that the mode does not appear. gdcutoss of
each mode is higher than the previous one. For qd — ¢dcuto5s the Sezawa velocity
approaches to the shear velocity of the substrate. At large values of gd the velocity

of a Sezawa mode tends to the shear velocity of the layer.

1jéayer ~ ,Ugubstrate:

When the shear velocities of both, the substrate and the layer, are similar,
so called Stoneley waves can occur [17]. This mode is dispersionless and does
not exactly describe a surface acoustic wave, but a wave propagating along the
interface between both materials. Its amplitudes decay exponentially within a few

wavelengths on both sides of the interface.

2.7 SAW in a multi-film-system

The theory of an elastic wave propagating in a thin film on a substrate can easily
be extended to a system with several thin layers. In each layer and in the substrate

the wave equations (Eq. 2.20) are solved for its own and the different solutions are
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connected together by the boundary conditions, the continuity of the displacement
and of the stress at the interfaces (Eq. 2.36, Eq. 2.37). As in section 2.5 the surface
must be stress-free (Eq. 2.31) and the amplitude in the substrate must vanish with
increasing distance from the surface.

The number of possible wave modes increases with the complexity of the system.
For example, besides all the wave modes described in section 2.6, a wave can be
guided in a layer between two interfaces with a damped displacement amplitude on

the other side of the interface.

2.7.1 Superlattice on a substrate

A special case of a multi-film-system are superlattices. On a substrate two or
more different layers are periodically repeated with always the same film thickness.
It is obvious, that already a few periods (10 or more) increases the complexity of the
boundary conditions matrix enormously. Remember that, each interface, between
two layers or between a layer and the substrate, adds siz additional boundary
conditions and the expense to calculate the determinant is at least proportional
to the square of the number of boundary conditions [20]!

But, because a single layer in such a system is normally only a few Angstroms
thick, it is allowed to replace the periodic layer-system by one homogeneous layer
with one set of elastic constants and one density. Whereas the density is the average
of all densities weighted by the layer thickness, the elastic constants can not be
calculated easily from the elastic constants of the layer materials.

When the density and the elastic constants of the average film are known, the
velocity of the surface acoustic waves can be calculated as described in section 2.6
and therefore the average elastic constants can be calculated from the measured
angular or gd dispersion of the film.
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Brillouin spectroscopy

Independently from each other, Brillouin in 1922 [21] and Mandelstam in 1926
[22] predicted the inelastic scattering of light on thermally excited acoustic phonons.
Because of the very small energy shift (Af < 100 GHz), only the invention of the
laser and the use of high resolution Fabry-Pérot interferometers [23] made it possible
to observe this scattering. In the mean time the technique of Brillouin spectroscopy
has become a powerful tool for the examination of acoustic phonons [4,12,24] as
well as for other excitations in a solid body with a very small energy shift (e.g.

spin-waves [25]).

Stokes process anti-Stokes process

Photon

Photon

Sk Jook firk

Fig. 3.1  The picture on the left shows a Stokes process, where a phonon with the frequency f,
and the wavevector q is created by an incident photon with frequency f; and wavevector k;. The
photon, scattered under an angle ©, has ¢ frequency f, and a wavevector k,. The picture on the
right shows the inverse process (anti-Stokes), where a phonon is annihilated.
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3.1 Inelastic light scattering on acoustic phonons

In a quantum mechanical picture the first order scattering of light on phonons can
be expressed by the creation or annihilation of a phonon by photons. The creation is
called Stokes process and the scattered photon has a slightly smaller energy than the
incident one. The annihilation is called the anti-Stokes process with a shift to higher
photon energy (??). The energy and the momentum of the created or annihilated
phonon can be easily calculated from the conservation of energy and momentum

[12,26]:

hfi
hk;

hfs £ hf, 3.1
hk, + hq 3.2

where the index ¢ and s stands for the incident respectively the scattered photon
and ¢ for the phonon. The f are the frequencies, while k and q are the wave vectors.
The upper sign stands for a creation of a phonon, the lower for annihilation.

Due to the very small difference in the energies of the incident and the scattered
photon, the k-vector remains constant: |k;| ~ |k,| = k. Then the length of the
phonon wave vector g can be expressed by [27]

g=2- Ic-sin(g) 3.3

Obviously ¢ becomes maximal when © = 180°, which is equivalent to an exact
backscattering geometry. Nevertheless, the maximum value of g, for scattering
photons in the visible range, is still very small compared with a k—vectof lying
at the border of the first Brillouin zone. The ratio is about

q

1
Fios 500 34

Therefore the scattering takes place very near the middle of the Brillouin zone (I'

point). But in this case the group velocity of a phonon is equal to its phase velocity,
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Fig. 3.2 A typical Brillouin spectrum. The sample was an epitazically groum, (111) oriented,
340 A thick Fe/CoSip superlattice on a (111) Si substrate. Clearly visible are the needle like peaks
created by the Stokes and anti-Stokes process.

which can be assumed as constant.

Zw_k = % = const. 3.5

Then, the velocity of the phonon can be calculated from the measurable frequency
shift of the scattered photon by

Vg = r;_;(é_é/T) 3.6

where ) is the wavelength of the photon and Af = f; — f, is its frequency shift.

For scattering on surface acoustic phonons only components of the wave vectors

parallel to the surface are of interest. Then, in exact backscattering geometry Eq.

3.6 becomes
v = A-Af
77 2-sin(9)
where 9 is the angle of the incident photon measured from the surface plane normal.

3.7
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In Fig. 3.2 a typical Brillouin spectrum is plotted. It is dominated by the peak
of the elastic scattered light at Af = 0 GHz. The inelastic scattering on phonons
creates two further peaks. One at lower frequencies (Stokes process) and one at

higher frequencies (anti-Stokes process).

3.2 Cross section on surface acoustic waves

3.2.1 Mechanism of scattering

There are two different, fundamental scattering mechanisms. Which mechanism
dominates, depends on where the scattering takes place, inside the medium or at its
surface. In the first case the bulk phonons create inside the solid body fluctuations

of the dielectric function [28]
e (r, t)=e); + beij(r, t) 3.8

Generally this equation is only true in the Fourier space, since e?j is a function
of k and w, but here monochromatic light with a fixed frequency w is assumed
and therefore Eq. 3.8 becomes perfectly true. Eq. 3.8 describes the elasto-optic

contribution to the scattering. The fluctuation term can be described as
66,']' = k,‘jk[ * Ekl 3.9

where k;ji; are the elasto-optic coefficients and ey is the strain as defined in Eq.
2.1.

A competitive mechanism is the scattering on a mechanical perturbation of the
surface, on so called surface-ripples (Fig. 3.3). The ripples are produced by surface

acoustic waves with a displacement vec!tor perpendicular to the surface (compare
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3.2 Cross section on surface acoustic waves

Photon

outside

Phor

Fig. 3.3  Scattering on surface ripples. u, defines the displacement of the surface from an
equilibrium position.

with chapter 2). The total dielectric function can then be written as [28]
€ (1,8) = 8- 0 [rL — ws(ry,t)] + €7 (r,2) - 6 [us(ry, t) — rL] 3.10

where §;; is the Kronecker function, § a Heaviside step function and wu, the
displacement of the surface. The first term describes the dielectric function outside
the medium, the second inside.

Which mechanism dominates the scattering process, depends on the optical
properties of the medium. The elasto-optic cross section (do?/d§2dw) is proportional
to the transmission function at the surface and inversely proportional to the squared
optical absorption, when the absorption is large. On the other hand, the cross section
of the ripple mechanism is proportional to the reflectivity [29]. Therefore on opaque
samples with high absorption and high reflectivity coefficient, the scattering on the

surface-ripples dominates.

3.2.2 Polarization and incident angle of the light

Whereas the polarization of the incident light has no significant influence in the
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Fig. 3.4 Cross section depending on the polarisation of the light and the incident angle
(measured from the plane normal). The cross section of p—p scattering has a clear mazimum
at about 70°. The exact value depends on the reflectivity. The cross section of s—s scattering
vanishes in this region of large k-vectors (= large incident angle).

cross section of the elasto-optic scattering, the scattering on surface-ripples depends
strongly on the polarization (p, s) and the incident angle of the light (8) (Fig. 3.4).
The cross section is then in the back scattering geometry proportional to [28,30,31]:

2 3
(dgadw) ~ —M“—fx'|1+(f°)'3/2«sim9+sin%92 3.11
T o (cosﬂ + (50)—1/2)
2
(dgt-ydw) ~ C03319''1+(6°)'3/2-9»im9‘2 3.12
do® ) -3/2 . o .
e ~ cosd - |(e .sind 3.13
(dﬂ.dw o () |

Where € is the dielectric function.

Only the cross section of p—p scattering ~ p means that the light is polarized
parallel to the sagittal plane — has a maximum in the interesting range of large
k-vectors. The maximum lies around 70° depending on the reflectivity R (¢°). The
cross section of s—s scattering is already much less and vanishes in the interesting

k-vector region. For scattering, that changes the polarization (p—s and s—p) the
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cross section becomes negligibly small.

3.2.3 Thermal influence

For the cross section on surface ripples the influence of the temperature is linear

for all polarizations (28,31].

