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Abstract

A new statistical theory is outlined which builds a bridge between frequentist and Bayesian
approaches and very naturally uses upper and lower probabilities. It started with an attempt
to investigate how far one can get with a frequentist approach; this approach goes beyond
the Neyman-Pearson and the Fisherian theory in explicitly using intersubjective epistemic
upper and lower probabilities allowing an operational frequentist interpretation (not tied to
repetitions of an experiment), and in deriving what is valid of Fisher’s mostly misinterpreted
fiducial probabilities as a very special case within a broader framework. It formally contains
the Bayes theory as an extremal special case, but at the other extreme it also allows starting
with the state of total ignorance about the parameter in an objective, frequentist learning
process converging to the true model, thereby solving a problem of artificial intelligence (AI).
The general theory describes (rather similar) optimal compromises between frequentist and
Bayesian approaches within (and outside) either framework, thus also providing a new class of
“least informative priors”. There is also a connection with information theory. Key concepts
are “successful bets”, more specifically “least unfair successful bets”, “cautious surprises”, and
“enforced fair bets”, including “best enforced fair bets”. The main emphasis is on prediction.
When going from inference to decisions, upper and lower probabilities (which avoid sure loss)
are replaced by proper probabilities (which are coherent), somewhat analogous to Smets’
pignistic transformation of belief functions. Much still needs to be done, but several examples
for the binomial (the “fundamental problem of practical statistics”) have been worked out,
and there are also first (rather limited) solutions for continuous one-parameter situations,
including their robustness problem.

Key words: foundations of statistics, frequentist approach...

1 Overview over the theory

1.1 Introduction

Since it is not possible to describe the details of the new theory in a short talk or a short paper,
I shall try to give a rather nontechnical overview with an introductory guide to the more detailed
literature and an outline of the past achievements and problems and possible future developments
as I see them presently.

It should be noted that parts, pieces and fragments of the theory did already exist. However, the
way of combining them, enlarging them, and filling the gaps by means of new concepts appears to
be new - somewhat surprisingly. In particular, I was amazed to find out during my research how
incomplete the existing frequentist theories of statistics were.

The new theory uses and investigates (upper and lower) probabilities and not, for example, belief
functions (cf., e.g., Dempster 1967, 1968, Shafer 1976, Smets 1991), possibility functions (Zadeh
1978, Dubois and Prade 1988), or other “fuzzy” concepts (Zadeh 1965), which have their own
realms of application; but it has in common with the former theories that it uses pairs of numbers
to describe incomplete knowledge and thus can also model the state of total ignorance in an
appropriate way. It differs from them by using different rules, and by the numbers not being
subjective, but having an objective and operational frequentist interpretation.

As indicated in the abstract, the framework of the new theory contains the Neyman-Pearson,
Bayesian (with “robust Bayesian”) and Fisherian theory, including what is correct about fiducial
probabilities (see below); it makes strong use of likelihoods, solves a major problem of artificial
intelligence, and also has a close connection with information theory.
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The theory extensively utilizes the old relation between probabilities and bets, or odds ratios.
Proper probabilities are equivalent to two-sided bets (or pairs of bets, on an event A and its
complement), and in the same way upper and lower probabilities can be seen as equivalent to one-
sided bets. (For one-sided bets, cf. also Smith 1961.) While Bayesians like to consider fair (pairs
of) bets, with (mostly only subjectively) expected gain equal zero, the theory also studies (one-
sided) “successful bets,” with (objectively) expected gain greater or equal zero (Hampel 1993a,
1998b).

A closely related concept is that of “cautious surprises” (Hampel 1993a), which is tied to infor-
mation theory. It is partly stronger, but not as nicely linear as successful bets, and therefore its
exploration has been largely postponed.

There is also a partly new interpretation of the fundamental paper by Bayes (1763), who was
basically a frequentist, in the light of the new theory (Hampel 1989; cf., e.g., Hampel 1998b).

1.2 The basic framework for inference

The main framework is that of a given parametric model (e.g., independent Bernoulli trials), with
possibly some prior knowledge about the parameter, with a past observation X = x, a future
observation Y and a given event A in the range of Y about whose occurrence some claims shall be
made. The stress on prediction is not accidental (cf. Hampel 1997a, 1998b). A may also depend
on X, as in usual prediction intervals. If, in a variant of the basic framework, A is a subset of the
parameter space, it has to depend on X (as with confidence intervals and fiducial probabilities),
otherwise no nontrivial inference is possible in this theory.

