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Abstract

In recent years, clusters of networked workstations have become an increasingly popu¬
lar source of computing resources for large, computation and memory intensive calcu¬

lations Instead of setting aside dedicated workstations for such clusters, the spare com¬

puting resources of interactively used workstations can be harnessed into opportunistic
clusters Since equipment in workstauon environments is often underutilized, oppor¬

tunistic clusters offer the potential of obtaining considerable computation resources at

essentially no additional hardware cost

In this dissertation, I present the design and implementation of DMW, a system to

schedule a collection of interdependent computing jobs on an opportunistic cluster

consisting of workstations based on a variety of hardware and software platforms, con¬

nected by a local area network and sharing a common file namespace

Designers of distributed systems often have to choose between fully distributed

communication architectures and architectures with some of the communication and

decision flow concentrated in a central component Having implemented both a fully
distributed and a partially centralized version of DMW, I contrast the two approaches,

concluding that the partially centralized approach offers better performance and global
fairness and reduces communication overhead compared to the fully distributed ap¬

proach

Any evaluation of a scheduler for an opportunistic workstation cluster cannot rest

solely on the computation performance offered to users of the scheduler For such a

scheduler to be accepted in a workstation environment, it is of primary importance that

resource demands it places on a workstation never interfere with the needs of interactive

users using that workstation

To analyze this problem, I present a series of experiments documenting the resource

consumption patterns of jobs scheduled by the local scheduler on a workstation I

demonstrate that CPU use of background jobs is well controlled by local schedulers

and rarely interferes with interactive users, but that memory use of background jobs is

a senous problem which cannot be adequately addressed by local schedulers

Since both the resource demands of background jobs and the resource availability
on the target workstations is not predictable, a scheduler must be capable of migrat¬

ing running jobs to other workstations if conditions change, 1 e
,
the job becomes too

large for its current workstation, an interactive user starts using the workstation, or

another, more attractive workstation becomes available While I did not implement
a migration mechanism for DMW, I present design criteria for such a mechanism In

particular, I argue that an application independent mechanism is unsatisfactory in het

erogeneous environments and requires impractical amounts of disk space and commu¬

nication bandwidth for the large jobs typical for the intended use of DMW, and that an

application specific migration mechanism can overcome these problems

XI
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Zusammenfassung

In den letzten Jahren sind Verbunde vernetzter Workstation-Rechner zu einem immer

beliebteren Mittel zur Bereitstellung von Rechenressourcen fur grosse, rechen- und

speichenntensive Berechnungen geworden Dabei mussen die Rechner fur einen sol-

chen Verbund nicht eigens bereitgestellt werden, da es moglich ist, die brachliegenden

Rechenkapazitaten interaktiv genutzter Rechner in opportunistischen Rechnerverbun-

den zu verwenden Weil Computer in Workstation-Umgebungen oft nur wenig aus-

gelastet sind, versprechen opportumstische Verbunde, betrachtliche Rechenressourcen

praktisch ohne zusatzhche Hardwarekosten zu erhalten

In dieser Dissertation behandle ich den Entwurf und die Entwicklung von DMW,

einem System, das den Ablauf emer Gruppe verknupfter Rechenauftrage auf einem

opportunistischen Verbund plant Dieser besteht aus Rechnem, die auf verschiedenen

Hardware- und Softwareplattformen basieren, mit einem Netzwerk verknupft sind, und

uber ein gememsames Dateisystem verfugen
Die Entwickler verteilter Systeme mussen oft eine Wahl treffen zwischen einer voll-

standig verteilten Systemarchitektur und einer Architektur, bei der Telle des Kommu-

nikations- und Entscheidungsflusses in einer zentralen Komponente konzentnert sind

Anhand einer vollstandig verteilten und einer teilweise zentralisierten Ausfuhrung von

DMW vergleiche ich die beiden Ansatze und komme zum Schluss, dass der teilweise zen

tralisierte Ansatz bessere Leistung und systemweite Fairness bnngt und zudem lm Ver-

gleich zum vollstandig verteilten Ansatz einen genngeren Kommunikationsaufwand

benotigt
Die Beurteilung eines Schedulers (Ablaufplaners) fur einen opportunistischen Rech-

nerverbund kann sich nicht allein auf die Leistung stutzen, die den Benutzem des Sche¬

dulers geboten wird Fur die Akzeptanz eines solchen Systems in einer Workstation-

Umgebung ist es von entscheidender Bedeutung, dass die Ressourcenbedurfnisse, die

es an einen Rechner stellt, niemals zu Lasten eines mteraktiven Benutzers des Rechners

gehen
Um dieses Problem zu analysieren, zeige ich in einer Reihe von Expenmenten auf,

wie sich die Ressourcenbedurfnisse von Rechenauftragen entwickeln, die auf einem

emzelnen Rechner vom dortigen lokalen Scheduler verwaltet werden Dabei wird er-

sichthch, dass der Rechenbedarf von Hmtergrundberechnungen vom lokalen Scheduler

gut kontrollierbar ist und kaum je Probleme fur interaktive Benutzer darstellt, dass aber

der Speicherbedarf dieser Berechnungen ein schwerwiegendes Problem darstellt, das

vom lokalen Scheduler nicht hmreichend gelost werden kann

Da sowohl die Ressourcenbedurfnisse von Hmtergrundberechnungen als auch die

zur Verfugung stehenden Ressourcen auf einem Rechner nicht vorhersehbar sind, muss

ein Scheduler imstande sein, laufende Berechnungen auf andere Rechner zu verschie-

ben, wenn sich die Bedingungen verandem, d h wenn die Berechnung zu gross fur

lhren gegenwartig zugewiesenen Rechner wird, wenn ein interaktiver Benutzer den

Xlll
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Rechner zu belegen begmnt, oder wenn ein anderer, schnellerer Rechner frei wird Ich

habe keinen Migrationsmechanismus fur DMW entwickelt, diskutiere jedoch Entwurfs-

kntenen fur einen solchen Mechanismus Insbesondere argumentiere ich, dass ein

programmunabhangiger Mechanismus fur heterogene Umgebungen unbefnedigend ist

und dass er fur die grossen Rechenauftrage, die fur den Einsatz von DMW typisch sind,

unrealistische Mengen an Plattenspeicher und Kommunikationskapazitat benotigt Ein

programmspezifischer Mechanismus ist dagegen in der Lage, diese Probleme zu uber-

winden
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Chapter 1

Introduction
Let us begin by committing ourselves to the truth, to see it like it is and

to tell it like it is, to find the truth, to speak the truth and to live with the

truth That's what we'll do

Richard Nixon, accepting the Republican nominationforpresident,
1968

In the development and optimization of VLSI semiconductor fabrication processes,

manufacturers are increasingly relying on virtualfabs for their experiments, replacing

physical facilities with numencal simulations of fabrication processes and of electrical

current flow through semiconductor devices

A typical simulation consists of

• A ID process simulation to simulate process steps before the application of the

first process mask

• A 2D or 3D process simulation to simulate the remaining process once masks

are involved

• Generating a grid for the device simulation

• The device simulation

• Extracting parameter values from the simulation results

While many of these steps only take a few seconds, 2D process simulations and

device simulations may take several hours and 3D process simulations may take several

days To optimize a process, simulations have to be repeated with varying parameter

values

On the other hand, the substantial resource requirements and the limited interde¬

pendence of the individual simulation steps make such simulation problems well suited

for exploiting coarse gram parallelism by distributing the execution of the simulation

steps among a cluster of networked workstations

1.1 Workstation Clusters

With their good cost/performance ratio, steadily increasing networtang bandwidth, and

large selection of applications and programming tools, workstation clusters have be¬

come an increasingly popular source of computing resources in recent years Work¬

stations can either be dedicated to the task of executing computauonally intensive



2 CHAPTER I INTRODUCTION

background applications or an opportunistic approach can be used Opportunistic
clusters [PL951 attempt to make the spare computing resources of interactively used

desktop workstations available for computing intensive applications

Today s academic and industrial settings often offer the potential for large oppor¬

tunistic clusters consisting of a heterogeneous collection of dozens, if not hundreds,

of workstations By their very nature, opportunistic clusters are highly dynamic since

they are based on a coexistence between the batch environment and the interactive

workstation users, who can regain control of "their" workstation by a single keystroke
However, equipment in workstation environments is often underutilized, with proces¬

sor utilization as low as 30% [GSS89]

1.2 The DMW Scheduler

To speed up the execution of complex simulations by improving the utilization of cus¬

tomers' computing resources. Integrated Systems Engineering AG (ISE), a vendor of

process and device simulation software decided to integrate a distributed scheduling

facility into its TCAD (Technology CAD) environment This project was realized in

an industrial collaboration between ISE and the ETH Zurich Integrated Systems Labo¬

ratory (IIS), resulting in the DMW1 distributed scheduler implemented by me

In this dissertation, I will discuss the design and implementation of DMW, comparing

it to other schedulers described in the literature I will cover both some aspects widely
discussed m existing literature, such as scheduling policy and job transfer mechanisms,

and other aspects, such as secunty and coexistence with software licensing enforcement

mechanisms, which are not usually discussed in research systems, but are essential for

operating in a commercial environment

The overall goals of a distributed scheduler for opportunistic clusters are to execute

schedules correctly and as efficiently as possible, without disturbing interactive users

of the workstations on which background jobs are scheduled I shall present empirical
data to evaluate DMW against these goals

1.3 Structure of this Dissertation

This dissertation is structured in three parts, corresponding to the planning, implemen

tation, and evaluation components of the DMW project

1.3.1 Objectives And Related Work

In the first part, I discuss the planning and background material for DMW Chapter 2

highlights the objectives we had for our scheduler and sketches the computing envi¬

ronment in which it operates Chapter 3 gives an overview of approaches to distributed

scheduling and gives a survey of the existing literature in the field

1.3.2 The DMW Scheduler: Design and Implementation

The next three chapters describe the implementation of the DMW scheduler Chap

ter 4 discusses the implemented scheduling policies, chapter 5 discusses the underlying

'The acronym DMW stands for The Devil Makes Work for Idle Hands a traditional warning of the moral

penis of under utilized resources
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mechanisms, and chapter 6 highlights some further implementation issues of interest

1.3.3 Experiences with DMW

The dissertation concludes with an evaluation section Chapter 7 discusses various per¬

formance measurements, proceeding from local scheduling of single processes to the

execution of complex distributed simulations Chapter 8 presents an overall assess¬

ment of our scheduling approach and gives cntena for the successful application of

distnbuted scheduling in commercial systems

1.3.4 Appendixes

Appendix A briefly discusses ISE's GENESISe simulation environment into which the

DMW scheduler is embedded

The mathematically onented papers about scheduling frequently assume some fa-

milianty with queueing theory or at least its terminology Appendix B sketches the

mathematical foundations of queueing theory

Appendix C discusses the notation used in the diagrams of class relationships in

Chapter 6

The cited literature uses a wide variety of terminology, in the interest of consis¬

tency, I have paraphrased it using the terminology employed elsewhere throughout this

dissertation and explained in the glossary Some of the more commonly found ongmal
terms are preserved as cross references in the index



Leer - Vide - Empty



Parti

Objectives and Related Work

5



Leer - Vide - Empty



Chapter 2

Scheduler Objectives
"Would you tell me, please, which way I ought to go from here'1

"That depends a good deal on where you want to get to," said the Cat

"I don't much care where—" said Alice

Then it doesn't matter which way you go," said the Cat

Lewis Carroll, Alice's Adventures in Wonderland

In this chapter, I discuss the design objectives for the DMW scheduler, starting with a

specification of the task it is expected to perform and the type ofjobs it executes

While many of the systems described in the literature were designed for special

purpose environments and had considerable freedom to choose (and often even mod¬

ify) target hosts and operating systems (Like, for instance, the Stealth [KC91] system

discussed in section 3 2 2), DMW has to serve the computing needs of an existing com¬

mercial software system on the existing general purpose hardware at customer sites

Thus, the intended target environment is a very influential part of the system specifica¬
tion

The commercial nature of the jobs executed by DMW also requires some care to keep
the execution of jobs within the licensing conditions in force at that site The final

section of this chapter briefly discusses those licensing related requirements

2.1 Purpose of the Scheduler

The scheduler needs to accept a schedule consisting of a number ofjobs communicat¬

ing through ordinary disk files Most of the jobs are subject to data dependences Some

of their input data is computed by other jobs, so they cannot start before the other jobs
have finished Furthermore, users may prefer some of the simulations to finish earlier

to provide an early indication of the trends in a set of experiments These preferences
are expressed through priority dependences The dependent job is not permitted to

start before the prerequisite has been started Data and priority dependences connect

the jobs in a set of directed, acyclic dependence graphs

Using available hosts from a set of networked computers (typically workstations

with one to four processors), the scheduler needs to execute the schedule as quickly

as possible, while satisfying all data dependence relations Most of the target hosts

will not be dedicated to the background jobs placed by the scheduler, but will also

have interactive users running foreground jobs For the scheduler to be tolerated by
interactive users, it must avoid interfering with the performance of foreground jobs

7
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2.2 Work Load

The scheduler is used to run both batch oriented and interactive jobs Many of the

jobs are expected to require substantial processing time (several minutes to several

hours) and memory (up to several hundred megabytes) The jobs perform file I/O and

some of them use the X window system, but none of them use any other interprocess

communication facilities

2.3 Target Machines and Operating Systems

The scheduler must be able to run on at least

• Sun SPARC workstations running SunOS 4 and Solans 2

• Hewlett-Packard PA-RISC workstations running HP-UX 9 and later

• DEC Alpha workstations running DEC OSF/1

• IBM RS/6000 workstations running AIX 3 2 and later

• Intel 80x86 workstations running Linux

• SGI MIPS workstations running IRIX

and must be portable to other systems with moderate effort, provided those systems

meet die following requirements

POSIX Compliance The operating system must be reasonably conformant to die IEEE

1003 1 (POSIX 1) [IEE90, Lew91] standard

BSD Sockets The operating system must offer a TCP/IP implementation with a BSD

socket [Ste90] compatible programming interface

Common File Namespace All target systems must support a commonfile namespace,
l e, the target systems must run a distributed file system like Sun's NFS [Mic88a]

or the Andrew File System [Zay91], and all files related to the jobs to be sched

uled must be accessible on all hosts under the same file name

Trusted Users The user names of scheduler users must be trusted on all target sys¬

tems, i e, they must be able to log into all target systems without providing

a password This is usually achieved with the hosts equiv or the rhosts

mechanisms, both of which are not unproblematic from a secunty perspective

2.4 Heterogeneity

In general, the scheduler will operate in a heterogeneous environment consisting of

workstations equipped with a small number of microprocessors (typically 1, but occa¬

sionally also up to 4 or more), running a variety of the operating systems mentioned

above and configured with widely varying amounts of main memory

The scheduler must allow as much interoperation as possible and transparently en¬

sure safe operation where operating systems are not interoperable, e g ,
when migrating

jobs It assumes, on the other hand, that all input and output files read and wntten by
the simulation tools are platform independent
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2.5 Scheduling Restrictions

When scheduling jobs, the scheduler has to take into account restrictions imposed by

licensing agreements of the site or by the operating environment

2.5.1 Licensing Restrictions

Licenses for the simulation tools are either/ioatmg, limiting the total number of copies

of a program running on a group of hosts, or node locked, specifying a fixed set of hosts

on which execution of the program is permitted

Accordingly, the scheduler must not launch more instances of a program than the

floating license permits, or launch a program on a host not covered by the program's
node locked license

2.5.2 Operating Restrictions

There may also be technical reasons for not wanting some jobs to execute on some of

the hosts For instance, a simulator or a job known to be demanding on resources might
be restricted to a subset of possible hosts

The scheduler should therefore allow the user to specify permissible hosts on a

program by program or even a job by job basis
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Chapter 3

Related Work in Distributed

Scheduling
"Hold on," Hamlin says "I'll call and make a reservation" He clicks off,

leaving McDermott and myself on hold It's silent for a long time before

either one of us says anything
"You know,' I finally say "It will probably be impossible to get a

reservation there"

Bret Easton Ellis, American Psycho

In this chapter, I give an overview of the mam components needed in a distributed

scheduler and discuss the various approaches to them proposed in the existing literature

on the topic
In section 3 1,1 shall present a taxonomy of scheduling algorithms for distributed

systems Section 3 2 discusses operational distributed schedulers described in the liter¬

ature

The remaining sections discuss related work specifically addressing the areas of

scheduling algorithms (3 3), job migration mechanisms (3 4), and performance metrics

(3 5)

3.1 A Taxonomy of Schedulers

Casavant and Kuhl [CK88] categonze scheduling policies into a taxonomy which is

reproduced in Figure 3 1

Global vs. Local Local scheduling is concerned with running jobs on a single host,

typically via time-slicing Global scheduling determines on which host a job
runs Since our scheduler uses the standard scheduler provided by the host's

operating system for local scheduling, I will mostly discuss global scheduling

Static vs. Dynamic Static scheduling determines the assignment ofjobs to hosts at an

early stage—often at compile or link time Dynamic scheduling makes schedu¬

ling decisions based on information obtained at run time, like the load on a host

Static scheduling is not applicable to our problem domain, since it requires that

the execution times of the jobs and the availability of the hosts be known a pri¬

ory, neither of which is possible in our scheduler Thus, I will not discuss static

scheduling further

11
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local

nondistnbuted

cooperative noncooperative

Figure 3 1 Taxonomy of scheduling algonthms (adapted from [CK88])

Distributed vs. Nondistributed In a nondistnbuted (centralized) dynamic global sche¬

duler, all scheduling decisions are made on a single host, while in a distributed

scheduler, decision making is physically distributed among the hosts

Cooperative vs. Noncooperative Distributed dynamic global schedulers may either

cooperate among themselves, or each host may act entirely autonomously and

allocate its resources independently of the effect of its decisions on the rest of

the system

Shirazi et al [SHK95] and Shivaratn et al [SKS92] describe the policy employed
in a dynamic global scheduler as a combination of

• An information policy specifying what host load information is available to the

scheduler and when and how that information is transmitted to the scheduler

(e g on demand by the scheduler, periodically, or when the host state changes
significantly)

• A transfer policy determining under which conditions a job is transferred to a

different host This includes the question whether jobs will only be transferred

before they have started (non-preemptive transfer), or whether they can be sus¬

pended and migrated to a different host while executing (preemptive transfer)

• A placement policy deciding which host in a distributed system a job will be

transferred to and how to find that host (e g by choosing a random host, by
exhaustive polling, by probing a sample of hosts)

3.2 Existing Distributed Schedulers

A considerable number of operational distributed schedulers have been descnbed in

the literature In the following sections, I shall present a number of these systems, with

an emphasis on dynamic schedulers

Condor, descnbed in section 3 2 1, is an academic system in wide use over the last

10 years Condor aims to make minimal demands on the operating environment and
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to avoid interfering with the work of interactive users, employing^ofr migration for the

latter objective
The Stealth system, described in section 3 2 2, uses preemptive allocation of CPU,

memory, and I/O resources to avoid interfering with interactive users

PBS (section 3 2 3) and MESSIAHS (section 3 2 4) are two systems emphasizing

flexibility, and, in the case of MESSIAHS, autonomy

3.2.1 Condor

The Condor scheduling system [LLM88, LBRT97] operates in a workstation environ¬

ment, identifying idle workstations to schedule background jobs on them Condor

employs job migration to keep the interference of background jobs with the activities

of interactive users to an absolute minimum

As soon as interactive user activity is detected on a workstation with background

processes running, the background jobs are immediately suspended If the interactive

activity persists more than a few minutes, the background jobs are migrated to another

host The originating host is then kept free of background jobs until there has been

no interactive activity for a significant amount of time Since Condor is designed to

accommodate a wide range of administrative policies, tolerable levels of background
vs interactive activity can be defined using various criteria, e g, the time of day or the

number of keystrokes at the console during a penod

Usage ofCondor vanes widely, with heavy users requiring lots of computing capac¬

ity and light users only requiring remote computing capacity occasionally To provide
fair access to these user groups, Condor employs the Up-Down algorithm A counter is

maintained for each user, which is increased when the user has been allocated remote

computing capacity, and decreased when the user has tried to allocate remote capacity
but has been denied Users are then prioritized, with lower counter values receiving

higher priorities, and jobs of lower priority users are preempted to make room for the

jobs of higher priority users

Condor employs a compromise between distributed and nondistnbuted scheduling,
with a central coordinator allocating computing capacity to schedulers running on each

node and the nodes scheduling their assigned capacity among their own jobs
When a process is migrated to a new host. Condor maintains a shadow process on

the original host System calls on the new host are redirected into RPC calls communi¬

cating with the shadow process While this approach maintains network transparency
without requiring a common file namespace or remote login capability from the hosts,

it introduces residual dependencies at a considerable potential cost in performance and

reliability

3.2.2 Stealth

Like Condor, the Stealth system [KC91] is built on the principle that background jobs
are not to interfere with interactive use Instead of primarily relying on process mi¬

gration to achieve that goal. Stealth is using a modified Mach [ABG+86] kernel as

the local scheduler to insulate foreground jobs from the demands of background jobs

through priority resource allocation

• No background job will receive CPU time as long as a foreground job is eligible
to run
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• No background job will be able to claim a page of physical memory as long as a

foreground job is short of memory

• No background job will be able to claim a disk buffer as long as a foreground

job needs more disk buffers

• No disk I/O for a background job is done as long as there are pending I/O requests

from foreground jobs

With this approach, the authors report that Stealth allows background jobs to uti¬

lize up to 90% of available CPU capacity while their influence on the performance of

foreground jobs is negligible regardless of load conditions

Stealth employs a fully distributed global scheduler and is capable of migrating

processes, although this is rarely necessary in this system

3.2.3 PBS

PBS, the Portable Batch System [Hen95], is designed to flexibly support a variety of

batch scheduling policies on a mixture of hardware configurations The PBS imple¬
mentation is distributed across four types of daemon processes

• Job Servers own and manage jobs and job queues, are a central collection point

for jobs, and a focal point for client communication Job servers transfer jobs to

their associated Execution Servers or to other Job Servers

• Execution Servers control all batch jobs on a host They start jobs, monitor and

control their resource usage, and clean up after they complete

• Resource Monitors gather resource availability and usage information about the

host on which they run

• Schedulers obtain information aboutjobs ready to run from their Job Server and

about resource availability from the Resource Monitors They then direct the Job

Server as to what, if any, action should be taken

This distribution of responsibilities among servers allows different organizations

to be used eg on supercomputers (where all four daemons might run on the same

system) and on workstation clusters managed as a single subsystem (where each host

would ran its own Execution Server and Resource Monitor, but only one Job Server

and Scheduler would control the entire subsystem)
PBS emphasizes easy development of new scheduling policies, offering the possi¬

bility to

• write scheduling scripts in BASL, a BAtch Scheduling Language designed for

PBS

• wnte schedulers in Tel (Tool Command Language)[Ous94], a standard scripting

language

• write schedulers in C or another traditional programming language, using the

direct API supplied for PBS

Henderson [Hen95] shows that this flexibility has only a negligible cost in terms of

performance
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Figure 3 2 PBS daemons on different system configurations
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3.2.4 MESSIAHS

The MESSIAHS system [Cha93] provides automated support for task placement in

heterogeneous distributed systems with a particular emphasis on preserving autonomy

in vanous forms.

design autonomy Each host's hardware and operating system may be designed (or

purchased) independently of the architecture of the other hosts

communication autonomy Each host can make independent decisions about what in¬

formation to release, what messages to send and reply to, and when to send them

administrative authority Each host sets its own resource allocation policies, inde¬

pendent of the policies of other systems

execution autonomy Each host decides whether it will honor a request to execute a

job and has the right to stop executing a job it had previously accepted

Based on these principles, MESSIAHS provides a flexible framework which can

be adapted to a variety of static and dynamic scheduhng algonthms While mostly

preserving all of the above autonomies (obviously, preserving e g total communica¬

tion autonomy is unrealistic for a distributed algonthm), MESSIAHS produces quite

efficient schedules

3.3 Related Work: Scheduling Algorithms

This section discusses vanous approaches taken in scheduhng algonthms Zhou and

Ferran (section 3 3 1), Theimer and Lantz (section 3 3 2), and Shivaratn, Krueger, and