3.2.4 Conclusions

The best way to perform Brillouin spectroscopy on surface acoustic waves, is the
use of high reflecting samples like a metal in an exact back scattering geometry.
The monochromatic light should be polarized parallel to the sagittal plane (p-
polarization) and the optimal angle under which the sample is hit by the laser

beam, is around 70°.
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Chapter 4
Experimental details

As mentioned in the previous chapter, the energy of acoustic phonons and
therefore also the frequency shift of the scattered light, detectable by visible light,
lies in a range from 0 GHz up to about 100 GHz (measured in the frequency
equivalence). These energies are very small compared with the frequency of visible
light (f ~ 500 THz). The resolutions of the best grating spectrometers, used for
Raman spectroscopy, are in wave numbers about 1/cm. This corresponds to about
30 GHz. It is obvious, that this is far away from the resolution needed for Brillouin
spectroscopy. For that purpose Fabry-Pérot interferometers are used.

Mirror Mirror

/
\ /
totaly I | totaly
reflected = [ transmitted
wave YT | - wave
'\ /
\ /
incoming >
wave ¢ 4

Fig. 4.1 A Fobry-Perot acts as a very narrow band filter. For wavelengths, which fulfill
d-cos(p) = %m, the transmission through both high reflecting mirrors is 100%!
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Chapter 4: Experimental details

4.1 3+43-pass Fabry-Pérot interferometer

4.1.1 Principle of a Fabry-Pérot

In general a Fabry-Pérot (FP) consists of two high reflecting, parallel mounted
mirrors (Fig. 4.1) [23,32,33]. One part of the incident wave is reflected and the
other, much smaller part is transmitted through the first mirror (mirror losses are
neglected). On the second mirror the same happens again. But now the reflected
light beam is trapped between the two mirrors. Each time the wave is reflected on a
mirror a small part of the light is transmitted and interferes with either the totally
reflected or transmitted wave (Fig. 4.1). If the condition

d-cos(gp)=)\7"'-m 4.1

is satisfied, the interference of the transmitted wave is constructive and for the
reflected one destructive. d is the mirror spacing, A, the wavelength df the light,
¢ the angle of the incident beam and m a positive integer value. In Fig. 4.2 the
transmission is plotted versus the phase shift A® = 2kd-cos(p) = 2% d-cos(yp).
Obviously the phase shift depends on the wavelength A = ¢/f (f = frequency)
and the mirror spacing d. Therefore the FP acts as a narrow band frequency filter
tunable by the mirror spacing d. In the following discussion the beam hits the mirror
always perpendicular (¢ = 0). Then the resulting transmission becomes [32]:

1

1+ (£ sim2 (82)

™

Tres = Trnaz * 42

where F = 7R/ (1~ R) is called the finesse and R is the reflectivity. This
definition of the ideal finesse is only true for perfectly plane and parallel mounted

mirrors. Because of defects and imperfections, the effective finesse becomes smaller
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4.1 343-pass Fabry-Pérot interferometer

Number | Number | R | F | 2 | Coez | Cpaem
of FP | of passes
1 1 094 | 50.7 10.020 [ 10° 1
1 1 0.85( 19.3 [ 0.052 | 102 1
1 1 0.99 | 312.6 | 0.003 | 4-10* 1
2 1+1 0.94 | 50.7 | 0.013| 108 10?
2 3+3 0.94 | 50.7 | 0.007 | 10 108

Table 4.1 Properties of different interferometer configurations (one or two Fabry-Pérots,
different reflectivity of the mirrors and different number of passes through each FP). The last row
shows the parameters of the used Fabry-Pérot interferometer. R is the reflectivity, F the finess, i%

hh,

the resolution, Cmgz the contrast and Cﬁz(g_‘% the contrast bet: two neig ing

and can be expressed by [33]

. z 2 43

where F; are the contribution of the imperfections.

eff

— Free spectral ———
range Av

FWHM &v

2n(m-1) 2rm . 2n(m+1)
Phase shift

Fig. 4.2 The transmission function as a function of the phase shift. For the calculation a
reflectivity of only R = 0.8 was chosen to improve the visibility of the details. The free spectral
range defines the space between to peaks and is equivalent to a phase shift A® = 2r. FWHM is
given by bv =2n[F



Chapter 4: Experimental details

For absorption free mirrors the maximal transmission (A® = 27 - n) becomes
Tmaz = 1. T, is an Airy function with a FWHM (full width at half maximum)
6v ~ 2m/F. Therefore the finesse is a factor for the quality of the Fabry-Pérot
resonator. The larger the finesse and therefore the reflectivity R becomes, the
narrower the transmission peak is! The space between two maxima is called the
free spectral range Av (= 27 in the phase shift picture). The value of the FWHM
can then also be expressed as v = £Av. The free spectral range and the FWHM

can be written as an energy- or a frequency shift instead as a phase shift:

(4

[4

where c is the speed of light in the medium.
An other important characteristic of a Fabry-Pérot is the contrast between T}q,
and Trin = Tres (A® = Av/2). The contrast is defined as [23]:

o\ 2 2 2
cac-Fzos (8w (%) o () (2)
min Trnin T 4 Av=2r m T

In Table 4.1 are the finesse, the resolution and the contrast tabulated for mirrors

with different reflectivity R. It is obvious that the contrast for a single Fabry-Pérot
is not large enough to perform successfully Brillouin spectroscopy. The periodical
maxima of the transition function are an other problem. It makes it impossible
to distinguish between peaks from scattering on low- or high-energy phonons [23].
One way to solve this problem is to enlarge the free spectral range, but then the

resolution worsens at the same time .

4.1.2 Multipass Fabry-Pérot interferometer

An other and much more elegant way to improve the contrast and to break

the periodicity of the resonator, is to use two Fabry-Pérots with different mirror
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Fig. 4.3  The top and the middle pictures show the transition function of two Fabry-Pérots with
different mirror spacing. In the botfom picture the transition function of the two FPs in a tandem
configuration are plotted. Clearly visible are the camel bumbs in the range of the first neighbouring
transition mazima.

spacings in a tandem constellation. There, the light passes through both FP, which
are mounted in a line. The two mirror spacings can be set in a way, that at the
desired energy or frequency the transition maxima lie exactly at the same position
to each other [27]. Then the total transmission is maximal, too. But, as plotted
in Fig. 4.3, the first neighboring peaks of the two transition functions are shifted a
little bit to each other and there the total transmission function looks like a camel
bump. Analytically the tandem transition function is the multiplication of the two
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Chapter 4: Experimental details

single FP transition functions:
Tiandem (A(I)) = Trea,l(A(I)) : Tresﬂ (A(I)) = Tres (A(I)) “Tres (A(I> ) 7) 4.7

where v = dy/dz. The contrast of the camel bumps to the transition maximum can
then be defined as:

C am = Tiandem(2m)
LD Tiandem (27 (m £ 1))

To further improve the resolution and the contrast of such a tandem setup, the

4.8

light can pass the Fabry-Pérot several times. For N passes through each FP, the

transition function, the resolution and the contrast become:

Ttotal = Ttﬁ,mm 4.9
bv o v
LA 7-1.2 .
Avtotal v Ay 410
2N
Cost i = (Cze) 411
N
Cptmyioa = (Crtemy) 4.12

In Table 4.1 these values are tabulated for a 1+1 (1 pass through each FP) and
a 3+3 configuration (3 passes ).

To scan with a single Fabry-Pérot, the mirror spacing can be changed. An other
way to increase or decrease the optical wavelength in the FP is the change of the
refractive index by applying pressure or heat to the medium between the two mirrors
(33]. In a tandem setup with two different Fabry-Pérots the scanning is much more
complicated. During a scan both maxima of the transition function have to stay
always at the same relative position. This is only the case, when at all time the
following condition is exactly fulfilled:

é = const 4.13
d

For a long time, the synchronization of the movement of the two FP was nearly

impossible and a scan with a tandem FP interferometer could only be performed
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4.1 3+43-pass Fabry-Pérot interferometer

moving carriage |
\ |
i

Fig. 4.4  Principle of a 3+8 pass tandem Fabry-Pérot interferometer by Sandercock. The light
passes each FP three times. The FP are mounted under an angle ¢ to each other and one mirror
is fired on a movable carriage. A scan is performed by moving the carriage.

with fixed mirrors and shifting of the optical wavelength by changing the refractive
index. Fortunately, John Sandercock’s elegant design of placing the two Fabry-
Pérots in a certain angle to each other [27], completely solved these problems (Fig.
4.4). One mirror of each FP was mounted on a carriage, that moved perpendicular
to the first FP. Then the mirror spacing of the second one is automatically moved

in a way that

% = cos (¢) = const 4.14
becomes true. The big advantage of scanning by a mechanical shift is the time
needed for one scan. By changing the refractive index a scan has to be performed
very slowly and needs minutes or hours to be completed. On the other hand, the
mechanical scan from —Av to +Av with a good resolution can be done within one
second or less. This allows the use of electronic feedback routines to stabilize the
parallelity and the spacing of the mirrors and to perform scans during hours.

In our experimental equipment a Sandercock 343 pass tandem Fabry-Pérot

interferometer is used. The reflectivity of the mirrors is about R = 0.94, the folding

angle is about ¢ = 19° [34]. In Table 4.1 the values of the finesse and of the contrast

49



Chapter 4: Experimental details
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Fig. 4.5  The ezperimental setup. AOM = acousto-optic modulator, BS = beam stop, PRP =
polarization restoring prism, A\/2 = phase retardation plate, PM = photo multiplier

are tabulated.

