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Abstract

The operation of conventional semiconductor devices can be understood within a
semiclassical theory of conduction. Where the dimensions of the considered struc-
tures are comparable to the Fermi wave length, quantum effects become important.
The finite size of such structures constrains the electron motion, and the energy gets
quantized. With the ongoing miniaturization of computer chips this limit will be
reached soon. For further size-reduction it is of fundamental importance to know
how conduction in such quantum structures is described. With the technological
progress it has become possible to fabricate well-defined structures in the nanometer
range, where the atomic composition is controlled within monolayers. In principle,
such “nanostructures” are the experimental realization of standard text-book exam-
ples of a particle in a quantum well. However, the nanostructure is neither an abstract
quantum well nor an isolated atom, but still consists of millions of atoms and elec-
trons. This thesis is aimed to investigate how far transport in nanostructures can
be described by single-particle quantum mechanics, and where more refined models
have to be considered. For this purpose, we have fabricated a semiconductor model
system where a parabolic potential profile is realized along one spatial direction in the
conduction band of a semiconductor heterostructure. This parabolic quantum well
was grown by molecular beam epitaxy of Al.Gaj..As by varying @ appropriately.
Carriers in the well are provided by modulation-doping.

The magnetoresistance and Hall resistance of the electron gas confined in the well has
been measured at temperatures down to 40 mK and magnetic fields up to 13T. The
energy of the 76 nm wide well was found to be quantized, leading to the formation
of subbands. With gate electrodes on both sides of the well, the electron density
in the quantum well has been varied and up to three subbands could be occupied.
The electron sheet density could be tuned between 1 and 6 - 10" m™2. By measur-
ing Shubnikov-de Haas oscillations in the magnetoresistance, the individual subband
densities have been determined.

With appropriate voltages applied to the gate electrodes, the electron gas could be
displaced across the quantum well by £15nm, while the sheet density was kept
constant. By growing a narrow potential spike of well-defined strength in the center
of the parabolic quantum well, we have probed the difference in the squared wave-
function modulus between the two lowest subbands. The results agree with single-
particle envelope wave functions calculated in the Hartree approximation.
Individual subband scattering times have been obtained from low-field magnetoresis-
tance measurements. The scattering time of the subband lowest in energy depends
mainly on the distance of the electron gas to the dopant layer, whereas the scattering
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time of the upper subband is influenced by density-dependent screening effects. As
suggested by a calculation of the intra- and intersubband scattering times, the elec-
tron mobility is limited by Coulomb scattering from ionized dopants on both sides of
the well. The dependence of the scattering times on the position of the electron gas
indicates a segregation of dopants on the substrate side towards the quantum well
during sample growth.

The transition from one to two occupied subbands is of special interest, as a cross-over
from two- to three-dimensional behavior is expected. From universal conductance
fluctuations and the weak-localization correction to the magnetoresistance, the phase-
coherence length can be extracted. Both, universal conductance fluctuations and
weak-localization, indicate a change in the phase-coherence length at the dimensional
Cross-over.

The electron confinement due to a magnetic field oriented along arbitrary directions
has been studied. For magnetic fields oriented in the plane of the electron gas, the
electron densities of the upper subbands decrease with the magnetic field, and the
subbands are successively depopulated. It has been found that the diamagnetic shift
of the subband energy is not solely responsible for the electron redistribution. It
is rather the change of the in-plane dispersion relation which leads to a subband-
dependent change in the deusity of states and to a strong carrier redistribution. This
effect has been calculated in second-order perturbation theory and quantitatively
accounts for the measured effect.

The two-dimensional electron gas has been electrically confined in one lateral direc-
tion by lithographically fabricated split-gate electrodes. This forms a quantum point
contact, where transverse modes in both directions can be occupied. We have found
the conductance to be quantized, indicating ballistic transport through the quantum-
point contact. A measurement of the conductance plateaus allows for spectroscopy
of single-particle energy levels. A suppression of certain conductance plateaus has
been observed, which we explain by degeneracies in the 1D subband energy struc-
ture. By applying a magnetic field in the direction of current flow, a coupling of the
1D subbands has been observed, which is described by a generalized Darwin-Fock
spectrum, Level anticrossings have been explained by the non-parabolic confinement

of the quantum point contact.



Zusammenfassung

Die Funktionsweise konventioneller Halbleiterbauteile kann mit Hilfe eines semiklas-
sischen Modells des Elektronentransports verstanden werden. Fir kleinere Struk-
turen mit Abmessungen vergleichbar der Fermiwellenlange werden Quanteneffekte
wichtig. Aufgrund der eingeschrankten Elektronenbewegung nehmen die Energien
hier quantisierte Werte an. Mit der zunehmenden Miniaturisierung der Computer-
chips wird diese Grenze bald erreicht sein. Ifs ist deshalb von Interesse, wie man
Elektronentransport in solchen Quantenstrukturen beschreiben kann. Mit moder-
nen technologischen Verfahren ist es heute moglich, nanometergrosse Strukturen her-
zustellen, die auf atomare Monolagen genau zugeschnitten sind. Im Prinzip ist in
solchen Strukturen das Lehrbuchbeispiel eines Teilchens in einem Quantentopf ex-
perimentell realisiert, nur dass wir es hier nicht mit einem abstrakten Quantentopt
oder einem Atom zu tun haben, sondern immer noch mit Millionen von Atomen und
Elektronen. In der vorliegenden Arbeit soll untersucht werden, inwiefern man solche
Nanostrukturen dennoch als einfache Quantensysteme begreifen kann und wo erst
kompliziertere Modelle ihre Funktionsweise erhellen konnen. Um dieses Ziel zu errvei-
chen, wurde ein Modellsystem hergestellt, in welchem entlang einer Raumrichtung ein
parabolformiges Potential realisiert ist. Dieser parabolische Quantentopf wurde mit-
tels Molekularstrahlepitaxie von Al,Ga;., As gewachsen, wobei der Aluminiumgehalt
x von Schicht zu Schicht entsprechend geandert wurde.

Das Elektronengas, das sich im modulationsdotierten Quantentopt authalt, wurde
elektrisch kontaktiert und dessen Widerstand sowie Hallwiderstand fiir Magnetfelder
bis 13T und Temperaturen bis 40mK gemessen. Die Quantisierung der Energie
im 76 nm breiten parabolformigen Quantentopt fihirt zur Bildung von Subbéandern.
Mittels Elektroden, die auf beiden Seiten des Toptes angebracht wurden, konnte die
Elektronendichte zwischen 1 und 6 - 10" m™? geindert werden. Durch Messungen
von Shubnikov-de Haas Oszillationen des Magnetowiderstandes wurden die einzelnen
Subbanddichten aufgelost.

Indem geeignete Spannungen an die Elektroden angelegt wurden, konnte die Tlektro-
nenverteilung im Quantentopf bei konstanter Dichte um 15nm hin- und hergescho-
ben werden. Mit Hilfe einer eingewachsenen Potentialspitze konnten wir die Differenz
von Wellenfunktionsbetragsquadraten zweier Subbinder bestimmen. Die erhaltenen
Messwerte stimmen gut mit berechneten Werten iiberein, welche wir mit der Hartree-
Naherung erhalten haben.

Die Streuzeiten der einzelnen Subbander wurden mittels Messung des Magnetowider-
standes bei kleinen Magnetfeldern bestimmt. Wahrend die Streuzeit des energetisch
tieferliegenden Subbandes hauptsachlich vom Abstand der Elektronenverteilung von
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den Storstellen abhangt, ist die Streuzeit des hoherliegenden Subbandes bestimmt
durch Abschirmung, die mit der Subbanddichte zunimmt. Fine Berechnung zeigt,
dass die Streuzeiten durch Coulomb-Steuung an ionisierten Donatoren limitiert sind.
Die spezielle Abhangigkeit der Streuzeiten von der Position des Elektronengases im
Quantentopf deutet darauf hin, dass wihrend des Wachstums der Probe auf der Sub-
stratseite Donatoren in Richtung des Quantentoptes diffundiert sein kénnten.

Der Ubergang von einem zu zwei besetzten Subbandern ist besonders interessant, da
er den Bereich zwischen einem zwei- und dreidimensionalen System kennzeichnet. Die
Phasenkoharenzlange kann in diesem Bereich durch Messungen universeller Leitwert-
fluktuationen und der Widerstandskorrektur aufgrund der Schwachen Lokalisierung
studiert werden. Beide Grossen deuten auf einen Wechsel der Phasenkoharenzlange
am Ubergang hin.

Das durch ein entlang einer beliebigen Richtung angelegte Magnetfeld erzeugte ma-
gnetoelektrische Potential wurde untersucht. Fir Magnetfelder in der Ebene des Elek-
tronengases beobachteten wir mit zunehmendem Magnetfeld eine Abnahme der Elek-
tronendichte der hoheren Subbander. Diese Abnahme ist viel starker, als aufgrund
der diamagnetischen Verschiebung der Subbandenergien vermutet werden kénnte. s
ist vielmehr die zusatzlich vom Magnetfeld bewirkte An_derung der Dispersionsbezie-
hung in der Ebene, die zu der starken Umverteilung der Ladungstriger zwischen
den Subbandern fithrt. Dieser in Storungstheorie zweiter Ordnung berechnete Effelt
erklart die gemessenen Daten quantitativ.

Das Elektronengas wurde zusatzlich zum parabolformigen Quantentopf in einer weite-
ren Raumrichtung eingeschniirt. Dies wurde mittels einer geteilten Elektrode bewerk-
stelligt. Der so entstandene Quantenpunktkontakt leitet transversale Moden beider
Richtungen. Die gemessenen Leitwerte sind quantisiert, was auf ballistischen Trans-
port im Punktkontakt hinweist. Das Ausmessen der Leitwertsplateaus ermoglicht die
Spektroskopie der Einteilchenenergien im Punktkontakt. Gewisse Leitwertsplateaus
sind unterdriickt, was wir mit einer Entartung von Modenenergien erklaren. Wird ein
Magnetfeld in Richtung des Stromes angelegt, beobachten wir eine Modenkopplung,
welche in einem erweiterten Darwin-Fock-Modell erklart werden kann. Nicht alle Mo-
denenergien kreuzen sich mit zunehmendem Magnetfeld. Dass sich einige abstossen,
wurde auf ein nichtparabolisches Finschlusspotential zurtickgefiihrt.
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Chapter 1

Introduction

The progress in the fabrication of semiconductor structures of high purity has achieved
a level where monoatomic layers of different materials can be grown on top of each
other. Thereby the crystal lattice can be maintained to a very large extent. The
synthesis of artificially quantized structures, in which the electrons move through a
restricted, but almost defect-free crystalline lattice is therefore possible. In such small
structures, the electrons experience quantum effects which strongly modify their be-
havior. Especially the investigation of an electron gas confined to a plane (a so-called
two-dimensional electron gas, 2DEG) has lead to fundamental discoveries such as
the integer quantum Hall effect, for which the 1985 Nobel prize was awarded. This
effect, where the Hall resistance is quantized in integer fractions of a fundamental
resistance unit, was first observed at the oxide-semiconductor interface in gated sil-
icon [1], the material every microchip is made of. Although industry is focused on
Si technology, basic research concentrates on the I11/V compound GaAs, mainly for
three reasons: (i) GaAs is a direct-bandgap semiconductor allowing for optical ap-
plications, (i1} a higher electron mobility is achieved due to a lower effective electron
mass and the advantage of modulation doping [2, 3], and (iii) the combination of
GaAs with AlGaAs ternary alloys allows the fabrication of almost defect-free inter-
faces between semiconductors with different physical properties, but almost identical
lattice constants.

A high-mobility 2DEG is formed at the Al,Ga;_,As/GaAs heterointerface if the
structure is doped remotely. The spatial separation of the ionized dopants from the
2DEG is responsible for the high mobilities achieved in such structures. This paved
the way for the discovery of a new kind of quasi-particles [4] which shows up in
excitations of fractional-quantum Hall states [5] and carries a charge which is only a
fraction of the electron charge (also worth a Nobel prize in 1998).

The AlGaAs system provided new kinds of optical and electronic devices [6]. New
transistors based on 2DEGs are used in high-frequency applications, and quantum-
well lasers operate in compact-disc players and are used in optical telecommunication.
The development goes to smaller and smaller structures (“nano-structures”). The
additional confinement of the clectrons leads to 1D (“wires”) and 0D (“dots”) de-
vices. Today lithography allows for structure sizes with dimensions comparable to
the Fermi wavelength (typically 40 nm in semiconductors) and much smaller than the
electron mean-free path (several micrometers). In such quantized, “ballistic” systems,
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the transport properties are modified significantly, and electron-electron interactions
become increasingly important. The Coulomb-blockade effect encountered in such
systems has a possible application in the single-electron transistor [7].

While the fabrication of 1D and 0D structures has advanced considerably in recent
years, much less effort has been undertaken in the direction of high-purity 3D sys-
tems. At the crossover from two to three dimensions, the quantum Hall effect breaks
down. Electrons formerly captured in one vertical quantum state spread among ad-
ditional states. Transitions between those states modify the electronic properties. In
pure 3D electron gases, a condensation of the electrons into a 3D Wigner-crystal is
predicted [8], but has never been clearly observed experimentally.

In order to realize 3D systems with high mobility, the dopants should be spatially
separated from the electron gas, similar to a remotely doped heterointerface. Evi-
dently no 3D system with infinite extensions can be realized with dopants located
“outside”. But quantum wells, wide enough for many energy levels to be occupied,
offer the electrons quasi-free motion in the direction across the well. Such quasi-3D
systems are preferably realized in a quantum well with parabolic potential shape (so-
called parabolic quantum wells, PQW). Due to the interaction among the electrons,
the effective potential in a PQW is flat, and the 3D electron density is uniform [9, 10].
The parabolic potential itself is of great interest, apart from this technological aspect
(i.e. the realization of a high-mobility 3D electron gas). Parabolic potentials are of
fundamental importance in physics. In general, motion of a mass around a potential
minimum can be approximated by a harmonic oscillation, as long as the displace-
ment from the equilibrium position is small enough. This is reflected in the Taylor
expansion around the potential minimum, where the first non-zero term is quadratic
in the displacement. Using this approximation, vibrations of molecules or of a crystal
lattice are described.

In this thesis, a model system is investigated, where an artificial parabolic potential
is provided for electrons in a semiconductor. The potential acts along one spatial
direction, in the other two directions the electrons are free to move. The motion
of electrons in the parabolic potential cannot be described classically. The allowed
energies are quantized. Thus this system is perfectly suited for the investigation of
quantum mechanical phenomena. Typical text-book problems of quantum mechanics
in one, two and three dimensions involving potential wells and magnetic fields along
arbitrary directions can be experimentally realized in the system considered.

The description of the electron states is not as simple as the text-book’s examples
might suggest. The parabolic well is realized in a semiconductor, and the potential
of the periodic lattice can only be neglected in the approximation of the “envelope”
wave function. If more than one electron sits inside the well, Coulomb repulsion
between the electrons occurs. The exact quantum-mechanical calculation of the elec-
tron motion 1s a many-body problem, which cannot be solved analytically for more
than a few electrons. Here, the single-electron approximation comes into play, where
the motion of one electron in the averaged potential of all others is calculated. One
aim of this thesis is to investigate experimentally, how far the measured effects can

be explained within these approximations.

PQWs have attracted a lot of attention because they can be used for unique exper-
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iments inaccessible to other potential shapes. In optical transmission experiments,
the equidistant energy levels of a bare parabolic potential are measured, as if there
was no electron-electron interaction [11, 12]. This striking observation was explained
by a generalization of Kohn's theorem [13] stating that in the bare parabolic well
the absorption spectrum is independent of the electron-electron interaction, and also
independent of the number of electrons in the well [14].

The parabola is the only mathematical function which maintains its shape if a linear
function of arbitrary slope is added. This fact has useful consequences for the ex-
periments with PQWs. The potential of the as-grown PQW is parabolic. A voltage
applied to a plane gate near the PQW produces a linearly increasing potential. The
sum of the two potentials is again a parabola with the same curvature, but with a
displaced origin. We employ this fact in order to tune the spatial position of the
electron gas in growth direction.

In this thesis, the PQW properties are investigated by transport measurements. The
sample resistance in a magnetic field and the Hall effect reveal the electron population
and scattering times of individual quantum states. I'rom the electron population,
conclusions on the single-particle energy levels can be drawn. The sample fabrication
and the properties of the confined electron gas will be discussed in chapter 2.

We not only intended to probe the quantized energy levels, but also the corresponding
wave functions. This is much more difficult than energy spectroscopy and usually
requires the presence of a highly localized scattering center which is used as a wave-
function probe. Such a sensor has been realized by enhancing the Al content of three
monolayers in the center of the PQW. This way we have measured the quantum-
mechanical electron probability density at the sensor position, and by displacing
the electron gas relatively to the probe, the distribution of the probability density
(chapter 3). This novel method allows scanning of the wave function within one single
sample. The results agree with calculations of the single-particle wave functions.
The Si dopants on both sides of the quantum well limit the electron mobility. The
electrons in the well are scattered by the ionized dopants. It is not clear how the
dopants are distributed across the structure. Segregation of Si during growth might
occur. We present a new method, where the influence of the dopant position on
the electron gas can be investigated. By varying the position of the electron gas,
we have a unique means of probing the distribution of the remote scatterers. We
have investigated in detail the dependence of the electron scattering times on the
electron-gas position across the quantum well (chapter 4).

With gate voltages, not only the position of the electron gas along the growth di-
rection can be tuned, but also the electron sheet density. At low densities, only the
PQW ground state is occupied, and the system has a pure 2D character. With the
occupation of upper PQW states, a transition to a quasi-3D system can be realized.
It is of particular interest to study the electron-electron scattering rate at this transi-
tion. Electron-electron scattering leads to a decrease of the electron phase-coherence
length, which has been studied by measuring fluctuations and the weak-localization
peak in the sample resistance. We have ohserved characteristic changes of those
features at the transition, which will be discussed in chapter 5.

The PQW is a “text-book system”, which can be studied with magnetic fields applied
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along arbitrary directions. An in-plane magnetic field leads to a diamagnetic shift
of the energy levels, and in addition, the in-plane dispersion relation is modified. In
order to describe the experimental results, the change in the dispersion relation was
usually neglected. We have showed that for a PQW system this effect is crucial for
describing the measured effects (chapter 6).

The PQW represents a system where a quasi 3DEG is realized. Given that, we
can go back and reduce the dimensionality. We realized a quantum point contact
(QPC) by laterally confining the electron gas. This device differs significantly from
one fabricated conventionally at a semiconductor hetereointerface. The QPC defined
on a PQW can be tuned in both lateral directions (one defined vertically by the
PQW, the other laterally by lithography), and the occupied states are described
by two quantum numbers. The QPC resembles an optical waveguide, transmitting
electrons instead of photons. One interesting question is what happens in a magnetic
field. Because photons have no charge, no mode coupling can occur, whereas in
an electron waveguide the magnetic field leads to mode coupling which changes the
energy spectrum significantly.

The measured conductance through the QPC shows plateaus which are at integer
multiples of the fundamental conductance unit given by 2¢/h. The position of the
conductance plateaus and their suppression at certain parameter values have revealed
the quantum-mechanical single-particle spectrum in the two-dimensional constriction
and its dependence on a magnetic field (chapter 7).



Chapter 2

Sample Fabrication and
Characterization

2.1 AlGaAs System

The two semiconductors AlAs and GaAs both consist of atoms arranged in a zinc-
blende lattice with very similar lattice constants'. This makes it easy to grow the two
materials epitaxially on top of each other with negligible strain between the layers
and minimal lattice mismatch. With current epitaxial growth techniques like molec-
ular beam epitaxy (MBE), layer thickness and layer composition can be controlled
perfectly. The layer smoothness reaches the atomic level.

This way monoatomic layers of the ternary compound Al,Gaj_,As can be grown,
where the ratio of Ga and Al determines the physical properties of the semiconductor.
AlAs has a larger band gap than GaAs. In the ternary compound with Al-content x,
the band gap varies linearly with « for 0 < z < 0.4. If two ternaries with different Al-
content z are brought together, the difference in the band gap is distributed between
the conductance and valence band offsets. Semiconductor quantum wells are generally
realized in Al,Ga;_,As/GaAs heterojunctions, where the two materials Al,Ga;_,As
and GaAs are brought together at an atomically flat interface. An n-doped layer in
Al,Gay_,As provides electrons, which “fall’ into the energetically lower GaAs region.
There they are confined to the interface by the attractive electrostatic potential of the
positively charged ionized donors remaining in the Al,Gay_,As region. The effective
potential for the electrons at the GaAs-Al,Gaj_,As interface has the shape of a
triangle.

Arbitrary potential shapes can be realized in structures where x is varied continuously
from layer to layer in growth direction. The spatial variation of the conductance band
edge amounts to 79meV per 10 percent of Al [16].

5

YAt 300K, GaAs has a lattice constant of 5.6533 A, while that of AlAs is 5.6605 A [15]
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2.2 Samples

In section 2.2.1, the vertical structure of the samples is discussed. This includes the
parabolic well, spacer layers, doping layers and a gate electrode on the back side of
the well. The processing of the lateral structure as well as the ohmic contacts to
the 2DEG are described in section 2.2.2. I'inally, we briefly discuss the measurement

set-up in section 2.2.3.

2.2.1 Layer Sequence

In this thesis, a series of samples has been investigated with a design as schematically
shown in Fig 2.1. The wafers were grown by MBE at the University of California in
Santa Barbara®. The samples are realized by growing layers of Al,Gaj..p.As on a GaAs
wafer. Thereby the conduction-band edge is modified along the growth direction, i.e.,
perpendicular to the wafer swrface.

The shape of the well was achieved by a digital alloy technique [17]. In this approach,
a superlattice as shown in Iig.2.2 with variable amount of Alin each period is grown.
Within 760 A, the spatially averaged Al-content o varies parabolically between 0 and
0.1. At 2 = 0.1, a conduction band offset of 79 meV is assumed, based on established
experimental data. With a parabolic potential given by U(z) = m*(?z*/2, this
corresponds to an oscillator frequency of 0 = 1.68- 105! and an energy separation
of A = 11.0meV. Similar samples have been investigated in transport[18, 19], by
capacitance measurements[20] and by optical experiments [21].