Singhal (section 3 3 3) discuss information and placement policies in traditional, non-

adaptive algonthms
In contrast, Ferguson et al (section 3 3 4) propose an adaptive, decentralized ap¬

proach based on concepts drawn from microeconomics, and Kipersztok and Patterson

(section 3 3 5) present a scheduler using a placement policy based on fuzzy logic

3.3.1 Zhou and Ferrari

Zhou and Ferran [ZF87] studied five different sender initiated (see section 3 3 3) sche¬

duling algonthms (some of them proposed by Eager et al [ELZ86]) as shown in Fig¬
ure 3 3

DISTED On each host, a Load Information Manager (LIM) computes a load index

If the value has changed significantly, it is broadcast to all other LIMs Each

scheduler attempts to place new jobs with the local LIM If the local load is

above a threshold, the LIM places the job instead on the host with the lightest
load

GLOBAL A central LIM receives the load information from all other LIMs and broad¬

casts a vector containing all load information

CENTRAL The central LIM receives the load information as in GLOBAL, but han¬

dles all job placement requests in the system
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Figure 3.3: Schedulers described by Zhou and Ferrari [ZF87]
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LOWEST Load information is only sent out on demand To place a job, the local LIM

polls a relatively small, randomly chosen, subset of the other LIMs and places
the job with the best host of this subset

RANDOM No load information is exchanged, jobs are transferred to a randomly cho¬

sen host

Evaluating implementations of these algonthms on a network of six diskless Sun-2

workstations supported by a central file server, the authors found that

• All five algonthms provided significant performance improvements over running

the workload on a single processor

• RANDOM with its arbitranness and DISTED with its N2 communications struc¬

ture performed considerably worse than the other three algonthms

• LOWEST provided the best performance

In simulations of systems with up to 49 hosts, GLOBAL, CENTRAL, and LOW¬

EST scaled up well and remained comparable in performance while DISTED perfor¬
mance detenorated considerably with increasing system size

3.3.2 Theimer and Lantz

Theimer and Lantz [TL88] studied a similar set of algonthms as Zhou and Ferran, but

on a considerably bigger network consisting of about 70 hosts running the V Operating

System [Ber86], basing their system on the multicasting operations and the transparent

remote execution facility provided in V

The authors modelled and implemented a centralized algonthm similar to Zhou and

Ferran's CENTRAL and a decentralized algonthm similar to DISTED and LOWEST

Both algonthms were refined with the introduction of an update group and an idle

group, both apparently implemented as V multicast groups

Machines join the idle group if they have idle resources available for remote ex¬

ecution requests and leave it if they are entirely busy Machines in the idle group

send infrequent updates of their load status A cutoff value is determined based on the

demand for remote scheduling and the known average load This cutoff value is pen-

odically multicast to the idle group, and hosts whose load average is below that cutoff

value join the update group Machines in the update group are quened about their load

once every 10 seconds

For their distnbuted algonthm, Theimer and Lantz point out that algonthms such as

LOWEST rely on statistical assumptions of a homogeneous workload, and they argue

that

an environment consisting pnncipally of personal workstations tends

to produce a load distribution that can vary greatly in magnitude over time

and is not homogeneous in nature Hosts may be idle or running interactive

applications or compute-intensive batch jobs or both "Clusters" of hosts

may be idle when events such as group meetings occur

So, instead of sampling only a subset of hosts as in LOWEST, load quenes are sent

to all hosts in the update group (comparable to DISTED), but only very lightly loaded

hosts answer immediately
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Other hosts delay their responses by an interval

A = Sir,

where 8 is a standard delay interval, X is the load of the host normalized to the interval

[0,1] and r is a uniformly distributed random value The scheduler discards all but the

first n responses where n is very small compared to the size of the update group

This algorithm has several favorable properties

• The load correlated delay makes less loaded hosts more likely to be among the

first n to respond

• The random factor r improves the chance that even when the load on all hosts is

high, some hosts will respond quickly

• The authors report that the performance of this selection scheme is within 2% of

the "perfect centralized scheme if n = 3 and within 1% if n = 6

However replies are still sent by all hosts in the update group, which takes up

network bandwidth and ultimately limits scalability of this algorithm Furthermore,

redundant replies may fill up the available buffers of the network software, causing

other, useful network packets to be discarded

The distributed algorithm also has to handle the problem of contention, that several

schedulers decide simultaneously to submit jobs to the same host The solution pro¬

posed by the authors is to include in the execution request the load that the scheduler

expects to see on the host If the actual load is significantly higher, either the target host

selects an alternate host by repeating the selection procedure, or the scheduler already
sends an alternate host with the execution request and the target host simply forwards

the request there

While Theimer and Lanz conclude that their centralized system performs faster and

scales to a higher number of hosts, they point out that a decentralized system is simpler,
as it does not have to include recovery procedures for a failure of the central host They
therefore recommend a decentralized scheduler and

that one should switch to a centralized design when scalability beyond a

few hundred hosts becomes a significant issue, or when other issues (such

as global fairness or network management) come into play

3.3.3 Shivaratri, Krueger, and Singhal

Shivaratn et al [SKS92] studied various distributed load sharing algorithms to transfer

jobs from sender hosts with higher load averages to receiver hosts with lower load

averages They classified the algorithms they studied into

Sender Initiated Heavily loaded hosts transfer newly arriving jobs to other hosts in

the system As discussed in section 3 3 1, there are various approaches to deter¬

mining the receiver, from exhaustive polling to an entirely random choice

Sender initiated algorithms have the advantage that they do not need to employ

job migration However, at high system loads, they tend to cause instability The

polling and transfer activity puts an increasing strain on the system while benefits

diminish
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Receiver Initiated Lightly loaded hosts migrate running jobs from other hosts in the

system

These algonthms work well at high system loads, but they have to rely on job

migration, which tends to be more complex to implement than job placement
Furthermore, if only a few hosts in the system are heavily loaded, receiver initi¬

ated algorithms can easily miss them

Symmetrically Initiated Both of the above mechanisms are employed simultaneously

The sender-initiated component is successful at finding underloaded nodes at low

system loads, and the receiver initiated component is successful at finding over¬

loaded nodes at high system loads However, symmetrically initiated algonthms
also combine the disadvantages, requinng job migration and causing instability
at high loads

Adaptive Symmetrically Initiated To avoid instability, the adaptive symmetrical al¬

gonthm keeps track of past polling responses to classify other hosts as senders

(high load), receivers (low load), and neutral (average load) The sender initi¬

ated component only polls hosts classified as receivers, and thus reduces activity

at high loads The receiver initiated component tnes first senders, then neutral

hosts, and finally receivers

While this approach causes extra activity at low system loads, it keeps classifica¬

tions up to date and the resources consumed do not adversely affect performance
since extra processing capacity is available anyway

Adaptive Sender Initiated This algonthm both classifies hosts and keeps track of

how the own host is classified by other hosts The receiver initiated compo¬

nent does not transfer jobs, but solely informs hosts which have the current host

classified as a sender or neutral that the host has become a receiver

Thus, this algonthm combines the advantages of the adaptive symmetncal and

sender initiated algonthms, avoiding both instability and the need for job migra¬

tion

The authors simulated these algonthms for a system consisting of 40 hosts, as¬

suming independently exponentially distnbuted task interamval times and service de

mands (MjM) and companng the algonthms with a system doing no load distnbuting

(40*M/M/l) and a (theoretical) system doing perfect load distnbuting without com¬

munication overhead (M/M/40)
Varying the overall system load for a homogeneous system, wherejobs were equally

likely to amve at any of the hosts, the authors found that

• All of the algonthms studied provided a substantial performance improvement

over a system without load shanng

• Sender initiated algonthms (the authors simulated the algonthms called RAN¬

DOM and LOWEST by Zhou and Ferrari) were better than a receiver initiated

algonthm (with random probing) at low system loads, and the receiver initiated

algonthm was better at high system loads

• The adaptive symmetncally initiated algonthm performed best under all loads
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• The adaptive sender initiated algorithm was also better than any of the nonadap-
tive algorithms, except at very high system loads While this algorithm did not

quite reach the performance of the adaptive symmetrically initiated algorithm, it

worked purely with job placement and did not require job migration

In a second comparison, the authors simulated a heterogeneous system, where they
varied the number of nodes where jobs arrived, while keeping the overall system load

constant at 0 85 (1 e the incoming workload was 85% of the total CPU capacity of the

system), and found that

• A system without load sharing would become instable when the number of load

generating nodes was less than or equal to 33

• The receiver initiated algorithm would become instable for 35 or fewer load

generating nodes, as at the high system load simulated, random probes were

quickly losing effectiveness at locating a sender node when only a few nodes

were senders

• The LOWEST sender initiated algorithm would become instable for 25 or fewer

load generating nodes as the remaining load generating nodes were receiving

jobs very quickly and could not locate receiver nodes quickly enough, with many

of the random polls for load information failing to locate suitable receivers

• The symmetrically initiated and adaptive sender initiated algorithms would be¬

come instable for 15 or fewer load generating nodes Both algorithms were able

to transferjobs more quickly and effectively than the above algorithms, but even¬

tually, the symmetrically initiated algorithm would fail because of overly inef¬

fective polling, and the adaptive sender initiated algorithm would fail because its

inability to perform job migration prevented it from using the receivers it found

• Surprisingly, the simple RANDOM sender initiated algorithm, while never per¬

forming very well, was able to avoid instability even at extreme levels of hetero¬

geneity

• However, the adaptive symmetrically initiated algorithm performed better than

all other algorithms, and in fact, it performed even better with increasing hetero¬

geneity, as the classification of hosts as senders or receivers would change less

frequently

Thus, the authors concluded that the adaptive symmetrically initiated algorithm

provided the best performance of all algorithms they discussed However, it should be

noted that all the algorithms they studied v/erejully distributed without a centralized

component The authors rejected approaches like Zhou and Ferrari's GLOBAL and

CENTRAL because of concerns about

Robustness when the host running the central component would fail

Performance when the central component would become a performance bottleneck

in systems with many hosts

These concerns are not shared universally Litzkow et al [LLM88] estimated even

in 1988 that the central coordinator in Condor would have been able to handle up to

100 hosts without even having a noticeable effect on the perceived performance of
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interactive users at that host, and improvements in hardware since then have further

raised that limit (Livny reports in a 1997 paper [LBRT97] that the Condor coordinator

now manages more than 300 hosts)

3.3.4 Ferguson et al.

As an alternative to the increasing complexity of traditional, cooperation based sche¬

duling policies, Ferguson, Yemini, and Nikolau [FYN88] propose an approach based

on concepts drawn from microeconomics Jobs enter the scheduling system with some

initial amount of money and seek to purchase CPU time on some host and network

capacity between that host and the originating host of the system Machines auction

off their CPU time and link capacity to the highest bidder and advertise price changes
to their neighbors Jobs seek to be served as cheaply as possible, hosts try to earn as

much money as possible, all agents in the system strive to maximize their individual

good, without concern for the entire system

In simulations with varying job bidding policies and host auction methods, Fergu¬

son et al demonstrate that their approach

• Is usually as good, and sometimes much better than a traditional approach in a

system based on point-to-point links

• Is inherently modular and decentralized and thus less complex than the alterna¬

tives

• Is inherently stable Even though there is no arbitrary limit on the number of

migrations a job can perform, economic considerations cause jobs to migrate

less as the increasing demand causes link prices to nse

• Can accommodate a diversity of coexisting policies, as long as there is a common

market mechanism

The approach described by Ferguson et al assumes a network with point-to-point

links and jobs whose CPU demand is known in advance In our system, these assump¬

tions do not hold, and it is not clear how well their approach would work in this case

3.3.5 Kipersztok and Patterson

Kipersztok and Patterson [KP95] designed a control system that uses fuzzy logic to

prioritize the allocation of parallel jobs to, and their suspension from, a cluster of net¬

worked workstations Their system acts as the policy component of some existing

network queueing system (the authors used DQS [Gre94] for their research)

Newly arriving and suspended jobs get assigned priorities and queued according

to their priorities by the Fuzzy Controller (FC) Jobs are then scheduled until the FC

determines that no further jobs should be started at the moment Jobs running on the

cluster are then also assigned pnonties, low pnonty jobs are suspended to make room

for high pnonty jobs still in the queue until no job in the queue has a higher pnonty

than a job running on the cluster

Pnonties forjobs are determined for a number Nc of cluster parameters, where each

cluster parameter has a weight w, and the job has a susceptibility sLJ for each parameter

The pnonty is then defined as
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such that, the higher the weight of a cluster parameter and the higher the susceptibility
of the job to that parameter, the lower the priority of the job The highest priorities

are assigned to jobs that are least sensitive to the parameters which characterize the

cluster, and dunng times when the cluster is least loaded and thus its parameters are

least important

The parameters wt and stj are each computed using & fuzzy control algorithm The

approach of separately treating the contribution of each cluster parameter to the priority

has the advantage of keeping the number of rules for each of the fuzzy control systems

small and allowing the system to be extensible, adding 2 extra control systems for each

additional parameter

Each fuzzy control system is a function obtained by

• Identifying the fuzzy input and output variables

• Partitioning the domain ofeach variable into fuzzy, partially overlapping sets and

define membership functions to each of the sets As an example, a network that

is 20% loaded could be assigned a 50% probability of being in the "low load"

set and a 10% probability of being in the "medium load" set

• Mapping inputs to outputs using appropriate heuristics

Kipersztok and Patterson implemented a version of their system with two parame¬

ters Number of available hosts and network load The four fuzzy control algorithms

guided by the following heuristics

• The Weight FactorforNumberofMachines decreases when many hosts are avail¬

able, it increases when either few hosts are available or when the network is

highly loaded (as a parallel algorithm requiring many hosts will require more

network resources)

• The Weight Factorfor Network Load increases and decreases with the network

load itself

• The Susceptibility Factorfor Number of Machines increases as the number of

hosts a job needs increases

• The Susceptibility Factorfor Network Load increases both with the communica¬

tion requirements of a job and with the number of hosts the job requests

The authors present a small example comparing standard DQS scheduling (which
is simply FIFO) with scheduling of DQS augmented with their fuzzy controller and

show that the run time under pure DQS is about 30% longer in this example While the

system as implemented is designed for parallel jobs, the pnnciples for fuzzy control

described would apply to sequential jobs as well
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3.4 Related Work: Job Migration Mechanisms

To support preemptive job transfers, schedulers need a migration mechanism Eski¬

cioglu (section 3 4 1) discusses a number of different mechanisms for migrating jobs
between hosts running the same operating system on the same hardware Roush and

Campbell (section 3 4 2) present a mechanism based on the techniques discussed by

Eskicioglu, but running much faster

Theimer and Hayes (section 3 4 3) present an approach to migrate jobs between

different operating systems and hardware platforms by capturing the state of programs

to be migrated in a high level language program and recompiling that program on the

new host

3.4.1 Eskicioglu

Eskicioglu [Esk89] discusses the design of job migration facilities He identifies the

time spent in transferring the virtual memory of a job as the dominant cost of migration
and discusses four different transfer methods

Entire Virtual Memory Transfer This is the most primitive scheme The job on the

source host is suspended, the entire virtual memory is transferred to the desti¬

nation host along with the rest of the job state and finally, the job is allowed to

resume execution on the destination host

While this scheme is simple and can be implemented with minimal support from

the operating system, the execution ofjobs usually stops for many seconds during
a migration, which makes the scheme unattractive for real-time or interactive

applications Zayas [Zay87] reported that on average almost 60% of the virtual

memory of migrated jobs is never referenced after a migration, so transferring
the entire memory is wasteful

Pre-copying After the migration decision has been made, the source host starts trans¬

ferring the job state to the destination host while thejob still runs Memory pages

modified during that time are then transferred again and this process is repeated
until either only a few modified pages remain or the number of modified pages

stabilizes Finally, the job is suspended and the remaining modified pages are

transferred

This scheme substantially reduces the time a job is stopped dunng migration, but

it requires operating system support to identify modified pages Furthermore,

pre-copying requires even more communication resources than entire memory

transfer

Copy on Reference This scheme transfers all of the state information except the vir¬

tual memory Virtual memory pages are then only transferred when they are

referenced by the job on the destination host

This scheme minimizes the number of pages transferred, but creates a resid

ual dependency on the source host and is slower because all page faults require

communication with the source host Implementing copy on reference generally

requires modifications in the memory management subsystem of the underlying

operating system
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Enhanced Copy on Reference Instead of keeping the virtual memory image, the sour¬

ce host writes modified pages to a file server and the destination host requests

pages from the file server

This scheme avoids the residual dependency, but page faults may be slower than

with algorithms communicating directly with the source host Implementing
enhanced copy on reference may require substantial changes to the underlying

operating system's memory management and disk organization, eg to allow

one host to write to the swap disk space of another host

3.4.2 Roush and Campbell

Roush and Campbell [RC96] discuss the Freeze Free algorithm, a process migration

algorithm they designed to minimize process migration latency Freeze Free, a refine¬

ment of the Copy on Reference and Enhanced Copy on Reference techniques described

in section 3 4 1, migrates a process by performing the following steps on the old host

• The migrating process is suspended

• The process control and execution state are sent to the new host

• The current code page (determined from the program counter), heap page (de¬
termined from a heuristic search in the instruction stream for a load or store

instruction), and stack page (determined from the stack pointer) are sent to the

new host

• The rest of the stack is sent to the new host

• The communication and file state are sent to the new host

• The dirty memory and file cache pages are flushed to the file server

• A message is sent to the new host indicating that the transfer is complete

• If an acknowledgment of migration acceptance has been received in the mean¬

time, the process status on the old host is discarded

The new host sends a message indicating that it accepts the migration upon re¬

ceiving the process control and execution state, but the old host does not wait on this

message As soon as the current stack page is received, the process is resumed on the

new host, which can run since it has its essential pages in memory The new host knows

which virtual memory pages are dirty at the time the migration started Requests for

these pages are sent to the old host until all of them have been flushed to the file server,

while requests for clean pages are sent to the file server After the old host has sent

the message indicating that all duty pages have been flushed, all paging requests are

handled by the file server

Freeze Free also minimizes the period during which message processing for the mi¬

grating process is blocked by employing the mechanisms of the underlying CHOICES

[CIRM93] operating system and j-Kemel [HP91] network communications architec¬

ture

• After migration starts, incoming messages are retained but not yet delivered to

the process
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• After the transfer of the communication status begins, incoming messages are

rejected with a message asking the originator to update Us location information

for this process and retransmit the message to the new host

• As soon as the transfer of the communication status is complete, the new instance

of the process enables message handling

Roush and Campbell provide measurements to demonstrate that Freeze Free dras¬

tically reduces migration latency Between SPARCstation 2 computers connected with

a 10 Mb/s Ethernet, migrating a process has a latency of only 14ms, compared to la¬

tency times of 250ms to 750ms for all other process migration systems described m

the literature In a detailed breakdown of migration costs, the authors show that the

time taken for the Latency Period is dominated by the cost of gathering the process

state information and traversing the process structures The cost of the Demand Paging
Period, on the other hand, is dominated by communication costs and thus will profit
from faster networking hardware

Like the enhanced copy on reference scheme described by Eskicioglu, the imple¬
mentation of freeze free assumes substantial control over the underlying operating sys¬

tem's memory and swap space management, which makes it difficult to implement
in existing general purpose systems such as the hosts on which the DMW scheduler is

designed to run

3.4.3 Theimer and Hayes

Most process migration systems are limited to migrating jobs between machines with

nearly identical hardware and operating systems Theimer and Hayes [TH91] propose

to overcome that restriction by capturing the state of the migrating process in a machine

independent high-level or intermediate-level language program and recompiling and

running that program on the target machine

As an example, consider a call stack where procedure A calls procedure B, which

in turn calls procedure C The migration mechanism will create procedures B1 and CI,

which reflect the state of B and C at migration time If B is, e g

procedure B

sO,

for (i=0, i<n i++) (

si,

CO,

s2,

)

S3,

and the loop has executed fully four times, B would be transformed into a procedure
Bl

procedure Bl

Imt_Local_Variables, /* Includes a statement i = 4, */

CIO,

goto L,

/* Copy of B, with label */
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sO,

for (i=0, i<n, i++) {

si,

CO,

L

s2,

)

S3

This procedure initializes its local variables, and calls other modified procedures
further up the stack When C1 returns, it will have done all the work the fifth invocation

of C was committed to do before the migration, and the goto will cause resumption of

the work B was committed to Note that each modified procedure is called only once

Within the loop, C, not CI, is still called

The ability to capture the state of a process this way imposes some requirements on

the language and implementation used, notably

• Each program must contain a number of migration points, such that whenever

migration is requested, the program will reach a migration point within a limited

amount of time

• At each migration point, it must be possible to translate the physical machine

state into an abstract, machine-independent program For that purpose, the source

level symbol tables generated by compilers for symbolic debuggers can be used

• Each invocation of a procedure containing migration points must itself be a mi¬

gration point, as the state of all procedures on the call stack has to be capturable

• The heap must be in a consistent state, all pointers can be interpreted correctly,
and every field of every heap object must be defined unambiguously

Most programming languages in common use are not sufficiently well-defined to

meet the above criteria, which has hindered the practical application of Theimer and

Hayes' proposal In recent years, however, the Java programming language, which has

a well-defined execution model, heap data model, and abstract machine, has gained

widespread acceptance, and heterogeneous migration work based on Java is currently
in progress [PP97]

3.5 Related Work: Performance Metrics

Pan of an information policy is the choice of a suitable load index to describe the state

of a system Ferran and Zhou in secuon 3 5 1 study vanous load indices and the impact

they have on scheduling performance
Devarakonda and Iyer (section 3 5 2) developed a model to predict the resource

requirements ofjobs to be run based on past executions of the same program

Wang and Morns (section 3 5 3) propose a quality metnc to charactenze the per¬

formance and faimess of a scheduling algonthm and apply it to vanous classes of

scheduling algonthms
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3.5.1 Ferrari and Zhou

Ferran and Zhou [FZ88] studied the impact that the choice of a load index had on

scheduling performance in otherwise identical schedulers They identify a number of

desirable properties for a load index A good load index should

• reflect the user's qualitative estimates of the current load on a host,

• be usable to predict the load in the near/ware, since the response time of a job
will be affected by the future load rather than the present one,

• be relatively stable over time without excessive fluctuations,

• have a simple relationship with the performance index, so that its value can be

easily translated into the expected performance of a job transferred to the host

The authors chose a scheduling algorithm with sender initiated job placement and

centralized load information gathenng (discussed in Section 3 3 1 under the name

GLOBAL) and combined it with a number of load indices, varying four factors

• The load indices themselves The authors used

- The instantaneous CPU queue length

- The exponentially smoothed CPU queue length

- The sum of the averaged CPU queue, I/O queue (for both file and pag¬

ing/swapping I/O), and memory queue1

- The average CPU utilization over a recent penod

Resource queue lengths q, were sampled at 10 ms intervals, averaged over one-

second intervals and exponentially smoothed over the last T seconds

Go = 0,

ft+i = Q,(l-e-T) + q,+ ie-T

• The interval 7" over which averages were computed

• The interval P at which load information updates were provided to schedulers

• The workload used for measurements Three different synthetic workloads were

constructed out of common UNIX commands and sleep commands

- The light (L) scnpts generated a CPU utilization of 30%-45%

- The moderate (M) scnpts generated a CPU utilization of 60%-70%

- The heavy (H) scnpts generated a CPU utilization of 70%-85%

'The authors identified a number of places in the kernel where processes were queueing up for memory
resources such as buffer space and memory pages and combined all of these queues into a 'memory queue
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Tests were conducted on 6 workstations, the canonical workload was to have two

hosts running each of the three types of loads (2L, 2M, 2H), the alternate work¬

load studied consisted of all hosts running moderate loads (6M) The average

process in these workloads took 7 45s to execute

A first test series used eleven different load indices with the canonical work load