4.2 Experimental Setup

In Fig. 4.5 an overview of the experimental setup is shown. An Ar*-laser in
single frequency mode at a wavelength A = 514.5 nm is used as light source. Its
maximum power is about P ~ 2 W. After passing an acousto-optic modulator
(AOM), a polarization restoring prism (PRP) and a phase retardation plate (\/2),
the p-polarized laser beam is focused on the sample by a lens with 100 mm or 50
mm focal distance. The acousto-optic modulator is controlled by the interferometer
control unit (ICU) and deflects the laser beam during programmable parts of a scan
on a beam stop (BS). It is used as a fast shutter to protect the photomultiplier (PM)
from overload. The degree of deflection can be adjusted. The ICU also controls the

active stabilization and the scanning of the interferometer.
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Fig. 4.6 The sample is mounted in a way, that the laser beam hits the sample under an incident
angle 9. The sample can be rotated around the z-azis (ip).

The samples are mounted on a 4 axis goniometer head, which is supported by
a 6 axis holder. This allows a very precise positioning of the sample. Usually the
sample is turned in a way, so that it is hit by the incident beam under an angle of
70° (see also chapter 3).

The scattered light is collected by the same lens as before and focused by a
second lens to the entrance pin-hole of the Fabry-Pérot interferometer. The photons
passing the interferometer are amplified by a photo-multiplier and counted with a
high speed multichannel counter card. The analysis of the measured spectra is done
by a personal computer. The free spectral range of the interferometer is usually set
to 15 or 30 GHz. This corresponds to a resolution of about 0.1 to 0.2 GHz.

To avoid local hole burning on the sample the power of the incident laser is set
to a value between 25 mW and 300 mW. Only about 1/3 of the light power finally
hits the sample. With a focal distance of 100 mm the laser spot on the sample has
a diameter of about 20 um [35]. Then the power density on the sample is between

30 W/mm? and 360 W/mm?.
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Chapter 5

Thin film structures

As explained in chapter 2, Brillouin spectroscopy is also a good tool, to examine
the elastic properties of thin films. In the following we will report of measurements on
a thick PbSe film, on thin films of CoSi, in different crystallographic structures and
on Fe/CoSi; superlattices. All films have been grown by molecular-beam-epitaxy
on a silicon substrate with a (111) orientation of the surface. Because of the only
very small surface misorientation (< 0.2°), the epitaxially grown films are generally
extraordinary flat. This absence of nearly any disturbance on the surface decreases
the amount of elastically scattered light enormously. Furthermore the reflectivity of
the thin films is due to their good quality very high, which gives a high cross section
for scattering on surface acoustic waves. Therefore this samples are very suitable to

be examined by Brillouin spectroscopy with surface acoustic waves.

5.1 PbSe-layer on Si(111)

The possibility of producing IR-sensors makes the PbX (X = S, Se or Te)
interesting. All PbX are semiconductors with a direct band gap at the L-point.
The band gap has a positive temperature coefficient, meaning, that with increasing
temperature the gap becomes larger. Good IR detectors have to be sensitive in the
energy range, where the atmosphere is transparent (atmospheric windows). This is
in the range of 3 - 5 ym and 8 - 12 um. The gap of all PbX lies in the first window
(Table 5.1). For the production of IR detectors based on PbX it is important to
know also the elastic properties of this materials. The elastic constants of pure
single crystals are well known [36-38], but not the one of an epitaxially grown film
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Chapter 5: Thin film structures

lattice con- | density p | gap at 300K | reference

stant [A] | [kg/m’] [eV]

PbS 5.936 7597 0.41 39,41, 42]
PbSe | 6.124 8276 0.27-0.29 | [39,41,42]
PbTe| 6.462 8241 0.31-0.32 | [39,41,42]

Table 5.1 The lattice constants, the calculated density and the band gap of PbX single crystals
(X =8, Se, Te)

on a silicon substrate. In this section we want to present the measurement and the
calculation we have done on PbSe films on a (111) oriented Si substrate.

PbSe has generally the simple fcc rock-salt structure. Due to the large difference
of the lattice constant of PbSe (Table 5.1) and the underlying silicon (a = 5.430
A), it is not possible to grow the PbSe layer, strained with the lattice constant of
the silicon, over more then one or two monolayers. During the growth process the
strain energy of the layer will be minimized by building defects and dislocations into
the PbSe structure. Despite this relaxation, it can not be assumed, that the whole
strain vanishes. Therefore a different behavior in the elastic constants of pure PbSe
and of a PbSe film on Si has to be expected.

5.1.1 Sample

To grow the PbSe films, first a thin template, about 20 A thick, of CaF, was
formed on the (111) oriented silicon substrate by molecular beam epitaxy (MBE).
CaF, has nearly the same lattice constant as Si (as; = 5.430 A, Qcar, = 0.464 A
[39]). Only this template makes it possible to grow PbSe on Si. In a second step,
the PbSe layer was grown using the simultaneous electron beam evaporation of lead
and selenium. With this technique PbSe films up to several micrometers can be
produced. The exact method the PbSe sample was grown is described in [40].

The PbSe sample, that was used for our measurements, is about 3.5 um thick.
The lattice constant is a = 6.124 A [39].
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Fig. 5.1  Angular dispersion of PbSe on Si(111). The errors are about 1%. The guidance lines
denote the simulated velocities of the surface acoustic wave and a pure shear wave. The elastic
constants for the simulation are calculated as described in the text.

5.1.2 Experimental details

Because of the thickness of the PbSe layer, the silicon substrate has hardly any
influence on the velocity of the surface acoustic waves. Therefore, it makes no
sense to measure a qd dispersion. Instead, the angular dispersion of vgaw was
measured. Thereby the incident angle was fixed at 70° from the plane normal and
the azimuthal angle was varied between 0° [110] and 30° [122]. This range gives
already all information because of the 6-fold symmetry of the (111) plane. The
power of the laser was set to a maximum of 300 mW, which is equivalent to a
power of about 100 mW on the sample. The free spectral range of the Fabry-Pérot
interferometer was set to 15 GHz. A Brillouin spectrum was measured all 5° to have
enough points for the following calculation. Fig. 5.1 shows the measured velocities.

The errors are set to about 1%.

55



Chapter 5: Thin film structures
Cn Cio Cu Poisson’s | Anisotropy Ref.
[GPa] [GPa] | [GPa] ratio v n
PbS 126.2 16.2 17.1 0.114 0.311 (38]
PbSe (film) | 132+10 {61+ 10| 16 +5 | 0.32 £ 0.08 | 0.45 & 0.27 | this work
PbSe 123.7 19.3 15.9 0.135 0.305 [37]
PbTe 108.0 7.7 134 0.067 0.267 [36]

Table 5.2 The elastic constants, Poisson’s ratio and the anisotropy of single crystal PbS, PbSe
and PbTe and the PbSe thin film. The large difference of elastic properties of PbSe between the
values of Lippmann [37], and the one found on the epizially groum PbSe film, must be explaind by
the different preparation of the sample.

5.1.3 Calculation of the elastic constants

The calculation of their elastic constants was done with the simple model of a
surface acoustic wave in a semi-infinite medium. For the calculation the PbSe layer
was still assumed as a pure rock-salt structure. The influence of any possible strain
on the symmetry was neglected. As start value for the Levenberg-Marquard fitting
algorithm the elastic constants of a pure single crystal of PbSe were used. The
fitting process was applied iteratively on the measured SAW velocities to increase
the accuracy of the elastic constants. In Table 5.2 the elastic properties are tabulated
together with values of PbS, PbSe and PbTe single crystals, found in the literature.

5.1.4 Conclusions

Obviously there is quite a large difference between the values of PbSe found
by Lippmann [37] and the one, determined as described before in the text. This
difference can only be explained by the different way the samples have been
produced. Lippmann’s PbSe was a single crystal, while our sample was grown
expitaxially on a Si substrate. The much higher value of Cj2 must be the result of
a still present internal strain of the film structure, induced by the silicon substrate.
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5.2 CoSis-films on Si(111)

5.2 CoSi,-films on Si(111)

In the past few years, CoSi, films on Si and their synthesis have been the subject
of several studies. CoSi, has in its stable phase the cubic CaF, structure with a
lattice constant of a = 5.365 A. At room temperature the difference to the lattice
constant of the silicon is very small and a mismatch of only 1.2% occurs. Because
of the thermal stability and its good electrical properties (low resistivity)[43], CoSi,
is a promising candidate for application in the micro- and opto-electronics [44-46).
Besides the stable phase, there also exists a metastable phase of CoSiz with a defect
CsCl structure (Fig. 5.2). To have the right stoichiometry in this phase, there
are only 50% of the possible cobalt sites occupied. The vacancies are statistically
distributed on the cation sites [47,48].

. 7 = 2N

CoSi,, CaF, structure CoSi,, CsCl defect structure
. Co & Si : vacancy

Fig. 5.2  The left picture shows CoSi in the well known CaFy structure. The right picture
displays the new defect CsCl structure of CoSiz. In this structure only half of the cation sites
are occupied by the cobalt atoms. The vacancies are distributed at random. The picture shows &
elementar cells of the defect CsCl structure.
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Chapter 5:  Thin film structures

Structure lattice con- density p Poisson’s
of CoSiy stant a [A] [kg/m3) ratio v
CaF, 5.365 4941 0.38
defect CsCl 2.69 + 0.01 4773 0.33

Table 5.3 The lattice constants, the densities and the Poisson’s ratios of both structures of CoSi,.
The lattice constants and the Poisson’s ratio are determined by XRD measurements as described
in the text

5.2.1 Samples

The silicide films were grown on a n-doped Si(111) by electron beam evaporation
of Si and Co in a commercial molecular beam epitaxy (MBE) system. First a 10 A
thick template of CoSi; was formed by co-deposition of Co and Si onto the substrate.
Then the template was annealed for five minutes at 420°C. Thicker films were grown
onto this template by MBE with a typical deposition rate of about 1 A/s. Finally
the CoSi, was capped with a 40 A thick silicon layer. All films, grown this way, have
the metastable defect CsCl structure. To bring them into the stable CaF; structure
the samples had to be annealed at 650°C for a few minutes. All films are single
crystalline and bave a (111) orientation of the surface. In this way samples with a
thickness between about 30 and 1000 A have been produced. The exact method, all
CoSi; layers were grown, is described in details in [49-51].