Since our one-sided bet that Y will be in A, may depend on the past observation x, we actually have
to consider a whole class of conditional bets, given x. If we wanted to bet “successfully,” that is,
with expected nonnegative gain, conditionally given any x, we could not learn from the distribution
of X, since in general x may always be an extremely unlikely and extremely misleading observation,
and we would have to take the worst possible case into account. Hence, in order to obtain the
frequentist property of being successful, we have to be able to compensate for very unlikely x’s,
and this can most simply be done by averaging the expected gain over the full distribution of X.
Such a (class of) bet(s) will be called “successful” (Hampel 1993a, 1998b), and amazingly enough,
this definition works. However, we have to give up full conditionality and hence coherence (Walley
1991); but we still avoid sure loss. If we try to interpret this in monetary terms, it means we might
perhaps have gained a bit more money, but at least we did not lose any money on the average (as
Bayesians, despite their claims, very often do, cf. Hampel 1998b). A further simple thought shows
that we can always modify our bets so that we never lose money for sure even in single cases. -
For further aspects of the one- and two-sided betting situation, see Hampel (1998b).

1.3 Fiducial probabilities

A surprising side result was the clarification of what is correct about the fiducial argument (Fisher
1930, 1956; for a nice historical survey, see Zabell 1992). Fiducial probabilities have been grossly
misunderstood by almost everybody, including Fisher himself (for a remarkable exception, see
Pitman 1957). For example, in the simplest case, the fiducial argument and an improper Bayesian
prior lead to formally exactly the same formula, but the proper interpretation, including the
underlying probability space (which is hidden by the notation), is entirely different. Fiducial
probabilities are only epistemic, and not the parameter is random, but the whole statement in
which it occurs. Fiducial probabilities are derived as a special case of a sideline of the new theory;
they are thus put into a much broader framework, which also bridges the gap between continuous
and discrete distributions (Hampel 1993a).
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1.4 The decision problem

So far we have considered the inference problem of how to describe in a quantitative and opera-
tionally verifiable way our incomplete knowledge after obtaining an observation X = x from a given
parametric model. The Bayesian claim that only proper probabilities must be used (“enforced fair
bets”) is not true for inference (cf. also Smets 1993), but appears to be true for decisions. Thus, in
vague analogy to Smets’ “pignistic transformation” (Smets 1990), the theory replaces, for decision
purposes, the upper and lower probabilities by proper probabilities which cannot be successful
anymore (a few special cases excepted), but which minimize the maximum expected loss (“best
enforced fair bets and probability distributions,” cf. Hampel 1993b, 1998b). They can usually (but
not always) be obtained as special Bayes solutions, from what may be called a new class of “least
informative priors.” These Bayes solutions (the “least unsuccessful Bayes solutions”) are closest
to being frequentist solutions in a minimax sense, and the remaining gap can be measured by the
minimax risk.

1.5 A bridge between frequentist and Bayesian statistics

The solution for two-sided bets suggests a solution for the selection of a particular successful bet
in the one-sided betting situation: choose the successful bet which minimizes the maximum risk
in the two-sided betting situation (“least unfair successful bets”). Naturally, this minimax risk is
at least as big as the one without restriction to successful bets. The corresponding bet is the one
with frequentist interpretation which in a sense comes closest to being also a Bayesian solution,
with the pertaining properties.

A few examples for the binomial situation (the “fundamental problem of practical statistics,” cf.
Pearson 1920, 1921) have already been worked out (Steiner 1995, Hampel 1997b, 1998b). They
look reasonable and show that the best compromise frequentist and Bayesian solutions are not too
far apart. More generally, we may assign to any one-sided bet its maximum one-sided and two-
sided risk and look at the set of all attainable risk vectors in two dimensions, as in decision theory;
this set contains the two compromise solutions mentioned above at the extremes of the interesting
“admissible” lower left “edge” of the risk set, and in addition presumably many “admissible”
solutions in between, which are neither quite frequentist nor quite Bayesian, but which build a
natural bridge between the two approaches. In particular, epsilon-successful and epsilon-Bayes
solutions might conceivably contain a marked overall improvement over the “pure” classes.