• The instantaneous CPU queue length

• The CPU queue length averaged over Is, 4s, 20s, and 60s

• CPU, I/O, and Memory queue lengths averaged over 4s, 20s, and 60s

• The standard 1 minute UNIX load average

• CPU utilization averaged over 10s and 60s

The results from this series supported a number of conclusions

• All of the indices improved response time by 20%-40%

• CPU queue length based indices performed significantly better than CPU uti¬

lization based indices The reason for this was probably that when hosts were

heavily loaded, CPU utilization approached 100% and ceased to reflect the exact

load CPU queue lengths, however, did not decrease in accuracy at heavy loads

• Indices based on a combination of several resource queue lengths did not outper¬

form indices based on CPU utilization alone

• Averaged indices performed better than instantaneous indices, but performance
decreased significantly when the averaging interval T was 20s or longer

A second series of experiments was conducted using the more balanced 6M work¬

load While the relative ranking of load indices remained quite similar, performance

gains were only 2%-26% and poor load indices yielded little or no performance im¬

provements

In a final series of experiments, the authors varied the update interval P As ex¬

pected, frequent updates (P < 10s) worked best, but had a high communication cost

Even when updates were only sent every minute, the system still worked significantly
better than a system without load balancing

In applying the results of Ferrari and Zhou to the present work, it should be noted

that the workloads they studied were very different from the ones that our scheduler

has to handle The average running time of jobs in our system is several orders of

magnitude longer than the 8 seconds in their workloads, so it is plausible that longer

averaging and update intervals work better in our system than in tfieirs

3.5.2 Devarakonda and Iyer

Devarakonda and Iyer [DI89] argued that with proper initial placement of jobs, con¬

siderable savings in the cost of job migrations and global system status updates could

be achieved In order to aid initial placement decisions, they developed a statistical

approach for predicting the CPU time, file I/O, and memory requirements of a job at

creation time, based on the identity of the program to be executed
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Analyzing the resource usage of more than 65000 jobs gathered during one week

of operation on a VAX11/780 running BSD UNIX, the authors partitioned the jobs into

seven statistical clusters For each program (such as cc, Is), they then built a transition

model of the probabilities p,j of the next execution of a program to require resources

characteristic for cluster j given that its last execution was characteristic for cluster i

Predicting the resource requirements on jobs based on such transition models, De-

varakonda and Iyer achieved a good correlation between predicted and actual require¬

ments For all three resources, correlation coefficients were more than 0 8 and over

80% of prediction errors were less than 0 5 standard deviations in magnitude How¬

ever, given that their work was performed on a general purpose workload consisting

of rather small and short-running jobs, it is doubtful whether their model would be

directly applicable to our problem domain

3.5.3 Wang and Morris

Wang and Moms [WM85] propose a taxonomy of load sharing algonthms based on

• The distinction between source initiative strategies, where schedulers decide on

the hosts to place their jobs on and server initiative strategies, where hosts decide

on the schedulers from which they accept jobs

• The amount of information used by the strategy

Their taxonomy is summarized in table 3 1 The authors note that other literature

refers to level 1 algonthms as static, to level 5 algonthms as dynamic, and sometimes

to level 3 algonthms as semidynamic
To compare the performance of these algonthms, Wang and Morns introduce a

performance metnc they call the Q factor (quality of load shanng factor) They define

the Q-factor of an algonthm A as

mean response time over all jobs under FCFS

max, {mean response time for ith scheduler under algonthm A]

where p, the aggregated utilization of the system, is defined as

with N being the number of schedulers, K the number of hosts, (T1 the mean service

time of a job, and X, the job arnval rate at the ith scheduler

The Q-factor, which is usually between zero and unity (but can be larger, e g for

SJF scheduling) both charactenzes the general performance of a system and exposes

any bias m performance against arnval at a particular scheduler

Wang and Morns then proceed to analyze 10 of the above algonthms for a system
with N schedulers and K hosts under vanous assumptions (in all but the last case

communication overhead is assumed to be negligible)

1 Poisson amvals, exponential service time distnbution (MjM)

2 Poisson amvals, deterministic (constant) service time distnbution (M/D)

3 Case 2) with K -> °°
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Level Source-Initiative Server-Initiative

1 host = /(sched)

eg source partition

sched = /(host)

e g server partition

2 host = /(sched, <n)

e g random splitting

sched = /(host, co)

eg random service

3 host = /(sched, co, sequence)

e g cyclic splitting

sched = /(host, co, sequence)

eg cyclic service

4 host = /(sched, co, sequence, host

idle status)

eg cyclic splitting preferring idle

hosts (not analyzed)

sched = /(host, co, sequence, sched¬

uler idle status)

eg cyclic service skipping idle

schedulers (not analyzed)

5 host = /(sched, co, sequence, host

load)

e g join shortest queue (JSQ)

sched = /(host, co, sequence, sched¬

uler queue length)

e g serve longest queue (SLQ)

6 host = /(sched, co, sequence, host

load, latest job departure from host)

e g JSQ using latest departure time

to break ties (not analyzed)

sched = /(host, co, sequence, sched¬

uler queue length, latest job arrival at

scheduler)

e g first come first served (FCFS)

7 host = /(sched, CO, sequence, host

load, departures of completed and re¬

maining jobs from host)

eg FCFS(notanalyzed)

sched = /(host, co, sequence, sched¬

uler queue length, job arrivals and ex¬

ecution times at scheduler)

eg shortest job first (SJF)

Table 3 1 Taxonomy of load shanng algonthms, adapted from [WM85] co stands for

a randomly generated parameter

4 Poisson amvals, hyperexponential service time distnbution {M/H)

5 Batched Poisson amvals, exponential service time distnbution (M^/M)

6 Case 1) with non-negligible communication overhead

Where possible, the authors used an exact analysis of the algonthms, while in other

cases, they had to resort to simulations They concluded that

• At least in the case of negligible communication overhead, server-initiative algo¬
nthms tended to outperform source-initiative algonthms with the same level of

information

• In particular, the cyclic service algonthm performed surpnsingly well in this

situation, considenng how little information it required

• When communication overhead is significant, some algonthms, such as JSQ,

may become much more expensive, depending on vanous factors such as the

ratioof/VtoK'
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Chapter 4

DMW: Policy
In order to offer rational criteria for a nght moral decision, the theories

mentioned above take account of the intention and "consequences" of

human action

John Paul II, Veritans Splendor

This chapter presents the scheduling policies developed for DMW, starting with an

outline of the properties that an ideal scheduler should exhibit

The initial implementation of DMW was fully distributed, as shown in Figure 4 1 I

shall discuss this policy and then explain why it proved not entirely satisfactory
To overcome the deficiencies of the distributed scheduler, DMW was revised to em¬

ploy a centrally arbitrated scheduling policy as shown in Figure 4 2, which was then,

based on further experiments and user feedback, refined into its current form

To conclude, I shall discuss the remaining open issues in the scheduler and how to

address them

When discussing scheduling policies, I will alternate between a discussion of sche¬

duling in the entire network, scheduling from the point of view of a single user sub¬

mitting jobs, and scheduling from the point of view of the operating system on a single
machine I shall use the terms scheduler, individual scheduler, and local scheduler,

respectively, for the software responsible for implementing these three aspects of sche¬

duling

4.1 An Ideal Scheduler

Given a set of schedules S, each submitted by one of the individual schedulers and

consisting of

• A set of hosts

# = {Ai,A2, ,m„},

• A set ofjobs

J = {j[Jl, ,Jm}

with each job j, permitted to run on a subset of hosts 9{,cH,

35
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• A set of data dependences

Vd = {]pVj,\]p,h£3},

• A set of priority dependences

Q, = {jPVj- \jP,J,eJ},

assign the jobs to the hosts such that the following requirements are met

Data Dependences Vjp &d j, e % j, does not get started until jp has completed with¬

out errors

Priority Dependences V;,, o^ j: 6 "Dp ;, does not get started until jp has been started

Host Constraints Vj, £ J j, does not get started on any host that is not a member of

H

Completion Guarantee Provided that 25 = T>d U t>p is acyclic, i e,

vj.ej -0,5'v,),

with

Jp$*Ji = J,>8./,v(3<7 ]pb]qr\jqh*j,),

jpBj, = UP5dj,e'Dd)^Up^j,e'Dp),

and that no errors occur in the execution of any of the j 6 J, all j, e J eventually

get executed

In addition to these requirements (which clearly are non-negotiable properties of a

correct scheduler), there are a number of further desirable properties

Fairness If multiple users submit comparable schedules with similar jobs, dependence
structures, and host sets to the scheduler simultaneously, they should receive a

similar quality of service

Interactive Transparency None of the hosts in H are ever subjected by the scheduler

to resource demands adversely affecting the computing use of interactive users

Progress Guarantee Regardless of load conditions, one job per individual scheduler

is always kept running

Performance Optimization Subject to the above constraints, jobs are executed as

quickly as possible

However, with the limitations of the environment and of our mechanisms, not all

of these properties can be satisfied fully In the next few sections, I shall discuss the

major difficulties that an implementation faces in meeting these requirements
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4.1.1 Interactive Transparency

All operating systems that DMW supports have been designed for multiuser operation

and shield users from each other to ensure that scheduling background jobs does not

affect the reliability of the host or provide unauthorized access to the interactive user's

data However, background jobs may become noticeable (and thus disliked) if they
decrease the performance of the host too much There are several resources which are

potential causes of contention between background and interactive processes

CPU Availability

If the number of runnable processes on a host exceeds the number of CPUs, the op¬

erating system has to allocate each CPU to a process for a period of time (called a

time slice) and preempt the process and schedule another process once the time slice

expires

The UNIX scheduler on each host handling local scheduling ([MBKQ96, Section

4 4] and [GC94, Section 4 6] discuss the algorithms for BSD 4 4 and System V Re¬

lease 4, respectively) is usually quite capable of absorbing excessive CPU demands by

backgroundjobs without adverse effects on perceived performance for interactive jobs
UNIX scheduling favors interactive processes, 1 e, processes that spend most of their

time waiting on an external event and rarely use up an entire time slice

In addition, DMW assigns a high nice value to the jobs it starts, directing the local

scheduler to give these jobs a lower priority than jobs started by interactive users As

shown by the measurements in section 7 5, this keeps a CPU-bound job to about 15%

of the CPU if a CPU-bound job started by an interactive user is also present

Therefore, background jobs do not interfere with the CPU demands of interactive

jobs They do slow down computing intensive jobs started by interactive users some¬

what but this is usually considered tolerable

Physical Memory

Another resource which foreground and background processes compete for is physi¬
cal memory Operating systems employ demand-paged virtual memory mechanisms

[Tan87, sections 4 3-4 5], allocating physical memory pages for some fraction of the

virtual memory pages that each process requests Most processes exhibit some locality
of reference and only access a relatively small fraction of their entire memory space

(called their working set [Den68b]) during any phase of execution, and as long as the

total size of the working sets of all processes running on a host does not exceed the

available physical memory, the pagefault rate of the host remains moderate

As soon as available memory is exceeded, however, bringing in memory pages from

disk requires expelling pages which are still pan of the working set for some process

and thus are likely to be needed back in memory soon, causing another page fault

The page fault rate increases sharply, and performance of the host drops as processes

spend increasing amounts of time waiting on page faults, a phenomenon known as

thrashing [Den68a]
While UNIX schedulers can detect thrashing and typically react to it by swapping

out entire jobs to disk for a few minutes, thrashing remains a noticeable phenomenon
and is highly disruptive to interactive users and detrimental to the performance of back¬

ground jobs Thus, the distributed scheduler should avoid placing jobs whose working
sets are likely to exhaust the physical memory on the host
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Network Capacity

Processes theoretically also compete for network capacity UNIX schedulers take only
the most rudimentary precautions against attempts to inject an excessive amount of

traffic into a network connection Wright and Stevens [WS95] explain that the BSD

networking implementation simply discards packets if the queues of unsent packets for

a network interface grow too long
In practice, however, with current local area network capacities and workstation

speeds, the network traffic demands of background jobs do not affect the operation of

regular jobs
One situation in which network capacity does become a critical resource is if some

of the hosts are connected by low capacity links, e g dial-up connections Jobs running

on these hosts can saturate these links with their NFS and X window system network

traffic

In our target environments, we do not expect such network topologies to affect

many of the hosts, so we proceed on the assumption that such hosts are not listed as

scheduling targets Clearly, a scheduler operating on a fundamentally inhomogeneous
network (e g ,

two corporate intranets connected to each other by a slow link), would

have to proceed on rather different assumptions, for instance abandoning the assump¬

tion of a common file namespace

Progress Guarantee

The progress guarantee mentioned above may further interfere with the computing
needs of interactive users However, it exists because we were concerned about sched¬

uler users suspecting a malfunction of the scheduler (and possibly switching to manual

placement of jobs) if the scheduler refused to run any jobs at all at times of high load

The progress guarantee under these conditions simulates the behavior of a user sequen¬

tially executing the jobs in the schedule

4.1.2 Performance Optimization

The above goal of "Performance Optimization" is rather vague, as there is a variety of

plausible performance metrics which could be optimized Krueger and Livny [KL87]

compare the effects of various policies on

• The mean wait time WT ofjobs

• The mean wait ratio WR, where WR is defined as the ratio of wait time WT to

process service demand X

• The standard deviation of the wait time o"wt

• The standard deviation of the wait ratio <Jwr

and observe that optimizations of some of these performance metrics is mutually exclu¬

sive For instance, a first-come-first-served (FCFS) scheduling policy will minimize

0"wt since it does not discriminate in favor of shorter jobs, but, for the same reason,

WR and Cwr for such a policy will tend toward infinity
Since in our application, users are concerned with the execution time of an entire

simulation, consisting of a mix of shorter and longer jobs, they are more likely to be

concerned about WT than about WR Therefore, no attempt is currently made to mini

mize WR, especially since such an effort would require a job preemption mechanism
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4.2 The Distributed (RStat) Scheduler

The distnbuted implementation of the scheduler' was done under the assumption that

a fully distnbuted architecture would work best and that a central coordinating in¬

stance would have disadvantages in performance and reliability Due to external time

constraints on the release of an implementation, we restricted the generality of host

subsets, such that each job is either permitted on all hosts (% = 'H) or permitted on a

single host only (9i = {h})

® Host

s Individual Scheduler

Job Placement

Load Information

Figure 4 1 Distnbuted Scheduling

4.2.1 Distributed Scheduling Policy

The distnbuted scheduler is built around a rescheduling procedure that needs to be

called at regular intervals (typically at least once a second) This procedure works as

follows

The subset jfciigibie ofjobs not yet started which meet all of their data dependence
and pnonty constraints is calculated

Many of the jobs in the schedule are very simple and merely have to copy or

rename some files for the next simulator In DMW these jobs are wntten in Tel

(Tool Command Language [Ous94]) and executed by the individual scheduler

1
Also named the RStat scheduler for Us reliance on the rstat mechanism for obtaining host information
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itself as soon as they are runnable Up to n-rci = 4 (a somewhat arbitrary bound

to limit the time spent in a single call to the rescheduling procedure) Tel jobs
are executed and, since they always finish immediately, the set of eligible jobs is

then recomputed

• Load averages for all the relevant hosts are then retrieved and weighted There

is no single obvious way to compare load averages on different platforms with

each other DMW uses the simple approach of dividing the reported load average

X^ by a host specific weighting factor w/, to give a weighted load average

^ = X,*p/w„

where w/, is set by the customer in a host database, a file listing for each eligible
host

- The name or IP address

- The hardware platform

- The operating system version

- The w/, value

• If any of the jobs are permitted on a single host only and jobs are already running

at the moment, the first of these eligible jobs whose host has a normalized load

average Xw less than X^t^ = 0 5 is started If no jobs are running at the moment

the first eligible job is started, regardless of the load average

• If any of the jobs are permitted to run on all hosts, the procedure repeatedly
determines the host with the lowest load average and starts an eligible job on it

until one of the following conditions is met

- No eligible jobs remain

- ^Regular = 8 jobs are running

- At least one job is running and none of the remaining hosts have load aver¬

ages less than thresh

• Any hosts on which the two preceding steps have started a job are embargoed,
1 e, excluded from being considered for further jobs, until either one of the jobs
started on that host has terminated or 90 seconds have elapsed since the start of

the last job on that host

4.3 Evaluation of the Distributed Scheduler

Companng the distnbuted scheduler with the objectives developed in section 4 1, we

see that it fully enforces data and pnonty dependences, and fulfills the completion

guarantee Host constraints are enforced, but, as noted above, % is restncted to contain

either a single host or to be equal to Ji

Furthermore, the progress guarantee is also fulfilled However, the distnbuted

scheduler makes no effort at fairness Available hosts are, at best, allocated to indi

vidual schedulers on a first come, first served basis, and in fact, as discussed in sec

tion 4 3 2 below, often overallocated Furthermore the distnbuted scheduler is also
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rather limited in its efforts at interactive transparency and good performance because

of its inadequate information policy and because it does not address the problem of

host contention

4.3.1 Inadequate Information Policy

The only host resource information that rstat provides is the load average, which only

gives an indication of CPU utilization Not only is there no information about memory

utilization available, but, absent that information, even the load average may become

entirely misleading m some situations

When a host has overcommitted its physical memory and starts thrashing, it spends
an increasing percentage of its time waiting for virtual memory page transfers to com¬

plete and a decreasing percentage doing actual computation Some operating sys¬

tems, e g, SunOS 4 x, do not count processes waiting for virtual memory transfers

as runnable and thus will report a decreasing load average, inviting the scheduler to

send even more jobs to that host Other operating systems, e g SunOS 5 x, count those

processes as runnable when calculating their load average, and thus do not suffer from

this problem

4.3.2 Host Contention

As Theimer and Lantz pointed out (Section 3 3 2), if the individual schedulers in a

distributed system all base their independent scheduling decisions on the same infor¬

mation, it frequently happens that several schedulers attempt to start a job on the same

host

This risk is worsened by the fact that the load average reported by rstat does not

change very quickly and the impact of a new job started on the host is not reflected

fully in the load averages in the beginning of the job's existence Individual schedulers

avoid that effect through the 90 second embargo policy described above, but they have

no information about jobs started by other schedulers

Theimer and Lantz propose to annotate job scheduling requests with the load on

which the scheduling decision was based, and to reschedule the job if the current load

on the host significantly exceeds that recorded load However, it is doubtful that this

approach would work with our distributed scheduler In our system, job transfer times

are very short, so the above reporting delay is considerably longer than the typical
interval between the scheduling decision and the start of the job

4.4 The Arbitrated (UMol) Scheduler

The arbitrated implementation of the scheduler2 intends to permit arbitrary sets of per¬

missible hosts for each job and to address the performance and fairness limits of the

distributed scheduler

For the latter reason, the arbitrated scheduler introduces a central coordinator simi¬

lar to the GLOBAL or CENTRAL schedulers studied by Zhou and Ferrari 3 3 1 How¬

ever, our central coordinator does not merely collect and pass on load information, as

the GLOBAL coordinator does, nor does it actually place the jobs, as the CENTRAL

coordinator does Instead, it collects the load information and information about the

2Also named the UMol scheduler for relying on the DMWUmpire arbitration daemon and the DMWMole

resource measurement daemon for its operation
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jobs, decides where the jobs should be placed, and tells the individual schedulers where

to place the jobs To emphasize this decision making role and the concern with fairness,

I call the central coordinator the arbiter or umpire

® Host

s Individual Scheduler

( A ) Arbiter

Job Placement

Load Information

Host Allocation

Figure 4 2 Centrally Arbitrated Scheduling

4.4.1 Distributed Rescheduling Policy

Policy in the arbitrated scheduler is shared between the rescheduling procedure in each

of the individual schedulers and a central DMWUmpire daemon The rescheduling proce¬

dure is essentially a considerably simplified version of its counterpart in the distributed

scheduler

• The set of eligible jobs jtiigibie is calculated

• The first nxci Tel jobs are executed and Eligible is recomputed if necessary

• The set of useful hosts is calculated as

^useful - U -^

j,eJti,„Wl.
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• #[,"0.(1,1 is then transmitted to the DMWUmpire and a request is sent to grant per¬
mission to run a job on one of the hosts in the set

• If the DMWUmpire responds with a suitable host, the first job jt able to run on

that host is started Otherwise, the rescheduling procedure quits with a status

signalling the scheduler to retry in a few seconds

• Useful is then recomputed as JQ^ = -^CkM \ %• wmcn 1S. °f course, only a

subset of the true value, but faster to compute

• As long as the resulting tQ^ is not empty, it is retransmitted to the DMWUmpire
and another host is requested

4.4.2 Centralized Arbitration Policy

The above distributed policy is combined with the global arbitration policy in the

DMWUmpire daemon Since host requests from the individual schedulers reach the ar¬

bitration daemon asynchronously and may not even get handled exactly in the order in

which they arrive, DMWUmpire separates the task of allocating hosts into two phases

• In the apportioning phase, hosts are distributed globally by reserving them for

individual schedulers based on the stated interests of the schedulers and on their

priority

• In the granting phase, individual schedulers confirm their reservations for the

hosts assigned to them

The next two sections examine these phases in more detail

Apportioning

For each of the individual schedulers s, DMWUmpire keeps track of

% the HiscM set announced by that scheduler,

ns the number ofjobs it has running,

rs the last time a host was granted to the scheduler,

hs the host, if any, currently apportioned to the scheduler

When a round of apportioning is initiated

• The individual schedulers are sorted by ns and ts A scheduler i has a higher
priority than a scheduler./ if («,,»,,i) < {nj,tj,j)

• Apportioned hosts hs not requested by their scheduler after 90 seconds are taken

away from the schedulers again Since hosts are only apportioned to schedulers

who have previously indicated their interest in them, this should happen only
when a scheduler crashes (Occasionally, a scheduler may announce a more re¬

strictive !tfs which no longer includes the host apportioned to it DMWUmpire
checks for that case when a %, gets updated and frees hs if hs g !HS)
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Unapportioned hosts are sorted by their score c, a weighted assessment of their

weighted load average X„ (as defined in section 4 2 1) and free memory fj (m

kilobytes)

120 if ju > 200000

lj/50 ifM<5000

100+m/IOOOO otherwise

0 if^>49

ax = <{ 121-35A*, ifX„<06
112 — 20A.H, otherwise

These somewhat speculatively chosen scoring functions for a,, and ax score

memory availability and load each on a scale from 0 120 where 120 implies a

perfect score, 100 a satisfactory score, and 0 a hopelessly overloaded host

• The algorithm then iterates through hosts with X„ < A.,hresh = 06 and p > Whresh =

5000 Each of these hosts is apportioned to the highest pnonty scheduler for

which it is useful

• Finally, the algonfhm iterates through schedulers with no jobs running and no

host apportioned to them Each scheduler is apportioned the least loaded host

useful for it

Granting

When an individual scheduler requests a host, the following algonthm is executed

• If no host has been apportioned to that scheduler, the apportioning algonthm in

the previous section is executed

• If a host h, has been apportioned to that scheduler (as a result of the previous

step or of an earlier apportioning), permission is granted to the scheduler to start

a job on this host, and h, is embargoed as descnbed above for the distnbuted

scheduler, l e
,
excluded from scheduling for the next 90 seconds or until the

next time a job scheduled on it terminates

• If the apportioning failed to apportion a host to the scheduler, the request is

denied, with the intent that the scheduler should wait a few seconds and then

reapply for a host

4.5 Evaluation of the Arbitrated Scheduler

The arbitrated scheduler fully supports data and pnonty dependences, enforces host

constraints (with the 9i allowed to be arbitrary subsets of Ji) and guarantees com¬

pletion and scheduling progress as denned in section 4 1 The arbitrated scheduler

provides fairness through its central arbitration and improves interactive transparency
and performance by addressing two of the key weaknesses of the distnbuted scheduler
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• Since both load averages and memory utilization data are available to the sched¬

uler, it no longer risks considering a system lightly loaded when it is in fact

thrashing

• Since hosts are apportioned centrally, there is no longer any host contention

among the individual schedulers

However, the arbitrated scheduler is not entirely unproblematic, either On one

hand, the introduction of a centralized component into any distributed system raises

some fundamental concerns about the performance limitations and robustness of the

process implementing this central function In section 4 5 1,1 address those concerns