The well is embedded between 200 A of undoped AlgsGagrAs spacer layers with
remote Si-doping on both sides, providing electrons which accumulate in the well.
On the surface side, the dopants are provided by 11 sheets, each with a Si donor
density of nominally 5-10'° m~? Si-concentration, arranged in a 200 A thick layer. On
the back side, the dopants are located within one é-doping layer with a concentration
of 510" m~2. This asymmetry in the doping allows for saturation of the surface
states and an effectively symmetric location of the electron distribution in the well.

A back gate electrode consisting of a 250 A thick n*-doped layer is located 1.35 um
below the well. In order to enhance the electric isolation to the electron gas, the back
gate is separated from the PQW by 0.5 ym of low-temperature grown GaAs [22]. A
front-gate electrode was realized by evaporation of TiPtAu on top of the structure.
By applying voltages Uy, and U, to the front- and back gates, the carrier density and
the position of the electron distribution inside the well can be tuned independently
(chapter 2.6).

The description given above considers only the essential features of the sample layout.
A lot of other finesses had to be considered in order to fabricate perfect samples. For
a review of growth and experiments on wide graded quantum wells see Ref. [16] and
the PhD thesis of Hopkins [23].

2The wafers were grown by K. Maranowski on 11/17/96 and 10/27/94. For an overview of the
processed wafers, see appendix C.
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2.2.2 Optical Lithography and Ohmic Contacts

After the MBE growth of the PQW and the cap layers, one has a 2DEG which
extends laterally over the whole wafer. The transport properties of the 2DEG can be
measured in a Hall-bar structure (Fig. 2.3), which is connected electrically. Also an
ohmic contact to the back gate has to be realized. In the following we explain how
these steps arve performed.

The processes involved in the fabrication of the Hall bar mesa are schematically
explained in Fig. 2.4A. Conventional photolithographic techniques used in our lab
allow etching and metallization of micron-sized structures. A 500 nm thick photoresist
i1s spun onto the sample surface. The structure 1s transferred to the photoresist
by exposure through a photomask using UV light. A subsequent development of
the resist locally removes the photoresist. In the next step, the sample is either
etched (typically 80 nm deep to remove the 2DEG) or covered by a metallic film.
We can reliably fabricate structures as small as 2pm with this technique. Industrial
processes can go much smaller, actually 0.25pm are routinely achieved in today’s
chip fabrication - a next chip generation will be realized with 0.18 um-technology. For
structures smaller than 2um we used electron-heam lithography. With this technique,
the UV light source and the mask are replaced by a focussed electron beam, which is
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Figure 2.2: Parabolic quantum well with digital alloy: Exact and averaged Al density
profile . The well consistst of a superlattice with a period of 2nm but variable
amount of Al in each period.
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Figure 2.3: Schematic Hall bar and measurement set-up. A current I flows through
the Hall bar via a resistance R, the voltage U, is measured on voltage probes on one
side, the Hall voltage Uy, on opposite sides. A magnetic field B is usually applied in
a direction perpendicular to the 2DEG.
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Figure 2.4: A: Processing steps of the etching and contacting of a piece of 2DEG. B:
Contacting the back gate.

positioned on the sample surface by deflection through magnetic coils. Thin Hall bars
fabricated for conductance fluctuation measurements (chapter 5.3) and the split gate
electrodes defining a quantum point contact (chapter 7) are examples for structures
defined by electron-beam lithography.

The 2DEG is contacted by evaporation of the eutectic GeAu alloy with a mass ratio of
Ge:Au=12:88. We have grown four layers in the sequence Ge, Au, Ge, Au with layer
thicknesses of 18nm, 50 nm, 18 nm and 50 nm, respectively. On top a 40 nm thick Ni
layer serves as a diffusion barrier, and finally 100 nm of Au allows for contacting the
pad with bond wires. After evaporation and lift-off, the samples have been alloyed
for one minute at a temperature of 400°C at reduced pressure of 50 mbar in a Ny
atmosphere with 5 % of Ha.

This step melts the GeAu alloy, which diffuses into the GaAs and contacts the 2DEG
layer. The details of this process are not completely understood [24], but lead to
reproducibly functioning contacts.

The back gate electrode is more difficult to contact, because it is buried 1.4 ym below
the surface, and the low-temperature grown GaAs layer seems to hinder the diffusion
of the GeAu alloy. An etching step has to precede the evaporation of the eutectic.
We used a mixture of HyOy:Hy504:H,0 =3:3:50, which etches approximately 1.4pm
3 minutes. Figure 2.4B schematically summarizes the steps involved.

Figure 2.5a shows the photograph of a sample structure realized on a PQW. In
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lead to the front gate

Uxy~ Ufg .

Figure 2.5: (a) Photograph of Hall bar defined with optical lithography. The current
I flows along the Hall bar. The Hall resistivity p., is measured across the voltage
probes, the longitudinal resistivity p,. along the Hall bar. (b) Geometry of the
measured part of the Hall bar.

Fig. 2.5b, an enlargement of the 16 gm wide Hall bar region is shown. The fingers
(two coming from above and one from below) are metallic leads to TiAu front gates,
which are evaporated in a last step (visible in Fig. 2.5a).

2.2.3 Measurement Set-Up

Two voltage probes on each side of the Hall bar allow a four-point measurement of
the voltage drop U, along the direction of current flow I and the Hall voltage Uy, in
perpendicular (Fig. 2.3). The current I has been generated by applying an oscillating
voltage of typically 100mV via a resistor of R = 10 M{ to one side of the Hall bar,
and grounding the other side. Because the sample resistance is much smaller than £,
the current is given by [ = {// R which is typically 10nA. A very low frequency of the
current has been chosen (typically 13 Hz), such that capacitive and inductive signals
can be neglected. The voltages U,, and U,, are measured by Lock-In amplifiers.

A voltage Us, has been applied between the front-gate electrode and the grounded
electron gas (Fig. 2.5a). Similarly, a voltage Uy, has been applied between the back-
gate electrode and ground.

The resistivity pue 1s given by py, = WU, /LI, where W is the width of the Hall
bar and I then length between two voltage probes. The Hall resistivity is given by
pay = Upy/ 1.

2.3 The PQW as a Quasi-3D System

As mentioned above, PQWs have been proposed in order to realize high-mobility
3D electron systems [8]. In a 2DEG, the electrons can be separated spatially from
the ionized donors (Fig.2.6a). This reduces Coulomb scattering and thus greatly
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improves the electron mobility compared to a bulk doped material. It is evident
that such a modulation doping [2, 3] is not applicable to an electron system which
extends infinitely in all three dimensions. Nevertheless a quasi-3D system can be
realized which has two free dimensions and a confinement in the third dimension.
If the confinement width is large compared to the Fermi wave length, several QW
states can be occupied and motion across the well is possible. In such a structure,
the dopants can be located outside the quasi-3D electron gas.

Figure 2.6: Realization
of a modulation doped
3D system: (a) In a nar-

row quantum well only
one energy level is oc-

cupied by electrons, the
system has 2D character.
(b) In a wide rectangular
quantum well, Coulomb

repulsion between elec-
trons leads to accumula-
tion of the electrons on
both sides of the well.
However, a parabolic po-
tential (¢) transforms to
a rectangular potential
(d), if electron-electron
interactions are included.
This leads to a wide elec-
tron layer with homoge-

neous 3D electron den-
sity.

Figure 2.6b shows what happens if a wide square well potential is filled with electrons:
The Coulomb interaction separates the electrons into two narrow regions with 2D
character. The self-consistent potential on each side 1s equivalent to the triangular-
shaped conductance band in a heterojunction. Only if the potential is parabolic
(Fig.2.6¢), these difficulties can be overcome. A parabolic potential can be thought
of as being composed of a homogeneous slab of a positively charged background
with density n® (1*10 2 T) This can be made clear if one cousiders the Poisson

equation d*U(z)/dz? = e*n®P [eey. The curvature of the parabolic potential U(z) is
proportional to the _)()Sltlve 3D density. The electrons try to compensate this charge
and start to fill in the minimum of the potential. Each (imagined) positive charge is
compensated by an electron. Thus the electrons will arrange themselves in a slab with
a uniform 3D density equal to Y. The width of the electron slab is n*P /ny, where
ny is the density of electrons per area (Fig.2.6d). With U(z) = m*Q?2?/2, one obtains

30

the effective electron density n*” = eceum™0?/¢?, which amounts to 7.8 - 1022 m~> for

1 =1.68-10"s™"'. The frequency Q of the PQW is the plasma-frequency of the 3D
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Fignre 2.7: (a) A slab of homogencous positive charge n*? produces a parabolic
potential [7(z) due to the Poisson equation d*U(z)/dz* = e*n" [eey. The negative
surface charge forming the boundary of the slab gives rise to a flat potential outside
the slab, if the total negative charge compensates the positive charge. (b) Electrons
in the well try to compensate the positive charge, resulting in a flat potential bottom.

electron gas.

2.4 Electron States

In this section, the quantum mechanical description of the electron states in the
PQW is summarized. Before we start to calculate the single-particle electron wave
function and energy levels, we clarify the relation between the Bloch wave functions
of electrons in a periodic potential and the envelope wave functions describing the
bound states of the PQW (section 2.4.1). In order to calculate the envelope wave
functions, electron-electron interactions cannot be neglected. In a self-consistent way,
the Hartree energy and exchange interactions in the local density approach (LDA) are
taken into account. Section 2.4.2 presents such self-consistently calculated envelope
wave functions and energy levels for a PQW.

2.4.1 Bloch Wave Functions

The electrons in the valence band of a homogeneous semiconductor without any

lattice perturbations are described by the Schrédinger equation

3

p"' 77 " ,‘;’ — ‘;1 F ,«’ E
;;7—)7- -+ V (I) Wy = Lkﬂ k- (21)

Here m denotes the electron mass, p the momentum operator, and V/(r) is the periodic

lattice potential. The electron wave function vy can be written as

Dr(r) = ™ (1),

—
Lo
oo

R—
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where uk(r) satisfies the Bloch condition wi(r + R) = ux(r), with R a lattice vector.
Then 1y oscillates with the periodicity of the lattice. A perturbation as induced
by replacing some Ga atoms by Al adds a new term to Eq. 2.1. The complicated
problem of solving the motion of an electron in a perturbed periodic potential can be
simplified if the perturbation varies slowly on the length scale of the lattice period.
A theorem by Slater, Luttinger and Kohn [25, 26] states that such an extra potential
U(r) can be treated as

y
where m* is the effective mass, which contains the effect of the lattice potential, and
@:(r) denotes the “envelope” wave function. By means of this theorem, the problem
of electrons in a periodic lattice and an additional perturbing potential is reduced to
the problem of free electrons in the perturbing potential. The envelope wave functions
@;(r) are related to the wave functions W;(r) of the full problem by

\:[!l(r) = Z @,,'(Rn)(l{_l’ - Rn)~ (24>

The sum is over all lattice vectors R,,. Here we have introduced the Wannier functions
a(r), defined by

TR : P -
a(r—R,) = N77 L ¢~ kB i (r). (2.5)
k
In a magnetic field the problem to find the wave functions can be simplified in the

same way. With the vector potential A, the Schrédinger equation for the envelope
wave function is [27]

: 2
27;* (f}v - eA(7)> + U(r) | @i(r) = Eipi(r). (2.6)
In the following we refer to the envelope wave functions ¢;(r) as the wave function of
the potential well. In the next section, we present a calculation of these wave functions
and the corresponding energy levels for the electrons in a PQW without a magnetic
field. The presence of a magnetic field B gives rise to an additional confinement
of the electrons. The case where B is oriented perpendicular to the electron gas is
of special importance, because the quantization of the in-plane motion into Landau
levels significantly modifies the resistance. This effect is discussed in section 2.5.2.

2.4.2 Self-Consistent Calculation of the Electron States

2

F 4 . - - * > T . N
[n the case of a parabolic confinement U/(2) = Z-0%z%, the Schrodinger equation is

given by

he d?p(2)

2mx dz?

+ Use(2)pi(2) = Fipi(2) (2.7)
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where U (2) = Z-Q%2% + Un(z) + Uxe(2) is the effective confinement potential, which
is composed of a sum of the parabolic conduction band profile, the Hartree potential
Un(z) and the exchange-correlation potential Uy.(z). Without any electrons inside
the PQW, Us.(2) is a parabola and the energy levels are given by

, 5272
Ey, =0 <7 + i) + é—;“ (2.8)
An electron state £y, is defined by the wave number ky of the free in-plane motion
and the quantized energy F; = hQ(i + 1/2) in z-direction. F; is usually called the
subband energy. It defines the lower edge of the subband i, which can be filled with
electrons free to move in the x- and y-direction with the same dispersion as the Bloch
electrons of the unperturbed semiconductor. The number of electrons in subband ¢
is related to the Fermi energy Fp by

By .
ng = / p(ENYdE. (2.9)

¢

p(E) is the two-dimensional density of states, which is independent of E:

p= (2.10)

In the expression above a twofold degeneracy for each level was assumed, account-
ing for the electron spin. Because p does not depend on the energy, n; is simply
proportional to the difference between the Fermi energy and the subband bottom:

*x

. SN L ‘-

If the PQW contains many electrons, electron-electron interactions have to be consid-
ered. The Hartree potential accounts for the electrostatic interaction of the electrons
with themselves and with ionized impurities. It is determined by the Poisson equa-
tion:

- ,

d*Uy e ) ; -

T = e [‘J?ﬁ(‘:) - 7’?:1)(5” 2.12

dz? €6p 0 ( )
where n.(z) is the electron concentration and np the concentration of ionized impu-
rities. The distribution of the electrons is obtained from

L IHICHE I (2.13)

The total electron sheet density ny is given by

ny = /d: n(z2) = Z n;. (2.14)

lZ

The exchange-correlation potential UUy.(z) can always be written as a functional of

ote
the local electron density® [28, 29]. The problem is to find the correct functional.

3a discovery which was awarded by the Nobel prize in Chemistry in 1998.
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This is the so-called local density approximation (LDA). One possible form is given
by [30]

no
A
(%11
—r

, ( 11.4 ,
Use(2) = _L1.69meV [1 + )0>1>1n< + lﬂ, (

Ty T

where 1y = (47n°P(2)/3)7Y/3 /ap is the ratio of the mean electron spacing to the Bohr
radius ag = 4reegh® /m*e*. For GaAs, ag ~ 100 \ and r, 18 about 1.5 for the 3D
densities observed in the PQW. Note that r, is a measure for the average interaction
energy divided by the average kinetic energy of an electron. A value of ry <1 means
small interaction energy, and the Hartree approximation is appropriate. On the other
hand, for r, > 1 exchange and correlation effects play an important role which can
be accounted for in the LDA.

The energy levels, wave functions and Us(z) have to be determined self-consistently
from Eqs. 2.7, 2.12 and 2.15. Figure 2.8 shows such self-consistent calculation® for
a PQW sample [31, 32]. We chose Uy, = 0 and varied Ug. Three values of Ug
corresponding to three different sheet densities ny are shown. From top to bottom,
one, two and three subbands are occupied. While the back side of the well remains
essentially unaffected by the front gate voltage, the self-consistent potential spreads
out towards the front gate with increasing Us,. One also observes the flat bottom of
the self-consistent potential, indicating an almost homogeneous electron density.

A point of interest is the variation of the energy levels with the gate voltage. [ig-
ure 2.9 shows subband densities calculated without the exchange-correlation potential
(lines) and taking exchange-correlation potential into account in the LDA (dashed).
For the considered PQW, exchange and correlations are small corrections to the
subband energies, except at the threshold where a new subband gets populated,
where the LDA potential slightly enhances the subband energy difference. Such an
exchange-enhancement has been observed experimentally in a two-subband system
using capacitive measurements [33].

2.5 Transport

Resistance measurements not only provide the resistivity p,.,, but virtually all relevant
properties of the electron gas under investigation (in the following the more general
term “transport measurements” stands for 17951st1v]ty measurements).

The elastic scattering time 7 and the electron sheet density ny are directly obtained
from measured p,, and p,, in a magnetic field 3.

el

2

Pay B) = (2.16)

H
m”

pen(B =0) = —— (2.17)

nye

*We used a one-dimensional Schrodinger and Poisson solver written by G. Snider. The software
is freely accessible on the internet on http://www.nd.edu/ gsnider



16 CHAPTER 2. SAMPLE FABRICATION AND CHARACTERIZATION

E (meV)

20

front side
+ back side

E (meV)

Q-
N A Figue 23  Selt
N ——®

consistent calculation of
S S the conductance band

20 : ,
brofile  Us(z) relative
Uy =-160 mV Prott! _“Q. a
to the TIermi energy

(dashed), the subband
energies and the subband

R \7/ wave functions for one,

two and three occupied

\K'
"'“"""\C:__————f subbands. z = 0 cor-

“~ —

responds to the sample
surface.  See text for

Z (A) details.

At low temperatures and in higher magnetic fields (section 2.5.1), the quantum nature
of the energy spectrum modifies the resistivity due to the distribution of electrons
on different subbands. For a magnetic field applied along the z-direction, p,, os-
cillates as a function of 1/B. These so-called Shubnikov-de Haas (SdH) oscillations
are a direct consequence of the quantization of electronic orbits in a magnetic field.
Analyzing the frequencies of SdH oscillations, the distribution of the electrons on dif-
ferent electric subbands and the individual subband densities are resolved. From the
subband densities information on the energy spectrum is obtained. That way trans-
port experiments make it possible to measure energy levels in mesoscopic systems.
Section 2.5.2 describes the theory of SAH oscillations and how energy spectroscopy is
realized.

2.5.1 Low Temperature, Magnetic Fields

Typical energies in mesoscopic systems (as the spacing between energy levels due to
electric or magnetic confinement) are in the range of peV to some meV. For quantum
effects to manifest themselves in properties of the electron gas, the thermal broad-
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Figure 2.9: Self-consistent calculation of the subband electron densities in a PQW
with a weak spike (Al-content 2=0.05) and Uys = 0, considering exchange and cor-
relation in the LDA (dashed) and without such corrections (lines).

ening kT of the Fermi distribution has to be smaller than those energies. At liquid
Helium temperature T = 4.2 K, kgT = 0.36 meV. Sometimes a dilution refrigerator
has to be used in order to cool the sample to 50 mIX, where kgl" = 4.3ueV. For real-
istic applications of quantum effects, the envisioned devices should operate at room
temperatures. This means that the energy spacing should be larger than 26 meV. In
order to achieve this, the barrier height must be increased and the lateral dimensions
have to be in the nanometer range:

Typical energy level spacings AE of potential wells of width w are found to be
AE =~ B*/m*w?. For electrons in GaAs this energy is 0.11 meV for w = 100nm.
In order to increase this energy to kgl at room temperature, structures as small as
10nm are required.

yer subbands in a 2DEG are thermally occupied due to

At higher temperatures, upj
M

the large value of Ag7T' . Multi-subband effects, as investigated here for PQWs at

liquid helium temperatures, become important.

2.5.2 Shubnikov-de Haas Oscillations

While the density of states (DOS) of a 3D system is proportional to the square root
of the energy, it is energy-independent in a 2D system. For B = 0, the 2D DOS is
given by Eq. 2.10. We consider a configuration where a magnetic field B is applied
perpendicular to the plane of the 2DEG. The solution to the Schrédinger equation

2.6 are discrete Landau levels (LL) with energies E; given by fiw. (I 4 1/2), where w,
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Figure 2.10: (a) Simulation of the Fermi energy and the DOS, indicated in grayscales
(darker shadings correspond to higher DOS). The subband densities are ng = 2.2 -
10 m=? and ny = 0.8:10" m™?. (b) Magnetoresistivity p..(B) for the data calculated

in (a).
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is the cyclotron frequency, w, = eB/m*. The LL appear in the 2D DOS as discrete
peaks, which are smeared out due to disorder (Fig. 2.11). The degeneracy of each LL
is given by B divided by the flux quantum h/e. Since more states get available in
each LL as the magnetic field is increased, higher LLs are successively depopulated.
This gives rise to jumps in the Fermi energy, and several physical properties oscillate
with the magnetic field — such as the magnetic susceptibility (de Haas-van Alphen
effect) or the resistivity (Shubnikov-de Haas effect).

B=0 A B>0

Figure 2.11: Density of states (DOS) for B = 0 and for B > 0, where the DOS
gradually splits into Landau levels.

Each time when the electron density ng in the system is an integer multiple v of
the LI degeneracy, a LL depletion occurs. In such a situation, the Fermi energy lies
in between two LLs, where the DOS 1s reduced. Due to the Einstein relation o =
e*p(Er) D [34] between conductance, DOS and diffusion constant the conductance is
also reduced in between two LLs. This leads to a minimum in the conductance when

nih
Be '

The filling factor v denotes the number of filled LLs. From this equation we see that
the conductance oscillates as a function of 1/B. Its frequency is proportional to ny.

Vo=

(2.18)

At higher fields, where the LL spacing is larger than the width of the corresponding
DOS-peaks, no states are available in between two LLs, and the conductance is
expected to be zero. Because of a finite Hall voltage the resistivity is zero, too. In
this simple picture, however, the Fermi energy cannot lie in between two LL’s, as
there are no states available. Therefore no finite regions with zero resistivity are
expected, in contradiction to the experiments. As a consequence, the existence of
localized states in the tails of the DOS peaks is assumed. These localized states
are explained by disorder and do not contribute to the conductance, but allow the
Fermi energy to lie between two LL’s. This assumption also explains the finite width
of the quantum Hall plateaus. The explanation for the universal values of the Hall
resistance plateaus s more complicated.

