Systems and Economic Analysis of the Seasonal Storage of Electricity with Liquid Organic Hydrides

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Science

presented by
GREGOR WOLFGANG HUGO SCHERER
Dipl. Phys. ETH
born 22.8.67
citizen of Meggen LU

accepted on the recommendation of
Prof. Dr. A. Wokaun, examiner
Prof. Dr. L. Reh, co-examiner
Dr. E.J. Newson, co-examiner

1997
Acknowledgements

First of all I have to acknowledge the support by the late Prof. Dr. David W.T. Rippin who provided a valuable introduction into Systems Engineering. I enjoyed to work in his unique Systems Engineering Group.

I sincerely thank Prof. Dr. Alexander Wokaun who overtook the supervision of this thesis. I have always appreciated his friendly and patient guidance. I want to thank also Prof. Dr. Lothar Reh for his comments and suggestions which helped in improving the dissertation.

I am also very thankful to my supervisor Dr. Esmond Newson. His industrial experience and common engineering sense was very helpful. Also Dr. Thomas Schucan has to be thanked for his advice.

I would like to thank also people who helped me solving problems during the course of this work. I am grateful to the members of the Systems Engineering Group e.g. Dr. Mukul Agarwal, Felix Gross, Benedikt Schenker and Fritz Stäger who helped me many times with chemical engineering and computer systems problem. Especially, I am indebted to Dr. Marc Garland who gave me scientific as well as moral support in difficult times. The spirit of the Systems Engineering Group with its traditional coffee breaks was always a source of inspiration and motivation. I want also to thank my colleagues at the Paul Scherrer Institute for the help in the experimental part of this work, especially Peter Binkert for his irredeemably construction of the membrane modules, Thomas Haueter and Fritz von Roth for helping me with the measurements.

Furthermore, financial support of this project by the Nationaler Energie Forschungs Fonds (NEFF 505) is gratefully acknowledged.
Summary

For those countries such as Canada, Norway and Switzerland with a significant production of hydroelectric power, the seasonal storage of electricity would satisfy the summer-winter supply and demand imbalance. One future alternative to hydraulic pump storage is hydrogen as an environmentally acceptable secondary energy source stored in the form of liquid organic hydrides, e.g. methylcyclohexane (MCH). This work considers the techno-economic potential of the seasonal storage of electricity with chemically bound hydrogen in liquid organic hydrocarbons in the Methylcyclohexane-Toluene-Hydrogen System (MTH). An important goal is an estimation of the future economics of the stationary MTH-System, therefore the cost and efficiency data of the plants are based on mature technology. A mobile application of the MTH-System is excluded based on inherent energetic inefficiencies and the weight of the system. Another solution for mobile applications of alternative fuels is based on methanol steam reforming with subsequent use of the hydrogen in a polymer electrolyte fuel cell (PEFC).

The seasonal MTH-System consists of five steps: using cheap summer electricity for water electrolysis to produce hydrogen and oxygen, hydrogenation of toluene to methylcyclohexane, storing the liquid organic hydrogen carrier in tanks (methylcyclohexane from summer to winter and toluene from winter to summer), dehydrogenation of methylcyclohexane, reelectrification of the hydrogen in a power plant for generating winter electricity. An initial cost estimation with sensitivity analyses showed the parameters which strongly influenced the costs of seasonally stored electricity using the MTH-System. It is shown that the efficiency of the electric power plant and its heat integration into the dehydrogenation plant are the most important system parameters in the complete MTH-System. Other important parameters are the costs and availability of the input electricity and the electrolyser costs. The heat integration and efficiency of the reelectrification by the power plant was estimated subsequently with energy and exergy analyses.

A more accurate analysis by simulation and thermodynamic calculations allowed a considerable improvement in the cost estimation of the MTH-System. Based on numerical modelling of the individual plants, simulations of several design alternatives of the total system were performed for 1000 GWh of stored summer electricity and 80 MW output. Since the reelectrification step of the winter process proved critical for the overall system efficiency, the three major design alternatives concerning the power plant used in the winter process of the MTH-System: MTH-SOFC (solid oxide fuel cells), MTH-MCFC (molten carbonate fuel cells) and MTH-Turbines (gas and steam turbines) were studied in detail. The overall efficiencies η_{tot} and the economic results of these simulations are $\eta_{tot} = 0.40$ and 0.26 $$/kWh$ for the MTH-SOFC system alternative, $\eta_{tot} = 0.33$ and 0.30 $$/kWh$ for the MTH-MCFC and $\eta_{tot} = 0.25$ and 0.36 $$/kWh$ for the MTH-System with gas and steam turbines.
For comparison, the costs of winter electricity produced with a hydroelectric plant was estimated at 0.21 $/kWh for a Swiss location. Compared with the cost of electricity production using fossil fuels (0.05-0.1 $/kWh), the electricity produced by the MTH-System is expensive. With respect to CO$_2$-emissions, the MTH-System (51 gCO$_2$/kWh) is superior to the best natural gas combined cycle plant (370 gCO$_2$/kWh). Therefore an economic comparison including a speculative energy tax was made to account for a possible scarcity of energy or the environmental impact due to the use of fossil energy resources. It concludes that the MTH-System is only competitive with a energy tax of more than 600 $/tonCO$_2$ of an equivalent CO$_2$-tax. This is much more than the energy taxes (13-175 $/tonCO$_2$) proposed by various governments.

Due to the disparities in economics and energy taxes, a best case study of the MTH-System was made to reduce its economic disadvantages. This best case study results in a maximal efficiency of the MTH-System of 0.48 with corresponding winter electricity costs of 0.17 $/kWh. A higher efficiency for the solid oxide fuel cells was assumed $\eta = 0.65$ (0.61), and for the electrolyser 0.75 (0.72). The respective costs were reduced i.e. SOFC: 1100 $/kW$ (1500 $/kW$), electrolyser: 250 $/kW$ (672 $/kW$).

The methanol - steam reforming - fuel cell alternative for mobile applications was estimated to have an overall efficiency of 28%, which in a full fuel cycle analysis, is comparable to Otto engines. However, the cost of the system compared to combustion engines is excessive, depending significantly on membrane separation technology which has a potential for reduction.

The experimental part of the thesis investigated a key technology for hydrogen systems, i.e. the improvement in the scale-up of hydrogen purification membranes using Pd – Ag tubes and composite membranes to reduce costs. With a new membrane module consisting of 34 Pd – Ag tubes it was possible to exceed the goal of 1 kW (0.00414 molH$_2$/s LHV) in hydrogen permeation experiments. Diminished hydrogen permeation rates were observed in presence of carbon monoxide in a typical reformate gas mixture. The module has a length of 300 mm and a diameter of 70 mm. It was operated up to 10 bar pressure in the temperature range 320-430°C. The major problems of the economically interesting composite membrane (7 μm Pd on a ceramic tube support) are leaks in the membrane and its sealing. The delicate sealing was unsuitable mechanically for potential applications, but hydrogen permeation was superior to the tube module and palladium usage was reduced by a factor 25.
Zusammenfassung

ökonomischen Resultate der Simulationen sind: $\eta_{\text{tot}} = 0.40$ und 0.26 $\$/kWh für die MTH-SOFC System Alternative, $\eta_{\text{tot}} = 0.33$ und 0.30 $\$/kWh für MTH-MCFC und $\eta_{\text{tot}} = 0.25$ und 0.36 $\$/kWh für das MTH-System mit Gas- und Dampfturbinen.

Als Vergleich wurden die Kosten der Produktion von Winterelektrizität mit Wasserspeicherkraftwerken für Schweizer Verhältnisse geschätzt auf 0.21 $\$/kWh. Die Kosten der Elektrizitätserzeugung mit dem MTH-System sind sehr hoch, verglichen mit denen konventioneller, fossiler Kraftwerke (0.05-0.1 $\$/kWh). In Bezug auf die CO₂-Emissionen zeigt das MTH-System (51 gCO₂/kWh) Vorteile gegenüber weitest entwickelten Naturgas Kombianlagen (370 gCO₂/kWh). Deshalb wurde ein ökonomischer Vergleich mit einer spekulativen Energietaxe gemacht, um eine eventuelle Verknappung der Energieresourcen oder Umweltschäden infolge Nutzung von fossilen Energieträgern zu berücksichtigen. Daraus folgte, dass das MTH-System nur mit einer Energietaxe von mehr als 600 $\$/tonCO₂ der entsprechenden CO₂-Steuer ökonomisch konkurrenzfähig ist. Dies ist ein Mehrfaches der Steuervorschläge (13-175 $\$/tonCO₂) verschiedener Regierungen.

Aufgrund dieser Missverhältnisse von Kosten und Energiesteuern wurde der beste mögliche Fall für das MTH-System studiert. Aus dieser Best Case Analyse resultierte ein maximaler Gesamtwirkungsgrad von 0.48 mit Kosten von 0.17 $\$/kWh für die Winterelektrizität. Dabei wurden für die SOFC höhere Wirkungsgrade angenommen $\eta = 0.65$ (0.61), und für die Elektrolyse 0.75 (0.72). Die entsprechenden Kosten sind reduziert auf SOFC: 1100 $\$/kW (1500 $\$/kW), Elektrolyse: 250 $\$/kW (672 $\$/kW).

Contents

1 Introduction

1.1 Hydrogen as an Energy Carrier ... 1
1.2 Preliminary Work .. 2
1.3 Problem Definition .. 3
1.4 Systems Engineering ... 5
 1.4.1 Systems Analysis .. 6
 1.4.2 The Hierarchical Approach of Chemical Process Synthesis 6
1.5 Structure of the Models .. 7
1.6 Properties and Units ... 7

2 Alternative Fuels for Mobile and Stationary Application 9

2.1 Environmental Purposes ... 9
2.2 Application of Alternative Fuels 10
2.3 Range-Extender for Electric Vehicles 11
 2.3.1 System Description .. 12
 2.3.2 Results ... 16
2.4 Stationary Application ... 18
2.5 Conclusion ... 19

3 Sensitivity Analyses of the MTH-System 21

3.1 Introduction ... 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>The Reference Point</td>
<td>22</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Estimation of Efficiency</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Specific Investment Costs</td>
<td>22</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Other Input Parameters</td>
<td>23</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Results</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Sensitivity Calculation</td>
<td>24</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sensitivity to Loading Time and Unloading Time</td>
<td>25</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Sensitivity to Loading Time and Electricity Costs</td>
<td>26</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Sensitivity to Efficiency and Cost of Electrolysis</td>
<td>26</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Sensitivity to Efficiency and Cost of Hydrogenation</td>
<td>27</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Sensitivity to Efficiency and Cost of Dehydrogenation</td>
<td>27</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Sensitivity to Efficiency and Cost of Power Plant</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusion</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Energy-Exergy Analysis</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Definitions</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Energy Analysis of the MTH-System</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Exergy Analysis of the MTH-System</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Modelling of Chemical and Power Plants</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Electrolytic Hydrogen Production</td>
<td>37</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Production of Hydrogen by Other Techniques</td>
<td>37</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Efficiency of Electrolysis</td>
<td>39</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Economics of Advanced Electrolysis</td>
<td>43</td>
</tr>
<tr>
<td>5.2</td>
<td>Hydrogenation</td>
<td>46</td>
</tr>
<tr>
<td>5.3</td>
<td>Toluene Purification</td>
<td>46</td>
</tr>
</tbody>
</table>
5.4 Storage Tanks .. 48
 5.4.1 Technical Requirements 48
 5.4.2 Arrangement of Tanks 49
 5.4.3 Cost of Storage 49

5.5 Dehydrogenation Reactor 49
 5.5.1 Reaction Kinetics 49
 5.5.2 Pressure Drop in the Fixed Beds 51
 5.5.3 Cost Calculation 52

5.6 Fuel Cells .. 53
 5.6.1 Electrochemical Processes in Fuel Cells 53
 5.6.2 Energy Balance in Fuel Cell Power Stations 54
 5.6.3 Solid Oxide Fuel Cells 55
 5.6.4 Molten Carbonate Fuel Cells 55
 5.6.5 Economics ... 57

5.7 Gas Turbine .. 58
 5.7.1 Mechanism .. 58
 5.7.2 Parameters used for Simulation 60

5.8 Steam Turbine .. 60
 5.8.1 Mechanism .. 60
 5.8.2 Parameters used for Simulation 62

5.9 Compressor of Dehydrogenation Plant 62

5.10 Membrane Separation of Hydrogen 62

6 Cost Basis for Plant, Inventory and Payback Strategy 65
 6.1 Introduction .. 65
 6.2 Costing Techniques 66
 6.2.1 Currencies 66
 6.2.2 Cost Indices 66
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3 Degression Exponents ... 68</td>
</tr>
<tr>
<td>6.2.4 Total Investment .. 69</td>
</tr>
<tr>
<td>6.2.5 Life Time of Chemical Plants 69</td>
</tr>
<tr>
<td>6.2.6 Straight Line Depreciation 70</td>
</tr>
<tr>
<td>6.2.7 Sinking Fund Method ... 70</td>
</tr>
<tr>
<td>6.2.8 Installation Cost .. 71</td>
</tr>
<tr>
<td>6.2.9 Payback Strategy ... 72</td>
</tr>
<tr>
<td>6.3 Costs of Input Electricity ... 74</td>
</tr>
<tr>
<td>6.4 Toluene Costs .. 76</td>
</tr>
<tr>
<td>6.5 Land Costs ... 76</td>
</tr>
<tr>
<td>6.6 Summary ... 77</td>
</tr>
</tbody>
</table>

7 Simulation of Summer and Winter Processes 79

| 7.1 Summer Process ... 79 |
| 7.2 Winter Process .. 80 |
| 7.2.1 Introduction ... 80 |
| 7.2.2 MTH-System with Solid Oxide Fuel Cells 82 |
| 7.2.3 MTH-System with Molten Carbonate Fuel Cells 85 |
| 7.2.4 MTH-System with Gas and Steam Turbines 88 |
| 7.3 Economic Comparison of MTH-Alternatives 95 |
| 7.4 SOFC versus MCFC ... 96 |
| 7.5 Comparison with Conventional Alternatives including a \(CO_2 \)-Tax .. 97 |
| 7.6 Best-Case Study ... 100 |
| 7.6.1 Modelling of the Dehydrogenation Plant 101 |
| 7.6.2 Heat Exchanger Network ... 101 |
| 7.6.3 Results ... 102 |
Contents

8 Experimental Part: Pd-Ag Membranes for Hydrogen Separation 105

8.1 Introduction ... 105
8.2 Experimental Setup .. 107
8.3 Multi-Tube Membrane Modules 107
 8.3.1 Preliminary Work 107
 8.3.2 Optimised Multi-Tube Membrane Module 107
8.4 Composite Membranes 111
8.5 Separation of Hydrogen from Carbon
 Monoxide .. 113
8.6 Costs of Membranes compared to Catalyst Costs 115
8.7 Conclusion .. 116

9 Conclusions .. 117

9.1 MTH-System Analysis 117
9.2 Hydrogen Separation Membranes 118
9.3 Future Outlook ... 119

A Nomenclature .. 121

B Simulation Results .. 125

 B.1 Summer Process of the MTH-System 125
 B.2 Winter Process of the MTH-System with Solid Oxide Fuel Cells 127
 B.3 Winter Process of the MTH-System with Molten Carbonate Fuel Cells 133
 B.4 Winter Process of the MTH-System with Gas and Steam Turbines 141
 B.5 Best Case Study of the MTH-System 150
Chapter 1

Introduction

Die Strasse nämlich, die Hauptstrasse des Dorfes, führte nicht zum Schlossberg, sie führte nur nahe heran, dann aber, wie absichtlich, bog sie ab, und wenn sie sich auch vom Schloss nicht entfernte, so kam sie ihm doch auch nicht näher. Immer erwarrete K., dass nun endelic die Strasse zum Schloss einlenken müsse und nur, weil er es erwartete, ging er weiter.
FRANZ KAFKA, DAS SCHLOSS

1.1 Hydrogen as an Energy Carrier

More than a hundred years ago, it was remarked that hydrogen is the optimal energy carrier [1]. This reference contains the statement that the heating value of a fuel increases with its hydrogen content, e.g. methane has a higher heating value per weight than carbon. It was concluded that pure hydrogen which has the highest heating value is the ideal fuel. Scientists with a long-term perspective have to search for applications of this “fuel of the future”.

With the steadily growing use of fossil fuels, another disadvantage of carbon emission became apparent. The increasing content of carbon dioxide CO₂ in the atmosphere leads to climate change. This is an additional reason for the importance of hydrogen produced from renewable energy. However, even today hydrogen as an energy carrier is economically profitable only in niche markets. Some pessimistic
views [2, 3] conclude that hydrogen energy applications will never be economically competitive with conventional energy production.

Nevertheless many researchers believe that hydrogen will save the world from the ecological consequences of fossil fuel combustion [4, 5, 6, 7].

1.2 Preliminary Work

The MTH-project (Methylcyclohexane Toluene Hydrogen) has a long history in renewable energy research in Switzerland. The initial study of M. Taube [8] dates back to the year 1983. It considers the use of methylcyclohexane (MCH) as a hydrogen/energy carrier. Even though the focus of this study was the mobile application of this technology, the seasonal storage of energy from summer to winter was also in the center of interest. After the initial study many research projects have been performed. The range goes from kinetic considerations [9, 10] to pilot vehicles [11, 12]. In a ten year cooperation between Paul Scherrer Institute, ETH Zurich and Swiss industry, experience has been obtained with hydrogen engines and the catalytic dehydrogenation of MCH.

Hydrogen as energy carrier can be used for transportation of energy over a distance or for storage of energy over time. Several forms of hydrogen energy carrier are of interest in research:

- Gaseous hydrogen
- Liquid hydrogen
- Ammonia
- Liquid organic hydrides e.g. cyclohexane [13] and methylcyclohexane
- Metal hydrides

Studies with hydrogen stored in these forms were made in the context of the Euro-Québec Hydro-Hydrogen Pilot Project (EQHHPP) [14, 15, 16] which investigated electricity conversion to hydrogen, its storage and its transportation from Canada to Europe. The system output in these studies is the hydrogen. Hydrogen energy storage can be classified according to the applications:
1.3 Problem Definition

- Short term storage (daily - weekly)
- Long term storage (seasonal)

In Switzerland hydraulic pump storage is mainly used for daily storage of electricity. An interesting form of very short term storage is a H_2/O_2-burner [17] for peak load in steam turbines with a starting time lag of only one second. The storage of hydrogen in gaseous and liquid form has been studied for intercontinental systems [16], stand-alone systems with photovoltaics [18] and pressure containers for local networks [19]. The overall efficiency of such storage systems has been established at approximately 30% [20]. Disadvantages of liquid hydrogen systems are a high energy consumption of the refrigeration step and the boil off losses during transport and storage [21]. The storage of gaseous hydrogen needs additional compression where the chemical pathways ammonia and liquid organic hydrides are associated with losses in the chemical processes. The storage and transportation of hydrogen energy in form of metal hydrides requires expensive solids processing.

1.3 Problem Definition

The MTH-System requires three chemical components: Methylcyclohexane (MCH), Toluene and Hydrogen. The hydrogen produced in summer by electrolysis is combined with toluene C_7H_8 (TOL) in an exothermic hydrogenation reaction

$$C_7H_8 + 3H_2 \rightarrow C_7H_{14} \quad \Delta H_{298^\circ C} = -214.1 \text{kJ/mol}$$

and confined to storage as methylcyclohexane C_7H_{14}. In winter, the latter is dehydrogenated in an endothermic reaction using heat from the power plant, Figure 1.1.

$$C_7H_{14} \rightarrow C_7H_8 + 3H_2 \quad \Delta H_{450^\circ C} = 216.3 \text{kJ/mol}$$

The hydrogen produced is reconverted to electricity in the power plant.

For the specific system studied here, cheap excess electricity is stored over a time period of 3200 hours in the summer months (loading time) in the form of hydrogen in methylcyclohexane. During the winter months the chemically stored energy is reconverted to electricity for 4800 hours (unloading time). For cost estimation, the available power for storage is 320 MW which corresponds to the hydroelectric expansion project Grimsel-West proposed by the Bernische Kraftwerke (1000
The aim of this thesis is a systems and economic analysis of the seasonal storage of electricity with liquid organic hydrides. The boundaries of the system are well defined (electricity to electricity) for an unambiguous serious economic estimation of this storage method. The advantage of hydrogen chemically bound in liquid organic hydrides is that it balances the seasonal mismatch between supply and demand of electricity for those countries with significant hydropower facilities such as Canada, Norway and Switzerland. Hydraulic pump storage is meeting increasing resistance for ecological reasons, so that electricity stored in the form of hydrogen could be a future alternative as an environmentally acceptable secondary energy source.
1.4. Systems Engineering

1.4 Systems Engineering

Systems engineering was introduced mainly for military and space technology, but also for industrial problems, particularly in the oil, chemical and power generation industries. Systems engineering provides a framework to solve multidisciplinary problems with an overall approach. According to A.D. Hall's metasystems methodology [22] a project life consists of the following phases:

1. Program planning

2. Project planning and preliminary design

3. Systems development (detailed engineering)

4. Construction

5. Phase in

6. Operation

7. Retirement (Phase out)

1 and 2 are the phases that involve systems analysis. These planning phases are divided into logical steps:

- Problem definition

- Value system design (develop objectives and criteria)

- Systems synthesis (collect and invent alternatives)

- Systems analysis

This thesis considers the problem of the seasonal storage of electricity with hydrogen bound on liquid organic hydrides i.e. toluene - methylcyclohexane. The given system hydrogen - toluene - methylcyclohexane constrains the systems synthesis process. The choice of the first three plants (electrolysis, hydrogenation and dehydrogenation) is obvious, as given by the system, whereas the power plant needs some further consideration. The definition of the criterion strongly depends on the definition of the wider system (environment of the considered system). Technical
systems e.g. a production plant often uses an economic criterion. Completely different criteria are used in social systems engineering. The economic environment in which the MTH-System has to compete is the market of constant winter electricity in Switzerland with and without a speculative CO_2-tax. Therefore the objective function is the cost of the output electricity.

1.4.1 Systems Analysis

Systems analysis is divided further into the following steps:

- Basic design
- Sensitivity analysis to deduce consequences of alternatives and identify the critical points of a project (chapter 3)
- Modelling of the system (chapter 5 and 7)
- Optimisation of each alternative (chapter 7)
- Decision making (chapter 7 and 9)

The approach of optimising the alternatives used for this analysis is similar to the hierarchical approaches in the chemical process synthesis, discussed in the following section 1.4.2.

1.4.2 The Hierarchical Approach of Chemical Process Synthesis

In order to reduce the large combinatorial number of process alternatives at the modelling step of a chemical plant it is important to have a hierarchical approach. It conforms to heuristic rules extracted from the sensitivity of chemical plants to its particular processes. The MTH-System is not a pure chemical plant; it includes also power generation plants. Therefore the conclusions of the sensitivity analyses in chapter 3 determine the modelling approach in chapter 5 and 7.

The onion model of systems analysis and synthesis shown in Figure 1.2 [23] is applied to all critical elements of the system e.g. electrolysis and hydrogenation; in the case of dehydrogenation and fuel cells, a combined heat and power approach was taken. Other approaches of systems synthesis have similar structures [24].
1.5 Structure of the Models

The numerical implementation of the models described in chapter 5 was done in the C++ programming language. The most important advantage of C++ in simulating processes is its object based data abstraction. This technique results in shorter and more easily understandable mapping of numerical models for their implementation. Objects include functions as well as data. Each object belongs to a class, which is a user-defined type. The definition of classes shown in Figure 1.3 means numerical modelling of the plants. A derived class inherits the data and functions of the parent class and contains changed functions and added new data and functions. The models (classes) consist of several data e.g. temperatures, pressures and streams, the initialisation routines, the simulation of the plant including heat and mass balance as well as its output routines. Included in each model are some economic functions (methods) which calculate investment costs, operating costs and the land requirement by the plant.

1.6 Properties and Units

All the physical and thermodynamic properties used in this thesis and in the calculation models are taken from the data bank of the American Institute of Chemical Engineers [25], except the steam properties of water used in the steam turbine
simulation. The properties of steam are calculated with the FORTRAN-routines published by the *American Society of Mechanical Engineers* [26]. To set the calculations on a proper basis and avoid difficulties in conversion, only SI-units are used. Exceptions are the energy content of electricity expressed in kWh and costs in US-$ (1995).
Chapter 2

Alternative Fuels for Mobile and Stationary Application

2.1 Environmental Purposes

There are four major environmental problems, originating from the use of fossil fuels:

- carbon monoxide CO
- nitric oxides emissions NO_x
- unburnt hydrocarbons HC
- carbon dioxide CO_2

The combination of carbon monoxide CO, nitric oxides NO_x and unburnt hydrocarbons HC is responsible for severe air quality problems in urban areas. This problem refers in a locally different manner to the automotive use of fuels as well as to coal power plants. The last mentioned emission (carbon dioxide CO_2) is a 'greenhouse' gas. The widespread burning of fossil fuels in the last two hundred years has changed the content of CO_2 in the atmosphere significantly. This CO_2 content plays amongst other influences an important role in determining the temperature of the atmosphere. Therefore all gases which are regarded to cause a warming up of the atmosphere are called 'greenhouse' gases. The most important of them is carbon dioxide CO_2, but others such as methane CH_4 and nitrous oxide N_2O are
claimed to contribute also to climate change. The global CO₂ production by the use of fossil fuels comes mainly from power production and heating. The automotive use of liquid fossil fuels also contributes remarkably to the CO₂-emissions. To reduce the pollution problems at all levels, alternative additional fuels are considered for cleaner and more efficient energy conversion technology.

2.2 Application of Alternative Fuels

The energy densities of alternative fuels are compared with gaseous and liquid fossil fuels in Table 2.1. Alcohol (methanol or ethanol) which could be produced in carbon neutral cycles [27] are competitive with fossil fuels on an energy content basis. Pure hydrogen fuels which could be produced from hydroelectricity, solar and nuclear primary energy sources in carbon-free systems are less on an energy content basis.

Additionally, the storage of hydrogen in liquid or gaseous form for mobile application implies new infrastructure in the distribution of the fuel. It is difficult to estimate the cost effect of such a distribution system. The same problem appears

<table>
<thead>
<tr>
<th>Sustainable Fuels</th>
<th>[MJ/kg]</th>
<th>[GJ/m³]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen H₂</td>
<td>241.82</td>
<td>119.95</td>
<td>4.32 at 400.00 bar</td>
</tr>
<tr>
<td>Liq. Hydrogen H₂</td>
<td>241.82</td>
<td>119.95</td>
<td>8.47</td>
</tr>
<tr>
<td>MTH-System</td>
<td>173.56</td>
<td>1.77</td>
<td>1.35</td>
</tr>
<tr>
<td>Methanol CH₃OH</td>
<td>676.49</td>
<td>21.11</td>
<td>16.62</td>
</tr>
<tr>
<td>Ethanol C₂H₅OH</td>
<td>1278.07</td>
<td>27.74</td>
<td>21.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrocarbons (non-sustainable)</th>
<th>[MJ/kg]</th>
<th>[GJ/m³]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane CH₄</td>
<td>802.64</td>
<td>50.03</td>
<td>14.33 at 400.00 bar</td>
</tr>
<tr>
<td>Liq. Methane C₁⁻₄H₄⁻₁₀</td>
<td>802.64</td>
<td>50.03</td>
<td>21.14</td>
</tr>
<tr>
<td>Natural Gas C₁⁻₄H₄⁻₁₀</td>
<td>46.95</td>
<td>14.57</td>
<td>at 400.00 bar</td>
</tr>
<tr>
<td>Liq. Natural Gas C₁⁻₄H₄⁻₁₀</td>
<td>46.95</td>
<td>21.85</td>
<td></td>
</tr>
<tr>
<td>Gasoline C₄⁻₉H₆⁻₁₈</td>
<td>42.40</td>
<td>30.95</td>
<td></td>
</tr>
<tr>
<td>Diesel C₆⁻₁₁H₆⁻₂₂</td>
<td>41.80</td>
<td>35.95</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1: Energy Content of Selected Fuels (Lower Heating Values)
2.3. Range-Extender for Electric Vehicles

with the alternative of hydrogen storage in metal alloy. It is expected that customers do not accept these distribution systems (refuelling stations), because the refuelling of cars with liquid hydrogen or gaseous hydrogen at a pressure of 400 bar is not as easy and safe as gasoline refuelling. An essentially better solution is the use of methanol as liquid fuel, which could be distributed with a conventional net of filling stations at extra costs. From a customer viewpoint, the refuelling of a car with methanol or ethanol makes no difference compared to the refuelling with gasoline. Therefore it is easier to store hydrogen in methanol on board than using hydrogen in gaseous or liquid form.

2.3 Range-Extender for Electric Vehicles

The analysis of the storage of hydrogen or hydrogen based renewable fuels on vehicles leads to two decisive questions: How much energy can be stored per weight and per volume? The tank of the vehicle should be as small and as light as possible. The range of a vehicle depends linearly on the energy content of the fuel. As it is shown in Table 2.1 hydrogen stored with the MTH-System does not represent an optimal solution for mobile applications. Gaseous and liquid hydrogen, methanol and ethanol are better suited as renewable fuels for transportation from a storage point of view.

In contrast to the conventional automotive power supply (Otto- or Diesel-engine) in dynamic operation, a range-extender provides a constant power supply for an electric vehicle. It reloads the battery with electricity. The battery itself covers the peak demand of power. A constant power supply facilitates the operation and control because the delay times in chemical reactor operation are too long for rapid dynamic response.

A range-extender essentially consists of two components: the supply of hydrogen and its conversion to electricity. The hydrogen could be produced on board with steam reforming of methanol. The best way to produce electricity from hydrogen is through fuel cells (no noise, zero emission, high efficiency). Alternatives are internal combustion engines and small gas turbines. Table 2.2 shows the technical parameters of applicable fuel cells.

As pointed out above, the crucial parameters of a range-extender for cars are the weight and the start-up time of the system. The weight of the fuel cell is inversely proportional to its power density and the start-up time is linearly proportional to the
Table 2.2: Properties of Fuel Cells

<table>
<thead>
<tr>
<th>Fuel Cell Type</th>
<th>Fuel</th>
<th>Oxidant</th>
<th>Efficiency</th>
<th>Temp. [°C]</th>
<th>Power [mW/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>H₂</td>
<td>O₂</td>
<td>0.6</td>
<td>70-100</td>
<td>300-500</td>
</tr>
<tr>
<td>Alkaline Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEFC</td>
<td>H₂,CH₄</td>
<td>O₂,Air</td>
<td>0.5-0.6</td>
<td>70-110</td>
<td>400</td>
</tr>
<tr>
<td>Polymer Electrolyte Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAFC</td>
<td>H₂,CH₄</td>
<td>O₂,Air</td>
<td>0.4-0.45</td>
<td>160-210</td>
<td>200-300</td>
</tr>
<tr>
<td>Phosphoric Acid Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCFC</td>
<td>CH₄</td>
<td>O₂,Air</td>
<td>0.5-0.55</td>
<td>650</td>
<td>80-250</td>
</tr>
<tr>
<td>Molten Carbonate Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFC</td>
<td>H₂,CH₄</td>
<td>O₂,Air</td>
<td>0.55-0.6</td>
<td>900-1000</td>
<td>80-240</td>
</tr>
<tr>
<td>Solid Oxide Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The flowsheet of a range-extender based on methanol steam reforming combined with a polymer electrolyte fuel cell is shown in Figure 2.1. A mixture of methanol and water is fed with a pressure of 11 bar to the steam reformer which produces hydrogen, carbon dioxide and carbon monoxide CO28, 29. Due to the endothermic reaction, one part (38%) of the produced hydrogen must be burnt catalytically to supply the heat of reaction. This catalytic burner is integrated into the steam reformer to enable an efficient heat transfer. The other part of hydrogen (62%) diffuses through the Pd-Ag membrane with a CO content less than 10 ppm, installed as a hydrogen pressure vessel leading to the anode of the fuel cell. The anodes of polymer electrolyte fuel cells are very sensitive to the CO content of the feed gas. They allow a maximum concentration of CO between 10 and 100 ppm 30, 31. The hydrogen and the air fed to the fuel cell must both be saturated with water. The operating pressure of the fuel cell is 2.5 bar. Therefore a compressor (turbocharger) is necessary, which is driven by an exhaust turbine and an electric motor with a power of 2.5 kW.
Figure 2.1: Flowsheet of a Fuel Cell Range-Extender for Methanol

- **M** = Membrane
- **T** = Hydrogen Pressure Vessel
- **FC** = Polymer Electrolyte Fuel Cell
- **R** = Methanol-Steam Reformer
- **B** = Catalytic Burner
- **C** = Condenser
- **P** = Pump
- **V** = Compressor
- **T** = Turbine
- **EM** = Electrical Motor Drive

Mass Flow

Heat Flow (Heat Exchanger)

Electrical Current

Exhaust
- O₂: 0.038 mol/s
- N₂: 0.308 mol/s
- H₂O: 0.110 mol/s
- CO: 0.067 mol/s
- NOₓ < 0.0000005 mol/s

Production
- H₂: 0.201 mol/s
- CO₂: 0.065 mol/s
- CO: 0.001 mol/s
- H₂O: 0.033 mol/s
Steam Reforming of Methanol

The reaction mechanism of methanol steam reforming consists of the following three reactions: the steam reforming

\[CH_3OH + H_2O \rightarrow CO_2 + 3H_2 \] \hspace{1cm} (2.1)

the parallel reaction which produces the byproduct carbon monoxide

\[CH_3OH \rightarrow CO + 2H_2 \] \hspace{1cm} (2.2)

and the water gas shift reaction:

\[CO + H_2O \rightarrow CO_2 + H_2 \] \hspace{1cm} (2.3)
Equilibrium calculation shows that a higher water fraction in the input stream suppresses the formation of carbon monoxide. The system of nonlinear equations (equilibrium equation of the reaction 2.1-2.3, initial condition \(\text{frac} \) and normalisation) is solved with the Newton-Raphson method. In Figure 2.2 the molar fraction of carbon monoxide in the reformate gas at equilibrium is presented as a function of temperature and feed mixture (pressure 11 bar). \(\text{frac} \) means the molar fraction of water to methanol in the feed:

\[
\text{frac} = \frac{\text{frac}_{\text{H}_2\text{O}}}{\text{frac}_{\text{H}_2\text{O}_\text{H}}}
\]

(2.4)

A catalytic burner provides the steam reformer with heat. The operating temperature of the catalytic burner is 400-500°C, to avoid \(NO_x\) emission. The hydrogen stored in the pressure vessel can be used to supply the reformer with initial heat for start-up.