On the other hand, practical experience has shown that the arbitrated scheduler is not

as successful at preventing overloaded hosts as it was hoped to be In particular, there

are difficulties related to the inability to adequately predict the future resource demands

of jobs and the future availability of resources on a host, I shall discuss these issues in

section 4 5 2 Furthermore, I shall argue in section 4 5 3 that the scoring functions used

above do not reflect the expected performance of a job on a given host very well, and I

shall present an improved load index

4.5.1 Performance and Robustness Concerns

As mentioned in the discussion of the research of Theimer and Lantz (section 3 3 2)

and Shivaratn et al [SKS92] (section 3 3 3), advocates of a fully distributed approach
raise primarily two fundamental objections against a central coordinator in a scheduling

system

• Will the central coordinator become a performance bottleneck as the number of

hosts in the cluster increases''

• What happens if the central coordinator, or die machine on which it runs, faiP

I believe that both of these objections can be answered convincingly
As practical experience shows, performance concerns are rarely justified The cen¬

tral coordinator in Condor is currently [LBRT97] able to coordinate the activities of

more than 300 hosts without any performance problems While DMW has never been

tested with that many hosts, our experience so far confirms that resource usage of the

central coordinator is negligible
Moreover, Theimer and Lantz point out out that a centralized algorithm acquiring

the same amount of information about a system requires much less networking and

performance measurement resources than a comparable distributed algorithm, so it will

be more scalable than the distributed algorithm
There are well known algorithms to detect and handle the failure of the central

coordinator Detection is usually accomplished by defining a sufficiently long timeout

and declaring the coordinator failed if it has not handled a request within that time

span If only the central coordinator has failed (e g, due to a programming error), it

can simply be restarted

However, if the host itself on which the central coordinator ran has failed (e g

due to a hardware failure or a network disruption), this solution is not applicable In

some systems, the individual schedulers choose a new host for the central coordina¬

tor through a distributed election Algorithms for this are well-known, but somewhat

complex
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DMW uses a different approach to this problem Execution of schedules stops, the

schedules must be restarted when the host is running again or, if the failure is more

than intermittent, a different coordinator host must be configured in the system This

simple strategy is justified by the environment in which DMW runs

The common file namespace required by DMW requires a global file system, which in

a typical environment will reside on a single NFS server This server is already a single

point of failure, if it is designated as a coordinator host, the scheduler has nothing to

gain from any sophisticated recovery strategy While it would be possible to elect a

new coordinator host when the NFS server fails, it would still not be able to carry out

any simulations since the project file systems would not be available Conversely, since

the central file server is crucial to all work in the workstation cluster anyway, it is likely
to be designed more robustly and maintained with more care than an average host

4.5.2 Inability to Predict Future Resource Conflicts

While the arbitrated scheduler's handling of immediate placement decisions is mostly
successful for shorter running simulations, it may lead to disaster with long running

simulations Three typical scenarios for such long term problems are

Multiple Job Thrashing A big simulation is started on a host After the 90 second

embargo has elapsed, the scheduler still finds the host attractive for further jobs
and starts a second big simulation The two simulations run well for several

hours until their combined working sets exceed the physical memory of the host,
and then the jobs starts to thrash While the operating system may be able to

reduce the impact of the thrashing somewhat by alternately swapping one of the

simulations entirely out of memory, performance suffers

Single Job Thrashing A single big simulation is started on a host Although no fur¬

ther jobs are started on that host, the simulation is so big that eventually its work¬

ing set exceeds physical memory Again, thrashing ensues, but since it is caused

by a single job, process swapping cannot improve the situation in this case

Interactive Interference A big simulation is started on an idle host After some time,

an interactive user starts using the host and finds that the background process

interferes with his work Although the scheduler tries to avoid placing too high
a load on a host, some activities, such as audio output to the built-in speaker of a

workstation, are extremely sensitive to any background activity [Zim98]

All of these scenarios develop into unsatisfactory situations with both the dis¬

tributed and the arbitrated scheduler because of three fundamental assumptions in the

scheduling policies

Unpredictable Resource Demands No information is available about the resource

demands ofjobs at the time they are placed

Unpredictable Resource Availability It is impossible to predict future resource avail¬

ability, as a user may wish to start using a host interactively and then restrict

resources available to background jobs

Non-preemption of Jobs Once a job has been placed on a host, it runs to completion
on that host
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Clearly, it is impossible to avoid situations where resource demands on a host ex¬

ceed availability if those three assumptions are maintained simultaneously There are,

however, various possible solutions based on abandoning or modifying some of these

assumptions

Dedicated Hosts

One solution to the problem of interactive interference on a host is to ban interactive

users from that host and set up a dedicated cluster However, that solution, although

simple to implement from a software point of view, is not very attractive as it usually

requires additional hardware, and as it does not address the problems ofjob thrashing

Job Termination

Another solution to jobs that exceed available resources is to simply kill them, an ap¬

proach that is used, e g, in Condor [LBRT97] when other methods are not practicable
for some reason The scheduler has then some additional information (the process size

at the time the job was tailed and the interactive demand on the host) to guide it toward

restarting the job on a machine more suited for a successful execution

Job termination is simple to implement and can address all of the problems de¬

scribed above However, termination has several drawbacks

• On slow hosts with small amounts of physical memory, a majority ofjobs sched¬

uled might eventually get terminated

• Since simulation jobs typical for our work load have a tendency to grow gradu¬

ally, termination will occur only after a considerable amount of processing has

been performed already

• Frequent termination may cause both scheduler users and foreground users to

question the correct operation of the scheduler

Thus, job termination should only be used as a final resort, and coupled with a

permanent feedback mechanism (annotating the observed resource usage of the job) to

prevent future attempts to schedule the samejob on the same machine again if thrashing
due to a static resource mismatch, rather than interactive interference, was the reason

for termination

Job Suspension

Instead of tailing a job, it is also possible to suspend nob by sending it a SIGSTOP sig¬

nal (the programmatic equivalent to typing Control-Z to suspend an interactive UNIX

process) Job suspension can be done statically (background jobs on certain hosts are

suspended during working hours), dynamically (background jobs are suspended when

interactive activity is detected), or upon request by interactive users Sometimes sus¬

pension is also combined with other techniques, e g, in Condor, where jobs are sus¬

pended upon detecting interactive activity and later resumed if the interactive activity

ceases again within a few minutes and otherwise migrated or terminated

Job suspension is simple to implement and works well against interactive interfer¬

ence and multiple job thrashing (since the operating system will swap out suspended

processes if necessary), but is not effective against single job thrashing
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Global Job Limits

One solution available to the arbitrated scheduler thanks to its centralized component is

to track the number of background jobs running simultaneously on a host and enforce

a global lima, 1 e
,
a maximal number of jobs placed on it by all individual schedulers

combined

Originally, no such limits were enforced because of the assumption that multiple
simultaneous jobs would be able to overlap computation and I/O and thus complete
faster in parallel than if run serially However, practical experience shows that I/O

plays a negligible role in longer running simulationjobs, and that they are almost totally
CPU bound (see section 7 4 1) Thus, as soon as the number of jobs on a host exceeds

the number of processors, the increased risk of thrashing far outweighs the potential
benefits of execution overlap

Therefore, the arbitrated scheduler was modified to enforce job limits specifiable
in the host database and usually set equal to the number of processors on a host By

lowering resource usage, job limits have the potential to mitigate all of the problems
mentioned above, although they do not provide a perfect solution to any of them

User Hints

As opposed to the assumption of unpredictable resource demands outlined above, sche¬

duler users usually have a reasonably accurate estimate of the resource demands of their

simulation jobs and often are able to refine this estimate further while working with a

simulation The scheduler could thus be modified to base its choice of J{ for a job on a

user provided hint for the size of the job (large, medium, small) as well as the program

executing the job
User hints are easy to implement and, when employed by a competent user and

combined with global job limits, can eliminate thrashing entirely On the other hand,

they are not entirely effective against interactive interference

Checkpointing and Job Migration

The most powerful solution to the above problems, but also the one requiring the most

difficult implementation, is job migration, a facility to save the state of a job in a check¬

point, terminate the job, and restart it on a different host

Although a job migration mechanism for DMW was designed and to some extent,

implemented, it was never integrated into DMW Section 5 7 discusses the problems of

the implemented migration mechanism and potential alternatives

4.5.3 Inadequate Performance Index

A third shortcoming in the scheduling policy is the unsatisfactory way in which the

performance index is computed from the load average In particular, the formulae for

both the distributed and the arbitrated scheduler compute the same load index values

for all hosts with load averages of 0, regardless of the hardware speed of the host

This has the consequence that differences in installed memory and small fluctua¬

tions in the load average tend to have a much bigger influence on the ordering of the

hosts than hardware performance In our research environment, this rarely leads the

scheduler to make bad choices, since the physical memory installed in hosts happens
to correspond quite closely to their computing performance and thus contnbutes to a
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reasonable load index, but such a relationship does not, of course, exist in every work¬

station cluster

The somewhat arbitrary original load index should therefore be replaced with an

index designed to give a reasonably accurate performance estimate, at least for the short

term future of a host, from its current load average A. and its basic performance (3 Since

the measurements in chapter 7 show that longer running simulation jobs are almost

exclusively CPU bound, P can be defined as the number of executions of a CPU bound

reference workload per time unit if that workload is the only job on the host (X. = 1)

Assuming that CPU time is divided equally between all jobs ready to run (which is

only strictly true if all nice values are the same), and that the new job to be started will

add 1 to the existing load average (which is accurate for a purely CPU bound job), the

work that an uniprocessor host could perform for the new job then becomes

This approach is easily extended to a host with n processors with the caveat that

running a singlejob on a multiprocessor host does not, of course, speed up its execution

beyond the speed of a single processor, so simply multiplying the above value by n

would significantly overestimate the performance of the host at low loads Instead,

performance can be estimated as

*•

^max(n,A.+ l)

The threshold for job placement on hosts can be defined by choosing the least

powerful host still to be considered interesting and the A. at which it still should receive

jobs and defining Afresh as the 0"x of that host under these conditions

Figure 4 3 shows the differences between the old and new performance indices In

the range of 0 < A < 1, which is the most important for job placement, the old index

is least sensitive to w, while the new index is most sensitive to P in that range Fur¬

thermore, for multiprocessor machines with n > 1, performance is correctly predicted
to remain constant until the load average reaches the number of processors, while the

linear performance prediction of the old curve would either overestimate performance
at low loads or underestimate it at higher loads

On the other hand, by representing performance differences between machines

more accurately, the new load index formula, applied in isolation, bears the nsk of

having the scheduler start too many jobs on fast machines If, as an example, Afresh
in our environment is defined such that an unloaded 50MHz Sun SPARCstation 10 is

just acceptable to the scheduler for job placement, the scheduler would consequently
consider the fastest server available (a Sun Ultra2-2300) suitable for further jobs up to

a load average of 3 5 Placing so many jobs on a single processor machine is at best

useless (as they would have completed just as fast if run sequentially), and often detri¬

mental to performance if the jobs grow to exhaust physical memory on the machine

Therefore, it is essential for the operation of the new load index that it be combined

with global job limits as described above in section 4 5 2 Furthermore, as the mea¬

surements show, some of the other parameters originally used were not well chosen

• ju,hreSh is too low (the amount of memory guaranteed is massively exceeded even

in simple simulations) and should be increased to at least 20000

• The embargo period of 90 seconds is not long enough for the load average to

reflect the performance impact of a new job and should be increased
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Figure 4 3 Original and new load indices for DMW



Chapter 5

DMW: Mechanism
Where a calculator on the ENIAC is equipped with 18,000 vacuum

tubes and weighs 30 tons, computers in the future may have only 1,000

vacuum tubes and weigh only 1 1/2 tons

Popular Mechanics, March 1949

This chapter discusses the basic mechanisms underlying the DMW scheduler The

remote execution and job control facility in section 5 2, the remote monitoring dae¬

mons in sections 5 3 and 5 4, the central arbiter in section 5 5, and the job migration
mechanism in section 5 6ff AH of these components share a common security concept,

which I shall describe first

5.1 Security

Since DMW is implemented with common internet protocols on standard hardware

which is usually attached to enterprise wide intranets and often to the Internet, some

attention has to be paid to security aspects Cheswick and Bellovin [CB94] categonze

security risks into

Stealing Passwords by gaming access to the password file via network programs (e g,

guest logins, ftp, tftp) or by capturing network traffic (a practice also referred

to as snooping) and searching it for cleartext passwords transferred e g as part
of telnet or ftp session

Social Engineering and Information Leakage i e , gaining access or acquiring in¬

formation by approaching authorized personnel or by reading publicly available

information (company telephone books)

Bugs and Backdoors in network software, e g undocumented "debugging modes" or

unchecked read operations into limited buffers

Authentication and Protocol Failures when authentication mechanisms are either in¬

herently weak or are defeated, e g, by PC clients creating unverified user names

Denial of Service attacks that intend to disable ordinary operation of hardware and

software rather than gain unauthorized access

Therefore, it is essential for DMW not to introduce any additional weaknesses in

any of these areas A number of different techniques are employed to attain that goal

51
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• All daemons—the monitoring daemon, the arbitration daemon, and the job con¬

trol daemon—perform only a small, restnctively defined set of actions In par¬

ticular, none of the daemons will start a new job on behalf of a different user than

the one who started them, effectively delegating authentication for these critical

actions to the UNIX remote shell (rsh) system

• By using rsh, DMW also avoids the exchange of cleartext passwords over net¬

work connections

• All daemons operate at the lowest privilege level necessary to do their jobs The

monitoring daemon, which on most architectures needs superuser permissions

to be able to access kernel statistics, compensates by having a highly restricted

command set

• All daemons bind themselves to ephemeral TCP ports [Ste94] whose port num¬

ber is chosen arbitrarily by the operating system Additionally, they require that

a 16-bit numerical password be given on connecting To get the port number and

password, a client has to start a process on the host, again delegating authentica¬

tion to rsh

• The monitoring daemon and the arbitration daemon guard against denial of

service attacks by allowing a very large number of connections to be active at

any time All daemons detect invalid passwords and failure to provide a pass¬

word in a timely manner The authentication protocol is implemented entirely
without blocking I/O operations

• All I/O operations guard against buffer overruns

Nevertheless, the described system has some security flaws that are potentially ex¬

ploitable by determined attackers

• The 16 bit connection password is rather short and thus subject to bruteforce at¬

tacks, especially since in practice, ephemeral TCP port numbers in most TCP/IP

implementations are not assigned randomly, but in a more or less sequential fash¬

ion This weakness could be remedied by choosing longer passwords

• DMW forces the use of rsh and its associated system of trusted hosts It has

been shown in recent years that this system is susceptible to attacks such as IP

spoofing (hosts changing the source IP address of packets they send to the address

of a different host)

The ssh secure shell is a more secure alternative to rsh and DMW could be

changed with limited effort to support ssh However, ssh is not in wide use

yet and shipping it with DMW would add significant further complication to the

software installation process

• Even though no passwords are exchanged in any DMW related network con¬

nections, the simulator output data flowing through them is potentially sensitive

information which could be picked up by packet snooping ssh, which provides

encrypted socket connections, would also offer a solution to this problem

Thus, it is clear that a production system running DMW should not be exposed to

the Internet without protection through strong firewall systems as described in [CB94]
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However, against m-house attackers, who usually in a commercial enterprise do not

have the undisturbed time and resources to mount sophisticated brute force password

guessing, IP spoofing, or packet snooping attacks, the protection provided should be

quite adequate

5.2 Remote Execution and Job Control

This most basic part of the scheduler allows to

• Start a new job on any host from any other host (including the ability to start a

job on the same host)

• Receive data written on the job's standard output and error channels as it is gen¬

erated

• Automatically enable access to an X window server if needed

• Check whether a job is still running

• Send signals to a remote job to temporarily halt it, resume it, or terminate it

prematurely

• Save the connection parameters for a remote job to a file, close the connection to

a job, and resume it later

It would be impractical to build the features listed above into every program to be

managed by the scheduler Therefore, each job is controlled by an instance of a job
control daemon named DMWLaunchPad which starts the actual job as a child process

and controls it, as shown m Figure 5 1

5.2.1 Startup Negotiation

At startup, DMWLaunchPad creates a listening socket for reconnection attempts and

prints the port number of the socket and a numeric password m a greeting message It

then accepts a number of setup commands for

• Setting the name of the log files for the standard output and error streams of the

job

• Setting the directory in which the job is to be executed

5.2.2 Starting the Job

Finally, DMWLaunchPad receives the command line to execute, including environment

variables It forks off a child process and gives it a new process group so it is pos¬

sible to send signals to the process and all its subprocesses If the command line is

simple, without quote characters, shell wildcard characters or environment variables,

DMWLaunchPad directly passes it to the exec () system call

Usually, however, the command line needs wildcard expansion, quote processing,

and environment variable manipulation, so DMWLaunchPad transforms it into a short

Bourne shell (/bin/sh) scnpt and starts a shell process to execute it The script always
ends with an exec command, so the shell process is immediately replaced by the job
to be executed
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Figure5.1: Operation of DMWLaunchPad

5.2.3 Job Monitoring

As soon as the job is running, DMWLaunchPad enters into a loop handling requests from

the job and the scheduler.

• When thejob writes data to its standard output or error streams, the data is copied
to the corresponding log file and, if the scheduler has not closed its data sockets,

also sent to the scheduler.

• When the scheduler requests that a signal be sent, DMWLaunchPad delivers it to

the job process group.

• When the job terminates, DMWLaunchPad writes its exit status to the status file

and quits itself.

• When a connection on the reconnection port arrives and completes the password
handshake, DMWLaunchPad reconnects to a different scheduler instance.

5.2.4 Reconnecting

At startup, DMWLaunchPad prints the port number of the reconnection socket and the

password. Based on this information, the scheduler can reconnect after it had been

disconnected (e.g., because it ran on a portable computer which was temporarily taken

off the net) by:

Creating two new listening sockets for the standard output and standard error.
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• Connecting to the reconnection socket

• Sending to the socket the port numbers of the new sockets, the password, and

whether any backlogged data is wanted

If the password is correct and the handshake is completed within 60 seconds of

connecting to the reconnection socket, DMWLaunchPad switches the standard streams

to the new sockets If a backlog was requested, DMWLaunchPad copies the requested
amount of data from the log files to the new standard streams

5.3 Remote Host Monitoring Using rstat ()

Except for random transfers, every scheduling policy needs information about remote

hosts, such as their

• Load average (number of runnable jobs, averaged over time)

• Memory utilization

• Network load

In the first implementation of DMW, this information was obtained using the standard

rstat () call Due to the limitations of this approach, the current implementation uses

the custom written DMWMole daemon, discussed in section 5 4, instead

5.3.1 Calling rstat ()

In an initial implementation of the monitoring facility, the rstat () call was used to

obtain load information from remote hosts rstat 0 is a Sun RPC [Blo92, Mic88b]

stub procedure which communicates with the rstat daemon (rpc statd) on the remote

host to return an array containing the average number of runnable jobs in the last 1,5,

and 15 minutes

While neither Sun RPC nor rstat () are Internet Official Protocol Standards [JP94]
or part of any of the POSIX standards, they are freely available and widely deployed
due to the popularity of NFS [Mic88a]

The programming interface to rstat () is simple The call

int rstatlchar "host, struct statstime *statp)

fills in the statstime structure and returns a status code, analogous to stat (I The

load averages are stored in the avenrun field of the structure rstat () is implemented
using the high level RPC call

callrpclhost, RSTATPROG, RSTATVERSJTIME, RSTATPROC_STATS,

xdr_void, (char *)NULL, xdr_statstime, (char *)statp),

This call translates into a series of low level RPC calls, which use socket primitives

to

• Pack the RSTAT program number, program version, and procedure number into a

port mapping request and send it to UDP port 111 on the remote host
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• Wait for a response message containing the UDP port number for rstat

• Send an UDP packet to that port There is no input data to the rstat 0 call,

so all the packet contains is RPC information like the program and procedure
numbers

• Wait for a response message and call the xdr_statstime XDR procedure to

translate it from the system independent network representation to the system

specific data representation

Since the UDP protocol does not guarantee reliable delivery of packets, both the

port mapping request and the rstat request are retried in 5 second intervals, up to 12

times for the port mapping request and 5 times for the rstat request

5.3.2 Problems With rstat ()

While rstat () was convenient for a prototype implementation, it turned out to have

disadvantages in several respects

Insufficient Information

rstat () only provides the load average of a host, which in the ISE simulation envi¬

ronment can be a quite misleading figure As argued in section 4 3 1, a realistic infor¬

mation policy needs to include memory utilization figures, which rstat () is unable to

provide

Uncontrollable Performance

While rstat () has a convenient calling interface and performs well in the average

case, an attempt to call rstat() for an inoperative host only fails after a long delay (as
discussed in section 5 3 1, this delay will be at least 60 seconds) during which the

process is blocked While the timeout could be controlled by forgoing the high level

interface and accessing the call through the low level RPC interface doing so would

sacrifice the simplicity of the rstat () monitoring implementation and thus defeat one

of the main advantages of this version

Security Concerns

While there are no known weaknesses in rstat () or its daemon that would allow

an attacker to break into a host, the information provided by the protocol could be

of potential use for an attack and the fact that the daemon hands out this information

indiscriminately to any inquiring host must be considered information leakage Con

sequently, some secunty scanning tools like SATAN [FV93] and ISS [Sys96] classify
the presence of an rstat daemon on a host as a (low risk) security problem and some

system administrators will disable the rstat daemon on their hosts

Availability

Installing an rstat daemon on customer hosts where it is not yet installed usually re

quires superuser privileges, and, as discussed above, might be objectionable on secunty

grounds
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5.4 Remote Host Monitoring Using DMWMole

Due to the problems discussed in the previous section, we decided to write a new

monitoring facility for the centrally arbitrated scheduler Target hosts run a daemon

named DMWMole which, consistent with the security mechanism outlined in section 5 1,

accepts TCP connections on an ephemeral port and responds to quenes about the load

average and memory utilization of the host DMWMole maintains no internal state, so

instances can be shut down at any time and will simply be restarted by the scheduler

when needed

5.4.1 Access to Statistical Information

The facilities providing access to performance statistics vary widely between different

Unix kernels and are sometimes not well documented Most kernels require the pro¬

grams getting such information to have superuser privileges, so correct operation of the

code is critical

Fortunately, suitable source code was already available for all target platforms

• For most UNIX platforms, the top program [LeF96] is available to give an in

teractive overview of load averages, memory utilization and the top CPU con¬

suming processes on a host top is widely ported, source code is available, and

all platform dependent code is packaged in separate modules with an abstract

interface Those platform specific modules with a few modifications served as

the basis for the platform dependent parts of DMWMole

• When DMWMole was written, top was not available on IBM workstations running

AIX' Therefore source code from the monitor program [Mak94], an AIX spe¬

cific program with a superset of the functionality of top, was adapted to write

a top style platform specific module providing the subset of kernel information

needed by DMWMole

5.4.2 Normalized Memory Statistics

The data provided by top represent the performance of one host with one particular

platform For these data to be useful to a heterogeneous scheduler however, they have

to be comparable to each other to some extent Therefore, the raw figures reported by
the kernel have to be adjusted in some cases to compensate for distortions introduced

by variations in the accounting policies among the different operating systems

DMWMole reports the total amount of installed memory and the amount of free mem¬

ory While the amount of free memory reported seemed comparable on most target

platforms with a similar load, DMWMole on Solans consistently reported a lower amount

of free memory than other platforms Apparently, the page replacement policy of So¬

lans tends not to reduce the working set [MBKQ96, Section 5 1] of inactive processes

as long as there still is free memory in the system, while other UNIX kernels are more

aggressive in reducing working sets

Therefore, the platform specific DMWMole module for Solans was adjusted to count

50% of the working set of inactive processes (defined as processes using less than

