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Abstract

Inelastically scattered light of a laser was used to determine the velocity of surface

acoustic waves (SAW) in metallic thin film structures and doped, intermediate

valent SmS compounds Generally, the light scattering on acoustic phonons is called

Bnllouin spectroscopy

Surface acoustic waves are a superposition of plane, acoustic waves, which

propagate along a surface plane and are exponentially damped perpendicular to

it In single crystals the velocity depends on the orientation of the plane and the

direction of propagation The determination of the SAW velocities in different

directions gives the so called angular dispersion In thin film structures there is

additionally also a dependence on the product of the wave vector parallel to the

surface (q) and the thickness of the film (d) The measurement of the velocity

depending on qd is called qd-dispersion From both sorts of dispersion all elastic

constants of a sample (for a cubic symmetry Cn, C12 and Cm) can be calculated

using an appropriate model function

For thin film structures it is possible to get information about the quality of

the layers All films described in this work were grown on a (111) oriented silicon

substrate The elastic constants of the following samples have been determined

• 3 5 /zm thick PbSe film We found a drastic difference in the elastic constants

of the thin PbSe-film and of a single crystal of PbSe

• CoSi2 films with two different crystallographic strutures, one was a CaF2 and

the other a defect CsCl structure While the well known CaF2 phase was

elastically anisotropic, the new defect CsCl phase behaved isotropically

• CoSi2/Fe superlattice The elastic constants of these structures depend strongly

on the exact parameters of the layer system

The elastic constants of intermediate valent single crystals allow to conclude on

the electromc structure of the samples One evidence of intermediate valence is a

negative value of Poisson's ratio, which means that the crystal is extraordinarily
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Abstract

instable and that its volume collapses already, when an uniaxial pressure is applied.

We measured doped SmS compounds, in which some of the Sm ions have been

substituted by La or Tm ions. We found a clear connection between the doping

concentration, the intermediate valence and the elastic behavior of the samples.
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Kurzfassung

Inelastisch gestreutes Licht eines Lasers wurde benutzt, ran die Geschwindigkeit

von Oberflachenschallwellen m metallischen DUnnschicht-Strukturen und dotierten

zwischenvalenten SmS-Verbindungen zu bestimmen Die Lichtstreuung an

akustischen Phononen wird Brdlouin-Streuung genannt

Oberflachenschallwellen sind eine Superposition von ebenen, akustischen Wellen,

welche an einer Oberflache entlanglaufen und senkrecht dazu exponentiel gedarnpft

sind In Einknstallen ist die Geschwindigkeit der Oberflachenschallwellen abhangig

von der Orientierung der Oberflache und der Ausbreitungsrichtung Werden die

Schallgeschwindigkeiten in verschiedenen Richtungen bestimmt, nennt man das die

Winkeldispersion In Dunnschicht-Strukturen kommt noch eine Abhangigkeit vom

Produkt des Welienvektors parallel zur Oberflache (q) und der Schichtdicke (d) dazu

Die Messungen der Geschwindigkeit in Abhangikeit von diesem Produkt qd nennt

man qd-Dispersion

Aus beiden Dispersionsarten kbnnen mit einem geeigenten Modell alle elastischen

Konstanten einer Probe (im kubischen Fall Cu, C\2 und Cu) berechnet werden In

den DUnnschicht-Strukturen konnen damit Aussagen Uber die Quahtat der Schichten

gemacht werden Alle in dieser Arbeit untersuchten Schichten wurden epitaktisch

auf (lll)-onentiertes Sihzium gewachsen An folgenden Schichten wurden die

elastischen Konstanten bestimmt

• 3 5 /j.m dicke PbSe-Schicht Hier zeigte sich em drastischer Unterschied in den

elastischen Konstanten der Schichtstruktur und ernes Ernkristalls

• C0S12 Schichten in zwei verschiedenen strukturellen Formen, CaFs and CsCl

nut Defekten Wahrend die Schichten der bekannter CaF2-Form elastisch

amsotrop waren, zeigten die Proben der neuen defekten CsCl-Phase em isotropes

Verhalten

• CoSi2/Fe Supergitter Die elastischen Konstanten dieser Proben hangen sehr

stark von den exakten Schichtparametern ab



Kurzfassung

In zwischenvalenten Einkristallen konnen von den elastischen Konstanten

Schlusse auf die elektronische Struktur der Proben gezogen werden. Ein Beweis fur

Zwischenvalenz ist ein negatives Poisson Verhaltnis, das besagt, dass der Kristall

ausserordentlich weich ist und dass dessen Volumen schon bei einem uniaxial

angelegten Druck in alien Richtungen kollabiert. Wir haben SmS Verbindungen

untersucht, bei denen ein Teil der Sm-Ionen durch La- oder Tm-Ionen ersetzt wurde.

Wir konnten einen klaren Zusammenhang zwischen der Starke der Dotierung, der

Zwischenvalenz und dem elastischen Verhalten aufzeigen.
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Chapter 1

Introduction

In modern solid state physics the characterization of new materials by its elastic

constants is important. The elastic behavior can give, e.g., information about the

quality of samples (thin film structures) or the electromc structure (intermediate

valence). One instrument to investigate the elastic properties of a material is the

ultrasonic technique. This is a very powerful and precise tool, but as soon as the

samples are quite small or only very thin it gets to its limits.

Another very elegant way, in a lot of aspects, is the use of Brillouin spectroscopy

to determine the elastic constants. Because of the very small laser spot (when

focused about <f> « 20 fim) no large samples were needed. Samples of the size of 0.5

mm or less can still be investigated. Moreover, because of the lack of any mechanical

contact to the crystal, the Brillouin spectroscopy method can be used under a lot

of different conditions, e.g. the sample can be held in an inert atmosphere or in a

cryostat.

For Brillouin spectroscopy the monochromatic light of a laser is scattered

inelastically on acoustic phonons. Thereby the scattering shifts the energy or,

respectively, the frequency of the incident photon a little. This very small energy

shift (small only in the case of scattering on acoustic phonons) is detected and

measured with a Fabry-P6rot-interferometer. Since the scattering vector is very

small compared to the Brillouin zone, the dispersion relation of the acoustic mode

is still in the linear range and the velocity of the surface acoustic wave can be easily

calculated.

Depending on the optical quality of the samples, different sorts of acoustic waves

can be observed: On transparent materials, where the absorption is only small, the

normal bulk waves are detectable, but in metallic samples with their high reflectivity,



Chapter 1: Introduction

this mode can not be measured, because of the only very small penetration depth of

light. Here the cross section for scattering on surface acoustic waves (SAW) becomes

more important. Generally surface acoustic waves are a superposition of plane waves,

which propagate along a surface and are exponentially damped perpendicular to the

surface. Thereby the scattering process is located just at the surface and occurs from

so called surface ripples. Nevertheless the penetration depth of a surface acoustic

wave is several micrometers deep and, despite its surface character, the SAW probes

the bulk of a sample in a good manner.

The measurement of the bulk wave velocities in the direction of a main symmetry

axis allows very simply the calculation of the elastic constants of the crystal. On

the other hand, due to the more complex nature of surface acoustic waves, the

calculation of the elastic constants from the measured velocity of a surface acoustic

wave is much more complicated, but nevertheless doable. E.g. in a crystal with a

cubic symmetry there are three independent elastic constants (Cu, Ci2 and Cu)-

For the calculation either the dependence of the SAW velocity on the propagation

direction of the wave in the surface plane (angular dipsersion) or, alternatively - in

the case of a thin film structure on a substrate -, the dependence on the product

qd is used to fit the elastic constants (gd-dispersion). q stands for the wave vector

parallel to the surface and d for the thickness of the film.

In this work, we show, how the surface acoustic waves can be used to determine

the elastic constants of single crystals and thin film structures.

First, in chapter 2, the definitions of stress, strain and the tensors of the elastic

stiffness and the elastic compliance constants will be introduced. Then, after the

introduction of the elastic wave equation and bulk waves, the most simple solution

of the wave equation, the nature of the surface acoustic waves will be explained and

their behavior will be analyzed in detail for a SAW in a semi-infinite body and in

thin film structures on a substrate.

Chapter 3 will describe the scattering mechanism on acoustic waves. After the

introduction of the Stokes and the anti-Stokes process, the calculation of the phonon

velocity from a measured energy shift will be derived. Furthermore, the differences

6



of the scattering mechanism on a bulk wave and on a surface acoustic wave will be

discussed. Finally, the cross section for scattering on surface acoustic waves will be

given depending on the polarization of the incident and scattered photon and on

the angle of the incident laser beam.

In chapter 4 the principle of the used Sandercock 3+3 pass tandem Fabry-P6rot

interferometer will be explained. In the second part the experimental setup and its

parameters will be presented.

Chapter 5 will deal with the elastic constants of thin film structures. These

structure were all grown by molecular beam epitaxy on a (111) oriented silicon

substrate. Three different materials were examined:

• A PbSe film on silicon, where the elastic constants of the film are compared

with the elastic constants of a PbSe single crystal. The PbSe film was quite

thick (3.5 /im) and relaxed, but the remaining strain, induced by the different

lattice constant of the silicon substrate, changes the elastic constants drasti¬

cally.

• CoSi2 films with two different crystallographic structures, the well known CaF2

structure and the new defect CsCl structure. Opposite to the results of the

CaF2 structure, the experiments and the calculation on the defect CsCl struc¬

ture show, that this form of CoSi2 behaves elastically isotropic and its structure

can be interpreted as an average of a polycrystaUine, randomly oriented CaF2

structure, despite its well defined single crystalline form. The silicon atoms of

the CoSi2 film have only a very small influence on the elastic behavior.

• On CoSi2/Fe superlattices the measurements show, that the elastic constants

depend strongly on the exact parameters of the single layers in the superlattice

(thickness of the CoSi2 and the Fe layer, number of periods).

In chapter 6 the elastic constants of doped SmS crystals will be presented and

discussed. Under pressure SmS makes a semiconductor-metal transition. After this

transition SmS is in an intermediate valent state. SmS can also be brought into this

state without any applied pressure by substituting Sm by Y, La or Tm.

A strong evidence of intermediate valence is a negative Ci2 and a negative

7



Chapter 2: Surface acoustic waves

value of Poisson's ratio, which can be calculated from the elastic constants. The

presented data will show, that depending on the doping concentration Smi-xLa^S

and Smi_zTmxS have both a more or less negative Poisson's ratio and are therefore

in the intermediate valent state.

We will show, that the mechanism leading to intermediate valence is different

for doping with La or Tm, due to the very different ionic radii. Since the Tm ion

is clearly smaller than the Sm ion, the substitution sets the SmS crystal under

an internal chemical pressure. On the other hand, La with its only minutely

smaller ionic radius can hardly set the crystal under an adequate pressure. Here the

intermediate valent behavior must be only the effect of the additional free electrons

in the 5d band, induced by building in trivalent La-atoms.

8



Chapter 2

Surface acoustic waves

To understand the theory of surface acoustic waves, the nature of vibration in a

solid body has to be analyzed first For this consideration the atomic nature can be

neglected and the sample can be assumed as a continuum The material properties,

which describe the quality of an acoustic wave, are the density p and the elastic

tensor cXJa

2.1 Strain, stress, and elastic constants

In this section we will define the strain, the stress and the tensors of the elastic

stiffness and the compliance Furthermore the widely used abbreviated notation is

introduced

Fig. 2.1 ov, represents the stress on the i plane in the j-direction



Chapter 2: Surface acoustic waves

2.1.1 Strain

The deformation of a solid body and therefore the movement of an infinitesimal

small particle can be described by the strain et]. The strain is defined as the

differential displacement of the particle out of its equilibrium position [1]:

1 dut duj
2 [dx} dx,

t,3 = 1.2,3 2.1

where «, is the displacement vector of the particle. Obviously etJ is a symmetric

3 x 3-matrix.

2.1.2 Stress

When a particle is moved out of its equilibrium position, elastic restoring forces

develop between neighboring particles. These forces can be described by internal

traction forces and stresses which act on the surface of a particle [1,2] They are

represented by the stress tensor atJ, which is a symmetric 3 x 3-matrix as well.

The diagonal terms <t„ represent the stresses in the i-direction on the t-plane, while

the off-diagonal terms atJ (1^3) describe the traction forces on the i-plane in the

j-direction (Fig. 2.1).

2.1.3 Hook's Law

Obviously any applied stress atJ produces a certain strain ew and vice versa.

Generally this can be written as:

£ki = f (<Ti3) and <r,3 = g (e«) g = f'1 2.2

As long as the deformations are small the stress increases linearly with the strain.

With increasing deformation the relation between the stress and the strain becomes

10



2.1 Strain, stress, and elastic constants

Fracture

point

Fig. 2.2 typical stress-strain relation for a solid body [1]

more and more nonlinear, but still remains reversible. These regions are called

Unear and nonlinear elastic deformation (Fig. 2.2). If the stress increases beyond

the elastic limit, which lies for the strain typically in the range of 10~4 to 10~3, the

solid deforms plastically and permanently. At last it fractures.

For this study we assume to be always in the range of the linear elastic

deformations. Then, Eq. 2.2 can be written in a linear form called Hook's Law

[I]1:

°X] = Cyfc! • Ski

£kl = s%]kl °~i]

2.3

2.4

The linear operator in Eq. 2.3, c,jki, is called elastic stiffness constants or simply

elastic constants, whereas st]ki in Eq. 2.4 is called compliance constants. Both,

C3ki and stJki, are tensors of 4th rank with totally 81 elements and, of course,

Cijkl = {Sijkl)

In this work Einstein's convention of summing over repeated subscripts is used. E g Eq. 2.3 is equivalent
to

Ci = Y2^2c,'k' '£fcl

11



Chapter 2: Surface acoustic waves

ij, kl II 11 22 33 12,21 13,31 23,32

I, J 1 1 2 3 4 5 6

Ibble 2.1 The double subscripts i] and kl are replaced by the single subscripts I and J

2.1A Symmetry of the elastic and compliance tensors

With its 81 elements the stiffness and the compliance tensors are quite difficult

to handle. But fortunately not all elements are independent. Using symmetry

arguments the number of independent elements can be reduced rapidly.

Simple symmetries of Hook's Law:

From the symmetry of the stress tensor (a,3 = o]t) and from Eq. 2.3 the symmetry

Cxjki = CjM follows immediately [1,3]. Similarly the symmetry of the strain tensor

leads to c,]ki = c,^. Therefore the independent elements are reduced down to 36.

The same can be done with the compliance tensor s,jH.