1.6 Some other aspects

Besides the binomial situation, there are also some first results for the Poisson distribution (M.
Wolbers, orally) and for rather general continuous one-parameter problems, including a very first
discussion of the problems arising from the fact that parametric models are almost never exact
(the binomial often being an exception with a high degree of accuracy), namely the “robustness
problem” (Hampel 1996; for the background see Hampel et al. 1986, Ch. 1 and Ch. 8.1, and
Huber 1981).

The theory provides a new and sometimes surprising outlook on customary problems in statistics.
Thus, in the testing situation, one (obviously) cannot bet successfully (and nontrivially) on a fixed
hypothesis; however, one can bet successfully on the correctness of a test decision (Hampel 1993a).

For introductory reading on the theory, the three main papers are Hampel 1993a, 1996 and 1998b;
compare also Hampel 1995 and 1997a for a wider horizon. Hampel 1993a is the broadest paper
on the theory, but naturally least advanced; Hampel 1996 provides some further solutions which
have not yet been followed up; and Hampel 1998b, probably the most readable of the three, pushes
farthest what so far has been the main line of development.
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2 Remarks on the previous papers about the theory

2.1 The beginning

The following sections contain some remarks on the development of the theory and its open prob-
lems, as an aid to a deeper and better understanding of the pertaining literature, and possibly as
a stimulus for further research.

The first tentative concept in the emerging theory was the “Moeglichkeit” (Hampel 1989, repro-
duced in Hampel 1991a; Hampel 1993a), not to be confused with the “possibility” by Zadeh (1978)
and Dubois and Prade (1988). It has some esthetic reasons in its favor, but after Hampel (1993a)
it disappeared into the background. However, I think it might become useful as a starting point
once the theory for cautious surprises is being worked out.

2.2 Successful bets and related concepts

The next concept was the key concept of successful bets (Hampel 1990, cf. also Hampel 1991b, both
reproduced in Hampel 1991a). It led to a rich and multifaceted paper (Hampel 1993a) containing
a number of germs for future research. In retrospect, the following points may be noted:

The unifying formalism (loc. cit., p. 127) contains both the start with total ignorance about the
parameter (given the model), and the start with a Bayesian prior, as extreme cases. The bridge
in between is still little explored (and still not fully formalized, although a Choquet (1953/54)
capacity of order 2 on the parameter space might be quite suitable as upper bound for the priors).
The bridge contains as examples restrictions on the parameter space, and certain neighborhoods
of a Bayesian prior (cf. Huber 1973; 1981, p. 263f; and Berger’s (e.g. 1984) work on the so-
called “robust Bayesian” approach, which is actually only “half-robust” since it does not consider
neighborhoods of the parametric model).

A little note on notation (Hampel 1993a, p. 127) in answer to a frequent question: the reason for
writing the upper and not the lower probability as m without a bar, and using it preferentially, was
a far-reaching guess that eventually cautious surprises will become the central concept, although
for successful bets the lower probabilities would be more convenient.

The following sections (loc. cit.) on successful bets and on fiducial probabilities (cf. also Hampel
1990, 1991a, b) contain much material which apparently has to be repeated again and again.

The “surprise” (Hampel 1993a, p. 131, cf. also Hampel 1991a, b), closely related to entropy, is not
the only one in the literature. For example, Good (1971; the version in Good 1983 is incomplete),
in the spirit of a pure mathematician, defines a whole class of “surprises” whose (according to
Good) most important member differs from the above concept just by an additive constant.

The theorem on the relation between cautious surprises and successful bets (Hampel 1993a, p.
131) is obviously derived under a start with total ignorance (as H. Carnal - orally - noticed in
1995), but this assumption was forgotten to be stated explicitly.

The various likelihood-based approaches (loc. cit., p. 132f) still wait for further exploration; but
the proposal and form of solution in the last paragraph - minimax MSE and maximum likelihood
plus a constant - have recently gained increased interest as possible alternatives to least unfair
successful bets, due to their simple structures (needed in more general situations), the results for
the normal and other distributions (Hampel 1996), and a remark by M. Wolbers (orally, 1999) on
the relation to unbiased estimation (cf. also the remarks on best enforced fair bets below).