0 5% of the CPU) as free memory This adjustment succeeded in making memory

'The current version of top (3 4) supports AIX
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reports from Solans hosts more consistent with other platforms and DMW no longer
avoids assigning jobs to Solans hosts

A similar problem occurred on DEC Alpha workstations running OSF/1 Pages that

are not referenced for some time by the process that owns them are marked as inactive,

a state distinguished from free Inactive pages are eligible for being reassigned by
the kernel without further notice, but if the process references the page before it is

reassigned, it becomes active again The top host specific module for OSF/1 did not

count inactive pages as free, which again underestimated free memory on OSF/1 hosts

compared to other operating systems Therefore, this module was adjusted for DMWMole

to count 7/8 of the inactive pages as free memory

5.4.3 Queries using DMWMole

To start momtonng a remote host, the scheduler2 uses rsh to start up DMWMole using

a hardcoded path In the ISE distnbution, this path refers to a Bourne shell (/bin/sh)

scnpt determining the platform of the host and selecting the nght program binary to

execute

DMWMole returns a line consisting of

• A version identifier containing, in decimal form, the date DMWMole was last mod¬

ified in a client visible way

• The ephemeral TCP port chosen by the currently running instance of DMWMole

as the listening port

• The random password chosen by the currently running instance of DMWMole

The scheduler then connects to the port and presents the password to authenticate

itself While this indirect technique has some performance overhead, it has the advan

tages of

• Restricting access to the DMWMole to clients with rsh access to the host, consis¬

tent with the secunty pnnciples descnbed in section 5 1

• Avoiding the need to reserve a fixed port number for DMWMole

Once the connection is established, the scheduler can query DMWMole using the one

letter commands shown in table 5 1

L Return a line listing the non-normalized 1 minute, 5 minute, and 15

minute load average of the host

M Return a line listing total installed memory and the normalized amount

of free memory on the host

Q Disconnect the scheduler from the DMWMole

s Shut down the DMWMole This command is never generated by the

scheduler, but can be sent manually

Table 5 1 Commands accepted by the DMWMole daemon

2This word is here used in the abstract sense denoting the entire system Since DMWMole is part of the

arbitrated scheduler it will in fact only be contacted by the arbitration daemon but it could in principle be

used in schedulers with different information flow structures
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5.5 Central Arbitration

As discussed in section 4 4, the arbitrated scheduler relies on the DMWUmpire arbitration

daemon to make placement decisions While DMWUmpire is constructed similarly to

DMWMole in many respects, it maintains some internal state and has to be concerned

with reconstructing it after a process failure

5.5.1 State Maintenance and Reconstruction

As discussed in sections 4 4ff, the arbitration daemon bases its decisions on the follow¬

ing data

• The Hs set of useful hosts announced by an individual scheduler,

• The number ns ofjobs it has running,

• The last time ts a host was granted to the scheduler,

• The load average X and available free memory fi of each host

• In recent versions, the current number ofjobs running on each host

Additionally, it maintains a mapping from host names to serial host identification

numbers that is used for announcing host sets and all further communication concern¬

ing hosts

When the arbitration daemon crashes, the first individual scheduler trying to send a

command detects the crash This scheduler then restarts the daemon, and all individual

schedulers go through the rsh based authentication described above for DMWMole to

establish a socket connection to the new daemon

The individual schedulers and the daemon then cooperate in reconstructing the dae¬

mon state

• Each scheduler sends its value of ns to the daemon

• Each scheduler sends its entire host database to the daemon and notes the new

mapping (which will necessitate recomputing all #))

• The daemon reestablishes connections to the DMWMole instances running on the

hosts and queries their X and n values

• Before requesting a host, individual schedulers send their current % set

The only information that is not restored are the ts and the number ofjobs running

on each host The former information is only useful for tie breaking and thus not

essential, while the latter tend to adjust to the correct values as jobs running at the time

of the crash terminate and get reported to the arbitration daemon

Queries using DMWUmpire

Like DMWMole, a connection to DMWUmpire is established by using rsh to run the pro¬

gram and get connection information back The client can then interact with DMWUmpire

using the one letter commands shown in table 5 2

In addition to this functional interface, there is a debugging interface, shown in

table 5 3, which allows users to observe scheduler activities on the whole cluster from

the vantage point of the central coordinator
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H Declare a host, either by name or by IP address Returns the ID of the

host

I Declare H, as a text string of ones and zeroes

W Request a host h %

R Declare that one of the jobs on a previously allocated host has termi¬

nated

J Declare preexisting ns upon reestablishing contact after a crash of the

arbitration daemon

Q Disconnect the scheduler from the DMWUmpire

s Shut down the DMWUmpire This command is never generated by the

scheduler, but can be sent manually

Table 5 2 Scheduling commands accepted by the DMWUmpire daemon

D Write a list of all hosts known to the arbitration daemon, with their

current load average and free memory

C Write a list of all clients connected to the arbitration daemon with their

_Jh
L Toggle logging function, where the daemon writes a detailed protocol of

the load information and scheduling requests it gets, and of its resulting
actions

Table 5 3 Debugging commands accepted by the DMWUmpire daemon

5.6 Job Migration

A job migration mechanism for DMW was designed and implemented for SunOS 4 and

Solans by Michael Buschauer and Marcel Stemmann in a term project [BS96] and

refined and ported to various other UNIX vanants by Felix Rauch [Rau96] in an in

temship at ISE AG

Consistent with the requirements for the entire system stated in chapter 2, die mi¬

gration mechanism was defined to cover a somewhat more limited scope than the mech¬

anisms discussed in the literature

• Jobs are migrated only between hosts running the same operating system version

on binary compatible hardware architectures

• Only open disk files are preserved, but no sockets, pipes, or other interprocess

communication mechanisms

• Both checkpointing and migration are initiated by external processes

• Programs to be migrated are available in source form and thus can be linked with

a migration library

5.6.1 Basic Architecture of the Job Migration System

The process resident portion of the job migration system is contained in a library

ckpc.lib which is linked with programs to be migrated
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0000 Hardware "type

0009 Operating System

0012 OS Version

001B Program Path Name

011B Program Modification Time

011F Top of Stack

0123 End of Heap

0127 Data and Heap Contents

File Descriptors

Stack Contents

Figure 5 2 Organization of ckpt.lib checkpoint files

Initializing ckpt.lib

ckpt.lib has to be initialized with a call

1 include "ckpt_lib h"

ckpt_setup(argc argv)

early in the execution of the program, passing the parameters to the program itself

Tracking Open Files

ckpt lib has to keep track of all open file descriptors and their read/wnte positions
For this purpose, ckpt lib intercepts the open(), dup(), dup2(), and closed li

brary routines to record the creation and destruction of file descriptors These routines

call through to the real system calls using syscall (SYS-xxx, )

If a relative path name is passed to open!), ckpt-lib finds the absolute path to

record by calling getcwd ()

Creating Checkpoints

Checkpointing is triggered by sending the process one of the signals SIGUSR1 or SI

GUSR2 ckpt lib executes a setjmp () call to preserve the CPU state and wntes a

checkpoint file as shown in Figure 5 2
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The checkpoint file does not contain the text segment, 1 e, the program code itself,

since this information is immutable and available from the original program binary
when the job is resumed

Restoring from a Checkpoint

When a program is restored from a checkpoint (either because of a host failure or after

a migration) ckpt_lib

• performs some consistency checks on the checkpoint file,

• expands the stack by calling itself recursively (to guard against overwriting its

own local variables during restoring),

• restores the saved process image,

• finally executes a longjmp () to the saved jmpjjuf, resuming the program

5.6.2 Platform Specific Considerations

While this basic model proved adequate for all target platforms, there were still sig¬

nificant differences between platforms, especially in the layout of process images To

identify these differences, the Condor [LLM88J source code often provided valuable

guidelines

Sun SPARC/Solaris

On many platforms, the buffered I/O call f open () calls open (), on Solans, it calls a

functionally identical routine _open () instead Therefore, ckpt.lib on Solans has to

intercept -open () as well as open ()

dup2 () is not a system call on Solans, so the onginal routine is not accessible with

syscall (SYS_dup2, ) Instead, the dynamic C library is linked to the program

and the dup2 () routine from that library is called

HP PA-RISC/HPUX

The process address space organization on HP-UX is rather different from other plat¬
forms, and presented some difficult challenges to porting Consequently, the port of

ckpt.lib to HP-UX cannot be considered to be more than a proof-of-pnnciple imple¬
mentation

HP-UX is the only target platform where the stack grows toward higher addresses

instead of lower addresses, but fortunately, this does not complicate implementation
much

However, the HP-UX address space architecture includes so-called "MMF' seg¬

ments which need to be saved We were unsuccessful at determining the number and

location of MMF segments at runtime, so we had to resort to a highly inefficient ap¬

proach [Rau96] When creating a checkpoint file, ckpt.lib executes a fork() and

immediately has the child process terminate itself, creating a core dump The parent

process then determines the location of MMF segments from the core dump and wntes

these areas in its own address space to the checkpoint file

On HP-UX, it does not suffice for the buffered I/O routines to simply restore all data

in the process image, so ckpt.lib keeps track of fopen () calls and during recovery.
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open buffered streams are reopened with freopen () Like Solans, HP-UX has both

an open () and a .open () routine

IBM RS6000/AIX

The AIX implementation of ckpt.lib also proved to be problematic, as AIX is based

on a shared library architecture with no convenient means of overriding system calls

To overcome this obstacle, a process using ckpt.l lb forks itself and then inserts trap

instructions into the shared library call stubs of the traced system calls When the

child process tries to call any of those library routines, the parent process is notified

and instructs the child process with the ptrace () call to first call the corresponding
routine in ckpt.lib before resuming the real system call

Intel 80X86/Linux

The Linux implementation is simple compared to the preceding two platforms The

only problematic aspect of this implementation is that ckpt.lib is unable to create a

checkpoint while the process is executing in a shared library, so checkpoint and migra¬

tion signals may have to be sent repeatedly
Like on HP UX, the Linux implementation has to track fopen () calls and reopen

the buffered streams on recovery

5.7 Evaluation of the Job Migration Mechanism

While the work of Buschauer, Rauch, and Steinmann resulted in a functional migration

mechanism, it was never integrated into the DMW system Some of the reasons for this

decision were of a pragmatical nature, concerning the limitations of the implementauon

regarding portability, maintainability, and performance However, the main reason was

that expenence with practical projects led to increasing doubts about the suitability of

a homogeneous, general purpose, migration approach for our system

I shall discuss the practical issues in section 5 7 1, the fundamental concerns in sec¬

tion 5 7 2, and shall sketch a more promising approach to job migration in section 5 8

5.7.1 Practical Issues with ckpt.lib

Performance

On most of the platforms supported, ckpt-lib is capable of generating checkpoint
files in a reasonably straightforward manner The overriding of library routines tends

to slow them down somewhat, but since I/O calls are very rare in our simulators, this

should not create any significant costs

On two platforms, however ckpt-lib has to create a new process for its operation
In the case of AIX, this should not have adverse performance effects The fork ()

occurs at the beginning of the lifetime of the process when it is still small, and the

parent process then takes little CPU and uses a small working set For HP/UX, however,

circumstances are very different

• The fork () occurs late in the lifetime of the process, which is potentially hun¬

dreds of megabytes in size at that time
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• The entire process image has to be written to disk twice Once for the core file

from which the location of the MMF segments is determined, and once for the

checkpoint file itself

• The core file has to be read back for the examination Due to its size, it is unlikely
to have remained in the disk cache and has to be read back from disk or from an

NFS server again

• Migration is usually initiated when a host is short of physical memory and over¬

loaded Creating a new, huge process and generating large amounts of I/O under

these circumstances will further exacerbate the problem

Due to this awkward checkpointing process, writing checkpoint files on HP/UX

would be prohibitively expensive for large processes Clearly ckpt.lib is not ready
for practical use on this platform, and it is not clear how it could be made to work on

HP/UX

Another performance issue is the fact that, due to its intrusion into the C I/O sys¬

tem, ckpt-lib does not work with the native Fortran compiler on some platforms,

forcing the use of f2c, which can be up to 50% slower than die native Fortran com¬

piler [Rau96]

Maintainability

While ckpt.Ub works on the specific platforms and operating system versions it was

ported to, deploying it in a commercial system would present significant maintenance

problems

• The layout of process memory images is determined by largely undocumented

parameters

• The data and execution flow between the buffered and unbuffered I/O systems

vary from platform to platform

• In addition, modem operating system features like shared libraries and memory

mapped files add further complexities to checkpointing

• Solutions are not portable between operating systems, often are not even portable
to newer releases of the same operating system, and their correctness is hard to

verify

Thus, integrating ckpt.lib into DMW would have created an unacceptable main¬

tenance nsk In contrast, the only inherently platform dependent code in DMW is the

resource measuring code in the DMWMole daemon, which

• Is concentrated in a single, small file

• Is adapted from an external, free source (the top source distribution) which is

highly likely to remain maintained by people familiar with the kernel internals

as new operating systems and versions get released3

3cf [Ray98J

Perhaps in the end the free software culture will triumph not because cooperation is morally

right but simply because the commercial world cannot win an evolutionary arms race with

free software communities that can put orders of magnitude more skilled time into a problem
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• Has a fallback strategy of resorting to the rstat code if for some reason the

platform dependent code does not work

In view of this, if any general purpose migration mechanism were to be integrated
into DMW, it would be preferable to look into adapting an existing solution like Condor,

which has been ported to many platforms and is actively maintained

5.7.2 Fundamental Problems with General Purpose Migration

Checkpoint File Sizes

Checkpoint files written by a general purpose migration mechanism always have to

save the entire process image, which for our applications leads to huge checkpoint file

sizes The LargeParallel application discussed in chapter 7, as an example, consists of

72 dessis (device simulation) jobs with process sizes between 80 and 140 megabytes
If one checkpoint for each of the jobs had to be stored simultaneously, the application,
which currently takes about 250 megabytes of disk space to execute, would need more

than 7 3 gigabytes of disk space

Disk space requirements can be kept within more acceptable limits if checkpoint
files are only written on demand for ajob to be migrated, rather than at regular intervals

However, under such a strategy, checkpoint files are written at a time when the process

is already exceeding available resources on the host or inconveniencing an interactive

user Writing the checkpoint file will generate large amounts of I/O Furthermore,

it requires accessing the entire memory image of the process, which in low memory

situations is likely to generate large numbers of page faults Thus, migrating a job will

cause conditions on the host to worsen for several minutes

Heterogeneity

A second fundamental drawback of general purpose migration mechanisms is that they
are restricted to migrating jobs between hosts running identical operating systems (the

systems described in section 3 4 3 are clearly not yet suitable for practical use)

This can lead to pathological situations on a workstation cluster consisting of some

fast hosts with little memory running a hardware/OS combination A and some slower

hosts with more memory running a hardware/OS combination B Jobs get started pre¬

dominantly on platform A, but after a few hours, they start thrashing and with homoge¬
neous migration, it is impossible to transfer them to platform B where they could run

to completion

5.8 Application Specific Migration

The experimental results, and the doubts they cast on the suitability of general purpose,

homogeneous migration, call for a new assessment of the case for application specific

migration mechanisms

5.8.1 Need for General Purpose Migration

ckpt.lib was designed as a general purpose mechanism mainly because we assumed

that many different simulation tools would be able to profit from migration, and that the
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effort required to equip all migration candidate programs with migration mechanisms

would be prohibitive

However, the experiments show that it is mainly the process and device simulators

which create large, long running processes for which initial placement alone is inade¬

quate while all other tools run only for a few minutes and are adequately managed with

initial placement Thus, application specific mechanisms would be needed for only a

handful of programs

5.8.2 Size of Files Representing the Computation State

Another insight from the experiments is that, contrary to our original assumptions, it

is possible to express the computation state of simulation processes in a significantly

more compact form than achievable by saving the entire memory image of the process

Both the dios and dessis simulators studied produce output and dump files only a few

hundred kilobytes in size, even for processes requiring more than hundred megabytes

of memory to run Furthermore, these files are entirely independent of the platform on

which they were produced
The reason for this enormous difference in the size required to store essentially the

same amount of information is that the m-memory representation of the data is opti¬

mized toward computation speed, while the format of the output file is designed for

compactness Furthermore, the iterative methods employed require storing the results

of previous computation steps so that convergence of the computation can be deter¬

mined [Feu98]
It therefore appears promising to design application specific checkpointing mech¬

anisms based on the existing output or dump file format Such a mechanism already

exists to some extent in dios To implement parametmation, a dump file can be writ¬

ten after a process step, which is then read in as a starting point for several further

process simulations proceeding with different parameter settings

5.8.3 Application Specific Checkpointing

To extend the existing support into a checkpointing mechanism, the programs have to

be extended so the writing of dump files can be triggered asynchronously to the compu

tation This can be accomplished by installing a signal handler for some user defined

signal which sets a global flag indicating that a checkpoint file should be generated

The computation can check this flag at convenient times (e g ,
at the end of an itera¬

tion step) and write a checkpoint file if it is set Developers of both dios [Str98] and

dessis [vM98] have confirmed that such a mechanism would be possible to imple¬

ment and that potential checkpoints, i e
,
occasions at which the state of the simulator

could conveniently be captured and restored, are closely spaced, within a few minutes

of each other

5.8.4 Migration Mechanisms

Depending on how short the desired preemption penod should be, such a checkpoint

mechanism can be employed in different modes

Migration When a job should be migrated, a checkpointing signal is sent to it and the

scheduler waits until the checkpoint file is written Then, the job is terminated
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and the scheduler looks for a new host to restart the job At this point, it is able to

improve on its original placement decision because it has additional information

• The size of the job at the time it was terminated can serve as a new lower

bound on the memory required after the restart

• The load situation in the cluster will probably have changed since the start

of the job, and thus a new placement might find a faster host

• Furthermore, a new placement is able to take into account which machines

are occupied by interactive processes

Checkpointing A job can also be be sent checkpointing signals periodically, e g, ev¬

ery 15 minutes If migration is then considered necessary, the job can simply be

terminated immediately and computation can be restarted from the last check¬

point file

Given the compact size of checkpoint files discussed above, checkpointing is likely
to require quite modest amounts of time and disk space, so the advantages of this

strategy—greater robustness and the benefit of having jobs disappear on a machine

the moment they are found to be inappropriate there—will probably outweigh the

disadvantages—some wasted computation and additional I/O and disk space needs



Leer - Vide - Empty



Chapter 6

DMW: Implementation
Pay no attention to the man behind the curtain'

Frank Baum, The Wizard ofOz

In this chapter I shall discuss some implementation issues that are of importance

to the overall software design of the scheduling system, but are not directly relevant to

the question of distributed scheduling

6.1 Basic Design Principles

DMW is implemented using the C++ programming language While C++ has gained

widespread popularity due to its wide availability, efficiency, and expressive power, it

has become fashionable over the past few years in some circles to criticize C++ for

numerous real or debatable flaws

One important criticism is that C++ offers too many different ways to express the

same concept, and too little guidance to navigate through the maze of possibilities
This charge is certainly justified, and it is thus important for successful C++ projects to

decide on one coding style and to consistently adhere to it throughout the project

In this section, I shall present the coding style used in DMW, starting with a discussion

of programming-in-the-small issues like nomenclature of classes and variables and then

proceeding to programming-in-the-large issues like the interaction of classes among

themselves

6.1.1 Nomenclature

In a large programming project with multiple programmers, there is a certain nsk that

two programmers independently pick the same name for two different global entities

While the C++ language standard will offer the namespace facility to control the vis¬

ibility of global identifiers, this feature is not implemented yet on most of the C++

compilers we work with

Therefore, DMW resorts to a traditional method of disambiguating identifiers All

globally visible names (1 e, global variables and class names) are prefixed with DMW

which is a substring unlikely to be chosen in any other part of the program

A similar potential for naming clashes exists for enumeration literals, 1 e the sym¬

bolic values for an enumeration type Therefore, DMW avoids declanng enumerations

with global scope and instead declares them inside of class definitions, which makes

69
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Identifier Class Spelling Affix Example
Class Names Uppercase, BiCapitahzation DMW DMWJob

Member Functions Uppercase, BiCapitahzation GetStartTime

Data Members Lowercase, BiCapitahzation startTime

Global Variables Uppercase, BiCapitahzation gDMW gDMWMolePath

Global Functions Uppercase, BiCapitahzation DMW DMWKestoreJob

Static Variables Uppercase, BiCapitahzation g gLocalPath
Static Functions Uppercase, BiCapitahzation RshPath

enum Identifiers Lowercase, BiCapitahzation ready

Preproc Constants All uppercase, underscores DMW DMW_HOSTDB_PATH

Preproc Macros Like functions DMWLog

Header Guards Like file name _H DMWJob-H

Table 6 1 Naming conventions used in DMW source code

enumeration literals only accessible if their names are prefixed with the name of the

class and thus disambiguated
Furthermore, it helps readability to adopt a consistent set of conventions regarding

capitalization of identifiers and whether multiple words in an identifier are combined

with underscores (as m Host-Name) or BiCapitahzation [Ray96] (as in HostName)

Table 6 1 shows the conventions used in the DMW source code Note that the prepro

cessor #define mechanism is used for macros in three different roles

• Most parameterless macros are constants Since C++ has a const mechanism,

preprocessor constants are rarely used

• Proper preprocessor macros usually have parameters Like constants they are

rarely used, mainly to specify logging functions which are usually disabled

• To prevent multiple inclusion of header files, each header files surrounds its dec¬

larations with a header guard

1 tifndef DMVJJob_H

•define DMWJob_H

5 #endif // DMWJob_H

6.1.2 Existing Class Libraries

Many of the data structures used in DMW are quite stereotypical Linked lists, hash

tables, priority queues While the C++ standard will define template libraries for such

classes, their implementation for current generation C++ compilers is often incomplete
or even nonexistent

Therefore, DMW instead relies on the commercial Rogue Wave Tools++ library to

provide standard classes While the version of the Tools++ library used by us is not

very new and is not as elegantly designed as the standard C++ library, especially in the

area of container iterators, it works quite well and doubtlessly has saved a considerable

amount of work All classes in the Rogue Wave library have names prefixed with

RW
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6.1.3 Class Organization and Interaction Patterns

Successful object onented projects often contain recurring patterns of classes and com¬

municating objects Gamma et al in an influential book formalized the idea of Design
Patterns [GHJV95] and compiled a catalog of the most useful patterns

Design patterns were first proposed by Christopher Alexander et al for the archi¬

tectural design of cities and buildings Alexander writes [AlS+77]

Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without

ever doing it the same way twice

Applying this methodology to software construction. Gamma et al write

Design patterns are not about designs such as linked lists and hash tables

that can be encoded in classes and reused as is The design patterns in

this book are descriptions ofcommunicating objects and classes that are

customized to solve a general design problem m a particular context

A design pattern names, abstracts, and identifies the key aspects of a com¬

mon design structure that make it useful for creating a reusable object-
oriented design The design pattern identifies the participating classes and

instances, their roles and collaborations, and the distribution of responsi¬

bilities

DMW makes frequent use of these patterns, and I will use the names introduced by
Gamma et al in the subsequent discussion Appendix C gives a short introduction to

the design notation that I will use, which is also adopted from [GHJV95]
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6.2 DMW classes

In this section, I shall present the most important classes in the DMW library in a man

ner resembling the Literate Programming style, pioneered by Knuth [Knu92] Fig¬
ure 6 1 shows the fundamental classes involved in scheduling and their relationships
A DMWSchedule contains a collection of interdependent DMWJobs and runs them To

make its placement decisions, the DMWSchedule has access to a DMWConstraintDB,

a collection of DMWConstraints representing static scheduling constraints, and to a

DMWHostDB containing a collection of DMWMonitors to keep track of the load condi

tions on the remote hosts

DMWSchedule O •»• DMWJob

DMWTclJob

DMWHostDB O— DMWMonitor

DMWConstraintDBo ** DMWConstraint

Figure 6 1 Classes Involved in Scheduling

6.2.1 DMWSchedule

A DMWSchedule is a collection of DMWJobs and their dependences To simplify ma

nipulation of DMWSchedules from Tel code, DMWJobs are assigned a numerical ID

within the schedule so that they can mostly be manipulated by that ID rather than di¬

rectly by pointers

AddJob adds a DMWJob to the schedule and returns the new job ID RemoveJob

removes a job or, optionally, an entire branch of the job dependence graph from the

schedule A number of functions translate between job IDs and the jobs themselves

1 class DMWSchedule {

public

typedef int DMWJobID

// Add a job to the schedule with the given local ID

5 // (or the next available ID if jobID is 0)

DMWJobID AddJoblDMWJob * job DMWJobID jobID=0)

// Remove a job If closure is TRUE also remove all

// jobs that depend on it

void RemoveJob(int jobID RWBoolean closure = FALSE)
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// Associate between job IDs and the DMWJob objects

DHWJob * operator[J (DMWJobID jobID) const;

DMWJobID FindID(DMWJob * job) const;

15 DMWJobID MaxJoblDO const;

Once the job IDs of the prerequisite and target jobs are known, dependences can be

specified between them. Normally, data dependences are used to specify that the target

job needs some of the results of the prerequisite job. A data dependence ensures that

the target job is not started until the prerequisite job has terminated successfully.