Abbreviated subscripts notation:

In the literature an other notation is often used for atJ, eki, c,jki and sx]ki. There

the symmetry is used to write the 3 x 3-matrix of the stress and the strain as a 6-

dimensional vector. Then, the 4th-rank tensor of the elastic and the compliance

constants is expressed by a 6 x 6-matrix. To do so abbreviated subscripts are

introduced. Therefore, one pair of a double index (i; or Id) is replaced by a single

subscript (J or J) [4], following the convention depicted in Table 2.1. Then av,, eki,

Cjiy and s,j/u transform according to [1]:

ai = cry for / = 1... 6

f etJ for 7 = 1,2,3
£'~

{2-e,, for I = 4,5,6 2.5

Cu = c,jki for 7, J = 1... 6

Su = s,]kl for I, J = 1... 6

12



2.1 Strain, stress, and elastic constants

Hook's Law (Eq. 2.3 and Eq. 2.4) can then be simply written as:

Si = Su o-j

2.6

Although the tensors with the abbreviated subscripts look like ordinary tensors, one

has to be very careful when transforming the base (e.g. rotating the coordinate-

system). This has to be done in the normal tensor notation. The law of

transformation is then for the stress and the strain [3]:

otJ = <hk &]l <rki

e'l} = Otfc •

a.3i
• £ki

and for the elastic stiffness constants and the compliance constants:

ci]kl 0«n ' &jn " ^ko '

O-ip
• Cmxuyp

where atJ is the orthogonal 3 x 3-transformation matrix.

Symmetry of the energy density:

Using the strain energy density, which is denned according to [2] as:

ue = -£/ • Cu Ej

2.7

2.8

2.9

2.10

2.11

the symmetry of the elastic tensor matrix (Cu = Cjj) can be easily verified. Thus,

the number of the independent elastic constants can be reduced from 36 down to

21. CJL finally looks like:

2.12

Cn Cl2 Ci3 Cu C15 C16

Cn c22 C23 C24 C25 C26

Cl3 C23 C33 C34 C35 C36

Cu Cm C34 Cu C45 C46

Cu C25 C35 C45 C55 C56

Cl6 C26 C36 C46 C56 C66

13



Chapter 2: Surface acoustic waves

Crystal symmetry:

It is not possible to obtain further symmetries alone from the laws of the elasticity.

However, the crystal symmetry, which is given by its atomic structure, can effectively

simplify the tensor of the elastic constants. E.g. a crystal with a cubic symmetry

has only 3 independent terms unequal zero [1-3]:

Cn Ci2 C12

Ci2 Cn C12 o

Cli Cn Cn
r

2.13

0 Cu

Cu
.

all other terms are equal zero. If the crystal is furthermore elastically isotropic - no

crystal direction can elastically be distinguished -, Cu can be replaced by the term

\ (Cn - C12) • Cu and its inverse, the compliance tensor, have always the same

number of independent elements.

2.2 Elastical properties of cubic crystals

In an experiment rarely the elastic constants Cu can be measured directly. Often

only a function of Cu is observed. Consequently, the following observables, which

describe the behavior of the solid body under certain circumstances, are defined in

the literature :

2.2.1 Bulk modulus

When a hydrostatic pressure is applied to a crystal, the isotherm compressibility

k describes the relative behavior of the volume (Fig. 2.3). The bulk modulus B is

14



2.2 Elastical properties of cubic crystals

Fig. 2.3 A hydrostatic pressure changes the volume of a material Within the elastic limit the

bulk modulus is the proportionality factor between the applied pressure and the volume change

the reciprocal of k and both are defined by the thermodynamical expression.

1 1 dV

B~K~ V~,
2.14

For a cubic crystal, where in all directions the strain Ej is equal (= e), the bulk

modulus can be expressed by Cu, using the following identities:

dp

dV

Cu-£j = e-{Cn+2C12)

dV = V -{l-ef -V : -ZV-e

Then Eq. 2.14 becomes [2]

B
1 1

(Cu + 2C12) 2.15

The harder the material is, the bigger the bulk modulus becomes Typical values

for B are several 10 GPa.

15



Chapter 2: Surface acoustic waves

^Luniaxial

^ pressure

Fig. 2.4 An uniaxial pressure produces a negative strain (e3) parallel and a positive or negative

strain (e\and £2) perpendicular to the pressure The ratio of the strains defines Poisson's ratio

2.2.2 Poisson's ratio

When an uniaxial pressure is applied to a crystal, Poisson's ratio a describes the

ratio between the strain parallel and perpendicular to the direction of pressure [1]

For a cubic material it can be defined only along a crystallographic main axis (Fig.

2.4):

£\ b\ C12
v = -j- =

-y
=
?r-~r- 2.16

£3 03 On -+- O12

The values of v ranges from 0.5 down to -1. The maximum value describes an

absolute conservation of the volume when applying a uniaxial pressure. A negative

value expresses a collapsing of the solid body and can be observed in several complex

polymers and in intermediate valent single crystals [5-7]. For polymers it is an effect

of their complex geometry, whereas for intermediate valent materials, with their

often very simple chemical structure, this behavior is due to their special electronic

structure (see also chapter 6).

16



2.3 Wave equation

Fig. 2.5 For a transversal wave, propagating in [110] direction, there are two different sound

velocities depending on the displacement

2.2.3 Anisotropy

For a transverse acoustic wave, propagating in a [110] direction, there are different

sound velocities depending on the direction of the displacement (Fig. 2.5). In a cubic

system the two sound velocities vTl and vT2 are given by Eq. 2.24 and Eq. 2.25
.

The anisotropy is then defined as [1,2]:

If the value of the amsotropy equals 1 ( vTl = vT2), the crystal is elastically isotropic

and directions can not be distinguished elastically. The knowledge of v > 1 or 77 < 1

is important for the calculation of the velocity of a surface acoustic wave since the

angular dispersion relation depends strongly on it (see also section 2.5).

2 • G44

Cn — Cr.
2.17

17



Chapter 2: Surface acoustic waves

2.3 Wave equation

The dynamics in a solid body is described by the wave equation. To derive it

one starts with Newton's law Ft = m ^ [1]. The mass m can be replaced by the

volume integral of the density p and, when external body forces are neglected, the

force F, can be written as the surface integral of the stress ay,. Then, Newton's law

becomes:

jairdSj = JP^-dV 2.18

6s 6V

Using Gauss' theorem this integral equation can be changed easily in its differential

form:

92u,
Vj-°V,=P-^r 2.19

The stress can now be expressed by the strain (Eq. 2.3). With the symmetry of the

elastic constants and the definition of the strain (Eq. 2.1), Eq. 2.19 takes then the

form of the wave equation for a solid body [1-3]:

d2u, d2u,
"-w-^te&l

22°

2.4 Bulkwaves

The simplest solutions of the wave equation (Eq. 2.20) are bulk waves. The

general acoustic wave is a superposition of three independent plane waves. The

displacement vectors of such plane waves are perpendicular to each other. For

propagation in special crystallographic directions the set of independent plane waves

consists of one longitudinal and two transverse or shear waves. Their propagation

velocities can be easily calculated. E.g. in a cubic body they are given by [2]:
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2.5 SAW in a semi infinite material

Propagation along [100] direction:

In this case the shear modes are degenerate and the velocities are:

- = ft
/ Odd

vT = <l— 2.22

V p

Propagation along [110] direction:

Here the transverse modes are not degenerate because the displacement of the

first mode points into the [001] direction whereas the one of the second one points

into [llO]:

vL = JC" +^ + 2C«4
223

vTl =
J0*- 2.24
1(

p

VT2 = J9^

Propagation along [111] direction:

Once more the transverse waves are degenerate:

/Ci1 + 2C12-r4C44
00.

VL = *' TP
226

VT = JCn-C12 + Cu
22?
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Chapter 2: Surface acoustic waves

Surface

Amplitude
Phonon f ofaSAW

of a SAW

Fig. 2.6 SAW propagating along the surface with an exponentially damped amplitude

2.5 SAW in a semi infinite material

Beside the simple bulk waves there are so called surface acoustic waves (SAW)

as solution of the wave equation (Eq. 2.20). This sort of waves propagates along

surfaces and their displacement fields are localized in the vincinity of the surface.

There are several types of surface waves. The first type discovered was a surface

acoustic wave on the stress-free planar surface of a semi infinite, elastically isotropic

medium. These waves, called after their discoverer Lord Rayleigh [8], propagate

along the surface of the solid, but their amplitudes decay exponentially with

increasing distance perpendicular to the surface (Fig. 2.6). Stoneley [9] extended

the theory to anisotropic materials. He found a whole class of solutions, which are

now known as generalized Rayleigh waves.

2.5.1 Rayleigh type solution

The general solution of the wave equation (Eq. 2.20) are plane waves given by

the real part of:

u = a • exp [iq (1 • x — vt)] 2.28

where a is the vector of the amplitude, q is the length of the wave vector q and the

vector 1 is given by I, = q,/q. To determine the sound velocity v for a given q or

vice versa, Eq. 2.28 is entered into Eq. 2.20, which leads to a homogeneous set of

20



2 5 SAW in a semi mfimte material

Fig. 2.7 Coordinate system for the surface wave system

equations (Christoffel equation) [4,10]

(Tv-St] pv2) a, = 0 j = 1,2,3 2.29

with rtJ = Ikh Cktji and 6tJ is the Kronecker function Then the determinant of Eq

2 29

|r„ -St] pv2\ =0 2 30

defines a cubic equation in v2 and its roots are the squared velocities of three

orthogonal waves In an infinite medium with no further boundary conditions these

are the three well known bulk waves, one quasilongitudmal and two quasitransverse

To get surface waves, the boundary conditions of a semi infinite medium have

to be added For a Rayleigh type surface wave the first boundary condition is a

stress-free surface, which can be expressed by [9,10]

CT3« = C3y/fc
duj

dxk
= 0 for i = 1,2,3 2.31

and the second one is an exponential damping of the wave perpendicular to the

plane surface To satisfy these boundary conditions (Eq 2 31) the solution must be

a superposition of the waves defined by Eq 2 28, where all amplitudes vanish with

increasing distance from the surface The coordinate system is chosen so that the

axes Xi and x2 he in the surface (Fig 2 7) and the plane normal is given by x3 The

wave vector of the propagating surface wave is now defined m the (x\, x2)-plane by
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Chapter 2: Surface acoustic waves

its magnitude q and its projection qli and ql2 (Eq. 2.28). Then one component of

the superposition can be written as:

u = a • exp (—q6i3) • exp (iq (l\X\ + l2x2 — vt)) 2.32

where 6 = i la is a damping constant. In the following the damping term is

treated as belonging to the amplitude and only the second exponential term of Eq.

2.32 describes the propagation of the wave. The value of b is initially unknown,

whereas the values of h and l2 are given by the direction of propagation.

The secular equation Eq. 2.30 can be regarded as a function of v2 with 6 as

parameter or vice versa. The second approach is preferred for numerical calculations.

Because of the real value of l\ and Z2, Eq. 2.30 describes an equation of 3rd degree

in b2. Any value of v and any of its roots 6 define a solution in the form of Eq. 2.32.

Such a solution satisfies the wave equation (Eq. 2.20), represents a wave travelling in

the plane and has a 6-dependence in the i3-direction. From the 6 roots of b only the

three with the negative real part can be used to create a superposition of damped

waves:

3

u = ^2 -AW«W exp (-qb^Xa) • exp (iq (ijZi + l2x2 - vt)) 2.33

t=i

Eq. 2.33 has now to satisfy the boundary conditions (Eq. 2.31). Substituting the

solution in Eq. 2.31 creates a new set of homogeneous equations in the unknown

weighting factor A^'K To get a non trivial solution, the determinant of the coefficients

has to vanish. The determinant is given by [10]:

|A»m| = |Cm3W
' «ife (, J

= |4n) • [cmikih + Cmskih - »• <^d>\ j = 0 for m, n = 1,2,3 2.34

As mentioned above for any randomly chosen velocity v the corresponding values

of 4"\ respectively 6'"', can be found. But it is very unlikely that the surface wave

calculated with Eq. 2.33 satisfies the boundary condition Eq. 2.34. Only in very

few cases (e.g. isotropic material), the whole problem can be solved analytically [9-

11]. In most cases one has to use a computer program, that tries successive values
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2.5 SAW in a semi infinite material

for the velocity v until the boundary conditions are satisfied. This velocity v is then

the velocity of the surface acoustic wave.

2.5.2 Angular Dispersion of an anisotropic cubic medium

In an anisotropic crystal the velocity of a Rayleigh surface acoustic wave depends

on the surface orientation and the direction of propagation in the plane. The latter

is called angular dispersion. Its form is determined by the anisotropy n (Eq. 2.17)of

the material. In the following the angular dispersion of two prototype materials,

single crystal copper (rj > 1) and PbS (n < 1), will be shown and discussed. The

curves are simulations, calculated with the elastic constants and the density of both

materials. In general the velocity of a real Rayleigh SAW is smaller than the velocity

of any bulk wave [10].

(001) plane:

As a consequence of the fourfold symmetry of a (001) surface it is enough to

measure the sound velocities in an azimuthal range of 45° from [100] to [110]. In

Fig. 2.8 and in Fig. 2.9 the dispersion relation of materials with n > 1 and n < 1

is plotted.. Obviously the behavior of the materials is quite different. Copper

with an anisotropy greater than one shows a strong dependence on the direction of

propagation. On the other hand the SAW velocity of PbS varies only within a very

small range of about 1% and lies about 5% below the 7\ bulk mode [10]. A further

significant difference of these two materials is the angle 6 between the displacement

ellipse, defined by the two vectors a± and aty of the SAW displacement, and the

sagittal plane, the plane defined by the direction of propagation and the 13 axis (Fig.

2.10). In the material with n < 1, S varies only between 0° and about 7°. So the

displacement perpendicular to the direction of propagation lies mostly in the sagittal

plane. On the other hand, in copper the displacement ellipse of the SAW rotates

from 0° for propagation in [100] to 90° for propagation in [110] (Fig. 2.11). In other
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Chapter 2: Surface acoustic waves

Dispersion ofCu in (001) plane

T2mode

Fig. 2.8 Shear- and surface luaue veioctttes for propagation m a (001) plane of copper The

displacement of the T2 mode is always perpendicular to the plane, whereas the one of the 7\ lies m

the plane By turning the propagation direction into [110] the velocity of the pure SAW converges

to the velocity of the T\ mode. In the range from about 26° to ^5° a so called pseudo SAW can be

observed.