Hydrogen Pressure Vessel and Membrane Separation

To prevent the fuel cell from coming into contact with the reformer byproduct carbon monoxide \(CO\) it is necessary to purify the hydrogen by means of membrane separation (\(Pd-Ag\) membrane). The byproduct carbon monoxide \(CO\) is converted totally to carbon dioxide \(CO_2\) in the catalytic burner. The remaining methanol is also burnt catalytically. The high cost of the membrane results essentially from the high material cost of palladium. A fraction of this cost could be recovered by recycling. The membrane has an area of approximately 1.7 \(m^2\) and a thickness of 50 \(\mu m\) to yield a hydrogen flow of 0.124 \(mol/s\) equivalent to 30 \(kW\) hydrogen energy based on lower heating value.

Polymer Electrolyte Fuel Cell

The key components of a polymer electrolyte fuel cell (PEFC) are the anode, to which the hydrogen is supplied, the electrolyte membrane, through which the \(H^+\)-ions can pass, and the cathode at the oxidant side. The chemical reaction of hydrogen oxidation is split into two processes: \(H_2 \rightarrow 2H^+\) at the anode and \(2H^+ + 1/2O_2 \rightarrow H_2O\) at the cathode. The electrical current is carried by the external flow of electrons compensated by the flow of \(H^+\)-ions through the electrolyte membrane. The humidification of the membrane is very important. Otherwise the electrolyte would dry out and increase the electrical resistance of the membrane.
2.3.2 Results

Overall Efficiency

The efficiency of the steam reformer is assumed to be 0.7, the one of the fuel cell 0.5. Due to the electricity requirement of auxiliaries in the overall system e.g. air compressor, the efficiency is diminished by a factor of 0.8. Therefore the overall efficiency becomes 0.28 (=0.7·0.5·0.8). No losses are assumed to occur during the refuelling of the car and when the car is not in use (in contrast to the systems fuelled by liquid hydrogen).

Control

The start-up of the range-extender takes between 7 and 10 minutes. During this start-up period the hydrogen from the pressure vessel heats up the catalytic burner integrated into the reformer and the fuel cell. The shutdown of the range-extender also takes some minutes. After stopping the car, the range-extender still recharges the battery and fills up the pressure vessel with hydrogen.

Emissions

An electrical car with a range-extender power supply has to compete with conventional cars in a market with environmental legislation. A paragon for future legislation is the proposal of the State of California, which intends to introduce different types of cars with emission constraints [32]. The estimated emissions in Table 2.3 are more than zero (zero emission vehicle) but much lower than the definition of the ultra low emission vehicle (ULEV). Carbon dioxide is not restricted in the California State proposal for future environmental legislation [32].

The grey emission of carbon dioxide due to conventional petrochemical methanol production from natural gas increases the carbon dioxide emission by a factor 1.75. No carbon dioxide emissions are expected with the use of methanol from renewable sources (biomethanol). Noise is expected only from pumps, the compressor and the turbine. The steam reformer and the fuel cell operate with minimal noise levels.
2.3. Range-Extender for Electric Vehicles

<table>
<thead>
<tr>
<th>Component</th>
<th>Emission ([g/km])</th>
<th>ULEV ([g/km])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric Oxides (NO_x)</td>
<td>(\leq 0.0016)</td>
<td>0.12</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>(\leq 0.010)</td>
<td>1.06</td>
</tr>
<tr>
<td>Hydrocarbons (C_xH_y)</td>
<td>(-)</td>
<td>0.025</td>
</tr>
<tr>
<td>Carbon Dioxide (CO_2)</td>
<td>201</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3: Expected Specific Emission of a Vehicle with Range-Extender

Volume and Weight

As pointed out in section 2.3, volume and weight of fuel and devices are decisive for mobile application. Due to the lower energy content of methanol, the tank is twice as large and heavy as a conventional gasoline tank. Table 2.4 shows that the volume of the range-extender investigated is 100 dm\(^3\) and its weight lower than 100 kg.

<table>
<thead>
<tr>
<th>Device</th>
<th>Weight ([kg])</th>
<th>Volume ([dm^3])</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Reformer</td>
<td>20</td>
<td>20</td>
<td>2.5 kg CuO/ZnO catalyst [28]</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Compressor, Pumps and Heat Exchangers</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Methanol Tank</td>
<td>60</td>
<td></td>
<td>range 500 km</td>
</tr>
<tr>
<td>Pressure Vessel, Membrane</td>
<td>10-15</td>
<td>40</td>
<td>(H_2) separation and storage</td>
</tr>
</tbody>
</table>

Table 2.4: Estimated Weight and Volume of Range-Extender investigated

Costs

The cost estimation of the range-extender components presented in Table 2.5 is based on mass-production for mature technology. The main part of the membrane costs derives from the material (75% palladium, 25% silver). Assuming a recycle of this expensive material the range-extender has a relatively high recovery value.

During the years 1995/96, the average price of methanol on the market was 186 \$/t [34], which is equivalent to 0.151 \$/l, whereas the production costs of methanol were only about 0.079 \$/l (0.30 \$/gallon) and the distribution costs 0.066 \$/l (0.25
Chapter 2. Alternative Fuels

<table>
<thead>
<tr>
<th>Device</th>
<th>specific Costs [$/kW]</th>
<th>total Costs [$]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Reformer</td>
<td>80</td>
<td>1200</td>
<td>with catalytic burner</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>100</td>
<td>1500</td>
<td>[33]</td>
</tr>
<tr>
<td>Compressor/Turbine</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol Tank</td>
<td>-</td>
<td></td>
<td>is a part of the car body</td>
</tr>
<tr>
<td>Pressure Vessel with Membrane</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7830</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.5: Estimated Cost of a Range-Extender investigated

$/gallon) [32]. From a methanol consumption of 12.0 l/100km (0.097 kg/km) we can obtain fuel costs without taxes of 0.018 $/km. With the calculated overall efficiency of 0.28 the range extender system supplies the electric part of the vehicle with 14.4 kWh/km. This value compares to the 12 kWh/km for a steam reformer-fuel cell system of an other study [30]. However, its methanol consumption of 5.7 l/100km is based on a very optimistic overall efficiency of 0.48.

It is assumed that the additional maintenance costs are slightly higher than for normal car.

A simplification of the range-extender system would result in the development of a direct methanol fuel cell (DMFC). Then steam reformer and catalytic burner would not be necessary and savings in cost, volume and weight should result.

2.4 Stationary Application

Stationary application of energy storage in the form of hydrogen focuses on subsequent use in heating and power production to bridge daily, weekly or seasonal gaps in the electricity supply. Daily or weekly storage of electricity in Switzerland is mainly solved with pump storage.

For such short storage periods the petrochemical processes used in the MTH-System are too expensive. Gaseous and liquid hydrogen are better suited for short term storage. The advantage of the MTH-System lies in the easy storage of the liquid
2.5. Conclusion

organic hydrogen carrier in tanks. Therefore, the MTH-System is better suited for hydrogen storage on a seasonal basis [35].

In every case a high efficiency in the reelectrification of the hydrogen energy is very important (sensitivity analyses in chapter 3). Therefore fuel cells also seem to be a attractive solution for hydrogen energy storage in stationary applications. Also very important in the context of fuel cells are hydrogen purification systems, such as Pd-Ag membranes. The experimental results concerning performance and operability are discussed in chapter 8.

2.5 Conclusion

The overall efficiency of a range-extender in an electrical car estimated to 28% is comparable to those of Otto-engines. The main loss occurs in the fuel cell itself (efficiency 50%). Still, the cost of such a system is too high compared to combustion engines. However, significant potential exists for cost savings using thinner Pd-Ag membranes (chapter 8). Another disadvantage occurs when the range-extender is operated at temperatures below 0°C due to the risk of freezing dissolved water in the system.

An electric car with a range-extender power supply can compete with conventional car based on gasoline combustion only when some additional environmental legislation (California [32]) is introduced.
Leer - Vide - Empty
Chapter 3

Sensitivity Analyses of the MTH-System

3.1 Introduction

Sensitivity analysis is a technique for optimising a system with respect to the desired output characterised by a well-defined objective function. Based on the results, decisions in the selection and design of chemical plants and processes can be made. In the present study of the MTH-System for Swiss seasonal conditions, the objective function is the production cost of winter electricity. Such sensitivity analyses are undertaken for all important input parameters of the MTH-System, as shown in Figure 1.1. The sensitivity of the kWh-costa to several input parameters is considered in section 3.3.

The following equation describes the influence of the input parameters I on the kWh-costs K_{kWh}:

$$dK_{kWh} = \nabla K_{kWh} \cdot dI = \sum_i \frac{\partial K_{kWh}}{\partial I_i} dI_i \quad (3.1)$$

The particular contributions to the sum above provide insight on the influence of the input parameters to the objective function. In the next section 3.2, the cost of winter electricity, produced by the MTH-System, will be roughly estimated to define a reference point.
3.2 The Reference Point

In order to calculate the sensitivity of the objective function to the input parameters it is necessary to calculate the reference point with the expected values of the input parameters. This calculation with assumed values is a rough estimation of the objective function. To estimate the future potential of the MTH-system, costs and efficiencies of developed technologies are assumed.

3.2.1 Estimation of Efficiency

The efficiencies assumed for individual plants are decisive for the economics of the total system. The efficiency $\eta_d = 0.75$ of the electrolysis is calculated with respect to the lower heating value $\Delta H_{H_2O} = 241.8 \text{ kJ/mol}$ of hydrogen, i.e. an efficiency of 0.75 implies an energy consumption of 4 kWh per cubic metre H_2 at normal conditions (273.15 K, 1.013 bar). The exothermic hydrogenation reaction converts hydrogen stoichiometrically into methylcyclohexane. Energy losses are only caused by the electricity consumption and heat losses of the plant. Therefore a stoichiometric efficiency $\eta_{hyd} = 0.99$ is assumed for the hydrogenation plant. The efficiency of the dehydrogenation reaction depends significantly on the available heat from the reelectrification step (fuel cells or turbines). The high efficiency $\eta_{dhy} = 0.85$ of the dehydrogenation can only be attained by heat recovery from the power plant. The power plant is assumed to have an efficiency of $\eta_{pp} = 0.60$. Therefore the total electric power efficiency of the system becomes $\eta_{tot} = \prod \eta_i = 0.38$.

3.2.2 Specific Investment Costs

<table>
<thead>
<tr>
<th>Process</th>
<th>Cost</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolysis</td>
<td>400.00 $/kW_{in}$</td>
<td>[36]</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td>141.00 $/kW$</td>
<td>[37]</td>
</tr>
<tr>
<td>Dehydrogenation</td>
<td>282.00 $/kW$</td>
<td></td>
</tr>
<tr>
<td>Power Plant (SOFC)</td>
<td>1500.00 $/kW_{out}$</td>
<td>[38]</td>
</tr>
<tr>
<td>Tank Storage</td>
<td>250.00 $/m^3$</td>
<td>[39]</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.26 $/kg$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Specific Investment Costs for a 80 MW MTH-System
3.2. The Reference Point

Table 3.1 shows the specific investment costs per kilowatt for the individual plants. The costs for mature technology are assumed. The values for electrolysis (400 $/kW [36]) and for the solid oxide fuel cells SOFC (1500 $/kW [38]) as a power plant are low compared to the current costs, since commercial technology is not yet available at the low costs assumed in Table 3.1. The assumed values are more pessimistic than those in the U.S. DOE Hydrogen Program Plan [40]: 250 $/kW for electrolysis and 300 $/kW for the fuel cells.

3.2.3 Other Input Parameters

Based on information from electricity producers, the tariff for excess summer electricity in Switzerland amounts to 0.029 $/kWh. For 3200 hours during the summer months (loading time), this cheap electricity is stored in the form of hydrogen in methylcyclohexane. During the winter months for 4800 hours (unloading time), the chemically stored energy is reconverted to electricity. For cost estimation, the available power for storage is 320,000 kW which corresponds to the hydroelectric expansion project Grimsel-West proposed by the Bernische Kraftwerke (1000 GWh/year summer energy to storage).

To calculate annual costs a capital rate of 10% is assumed, 4% interest and 6% depreciation for a chemical plant life of 17 years [41]. A rate of 5% on capital costs is estimated as annual costs for maintenance and operating. Depreciation and operating cost rates for the toluene inventory and storage are both 2%, significantly less than for the chemical plants (electrolysis, hydrogenation, dehydrogenation and fuel cells).

<table>
<thead>
<tr>
<th></th>
<th>Investment Costs</th>
<th>Annual Costs</th>
<th>Specific Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Electricity</td>
<td>29.7 M$/year</td>
<td>0.0766 $/kWh</td>
<td></td>
</tr>
<tr>
<td>Electrolysis</td>
<td>128.0 M$</td>
<td>19.2 M$/year</td>
<td>0.0495 $/kWh</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td>33.5 M$</td>
<td>5.0 M$/year</td>
<td>0.0130 $/kWh</td>
</tr>
<tr>
<td>Dehydrogenation</td>
<td>44.7 M$</td>
<td>6.7 M$/year</td>
<td>0.0173 $/kWh</td>
</tr>
<tr>
<td>Power Plant</td>
<td>121.2 M$</td>
<td>18.2 M$/year</td>
<td>0.0469 $/kWh</td>
</tr>
<tr>
<td>Tank Storage</td>
<td>120.5 M$</td>
<td>9.6 M$/year</td>
<td>0.0249 $/kWh</td>
</tr>
<tr>
<td>Toluene</td>
<td>90.4 M$</td>
<td>7.2 M$/year</td>
<td>0.0187 $/kWh</td>
</tr>
<tr>
<td>Total</td>
<td>538.3 M$</td>
<td>95.7 M$/year</td>
<td>0.247 $/kWh</td>
</tr>
</tbody>
</table>

Table 3.2: Specific Cost Contributions ($M = 10^6$) per kWh Power Output
3.2.4 Results

The calculated investment costs and annual costs of the individual plants are shown in Table 3.2. One of the most important cost parameters is the electricity input. Its costs amount to one-third of the total annual costs. The electrolysis and the power plant have a similar effect. Because the power plant contributes only about 20% to the annual costs, an error in the assumed investment costs for fully developed fuel cells is not significant. The smallest cost derives from the hydrogenation plant. Dehydrogenation costs are coupled with toluene makeup, since excessive byproduct formation in dehydrogenation [35, 42] results in an increase of toluene makeup.

The system delivers 81,000 kW power output. In consequence the production costs of the stored electricity amounts to 0.247 $ per kWh output electricity.

3.3 Sensitivity Calculation

The exact values in the gradient vector ∇K_{kWh} defined in equation 3.1 are:
3.3. Sensitivity Calculation

Figure 3.2: Electricity Output Costs per kWh as Function of Loading Time and Costs of Electricity

input electricity 2.64 $\frac{8}{8} \\
loading time -0.0195 \frac{8}{1000\text{hours}} \\
unloading time -0.0134 \frac{8}{1000\text{hours}} \\
electrolysis efficiency -0.168 $ \\
electrolysis investment cost 0.0124 \frac{8}{1000\text{$/kW}} \\
hydrogenation efficiency -0.127 $ \\
hydrogenation investment cost 0.00919 \frac{8}{1000\text{$/kW}} \\
storage investment cost 0.00994 \frac{8}{1000\text{$/kW}} \\
toluene investment cost 0.0718 \frac{8}{8} \\
dehydrogenation efficiency -0.235 $ \\
dehydrogenation investment cost 0.00613 \frac{8}{1000\text{$/kW}} \\
power plant efficiency -0.333 $ \\
power plant investment cost 0.00312 \frac{8}{1000\text{$/kW}}

The interpretation of these values is given in the following sections 3.3.1-3.3.6.

3.3.1 Sensitivity to Loading Time and Unloading Time

Short time loading or unloading is uneconomic. Figure 3.1 shows the sensitivity to these two parameters. The 3200 hours loading time and 4800 hours unloading time (typical numbers for a seasonal storage system, marked by * in Figure 3.1)
Figure 3.3: Electricity Output Costs per kWh as Function of Electrolysis Parameters

are near the minimum of kWh-costs (0.235 $/kWh), meaning that seasonal storage is optimal. The MTH-System is not suited for storage of electricity on a daily or weekly basis.

3.3.2 Sensitivity to Loading Time and Electricity Costs

It is important to know for the economic calculations how many hours of cheap electricity are available during summer, and the associated cost. Following P. Weyermann from BKW [43] a kWh of electricity in summer costs between 0.021 and 0.042 $ (0.025–0.05 SFr). Thus the minimum cost of seasonally stored electricity is 0.247 $/kWh as shown in Figure 3.2 for a loading time of 3200 hours.

3.3.3 Sensitivity to Efficiency and Cost of Electrolysis

The efficiency of electrolysis (based on the lower heating value $\Delta H_{H_2O} = 241.8 kJ/mol$) is not so important compared with the specific costs. A change of 0.06 in the efficiency causes a change of 0.01 $/kWh in the output electricity costs. Therefore the objective function depends weakly on the efficiency of the electrolysis. On the other hand an increase in the specific costs of 200 $/kW over the 400 $/kW assumed results in additional 0.025 $/kWh in output electricity costs.
3.3. Sensitivity Calculation

3.3.4 Sensitivity to Efficiency and Cost of Hydrogenation

In this case efficiency is measured by selectivity, or how much H_2 in the input stream is bound to toluene? The heat generated by the exothermic reaction $TOL + 3H_2 \rightarrow MCH$ is not included in the efficiency of the hydrogenation. This loss of enthalpy will be considered in the next step, the dehydrogenation plant. The efficiency (yield) is assumed to be 99%. There is no significant reduction of output electricity costs to be gained by optimising this plant. The output electricity costs are also not too sensitive to the specific costs.

3.3.5 Sensitivity to Efficiency and Cost of Dehydrogenation

The endothermic dehydrogenation reaction, $MCH \rightarrow TOL + 3H_2$, is the reverse of the hydrogenation. The heat demand for this reaction should be satisfied by system design which depends on the heat integration of the dehydrogenation plant with the power plant (fuel cells). When the power plant supply all the endothermic heat of reaction, the efficiency is 0.99. If hydrogen produced by dehydrogenation must be partially burnt for covering the heat of reaction, then the efficiency decreases to 0.7. The wide span of possible efficiencies makes an optimisation of this plant including the heat transfer from the fuel cells interesting. The costs of output electricity are
strongly sensitive to both parameters of the dehydrogenation plant, the specific costs and the efficiency.

3.3.6 Sensitivity to Efficiency and Cost of Power Plant

The specific costs of the power plant have only a weak influence on the costs of output electricity as shown by the steep contours in Figure 3.6. An error in the assumed investment costs for fully developed fuel cells is therefore not significant.

To decide what kind of power plant should be used it is necessary to evaluate the heat integration with the dehydrogenation plant operating at 400-500°C. The possible power plants are

- Gas and Steam Turbines
- Low Temperature Fuel Cells 70-200°C
 - Phosphoric Acid Fuel Cells (PAFC)
 - Polymer Electrolyte Fuel Cells (PEFC)
- Molten Carbonate Fuel Cells (MCFC) 650°C
• Solid Oxide Fuel Cells (SOFC) 1000°C.

In view of the temperature level at which heat is required for the dehydrogenation, the gas turbines, MCFC and SOFC are possible solutions. From the viewpoint of this sensitivity analysis it seems to be advantageous to choose fuel cells instead of gas turbines to generate the output electricity (fuel cells cost more but they have a better efficiency than gas turbines). Another advantage of high temperature fuel cells (SOFC or MCFC) is the possibility to use the waste heat in the dehydrogenation plant. On the other hand gas turbines as combined cycle plants can also reach an electrical efficiency of 60%. But the temperature level of the waste heat is too low for heat requirement of the dehydrogenation plant.

3.4 Conclusion

The sensitivity analyses of output electricity costs show that the most important parameters are

• efficiency of the power plant
• waste heat level of power plant
• costs of input electricity
• electrolyser costs
• dehydrogenation plant and heat integration.

Unimportant are hydrogenation efficiency and costs. The four main cost-sensitive parameters can be divided into two groups:

• economic parameters
 – costs and availability of input electricity
 – electrolyser costs

• technical parameters
 – efficiency of the power plant
 – dehydrogenation plant and heat integration.

Considering the particular contributions to the objective function output kWh-costs given in section 3.3 shows that the efficiency of the power plant has the strongest influence on output kWh-costs. Having a high efficiency at the last step of the MTH-system is the best way to reduce costs.

While the technical parameters are considered in more detail in the following chapters 4 and 7 the value of the economic parameters are estimated more accurately in chapters 6 and 5.
Chapter 4

Energy-Exergy Analysis

4.1 Introduction

It is often said that we have an 'energy problem', too much energy is lost in conversion and storage processes. In fact, energy cannot be lost from a closed system as a consequence of the first law of thermodynamics. This does not mean that we don't have a problem with energy. The 'energy problem' refers to the second law of thermodynamics and the increasing entropy in every closed system. It can be handled with the concept of exergy which expresses the maximum obtainable work. Exergy analysis, as a simplification of the second law of thermodynamics, is a method for evaluating the thermodynamic quality of energy streams. To distinguish between the concepts of energy and exergy, the definitions are compared in the following section 4.2.

4.2 Definitions

In the case of electricity, the exergy is equal to the energy. The exergy of a heat source is coupled with the energy content of the heat source by multiplication with the exergetic temperature (Carnot efficiency)

\[\tau = 1 - \frac{T_{env}}{T} = \frac{T - T_{env}}{T} \]

(4.1)

Chemically bound energy is a physical kind of potential energy. The total exergy of a combustion fuel at temperature \(T \) is equal to the difference of the Gibbs potential
also called free energy) $\Delta_{comb}G(T)$ of the reactants and combustion products and the correction terms, which takes the exergy of the oxygen feed stream and the combustion products into account.

\[
\text{exergy} = \Delta_{comb}G(T) + \int_{T_{env}}^{T} \frac{T - T_{env}}{T} \left(C_{P_{\text{products}}} - C_{P_{\text{oxygen}}} \right) dT
\]

(4.2)

where the difference between the Gibbs potentials is

\[
\Delta_{comb}G(T) = \Delta_{comb}H(T) - T\Delta_{comb}S(T)
\]

(4.3)

If the temperature of the environment and the fuel is equal to the standard ambient temperature $T_0 = 298K$ the exergy becomes simply

\[
\text{exergy} = \Delta_{comb}G_0 = \Delta_{comb}H_0 - T_0\Delta_{comb}S_0
\]

(4.4)

The entropy of mixtures is not considered.

Similar to the definition of the energetic efficiency of an energy conversion plant

\[
\frac{\text{energy of useful outputs}}{\text{energy of inputs}}
\]

(4.5)

the exergetic efficiency is defined as follows:

\[
\frac{\text{exergy of useful outputs}}{\text{exergy of inputs}}
\]

(4.6)

For example, the inputs of the dehydrogenation are the methylcyclohexane MCH feed and the heat recovered from the power plant, whereas the toluene TOL and the hydrogen represents the useful outputs. The energy and exergy efficiencies of electricity storage systems are the same (input and output are both electricity).

4.3 Energy Analysis of the MTH-System

Figure 4.1 shows the energy flows of the different streams between the plants. It is seen that the contribution of hydrogen to the total combustion enthalpy of methylcyclohexane (MCH) is only 12%. Relatively large quantities of methylcyclohexane are necessary to store the hydrogen. Therefore only a small fraction of formed byproducts at the reaction steps hydrogenation (hyd) and dehydrogenation (dhy) can be tolerated for high energy efficiency. The hydrogenation of toluene is similar
4.3. Energy Analysis of the MTH-System

Waste Heat

Heat for Separation of Byproducts from Dehydrogenation

el H_2

Makeup TOL

Hydrogenation

MCH

Tank Storage

H_2

Power Plant

Byproducts

TOL

Figure 4.1: Energy Flow

el = Electrolysis, hyd = Hydrogenation, dhy = Dehydrogenation, pp = Power Plant

to the hydrogenation of benzene [44] which produces only an insignificant amount of byproducts. More critical is the dehydrogenation step with a higher fraction of byproducts. Progress has been made in laboratory reactors (e.g. 0.6% byproducts at 98% toluene yields [35]). As a consequence of this relation between the quantities of hydrogen and methylcyclohexane the MTH-System is more suited for stationary long term storage than short term storage of electricity.

In electrolysis large energy losses occur because vaporisation heat of the feed water must be supplied during the dissociation into hydrogen and oxygen gases. Calculation with the lower heating value accounts for this heat of vaporisation at the electrolysis step. Using the higher heating value would mean its loss at the reelectrification step (pp = power plant in Figure 4.1). To avoid ambiguity, the efficiencies in the following text are based on the lower heating value. Minor losses are due to the irreversible cell reaction. This heat cannot be used due to the low operating temperature of the electrolysis plant.

During the summer cycle, low level heat from the exothermic hydrogenation reaction ($250^\circ C$) can only be used for the separation of byproducts, produced by dehydrogenation during the preceeding winter cycle.
4.4 Exergy Analysis of the MTH-System

Figure 4.2 shows further clarification of the MTH-winter-process. It shows the energy and exergy flow (shaded in Figure 4.2) with heat integration between the dehydrogenation and the power plant (fuel cells). Surprisingly the exergy of the methylcyclohexane MCH is larger than its enthalpy. In fact the exergy loss in the hydrogenation step is smaller than the energy loss. This does not mean that the exergy of the products is higher than the exergy of the feed and does not violate the second law of thermodynamics.

The efficiencies of the several conversion steps of the MTH-storage method are compared in Table 4.1. Similar values for electrolysis (0.77 and 0.67) have been obtained by Rosen [45]. The efficiencies of the hydrogenation and dehydrogenation are based on the combustion enthalpy (Gibbs potential) of the MCH according to the definitions 4.5 and 4.6. The values for efficiency of the hydrogenation and dehydrogenation are close to 1 because the hydrocarbons flow relative to hydrogen in the respective plants are so large.

To calculate overall efficiency, the individual plant efficiencies cannot be multiplied together because of heat and mass recovery streams in the system. The overall efficiency of 0.39 derives simply from the quotient of electricity in and electricity out.
Energy efficiency Exergy efficiency

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolysis</td>
<td>0.720</td>
<td>0.681</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td>0.954</td>
<td>0.978</td>
</tr>
<tr>
<td>Storage Tanks</td>
<td>≈ 1</td>
<td>≈ 1</td>
</tr>
<tr>
<td>Dehydrogenation</td>
<td>0.997</td>
<td>0.991</td>
</tr>
<tr>
<td>Fuel Cells</td>
<td>0.844</td>
<td>0.771</td>
</tr>
<tr>
<td>total</td>
<td>0.391</td>
<td>0.391</td>
</tr>
</tbody>
</table>

Table 4.1: Energetic and Exergetic Efficiencies

In practice the dehydrogenation reaction needs a heat source at a temperature level of 750 K. This corresponds to an exergetic temperature \(r = 0.609 \). The waste heat of the high temperature fuel cells (MCFC, SOFC) satisfies this requirement. The energy which does not leave the system as electrical current, occurs as heat at a high temperature level (MCFC: 650°C, SOFC: 900-1000°C) [46]. This heat can supply the necessary energy for the endothermic reaction in the dehydrogenation plant.

Gas turbines in a combined cycle power plant can achieve an efficiency of nearly 60%, but in this case no heat at sufficiently high temperature would be available for the dehydrogenation plant. The same limitation exists in the case of the low temperature fuel cells (PAFC, PEFC), therefore they can be excluded as well. The exergy of their waste heat is too small due to their low operating temperature. The efficiency of dehydrogenation would be less than 70% since a part of the hydrogen must be burnt to supply the heat of reaction. If the heat of exhaust gases of the gas turbines (≈ 550°C) would be used for dehydrogenation, the efficiency would be much smaller than 60% (not a combined cycle power plant). Gas turbines only have an efficiency of 33-38% [47].

4.5 Conclusion

Most of the energy and exergy losses are due to the electrolysis and the power plant (high temperature fuel cells). Nevertheless the overall efficiency of the MTH-System is relatively high, 39% compared to 20-40% of storage system with gaseous hydrogen [19].

It is obvious that high temperature fuel cells (MCFC, SOFC) are a first choice
for the reelectrification problem in the MTH-System. The influence of insufficient CO$_2$ on the efficiency of the molten carbonate fuel cell has to be considered in more detail (section 5.6.4). The other alternatives, low temperature fuel cells (PAFC, PEFC) and gas/steam turbines in a combined cycle power plant are not optimal choices from an exergy viewpoint. On the other hand gas/steam turbines are the only available technology today. Therefore the simulation of the MTH-System with this power plant alternative is also made and considered in sections 5.7, 5.8 and 7.2.4.
Chapter 5

Modelling of Chemical and Power Plants

5.1 Electrolytic Hydrogen Production

Electrolysis, discovered in 1800 by Carlisle and Nicholson [48], is the classic method of hydrogen production from non-fossil fuel sources. Comparable high temperature methods are also technically feasible, but in all cases, including solar-hydrogen, the most economic route is hydrogen from fossil fuels.

5.1.1 Production of Hydrogen by Other Techniques

Hydrogen from Fossil Fuels

Fossil fuels (natural gas, higher hydrocarbons and coal) are mainly used for hydrogen production in industry. Natural gas as feedstock represents the cheapest alternative (0.04 $/kWh [49]) to produce hydrogen, but the method is not carbon free. In contrast, the MTH-System produces hydrogen from renewable sources, e.g. hydropower used for electrolysis, and comes closer to the ideal carbon free system.

Hydrogen Production by Thermochemical Processes

Thermochemical processes achieve water-splitting into hydrogen and oxygen by heat input and chemicals which are recirculated completely in a closed system. An ex-
ample of such a thermochemical reaction system proposed is \[50\]:

\[
\text{first reaction step: } \quad Fe_3O_4 \rightarrow 3FeO + \frac{1}{2}O_2 \\
\text{second reaction step: } \quad 3FeO + H_2O \rightarrow Fe_3O_4 + H_2
\]

A summary of the most significant thermochemical water decomposition processes is given in \[51\]. Most of these thermochemical processes have one or more reactions which require heat input at a high temperature (600-1500°C). The techniques of thermochemical water decomposition have been developed to produce hydrogen more from high temperature heat sources such as nuclear or solar reactors than from electricity. Generating the necessary heat from the input electricity available in the MTH-system makes the production of hydrogen too inefficient compared with the electrolyser, as in industrial use.

Thermal Water Splitting

Water vapour, heated to very high temperatures (2500-3000 K) dissociates directly into hydrogen and oxygen. It is theoretically possible to obtain hydrogen with this method by separation from the mixture of the remaining water vapor and the dissociated hydrogen and oxygen, but the method is not suitable for technical implementation and is uneconomical. It exhibits an achievable process efficiency of only between 0.1% and 6% \[52\].