The lattice constant and the strain of the film were determined by X-ray
diffraction measurements (XRD). In a strained layer the lattice constant a of the
relaxed structure can not be determined directly. Instead the lattice constants
parallel (a) and perpendicular (ay) to the interface were measured. From these
values the lattice constant a and Poisson’s ratio were calculated [52] (see Appendix
A). In Table 5.3 the lattice constant, the mass density and Poisson’s ratio are
tabulated.

For the Brillouin spectroscopy measurements, we used CoSi; samples with a film
thickness of 100 A, 270 A and 1000 A, all in both structures, the CaF, and the
defect CsCl one. The two thicker samples were protected on top by a 40 A thick
silicon capping.
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Fig. 5.3  The angular dispersion of both structures of CoSip, CaFz(squares) and defect CsCl
(circles). The errors are 1%. The guidance lines are fitted sinus-functions to increase the visibility
of the variation. The sample with the CaF, structure has a strong dependence on the angle of
propagtion, while the defect CsCl structure shows only a very small variation of the SAW velocities,
which comes from the underlying silicon substrate.

5.2.2 Experimental details

In a first experiment, we measured the velocities of the surface acoustic wave in
the angular dispersion of both structures. To obtain the most significant information
of the film the measurements were performed on the thickest available samples (1000
A). The laser beam hit the samples under a constant angle of 70°. The power was
held at about 100 mW on the samples. The azimuthal angle was varied between
0° [T10] to 60° {101). Fig. 5.3 shows the angular dispersion of the CoSi; sample in
the CaF; and the defect CsCl structure. While on the CoSiy(CaF;) the velocities
of the surface acoustic wave vary clearly with the azimuthal angle, the sample with
the CsCl structure behaves nearly isotropic and the variation of vs4w lies within a
range of less than 1%. Therefore we assumed the CsCl structure as isotropic. The
small visible variation must be created by the underlying silicon substrate.

Since it is not possible to calculate all elastic constants of an isotropic medium
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Fig. 5.4  Typical spectrum of a CoSi, film. Clearly visible are the sharp, needle like peaks
generated by the Stokes and the anti-Stokes scattering process on surface acoustic waves. The
picture shows the spectrum of the 1000 A thick CoSi, film with the defect CsCl structue. The
direction of propagation was along [110] and the incident angle of the laser beam 60°.

from the angular dispersion, we also measured the dependence of vssw on qd
(Chapter 2). To do so, we used all samples with both structures. Instead of varying
the direction of propagation, the incident angle was moved between an angle of 50°
and 80°. The direction of propagation of the SAW in the surface plane was fixed
along [110]. Together with the different thickness d of the CoSi; films the variation
of the incident angle defines a gd-range from 0.18 to 2.4. Fig. 5.4 shows a typical
spectrum measured on a CoSi; film. For each film the velocity of the SAW was
measured for an incident angle 8 = 50°, 60°, 70° and 80°. In Fig. 5.5 all measured
velocities are plotted. The errors are about 2%. Furthermore vsaw of pure silicon

((111) orientation of the surface) was measured and displayed in Fig. 5.5.
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Fig. 5.5  The qd-dispersion of CoSiy. The upper picture shows the dispersion of the known
CaFy structure, the lower one displays the SAW velocities of the new defect CsCl structure. The
errors are about 2%. At qd = 0 vsaw of pure Si(111) is plotted. The full curves are generated with
the use of the elastic constents, calculated as described in the tezt. The lines are not connected
because of the different silicon capping on the CoSt, films.

5.2.3 Calculation of the elastic constants

To consider also the thin silicon capping on the CoSiy films, the model of a
surface acoustic wave in a thin film (Chapter 2.2.6) was extended to two films. This
increases the complexity of the boundary condition from a 9-dimensional problem to
a 15-dimensional one (see Chapter 2.2.7). The calculations of the elastic constants
were performed with the standard Levenberg-Marquard fitting algorithm [20].
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Chapter 5:  Thin film structures

First, for each sample the elastic constants were independently fitted to the
measured velocities of the surface acoustic wave. As start values we used the elastic
constants of CoSi; in the CaF; structure determined by Mendik {53], also for the
samples with the defect CsCl structure. For the underlying silicon and the silicon
capping on some of the samples the following values were used: Cj; = 166 GPa,
C)2 = 64 GPa, Cy = 80 GPa and the density ps; = 2330 kg/m?.

In a second step, the average elastic constants of one structure, determined as
described above, were used as start value for the final calculation. Thereby, all
measured velocities of one structure were considered in the fit. The resulting elastic
constants are tabulated in Table 5.4. Table 5.5 shows the bulk modulus, Poisson’s
ratio and the anisotropy.

For the CaF; structure C, and Cj; agree well with previously published values
of the elastic constants [53-55], while for Cyy the difference to the published values
is quite large. This difference can be explained by the only weak dependence of the
model function on Cyy in the (111) plane, lowering the accuracy of this parameter in
the fitting process. Poisson’s ratio and the bulk modulus are also in good agreement
with the already published values and also with Poisson’s ratio calculated from
XRD-measurements. The anisotropy shows due to the inaccurate value of Cyy also
a large difference to the published values.

For the defect CsCl structure of CoSi; no values of the elastic constants are
known. As expected from the measurements of the angular dispersion, the CoSiy
films with the defect CsCl structure show a nearly isotropic behavior. Poisson’s
ratio calculated from the elastic constants is also the same as the one found with

the XRD measurements.

5.2.4 Conclusions

To understand the isotropic behavior of the CsCl structure, one has to compare
this structure with the stable CaF, structure of CoSi;. When looking on the two
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5.2 CoSiy-films on Si(111)

Structure Cu Cip Cu Ref.

of CoSiz |GPa) |GPa] [GPa)

CaF, 227+£10} 145+ 10 | 112+ 20 | this work
CaF, 228 140 83 [54)
CaF, 240 161 74 (55]
CaF, 222 140 68 [53]
defect CsCl 26010 | 128 £ 10 | 64 =20 | this work
Voigt’s average | 258 £ 26 | 129+ 18 [ 64 £+ 28 | this work

Table 5.4 The elastic constants of the measured CoSi; films in both structures, CaFy and defect
CsCl. Furthermore, values found in the literature and calculated from the measured values of the
CaFy structure by applying Voigt's average.

Structure B Poisson’s | Anisotropy Ref.

of CoSi [GPa] ratio v n

CaF, 172+10 | 0.39 £ 0.04 | 2.75 £ 1.15 | this work
CaF, 169 0.38 1.89 (54}
CaF, 187 0.40 1.87 (65]
CaF, 167 0.39 1.66 (53]
defect CsCl 172+ 10 { 0.33 £0.04 | 0.96 & 0.45 | this work
Voigt’s average | 172 £20 | 0.33 £ 0.08 | 0.99 £0.77 | this work

Table 5.5 The bulk modulus, Poisson’s ratio and the anisotropy of the measured CoS% films
in both structures, CaFy and defect CsCl. Furthermore, the values found in the literature and
calculated from the measured values of the CaFy structure by applying Voigt’s average.
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Chapter 5: Thin film structures

structures in Fig. 5.2, the only differences are the sites of the cobalt atoms. While in
the CaF; structure they are placed regularly, in the defect CsCl structure they are
located randomly over the whole lattice. The Cak'; structure can be regarded as one
subset of all possible configurations of the cobalt ions in the defect CsCl structure.
Therefore, when neglecting the Si atoms, the latter can be considered as an average
of the first one. To check this possibility we calculated the elastic constants of the
polycrystalline phase from the obtained data of the single crystalline (CaF;)CoSi; by
applying the method of Voigt’s average (see Appendix A). The polycrystalline phase
always behaves isotropically, since all crystallographic directions are equivalent.
The inaccurate value of Cyy was replaced for the calculation by a more reliable
average value of 80 GPa. In Table 5.4 and Table 5.5 the elastic properties of
this average are tabulated in the row denoted Voigt's average. Obviously these
values fit very nicely the results of the measurements on the defect CsCl structure.
This calculation explains also the agreement of the bulk modulus obtained in both
different structures, since the bulk modulus is invariant under the phase transition
from the single crystalline phase to the polycrystalline one.

The calculation shows also, that the silicon lattice in the structure can only have
a very small influence on the elastic behavior of the CoSi, films.
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5.3 CoSiz/Fe superlattices on Si(111)

5.3 CoSi;/Fe superlattices on Si(111)

Besides the single crystalline CoSi, films on a silicon substrate, it is also possible
to grow superlattices with CoSi; and Fe. Thereby the CoSi, is in the defect CsCl
structure. The iron is formed in very thin layers (only one or two monolayers).
In a superlattice two or more different materials are periodically repeated with
always the same layer thickness. The interest in such superlattices comes from the
search of materials with new properties. In this case, the CoSi;/Fe superlattices are
interesting because of the 2-dimensional iron layers, which might be still magnetic.
In fact, measurements of the electrical properties showed an anomalous Hall effect
on CoSiy/Fe superlattices and therefore, give the possibility to be a ferro- or an
antiferromagnet [56,57). But it was not possible to verify this effect by Brillouin
scattering experiments on Damon-Eshbach modes [53]. Nevertheless, we performed
Brillouin spectroscopy on these superlattices to determine the elastic constants of

these superlattice films.