£•2200

Dispersion ofPbS in (001) plane

T, mode

T. mode

SAW mode
-----•

0 5

[100]

10 15 20 23 30 35 40 45

, CO]
angle

Fig. 2.9 Shear- and surface wave velocities for propagation m a (001) plane of PbS. The

displacement of the Ti mode is always perpendicular to the plane, whereas the one of the T2 lies m

the plane
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2.5 SAW in a semi infinite material

Fig. 2.10 Angle 6 between the sagittal plane and the displacement plane definded by the

displacement ct± perpendicular and o^ parallel to the direction of propagation.

Angle of displacement of Cu (001)

SAW mode __^^ Pseudo SAW mode\

0 5 10 15 20 25 30 35 40 45

[10°1 angle
[n0)

Fig. 2.11 Angle 8 between the sagittal plane and the displacement ellipse in copper.

words for a SAW travelling along [100] the displacement ax stands perpendicular

to the plane whereas along [110] it lies in the plane. As will be explained in chapter

3, light scattering on surface acoustic waves takes only place on so called surface

ripples, which are displacements of the surface in the X3 direction. So when the

displacement of the wave lies in the plane it can not be detected by the optical way

of Brillouin spectroscopy. And in fact from an azimuthal angle of more than 25° it

is nearly impossible to see a pure SAW [10,12-15].

In Fig. 2.8 also the velocities of a pseudo SAW are plotted. This mode is called

80
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s
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Chapter 2: Surface acoustic waves

Dispersion ofCu in (011) plane

J i 1 i 1 1 I 1 1 1 1 1 1 i I . 1 L_

0 10 20 30 40 50 60 70 SO 90

t°T,l
angle

[m

Fig. 2.12 Shear- and surface wave velocities for propagation m a (Oil) plane of copper. The

SAW velocity is always smaller than the one of the transverse bulk modes.

pseudo because only two of its three partial waves are damped and propagate along

the plane surface. The third one is not damped and produces therefore an energy

flow into the bulk [10]. In Fig. 2.11 the angle 6 between the displacement ellipse of

the pseudo SAW and the sagittal plane is plotted, too. Here the displacement vector

ax turns with increasing azimuthal angle from the surface plane into the sagittal

plane and thereby it increases the scattering cross section. Indeed from about 28°

this pseudo SAW can be measured with Brillouin spectroscopy as the scattering on

it dominates.

(Oil) plane:

On a cubic (110) plane, because of its two fold symmetry, it has to be measured

along a range of 90°, from [Oil] to [100], to get the whole angular dispersion.

In Fig. 2.12 and Fig. 2.13 the SAW velocities of copper and PbS are plotted

together with the velocities of the two shear modes. In the (011) plane vSaw of

both materials is strongly depending on the azimuthal angle. But again the two

angular dispersion relations look very different depending on the anisotropy. The
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2.5 SAW in a semi infinite material

Dispersion ofPbS in (011)

1 1 1 i 1 . 1 I ,. 1 . L_

0 10 20 30 40 50 60 70 80 90

Fig. 2.13 Shear-and surface wave velocities for propagation in a (001) plane ofPbS. Theveloctty

of the pure SAW converts with increasmg angle to the T\ mode. In the range from 0° to about SO"

only a pseudo SAW is obeserved, but not the pure mode

angle of the displacement ellipse of copper varies now between about 35° and —18°

and a pure SAW can be measured over the whole angular range. In PbS with r\ < 1

the displacement ellipse of the pure SAW lies for propagation in the [Oil] direction

in the surface plane and only a pseudo SAW can be detected [10]. At an angle of

about 20° from the [Oil] direction the pure SAW displacement component in the

sagittal plane becomes big enough to enable the observation of the pure Rayleigh

surface acoustic wave.

(Ill) plane:

On a (111) plane the surface acoustic waves do not depend on the anisotropy. For

both materials, copper and PbS, the angular dispersion shows the same form (Fig.

2.14). One has to look only at propagation directions from [110] to [122] (range of

30°) due to the symmetry.

The angle 6 of the displacement ellipse to the sagittal plane is for all materials

smaller than 45° along [110] and becomes (5 = 0 along [122].
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Dispersion ofCu in (111) plane
3000r-

2800 -

r_2<00-

1
fr2400-

... .... i ... i . . . i . . .

0 5 10 15 20 25 30

Fig. 2.14 Shear- and surface wave velocities in a (111) copper plane. In the (111) plane the

angular dispersion is identical for materials with anisotropy n < 1 or n > 1.

2.5.3 Amplitude of a SAW

Beside travelling along the surface, the amplitude of a surface acoustic wave

intrudes into the bulk material. The depth of this penetration depends on the

damping constants 6(n) (Eq. 2.32). In Fig. 2.15 all three components of the

displacement amplitudes are plotted for different azimuthal angles in the (001)

copper plane. It can be clearly seen, that still up to two wavelengths (Ataser = 514.5

nm) the displacement can not be neglected. For other materials or different oriented

surfaces the damping can even be much less and the penetration depth is much

larger. Therefore surface acoustic waves are probing, despite of their surface nature,

the bulk material, as well [16].
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2.6 SAW in a thin film
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Fig. 2.15 The components of the displacements are plotted versus increasing distance (m

wavelengths of the detecting Laser, X = 514.4 nm) into the solid of copper from the [001] surface
at a fixed time if is the azimuthal angle measured from (100) The plots with ip = 0°, 10° and

20° show a pure Rayleigh SAW, whereas the one with ip
— 45° shows a pseudo SAW. Up to two

wavelengths (rs 1/im) there are significant amplitudes.

2.6 SAW in a thin film

Beside single crystals with a cleaved surface thin films with thickness of about

100 - 10000 A on a substrate are also very interesting. As showen in the previous

section, the penetration depth of a SAW is more than 1 /jm, therefore when

examining a thin film the substrate must not be neglected [12,17]. On the other

hand, a material coated with a thin film, can still be measured with surface acoustic

waves, when the coating is not too thick (< 1000 A) [6,7,18,19]. Of course both

materials have an influence on the surface acoustic wave and have to be taken into

consideration.
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4

/ Surface

/ Layer^

Phonon /\
... ,

, „ .,,,

/ Amplitude
ofaSAW /

e OAW
/ ofa SAW

|| Substrate

Fig. 2.16 A surface acoustic wave propagates along the plane surface with a displacement in

both, the thin film and the underlying substrat.

To deal with the complication of the thin film, the wave (Eq. 2.33) has to be

divided into two parts [17]:

^Layer for 0 < £3 <= i

£3 <=
2.35

Where d is the thickness of the layer on the substrate (Fig. 2.16). Both, uLayer

and us"istrate have to fulfill independently the wave equation (Eq. 2.20) with the

elastic stiffness constants and the density of either the thin film or of the substrate,

respectively. While in the bulk the displacement u must describe a damped wave,

in the thin film this is not necessarily so [17]. Therefore, the general solution in the

layer consists of a superposition of six waves depending on all six roots 1$ of Eq.

2.30. As was described in section 2.5.1 of this chapter, in the bulk body only the

three roots b (= i l3) with negative real part can be used to build the necessary

damped wave.

Two additional conditions for x3 = d are added to the boundary condition of

the stress-free surface (13 = 0) (Eq. 2.31): continuity of the stress and of the

displacement at the interface between the thin film and the bulk [17].

Layer

Layer Substrate

13=0

113=0

2.36

2.37
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2.6 SAW in a thin film

Putting the Ansatz (Eq. 2.33) in the boundary conditions (Eq. 2.31, Eq. 2.36

and Eq. 2.37) a new set of 9 homogeneous linear equations are created. As described

in section 5.1 of this chapter, the sound velocity vsaw will then be found numerically

in a way, that the determinant of the boundary condition matrix vanishes.

2.6.1 Angular dispersion

In isotropic systems, one distinguishes two different sorts of surface acoustic

waves. The first, called Love waves [17], describe a surface wave with displacement

only perpendicular to the sagittal plane. The second are called generalized Lumb¬

al Rayleigh type waves [17]. Their displacement ellipse Ues always in the sagittal

plane.

In an anisotropic material this clear distinction can not be done any more. Here

the displacement ellipse changes its angle to the sagittal plane depending on the

direction of propagation. The SAW in an anisotropic semi infinite medium behaves

in the same way. Therefore every Love wave gets a component, that lies in the

sagittal plane and, vice versa, every Rayleigh like surface acoustic wave has a

component of the displacement vector perpendicular to the sagittal plane, too.

2.6.2 gd-dispersion

In contrast to the solution of a semi infinite body, in a thin layer on a substrate

the velocity of a surface acoustic wave depends strongly on the thickness d of the thin

film and of the g-vector. Because d and q appear only as product qd in the solution,

the velocity can be plotted against qd (Fig. 2.17). The behavior of the velocity in

the qd-dispersion depends on the velocity of the shear waves of both, the substrate

material and the material of the thin film. Three cases can be distinguished:
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Fig. 2.17 Velocities of Rayleigh type surface acoustic waves on a silicon substrate with a thin Fe

film propagating along [100] in a (001) plane Beside the Rayleigh SAW, two Sezawa modes are

plotted

..Layer Svbatrate.
Urn ^ Urp *

In this case the substrate is stiffened by the film. Starting from the value of

vsAwrat<! B.tqd = 0 the velocity of the surface acoustic wave increases monotonically

with qd. There exists only one Rayleigh like mode [17,19]. The increase of vSAW is

limited by the shear velocity in the substrate, which Ues always over vffiffl''**. For

values larger than the cutoff value qdcutoff no propagating surface acoustic wave

can be found.

Layer
<V!p

.Substrate.

Here the layer loads the substrate and the velocity of the surface acoustic wave

decreases with increasing qd. As before the Umit for qd -» 0 is vfjffi***, but for

qd —* oo the surface acoustic wave converts asymptotically to vsaw of the thin film.

Beside this solution there exists a whole set of other Rayleigh type waves, called

Sezawa modes (Fig. 2.17) [17]. In contrast to the Rayleigh solution all Sezawa
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Fig. 2.18 A surface acoustic propagating along the plane surface in a multi layer system

modes have a cutoff value of qd, below that the mode does not appear, qdcutoff of

each mode is higher than the previous one. For qd —> qd^toff the Sezawa velocity

approaches to the shear velocity of the substrate. At large values of qd the velocity

of a Sezawa mode tends to the shear velocity of the layer.

Layer Substrate.
Urp I~^ Uj, .

When the shear velocities of both, the substrate and the layer, are similar,

so called Stoneley waves can occur [17]. This mode is dispersionless and does

not exactly describe a surface acoustic wave, but a wave propagating along the

interface between both materials. Its amplitudes decay exponentially within a few

wavelengths on both sides of the interface.

2.7 SAW in a multi-film-system

The theory of an elastic wave propagating in a thin film on a substrate can easily

be extended to a system with several thin layers. In each layer and in the substrate

the wave equations (Eq. 2.20) are solved for its own and the different solutions are
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Chapter 3: Brillouin spectroscopy

connected together by the boundary conditions, the continuity of the displacement

and of the stress at the interfaces (Eq. 2.36, Eq. 2.37). As in section 2.5 the surface

must be stress-free (Eq. 2.31) and the amplitude in the substrate must vanish with

increasing distance from the surface.

The number of possible wave modes increases with the complexity of the system.

For example, besides all the wave modes described in section 2.6, a wave can be

guided in a layer between two interfaces with a damped displacement amplitude on

the other side of the interface.

2.7.1 Superlattice on a substrate

A special case of a multi-film-system are superlattices. On a substrate two or

more different layers are periodicaUy repeated with always the same film thickness.

It is obvious, that already a few periods (10 or more) increases the complexity of the

boundary conditions matrix enormously. Remember that, each interface, between

two layers or between a layer and the substrate, adds six additional boundary

conditions and the expense to calculate the determinant is at least proportional

to the square of the number of boundary conditions [20]!

But, because a single layer in such a system is normally only a few Angstroms

thick, it is allowed to replace the periodic layer-system by one homogeneous layer

with one set of elastic constants and one density. Whereas the density is the average

of all densities weighted by the layer thickness, the elastic constants can not be

calculated easily from the elastic constants of the layer materials.

When the density and the elastic constants of the average film are known, the

velocity of the surface acoustic waves can be calculated as described in section 2.6

and therefore the average elastic constants can be calculated from the measured

angular or qd dispersion of the film.
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Brillouin spectroscopy

Independently from each other, BriUouin in 1922 [21] and Mandelstam in 1926

[22] predicted the inelastic scattering of Ught on thermally excited acoustic phonons.

Because of the very small energy shift (A/ < 100 GHz), only the invention of the

laser and the use of high resolution Fabry-P6rot interferometers [23] made it possible

to observe this scattering. In the mean time the technique of BriUouin spectroscopy

has become a powerful tool for the examination of acoustic phonons [4,12,24] as

weU as for other excitations in a soUd body with a very small energy shift (e.g.

spin-waves [25]).

Stokes process anti-Stokes process

Phonon Phonon

Fig. 3.1 The picture on the left shows a Stokes process, where a phonon with the frequency /,

and the wavevector q is created by on incident photon with frequency f, and wavevector k,. The

photon, scattered under an angle Q, has a frequency f, and a wavevector k,. The picture on the

right shows the inverse process (anti-Stokes), where a phonon is annihilated.
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3.1 Inelastic light scattering on acoustic phonons

In a quantum mechanical picture the first order scattering of Ught on phonons can

be expressed by the creation or annihilation of a phonon by photons. The creation is

caUed Stokes process and the scattered photon has a sUghtly smaller energy than the

incident one. The annihilation is called the anti-Stokes process with a shift to higher

photon energy (??). The energy and the momentum of the created or annihilated

phonon can be easily calculated from the conservation of energy and momentum

[12,26]:

hfi = hf,±hfq 3.1

hki = hka ±ftq 3.2

where the index i and s stands for the incident respectively the scattered photon

and q for the phonon. The / are the frequencies, while k and q are the wave vectors.

The upper sign stands for a creation of a phonon, the lower for annihilation.

Due to the very small difference in the energies of the incident and the scattered

photon, the fc-vector remains constant: |ki| ~ |ka| = k. Then the length of the

phonon wave vector q can be expressed by [27]

q
q = 2 k sin(—) 3.3

Obviously q becomes maximal when 9 = 180°, which is equivalent to an exact

backscattering geometry. Nevertheless, the maximum value of q, for scattering

photons in the visible range, is stUl very small compared with a k-vector lying

at the border of the first BriUouin zone. The ratio is about

k1BZ 500

Therefore the scattering takes place very near the middle of the Brillouin zone (r

point). But in this case the group velocity of a phonon is equal to its phase velocity,
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Fig. 3.2 A typical Brillouin spectrum. The sample was an epitaxically grown, (111) oriented,

340 A thick Fe/CoSi2 superlattice on a (111) Si substrate. Clearly visible are the needle like peaks

created by the Stokes and anti-Stokes process.

which can be assumed as constant.

duj u>
— = — = const.
dk k

3.5

Then, the velocity of the phonon can be calculated from the measurable frequency

shift of the scattered photon by

A-A/
"< =

2- sin(9/2)
36

where A is the wavelength of the photon and A/ = /,-/, is its frequency shift.