Occasionally, users decide after the first few variants of a simulation have been

completed that the simulation should be aborted. Therefore, it is sometimes useful to

encourage depth-first execution order of the simulation tree. This is done with priority

dependences, which ensure that the target job is not started until the prerequisite job
has started.

// Reasons for a dependence: data means target needs data

// files written by prerequisite, priority just means the

// user is more interested in fast results from prerequisite

enum Dependence {dataDependence, priorityDependence};

20

// Add a dependence

void AddDependence(

DMWJobID prerequisite, DMWJobID target, Dependence dep);

25 // Remove dependence

void RemoveDependence(DMWJobID prerequisite, DMWJobID target);

// Are all dependences satisfied?

RWBoolean Eligible [DMWJobID jobID);

For traversing sets ofjobs and dependences, DMWSchedule defines job and depen¬
dence iterators: Clients obtain instances of these classes and get the jobs or depen¬
dences themselves by repeatedly calling the Next member function of the iterator.

Gamma et al. [GHJV95] point out several advantages of using iterators:

• Iterators support variations in the traversal of the aggregate class: Various sets of

jobs in a schedule can be traversed with the same interface, simply by substitut¬

ing a different instantiation of DMWSchedule::Joblter.

• Iterators simplify the aggregate interface: Instead of five sets of traversal func¬

tions, DMWSchedule only needs to define two iterator classes and five iterator

instantiation functions.

• Multiple traversals can be pending on an aggregate simultaneously.

30 class Joblter {

public:

virtual RWBoolean Next ();

virtual DMWJobID ID();

virtual DMWJob * JobO;

35 virtual "Joblter0;

protected:

Joblter0 0

);
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40 class Deplter {

public

virtual RWBoolean NextO,

virtual DMWJobID Prerequisite 0

virtual DMWJobID Target(),

45 virtual Dependence Dep(),

virtual ~DepIter(),

protected

Deplter(}

},

50

// Return all jobs

Joblter * JobsO const,

// Return all jobs with fixed hosts

55 Joblter * HostedJobsO const

// Return jobs with a certain status

Joblter * Jobs(DMWJob Status status) const

60 // Return prerequisites of a job

Deplter
* Prerequisites(DMWJobID jobID) const,

// Return jobs dependent on a job

Deplter
* Dependents(DMWJobID jobID) const,

Simulations are usually started by calling Run on the schedule and penodically

calling Refresh to update the status of running jobs and schedule further jobs In

some situations, it may make sense to schedule jobs one at a time by calling Next

instead

Suspend stops the execution of a simulation temporarily until Run is called again

Terminate kills all executing jobs and stops scheduling

65 // Schedule a single job & return its ID

virtual DMWJobID Next(),

70

// Run schedule to completion or until we change our mind

virtual void Run(},

// Suspend scheduling until further notice If stop is TRUE

// stop all running jobs, else let them run to completion

virtual void Suspend(RWBoolean stop),

75 // Do periodic maintenance Return FALSE if either all

// processes are done or scheduling is suspended

virtual RWBoolean Refresh(int maxJobs DMWJobID * lastJob}

// Terminate all jobs by any means necessary

80 virtual void Terminated

}



62 mm CLASSES 75

6.2.2 DMWJob, DMWTclJob

Each program to be executed in a simulation is represented by an instance of class

DMWJob Often, it is necessary to perform minor coordination tasks between jobs,
and starting a new job (possibly even scheduling it on a remote host1) for such tasks

would be highly uneconomical Since GENESISe uses Tcl/Tk [Ous94] extensively, a

very simple and convenient solution was to introduce a class DMWTcUob to allow

such minor jobs to be specified in Tel DMWJobs and DMWTcUobs share the same

abstract interface and behave identically regarding dependence analysis, but the latter

are always executed synchronously in the current process as soon as they are eligible
to run

Figure 6 2 shows state transitions for instances of DMWJob Jobs get created in

ready state, enter the running state upon being started with Run () and finally enter

done state The other states signal problems

• If the scheduler cannot properly start a job, the job is marked as fubar

• If the job terminates with an error exit code, it is marked as fai led

• If the job is terminated by the scheduler (usually upon user intervention), it is

marked as terminated

• Finally, if a job is temporarily stopped with a signal, it is marked as stopped

I terminated failed

Figure 6 2 DMWJob State Transitions
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class DMWJob {

public

// Current status of a job

enum Status {

ready, // Object created, but job not started yet

fubar, // Attempt to start job failed

running, // Job alive, last we heard

stopped, // Job alive but stopped

terminated, // Job terminated with Terminate^ call

done // Job ended voluntarily with successful status

failed}, // Job ended by itself with unsuccessful status

// Returns the status of a job, and if it is done

// also the exit status

virtual status JobStatusdnt * exitstatus),

// Start a job The job must have been m ready state and after

// this call, will be in either fubar or running state

virtual void Run()

20

// Terminate the job by any means necessary

virtual void Terminate{)

While thejob is running, signals can be sent to it and its pnonty can be manipulated

// The signals that may be sent to a job

// These four are sufficient

25 enum Signal {sigKill, siglnt sigStop sigCont}

// Send a signal

virtual void SendSignal(Signal signal)

30 // Set the nice value of the job

virtual void SetNiceUnt nice)

The standard output and error streams are available as file descriptors, operating by

default in nonblocking mode

// Returns the file descriptors for reading

// the output and error streams

int Output() const,

35 xnt Error() const,

// Specify blocking or non-blocking I/O for the output streams

// Default is nonblocking Return old state

virtual RWBoolean SetBlocking{RWBoolean blocking),

The host on which a DMWJob runs is usually not specified at creation time, but

assigned by the scheduler just before the job is run

40 // Change the host a job should run on

void SetHost(const char * host)

const RWCString & HostO,
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While DMWTclJobs support this entire interface, their behavior is much simpler
They support only the ready, done, and failed states and Run () directly executes the

job Neither the file descnptor calls nor the process control calls do anything useful To

distinguish between job types, the Trivial () member function returns TRUE for Tel

jobs and FALSE for normal jobs

// Delaying this job would be pointless

virtual RWBoolean Trivial 0

45 ) // class DMWJob

6.2.3 DMWMonitor, DMWHostDB

To make placement decisions, the scheduler needs to communicate with all of the po¬

tential target hosts to get up to date performance data All of the details of commu¬

nicating with the actual performance measuring agents are encapsulated in the class

DMWMonitor, which presents a clean front end for answering questions about a single
host The DMWHostDB ensures that only one DMWMonitor needs to be created for each

host

The fundamental operation on a DMWMonitor is Query, which asks about some

data value related to the host Some of these values (the hostname and IP address

of the host) are available locally, while others may require communication with the

host, possibly interposing some caching mechanism to avoid requesting the same value

repeatedly in short intervals For uniformity and portability reasons, both requests and

replies are translated into character stnngs

1 class DMWMonitor {

public

static const char * NoOp

static const char * LoadAverage

5 static const char *

MemoryStatistics

static const char * HostName

static const char * HostAddr

// Determine response to one of the above queries

10 // TROE if successful

virtual RWBoolean Query(const char *

query)

//If previous query was successful return pointer to response

operator const charM)

15

// Combine Query0 and result return "" if unsuccessful

const char * operator!](const char * query)

When many queries have to be made it is preferable to separate the sending of

the query from reading the response The Prepare () method sends the query, and if

subsequently Query () is called, only the response is read

// Give monitor advance notice of Query

virtual RWBoolean Prepare (const char *
query)

For a further performance improvement, the reading of the response can be changed
to only read as much data as is available immediately and concatenate the portions
until the entire line is read The Advance () member function reads as much data as
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is available and returns 1 if the response is complete, -1 if the request failed and 0 if

another call to Advance () should be made in the future

20 // Slowly read

// Return 1 for success 1 for failure 0 for retry

virtual mt Advance(const char * query)

If communication with a host fails it should be removed from consideration for

scheduling The Sabotage () member function disables the host, initially for 5 min¬

utes If at that time, the host is not available yet, the timeout is doubled until avail¬

ability is checked once every hour The Disfunctional () member function indicates

whether the host is currently considered out of order

// Host does not seem to work mark it as unavailable

// for a longer time

25 RWBoolean Disfunctional{)

void Sabotage(}

While a freshly scheduled job starts up on a host, load measures tend to be inac

curate, underestimating the sustained load that the job will put on the host Therefore,

hosts that receive a job are embargoed for some time and only will be reconsidered for

scheduling after load measures can be considered reliable again

// Mark the host as off limits for this scheduling cycle

void SetEmbargoed(RWBoolean embargo)

RWBoolean Embargoed ()

When using the centralized, DMWUmpire based scheduler, all the local schedulers

must agree on a common identification code for each host, assigned by the umpire

30 // Manipulate Umpire ID

int ID()

void SetlDUnt newID)

)

The host database in DMWHostDB is the collection of all hosts on which jobs could

possibly be allowed to run each represented by an instance of DMWMonitor Since it

never makes sense to have more than one instance of DMWHostDB in a program this

class is organized in a singleton pattern By calling the static HostDB method, clients

get the only instance, creating it if necessary

The host database can operate m two different modes In eager mode, the set of

permissible hosts and their parameters is read from a host database file as soon as

the instance of DMWHostDB is created In lazy mode, instances of DMWMonitor are

created on demand when a previously unknown host name is specified
After a change of host parameters, the instance of DMWHostDB is destroyed with

Reset to force the program to build a new host database

class DMWHostDB {

35 public

static DMWHostDB * HostDB(RWBoolean lazy)

static void Reset(RWBoolean reload RWBoolean lazy

Instances of DMWMonitor are requested by specifying either the name or the IP

address of the host If the umpire is used DMWHostDB is also able to return the host

designated in the host database file for running the umpire
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DMWMomtor * GetMomtor (const RWCString i host)

DMWMomtor * GetMomtorfDMWNetHost & host)

40 DMWMomtor * GetUmpire!)

If the umpire is used, DMWHostDB defines a mapping between DMWMonitors and

umpire IDs Since this mapping may change with little notice when the umpire is

restarted IDStaitip returns a time stamp incremented at every mapping change so that

program components relying on the mapping can quickly check whether they are up to

date

DMWMomtor * operator [J (int i)

void SetlDfDMWMomtor * host int id--l)

void ResetlDs()

RWBoolean HasIDsO

45 static long IDStamp!)

Hosts returns an iterator object for iterating through all currently defined hosts

class Hostlter {

public
virtual RWBoolean Next()

virtual DMWMomtor * Host!)

50 virtual "Hostlter!)

protected

Hostlter() {)

)

55 Hostlter * Hosts!)

)

6.2.4 DMWRelay

The DMWRelay class serves as a local proxy class for an instance of a remote DMWMole

or DMWUmpire daemon, encapsulating the details of communication DMWRelay is

usually not used directly, but as a building block for a subclass

On construction, the DMWRelay instance receives the host and the executable path
of the daemon to which it is to connect

1 class DMWRelay {

public

DMWRelay (DMWNetHost * host const char * path)

virtual "DMWRelay 0

Connect () starts the connection performing the entire handshake if block is TRUE,

otherwise returning as quickly as possibly Connected!) returns whether the connec

tion succeeded yet

5 // Start connection and perform handshake

// FALSE means failed TRUE means check Connected!) and call again

/ if necessary

virtual RWBoolean Connect (RWBoolean block=TRUE)

10 // Check whether we re connected

RWBoolean Connected!) { return status>-s_conn }
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Interact!) performs a synchronous query, sending a text message and waiting
for a response in the form of one line of text

// Try to send a message and get a response

virtual RWBoolean Interact(char * msg)

Making a remote query involves a round-trip through a TCP connection and thus

may be quite time consuming, especially considering that the same query usually has

to be sent to dozens of hosts Querying n hosts with an individual round-trip time r"1

with the synchronous Query interface will take

'sync ^ n * 'avg

As the number of hosts grows, this strategy is increasingly likely to take too long,

causing upper level layers of the scheduler to consider the DMWUmpire daemon running

the queries to have crashed If any of the hosts in the host database are for some reason

not working, this likelihood turns into a virtual certainty

Sending all quenes out in parallel and gathering replies as they arrive would be

much more efficient, requiring in the ideal case only

'async ~ 'max

independent of n, if rRT is much longer than the processing time However, due con¬

cerns about the complexity of implementing such a solution, I initially rejected this

strategy

As an intermediate strategy attempting to preserve the simplicity of me synchro¬
nous strategy while trying to reap the performance benefits of the asynchronous solu¬

tion, the query and response phases can be separated In a preflying phase, all queries

are sent out in parallel, and responses are then collected one by one

The Prefetch () member function sends a query without waiting for the response

15 // Send message but don t wait for answer Follow with Interact

virtual RWBoolean Prefetch(char * msg),

The preflying strategy still results in a time

'prefly K 'max

and works as well as the asynchronous approach if hosts are all reliable If some of the

hosts fail to reply or take an unreasonably long time to reply, however, the preflying

approach will cease to give satisfactory results, while an asynchronous approach de¬

grades much more gently, and, in fact, can exploit the degradation of response times to

give scheduling preference to more lightly loaded hosts, as described by Theimer and

Lantz [TL88]

Traditional techniques for asynchronous multiplexing m POSIX systems include

• Multitasking, by forking one process for each query connection

• Multithreading, by creating one lightweight thread for each query connection

• Multiplexing the query sockets with the select () call
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Each of these techniques has important drawbacks Multitasking would require

creating dozens of new processes, which is highly undesirable for a daemon Multi¬

threading has a lot of promise for the future, but is not yet sufficiently portable across

platforms select () is economical and portable, but its use for multiplexing would

have required destroying the encapsulation of the DMWMonitor class Furthermore,

tests showed that under some circumstances, select () may report a socket as read¬

able but a subsequent read (I on the socket may block anyway

Therefore, multiplexing is performed by employing one response buffer per query

and filling it with nonblockmg read operations, which always return immediately,
whether data is present or not After the query is sent with Prepare 0 as in the prefly-

mg approach, the Advance () member function performs a nonblockmg read, returning
1 if the read operation delivered the rest of the response line, 0 if more data remains to

be read, and — 1 if the connection failed or timed out

// Look whether more data arrived Return

// 1 if the reply has arrived

// 0 to keep trying

20 // -1 if we gave up

virtual int Advance!},

All DMW daemons identify themselves with a version number in the form of a deci¬

mal date like 19971002 so clients know which protocol requests are supported by the

daemon This version number is available in the version field

long version,

)

6.2.5 DMWConstraint, DMWConstraintDB

Some of the software sold to a customer may for technical, administrative, or licensing
reasons only run on a subset of all available hosts The constraint database maintains

for each program the set of hosts on which it is allowed to run

Hosts are added and removed from this set by calling Allow and Deny

1 class DMWConstraint {

void AllowtDMWMomtor * host)

void DenyfDMWMomtor * host)

The set of permissible hosts can either be traversed with an iterator or obtained as a

bitset of umpire IDs In the latter case, clients must be careful to recalculate the bitsets

if the umpire is restarted, as IDs are not guaranteed to remain constant between restarts

5 const RWBitVec 4 EligibleSetO,

DMWHostDB Hostlter * Hosts()

)

The constraint database in DMWConstraintDB is the collection of all DMWCon-

straints Like the host database, the constraint database obeys a singleton pattern
There is only one instance of DMWConstraintDB, which is obtained by calling the

ConstraintDB member function and rebuilt by calling Reset
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class DMWConstramtDB {

10 public
static DMWConstraintDB * ConstraintDBU

static void Reset (RWBoolean reload)

GetConstraint () returns the set of permissible hosts for some program If no

DMWConstraint for this program currently exists and strict is FALSE, a new instance

with a default set (usually permitting access to all hosts) is created

DMWConstraint * GetConstramticonst RWCStnng & program

RWBoolean strict = FALSE)

Constraints creates an iterator to traverse the entire constraint database

15 class Constrainclter {

public

virtual RWBoolean Next()

virtual DMWConstraint * Constraint!)

virtual "ConstramtlterO

20 protected

ConstramtlterO {)

)

Constraintlter * Constraints!)

25 }
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6.3 Scheduler Factory Classes

As discussed previously, GENESlSe is designed to support both the fully distributed

and the arbitrated scheduler simultaneously, which is achieved by making both of the

schedulers subclasses of DMWSchedule

DMWRStatSchedule, named after its use of the rstat protocol, implements the fully
distributed, load average based, scheduler

DMWUmolSchedule, named after its use of the DMWUmpire and DMWMole daemons, im¬

plements the arbitrated, load average and memory availability based, scheduler

As is evident from these descriptions, each of these schedulers also cooperates with

a different implementation of the DMWMonitor class

DMWRStatMonitor uses the rstat protocol to get the load average of a remote host

DMWUmolMonrtor launches a DMWMole daemon on a remote host to get information

about its load average and available memory

The creation of matching schedule and monitor classes is coordinated through the

abstractfactory class DMWFactory, as shown in Figure 6 3

DMWRStatSchedule

DMWSchedule
A

DMWUmolSchedule

A
1

i ' DMWRStatFactory
1

1

DMWFactory 1
1

i i DMWUmolFactory
1

DMWHostDB I 1

1 I

v t

1
DMWUmolMonitor

•

DMWMonitor 1
DMWRStatMonitor

Figure 6 3 The DMH Class Factories

Instead of directly creating a DMWRStatSchedule or a DMWUmolSchedule, clients

call the NewSchedule method of a DMWFactory object (which has been instantiated as

either a DMWRStatFactory or a DMWUMolFactory)
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1 class DMWFactory {

public

virtual DMWSchedule *NewSchedule ()

The schedule object keeps a pointer to the factory, and passes it to the host database

when requesting a monitor object To create monitor objects, the host database calls

the NewMom tor method of the factory

protected

5 friend class DMWSchedule

friend class DMWHostDB

virtual DMWMomtor 'HewMomtor I

DMWNetHost * host

10 const RWCString & arch

const RWCString St os

double weight

RWBoolean disabled)

}

Thus, a DMWUmolSchedule is guaranteed to always receive DMWUmolMonitors,
and a DMWRStatSchedule will always receive DMWRStatMonitors, provided that the

host database is reset every time the scheduling method is changed
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6.4 Daemons

While most of the scheduler is executing on behalf of the user on the host that the

scheduler front end runs on, some of the functionality is delegated to daemons execut¬

ing on remote hosts

• The DMWLaunchPad daemon, described in section 5 2, controls jobs Each job
scheduled by DMW is managed by an instance of DMWLaunchPad

• The DMWMole daemon, described in section 5 4, provides statistics of load av¬

erages and memory utilization on a host If the arbitrated scheduler is used, an

instance of DMWMole is started on each host in the host database

• The DMWUmpire daemon, descnbed in chapter 4, arbitrates hosts among sched¬

ulers, deciding which scheduler gets to start a job on which host If the arbitrated

scheduler is used, one instance of DMWUmpire is started on the arbitration host

designated in the host database

The implementation of daemon processes raises some interesting issues Daemons

must be

• Economic in their memory and CPU consumption

• Robust in handling multiple clients, dealing with the operating system, and re¬

jecting manipulation attempts from malicious users

• As portable as possible

In the following sections, I shall discuss some of the issues relevant to the DMW

daemons

6.4.1 Conjuring a Daemon

UNIX takes steps to terminate processes still executing after the user who started them

logs out, and makes it possible for users to easily send signals to processes they started

However, this is not desirable for most daemons, which need to keep executing inde¬

pendent of the user who started them Therefore, a daemon process must gain immunity

from a number of user and system generated signals, all of which are related to UNIX

terminals*

• Each process has a controlling terminal, which it inherits from its parent process

When a user logs out, all processes with his terminal as their controlling terminal

get sent a hangup signal (SIGHUP)

• Processes are organized into process groups One process group per terminal

is considered the foreground process group When a user types the interrupt,

quit, or stop characters (often set to be Control-C, Control-\, and Control-Z,

respectively), the interrupt (SIGINT), quit (SIGQUIT), or stop (SIGTSTP) signal
gets sent to all processes in the foreground process group

'This term is used here for a software abstraction which may represent physical hardware terminals or

software concepts such as xcerm windows or telnet sessions
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• When a process reads from a terminal to whose foreground process group it does

not belong, it is sent a tty input signal (SIGTTIN), which by default causes the

process to stop

• Under some circumstances, when a process writes to a terminal to whose fore¬

ground process group it does not belong, it is sent a tty output signal (SIGTTOUT),
which also causes it to stop by default

To avoid being sent any of these signals by accident, a daemon process has to

make sure on one hand not to associate itself with any controlling terminal and on the

other hand not to perform I/O to any terminal The first of these objectives is served

by creating a new process with fork 0, having the parent process exit, and calling
setsid () in the new process setsid () makes the process the sole member of a new

process group and dissociates it from any controlling terminal The second objective is

served by closing all file descriptors which could be associated with terminals and not

opening any new terminal devices

After these steps are taken, a daemon should be secure from all accidental signals,

although its owner and the superuser can still send it any signals by issuing explicit
kill commands

6.4.2 Client Authentication

In the DMWMole and DMWUmpire daemons, daemon startup is combined with client au¬

thentication The daemon code proper and the authentication stub are combined into a

single program which, upon being started

• Checks whether this daemon already runs on this machine

• If so, prints connection information for the daemon

• If not, starts the daemon and prints the connection information

Additionally, the security concept in section 5 1 requires that the connection infor¬

mation be obtained with a method not accessible to processes not running on the local

host This objective is served by connecting to the daemon with a local domain socket2,
an interprocess communication method between processes running on the same host

where sockets get bound to file names instead of IP addresses

On startup, therefore, the daemon process

• Opens a local domain socket

• Attempts to bind the socket to the file name /tmp/DMWLock/<daemon> ,
where

<daemon> stands for the name of the daemon

• If this attempt fails, a daemon is already running, so the process connects to that

file name (bound by the socket of the daemon instance) instead, prints the data it

receives, and exits

• If the attempt to bind succeeds the process forks The child process then be¬

comes the daemon, while the parent process reconnects to the local socket, prints

the the data it receives, and exits

-Also frequently referred lo as a UNIX domain socket



64 DAEMONS 87

While the daemon is executing, it teens for connections on two sockets The local

socket with a fixed address, and an internet socket with a randomly chosen address and

password If a client (which will, in fact, always be another instance of the daemon

process) connects to the local socket, the daemon

• Accepts the connection

• Prints a line containing

- The daemon's version (date)

- The TCP port of the internet socket

- The password for the internet socket

• Closes the connection

No authentication on these connections is necessary (or possible) because they can

only onginate from processes on the same machine, which must already have passed
rsh or ssh authentication to run

If a client (1 e, an individual scheduler or a DMWUmpire daemon) connects to the

internet socket, the daemon waits for the password to be given and, if it is correct,

accepts commands on that connection

6.4.3 Handling Multiple Clients Robustly

For reliability and security reasons, the DMWMole and DMWUmpire daemons must be able

to

• Accept as many concurrent clients as possible

• Handle client commands fairly, without blocking indefinitely for any client

• Handle (deliberately3 or accidentally) malformed input safely

For this purpose, the daemons declare an array of client objects, defining a state

machine for each file descriptor on which a client could connect

1 struct Client (

enum {

Disconnected = 0

Connecting = 1

5 Connected = 2

DamageControl= -1

} active

char buffer[14]