Solar Hydrogen

With the increasing use of solar energy, the seasonal storage of electricity is becoming more important. The difference between supply and demand for electricity in summer and winter grows with increasing utilisation of solar energy. Two interesting methods for producing solar hydrogen comprise the indirect process of a photovoltaic plant combined with an electrolyser as operational in small scale and a proposed thermochemical process with solar heat input. Solar hydrogen is very expensive (present costs are 1 $/kWh \[53\]) and is not an alternative to hydrogen production by electrolysis (0.10-0.16 $/kWh \[49\]) using cheap hydropower in the summer season.
5.1. Electrolytic Hydrogen Production

5.1.2 Efficiency of Electrolysis

The efficiency of electrolysis depends directly on its cell voltage. The theoretical cell voltage U_{theo} could be calculated from the Gibbs energy difference ΔG of the water decomposition:

$$U_{\text{theo}} = \frac{-\Delta G}{nF} = -\frac{\Delta H - T\Delta S}{nF}$$ \hspace{1cm} (5.1)

with $n =$ number of elementary charges transferred per ion and $F =$ Faraday constant. This theoretical cell voltage represents the minimum voltage at which the reaction can occur. In Figure 5.1 the relationships between the enthalpy ΔH, Gibbs energy ΔG of reaction and theoretical cell voltage are shown as functions of temperature. In practice the theoretical cell voltage is increased by several kinds of overpotentials:

- Anodic overpotential U_{an}
- Cathodic overpotential U_{cat}
- Ohmic losses U_{IR}
Therefore the cell voltage of electrolysis is:

\[U = U_{\text{theo}} + U_{\text{an}} + U_{\text{cat}} + U_{IR} \] \hspace{1cm} (5.2)

To calculate the energy efficiency of electrolysis, two reference voltages are in use. One corresponds to the higher heating value (HHV) of \(\Delta H = 285.8 \text{kJ/mol} \) and amounts to \(U_{HHV} = 1.481V \). The other efficiency is based on the lower heating value (LHV) of \(\Delta H - \Delta_{\text{vap}}H = 241.8 \text{kJ/mol} \) and amounts to \(U_{LHV} = 1.253V \). All these enthalpy values hold at the standard ambient temperature of 298 K and atmospheric pressure. The higher heating value (HHV) includes the vaporisation heat of water (which must be included as electrolysis starts from liquid water). Therefore the efficiency of an electrolyser is higher with the higher heating value as reference. The two efficiency are defined as

\[\eta = \frac{U_{LHV}}{U} = \frac{1.253V}{U} \hspace{1cm} \eta = \frac{U_{HHV}}{U} = \frac{1.481V}{U} \hspace{1cm} \text{for } n = 2 \] \hspace{1cm} (5.3)

The efficiency calculated using the higher heating value is the correct one when considering electrolysis alone. However, when calculating overall efficiency of a cycle that includes eventual electricity generation from the hydrogen produced, one has to account for a loss due to the fact that the heat of the condensing water vapour from the combustion of hydrogen can be recovered only in special cases. This may be taken into account by using a lower efficiency for the electrolysis step, i.e. calculating \(\eta \) with respect to the lower heating value \(\Delta H_{LHV} \). It is not possible to use this heat in the case of the MTH-System, since then the vaporisation heat of water, which is brought into the system on electrolysis, would be lost. Both these efficiency definitions appear in the literature. For clarity, the appropriate heating value must be specified together with the efficiency.

Another customary method to characterise the efficiency of an electrolyser was the relation between the input electricity and the produced hydrogen. This specific electricity consumption is expressed in \(\text{kw}h/m^3H_2 \) \((m^3H_2 \text{ means a cubic meter hydrogen at the normal condition of 273.15 K and 1.013 bar). Like the cell voltage, the specific electricity consumption exactly defines the efficiency of the electrolyser. The vertical axis in Figure 5.2 is labeled with both the cell voltage and the specific electricity consumption.}

Additionally important for the performance (specifically the cost) of an electrolyser is the current density of the cell. It is inversely proportional to the required
cell area. In Figure 5.2 the efficiencies of several types of electrolyser are shown as a function of the current density. The two heating values split the plane into three regions:

Below LHV: The electrical efficiency (with respect to LHV) is higher than 100%. An external heat supply is necessary for vaporising the water (HHV → LHV) and heating the cell.

Between LHV and HHV: An external heat supply is necessary only for vaporising the water.

Above HHV: The efficiency is so low that the electrolyser produces more than enough heat and no additional heat is required for the water decomposition.
Water could be decomposed into hydrogen and oxygen according to the reaction $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ by a direct electrical current between two electrodes. Because water is a poor conductor, it is necessary to add a conducting electrolyte to the water. Usually a potassium hydroxide solution of 30% is used as an electrolyte. Also used are aqueous sodium hydroxide and sodium chloride. The operating temperatures lie between 70 – 90°C: as high as possible for an increased conductivity but below the boiling point of the solution. The pressure electrolyser operate at higher temperatures. The efficiency of classical alkaline water electrolysis is not very high (see Figure 5.2). For example an electricity consumption of 4.8 kWh/m3H$_2$ corresponds to an efficiency of 62.5% based on the lower heating value (LHV). Progress has also been made with advanced technology in alkaline water electrolysis, with efficiencies between 72 and 75% (LHV).

Polymer Electrolyte Membrane Electrolysis

Another type of advanced electrolysis utilises polymer electrolyte membrane. The electrolyte consists of a solid semipermeable H^+-exchanger membrane, which is also used in polymer electrolyte fuel cells (PEFC). The cost of these polymer electrolyte membranes is relatively high. A reversible use of the cell stacks as fuel cells (PEFC) in the MTH-winter process is not attractive because the operating temperatures (70 – 90°C) of this cell type are too low for cogeneration.

High Operating Temperature Electrolysis (HOT ELLY)

This kind of electrolyser employs an O_2^- conducting solid oxide electrolyte, which consists of yttria (Y_2O_3) stabilised zirconia (ZrO_2). The operating temperature of such an electrolyser is very high: between 1200 and 1300 K. The Gibbs energy ΔG of reaction at this temperature is very small (see Figure 5.1). It is possible that the electricity input for the water vapor decomposition lies below the lower heating value (LHV) and $\Delta G(T = 1200K)$ is smaller than the lower heating value $\Delta H_{HHV} - \Delta_{\text{vap}}H$ according to the region below the LHV-line in Figure 5.2. Therefore the apparent electrical efficiency could be higher than 100%. With respect to the laws of thermodynamics, the missing energy must be supplied from an external heat source. One part of the heat must be available at the operating temperature of
1200-1300 K, the other part ($\Delta_{\text{vap}} H$) at the vaporisation temperature of the water, which depends on the operating pressure. The MTH-System yields waste heat only from the hydrogenation at low temperature. Therefore the HOT ELLY can be supported at maximum with the vaporisation heat of the water feed and requires exceptionally high efficiency in the heat exchanger network and insulation. In this case an efficiency of 95% may be technically feasible.

The most important advantage of this electrolyser type is the possibility of application as a fuel cell in the winter process of the MTH-project. The solid oxide fuel cell (SOFC) operates with the same electrochemical reaction and the same electrolyte as does the high operating temperature electrolysis (HOT ELLY). In principle, it is possible to use the electrochemical cell in both periods of the seasonal process, in summer for the electrolysis and in winter for reelectrification of the hydrogen energy. This fact enables a saving in total investment costs of the MTH-System. Experimental data about the reversibility of these solid oxide electrolyte cells and cell stacks were obtained recently [54].

5.1.3 Economics of Advanced Electrolysis

Recent advances in materials technology have allowed the operation at 30 bar of advanced electrolyser with efficiencies of 75%. This pressure is useful for the subsequent catalytic hydrogenation step.

Present Cost

The energy unit used in Table 5.1 signifies the input electricity in direct current (dc) after the power conditioner, except the data marked with * which are based on an input electricity in alternating current (ac). The power conditioner itself needs electricity as well as the other chemical plants in the summer process. A loss of 3% of the alternating current input electricity is assumed ($320 \, MW_{\text{ac}} \times 0.97 = 310 \, MW_{\text{dc}}$). The degression exponent for the cost calculation of a scaled up electrolyser is approximately 0.9, which means that the cost of an electrolyser is nearly linear to its capacity. In the last row, the investment costs are normalised to 1995 US$ with the currency data from Figure 6.1 and the Chemical Engineering plant cost index (Table 6.1). They are also scaled up to the capacity of the electrolyser used in the MTH-System.
Table 5.1: Electrolyser Investment Costs and Scale-up to MTH-System Capacity

The average of the specific investment cost of electrolyser with a high capacity (only values with †) is 307 $/kW_{dc}$. Estimates from the last 10 years are between 360 and 745 $/kW_{dc}$. The latest reference (1996) in Table 5.1 concludes in specific investment cost of 560 $/kW_{dc}$ based on a plant capacity of 2.8 MW (scaled up with a degression exponent of 0.9). For further economic consideration of the MTH-System in chapter 7, a specific investment cost of 672 $/kW_{dc}$ (including 20% for buildings and externalities [65]) and an efficiency of 4.2 kWh/m^3H_2 are assumed. In addition, power conditioning and auxiliary equipment diminishes the efficiency by a factor of 0.97. According to the sensitivity analyses in chapter 3 a specific investment cost of 672 $/kW_{dc}$ [64] instead of 400 $/kW_{dc}$ increases the output electricity costs by 0.034 $/kWh$. For the economic calculation, a lifetime of 30 years and annual operating and maintenance costs of 6% of the investment costs [5] are assumed. The land
5.1. Electrolytic Hydrogen Production

Future Cost Predictions

The cost predictions from different sources for the future development of electrolyzers are shown in Figure 5.3. These predictions are partly contradictory in themselves when compared to the values in Table 5.1. Nevertheless a cost reduction to 250 $/kW and an efficiency improvement to 4 kWh/m²H₂ could be expected for the year 2020 according to the DOE Hydrogen Program Plan [40].

Because high operating temperature electrolysis (HOT ELLY) is still in a de-
development state, no present day costs for a commercial plant on an industrial scale are available. An estimate [7] suggests a cost of 443 $/kW_{dc}$ with an electricity consumption of 3.15 \(kWh/m^3H_2 \).

5.2 Hydrogenation

Hydrogenation of toluene to methylcyclohexane at 30 bar pressure is very similar to the hydrogenation of benzene to cyclohexane [44]. Therefore the cost data and technical specifications [37] for this process are used for the hydrogenation of toluene. This catalytic reaction produces very few byproducts [68]. The feed toluene from the purification plant is combined catalytically in a liquid phase reactor with hydrogen from the electrolysis and the hydrogen recycle stream exiting the hydrogenation.

Excess heat from the exothermic hydrogenation reaction

\[
C_7H_8 + 3H_2 \leftrightarrow C_7H_{14} \quad \Delta H_0 = -204.77 kJ/mol
\]

is removed in a heat exchanger for the purification plant. After the finishing reactor, which converts remaining toluene from the liquid phase reactor to methylcyclohexane, the reaction products are cooled and flashed in a high pressure separator. The vapor is recycled to the hydrogen feed stream. The condensate is fed to the stabiliser which removes dissolved hydrogen and other light gases.

The cost of the hydrogenation plant amounts to 4.57 \(M\$_{(1996)} \) based on a plant capacity of 12.5 \(ton/hour \) and a degression exponent of 0.6. Not included in this cost is the initial catalyst load of 0.117 \(M\$_{(1995)} \) for a plant capacity of 12.5 \(ton/hour \). The specific catalyst cost of the plant in operation is 2.87 \(\$_{(1995)} \) per ton of product [37]. The hydrogenation plant in the summer process of the MTH-System has a capacity of 120 \(ton/hour \). With an assumed life time of 19 years and yearly operating and maintenance costs of 3\% of the investment costs, only the seasonal operation of this plant is accounted for.

5.3 Toluene Purification

The toluene from the storage tanks contains a range of byproducts from the dehydrogenation reaction in the winter process. Without separation of byproducts,
their accumulation in the closed system [42] would result in a loss of efficiency in the hydrogenation-dehydrogenation process steps. Purification of the toluene from byproducts is achieved by distillation. The byproducts are then treated by total oxidation, resulting in carbon dioxide emissions associated with output electricity. The feed stream to the purification plant contains the following components which have similar chemical properties:

\[
\begin{align*}
\text{Toluene} & : C_7H_8 \\
\text{Methylcyclohexane} & : C_7H_{14} \\
\text{Benzene} & : C_6H_6 \\
\text{1,1-Dimethylcyclopentane} & : C_7H_{14} \\
\text{Ethylcyclopentane} & : C_7H_{14}
\end{align*}
\]

Toluene is the highest boiling component and is separated by distillation. Table 5.2 shows the results of the distillation column simulation calculated with ASPEN PLUS 8.5. The physical properties of the components are taken from the ASPEN Pure Component Database and from the AIChE Data Compilation [25], the activity coefficients are calculated with the UNIFAC model. The simulation results of Table 5.2 show that the separation of ethylcyclopentane is very difficult. Only 20% is separated by distillation. Therefore ethylcyclopentane will be accumulated in the MTH-system which has to use the toluene many times in its closed winter-summer
5.4 Storage Tanks

5.4.1 Technical Requirements

As an additional safety measure and to prevent oxygen in the free space of the tanks from diffusing into the toluene or methylcyclohexane and oxidising the reduced
5.5. Dehydrogenation Reactor

catalysts, a blanket of pure nitrogen is employed.

5.4.2 Arrangement of Tanks

Large scale storage tanks for petrochemicals in Switzerland have a capacity of 20,000 m3. With 25 of these tanks the MTH-System storage requirement of 500,000 m3 is satisfied. Two additional empty tanks are needed: One for maintenance of the tanks, the other due to the schedule of refilling with the dehydrogenation or hydrogenation product. Therefore 27 tanks with a total volume of 540,000 m3 are considered. The minimal land area demand of 6 m3 storage tank at this scale is 1 m2, giving an area of 0.09 km2 (e.g. an area 300m \times 300m) for the storage tanks.

5.4.3 Cost of Storage

The specific investment costs of the storage of liquid hydrocarbons at the scale of the MTH-System are 237 $/m^3$ (280 SFr/m3 [39]). This value includes Swiss security requirements and the plant which manages the nitrogen blanket. The life time of such petrochemical tanks is 65 years. The operating and maintenance costs are estimated at 5.1 $/m^3$year (6 SFr/m3year [39]).

5.5 Dehydrogenation Reactor

5.5.1 Reaction Kinetics

The equilibrium of the dehydrogenation reaction was experimentally determined in a previous Ph.D. thesis [9]:

$$K_{eq} = A_{eq} e^{-\frac{\Delta H_r}{R} \left(\frac{1}{T} - \frac{1}{650} \right)}$$ \hspace{1cm} (5.4)

with

$A_{eq} = 4.61 \times 10^{18} Pa^3$

$\Delta H_r = 216.3 \times 10^6 J/kmol$

The reference temperature of this equilibrium equation is 650K. T is the temperature in K and $R = 8314.5 J/K/kmol$ the gas constant. Figure 5.4 shows the equilibrium curves of the dehydrogenation reaction for two inputs, i.e. four moles of
hydrogen for one mole of methylcyclohexane (MCH) and pure methylcyclohexane feed at different pressures.

\[
\text{conversion} = \frac{P_{\text{tol}}}{P_{\text{tol}} + P_{\text{mch}}} \quad (5.5)
\]

According to a Langmuir-Hinshelwood kinetic model [12] the reaction rate is:

\[
\begin{align*}
 r &= \frac{k_1 P_{\text{mch}}}{1 + k_2 P_{\text{tol}}} \left[1 - \frac{P_{\text{tol}} P_{\text{H}_2}^2}{K_{\text{eq}} P_{\text{mch}}} \right] \\
 k_1 &= A_1 e^{-\frac{E_1}{R} \left(\frac{1}{T} - \frac{1}{T_m} \right)} \\
 k_2 &= A_2 e^{-\frac{E_2}{R} \left(\frac{1}{T} - \frac{1}{T_m} \right)}
\end{align*}
\]

\(P_{\text{mch}}, P_{\text{tol}}\) and \(P_{\text{H}_2}\) are the partial pressures of the particular reaction components. The parameters \(A_1, E_1, A_2, E_2\) and the average temperature \(T_m\) depend on the catalyst type and are determined by experiments [12]. Examples of such catalyst parameters are given in Table 5.3. The equation for the reaction rate \(r\) holds for a fresh catalyst at outer surface condition. That means that coke does not diminish catalyst activity and diffusion limitations are negligible. The coke content diminishes the reaction rate for a coked catalyst.

\[
r_{\text{coke}} = \eta_{\text{coke}} r
\]

\(5.7\)
5.5. Dehydrogenation Reactor

In subsequent reactor simulations, it is assumed that $\eta_{\text{.st}} = 0.1 \text{ (end of run condition)}$. The effective reaction rate is also limited by diffusion

$$r_{\text{eff}} = \eta_{\text{st}} \eta_{\text{eff}} r$$

(5.8)

The diffusion efficiency η_{diff} is given by

$$\eta_{\text{diff}} = \frac{1}{\Phi} \left(\frac{1}{\tanh(3\Phi)} - \frac{1}{3\Phi} \right)$$

(5.9)

For a first order reaction in a spherical catalyst pellet the Thiele modulus Φ [70] is

$$\Phi = \frac{d}{6} \sqrt{\frac{r_{\text{st}} RT \rho}{\eta_{\text{MC}} \eta_{\text{eff}}}}$$

(5.10)

with an effective diffusivity (parallel pore model)

$$D_{\text{eff}} = \frac{\frac{d}{D_{AB}}}{\frac{1}{D_{AB}} + \frac{1}{D_{K\text{n}}}}$$

(5.11)

According to the Chapman-Enskog formula [70] the bulk diffusivity of methylcyclohexane in its reaction product is

$$D_{AB} = 8.35 \times 10^{-4} \frac{m^2 Pa T^{1.5}}{s K^{1.5}}$$

(5.12)

and the Knudsen diffusivity [70, 9]

$$D_{K\text{n}} = 97.0 \frac{m kg^{0.8}}{s K^{0.8} kmol^{0.5}} \frac{1}{p} \frac{T}{M_{\text{MC}}^{0.5}}$$

(5.13)

5.5.2 Pressure Drop in the Fixed Beds

Based on experimental data, S. Ergun [71] has established a comprehensive equation, applicable to a broad range of two-phase fixed bed flow:

$$\Delta p = f_k \frac{G_m v_0}{d_p} \frac{(1 - \epsilon_{\text{bed}})}{\epsilon_{\text{bed}}^3}$$

(5.14)

with the so-called friction factor

$$f_k = 150(1 - \epsilon_{\text{bed}})/Re + 1.75$$

(5.15)
Table 5.3: Properties of Selected Catalysts

<table>
<thead>
<tr>
<th>Catalyst [12]</th>
<th>MM30s</th>
<th>BM30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1) [kmol/kgsPa]</td>
<td>(2.139 \times 10^{-9})</td>
<td>(14.15 \times 10^{-10})</td>
</tr>
<tr>
<td>(E_1) [J/kgmol]</td>
<td>(1.879 \times 10^8)</td>
<td>(1.16 \times 10^8)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>0</td>
<td>(96.4 \times 10^{-6})</td>
</tr>
<tr>
<td>(E_2)</td>
<td>0</td>
<td>(-2.5 \times 10^7)</td>
</tr>
<tr>
<td>Average Temperature (T_m) [K]</td>
<td>612.14</td>
<td>650.0</td>
</tr>
<tr>
<td>Diameter of the Catalyst Pellet (d) [m]</td>
<td>0.0016</td>
<td>0.0015</td>
</tr>
<tr>
<td>Density of Catalyst Pellet (\rho_F) [kg/m³]</td>
<td>514.0</td>
<td>456.0</td>
</tr>
<tr>
<td>Average Radius of the Pores (R_{pore}) [m]</td>
<td>(189.0 \times 10^{-10})</td>
<td>(185.0 \times 10^{-10})</td>
</tr>
<tr>
<td>Porosity (\epsilon)</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>Tortuosity (\delta)</td>
<td>2.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>

\(Re\) denotes the particle Reynolds number:

\[
Re = \frac{\rho v_0 d_p}{\mu} = \frac{G_m d_p}{\mu}
\]

(5.16)

\(v_0\) is the empty tube velocity of the gas and \(G_m = v_0 \rho\) its mass velocity per unit cross-sectional area. The void fraction \(\epsilon_{bed}\) of a fixed bed filled with spherical pellets is approximately 0.4. Similar to the Ergun-equation 5.14, the pressure drop equation for a fixed bed from VDI-Wärmeatlas chapter Le [72] is:

\[
\Delta p = \mu \frac{1}{d_p^2} \left(\frac{v_0}{\epsilon_{bed}} \right)^2
\]

(5.17)

The pressure drop parameter \(\xi\) is defined as

\[
\xi = 2.2 \left(64.0 \frac{1}{Re} + 1.8 \frac{1}{Re^{0.1}} \right)
\]

(5.18)

with another definition of the particle Reynolds number

\[
Re = \frac{\rho v_0 d''}{\epsilon_{bed} \mu}, \quad d'' = 2 \frac{\epsilon_{bed} - d_p}{3 1 - \epsilon_{bed}}
\]

(5.19)

Both methods of pressure drop calculation deliver approximately the same results. In the subsequent reactor simulations the Ergun equation of will be employed.

5.5.3 Cost Calculation

The dehydrogenation plant consists essentially of reactors, heat exchangers and the hydrogen compressor. The latter is used for recycling hydrogen with the methylcy-

clohexane feed and is considered in detail in section 5.9. The following formula \[69\] describes the costs of the reactors:

\[K = 8.4 \$ (5000 + \frac{1645V}{[m^3]}) \] \hspace{1cm} (5.20)

where \(V \) denotes the volume of the reactor. The prefactor 8.4\$ expresses material and installation costs as well as the index correction to normalise the cost to 1995 prices. Heat exchanger costs are estimated with a function which depends on the heat exchanger area \(A \):

\[K = 52.0 \cdot 23000\$ \left(\frac{A}{92.9[m^2]} \right)^{0.68} \] \hspace{1cm} (5.21)

Other cost calculation parameters have been assumed equal to those of the hydrogenation plant described in section 5.2 (19 years life time and 3\% operating costs).

5.6 Fuel Cells

5.6.1 Electrochemical Processes in Fuel Cells

The standard reversible potential of a fuel cell is given by

\[U_0 = \frac{-\Delta G(T)}{nF} \] \hspace{1cm} (5.22)

where \(n \) in the equation designates the number of elementary charges transferred in the redox reaction, e.g. \(n = 2 \) for \(CO_2^- \)-ions (MCFC) and \(O^2^- \)-ions (SOFC). The Faraday constant \(F \) equals \(9.6485 \times 10^7 C/kmol \). \(U_0 \) is equal to 1.185\(V \) at the standard ambient temperature of 298 \(K \) and pressure of 101325 \(Pa \). The efficiency of a fuel cell is linearly proportional to its cell voltage.

The dependence of the Gibbs potential on the temperature in the absence of phase transitions can be calculated with the following three thermodynamic equations:

\[\Delta G(T) = \Delta H(T) - T \Delta S \]
\[\Delta H(T) = \Delta H_0 + \int_{T_0}^{T} \Delta C_p(T) dT \]
\[\Delta S(T) = \Delta S_0 + \int_{T_0}^{T} \frac{\Delta C_p(T)}{T} dT \]
According to the Nernst equation the open circuit potential is given by

\[U = U_0 - \frac{RT}{nF} \ln(K_{\text{Nernst}}) \]

(5.23)

\(K_{\text{Nernst}} \) is the fraction of the activities with the power of their stoichiometric coefficients of the reaction at the anode side and at the cathode side. For example \(K_{\text{Nernst}} \) in a solid oxide fuel cell (SOFC) is

\[K_{\text{Nernst}} = \frac{(pO_2^-/p)_{\text{cat}}(pH_2O/p)_{\text{an}}}{(pO_2^-/p)_{\text{an}}(pO_2/p)_{\text{cat}}^{0.5}(pH_2/p)_{\text{an}}} = \frac{(pH_2O/p)_{\text{an}}}{(pO_2/p)^{0.5}(pH_2/p)_{\text{an}}} \]

(5.24)

It is assumed that the concentration of the \(O^2^- \)-ions at the anode is equal to that at the cathode. In practice following losses occur:

- Anode and cathode overpotentials
- IR loss due to ohmic resistance across separating cell medium

Therefore real cell voltage is reduced to

\[U_{dc} = U - U_{\text{cat}} - U_{\text{IR}} - U_{\text{An}} \]

(5.25)

To simplify calculation the aforementioned losses can be taken into account by multiplying the standard reversible potential with an efficiency factor \(\zeta \), which identifies the quality of the electrochemical process

\[U_{dc} = \zeta U_0 \]

(5.26)

5.6.2 Energy Balance in Fuel Cell Power Stations

To close the energy balance of a fuel cell power station, it is necessary to identify all the sources and dissipation of heat and energy. The input streams comprise hydrogen and air heated up to the operating temperature \(T \) of the fuel cell. In addition to their heat capacities the input streams also import the reaction enthalpy \(\Delta H_0 \). The exhaust streams exiting from both sides of the cell comprises the electrical power output \(P_{de} \) and the remaining usable heat flux, caused by the entropy production of reaction, \(T \Delta S \), and by the irreversible processes in the cell.

\[Q = \frac{dT \Delta S}{dt} + (1 - \zeta) \frac{dG(T)}{dt} \]

(5.27)

For high temperature fuel cells, this waste heat is very useful, since its temperature level is at the operating temperature of the fuel cell (SOFC 1000°C, MCFC 650°C).
5.6.3 Solid Oxide Fuel Cells

On the left side of Figure 5.5 it is shown that solid oxide fuel cells (MCFC) operate with \(O^{2-} \)-ions. The oxygen is reduced to yield \(O^{2-} \)-ions at the cathode side and is combined with hydrogen to water at the anode side:

- Cathode: \(\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-} \)
- Anode: \(H_2 + O^{2-} - 2e^- \rightarrow H_2O \)

For solid oxide fuel cells, \(\zeta \) is between 0.78 and 0.88 [73]. In the MTH-system simulation of heat integration, a value of \(\zeta = 0.82 \) is assumed. This implies an efficiency \(\eta_{dc} = 0.606 \) of the fuel cell at a process temperature of 1250 \(K \). With an efficiency of 0.96 for the dc/ac-converter (direct current \(\rightarrow \) alternating current) a total efficiency \(\eta_{ac} = 0.58 \) of the fuel cell system is achievable.

5.6.4 Molten Carbonate Fuel Cells

Molten carbonate fuel cells (MCFC) need a large supply of carbon dioxide because they are operating with \(CO_3^{2-} \)-ions (right side of Figure 5.5). The main cell reactions are:
Figure 5.6: Efficiency of MCFC as Function of the available Carbon Dioxide

- Anode: \(H_2 + CO_2^2- - 2e^- \rightarrow H_2O + CO_2 \)
- Cathode: \(\frac{1}{2}O_2 + CO_2 + 2e^- \rightarrow CO_2^3^- \)

These equations show that the process needs as much carbon dioxide at the cathode side as hydrogen at the anode side. In practice carbon dioxide occurs in the output streams of both sides of the cell. At the fuel side, carbon dioxide is produced in the anodic reaction, and at the air side there is residual carbon dioxide which has not completely transferred through the cell membrane. The latter is lost from the system and must be replaced by a corresponding amount in the input stream. Therefore efficiency depends strongly on the available \(CO_2 \) from the combustion of the dehydrogenation byproducts. Nearly all carbon dioxide from the exhaust stream is recycled. Figure 5.7 shows the separation of the remaining hydrogen from the carbon dioxide using membrane separation (section 5.10) and the recycle of carbon dioxide to the anode side. The criticality of the cathode side \(CO_2 \) content to MCFC efficiency is shown in Figure 5.6. A sufficient partial pressure of \(CO_2 \) is needed to generate \(CO_2^3^- \)-ions and utilise the high intrinsic efficiency of the molten carbonate fuel cell. Because of the limited quantity of available \(CO_2 \) from dehydrogenation byproducts, it is necessary to calculate the cell voltage (which is linearly
5.6. Fuel Cells

![MCFC Plant Flow Sheet](image)

Figure 5.7: MCFC Plant Flow Sheet

proportional to the efficiency) more accurately than in the SOFC case.

\[
K_{Nernst} = \frac{(p_{CO_2}/p)_{an}(p_{H_2}O/p)_{an}}{(p_{CO_2}/p)_{cat}(p_{O_2}/p)_{cat}^{0.5}(p_{H_2}/p)_{an}}
\]
(5.28)

The calculation of overpotentials is performed with the data from J.R. Selman [74]. The cathode overpotential is

\[
U_{cat} = 7.50510^{-6} \Omega cm^2 \cdot i (p_{O_2})_{cat}^{-0.43}(p_{CO_2})_{cat}^{-0.09} \exp \frac{77.3 \times 10^6 J/kmol}{RT}
\]
(5.29)

and the anode overpotential

\[
U_{an} = 2.2710^{-5} \Omega cm^2 \cdot i (p_{H_2})_{an}^{-0.43}(p_{CO_2})_{an}^{-0.17}(p_{H_2}O)_{an}^{-1} \exp \frac{53.5 \times 10^6 J/kmol}{RT}
\]
(5.30)

where \(i \approx 0.16 A/cm^2 \) is the current density. The ohmic drop in the electrolyte is assumed to be \(U_{IR} = 0.1V \).

5.6.5 Economics

Since fuel cells are not available at competitive prices today, cost calculations are based on future cost predictions. These future cost are assumed to be 1000 \$/kW for MCFC and 1500 \$/kW for SOFC [38] based on a power plant output of 1-100
Other assumed costs are 600-780 $/kW for a 100 MW MCFC [75] and 1100 $/kW for SOFC [76]. Reference [77] gives a range of 1000-1500 $/kW for the fuel cell costs, which depends on the fuel used (natural gas and coal gas). This cost data of the year 1993 are normalised to 1995 with the CE-index. Annual operating costs are 3% of the investment costs. The estimated life time of fuel cells is 25 years. Like the electrolyser, fuel cells have high ground floor area requirements (67.5 m^2/MW). The investment costs are approximately linearly proportional to the power output (degression exponent 0.9).

5.7 Gas Turbine

5.7.1 Mechanism

In Figure 5.8 the thermodynamic process of a gas turbine is shown in a TS-plot (temperature-entropy). Entering air and gaseous fuel are compressed to combustion pressure with an isentropic efficiency η_{comp} compared with the ideal adiabatic process. In the isobaric combustion process the gas is heated up to the temperature
T_{comb} by the heat of the combustion reaction Q_{react}. The hot gas stream expands in the turbine to atmospheric pressure. This irreversible expansion process works with an isentropic efficiency η_{turb}. The exhaust heat Q_{exh} can be used subsequently in a steam turbine. A fraction of the work of the turbine W_{turb} is used for the compression work W_{comp}. Therefore the remaining available mechanical work is:

$$\text{available mechanical work} = W_{\text{turb}} - W_{\text{comp}}$$ \hspace{1cm} (5.31)

The following equations describe the thermodynamic process shown in Figure 5.8:

$$T_{\text{comp}} = \frac{T_{\text{air}} \pi^{\frac{\kappa - 1}{\kappa}}}{\eta_{\text{comp}}} + T_{\text{air}} \left(1 - \frac{1}{\eta_{\text{comp}}}\right)$$ \hspace{1cm} (5.32)

$$T_{\text{exh}} = \eta_{\text{turb}} T_{\text{comb}} \pi^{\frac{\kappa - 1}{\kappa}} + T_{\text{comb}} (1 - \eta_{\text{turb}})$$ \hspace{1cm} (5.33)

$$W_{\text{comp}} = \frac{C_{\text{air}} T_{\text{air}} \left(\pi^{\frac{\kappa - 1}{\kappa}} - 1\right)}{\eta_{\text{comp}}} = C_{\text{air}} (T_{\text{comb}} - T_{\text{air}})$$ \hspace{1cm} (5.34)

$$W_{\text{turb}} = C_{\text{react}} T_{\text{comb}} \left(1 - \pi^{\frac{\kappa - 1}{\kappa}}\right) \eta_{\text{turb}} = C_{\text{react}} (T_{\text{comb}} - T_{\text{exh}})$$ \hspace{1cm} (5.35)

$$Q_{\text{react}} = -\Delta H_0 - \int_{T_0}^{T_{\text{comb}}} \Delta C_p \,dT = C_{\text{air}} (T_{\text{comb}} - T_{\text{comp}})$$ \hspace{1cm} (5.36)

$\pi = \frac{P_{\text{comb}}}{P_{\text{air}}}$ denotes the ratio of combustion pressure to atmospheric pressures. $\kappa = \frac{C_p}{C_v}$ is approximately 1.4. To increase the efficiency of a gas turbine two methods are
most commonly used:

- The combustion temperature is increased
- Two injection points permit a sequential combustion of the fuel with interstage expansion and an increase in the combustion pressure without using more air in the input stream or increasing combustion temperature.

In the simulation of the MTH-System including gas and steam turbines in section 7.2.4 both of these optimisation methods will be applied.

5.7.2 Parameters used for Simulation

The overall efficiency of a gas turbine depends mainly on two properties: the temperature of the gases at the outlet of combustion chamber, which limits the Carnot efficiency, and the isentropic efficiency of compression and expansion. The material properties of the turbine blades limit the maximum combustion temperature; current achievable temperatures are between 1450 K and 1500 K. In simulation, an isentropic efficiency of 0.88 is used for compression η_{comp} and expansion η_{turb}. Another parameter diminishing the output power is the electrical efficiency of the generator ($\eta_{\text{elec}} = 0.98$).

Figure 5.9 shows the cost of gas and steam turbines from contracts in the years 1994-1995 published in the Journal Turbomachinery. The costs of these turbines are linearly proportional to their output power (800 $/kW$). The life time of gas and steam turbines are 30 years. Because of seasonal use, low operating costs of only 3% of the investment costs are assumed.