For scattering on surface acoustic phonons only components of the wave vectors

paraUel to the surface are of interest. Then, in exact backscattering geometry Eq.

3.6 becomes

A-A/

V«=2~^W)
3J

where d is the angle of the incident photon measured from the surface plane normal.
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In Fig. 3.2 a typical BriUouin spectrum is plotted. It is dominated by the peak

of the elastic scattered Ught at A/ = 0 GHz. The inelastic scattering on phonons

creates two further peaks. One at lower frequencies (Stokes process) and one at

higher frequencies (anti-Stokes process).

3.2 Cross section on surface acoustic waves

3.2.1 Mechanism of scattering

There are two different, fundamental scattering mechanisms. Which mechanism

dominates, depends on where the scattering takes place, inside the medium or at its

surface. In the first case the bulk phonons create inside the solid body fluctuations

of the dielectric function [28]

e|?(r,r)=£° +,5e,.,(r,t) 3.8

Generally this equation is only true in the Fourier space, since e^ is a function

of k and ui, but here monochromatic Ught with a fixed frequency w is assumed

and therefore Eq. 3.8 becomes perfectly true. Eq. 3.8 describes the elasto-optic

contribution to the scattering The fluctuation term can be described as

6t,j = k,jki Ski 3.9

where ktJki are the elasto-optic coefficients and eki is the strain as defined in Eq.

2.1.

A competitive mechanism is the scattering on a mechanical perturbation of the

surface, on so caUed surface-ripples (Fig. 3.3). The ripples are produced by surface

acoustic waves with a displacement w<' < >i perpendicular to the surface (compare
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3.2 Cross section on surface acoustic waves

Fig. 3.3 Scattering on surface ripples. uz defines the displacement of the surface from an

equilibrium position

with chapter 2). The total dielectric function can then be written as [28]

et} (r,t) = StJ 9 [n. - «,(rn,t)] + e (r,t) • 6 [uz(rht) - rx] 3.10

where StJ is the Kronecker function, 6 a Heaviside step function and uz the

displacement of the surface. The first term describes the dielectric function outside

the medium, the second inside.

Which mechanism dominates the scattering process, depends on the optical

properties of the medium. The elasto-optic cross section (da2/dfldw) is proportional

to the transmission function at the surface and inversely proportional to the squared

optical absorption, when the absorption is large On the other hand, the cross section

of the ripple mechanism is proportional to the reflectivity [29]. Therefore on opaque

samples with high absorption and high reflectivity coefficient, the scattering on the

surface-ripples dominates.

3.2.2 Polarization and incident angle of the light

Whereas the polarization of the incident light has no significant influence in the
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20 30 40 50 60 70

incident angle [*]

90

Fig. 3.4 Cross section depending on the polarisation of the light and the incident angle

(measured from the plane normal). The cross section of p—*p scattering has a clear maximum

at about 70°. The exact value depends on the reflectivity. The cross section of s—>s scattering

vanishes m this region of large k-vectors (= large incident angle).

cross section of the elasto-optic scattering, the scattering on surface-ripples depends

strongly on the polarization (p, s) and the incident angle of the Ught (9) (Fig. 3.4).

The cross section is then in the back scattering geometry proportional to [28,30,31]:

(—)
\d£l du)

\dQ-du)

\dQdwJ'p

cos3i9

•p

p—*5

(cosi? + (eor1/2)4

cos3tf-|l+(e°)-3/2

cosi?-|(«°)

l + (e°)

sintf

-3/2
sin i?-I-sin21? 3.11

3.12

-3/2
sini? 3.13

Where e° is the dielectric function.

Only the cross section of p—>p scattering -

p means that the Ught is polarized

parallel to the sagittal plane - has a maximum in the interesting range of large

fc-vectors. The maximum Ues around 70° depending on the reflectivity R (e°). The

cross section of s—>s scattering is already much less and vanishes in the interesting

fc-vector region. For scattering, that changes the polarization (p-+s and s-*p) the
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cross section becomes negUgibly small.

3.2.3 Thermal influence

For the cross section on surface ripples the influence of the temperature is Unear

for all polarizations [28,31].

3.2.4 Conclusions

The best way to perform BriUouin spectroscopy on surface acoustic waves, is the

use of high reflecting samples like a metal in an exact back scattering geometry.

The monochromatic Ught should be polarized parallel to the sagittal plane (p-

polarization) and the optimal angle under which the sample is hit by the laser

beam, is around 70°.
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Chapter 4

Experimental details

As mentioned in the previous chapter, the energy of acoustic phonons and

therefore also the frequency shift of the scattered Ught, detectable by visible Ught,

Ues in a range from 0 GHz up to about 100 GHz (measured in the frequency

equivalence). These energies are very small compared with the frequency of visible

Ught (/ ss 500 THz). The resolutions of the best grating spectrometers, used for

Raman spectroscopy, are in wave numbers about 1/cm. This corresponds to about

30 GHz. It is obvious, that this is far away from the resolution needed for Brillouin

spectroscopy. For that purpose Fabry-Perot interferometers are used.

Mirror Mirror

totaly
reflected

totaly
transmitted

wave

Fig. 4.1 A Fabry-Perot acts as a very narrow band filter. For wavelengths, which fulfill

d cos(tp) = %m, the transmission through both high reflecting mirrors is 100%'
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Chapter 4: Experimental details

4.1 3+3-pass Fabry-Perot interferometer

4.1.1 Principle of a Eabry-Perot

In general a Fabry-Perot (FP) consists of two high reflecting, parallel mounted

mirrors (Fig. 4.1) [23,32,33]. One part of the incident wave is reflected and the

other, much smaller part is transmitted through the first mirror (mirror losses are

neglected). On the second mirror the same happens again. But now the reflected

Ught beam is trapped between the two mirrors. Each time the wave is reflected on a

mirror a small part of the Ught is transmitted and interferes with either the totaUy

reflected or transmitted wave (Fig. 4.1). If the condition

d • cos (<p) = -^ • m 4.1

is satisfied, the interference of the transmitted wave is constructive and for the

reflected one destructive, d is the mirror spacing, Am the wavelength of the light,

ip the angle of the incident beam and m a positive integer value. In Fig. 4.2 the

transmission is plotted versus the phase shift A$ = 2kd-cos(tp) = 22fd-cos(ip).

Obviously the phase shift depends on the wavelength A = c/f (/ = frequency)

and the mirror spacing d. Therefore the FP acts as a narrow band frequency filter

tunable by the mirror spacing d. In the following discussion the beam hits the mirror

always perpendicular (ip = 0). Then the resulting transmission becomes [32]:

where F = -ks/R/ (1 — R) is called the finesse and R is the reflectivity. This

definition of the ideal finesse is only true for perfectly plane and parallel mounted

mirrors. Because of defects and imperfections, the effective finesse becomes smaller
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4.1 3+3-pass Fabry-Perot interferometer

Number

ofFP

Number

of passes

R F Cms* G 2*m

l»(m±l)

1 1 0.94 50.7 0.020 103 1

1 1 0.85 19.3 0.052 102 1

1 1 0.99 312.6 0.003 4-10" 1

2 1+1 0.94 50.7 0.013 106 102

2 3+3 0.94 50.7 0.007 1018 106

Table 4.1 Properties of different interferometer configurations (one or two Fobry-Pirots,

different reflectivity of the mirrors and different number of passes through each FP). The last row

shows the parameters of the used Fabry-PSrot interferometer. R is the reflectivity, F the finess, -jfc
the resolution, CW; the contrast and C a the contrast between two neighbouring maxima

and can be expressed by [33]

1
_

1
^ 1_

Feff F,feal ~ F,

where F, are the contribution of the imperfections.

4.3

t- o.e

1.0

1—
- —

i Free spectral

j range Av

0.8

0.6 -

FWHMSv—i <— •

0.4 " 1 II"

0.2
A

nn

A A 7v
2n(m-l) 2itm

Phase shift
2n(m+l)

Fig. 4.2 The transmission function as a function of the phase shift. For the calculation a

reflectivity of only R = 0 8 was chosen to improve the visibility of the details. The free spectral

range defines the space between to peaks and is equivalent to a phase shift A$ = 2tt FWHM is

given by 6v = 2tt/F
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Chapter 4: Experimental details

For absorption free mirrors the maximal transmission (A4> = 2n n) becomes

Tmax = 1. TTes is an Airy function with a FWHM (fuU width at half maximum)

Sv ~ 27r/.F. Therefore the finesse is a factor for the quality of the Fabry-Perot

resonator. The larger the finesse and therefore the reflectivity R becomes, the

narrower the transmission peak is! The space between two maxima is called the

free spectral range Af (= 27r in the phase shift picture). The value of the FWHM

can then also be expressed as Si/ = jA.u. The free spectral range and the FWHM

can be written as an energy- or a frequency shift instead as a phase shift:

A* =

Yd
44

'" = 2^ 45

where c is the speed of light in the medium.

An other important characteristic of a Fabry-Perot is the contrast between Tmal

and Tmm = Tres (A* = Av/2). The contrast is defined as [23]:

c-^=i+(**)'**(%)
=
i+f^y^y

4.6
""" Tmm \n J \ 4 J **=2n \tt J \ n )

In Table 4.1 are the finesse, the resolution and the contrast tabulated for mirrors

with different reflectivity R. It is obvious that the contrast for a single Fabry-Perot

is not large enough to perform successfully Brillouin spectroscopy. The periodical

maxima of the transition function are an other problem. It makes it impossible

to distinguish between peaks from scattering on low- or high-energy phonons [23].

One way to solve this problem is to enlarge the free spectral range, but then the

resolution worsens at the same time
.

4.1.2 Multipass Fabry-Perot interferometer

An other and much more elegant way to improve the contrast and to break

the periodicity of the resonator, is to use two Fabry-P6rots with different mirror
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Fig. 4.3 The top and the middle pictures show the transition function of two Fabry-Pirots with

different mirror spacing. In the bottom picture the transition function of the two FPs in a tandem

configuration are plotted. Clearly visible are the camel bumbs in the range of the first neighbouring

transition maxima.

spacings in a tandem constellation. There, the Ught passes through both FP, which

are mounted in a line. The two mirror spacings can be set in a way, that at the

desired energy or frequency the transition maxima Ue exactly at the same position

to each other [27]. Then the total transmission is maximal, too. But, as plotted

in Fig. 4.3, the first neighboring peaks of the two transition functions are shifted a

Uttle bit to each other and there the total transmission function looks like a camel

bump. Analytically the tandem transition function is the multipUcation of the two

Vnl li
'f\ FP2

J

\. J
FP 1 + FP 2

L i j
2lt(m-l) 2ltm 2lt(m+l)

Phase shift
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Chapter 4: Experimental details

single FP transition functions:

Ttandem (A*) = TrM,,(A*) • TrM,2 (A4>) = Tre, (A*) • Trea (A$ • 7) 4.7

where 7 = d\/d2. The contrast of the camel bumps to the transition maximum can

then be defined as:

C —

Ttandem{2nm)

*^~Ttandem(2ir(rn±l))
To further improve the resolution and the contrast of such a tandem setup, the

Ught can pass the Fabry-Perot several times. For N passes through each FP, the

transition function, the resolution and the contrast become:

Itotal — -[tandem 4.9

6v_
At/total V * " *

Af

, 2JV

=

>/^7.£

Cm,toM = (%,) 4.11

I \N
G 2irm *„*„!

= ( C 2irm I 4.12

In Table 4.1 these values are tabulated for a 1+1 (1 pass through each FP) and

a 3+3 configuration (3 passes ).

To scan with a single Fabry-P6rot, the mirror spacing can be changed. An other

way to increase or decrease the optical wavelength in the FP is the change of the

refractive index by applying pressure or heat to the medium between the two mirrors

[33]. In a tandem setup with two different Fabry-Perots the scanning is much more

compUcated. During a scan both maxima of the transition function have to stay

always at the same relative position. This is only the case, when at all time the

following condition is exactly fulfuled:

d2
— = const 4.13
d\

For a long time, the synchronization of the movement of the two FP was nearly

impossible and a scan with a tandem FP interferometer could only be performed
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incident light FP
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<
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/
Fig. 4.4 Principle of a 3+3 pass tandem Fabry-Perot interferometer by Sandercock. The light

passes each FP three times The FP are mounted under an angle 0 to each other and one mirror

is fixed on a movable carnage. A scan is performed by moving the carnage.

with fixed mirrors and shifting of the optical wavelength by changing the refractive

index. Fortunately, John Sandercock's elegant design of placing the two Fabry-

Perots in a certain angle to each other [27], completely solved these problems (Fig.

4.4). One mirror of each FP was mounted on a carriage, that moved perpendicular

to the first FP. Then the mirror spacing of the second one is automatically moved

in a way that

d2
= cos (ip) = const 4.14

becomes true. The big advantage of scanning by a mechanical shift is the time

needed for one scan. By changing the refractive index a scan has to be performed

very slowly and needs minutes or hours to be completed. On the other hand, the

mechanical scan from —Av to +Av with a good resolution can be done within one

second or less. This allows the use of electromc feedback routines to stabilize the

paralleUty and the spacing of the mirrors and to perform scans during hours.

In our experimental equipment a Sandercock 3+3 pass tandem Fabry-Perot

interferometer is used. The reflectivity of the mirrors is about R = 0.94, the folding

angle is about ip = 19° [34]. In Table 4.1 the values of the finesse and of the contrast
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Sample

3+3-pass Fabry-Perot-
Interferometer

Fig. 4.5 The expenmental setup. AOM = acousto-optic modulator, BS = beam stop, PRP -

polarization restonng prism, A/2 = phase retardation plate. PM — photo multiplier

are tabulated.