5.3.1 Samples

In a MBE system, first a thin CoSi; template in the CaF; structure (30 A)
was formed on a (111) oriented, n-doped silicon substrate by co-deposition of Si
and Co (see section 5.2.1 of this chapter) {56]. Then, periodically, the layers of Fe
and of CoSiy(CsCl) were grown to produce the superlattice. The exact method,

Sample | thickness | thickness | periods [ thickness | density p
Fe [A] | CoSi; [A] film [A] | [kg/m?]
8016 3.0 21 10 240 5159
8017 15 14 22 341 5072
8022 1.5 35 30 150 5699

Table 5.6 Thickness of the iron and CoSiz layers, number of periods, totel thickness and average
density of the CoSiy/Fe superlattices



Chapter 5: Thin film structures

the superlattices were grown, is described in details in {51,56). Table 5.6 shows
the properties of the investigated CoSiz/Fe superlattice samples. The densities of
the superlattice films were calculated as the average of the densities of pure iron
(pre = 7860 kg/m®) and of CoSi; in the defect CsCl structure (pcosi, = 4773 kg/m®),
weighted by the thickness of the single layers. In the first sample (8016) the thickness
of the iron is equivalent to about two monolayers, in the other two systems to about
one monolayer. Because of a possible dispersion of Si atoms, the exact structure
of the iron layer is not known. Besides the pure Fe with a bcc structure, it can
also be Fe3Si, FeSi or FeSip [48]. At the moment no further characterization of the

structures are available.

5.3.2 Experimental details

Because of the thicker superlattice structure, the ¢d dispersion was measured, on
the first two samples (8016 and 8017). The direction of propagation was always
fixed along the crystallographic [100] direction. The power of the laser was held at
about 100 mW on the sample and the free spectral range was set to 30 GHz. The
incident angle of the laser beam was varied between 45°and 80°, which is equivalent
to a variation of gd between 0.4 and 0.6 for the thinner sample (8016) and between
0.55 and 0.85 for the thicker one (8017). Fig. 5.6 shows all measured velocities of
the surface acoustic waves for both samples. The error of the measurements was
about 1%.

On the thinnest sample of the CoSip/Fe superlattices (8022) the angular
dispersion was measured. Thereby the incident angle was fixed at 70° from the
plane normal and the azimuthal angle was varied, due to the 6-fold symmetry of the
(111) plane, from 0° (110) to 30° (122). As before the power was held at about 100
mW on the sample and the free spectral range was set to 30 GHz. All 5° a spectrum
was measured. Fig. 5.7 shows the measured angular dispersion of the CoSi;/Fe
superlattice (8022). The plotted errors are 1%, except at 30° (122), where it is 2%.
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Fig. 5.6  gd-dispersion of the CoSiy /Fe superlattice (sample 8016 and 8017). The plotted errors
are about 1%. The guidance lines are simulated using the elastic constants of the superlattices,
calculated as described in the text.

5.3.3 Calculation of the elastic constants

For the calculation of the elastic constants the model of a surface acoustic wave
in a thin film was used. Thereby, it was the goal to determine the elastic constants
of the total superlattice and not of a single layer. Therefore the superlattice was
assumed as a film of one homogeneous material. No distinction between the different
layers was made. For the mass density the weighted average of the densities of the
different layer materials was taken as described in the previous section (5.3.1). For
the underlying silicon substrate, the elastic constants were taken from the literature
[10]: C11 = 166 GPa, C;, = 64 GPa, Cy4 = 80 GPa and the mass density pg; = 2330
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Fig. 5.7  Angular dispersion of CoSiy/Fe superlattice (sample 8022). The errors are about 1%
(ezcept at S0P, where it i3 2%). The guid line is a simulation using the elastic constants of the
superlattice, calculated as described in the text. :

Sample Cu Ci2 Cu B Poisson’s | Anisotropy
[GPa) [GPa] [GPa} | [GPa) ratio v n
CoSi, [260410]1284+10}64+20{172+10{ 0.33+0.04 | 0.96 + 045
8016 2324+10155+10(944+10| 181 +£10 | 0.40+ 0.05 | 2.44 £+ 0.89
8017 261+10|175+10{88+10{204+ 10 040-£0.04 | 2.05+£0.71
8022 225+10} 151410 (5210|176 +10 | 0.40+£0.05 | 1.41 £0.65
Fe 243 138 121 173 0.49 2.32

Table 5.7 The elastic constants, the bulk modulus, Poisson’s ratio and the anisotropy of the
CoSi, /Fe superlattices. The ervors are estimated from the inaccuracy of the measurement and the
fitting process

kg/m®.

As starting values for the first calculated sample (8016), the values of the elastic
constants of pure CoSi; in the defect CsCl structure were used. For the other
samples, starting values were set to the calculated values of the CoSiy/Fe superlattice
sample 8016. As before the standard Levenberg-Marquard algorithm was used for
the fitting. To improve the accuracy it was applied iteratively to the measured
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values of the SAW velocities. Table 5.7 shows the elastic constants of the CoSiy/Fe
superlattices, their bulk modulus, Poisson’s ratio and their am‘sotroby. The errors
are estimated from the inaccuracy of the measurements and of the calculations.
While Poisson’s ratios of all measured superlattice samples are exactly the same,
the other elastic properties differ a lot. Specially the anisotropy varies in a very

wide range.

5.3.4 Conclusions

Obviously, the elastic properties of these structures depend very much on the
exact parameters of the superlattice. From X-ray measurements one can conclude,
that in the sample with the 3 A iron period (8016) and also in the sample with
the only 3.5 A thin CoSij, films (8022) the iron layers are relaxed. Table 5.7 shows,
that Cy;, Ci and B are very similar for these two superlattice structures. On the -
other hand, in the sample consisting of a superlattice with 1.5 A thick Fe and 14
A thick CoSi; (8017), the iron layers are not relaxed, but still strained with the
lattice constant of the CoSi; in the defect CsCl structure. May be this explains the
difference in the elastic constants to the other samples.

The reason for the wide variation of Cy4 and therefore, of the anisotropy is not
very clear. Astonishing is the large value for the anisotropy in the two samples with
thick CoSiy layers (8016 and 8017), while pure CoSi; in the defect CsCl structure
behaves isotropically. On the other side, in the sample with only very thin CoSi,
films, the anisotropy tends to one. Therefore one has to assume, that the iron film

is not in its pure bee phase, but in a silicide form like FegSi, FeSi or FeSi,.
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Chapter 6
Elastic properties of doped
SmS

6.1 Introduction

SmS is a semiconductor, at normal pressure and room temperature, with a gap of
about 200 meV between the 4% state and the 5d band [58]. It is well known that at

an applied pressure of about 6.5 kbar (= 650 MPa) SmS becomes intermediate valent

3 o9 ,°

* *& —‘ Sm, Y,

&ﬁ f 1 a Laor Tm
* 0?3,

Fig. 6.1  Rocksalt structure of SmS, where the Sm ions can be substituted by Y, La or Tm atoms.
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Chapter 6: Elastic properties of doped SmS

and shows a metallic behavior [59]. Thereby, the pressure induced broadening of the
5d band creates an overlap between the 4f state and the 5d band. As a consequence
of the overlap the 46 state and the 4f55d! state hybridize. Therefore, a 4f electron
has also a 5d electron character. The mixing of the character of the electron leads
to the broken valence number. This effect is called intermediate valence. The
hybridization creates additionally a new small pseudo gap (hybridization gap) of
about AE = 6.4 meV between the mixed 4f% — 4f55d! states [60]. The Fermi
energy Er is always pinned somewhere in this gap (Fig. 6.2a,b).

Besides an applied external pressure, the substitution of the divalent Sm ion by
another trivalent cation can also create the necessary overlap between the 4f and
the 5d state and bring the SmS compound in the intermediate valent state. Thereby
two mechanisms are possible: In the first case, the substituting cation has clearly a
smaller ionic radius than Sm**. Then, the rocksalt structure (Fig. 6.1) is set under
an internal chemical pressure which broadens the 5d band [61]. On the other hand,
as pointed out by Falicov, Kimball (62] and Robinson [63], it is enough to substitute
Sm by a trivalent ion like La to make the SmS compound intermediate valent. A
smaller ionic radius is then not necessary. Trivalent La has only a slightly smaller
ionic radius than divalent Sm and therefore, creates hardly a lattice pressure. In this
second mechanism, the main effect leading to intermediate valence is the existence
of one free electron pro La atom in the conduction 5d band. These electrons are able
to shield very effectively the positive charge left behind by an electron, that moves
from the localized 4f state into the 5d band, and decrease in this way the binding
energy of the 4f electrons. In other words, the 4f state is lifted up relatively to the
5d band and creates in this way the necessary overlap between the two states. Of
course, both mechanism can contribute simultaneously to the intermediate valent
behavior of doped SmS as e.g. in Y doped SmS.