5.8 Steam Turbine

5.8.1 Mechanism

Figure 5.10 shows the thermodynamic cycle of a condensing steam turbine. The feedwater is pumped at high pressure to the heat exchanger (step [3-4], pumping from the low condensing pressure to higher evaporation pressure), which heats up the
feedwater (step [4-5]) to the boiling temperature. The boiler vaporises the feedwater (step [5-6]). The steam is superheated (step [6-1]) before it is expanded adiabatically in the turbine (step [1-2]) with the isentropic efficiency η_{turb}. A second superheating of the steam after first expansion constitutes a process alternative which often results in a higher overall efficiency. Another method to increase the overall efficiency is decreasing the condensing pressure at the step [2-3], which results in a lower condensing temperature. Evidently, the temperature of the cooling medium limits this decreasing of the condensing pressure. If the condensing pressure is equal to or higher than atmospheric pressure, the condensation of the steam would be unnecessary (noncondensing turbine without cooling tower). In this case the steam turbine cycle would be opened at between [2-3]. In a condensing turbine the steam/water cycle is closed, which makes it possible to use a lower condensing pressure than atmospheric pressure. The third way to optimise the overall efficiency, increasing the temperature of the superheated steam, is limited by material properties.
5.8.2 Parameters used for Simulation

The efficiencies of the feedwater pump η_{pump} and the isentropic expansion efficiency are 0.85. The generator has the same electrical efficiency $\eta_{\text{lelec}} = 0.98$ as that of the gas turbine. The cost estimation parameter of steam turbines are supplied in section 5.7.2.

5.9 Compressor of Dehydrogenation Plant

A compressor is needed to recycle hydrogen to the input stream (methylcyclohexane) of the dehydrogenation plant. Because of its high energy (electricity) consumption this hydrogen compressor cannot be neglected. The mechanism is the same as in the air compression step of the gas turbine (section 5.7), given in the equations 5.32 and 5.34. The isentropic efficiency of compression η_{comp} is assumed to be 0.85 (lower than in the gas turbine) while electrical efficiency η_{elecc} of the motor drive is 0.97. The cost data [69] of the compressor is based on its power (with a cost degression exponent of 0.8). As a part of the dehydrogenation plant, it has the same life time of 19 years and the same operating cost factor of 3% annually.

5.10 Membrane Separation of Hydrogen

The membrane modules shown in Figure 5.7 are used for separating the remaining hydrogen from the carbon dioxide in the exhaust stream of the molten carbonate fuel cells (MCFC). Without this hydrogen separation, the electrical efficiency of the whole system would be diminished significantly. The permeation mechanism of the Pd/Ag membrane separation method is considered in chapter 8. The costs of a composite-metal membrane modules (Pd/Ag on a porous support layer) are 3230 $/m^2$ [78]. The installation factor is estimated to be twice the module costs. Although these membrane separation modules are used only in seasonal operation, a pessimistic life time of 17 years is assumed. The operating costs are 3% of the investment cost per year. In addition a yearly replacement of 10% of the modules is taken into account.

Hydrogen separation from other gases is also a critical technology in the mobile application (chapter 2) of renewable fuels. Polymer electrolyte fuel cells (PEFC)
operate with highly pure hydrogen. A major problem is the poisoning of the polymer electrolyte membrane by carbon monoxide impurities. The experimental part of this work (chapter 8) addresses the purification of hydrogen using Pd/Ag membranes.
Leer - Vide - Empty
Chapter 6

Cost Basis for Plant, Inventory and Payback Strategy

6.1 Introduction

The purpose of this chapter is to provide the techniques and data of capital cost estimation. Unfortunately, actual cost data for each plant are not available and the cost change by the time. In addition, many cost data from literature are uncertain. In the systems analysis step of project planning, the factor (additional costs are accounted by multiplying the basic costs with specific factors) estimate technique is a powerful tool since cost information from detailed engineering is not yet available. Section 6.2 provides general techniques used in plant capital cost estimation. Together with informations on inflation (cost indices in section 6.2.2) and cost dependence on scale (section 6.2.3), the guidelines for capital cost estimation are given.

Moreover, the cost data of selected inputs are also provided: costs of input electricity (section 6.3), toluene price (section 6.4) and land costs (section 6.5). The capital and operating costs of the particular plants used in the MTH-System were considered in chapter 5.
6.2 Costing Techniques

6.2.1 Currencies

To compare cost data of plants from different geographical sources (literature, data from manufacturer) currency data of each particular year are quite useful to transfer the cost data to the currency (US-$) which is the basis of the cost index data discussed in section 6.2.2. The currency data presented in Figure 6.1 were taken from the Schweizerische Nationalbank statistics [79]. They are normalised to Swiss Francs.

6.2.2 Cost Indices

Because of changing economic conditions, cost data will become obsolete with time. Cost indices allow old cost data to be updated. They reflect the change of costs of a certain types of equipment over time. If the cost at a referenced time in the
past is known, the present cost can be estimated with the cost indices. To estimate current cost, the old reference plant cost has been simply multiplied by the ratio of the present index value to the index of the year, in which the old reference plant cost was obtained.

\[
\text{Cost}_{\text{pres}} = \text{Cost}_{\text{ref}} \times \frac{\text{Index}_{\text{pres}}}{\text{Index}_{\text{ref}}}
\]

Table 6.1 shows the Chemical Engineering (CE) plant cost index and several Marshall and Swift (M&S) equipment cost indices. These indices are published every two months in the journal *Chemical Engineering*. The base year (for which the index value is 100) of the Chemical Engineering plant cost index is 1957-59 and that of the Marshall and Swift equipment cost indices is 1926. In Figure 6.2 the indices presented in Table 6.1 are shown as a function of time. The normalisation to 1 for the year 1975 shows the difference between the Chemical Engineering and the Marshall and Swift cost indices.
Chapter 6. Cost Basis for Plant, Inventory and Payback Strategy

<table>
<thead>
<tr>
<th>Year</th>
<th>CE plant cost index</th>
<th>M&S equipment cost index</th>
<th>all industry</th>
<th>process industry</th>
<th>chemical industry</th>
<th>petrochem. industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>182.4</td>
<td>444.3</td>
<td>450.0</td>
<td>447.6</td>
<td>470.9</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>192.1</td>
<td>472.1</td>
<td>478.8</td>
<td>473.2</td>
<td>497.7</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>204.1</td>
<td>505.4</td>
<td>509.0</td>
<td>507.1</td>
<td>535.9</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>218.8</td>
<td>545.3</td>
<td>549.5</td>
<td>546.5</td>
<td>579.7</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>238.7</td>
<td>599.4</td>
<td>606.3</td>
<td>599.3</td>
<td>637.3</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>261.2</td>
<td>659.6</td>
<td>675.4</td>
<td>666.0</td>
<td>711.3</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>297.0</td>
<td>721.3</td>
<td>744.9</td>
<td>733.8</td>
<td>790.5</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>314.0</td>
<td>745.6</td>
<td>774.4</td>
<td>760.9</td>
<td>828.7</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>316.9</td>
<td>760.8</td>
<td>785.7</td>
<td>772.6</td>
<td>834.4</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>322.7</td>
<td>780.4</td>
<td>806.5</td>
<td>794.0</td>
<td>852.1</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>325.3</td>
<td>789.6</td>
<td>813.4</td>
<td>801.4</td>
<td>857.4</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>318.4</td>
<td>797.6</td>
<td>816.9</td>
<td>805.0</td>
<td>856.9</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>323.8</td>
<td>813.6</td>
<td>830.4</td>
<td>819.2</td>
<td>866.2</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>342.5</td>
<td>852.0</td>
<td>870.1</td>
<td>859.5</td>
<td>907.6</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>355.4</td>
<td>895.1</td>
<td>914.2</td>
<td>904.5</td>
<td>950.7</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>357.6</td>
<td>915.1</td>
<td>934.5</td>
<td>924.3</td>
<td>971.9</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>361.3</td>
<td>930.6</td>
<td>951.8</td>
<td>940.8</td>
<td>993.4</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>358.2</td>
<td>943.1</td>
<td>960.5</td>
<td>948.5</td>
<td>1000.2</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>359.2</td>
<td>964.2</td>
<td>975.3</td>
<td>962.7</td>
<td>1012.4</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>368.1</td>
<td>993.4</td>
<td>1000.2</td>
<td>984.8</td>
<td>1036.7</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>381.1</td>
<td>1027.5</td>
<td>1037.4</td>
<td>1022.7</td>
<td>1075.4</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>381.7</td>
<td>1039.2</td>
<td>1051.3</td>
<td>1036.2</td>
<td>1091.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: Comparison of Cost Indices

6.2.3 Degression Exponents

The degression exponents (also called size or scale exponents) are used to estimate the cost of similar plants of different capacities. If the cost of a particular plant (reference) is known for one capacity, the cost of another plant with the same technology can be calculated with the following equation:

\[
\text{Cost}_{\text{plant}} = \text{Cost}_{\text{ref}} \left(\frac{\text{Capacity}_{\text{plant}}}{\text{Capacity}_{\text{ref}}} \right)^{\text{Degression Exponent}}
\]

A summary of degression (size) exponents was published in the journal Chemical Engineering [80] and in [69, 81].
6.2. Costing Techniques

6.2.4 Total Investment

The total investment consists of the following parts:

- equipment (basic plant, heat and mass transfer equipment, control)
- installation (section 6.2.8)
- plant start-up
- working capital
- land

The equipment cost serves as a basis of the calculation. It can be calculated from basic information (from industry, literature), adjusted by the factors and degression exponents defined in sections 6.2.2 and 6.2.3. The installation cost is often included in this basic information (electrolysis section 5.1.3, fuel cells section 5.6.5) or could be calculated with an installation factor (multiple of equipment cost provided by [69] Appendix 1). The total plant cost is the sum of equipment and installation cost. The plant start-up cost lies between 5 and 10% of the total plant cost [69].

Chemical plants in operation need a working capital, because the invoices (raw materials, utilities) accumulated during operation must be paid before the product is sold. This working capital amounts to 10-20% of the total plant cost [69, 82]. The two main contributions to the working capital in the MTH-System are the toluene inventory and the input electricity, which are calculated separately. Further raw material is not required, the working capital only consists of wages, maintenance and operating supplies. Therefore a low working capital of 5% of the total plant costs can be expected in the MTH-System.

6.2.5 Life Time of Chemical Plants

The estimated life times of chemical plants lie between 9 and 13 years (midpoint 11 years) and petrochemical plant between 13 and 19 years (midpoint 16 years) [41]. Based on the fact that each chemical plant in the MTH-system is only a half year in operation, a life time of 19 years can be expected, provided corrosion problems during standby are not excessive.
6.2.6 Straight Line Depreciation

After the life time T_{life} of a plant the investment credit has to be paid off. The fraction of capital which could be saved is designated as salvage value, including working capital, land and scrap value of the plant. The difference between investment capital K_{inv} and salvage value K_{salv} has to be paid back during the plant life. Straight line depreciation provides paying back the same amount per time.

$$ Depreciation = \frac{K_{inv} - K_{salv}}{T_{life}} \quad (6.1) $$

In practice often credit pay back is accelerated at the beginning of the life period. One of these rapid depreciation methods is the double declining balance. The depreciation per year is always twice that of the straight line depreciation of the remainder. Figure 6.3 shows different depreciation methods. These methods do not include the problem of the sinking interest and the high cost of capital at the beginning of the plant life. For simple estimation, a straight line depreciation with a constant average interest rate is the easiest method, as used in the sensitivity analyses, chapter 3.

6.2.7 Sinking Fund Method

During the pay back period, investment funds are diminishing. The cost of interest will be lower because it is linearly proportional to the credit. The assumption of a continuous compound interest with an interest rate of R_{t} leads to an incremental interest dI of a fund F at the time t during the time period dt.

$$ dI = R_{t}F(t)dt \quad (6.2) $$

If the time $t \text{[year]}$ is not too long (e.g. $t = 1 \text{year}$) and interest rate not too high (e.g. $R_{t} = 0.05 \text{year}^{-1}$), the rate R_{t} of the continuous interest is comparable to the simple interest (5% annually):

$$ F(t = 1 \text{year}) = e^{R_{t}t}F(0) \approx F(0) + R_{t}F(0) \quad \text{first order} $$

The interest rate R_{t} is chosen as constant in time, because a prediction over 10 or 20 years is uncertain. The fund will be incremented by the interest and decreased by the pay back $P(t)dt$

$$ dF = dI - P(t)dt \quad (6.3) $$
The previous two equation leads to a first order linear differential equation.

\[\frac{dF}{dt} = R_f F(t) - P(t) \]

The general solution of this equation is

\[F(t) = e^{R_f t} \left(F_0 - \int_0^t P(t')e^{-R_f t'} dt' \right) \]

At time \(t = 0 \), \(F(t) \) is equal to \(F_0 \). Therefore the integration constant \(F_0 \) is the total cost of the installed plant including interest during installation at the beginning (start-up) of the plant life.

6.2.8 Installation Cost

Before plant start up at the time \(t = 0 \), the payback function \(P(t) \) is negative due to expenses e.g. construction, during the installation time \(T_{\text{inst}} \). Accumulating the
interest and expenses over the installation time gives the total cost of the installed plant

\[F_0 = F(0) = - \int_{-T_{\text{inst}}}^{0} P(t)e^{-rt}dt \]

(6.6)

Assuming constant expenses \(F' / T_{\text{inst}} \) during the installation time results in

\[F_0 = \int_{-T_{\text{inst}}}^{0} \frac{F'}{T_{\text{inst}}} e^{-rt}dt = \frac{F'}{R_I T_{\text{inst}}} (e^{R_I T_{\text{inst}}} - 1) \]

(6.7)

In many cases the installation costs are included in the investment cost data or could be added with a factor.

6.2.9 Payback Strategy

If the payback is constant with time \(P(t) = p \), the fund \(F(t) \) of equation 6.5 results in:

\[F(t) = e^{R_I t} \left(F_0 - \left(\frac{pe^{-R_I t}}{R_I} + \frac{p}{R_I} \right) \right) = e^{R_I t} \left(F_0 - \frac{p}{R_I} \right) + \frac{p}{R_I} \]

(6.8)

The depreciation is very slow at the beginning of the life time. Most of the payback in this period is used by the high interest. At the end of the life time, the sinking fund method accelerates the diminishing of the fund. In Figure 6.3 the sinking fund
6.2. Costing Techniques

Figure 6.5: Payback Rate as a Function of the Interest Rate for Several Life Times

method with constant payback is compared with faster methods (straight line and double declining)

A constant payback function \(P(t) \) is only justified if a constant income is expected. The MTH-System produces electricity only in the winter during the unloading time. Therefore the payback function \(P(t) \) for the MTH-System is rectangular, zero at loading and equal to \(p \) at unloading, as shown in the upper function in Figure 6.4. This rectangular function could be represented with a sum of Heavyside step functions:

\[
P(t) = p \sum_{y=1}^{T_{unload}} (H(y - T_{unload}) - H(y))
\]
(6.9)

Inserted in equation 6.5 the fund \(F(t) \) looks as follows:

\[
F(t) = e^{Rt} \left(F_0 - p \sum_{y=1}^{T_{unload}} \int_{y-T_{unload}}^{y<t} e^{-Rt} dt \right)
\]
(6.10)

with the integrals:

\[
\int_{y-T_{unload}}^{y} e^{-Rt} dt = -\frac{e^{-Rt}}{R} \bigg|_{t=y-T_{unload}}^{t=y} = -\frac{e^{-Ry}}{R} + \frac{e^{-R(y-T_{unload})}}{R}.
\]
(6.11)
The behavior of this special kind of sinking fund method with rectangular payback function is also shown in Figure 6.3.

The value of the payback constant p must be chosen so that $F(t = T_{life})$ should be equal to the salvage value. This extraordinary boundary condition enables the calculation of the constant p (capital costs per unloading time) of each plant.

$$p = \frac{e^{RT_{life}T_{unload}}F_0 - F(T_{life})}{e^{RT_{life}T_{unload}} \sum_{y=1}^{T_{life}} \int_{T_{unload}}^{T_y} e^{-RT_{unload}} dt}$$ \hspace{1cm} (6.12)

Figure 6.5 shows the relation between interest rate and capital cost per year as a fraction of the investment capital for several life times. In Figures 6.3 and 6.5, the salvage value is assumed to be 10% of the investment capital. For example, for a plant life time of 16 years with an interest rate of 8.5%, a pay back rate of 10% is obtained. The payback function $P(t)$ in equation 6.9 is used for all capital cost contributions in the MTH-System (plants, storage tanks, land). Another situation is given in the case of input electricity, shown in the lower part of Figure 6.4 and described in section 6.3. In the MTH-System the salvage value is assumed to be zero, except the toluene inventory, which has a constant value over time.

6.3 Costs of Input Electricity

As discussed in the sensitivity analyses (chapter 3) the cost and availability of the input electricity represents the major uncertainty in the cost estimation of the MTH-System. Conventional production costs of electricity amount to 0.05-0.10 $/kWh [83, 84, 85]. Excess summer electricity from hydropower is much cheaper: in Switzerland 0.02-0.04 $/kWh [43], the marginal cost of electricity production in Canada is 0.015 $/kWh [86].

During the loading time in the summer, cheap electricity is purchased. The expenses for electricity every year have to be paid back during the unloading time. Therefore the fund $F(t)$ of the input electricity costs is zero at $t = 0$ and should be also zero at the beginning of every operating year. This means the payback function $P(t)$ is negative during the loading time and positive during the unloading time. This special kind of payback is shown in the lower function in Figure 6.4. Calculated with the sinking fund method the objective function kWh-costs (winter electricity) can be split into two parts, the contributions of the input electricity costs
6.3. Costs of Input Electricity

and the specific plant costs K_{plant} per kWh winter electricity.

$$K_{kWh\text{winter}} = \frac{K_{kWh\text{summer}}}{\eta_{tot}} \left(\frac{\int_{\Delta T + T_{\text{load}}}^{\Delta T + T_{\text{load}}} e^{-R_f t} dt}{\int_{1\text{year} - T_{\text{unload}}}^{1\text{year}} e^{-R_f t} dt} + K_{plant} \right)$$

$$= K_{kWh\text{summer}} \frac{e^{-R_f(\Delta T + T_{\text{load})}} + e^{-R_f \Delta T}}{e^{-R_f(1\text{year})} + e^{-R_f(1\text{year} - T_{\text{unload})}}} + K_{plant}$$

$$= K_{kWh\text{summer}} \frac{1}{\eta_{tot}} 1.0253 + K_{plant}$$

Assuming an interest rate of 5%, a loading time $T_{load} = 3200 \text{hours}$ and a unloading time $T_{unload} = 4800 \text{hours}$ the interest factor of the input electricity costs is equal to 1.0253. The gap between the loading and the unloading time are assumed to have an equal duration $\Delta T = 1\text{year} - T_{load} - T_{unload}$. The total efficiency of the system η_{tot} takes losses in the storage process into account.
6.4 Toluene Costs

In the MTH-System toluene is used in large quantities as hydrogen carrier. The average cost of toluene in US-$ per ton was nearly constant over the last few years. The data in Figure 6.6 are taken from the price reports, which are published regularly in Chemical Week. The peak at the end of the year 1990 was caused by the Gulf War. Therefore, it is reasonable to build up the average cost over the time period after April 1991:

<table>
<thead>
<tr>
<th>Location</th>
<th>Cost (US$)</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Contract</td>
<td>256 ± 30 $/t</td>
<td>free-on-board</td>
</tr>
<tr>
<td>US Spot Market</td>
<td>257 ± 29 $/t</td>
<td>free-on-board</td>
</tr>
<tr>
<td>European Contract</td>
<td>262 ± 32 $/t</td>
<td>delivered</td>
</tr>
<tr>
<td>European Spot Market</td>
<td>261 ± 29 $/t</td>
<td>free-on-board</td>
</tr>
</tbody>
</table>

The differences between the mean values are very small. The cost of toluene produced on a contract basis may be lower than the market prices above. But for estimation purpose for a Swiss location, the value from the European contract market is selected.

During operation, the value of the toluene inventory is nearly conserved. This means that the salvage value is equal to the initial investment and that only interest must be paid. The operating costs depend on the amount of byproducts produced by dehydrogenation (and hydrogenation) reaction. Thus toluene makeup is required after every MTH-System cycle.

6.5 Land Costs

The land requirement of the MTH-System is relatively high compared with conventional power plants, because the storage tanks need a large area. In Switzerland the land prices are relatively high. The development of the prices of land for industrial use [87, 88, 89] is given in Figure 6.7. A price assumption of 300 SFr/m² for the required area is reasonable. In other European countries the prices are much lower, e.g. Germany 28-43 DM/m² [90].
6.6 Summary

The costing of plant, land and toluene inventory were estimated for Swiss location. Payback strategies were considered for the unique situation of a petrochemical plant generating electricity during winter period (4800 hours) only. The sinking fund method is chosen as depreciation strategy so that a yearly constant payback pattern during the life time is guaranteed.
Leer - Vide - Empty
Chapter 7

Simulation of Summer and Winter Processes

7.1 Summer Process

The flowsheet of the summer process of the MTH-System is shown in Figure 7.1. The sensitivity analyses has shown that the technical parameters of the summer process are economically not so important as those of the winter process. However, the summer process includes some economic parameters, which strongly influence the total costs and the ecological relevance of the MTH-System. One of them is the cost of the electrolysis, identified in the sensitivity analyses in chapter 3. The latter showed the investment cost of the electrolysis to be one of the most important economic parameters, with the hydrogenation plant being less important for the cost of output electricity.

The technical benefit of hydrogenation arises from the waste heat available from the exothermic reaction, which may be used for separation of the byproducts produced in the dehydrogenation step. Because the heat balance in the winter process is thermodynamically nearly closed, heat is unavailable during that period for a separation process, without diminishing the efficiency of the total system. Therefore it is more efficient to separate the byproducts in summer rather than in winter. During summer enough heat at a sufficiently high temperature level of 250°C becomes available. The problems with purification of the toluene from byproducts are discussed in section 5.3.
It is most likely too expensive to convert the overheads from the distillation back to toluene by isomerisation. If they have no value for gasoline use, they have to be completely oxidised. So they contribute to carbon emissions for electricity produced ($\sim 50\text{gCO}_2/\text{kWh}$, assuming 2% byproducts).

7.2 Winter Process

7.2.1 Introduction

The optimisation of the objective function kWh-costs for seasonal storage of electricity results in a decision making problem. The decision tree is shown in Figure 7.2. The conventional approach comprises electricity production from fossil sources during the winter months without storing any summer electricity. Hydropower storage is a strong competitor to the MTH-System, since it offers the additional advantage of peak power production which has a higher economic value than the constant power production in the MTH-System. The three major alternatives are shown in the middle of the decision tree in Figure 7.2. It has been argued before that the MTH-System represents the cheapest way to store electricity on a seasonal basis via

Figure 7.1: Summer Process - Electrolysis, Toluene Purification and Hydrogenation

The three process alternatives of the MTH-System refer to the reelectrification of the hydrogen. These reelectrification alternatives are considered in detail in the next sections:

MTH-SOFC MTH-System with solid oxide fuel cells (section 7.2.2)

MTH-MCFC MTH-System with molten carbonate fuel cells (section 7.2.3)

MTH-Turbines MTH-System with gas- and steam turbines (section 7.2.4)

Low temperature fuel cells (less than 400°C) are excluded because it is impossible to use their waste heat in the dehydrogenation plant, which would result in a low overall efficiency.

The calculation of the kWh-costs (objective function) for each process alternative requires simulation and economic estimation. The capital cost calculations employ a sinking fund depreciation with a continuous compound yearly interest of 5%.
7.2.2 MTH-System with Solid Oxide Fuel Cells

As pointed out in section 5.6.3 the efficiency of the cell process ζ in solid oxide fuel cells is assumed to be 0.82 [73]. Therefore the electrical (direct current dc) efficiency is $\eta_{dc} = 0.61$. A fuel cell system efficiency of 0.96 has to take losses in the fuel cell equipment e.g. dc/ac-converter into account. Multiplied with the direct current efficiency η_{dc}, a total efficiency of $\eta_{pp} = 0.58$ is achievable. A part of the electricity produced is used for the supply of the hydrogen compressor. The remaining energy fraction $1 - \eta_{dc} = 0.39$ dissipates as heat from the irreversible cell reaction. The temperature level of this heat is very high, at the process temperature of 1000°C. This heat is transferred to the heat exchangers of the dehydrogenation plant.
7.2. Winter Process

The conversion in the four adiabatic reaction step from input (right) to output (left) are shown as a function of the temperature. The dehydrogenation of methylcyclohexane reaches nearly the equilibrium of the pressure at the particular output. The equilibrium curves are shown as dotted lines for different pressures.

Dehydrogenation Plant

The dehydrogenation plant consists of four reaction steps in series operated adiabatically. Each reaction step contains a cross-flow heat exchanger and four fixed bed reactors with a length of 2.42 m and a diameter of 1.17 m. The fixed bed reactors are filled with 1.6mm diameter spherical catalyst particles. Kinetics for the reaction were taken from R.H.Manser [12], section 5.5.1. Figure 7.4 shows the four reaction steps of dehydrogenation of methylcyclohexane to toluene with 99% conversion. The drop in pressure, from 16 bar at the feed to 5.2 bar after the last dehydrogenation step, shifts the equilibrium to lower temperatures. Some examples of equilibrium curves are shown as dotted lines in Figure 7.4.

The four heat exchangers are heated by a part of the hot air stream from the fuel cells. The splitting ratio of this hot air stream allows regulation of the conversion to 99%. After heating up the feed for the reactors the heating stream is split into two parts (see flowsheet Figure 7.3). One fraction of this stream leaves the cycle going
back to the fuel cells, the other part returns to the reactors mixed with hot air from the fuel cells. A fraction of the hydrogen produced has to be recycled to the feed stream in order to avoid deactivation of the catalysts. This arrangement of heating streams enables the transfer of the high temperature heat to a lower temperature level with minimal losses.

Heat Exchanger Network

Pinch analysis [91] is the suitable method for analysing the heat exchanger network outlined in Figure 7.3 by balancing with respect to temperature level the heat transfer processes between output streams providing heat (reactor products, fuel cell exhaust; total available heat 143 MJ/s) and input streams accepting heat (MCH feed, fuel and air to the fuel cell; total heat requirement 100 MJ/s). The purpose of this pinch analysis was to determine the total heat exchange of the heat exchanger network. In the cold composite curve the heat requirement for all input streams are added for each temperature increment (lower curve in Figure 7.5). The same addition is used for the hot composite curve, which contains the heat supply of the output streams to the heat exchanger network. The results (composite curves)
presented in Figure 7.5 show that the methylcyclohexane (MCH) feed is preheated to the reactor temperature by heat rejected from the reactor products. The pinch point reflects the minimal temperature difference between the methylcyclohexane (MCH) feed vaporiser and the reaction product cooling. The hydrogen and the air are passed to the fuel cell and raised to a temperature of 1155 K with exhaust air from the fuel cell. It is assumed in the calculations that 4% of the exchanged heat in the heat exchanger network would be lost. The pinch analysis shows that the preheating of the input streams needs no additional heat from the fuel cell. There are enough heat streams at sufficient temperature levels available for preheating the input streams. Therefore a total efficiency of 0.58 in the fuel cells could be reached. Most of the required cooling is caused by the condensing water from the fuel cell reaction exhaust.

Cost Estimates from MTH-SOFC Simulation

The overall efficiency of this system alternative reaches 0.399, with a winter efficiency of 0.549. The output electricity costs amount to 0.262 $/kWh. In terms of equation 6.13 the costs of the output electricity are estimated from the following equation:

\[K_{\text{kWh winter}} = \frac{K_{\text{kWh summer}}}{0.399} \cdot 1.025 + 0.187 \$ / \text{kWh} \] \hspace{1cm} (7.1)

While the first term expresses the cost contribution of the input electricity, multiplied with the interest factor 1.025, the specific plant cost is 0.187 $/kWh.

7.2.3 MTH-System with Molten Carbonate Fuel Cells

These fuel cells operate also at a very high temperature (650°C), which makes the heat integration of the dehydrogenation feasible. The main problem of integrating molten carbonate fuel cells in the MTH-System lies in its use of \(CO_3^{2-} \) as transfer ions. This implies a nearly closed recycle of \(CO_2 \). The remaining hydrogen in the exhaust stream of the fuel side of the cell must be separated from \(CO_2 \) and water. Then \(CO_2 \) is transferred to the input stream to the fuel cells air side (Figure 7.6). During the electrochemical reaction in the cell, \(CO_2 \) diffuses in form of \(CO_3^{2-} \) ions through the carbonate matrix to the fuel side of the cell. It is too difficult to separate the remaining \(CO_2 \) from nitrogen and oxygen in the stream leaving from the air side of the cell. Thus the remaining \(CO_2 \) is lost from the system. A lower loss of \(CO_2 \)
implies a lower partial pressure of CO_2 on the air side of the fuel cell, which results in a lower cell voltage and a lower efficiency. To close the CO_2 balance of the system, the loss of CO_2 from the system is equal to the available CO_2 from the combustion of the byproducts produced in the dehydrogenation step. The available CO_2 is produced only in limited quantity. Therefore the efficiency of the molten carbonate fuel cells is significantly lower than that of the solid oxide fuel cells and depends on the available CO_2 from the oxidised byproducts. The numerical calculation of the efficiency is given in section 5.6.4. The efficiency of the dc/ac-converter is 0.96, equal to that in the solid oxide fuel cells.

Dehydrogenation

By virtue of the similarity between the MTH-System with solid oxide fuel cells and the MTH-System with molten carbonate fuel cells, the dehydrogenation plant also consists of four reaction steps with a cross-flow heat exchanger and four fixed bed
7.2. Winter Process

Figure 7.7: Conversion in Four Reaction Steps of Dehydrogenation heated from MCFC reactors (length 2.42 m and diameter 1.17 m). The kinetics for the reaction are described in section 5.5.1. Figure 7.7 shows the four reaction steps of the adiabatic dehydrogenation with interstage heat exchange to satisfy the endothermic heat of reaction. Steam produced with the waste heat from the molten carbonate fuel cells supplies the heat required for the dehydrogenation plant.

Heat Exchanger Network

The heat exchanger network resembles that of the MTH-System with SOFC described in section 7.2.2. In the cold composite curve of the pinch analysis in Figure 7.8, the heat requirements for all input streams are added for each temperature increment. The same addition is done for the hot composite curve, which contains the heat supply of the output streams to the heat exchanger network. The MCH-feed is preheated to the reactor temperature of 651 K by heat rejected from the reactor products. The temperature difference at the pinch point exceeds that in the MTH-System with SOFC. The hydrogen and the air are passed to the fuel cell and raised to a temperature of 810 K with exhaust air from the fuel cell. Losses of 4% in the heat exchanger network are taken into account.
Because of the lower efficiency (more waste heat available than in the SOFC case) of the molten carbonate fuel cells, the heat balance of the system closes more easily. This fact also results in the higher temperature difference at the pinch point.

Cost Estimates from MTH-MCFC Simulation

Even though molten carbonate fuel cells will have lower investment costs (1000 $/kW [38]) than solid oxide fuel cells (1500 $/kW [38]) based on mature technology, the costs of the output electricity is higher, amounting to 0.296 $/kWh, Table 7.1. This is a result of the lower overall efficiency of 0.332. Therefore the cost of one kWh of winter electricity produced with the MTH-System with MCFC amounts to

\[
K_{kWh\text{winter}} = \frac{K_{kWh\text{summer}}}{0.332} \times 1.0253 + 0.206$/kWh\]

(7.2)

7.2.4 MTH-System with Gas and Steam Turbines

Figure 7.9 shows the complete winter process of the MTH-System with turbine technology. It consists mainly of the gas turbine, dehydrogenation plant, steam turbine
and hydrogen compressor. The hydrogen produced in the dehydrogenation reactors is injected into the gas turbine. One part of the exhaust gases (80%) passes to the dehydrogenation plant to supply heat for the endothermic reaction. Because of the lower temperature level of this heat (compared with SOFC and MCFC), eight steps of heat exchanger and adiabatic reactor are necessary to dehydrogenate the methylcyclohexane. The rest (20%) is supplied to the superheater of the steam turbine. After heating the dehydrogenation reactors and superheating steam, the exhaust gases enter into the evaporator of the steam turbine to preheat and vaporise the feedwater. Recirculating a part of the produced hydrogen to the methylcyclohexane feed requires a hydrogen compressor. While gas and steam turbines are producing electricity, the hydrogen compressor consumes part of it.

The flow of the air/exhaust through the system gas turbine - dehydrogenation plant - steam turbine plant is shown in Figure 7.10. First, the air and the hydrogen fuel are compressed in the gas turbine. After the first injection and combustion of hydrogen and subsequent expansion, the remaining hydrogen is injected for a second combustion and expansion to atmospheric pressure. Most of the mechanical work
Chapter 7. Simulation of Summer and Winter Processes

Figure 7.10: Thermodynamic Overview of the MTH-Turbine System

of the expansion parts of the gas turbine gets utilised for the air compression. This transfer of mechanical work is marked with a dashed line in Figure 7.10 (length: twice as the compression work). The mechanical work that is not used by the compression of the air is available for electricity production. At medium temperature, the heat of the exhaust from the gas turbine is split up and transferred to the dehydrogenation plant (80%) and to the superheater (20%). The remaining heat at low temperature supplies the evaporator of the steam turbine.