4.2 Experimental Setup

In Fig. 4.5 an overview of the experimental setup is shown. An Ar+-laser in

single frequency mode at a wavelength A = 514.5 nm is used as light source. Its

maximum power is about P ~ 2 W. After passing an acousto-optic modulator

(AOM), a polarization restoring prism (PRP) and a phase retardation plate (A/2),

the p-polarized laser beam is focused on the sample by a lens with 100 mm or 50

mm focal distance. The acousto-optic modulator is controlled by the interferometer

control unit (ICU) and deflects the laser beam during programmable parts of a scan

on a beam stop (BS). It is used as a fast shutter to protect the photomultiplier (PM)

from overload. The degree of deflection can be adjusted. The ICU also controls the

active stabilization and the scanning of the interferometer.
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Fig. 4.6 The sample is mounted in a way, that the laser beam hits the sample under an incident

angle tf The sample can be rotated around the z-axis (tp).

The samples are mounted on a 4 axis goniometer head, which is supported by

a 6 axis holder. This allows a very precise positioning of the sample. Usually the

sample is turned in a way, so that it is hit by the incident beam under an angle of

70° (see also chapter 3).

The scattered light is collected by the same lens as before and focused by a

second lens to the entrance pin-hole of the Fabry-Perot interferometer. The photons

passing the interferometer are amplified by a photo-multiplier and counted with a

high speed multichannel counter card. The analysis of the measured spectra is done

by a personal computer. The free spectral range of the interferometer is usually set

to 15 or 30 GHz. This corresponds to a resolution of about 0.1 to 0.2 GHz.

To avoid local hole burning on the sample the power of the incident laser is set

to a value between 25 mW and 300 mW. Only about 1/3 of the light power finally

hits the sample. With a focal distance of 100 mm the laser spot on the sample has

a diameter of about 20 /im [35]. Then the power density on the sample is between

30 W/mm2 and 360 W/mm2.
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Chapter 5

Thin film structures

As explained in chapter 2, BriUouin spectroscopy is also a good tool, to examine

the elastic properties ofthin films. In the foUowing we wiU report of measurements on

a thick PbSe film, on thin films of CoSij in different crystallographic structures and

on Fe/CoSi2 superlattices. AU films have been grown by molecular-beam-epitaxy

on a silicon substrate with a (111) orientation of the surface. Because of the only

very small surface misorientation (^ 0.2°), the epitaxially grown films are generally

extraordinary flat. This absence of nearly any disturbance on the surface decreases

the amount of elastically scattered light enormously. Furthermore the reflectivity of

the thin films is due to their good quality very high, which gives a high cross section

for scattering on surface acoustic waves. Therefore this samples are very suitable to

be examined by Brillouin spectroscopy with surface acoustic waves.

5.1 PbSe-layer on Si(lll)

The possibility of producing IR-sensors makes the PbX (X = S, Se or Te)

interesting. All PbX are semiconductors with a direct band gap at the L-point.

The band gap has a positive temperature coefficient, meaning, that with increasing

temperature the gap becomes larger. Good IR detectors have to be sensitive in the

energy range, where the atmosphere is transparent (atmospheric windows). This is

in the range of 3 - 5 fim and 8-12 ptm. The gap of aU PbX Ues in the first window

(Table 5.1). For the production of IR detectors based on PbX it is important to

know also the elastic properties of this materials. The elastic constants of pure

single crystals are weU known [36-38], but not the one of an epitaxially grown film
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Chapter 5: Thin film structures

lattice con¬

stant [A]
density p
[kg/m*]

gap at 300K

[eV]

reference

PbS

PbSe

PbTe

5.936

6.124

6.462

7597

8276

8241

0.41

0.27-0.29

0.31-0.32

[39,41,42]

[39,41,42]

[39,41,42]

Table 5.1 The lattice constants, the calculated density and the band gap of PbX single crystals

(X = S, Se, Te)

on a siUcon substrate. In this section we want to present the measurement and the

calculation we have done on PbSe films on a (111) oriented Si substrate.

PbSe has generally the simple fee rock-salt structure. Due to the large difference

of the lattice constant of PbSe (Table 5.1) and the underlying siUcon (a = 5.430

A), it is not possible to grow the PbSe layer, strained with the lattice constant of

the siUcon, over more then one or two monolayers. During the growth process the

strain energy of the layer wiU be minimized by building defects and dislocations into

the PbSe structure. Despite this relaxation, it can not be assumed, that the whole

strain vanishes. Therefore a different behavior in the elastic constants of pure PbSe

and of a PbSe film on Si has to be expected.

5.1.1 Sample

To grow the PbSe films, first a thin template, about 20 A thick, of CaF2 was

formed on the (111) oriented siUcon substrate by molecular beam epitaxy (MBE).

CaF2 has nearly the same lattice constant as Si (ctsi = 5.430 A, acap2 = 5.464 A

[39]). Only this template makes it possible to grow PbSe on Si. In a second step,

the PbSe layer was grown using the simultaneous electron beam evaporation of lead

and selenium. With this technique PbSe films up to several micrometers can be

produced. The exact method the PbSe sample was grown is described in [40].

The PbSe sample, that was used for our measurements, is about 3.5 /im thick.

The lattice constant is o = 6.124 A [39].

54



5.1 PbSe-layer on Si(lll)

1700

1600-

>, 1500-

'3
_o

>
1400-

1300 1 , , 1 1 1 r-

0 5 10 15 20 25 30

[Ho] angle [122]

Fig. 5.1 Angular dispersion of PbSe on Si(111). The errors are about 1%. The guidance lines

denote the simulated velocities of the surface acoustic wave and a pure shear wave. The elastic

constants for the simulation are calculated as described m the text.

5.1.2 Experimental details

Because of the thickness of the PbSe layer, the silicon substrate has hardly any

influence on the velocity of the surface acoustic waves. Therefore, it makes no

sense to measure a qd dispersion. Instead, the angular dispersion of vSaw was

measured. Thereby the incident angle was fixed at 70° from the plane normal and

the azimuthal angle was varied between 0° [110] and 30° [T22]. This range gives

already all information because of the 6-fold symmetry of the (111) plane. The

power of the laser was set to a maximum of 300 mW, which is equivalent to a

power of about 100 mW on the sample. The free spectral range of the Fabry-Perot

interferometer was set to 15 GHz. A BriUouin spectrum was measured all 5° to have

enough points for the foUowing calculation. Fig. 5.1 shows the measured velocities.

The errors are set to about 1%.
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Cn

[GPa]
C\2

[GPa]
Cu

[GPa]

Poisson's

ratio v

Anisotropy
n

Ref.

PbS 126.2 16.2 17.1 0.114 0.311 [38]

PbSe(film) 132 ± 10 61 + 10 16 + 5 0.32 ± 0.08 0.45 + 0.27 this work

PbSe 123.7 19.3 15.9 0.135 0.305 [37]
PbTe 108.0 7.7 13.4 0.067 0.267 [36]

Table 5.2 The elastic constants, Poisson's ratio and the amsotropy of single crystal PbS, PbSe

and PbTe and the PbSe thin film. The large difference of elastic properties of PbSe between the

values of Lippmann [37], and the one found on the epixially grown PbSe film, must be explaind by

the different preparation of the sample.

5.1.3 Calculation of the elastic constants

The calculation of their elastic constants was done with the simple model of a

surface acoustic wave in a semi-infinite medium. For the calculation the PbSe layer

was stiU assumed as a pure rock-salt structure. The influence of any possible strain

on the symmetry was neglected. As start value for the Levenberg-Marquard fitting

algorithm the elastic constants of a pure single crystal of PbSe were used. The

fitting process was appUed iteratively on the measured SAW velocities to increase

the accuracy of the elastic constants. In Table 5.2 the elastic properties are tabulated

together with values of PbS, PbSe and PbTe single crystals, found in the literature.

5.1.4 Conclusions

Obviously there is quite a large difference between the values of PbSe found

by Lippmann [37] and the one, determined as described before in the text. This

difference can only be explained by the different way the samples have been

produced. Lippmann's PbSe was a single crystal, while our sample was grown

expitaxiaUy on a Si substrate. The much higher value of C\2 must be the result of

a stiU present internal strain of the film structure, induced by the siUcon substrate.
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5.2 CoSi2-films on Si(lll)

5.2 CoSi2-films on Si(lll)

In the past few years, C0S12 films on Si and their synthesis have been the subject

of several studies. CoSi2 has in its stable phase the cubic CaF2 structure with a

lattice constant of a = 5.365 A At room temperature the difference to the lattice

constant of the silicon is very small and a mismatch of only 1.2% occurs Because

of the thermal stability and its good electrical properties (low resistivity) [43], CoSi2

is a promising candidate for application in the micro- and opto-electronics [44-46].

Besides the stable phase, there also exists a metastable phase of CoSi2 with a defect

CsCl structure (Fig. 5.2). To have the right stoichiometry in this phase, there

are only 50% of the possible cobalt sites occupied. The vacancies are statistically

distributed on the cation sites [47,48].

•&

w

CoSi2, CaF2 structure CoSi2, CsCl defect structure

W Co J) Si '_J vacancy

Fig. 5.2 The left picture shows CoSiq in the well known CaF2 structure The right picture

displays the new defect CsCl structure of CoSiq In this structure only half of the cation sites

are occupied by the cobalt atoms The vacancies are distnbuted at random The picture shows 8

elementar cells of the defect CsCl structure
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Structure

of CoSi2

lattice con¬

stant a [A]
density p

[kg/m3]
Poisson's

ratio v

CaF2

defect CsCl

5.365

2.69 ± 0.01

4941

4773

0.38

0.33

Table 5.3 The lattice constants, the densities and the Poisson's ratios of both structures ofCoSi2-

The lattice constants and the Poisson's ratio are determined by XRD measurements as described

in the text

5.2.1 Samples

The siUcide films were grown on a n-doped Si(lll) by electron beam evaporation

of Si and Co in a commercial molecular beam epitaxy (MBE) system. First a 10 A

thick template of CoSi2 was formed by co-deposition of Co and Si onto the substrate.

Then the template was annealed for five minutes at 420°C. Thicker films were grown

onto this template by MBE with a typical deposition rate of about 1 A/s. Finally

the CoSi2 was capped with a 40 A thick siUcon layer. AU films, grown this way, have

the metastable defect CsCl structure. To bring them into the stable CaF2 structure

the samples had to be annealed at 650°C for a few minutes. AU films are single

crystalline and have a (111) orientation of the surface. In this way samples with a

thickness between about 30 and 1000 A have been produced. The exact method, att

CoSi2 layers were grown, is described in details in [49-51].

The lattice constant and the strain of the film were determined by X-ray

diffraction measurements (XRD). In a strained layer the lattice constant a of the

relaxed structure can not be determined directly. Instead the lattice constants

parallel (<i||) and perpendicular (a±) to the interface were measured. From these

values the lattice constant o and Poisson's ratio were calculated [52] (see Appendix

A). In Table 5.3 the lattice constant, the mass density and Poisson's ratio are

tabulated.

For the BriUouin spectroscopy measurements, we used CoSi2 samples with a film

thickness of 100 A, 270 A and 1000 A, aU in both structures, the CaF2 and the

defect CsCl one. The two thicker samples were protected on top by a 40 A thick

siUcon capping.

58



5.2 CoSi2-nlms on Si(lll)

3800

3700

[S/UT]
3600-

£> 3500^

Veloc 3400-

3300

3200

r^+fttf^ti

0 10 20 30 40 50 60

[110] angle (101]

Fig. 5.3 The angular dispersion of both structures of CoSiq, CaF2(squares) and defect CsCl

(circles) The errors are 1% The guidance lines are fitted smus-functwns to increase the visibility

of the vanation. The sample with the CaF2 structure has a strong dependence on the angle of

propagtion, while the defect CsCl structure shows only a very small variation of the SAW velocities,

which comes from the underlying silicon substrate.

5.2.2 Experimental details

In a first experiment, we measured the velocities of the surface acoustic wave in

the angular dispersion of both structures. To obtain the most significant information

of the film the measurements were performed on the thickest available samples (1000

A). The laser beam hit the samples under a constant angle of 70°. The power was

held at about 100 mW on the samples. The azimuthal angle was varied between

0° [TlO] to 60° [T01]. Fig. 5.3 shows the angular dispersion of the CoSi2 sample in

the CaF2 and the defect CsCl structure. While on the CoSi2(CaF2) the velocities

of the surface acoustic wave vary clearly with the azimuthal angle, the sample with

the CsCl structure behaves nearly isotropic and the variation of vsaw lies within a

range of less than 1%. Therefore we assumed the CsCl structure as isotropic. The

smaU visible variation must be created by the underlying siUcon substrate.

Since it is not possible to calculate aU elastic constants of an isotropic medium
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Fig. 5.4 Typical spectrum of a CoSiq film. Clearly visible are the sharp, needle like peaks

generated by the Stokes and the anti-Stokes scattering process on surface acoustic waves. The

picture shows the spectrum of the 1000 A thick CoSti film with the defect CsCl structue. The

direction of propagation was along [TlO] and the incident angle of the laser beam 60°.

from the angular dispersion, we also measured the dependence of v$aw on qd

(Chapter 2). To do so, we used all samples with both structures. Instead of varying

the direction of propagation, the incident angle was moved between an angle of 50°

and 80°. The direction of propagation of the SAW in the surface plane was fixed

along [110]. Together with the different thickness d of the CoSi2 films the variation

of the incident angle defines a qd-imge from 0.18 to 2.4. Fig. 5.4 shows a typical

spectrum measured on a CoSi2 film. For each film the velocity of the SAW was

measured for an incident angle 6 = 50°, 60°, 70° and 80°. In Fig. 5.5 all measured

velocities are plotted. The errors are about 2%. Furthermore vsaw of pure sUicon

((111) orientation of the surface) was measured and displayed in Fig. 5.5.
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Fig. 5.5 The qd-dispersion of CoSi^. The upper picture shows the dispersion of the known

CaF2 structure, the lower one displays the SAW velocities of the new defect CsCl structure. The

errors are about 2% Atqd = 0 Vsaw ofpure Si(lll) m plotted. The full curves are generated with

the use of the elastic constants, calculated as described m the text. The lines are not connected

because of the different silicon capping on the CoSij films.

5.2.3 Calculation of the elastic constants

To consider also the thin silicon capping on the CoSi2 films, the model of a

surface acoustic wave in a thin film (Chapter 2.2.6) was extended to two films. This

increases the complexity of the boundary condition from a 9-dimensional problem to

a 15-dimensional one (see Chapter 2.2.7). The calculations of the elastic constants

were performed with the standard Levenberg-Marquard fitting algorithm [20].
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Chapter 5: Thin film structures

First, for each sample the elastic constants were independently fitted to the

measured velocities of the surface acoustic wave. As start values we used the elastic

constants of CoSi2 in the CaF2 structure determined by Mendik [53], also for the

samples with the defect CsCl structure. For the underlying siUcon and the siUcon

capping on some of the samples the foUowing values were used: Cn — 166 GPa,

C12 = 64 GPa, Cu = 80 GPa and the density psi = 2330 kg/m3.