Strong evidence of intermediate valence is a negative value of Poisson’s ratio
(Eq. 2.16) [5-7). Generally Poisson’s ratio describes the degree of conservation of
the volume, when applying an uniaxial pressure. A value of 0.5 expresses a total

conservation of the volume, while a negative value of Poisson’s ratio describes a
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SmS at SmS with
normal pressure p > 6.5 kbar

Sm,,LaS Sm,,Tm,S

Fig. 6.2  a) shows the electronic configuration of SmS at normal conditions. When applying
a pressure all electron bands broaden. At a pressure of about 6.5 kbar the broadening of the 5d
band is strong enough to overlap and to hybridize with the 4f state (b). On the other hand, when
substituting samarium with the trivalent lanthanum with its only minuitly smaller tonic radius, it
is not a broadening of the 5d band, that leads to intermediate valence, but a lifting of the 4f state
due to a decrease of the binding energy (c). Because of the clearly smaller ionic radius of Tm than
of Sm, the mechanism leading to intermediate valency in Smi—s Tm, S must be a mizture of both,
the chemical pressure and the decreased binding energy at the same time.

collapsing of the volume. In the case of intermediate valent materials the typical
collapsing of the lattice constant during the semiconductor-metal transition [61]
leads to a negative value of Poisson’s ratio. The origin of the collapse can be found
in the special electronic configuration of intermediate valent materials and can be
explained by the different character of the 4f and the 5d electron states.

Whereas the 4f electrons are strongly localized quite near the atomic nucleus,
the 5d states are located much more on the periphery of the atom. If an electron is
taken from a 4f state and put into a 5d state, the remaining 4 ™1 electrons screen
less effectively the positive charge of the nucleus. Therefore, the outer electrons are
attracted by a stronger Coulomb force and the whole electronic hull shrinks a bit.
Generally this process needs some energy to overcome the energy-gap between the

two involved states (4f and 5d). But in an intermediate valent system, these two
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states overlap and mix already. That’s why a 4f electron is able to change its state
without the use of any energy. Already a small pressure or density fluctuations are
then enough to increase the probability for a 4f electron to be in a 5d state and to
provoke the isotropic collapse of the crystal.

To have a negative value of Poisson’s ratio either Cy; or Cj2 must be negative.
From the condition of a positive definite strain energy (Eq. 2.11) it follows
immediately, that in a cubic material only C, can be negative.

In the following sections measurements on La and Tm doped SmS and the

calculation of their elastic constants are presented.

6.2 La doped SmS

The doping of SmS with La is very interesting because on these compounds it
can be clearly shown, that free electrons play an important part in the intermediate
valence of SmS. An internal chemical pressure is not necessary. Lanthanum is
always trivalent and has only a minutely smaller ionic radius than the divalent
Sm. Therefore, built in La can hardly set the rocksalt structure of SmS under an
adequate, chemical pressure. Nevertheless, its intermediate valence has been already
proved by Holtzberg [64] and Wachter [65]. A clear evidence for the importance of
the Falicov-Kimball-model {62] is given by the lattice constants (Table 6.1). The
lattice constant of intermediate valent, La doped SmS can become smaller than the
lattice constant of pure LaS. But in such a case the La can not produce any iattice
pressure. The intermediate valence must be only the effect of the free electrons of
the La in the conduction 5d band. Furthermore, Wachter et al. {58,65] showed, that
Smy 75Lag 25S under pressure is the second excitonic insulator beside TmSe;_,Te,,
which was found first by Neuenschwander and Wachter [66] and confirmed by Bucher
et al. [67]. On the other hand, on Y doped SmS, due to its higher concentration of

free electrons, the behavior of an excitonic insulator was never found [68].
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6.2 La doped SmS

lattice con- desnity p

stant a [A] |kg/m?
SmS 5.966 5706
Smy goLiag 108 5.934 5761
Smo,75La0,258 5.866 5911
Smg g5Lag 35S 5.846 5908
LaS 5.857 5652

Table 6.1 ' Lattice constants of Smy_,Lae,§ measured by X-ray powder diffraction and the mass
density of the measured single crystals. The error of the lattice constants is about +0.001

6.2.1 Samples

The exact method to grow the La doped Sm samples is described in details in
[69]. At first all elements were put in the right stoichiometric ratio in a vacuum tight
quartz tube. This work was done in a glove box. Then, the tube was heated up very
slowly - over a period of two or three weeks — to a temperature of 600-800°C, where
the reaction took place. Afterwards the micro crystalline products were molten in a
closed tungsten crucible at about 2000°C and then in a small temperature gradient
the large single crystals were grown.

In this way single crystalline Sm;_.La,S with a La concentration of z = 10%, 25%
and 35% have been grown. At normal pressure all samples have a dark color
(dark violet to black). For the measurements, crystals with an edge length of
approximately 2-5 mm were used. The single crystals were cleaved along the (100)
planes. In spite of the cleaved surface, the surface was still microscopically very
rough and, moreover, the samples were very sensitive against excessive heating. To
increase the reflectivity and the thermal conductivity of all three crystals a very
thin gold film was sputtered on them. The thickness of the film was about 100 A.
Besides the increased reflectivity and thermal conductivity the thin layer protects
the SmS compound also against the reaction with the humidity of the environment.

Thanks to the RF-sputtering, the quality of the thin films is very good and they
can be considered at as homogeneous. Generally sputtered gold films grow with

a strong [111] texture along the growing direction but with random orientation of
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Fig. 6.3 The measured spectrum of Smg.rsLao.25S. The incident angle of the laser beam was
© = 70° and the direction of propagtion along [100]. Clearly visible are the peaks created by the
Stokes and the anti-Stokes scattering process. The two sharp peaks in the middle belong to the
flanks of the elastically scattered light.

the film parallel to the plane. Because of the very small thickness of the film, its
influence on a surface acoustic wave is small. Furthermore, the differences of the
elastic constants of gold in the effective D¢, and in an assumed isotropic symmetry
are small, as well. Therefore, we assumed the gold layer for the calculations as fully
polycrystalline and isotropic.

The lattice constants of all measured La doped SmS compounds were measured
by a X-ray powder diffraction-method in transmission mode (STOE powder
diffractometer). Thereby the samples were ground to powder. Because of a possible
phase transition of the Sm;_,La,S under pressure, it is not obvious, that the powder
has the same lattice constant as the single crystals. But, as it will be shown in section
6.3, the powder diffraction method is very reliable and the differences are within the
error of the measurements.

The lattice constants are tabulated together with the densities in Table 6.1.
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6.2 La doped SmS

6.2.2 Experimental details

All samples were hit by the laser beam under an angle of 70°. The power of the
laser on the single crystals was held below a maximum of 35 mW to avoid local hole
burning. The free spectral range (see Chapter 4) was set to 15 GHz. All experiments
were performed at room temperature. For a typical spectrum of Sm;_,La,S (Fig.
6.3) about 15000 scans of the Fabry-Pérot were done with the use of 256 channels.
The total sampling time was about 1.5—2 hours. The two sharp peaks are generated
by the Stokes and the anti-Stokes process on a surface acoustic wave propagating
on the (001) plane. As a consequence of the metallic behavior of the La doped SmS
and the additional gold film, with its high reflectivity, the light of the laser gets
absorbed very quickly and can only penetrate ~ 500 A into the sample. Therefore
the scattering volume is so small that scattering on bulk phonons can be neglected.
The scattering on surface acoustic waves takes place just on ripples of the surface.
Nevertheless the surface acoustic waves have a penetration depth of several ym and -
probe the bulk of the SmS samples in a good manner (see Chapter 2 and 3).

For all three doping concentrations, spectra at five different azimuthal angles were
taken: ¢ = 0°[100],10°,20°,35° and 45°[110] (Fig. 6.4).

6.2.3 Calculation of the elastic constants

For each sample the elastic constants were calculated. In a first step the thin gold
film was neglected and the model of a simple surface acoustic wave in a semi infinite
material (section 2.2.5) was used to do a rough calculation of the C;;. Because of
the expected quasi-isotropic behavior (anisotropy n < 1 (Eq. 2.17), see Fig. 2.9),
the vgaw was only about 1-10% smaller than the constant shear velocity vy, (Eq.
2.22) over the whole angular dispersion relation, from [100] to [110]. Therefore the
start value of Cyy could be guessed very well. The start values of Cy; and C); were
obtained from published values of similar materials (e.g. Smg75Y0.25S presented by
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Fig. 6.4  Angular dispersion of the SAW in the (100)-plane of Smy_zLa; S with z = 0.90,0.75
and 0.65. The errors are all about 1%. The lines are generated using the elastic constants calculated
as described in the text.

Zirngiebl and Giintherodt {70]). To get the elastic constants, these start values were
used to perform a least-square fit by the standard Levenberg-Marquard algorithm
{20].

To consider the thin gold film and to improve the calculations, the model of a
SAW in a thin film (section 2.2.6) was used. As mentioned above the gold layer
was assumed as polycrystalline and isotropic. The elastic constants of gold were
calculated from the elastic constants of single crystalline gold by using the method
of Voigt’s average (see Appendix A). The elastic constants are then: Cy; = 220.2
GPa, Cy3 = 160.4 GPa and Cy = 29.9 GPa and the mass density: p = 19493 kg/m?.

During the fitting it turned out, that C;; and Ci, are strongly coupled and that
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Chapter 6: Elastic properties of doped SmS

Cn Ci2 Css | Bulk modulus | Poisson’s
[GPa] | [GPa] | [GPa] B [GPa) ratio v
Smggolag1eS | 128 5[ —17+5 (24 +3 3245 —0.15+£0.06
SmgrsLagesS | 91+5 | —26+5 | 28+ 3 1445 —-0.40+0.14
SmgesLlagssS | 6245 | —16+5|36+3 10+5 —0.35£0.18
Table 6.2 The calculated elastic constants, the ed bulk modulus and the Poisson’s ratio of

Sml-,La,S.

they can compensate each other. Reliable results can be obtained by fixing these
elastic constants together with the bulk modulus B (Eq. 2.15). The bulk modulus
was measured by volume-pressure experiments by Jung et al. [71].