Gas Turbine

A gas turbine with two injection points was used in the simulation. After partial pressure reduction (1st expansion in Figure 7.10) of the combustion gases, the second part of the available hydrogen is injected to the turbine. Then the combustion gases are expanded further (2nd expansion in Figure 7.10) to atmospheric pressure. Figure 7.11 shows the TS-plot of the gas turbine. The exhaust temperature of the turbine exceeds that in normal operation, e.g. gas turbine in a combined cycle plant. This high temperature level of 979 K is necessary to supply the dehydrogenation reactors with heat.
Dehydrogenation

Eight adiabatic dehydrogenation reactors in series are capable of converting nearly all of the methylcyclohexane to toluene. The operation of these eight reactors is shown in Figure 7.12. The reactors consist of a relatively shallow fixed bed (0.2-0.3 m) with a cross-section of 21 m² which may be arranged in a radial flow reactor. Because kinetics, and not equilibrium limits the reaction rate in the last reactor (Figure 7.12 shows the gaps between the equilibrium curve and the conversions at the reactor outputs), it has a deeper fixed bed with a depth of 1.2 m to convert nearly all of the methylcyclohexane. The dotted lines represent the equilibrium of the dehydrogenation reaction at different pressure. Methylcyclohexane is fed to the dehydrogenation plant together with hydrogen (ratio 1:4) at a pressure of 5.5 bar. The product stream leaves the plant at a pressure of 5.1 bar. The reason for using eight instead of four reaction steps (as used in the fuel cell cases) is a lower temperature level of the available heat. The reactors are operated at lower temperatures (compare Figure 7.12 with Figure 7.7). In addition, the pressure of the feed stream is adjusted to only 5.5 bar instead of 16 bar, to achieve high equilibrium conversion at lower temperatures.
Figure 7.12: Conversion in Eight Dehydrogenation Reactors heated with Exhaust from the Gas Turbine

Steam Turbine

The lower part of Figure 7.13 shows the enthalpy-entropy diagram of the steam turbine cycle. The upper one shows the temperature-entropy (TS) plot. The dotted line on both parts of Figure 7.13 represents the saturation line of steam and water.

Feedwater (9.5 kg/s) is pumped at 35 bar to the evaporator. After evaporation it is superheated to a temperature of 906 K. Finally the dry steam is expanded to a pressure of 0.1 bar. This low pressure implies a low condensing temperature of 321 K.

Preheating

In Figure 7.14 heat exchanges are shown in the pinch analysis representation. Methylcyclohexane (MCH) feed is preheated (lower curve in Figure 7.14 left) by the product stream containing toluene and hydrogen (upper curve). Hydrogen is removed from the product stream at the toluene (TOL) condenser. The right side of Figure 7.14 shows the pinch analysis of the heat exchange to the steam turbine. The hot stream
contains a part (20%) of the hot exhaust gases from the gas turbine at a temperature of 979 K and the whole exhaust stream from the gas turbine at lower temperature of 611 K including the heat of water condensation in the combustion product of the gas turbine. The heat requirements of the steam turbine are shown in the lower curve of the right side in Figure 7.14. It contains the preheating of the feedwater, its vaporisation and the superheating of the steam.

Cost Estimates from MTH-Turbines Combination

The integration of gas and steam turbines for electricity production in the winter process of the MTH-System leads to a total system efficiency of 24.8%. The winter process itself has an efficiency of 34.3%. Because the investment costs of the gas- and steam turbine process are relatively low, the total cost is 0.361 \$/kWh for the
Figure 7.14: Heat Exchange in the MTH-Turbines System

Left side: preheating of methylcyclohexane with the reaction products, right side: heat transfer of the gas turbine exhaust to the steam turbine.

stored winter electricity. The costs of the output electricity as a function of the summer electricity costs are expressed by the following equation:

\[\kappa_{kWh_{winter}} = \frac{\kappa_{kWh_{summer}}}{0.248} \times 1.0253 + 0.241$/kWh \]
(7.3)
7.3 Economic Comparison of MTH-Alternatives

The values given in Table 7.1 are based on a byproduct rate of 2% and a price of 0.26 $/kg for the makeup toluene. Since both summer process and input electricity (320 MW at 3200 hours) are equal for each design alternative presented in Table 7.1, power output becomes proportional to winter efficiency as well as to total efficiency. The MTH-System with solid oxide fuel cells shows the highest overall efficiency of 0.40. But it also represents the alternative with the highest total annual costs (107 M$/year). Nevertheless lowest specific electricity costs (0.26 $/kWh) are reached. According to the optimisation of the objective function kWh-costs, the MTH-System with solid oxide fuel cells is the optimal alternative. On the other hand, the assumptions on fuel cell’s specific investment cost are uncertain, because they are based on predictions (MCFC: 1000 $/kW and SOFC: 1500 $/kW [38]).

<table>
<thead>
<tr>
<th>MTH-System with SOFC</th>
<th>MCFC</th>
<th>Turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output [MW]</td>
<td>85.1</td>
<td>70.9</td>
</tr>
<tr>
<td>Total Efficiency</td>
<td>0.40</td>
<td>0.33</td>
</tr>
<tr>
<td>Winter Efficiency</td>
<td>0.55</td>
<td>0.46</td>
</tr>
<tr>
<td>Total Investment [M$]</td>
<td>699</td>
<td>645</td>
</tr>
<tr>
<td>Annual Plant Capital Costs [M$/year]</td>
<td>44.6</td>
<td>40.8</td>
</tr>
<tr>
<td>Annual Working Capital Costs [M$/year]</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Annual Land Costs [M$/year]</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Annual Operating Costs [M$/year]</td>
<td>28.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Annual Input Electricity [M$/year]</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>Total Annual Costs [M$/year]</td>
<td>106.9</td>
<td>100.8</td>
</tr>
<tr>
<td>Specific kWh-Costs [$/kWh]</td>
<td>0.26</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Table 7.1: Economic Comparison of Winter Electricity Production Alternatives Investigated

This is a typical case of decision making under uncertainty, since the probabilities (cost and efficiency) of future fuel cell development are unknown. Today, the MTH-System combined with gas- and steam turbine process represents the only industrially realizable technology.
7.4 SOFC versus MCFC

The molten carbonate fuel cell shows a lower efficiency that depends strongly on the available CO₂ from the byproducts. To reach the optimal decision, the influence of input parameter changes \(dI \) on the kWh-costs must be considered via the approach of the sensitivity analyses (chapter 3):

\[
dK_{\text{kWh}} = \nabla K_{\text{kWh}} \cdot dI = \sum_i \frac{\partial K_{\text{kWh}}}{\partial I_i} dI_i
\]

(7.4)

\(\nabla K_{\text{kWh}} \) denotes the gradient deduced from the sensitivity analyses in chapter 3. Focusing on changes in the fuel cell investment costs \(I_{\text{fc}} \) and efficiency \(I_{\eta_{\text{fc}}} \) results in

\[
K_{\text{kWh}} = K_{\text{kWh}}^{ref} + \frac{\partial K_{\text{kWh}}}{\partial I_{\text{fc}}} dI_{\text{fc}} + \frac{\partial K_{\text{kWh}}}{\partial I_{\eta_{\text{fc}}}} dI_{\eta_{\text{fc}}}
\]

(7.5)
7.5. Comparison with Conventional Alternatives Including a CO₂-Tax

The MTH-System alternatives should be compared economically with other methods of winter electricity production shown in Figure 7.2. Economic analyses show that
electricity from new hydro power plants (Grimsel West) costs 0.21 $/kWh [35], which is comparable to the best alternative of the MTH-Systems (MTH-SOFC) with 0.26 $/kWh, listed in Table 7.2. In spite of the lower efficiency of the MTH-System, 0.40 versus 0.95 for hydropower production, the relatively lower specific investment allows the decentralised MTH-System to provide electricity at about the same cost as a new hydropower project. The efficiency of 0.95 results for a project in which hydraulic pump storage and hydropower storage are combined in a system of several lakes and water sources. For pure hydropower pump storage an efficiency of 0.7 is more realistic. This efficiency is equal to the product of the efficiencies of particular production steps: motor drive $\eta_{\text{motor}} = 0.96$, pump $\eta_{\text{pump}} = 0.85$, water losses $\eta_{\text{loss}} = 0.99$, Pelton turbine $\eta_{\text{Pelton}} = 0.9$, generator $\eta_{\text{elec}} = 0.85$ The results based on the same plant show that the influence of the lower efficiency on the output electricity costs (0.22 $/kWh) is insignificant.

However, the MTH-System (50 g\text{CO}_2/kWh) must also compete with conventional fossil-fueled power plants, which suffer the disadvantage of producing \text{CO}_2 in large quantities (300-800 g\text{CO}_2/kWh). In consequence, governments in different countries are considering regulating \text{CO}_2-emissions by a carbon tax. This tax should internalise the cost of damages caused to the environment. The suggestions for carbon taxes range between 2 $/\text{tCO}_2$ and 100 $/\text{tCO}_2$ [93].

Gas turbines, coal power plant and gas-fed fuel cells represents alternatives to the MTH-project for the production of winter electricity. The fact that the fossil-fueled power plants produce more \text{CO}_2 could be taken into account with a theoretical \text{CO}_2-tax or a general energy tax on imported fuels and electricity from non-renewable sources. For simplicity, the following considerations employ a \text{CO}_2-tax. Same assumptions for the economical relevant parameters must be used as in the MTH-System. Therefore the operating time lasts 4800 hours per year in winter and the total annual operating costs amount to 15% of the investment costs (interest rate 5%, depreciation 5%, maintenance 5%). All of the alternative plants are combined cycle plants. This gives rise to the relatively high efficiencies.

The specific investment costs of the gas turbine (combined cycle plant) are assumed to be 800 $/kW at an efficiency of 58% [94]. For fuel cells the same future cost predictions as in section 7.3 are assumed (MCFC: 1000 $/kW and SOFC: 1500 $/kW). The feed gas costs 0.019 $/kWh [95]. The electrical efficiencies of the fuel cells integrated in combined cycle plants are 70% (MCFC) and 80% (SOFC) [73]. The combined coal gasification power plant with a net power efficiency of 45% costs
7.5. Comparison with Conventional Alternatives

Figure 7.15: Comparison of Conventional Electricity Costs (Mature Technology) as a Function of a CO₂-Tax and the MTH Storage Systems

![Graph showing comparison of electricity costs](image)

Figure 7.16: Comparison of Conventional Electricity Costs (Mature Technology) as a Function of a CO₂-Tax and the MTH Storage Systems

- shade: MTH-Projects (Byproducts 1-2%)
- Gas Turbine
- Coal Power Plant
- Fuel Cells fed with Gas
- Tax Proposal (EU and Switzerland)

The production rate of byproducts in the MTH-project lies between 1 and 2% (Table 7.1 refers to 2% assumed byproducts). This constitutes the only CO₂-source of electricity production with the MTH-System, assuming that the input electricity is produced from renewable energy sources (hydropower).

The kWh-costs as a function of a CO₂-tax for the several alternatives appear in Figure 7.16. The steep increase of kWh-costs of the combined coal gasification power plant depending on the CO₂-tax results from low efficiency and high carbon content of coal. Therefore those plants do not provide serious competition in an electricity market regulated by a CO₂-tax. The MTH-System alternatives must compete with combined cycle plants based on gas turbines or fuel cells (dotted lines in Figure 7.16).
7.16). It is evident that the MTH-System would be economically competitive to the other alternatives only if an energy tax comparable to a CO2-tax of more than 600 $/tCO_2$ were to be introduced.

An economic analysis by the Paul Scherrer Institute calculates the marginal CO2-tax to pursue the recommendations of the Toronto conference (i.e. 50% reduction of CO2-emissions by the year 2050). To reach this goal in Switzerland, average costs of 270-350 SFr/tonCO2 are necessary [98]. On the other hand, the EU proposed a tax of 13.3$\$/tCO_2 (=9.4ecu) [99], and the Swiss government a maximum tax of 175$\$/tCO_2 (=210SFr) [100]. However, it is uncertain whether these taxes will be implemented in the near future. Even with implementation, conventional base load winter electricity production costs would be one third of those of the MTH-System; however, summer hydroelectricity is not stored.

The comparison with the hydro power pump storage shows that the MTH-System competes economically on a seasonal storage basis (i.e. when the duration of the winter process is 4800 hours). But the hydropower pump storage carries the advantage of short term electricity production and storage (instead of the constant power during 4800 hours from the MTH-System) which has a higher economic value.

7.6 Best-Case Study

The cost data of many plants described in chapter 5 are uncertain. To estimate the potential of the MTH-System in a long-term future (20-50 years), some optimistic technical and economic assumptions are made for the best-case analysis:

- Pure MCH feed to the dehydrogenation plant eliminates the hydrogen compressor, which saves investment and electricity in the winter process
- Higher efficiency of SOFC $\eta = 0.65$ ($\zeta = 0.88$ [73])
- Higher efficiency of electrolyser $\eta = 0.75$ (LHV) $4.0 \text{ kWh/m}_3\text{H}_2$ [40]
- Lower SOFC costs 1100 $$/kW$ [76]
- Lower electrolyser costs 250 $$/kW$ [40]
- Insignificant amount of byproducts; the toluene purification will be obsolete
The flowsheet of this plant remains the same as in the SOFC case (shown in Figure 7.3), but without the hydrogen compressor and the recycle of hydrogen to the dehydrogenation plant.

7.6.1 Modelling of the Dehydrogenation Plant

Because of the lower heat capacity of the feed (pure MCH without additional hydrogen), the dehydrogenation plant consists of five reaction steps. Each reaction step contains a cross-flow heat exchanger and four fixed bed reactors with a height of 2 m and a diameter of 1.15 m.

7.6.2 Heat Exchanger Network

It is assumed that only 1% of the exchanged heat in the heat exchanger of the dehydrogenation plant is lost. The results (Composite Curve) presented in Figure
7.18 show that heat rejected from the reactor products preheats the MCH-feed to the reactor temperature. The temperature difference at the pinch point (between the methylcyclohexane feed vaporiser and the reaction product cooling) is much smaller than that in the MTH-System with SOFC, Figure 7.5 in section 7.2.2. The hydrogen and the air are passed to the fuel cell and raised to a temperature of 1175 K with exhaust air from the fuel cell.

Even though the fuel cell exhibits a very high efficiency ($\eta_{fp} = 0.65$) and does not produce much heat, the heat balance can be closed with the assumption that only 1% of the transferred heat would be lost.

7.6.3 Results

The overall efficiency of this system alternative comes to 0.475 with a winter efficiency of 0.625. The output electricity costs amount to 0.166 $/kWh$. According to equation 6.13 the lowest possible costs of winter electricity produced with the MTH-System are:

$$K_{kW\text{h}_{winter}} = \frac{K_{kW\text{h}_{summer}}}{0.475} \times 1.0253 + 0.103$/kWh$$

(7.7)
These output electricity costs lie in an economically reasonable range for winter electricity. With increasing importance of seasonal storage of electricity due to the enhanced use of renewable energy primary sources like solar energy, the MTH-System may stand an economic chance in a long-term future.
Leer - Vide - Empty
Chapter 8

Experimental Part: Pd-Ag Membranes for Hydrogen Separation

8.1 Introduction

In hydrogen energy applications where purity is important, e.g. in fuel cells, hydrogen separation represents a critical technology. The growing significance of membranes arises from their property of separating mixtures with an energy-efficient process. Membranes can conveniently be up- and downsized and their investment costs are mainly linear to plant capacity. For practical use, the membrane has to be installed in a suitable module. The prevention of leakages in the membrane and its module is a major problem of membrane technology development. Additional problems such as durability, regenerability and costs in relation to other system components have to be solved too.

A highly efficient way to separate high purity hydrogen from other gases are palladium based membranes, e.g. Pd-Ag, Pd-Cu, based on their application by Johnson-Matthey for 99.9999% purity of the produced hydrogen in the electronics industry. These metallic membranes have no pores and are impermeable for gases except hydrogen.

Hydrogen H_2 is dissociated catalytically into two H^+-ions and electrons at the upstream side of the membrane and recombines as gaseous H_2 at the downstream
The H^+-ions pass easily through the metal-hydrogen matrix of the membrane by diffusion. A part of the hydrogen atoms is incorporated in the metal lattice during the diffusion process, causing a change in the lattice structure and creating stresses in the membrane. A critical temperature of 320°C has to be exceeded for optimum operation.

Recent work in literature considers the separation of hydrogen from methylcyclohexane and toluene in membrane reactors [101] where deactivation and regeneration of in situ membranes was shown. The ex situ foil membrane approach was used [102] to exceed equilibrium in the dehydrogenation reaction studied.

The economics of the practical use of metal membrane reactors for industrial use was investigated [78] with membrane investment costs of 300 $/ft^2$. For zero emission vehicles using reformer hydrogen production to fuel cells, membrane cost and fuel cell system costs were estimated to be approximately equal.

The purpose of this chapter is to compare permeation measurements with membrane modules suitable for ex situ applications. Both tubular membranes and composites are investigated, the latter to reduce costs since only 7 μm membrane thicknesses are used compared to 65 μm for the tubes.
8.2 Experimental Setup

Figure 8.1 shows the experimental setup with an installed multi-tube membrane module. The module is heated up by an electrical heating spiral, which is thermally insulated. Temperature and pressure data are taken at both the high and low pressure sides of the membrane module. The several inputs allow different gas mixtures for testing the membrane module. The module itself consists of Pd-Ag tubes installed similarly to a cross-flow heat exchanger. On the shell-side, cross-flow of the gas mixture is induced by baffles. This prevents short circuiting and non-optimal separation of the entering hydrogen rich mixture. The separation efficiency is maximised. After shell-side passage, the mixture with unseparated hydrogen leaves the module through the tube at its central axis. From the inner side of the tubes, the separated hydrogen exits the membrane module. Gas flow-meters measure the two output streams from the module.

8.3 Multi-Tube Membrane Modules

8.3.1 Preliminary Work

The initial membrane module consists of 10 Pd-Ag\textsubscript{23\%} tubes with a length of 240 mm. The outer diameter of these tubes is 3 mm and the wall thickness 100 \(\mu \)m. Therefore the total separation area amounts to 0.0226 \(m^2 \). Material costs alone for this module are about 106 \$ with palladium costs of 4 \$/g [103]. Figure 8.2 shows the permeation measurements for pure hydrogen at different pressures on both sides of the membrane without a sweep gas on the downstream side to maintain hydrogen purity. These data are taken at a temperature of 526 K. The permeation rate of hydrogen depends approximately linearly on the square root pressure difference \(\sqrt{P_{\text{up}}} - \sqrt{P_{\text{down}}} \) across the membrane thickness \(t_{\text{mem}} \).

8.3.2 Optimised Multi-Tube Membrane Module

This membrane module has the same outside dimensions and construction as the preliminary membrane module described in section 8.3.1, but with a much higher permeation rate. It consists of 34 Pd-Ag\textsubscript{23\%} tubes with a length of 245 mm.
The diameter of these tubes is 1.6 mm and the wall thickness 65 μm. The total membrane area amounts to 0.0418 m². Material costs alone for this module are about 126 $. Results of pure hydrogen permeation rates at different temperatures are presented in Figure 8.3. It is obvious from these plots that the permeation rate at a specific temperature depends linearly on the square root pressure difference, $\sqrt{p_{\text{up}} - p_{\text{down}}}$, [kPa$^{0.5}$]. The permeation rate depends also on the temperature.

Separation of Hydrogen from Mixtures

By installing baffles in the membrane module, a high hydrogen permeation rate is obtained. It was possible to direct the inlet gas mixture properly from tube to tube along the baffles. If the gas were mixed in the whole module, the hydrogen permeation rate through the membrane would be lower. The data labelled + in Figure 8.4 signify the permeation rates at the entrance and x at exit. The solid lines represent the calculated values between entrance and exit.

Hydrogen separation experiments were also performed using a reformate gas with the following composition: 3% CO, 20% CO₂, 42% H₂, 35% N₂.
8.3. Multi-Tube Membrane Modules

Figure 8.3: Pressure Dependence of Hydrogen Permeation, 34 Pd-Ag23% Tubes

Table 8.1: Results of Experiments with a Reformate Gas

<table>
<thead>
<tr>
<th>Temperature [K]</th>
<th>Total Pressure [kPa]</th>
<th>(H_2)-flow [mol/m²s]</th>
<th>expected (H_2)-flow [mol/m²s]</th>
<th>CO [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>611</td>
<td>614</td>
<td>0.0081</td>
<td>0.0098</td>
<td>< 5</td>
</tr>
<tr>
<td>613</td>
<td>627</td>
<td>0.0175</td>
<td>0.0231</td>
<td>< 5</td>
</tr>
<tr>
<td>611</td>
<td>812</td>
<td>0.0221</td>
<td>0.0260</td>
<td>< 5</td>
</tr>
<tr>
<td>612</td>
<td>810</td>
<td>0.0148</td>
<td>0.0162</td>
<td>< 5</td>
</tr>
<tr>
<td>611</td>
<td>713</td>
<td>0.0133</td>
<td>0.0152</td>
<td>< 5</td>
</tr>
<tr>
<td>611</td>
<td>719</td>
<td>0.0199</td>
<td>0.0246</td>
<td>< 5</td>
</tr>
<tr>
<td>654</td>
<td>713</td>
<td>0.0146</td>
<td>0.0158</td>
<td>< 10</td>
</tr>
<tr>
<td>655</td>
<td>720</td>
<td>0.0216</td>
<td>0.0247</td>
<td>< 10</td>
</tr>
</tbody>
</table>

The second column of Table 8.1 lists the total pressure at the membrane upstream side. To calculate the partial pressure \(p_{\text{up}} \) of hydrogen in the feed, the total pressure has to be multiplied with the molar fraction 0.42 of \(H_2 \) in the reformate gas. The pressure on the downstream side of the membrane was atmospheric in all experiments.

The measured permeation rate (\(H_2 \)-flow in Table 8.1) is lower than the expected
Figure 8.4: Different Experiments of Hydrogen Separation from Mixtures
+ entrance, x exit, the lines represent the calculated permeation rates taking into account the decreasing hydrogen partial pressure between entrance and exit of the module permeation according to equation 8.3. The diminishing influence of the carbon monoxide CO in the feed gas will be considered in section 8.5.

Temperature Dependence of the Permeation Rate

Figure 8.5 shows the hydrogen permeation rate as function of the temperature T in the module. The data points shown in the plot are the measured values with error bars at the square root pressure difference of $\sqrt{P_{\text{up}} - P_{\text{down}}} = 10 \, \sqrt{kPa}$. An equation for the temperature dependence of the hydrogen permeation rate from the literature [101] is

$$ F = 3.82 \times 10^{-8} \text{mols}^{-1} \text{m}^{-1} \text{Pa}^{-0.5} \times e^{-\frac{261K}{T}} \times \frac{\sqrt{P_{\text{up}} - P_{\text{down}}}}{t_{\text{memb}}} \quad (8.1) $$

t_{memb} denotes the thickness of the membrane. This approximation is plotted as dotted line in Figure 8.5 and compares to the results of the measurements. However, it does not fit the data well. Therefore the data are fitted again with the χ^2-minimisation method:

$$ \chi^2 = \sum_{i=1}^{N} \frac{(f_i^{\text{est}} - f_i^{\text{exp}})^2}{\sigma_i^2} \quad (8.2) $$
The sum χ^2 is the least square fit which weighs the experimental data points f_{i}^{exp} with their deviation σ_{i}. The f_{i}^{est} is the estimated value for the data point i calculated with the model (fitting function). Fitting the data points with χ^2-minimisation correlates with the equation

$$P = 4.08 \times 10^{-8} \text{mols}^{-1} \text{m}^{-1} P a^{-0.5} e^{-\frac{347 K}{T}} \frac{\sqrt{P_{up}} - \sqrt{P_{down}}}{t_{memb}}$$ (8.3)

which is plotted as a solid line in Figure 8.5. The χ^2 at this minimum is 2.09. From the comparison with χ^2 distribution for $N - 2 = 3$ degrees of freedom, it follows that the equation 8.3 fits the data well.

8.4 Composite Membranes

The selective layer and the support layer of a composite membrane consist of different materials. A porous ceramic tube forms the support layer. A very thin Pd-Ag layer with a thickness t_{memb} of 7μm is deposited on this support layer. Figure 8.7 shows the structure of such a composite membrane.

The total pressure drop across the composite membrane for a particular hydrogen permeation flow rate equals the sum of the pressure drop across the Pd-Ag layer...
Figure 8.6: Hydrogen Flow through a Composite Membrane

left side: H₂-flow through the Pd-Ag layer of the composite membrane, right side: flow through the ceramic support layer.

Δp_{net} and that across the porous ceramic layer Δp_{cer}:

\[\Delta p = \Delta p_{net} + \Delta p_{cer} \quad (8.4) \]
\[\Delta p_{net} = p_{up} - p_{mid} \]
\[\Delta p_{cer} = p_{mid} - p_{down} \]

where \(p_{up} \) means the partial pressure of hydrogen at the upstream side of the membrane. \(p_{mid} \) and \(p_{down} \) denote the pressures of the purified hydrogen between the two layers and at the exit of the porous ceramic tube.

The pressure drop across the porous ceramic layer is a function of the flow rate \(F \). Because of the similarity between porous media and fixed beds (Ergun-equation 5.14 in section 5.5.2) the pressure drop consists of a laminar part (linearly proportional to the flow rate) and a turbulent part (quadratic term):

\[\Delta p_{cer} = k_1 F + k_2 F^2 \quad (8.5) \]

The pressure drop across the the Pd-Ag layer with the thickness \(t_{memb} \) could be described with the following equation:

\[\frac{\sqrt{p_{up}} - \sqrt{p_{mid}}}{t_{memb}} = k_3 F \quad (8.6) \]
If this Pd-Ag layer has the same activity as the membranes described in section 8.3.2 the parameter k_3 should fit the equation 8.3.

Fitting the experimental data with equations 8.4, 8.5 and 8.6 shows that the laminar part in equation 8.5 is dominating. Because the parameter k_2 is very small, the quadratic term in equation 8.5 remains negligible. Therefore the flow rate F is linearly proportional to the pressure drop across the porous ceramic layer (very small pores cause a Reynolds number $Re \ll 1$). This linear dependence is shown on the right side in Figure 8.6. The flow rate F through the selective Pd-Ag layer depends linearly on the square root pressure difference $\sqrt{P_{up}} - \sqrt{P_{mid}}$ across the thickness t_{mem} of the Pd-Ag layer. The fitted parameter k_3 (solid line in Figure 8.6 left) is not significantly different from the product of the preexponential factor and the exponential function in equation 8.3. The dotted line in Figure 8.6 shows the expected permeation flow rate from the latter equation.

Approximately 2/3 of the total pressure drop is caused by the porous ceramics. Only 1/3 of the total pressure drop is available across the selective Pd-Ag layer. Therefore a Pd-Ag layer which is less thick than the used $7\mu m$ improves the hydrogen permeation flow rate F only insignificantly. In other words, the pressure drop across the porous ceramic support layer limits the potential of this membrane.

8.5 Separation of Hydrogen from Carbon Monoxide

The chemical adsorption of carbon monoxide CO on the surface of the Pd-Ag membrane diminishes the permeation rate significantly. To examine this effect, the per-
meation through a single membrane tube with a diameter of 1.6 mm, a wall thickness $t_{\text{memb}} = 65 \mu m$ and a length of 232 mm is measured. The pressure upstream of the membrane is 1000 kPa.

The data designated with \times in Figure 8.8 show the effect of CO on the hydrogen permeation rate at different temperatures. In each plot of Figure 8.8 the permeation rate of pure hydrogen in the input stream serves as reference value (dotted line). For comparison the influence of an inert gas (nitrogen N_2) is also measured. The lower permeation rate in the nitrogen case (compared with pure hydrogen) is caused by the lower partial pressure of the hydrogen in the input stream. The lower partial pressure cannot explain the lower permeation rate in the CO case, because it is
much lower than for nitrogen; it is caused by binding of CO on Pd. With increasing temperature the chemisorption of carbon monoxide CO and its influence on the permeation rate becomes smaller.

8.6 Costs of Membranes compared to Catalyst Costs

For commercial applications, the ratio of membrane material costs to catalyst costs of about 1 is desirable. For 1 kW capacity of the new module, this ratio is $126/7 = 18/1$ when catalyst costs are 100 $/kg. Since permeation rates would be halved using gas mixtures instead of pure hydrogen as in Figure 8.9, this ratio increases to about 40/1. The incentive for using a composite membrane of 7 μm thickness in future work is compelling, the ratio would then decrease to 2/1.
8.7 Conclusion

The improvement in the hydrogen permeation of the optimised membrane module (data designated with \(\times \)) and the composite membrane (designated with \(o \)) compared with the initial membrane module (\(+ \)) is shown in Figure 8.9. All the modules have the same volumetric size of 1.14 dm\(^3\). The goal of 1 kW hydrogen power is reached with the optimised membrane module as well as with the composite membrane. 1 kW power means a hydrogen flow of 0.00414 mol/s based on the lower heating value (LHV) of 241.8 kJ/mol (dotted line in Figure 8.9). The total permeation rate of the composite membrane is approximately 10% lower than those of the optimised membrane module because of the higher operating temperature of 640 K used with the latter in the experimental data shown in Figure 8.9.

Further experiments on the optimised membrane module have shown that carbon monoxide CO is not completely separated from CO/H\(_2\) mixtures due to leakages through the membrane. A CO content of 5-10 ppm has to be tolerated. The composite membrane was totally unsuitable for CO separation due to substantial leaks through or around the membrane. Further development work is required.

The low content of palladium Pd (1.3 g) makes the composite membrane module economically interesting, compared with the other two modules which contains 26 and 32 g palladium and silver. Palladium is a relatively expensive raw material (4 $/g [103]).

A disadvantage of the composite membrane is its high pressure drop across the porous ceramic support layer (\(\approx 2/3 \) of the total pressure drop). This fact makes further improvement of this membrane difficult. A possibility to reduce the pressure drop across the porous ceramic support layer is the use of graded porous ceramics (small pores at the Pd-Ag layer and bigger pores in the rest of the mechanic support layer).
Chapter 9

Conclusions

This final section summarises the conclusions given at the end of the previous chapters. In addition, some ideas for further research are suggested. Section 2.5 describes the major problems of mobile applications using a range-extender system. Overall efficiency was estimated at 28%, which in a full fuel cycle analysis is comparable to Otto engines, but the system costs were too high due to the use of Pd-Ag membranes. Cost-efficient solutions for hydrogen purification are urgently needed.

9.1 MTH-System Analysis

The calculated costs of winter electricity produced with the MTH-System depend significantly on the input parameters employed. It was shown in chapters 3 and 4, how sensitivity analyses and exergy considerations detect the critical points in the system and targets the simulation step of the systems analysis. These analyses conclude that the influence of the power plant investment costs to the total costs of produced electricity is small. As a consequence, the costs of this technology are less important compared with their technical features like efficiency and the available waste heat at a high temperature level.

By using simulation and economic considerations, it was possible to calculate with more accuracy the efficiencies and costs of the three alternatives for producing electricity from hydrogen than in the first estimate (section 3.2) used as reference point for the sensitivity analyses:
1. MTH-System with solid oxide fuel cells SOFC: $0.26 \$/kWh \ (\eta_{\text{tot}} = 0.40) $

2. MTH-System with molten carbonate fuel cells MCFC: $0.30 \$/kWh \ (\eta_{\text{tot}} = 0.33) $

3. MTH-System with gas and steam turbines: $0.36 \$/kWh \ (\eta_{\text{tot}} = 0.25) $

These cost and efficiency data are based on mature technology for 1000 GWh of summer electricity to storage with a 85 MW output in winter for the MTH-SOFC option. Table 7.1 shows further details on these three alternatives, whereas Table 7.2 compares the economics of the MTH-System with a new hydropower project in Switzerland. The 'best case' study in section 7.6 estimated the maximum potential of the MTH-System. The maximum efficiency of the MTH-System is $\eta_{\text{tot}} = 0.48$ with the lowest possible costs of $0.17 \$/kWh for the output electricity.

Compared with today's conventional electricity production costs from fossil fuels ($0.05-0.1 \$/kWh$) the electricity produced by the MTH-System is expensive. This economic disadvantage is compensated by the low CO$_2$ emissions, 75-85% lower than the best natural gas combined cycle plant. The potential introduction of an energy tax (CO$_2$-tax) in the near future cannot compensate the economic disadvantages of the MTH-System. In addition, it will be difficult to introduce high energy taxes in a deregulated future electricity market in Europe. However, the hydrogen-photovoltaic study of reference [18] gives a comparable price ($0.225 \$/kWh$) for their output electricity. Its assumptions of future costs and efficiencies of hydrogen storage and conversion plants are comparable to those of the best case study presented in section 7.6.

The additional benefit of the MTH-System as energy reserve, which guarantees a strategic independence from foreign imports of energy in a crisis, cannot easily be taken into account in this cost calculation.

9.2 Hydrogen Separation Membranes

In the experimental part, two types of Pd-Ag membranes and their practical aspects and applications were tested: the multitube membrane module and the composite
9.3 Future Outlook

In today's European electricity market, the MTH-System is not economically competitive. The economics of the MTH-System in other locations e.g. Canada, Brazil could be considered for niche markets with the methods and data used in this work. In the near term future, the imminent deregulation of the electricity market implies a decrease of the summer electricity prices, the most significant parameter in the MTH-System economic analysis. Since hydraulic pump storage is limited by the sites remaining and ecological arguments the nearly carbon free MTH-System is a valuable alternative. However, it is hardly competitive with energy from fossil sources, even with significant energy taxes. In the medium to long term future, seasonal storage of electricity could play a critical role in the energy economy due to an increasing utilisation of renewable energies such as wind or solar.