In a second step, the average elastic constants of one structure, determined as

described above, were used as start value for the final calculation. Thereby, aU

measured velocities of one structure were considered in the fit. The resulting elastic

constants are tabulated in Table 5.4. Table 5.5 shows the bulk modulus, Poisson's

ratio and the anisotropy.

For the CaF2 structure Cn and Ci2 agree weU with previously published values

of the elastic constants [53-55], while for Cu the difference to the published values

is quite large. This difference can be explained by the only weak dependence of the

model function on Cu in the (111) plane, lowering the accuracy of this parameter in

the fitting process. Poisson's ratio and the bulk modulus are also in good agreement

with the already published values and also with Poisson's ratio calculated from

XRD-measurements. The anisotropy shows due to the inaccurate value of C44 also

a large difference to the published values.

For the defect CsCl structure of CoSi2 no values of the elastic constants are

known. As expected from the measurements of the angular dispersion, the CoSi2

films with the defect CsCl structure show a nearly isotropic behavior. Poisson's

ratio calculated from the elastic constants is also the same as the one found with

the XRD measurements.

5.2.4 Conclusions

To understand the isotropic behavior of the CsCl structure, one has to compare

this structure with the stable CaF2 structure of CoSi2. When looking on the two
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5.2 CoSi2-films on Si(lll)

Structure

of CoSi2 [GPa]
Ci2

[GPa]
Cu

[GPa]
Ref.

CaF2 227 ± 10 145 ± 10 112 ± 20 this work

CaF2 228 140 83 [54]

CaF2 240 161 74 [55]

CaF2 222 140 68 [53]

defect CsCl 260 ± 10 128 ± 10 64 ±20 this work

Voigt's average 258 ± 26 129 ± 18 64 ±28 this work

Table 5.4 The elastic constants of the measured CoSiq films in both structures, CaF2 and defect
CsCl. Furthermore, values found m the literature and calculated from the measured values of the

CaF2 structure by applying Voigt's average

Structure

of CoSi2

B

[GPa]

Poisson's

ratio v

Anisotropy

V

Ref.

CaF2 172 ± 10 0.39 ± 0.04 2.75 ±1.15 this work

CaF2 169 0.38 1.89 [54]

CaF2 187 0.40 1.87 [55]

CaF2 167 0.39 1.66 [53]

defect CsCl 172 ± 10 0.33 ± 0.04 0.96 ± 0.45 this work

Voigt's average 172 ± 20 0.33 ± 0.08 0.99 ± 0.77 this work

Table 5.5 The bulk modulus, Poisson's ratio and the anisotropy of the measured CoSia films

m both structures, CaF2 and defect CsCl. Furthermore, the values found in the literature and

calculated from the measured values of the CaF2 structure by applying Voigt's average.
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Chapter 5: Thin film structures

structures in Fig. 5.2, the only differences are the sites of the cobalt atoms. While in

the CaF2 structure they are placed regularly, in the defect CsCl structure they are

located randomly over the whole lattice. The CaF2 structure can be regarded as one

subset of all possible configurations of the cobalt ions in the defect CsCl structure.

Therefore, when neglecting the Si atoms, the latter can be considered as an average

of the first one. To check this possibUity we calculated the elastic constants of the

polycrystaUine phase from the obtained data of the single crystalUne (CaF2)CoSi2 by

applying the method of Voigt's average (see Appendix A). The polycrystaUine phase

always behaves isotropicaUy, since all crystaUographic directions are equivalent.

The inaccurate value of Cu was replaced for the calculation by a more reUable

average value of 80 GPa. In Table 5.4 and Table 5.5 the elastic properties of

this average are tabulated in the row denoted Voigt's average. Obviously these

values fit very nicely the results of the measurements on the defect CsCl structure.

This calculation explains also the agreement of the bulk modulus obtained in both

different structures, since the bulk modulus is invariant under the phase transition

from the single crystalline phase to the polycrystaUine one.

The calculation shows also, that the siUcon lattice in the structure can only have

a very smaU influence on the elastic behavior of the CoSi2 films.
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5.3 CoSi2/Fe superlattices on Si(lll)

5.3 CoSi2/Fe superlattices on Si(lll)

Besides the single crystalUne CoSi2 films on a siUcon substrate, it is also possible

to grow superlattices with CoSi2 and Fe. Thereby the CoSi2 is in the defect CsCl

structure. The iron is formed in very thin layers (only one or two monolayers).

In a superlattice two or more different materials are periodicaUy repeated with

always the same layer thickness. The interest in such superlattices comes from the

search of materials with new properties. In this case, the CoSi2/Fe superlattices are

interesting because of the 2-dimensional iron layers, which might be stiU magnetic.

In fact, measurements of the electrical properties showed an anomalous HaH effect

on CoSi2/Fe superlattices and therefore, give the possibiUty to be a ferro- or an

antifeiTomagnet [56,57]. But it was not possible to verify this effect by BriUouin

scattering experiments on Damon-Eshbach modes [53]. Nevertheless, we performed

Brillouin spectroscopy on these superlattices to determine the elastic constants of

these superlattice films.

5.3.1 Samples

In a MBE system, first a thin CoSi2 template in the CaF2 structure (30 A)

was formed on a (111) oriented, n-doped sUicon substrate by co-deposition of Si

and Co (see section 5.2.1 of this chapter) [56]. Then, periodically, the layers of Fe

and of CoSi2(CsCl) were grown to produce the superlattice. The exact method,

Sample thickness

Fe[A]
thickness

CoSi2 [A]
periods thickness

film [A]
density p

[kg/m3]

8016

8017

8022

3.0

1.5

1.5

21

14

3.5

10

22

30

240

341

150

5159

5072

5699

Table 5.6 Thickness of the iron and CoSh layers, number of periods, totel thickness and average

density of the CoSii/Fe superlattices
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Chapter 5: Thin film structures

the superlattices were grown, is described in details in [51,56]. Table 5.6 shows

the properties of the investigated CoSi2/Fe superlattice samples. The densities of

the superlattice films were calculated as the average of the densities of pure iron

(pFe = 7860 kg/m3) and of CoSi2 in the defect CsCl structure (pCosi2 = 4773 kg/m3),

weighted by the thickness of the single layers. In the first sample (8016) the thickness

of the iron is equivalent to about two monolayers, in the other two systems to about

one monolayer. Because of a possible dispersion of Si atoms, the exact structure

of the iron layer is not known. Besides the pure Fe with a bcc structure, it can

also be FeaSi, FeSi or FeSi2 [48]. At the moment no further characterization of the

structures are available.

5.3.2 Experimental details

Because of the thicker superlattice structure, the qd dispersion was measured, on

the first two samples (8016 and 8017). The direction of propagation was always

fixed along the crystallographic [100] direction. The power of the laser was held at

about 100 mW on the sample and the free spectral range was set to 30 GHz. The

incident angle of the laser beam was varied between 45°and 80°, which is equivalent

to a variation of qd between 0.4 and 0.6 for the thinner sample (8016) and between

0.55 and 0.85 for the thicker one (8017). Fig. 5.6 shows aU measured velocities of

the surface acoustic waves for both samples. The error of the measurements was

about 1%.

On the thinnest sample of the CoSi2/Fe superlattices (8022) the angular

dispersion was measured. Thereby the incident angle was fixed at 70° from the

plane normal and the azimuthal angle was varied, due to the 6-fbld symmetry of the

(111) plane, from 0° (TlO) to 30° (T22). As before the power was held at about 100

mW on the sample and the free spectral range was set to 30 GHz. AU 5° a spectrum

was measured. Fig. 5.7 shows the measured angular dispersion of the CoSi2/Fe

superlattice (8022). The plotted errors are 1%, except at 30° (T22), where it is 2%.
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5.3 CoSi2/Fe superlattices on Si(lll)
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Fig. 5.6 qd-dispersion of the CoSi^/Fe superlattice (sample 8016 and 8017). The plotted errors

are about 1%. The guidance lines are simulated using the elastic constants of the superlattices,

calculated as described m the text.

5.3.3 Calculation of the elastic constants

For the calculation of the elastic constants the model of a surface acoustic wave

in a thin film was used. Thereby, it was the goal to determine the elastic constants

of the total superlattice and not of a single layer. Therefore the superlattice was

assumed as a film of one homogeneous material. No distinction between the different

layers was made. For the mass density the weighted average of the densities of the

different layer materials was taken as described in the previous section (5.3.1). For

the underlying silicon substrate, the elastic constants were taken from the Uterature

[10]: Cu = 166 GPa, C12 = 64 GPa, C44 = 80 GPa and the mass density ps, = 2330
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4500

30

[122]

Fig. 5.7 Angular dispersion of CoSvi/Fe superlattice (sample 8022) The errors are about 1%

(except at SCP, where it is 2%). The guidance line is a simulation using the elastic constants of the

superlattice, calculated as described in the text.

Sample Cn

[GPa]
Cl2

[GPa]
Cu

[GPa]

B

[GPa]

Poisson's

ratio v

Anisotropy

V

CoSi2 260 ± 10 128 ± 10 64 ±20 172 ± 10 0.33 ± 0.04 0.96 ± 0.45

8016 232 ± 10 155 ± 10 94 ±10 181 ± 10 0.40 ± 0.05 2.44 ± 0.89

8017 261 ± 10 175 ± 10 88 ±10 204 ± 10 0.40 ±0.04 2.05 ±0.71

8022 225 ± 10 151 ± 10 52 ±10 176 ± 10 0.40 ± 0.05 1.41 ± 0.65

Fe 243 138 121 173 0.49 2.32

Table 5.7 The elastic constants, the bulk modulus, Poisson's ratio and the anisotropy of the

CoS*i/Fe superlattices. The errors are estimated from the inaccuracy of the measurement and the

fitting process

kg/m3-

As starting values for the first calculated sample (8016), the values of the elastic

constants of pure CoSi2 in the defect CsCl structure were used. For the other

samples, starting values were set to the calculated values of the CoSi2/Fe superlattice

sample 8016. As before the standard Levenberg-Marquard algorithm was used for

the fitting. To improve the accuracy it was appUed iteratively to the measured
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values of the SAW velocities. Table 5.7 shows the elastic constants of the CoSi2/Fe

superlattices, their bulk modulus, Poisson's ratio and their anisotropy. The errors

are estimated from the inaccuracy of the measurements and of the calculations.

While Poisson's ratios of aU measured superlattice samples are exactly the same,

the other elastic properties differ a lot. SpeciaUy the anisotropy varies in a very

wide range.

5.3.4 Conclusions

Obviously, the elastic properties of these structures depend very much on the

exact parameters of the superlattice. From X-ray measurements one can conclude,

that in the sample with the 3 A iron period (8016) and also in the sample with

the only 3.5 A thin CoSi2 films (8022) the iron layers are relaxed. Table 5.7 shows,

that Cn, C\2 and B are very similar for these two superlattice structures. On the

other hand, in the sample consisting of a superlattice with 1.5 A thick Fe and 14

A thick CoSi2 (8017), the iron layers are not relaxed, but stiU strained with the

lattice constant of the CoSi2 in the defect CsCl structure. May be this explains the

difference in the elastic constants to the other samples.

The reason for the wide variation of C44 and therefore, of the anisotropy is not

very clear. Astonishing is the large value for the anisotropy in the two samples with

thick CoSi2 layers (8016 and 8017), while pure CoSi2 in the defect CsCl structure

behaves isotropically. On the other side, in the sample with only very thin CoSi2

films, the anisotropy tends to one. Therefore one has to assume, that the iron film

is not in its pure bcc phase, but in a siUcide form like Fe3Si, FeSi or FeSi2.
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Chapter 6

Elastic properties of doped

SmS

6.1 Introduction

SmS is a semiconductor, at normal pressure and room temperature, with a gap of

about 200 meV between the 4/6 state and the 5d band [58]. It is well known that at

an applied pressure of about 6 5 kbar (= 650 MPa) SmS becomes intermediate valent

|H <^P ^P

)
Sm,Y,

La or Tm

y)s

Fig. 6.1 Rocksalt structure ofSmS, where the Sm ions can be substituted by Y, La or Tm atoms
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Chapter 6: Elastic properties of doped SmS

and shows a metalUc behavior [59]. Thereby, the pressure induced broadening of the

bd band creates an overlap between the 4/ state and the bd band. As a consequence

of the overlap the 4/6 state and the 4/55<z1 state hybridize. Therefore, a 4/ electron

has also a bd electron character. The mixing of the character of the electron leads

to the broken valence number. This effect is called intermediate valence. The

hybridization creates additionaUy a new small pseudo gap (hybridization gap) of

about AE = 6.4 meV between the mixed 4/6 - 4/55d1 states [60]. The Fermi

energy EF is always pinned somewhere in this gap (Fig. 6.2a,b).

Besides an appUed external pressure, the substitution of the divalent Sm ion by

another trivalent cation can also create the necessary overlap between the 4/ and

the bd state and bring the SmS compound in the intermediate valent state. Thereby

two mechanisms are possible: In the first case, the substituting cation has clearly a

smaller ionic radius than Sm2+. Then, the rocksalt structure (Fig. 6.1) is set under

an internal chemical pressure which broadens the bd band [61]. On the other hand,

as pointed out by Falicov, Kimball [62] and Robinson [63], it is enough to substitute

Sm by a trivalent ion like La to make the SmS compound intermediate valent. A

smaUer ionic radius is then not necessary. Trivalent La has only a sUghtly smaller

ionic radius than divalent Sm and therefore, creates hardly a lattice pressure. In this

second mechanism, the main effect leading to intermediate valence is the existence

of one free electron pro La atom in the conduction bd band. These electrons are able

to shield very effectively the positive charge left behind by an electron, that moves

from the localized 4/ state into the 5d band, and decrease in this way the binding

energy of the 4/ electrons. In other words, the 4/ state is lifted up relatively to the

bd band and creates in this way the necessary overlap between the two states. Of

course, both mechanism can contribute simultaneously to the intermediate valent

behavior of doped SmS as e.g. in Y doped SmS.