10 RWBoolean HandleReadO

void HandleCommandtchar * cmd)

}

15 Client gClients[FD_SETSIZE]

3 Some of the most severe security breakdowns such as the 1988 Internet Worm [SREi89] incident were

caused by deliberately sending excessively long input lines to poorly written internet daemons The Internet

Worm exploited this bug in the f mgerd daemon but despite the enormous publicity the incident received

a similar bug was discovered almost seven years later [CER95] in the widely used NCSA http daemon1
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Each file descriptor starts in the Disconnected state When the daemon accepts

a connection for that descriptor, the state is upgraded to Connecting and then, when

authentication is accomplished, to Connected

The daemon keeps afile descriptor set of all connected descriptors and periodically
checks them for incoming data with a select () call For each descriptor which has

data, the daemon calls the HandleRead () member function, which appends data (and

a 0 byte) to the buffer and then checks it for a newhne character

If no newhne character is found and the buffer is full (with one 0 byte at the end

which is never overwritten), the client diagnoses that an overly long line has been

wntten (both DMWMole and DMWUmpire have a natural limit for the length of correct

commands) and puts the state machine into DamageControl mode, in which all input

up to the next newhne character is discarded

If a newhne character is found, it is replaced with a 0 character, the complete
line is passed to HandleCommand () and the line is then removed from the buffer

HandleRead () returns TRUE to indicate to the daemon that it should check for further

commands even before any further data arrives

This arrangement is robust and safe

• It is capable of accepting as many client connections (FD_SETSIZE) as the OS

is theoretically able to accommodate at all, which reduces the risk of a denial of

service attack by starting many connections

• By declaring the array statically, it avoids dynamically allocating and deallo¬

cating client data structures, which in long running daemons may lead to heap

fragmentation and continuous growth of the daemon process size

• It never blocks waiting for incomplete command lines and thus is robust against

crashing or malicious clients and network induced delays

• It is robust against arbitrarily malformed input

• Through the use of the select 1) call, daemons waste no CPU time with busy

waiting but are blocked by the operating system as long as no client activity

occurs
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Chapter 7

Measurements
The process of earning a doctorate does not acculturate you to solving

other people's problems, as most employers would want Instead, it

encourages you to keep elaborating on your thesis research At least it

leads you to believe that all the world's a research laboratory, equipped

for your personal benefit

P J Plauger, The Physicist as Programmer

In this chapter, I present experimental results from running a selection of process

and device simulation problems, as well as some synthetic benchmarks to highlight

specific issues I shall start by briefly introducing the simulation tools used and the

benchmark problems chosen

To understand the performance of a global scheduler, it is important to first under¬

stand how the local scheduleron a host executes jobs started on that host I shall there¬

fore present various experiments analyzing the behavior ofjobs scheduled by the local

UNIX scheduler (Solans 2, unless stated otherwise) on a single host Section 7 3 exam¬

ines the behavior of a single large job on a host, section 7 4 examines the coexistence

of multiple large jobs on single processor and multiprocessor hosts, and section 7 5

examines the mteracuon between background jobs and CPU intensive jobs started by

interactive users

Section 7 6 then proceeds to analyze the results of scheduling the benchmark prob¬
lems on a workstation cluster Finally, to demonstrate the differences between the

distributed and the arbitrated implementation of DMW, I shall present a scenario where

multiple "users" submit simulations concurrently in section 7 7

91
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7.1 Simulation Tools Used

Dios

dios is a general purpose process simulator for simulating the application of fabrica¬

tion processes to ID, 2D, and certain classes of 3D structures dios supports a wide

variety of matenals and structure sizes If requested, it can interactively display the

simulation in a graphical window

Dessis

dessis is a 1D/2D/3D device and system simulator, simulating the electncal and ther¬

mal behavior of semiconductor devices and circuits by solving

• The external circuit and contact equations

• The Poisson equation

• The continuity equations

• The heat transport equation

• The hydrodynamic earner transport equations

7.2 Benchmark Problems

Table 7 1 summarizes the benchmarks measured

• The LargeSequential benchmark, consisting of a single job charactenzed by a

very long running time and high memory demands, is the dios_pblocos exam¬

ple project distnbuted with dios

• The SmallParallel benchmark, consisting of a few rather small jobs, is the

nmos, process example program for GENESISe

• The LargeParallel benchmark, charactenzed by a large number of rather large
simulationjobs (36 dios jobs, 72 dessis jobs), is due to Alexander Hofler [Hof97]

Figure 7 1 illustrates the structure of the process and device simulation jobs m the

three problems
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Benchmark

dios Jobs dessis Jobs

# t[h\ **[*] # t[h\ h[*\
LargeSequential 1 1100 3 50 115000 — — — —

SmallParallel 3 0 04 0 02 28016 3 0 02 0 01 52256

LargeParallel 36 2 50 0 92j 75972 72 2 50 0 60 96640

Table 7 1 Summary of benchmark problems ID and very short 2D dios jobs used for

parametnzation are omitted Running times are median CPU times for a Sun SPARC-

STATION SlO-61 (60 MHz SuperSparc processor) (left column) and a Sun Ultra Enter¬

prise 3000 (4 x 250MHz UltraSparc processors) (right column)

LargeSequential SmallParallel

LargeParallel
36 Branches

Figure 7 1 Dependences of process (P) and device (D) simulation jobs in the three

benchmark problems
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7.3 Local Scheduling: Single Job

In this section, I shall examine the behavior of a single large job run on a host, by first

presenting an experiment where abundant amounts of memory are available and then

contrasting it with an experiment with more constrained memory

Finally, I shall discuss correlations in the resource consumption of related job in a

parametrized simulation

7.3.1 Abundant Memory

When a large simulation job is executed on a machine with few other processes and

sufficient memory, it will behave as shown in Figure 7 2, which shows the execution

of the LargeSequential benchmark on a 60MHz Sun SPARCSTATION 10 with 192

megabytes of physical memory
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Figure 7 2 Memory consumption of a job executed on a host with sufficient memory

(60MHz Sun SPARCSTATION 10 / 192M)

It can be observed that

• The job takes slightly more than 11 hours of computation

• The virtual memory size, the region of memory allocated to the job, rapidly

grows to about 118500 kilobytes It never shrinks

• The resident memory size, the portion of the virtual memory space that is actually
in physical memory, grows in parallel with virtual memory, but never exceeds

106500 kilobytes

Figure 7 3 shows the startup phase in some more detail It is evident that the job

essentially reaches its full virtual memory size after about 9 5 minutes

1 I 1 I T

J L

Virtual Memory —

Resident Memory -

J | I
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Figure 7 3 Startup phase ofjobs in Figure 7 2 (a) and Figure 7 4 (b) Times for (b) are

adjusted to compensate for the slower clock rate

7.3.2 Constrained Memory

Figure 7 4 shows the LargeSequential benchmark again, this time executing on a dual

processor 40MHz Sun SPARCstation 10 with 128 megabytes of physical memory
Given the resident size established m the previous experiment, the job should fit into

physical memory, but just barely so The figure shows that

• The resident memory size always is smaller than in the experiment with abundant

memory

• On several occasions, resident memory size drops sharply and then recovers

somewhat

In the following two sections, I shall discuss these two phenomena in some more

detail

Smaller Resident Memory Size

As Figure 7 3 shows, the job starts rather similar to the job in Figure 7 2, up to a virtual

memory size of 100000 kilobytes After that, the resident set size seems to grow more

slowly than in the experiment with abundant memory

This phenomenon is caused by a combination of two different mechanisms Pages
are added to the resident memory set by demand paging [GC94, Section 3 7], which

allocates a physical memory page for a virtual memory page when it is referenced

They are removed from the resident memory set by page stealing [GC94, Section 3 8],
a penodical background scan removing pages from memory (saving their contents to

disk if necessary) if they were not referenced since the last scan

-
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Figure 7 4 Memory consumption of a job executed under occasional thrashing condi¬

tions (40MHz Sun SPARCstation 10/ 128M)

Demand paging is driven by the memory reference pattern of the process, which is

very similar for the two experiments Page stealing, however, is driven by the memory

situation on the machine The activity of the page stealing daemon increases as memory

gets more scarce, and may stop entirely if there are large amounts of free memory

Therefore, the growth of resident memory is similar in the two experiments, but

once the resident memory size approaches 80000 kilobytes, the page stealing daemon

in the second experiment increases its activity to shrink resident memory simultane

ously The combination of these two effects results m the slower resident memory

growth shown in Figure 7 3

Thrashing Episodes

Figure 7 5 shows the first incident of resident memory drop in more detail, adding the

CPU share of the job (note that since execution is on a dual processor workstation, that

share cannot exceed 50%) and the load average of the host

The plot shows that the resident memory size starts to drop after the job has run for

three hours and 11 minutes The job was started at 20 24 in the evening, so the incident

starts at 23 35 It turns out that this is the time at which a daily backup script is started

on the host by the cron OS facility The backup is rather memory and CPU intensive,

but on this day takes only a few minutes

Due to the increased pressure on the OS memory allocation system, the page steal

ing daemon intensifies its activities and reduces the resident memory set by more than

55000 kilobytes It turns out, however, that many of those pages were in fact part of

the working set of the process and are needed again soon Consequently, CPU share

of the process drops temporanly to less than 5% as the process has to request its pages

back After 12380 seconds, some 15 minutes after the beginning of the incident, the
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Virtual Memory
Resident Memory

210

Figure 7 5 Details of the first thrashing episode in Figure 7 4
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process finally is able to continue business as usual It turns out that approximately
14000 kilobytes of the removed memory were indeed not used, and the process is able

to proceed with a significantly smaller resident set size than before

Note that the CPU use of the backup process has hardly any influence on the CPU

share of the job here The load average exceeded the number of CPUs only during one

minute of the incident and never exceeded 2 4, so if there had been sufficient memory,

the job would still have had more than 80% CPU share

Overall, the local UNIX scheduler on the host shows that it is quite capable of

dealing with moderate long term memory pressure by the adaptive activation of the

page stealing daemon to recognize pages not used over long periods of time, with

virtually no adverse effects on the job Despite the memory pressure, the job took

approximately as long to complete as the job run with abundant memory (taking into

account the difference in clock frequencies)
However, once excessive memory pressure forces the page stealing daemon to res-

can memory too quickly, it increasingly considers pages as unreferenced which are in

fact part of the working set of a process and soon have to be brought back into memory

The resulting slowdown of the process, and of its memory reference frequency, further

exacerbates this problem, and performance becomes unacceptable In this experiment,
the second memory intensive task only ran for a few minutes, so the slowdown was

not too serious (and the incident occurred late at night, so interactive users were not

affected), but if the second job is another lengthy simulation, the thrashing can persist
for several hours, as section 7 4 2 will show

7.3.3 Variations Among Related Simulation Jobs

Another area of interest is the behavior of related jobs in the same simulation—whether

it is possible to predict the resource consumption of a new simulation job from the

observed resource consumption of previously executed jobs For this purpose, I now

take a closer look at the jobs in the LargeParallel benchmark

Table 7 2 summarizes the running times ; and virtual memory requirements /j of

the 36 dios jobs in the project The jobs represent all combinations of

• Three different values for the implantation interstitial factor

• Three different values for the implantation lateral standard deviation

• Four different values for the gate length

Those parameters are varied in the order given above, 1 e
, jobs 14063, 14071, and

14079 vary the interstitial factor while keeping the other two parameters constant, job
14191 vanes the lateral standard deviation while keeping the other two parameters to

the same value as in job 14063, and so on

As Figure 7 6 shows, there is a fairly good correlation (r > 95) between the running

time and the virtual memory size of the jobs While this relation does not help to

predict either of these unknown quantities, it supports the findings in section 4 5 2 that

the memory demands of a job cannot be determined by observing it initially for any

finite amount of time

Table 7 3 summarizes the running times t, virtual memory requirements /j, and in¬

put gnd sizes ns of the 72 dess i s jobs in the project A device simulation is performed
for the devices resulting from each of the 36 dios simulations, with two different val¬

ues for the body voltage parameter
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Node t[m] M[k] Node 'M M[k] Node t[m\ /•[*]
14063 43 30 68544 16239 5127 69600 18415 67 34 80992

14071 45 07 69112 16247 55 16 70592 18423 77 48 81720

14079 46 36 68928 16255 53 31 70736 18431 77 33 86880

14191 5108 68552 16367 55 58 75952 20207 89 22 116312

14199 5156 68560 16375 57 01 75992 20215 93 25 116040

14207 51 21 68528 16383 56 53 76008 20223 94 52 115664

14319 53 00 73616 18159 55 18 80568 20335 109 28 116272

14327 56 16 73536 18167 59 59 81488 20343 103 40 116104

14335 56 45 73536 18175 6109 81880 20351 104 48 115840

16111 46 57 69456 18287 64 38 81448 20463 106 38 139184

16119 46 02 70328 18295 66 15 80960 20471 11147 116480

16127 49 17 70232 18303 65 50 81160 20479 109 33 115680

Table 7 2 dios jobs in LargeParallel benchmark (250MHz Sun Ultra Enterprise 3000)

^ 100000

60000

Figure 7 6 Memory use vs running time for the LargeParallel dios jobs m table 7 2
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Node t[m] n[t] M*l Node <H f[k] M*l
168766 24 07 88384 453 217918 43 19 103376 575

168767 23 57 88384 453 217919 43 48 103376 575

168862 22 49 87984 452 218014 43 20 103376 575

168863 23 21 87984 452 218015 42 58 103376 575

168958 27 54 89344 452 218110 43 46 103376 575

168959 28 44 89344 452 218111 42 43 103376 575

170302 24 07 88384 453 219454 43 06 103376 575

170303 24 36 88384 453 219455 43 36 103376 575

170398 22 47 87984 452 219550 43 31 103376 575

170399 22 31 87984 452 219551 44 01 103376 575

170494 28 07 89344 452 219646 43 57 103376 575

170495 28 55 89344 452 219647 43 48 103376 575

171838 22 45 88384 453 220990 43 44 103376 575

171839 22 41 88384 453 220991 43 14 103376 575

171934 2126 87984 452 221086 44 14 103376 575

171935 2152 87984 452 221087 43 05 103376 575

172030 26 51 89344 452 221182 44 06 103376 575

172031 27 05 89344 452 221183 44 11 103376 575

193342 30 58 89904 454 242494 93 42 146712 958

193343 32 02 89904 454 242495 95 37 146712 958

193438 3157 89896 453 242590 95 34 146968 959

193439 3127 89896 453 242591 102 18 146968 959

193534 26 44 88728 453 242686 90 49 146752 959

193535 27 06 88728 453 242687 97 52 146752 959

194878 3105 89904 454 244030 94 16 146712 958

194879 31 29 89904 454 244031 94 57 146712 958

194974 31 52 89896 453 244126 96 51 146968 959

194975 31 54 89896 453 244127 117 02 146968 959

195070 26 48 88728 453 244222 91 18 146752 959

195071 27 18 88728 453 244223 97 32 146752 959

196414 30 13 89904 454 245566 92 06 146712 958

196415 30 58 89904 454 245567 94 04 146712 958

196510 30 52 89896 453 245662 95 17 146968 959

196511 31 17 89896 453 245663 99 09 146968 959

196606 26 09 88728 453 245758 90 55 146752 959

196607 26 44 88728 453 245759 10155 146752 959

Table 7 3 dessis jobs in LargeParallel benchmark (250MHz Sun Ultra Enterprise

3000)
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Figure 7 7 shows that again, there is a fairly good correlation (r > 99) between the

running time and the virtual memory use of the jobs
However, a closer look at the data shows that in fact, there is an even better corre¬

lation (r > 999) between the input grid size and the virtual memory use of the jobs, as

shown in Figure 7 8 This relation, furthermore, is much more useful, as the input gnd
size is known before the job is run and thus, in this example, could be used to predict
the memory demands of a job before it is placed on a host

Of course, this result cannot be generalized to all device simulations The virtual

memory demands of dessis simulations depend considerably on the simulation param¬

eters, and is only that closely correlated to input gnd size in this example because all of

the device simulations were essentially run with identical parameters and the varying
of the voltage parameter had no influence on memory demand

Nevertheless, projects like the LargeParallel example, where essentially identical

device simulations are run to determine the effects of vanations in process simula¬

tion parameters, appear to be common enough that exploiting such a relationship in a

scheduler enhanced with application specific knowledge might be worthwhile
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Figure 7 7 Memory use vs running time for the LargeParallel dessis jobs in table 7 3
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Figure 7 8 Memory use vs gnd size for the LargeParallel dessis jobs in table 7 3
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7.4 Local Scheduling: Multiple Jobs

In this section, I shall discuss interactions between multiple jobs on a host As in

section 7 3,1 shall first consider a situation where no memory shortages occur and then

turn to the case of memory contention between multiple long running jobs

7.4.1 Benefits of Multiprogramming

Since simulation jobs spend some portion of their time doing I/O, it might be tempting
to assign more jobs to a host than its number of CPUs to assure that while one job
is doing I/O, another job can use the CPU This use of multiprogramming to improve

CPU utilization has been employed in local scheduling since the 1960s [Tan87, section

1 2 3], so the original scheduling policy for DMW allowed scheduling more jobs on a

host than the number of CPUs

However, when I presented this policy at a conference [NCR97], Livny [LBRT97]

challenged it, thinking it doubtful that the jobs would do a significant amount of I/O

To study the effects of multiprogramming on the overall execution time, I ran the

first 16 dios jobs from the LargeParallel benchmark on a 4 processor workstation,

varying the degree of multiprogramming (i e, the number ofjobs being run simultane¬

ously) from 1 to 16
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Figure 7 9 Running time vs degree of multiprogramming (4 x 250MHz Sun Ultra

Enterprise 3000)

The results of this experiment are shown in Figure 7 9, and they show that Livny's

objection was indeed correct It is evident that there are enormous performance benefits

in scheduling as many jobs as the number of CPUs, but there are virtually no further

benefits from scheduling more than 4 jobs

Thus, scheduling more jobs than the number of CPUs is, at best, a performance
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neutral practice In fact, however, this policy is almost certainly harmful for two rea¬

sons.

• Scheduling too many jobs commits these jobs to one host for a long period of

time, preventing the excess job from taking advantage of another host becoming
available during that time

• Every additional job on a machine increases memory usage on the machine, and

once memory is overcommitted performance deteriorates massively, as I will

show below in more detail

7.4.2 Long Term Thrashing

In section 7 3 2, thrashing episodes only lasted for a few minutes because, except for

the simulation job, only short running programs were run during the simulation If,

however, there are several long running programs present, thrashing may persist for

hours or even days

Figure 7 10 shows the memory consumption of two LargeSequential jobs started

simultaneously on the same host used for the experiment in section 7 3 2 (2 x 40MHz

Sun SPARCstation 10, 128M of RAM)

0 10 20 30 40 50 60

t[h\

Figure 7 10 Massive thrashing as a consequence of running two memory intensive

jobs

It is obvious that massive, continuous thrashing occurs When examined m detail in

Figure 7 11, it turns out that the seemingly chaotic system in fact exhibits a highly reg¬

ular pattern of behavior, with both processes increasing and decreasing their memory

allocation in 20 minute cycles

Clearl), such behavior is undesirable Instead of completing m 16 hours, as they
would have if sufficient memory had been available, or in 32 hours, as they would
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Figure 7 11 A detailed view of a passage from Figure 7 10

have if they had been run one after the other, the two jobs take more than 53 hours to

complete and render the host entirely unusable for interactive users dunng that time

While in this experiment, the situation was deliberately created by manually start¬

ing the two large jobs, it is far from unrealistic Absent information about the memory

needs of jobs, the global scheduler should usually consider scheduling two jobs on a

two processor machine, and obviously, without a job migration mechanism, there is no

choice but to either let processors go idle or risk thrashing like in this example

Resident Memory 1

Resident Memory 2

J I 1 L
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7.5 Local Scheduling: Influence of Nice Parameter

To prioritize jobs, all UNIX variants offer the nice mechanism, which adds a bias

to the priority calculated by the operating system Typically, process priorities are

recalculated a few times each second based on the consumed CPU time (for the process

as

Pnew = 6/)0ld + (1 - 8)(/w + w,t + nice),

where the decayfactor 8 in some UNIX variants is fixed, in others is dependent on the

load average Processes with the lowest numerical priorities then get the opportunity to

run, which increases their accumulated CPU time; until they exceed the priority value

of another process, which is then preferred to them

As long as only a single CPU bound process runs on a host, its nice value is

irrelevant, but as soon as several processes are eligible to run, those with lower nice

values get a higher percentage of the CPU than those with higher nice values This

allows the scheduler to reduce the interference of the jobs it starts with foreground jobs

by assigning high nice values to its jobs

Figure 7 12 shows the influence of the nice value on various UNIX systems Two

identical, CPU bound processes were run, with the "foreground process" being run

with a nice value of 0, while the nice value of the "background process" was vaned

between 0 and 19
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Figure 7 12 Influence of nice parameter on CPU share

The HP/UX and OSF/1 measurements correspond closely to what one would expect

according to the formula above As the nice value is increased, the CPU share of the

background process drops gradually to about 10%, while the share of the foreground

process increases

While the Solans behavior is similar to HP/UX and OSF/1, CPU share does not
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increase continuously with each increase in the nice value, but appears to increase in

bigger increments, with a similar overall effect

The AIX local scheduler, though, differs significantly from the other schedulers

Even at the highest settings of the nice parameter, the foreground process does not

get more than 60% of the CPU, rendenng the use of nice largely ineffective for the

protection of interactive processes
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7.6 Global Scheduling: Single User

After all this discussion of local scheduling, it is time to see the global scheduler in

action For this series of experiments, I again executed the LargeParallel benchmark,

but this time on a collection of a few dozen Sun workstations instead of just using a

single workstation

Table 7 4 lists the workstations used, along with their single processor performance
relative to a 60MHz SuperSparc processor (determined by running a tight loop of

multiply-accumulate operations on each workstation)

Figure 7 13 shows a first attempt, running the LargeParallel example on the full host

database, with all hosts limited to 1 job, except for zinal with 4jobs and blanche with

2 jobs1
A first glance at the results suggests that DMW has been successful to some extent, re¬

ducing a single processor running time of almost 100 hours (for a 250MHz UltraSparc-
II processor) to less than 11 hours on the 34 processors used and thus turning a simu¬

lation formerly taking more than half a week into literally an overnight job
A closer examination, however, reveals some less favorable scheduler behavior

• The rate ofparallelism, shown at the bottom of Figure 7 13, remains high for the

first 3 hours of the experiment only and then drops considerably, although not

even all jobs have been started and the experiment proceeds for another 8 hours

• The dios simulations (marked by light triangles) hold up the dessis simulations

(marked by dark triangles) dependent on them, but DMW does not schedule some

of the dios simulations until 2 5 hours into the experiment (e g on stoos and

Copenhagen)

• Some of the hosts chosen are so slow (e g blanche) that simulations started

on them hold up the experiment although no resource contention occurs on the

machine during their execution

• As a consequence of the previous two phenomena, some of the dessis jobs are

only started after the experiment has already run for almost 8 hours

It is also evident that not all of the hosts listed are assigned jobs, but this is caused

by the hosts being busy with other tasks and thus represents desirable behavior

These observations suggest two obvious improvements to the execution of the ex¬

periment

• The default, depth first ordering, ordering of jobs in the schedule (choosing a

dessis job over a dios job when both are eligible to run), is often useful,

making complete results of the first simulation branches available to the user

as quickly as possible If, however, the user wants to execute an entire schedule

as quickly as possible, a breadth first ordering ordering is more efficient, making
jobs eligible to run as quickly as possible

• The inclusion of some of the slower hosts may actually increase turnaround time

for a single simulation, although the increased throughput it provides is normally
useful To obtain the fastest turnaround for a single experiment, it may therefore

be useful to omit some of the slower hosts

1
Given the limited amount of memory on blancne it would not be advisable to run more than 2 jobs
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Figure 7 13 Global scheduling expenment, full host database, depth first precedence
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Figure 7 14 shows the result of implementing these ideas by reordering the schedule

in breadth first order and omitting all hosts with (5 < 1 3, but configuring all remaining

multiprocessor hosts with their job limit set to the number of processors

Although the number of usable processors has dropped to 25, this execution is

significantly faster again, completing in just over 8 hours This improvement is due to

various factors

• smorodina and satchmo, two of the faster hosts, are allowed to use both pro¬

cessors (the other multiprocessor hosts, except for zinal, are partially busy and

therefore do not use their full job limit)

• Thanks to the breadth first reordering, dios jobs are scheduled first

• Omitting the slower hosts, combined with the reordering, ensures that all dios

jobs complete within the first 5 hours of execution

• This ensures a steady supply of ready to runjobs As opposed to the previous run,

this time no processors have to go idle as long as any jobs remain in the schedule

at all (celine and tabor were busy with other tasks before participating in the

execution), and parallelism remains near the maximum until the last job in the

schedule is started

Nevertheless, it is again the slowest host which ultimately holds up completion
If die last job on rapanui had been run on another host instead, or if it could have

been migrated dunng its execution, the simulation could have completed another hour

earlier
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7.7 Global Scheduling: Multiple Users

So far in this chapter, all expenments were performed under the assumption that only a

single user is using the scheduler simultaneously What happens, however, in the more

realistic case of multiple simultaneous users'?