Membrane applications will have an increasing importance in future, provided the costs are reduced. Especially in hydrogen energy systems, palladium based
membranes are a key technology to provide CO-free hydrogen (chapter 2). In addition, Pd-Ag membranes are also used for energy efficient hydrogen separation in the petrochemical industry. This important application of Pd-Ag membranes does not depend on the introduction of hydrogen as an energy carrier. Therefore further research to improve the permeation and sealing of the composite membrane is needed. Additional questions of membrane durability and regenerability have to be addressed before applications are seriously considered. New materials, a Pd-Ta-Pd sandwich [104], promise much higher permeation rates.

The methods developed in this thesis to analyse the MTH-System could be adapted to other energy storage and transportation systems, e.g. methanol in transportation applications, provided the \(\text{CO}_2 \)-hydrogenation step is commercially proven to close the carbon neutral cycle.
Appendix A

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area</td>
<td>$[m]$</td>
</tr>
<tr>
<td>C_p</td>
<td>heat capacity</td>
<td>$[JK^{-1}]$</td>
</tr>
<tr>
<td>D_{eff}</td>
<td>effective diffusivity</td>
<td>$[m^2/s]$</td>
</tr>
<tr>
<td>D_{AB}</td>
<td>bulk diffusivity</td>
<td>$[m^2/s]$</td>
</tr>
<tr>
<td>$D_{Knudsen}$</td>
<td>Knudsen diffusivity</td>
<td>$[m^2/s]$</td>
</tr>
<tr>
<td>t_{memb}</td>
<td>membrane thickness</td>
<td>$[m]$</td>
</tr>
<tr>
<td>d_p</td>
<td>diameter of the spherical catalyst pellet</td>
<td>$[m]$</td>
</tr>
<tr>
<td>F</td>
<td>permeation flow rate</td>
<td>$[mol/m^2s]$</td>
</tr>
<tr>
<td>f_k</td>
<td>friction factor</td>
<td>[-]</td>
</tr>
<tr>
<td>G</td>
<td>Gibbs potential</td>
<td>$[J]$</td>
</tr>
<tr>
<td>$G_m = v_0 \rho$</td>
<td>mass velocity</td>
<td>$[kg/m^2s]$</td>
</tr>
<tr>
<td>H</td>
<td>enthalpy</td>
<td>$[J]$</td>
</tr>
<tr>
<td>I</td>
<td>economical input parameter</td>
<td></td>
</tr>
<tr>
<td>K_{kWh}</td>
<td>costs of output electricity</td>
<td>$[$$/kWh]$$</td>
</tr>
<tr>
<td>K</td>
<td>cost</td>
<td>$[$$</td>
</tr>
<tr>
<td>l</td>
<td>length of fixed bed</td>
<td>$[m]$</td>
</tr>
<tr>
<td>M</td>
<td>molecular weight</td>
<td>$[kg/kmol]$</td>
</tr>
<tr>
<td>p</td>
<td>pressure</td>
<td>$[Pa]$</td>
</tr>
<tr>
<td>P</td>
<td>output of the power plant</td>
<td>$[W]$</td>
</tr>
<tr>
<td>r</td>
<td>reaction rate</td>
<td></td>
</tr>
<tr>
<td>$R = 8314.5J/Kkmol$</td>
<td>gas constant</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
<td>[-]</td>
</tr>
</tbody>
</table>
Appendix A. Nomenclature

| Symbol | Definition/
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{pore}</td>
<td>average radius of the pores [m]</td>
</tr>
<tr>
<td>S</td>
<td>entropy [JK$^{-1}$]</td>
</tr>
<tr>
<td>T</td>
<td>temperature [K]</td>
</tr>
<tr>
<td>T_m</td>
<td>average temperature [K]</td>
</tr>
<tr>
<td>U</td>
<td>voltage [V]</td>
</tr>
<tr>
<td>v_0</td>
<td>empty tube velocity [m/s]</td>
</tr>
<tr>
<td>V</td>
<td>volume [m3]</td>
</tr>
<tr>
<td>W</td>
<td>work [W]</td>
</tr>
<tr>
<td>δ</td>
<td>catalyst tortuosity factor [-]</td>
</tr>
<tr>
<td>ϵ</td>
<td>catalyst porosity [-]</td>
</tr>
<tr>
<td>ϵ_{bed}</td>
<td>bed void fraction [-]</td>
</tr>
<tr>
<td>η</td>
<td>efficiency [-]</td>
</tr>
<tr>
<td>$\kappa = \frac{C_p}{C_v}$</td>
<td>≈ 1.4</td>
</tr>
<tr>
<td>μ</td>
<td>viscosity of fluid [Pas]=[kg/ms]</td>
</tr>
<tr>
<td>$\pi = \frac{Essmk}{Pair}$</td>
<td>pressure ratio [-]</td>
</tr>
<tr>
<td>Φ</td>
<td>Thiele modulus</td>
</tr>
<tr>
<td>ρ</td>
<td>density of fluid [kg/m3]</td>
</tr>
<tr>
<td>ρ_p</td>
<td>density of catalyst pellet [kg/m3]</td>
</tr>
<tr>
<td>τ</td>
<td>exergetic temperature [-]</td>
</tr>
<tr>
<td>ξ</td>
<td>pressure drop parameter</td>
</tr>
<tr>
<td>ζ</td>
<td>efficiency in relation to the reversible cell</td>
</tr>
</tbody>
</table>

Subscripts and Superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac</td>
<td>alternating current</td>
</tr>
<tr>
<td>air</td>
<td>input air and feed</td>
</tr>
<tr>
<td>an</td>
<td>anode</td>
</tr>
<tr>
<td>cat</td>
<td>cathode</td>
</tr>
<tr>
<td>cer</td>
<td>ceramic</td>
</tr>
<tr>
<td>coke</td>
<td>coked (catalyst)</td>
</tr>
<tr>
<td>comb</td>
<td>combustion</td>
</tr>
<tr>
<td>comp</td>
<td>compression</td>
</tr>
<tr>
<td>dc</td>
<td>direct current</td>
</tr>
<tr>
<td>dhy</td>
<td>dehydrogenation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>diff</td>
<td>diffusion</td>
</tr>
<tr>
<td>eff</td>
<td>effective</td>
</tr>
<tr>
<td>el</td>
<td>electrolysis</td>
</tr>
<tr>
<td>elec</td>
<td>electrical</td>
</tr>
<tr>
<td>env</td>
<td>environment</td>
</tr>
<tr>
<td>eq</td>
<td>equilibrium</td>
</tr>
<tr>
<td>exh</td>
<td>exhaust</td>
</tr>
<tr>
<td>FC</td>
<td>fuel cell</td>
</tr>
<tr>
<td>fuel</td>
<td>fuel</td>
</tr>
<tr>
<td>HHV</td>
<td>higher heating value</td>
</tr>
<tr>
<td>hyd</td>
<td>hydrogenation</td>
</tr>
<tr>
<td>IR</td>
<td>ohmic drop</td>
</tr>
<tr>
<td>kWh</td>
<td>kWh kilowatthour</td>
</tr>
<tr>
<td>LHV</td>
<td>lower heating value</td>
</tr>
<tr>
<td>met</td>
<td>metal</td>
</tr>
<tr>
<td>MCH</td>
<td>methylcyclohexane</td>
</tr>
<tr>
<td>MCFC</td>
<td>molten carbonate fuel cell</td>
</tr>
<tr>
<td>pp</td>
<td>power plant (fuel cell)</td>
</tr>
<tr>
<td>pump</td>
<td>feedwater pump</td>
</tr>
<tr>
<td>reac</td>
<td>reaction</td>
</tr>
<tr>
<td>ref</td>
<td>reference</td>
</tr>
<tr>
<td>SOFC</td>
<td>solid oxide fuel cell</td>
</tr>
<tr>
<td>theo</td>
<td>theoretical</td>
</tr>
<tr>
<td>TOL</td>
<td>toluene</td>
</tr>
<tr>
<td>tot</td>
<td>total</td>
</tr>
<tr>
<td>turb</td>
<td>turbine expansion</td>
</tr>
</tbody>
</table>

Symbols

- Δ: difference of reactants and products
- ∇: Nabla operator
- Π: product
Leer - Vide - Empty
Appendix B

Simulation Results

B.1 Summer Process of the MTH-System

Initialization Values

Electricity = 3.2e+08 kW
Temp. Feed = 646.281 K
Temp. Heat Medium = 869.875 K
feedH2 = 0.87 kmol/s
airinH2 = 0.987618 kmol/s
airinO2 = 8.38616 kmol/s
airoutO2 = 0.536671 kmol/s
pfeed = 1.6e+06 Pa
pairout = 100000 Pa

Electrolyser

tempin [K] = 300
tempout [K] = 300
efficiency Power Conditioner = 0.97
of Cells = 0.714286
Power Consumption [kWh/m3] = 4.2

Streams: [kmol/s]
IN: H2O = 0.95649
OUT: H2 = 0.95649 O2 = 0.478245

Investment [£] = 2.08211e+08
Lifetime [year] = 30
Land Require [m2] = 16561.7
Capital Cost [£/year] = 1.49325e+07
Operating Cost [£/year] = 1.24926e+07

Byproduct Separation

Streams: [kmol/s]
IN: TOL = 0.318798
 MCH = 0.003185
OUT: TOL = 0.313951
 MCH = 0.00159256

= 0.97
= 0.714286
= 4.2

IN: H2O = 0.95649
OUT: H2 = 0.95649 O2 = 0.478245

Investment [£] = 2.08211e+08
Lifetime [year] = 30
Land Require [m2] = 16561.7
Capital Cost [£/year] = 1.49325e+07
Operating Cost [£/year] = 1.24926e+07

= 0.97
= 0.714286
= 4.2
Appendix B. Simulation Results

C7 Waste = 0.00043966
makeupTOL = 0.00043966

Massflow [ton/hour] = 106.874
Investment Cost [€] = 1.3881e+07
Lifetime [year] = 19
Land [m²] = 586.986
Capital Cost [€/year] = 1.2611e+06
Operating Cost [€/year] = 416429
Electricity [W] = 1931.6

Quanta [W] = 2.51191e+07

Hydrogenation Reactor

tempin [°K] = 300
tempres [°K] = 550
tempout [°K] = 300

Streams: [kmol/s]

II: H₂ = 0.95649 TOL = 0.318798 KCH = 0.00318511
OUT: H₂ = 0.00105204 TOL = 0.000318798 KCH = 0.321664

Energy balance: [J/s] = [V]

Qfeed = 145620
Qinside = 2.60028e+07
Qprod = 2.40619e+07
Qtank = 110326
Qext = 4.14851e+07
Balance Reactor = 0
Balance Total = -0.948783

Massflow [ton/hour] = 113.815
Electricity [kW] = 1.70723e+06
Catalyst Cost [€/hour] = 307.302
Investment [€] = 1.82533e+07
Lifetime [year] = 19
Land Require [m²] = 121.945
Capital Cost [€/year] = 1.66834e+06
Operating Cost [€/year] = 547699
+ Catalyst [€/year] = 983365

Tank

Space [m³] = 320000 = 26 x 20000
minimal Space [m³] = 475416
Inventory Costs [€] = 1.2598e+08
Land [m²] = 66666.7
Inventory [kmol] MCH: 3.70567e+06 TOL: 3672.65
Out [kmol/s] MCH: 0.214443 TOL: 0.000212632
Investment [€] = 1.2598e+08
Lifetime [year] = 65
Capital Cost [€/year] = 7.15205e+06
Operating Cost [€/year] = 2.64407e+06
Land Require [m²] = 66666.7
Toluene Investment [€] = 8.8861e+07
Capital Cost Toluene [€/year] = 4.49388e+06
Operating Cost (Byproducts) [€/year] = 1.7772e+06
B.2 Winter Process of the MTH-System with Solid Oxide Fuel Cells

Hydrogen Compressor

Streams: [kmol/s]

<table>
<thead>
<tr>
<th>Stream</th>
<th>(\text{O}_2)</th>
<th>(\text{H}_2)</th>
<th>(\text{CH}_4)</th>
<th>(\text{CO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Massbalance: [kg/s]

<table>
<thead>
<tr>
<th>Stream</th>
<th>(\text{O}_2)</th>
<th>(\text{H}_2)</th>
<th>(\text{CH}_4)</th>
<th>(\text{CO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>0</td>
<td>1.75392</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Inlet Temperature of Gas [K] = 453.9
Inlet Pressure of Gas [Pa] = 537660
Outlet Temperature of Gas [K] = 648.281
Outlet Pressure of Gas [Pa] = 1.6e+06

Energybalance: [J/s]=\[V\]

\[\text{Q}_{\text{in}} = 3.98417e+06 \ (298.151 \to 453.91) \]
\[\text{Q}_{\text{out}} = 8.90634e+06 \ (298.16K \to 648.281R) \]
\[\text{W}_{\text{comp}} = 4.95217e+06 \ (453.9K \to 648.281K) \]
\[\text{elec} = 6.10533e+06 \]
\[\text{gloss} = 153160 \]

Investment [t] = 6.32279e+06
Lifetime [year] = 19
Land Require [m^2] = 9.90434
Capital Cost [$/year] = 574436
Operating Cost [$/year] = 189684

Heat Exchanger 1

numbank = 30
numtube = 200
dbank = 0.07m
dtube = 0.07m
din = 0.036m
dout = 0.0424m
length = 3m

HeatBalance [W]:

Inside=1.19009e+07
Outside=1.19002e+07
Heat Require [W] = 1.19004e+07
Heat Transfercoef. [W/m^2K] = 50.2906
Pressure (Out) [Pa] Begin=100000
End=99661.7
Diff=348.305
Pressure (Tube) [Pa] Begin=1.6e+06
End=1.6e+06
Diff=3.2999
Temp. Product [K] = 778.592
Heat Exchange Area [m^2] = 21.7238

Investment [t] = 445272
Lifetime [year] = 22
Land Require [m^2] = 4.34676
Capital Cost [$/year] = 37187.1
Operating Cost [$/year] = 13358.2

Dehydrogenation Step 1

Number of Reactor = 4
din = 1.17m
length = 2.42m

Heat Balance per Reactor [W]: React=3.5381e+06
Inside=-3.5253e+06
Appendix B. Simulation Results

Mass Balance per Reactor [kg]:

- **In**: 5.7073
- **Out**: 5.7073

In [kmol/s]:

- **MCH**: 0.0638107
- **TOL**: 5.3133e-06
- **H2**: 0.2175

Out [kmol/s]:

- **MCH**: 0.0372626
- **TOL**: 0.0164013
- **H2**: 0.266544

Gas Velocity [kg/m²]: 6.30846

LHSV [l/hr]: 9.02747

Conversion: 0.30663 (Equilibrium at 0.307709)

Pressure (Tube) [Pa]:

- **Begin**: 1.6e+06
- **End**: 1.46532e+06
- **Diff**: 144681

Temp. Product [K]: 622.577

Investment [€]: 312743

Lifetime [year]: 22

Land Require [m²]: 21.9024

Operating Cost [€/year]: 9382.3

Heat Exchanger 2

- **numbank**: 70
- **numtube**: 200
- **dbank**: 0.07m
- **dtube**: 0.07m

Heat Balance [W]:

- **Inside**: 1.44703e+07
- **Outside**: 1.44727e+07

Heat Require [W]: 1.4487e+07

Heat Transfer Coeff. [W/m²K]: 26.2054

Temp. Begin: 869.875

Temp. End: 748.62

Pressure (Out) [Pa]: Begin: 1.00000

Diff: 1026.57

Temp. Product [K]: 635.778

Investment [€]: 792227

Lifetime [year]: 22

Land Require [m²]: 10.1378

Operating Cost [€/year]: 23766.8

Dehydrogenation Step 2

- **Number of Reactor**: 4
- **d**: 1.17m
- **length**: 2.42m

Heat Balance per Reactor [W]:

- **React**: 3.33952e+06
- **Inside**: -3.33064e+06

Mass Balance per Reactor [kg]:

- **In**: 5.70732
- **Out**: 5.70734

In [kmol/s]:

- **HCH**: 0.0372626
- **TOL**: 0.0164013
- **H2**: 0.266544

Out [kmol/s]:

- **HCH**: 0.0218233
- **TOL**: 0.0318406
- **H2**: 0.312862

Gas Velocity [kg/m²]: 5.30847

LHSV [l/hr]: 9.02747

Conversion: 0.593334 (Equilibrium at 0.699335)

Pressure (Tube) [Pa]:

- **Begin**: 1.26424e+06
- **End**: 1.26424e+06
- **Diff**: 1179.91

Temp. Product [K]: 787.925

Investment [€]: 867529

Lifetime [year]: 22

Land Require [m²]: 57.9301

Operating Cost [€/year]: 66163.2

Heat Exchanger 3

- **numbank**: 80
- **numtube**: 200
- **dbank**: 0.07m
- **dtube**: 0.07m

Heat Balance [W]:

- **Inside**: 1.38974e+07
- **Outside**: 1.39118e+07

Heat Require [W]: 1.39116e+07

Heat Transfer Coeff. [W/m²K]: 23.5732

Temp. Begin: 869.875

Temp. End: 763.496

Pressure (Out) [Pa]: Begin: 1.00000

Diff: 1179.91

Pressure (Tube) [Pa]: Begin: 1.26424e+06

Diff: 1179.91

Temp. Product [K]: 787.925

Investment [€]: 867529
B.2. MTH-System with Solid Oxide Fuel Cells

Lifetime [year] = 22
Land Require [m²] = 11.886
Capital Cost [$/year] = 72452.1
Operating Cost [$/year] = 26025.9

Dehydrogenation Step 3

Number of Reactors = 4
din = 1.17m length = 2.42m

Heat Balance per Reactor [W]: React= 3.15646e+06 Inside= -3.14664e+06

Mass Balance per Reactor [kg]:
In [kmol/s]: MCE= 0.0218235 TOL= 0.0318406 H2= 0.312862
Out [kmol/s]: MCE= 0.00723871 TOL= 0.0464261 H2= 0.266618

Mass velocity [kg/m²s] = 6.30849 LHSV [l/hr] = 8.5628

Conversion = 0.88651

Pressure (Tube) [Pa] Begin = 1.26424e+06 End = 998682 Diff = 266382
Temp. Product [K] = 650.834

Investment [$/] = 312743
Lifetime [year] = 22
Land Require [m²] = 21.9024
Capital Cost [$/year] = 26118.9
Operating Cost [$/year] = 9382.3 + Catalyst [$/year] = 312219

Heat Exchanger 4

numbank = 90 numtube = 200 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m

HeatBalance [W]:
Inside= 1.31809e+07 Outside= 1.31627e+07
Heat Transfercof. [W/m²K] = 21.3324
Tempbegin [K] = 899.875 Tempend [K] = 759.837
Pressure (Out) [Pa] Begin = 100000 End = 986641 Diff = 1336.01
Pressure (Tube) [Pa] Begin = 988682 End = 998861 Diff = 1.22434
Temp. Product [K] = 759.812
Heat Exchange Area [m²] = 65.1714

Investment [$/] = 939870
Lifetime [year] = 22
Land Require [m²] = 13.0343
Capital Cost [$/year] = 784937.7
Operating Cost [$/year] = 28196.1

Dehydrogenation Step 4

Number of Reactors = 4
din = 1.17m length = 2.42m

Heat Balance per Reactor [W]: React= 1.52224e+06 Inside= -1.51721e+06

Mass Balance per Reactor [kg]:
In [kmol/s]: MCE= 0.00723871 TOL= 0.0634628 H2= 0.377729
Out [kmol/s]: MCE= 0.000201084 TOL= 0.0534628 H2= 0.399726

Mass velocity [kg/m²s] = 5.3085 LHSV [l/hr] = 8.1286

Conversion = 0.996253

Pressure (Tube) [Pa] Begin = 998861 End = 537660 Diff = 461211
Temp. Product [K] = 726.896

Investment [$/] = 312743
Lifetime [year] = 22
Land Require [m²] = 21.8024
Capital Cost [$/year] = 26118.9
Operating Cost [$/year] = 9382.3 + Catalyst [$/year] = 312219
Appendix B. Simulation Results

Summary Dehydrogenation

- Investment [\$] = 1.09187e+07
- Land Require [m²] = 436.617
- Capital Cost [\$/year] = 933208
- Operating Cost [\$/year] = 318560

Fuel Cells

- Inlet Temperature of Air [K] = 1083.71
- Outlet Temperature of Air [K] = 1083.71
- Inlet Temperature of Fuel [K] = 1155
- Exhaust Temperature [K] = 1155
- Inlet Temperature of Steam [K] = 0
- Outlet Temperature of Steam [K] = 0
- Temperature of Streams to Cell [K] = 1083.71
- Temperature Inside Cell [K] = 1350

Streams: [kmol/s]

IN:
- air: O2 = 0.067049
- H2 = 10.1159
- Ar = 0.117613
- CO2 = 0
- fuel: H2 = 0.712128
- CO2 = 0

OUT:
- air: O2 = 0.646594
- H2 = 10.1159
- Ar = 0.117613
- CO2 = 0
- exhaust: H2 = 0.0712128
- E20 = 0.640918
- CB4 = 0
- CO2 = 0

STEAM:
- H2O = 0

Mass balance: [kg/s]

IN:
- air: O2 = 30.9446
- H2 = 283.376
- Ar = 4.69839
- CO2 = 0
- fuel: H2 = 1.435656
- CO2 = 0

OUT:
- air: O2 = 20.6903
- H2 = 283.376
- Ar = 4.69839
- exhaust: H2 = 0.143565
- E20 = 11.5461
- CB4 = 0
- CO2 = 0

IN total = 320.454
OUT total = 320.454

Energy balance: [J/s]=[W]

- effcell = 0.82
- effsys = 0.808402
- heatsys = 1.64973e+08
- hir = -4.79989e+06
- year = -9.72767e+06
- wrev = 1.1406e+08
- scale = 9.39761e+07
- heat = 6.57673e+07
- qcall = 6.61947e+07
- Qair = 0 (1083.71K -> 1083.71K)
- Qfuel = -1.55307e+06 (1155K -> 1083.71K)
- Qexhaust = 2.88946e+06 (1200K -> 1155K)
- Qentair = 6.05456e+07 (1200K -> 1083.71K)
- Qfuel = 0 (1200K -> 1083.71K)
- qsteam = 0 (OK -> OK)
- qrest = heat-Qcall-Qfuel-Qsteam = -427511

Investment [\$] = 1.49945e+08
- Lifetime [year] = 25
- Land Require [m²] = 5343.39
B.2. MTH-System with Solid Oxide Fuel Cells

Capital Cost
- $1.17011\times 10^7 \$/year
- $7.49255\times 10^6 \$/year

Operating Cost
- $7.49225\times 10^6 \$/year

Dehydrogenation Heat Exchange

<table>
<thead>
<tr>
<th>Heat Exchanger</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchanger 1</td>
<td>1.18004×10^7</td>
</tr>
<tr>
<td>Heat Exchanger 2</td>
<td>1.4487×10^7</td>
</tr>
<tr>
<td>Heat Exchanger 3</td>
<td>1.39116×10^7</td>
</tr>
<tr>
<td>Heat Exchanger 4</td>
<td>1.31625×10^7</td>
</tr>
</tbody>
</table>

Heat Supply Fuel Cell
- 5.55766×10^6 \$/year
- 2.11423×10^6 \$/year

Preheating of feed (liquid, vaporization, gas)
- Q_{feed} [W] = 7.62096\times 10^6 (298.15 K -> 548.28 K)
- Q_{condMCB} [W] = 6.1343\times 10^6
- Q_{gfeed} [W] = 2.8694\times 10^6

Cooling of Product (gas, condensation, liquid)
- Q_{product} [W] = 8.965\times 10^6 (453.9 K -> 298.15 K)
- Q_{condTOL} [W] = 6.16343\times 10^6

Heat Exchanger Network
- Q_{request} [W] = 9.9196\times 10^7
- Q_{air} [W] = 5.8169\times 10^7
- Q_{fuel} [W] = 1.0533\times 10^7

Streams

- **Netout**: Temperature = 1155 [K]
 - Ar = 0.02 kmol/s
 - He = 1.72 kmol/s
 - O2 = 0.43 kmol/s
 - Enthalpy = 5.8169\times 10^7 [W]

- **Cellin**: Temperature = 1083.71 [K]
 - Ar = 0.117618 kmol/s
 - He = 10.1162 kmol/s
 - O2 = 0.966671 kmol/s
 - Enthalpy = 2.71514\times 10^7 [W]
Appendix B. Simulation Results

Cellout: Temperature = 1250 [K]
 Ar = 0.117613 kmol/s
 E2 = 10.1159 kmol/s
 O2 = 0.648591 kmol/s
 Enthalpy = 3.23862e+08 [W]

Netin: Temperature = 1250 [K]
 Ar = 0.0189641 kmol/s
 E2 = 1.7197 kmol/s
 O2 = 0.10992 kmol/s
 Enthalpy = 5.50736e+07 [W]

Reflux: Temperature = 1065.2 [K]
 Ar = 0.0976185 kmol/s
 E2 = 8.39616 kmol/s
 O2 = 0.536741 kmol/s
 Enthalpy = 6.50736e+07 [W]

Reac begin: Temperature = 869.875 [K]
 Ar = 0.163999 kmol/s
 E2 = 14.1056 kmol/s
 O2 = 0.901507 kmol/s
 Enthalpy = 2.13313e+08 [W]

Reac end: Temperature = 763.644 [K]
 Ar = 0.163999 kmol/s
 E2 = 14.1056 kmol/s
 O2 = 0.901507 kmol/s
 Enthalpy = 2.06029e+08 [W]

Fuel Cell feed: Temperature = 1155 [K]
 E2 = 0.712128 kmol/s
 E2O = 0 kmol/s
 Enthalpy (heat) = 1.80967e+07 [W]
 Enthalpy (comb) = 1.72207e+08 [W]

Fuel Cell Exhaust: Temperature = 1250 [K]
 E2 = 0.64928 kmol/s
 E2O = 0.640916 kmol/s
 Enthalpy (heat) = 2.36869e+07 [W]
 Enthalpy (comb) = 1.72207e+07 [W]

Stream Balances:
 2.71482e+08 = 2.71514e+08
 5.55771e+07 = 6.66766e+07

Total Electricity Output [W] = 8.51117e+07
Winter Efficiency = 0.848202
Total Efficiency = 0.398961
Land Require [m²] = 111427
Land Investment [$] = 2.33247e+07
Plant Investment [$] = 6.38525e+08
Working Capital [$] = 3.19263e+07
Total investment [$] = 6.98776e+08
Land Capital Cost [$/year] = 1.43244e+08
Plant Capital Cost [$/year] = 4.48101e+07
Total Operating Cost [$/year] = 2.95586e+07
Input Electricity Cost [$/year] = 3.08115e+07
Total [$/year] = 1.06926e+08
Specific Costs [$/kWh]: Land = 0.00350626
 Capital = 0.109195
 Working Cap = 0.00385209
 Operating = 0.0704561
 Input Elc = 0.0749299
 Plant costs = 0.186799
KWh-costs [$/kWh] = 0.261728
B.3. Winter Process of the MTH-System with Molten Carbonate Fuel Cells

Hydrogen Compressor

Streams: [kmol/s]

<table>
<thead>
<tr>
<th>Stream</th>
<th>IN = OUT</th>
<th>H2</th>
<th>Ar</th>
<th>CH4</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G2 = 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>H2 = 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ar = 0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH4 = 0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 = 0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Mass balance: [kg/s]

<table>
<thead>
<tr>
<th>Stream</th>
<th>IN = OUT</th>
<th>H2</th>
<th>Ar</th>
<th>CH4</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G2 = 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>H2 = 0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ar = 0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH4 = 0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO2 = 0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>1.75392</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Inlet Temperature of Gas [K] = 452.94
Inlet Pressure of Gas [Pa] = 527860
Outlet Temperature of Gas [K] = 650.727
Outlet Pressure of Gas [Pa] = 1.6e+06

Energy balance: [J/s] = [W]

Qin = 3.92979e+06 (298.16K -> 462.94K)
Qout = 8.96385e+06 (298.15K -> 650.727K)
Vcomp = 6.03907e+06 (462.94K -> 650.727K)

elec = 3.19491e+06
Qloss = 155847

balance V = 5.03807e+06 = 5.03907e+06

Investment [€] = 6.4114e+06
Lifetime [year] = 19
Land Require [m²] = 10.0781
Capital Cost [€/year] = 582486
Operating Cost [€/year] = 192342

Heat Exchanger 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>numbank</td>
<td>30</td>
</tr>
<tr>
<td>numtube</td>
<td>140</td>
</tr>
<tr>
<td>dbank</td>
<td>0.07m</td>
</tr>
<tr>
<td>dtube</td>
<td>0.07m</td>
</tr>
<tr>
<td>din</td>
<td>0.036m</td>
</tr>
<tr>
<td>dout</td>
<td>0.0424m</td>
</tr>
<tr>
<td>length</td>
<td>3m</td>
</tr>
</tbody>
</table>

Heat Balance [W]:

| Inside | 1.15774e+07 |
| Outside | 1.1584e+07 |

Heat Require [W] = 1.1584e+07
Heat Transfercoef. [W/m²K] = 67.7438
Temp begin [K] = 870
Temp end [K] = 777.529

Heat Exchange Area [m²] = 15.2067

Investment [€] = 349375
Lifetime [year] = 22
Land Require [m²] = 3.04133
Capital Cost [€/year] = 29178.2
Operating Cost [€/year] = 10481.3

Dehydrogenation Step 1

Number of Reactor = 4

din = 1.17m
length = 2.42m

Heat Balance per Reactor [W]: Rec= 3.51369e+06

Inside= -3.50309e+06
Appendix B. Simulation Results

Mass Balance per Reactor [kg]

| Reactor | In 5.7073 | Out 5.70732 |

| In [kmol/s] | MCH 0.0636107 | TOL 0.0163977 | H2 0.2175 |
| Out [kmol/s] | MCH 0.0373662 | TOL 0.0162977 | H2 0.266234 |

Mass Velocity [kg/m^2*hr] = 5.30846

LHSV [l/hr] = 9.51688

Conversion = 0.303699

Pressure (Tube) [Pa]

<table>
<thead>
<tr>
<th>Begin</th>
<th>End</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.59999e+06</td>
<td>1.4566e+06</td>
<td>144439</td>
</tr>
</tbody>
</table>

Temp. (Product) [K] = 822.438

Investment [$] = 312743

Lifetime [Year] = 22

Land Require [m^2] = 21.9024

Capital Cost [$/Year] = 26118.9

Operating Cost [$/Year] = 9382.3 + Catalyst [$/Year] = 312219

Heat Exchanger 2

- **numbank** = 120
- **numtube** = 140
- **dbank** = 0.07m
- **dtube** = 0.07m

Heat Balance [W]:

| Inside 1.49664e+07 | Outside 1.49824e+07 |

Heat Transfer Coeff. [W/m^2*K] = 22.808

Temp. Begin [K] = 870
Temp. End [K] = 751.342

Pressure (Out) [Pa]

<table>
<thead>
<tr>
<th>Begin</th>
<th>End</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.51688</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temp. Product [X] = 787.24

Heat Exchange Area [m^2] = 60.8266

Investment [$] = 895794

Lifetime [Year] = 22

Land Require [m^2] = 12.1063

Capital Cost [$/Year] = 74896.2

Operating Cost [$/Year] = 26903.8

Dehydrogenation Step 2

<table>
<thead>
<tr>
<th>Number of Reactor</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>2.42m</td>
</tr>
</tbody>
</table>

Heat Balance per Reactor [W]:

| Reactor | 3.44999e+06 | Inside -3.4403e+06 |

Mass Balance per Reactor [kg]

| Reactor | In 6.70732 |

| In [kmol/s] | MCH 0.0373662 | TOL 0.0162977 | H2 0.266234 |
| Out [kmol/s] | MCH 0.0214162 | TOL 0.0322477 | H2 0.314084 |

Mass Velocity [kg/m^2*hr] = 5.30847

LHSV [l/hr] = 9.03058

Conversion = 0.60092

Pressure (Tube) [Pa]

<table>
<thead>
<tr>
<th>Begin</th>
<th>End</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4655e+06</td>
<td>1.4556e+06</td>
<td>9938.24</td>
</tr>
</tbody>
</table>

Temp. Product [X] = 789.93

Heat Exchange Area [m^2] = 76.0333

Investment [$] = 1.04374e+06
B.3. MTH-System with Molten Carbonate Fuel Cells

Heat Balance per Reactor [tf]: Reac* 3.1732e+06 Inside* -3.16502e+06

Heat Balance per Reactor [kg]: In* 6.70734 Out* 6.70735

In [kmol/s]: HCH* 0.0214162 TOL* 0.0322477 H2* 0.314084
Out [kmol/s]: MCH* 0.00674679 TOL* 0.0469181 H2* 0.358095

Heat velocity [kg/sm²] = 6.30849 LHSV [l/hr] = 8.56309

Conversion = 0.874295 (Equilibrium at 0.887848)

Pressure (Tube) [Pa] Begin* 1.26356e+06 End* 996171 Diff* 267389
Temp. Product [X] = 651.862