Strong evidence of intermediate valence is a negative value of Poisson's ratio

(Eq. 2.16) [5-7]. Generally Poisson's ratio describes the degree of conservation of

the volume, when applying an uniaxial pressure. A value of 0.5 expresses a total

conservation of the volume, while a negative value of Poisson's ratio describes a
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EA

Ef 4f

SmS at

normal pressure

SmS with

p > 6.5 kbar
Sm„La,S Sm1,Tm,S

Fig. 6.2 a) shows the electronic configuration of SmS at normal conditions When applying

a pressure all electron bands broaden. At a pressure of about 6.5 kbar the broadening of the 5cf

band is strong enough to overlap and to hybridize with the 4/ state (b). On the other hand, when

substituting samanum with the tnvalent lanthanum with its only mmuitly smaller ionic radius, it

is not a broadening of the bd band, that leads to intermediate valence, but a lifting of the 4/ state

due to a decrease of the binding energy (c) Because of the clearly smaller ionic radius of Tm than

of Sm, the mechanism leading to intermediate valency in Smi-xTmxS must be a mixture of both,

the chemical pressure and the decreased binding energy at the same time

collapsing of the volume. In the case of intermediate valent materials the typical

collapsing of the lattice constant during the semiconductor-metal transition [61]

leads to a negative value of Poisson's ratio. The origin of the collapse can be found

in the special electronic configuration of intermediate valent materials and can be

explained by the different character of the 4/ and the bd electron states.

Whereas the 4/ electrons are strongly localized quite near the atomic nucleus,

the bd states are located much more on the periphery of the atom. If an electron is

taken from a 4/ state and put into a bd state, the remaining 4/"~1 electrons screen

less effectively the positive charge of the nucleus. Therefore, the outer electrons are

attracted by a stronger Coulomb force and the whole electronic hull shrinks a bit

Generally this process needs some energy to overcome the energy-gap between the

two involved states (4/ and bd). But in an intermediate valent system, these two
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Chapter 6: Elastic properties of doped SmS

states overlap and mix already. That's why a 4/ electron is able to change its state

without the use of any energy. Already a small pressure or density fluctuations are

then enough to increase the probabiUty for a 4/ electron to be in a bd state and to

provoke the isotropic collapse of the crystal.

To have a negative value of Poisson's ratio either Cn or Cu must be negative.

From the condition of a positive definite strain energy (Eq. 2.11) it foUows

immediately, that in a cubic material only C\2 can be negative.

In the foUowing sections measurements on La and Tm doped SmS and the

calculation of their elastic constants are presented.

6.2 La doped SmS

The doping of SmS with La is very interesting because on these compounds it

can be clearly shown, that free electrons play an important part in the intermediate

valence of SmS. An internal chemical pressure is not necessary. Lanthanum is

always trivalent and has only a minutely smaller ionic radius than the divalent

Sm. Therefore, built in La can hardly set the rocksalt structure of SmS under an

adequate, chemical pressure. Nevertheless, its intermediate valence has been already

proved by Holtzberg [64] and Wachter [65]. A clear evidence for the importance of

the FaUcov-KimbaU-model [62] is given by the lattice constants (Table 6.1). The

lattice constant of intermediate valent, La doped SmS can become smaller than the

lattice constant of pure LaS. But in such a case the La can not produce any lattice

pressure. The intermediate valence must be only the effect of the free electrons of

the La in the conduction bd band. Furthermore, Wachter et al. [58,65] showed, that

Smo.75Lao.25S under pressure is the second excitonic insulator beside TmSei^Tez,

which was found first by Neuenschwander and Wachter [66] and confirmed by Bucher

et al. [67], On the other hand, on Y doped SmS, due to its higher concentration of

free electrons, the behavior of an excitonic insulator was never found [68].
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6.2 La doped SmS

lattice con¬

stant a [A]
desnity p

[kg/m3]
SmS 5.966 5706

Smo 9oLao 10S

Smo 75Lao 2sS

5.934

5.866

5761

5911

Smo65LS0 35S 5.846 5908

LaS 5.857 5652

Table 6.1 Lattice constants of Smi-xLoxS measured by X-ray powder diffraction and the mass

density of the measured single crystals. The error of the lattice constants is about ±0 001

6.2.1 Samples

The exact method to grow the La doped Sm samples is described in details in

[69]. At first all elements were put in the right stoichiometric ratio in a vacuum tight

quartz tube. This work was done in a glove box. Then, the tube was heated up very

slowly - over a period of two or three weeks - to a temperature of 600-800°C, where

the reaction took place. Afterwards the micro crystalUne products were molten in a

closed tungsten crucible at about 2000°C and then in a small temperature gradient

the large single crystals were grown.

In this way single crystalline Smi-zLaxS with a La concentration of x = 10%, 25%

and 35% have been grown. At normal pressure all samples have a dark color

(dark violet to black). For the measurements, crystals with an edge length of

approximately 2-5 mm were used. The single crystals were cleaved along the (100)

planes. In spite of the cleaved surface, the surface was still microscopically very

rough and, moreover, the samples were very sensitive against excessive heating. To

increase the reflectivity and the thermal conductivity of aU three crystals a very

thin gold film was sputtered on them. The thickness of the film was about 100 A.

Besides the increased reflectivity and thermal conductivity the thin layer protects

the SmS compound also against the reaction with the humidity of the environment.

Thanks to the RF-sputtering, the quaUty of the thin films is very good and they

can be considered at as homogeneous. GeneraUy sputtered gold films grow with

a strong [111] texture along the growing direction but with random orientation of
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Fig. 6.3 The measured spectrum of Smo 7sLao 2sS. The incident angle of the laser beam was

© = 70° and the direction of propagtion along [100]. Clearly visible are the peaks created by the

Stokes and the anti-Stokes scattering process The two sharp peaks m the middle belong to the

flanks of the elastically scattered light.

the film parallel to the plane. Because of the very smaU thickness of the film, its

influence on a surface acoustic wave is small. Furthermore, the differences of the

elastic constants of gold in the effective Dgk and in an assumed isotropic symmetry

are small, as well. Therefore, we assumed the gold layer for the calculations as fully

polycrystaUine and isotropic.

The lattice constants of aU measured La doped SmS compounds were measured

by a X-ray powder diffraction-method in transmission mode (STOE powder

diffractometer). Thereby the samples were ground to powder. Because of a possible

phase transition of the Sm1_ILaIS under pressure, it is not obvious, that the powder

has the same lattice constant as the single crystals. But, as it wiU be shown in section

6.3, the powder diffraction method is very reUable and the differences are within the

error of the measurements.

The lattice constants are tabulated together with the densities in Table 6.1.

SAW

Stokes

. , . . 1 . . . 1

\

Sm^jLa^S

SAW

1 anti-Stokes

76



6.2 La doped SmS

6.2.2 Experimental details

AU samples were hit by the laser beam under an angle of 70°. The power of the

laser on the single crystals was held below a maximum of 35 mW to avoid local hole

burning. The free spectral range (see Chapter 4) was set to 15 GHz. AU experiments

were performed at room temperature. For a typical spectrum of Smi-^La^S (Fig.

6.3) about 15000 scans of the Fabry-Perot were done with the use of 256 channels.

The total sampUng time was about 1.5—2 hours. The two sharp peaks are generated

by the Stokes and the anti-Stokes process on a surface acoustic wave propagating

on the (001) plane. As a consequence of the metaUic behavior of the La doped SmS

and the additional gold film, with its high reflectivity, the Ught of the laser gets

absorbed very quickly and can only penetrate ~ 500 A into the sample. Therefore

the scattering volume is so small that scattering on bulk phonons can be neglected.

The scattering on surface acoustic waves takes place just on ripples of the surface.

Nevertheless the surface acoustic waves have a penetration depth of several /im and

probe the bulk of the SmS samples in a good manner (see Chapter 2 and 3).

For aU three doping concentrations, spectra at five different azimuthal angles were

taken: <p = 0°[100], 10°,20°, 35° and 45°[110] (Fig. 6.4).

6.2.3 Calculation of the elastic constants

For each sample the elastic constants were calculated. In a first step the thin gold

film was neglected and the model of a simple surface acoustic wave in a semi infinite

material (section 2.2.5) was used to do a rough calculation of the Cu. Because of

the expected quasi-isotropic behavior (anisotropy n < 1 (Eq. 2.17), see Fig. 2.9),

the vsaw was only about 1-10% smaller than the constant shear velocity vy, (Eq.

2.22) over the whole angular dispersion relation, from [100] to [110]. Therefore the

start value of Cu could be guessed very weU. The start values of Cn and C12 were

obtained from published values of similar materials (e.g. Smo.75Yo.KS presented by
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o
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angle [deg]

Fig. 6.4 Angular dispersion of the SAW m the (lOO)-plane of Smi^xLaxS with x = 0 90,0 75

and 0.65. The errors are all about 1%. The lines are generated using the elastic constants calculated

as described in the text

Zirngiebl and Gtintherodt [70]). To get the elastic constants, these start values were

used to perform a least-square fit by the standard Levenberg-Marquard algorithm

[20].

To consider the thin gold film and to improve the calculations, the model of a

SAW in a thin film (section 2.2.6) was used. As mentioned above the gold layer

was assumed as polycrystaUine and isotropic. The elastic constants of gold were

calculated from the elastic constants of single crystalUne gold by using the method

of Voigt's average (see Appendix A). The elastic constants are then: Cn = 220.2

GPa, Ci2 = 160.4 GPa and Cu = 29.9 GPa and the mass density: p = 19493 kg/m3.

During the fitting it turned out, that Cn and Ci2 are strongly coupled and that
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Fig. 6.5 Calculated elastic constants and measured bulk modulus of 5mi_ILat5 depending on
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La

79



Chapter 6: Elastic properties of doped SmS

C,i

[GPa]
Ci2

[GPa]
Cu

[GPa]

Bulk modulus

B [GPa]

Poisson's

ratio v

Smo 9oLao 10S

Smo 75ljao 25S

Smo esLao 35S

128 ±5

91 ±5

62 ±5

-17 ±5

-26 ±5

-16 ±5

24±3

28 ±3

36 ±3

32±5

14 ±5

10 ±5

-0.15 ±0.06

-0.40 ±0.14

-0.35 ±0.18

Tfeble 6.2 The calculated elastic constants, the measured bulk modulus and the Poisson's ratio of

Smi^xLoxS.

they can compensate each other. Reliable results can be obtained by fixing these

elastic constants together with the bulk modulus B (Eq. 2.15). The bulk modulus

was measured by volume-pressure experiments by Jung et al. [71].

To increase the accuracy, the fitting process was used iteratively. The calculated

elastic constants together with Poisson's ratios and the measured bulk moduli are

tabulated in Table 6.2. The errors were estimated by the measurement error and

the inaccuracy of the fit. Cn, Cu and the bulk modulus, shown in Fig. 6.5,

are characterized by a monotonous, nearly linear dependence on the doping level,

whereas Ci2 is negative and has a clear minimum near the SmS compound doped

with 25% La. The fact of a negative Ci2 leads also to a negative value of Poisson's

ratio in (lOO)-direction (Fig. 6.6).

6.2.4 Calculation of the valence

Using the measured lattice constants we calculated also the valence of Smi-zLaxS.

To do so, we supposed a hybridization between Sm2+ and Sm3+ (4/6 — 4/55<f1)

cations. Furthermore we assumed that the ionic radii of the cations and anions can

simply be summed up. Then the lattice constant a can be expressed, using Vegard's

law, as:

asnn-.lcs = 2 • [{y rSm2+ + (1 - y) rSmi+ } • (1 - x) + x rto3+ + r^- ] 6.1

where y describes the ratio of Sm2+
.
The factor 2 comes from the rocksalt structure.
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3.0

§25
cd

>

2.0

• Sm1.ILaIS

; \ V<^^
'

j ,

\

i i i ' i ' i i i i ' i i ' i

5.98

5.96

r

5.94|
o

5.92 n

o

5.901
5.88 I

5.84

SmS 01 0.2 03 0.4 05 0.6 07 0.8 09 LaS

La doping concentration

Fig. 6.7 Doping dependence of the valence (squares) and of the lattice constant (circles) of

Smi-zLacS. At a La concentration of about 25% the valence shows the largest divergence from the

linear behavior.

The radii of Sm2+ (= 1.143 A) and of La3+ (= 1.089 A) were calculated from the

lattice constant of pure SmS and LaS2. The values of Sm3+ (= 0.964 A) and S2~

(= 1.84 A) were taken from Uterature [72]. Using the fraction y from Eq. 6.1 the

valence of the samarium can be calculated by:

VSm =3-2/ 6.2

and the total valence of the compound by:

VSmi-.La.S = 3 - J/ • S 6.3

In Fig. 6.7 the valence of Smi-jLa^S and the measured lattice constants are

plotted versus the La-doping concentration. Moreover, we calculated the valence of

Smi-sLazS using the bond-valence-model [73]. The results obtained by this method

are in a very good agreement with the valences calculated by using Vegard's law.

As it can be seen, the increase of the valence is clearly stronger than expected from

The ionic radius of La3+ is not very well determined Eg in the periodic table of the elements by

Sargent-Welch a value of 1 15 A is given But also much smaller values can be found in the literature
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Chapter 6: Elastic properties of doped SmS

the increase of the concentration, e.g. for Smo.75Lao.25S the valence is 2.5 instead of

2.25 (linear approximation). At a La concentration of about 25 % the valence has

the largest difference to the Unear behavior. This is also in a very good agreement

with the measurement of the elastic constants and of Poisson's ratio, where around

the same doping concentration the largest negative values have been found (Table

6.2).
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6.3 Tm doped SmS

6.3 Tm doped SmS

In contrast to the always trivalent lanthanum, Tm changes its valence, when built

in SmS. Pure TmS is a metal and in this state the thuUum ion is trivalent, whereas

in only weakly doped SmS it is divalent. FoUowing Smirnov et al. [74, 75] (see

also Fig 6.8) three different doping ranges can be distinguished. From a doping

concentration of 0% to about 16% both cations are divalent. Then, Tm changes

its valence rapidly to 3, whereas the samarium stays in the divalent state. At a

concentration level of 25% the Sm also begins to change its valence from 2 to 3. In

contrast to the valence change of the thulium, this change is less abrupt and goes

over the whole range from 25% to 100%.

Sm+2S

Tm+3S

TmS 09 08 07 06 05 04 03 02 01 SmS

Tm doping concentration

Fig. 6.8 The lattice constants and the valencies of Smi-xTmxS depending on the Tm doping
concentration measured by Smirnov et al. [74]. Clearly visible are the steps m the lattice constant

From a Tm concentration of about 25% the color of the compounds changes from black to golden.
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Chapter 6: Elastic properties of doped SmS

Compared with the ionic radius of La3+ (= 1.089 A) andofSm2+(= 1.143 A), the

radius of Tm3+ is clearly smaUer and only 0.87 A. Therefore, the intermediate valence

of Smi-sLa^S must be also the result of an internal chemical pressure, besides the

screening effect of the free electrons. Thereby not only the binding energy of the 4/

electrons is decreased, but also the bd band broadens (Fig. 6.2).