For a multi-subband system with subband energies FE;, the energy spectrum is given

by
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By = B+ hw (0 +1/2), (2.19)

where the cyclotron frequency w, o B determines the LL splitting. If E;; is plotted as
a function of B one obtains a LL fan for each subband energy (Fig. 2.10a). The width
of a LL peak depends on the electron scattering vate 1/7,. On the other hand, the
DOS determines the screening of the impurities and thus the electron scattering rate.
Therefore the DOS distribution has to be determined self-consistently. In the self-
consistent Born approximation the width of a LL is approximately proportional to
VB, and the conductivity .., is proportional to the squared DOS at the Fermi energy
[35, 36]. Tigure 2.10 shows the calculated DOS. Demanding charge conservation for

B=0

/ S EVAE = ng, (2.20)

the Fermi Energy Ep is obtained by summing over the DOS p; of all subbands ¢. In
Fig. 2.10a the calculated Fp is shown for a two-subband system as a function of B.
Assuming a Hall resistivity pg,(B) which increases linearly with B, the magnetore-
sistivity pue is obtained by tensor inversion of the o,, data. Figure 2.10b shows the
calenlated p,.(B) corresponding to the LL fans in I'ig. 2.10a. Such calculations ex-
plain specific features in measured p,,(B) traces, such as the superposition of SdH
oscillations of different frequencies or the suppression of quantum-Hall minima when
the Fermi energy lies in degenerate LL of different subbands [37, 38, 39, 40].

o
Fourier amplitude
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o
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P @

one subband

two subbands

i 1
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Figure 2.12: Measured SdH-oscillations of the magnetoresistivity py vs. B at T =
L7K and for different ng of 2.1- 10" m™? (A) and 3.6- 10" m=2 (B). In case (A), one
subband is occupied, in case (B) two of themn. The peaks of the Fourier transformation
of pre(1/B) shown in the inset give the subband densities n;. In (B), two peaks are

seen (arrows), corresponding to the two occupied subbands. Taken from Ref. [41].
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In Fig. 2.10a Ey is almost constant at low B. This is expected for fiw, < h/7. In this
regime, Fr crosses a LI, each time when E;, = Ey. This condition is fulfilled when

L+ 1/2 = hn;[2eB. (2.21)
The oscillations in p,.(1/B) are composed of frequencies proportional to n;. A Fourier
analysis of pu.(1/B) reveals the different n;. An example is shown in Fig. 2.12 with
measurements at densities where one and two subbands are occupied.
From the determined n;, the energy difference Ep — F; can be caleulated. A compar-
ison of self-consistently calculated energy levels with measured n; at different gate
voltages convincingly demonstrates that the analysis of SAH oscillations is an accu-
rate tool to investigate the energy spectrum. Figure 2.13 shows such a comparison,
taken from Ref. [41].

Figure 2.13: Measured subband densities n; (symbols) for different ny controlled by
U and fixed Upg = 0.0V, The sample has a potential spike with « = 0.1 inserted.
The subband densities ny and ny are obtained from a Fourier-analysis of p..(1/B),
ng from ny = ny — ng — ny. The lines display self-consistently calculated subband
densities for different ny, also controlled with the front gate voltage, similar to the
experiment. No fit parameters were used. Taken from Ref. [41].

Note that with transport measurements the difference of energy levels to the Fermi
energy is determined, not individual subband energies. However, if two subband den-
sities are known, their difference is proportional to the difference of the corresponding
subband energies:

moo . -
ng —n; = ;717(]; — ;). (L.Z;)
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Energy spectroscopy with transport experiments is based on this equation. In ad-
dition to subband energies, even electron probability distributions can be measured.
This is demonstrated in chapter 3.4.

We now turn our attention to experimental data. Fig. 2.14 shows measurements
of pex(B) and pyy,(B) for different front gate voltages Ug,. The back-gate electrode
was grounded for this measurement. The temperature was 1.7 K. Various aspects of
multi-subband transport can be discussed with the help of this plot.

Iirst of all we observe that the slope of the Hall-resistance decreases with increasing
Upg. Because of p,y, = eB3/ny, this divectly reflects the increase of ng with Ug.

The quantum character manifests itself in the Hall plateaus at fields B > 1T which
lie at positions h/e’rv, where v is an integer filling factor. Weak spin-split plateaus
(odd v) are observed only at v == 3 and v = 5. Parallel to plateaus in p,,, minima in
pzw appear, which are close to zero for higher fields (B > 2'T).

A striking feature appears at Ug, = —220mV. The low-field magnetoresistance in-
creases with B. The reason is the population of & second subband. It 1s shown in
chapter 4.1.4 that such a feature is expected for two-subband transport with different
subband densities and different subband mobilities.

For Ug > —220mV, the SAH oscillations are composed of two frequencies reflecting
the two subband densities. At higher fields, we observe a missing QH plateau at
v = 4 for Uy = =220mV and at v = 6 for Uy = —160mV. Simultaneously to
those situations, the minimum in p,, is lifted. This suppression was explained as a
consequence of degenerated LLs originating from different subbands [42, 43, 40]. We
will come back to this explanation when we observe a similar effect in ballistic quasi-
one dimensional channels where an energy degeneracy at the Fermi energy leads to
suppression of conductance plateaus (chapter 7).

2.6 Tuning the Electron Gas

With voltages applied to the front- and back gate electrodes of the PQW, the electron
sheet density ny and the position Az of the electron distribution along the z-axis can
be tuned independently. In the first section, we examine how the density is tuned,
while in the second section measurements and calculations of the displacement Az
are presented.

2.6.1 Density Tuning

A basic relation between gate voltage and electron sheet density can be derived in a
simple model, which is described here. The PQW is embedded between a front- and
a back gate electrode (I'ig. 2.15). The electron gas forms a slab of finite thickness
and electron sheet density ny. A voltage Uy, applied between the front gate and the
electron gas induces a swrface charge o7 on the front gate surface. In analogy, U,
induces oy, on the back gate electrode. The surface charges can be related to the gate
voltages through the capacities (¢ and . With d; being the separation between
the front gate and the frontside boundary of the electron slab (Fig. 2.15), one obtains
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Figure 2.14: Hall- and magnetoresistivity measurved at 7" = 1.7 on sample 6 (x=0.1).
Use was varied between -340 mV and 80mV in steps of 60mV, and Uy = 0mV. The
arrows indicate suppressed Hall plateaus or suppressed minima in the magnetoresis-
tivity.
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Figure 2.15: PQW between two capacitor plates, an adequate model to describe the
tuning of electron sheet density in the well and the electron distribution displacement.

of = €€yl /dp. Charge conservation demands

e(ng —np) = o5 + 0 = €eg ({_f& + 93&) . (2.23)
dy dy,

Here, np is a contribution from the positively charged donor atoms between the
capacitor plates. This expression for ny describes the measured dependencies of ny on
Us, and Uy very accurately. Figure 2.16 shows measurements of ng(Ug). The fitted
slopes of 5.4+ 10" m™?V ™! (one occupied subband, low density) and 8.1-10* m™?V~*
(high density) correspond to a dr of 133nm and 89nm, respectively (assuming a
permittivity of the AlGaAs layers between the gate and the electron gas of € = 13).
This makes sense since both values lie inside the well (which extends from z = 64nm
and z = 140nm). For one occupied subband, the front side of the electron gas lies
in the back side of the well. This is in agreement with self-consistent calculations,
where it was found that the first subband starts to get populated in the back side of
the well (section 2.4.2). The value of dy = 133 nm is slightly too high, which can be
explained by the disability of the electron gas to screen the front gate electric field
effectively. Therefore the 2DEG model of a metallic slab is of limited validity in the
case of one occupied subband, i.e., low electron densities. When the second subband
gets populated, the slope increases considerably. This is due to the combination of
a more eflicient screening and the wider extent of the second wave function towards
the front gate.
Measuring the zero-field resistivity, the mobility could be monitored as well, ex-
ploitingig the relation g = 1/nep, (Fig. 2.16). For low densities, y increases with
gate voltage and thus with ny. At the cross-over from one to two occupied subbands
at Ug ~ 250mV, the mobility decreases and above -200mV increases again. The
dip in mobility is caused by an opening of an additional scattering channel, namely
intersubband scattering. Due to a decreasing probability of large-angle scattering
at higher densities, the mobility increases again, until at U, ~ 50mV it decreases
monotonically. There a third subband is occupied, and intersubband scattering again
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Figure 2.16: Hall density ny and mobility ;¢ of the electron gas in a PQW as a
function of the front gate voltage Ut;. Also indicated are the fitted slopes for ng(Us)
of 8.1- 10" m~2V~! (dashed) and 5.4 - 10" m=*V~" (dotted).

modifies the mobility behavior.

2.6.2 Displacing the Electron Gas

An important property of a PQW is that the superposition of the well potential with
a linear potential results in a parabola of the same curvature, but with a spatially
displaced energy minimum. By applying voltages to the gate electrodes, the electron
gas is displaced along the z direction. In order to maintain a certain sheet density
ny, both front- and back gate are used to tune the displacement. In this section
a quantitative model is described which gives a relation between the applied gate
voltages and the displacement Az of the electron gas.

We use the same capacitor-model as in the previous section. The surface charges o
and o, on the gates produce electric fields. The total field pointing towards the back
gate is given by

of — Oy

p=2"" (2.24)

2eeg

This field corresponds to a constant potential gradient, which adds to the parabola.
If a linear potential Uy(z) = e Ez is superimposed on U(z) = m*(2%2? /2, the curvature
of the parabola remains the same. whereas the potential minimum is displaced by
el ,
Az = (2.25)

m={)?

Expressed in terms of the surface charges on the gates, one obtains

Ay = ST %) .

2ecom*(1?

b
Lo
[
Nt

Using or = eeolUs/dy, one obtains for the displacement per front gate voltage
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d e

~

Az = e
dUs, 2m*Q2de

(2.27)

Depending on the position of the front side of the electron slab (df between 64nm
and 100nm), the shift lies between 110 nm/V and 69 nm/V. These values agree with
those obtained from self-consistent calculations and the measured values, as presented
in the next two sections.

Measurement of Az

By applying appropriate gate voltages, nyy can be kept constant while the electrons
are displaced along the growth direction. In the experiment, ny is controlled by mea-
suring the Hall resistance at B = 0.2'T, where quantum effects are not yet important.
What is the relation between the applied gate voltage Up, and the displacement Az7?
In the plane spanned by Upy and Uy, the restriction that ny is constant defines lines
as shown in Fig. 2.17. From those lines the information on the displacement Az
per gate voltage can be extracted, if one assumes the capacitor relation between the
geometric and the electrical variables described in Iq. 2.23.

Equation 2.23 describes the relation between U, Upg, df and dy,. At constant ngy,
the width w of the electron slab is constant. Therefore df + dp, = L is fixed, too. If
this relation is inserted into Iiq. 2.23, one gets

, . Ny~ N Ute ng —n Us o
Upg = (L — dp) (eL——B - Jz) ~ 1 <e——9 D ~ii°i> (2.28)
' €€ ds . €€ dy ’

We write the distance dp between front-gate and electron gas as the sum of the
distance dy to an electron gas centered in the well and the displacement Az, df =
do + Az (Fig. 2.18). The displacement Az is assumed to be linear in the applied
voltage; Az = a(Us — l&) where Ug is the front gate voltage at which the electron

distribution is centered in the well. By fitting Eq. 2.28 to experimental data as shown
70
gE .
subband densities, see chapter 3.3. For the distance dy we assumed dy = 1020 A—w /2,
see Fig. 2.18. The 2DEG width w is given by nu/n®P (see chapter 2.3). In Table 2.1

the results for different ny are shown and compared to data obtained from self-

in Fig. 2.17, the coeflicient « is obtained. U, is known from measurements of the

consistent calculations of the wave functions [44].

The displacement per front-gate voltage increases with the electron density. This is
explained by the larger extent of the electron distribution screening the parabolic
potential closer to the front gate electrode. Thus the applied voltage drops in a
smaller region and the electric field causing the displacement is increased.

Simulation of the Electron Displacement

In a self-consistent calculation, we kept the total carrier density constant and varied
Uge and Uy, In Fig. 2.19, the calculated wave functions are shown for a PQW without
a potential perturbation for two different gate voltages. In order to obtain Az(Ug),
*in the calculation as a
function of the applied Ug,. We choose the quantity Aje|* because it can be measured

we trace the position of the maximum A|p* = |po]* — |
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Figure 2.17: Measured
contours of constant Hall
density ny for sample 2
(lines). The dots cor-
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back-gate voltages Ug,
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and Upg, as applied in
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(see chapter 3). An approximately linear relationship Az(Ug,) is found, which depends
on the total electron density (insert of Fig. 2.19). The obtained values are summarized
in Table 2.1.
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Figure 2.18: PQW between two capacitor plates with a centered 2DEG. The distance
do 1s measured between the front gate and the surface side of the 2DEG, shown here
as a slab of width w.
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Figure 2.19: Self-consistently calculated Alp]? at np=3.9-10 m~* for two different
Uge and Uy The relative positions Az of maxima in Alp[? are traced as a function
of Up, (insert) in order to monitor Alp|® as a function of the spatial coordinate. The
insert shows the obtained Az for ny=2.4.10"" m™? (triangles) and nyg=3.9-10"" m~?
(rectangles).
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Table 2.1: Parameters for fitted Uh(Up) of a sample with @ = 0.05. Measured
(Qmeas.) and calculated (acar.) values for the electron-gas displacement per front-gate
voltage are indicated for different constant Hall densities ny. The fit parameters
include the front-gate voltage US{ where the electron distribution is centered in the
well, the distance dy from the front gate to the upper surface of the electron gas, the
well width w, the charge density correction np and the distance L between front and

back gate.

ny [ f% dy w np L Cyeas. Clenle.
(10%m=%) mV A A (10%m™)  pm (10 A/V)  (10* A/V)

2.5 -90 860 321 -1.16 148 -0.65£0.05 0.98

3.0 =70 828 335 -0.50 144 -0.79+£0.05 1.0

3.5 -40 796 449 -0.35 1.39  -0.91£0.05 1.1

4.0 1.2




Chapter 3

Wave Function Spectroscopy

The wave-like nature of massive particles is among the most important findings in the
physics of this century. In 1928 Davisson and Germer found that electrons travelling
through a crystal lattice exhibit interference phenomena. This was the experimental
demonstration of the quantum-mechanical wave-particle duality. Interference which
was well-known from optics with visible light, also worked for massive particles! The
wavelength attributed to a particle depends on its momentum exactly as de Broglie
had postulated in 1923. Since then, the visualization of a particle’s wave nature
immanent to quantum mechanics has become a fascinating issue. With the discovery
of scanning tunneling microscopes, it recently became possible to observe standing-
wave patterns on a metallic surface on which atoms different from the substrate
material were arranged with monoatomic precision. The interference of the electrons
scattered by the foreign atoms generates fascinating patterns. The famous picture
of the standing waves scattered at individual atoms arranged in a circle (‘quantum
corrals’) found respect around the world [45, 46].

In some sense, these wave patterns in an electron sea are similar to surface waves
broken at rocks in a shallow pool. In this analogy to classical physics, the standing
waves arising in an organ pipe correspond to the quantized states in a potential well.
Although this is the standard example in many books on quantum mechanics, these
waves are difficult to detect experimentally. This has to do with the requirements
imposed on the detector. The typical wavelength of electrons confined in a semicon-
ductor quantum well is some tens of nanometers. In order to resolve the shape of the
wave function, the resolution of the detector has to be smaller than this size.

But what can we actually measure? The wave functions themselves have no direct
physical interpretation. Only the squared modulus of the wave function has the
meaning of a probability density distribution. If is this quantity, which we want to
detect.

The aim of this chapter is to present a new approach to investigate quantum-mechanical
probability density distributions of electrons in a screened wide potential well. We
tackle this problem by making use of the possibilities offered by MBE-growth. The
probe is a thin sheet of three atomic lavers of AlGaAs placed in the center of the
quantum well. Making use of the result of first-order perturbation theory that the
shift in energy of the electron states due to such a potential spike is proportional to
the squared wave function, we simply have to measure the energy shift imposed by the

30
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probe to learn something about the wave functions and thus the electron probability
at the spike position. Our method is based on low-temperature magnetotransport
measurements. We extract the energy shifts from measured subband densities.

The concept is introduced in section 3.1. A brief overview of the experimental details
(samples and measurement set-up) is given in section 3.2, followed by the presentation
of the measured subband density differences for various samples and sheet densities.
In the third section we determine the width w of the electron distribution as a function
of the total electron sheet density ny. The purpose of this is to demonstrate the
intrinsic property of a PQW that ny divided by w is a constant, corresponding to
the 3D electron density. The aim of section 3.4 is to combine the perturbation idea
with the idea of displacing the electron distribution (presented in chapter 2.6.2) in
order to scan the spatial shape of the squared wave functions. The last section gives
an outlook on future experiments. Part of the results presented in this chapter has
been published in Ref. [47].

3.1 Concept of Wave Function Spectroscopy

Wave functions of intentionally modified surface states on metals have been probed
using the scanning tunneling microscope [45]. In semiconductors, various attempts
to measure the wave function of confined states have been undertaken. In particular,
the wave function Fourler spectrum of bound states of Si doping layers located in
the quantum well of a double-barrier resonant tunneling diode were measured by
resonant magnetotunneling [48]. Extending this idea to an array of quantum wires,
it was shown in Ref. [49] that the magnetotunneling differential conductance is a full
representation of the 1D wave functions in k-space.

In a more direct approach wave functions are measured by analyzing the energy shift
of quantized states due to an inserted, highly-localized potential perturbation. In
this way, wave functions of electrons confined in semiconductor quantum wells [50]
and in surface states of metals [31] have been investigated.

In order to probe probability densities with interband optical transitions in Ref. [50],
the conduction band as well as the valence band states had to be considered, and
the probability density distribution of electrons and holes were assumed to be equal.
Additional complications result from light-hole- and heavy-hole-transitions.

The concept we use for probing the potential-well wave function was introduced in
Ref. [50] and is based on first-order perturbation theory. A narrow potential barrier
at the position zy within the PQW described by Upd(z — z9) shifts the quantum-
mechanical eigenstates ¢;(z) with energies E; in first-order perturbation theory ac-
cording to (see Fig. 3.1)

El = E; + Uslei(20) . (3.1)

Measuring the shifted energies on many samples with different spike positions zg
and comparing them to an unperturbed sample, the probability density distribution
|i(20)]* for different subbands ¢ was mapped out in Ref.[50]. In our samples, the spike
position is fixed. The electron distribution itself can be displaced along the growth
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Figure 3.1: Self-consistent potential, subband energies and electron probability-
density distributions for a sample without (dashed) and with a 9 A thick Aly;GagoAs-
spike inserted in the center of the well at zo (lines). With spike, the well is 9 A wider,
which leads to the spatial displacement of the potential on the right side. The energies
are indicated relatively to the Fermi energy.

direction with respect to the spike by applving electric fields across the parabola.
Thus the unaltered shape of the spatially shifted wave functions can be probed at
one spike position in the same sample.

We determine the single-particle energies of the screened PQW by measuring Shubnikov-
de Haas oscillations of the longitudinal resistivity. The frequencies of the SdH os-
cillations yield the subband electron densities n; (see chapter 2.5.2). Based on the
energy independent density of states p = m*/xh* of a two-dimensional system (m*
= effective electron mass), we obtain the difference of the Fermi energy Ep to the
respective subband energy level £!. In order to eliminate £r, which itself depends on
the subband energy levels, one subtracts two subband densities, n; and n;. Therefore,
transport experiments measure differences of subband energies B} — F} = ﬂﬁ(n_,- —n;).

.

According to Eq. (3.1), the influence of the potential spike is then written as

B!~ B} = B ~ E; + Usllei(z0) — loi(z0) ). (3.2)

We obtain the difference of squared wave functions by comparing energy differences
of two samples with different spike strengths U, and Uy:

29 ) ]
?/Th ( 777 =1y )Zyu - ( n] - ?l’b')l-]b
- U=

eilz0)P ~ L)) =

(3.3)

The denominator U, — [/, 1s a well known growth parameter determined from the
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amount of Al in the potential spike. With this approach we have developed a method
to measure differences in probability densities of occupied conduction band sublevels,
based on low temperature magnetotransport experiments.

3.2 Experimental Details

A set of four different samples has been grown as discussed in chapter 2.2. The
evaluated samples are numbered 15, 18, 21, and 22 (see Appendix C). In sample
15 the unperturbed parabolic potential is realized. In the other samples, a three
monolayers thick Al,Ga;_,.As potential spike was inserted in the center of the PQW,
with =0.05, 0.1 and 0.15, respectively. The spike potential is described by Ué(z —
zp). With a spike width of 8.5 A, an Al content & and a potential height of 2-790 meV,
we obtain U = - 6720 A-meV. These potential perturbations are sufficiently weak to
be treated in first-order perturbation theory.

Magnetotransport measurements have been carried out in a dilution refrigerator at
temperatures below 100 mK. The electron density were varied between 1...5-10'" m™?
by applying voltages Ug, and Uy, between the electron gas and the front- and back-
gate electrodes, respectively. Typical electron mobilities are around 15m?*/Vs, as
obtained from the resistance at zero magnetic field. SdH-oscillations can typically be
observed above 0.2'T.

Here we concentrate on the case of two occupied subbands. For the experimental
realization of our idea, we have displaced the electron distribution inside the well by
applying appropriate gate voltages, keeping the Hall density ng constant, as obtained
from the low field Hall effect.

3.3 Width of the Electron Distribution

If the wave functions are centered in the well, the lowest-subband wave function g
has 1ts maximum at the spike position, whereas the antisymmetric ¢y vanishes at zg.
According to perturbation theory (Eq. 3.1), the energy shift of the £y subband is
2. Away from this symmetric

zero and that of the Ey subband is given by Uplpa(zo)

situation, {c,oo(z())]z decreases, whereas
creases and Fy increases, Thus in the symmetric situation, the two lowest subbands

©1(20)|? increases. This means that Ey de-

are closest in energy and repel each other if the electron distribution is displaced.
For centered wave functions, the electron probahility |eo(z9)]* at the spike position
zp 1s obtained directly by a measurement of the spike-induced change of the subband
energy difference. For the electrons displaced from the centered situation, |y (20)?
is nonzero, and the difference of the two probability densities is obtained. This case
is discussed in section 3.4. Here we concentrate on the centered situation.