To increase the accuracy, the fitting process was used iteratively. The calculated
elastic constants together with Poisson’s ratios and the measured bulk moduli are
tabulated in Table 6.2. The errors were estimated by the measurement error and
the inaccuracy of the fit. Ci;, Cy and the bulk modulus, shown in Fig. 6.5,
are characterized by a monotonous, nearly linear dependence on the doping level,
whereas Cy is negative and has a clear minimum near the SmS compound doped
with 25% La. The fact of a negative C), leads also to a negative value of Poisson’s
ratio in (100)-direction (Fig. 6.6).

6.2.4 Calculation of the valence

Using the measured lattice constants we calculated also the valence of Sm;_,La_S.
To do so, we supposed a hybridization between Sm?* and Sm®* (4f° — 4f554")
cations. Furthermore we assumed that the ionic radii of the cations and anions can
simply be summed up. Then the lattice constant a can be expressed, using Vegard’s

law, as:
Gsmy . LaeS =2 [{y Tomr+ + (1 —4) - Tsmas} - (1 =2} + T Tpose +752-] 6.1

where y describes the ratio of Sm?* . The factor 2 comes from the rocksalt structure.
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Fig. 6.7  Doping dependence of the valence (squares) and of the lattice constant (circles) of
Smy_zLa,S. At a La concentration of about 25% the valence shows the largest divergence from the
linear behavior.

The radii of Sm?* (= 1.143 A) and of La®** (= 1.089 A) were calculated from the
lattice constant of pure SmS and LaS?. The values of Sm3* (= 0.964 A) and S$2-
(= 1.84 A) were taken from literature [72]. Using the fraction y from Eq. 6.1 the

valence of the samarium can be calculated by:
Usm =3 =y 6.2
and the total valence of the compound by:
USmy_pLa;5 =3 =Y T 6.3

In Fig. 6.7 the valence of Sm;_;La,S and the measured lattice constants are
plotted versus the La-doping concentration. Moreover, we calculated the valence of
Sm; _.La,S using the bond-valence-model [73]. The results obtained by this method
are in a very good agreement with the valences calculated by using Vegard’s law.

As it can be seen, the increase of the valence is clearly stronger than expected from

2 The ionic radius of La%* is not very well determined. E.g. in the periodic table of the elements by
Sargent-Welch a value of 1.15 A is given. But also much smaller values can be found in the literature.
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Chapter 6: Elastic properties of doped SmS

the increase of the concentration, e.g. for Smg 7sLag 255 the valence is 2.5 instead of
2.25 (linear approximation). At a La concentration of about 25 % the valence has
the largest difference to the linear behavior. This is also in a very good agreement
with the measurement of the elastic constants and of Poisson’s ratio, where around
the same doping concentration the largest negative values have been found (Table
6.2).
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6.3 Tm doped SmS

6.3 Tm doped SmS

In contrast to the always trivalent lanthanum, Tm changes its valence, when built
in SmS. Pure TmS is a metal and in this state the thulium ion is trivalent, whereas
in only weakly doped SmS it is divalent. Following Smirnov et al. [74,75] (see
also Fig. 6.8) three different doping ranges can be distinguished. From a doping
concentration of 0% to about 16% both cations are divalent. Then, Tm changes
its valence rapidly to 3, whereas the samarium stays in the divalent state. At a
concentration level of 25% the Sm also begins to change its valence from 2 to 3. In
contrast to the valence change of the thulium, this change is less abrupt and goes
over the whole range from 25% to 100%.

T T 1 T | I [
Sm,,Tm.S

Sm*?§

59

l

w
oo

}

{ Sm*2¢§

b
-

Lattice constant [A]
-
8
A

by
=N

5.5

Tm*"S IR SO N N IR NN S N A |
TmS 09 08 07 06 05 04 03 02 0.1 SmS
Tm doping concentration

Fig. 6.8  The lattice constants and the valencies of Smy_, Tm. S depending on the Tm doping
concentration measured by Smirnov et al. [74]. Clearly visible are the steps in the lattice constant.
From a Tm concentration of about 25% the color of the compounds changes from black to golden.
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Chapter 6: Elastic properties of doped SmS

Compared with the ionic radius of La** (= 1.089 A) and of Sm?*(= 1.143 A), the
radius of Tm®3* is clearly smaller and only 0.87 A. Therefore, the intermediate valence
of Sm;_,La,S must be also the result of an internal chemical pressure, besides the
screening effect of the free electrons. Thereby not only the binding energy of the 4f
electrons is decreased, but also the 5d band broadens (Fig. 6.2).

6.3.1 Samples

The Sm;_,Tm,S samples were produced with the same method as described in
section 6.2.1. In this way single crystalline Sm; ,Tm,S with a thulium concentration
of z = 10%, 15% and 25% have been grown. For the measurements crystals with an
edge length of about 3-5 mm were used. The single crystals have been also cleaved
along the (100) plane.

Generally the Tm doped SmS compounds are, like the La doped ones, very
sensitive against excessive heating and the cleaved surfaces are still very rough.
Therefore, we also sputtered a thin gold film of 100 A with the RF-sputter technique
on the 10% and 15% Tm doped compounds to increase the thermal conductivity
and the reflectivity. In contrast to these weakly doped samples with their dark
color, Smy 75 Tmg 255 has a golden color, making not necessary any enhancement of
the thermal conductivity and of the reflectivity. Because a gold film also protects
the crystal surface against the reaction with the humidity of the environment, the
unlayered Smg 75Tmyg 258 had to be investigated in a He atmosphere.

The lattice constants of all Tm doped SmS compounds were determined by a
X-ray powder diffraction-method in transmission mode. To do so, it was necessary
to grind the crystals to powder. Because of the possible phase change of pure and
doped SmS under pressure, the reliability of the method was checked by measuring
also a SmgeoTmy 10S single crystal in a reflection mode. This experiment gave,
within the error of the measurements, the same result of lattice constant for the

10% doped SmS compound. In a third experiment the surface of a SmggyTmy oS



6.3 Tm doped SmS

lattice con- density p

stant a [A] kg/m%] -
SmS 5.966 5706
Smo,gono,wS 5.905 5946
Smgp g5 Tmg.15S 5.860 6114
Smyg 75 Tmy, 258 5.682 6772

Table 6.3 Lattice constants of Smy_, Tm,S measured by X-ray powder diffraction and the mass
density of the measured single crystals. The error of the lattice constants is about +0.001

Counts [a.u.]

SAW

wwiu}tr/ anti-Stokes

azimuth = 35°

b 1

Sm; 4 Tm,, S

SAW

-15 -10

-5 0 5
Frequency [GHz]

Fig. 6.9  The measured spectra of Smogs Tmo.15S. The incident angle of the laser beam was
© = 70° and the direction of propagation was varied betwen p = 0° [100] and p = 45° [110]. The
peaks created by the Stokes and the anti-Stokes scaltering process are clearly visible.

single crystal was polished until it became golden (the typical sign of the occurred

phase change). This sample was measured in reflection mode again. Two lattice

constants were found in the same spectrum, one for the untouched bulk with the

same value as before and one for the polished surface, which was about 3.6% smaller
than the lattice constant of the bulk material. In Table 6.3 the measured lattice

constants are tabulated together with the mass density.
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Chapter 6: Elastic properties of doped SmS

6.3.2 Experimental details

As for the La doped SmS, all Sm;_,Tm,S sample were hit by the laser beam
under an angle of 70°. The free spectral range was set to 15 GHz and the power
on the samples was held below 40 mW. All three samples were measured in five
different directions ( = 0°[100], 10°,20°, 35° and 45°[110]) to get the whole angular
dispersion relation (Fig. 6.10).

Because of the high reflectivity of the samples (for SmggoTmg10S and
Smyg g5 Tmp.15S due to the gold film, and for Smg 75 Tmy 25S by itself), only scattering
on surface acoustic waves occurs (see section 6.2.2). Fig. 6.9 shows the spectra of
Smy g5 Tmg 35S in all five directions. One spectrum, with the use of 256 channels
of the photon counter, needed a sampling time of about 2 hours. Clearly visible
are the peaks generated by the Stokes and the anti-Stokes scattering process on
SAWs. To avoid reaction with the humidity of the environment, the not protected
Smyg 75 Tmyg 25S sample was measured in a specially designed, gas proof sample holder,
filled with He gas.

6.3.3 Calculated elastic constants

For each sample the elastic constants were calculated. For the elastic constants
of the Sm;_.Tm,S with a protecting gold film the model of a SAW in a thin film
(section 2.2.6) was used directly. The elastic constants of the unprotected 25% Tm
doped SmS-compound was calculated with the simple model of a SAW in a semi
infinite medium (section 2.2.5). As starting values for the Levenberg-Marquard fit
algorithm [20] the elastic constants of the similar La doped SmS were applied. For
the elastic constants of the gold layer, the values of polycrystalline and isotropic
gold was used, as described in detail in section 6.2.3.

Once more Cy; and C}, are strongly coupled and compensate each other. To solve

this problem we fixed these constants together with the bulk modulus, measured in a
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Fig. 6.10 Angular dispersion of the SAW in the (100)-plane of Smy._, Tm, S with = = 0.90,0.85
and 0.75. The errors are all about 1%. The lines are generated using the elastic constants calculated
as described in the text.

volume-pressure experiment by Jung et al. [71]. The accuracy of the fitting process
was improved by applying the least square algorithm iteratively.