6.3.1 Samples

The Sm1_xTmIS samples were produced with the same method as described in

section 6.2.1. In this way single crystalUne Smi-xTrrixS with a thuUum concentration

of x = 10%, 15% and 25% have been grown. For the measurements crystals with an

edge length of about 3-5 mm were used. The single crystals have been also cleaved

along the (100) plane.

GeneraUy the Tm doped SmS compounds are, like the La doped ones, very

sensitive against excessive heating and the cleaved surfaces are stiU very rough.

Therefore, we also sputtered a thin gold film of 100 A with the RF-sputter technique

on the 10% and 15% Tm doped compounds to increase the thermal conductivity

and the reflectivity. In contrast to these weakly doped samples with their dark

color, Smo 75Tmo &S has a golden color, making not necessary any enhancement of

the thermal conductivity and of the reflectivity. Because a gold film also protects

the crystal surface against the reaction with the humidity of the environment, the

unlayered Smo 75Tmo 2sS had to be investigated in a He atmosphere.

The lattice constants of aU Tm doped SmS compounds were determined by a

X-ray powder diffraction-method in transmission mode. To do so, it was necessary

to grind the crystals to powder. Because of the possible phase change of pure and

doped SmS under pressure, the reliabiUty of the method was checked by measuring

also a Smo9oTmoioS single crystal in a reflection mode. This experiment gave,

within the error of the measurements, the same result of lattice constant for the

10% doped SmS compound. In a third experiment the surface of a Smo 9oTmo 10S
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6.3 Tm doped SmS

lattice con¬

stant a [A]
density p

[kg/m3]

SmS

Smo ooTmo 10S

Smo 85Tmo 15S

Smo 7sTmo 25S

5.966

5.905

5.860

5.682

5706

5946

6114

6772

Table 6.3 Lattice constants of Smi-xTmxS measured by X-ray powder diffraction and the mass

density of the measured single crystals. The error of the lattice constants is about ±0 001

Sn^Tm,^

1 1 1 1 1 '
, 1 ,

-15 -10 -5 0 5 10 15

Frequency [GHz]

Fig. 6.9 The measured spectra of SmogsTmonS The incident angle of the laser beam was

6 = 70° and the direction of propagation was varied betwen tp = 0° [100] and ip = 45° [110] The

peaks created by the Stokes and the anti-Stokes scattering process are clearly visible

single crystal was polished until it became golden (the typical sign of the occurred

phase change). This sample was measured in reflection mode again. Two lattice

constants were found in the same spectrum, one for the untouched bulk with the

same value as before and one for the polished surface, which was about 3.6% smaller

than the lattice constant of the bulk material. In Table 6.3 the measured lattice

constants are tabulated together with the mass density

85



Chapter 6: Elastic properties of doped SmS

6.3.2 Experimental details

As for the La doped SmS, aU Smi-xTnixS sample were hit by the laser beam

under an angle of 70°. The free spectral range was set to 15 GHz and the power

on the samples was held below 40 mW. AU three samples were measured in five

different directions (tp = 0°[100], 10°, 20°, 35° and 45°[110]) to get the whole angular

dispersion relation (Fig. 6.10).

Because of the high reflectivity of the samples (for SmogoTmoioS and

Smo 85Tmo 15S due to the gold film, and for Smo 7sTmo 25S by itself), only scattering

on surface acoustic waves occurs (see section 6.2.2). Fig. 6.9 shows the spectra of

Smo 85Tmo 15S in aU five directions. One spectrum, with the use of 256 channels

of the photon counter, needed a sampling time of about 2 hours. Clearly visible

are the peaks generated by the Stokes and the anti-Stokes scattering process on

SAWs. To avoid reaction with the humidity of the environment, the not protected

Smo 75T1110 ^S sample was measured in a speciaUy designed, gas proof sample holder,

filled with He gas.

6.3.3 Calculated elastic constants

For each sample the elastic constants were calculated. For the elastic constants

of the Smi-jTnitS with a protecting gold film the model of a SAW in a thin film

(section 2.2.6) was used directly. The elastic constants of the unprotected 25% Tm

doped SmS-compound was calculated with the simple model of a SAW in a semi

infinite medium (section 2.2.5). As starting values for the Levenberg-Marquard fit

algorithm [20] the elastic constants of the similar La doped SmS were appUed. For

the elastic constants of the gold layer, the values of polycrystaUine and isotropic

gold was used, as described in detail in section 6.2.3.

Once more Cu and Cu are strongly coupled and compensate each other. To solve

this problem we fixed these constants together with the bulk modulus, measured in a
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1780

Smo^TrnouS

-i r

0 5 10 15 20 25 30 35 40 45

[100] [110]
angle [deg]

Fig. 6.10 Angular dispersion of the SAW in the (lOO)-plane of Smi^Tm^S with x = 0 90,0 85

and 0 75 The errors are all about 1% The lines are generated using the elastic constants calculated

as described in the text.

volume-pressure experiment by Jung et al. [71]. The accuracy of the fitting process

was improved by applying the least square algorithm iteratively.

The calculated elastic constants together with Poisson's ratio and the bulk moduli

are tabulated in Table 6.4. The errors are estimated by the error of the measurement

and the inaccuracy of the fit. In Fig. 6.11 Cn, Cu, Cu and the bulk moduli

are plotted as a function of the doping concentration. Interesting is the behavior

of C12 and, with it, the behavior of Poisson's ratio (Fig. 6.12). At a Tm doping

concentration of 10% C\2 is clearly positive. This agrees weU with the measurements
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6.4 Conclusions

Cn

[GPa]
Cu

[GPa]
Cu

[GPa]

Bulk modulus

B [GPa]

Poisson's

ratio v

Smo wTnio 10S

Smo 85T111015S

Smo 75Tmo 25S

93 ±10

106 ± 10

92 ±10

52 ±10

-3 ±10

-29 ± 10

23 ±3

26 ±3

37±3

66 ±10

33 ±10

12 ±10

0.36 ± 0.06

-0.03 ± 0.05

-0.46 ± 0.15

Table 6.4 The calculated elastic constants, the bulk moduli and the Poisson's ratio of

Smi-xTmxS

of the lattice constants and the interpretation by Smirnov et al. [74]:

Both cations, Sm and Tm, are divalent and therefore no intermediate valence can

be found. At 15% Tm Cu and Poisson's ratio turn out to be sUghtly negative and

at 25% both are clearly negative. This behavior also fits weU to Smirnov's data. In

the first case the thuUum changes its valence from 2 to 3. FoUowing Smirnov, this

change happens quite abruptly, which explains the only sUghtly negative values of

the Ci2 and Poisson's ratio. In Smo 75Tmo 25S already aU thuUum is trivalent and

the intermediate valent behavior comes from the valence change of the samarium,

which starts at about 25% Tm in the SmS compound. In contrast to the valence

change of the Tm, here the change occurs over the whole range from 25% to 100%.

This large range may explain the strong negative values of Cu and Poisson's ratio,

that we found.

6.4 Conclusions

BriUouin spectroscopy experiments have been performed on La and Tm doped

single-crystaUine SmS. The doped compounds were expected to be intermediate

valent and therefore to have a negative Cu and negative Poisson's ratio.

Using the measured sound velocities of the surface acoustic waves, the elastic

constants and Poisson's ratios of Smi-xLaxS (x = 0.10,0,25 and 0.35) and of

Sm^TmjS (x = 0.10,0.15 and 0.25) were calculated. AU samples, except

Smo goTmo j0S, display a negative Cu and a negative value of Poisson's ratio. While,
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Appendix A: Further elastic properties

at a doping concentration of about 25% La, the Smi-xLaxS compounds show a clear

minimum of C12 and Poisson's ratio, the Smj-xTmrS samples have no extrema.

This examination demonstrates once more the strong coupling between the elastic

constants and the valence of intermediate valent systems. The behavior of the elastic

constants of aU samples, Sr_i_xLaxS and Smi-xTnLjS, is in good agreement with the

valence of their cations. For integer value of the valence (Smo ooTmo 10S) no negative

Cu and negative Poisson's ratio can be found. Negative values imply always a broken

valence of one of the cations. The more negative Cu and the Poisson's ratio are the

more broken is the valence. Therefore, the determination of the elastic constants is

a powerful way to investigate the intermediate valence.

With the found intermediate valence in the La doped SmS compounds it is clearly

demonstrated, that, because of the only minutely smaller ionic radius of the trivalent

lanthanum, free electrons in the bd band play a significant part in making a material

intermediate valent. The lattice constants give a further evidence for this Falicov-

KimbaU-model [62]. The lattice constant of Smo65Lao35S is smaller than the one

of pure LaS (Table 6.1 and Fig. 6.7). Therefore the lanthanum can not apply any

lattice pressure. Nevertheless SmoesLaossS is intermediate valent as the negative

value of Poisson's ratio proves. Consequently the intermediate valence must be the

effect of the induced free electrons of the La-atoms.
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Appendix A

Further elastic properties

A.l Elastic constants of polycrystaUine materials

The calculation of the elastic constants of a polycrystaUine material (Cn, C'12, C^4)

from the elastic constants of its single crystal phase can be done by the use of Voigt's

average [53]:

C'n = Cn-yX A.l

C12 = Cu + l-X A.2
5

C'u = Cu + \-X A.3

with X = Cn — C\2 — 2 • Cu The complience constants can be transformed in a

similar way using Reuss' average:

Sn = Sn-l'Y A.4

S'u = Su + z-Y A.5
5

544 = Su + ^-Y A.6

with Y = Su — Su — \ • Su



Appendix B: Numerical calculations of the SAW velocity

A.2 Lattice constant and Poisson's ratio in films

In a straind layer the lattice constants a of the relaxed structure can not be measured

directly. Instead the lattice constants paraUel _|| and perpendiculare a± to the

surface can be determined. Then, the strains parallel and perpendicular to the

surface are given by [50]:

an — a

£„ =
-J A.7

"
a

e± = A.8
a

Furthermore, a trigonal strain can be defined by:

-II
— a±

et = eii - e_ = — A.9
"

a

As described in [52], in a cubic medium the foUowing expression can be found for

a (111) oriented surface:

a
= °u+}-° A.10

St Cn + 2 • Cu

Where C = 2 • Cu - Cn + Cu (Eq. 2.17). For an isotropic material C vanishes

and Eq. A.10 becomes:

g|| a,,
- a Cn

=

1 - v

An
£( an

- ax Cn + 2 • Cu 1 + v

Where v is the Poisson' ratio as defined in Eq. 2.16. Eq. A.ll can be brought in

the form:

an -ai =

itt;
' (a" ~ a) A12

Then, the lattice constant o and the Poisson's ratio tr can be obtained by plotting

the difference of the strained lattice constant (o|| - ox) as function of _||.

92



Appendix B

Numerical calculations of

the SAW velocity

As mentioned in chapter 2, only in a very few cases it is possible to calculate the

velocity of a surface acoustic wave directly from the elastic constants and the density

of the material. Generally the velocity can only be found numerically by trying

different values of v$aw- Thereby the quaUty of the found velocity is determined by

the boundary conditions (BC). The better the BCs are fulfilled, the better vSAW.

The BCs, which describe a set of linear equations, are fulfilled exactly, when their

determinant vanishes. In the following we give a cook recipe, how the velocity of a

surface acoustic wave in a semi-infinite medium can be found:

(1) Guess a good value of vsaw (vguess)-

(2) Insert «JMM into the Christoffel equation (Eq. 2.29). The determinant of (Eq.

2.29) defines now a polynom of 3rd degree in b2 (b is the damping constant, see

also chapter 2). There are now six roots of 6,, but only the three roots with

Re(6i) < 0 are interesting for a damped wave.

(3) Construct the solution usaw depending on the damping constants &<.

3

usAW = 5_^-u(6i) B.l

t=i

Where Ai are the unknown coefficients and u a damped, plane wave, depending

on fe as defined in Eq. 2.32.

(4) Insert the general solution into the boundary conditions (Eq. 2.31). This defines

a homogeneous set of Unear equations in Aj.

(5) To have a non trivial solution of the Ai, the determinant of the BC matrix has to
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Fig. B.l The ixj/ues of the determinant of the boundary condition matrix versus the velocity m

copper along [100] m a (001) plane. The marks denote the velocity of the surface acoustic mode,

of the degenerate shear mode and of the longitudinal mode.

vanish. If |det(BC)| = 0 or, since it is a numerical problem, at least |det(BC)| <

const, Vgueas is the velocity of a surface acoustic wave, which fulfills the boundary

conditions. If the above condition is not true, a new value for vsaw has to be

found:

«2_2 = ^_».,d*(i9C0) B.2

Then go back with the new velocity to (2) and calculate the determinant again.

How fast this iterative process converts depends very much on the method F,

which is chosen to calculate the new value of the velocity. For our calculation we

always used the method of Van Wijngaarden, Dekker and Brent (called Brent's

method) [20]. In the worst case it converts stiU Unearly to the right solution. To

do so, at the start an interval of vsaw has to be defined in a way, that the nght

solution Ues within the interval.

When the determinant of the boundary condition matrix had only one root, that

would be enough to find the velocity of a surface acoustic wave. But unfortunately
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this is not the case. E.g. pure bulk waves can also fulfill the boundary conditions

perfectly. Fig. B.l shows the value of the BC matrix determinant depending on the

velocity. Some of the roots have been identified with the wave modes belonging to

them. Therefore, every solution, found with the above algorithm, has to be analyzed

carefully and rejected, when it is wrong. In [10] conditions for the real Rayleigh like

solution are tabulated.

In the case of a wrong solution, it is necessary to change the starting interval

in Brent's method to find another solution. For our computer models we have

developed an algorithm, that finds the right solution nearly under all circumstances:

(1) A fixed interval is used. When this fails,

(2) an interval is calculated from the velocities of the transverse bulk waves. These

velocities can always be calculated directly. If this interval still fails,

(3) the interval is parted in about 100 small intervals and every interval is tried, until

one of them returns the right solution. If this method also fails,

(4) the algorithm capitulates and a senseless value for vsaw will be returned.

Since we are primarily interested in calculating the elastic constants from the

measured SAW velocities, it is necessary to spend so much on creating a stable

function. Otherwise it is not possible to use this method as a model function in a

fit algorithm like the standard Levenberg-Marquard algorithm.
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