Since the wave functions are normalized and localized over a width w, its amplitude
must be proportional to \/ 1/w. By measuring |0o(20)]%, we can thus determine the

width of the electron distribution. In the following, such measurements at different

vo(20)]? decreases as the sheet
density is increased. We can thus establish that the width w increases linearly with

ny are presented. Furthermore we investigate how
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the 2D electron density ny, i.e. that the 3D electron density n®” = ny/w is constant.
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Figure 3.2: Measured magnetoresistivities p,.. and Hall resistivities p,, are displayed
for the two sets of gate voltages (A) and (B) as defined in Fig. 2.17. The Hall densities
are equal, but the electron distributions are displaced along the growth direction.

In Fig. 2.17, contour lines of constant ny in the Uy-Uh, plane have been shown for
sample 2. Two sets of gate voltages have been denoted by A and B corresponding to a
balanced electron distribution (A) and a distribution displaced towards the front gate
(B). In Fig. 3.2 we show corresponding measurements of p,...(B) and pyy(B). The Hall
resistivities for the two sets increase linearly with B with the same slope, reflecting
the equal Hall densities ny. SdH oscillations can be observed in p..(B). These were
recorded for each pair of Uy, and Uy, along a line of constant ny (symbols in Fig. 2.17).
The subband density ng of the ground state can be evaluated most accurately from
a Fourier transformation. The density ny is then determined using ny = ny — ng. At
wo(z0)” = [1(z0)* in
Eq. (3.3) is proportional to the differences of ny — ng for two spike strengths.

constant ny, the difference of the probability density Alp|* =

Figure 3.3 shows measurements of ny — ny at different sheet densities ny and for
samples 1-4 with different spikes (described by its Al content z = 0.0,0.05,0.1 and
0.15, respectively). The individual curves display maxima at approximately the same
Ugg for each . At such a peak. a maximum amount of electrons stays in the upper
subband, i.e., ny 1s lowest. Irom Eq. 2.22, it can be seen that this corresponds to
a minimum in the energy difference £, — Ly, which 1s — as discussed above — the
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Figure 3.3: Measured ny —ng as a function of U, for ny = 2.4 10" m™2,2.9.10" m~?,
3.4-10"m™2 and 3.9 10" m™*. [}, was adapted to fix ny. Each measurement was
performed on four samples with different potential spikes described by their Al content

indication of a balanced situation where the wave functions are centered in the well.
The difference of two curves at this balanced situation gives the density difference
due to the spike alone. From such differences, the energy shift can be determined.
Following Eq. 3.3, we directly obtain l¢o(z0)[* by dividing the difference of two curves
in Pig. 3.3 by the spike strength difference AU = Az-6720 A-meV and the DOS.
In Fig. 3.4 the obtained data is swmmarized. The error bars refer to deviations
between different pairs of samples. A linear fit through the origin gives a slope of
130 A/10"® m=2, In order to relate the width w of the electron gas to the amplitude
of J¢ol*, assumptions about the shape of the wave functions have to be made. In
the case of a deep square well of width a, the amplitude is given by 2/a, such that
a = 2/]pol*. The width w of the sinusoidal wave function can be defined as w = a/2,
such that w = 1/|po]?. Thus the slope fitted in Fig. 3.4 corresponds to w/ny. This
value agrees with the designed 1/n*? = 1.3 1072 m?.

3.4 Scanning the Wave Function

Here we demonstrate that one-electron probability density distributions of PQWs
in the presence of electron-electron interactions can be probed by magnetotransport
measurements. [n section 3.1 of this chapter we probed the difference of the elec-
tron probability density between two occupied subbands at the position of a highly
localized and well-defined potential spike. In this section we show how we can scan
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Figure 3.4: Measured |@o(z0)|™ vs ny (symbols). The dashed line is a linear fit to
the data crossing the origin, corresponding to a linear increase of the 2DEG width
with ny. The deviations for low ny are because the effective potential has no flat
bottom anymore.

the profile of the probability density distribution by displacing the wave functions
through the spike. This is done by applyving voltages to the front and back gates.
Because the curvature of the parabolic potential remains unaffected by the superpo-
sition of a constant electric field, the electron wave functions are merely displaced.
This statement remains valid in the presence of electron screening.

The measurements of ny — ng presented in Fig. 3.3 contain all the information we
need to extract the probability density distribution. The distinct maxima in ny — ng
get more pronounced for larger spike strength @. The difference in ny — ng for two
samples with different spikes is smaller at higher densities. This is due to the fact
that the width of the wave functions increases with density leading to a reduced
amplitude of the wave functions at the spike positions.

According to Eq.(3.3), the data in Fig. 3.3 can be used directly to plot Alg|* as a
function of the gate voltages. For this purpose, we interpolated the data in order to
subtract unequally spaced data points from different samples. The central result is
shown in Fig. 3.5, where all combinations of data from samples 2,3 and 4 are shown
(symbols) for two different Hall densities.

Due to the measured relation between the wave-function displacement Az and the
gate voltage Uy, (Table2.1), we can map the measured Alp]* as a function of spa-
tial coordinate instead of gate voltage, and compare them to the calculated wave
functions. The upper axis of Fig. 3.5 indicates the obtained Az. The solid line corre-
sponds to the calculated spatial probability density distributions. Note that there is
no fit parameter. The data provides clear evidence that differences of single particle
probability densities are measured. With increasing electron density, the screening
of the parabolic potential becomes more pronounced and the wave functions spread
out. Simultaneously, the amplitude of the wave functions is reduced due to their
normalization. Both features are observed in the presented data (Fig. 3.5) and are
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Figure 3.5: Measured (symbols) and calculated (solid lines) differences of probability
density distributions Alp|* of the two lowest subbands for (a) np=2.4-10'"> m~* and
(b) ng=3.9-10" m~2. The data are obtained by subtracting interpolated values of
nq — np from Fig. 3.3. Triangles correspond to differences from samples with @ = 0.10
and & = 0.15, circles from those with @ = 0.05 and @ = 0.10 and rectangles to
z = 0.05 and = = 0.15. The error bars correspond to an estimated error of 2-107
m~. The front-gate voltages Uy, are linearly transformed to positions Az (upper
x-axis) as obtained from a capacitor model.

solely due to electron-sereening of the parabolic potential.

3.5 Discussion and Conclusions

The method introduced is based upon the validity of first-order perturbation theory.
Calculations show that in our samples with a three monolayers thick potential spike,
the second-order contribution is at least five times smaller than the first order, even
for the spike with @ = 0.15. Also, the the spike-induced change in the self-consistent
potential leads to small energy corrections. Experimentally, the accuracy is mainly
limited by the measured Hall- and subband densities. Thereby the range of measured
SdH oscillations in 1/B determines the resolution of the measured subband densities
(for a discussion of the error induced by the Fourier transformation of SdH data,
see Ref. [23]). One contribution to the error results from deviations in the electron
sheet density from ny due to multisubband effects. These are found to be small
because the low-field Hall resistance is linear with magnetic field for all measured
gate voltages. Deviations from sample to sample must be considered as well. From
our data it can be deduced that they are mainly restricted to small displacements in
gate voltages, which are not corrected in our analysis. Keeping in mind that the four
samples were grown on different wafers, this confirms the perfect control of sample

growth conditions. The upper limit for the error in ny is estimated to be 1-10* m~2,
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giving an error in ng which is about half of this value. This corresponds to an error
of 210" m™" in Alp|* (error bar in Fig. 3.5).

Due to the parabolicity of the as-grown potential, the shape of the electron distri-
bution is maintained along a line of constant ny in Fig. 2.17. This 1s true as long
as the displaced electron distribution does not touch the hard walls surrounding the
PQW. Tor the parabola investigated, the electron distribution can be approximated
classically by a rectangular function of width w =~ 510 A at a density of 4-10'%m =2,
At this density the electron distribution can thus still be moved + 125 A away from
the center, without changing its shape. Quantum mechanically the wave functions
belonging to different subbands have different widths and reach into the hard walls
of the PQW. Thus a displacement of the wave functions from the center of the PQW
will result in small modifications of individual wave functions. Due to its larger spa-
tial extent, ¢y is altered more than yg. This leads to modifications of Alp|? far away
from the center of the electron distribution, whereas Alp|* remains mainly unaffected
in the center (Fig. 2.19). Therefore the assumption of a pure displacement of wave
functions is reasonable around the symmetric situation.

In conclusion, we have presented a method to locally probe differences of one-electron
probability densities of electrons in a screened potential well. This has been done in
a transport experiment at different electron sheet densities. Although in principle
the method can be applied to any kind of potential well using a large number of
samples, in the special case of a PQW, the spatial distribution of probability density
differences can be mapped out with only two samples. We have demonstrated that
in PQWs, the spatial distribution can be scanned by displacing the wave functions
without changing their shape. Our experimental results are in excellent agreement
with self-consistent subband calculations.

The wave function spectroscopy introduced in this chapter may also be reversed.
Suppose the wave functions are known by self-consistent calculation. Then the un-
known potential of an object can be measured. In this way for instance the potential
of a layer of self-assembled quantum dots [52] could be determined. Due to strain of
the InAs dots embedded in GaAs, the effective potential is modified. The experiment
would allow to test theoretical models of this strain-induced potential change. This
experiment is currently being performed in our group.



Chapter 4

Scattering Times in Parabolic
Quantum Wells

In this chapter we discuss the relevant scattering mechanisms an electron experiences
in PQWs at low temperatures, where hoth optical- and acoustic-phonon scattering
are negligible. The dominant mechanism is scattering by the ionized dopants located
in the layers on both sides of the PQW. This kind of scattering is an elastic process
since the energy-transfer from the electron to the impurity is negligible due to the
small electron mass. The momentum relaxation of the electrons determines the con-
ductivity. Elastic scattering rates are obtained from the measured sample resistance.
Theoretically, the conductivity is calculated from the relation between the current
and the electric field, as it is obtained from the solution of the Boltzmann equation,
where the transition rate of electrons scattered from an initial state ¢ to a final state
f needs to be known. In conventional 2DEGs at low temperatures, the initial and
final states are both in the same subband. In a multi-subband systems as PQWs,
also intersubband transitions have to be considered.

In the first section, we summarize how to calculate the scattering times, including
a brief overview on screening in a multiple subband system, and a presentation of
the different scattering mechanisms involved. In principle, the mobilities of individual
subbands are obtained from the measured magnetic-field dependence of the resistivity.
This is explained in the third section. Experiments measuring the Drude and the
single-particle scattering times of the individual subbands are discussed in the fourth
section. There we employ the wave function displacement introduced in chapter 2.6.2,
in order to learn more about the spatial arrangement of the scatterers.

4.1 Calculation of Scattering Times

4.1.1 Fermi’s Golden Rule

We describe how the single-particle scattering time is calculated in the one-subband
case. The scattering rate 1/7¢ of a particle subjected to the potential ® is calculated
using Fermi’s Golden Rule:

39
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~ =2 z [(F1®15) 6B — E). (1)

5

The wave functions of the initial state ¢ and final state f are composed of the subband
. . . . . Ry 'ki,f
wave functions ¢(z) in z-direction and plane waves A~/2¢™

where k!l’i’f is the in-plane wave vector and rj = (x,y) the in-plane coordinate. The

"I'in 2- and y-direction,

calculation of the matrix element involves an integration over ry corresponding to a
Fourier transformation of ¢, which becomes a function of q = kﬁ —kj. There remains

an integration over z:

(fl®]r) = / 0 (2)p(z)dz / e T ID(ry, 2)dry ;Lw, (4.2)

(q,2)

This matrix element is the integral of the in-plane Fourier-transformed potential
®(q, 2) times the subband wave functions. It can in most cases be divided into
a form factor F(q) and the z-independent contribution from the potential, ®(q).
Without any spatial correlation between the N individual scatterers, the averaged
square of the matrix element is proportional to N:

(A1) = S Flaf (el (1.3

The final form for the scattering rate is obtained by replacing the sum over the final
states f in Eq. 4.1 by an integral over the angle J between kj, and k]]]c , which is related

to ¢ = |q| by ¢ = \/Zk%(L — cos¥):

1 " o2 - - |
=g, W), )

The time 7, describes the time an electron travels without being scattered. It is
weighted uniformly over all ¥. However, electrons which are scattered by a small
angle contribute less to a resistance modification than large-angle scattering events.
In order to obtain the Drude scattering time 7, the integrand of Eq. 4.4 has to be
weighted by the factor 1 — cosv. This follows from the solution of the linearized
Boltzmann equation, where the electron distribution in an electric field is considered.

4.1.2 Electron Screening

At low temperatures, the mobility of a 2DEG is limited by electron scattering due
to the electric field of remote ionized impurities. The electrons do not feel the full
Coulomb potential of the dopants. The spatially varying electric field is screened by
the electron gas. In remotely doped 2DEGs, the separation of the dopants from the
electron gas leads to a weak, slowly varying scattering potential'. In this section we
describe how the screened electrostatic potential is calculated.

Here, ‘weak’ means that the electrostatic potential induces a charge density which can be lin-
earized with respect to the applied potential.
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We regard a point charge separated by a distance d from the potential well. In
general, the screening by an electron gas is described by introducing two electrostatic
potentials [53]. The first, ®*** arises solely from the point charge, while the second, ®
is the full physical potential due to the impurity as well as the electron gas. Similarly,
Next and n are the external and the full charge density, respectively. The charge
density njq induced by the external charge is given by njua = n — nex. I analogy to
the relation between the electric displacement D and the electric field E, a dielectric
constant e(r —r’) is defined, such that

O (r) = / dr'e(r — ') B(r). (4.5)

The relation between ® and the induced charge density is given by the polarization

P:

”ind(r) - / dr' P " ,>(D< ) (‘1:6)

Using njuq = n—"next and writing the potential @' as a function of the external charge
Nexe by using the Greens function v(r — r') of the Poisson equation, one obtains

e(r—1')=d(r—1)— / ’r"o(r = r")P(r' —r"). (4.7)

For two-dimensional systems it is convenient to Fourier-transform the above equations
in the coordinates of the two-dimensional plane, as is suggested by the form of Iiq. 4.2.
Then ®.y becomes

5 (g, 2) = / d'e(q, = — =) B(q, ). (4.8)

The polarization can be calculated in first-order perturbation theory from the wave
functions ¢;(z) [54, 55] and is given in the Random Phase Approximation (RPA) by

g RPA \ CN WX % )
P(q.= Z L5 )i (2)97 ()] ()i (), (4.9)
with the static electron density-density correlation function

R 2 f(Ea,) — f(Ex + )
MEPA () = = § 28 = Ty
SCUESDY B

ky

i

(4.10)

- ']-;jj ky+q

The diagonal terms I1HP were caleulated by Stern [56]. The off-diagonal elements

IRP\ 1s not zero for un-

were described in Refs. [57, 58], Tt is important to note that I
occupied subbands 7, if subband ¢ is occupied. Therefore also unoccup]ed subbands
may contribute to the screening of the scattering potential, although they are not
involved in the solution of the Boltzmann transport equation (at zero temperature).
But how can a non-occupied subband contribute to screening? In the matrix formal-
ism introduced here, we consider the response of an electron system to a perturbing
potential, which usually originates from positively charged donors outside the 2DEG
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Figure 4.1: Higher subbands may also contribute to screening, as it is illustrated here
in a two-subband system, where locally three subbands are occupied due to positively

charged scatterers.

layer. The subband energies are bent downwards at the position of the charge, as il-
lustrated in Fig. 4.1, Generally unoccupied subbands may be pulled below the Fermi
energy locally.

Introducing the matrix elements ®;(q) = [dz'vr(2)e;(2)®(q, ), one obtains the
matrix equation [54, 59]

(bj/\t L €5 lm (I’gm ) (4.1 1)

Im

with the dielectric function given by

€i0m () = Oit jm + //(Ld HRP\ Er)oi(Ner (Nel(2)e(2)v(a, 2 — 2). (4.12)

The Fourier-transformed Greens function is given by

v(q, 2 = € il 3 (4.13)

)ceoq

Inserting this equation into Eq. 4.12, one obtains the final form for the dielectric
matrix

3
“

65.7‘,1771(,q> - 51’1,]‘777 + ; 1)1777(([) [RP%—Lb)y (414)

€
2¢€pq

with the Coulomb form factor I, (¢) given by

Fiiim(q) = / /(/ A o2t (2 )p?(:’)p‘;(:)e”w"zl'. (4.15)
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In order to obtain the screened potential ® from the external potential ®**, Eq.4.11
has to be inverted. This means that the inverse dielectric matrix efj}lm has to be

found. Then, the matrix element ®;; of the screened potential can be calculated with

Im

This formalism is a good approximation of screening in a multi-subband system, if
the wave functions ¢; are known. The equations above assume the same diclectric
constants in AlGaAs and GaAs. General expressions for the form factor for special
geometries with varying dielectric constants were derived in Ref. [60]. Experiments on
silicon inversion layers [61] and GaAs-AlGaAs heterojunctions [58] with two occupied
subbands showed good agreement with this theory. The matrix-RPA formalism was
also applied to multi-subband §-doped systems with up to 6 occupied subbands [62].
A simpler approximation is the Thomas-Fermi approximation in two dimensions,
where the induced charge is proportional to the DOS and to @:

”iud(q> ;) - ,...¢~m(b(q :)5(j> (417)
With this surmise, the screened potential ¢ becomes

apy

where ap is the effective Bohr radius (ap = 100 A for GaAs).

4.1.3 Scattering Mechanisms

This section gives an overview of the scattering potentials for the different scattering
mechanisms. Besides Coulomb scattering, we also mention scattering by individual
Al- and Ga- atoms in the AlGaAs alloy as well as scattering at the rough interfaces
between the well and the surrounding AlGaAs. However, these two mechanisms are
found to play a minor role in the determination of the overall scattering rate in PQWs.

Coulomb Scattering

Here we consider electron scattering by ionized impurities. The unscreened scattering
potential of a single ionized impurity located at r = (0,0, z) is given by

% (r) = IR (4.19)

dreey v —1;]

The two-dimensional Fourier transform of the scattering potential is given by

Yoy . . T 6’2 gz Cf ~ A
¢ (q~~) = / (/NI;)*(':;[(: d 1(‘7(“// - 4'0) (420)
— e’ e~alz=20] (4.21)

Y i



44  CHAPTER 4. SCATTERING TIMES IN PARABOLIC QUANTUM WELLS

Thus the transition matrix element reads

e? N
oF = Fii(q, 2 e 4.22
(950 = (3= Fsle) 5 (1.22)
where I;(q, 20) = 20 dz@i(2)pi(2)e —al2=20l is the Coulomb form factor.

In the PQW samples, ionized impurities are located on both sides of the well, and
two contributions have to be considered.

Alloy Scattering

Alloy scattering refers to the scattering present in alloys due to the random dis-
tribution of component atoms among the available lattice sites [63]. In a square
well where the electrons reside in the ternary compound Al,Ga;_,As, the averaged
squared scattering potential is given by [63, 64, 63]

A ] (Z 1

(85(a)*) = 2(1 = ) (6V 22 W
where a} is the alloy unit cell (a; = 4.65 A). 8V the conduction band offset between
AlAs and GaAs (750meV), and w the width of the potential well.
For a PQW, where & varies continuously along the well, the term 2 (1 — ) is replaced
by the Form factor [ dz¢f(z)p;(z)2(2)(1—a(z)). Using Eqs. 4.4 and 4.23, we estimate
the single-particle alloy scattering rate to be 1.8 - ,lA()“’fI, assuming ¢ = 0.05 and
w = 76 nm.

Interface Roughness Scattering

Boundaries between semiconductor layers are never perfectly flat. Interface roughness
contributes to the scattering rate. In the case of a quantum well, a simple picture
considers the variation of the quantum well energies as a function of the variation of
the well width. The scattering rate is proportional to this energy variation. For a
square-well potential of width w the averaged squared matrix element of the random
interface roughness potential is [66, 67, 68]

(@ () = 2T s (.20

The parameter A denotes the amplitude of the well width fluctuations and A is the
correlation length of the ﬂu(‘t‘na’r'om \\T"e see that the interface roughness potential
decreases with the well width as 1/w®. Assuming A = 5 A (two monolayers) and
A = 300 A [69] gives for a w = T6nm \\ide PQW a scattering rate of 1.7+ 10%s71,
which is small compared to the alloy scattering rate. The values for both, alloy and
interface-roughness scattering, are small compared to the Coulomb contribution, as
found experimentally (chapter 4.2.3) and by calculations (chapter 4.2.5).
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4.1.4 Scattering Times in a Two-Subband Quantum Well

The question arises how the mobility in different subbands of a PQW is characterized.
By using Ohm’s law j = ¥_; 0,10 one can attribute individual conductivities o; to each
subband 7. The Drude scattering times 7; and subband mobilities p; = er;/m* are
obtained from the conductivities using the Drude result o; = n;e*r;(B)/m* with a
o time 7;(B) (e,;m™ electron charge and effective

je

magnetic-field dependent scatterin
mass).
In a magnetic field, the conductivity o; and thus 7;(B) decrease like a Lorentzian

(Tz' = TL'(,B = O))

(B) = ——, (4.25)

which is easily verified by inverting the resistivity tensor given by

m

Peri = 72‘2’(227‘; (—}"‘Z(ﬂ
B -

Pryi — . (42/)
n;c

The total conductivity is simply 3°; 0;. The resistance p,,(B) is obtained by inversion
of the conductivity matrix. For small B, the resistance increases quadratically with
the magnetic field, i.e. pup(B) = po(0)(1 + aB?) [T0] with

~ noronyT (o — 7)€’

m*(nomo -+ Ny )

From this so-called positive magnetoresistance the scattering times 7; of a two-
subband system can be extracted [71, 70, 72].