Figures 7 15 and 7 16 show such a situation, simulated by simultaneously executing

three copies of the SmallParallel benchmark, enabling hosts gwaihir, bum, horex,

and rapanui with a limit of 1 job each

Figure 7 15 shows the results when run under the old, fully distributed version of

the scheduler, while Figure 7 16 shows the results under the new, centrally arbitrated

version of the scheduler

It is evident from the figures that the UMol scheduler performs significantly better

m this experiment

• The RStat scheduler is not capable of enforcing global job limits

• Even worse, the RStat scheduler has the tendency, discussed in section 4 3 2,

that every individual scheduler considers the same host the least loaded at any

given time, and thus all individual schedulers tend to simultaneously start jobs
on the same host

• In contrast, the UMol scheduler enforces global job limits and allocation fairness

among individual schedulers
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Chapter 8

Conclusions
In this utterance of falsehood upon falsehood, whose contradictories

are also false, it seems as if That which I uttered not were true

Aleister Crowley, The Book ofLies

At this point, I would like to summarize the experience gained with the operation
of DMW and with the measurements in the preceding chapter, juxtaposing those results

with the objectives defined in chapter 2 I shall conclude with a discussion of open

problems and possible future improvements to the scheduler

8.1 Results

In discussing the results, I shall start with a general set of quality criteria for a global
scheduler and an assessment how well DMW and schedulers described in the literature

meet them In a second section, I shall evaluate DMW in the light of the objectives
established at the beginning of the work Finally, I shall discuss the issue of fully
distributed vs partially or fully centralized schedulers

8.1.1 Quality Criteria for Global Schedulers

Typical modem workstation based environments have considerable spare processing

resources that can be exploited to speed up time consuming computations Due to the

rapidly fluctuating availability of the spare resources, the task of finding idle worksta¬

tions for a computation is best delegated to a global scheduler Ideally, such a scheduler

should stnve to be

Non-intrusive: i e, it should install on a workstation with no changes to the hardware

or the operating system, no installation of privileged software and no changes to

system configuration files

Non-obtrusive: l e, it should never interfere with the computations of users using a

workstation interactively

Platform independent: i e
,
it should run on a wide range of computing platforms

Application independent: l e, it should run with every application that can run on

any of the supported platforms

115
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All currently existing distributed schedulers have shortcomings in some of these

areas

• Many of the research systems described in the literature are highly intrusive, be¬

ing based on exotic operating systems or requiring considerable modifications

to the host operating systems Due to the lack of standard cross platform re¬

source tracking facilities on POSIX platforms, most global schedulers are forced

to rely on their own mechanisms for resource tracking, necessitating intrusive

procedures on many platforms

• All schedulers relying solely on initial placement of jobs are sometimes obtru¬

sive

• All of the job migration mechanisms described in the literature are either con¬

fined to very specialized platforms or of limited use in some applications Specif¬

ically, in process and device simulation applications, no application independent

checkpointing/job migration mechanism can hope to achieve satisfactory results

• Many of the most popular global batch systems are specific to one particular

operating system

• Mostjob migration mechanisms are incapable of migrating applications involved

in network communication

Like the other systems, DMW fulfills most of the above criteria only partially

• The installation of the DMWMole resource tracking daemon is intrusive, requiring

superuser privileges to install it on the host computer While mis procedure
is comparatively simple, it has repeatedly caused problems at customer sites,

especially since certain NFS mounting options interfere with the execution of

privileged programs

• Since DMW has no job migration mechanism yet, it is occasionally obtrusive,

prompting complaints by interactive users of hosts While the literature is pre¬

dominantly concerned with CPU contention, our experience has shown that for

our applications, local schedulers are capable of handling CPU contention ade¬

quately, but that contention for physical memory (RAM) is a serious problem

• While DMW runs on a wide range of POSIX based operating systems, it requires

that sites have a common file namespace and mutually trusted user identities

among the hosts While these requirements are usually realistic for intranets,

they rarely can be met in wide area networks

8.1.2 Specific Design Objectives for DMW

Apart from the above limitations, DMW by now delivers good reliability and acceptable

performance and fulfills most design objectives

• Schedules get executed correctly, with all data and pnonty dependences being

respected

• The scheduler works on all target systems requested in 2 3, and it works with

arbitrary heterogeneous clusters of such systems
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• The scheduler works with arbitrary applications

• The scheduler maintains an accurate assessment of load conditions on the target

systems, it correctly picks the least loaded hosts to schedule jobs on, and it will

not schedule new jobs on overloaded systems

• The scheduler maintains global fairness between clients executing schedules

All clients will tend to get the same number of concurrent jobs, and the same

number ofjobs over time

• Schedules make constant progress and run to completion within a reasonable

amount of time

8.1.3 Fully Distributed vs. Centralized Schedulers

While the original implementation ofDMW was fully distributed, the revised implemen¬
tation introduced a central arbitrator This change resulted in a significantly improved

system

• The arbitrator is able to guaianteefairness among clients

• The centralized scheduler is not susceptible to host contention, which is a serious

problem for the distributed scheduler

• The centralized scheduler spends less bandwidth and measurement effort to col¬

lect resource availability data than the distributed scheduler

• With the centralized scheduler, it is easier to gam an overview of all currently

running simulation projects

The objections commonly raised against centralized systems do not outweigh these

advantages

• Despite the centralized load information gathering effort, the arbitrator does

not turn into a performance bottleneck, given the speed of modem workstation

servers In contrast, the increased bandwidth required for a fully distnbuted load

information gathering may represent a serious scalability problem

• While the arbitrator process as a single point of failure needs some additional

programming effort to ensure a reliable restart after a failure, this effort presents

no particularly difficult problems

• The importance of the vulnerability of the host that the arbitrator process runs

on can be minimized by placing the arbitrator on a file server host, whose failure

would disrupt all operations in the workstation cluster anyway

Given these considerations, a centralized organization appears to be the best design
for a global scheduler
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8.2 Future Directions

The most obvious major improvement to scheduling in DMW would be obtained from

integrating a checkpointing and job migration mechanism into it, which would resolve

many situations where the current scheduler performs inadequately

• If a host becomes overloaded due to intensified interactive use or other, non-DMW

computations, schedulerjobs can be suspended and, as soon as possible, resumed

on other hosts

• If the combined working sets of one or multiple jobs on a host start exceeding
the amount of physical memory available, some of them can be suspended and

rescheduled on a different host or at a later time With the updated knowledge
about such jobs' memory needs, improved placement decisions can be made

• For the above reasons, initial placement of hosts can follow a more aggressive

policy if migration is available to correct overly aggressive placement

• If fast hosts become idle, jobs running on slower hosts can be migrated to them

This possibility, had it been available, would have shortened the total running

time of the experiment in Figure 7 14 by at least one hour

However, as the discussion in section 5 7 2 established, integrating an application

independent checkpointing and migration mechanism into DMW would not deliver these

benefits, since

• The large process size of simulation jobs would create unreasonable demands on

disk space and I/O bandwidth for a general purpose checkpointing system

• All general purpose migration mechanisms currently available for practical use

support only homogeneous migration, placing severe restrictions on migration

possibilities in heterogeneous workstation clusters

Therefore, an application specific, cross platform checkpointing and migration me

chanism, as outlined in section 5 8, appears to be the most promising approach to job

migration in DMW However, such a mechanism would have to be implemented in close

collaboration with the developers of the simulators themselves

The measurements in section 7 3 3, Figures 7 2 to 7 8, suggest that there is also

some potential to improve the prediction of resource consumption ofjobs However, in

opportunistic workstation clusters, this is of limited value as it is impossible to predict

longer term resource availability in such an environment Therefore, it is preferable to

facilitate the potential of the scheduler for later correction of suboptimal placement
In short, to achieve the best possible performance and unobtrusiveness, a global

scheduler for heterogeneous opportunistic workstation clusters needs

• An information policy that provides an accurate status of resource availability
and shortages, including statistics not only about CPU load, but also about mem¬

ory availability

• A centralized placement policy to ensure fairness among scheduler clients and

to get the most up to date load information with the least expense of network

bandwidth and measurement effort

• A transfer policy that provides both initial placement and the possibility for

placement corrections through an efficient, heterogeneous job migration mecha¬

nism
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Appendix A

The GENESISe Environment
Every engineer in the hall, designing these nanotechnological toasters

and hair dryers, wished he could have Hackworth's job in Bespoke,
where concmnity was an end in itself, where no atom was wasted and

every subsystem was designed specifically for the task at hand

Neal Stephenson, The Diamond Age

GENESISe is the graphical front-end to the ISE semiconductor technology CAD

(TCAD) system offering

• Hierarchical project management facilities

• Graphical process mask and simulation flow editors

• Control of running simulations

• Parametnzation of all input files

A.l Creating a Simulation Project

After GENESISe is started, it presents the user with the main window shown in Fig¬
ure A 1, listing icons for the tools available to the user

To start a new project, the user first creates the project directory in the database

editor and then opens the tool flow editor shown in Figure A 2 to specify the basic

sequence of process simulation, grid generation, device simulation, and visualization

steps

Next, the user defines the process simulation by using the processflow editor (Fig¬
ure A 3) to specify the process steps and the layout editor (Figure A 4) to specify the

process masks

As a final step, after defining the input command files of the other steps in the

tool flow, the user can use the parameter editor shown in Figure A 5 to define variable

parameters for the simulation

The final result of these editing steps is a tree ofsimulation steps as shown in Fig¬
ure A 6 The same process is simulated with two different values for the implantation
dose and implantation energy As a consequence, the simulation will require 4 inde¬

pendent process and device simulations to be earned out
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A.2 Executing the Project

After setting up the host and constraint databases in the scheduler database window

shown in Figure A 7, the project can be executed GENESISe creates a scheduler pro¬

cess and displays the status of the jobs in the simulation tree window (Figure A 6) and

the status window (Figure A 8) The output log files generated by the simulations can

then be accessed from the simulation tree window
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Appendix B

A Glimpse at Queueing Theory
If I am given a formula, and I am ignorant of its meaning, it cannot teach

me anything, but if I already know it what does the formula teach me'

Saint Augustine, De Magistm

Mathematically oriented papers about scheduling frequently assume some familiar¬

ity with statistics and queueing theory In this appendix, mostly adapted from [Wol89]
and [Pap84], I shall try to give a brief overview of this subject, concentrating on ex¬

plaining frequently used terminology

B.l Events, Probabilities, Random Variables

A random expenment yields an element a> of the sample space SI An event A is a

subset of SI A probability measure P is a real valued function satisfying the axioms

P(A) > 0

P(S1) = 1

AB = 0 =f P(A U B) = P(A) + P{B)

In the last case above, the events A and B are said to be mutually exclusive

A random variable is a real-valued function X(a>) defined for every co 6 SI As a

simple example of a random vanable, an indicatorfunction I& of an event A is defined

as

,
, .

f l if co e A
Wto) = {o .fco^A

The (cumulative) distribution Junction F of a random vanable is defined as

F(x) = P({<a X{a)<x})

which for simplicity is often wntten as

F(x) = P(X < x)

Instead of working with F, it is often convenient to work with the tail distribution of

X, defined as Fc{x) = l-F(x)
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B.2 Continuous Distributions

If a random variable X has no values x with the property P(X = x) > 0, X is said to be

continuous and there generally exists a density function f(x) > 0 such that

/W = f/M

Three important density functions are those defining the uniform distribution

fix)
-

v '

[0 otherwise,

the normal distribution

1 I' ;)2

OV2JI

and the exponential distribution

n ' \ 0 ifx<0

Finally, hyperexponential distributions, defined as

/"W_\ 0 if*<0,

such that

i e, combinations of multiple exponential distributions, often provide a more accurate

model of real queueing systems, but are harder to analyze

B.3 Stochastic Processes

A stochastic process is an infinite collection of random variables {X(t) t £T] defined

over some index set T Usually, t will denote time and T is defined as either T — [0,°°)
for a continuous time process or T = 0,1, for a discrete-time process A particular

point on the time axis is referred to as epoch t

A renewal process counts the number of occurrences of some kind of event (e g ,

the arrival of a bus at a bus stop) over time It can be defined in terms of the epochs of

the renewal events

Zo = 0

Z„ = £X„ ii=1,2,
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where the Xt are independent, nonnegative random variables with distributions

P{X,<t) = A(t)

P(X;j>2<t) = F{t)

The renewal process itself is then a continuous-time stochastic process {M(t) t >

0} with

W(0 = max{n>0 Z„<t}

One frequently used case of a renewal process is the Poisson process, which is

defined as {A(()} with

,{A(0 = ,} = £^,, = o,,

The interarnval times Xj are then distributed as

P(Xj>t) = e-u

B.4 Queueing Theory Concepts

Queueing theory models a stream of customers Ci,Ci, ,
numbered in their order of

arrival Each customer Ct arrives at some epoch i,, waits in a queue if delayed by other

customers, spends some time in service and on completion of service departs Thus,

we can define

Sj = service time of Cj

Dj = queue delay of C,

Wj = Dj + Sj = waiting time in system of C,

t; + Wj = departure epoch of C,

Ij(t) = 1 iftj <t<tj + Wj,0otherwise

N(t) = J Ij(t) = number of customers in system

y=i

A(t) = max{j tj < (} = number of arrivals by epoch t

il(t) = A(r) — N(t) = number of departures by epoch t

In general, we are concerned with long-term behavior of a queueing model, and it

is assumed that certain limits, defined as averages over time or customers, are constant

over Q or at least over a subset of £i with probability 1 The most important such limits

are

foN(u)du
r u , r

lim,-,x— = L, the average number ofcustomers

lim,^„—^- = X, the arrival rate

00

W

lim,^^ _£ — = w, the average waiting time

j=i
"
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These three limits are related through Little sformula

L~Xw

B.5 Queueing Models

Distnbution A B

Poisson (Exponential) M M

Constant (Deterministic) D D

General GI G

i-Erlang Ek Ek

Hyper-Exponential H H

Table B 1 Symbols used in A/B/c queueing model notation

In the literature, queueing models are often characterized with the notation A/B/c,
where c is the number of channels, A is the mter-amval time distribution, and B is the

service time distribution Table B 1 shows the symbols used for specific distnbution

families in positions A and B

A workstation cluster with K hosts and no global load distributing can then be de-

scnbed as a GI/G/l or a K*GI/G/\ system, while the ideal case of a perfect load

distnbuting system with no overhead can be descnbed as a GI/G/K system Usually,
Poisson inter-arnval time distnbutions and exponential service time distnbutions are

assumed, so system behavior is typically compared against M/M/1, M/H/1, M/M/K,
or M/H/K systems, but some of the literature (e g Wang and Morns [WM85]) dis¬

cusses several other models
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Class Design Notation

[T]he emancipation of the working classes must be conquered by the

working classes themselves, [the] struggle for the emancipation of the

working classes means not a struggle for class privileges and

monopolies, but for equal rights and duties, and the abolition of all class

rule [ ]
Karl Marx and Frederick Engels, General Rules ofthe International

Working Men's Association

To illustrate compile-time and run-time relationships between C++ classes in Chap¬
ter 6,I use

Class Diagrams depicting classes, their structure, and the static relationships between
them

Interaction Diagrams showing the flow of requests between objects or between pro¬

cesses

These diagrams were taken from the Design Pattern methodology pioneered by
Gamma et al [GHJV95] Gamma et al credit OMT (Object Modeling Technique)
[RBP+91] for the class diagrams and Objectory [JCJ092] and the Booch method

[Boo94] for the interacuon diagrams

C.l Class Diagrams

Figure C 1 shows a class diagram with various relationships between the classes

• Class inheritance is represented by a triangle connecting a subclass (LineShape
in the figure) to its parent class (Shape)

• A part-of or aggregation relationship is indicated by an arrow with a diamond at

the base A filled circle at the tip of the arrow means that multiple objects are

being aggregated (A Drawing contains several Shapes)

• An arrow without a diamond denotes acquaintance (e g, a LineShape keeps a

reference to a Color object, which other shapes may share)

• A dashed arrow indicates that one class instantiates objects of another (e g Cre-

ationTool creates LineShape objects)
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Drawing
shapes

CreationTool

Shape

LineShape Color

Figure C 1 Class Diagram Notation

C.2 Interaction Diagrams

Interaction diagrams show the order in which requests are executed Figure C 2 is an

interaction diagram of a shape getting added to a drawing
Time flows from the top to the bottom of the diagram A vertical solid line indicates

the lifetime of a particular object, while a dotted line indicates that that object has not

yet been instantiated

A vertical rectangle shows that an object is currently handling a method call The

method can call methods of other objects, these are indicated with horizontal arrows

pointing to the receiving objects, labelled with the method names A request to create

an object is shown with a dashed horizontal arrow

In the example in Figure C 2, aCreationTool first creates aLineShape Later,

aLineShape is added to aDrawing which points the drawing to call its own Refresh ()

method The Refresh () method m mm calls the Draw {) method of aLineShape

aCreationTool aDrawing

new LineShape

Add(aLmeShape)

aLineShape

I

RefreshQ

DrawQ

Figure C 2 Interaction Diagram Notation
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Glossary
Rejected so far were an almanac (too late in the year), a breviary

(pointless), a cadaster (too bourgeois), an encyclopedia (would take too

long), afescennme verse dialogue (only Lempnere knew what it was), a

glossary (too many already), an homily (no), incunabula (too late),

juvenilia (also too late), a kunstlerroman (too early), a log (Lempnere

hated boats), a manual (boring), a novel (too vulgar), an opera

(over-ambitious), a pamphlet (too humble), a Qu 'ran (already was one),

a replevin (too arcane), a story (too simple), a treatise (perhaps, but

little enthusiasm), an Upanishad (too fanciful), a variorum edition (of

what'), a Weltanschauung (onanistic), a xenophontean cosmology (out

of date) and a year-book
Lawrence Norfolk, Lempnere's Dictionary

ID simulation A simulation of process steps applied homogeneously to

an infinite plane Since the resulting material distribution

is identical everywhere, only a single line intersecting the

device needs to be simulated

2D simulation

3D simulation

A simulation of process steps where a cross-section of a

device is simulated

A simulation of process steps where all dimensions of a

device are simulated

arbitrated scheduling Nodes wherejobs enter the system delegate placement de¬

cisions to a central arbitration process

background job A job assigned to a host by the distributed scheduler

daemon A program carrying out work in the background without

user intervention

dedicated cluster A workstation cluster exclusively used for computation¬

ally intensive background tasks with no interactive work

design pattern A description of communicating objects and classes that

are customized to solve a general design problem in a par¬

ticular context [GHJV95]

device simulation A numerical simulation of electrical current flow through
a VLSI semiconductor device

139
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distributed scheduling

floating license

foreground job

global scheduling

high throughput

computing

host

individual scheduler

information policy

internet

job

job migration

job placement

load balancing

load sharing

local scheduling

multicasting

Each node where jobs enter the system independently de¬

cides where the jobs are to be placed

A license limiting the total number of copies of a program

running simultaneously on a group of hosts

A job started on a host by an interactive user

Apportioning jobs among the hosts of a distributed sys¬

tem

An approach that, as opposed to high performance com¬

puting, does not focus on maximizing peak performance,
but on delivering large amounts of processing capacity

over very long periods of time [LBRT97]

A separate computer with its own set of IP addresses and

its own local scheduler A two-processor workstation, for

instance, is treated as one host in this work

A component of the scheduling system making placement
decisions for one user

The set of host load information that is available to the

scheduler

A collection of packet switching networks interconnected

by gateways along with protocols that allow them to func¬

tion logically as a single, large, virtual network When

capitalized, Internet refers specifically to the connected

global Internet and the TCP/IP protocols it uses [Com91]

A TCP/IP based internet that has no connectivity or only

highly restricted connectivity to the global Internet

An autonomous program executing in its own protection
domain

Selecting a suitable host for a running job, suspending it

on the current host, and resuming it on the new host

Selecting a suitable host for a job that hasn't started yet

and starting the job there

Distributing jobs, attempting to equalize the loads on all

computers

Distributing jobs among hosts in order to maximize the

rate at which the distributed system performs work

Planning the assignment of a host to the jobs running on

it

Sending a message to a subset of hosts on a network



Glossary 141

nice value A scheduling parameter to lower the CPU allocation pri¬

ority of a process (higher nice values for a process result in

a smaller share of CPU time) On typical UNIX systems,

nice values range from 0 to 19

node locked license A license limiting the execution of a program to a partic¬

ular group of hosts

opportunistic cluster A workstation cluster using the spare computing resources

of interactively used desktop workstations for computa¬

tionally intensive background tasks

page fault The user program attempts to reference a memory address

that is part of its memory space, but not in physical mem¬

ory at the moment This causes the CPU to generate a

hardware interrupt, and the operating system will load the

memory page (a block of memory, typically a few kilo¬

bytes in size) containing the address from disk

page replacement policy How an operating system selects pages to be removed

from main memory

placement policy Deciding which host in a distributed system a job will be

transferred to

platform

port

A combination of hardware and operating system such

that all hosts based on this platform can be expected to

run software interchangeably

An abstraction used to distinguish among multiple desti¬

nations using the same protocol on a given host TCP/IP

protocols identify ports using small positive integers [Com91]

privileged software Programs that need to have access to hies or services nor¬

mally denied to the users running them Privileged pro¬

grams need to be installed by a system administrator, as

their installation itself requires superuser privileges

process simulation A numerical simulation of a VLSI semiconductor fabrica¬

tion process

receiver initiated Lightly loaded hosts search for heavily loaded hosts and

scheduling solicit jobs from them

residual dependency An on-gomg need for a host to maintain data structures or

provide functionality for a process even after the process

migrates away from the host [Dou89]

sender initiated

scheduling

Heavily loaded hosts search for lightly loaded hosts and

transfer jobs to them
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socket An abstraction, introduced in Berkeley 4BSD UNIX and

widely adopted in later UNIX systems, representing a net¬

work communication endpomt Applications create a socket,

connect it to a peer socket, and then send or receive data

superuser privileges Ultimate access pnvileges on UNIX systems, granted to a

special user ID, the superuser The superuser, or software

with superuser pnvileges, may access all services and any

files, except in some cases on file systems mounted from

a remote server by NFS

transfer policy The conditions under which a job is transferred to a dif¬

ferent host

VLSI Very Large Scale Integration Integrated Circuits with 105

or more components per chip

working set The subset of a job's address space recently used and ex¬

pected to be used in the near future

workstation cluster A group of workstations, connected by a local area net¬

work

XDR External Data Representation, a standardized specifica¬
tion for portable data transmission defined by Sun
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