Lifetime [year] = 22
Land Require [m²] = 15.2067
Capital Cost [$/year] = 87168.3
Operating Cost [$/year] = 31312.2

Dehydrogenation Step 3

Number of Reactors = 4
din = 1.17m length = 2.42m

Heat Balance per Reactor [W]: Reac* 3.1732e+06 Inside* -3.16502e+06

Mass Balance per Reactor [kg]: In* 5.70734 Out* 5.70736
In [kmol/s]: MCH= 0.0214162 TOL= 0.0322477 H2= 0.314084
Out [kmol/s]: MCH= 0.00674679 TOL= 0.0469181 H2= 0.358095

Mass velocity [kg/sm²] = 5.30849 LHSV [l/hr] = 8.56309

Conversion = 0.874295 (Equilibrium at 0.887848)

Pressure (Tube) [Pa] Begin* 1.26356e+06 End* 996171 Diff* 267389
Temp. Product [X] = 651.862

Investment [$] = 312743
Lifetime [year] = 22
Land Require [m²] = 21.3024
Capital Cost [$/year] = 26118.9
Operating Cost [$/year] = 9382.3 + Catalyst [$/year] = 312219

Heat Exchanger 4

number = 150 numtube = 140
dbank = 0.07m dtube = 0.07m

din = 0.036m dout = 0.0424m length = 3m

Heat Balance [W]:
Inside* 1.31211e+07 Outside* 1.31301e+07

Heat Balance per Reactor [tf]: Reac* 1.42466e+06 Inside* -1.41987e+06

Mass Balance per Reactor [kg]: In* 5.70734 Out* 5.70736
In [kmol/s]: MCH= 0.0214162 TOL= 0.0322477 H2= 0.314084
Out [kmol/s]: MCH= 0.00674679 TOL= 0.0469181 H2= 0.358095

Mass velocity [kg/sm²] = 5.30849 LHSV [l/hr] = 8.56309

Conversion = 0.997032 (Equilibrium at 0.999786)

Pressure (Tube) [Pa] Begin* 1.26356e+06 End* 727860 Diff* 468310
Temp. Product [X] = 733.766

Investment [$] = 1.04374e+06
Lifetime [year] = 22
Land Require [m²] = 15.2067
Capital Cost [$/year] = 87168.3
Operating Cost [$/year] = 31312.2

Dehydrogenation Step 4

Number of Reactors = 4
din = 1.17m length = 2.42m

Heat Balance per Reactor [W]: Reac* 1.42466e+06 Inside* -1.41987e+06

Heat Balance per Reactor [tf]: Reac* 1.42466e+06 Inside* -1.41987e+06

Mass Balance per Reactor [kg]: In* 5.70734 Out* 5.70736
In [kmol/s]: MCH= 0.00674679 TOL= 0.0469181 H2= 0.358095
Out [kmol/s]: MCH= 0.000159286 TOL= 0.0636046 H2= 0.377864

Mass velocity [kg/sm²] = 5.30849 LHSV [l/hr] = 8.56309

Conversion = 0.999786 (Equilibrium at 0.999786)

Pressure (Tube) [Pa] Begin* 1.26356e+06 End* 527860 Diff* 468310
Temp. Product [X] = 733.766

Investment [$] = 312743
Lifetime [year] = 22
Land Require [m²] = 21.3024
Capital Cost [$/year] = 26118.9
Operating Cost [$/year] = 9382.3 + Catalyst [$/year] = 312219
Appendix B. Simulation Results

Summary Dehydrogenation

Investment [+] = 1.0996e+07
Land Require [a*2] = 463.308
Capital Cost [$/year] = 96573
Operating Cost [$/year] = 328831 + Catalyst [$/year] = 1.24688e+06

Fuel Cells

Inlet Temperature of Air [°C]	298.15
Outlet Temperature of Air [°C]	298.15
Inlet Temperature of Fuel [°C]	298.15
Exhaust Temperature [°C]	298.15
Inlet Temperature of Steam [°C]	769.623
Outlet Temperature of Steam [°C]	870
Temperature of Streams to Cell [°C]	810
Temperature Inside Cell [°C]	900

Streams: [kmol/s]

| IN: air | D2 = 0.496332 |
| E2 = 1.98633 |
| Ar = 0.0230862 |
| CO2 = 0.627853 |
| fuel | E2 = 0.664256 |
| E20 = 0 |
| CB4 = 0 |
| OUT: air | D2 = 0.197417 |
| E2 = 1.98633 |
| Ar = 0.0230862 |
| CO2 = 0.030022 |
| exhaust | E2 = 0.0064266 |
| E20 = 0.597831 |
| CB4 = 0 |
| CO2 = 0.597831 |
| STEAM: | E20 = 13 |

Massbalance: [kg/s]

| IN: air | D2 = 15.8821 |
| E2 = 55.616 |
| Ar = 0.922208 |
| CO2 = 27.6318 |
| fuel | E2 = 1.33914 |
| E20 = 0 |
| CB4 = 0 |
| OUT: air | D2 = 6.31713 |
| E2 = 55.616 |
| Ar = 0.922208 |
| CO2 = 1.32127 |
| exhaust | E2 = 0.133914 |
| E20 = 10.7699 |
| CB4 = 0 |
| CO2 = 26.3105 |
| IN total = 101.39 |
| OUT total = 101.39 |

Energybalance: [J/s]=[W]

effcell	0.671681
effsyst	0.620276
heatvalue	1.44565e+08
hr	-3.21852e+06
Total	-5.45218e+06
wrev	1.18509e+08
elec	7.95887e+07
heat	6.81642e+07
Qcell	1.13856e+07
Qair	8.33787e+07
Qfuel	9.97063e+06
Qexhaust	3.10217e+07
Qsteam	5.5872e+07
Qreflux	0
Qeasme	5.16762e+07
Qrest	heat-Qcell-Qreflux-Qsteam = 344608
B.3. MTH-System with Molten Carbonate Fuel Cells

<table>
<thead>
<tr>
<th>Nr</th>
<th>burnratio</th>
<th>effcell</th>
<th>E</th>
<th>E2</th>
<th>E20</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.09</td>
<td>0.035639</td>
<td>0.663176</td>
<td>0.604473</td>
<td>0.0597831</td>
<td>0.030022</td>
</tr>
<tr>
<td>1</td>
<td>0.18</td>
<td>0.088534</td>
<td>0.705048</td>
<td>0.54469</td>
<td>0.119666</td>
<td>0.089051</td>
</tr>
<tr>
<td>2</td>
<td>0.27</td>
<td>0.096069</td>
<td>0.715069</td>
<td>0.484007</td>
<td>0.178349</td>
<td>0.149588</td>
</tr>
<tr>
<td>3</td>
<td>0.36</td>
<td>0.0697056</td>
<td>0.716061</td>
<td>0.435124</td>
<td>0.238132</td>
<td>0.209371</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>0.08414</td>
<td>0.713006</td>
<td>0.385341</td>
<td>0.299915</td>
<td>0.269154</td>
</tr>
<tr>
<td>5</td>
<td>0.54</td>
<td>0.08852</td>
<td>0.707294</td>
<td>0.305558</td>
<td>0.358698</td>
<td>0.329937</td>
</tr>
<tr>
<td>6</td>
<td>0.63</td>
<td>0.088209</td>
<td>0.698766</td>
<td>0.248775</td>
<td>0.418482</td>
<td>0.386732</td>
</tr>
<tr>
<td>7</td>
<td>0.72</td>
<td>0.088386</td>
<td>0.688899</td>
<td>0.185992</td>
<td>0.478265</td>
<td>0.448504</td>
</tr>
<tr>
<td>8</td>
<td>0.81</td>
<td>0.065057</td>
<td>0.668309</td>
<td>0.128209</td>
<td>0.538048</td>
<td>0.508287</td>
</tr>
</tbody>
</table>
| 9 | 0.9 | 0.081893| 0.638562| 0.0664266| 0.597831| 0.58807

Flowsheet:

E2	0.0664266
E20	0.597831
---CO2	0.0671581

<table>
<thead>
<tr>
<th>exhaust</th>
<th><<<<<<<<<</th>
<th>fuel</th>
<th><<<<<<<<<</th>
<th>number of cells = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>>>>>>>>>>></td>
<td>air</td>
<td>>>>>>>>>>></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>0.496332</td>
<td>1.98533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>1.98533</td>
<td>0.030022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>0.0671581</td>
<td>0.197417</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

byproducts

Investment [$] = 8.46027e+07
Lifetime [year] = 25
Land Require [m²] = 6372.23
Capital Cost [$/year] = 6.60648e+06
Operating Cost [$/year] = 4.23014e+06

Membrane Separation

Membrane Thickness [m] = 2.5e-06
Membrane Area [m²] = 2000
Operating Temperature [K] = 550
presin [Pa] = 100000
presep [Pa] = 94000
Hydrogen Separation Ratio = 0.343533

Streams: [kmol/s]

IN: E2	0.0664266
TOL	0
N2	0
CO2	0.597831
CO	0
Ar	0
E2	0
D2	0
SEP: E2	0.0438863
TOL	0
N2	0
CO2	0.597831
CO	0
Ar	0
E2	0
D2	0
OUT: E2	0.0028393
TOL	0
N2	0
CO2	0.597831
CO	0
Ar	0
E2	0
D2	0
138 Appendix B. Simulation Results

Investment $[\] = 1.2916e+07
Lifetime [year] = 17
Land Require [m²] = 60
Capital Cost $[\text{/year}] = 1.25879e+06
Operating Cost $[\text{/year}] = 387480 + Catalyst $[\text{/year}] = 645800

Membrane Evac

Streams: [mol/s]
IN = OUT: O₂ = 0
N₂ = 0
Ar = 0
H₂ = 0.0228393
CH₄ = 0
CO₂ = 0

Massbalance: [kg/s]
IN = OUT: O₂ = 0
N₂ = 0
Ar = 0
H₂ = 0.0460441
CH₄ = 0
CO₂ = 0

Total = 0.0460441

Inlet Temperature of Gas [K] = 298.15
Inlet Pressure of Gas [Pa] = 6000
Outlet Temperature of Gas [K] = 729.654
Outlet Pressure of Gas [Pa] = 100000

Energybalance: [J/s]=[W]
Qin = 0 (298.15K -> 298.15K)
Qout = 288532 (298.15K -> 729.654K)
Qcomp = 288532 (298.15K -> 729.654K)
elec = 297466
Qloss = 8923.87
Balance 288532 = 288532

Investment $[\] = 394899
Lifetime [year] = 19
Land Require [m²] = 0.677064
Capital Cost $[\text{/year}] = 35877.2
Operating Cost $[\text{/year}] = 11847

Dehydrogenation Heat Exchange

Heat Require Heat Exchanger [W] = 5.37612e+07
Heater1 [W] = 1.18846e+07
Heater2 [W] = 1.49821e+07
Heater3 [W] = 1.4056e+07
Heater4 [W] = 1.31298e+07
Heat Supply Fuel Cell [W] = 5.6672e+07
Heat Loss [W] = 2.12075e+06

Preheating of feed (liquid, vaporisation, gas)
Qfeed [W] = 1.11737e+07 (298.15K -> 512.871K)
condHCB [W] = 4.1362e+08
Qfeed [W] = 7.77129e+06 (512.871K -> 650.727K)
total [W] = 2.30812e+07 (298.15K -> 650.727K)

Cooling of Product (gas, condensation, liquid)
Qproduct [W] = 2.40776e+07 (733.758K -> 452.941K)
condTOL [W] = 6.16981e+08 (452.941 -> 298.15K)
Qproduct [W] = 8.89644e+06 (452.941K -> 298.15K)
total [W] = 3.91437e+07 (733.758K -> 298.15K)

Heat Exchanger Network
Request [W] = 8.71544e+07
Qair 5.33767e+07
Qfuel 1.06976e+07
Qfeed 7.77129e+06
Qfuel 1.11737e+07
condHCB 4.1362e+08
Supply [W] = 1.37371e+08
Qheater 3.10217e+07
Qheater 4.10749e+07
B.3. MTH-System with Molten Carbonate Fuel Cells

\[Q_{\text{product}} = 2.40776 \times 10^7 \]
\[Q_{\text{iproduct}} = 8.89644 \times 10^6 \]
\[\text{condTOL} = 6.16981 \times 10^6 \]
\[\text{condH}_2\text{O} = 2.60306 \times 10^7 \]
\[\text{Rest} (\text{W}) = 5.01164 \times 10^7 \]
\[\text{Gas Beater: transfer coef.} \ [\text{W/m}^2\text{K}] = 50.0 \]
\[\text{dT} [\text{K}] = 57 \]
\[\text{area} [\text{m}^2] = 2726.77 \]
\[\text{cost} [\text{S/year}] = 6.31963 \times 10^6 \]
\[\text{operating costs} [\text{S/year}] = 189686 \]
\[\text{land} [\text{m}^2] = 214.866 \]

\[\text{Evaporator: transfer coef.} \ [\text{W/m}^2\text{K}] = 70.0 \]
\[\text{dT} [\text{K}] = 55.0 \]
\[\text{area} [\text{m}^2] = 1074.34 \]
\[\text{cost} [\text{S/year}] = 7.39765 \times 10^6 \]
\[\text{operating costs} [\text{S/year}] = 221930 \]
\[\text{land} [\text{m}^2] = 270.877 \]

\[\text{Liq Beater: transfer coef.} \ [\text{W/m}^2\text{K}] = 150.0 \]
\[\text{dT} [\text{K}] = 65.0 \]
\[\text{area} [\text{m}^2] = 1354.39 \]
\[\text{cost} [\text{S/year}] = 6.31963 \times 10^6 \]
\[\text{operating costs} [\text{S/year}] = 716831 \]
\[\text{land} [\text{m}^2] = 270.877 \]

Streams

\[\text{Heatout : Temperature} = 810 [\text{K}] \]
\[\text{Ar} = 0.0230852 \text{ kmol/s} \]
\[\text{N}_2 = 1.98633 \text{ kmol/s} \]
\[\text{CO}_2 = 0.627853 \text{ kmol/s} \]
\[\text{Enthalpy} = 5.33787 \times 10^7 [\text{W}] \]

\[\text{Cellin : Temperature} = 810 [\text{K}] \]
\[\text{Ar} = 0.0230852 \text{ kmol/s} \]
\[\text{N}_2 = 1.98633 \text{ kmol/s} \]
\[\text{CO}_2 = 0.627853 \text{ kmol/s} \]
\[\text{Enthalpy} = 5.33787 \times 10^7 [\text{W}] \]

\[\text{Cellout : Temperature} = 900 [\text{K}] \]
\[\text{Ar} = 0.0230852 \text{ kmol/s} \]
\[\text{N}_2 = 1.98633 \text{ kmol/s} \]
\[\text{CO}_2 = 0.627853 \text{ kmol/s} \]
\[\text{Enthalpy} = 4.10748 \times 10^7 [\text{W}] \]

\[\text{Netin : Temperature} = 900 [\text{K}] \]
\[\text{Ar} = 0.0230852 \text{ kmol/s} \]
\[\text{N}_2 = 1.98633 \text{ kmol/s} \]
\[\text{CO}_2 = 0.627853 \text{ kmol/s} \]
\[\text{Enthalpy} = 4.10748 \times 10^7 [\text{W}] \]

\[\text{Rec begi : Temperature} = 870 [\text{K}] \]
\[\text{Et}_2 = 13 \text{ kmol/s} \]
\[\text{Enthalpy} = 2.89465 \times 10^6 [\text{W}] \]

\[\text{Rec end : Temperature} = 759.523 [\text{K}] \]
\[\text{Et}_2 = 13 \text{ kmol/s} \]
\[\text{Enthalpy} = 2.13879 \times 10^6 [\text{W}] \]

\[\text{Fuel Cell feed : Temperature} = 810 [\text{K}] \]
\[\text{Et}_2 = 0.712686 \text{ kmol/s} \]
\[\text{CO}_2 = 0 \text{ kmol/s} \]
\[\text{Enthalpy (heat) } = 1.06976 \times 10^7 [\text{W}] \]
\[\text{Enthalpy (comb) } = 1.72342 \times 10^6 [\text{W}] \]

\[\text{Fuel Cell Exhaust : Temperature} = 900 [\text{K}] \]
\[\text{Et}_2 = 0.666426 \text{ kmol/s} \]
\[\text{CO}_2 = 0.597831 \text{ kmol/s} \]
\[\text{Enthalpy (heat) } = 3.10217 \times 10^6 [\text{W}] \]
\[\text{Enthalpy (comb) } = 1.60638 \times 10^7 [\text{W}] \]
Appendix B. Simulation Results

Economics

Total Electricity Output [W] = 7.09127e+07
Winter Efficiency = 0.457222
Total Efficiency = 0.332403

Land Require [m²] = 110524
Land Investment [$] = 2.80951e+07
Plant Investment [$] = 5.87128e+08
Working Capital [$] = 2.93564e+07
Total Investment [$] = 6.4458e+08

Land Capital Cost [$/year] = 1.42082e+06
Plant Capital Cost [$/year] = 4.08558e+07
Total Operating Cost [$/year] = 2.6484e+07
Input Electricity Cost [$/year] = 3.08115e+07
Total [$/year] = 1.00857e+08

Specific Costs [$/kWh]:
Land = 0.00417421
Capital = 0.120029
Working Capital = 0.00436162
Overall Operating = 0.077807
Input Electric = 0.0899331

kWh-costs [$/kWh] = 0.2965305
B.4 Winter Process of the MTH-System with Gas and Steam Turbines

Hydrogen Compressor

Streams: [kmol/s]

- \(I_\text{H} = \text{OUT} \): 0
- \(I_\text{H}_2 = 0 \)
- \(I_\text{Ar} = 0 \)
- \(I_\text{H}_2 = 0.87 \)
- \(I_\text{CH}_4 = 0 \)
- \(I_\text{CO}_2 = 0 \)

Mass balance: [kg/s]

- \(I_\text{H} = \text{OUT} \): 0
- \(I_\text{H}_2 = 0 \)
- \(I_\text{Ar} = 0 \)
- \(I_\text{H}_2 = 1.75392 \)
- \(I_\text{CH}_4 = 0 \)
- \(I_\text{CO}_2 = 0 \)

Xassbalance: [kg/s]

\[\text{total} = 1.76392 \]

Inlet Temperature of Gas \([\mathbf{X}]\) = 461.031

Inlet Pressure of Gas \([\mathbf{Pa}]\) = 508792

Outlet Temperature of Gas \([\mathbf{X}]\) = 462.926

Outlet Pressure of Gas \([\mathbf{Pa}]\) = 650000

Energy balance: \([\text{J/s}]\) = \([\text{V}])

\[\text{Qin} = 3.88128 \times 10^6 \ (298.15 \mathbf{K} \rightarrow 451.031 \mathbf{K}) \]

\[\text{Qout} = 4.18357 \times 10^6 \ (298.16 \mathbf{K} \rightarrow 462.926 \mathbf{K}) \]

\[\text{Vcomp} = 302296 \ (461.031 \mathbf{K} \rightarrow 462.926 \mathbf{K}) \]

\[\text{elec} = 311646 \]

\[\text{Qloss} = 9349.37 \]

Heat Exchanger 1

\[\text{numbank} = 400 \quad \text{numtube} = 50 \quad \text{dbank} = 0.07 \text{m} \quad \text{dtube} = 0.07 \text{m} \]

\[\text{din} = 0.036 \text{m} \quad \text{dout} = 0.0424 \text{m} \quad \text{length} = 3 \text{m} \]

Heat Balance [\mathbf{W}]

- Inside= 144799\quad Outside= 144501
- Heat Required [\mathbf{W}] = 144801
 - Heat Transferred [\mathbf{W/m}^2\mathbf{K}] = 19.0814
- TempBegin [\mathbf{K}] = 612.388\quad TempEnd [\mathbf{K}] = 611.385
- Pressure (Out) [\mathbf{Pa}] Begin= 100000\quad End= -16172\quad Diff= 116172
- Pressure (Tube) [\mathbf{Pa}] Begin= 600000\quad End= 449999\quad Diff= 0.961879
- Temp. Product [\mathbf{K}] = 611.719
- Heat Exchange Area [\mathbf{m}^2] = 72.4126

Investment \([\text{\$}]\) = 1.00968 \times 10^6

Lifetime [\text{year}] = 22

Land Require [\mathbf{m}^2] = 14.4825

Capital Cost \([\text{\$}/\text{year}]\) = 64323.8

Operating Cost \([\text{\$}/\text{year}]\) = 30280.3

Dehydrogenation Step 1

Number of Reactor = 20

\[\text{din} = 1.16\text{m} \quad \text{length} = 0.2\text{m} \]

Heat Balance per Reactor [\mathbf{W}]

- React= 144623 \quad Inside= -144665
Appendix B. Simulation Results

Mass Balance per Reactor [kg]: In* 1.14146 Out* 1.14146
In [kmol/s]: MCH* 0.0107221 TOL* 0.0000000 E2* 0.0435
Out [kmol/s]: MCH* 0.0105235 TOL* 0.0000000 E2* 0.0450694
Massvelocity [kg/m^2s] = 1.09894 LHSV [l/hr] = 23.8889

Conversion = 0.0632872
Pressure (Tube) [Pa] Begin* 549999 End* 548510 Diff* 1489.3
Temp. Product [K] = 578.893

Investment [$] = 900037
Lifetime [year] = 22
Capital Cost [$/year] = 75167
Operating Cost [$/year] = 27001.1 + Catalyst [$/year] = 124363

Heat Exchanger 2

Number of Reactor = 20

Heat Balance per Reactor [W]: Reac* 160626 Inside* -180864
Pressure (Tube) [Pa] Begin* 646929 End* 546927 Diff* 100002
Temp. Product [K] = 622.121
Heat Exchange Area [m^2] = 72.4126

Investment [$] = 1.00968e+06
Lifetime [year] = 22
Land Require [m^2] = 14.4625
Capital Cost [$/year] = 84323.8
Operating Cost [$/year] = 30290.3

Dehydrogenation Step 2

Number of Reactor = 20

Heat Balance per Reactor [W]: Reac* 160626 Inside* -180864
Pressure (Tube) [Pa] Begin* 646929 End* 546927 Diff* 100002
Temp. Product [K] = 622.121
Heat Exchange Area [m^2] = 72.4126

Investment [$] = 900037
Lifetime [year] = 22
Land Require [m^2] = 105.8
Capital Cost [$/year] = 75167
Operating Cost [$/year] = 124363

Heat Exchanger 3

Number of Reactor = 20

Heat Balance per Reactor [W]: Reac* 160626 Inside* -180864
Pressure (Tube) [Pa] Begin* 546929 End* 546927 Diff* 100002
Temp. Product [K] = 622.121
Heat Exchange Area [m^2] = 72.4126

Investment [$] = 733468

Pressure (Out) [Pa] Begin* 100000 End* -316559 Diff* 2.43786
Pressure (Tube) [Pa] Begin* 546929 End* 546927 Diff* 2.43786
Temp. Product [K] = 583.832

Heat Transfercoef [W/m^2K] = 18.9151
Pressure (Out) [Pa] Begin* 100000 End* -316559 Diff* 2.43786
Pressure (Tube) [Pa] Begin* 546929 End* 546927 Diff* 2.43786
Pressure (Out) [Pa] Begin* 100000 End* -316559 Diff* 2.43786
Pressure (Tube) [Pa] Begin* 546929 End* 546927 Diff* 2.43786
Temp. Product [K] = 622.121
Heat Exchange Area [m^2] = 72.4126

Investment [$] = 1.00968e+06
 lifetime [year] = 22
Land Require [m^2] = 14.4625
Capital Cost [$/year] = 84323.8
Operating Cost [$/year] = 30290.3
B.4. MTH-System with Gas and Steam Turbine

Lifetime [year] = 22
Land Require [m^2] = 9.05158
Capital Cost [$/year] = 61266
Operating Cost [$/year] = 22004

Dehydrogenation Step 3

Number of Reactors = 20
din = 1.16m length = 0.25m

Heat Balance per Reactor [W]: React = 264847 Inside = -265086
Mass Balance per Reactor [kg]: In^mol/a: MCH = 0.00831091 TOL = 0.00142185 H2 = 0.0477337
Out [mol/a]: MCH = 0.00608647 TOL = 0.0036663 H2 = 0.061407
Mass velocity [kg/m^2-s] = 1.09694 LSV [l/hr] = 18.6478

Conversion = 0.246562 (Equilibrium at 0.468842)
Temp. Product [K] = 691.209

Investment [$] = 914434
Lifetime [year] = 22
Land Require [m^2] = 105.8
Capital Cost [$/year] = 76369.4
Operating Cost [$/year] + Catalyst [$/year] = 155804

Heat Exchanger 4

numbank = 80 numtube = 50 dbank = 0.07m dtube = 0.07m
din = 0.036m don = 0.0424m length = 3m

Heat Balance [W]:
Inside = 8.24706e+06 Outside = 8.24951e+06
Heat Transfer coef. [W/m^2K] = 76.2969
Tempbegin [K] = 739.832 Tempend [K] = 684.022
Pressure (In) [Pa] Begin = 100000 End = 77468.9 Diff = 22531.1
Pressure (Out) [Pa] Begin = 544751 End = 544771 Diff = 19.8337
Temp. Product [K] = 686.313
Heat Exchange Area [m^2] = 14.4825

Investment [$] = 337974
Lifetime [year] = 22
Land Require [m^2] = 2.8966
Capital Cost [$/year] = 20226.1
Operating Cost [$/year] = 10199.2

Dehydrogenation Step 4

Number of Reactors = 20
din = 1.16m length = 0.25m

Heat Balance per Reactor [W]: React = 356466 Inside = -356518
Mass Balance per Reactor [kg]: In^mol/a: MCH = 0.00831091 TOL = 0.00142185 H2 = 0.0477337
Out [mol/a]: MCH = 0.00608647 TOL = 0.0036663 H2 = 0.061407
Mass velocity [kg/m^2-s] = 1.09694 LSV [l/hr] = 18.6478

Conversion = 0.400121 (Equilibrium at 0.693696)

Investment [$] = 914434
Lifetime [year] = 22
Land Require [m^2] = 105.8
Capital Cost [$/year] = 76369.4
Operating Cost [$/year] + Catalyst [$/year] = 155804
Heat Exchanger 6

numbank = 20 numtube = 50 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m

Heat Balance [W]:
Inside* 8.18979e+06 Outside* 8.18975e+06
Heat Require [X] = 8.1901e+06
Heat Transfer coeff. [W/m²·K] = 187.865
Temp begin [K] = 786.779 Temp end [K] = 742.115
Pressure (Tube) [Pa] Begin = 100000 End = 94606.7 Diff = 5396.23
Temp. Product [K] = 697.961
Heat Exchange area [m²] = 3.62063

Investment [€] = 131669
Lifetime [year] = 22
Land Require [m²] = 0.724126
Capital Cost [€/year] = 10996.4
Operating Cost [€/year] = 3860.06

Dehydrogenation Step 5

Number of Reactors = 20
din = 1.156
length = 0.25m

Heat Balance per Reactor [W]: React = 363798 Inside = -353877
Mass Balance per Reactor [kg]: In = 1.14147 Out = 1.14147
In [kmol/s]: HCH = 0.00643836 TOL = 0.00429441 H2 = 0.0563513
Out [kmol/s]: HCH = 0.00480268 TOL = 0.00693009 H2 = 0.0612584
Mass velocity [kg/m²·s] = 1.08967
LESV [l/hr] = 17.7862
Conversion = 0.862522
(Equilibrium at 0.84848)
Pressure (Tube) [Pa] Begin = 542081 End = 539386 Diff = 2694.92
Temp. Product [K] = 617.87

Investment [€] = 914434
Lifetime [year] = 22
Land Require [m²] = 105.8
Capital Cost [€/year] = 76369.4
Operating Cost [€/year] = 2790.92 + Catalyst [€/year] = 156804

Heat Exchanger 6

numbank = 12 numtube = 50 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m

Heat Balance [W]:
Inside* 8.81496e+06 Outside* 8.8139e+06
Heat Require [X] = 8.8156e+06
Heat Transfer coeff. [W/m²·K] = 247.275
Pressure (Tube) [Pa] Begin = 100000 End = 96644.4 Diff = 3355.63
Temp. Product [K] = 716.958
Heat Exchange area [m²] = 2.17238

Investment [€] = 93030.8
Lifetime [year] = 22
Land Require [m²] = 0.434476
Capital Cost [€/year] = 7769.49
Operating Cost [€/year] = 2790.92

Dehydrogenation Step 6

Number of Reactors = 20
din = 1.156
length = 0.25m

Heat Balance per Reactor [W]: React = 358336 Inside = -357976
Mass Balance per Reactor [kg]: In = 1.14147 Out = 1.14147
In [kmol/s]: HCH = 0.00480268 TOL = 0.00693009 H2 = 0.0612584
B.4. MTH-System with Gas and Steam Turbine

Out [kmol/s]: HCH* 0.00314602 TOL* 0.00768676 H2= 0.0662284
Mass velocity [kg/m²s] = 1.09895 LHSV [l/hr] = 13.9989

Conversion = 0.706878 (Equilibrium at 0.952057)
Pressure (Tube) [Pa]: Begin= 536714 End= 63861 Diff= 3022.71
Temp. Product [K] = 638.888

Investment [$] = 914434
Lifetime [year] = 22
Land Require [m²] = 105.8
Operating Cost [$/year] = 27433 + Catalyst [$/year] = 165804

Heat Exchanger 7

numbank = 8 numtube = 50 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m

Heat Balance [W]:
 Inside= 9.000101e+06 Outside= 8.99919e+06
 Heat Require [W] = 0.00938e+06
 Heat Transfer coef. [W/m²K] = 301.441
 Pressure (Tube) [Pa]: Begin= 100000 End= 97701.3 Diff= 2298.7
 Pressure (Tube) [Pa]: Begin= 544771 End= 534168 Diff= 1623.9
 Temp. Product [X] = 736.807
 Heat Exchange area [m²] = 1.44826

Investment [$] = 70612.8
Lifetime [year] = 22
Land Require [m²] = 0.28966
Capital Cost [$/year] = 5897.26
Operating Cost [$/year] = 2118.38

Dehydrogenation Step 7

Number of Reactors = 20
din = 1.15m
length = 0.3m

Heat Balance per Reactor [W]: React= 347888 Inside= -347281

Mass Balance per Reactor [kg]: In= 1.14147 Out= 1.14147
In [kmol/s]: HCH* 0.00314602 TOL* 0.00768676 H2= 0.0662284
Mass velocity [kg/m²s] = 1.09895 LHSV [l/hr] = 13.9989

Conversion = 0.856724 (Equilibrium at 0.988495)
Pressure (Tube) [Pa]: Begin= 534168 End= 530093 Diff= 4074.15
Temp. Product [K] = 660.219

Investment [$] = 928831
Lifetime [year] = 22
Land Require [m²] = 105.8
Capital Cost [$/year] = 77571.8
Operating Cost [$/year] = 27864.9 + Catalyst [$/year] = 188964

Heat Exchanger 8

numbank = 6 numtube = 50 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m

Heat Balance [W]:
 Inside= 9.14545e+06 Outside= 9.14314e+06
 Heat Require [W] = 0.04145e+06
 Heat Transfer coef. [W/m²K] = 344.291
 TempBegin [K] = 979.242 TempEnd [K] = 920.635
 Pressure (Tube) [Pa]: Begin= 500000 End= 527268 Diff= 1722.86
 Pressure (Tube) [Pa]: Begin= 544771 End= 527268 Diff= 2752.17
 Temp. Product [K] = 760.28
 Heat Exchange area [m²] = 1.08619

Investment [$] = 58085.4
Lifetime [year] = 22
Land Require [m²] = 0.217238
Appendix B. Simulation Results

Capital Cost [$/year] = 4849.44
Operating Cost [$/year] = 1741.99

Dehydrogenation Step 8

Number of Reactors = 20
din = 1.15m
length = 1.2m

Heat Balance per Reactor [W]: Reac* 320173 Inside* -319393

Mass Balance per Reactor [kg]: In* 1.14147 Out* 1.14147
In [kmol/s]: HCH* 0.00153776 TOL* 0.00919602 H2* 0.0710532
Out [kmol/s]: HCH* 6.7523e-05 TOL* 0.0106752 H2* 0.0754939

Mass velocity [kg/m^2s] = 1.09886 LHSV [l/hr] = 3.39921

Conversion = 0.99644 (Equilibrium at 0.998199)
Pressure (Tube) [Pa] Begin* 527268 End* 608792 Diff* 18152.2
Temp. Product [X] = 690.779

Investment [€] = 1.18798e+06
Lifetime [year] = 22
Land Require [m^2] = 106.8
Capital Cost [$/year] = 99214.6
Operating Cost [$/year] = 36639.4 + Catalyst [$/year] = 747868

Summary Dehydrogenation

Investment [€] = 1.18798e+07
Land Require [m^2] = 889.683
Capital Cost [$/year] = 970865
Operating Cost [$/year] = 347277 + Catalyst [$/year] = 1.80732e+06

Gas Turbine

Streams: [kmol/s]
IN: air O2 = 1.1607 N2 = 4.2883 Ar = 0.0618 CO2 = 0
fuel E2 = 0.839877 E20 = 0 CH4 = 0
OUT: exhaust O2 = 0.830761 N2 = 4.2883 Ar = 0.0618 E2 = 0 E20 = 0.839877 CH4 = 0 CO2 = 0