The possibility of intersubband scattering increases the phase space for final states.
This enhances the scattering probability and thus decreases the mobility, which was
first observed in Refs. [73, 74]. The solution of the Boltzmann equation taking in-
tersubband scattering into account has been given by Siggia [54]. In most cases the
subband scattering times do not depend on B in the usual way, i.e. 7;(B) is not given
by Eq. 4.25 anymore. This important fact was first mentioned by Zaremba [75]. Ac-
cordingly, the positive magnetoresistance is not given by Eq. 4.28 anymore. In his
model based upon the Boltzimann equation, Zaremba takes intersubband scattering
into account explicitly. This leads to a modified B-dependence of 7;(B), which can

b

be written as [75]

(B) = Re Z(\’K + iw{,,l);_';f‘ kifki |, (4.29)

7

where the k; are the Fermi wave vectors, & = 2mn;, w, = e¢B/m, and K the
scattering matrix defined by
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Ky K Z
= .30
K ([(3 K ) (4.30)
R I
B o PO pu) + PO

The coefficients PU) are related to the transition rates Py, () o |[(n|®(J)]m)]* be-
tween subband states n and m and scattering angle @ by Fourier transformation in 1)
I) () {5 the transition rate integrated over the allowed scattering vectors, while in P”

th(‘ integrand is multiplied by cos?. Both transition rates are generalized expres-
sions of the one-subband case in Eq. 4.4. The difference PI(L P,(}) corresponds to
the single-subband Drude scattering rate, where the matrix element of the scattering

potential is weighted by (1 — cosv). Transforming Eq. 4.29, one obtains

Ky (K2 4+ w?) + Ky(K3 - A LNy Ky — Ky Ky + w?) (ko /)
(K? + W) (N3 +w?) 4+ KE(N3 + 2w? — 2K K3)

(B) = (4.31)
In the special case K3 = 0, Eq. 4.31 reduces to the independent-subband case of
Eq. 4.25. Note that in the diagonal elements Iy 2, also the isotropic part of inter-
subband scattering is included. Tt was shown that intersubband scattering cannot be
neglected for our PQW samples and Ky, cannot be assumed to be small [76, 77].
With n; known, Eq. 4.29 allows a fit to p..(B), with Ky, Ky and K3 being the fit
parameters [75] (Fig. 4.2a).

4.2 How Does Elastic Scattering Vary Across a
PQW?

In this section, we study the elastic scattering times of electrons in two subbands of
a PQW. This is done at constant electron sheet density, but different positions of the
electron distribution along the growth direction. We find that the scattering times
obtained by magnetotransport measurements decrease as the electrons are displaced
towards the well edges, although the lowest-subband density increases. By comparing
the measurements with calculations of the scattering times of a two-subband system,
new information on the location of the relevant scatterers and the anisotropy of
intersubband scattering is obtained. It is found that the \mﬁcnng time of electrons
in the lower subband depends sensitively on the position of the scatterers, which
also explains the measured dependence of the scattering on the carrier density. The
measurements indicate a qegl‘egaﬁon of scatterers from the substrate side towards the
quantum well during growth [78

4.2.1 Introduction

The striking success of Ga[Al]As semiconductor heterostructures originates from the
extremely high mobilities obtained in these materials. One key ingredient for the
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fabrication of such samples is modulation doping, where dopants and electrons are
spatially separated. At low temperatures, impurity scattering, alloy scattering and
interface roughness scattering limit the electron mobility {79, 65]. If more than one
subband is occupied, intersubband scattering takes place in addition[54, 59, 73, 80].
Information on the relevant scattering processes is usually obtained by measuring
how single-particle (7;) and Drude scattering times (7) vary with carrier density ny.
For two-dimensional electron gases (2DEGs) realized in AlGaAs heterostructures, it
is found that impurity scattering is dominant. Due to screening, one finds 7 o nyj,
with 4 between 1 and 1.5, depending on the distance between the dopants and the
2DEG [79].

In a two-subband system with subband densities ng and nq, the Drude scattering
times 7; of subband ¢ are usually found to increase monotonlca!ly with n; [T1, 75].
Recent results show that in a parabolic quantum well (PQW), 75 may also slowly
decrease, i.e. v < 0, when a second subband is occupied [76, 77]. In the following,
we investigate this unusual dependence and show that it may be due to a certain
arrangement of the ionized impurities.

4.2.2 Experimental

The inset of Fig. 4.2a shows the structure of the sample. In the center of the well, a
three monolayer thick AlgosGapgsAs layer forms a potential spike. The experiments
were carried out with standard Hall-bar geometries at temperatures of 100 mK. Four-
point measurements using a current of 10nA at a frequency of 13 Hz were performed
with a magnetic field B applied perpendicular to the electron gas.

Figure 4.2a shows a measurement of the magnetoresistivity p,(B) at ny = 2.9 -
10" m™2. TFrom the low-field magnetoresistivity, 7o and 71 are obtained by fitting to
the two-subband model described in section 4.1.4.

We measured p,,(B) at ny = 2.9 10" m™* (controlled by the low-field Hall volt-
age) and different positions of the electron distribution along the growth direction
(Fig. 4.2b). The electrons were displaced by applying voltages Usy (Upg) between the
front (back) gate electrode and the electron gas.

Variations of both amplitude and period of the Shubnikov-de Haas (SdH) oscillations
with changing Vi, arve clearly visible. The amplitude at a fixed magnetic field decays
as the wave functions are displaced towards the substrate. This corresponds to a
decreasing 7,[80, 81]. An analysis of 7 1s presented in section 4.5.

As described in chapter2.6.2, we find the displacement Az per front gate voltage
by fitting Upg as a function of Uy, at constant ny to a capacitor model. For ny =
2.9 10" m~2, we obtain a displacement of 1000 A/V[41]. Thus we can plot the data
as a function of Az instead of gate voltages.

From the SdH frequency we evaluate no(Az) (Fig. 4.3a). A minimum occurs in ng
at U &~ —130mV and is related to the narrow potential spike in the center of the
PQW. The spike leads to subband energy shifts depending sensitively on the electron
distribution along the growth direction. A displaccnmnt of the elecfrons thnq changes
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the wave functions are centered with respect to the spike. Therefore, the minimum in
no provides the reference for the location of the wave functions in growth direction[47],

where Az = (.

4.2.3 Determination of Drude Scattering Times

By fitting the magnetoresistance data with Eq. 4.29, we evaluated 75 and 7y for
different Az (Fig. 4.3a). The lower-subband scattering time 7y is found to be larger
than 7. Both 7 and 7 show a maximum as a function of Az. The maximum in 7
occurs where the wave functions are centered, 1. e. Az = 0.
Assuming a decrease of 7; with decreasing n, due to screening (y > 0), we expect
a minimum in 7o at Az = 0, which disagrees with the measurement. On the other
hand, the scattering rate depends on the distances from the relevant scatterers [82].
For Az = 0, the electrons are as far away as possible from the ionized impurities,
which gives rise to large ;. The fact that 7y is large around Az = 0 indicates that the
density-dependence is weaker than the dependence on the distance to the relevant
scatterers. In contrast to the ngy subband, both, ny and 7 have a maximum at
z = 0. The relative change of ny with Az is larger than that of ng. Hence, n is
more strongly influenced by its density dependence than by Az, which explains the
coincidence of the maximum in 7 with Az = 0.
The maximum of 7y is shifted towards the swrface, indicating stronger scattering
on the substrate side. Although this could be explained by assuming more dopants
than expected from the MBE growth protocol, we can exclude this, because the total
amount of Si brought on the wafer was measured accurately. However there might be
segregation of dopants on the substrate side towards the PQW during growth, which
would enhance scattering significantly.
Additional insight can be gained by studyving the spatial variation of the matrix ele-
ments K; (Fig. 4.6a). Usually, Drude scattering times are insensitive to small-angle
scattering. For intersubband scattering, A5 contains the part of the scattering rate
weighted by cosd. This gives information about the amount of small-angle inter-
subband scattering. Since almost no structure in K5 is observed, while K increases
stronger on the substrate side, large-angle scattering must be higher on the substrate
side. In order to increase large-angle scattering of Coulomb scatterers with fixed den-
sity, the distance to the electron gas has to be diminished. This happens if scatterers
segregate towards the electron gas.

4.2.4 Determination of Single-Particle Scattering Times

The single-particle scattering time 7, determines the width of the Landau levels and
thus the amplitude of the oscillations in the DOS in the presence of a magnetic field.
From the amplitude of the SAH oscillations, 7. from the lower-energy subband is

s
obtained by fitting the amplitude Ap of the SdH-oscillations by [80]

P ( 0 ) !

(4.32)
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Figure 4.2: (a) Fit of p..(B) for Us,=-50mV (l,,=4+1000mV) to the two-subband
scattering model. Inset: schematic sample layout along the growth direction. (b)
Set of measured p,..(B) for different electron positions along the growth direction at
ng = 2.9 10" m™?. Values for Uy, are indicated, and [/, is varied between -2.2V
(top) and +2.2V (bottom) in steps of 0.4 V. Subsequent data are offset for clarity
by 500, Trom top to bottom. the electron distribution is displaced towards the
substrate. The data for p,, fall on top of each other since nyy is constant. One set of
minima corresponding to the same filling factor in the lower subband are connected
by a dashed line.
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Figure 4.3: (a) Measurement of 79, 7 and np vs Az at ny = 2.9-10%m™2. (b)
Calculated scattering times for a scattering distribution where 1.5-10%m ™2 of dopants
are shifted from the substrate side towards the PQW, showing good agreement with

the measured data. (¢) The same calculations as in (b), but with the dopants as in
the growth protocol.
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where the Dingle term is Dr(X) = X/sinh X. At low temperatures 7' and high
magnetic fields, the Dingle term approaches unity. Figure 4.4 shows a logarithmic
plot of the left side of Fq. 4.32 divided by the Dingle term, as a function of 1/B,
for a measurement on a PQW. In this representation, the SAdH amplitude decays
as log4d — 7w /7sw,, 1.e. linearly with 1/B. From the slope of the linear curve one
obtains 75. Because the SdH-oscillations are due to the subband 7 = 0, we interpret
the obtained 7, as the single-particle scattering time of the ¢ = 0 subband. Single-
particle scattering times for two occupied subband have been determined in a 2D

heterjunction structure [83].
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Figure 4.4: Dingle plot: logarithm of the SdH-amplitude divided by the Dingle term
(Eq. 4.32), as a function of the inverse magnetic field. Taken for Uy, = 600mV and
U = —157mV (sample 21, @ = 0.05). The slope of the linear fit determines the

single-particle scattering time 7.

An analysis of 74 is presented in Fig. 4.5, In the measured data we observe a decrease
of 75, as the wave functions are displaced from the front gate side to the back gate
side, where nominally less ionized impurities are located. This indicates once more
that on the back-gate side there either have to be more scatterers, or the scatterers
are closer to the PQW than expected. The values for 7, are about ten times smaller
than the Drude scattering times 7y. Because in 7 the forward scattering events
are counted less than in 7g, this means that electrons in the PQW are scattered
predominantly by small angles v. This is explained by the flat potential produced
by the remote ionized impurities. In calculations the ratio 7o/7 typically reaches
values of 100. It has been shown by Coleridge [84] that spatial correlation of small-
angle scattering events can significantly increase the single-particle scattering time
compared to calculated values, while the change in the Drude scattering time is less
pronounced.
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Figure 4.5: Measured 7, for different positions of the electron gas across the quantum
well. Towards the back-gate side, 7, monotonically decreases, indicating that there
have to be more scattereres or the scatterers are located closer to the well than on
the front-gate side.

4.2.5 Calculation of the Scattering Times

As we will show, a calculation of the 7; supports the assumption of segregated Si
atoms. The matrix elements of the scattering potential were obtained by numerical
integration using self-consistently calculated wave functions. Then the transition
rates P{)
scattering vectors. Screening was included in the Thomas Fermi approximation. In
Appendix A we compare Thomas Fermi screening with the RPA formalism introduced

in section 4.1.2. We find that Thomas Fermi screening gives results similar to RPA

were calculated by integrating the squared matrix elements over the allowed

screening if a third virtually occupied subband is taken into account. For the two-
subband RPA formalism, the results clearly differ. Because of limited computing

time, we present here the Thomas Fermi results here.

The 7; were calculated from Eq. 4.29. Besides Coulomb scattering, we included alloy
scattering and interface roughness scattering in the calculation. We found that the
scattering rate is dominated by Coulomb scattering. Therefore the other scattering
mechanisms could be neglected the in the calculations presented in the following.
Initially, two layers of Coulomb scatterers were included. The dopants on the surface
side were gathered in a single é-layer 300 A above the well, with a concentration of
Ny = 3-10' m~2. The second layer is the doping layer 200 A below the well (N = 2.8

10 m™?). These values correspond to half of the nominal Si concentration brought

on the wafer during the MBE-growth, qualitatively accounting for deep donors and
non-ionized impurities. Figure 4.3c shows the obtained scattering times. As one
would expect for this donor configuration, ry monotonically increases as the electrons
are displaced towards the substrate side, which is not in agreement with the measured
data (Iig. 4.3a).
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Figure 4.6: Measured (a) and caleulated (h) Ky, Ay and — K3, In (b), ionized impurity
scattering was modeled as in Fig.4.3c.
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In order to take segregated Si atoms into account, we placed N3 = 1.5 - 10*° m™?
scatterers at the edge of the well on the substrate side, and reduced N; by the same
amount (Fig 4.3¢). As in the experiment, we obtain a maximum in 74 displaced
towards the surface side and a maximum of 7 at Az = 0. At the surface side,
decreases only slowly, saturating at a value comparable to the simulation with Ny = 0.
It is the balance between the monotonically decreasing 7o shown in Fig. 4.3¢, and the
range and strength of the extra layer, which determines the exact shape of 7o(Az)
The calculated scattering times are about 50 percent larger than the measured ones.
It is well-known that for PQWs calculations overestimate the scattering times. Pos-
sible explanations are size-effect scattering from the edges of the electron gas [85]
or enhanced background impurities due to the greater reactivity of Al with oxygen
and carbon-containing molecules in the MBE chamber. In addition, the calculated
values depend on how screening of the scattering potential is implemented and which
concentration of ionized impurities is assumed. We did not attempt to simulate 7;
accurately. Here only the qualitative behavior, in particular its spatial dependence,
is of importance.

The calculated K; nicely reproduce the experimental data (Fig 4.6b).

4.2.6 Density-Dependence of the Scattering Times

With this strong evidence for segregated scatterers at the substrate side of the well,
we come back to the previously unexplained structure in the density-dependence of
7 [77]. In this experiment, Uy, was kept fixed, while Uy, and therefore ny was changed.
In Fig. 4.7, the measured and calculated values for o, 7, n¢ and ny are shown. In
the measurement, 1y slightly decreases as ny gets populated. In the calculation, the
additional scattering layer gives rise to a weak increase of 7y with ny when the second
subband is occupied (large symbols), whereas a steep decrease results in the case of no
additional layer (small symbols). Thus the additional scatters are responsible for the
slope of 7o(ny). Since ny is driven by Vi, the electron distribution expands towards
the surface side with increasing ny. Thus the scatterers on both sides of the well
compete and determine the shape of r(ny). As discussed above, for small nq, 7 1s
not so sensitive to additional scatterers, which is reflected in similar values obtained
from the two simulations shown in Fig. 4.7b.

4.2.7 Conclusions

In conclusion, we have presented an investigation of Drude scattering times in a
modulation-doped multi-subband quantum well. Using front- and back gate voltages,
the position of the electron distribution and the subband densities were tuned. The
Drude scattering times of individual subbands were measured. It was found that 7
is dominated by the distance of the 2DEG to the impurities and not by its density
dependence. Its behavior could therefore be used to locate additional scatterers at
the substrate edge of the well, which are presumably due to segregation of dopants
during growth. The measured scattering times could be qualitatively reproduced in a
calculation assuming that half of the substrate-side donors have diffused to the edge
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Figure 4.7: Measurements (a) and calculation (b) of scattering times (symbols) and
subband densities (lines) vs ny. In (b), small symbols are calculated without, large
symbols with additional impurities at the substrate side of the well. The jumps at
the population of the second subband comes from the non-continuous DOS which
modifies screening abruptly.
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of the well. Using these results, previous measurements of the density dependence
of 19 could be explained. While obtained for a PQW, the presented method of
investigating the scattering times as a function of the electron-gas position might
yield further information on scatterers in other types of samples.



Chapter 5

Phase-Coherent Transport

In this chapter, we present measurements of weak localization (WL) and univer-
sal conductance fluctuations (UCE), two effects arising from phase-coherent electron
transport. Contrary to inelastic scattering processes, correlations in the quantum-
mechanical phase of electrons are not destroyed by elastic impurity scattering. This
leads to phase-coherent transport over a length [, which can be significantly larger
than the elastic scattering length L. The coherence of a quantum-mechanical sys-
tem is a prerequisite for quantum computing, a topic which has been discussed a lot
recently [86, 87, 88].

The WL and UCF effect manifest themselves as quantum interference corrections
to the Drude resistivity, which are important at low temperatures. With the PQW
system, we can investigate the phase-coherence length at the crossover from a two-
to a three-dimensional electron gas.

5.1 Phase-Coherence Length

In the description of electron transport by the Boltzmann equation, the electrons
are assumed to move along classical trajectories between two scattering events. If
interference of scattering from different centers cannot he neglected, the motion of
electrons is described by quantum-mechanical waves with a phase ¢ oscillating in
time and space. This phase is well-defined as long as no scattering events modify the
energy of the electron. The loss of phase is called decoherence. A length scale [, is
defined, which measures the distance an electron travels until its ability to interfere
with itself is lost. Imagine two Feynman paths [89] starting at point A and ending at
point B. The ability of the two paths to inferfere at point B is lost if the fluctuation of
the acquired phase shifts is larger than say 2. It is important that the environment
randomizes the interfering particle’s phase in an unpredictable way. The phase ¢ at
point B is a statistical variable, which can be characterized by a distribution function
P(¢). The phase-coherence length [, is defined such that on paths with a length [,
the width of P(¢) — the variance of the phase ¢ —is 2.

Elastic scattering of electrons by impurities and defects does not contribute to de-
coherence at low temperatures, because no energy transfer to the defect is possible
[90]. However under certain conditions, if an internal degree of freedom as spin is

b

ot
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involved, dephasing can occur in the absence of any inelastic process, as was pointed
out in Ref. [91]. Thus inelastic processes as scattering of electrons with other elec-
trons or spin-flip-processes are mainly responsible for decoherence. An electron needs
the time 74 = I3/ D to travel the distance I, diffusively (D is the diffusion constant).
Theoretically it is found that the phase-coherence time 74 increases with decreasing
temperature as 74 o 1/T7, where p varies between 0.5 and 3 [92, 91, 93, 94]. How-
ever many experiments show a saturation of 7, at low temperatures, which has been
ascribed to residual heating of the electron gas by the environment or by spin-flip
scattering processes due to magnetic impurities. Only recently these two mecha-
nisms could be clearly excluded [95]. A new, but controversial theory was proposed,
where electron scattering by zero-point fluctuations of the intrinsic electromagnetic
environment explains the low-temperature saturation of 7, [95, 96]. An alternative
explanation was proposed by Altshuler which is based on dephasing by an external
microwave field [97].

Theories describing the behavior of 74 as a function of the electron density do exist
for strictly 2D electron motion and for the case of 3D motion like in thin metal
films [98, 99]. To our knowledge no work has been done to investigate the influence of
intersubband scattering on phase coherence. We therefore investigate what happens
to phase coherence if a second subband is populated, i.e. at the crossover from 2D
to 3D.

We focus on two effects due to phase coherence, which can be used to measure 7

o At B = 0, there is a peak in p,.(B). This is the so-called weak-localization
(WL) peak.

o The conductance fluctuates as a function of some external parameter, like U,
or B (universal conductance fluctuations, UCF).

Making use of these two effects. we present in the two following sections investigations
of phase-coherent transport in PQWs.

5.2 Weak Localization

Weak localization is observed in the magnetoresistivity of 2DEGs at low tempera-
tures. Around B = 0 a peak in p,.(B) occurs (Fig. 5.1). The explanation for this
relies on phase coherence leading to an enhanced backscattering probability due to
time-reversal invariance of pairs of clockwise and anticlockwise paths [92, 100, 34].
This coherent backscattering leads to a reduction of the diffusion constant and cor-
respondingly to a reduced conductivity. The conductivity reduction at B = 0 due to
coherent backscattering is denoted by Aeoy. It depends on the channel width W. For
one occupied subband. W > [ and for 71 < 7, an expression for Aoy is obtained [34]:
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Figure 5.1: Weak-localization peak in the magnetoresistance measured on a PQW in
the two-subband regime at 1" = 100m A

The conductance reduction increases logarithmically with 7, and is of order e2/h.
A magnetic field breaks the symmetry of time-reversed paths, and the enhanced
backscattering disappears successively with increasing field. The conductance in-
creases to its classical value. A typical field can be derived, at which the WL peak
disappears. Consider a loop over which an electron propagates phase-coherently.

r

Let the loop length be L. The area enclosed by the loop is F' ~ L* A mag-
netic flux through this area shifts the electron phases with respect to each other by
2§ eAds/h = 2e BF/h. Interference is lost if the phase shift gets larger than unity,
ie. > h/2eB. The stronger the magnetic field, the smaller are the loops which
still contribute to WL, until finally the conductance reaches its classical value. On
the other hand, loops which are larger than the phase-coherence length [, = \/]7‘7‘([)
do not contribute. Thus if the field reaches a value AB where loops of size smaller
than [} start to loose their phase, the conductance starts to increase. The condition
for this is given by

. h 2
Fall=Dry < — =2 5.2
N A (5:2)

By measuring the magnetoresistivity peak, information about the phase-coherence
time 7, is obtained:

o The peak-height is proportional to the logarithm of 7,1 Aoy o< In(1 + 74/ 7a).
o The width AB of the peak is given by AB o 1/D7y.
For arbitrary magnetic fields, a formula can be derived [92], which describes the exact
shape of p..(B) for given 7, and 7). We tried to fit magnetoresistance data of a PQW

with this formula [76]. A parabolic hackground in the magnetoresistance attributed
to electron-electron interaction had to be considered [34]. Figure 5.2 shows a fit of
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Figure 5.2: Fit of the WL conductivity correction Ao (£) for sample 21 with z = 0.05,
Upe = 0mV and Up = —340mV.

the WL peak in 0,,.(B) measured for ny = 1.2+ 10" m~2. The obtained value for
is 14 ps, the elastic scattering time 7 = 2.6 ps. The quality of the fits deteriorated
when we went to higher densities. The formula describing o(B) is not strictly valid
any more for two reasons:

o With increasing density the elastic scattering time 7q might increase stronger
than 74, we are thus no longer in the regime 7 < 74.

o The system is not strictly 2D any more at the crossover {from one to two po-
pulated subbands.