The calculated elastic constants together with Poisson’s ratio and the bulk moduli
are tabulated in Table 6.4. The errors are estimated by the error of the measurement
and the inaccuracy of the fit. In Fig. 6.11 C);, Cia, Cu and the bulk moduli
are plotted as a function of the doping concentration. Interesting is the behavior
of Cyy and, with it, the behavior of Poisson’s ratio (Fig. 6.12). At a Tm doping

concentration of 10% C); is clearly positive. This agrees well with the measurements
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6.4 Conclusions

Cu Cia Cy | Bulk modulus { Poisson’s
[GPa] [GPa] | [GP4 B [GPa] - ratio v
SmgooTmo10S | 93410 | 5210 [23£3 66 £ 10 0.36 £+ 0.06
SmyesTmgsS | 106 £10 | —3+10 | 26+3 33+£10 -0.03 £0.05
Smg7sTmgosS | 92410 | —294+10 [ 3743 12+10 —0.46 +0.15

Table 6.4 The calculated elastic constants, the bulk moduli and the Poisson’s ratio of
Sml...sz-_pS

of the lattice constants and the interpretation by Smirnov et al. [74]:

Both cations, Sm and Tm, are divalent and therefore no intermediate valence can
be found. At 15% Tm C); and Poisson’s ratio turn out to be slightly negative and
at 25% both are clearly negative. This behavior also fits well to Smirnov’s data. In
the first case the thulium changes its valence from 2 to 3. Following Smirnov, this
change happens quite abruptly, which explains the only slightly negative values of
the C); and Poisson’s ratio. In Smy 75Tmy 258 already all thulium is trivalent and
the intermediate valent behavior comes from the valence change of the samarium, -
which starts at about 25% Tm in the SmS compound. In contrast to the valence
change of the Tm, here the change occurs over the whole range from 25% to 100%.
This large range may explain the strong negative values of C)5 and Poisson’s ratio,

that we found.

6.4 Conclusions

Brillouin spectroscopy experiments have been performed on La and Tm doped
single-crystalline SmS. The doped compounds were expected to be intermediate
valent and therefore to have a negative C,5 and negative Poisson’s ratio.

Using the measured sound velocities of the surface acoustic waves, the elastic
constants and Poisson’s ratios of Sm;_,La,S (z = 0.10,0,25 and 0.35) and of
Sm;_,Tm,S (z = 0.10,0.15 and 0.25) were calculated. All samples, except
Smg .99 Tmy 10S, display a negative Cy; and a negative value of Poisson’s ratio. While,
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Appendix A: Further elastic properties

at a doping concentration of about 25% La, the Sm;..;La,S compounds show a clear
minimum of Cjs and Poisson’s ratio, the Sm;_,Tm,S samples have no extrema.

This examination demonstrates once more the strong cduph'ng between the elastic
constants and the valence of intermediate valent systems. The behavior of the elastic
constants of all samples, Sm; _,La,S and Sm;_;Tm,S, is in good agreement with the
valence of their cations. For integer value of the valence (Smg g0 Tmg 10S) no negative
C2 and negative Poisson’s ratio can be found. Negative values imply always a broken
valence of one of the cations. The more negative Ci5 and the Poisson’s ratio are the
more broken is the valence. Therefore, the determination of the elastic constants is
a powerful way to investigate the intermediate valence.

With the found intermediate valence in the La doped SmS compounds it is clearly
demonstrated, that, because of the only minutely smaller ionic radius of the trivalent
lanthanum, free electrons in the 5d band play a significant part in making a material
intermediate valent. The lattice constants give a further evidence for this Falicov-
Kimball-model [62]. The lattice constant of SmggsLag 35S is smaller than the one
of pure LaS (Table 6.1 and Fig. 6.7). Therefore the lanthanum can not apply any
lattice pressure. Nevertheless SmggsLag3sS is intermediate valent as the negative
value of Poisson’s ratio proves. Consequently the intermediate valence must be the
effect of the induced free electrons of the La-atoms.
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Further elastic properties

A.1 Elastic constants of polycrystalline materials

The calculation of the elastic constants of a polycrystalline material (Cj;, Cly, Chy)

from the elastic constants of its single crystal phase can be done by the use of Voigt’s

average [53]:
¢, = cu-g-x Al
Cp = cu+%-x A2
Cy = c“+%-x A3

with X = Cy; ~ Cia ~ 2 - C44 The complience constants can be transformed in a

similar way using Reuss’ average:

S, = Su- % : A4
7 1

512 = Sp+ g .Y A5
’ 4

Sy = Su+ 3 Y A6

with Y = 811 — 812 — 3 - Su



Appendix B: Numerical calculations of the SAW velocity

A.2 Lattice constant and Poisson’s ratio in films

In a straind layer the lattice constants a of the relaxed structure can not be measured
directly. Instead the lattice constants parallel ¢ and perpendiculare a; to the
surface can be determined. Then, the strains parallel and perpendicular to the
surface are given by [50]:

a—a
g = ”—a— A7

a —a

gL = —— A8
a

Furthermore, a trigonal strain can be defined by:

ay —a
Eg=5|1—6l=—"—&——l A9

As described in [52], in a cubic medium the following expression can be found for
a (111) oriented surface:
ﬂ _ Cll + % -C
€t - Cn+2-Cp A.10

Where C = 2 - Cy — Cy3 + Ci2 (Eq. 2.17). For an isotropic material C vanishes
and Eq. A.10 becomes:

a_ a-a _ Cu _l-v

= = All
& ea-a Cp+2-Cy 1+v

Where v is the Poisson’ ratio as defined in Eq. 2.16. Eq. A.11 can be brought in

the form:

1+
a||—aJ_= l_z-(a"—-a) A2

Then, the lattice constant a and the Poisson’s ratio ¢ can be obtained by plotting

the difference of the strained lattice constant (a) —a,) as function of a).
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Numerical calculations of

the SAW velocity

As mentioned in chapter 2, only in a very few cases it is possible to calculate the
velocity of a surface acoustic wave directly from the elastic constants and the density
of the material. Generally the velocity can only be found numerically by trying
different values of vgaw. Thereby the quality of the found velocity is determined by
the boundary conditions (BC). The better the BCs are fulfilled, the better vg .
The BCs, which describe a set of linear equations, are fulfilled exactly, when their
' determinant vanishes. In the following we give a cook recipe, how the velocity of a

surface acoustic wave in a semi-infinite medium can be found:

(1) Guess a good value of vsaw (Vguess)-

(2) Insert vUgyess into the Christoffel equation (Eq. 2.29). The determinant of (Eq.
2.29) defines now a polynom of 3™ degree in b% (b is the damping constant, see
also chapter 2). There are now six roots of b;, but only the three roots with
Re(b;) < 0 are interesting for a damped wave.

(3) Construct the solution ussw depending on the damping constants &;.

3
ugaw = ZA:‘ ~u(by) B.1

i=1
Where A; are the unknown coefficients and u a damped, plane wave, depending
on b as defined in Eq. 2.32.

(4) Insert the general solution into the boundary conditions (Eq. 2.31). This defines
a homogeneous set of linear equations in A;.

(5) To have a non trivial solution of the A;, the determinant of the BC matrix has to
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Fig. B.1  The values of the determinant of the boundary condition matrix versus the velocity in
copper along [100] in a (001) plane. The marks denote the velocity of the surface acoustic mode,
of the degenerate shear mode and of the longitudinal mode.

vanish. If |det(BC)| = 0 or, since it is a numerical problem, at least |det(BC)| <
CONSt, Vgyess is the velocity of a surface acoustic wave, which fulfills the boundary
conditions. If the above condition is not true, a new value for vgaw has to be

found:

28 = Flog

). oas det(BC)) B2

Then go back with the new velocity to (2) and calculate the determinant again.

How fast this iterative process converts depends very much on the method F,
which is chosen to calculate the new value of the velocity. For our calculation we
always used the method of Van Wijngaarden, Dekker and Brent (called Brent’s
method) [20]. In the worst case it converts still linearly to the right solution. To
do so, at the start an interval of vgaw has to be defined in a way, that the right
solution lies within the interval.

‘When the determinant of the boundary condition matrix had only one root, that
would be enough to find the velocity of a surface acoustic wave. But unfortunately
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this is not the case. E.g. pure bulk waves can also fulfill the boundary conditions
perfectly. Fig. B.1 shows the value of the BC matrix determinant depending on the
velocity. Some of the roots have been identified with the wave modes belonging to
them. Therefore, every solution, found with the above algorithm, has to be analyzed
carefully and rejected, when it is wrong. In {10] conditions for the real Rayleigh like
solution are tabulated.

In the case of a wrong solution, it is necessary to change the starting interval
in Brent’s method to find another solution. For our computer models we have

developed an algorithm, that finds the right solution nearly under all circumstances:

(1) A fixed interval is used. When this fails,

(2) an interval is calculated from the velocities of the transverse bulk waves. These
velocities can always be calculated directly. If this interval still fails,

(3) the interval is parted in about 100 small intervals and every interval is tried, until
one of them returns the right solution. If this method also fails,

(4) the algorithm capitulates and a senseless value for vgaw will be returned.

Since we are primarily interested in calculating the elastic constants from the
measured SAW velocities, it is necessary to spend so much on creating a stable
function. Otherwise it is not possible to use this method as a model function in a
fit algorithm like the standard Levenberg-Marquard algorithm.
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