For the examples with n = k = 2 (Hampel 1993a, p. 134), Steiner (1995) found also admissible
asymmetric solutions, so that the claim about symmetrizing is wrong. However, it still seems
reasonable to generally restrict oneself to symmetric solutions.
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2.3 Enforced fair bets

The next major research step was the definition of “best enforced fair bets,” a solution for the
decision problem, in Hampel (1993b). In this short and highly condensed paper, the formula is
given for the solution with the minimax expected monetary loss if the opponent is allowed to choose
sides depending on the past observation x, a strong generalization of simple fair bets to the case of
a set of conditional bets, given x. (Cf. the detailed derivation in Hampel 1998b.) Unfortunately,
the most clever change of sides leads to the absolute value instead of, for example, a square which
would be easier to handle mathematically (but then we would need “squared” money); compare
also the remark on MSE above.

The examples given (and more fully described in Hampel 1998b) are of general conceptual interest.
They show that in a very famous philosophical problem (how to bet in the state of total ignorance),
in the simplest case the “principle of insufficient reason,” symmetric Bayesian priors, Smets’ pig-
nistic transformation (Smets 1990), and the best enforced fair bets yield the same solution, though
with a different derivation each time; and in other cases, all solutions differ; moreover, the “least
informative priors” for the “least unsuccessful Bayes solutions” (cf. above) differ depending on the
problem considered, a very anti-Bayesian situation found, remarkably, also in Bernardo’s (1979)
“reference priors,” but probably nowhere else in Bayesian theory. In addition, some (unimportant?)
“best enforced probability distributions” cannot be obtained as Bayes solutions.

In another simple example, it is shown that Laplace’s “rule of succession,” which found a natural
interpretation in terms of the “Moeglichkeit” (Hampel 1989), is not optimal in the present context.

2.4 Successful bets in different parametric models

The second somewhat larger paper (Hampel 1996) mainly extends the range of applicability of
successful bets. It also contains a sketch of a proof for asymptotic consistency. Successful bets are
derived for the one-parameter normal and the (“nonregular”) exponential with shift parameter,
by “transforming” likelihoods into upper and lower probabilities, and asymptotically for general
“regular” one-parameter models. The sketch of a coarse first treatment of the robustness problem
makes strong use of the heuristics of approximate parametric models (cf., e.g., Hampel et al. 1986)
and uses a nonstandard type of asymptotics (cf. Hampel 1998a for some general critical comments
on asymptotics).

2.5 Least unfair successful bets, and an outlook

The last major research step was the selection of a canonical successful bet out of the infinity of
successful bets, namely the one that is closest to being Bayesian (“least unfair successful bets”),
which allows also the definition of a class of optimal compromise solutions between frequentist
and Bayesian ones (Hampel 1998b, cf. also Steiner 1995 and Hampel 1997b). For this solution of
the uniqueness problem for successful bets, the “detour” via enforced fair bets was needed. This
“linear” part of the overall theory (cf. Hampel 1993a for a broader perspective) is now well rounded
off and rather encompassing, containing and enlarging practically all the customary statistical
theories (including a critical appraisal of subjectivist Bayesianism from a higher perspective), and
several examples for the fundamental case of 2 binomials have been worked out by Steiner (1995)
and the author, showing that reasonable looking solutions exist and can be found.

However, this view is a bit too rosy. The numerical solutions are too complicated for general
use; most had to be found by brute force on the computer. I think either they shall serve as
benchmarks for a simple approximation which can be generally used in practice; or some concepts
shall be modified to yield a more tractable mathematics (or both simultaneously). In particular,
it is tempting to replace the absolute value signs in several formulas by squares; even Bayesians
might prefer the mean of the posterior to the median, although the monetary interpretation does
not seem clear at present.

5



There is also a question whether the requirement of successful bets may be in a sense “too strong,”
since some rather nice looking proposals for inference, for example by Walley (1996) and especially
by Coolen (1998) do not fulfill it. This may have to do with the very strong property that
successful bets lead out of the state of total ignorance without any additional arbitrariness. Perhaps
weakening the criterion by an epsilon might have a big effect, but this would still leave the present
theory as a basis for comparison.

One weak point of the theory seems to be both unavoidable and minor: it would be nice to have a
method which is both fully coherent and fully successful. However, within my framework this ap-
pears to be impossible. If the probability of an event can be arbitrarily close to zero under different
parameters, I do not see how one can bet on it successfully and nontrivially without “borrowing”
from somewhere else. On the other hand, the lack of coherence (or else of successfulness, as with
optimal Bayesian compromises) can be quantitatively assessed, is rather limited and disappears
asymptotically, as more and more information comes in.
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