As there is no theory describing p,,(B) that takes intersubband scattering into ac-
count and 1s valid for 74 ~ 74, we have concentrated on the evaluation of the height
Aoy and width! AB of the WL-peak. Going from one to two occupied subbands, we
have observed a change in both quantities (Fig. 5.3). First we discuss the density-
dependence for one occupied subband (Up, < —220mV):

o The peak height Aoy increases with density. If Aog is proportional to In(1 -+

. . . E . o [+ a

75/ Tel), this means that 7, increases faster than 7, i.e. if 7 o nf‘l then 74 o nﬁ
with & > k.

o The width AL slightly increases for Uy, < —220mV. Because D increases with
ny. this would signify that 7, is decreasing with ny if AB o 1/Dr,. This is in
contradiction to the interpretation of the Ao data.

Both the width and the height decrease with subband density if a second subband
is populated (U, > —220mV), again giving contradictory results for 75. To sum
up, we observed a change in the behavior of the WL-peak at the crossover from
one to two occupied subbands. Both the width and the height of the peak increase

YA B was defined by Ac(AB) = Acp/2.
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with density for one occupied subband, and decrease for two occupied subbands. No
conclusions can be drawn on the magnitude of the dephasing time 7, because there
is no appropriate theory available.
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Figure 5.3: Measured height Aoy (a) and width AB (b) of WL peak (symbols) vs
Ugg, measured at Upg = 0V on sample 21 with @ = 05. The lines connect measured
mobility data points (right axis), which indicate the occupation of the second and

third subband (arrows).

5.3 Universal Conductance Fluctuations

Quantum interference effects lead to significant sample-to-sample fluctuations in the
conductance for samples that differ only in the positions of their respective scatterers.
Experimentally it is difficult to compare conductance fluctuations among different
samples. More conveniently a magnetic field is applied to one sample, as a small
change in magnetic field has a similar effect on the interference pattern as a change
of the sample impurity configuration. The magnitude of the conductance fluctuations

is characterized by the standard deviation of the conductance G

-

AG={((G= <G> (5.3)
Such universal conductance fluctuations (UCF) are observed in the magnetoresistance
of 2DEGs if the sample is not very much larger than ly. The magnitude AG is of
order e*/h at T = 0 [98, 101], irvespective of the sample conductance .

PQWs enable to tune the electron density of the system and thus to investigate UCF
with one to three occupied electric subbands. Here, the transition from one to two
occupied subbands, which represents a dimensional crossover from a pure 2D system
to an intermediate regime between 2D and 3D, is particularly interesting [105, 106].
The experiments presented here have been carried out within a Diploma thesis of M.

Huberty [103].

(sd) 2
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5.3.1 Theory

Unlike the WL reduction of backscattering due to phase coherence, the interfer-
ence between paths contributing to UCF are reduced statistically when many phase-
coherent sections of a sample are put in series. Thus the fluctuation magnitude de-
creases if the distance L between two voltages probes is made larger. If the width W
of the sample is smaller than [;, the root-mean-square magnitude of the conductance
fluctuations can be written in the form

2 ~, [ 3/2
AG == (%——J , (5.4)

where (' is of order unity and a function of the typical length scales of the sample,
i.e. the elastic scattering length [, the channel width W and the channel length
L [34]. In principle, the dependence of AG 13/ * allows the determination of I,
however the value of 'y has to be known to evaluate [y quantitatively.

Similarly to the width of the WL peak, a correlation field AB, can be defined. For
AB larger than AB,, the fluctuating conductance at field I is uncorrelated with the
conductance at B + AB. For T' = 0 and W < [, one obtains [102]

h

AB. eW(Cal,

A
e
It

——

With both, AB, and A, the phase-coherence length [, can be evaluated from mea-
sured pg.(B) traces.

5.3.2 Experimental setup and data evaluation

Figure 5.4 shows the geometry of the sample we used (sample 43D1). The length L
between two voltage probes varies between 1.5 pum and 11 pum. The Hall bar width
W is 2 pm. We also fabricated samples with W = 1um, where, however, the voltage
probes were pinched off and no transport measurements were possible. The samples
were structured using e-beam lithography. In the first step, a front gate was defined,
serving as a self-aligned etch-stopper for the following mesa-etching step. Thus gate
and Hall-bar could be aligned very precisely.

Figure 5.5 shows a measurement of the density and mobility of a sample. The mobility
1s reduced by a factor of about two compared to the values for wider Hall bars,
indicating the influence of the edges.

We measured magnetofluctuations in the conductance of PQW samples which we
can establish as UCFE. In a magnetic field perpendicular to the 2DEG, we were able
to extract very reasonable estimates of the fluctuation amplitudes and correlation
fields. Fig. 5.6a shows an example of a measurement of p,.(B). The data has been
fitted by a polynomial of power 6. In Fig. 5.6b, the difference of the background
and the measured resistance is presented. Via matrix inversion, the fluctuations
in ¢ are obtained (Fig 5.6¢). The amplitude AG is found to be proportional to
L7312 [103], indicating that I; > W = 2ym. The observed correlation field is about
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Figure 5.4: Photograph and scheme of the 2 um thick UCF sample.

5mT, independent of the sample size L. Very crude estimates of the length [, can

be made from this data, shown in I'ig. 5.7.
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Figure 5.5: Electron sheet density and mobility as a function of Ug,.

Fig. 5.7 summarizes the magnitudes of Cyly and Cyl, as obtained from correlation
fields and fluctuation amplitudes. The numerical prefactors 'y and 'y probably
depend on the gate voltage. The relevant length scales [, I, and W are all compa-
rable. Theories exist only for asymptotic regimes, where different length scales can
be well separated. In the intermediate regime, the prefactors € and (3 are expected
to depend sensitively on changes in the decisive length scales. For [y > W, a flux
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cancellation effect leads to additional structure in the prefactors [104].
The quantity C;ly displays a dip at the second-subband occupation threshold and
a strong increase at higher densities. This resembles the behavior of [,;. Possible

explanations are [105, 106]
e The dependence of (' and Cy is dominated by [.

o [n the two-subband regime two channels fluctuate independently. This gives
rise to an enhancement of the conductance-fluctuation amplitude.

o The phase-coherence length is influenced by electron-electron scattering, which
on the one hand reduces 7, due to an increased phase space for scattering events,
and on the other hand modifies screening, which may lead to a decrease of the

scattering rate.

More theoretical work considering electron-electron intersubband scattering is needed
to account for the observed dependencies.

In field orientations between the perpendicular and the in-plane case, the fluctuations
scale with the perpendicular field component for one occupied subband. For two
and three occupied subbands, this scaling disappears for large in-plane fields, which
indicates a 2D/3D dimensional crossover [103].

Near the in-plane orientation and in-plane, we observe conductance fluctuations which
depend on the in-plane component of the field. The fact that UCE is observed in a
2DEG with an in-plane field can be explained in two ways:

o For more than one subband occupied, the electrons can scatter between sub-
bands, which enables motion along the z-direction. The electron system is in
an intermediate regime between 2D and 3D, where flux-enclosing loops in an
in-plane field configuration are possible.

e At magnetic fields where the magnetic length /5 is smaller than w, motion is
essentially three-dimensional. This is due to the magnetic confinement which
localizes the wave functions at z-positions which depend on the longitudinal
mormentum k, (see inset of Fig. 5.8b) [107].

The typical loop size reduces from [,W to wlV, such that the correlation field is

expected to increase by W/w ~ 2000/50 ~ 40, see Eq.5.5. At the same time, the

fluctuation amplitudes arve smaller than in a perpendicular field. This is because
an intersubband scattering event is needed for a closed loop, which is usually less
probable than an intrasubband scattering event.

In Fig. 5.8a, measurements of the magnetoresistance R are shown for in-plane mag-

netic fields By between 0 and 8 T. Dips in the magnetoresistance are related to sub-

band depletions [74]. At Uy, = 130m}’, two dips are clearly resolved (arrows), and

a wealk third dip is observed (dashed arrow), indicating a partially populated fourth

subband. In the different field regimes, we have different subbands occupied and can

analyze the UCF quasi-period and amplitude.
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Figure 5.6: (a) Measured p,.(B) exhibiting UCEF on top of a slowly varying back-
ground (smooth line). (b) Residuum AR of the polynomial fit shown in (a). (¢)

Caleulated AG from AR through matrix inversion.
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Figure 5.7: Phase coherence length as determined from the UCEF amplitude 6G (1 1,)

and from the correlation field AB. (('5/,). The resulting values have been averaged
over different contact pairs.
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Figure 5.8: (a) Magnetoresistance R vs B) for three different Up,. The indicated

dips denote field positions where 2D subbands are depopulated. (b) Differential
magnetoresistance at Uy, = —295mV for two contact lengths, with two different
measurements for each length. The curves were smoothed and offset for clarity. At
By = 0, two subbands are occupied. Above 3.5 T the upper subband is emptied due
to a diamagnetic shift. UCI® can still be observed. The inset explains how electrons
can move along the z-direction for one occupied subband and high magnetic fields.
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In Fig. 5.8b, we plotted the differential magnetoresistance for U, = —295mV. Quasi-
periods of about 1T are recognizable, which is by a factor of about 30 larger than in
perpendicular fields? and agrees with our expectations.

5.4 Conclusions

We have investigated the WL and UCFE effects in an electron gas at the crossover
from two to three dimensions. For a strictly 2D system (ng = 1.2- 10" m™%), we have
found from the WL correction 74 = 14 ps (7 = 2.6 ps), corresponding to [y = 0.64 um
(lg = 0.39 pm). At the crossover to three dimensions the length scales I, I and W
are not well separated and no theory exists to relate the resistivity corrections to the
phase-coherence length [;. We therefore have described the measured characteristics
of the resistivity corrections. Both the height Aoy and width AB of the WL peaks
increase with ny until a second subband starts to get populated, where both quantities
decrease with ny.

From the UCE amplitudes and quasi-periods, we calculated the values Cyly and Cyl,
defined in Eqs. 5.4 and 5.5. Both quantities generally increase with ng. At the
occupation threshold of the second subband, the increase of Cjly is retardet but
catches up at higher densities. The occupation of the second subband therefore
manifests itself in both of the investigated quantum-interference phenomena.

A quasi period is about 6 times larger than AB.. The quasi-periods in the perpendicular case
are about 30 mT.



Chapter 6

Subband Densities and in-Plane
Magnetic Field

We learned how electrons in a 2DIEG behave if they are exposed to a perpendicular
magnetic field. SdH-oscillations in the magnetoresistivity allowed us to determine the
electron densities of different subbands and draw conclusions on the energy structure
(chapter 2.5.2). Here, we look into what happens if the magnetic field is applied
parallel to the 2DEG. There are two principal effects arising from such an in-plane
field:

o The subband energy levels are diamagnetically shifted. The shift is proportional
to the extension of the wave functions and results from the additional magnetic
confinement m*w?2z*/2 along the z-direction.

e The dispersion relation is modified in the in-plane direction. This leads to
a distortion of the Fermi surfaces and consequently to a modified DOS. For
multi-subband systems, the Fermi surfaces of the individual subbands may even
separate in k-space, leading to anomalies in transport quantities [108].

Both effects ~ diamagnetic shift and Fermi-surface distortion — lead to a carrier re-
distribution among the subbands. If a perpendicular B-component is applied in
addition, the SdH-oscillations give a measure for the subband densities n;. This way
we have investigated the dependence of n; on a weak in-plane magnetic field as a func-
tion of the tunable shape of the well potential. We have measured a strong carrier
redistribution between the subbands, which cannot be explained by the diamagnetic
dent density of states in different subbands, The measured carrier redistribution is
quantitatively reproduced by a calculation of the energy structure considering the in-
plane field in second-order perturbation theory. The results presented in this chapter
have been published in Ref. [109]. The data has been obtained for the diploma thesis
of Beat Ruhstaller [110]. Some measurements have been repeated in semester works
done by L. Roschier and M. Huberty.

68
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6.1 Introduction

An electron system confined in one spatial dimension with an additional magnetic
field is a textbook example that allows to study the behavior of quantum mechanical
energy levels and wave functions in detail. If the magnetic field is oriented perpen-
dicular to the plane of the electron system, the Hamiltonian can be separated with
respect to the in-plane and perpendicular motion. Therefore the Landau quantum
numbers and subband quantum numbers are independent of each other and level
degeneracies occur at certain magnetic fields [40]. In the case of a parabolic confin-
ing potential, the Hamiltonian can be solved analytically for any orientation of the
magnetic field [111, 112]. For arbitrary confining potentials one relies on perturba-
tive approaches. A lot of theoretical [113-122]. as well as experimental work has
been done in this field [123-125, 108]. Here, we focus on the importance of second
order perturbation theory for a small — but arbitrarily oriented —~ magnetic field. In
particular, we find a strong redistribution of the subband electron densities due to
an in-plane magnetic field, which we quantitatively explain by a subband-dependent
density of states.

In a PQW with plasma frequency €, the in-plane field has two effects: The energy
levels are diamagnetically shifted proportional to (1 +w?/Q?)(1/2) and the dispersion
relation of the in-plane electron motion is modified, which can be described by a
magnetic-field dependent effective mass [114, 121, 125]. For a PQW, the effective
mass is m*(14w?/Q) /2 Thus the two-dimensional density of states (DOS) depends
on the in-plane magnetic field.

Experimentally, the electron densities n; of the subbands ¢ in the presence of an in-
plane magnetic field Bj can be determined by analyzing Shubnikov-de Haas (SdH)
oscillations in a transport measurement. In the case of one occupied subband, the dia-
magnetic shift of the subband energy has no influence on the measured subband den-
sity. However, the modified effective mass can be determined by measuring the tem-
perature dependence of the SdH-oscillations[126, 127] or by optical experiments[125].
Only if more than one subband is populated, the diamagnetic energy shift may lead
to a redistribution of subband densities. The parallel-field dependence of n; has
been measured for heterojunctions [124] and for parabolic quantum wells[127]. In
Ref. [127], measurements of a PQW were compared with the analytical solution of
the parabolic confining potential, although the effective potential is closer to a rect-
angular well. In order to relate the measured n;(B)) to the diamagnetic energy shift,
a perturbative expression for the diamagnetic shift was considered in Ref. [123] and
[124]. However, the varying DOS was not taken into account. As was pointed out by
Ref. [118], the varying DOS can have a significant effect on the depopulation of the
upper subband.

In this chapter, we present measurements confirming that the influence of the Bj-
dependent DOS on the measured subband densities is dominant over the diamagnetic
shift in the considered PQWs. We have measured Bj-dependencies of subband den-
sities in a wide PQW with tunable electron sheet density and potential symmetry.
The effect of these parameters on n; is studied for small B). The data is compared
to a perturbative calculation of the energies to second order, using self-consistently
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Figure 6.1: Measured magnetoresistances p,.,. as a function of the perpendicular field
B for different tilt angles o between -4° and 65°. The p,,-values are offset for clarity.
The upper part of the figure shows a contour plot of the same data as a function of
By and Bj. Darker regions correspond to smaller pyy (the grey scale is indicated on
the right side). A small deviation of the minimum position to higher B is observed

with increasing Bj.

calculated wave-functions at B = 0 as a basis. The first-order term determines the
diamagnetic shift, whereas distortions of the Fermi sphere are due to the second-order
term. As we will show, the latter effect on n; is of the same order of magnitude as the
diamagnetic shift. It may even dominate the 5)-dependence of n; in the case when
the DOS in the individual subbands differ. By applying a front-gate bias, we exper-
imentally control the difference between the subband-dependent DOS and study its
influence on the measured subband densities.

6.2 Experiment

In order to increase the asymmetry induced by the front-gate bias, the measurements
were taken on sample no 18 with a 3 monolayer thick Alg1s GaggsAs-spike situated
in the center of the well.

The sample was mounted on a revolving stage. Measurements were performed at 1.7
K. The tilt angle o between the sample normal and the direction of the magnetic
field was determined by scaling both the Hall resistance p,, and the Shubnikov-de
Haas (SdH)-minima in the magnetoresistance p,. to cos « (with the sample being in
the single-subband regime). We estimate the accuracy of the obtained angle o to be
better than 0.2 degrees.
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Figure 6.2: Density of the lowest subband ng normalized to the density no( By = 0) as
a function of the in-plane field, as obtained from measurements presented in Fig. 6.1.
For the determination of ng, filling factors of the Fg-subband between 12 and 28 and
tilt angles between -4° and 65° have been evaluated.

In the case of two occupied subbands Ey and F (densities ng and ny), the SdH-
minima do not scale with cosa anymore. In a weak perpendicular field By, pgy 18
periodic in 1/B; with a frequency proportional to ng. The oscillation due to the
Ey-subband is weak and not observed for low densities ny (Fig. 6.1). If the sample
is tilted by an angle «, the degeneracy of each Landau level is still determined by
B, . Analyzing the B - positions of even filling factors allows one to determine ng in
tilted fields.

Figure 6.1 shows measured traces of p,, plotted as a function of the perpendicular
magnetic field B, = Bcosa with the tilt angle « as a parameter. As there is no
spin-splitting observed at low magnetic fields, each minimum in pe.(B)) corresponds
to an even Fg-subband filling factor vy, which is deduced from the p,.-trace at o = 0.
The subband density ng = erpB./h is determined by the Bj-position of such a
minimum. In Fig. 6.2, we present ng as a function of the in-plane field By by using
By = B tana. Several filling factors 1o between 12 and 28 and tilt angles o between
-4° and 65° have been evaluated. In the case of two occupied subbands, ny generally
increases with B, corresponding to a depletion of the upper subband[124, 128]. We
limit the discussion to small magnetic fields By, By < 17T. To first order, the increase
of ng is quadratic in B”. We therefore introduce the coeflicient

o= (177()/(2[3[:?. ( -

=
Z

which we determine from a parabolic fit to the measured data.
Although we are interested only in the small-B behavior here, the subband densities
can also be measured for higher 1. Above some field By, all electrons from the upper
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Figure 6.3: Measured ng vs B) for a sample with @ = 0.05, Upg = 0mV and U, =
~150mV (corresponding subband densities of ny = 2.15 - 105 m™2 and ny = 0.8 -

10'5 m—2.

subband have settled in the lower subband, the density of which then remains constant
(and equal to the total sheet density ny). [ig. 6.3 shows such a measurement. The
data has been fitted by a parabola for B < 2.5T. This is motivated by the analytical
solution for a parabolic confinement [111, 112]. From the fit, a depletion field of
2.37T is determined. We refer to the depletion field in the discussion of universal
conductance fluctuation in an in-plane magnetic field (chapter 5.3).

The variation of v (Eq. 6.1) with the total density and the symmetry of the well is of
interest here. For this purpose, measurements as presented in Fig. 6.2 were performed
for different front-gate biases Uy, The total sheet density ny increases with U, and
the electron distribution moves closer to the sample surface. Figure 6.5 presents the
measured v, plotted as a function of ny. Note that the potential symmetry also
changes with ny, due to the inserted potential spike and the boundaries of the well.
Up to densities around ng =3.0-10' m™2, v increases and reaches a maximum value
of 1.7-10Mm™2T~2,

In the following section, we compare the data to a perturbative calculation of the
diamagnetic shift and the DOS, and to the analytical solution for a parabolic confining
potential. Only if the By-dependence of the DOS ~ obtained by the second-order
term of the perturbation calculation - is included, the calculation can account for the
measured ~.
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Figure 6.4: Calculated values for (EY — EJ)™" and (2)F, for different sheet densities

nu. The dominating contribution to v originating from the second-order term is
proportional to (2)2,/(E}— EJ). The insets show at two different ny the self consistent
potential U, the wave functions ¢? and the energy levels E? for subbands 7 = 0, 1, 2.
The Fermi energy is indicated as a dashed line.

6.3 Comparison with theory

6.3.1 First order perturbation theory

In the following we calculate the energy spectrum of a two-dimensional electron sys-
tem subjected to an in-plane field By. The perpendicular field does not have to be in-
cluded in the calculation, as we use small fields, where the Landau-ladder is smoothed
out to an approximately constant DOS. A perturbative calculation of the effective
cyclotron mass m* in tilted fields is presented in Ref. [125], where the Bj-dependence
of m* originates from a shift in Landau-level separation due to the coupling Hamil-
tonian. The effective mass obtained from the Landau-level spacing is equivalent to
that considering the dispersion modification due to an in-plane field.