Mass balance: [kg/s]
IN: air O2 = 36.8212 N2 = 120.128 Ar = 2.0931 CO2 = 0
fuel E2 = 1.28999 E20 = 0 CH4 = 0 CO2 = 0
OUT: exhaust O2 = 26.5835 N2 = 120.128 Ar = 2.06931 E2 = 0 E20 = 11.5274 CH4 = 0 CO2 = 0

IN total = 160.309
OUT total = 160.308

Inlet Temperature of Air [K] = 360
Inlet Pressure of Air [Pa] = 100000
Inlet Temperature of Fuel [K] = 461.031
Inlet Pressure of Fuel [Pa] = 508792
B.4. MTH-System with Gas and Steam Turbine

Temperature of compressed Air \([X]\) = 962.343
Pressure after Compression [Pa] = 2.5e+06
Temperature after Combustion 1 [X] = 1386.34
Pressure after first Turbine [Pa] = 650000
Temperature after first Turbine [X] = 1043.56
Temperature after Combustion 2 [X] = 1417.32
Exhaust Temperature [X] = 979.242
Exhaust Pressure [Pa] = 100000

Energy balance: [J/s] = [W]
Heat value = 1.64735e+08
Heat = 1.68828e+08
Qair = 9.89137e+06 (298.15K -> 360K)
Qfuel = 2.15456e+08 (298.15K -> 451.03K)
Qcomp = 1.24154e+08 (979.24K -> 298.15K)
Qcompfuel = 1.42628e+08
Qcombust = 1.35677e+07
Qelectric = 4.32509e+07
Qloss = 406001
Efficiency = 0.274725
Balance: 1.67481e+08 = 1.67501e+08

Investment [\$/\$] = 3.40501e+07
Lifetime [year] = 30
Land Require [m²] = 2400
Capital Cost [\$/year] = 2.44201e+06
Operating Cost [\$/year] = 1.0215e+06

Steam Turbine

T1 [X]	905.654
T2 [X]	330.857
T3 [X]	330.857
T4 [X]	319.099
T5 [X]	515.69
T6 [X]	515.69
T7 [X]	515.69
T8 [X]	515.69
B1 [J/kg] = 3.76132e+06	
B2 [J/kg] = 2.88778e+06	
B3 [J/kg] = 191332	
B4 [J/kg] = 191332	
B5 [J/kg] = 10578e+06	
B6 [J/kg] = 2.81096e+06	
B7 [J/kg] = 1.0899e+06	
B8 [J/kg] = 1.0899e+06	
S1 [J/kg]	7616.77
S2 [J/kg]	8180.42
S3 [J/kg]	649.252
S4 [J/kg]	649.252
S5 [J/kg]	2752.27
S6 [J/kg]	612.85
S7 [J/kg]	1.96182e+06
S8 [J/kg]	1.96182e+06

Evaporation Pressure [Pa] = 3.5e+06
Condensing Pressure [Pa] = 10000
Feedwater [kg/s] = 9.5

Energy balance: [J/kg] = [W]
Qliquid = 8.11681e+05 (319.099K -> 515.69K)
Qgaseous = 1.64666e+08 (515.65K -> 515.69K)
Qgas1 = 0 (515.69K -> 515.69K)
Qgas2 = 0 (515.69K -> 905.65K)
Qcond = 3.37597e+07 (319.099K -> 905.65K)
Qcombi = 1.02763e+09 (905.65K -> 320.557K)
Wcombi = 0 (320.557K -> 319.099K)
Wpump = 33470.3 (320.557K -> 319.099K)
Qelectric = 1.07924e+07
Efficiency = 0.321698
Qloss = 226964
Balance: 3.37597e+07 = 3.38142e+07

Investment [\$/\$] = 8.64473e+06
Lifetime [year] = 30
Land Require [m²] = 2400
Appendix B. Simulation Results

Capital Cost [$/year] = 619983
Operating Cost [$/year] = 269342

Dehydrogenation Heat Exchange

Heat Required Heat Exchanger [W] = 5.54222e+07
Heater1 [W] = 144801
Heater2 [W] = 3.77867e+06
Heater3 [W] = 8.90652e+06
Heater4 [W] = 8.24865e+06
Heater5 [W] = 8.1901e+06
Heater6 [W] = 8.81461e+06
Heater7 [W] = 9.00028e+06
Heater8 [W] = 9.14465e+06 total = 5.32334e+07

Preheating of feed (liquid, vaporisation, gas)
\[Q_{\text{feed}} = 7.1847e+06 \] (298.15 K -> 448.562 K)
\[Q_{\text{condHCH}} = 5.61073e+06 \] (448.562 K -> 610 K)
\[Q_{\text{Qhydfeed}} = 3.74493e+06 \] (462.926 K -> 610 K)
\[\text{total} = 2.11924e+07 \] (298.15 K -> 610 K)

Cooling of Product (gas, condensation, liquid)
\[Q_{\text{Qhydproduct}} = 1.06084e+07 \] (690.779 K -> 461.031 K)
\[Q_{\text{Qgproduct}} = 9.68082e+06 \] (690.779 K -> 461.031 K)
\[Q_{\text{condTOL}} = 6.2023e+06 \]
\[Q_{\text{Qlproduct}} = 5.91965e+06 \] (461.031 K -> 298.15 K)
\[\text{total} = 2.19027e+07 \] (690.779 K -> 298.15 K)

Heat Exchanger Network

Request [W] = 2.11924e+07
\[Q_{\text{Qfeed}} = 8.39588e+06 \] \[Q_{\text{Qfeed}} = 7.1847e+06 \] condHCH 6.61073e+06
\[Q_{\text{Qgproduct}} = 9.68082e+06 \] \[Q_{\text{Qhydproduct}} = 1.06084e+07 \] \[Q_{\text{Qlproduct}} = 5.91965e+06 \] condTOL 6.2023e+06
\[\text{Rest} = 1.12186e+07 \]

Gas Heater: transfer coef. [W/m²K] = 50.0
\[\text{d}T \text{[K]} = 80.7791 \]
\[\text{area} [m²] = 20759 \]
\[\text{cost} [/] = 9.90334e+06 \]
\[\text{capital costs} [$/year] = 943356 \]
\[\text{operating costs} [$/year] = 297010 \]
\[\text{land} [m²] = 418.6 \]

Evaporator: transfer coef. [W/m²K] = 70.0
\[\text{d}T \text{[K]} = 62.0 \]
\[\text{area} [m²] = 1292.79 \]
\[\text{cost} [/] = 7.16719e+06 \]
\[\text{capital costs} [$/year] = 897408 \]
\[\text{operating costs} [$/year] = 215018 \]
\[\text{land} [m²] = 277.83 \]

Liq Heater: transfer coef. [W/m²K] = 150.0
\[\text{d}T \text{[K]} = 90.0 \]
\[\text{area} [m²] = 532.2 \]
\[\text{cost} [/] = 3.91956e+06 \]
\[\text{capital costs} [$/year] = 381397 \]
\[\text{operating costs} [$/year] = 117588 \]
\[\text{land} [m²] = 105.44 \]

Streams

Air in: Temperature = 360 [K]
\[\text{X} = 0.0818 \text{ kmol/s} \]
\[\text{H2} = 4.2883 \text{ kmol/s} \]
\[\text{O2} = 1.1507 \text{ kmol/s} \]
\[\text{Enthalpy} = 9.89137e+06 \text{ [W]} \]

Gas Turbine Feed: Temperature = 451.031 [K]
\[\text{E2} = 0.639877 \text{ kmol/s} \]
\[\text{H2O} = 0 \text{ kmol/s} \]
\[\text{Enthalpy (heat)} = 2.81465e+06 \text{ [W]} \]
\[\text{Enthalpy (comb)} = 1.84736e+06 \text{ [W]} \]
B.4. MTH-System with Gas and Steam Turbine

Gas Turbine Exhaust: Temperature = 979.242 [K]
- \(E_2 = 0 \) kmol/s
- \(E_{20} = 0.639877 \) kmol/s
- \(A_r = 0.0516 \) kmol/s
- \(E_2 = 4.2883 \) kmol/s
- \(O_2 = 0.830761 \) kmol/s
- Enthalpy (heat) = 1.24124e+08 [W]
- Enthalpy (comb) = 0 [W]

Exhaust after Reactor: Temperature = 611.3 [K]
- \(E_2 = 0 \) kmol/s
- \(E_{20} = 0.639877 \) kmol/s
- \(A_r = 0.0516 \) kmol/s
- \(E_2 = 4.2883 \) kmol/s
- \(O_2 = 0.830761 \) kmol/s
- Enthalpy (heat) = 5.48458e+07 [W]

Exhaust after \(E_20 \) Condenser: Temperature = 374.883 [K]
- \(E_2 = 0 \) kmol/s
- \(E_{20} = 0.639877 \) kmol/s
- \(A_r = 0.0516 \) kmol/s
- \(E_2 = 4.2883 \) kmol/s
- \(O_2 = 0.830761 \) kmol/s
- Enthalpy (heat) = 1.3213e+07 [W]

Dehydrogenation Feed: Temperature = 610 [K]
- \(E_2 = 0.87 \) kmol/s
- \(MCH = 0.214443 \) kmol/s
- \(TOL = 0.000212632 \) kmol/s
- Enthalpy = 2.18809e+07 [W]

Dehydrogenation Product: Temperature = 690.779 [K]
- \(E_2 = 1.50968 \) kmol/s
- \(MCH = 0.00115046 \) kmol/s
- \(TOL = 0.213505 \) kmol/s
- Enthalpy = 3.32271e+07 [W]

Dehydrogenation Reaction: Enthalpy = 4.367e+07 [W]

Stream Balances:
- \(Q_{reac} = 6.92777e+07 \)
- \(Q_{evap} = 4.16328e+07 \)
- \(G_{steam} = 1.87601e+08 \)
- total = 1.45309e+08

Economics
- Total Electricity Output [W] = 5.29903e+07
- Winter Efficiency = 0.342487
- Total Efficiency = 0.248382

Land Require [m^2] = 110297
- Land Investment ($) = 2.80628e+07
- Plant Investment ($) = 5.27654e+08
- Working Capital ($) = 2.83927e+07
- Total Investment ($) = 5.82309e+08

- Land Capital Cost [$/year] = 1.41919e+08
- Plant Capital Cost [$/year] = 3.65729e+07
- Working Capital Cost [$/year] = 1.33473e+06
- Total Operating Cost [$/year] = 2.28264e+07
- Input Electricity Cost [$/year] = 3.06118e+07
- Total [$/year] = 9.18647e+07

Specific Costs [$/kWh]:
- Land = 0.00587961
- Capital = 0.139866
- Working Cap = 0.00524754
- Operating = 0.0961359
- Input Elec = 0.12038

kWh-costs [$/kWh] = 0.361189
B.5 Best Case Study of the MTH-System

Initialization Values

Electricity = 3.2e+08 kW
Temp. Feed = 860 K
Temp. Heat Medium = 891.982 K
feedH2 = 1e-07 kmol/s
airout01 = 0.0976818 kmol/s
airout02 = 8.39616 kmol/s
pfeed = 1.6e+06 Pa
pairont = 100000 Pa

Electrolyser

tempin [K] = 300
tempread [K] = 300
tempout [K] = 300
Efficiency Power Conditioner = 0.97
of Cells = 0.75
Power Consumption [kWh/m^3] = 4

Streams: [kmol/s]
IN: E2 = 1.00431
OUT: E2 = 1.00431
02 = 0.602157

Investment [$] = 7.75146e+07
Lifetime [year] = 30
Land Require [m^2] = 15651.7
Capital Cost [$/year] = 6.65919e+06
Operating Cost [$/year] = 4.86876e+06

Hydrogenation Reactor

tempin [K] = 300
tempread [K] = 560
tempout [K] = 300
minimal Pressure [Pa] = 2.64511e+06

Streams: [kmol/s]
IN: E2 = 2.02437
OUT: E2 = 0.00222696
02 = 33.1962

Massbalance: [kg/s]
IN: E2 = 2.02437
OUT: E2 = 0.00222696
Balance Reactor = 0
Balance Total = -0.996222

Massflow [ton/hour] = 119.506
Electricity [kW] = 1.79259e+06
Catalyst Cost [$/hour] = 322.667
Investment [$] = 1.88171e+07
Lifetime [year] = 19
Land Require [m^2] = 128.042
Capital Cost [$/year] = 1.70957e+08
Operating Cost [$/year] = 584814
Catalyst [$/year] = 1.09253e+06
B.5. Best Case Study of the MTH-System

Tank
Space \([\text{m}^3] \) = 540000 = 27 \times 20000
minimal Space \([\text{m}^3] \) = 499187
Investment Costs \([\text{t}] \) = 1.28136e+08
Land \([\text{m}^2] \) = 90000
Inventory \([\text{kmol}] \) MCH: 3.8908e+06 TOL: 3856.18
Out \([\text{kmol}/\text{s}] \) MCH: 0.225166 TOL: 0.000223169
Investment \([\text{t}] \) = 1.28136e+08
Lifetime \([\text{years}] \) = 65
Capital Cost \([\text{t}/\text{year}] \) = 7.42713e+06
Operating Cost \([\text{t}/\text{year}] \) = 2.74576e+06
Land Require \([\text{m}^2] \) = 90000
Toluene Investment \([\text{t}] \) = 9.33042e+07
Capital Cost Toluene \([\text{t}/\text{year}] \) = 4.71888e+06
Operating Cost (Byproducts) \([\text{t}/\text{year}] \) = 0

Heat Exchanger 1
numbank = 17 numtube = 200 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m
HeatBalance \([\text{t}/\text{year}] \):
Inside = 7.89188e+06 Outside = 7.89376e+06
Heat Require \([\text{t}/\text{year}] \) = 7.89426e+06
Heat Transfercoef. \([\text{W/m}^2\text{K}] \) = 46.0246
Temp.\begin{align*} \text{Begin} \ [\text{X}] & = 891.982 \\
\text{End} \ [\text{X}] & = 762.27 \end{align*}
Temp.\begin{align*} \text{Inside} \ [\text{K}] & = 891.982 \\
\text{Outside} \ [\text{K}] & = 811.601 \end{align*}
Pressure (Tube) \([\text{Pa}] \) Begin = 1.6e+06 End = 1.66549e+06 Diff = 34511.1
Pressure (Out) \([\text{Pa}] \) Begin = 100000 End = 99522.9 Diff = 477.131
Temp Product \([\text{X}] \) = 776.42
Heat Exchange Area \([\text{m}^2] \) = 36.2063
Investment \([\text{t}] \) = 302613
Lifetime \([\text{years}] \) = 22
Land Require \([\text{m}^2] \) = 2.45203
Capital Cost \([\text{t}/\text{year}] \) = 28272.9
Operating Cost \([\text{t}/\text{year}] \) = 9078.4

Dehydrogenation Step 1
Number of Reactor = 4
din = 1.15m length = 2m
Heat Balance per Reactor \([\text{t}/\text{year}] \):
React = 3.00406e+06 Inside = -2.98206e+06
Mass Balance per Reactor \([\text{kmol}/\text{s}] \):
In \([\text{kmol}/\text{s}] \) MCH = 0.0562913 TOL = 0.0139442 H2 = 0.0416652
Out \([\text{kmol}/\text{s}] \) MCH = 0.0424029 TOL = 0.0139442 H2 = 0.0416652
Mass Velocity \([\text{kg/m}^2\text{m}^2\text{s}] \) = 5.33261 LHSV \([\text{l}/\text{hr}] \) = 12.8164
Conversion = 0.24747

(Equilibrium at 0.247628)
Pressure (Tube) \([\text{Pa}] \) Begin = 1.6e+06 End = 1.66549e+06 Diff = 34511.1
Temp Product \([\text{K}] \) = 692.812
Investment \([\text{t}] \) = 293667
Lifetime \([\text{years}] \) = 22
Land Require \([\text{m}^2] \) = 21.16
Capital Cost \([\text{t}/\text{year}] \) = 23890.5
Operating Cost \([\text{t}/\text{year}] \) = 8510 + Catalyst \([\text{t}/\text{year}] \) = 249286

Heat Exchanger 2
numbank = 50 numtube = 200 dbank = 0.07m dtube = 0.07m
din = 0.036m dout = 0.0424m length = 3m
HeatBalance \([\text{t}/\text{year}] \):
Inside = 1.2323e+07 Outside = 1.2337e+07
Heat Require \([\text{t}/\text{year}] \) = 1.2337e+07
Heat Transfercoef. \([\text{W/m}^2\text{K}] \) = 23.432
Temp.\begin{align*} \text{Begin} \ [\text{X}] & = 891.982 \\
\text{End} \ [\text{X}] & = 762.27 \end{align*}
Pressure (Out) \([\text{Pa}] \) Begin = 100000 End = 99522.9 Diff = 477.131
Pressure (Tube) \([\text{Pa}] \) Begin = 1.66549e+06 End = 1.66549e+06 Diff = 0.468874
Temp Product \([\text{X}] \) = 776.42
Heat Exchange Area \([\text{m}^2] \) = 36.2063
Appendix B: Simulation Results

Dehydrogenation Step 2

Number of Reactors = 4
len = 1.15m length = 2m
Heat Balance per Reactor [W]: React= 2.69221e+06 Inside= -2.67899e+06
Mass Balance per Reactor [kg]: In= 5.13228 Out= 5.13228
In [mol/l]: CEC= 0.042632 TOL= 0.0139442 H2= 0.0416652
Out [mol/l]: CEC= 0.0295662 TOL= 0.0263908 H2= 0.0790061
Mass velocity [kg/m²s] = 5.3262 LHSV [l/hr] = 11.9947
Conversion = 0.462862 (Equilibrium at 0.468597)
Pressure (Tube) [Pa] Begin= 1.56549e+06 End= 1.81404e+06 Diff= 21446.6
Temp. Product [X] = 618.713
Investment [$] = 283667
Lifetime [year] = 22
Land Require [m²] = 21.16
Capital Cost [$/year] = 23690.5
Operating Cost [$/year] + Catalyst [$/year] = 249286

Heat Exchanger 3

numbank = 32 numtubes = 200 dbank = 0.07m dtube = 0.07m
len = 0.036m dout = 0.0424m length = 3m
Heat Balance [W]:
In= 1.11812e+07 Out= 1.11915e+07
Heat Requirement [W] = 1.11915e+07
Heat Transfer Coef. [W/m²K] = 36.9883
Pressure (Out) [Pa] Begin= 100000 End= 99696.4 Diff= 304.675
Pressure (Tube) [Pa] Begin= 1.51404e+06 End= 1.51404e+06 Diff= 1.50424
Temp. Product [X] = 782.463
Heat Exchange Area [m²] = 23.172
Investment [$] = 465248
Lifetime [year] = 22
Land Require [m²] = 4.63441
Capital Cost [$/year] = 38856.4
Operating Cost [$/year] = 13957.5

Dehydrogenation Step 3

Number of Reactors = 4
len = 1.15m length = 2m
Heat Balance per Reactor [W]: React= 2.63268e+06 Inside= -2.61828e+06
Mass Balance per Reactor [kg]: In= 6.53228 Out= 6.53228
In [mol/l]: CEC= 0.0298682 TOL= 0.0263908 H2= 0.0790061
Out [mol/l]: CEC= 0.0182676 TOL= 0.0380796 H2= 0.114071
Mass velocity [kg/m²s] = 5.32621 LHSV [l/hr] = 11.628
Conversion = 0.676803 (Equilibrium at 0.678422)
Pressure (Tube) [Pa] Begin= 1.51404e+06 End= 1.44442e+06 Diff= 69922.3
Temp. Product [X] = 636.844
Investment [$] = 283667
Lifetime [year] = 22
Land Require [m²] = 21.16
Capital Cost [$/year] = 23690.5
Operating Cost [$/year] + Catalyst [$/year] = 249286
B.5. Best Case Study of the MTH-System

Heat Exchanger 4

\[\text{numbank} = 27, \text{numtube} = 200, \text{dbank} = 0.07m, \text{dtube} = 0.07m\]
\[\text{din} = 0.036m, \text{dout} = 0.0424m, \text{length} = 3m\]

HeatBalance [V]:
\[\text{Inside} = 1.04815e+07, \text{Outside} = 1.04815e+07\]
Heat Require [V] = 1.04815e+07
Heat Transfercoef. [W/m²K] = 41.9462
Tempebegin [K] = 891.962, Tempend [K] = 782.004
Pressure (Out) [Pa] Begin = 100000, End = 99743.2, Diff = 256.843
Pressure(Tube) [Pa] Begin = 1.44442e+06, End = 1.44441e+06, Diff = 2.73062
Temp. Product [K] = 787.632
Heat Exchange Area [m²] = 19.8614

Investment [$] = 414446
Lifetime [year] = 22
Land Require [m²] = 3.91028
Capital Cost [$/year] = 34618
Operating Cost [$/year] = 12434.6

Dehydrogenation Step 4

Number of Reactors = 4
\[\text{din} = 1.15m, \text{length} = 2m\]

Heat Balance per Reactor [V]:
\[\text{Reac} = 2.31878e+06, \text{Inside} = -2.30763e+06\]
Mass Balance per Reactor [kg]:
\[\text{In} = 5.53231, \text{Out} = 5.53231\]
\[\text{In} [\text{kmol/s}] = 0.0182676, \text{Out} = 0.0380795, \text{H}_2 = 0.114071\]
\[\text{Massvelocity} [\text{kg/m²s}] = 5.33522, \text{LHSV} [\text{l/hr}] = 11.0898\]
Conversion = 0.86581 (Equilibrium at 0.866791)
Temp. Product [K] = 654.527

Investment [$] = 283667
Lifetime [year] = 22
Land Require [m²] = 21.16
Capital Cost [$/year] = 23890.5
Operating Cost [$/year] = 8510 + Catalyst [$/year] = 249286

Heat Exchanger 5

\[\text{numbank} = 26, \text{numtube} = 200, \text{dbank} = 0.07m, \text{dtube} = 0.07m\]
\[\text{din} = 0.036m, \text{dout} = 0.0424m, \text{length} = 3m\]

HeatBalance [V]:
\[\text{Inside} = 9.79438e+06, \text{Outside} = 9.79438e+06\]
Heat Require [V] = 9.79438e+06
Heat Transfercoef. [W/m²K] = 45.5076
Tempebegin [K] = 891.882, Tempend [K] = 788.771
Pressure (Out) [Pa] Begin = 100000, End = 99761.7, Diff = 238.287
Pressure(Tube) [Pa] Begin = 1.44442e+06, End = 1.44441e+06, Diff = 4.05631
Temp. Product [K] = 786.623
Heat Exchange Area [m²] = 18.1032

Investment [$] = 393353
Lifetime [year] = 22
Land Require [m²] = 3.62063
Capital Cost [$/year] = 32851
Operating Cost [$/year] = 11800.6

Dehydrogenation Step 5

Number of Reactors = 4
\[\text{din} = 1.16m, \text{length} = 3m\]

Heat Balance per Reactor [V]:
\[\text{Reac} = 1.56109e+06, \text{Inside} = -1.54448e+06\]
Mass Balance per Reactor [kg]:
\[\text{In} = 5.53231, \text{Out} = 5.53232\]
Appendix B. Simulation Results

In [kmol/s]: MCH* 0.00766122 TOL* 0.0487868 H2- 0.14819
Out [kmol/s]: HCH* 0.000390182 TOL* 0.0559569 H2* 0.167703

Velocity (kg/m²s⁻¹) = 5.35623
LHSV [l/hr] = 10.8883

Conversion = 0.993075
Pressure (Tube) [Pa] Begin= 1.3539e+06 End= 1.23621e+06 Diff = 117691
Temp. Product [X] * 707.108
Investment [t] = 283867
Lifetime [year] = 22
Land Require [m²] * 21.16
Capital Cost [t/year] = 23690.6
Operating Cost [t/year] = 106727 + Catalyst [t/year] = 249286

Summary Dehydrogenation
Investment [t] = 3.82424e+06
Land Require [m²] = 127.669
Capital Cost [t/year] = 302680
Operating Cost [t/year] = 23690.6 + Catalyst [t/year] = 1.24643e+06

Fuel Cells
Inlet Temperature of Air [K] = 1096.24
Outlet Temperature of Air [K] = 1096.24
Inlet Temperature of Fuel [K] = 1176
Exhaust Temperature [K] = 1250
Inlet Temperature of Steam [K] = 0
Outlet Temperature of Steam [K] = 0
Temperature of Streams to Cell [K] = 1096.24

Streams: [kmol/s]
IN: air D2 = 0.39439
E2 = 10.1159
Ar = 0.117613
CO2 = 0
fuel E2 = 0.745348
H2O = 0
CH4 = 0
CO2 = 0
OUT: air D2 = 0.558983
H2 = 10.1159
Ar = 0.117613
CO2 = 0
exhaust E2 = 0.076548
H2O = 0.070613
CH4 = 0
CO2 = 0
STEAM: E2 = 0

Massbalance: [kg/s]
IN: air D2 = 28.6196
E2 = 283.376
Ar = 4.89839
CO2 = 0
fuel E2 = 1.50262
H2O = 0
CH4 = 0
CO2 = 0
OUT: air D2 = 17.8869
E2 = 263.376
Ar = 4.89839
CO2 = 0
exhaust E2 = 0.150262
H2O = 12.0847
CH4 = 0
CO2 = 0
IN total = 318.196
OUT total = 318.196

Energybalance: [J/s]=W
effcell = 0.86
effsys = 0.850773
heatvalue = 1.62203×10⁸
hr = -4.99240×10⁶
Year = -1.01814×10⁵
B.5. Best Case Study of the MTH-System

\[\text{wrev} = 1.19951 \times 10^8 \]
\[\text{elec} = 1.05557 \times 10^8 \]
\[\text{heat} = 6.10384 \times 10^7 \]
\[\text{Qcell} = 6.10384 \times 10^7 \]
\[\text{Qair} = 0 \]
\[\text{Qfuel} = -1.79966 \times 10^6 \]
\[\text{Qexhaust} = 2.37716 \times 10^6 \]
\[\text{Qoxygen} = 5.68888 \times 10^7 \]
\[\text{Qreflux} = 0 \]
\[\text{Qsteam} = 0 \]
\[\text{Qoutair} = 5.56567 \times 10^7 \]
\[\text{Qreflux} = 0 \]
\[\text{Qsteam} = 0 \]
\[\text{Qexhaust} = 2.37716 \times 10^6 \]
\[\text{Qair} = 5.96369 \times 10^7 \]
\[\text{Qfuel} = 1.93985 \times 10^7 \]
\[\text{Qgfeed} = 8.76237 \times 10^6 \]
\[\text{Qlfeed} = 1.17324 \times 10^7 \]
\[\text{condHCB} = 4.34301 \times 10^6 \]
\[\text{Qgproduct} = 1.26016 \times 10^7 \]
\[\text{Qiprodnct} = 1.26016 \times 10^7 \]
\[\text{condTOL} = 2.41499 \times 10^6 \]
\[\text{Qgproduct} = 1.31083 \times 10^7 \]
\[\text{CondH20} = 2.72236 \times 10^7 \]
\[\text{Qoxygen} = 5.68888 \times 10^7 \]
\[\text{Qoutair} = 5.56567 \times 10^7 \]
\[\text{Qsteam} = 0 \]
\[\text{Qfuel} = 1.93985 \times 10^7 \]
\[\text{Qgfeed} = 8.76237 \times 10^6 \]
\[\text{Qlfeed} = 1.17324 \times 10^7 \]
\[\text{condHCB} = 4.34301 \times 10^6 \]
\[\text{Qgproduct} = 1.26016 \times 10^7 \]
\[\text{Qiprodnct} = 1.26016 \times 10^7 \]
\[\text{condTOL} = 2.41499 \times 10^6 \]
\[\text{CondH20} = 2.72236 \times 10^7 \]
\[\text{Gas Heater: transfer} = 50.0 \]
\[\text{area} = 3720.15 \]
\[\text{cost} = 1.47058 \times 10^6 \]
\[\text{capital costs} = 1.43096 \times 10^6 \]
\[\text{operating costs} = 441176 \]
\[\text{Evaporator: transfer} = 70.0 \]
\[\text{area} = 1240.86 \]
\[\text{cost} = 6.97013 \times 10^6 \]
\[\text{capital costs} = 678231 \]
\[\text{operating costs} = 209104 \]
\[\text{Liq Heater: transfer} = 150.0 \]
\[\text{area} = 1564.32 \]
\[\text{cost} = 8.15924 \times 10^6 \]
\[\text{capital costs} = 793938 \]
operating costs [$/year] = 244777
land [m\(^2\)] = 312.863

Streams

Netout:
- Temperature = 1175 [K]
- \(A = 0.02 \text{ kmol/s} \)
- \(B = 1.72 \text{ kmol/s} \)
- \(G = 0.43 \text{ kmol/s} \)
- Enthalpy = 8.98369e+07 [W]

Cellin:
- Temperature = 1096.24 [K]
- \(A = 0.117616 \text{ kmol/s} \)
- \(B = 10.1162 \text{ kmol/s} \)
- \(G = 0.593956 \text{ kmol/s} \)
- Enthalpy = 2.74279e+08 [W]

Cellout:
- Temperature = 1250 [K]
- \(A = 0.117615 \text{ kmol/s} \)
- \(B = 10.1189 \text{ kmol/s} \)
- \(G = 0.558993 \text{ kmol/s} \)
- Enthalpy = 3.21189e+08 [W]

Netin:
- Temperature = 1250 [K]
- \(A = 0.0199961 \text{ kmol/s} \)
- \(B = 1.7197 \text{ kmol/s} \)
- \(G = 0.0950271 \text{ kmol/s} \)
- Enthalpy = 5.46039e+07 [W]

Reflux:
- Temperature = 1076.7 [K]
- \(A = 0.0979106 \text{ kmol/s} \)
- \(B = 8.38616 \text{ kmol/s} \)
- \(G = 0.463956 \text{ kmol/s} \)
- Enthalpy = 2.14603e+08 [W]

React begin:
- Temperature = 891.982 [K]
- \(A = 0.183999 \text{ kmol/s} \)
- \(B = 14.1056 \text{ kmol/s} \)
- \(G = 0.779446 \text{ kmol/s} \)
- Enthalpy = 2.70013e+08 [W]

React end:
- Temperature = 782.882 [K]
- \(A = 0.183999 \text{ kmol/s} \)
- \(B = 14.1056 \text{ kmol/s} \)
- \(G = 0.779446 \text{ kmol/s} \)
- Enthalpy = 2.1802e+08 [W]

Fuel Cell feed:
- Temperature = 1175 [K]
- \(B = 0.744348 \text{ kmol/s} \)
- \(E = 0 \text{ kmol/s} \)
- Enthalpy (heat) = 1.93985e+07 [W]
- Enthalpy (comb) = 1.8024e+08 [W]

Fuel Cell Exhaust:
- Temperature = 1250 [K]
- \(B = 0.0743948 \text{ kmol/s} \)
- \(E = 0.670813 \text{ kmol/s} \)
- Enthalpy (heat) = 2.49006e+07 [W]
- Enthalpy (comb) = 1.8024e+07 [W]

Stream Balances:
- 2.74279e+08 = 2.74279e+08
- 5.19937e+07 = 5.19923e+07

Economics

Total Electricity Output [W] = 1.01335e+08
Winter Efficiency = 0.624742
Total Efficiency = 0.476006

Land Require [m\(^2\)] = 115238
Land Investment [$] = 2.92934e+07
Plant Investment [$] = 4.58743e+08
Working Capital [$] = 2.37872e+07
Total Investment [$] = 5.07824e+08

Land Capital Cost [$/year] = 1.48142e+06
Plant Capital Cost [$/year] = 3.07815e+07
B.5. Best Case Study of the MTH-System

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Amount [$/year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Capital Cost</td>
<td>1.15229e+06</td>
</tr>
<tr>
<td>Total Operating Cost</td>
<td>1.64695e+07</td>
</tr>
<tr>
<td>Input Electricity Cost</td>
<td>3.06178e+07</td>
</tr>
<tr>
<td>Total</td>
<td>8.06025e+07</td>
</tr>
</tbody>
</table>

Specific Costs [$/kWh]:
- Land: $0.00304665/
- Capital: $0.0632834/
- Working Cap: $0.003389919/
- Operating: $0.0338596/
- Input Elec: $0.0629469/

Plant costs: $0.102668

kWh-costs [$/kWh] = 0.165505
Leer - Vide - Empty
Bibliography

[34] Chemical week, markets & economics.

[90] Statistisches Jahrbuch 1994 für die Bundesrepublik Deutschland.

Curriculum Vitae

of Gregor Wolfgang Hugo Scherer
born in Schaffhausen the 22nd of August 1967

Education

1993-1997 PhD studies in chemical engineering at ETH Zürich
1987-1993 Studies in physics and nuclear physics at ETH Zürich
1982-1987 Kantonsschule Schaffhausen
1974-1982 Primary and secondary school in Schaffhausen

Professional Experience

1995-1997 Research assistant in General Energy Research at Paul Scherrer Institute
1993-1995 Research assistant in the Systems Engineering Group at ETH Zürich
1989-1993 Part-time software developer in the Financial Systems Division at NCR (Switzerland)