With the magnetic field B} along the z-direction described by A = (0, —Byz,0), the
momentum operator p, in z-direction, the elementary charge e and electron effective
mass m*, the Hamiltonian of non-interacting electrons mobile in the 2z-y plane and
confined in the z-direction by a potential [7(z) takes the form

o 2,0 2279 2192
B n* - RAkE RkE e*By o, eByhk
H=o vy 4oz gty iy 200, (6.2)
Zn* 2m* 2m* 2m* m*
\.__._.._...\,.............../
Ho H

The wave function is separated into plane waves along the a- and y-direction (wave
numbers £, and k,) and the solution ¢;(z, k) to Hy -+ H' with energy E;(k,). The
total energy is given by Ei(k., k,) = Ei(k,) + h*(k2 + k2)/2m*. Non-degenerate
perturbation theory is applied to the eigenstates of Hy with energies EY and wave
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functions ¢?, treating H' as being a small perturbation (small in-plane fields B))).
The first-order correction to the energy results in

B2 Rk, — ko)

Ez“‘)* Z‘ZU) ~ E? +

2m> 2m*
il il (275 — (2)2), (6.3)
2m* ' o

where (...);; denotes the matrix elements (‘or’reqponding to the wave functions ¢?
and g7>7, respectively, and ko = eB)(z);;/h. The diamagnetic shift in energy [113] is
quadratic in By and proportional to (2*) — <~> . The magnitude of the shift increases
with subband number ¢ due to the increasing spatial extent of higher subband wave
functions. Additionally, the Fermi surface is displaced in @-direction by ko. This
displacement has no influence on the DOS and the effective mass m*. We now
calculate the magnetic-field dependence of the subband density no = m*/wh*(Ep —
Eq), which is given by the B)-dependence of Ly and Ep. The Fermienergy Ep depends
on By due to the rearrangement of subband ‘1en<it'i(—* In the following, we assume
that two subbands Ly and By are occupied (Ep > Iy, Ey). With An = ng — 721an:07

we obtain for v = dng/d. BH

v=An- — (6.4)

)

with

2 L2 (.2 L2 N2

ef (27 = ()~ (2" = (z)")oo
), () nis] *
2m* £y — Ej
By solving the Poisson- and Schrddinger equations for our PQW self-consistently, we
find the wave functions ¢? and energies EV for different gate biases. The consistency

S =

of these values can be checked by comparing the obtained EY with the measured
subband densities n; at zero in-plane field, divided by the DOS[40]. If the calculated
@) and E? are inserted into Eq. (6.4), one obtains values for o which are up to 7
times smaller than the measured ones (Fig. 6.5).

6.3.2 Second-order term and subband-dependent DOS

In order to calculate the modification of the effective mass, we have to take into
account second-order perturbation theory. The linear term in &, (Eq. 6.2) becomes
quadratic in the second-order perturbation, which modifies the dispersion along this
direction. Neglecting powers of I3 larger than two, and considering only contributions
to the perturbation sum from neighboring subbands, leads to the following corrections

to (ke ky):

77 k2
RUNEN - U .
E{(ky) = ~—L 3B} (6.6)
with
3 (ﬁ \l:>10
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6.3. COMPARISON WITH THEORY

This second-order term leads to a modified dispersion relation in y-direction hzki /2m
with m» = m*/(1—23; B), whereas the v-direction parallel to By remains unaffected.
The Fermi disc is distorted to an ellipse. This can be accounted for by a modified,
subband-dependent effective mass[114, 118]

ml = /7‘/73772;; ~m™(1+ '{3{]312!). (6.8)

Therefore the DOS p; depends on By, and on the subband index
pi = p(l+ 3;]3,{‘;). (6.9)

In the equations above we assumed that 38[ < 1, which is a prerequisite for the
applicability of perturbation theory. The - )Alamctm 3 1s proportional to the ratio of
the Landau energy fieBy/m* to the subband energy difference, as well as on (= >IO/ZBH

with the squared magnetic length 5 = h/eB). Thus both, the Landau energy
compared to the subband difference, and the off-diagonal z-matrix element compared
to the magnetic length, have to be small for the applicability of perturbation theory.
In the approximation used here, the subband-dependent correction to the DOS varies
quadratically with the in-plane field. In the description of the subband density, we
therefore have to be careful in converting the energy levels to subband densities. The
subband densities are written as n; = p;(£p — E;). With ng = ng + ny we obtain for
/7/: o~ i R - - )

v =An iz— + 39':;‘““)")‘1 + ny bo 1 "31". (6.10)
In the first term we recognize the first-order result of Eq. (6.4), with ¢ replaced by
6+ (Bo+ B1)/2. As we will show in the next section, this corresponds to a doubled

value in the case of a parabolic confining potential. Because of the increase in DOS
with .Bﬁ, the lower subband accommodates more carriers, which gives rise to an
increase in ny of the same order as from the diamagnetic shift itself.

The second term being proportional to the sheet density ny and the difference of
the DOS-parts Jy and y cancels out in an exact parabolic potential. For arbitrary
potentials, the Bj-dependence of the DOS can be quite different for the two sub-
bands, leading to an additional redistribution of the carrier densities between the
two subbands. The influence of this term on no(BH) can even dominate.

If we insert the calculated ¢? and EY into Eq. (6.7) and (6.10), we in fact observe
strongly different 3; and the second term of Eq. (6.10) dominates the resulting =
(Fig. 6.5). In contrast to the first-order result, this calculation is in good agreement
with the experimental values, and perfectly reproduces the maximum around ng =
3.0 - 101 m~?, For small enough magnetic fields, higher orders in the perturbation
series are small corrections to the DOS enhancement and to the diamagnetic shift.

6.3.3 Exact solution for a parabolic potential

In the exact solution for a parabolic quantum well with potential U(z) = m*Q?2%/2,
the subband energy levels for an in-plane field By are given by [111, 112] B, =
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Figure 6.5: Measured v = dno/(/B a function of ny (symbols). Note that ny was
varied by applying a front-gate bmx and thus also the symmetry with respect to the
potential spike changed with increasing ny. The error bars indicate deviations in «
originating from evaluation with different filling factors. The dotted line corresponds
to first-order perturbation theory (Eq. 6.4), the solid line indicates the full second-
order calculation, the dashed line is the first term An(6/2 + (fo + 31)/4), which
neglects subband-dependent DOS.

h(w? + Qz)%(n +1/2). The DOS is independent of the subband number and is found
to be

9 1/2
o( ) r:p(l + W) . (6.11)

Thus one obtains for ~
2

7= phs ij*‘Sw
Considering that ()3, = 1/2m*Q, ()3, = li/m*Q and (z%)11 — (z¥)o0 = h/m*Q, we
exactly recover the result of Lq. (6.7) and (6.9). It is worth noting that in the case
of a parabolic potential, perturbation theory up to order Bﬁ gives the exact result.
Considering Eq. (6.10), we find that (3 + 3;)/2 = 6, and fy — £, = 0. Thus the
second-order result is exactly twice the first-order result of Eq. (6.4), and the term

(6.12)

proportional to nyy in Eq. (6.10) vanishes.

6.4 Discussion and Conclusions

The data presented in Fig. 6.5 provides evidence that the Bj-driven carrier redistri-
bution among the two subbands is dominated by the By dependent DOS. We observe
a maximum in (ny) which is due to a subband specific DOS, described by the term
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in Eq. (6.10) containing fo — f1. Using Eq. (6.7) one finds that
Bo + B x —-—22*“-»» (6.13)
Lig = Ly

and

)2 2
3 — By j< >u1 (= >211 (6.14)
EY—EY  EY-EY
As an illustration, we consider the calculated wave functions and energy levels for
our samples. Since the most important contribution to the carrier redistribution is
the 8y — By term, we present (E? — ES)™! and (z)7, in Fig. 6.4, plotted as a function
of ny;. Both functions clearly show a maximum at approximately the same position.
There, the self-consistently calculated wave functions are centered with respect to the
spike. In this situation, the two occupied subbands are symmetric and asymmetric
states, with minimum energy difference Y — EJ. At the same time, the matrix
element (z)?, is maximal. Generally, the inverse energy difference and the squared
off-diagonal matrix element respond similarly to a changing external parameter.
We expect a less pronounced maximum for weaker potential spikes. This is confirmed
in a measurement on a similar sample (no. 17) with a potential spike described by its
Al content & = 0.05, where we find a monotonic increase of y(nu) (Fig. 6.6). We want
to emphasize that even without a potential spike, the subband carrier redistribution
is strongly influenced by the DOS contribution proportional to Sy — .
For arbitrary confining potentials, one has to compare relevant matrix elements and
energy differences. In Table 6.1, we present the calculated values for a heterostruc-
ture', a parabolic potential, a PQW with and without spike, and a double quantum
well (DQW)?. In order to clarify the relative importance of the diamagnetic shift and
the DOS, we split ~ from Eq. (6.10) into the two contributions g = And/2 and
ypos = An(Fo+ 1)/4 + nu(Fo — B1)/4 The weaker the tunneling coupling between
the left and the right side of the well, the more important the fy — f; term becomes.
In addition, this term has to be weighted by the total carrvier density ny rather than
by the subband density difference. In a heterostructure, Sy — 1 1s negative, which
weakens ypog, such that qai. determines the carrvier redistribution. The large ypos
for DQW structures is a result of the well-known effective mass change for peanut-
and lense-shaped Fermi contours [108].
In conclusion, we have described the By-dependence of the subband density ng by an
analytical expression, derived from second-order perturbation theory. The compari-
son with measurements on PQWs gives good agreement for By < 1T. In contrast to
earlier publications [123, 124], our results are not dominated by the diamagnetic shift,
but by the influence of B on the DOS of the two subbands which leads to a redistri-
bution of the carrier densities among the subbands. This explanation was confirmed
in measurements where the shape of the confining potential could be controlled.
It should be worthwhile to check this effect by cyclotron resonance experiments, where
we expect a pronounced splitting of the absorption because the effective masses in
this two-subband system display a different B)-dispersion.

Yspacer layer 100 A, residual acceptor concentration 2.7 - 10°° m=3, donor layer 6.5« 1015 m~2
Zwell width 140 A, barrier 28 A as in Ref.[108]
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Figure 6.6: Measured values of v (symbols) for different ny compared to results from
second-order perturbation theory (line) for a sample with a weak potential spike (Al-
content 2=0.05, width 8.5 A) centered in the potential well. The error bars correspond
to evaluations at different filling factors. The dotted line describes the diamagnetic
shift only, the dashed line includes the 3y -+ 5y term.

Table 6.1: Calculated coefficients &, 3y and 3y (in T™%); ny and ng—mny (in 10*° m~?),
and carrier redistribution coefficients ~ (in 10"m™*T~2) for a heterostructure, a
parabolic potential, a PQW without and with spike as measured, and a double quan-
tum well (DQW). v is split into the diamagnetic shift part yai, (containing ¢) and the
DOS-part ypos (containing 5y and 5;). In the DQW and PQW the wave functions
are_centered in the well.

sample 26 3o+ 58y Bo— 5y ny no = N1 Ydia YDOS
heterostructure 0.013  0.032 -0.027 4.9 4.6 0.15  0.04
parabolic potential 0.024  0.024 0 3.2-9.6 3.2 0.19  0.19
POQW 0.104  0.080 0.058 2.8 1.3 0.34  0.67
PQW--spike 0.128  0.045 0.181 2.8 0.9 0.29 1.37
DQW 0.011  0.001 0.311 5.2 0.4 0.01 4.04



Chapter 7

Ballistic One-Dimensional Systems

An electron system is in the ballistic regime, when its size is smaller than the elastic
mean free path . The high mobility of 2DEGs allows for ballistic electron transport
over several tens of micrometers in AlGaAs heterostructures. Modern lithographic
techniques enables to confine a 2DEG into wires and dots with sizes comparable to
the electron Fermi wavelength. In such systems quantum-mechanical effects manifest

themselves strongly, for example:

e A quantum point contact (QPC) is a 1D system, where a 2DEG is confined
laterally by a constriction of a width comparable to the Fermi wavelength [129].
The conductance is quantized in units of 2¢*/h, which was first observed in
1988 [130, 131] and is attributed to the formation of 1D-subbands (also called
modes or quantum channels), each carrving the same current.

e In quantum dots the energy spectrum consists of 0D states [132]. Fach state can
be occupied by two electrons. The vertical confinement is usually much stronger
than the lateral one. Hence only one vertical quantum state is occupied, and
the energy spectrum is determined by the lateral confinement. Electron-electron
interaction is important and leads to charging effects as the number of electrons
is changed, and also to level anticrossing, i.e., the approach and subsequent
repulsion of two energy levels instead of a crossing, which can be understood
by considering Coulomb-interaction in a Hartree approximation.

Special attention has been paid to the Darwin-Fock [133, 134]-like energy structure
of lithographically patterned quantum dots [135, 136] and of self-assembled quantum
dots [137] in a perpendicular magnetic field. The energy structure of a quantum
dot 1s related to that of the modes that pass through a QPC. In both systems, the
lateral confinement determines the energy spectrum. The electrons in a quantum dot
occupy 0D states. Their energies can be probed by tunneling through barriers into
the confined region. In a QPC, one direction is not confined, such that a current can
flow through a constriction. As we will demonstrate, spectroscopy of single-particle
energy levels in the absence of charging effects is possible.

In a conventional QPC, the 2DEG at the GaAs/AlGaAs heterointerface is confined
in one lateral direction by a split-gate electrode on top of the sample surface. The

constriction 1s thin in growth direction and wide in the split-gate direction. Only the

79
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ground state in growth direction is occupied, and the constriction is more similar to
a slit than to a disk.

A QPC where the constriction is wide in both dimensions is called a 3D QPC [138],
see Fig. 7.1a. The fabrication of a circular opening is difficult to achieve. It can
be realized in metalls by bringing a tip into proximity with a metallic surface and
subsequently retracting the tip, such that a stretched, narrow connective wire results.
Here we present the realization of 3D QPCs with a tunable constriction shape. It
is controllably fabricated by lithographically defining a split-gate electrode on top
of a 2DEG confined in a PQW. The confinements in the two directions are of sim-
ilar magnitude and are controlled by the split-gate electrode, and by the back gate
controlling the PQW potential, respectively (Iig. 7.1b).

The Fermi energy is adjusted by the voltage U, applied between the split gate and
the 2DEG. By measuring the conductance G(Us,) of the QPC, spectroscopy of the
magneto-electric 1D subbands has been realized. We have mapped out the relative
positions and degeneracies of the subband energies and investigated their behavior
when a magnetic field is applied. The obtained single-particle spectrum resembles the
Darwin-Fock states of a quantum dot. Due to the non-circular shape of the confining
constriction, the energy spectrum of a system with broken rotational symmetry can be
studied, in contrast to the states of a symmetric quantum dot, which are degenerate
at B = 0.

; Z
split gate
(a) (b) i
Quantum Dot QPC : x Y
A
USG magee im nm
B_L
By By UG === B,

back gate

Figure 7.1: (a) Quantum dot and 3D quantum point contact in a magnetic field. (b)
Realization of a 3D QPC using a PQW as a host structure.

The interaction between different channels is of special interest. With no interaction,
the energy levels simply cross as a function of some controlling parameter (as the
back-gate voltage). A coupling of the two confinement directions leads to the anti-
crossings of levels. However, 1D subband-level “lockings” were predicted as well [139].
Although we cannot exclude level locking, no clear indication for such behavior has
been found experimentally. The results presented in this chapter have been published

in Refs. [140, 78].
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Pigure 7.2: Two quantum numbers m and [ describe the electron states quantized
in y-direction (/) and z-direction (m). For each m, a ladder forms whose steps are
labeled by [.

7.1 Introduction

The energy structure of a parabolically confined 3D QPC has been calculated in
Ref. [138]. Here, transversal modes in both lateral directions are important. Whereas
the 1D channels in a conventional QPC are described by one quantum number /, in
a 3D QPC channels from both confinement directions (labeled as y- and z-direction
in Fig. 7.1b) can be occupied. The channels are labeled by [ (y-direction) and m
(z-direction). One can think of several 1D-subband ladders m;, the steps of which are
labeled by [ (Fig. 7.2). This assumption is valid if the Hamiltonian can be separated
for the y- and z-directions. Level degeneracies can occur because of the two quantum
numbers ({,m).

The conductance through a QPC is quantized in integer multiples N of 2¢*/h [131,
130}, where N corresponds to the number of occupied, spin-degenerate channels. This
quantization results from a cancellation of the energy dependence in the product of
velocity and DOS in a 1D system [34]. The total number N of ladder steps below
the Fermi level is given by N = SV 1, if a total of M — 1 ladders are occupied

L TTE

and [,, denotes the occupied channels of the m-th ladder. The 3D QPC can be

imagined as M separate — but coupled - QPCs. In this respect, the system is similar
to spatially separated QPCs arranged in parallel, as realized laterally with a double
split gate [141, 142] and vertically by a split gate on top of a double quantum well
structure[143], where transport characteristics have revealed no interaction between
the one-dimensional subbands.

Each time when the Fermi energy passes through a 1D subband energy, the conduc-
tance changes by 2¢*/h. This enables us to measure the subband energy spectrum
with respect to the Fermi energy. If the Fermi energy passes the energy level of two
degenerate channels, the conductance changes by 4¢*/h, i.e., one conductance plateau
18 missing.

We list the possible modifications of the 3D QPC shape and its energy spectrum:

e The split-gate voltage [/, changes the Fermi energy relative to the 1D sub-
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bands as well as the constriction width in y-direction.

e The back-gate voltage U, modifies the constriction in z-direction. For in-
creasing Uy, the density in the confinement increases and the width of the
screened parabolic potential widens.

o A magnetic field influences the energy spectrum of the magneto-electric 1D
subbands. The modification depends on the field orientation.

We investigate magnetic field directions parallel and perpendicular to the channel
(but always parallel to the 2DIEG). While a perpendicular magnetic field B, only
shifts the energy position of the modes and thus varies N, a parallel field B) induces
coupling between certain classes of modes, which leads to level anticrossing as a
function of the field. We will describe the influence of the magnetic field on the
energy of the modes in a simple picture and model the origin of the mode coupling.

6um

Opm

Figure 7.3: Photograph of mesa structure (left) and AFM image of the split gate
defining the QPC (right).

7.2 Experiment

The host structure for the electron gas is a 760 A wide POW with a weak, 3 monolayer
thick AlposGagesAs potential spike in the center. A back gate electrode is located
1.35 pm below the well. On the top of the structure, a 400 nm wide split gate electrode
was defined by standard electron beam lithography and evaporation of 30nm TiAu
(Fig. 7.3). A voltage Us, was applied between the quasi 2DEG and the split gate.
The series resistance of the Hallbar and the QP C as well as the Hall resistance outside
the QPC have been measured at 100 mK using a standard Hall-bar geometry. The
mobility of the electron gas is around 15m?/Vs, corresponding to a mean free path
of about 1um.

The contact resistance of the QPC has been determined from the difference between
the measured four-point resistance across the split gate and the resistance of the Hall
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bar, which was measured separately at Uy, = 0V. Small corrections to the Hall-bar
resistance of the order of a few percents were necessary to map the lowest conductance
plateau to the value of 2¢2/h. From the plateau values 2Ne?/h of the conductance
we found the number N of occupied 1D-subbands.

6 1 T T i i T

Figure 7.4: Measured Hall density ny and subband densities ng, ny and ny vs. Upg
for sample 34A. The subband density n, was obtained from the measured ny, ng and
7.

7.3 Tuning the Shape of the Constriction

The lithographic width of the split-gate opening is 400nm. By applying negative
gate voltages U, the width gets smaller and simultaneously the electron density in
the channel decreases, because of an increase of the conduction band edge E. in the
constriction. Self-consistent solutions of the Schrodinger and Poisson equations for
channels defined by a split-gate have shown that the confining potential is parabolic
with a flat bottom [34]. For small openings a pure parabolic confinement U(y) =
mwly?/2 is a good approximation. The width TV of the split-gate can be defined
by the separation of the equipotentials at the Fermi energy. With W = 2y’ and
Uly') = Ep — E, one obtains

(7.1)

The electron density in the constriction is determined by the position of the Fermi
energy L relative to the conductance band edge minimum in the QPC. For constric-
tions defined by split-gate electrodes, w, usually does not vary much with decreasing
Usg- The main effect of Uy is to lift the conductance band F. relative to Ep, until
the last channel is depleted.
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G (2e2/h)

Figure 7.5: Measured conductance vs Ug for different Upg between -3.3 V and +0.02V
in steps of 0.08V at By = 0.2T. (sample 34A). The dashed lines mark positions,
where 1D subbands with different m are filled simultaneously and therefore one con-
ductance plateau is skipped. The two curls indicate positions where simultaneous
filling of (0,1) and (4,0) repectively (1,1} and (3,0) occurs.

The confinement along the y-divection has been estimated by dividing Fy — E, by the
number of occupied channels'. We have found a 1D subband spacing of AE ~ 2meV
for hy = 0meV.

We now discuss what happens if the confinement in z-direction is tuned by varying
Urg. Figure 7.4 shows the 2D subband densities ng, ny, and ny as obtained from
SdH measurements and the Hall density ny as a function of the back-gate voltage.
The difference ny — ny monotonically decreases with increasing Up,. This is due to
the extension of the electron gas in z-direction with increasing density, as discussed
in chapter 3.3. Tor increasing Uy, the confinement in z-direction widens, whereas
the y-direction remains unaffected to first approximation. Thus the shape of the
3D QP C-constriction gets more and more circular. The subband density difference
ng — ny corresponds to a subband spacing AL of 9meV at Uy, = —3.3V and of
ImeV at Upg =0V,

The measured conductance as a function of U, is presented in Fig. 7.5. Different
traces correspond to different U, For Uy, = —3.30V, five well-resolved conductance
plateaus are observed. Since for this gate voltage we expect the confinement in z-
direction to be much stronger than in y-direction, we attribute these plateaus to
channels belonging to the ground state of the z-confinement, labeled by m = 0. As
(g is increased, the confinement in z-direction weakens, and channels with m = 1

'Ep — E, in the channel has been obtained from measurements in a strong magnetic field per-
pendicular to the 2DEG, where By — E, & hw,, as described in Ref. [34].
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Figure 7.6: Transconductance d(/dUs, as grayscale vs. Up and Uyg. Black regions
correspond to conductance plateaus (low transconductance), while bright regions indi-
cate crossings of the Fermi energy with a 1D subband energy, where the transconduc-
tance is high. Thus the bright lines correspond directly to the 1D subband energies,
which are indicated by ({,m). The dashed lines indicate the location of the subband
energies with m = 1. The structure at high Uy and Uy, has not been reproduced
and is attributed to resonance effects due to a nearby impurity.

get occupied. The first indication for this is the disappearance of the N = 5 plateau
at Upy = —3.0V and Uy = —1.03 V. There, the energy of the (I, m) = (4, 0)-channel
coincides with the energy of the (0, 1)-channel, and the two channels are occupied
simultaneously. Thus the corresponding plateau at N = 5 disappears. We label the
plateaus by [lp, [1] with [y ({1) the number of occupied channels with m =0 (m = 1).
The occupation numbers for the plateaus at U, = —=3.3V are [1,0],]2,0],...[5,0].
A further increase of U, successively suppresses the [4,0] and [3,0]-plateaus, while
the [2,0]- and [1, 0] plateaus remain unaffected. This indicates that the shape of the
constriction never gets completely circular, because then also the energy levels (1,0)
and (0,1) would be degenerate and the N = 2 plateau would be missing. In fact,
the (1,0) and (0, 1)-subbands can only be degenerate if an exactly circular shape is
realized.

The platean at N = 5 recovers at [, = —2.5 V. It turned into [4, 1] with four m = 0-
and one m = l-channel occupied. A further increase of Uy, suppresses the plateau
again, which is attributed to the intermixing of the (1,1)-state. At Upy = —1.0V,
the plateau recovers in the form of [3,2].

A better visualization of the energy structure is given by plotting the transconduc-
tance d(7/dUs, as grayscales against U, and Uy, (Fig. 7.6). Dark regions correspond
to a conductance plateau. Their width is determined by the potential shape in trans-
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Figure 7.7: Measured G vs Uy, for different By (Upg = 0.0 V). For clarity, the curves
are offset in the Us,-direction. The offset is increased by 20mV from curve to curve.
The By values range between 0 and 6 T with steps of 0.1 T. With decreasing B,
plateaus are successively destroved, while plateaus with higher quantum numbers
may be recovered at lower fields. The plateaus are labeled with numbers [lg, [1] as
discussed in the text.

port direction [144] and by kgT'. The bright grayscales denote rising conductance
edges, where 1D subbands cross the Fermi energy. The white dashed lines in Fig. 7.6
indicate the channels (1,0),(1,1), and (1, 2), which interfere with the m = 0-channels.
We learn from Fig. 7.6 that at U, = —3.3 V., the confinement in z-direction described
by the frequency w, of the parabolic potential is at least five times stronger than in
y-direction, while at [, = 0.0mV, the relation between w, and w, is about 1:2. As
Eq. 7.1 tells us, the diameter yo (20) of the constriction is proportional to 1/w, (1/w,).
Thus the shape of the opening is elliptic with axis ratio of yo/20 = w, /w,, amounting
to to 2:1 for Uy = 0.0V and 5:1 for Uy, = —3.3V.

7.4 1D Subband Spectrum in Magnetic Fields

In the following, we focus on U, = 0, where in the 2DEG two subbands are occupied,
and ng = 4.6-10" m~2. The two subband densities are determined from Shubnikov-de
Haas oscillations and are found to be ng = 2.6 - 10" m™2 and ny = 2.0 - 10® m~2,
We applied a magnetic field in the direction perpendicular (B.) and parallel (Bj)
to the direction of the current flow, but in the plane of the 2DEG (Fig. 7.1b). In
Fig. 7.7 we present measurements at different B, .

At By =0T, well defined conductance plateans at N=1, 2 and 5 are observed. While
there is a weak plateau at N = 3. the one at N = 4 is omitted. With increasing



7.4. 1D SUBBAND SPECTRUM IN MAGNETIC FIELDS 87

8 48
[5,2] ///
7 By=0T 1l
) b7
6
III/ i
C\% 5} ? / \’*4/!’ 7
&
o 4 ////
/// u)
3r 13,0] ' //
A/ %u
//
i // i
b roebieberessss KAXALE SO a.'l dokest ‘0" [1’0
i //////// //1,//
0-2 ~1.‘5 -1 ~O.|5

Usg (V)

Figure 7.8: Measured conductance as a function of the split-gate voltage U, and for
different magnetic fields By ({h,; = 0.5V). The curves are offset in the Usg-direction
by 20mV each. The B) values range from 0 and 5 T with a step size of 0.1 T

B, the N = 3 plateau fully recovers at By ~ 2 'I', and N = 4 recovers at 3.4T. At
this field, the plateau at N = 5 is suppressed. It recovers at around 4.2T at a value
which is close to 10e*/h. This suppression and recovery of conductance plateaus is
attributed to the degeneracy of 1D subbands at the Fermi energy. As all observed
plateaus seem to recover at higher fields, the suppression of N =5 at By = 34T is
due to the crossing of the fifth level of the m = 0-ladder with the lowest level of the
m = |-ladder. The observed plateaus at B, = 0T are labeled by [ly, ;] =[1,0], [2,0],
(3,0], [4,1], [5.2], ..., while at B, = 6T the numbers are [1,0], [2,0], [3,0], [4,0], [5,0],

The conductance data in a parallel field By is presented in Fig. 7.8. For B = 5T, the
(/(Usg )-trace showed seven plateaus at N = 1,2,...7. In the presented measurement,
the plateaus are less flat than usual. We attribute the wiggles in the plateaus to
resonance effects in the constriction due to impurities nearby [129]. The N = 3-
plateau is not well pronounced. but it never disappears completely. The [5, 0]-plateau
evolves into a [4, 1] plateau with decreasing field, and similarly [6, 0] evolves into [5, 1],
whereas the N = 7 plateau is represented in three ways: [7,0],[6,1] and [5,2]. The
platean at IV = 4 seems to disappear at By < 2T, but the differential conductance
shows that a small feature always remains at the plateau position, as will be discussed
below.

In Fig. 7.9 we plot the transconductance d(//dUs, in a gray scale plot as a function
of Uy and B. Two measurements are shown with the two different B directions
parallel and perpendicular to the channel, respectively. In both plots, the crossing of
the well resolved m = 0 ladder with the less pronounced m = 1 ladder can be seen.
At a given field, subsequent conductance plateaus appear about equidistantly in Usg.
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With increasing field, the m = 1 ladder moves quickly away from the m = 0-ladder.
This is explained by a diamagnetic shift of the 2D-subband energy difference [113].
The m = 0-ladder spacing strongly depends on the orientation of the magnetic field.
For By, it increases with increasing field, for By, it decreases.

In order to understand the structure shown in Fig. 7.9, we model the energy levels of
a parabolic constriction given by

. me oo, i
Uly,z) = — <u;jyz + ﬁ:?) \ (7.2)

-~
For perpendicular fields along the y-direction the gauge A = (B1z,0,0) is used,
for parallel fields along the w-direction A = (0,~B)2,0). We first discuss the
perpendicular-field case, before we move to the mode-coupling in the parallel case.

In the Hamiltonian, B} couples to the x- and z directions which are perpendicular
to the field direction. Along the “free” a-direction, the dispersion relation and thus
the effective mass is modified, whereas the z-confinement is enhanced due to the
diamagnetic shift proportional to (14w? | /w4 A term which couples the z- and
z-direction results in a shift of the Fermi surface in k.-direction. Neglecting electron-
electron interactions, no coupling of the y- and = direction is expected, such that the
1D subbands cross each other. For a parabolic confinement, the subband energies are
given by

where w. | = eBy/m™ is the cyclotron frequency. Fig. 7.9¢c shows the energy fan
for wy, = 2.0meV and w, = 5.0meV. The m = 0-ladder crosses the m = 1-ladder
without any indication of coupling. The step size remains constant with B;. The
spread of the step-size with increasing B, in the measurement (Fig. 7.9a) can be
explained by a DOS-reduction in the 2DEG outside the QPC, leading to a decrease
of the Fermi energy with increasing By [114, 109]. IFor the confinement potential
given by Eq. 7.2, the DOS increases with B as (1 +w?/w?)Y/2 [111], where w, is the
cyclotron frequency.

For magnetic fields By parallel to the current direction, the dominant effect is the
change in energy spacing ot the 1D subband ladders. The magnetic field couples the
z- and the y-direction, which are both electrically confined by the QPC opening. In a
situation with rotational symmetry along the field direction, this leads to the ordinary
Zeeman effect, similar to the splitting of the Darwin-Fock states. A calculation of
the energy levels for parabolic confinements with arbitrary w, and w, gives the result
(see Appendix B)

-El.m - ﬁwl(l + 1/2> -+ ﬁ'w‘g(“l’?? -+ 1/2)’ (74)
with
o Lo ooy ] s oL N o ,
REEA 3 <w“ + “y T w3> * :; (w; + “y + wz) Wy (75)

At B = 0, wy corresponds to w,, and w; is equal to w,. TFigure 7.9d shows the
calculated energy spectrum for w, = 2meV and w, = 5meV. The larger of the two
frequencies increases with 5, while the smaller one decreases.
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Figure 7.9: Grayscale plot of the transconductance d@/dlU, as a function of Usg
and By (a) and By (b). Black regions correspond to conductance plateaus (zero
transconductance), while bright regions indicate rising edges of the conductance, and
thus crossings of Fp with a 1D subband energy. Calculated 1D energy levels £y,
for a 3D QPC with magnetic field B, perpendicular (¢) and By parallel (d) to the
current divection. The energies are indicated relative to Eyy. The constriction is
defined by w, = 2meV and w, = 5meV.
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In the experiment at Uy, = 0.5V and Uy, = —1.3V, the number of occupied 1D
levels of the m = 0O-ladder increases from 7 at zero field to about 11 for B = 5T,
corresponding to a decrease of the spacing of the lower 1D subband ladder. Assuming
that the ladder steps are also spread due to the DOS-effect by a factor of 6/5 at
By =5.0T, we arrive at a filling of N & 13, which is in agreement with the calculated
energy spectrum in Fig. 7.9d.

If the QPC confinement is not exactly parabolic, the Hamiltonian cannot be de-
coupled into two parabolic oscillators because of the magnetic confinement. The
energy levels anticross as a function of 3. This effect has been calculated for dots
in the special case of a square well confinement [145, 135]. An indication for such
an anticrossing in our 3D QPC is presented in Fig 7.10, which is a close-up of the
measurements shown in Fig. 7.9. The (3,0) level does not cross the (0,1) level. A
small dark region always remains. This means that the transconductance has always
two peaks, which stay separate. The plateau-like feature in the G(Ug)-traces never
completely disappears at N = 4, see Fig. 7.8.

As an illustration, we calculated the energy spectrum for a parabolic potential in
z-direction disturbed by a potential spike in the form of a three monolayer thick
AlgosGagosAs-layer at z = 0. We started with the analytically obtained wave func-
tions for a parabolic confinement in y- and z-direction and B along the z-direction,
and treat the spike in first-order perturbation theory. By diagonalization of the
Hamiltonian considering the states m = 0,0 = 0,1,2,3,4 and m = 1,1 = 0,1,2 we
obtain the energy levels plotted in Fig. 7.11. A splitting of most levels is observed.
The splitting is smaller than in the experiment (close-up in Iig. 7.10). Note that
the separation between the m = 0- and the m = l-ladder decreases when a spike
is introduced. This is similar to the decrease of the 2D subband spacing, as was
calculated in first-order perturbation theory in chapter 3.

7.5 Conclusions

In conclusion, we measured the subband energies of a 3D QPC realized on a semicon-
ductor PQW structure by analyzing the transconductance through the QPC at differ-
ent magnetic fields with two different orientations parallel to the 2DEG. In the case
where B3 is oriented perpendicular to the axis of the 3D QPC, coupling between 1D
subbands is neither observed nor expected. For field directions along the direction of
current, a level anticrossings is observed. We cannot attribute this anticrossing to the
influence of a potential spike alone, because it is too strong. Other non-parabolicities
of the confining potential might be the cause of the observed anticrossing. We have
found no level-lockings within the experimental resolution.
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dG/dUsg (arb. units)

Figure 7.10: Close-up of Fig. 7.9b, showing anticrossing of the (0,1) with the (3,0)
level. In addition to the grayscale of the transconductance, the individual transcon-
ductance traces are shown explicitly.
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Chapter 8

Conclusions and Outlook

Parabolic quantum wells have been realized in the AlGaAs-GaAs-system in a very
precise way using molecular beam epitaxy. They represent a unique model system
in which quantum states and their respective influence on classical and semi-classical
phenomena can be investigated.

We have measured the width of the electron gas as a function of the electron sheet
density and introduced a method to map out the quantum-mechanical density dis-
tribution of the electrons. Transport experiments are a versatile tool to study the
single-particle energy levels. For the considered samples, it has been found that
the electron energy quantization in magnetic fields of arbitrary orientation can be
understood by considering text-book examples of quantum mechanical problems de-
scribing single electrons in quantum wells. It has been found that the obvious model
not always describes the experimental results. For a multi-subband system in an in-
plane magnetic field, a second-order effect modifies the first-order result by a factor
of seven, in agreement with the measurements.

Intersubband scattering and multi-subband screening determines the mobility of wide
electron gases. The model system of a PQW allows the displacement of the electron
distribution along the growth direction. We have used this fact to demonstrate a new
method to investigate the spatial distribution of scatterers across the structure.

In addition to the parabolic well confinement, the electron gas has been confined in
one lateral direction using sub-micrometer lithography techniques. We have fabri-
cated a QPC in which the one-dimensional subbands are described by two quantum
numbers. Inferactions between subbands with variable energy separation have been
measured and have been described by a generalized Darwin-Fock model.

A next step would be the confinement of the third direction. In this way 0D dots
would be defined, where three quantum numbers determine the energy levels. Such
a complex system would allow the study of multiple tunable energy degeneracies in a
few-electron system, where many-particle interactions might be investigated in detail.
In 2D electron focusing experiments in multi-subband systems, the individual sub-
bands are expected to modify the resistance due to their different cyclotron radius.
Commensurability between the respective cyclotron radius and the sample geometry
leads to peaks in the magnetoresistance. This allows the study the interaction be-
tween 2D subbands. It is an example of how classical behavior, namely the cyclotron

e
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motion of electrons, is influenced by the population of an additional quantum state.
Parabolic quantum wells are in the special regime where the cross-over from two
to three dimensional systems can be investigated. Intersubband scattering still holds
many open questions, in particular with respect to inelastic scattering events. A more
profound investigation on how scattering between electrons of the same subband and
between different subbands affects the phase coherence length will be necessary.
Shubnikov-de Haas minima at odd integer filling factors are governed by spin ef-
fects. Preliminary experiments have shown that additional structure shows up in the
magnetoresistance being related to competing spin levels of different subbands. More
detailed studies in this regime might unravel the complicated situation of neighboring
Landau levels that are described by three quantum numbers, i.e. subband, Landau
and spin quantum number.

With self-aligned gate technique [146, 147], QP (s can be fabricated where the electron
densities in- and outside the one-dimensional channel are controlled independently
by different gate electrodes. A situation can be realized, where electrons from the
lower subband are injected into an upper subband. By varying the energy between
the Fermi seas in the source and drain electrode more details of the intersubband
scattering process might be found.



Appendix A

Comparison of Screening
Approximations

In this appendix we investigate the influence of the screening approximation on the
scattering times. We compare results obtained for Thomas Fermi screening and RPA
screening and investigate the effect of a third subband in the RPA matrix formalism
for two occupied subbands.

Figure A.1 presents calculated scattering times for Ny = 3-10¥m~=2 N, = 1.3 -
10" m™% and N3 = 1.5-10"" m~* (for a definition of .V; see chapter 4.2.5).
In (a) and (b), ng = 2.9 - 10 m~? was kept constant and the electron gas was
displaced along the growth direction. In (a), the Thomas-Fermi result is compared
to the 3-subband RPA result. The scattering times correspond reasonably for both
subbands. In (b), the RPA result obtained for a 2-subband matrix is compared to
that of a 3-subband matrix. A qualitative change is observed: In the 2-subband RPA
result, the upper-subband scattering time is larger than the lower-subband scattering
time.

In (c) and (d), we compare results for different ny obtained by keeping Uy = 0 and
varying U,. Again the 3-subband RPA result agrees better with the TF result than
with the 2-subband RPA data.

We therefore conclude that the RPA-matrix formalism is not a good approximation
to our 2-subband PQW system. Better results are obtained by regarding virtual
screening of an unocuppied third subband, or by considering TF screening.
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Figure A.1: Comparision of calculated scattering times. In (a) and (b), simulations
of the scattering times as a function of the electron-gas displacement across the PQW
are shown. In (a), the TF approximation is compared to a three-subband RPA. In
(b), the three-subband RPA is compared to the two-subband RPA. Similar data is
shown in (c¢) and (d) for the scattering times as a function ny varied by Us,.



Appendix B

2D Parabolic Confinement

We calculate the energy states and wave functions of electrons confined paraboli-
cally in two dimensions and in a magnetic field By (Fig 7.1a). In the gauge A =
(0,—Byz,0), we obtain the Hamiltonian

2 2
S I UL T S L R N o
H = ”277“; - E;;* - —?jwyy -+ ‘;j*(wc - u)g); +wcpyg. (Bl)

In the general case, the cross-term containing p, 2 hinders the separation of the prob-
lem into y and z direction. If B = 0 and thus w. = 0, one readily obtains two
decoupled harmonic oscillators with frequencies w, and w,. The cross-term can be
removed by a rotational transformation. We regard the two-dimensional space with
py and z as coordinates. The new “spatial” coordinates u and v are obtained by

z cos) —sindl U (B.2)
Lo A sind cosd v/ o
muwy

Correspondingly p. and y transform into the “momentum” coordinates I1,, and II,:

P _ cos —sinf 11, ' (B.3)

Y mwy sinfl cosf 11,

The minus sign in y 1s necessary in order to fulfill the commutation relations:

w L) = ih (B.4)
v, I1,] = ih (B.5)
vl = 0 (B.6)
M,.1,] = 0 (B.7)
(B.8)

The Hamiltonian expressed in the transformed coordinates contains a cross term
proportional to uv, which we require to vanish:

(o 22
. Y m (LLC Wy -+ w:> . )
Mgty cos 20 — sin 20| uv = 0 (B.9)

2
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In any case no cross term proportional to I1,11, appears, such that the problem has
been separated once this equation is fulfilled. The solution given by the rotation-angle
0 is expressed as

<w - w, + wg>

cos 20 = - — ! : (B.10)
\/wg + wd 4wt = 2wl + 2wk (w? + w?)
The decoupled Hamiltonian then reads
m 1m m ., ., m,.
H=- U it —wie® B.11
2m i 2m * 2 + 27V ( )
with the frequencies
L — _l»( 20?4 ‘2) i b w4 ot — 2020w 4 2w (w? 2) (B.12)
Wy, = Z W T Wy T W, + S\ We T Wy T WL T AWl awi Wy + w?). sV
We now solve the Schrodinger equation
Heij = Eijpi; (B.13)
The energy eigenvalues are evidently given by
Eij=hw, (i +1/2) + hw,(7 + 1/2) (B.14)

We focus our attention on the wave functions ¢, ;. For its calculation we construct

the ladder operators

ay = *\715 <~5~5 + ZI—L%L> (B.16)
b = —v% (—55 —: “’0;[“) (B.17)
o = _;‘-E (I% _ ,1‘07?%) (B.18)

Here we introduced the length scales ug = v hjw,m* and vy = \/h/w,m*, respectively.
The ground state 1s defined by «, @00 = 0. Expressed in the unrotated coordinates

y and z, one obtains the coupled differential equation (yo = /i /w,m*)

j“"o o(y.2) = =2w,Y + i(w, — w, ) sin 260 »
(/yY . I Ead

. : —— 0 o(Y, 2 B.1¢
Yslwy -+ wy + (W, —wy,) cos 26) #o0(y2) (B.19)
d ) Hewy —wy ) sin 20 y — 2w,w, fw, 2 ,
—woo(y,z) = — : : — Y, 2}, B.2
dz" ( Yo(wy + wy + (wy — wy ) cos 20) #00(y2), (B.20)

which can be solved by the ansatz
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P00l 2) = C explas® + By + yayl. (B21)
One obtains
V= - (B.22
L yé(w’ll, + W’U + (‘;‘;z' - Wu) COS 29) \ )
Wy W, N
g=- S » (B.23)

ya(wy + wy + (wy — w, ) cos 20)

H(wy — w, ) sin 20
/ — ¢ ) N s .
Ye(wy + wy + (w, —w,) cos 26)

(B.24)

The normalization of g is obtained by choosing

_) //«”—3- L3
C = ( v ) . (B.25)

Higher states can be constructed by applying the creation operators a! and af on the

ground state:

@y, 7(U~~) = u) a ) Y(),O(y7z)' (B‘?G)

it

We finally give the explicit form of the creation operators:

wy 1 Wy { {
al = dsing{ L—y— ~-~-u( “ )+ cosd Z - uoi—— (B.2T)
Wy Up dy uo dz
N [#3) [ g,L,U ] ] (4
(1,.3 = ¢cosl (——-ﬂ- y = —up ) 4 sin ¢ <—~l- z — Vg d ) (B.28)
wy Vo wy dy vy dz

Note that when w, =0 then cos 0 = 0, sinf = ~1, w, = w, and w, = w..
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Figure B.1: Wave functions of a 2D constriction with parabolic confinements de-
scribed by hw, = 1.5meV and fiw, = 5.0meV. A magnetic field of B = 17T was
assumed perpendicular to the constriction.



Appendix C

List of Samples

sample potential spike  wafer structure

6 x=0.1 941027A old Hall bar

21 x=0.05 9611178 old Hall bar

22 2=0.10 961117C old Hall bar

18 x=0.15 961117D old Hall bar

15 2=0.00 96111T7TA old Hall bar

14 x=0.15 941027A old Hall bar

17 r=0.05 9611178 old Hall bar
33A 2=0.05 961117B  new Hall bar, QPC
33AI1 r=0.05 961117B  new Hall bar, QPC
33D 2=0.05 9611178 new Hall bar, QPC
43D1 r=0.15 961117D  thin UCF Hall bar
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