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Abstract

The operation of conventional semiconeluetor devices can be unelerstooel within a
semiclassical theory of conduction. Where the dimensions of the considered struc­
tures are cornparable to the Fermi wave length, quantum effeets become import.ant.

The finite size of such structures constrains the electron motion, and the energy gets
quantized. With the ongoing miniaturization of computer chips this limit will be
reached soon. 1"01' further size-reduction itis of fundamental importance to know

how conduetion in such quantum structures is described. With the technological
progress it has become possible to fabricate well-defined structures in the nanometer

range, where the atomic cornposition is controHecl withinrnonolayers. In principle,
such "nanostructures" are the experimental realization of standard text-book exam­
ples of a particle in a quantuni well. However , the nanostructure is neither an abstract

quantum weIl nor an isolated atorn, but still consists of millions of atoms and elec­
trons. This thesis is aimed to investigate how far transport in nanostructures can
be describecl by single-particle quantuni mechanics, and where more refined models
have to be considered. For this purpose, we have fabricated a semiconductor model
system where a parabolic potential profile is realized along one spatial direction in the
concluetion band of a semiconcluetor heterostructure. This parabolic quantum well

was grown by molecular beam epitaxy of A1;Gal_':1;As by varying :c appropriately.
Carriers in the well are provided by modulation-doping.

The magnetoresistance and Hall resistance of the electron gas confined in the well has
been measured at temperatures down to 40 In1<: and rnagnetic fields up to 13 T. The
energy of the 76 mn wide well was found to be quantized, leading to the formation
of subbanels.Wilh gate electrodes on both sides of the well, the electron density
in the quantum well has been varied and up to three subbands could be occupied.
The electron sheet density could be tuned between 1 and 6 . 1015 m- 2

. By measur­
ing Shubnikov-de Haas oscillations in the magnetoresistance, the individual subband
densities have been deterrnined.

With appropriate voltages applieel to gate electrocles, the electron gas coulel be

clisplaced across the quantuln weIl by ±16 nln, while tlle sheet clensity was kept
constanL By growing a narrow potential spike of well-deJined strength in the center
of the parabolic quantunl weIl, wc have probed the differcnce in the squared wave­
funetionmodulus between thc two lowest subbal1ds. rIhe results agree with single­
particle envelope wave functions calculateel in the Bartree approxitnation.

Individual subband scattering timeshave beerl ohtained Jrom low-field magnetoresis­
tance Illeasurements. The scattering time of the subband lowest in energy elepenels

mainly on the distance of the electron gas to the dopant layer, whereas the scattering
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time of the upper subband is influenced by density-dependent screening effects. As
suggested by a calculation of the intra- and intersubband scattering times, the elec­
tron mobility is limited by Coulornb scattering from ionized dopants on both sides of
the well, The clependence of the scattering times on the position 01' the electron gas
indicates a segregation 01' dopants on the substrate side towards the quantuni well
during sarnple growth.

The transition from one to two occupied subbanels is 01' special interest, as a. eross-over
from two- to three-dimensional behavior is expected. From universal conductance
fluctuations and the weak-Iocalization correction to the magnetoresistance, the phase­

coherence length can be extracted. Both, universal conductance fluctuations and

weak-Iocalization, indicate a. change in the phase-coherence length at the dimensional
cross-over.

The electron confinement due to a magnetic field oriented along arbitrary directions
has been studied. For magnetic fields oriented in the plane of the electron gas, the
electron densities 01' the upper subbands decrease with the magnetic field, and the
subbands are successively depopulated. It has been found that the diamagnetic shift
01' the subband energy is not solely responsible 1'01' the electron redistribution. It
is rather the change 01' the in-plane dispersion relation which leads to a subband­
dependent change in the density 01' states anel to a strong carrier redistribution, This
effect has been calculated in second-order perturbation theory and quantitatively
accounts for the measured effect.

The two-dimensional electron gas has been electrically confined in one lateral direc­
tion by lithographically fabricated split-gate electrodes. This forrns a quantum point
contact, where transverse modes in both directions can be occupied. Wehave found
the conductance to be quantized, indicating ballistic transport through the quantum­
point contact. A rneasurement of the conductance plateaus allows 1'01' spectroscopy
of single-particle energy levels. A suppression of certain conductance plateaus has
been observed, which we explain by degeneracies in the ID subband energy struc­
ture. By applying a magnetic fidel in the direction of current flow, a coupIing of the
ID subbands has been observed, which is described by a generalizecl Darwin-Fock
spectrurn. Level antierossinge have been expla.ined by the non-parabolic confinement
01' the quantum point contact.



Zusammenfassung

Die Funktionsweise konventioneller Halbleiterbauteile kann mit Hilfe eines semiklas­
sischen Modells des Elektronentransports verstanden werden. Für kleinere Struk­
turen mit Abmessungen vergleichbar der Fermiwellenlange werden Quanteneffekte
wichtig. Aufgrund der eingeschrankten Elektronenbewegung nehmen die Energien
hier quantisierte Werte an. Mit der zunehmenden Miniaturisierung der Computer­
chips wird diese Grenze bald erreicht sein. Es ist deshalb von Interesse, wie man
Elektronentransport in solchen Quantenstrukturen beschreiben kann. Mit moder­
nen techuologischen Verfahren ist es heute möglich, nanometergrosse Strukturen her­
zustellen, die auf atomare Monolagen genau zugeschnitten sind. Im Prinzip ist in
solchen Strukturen das Lehrbuchbeispiel eines Teilchens in einem Quantentopf ex­
perimentell realisiert, nur dass wir es hier nicht mit einem abstrakten Quantentopf
oder einem Atom zu tun haben, sondern immer noch mit Millionen von Atomen und
Elektronen. In der vorliegenden Arbeit soll untersucht werden, inwiefern man solche
Nanostrukturen dennoch als einfache Quantensys teme begreifen kann und wo erst
kompliziertere Modelle ihre Funktionsweise erhellen können. Um dieses Ziel zu errei­
chen, wurde ein Modellsystem hergestellt, in welchem entlang einer Raumrichtung ein
parabolforrniges Potential realisiert ist. Dieser parabolische Quantentopf wurde mit­
tels Molekularstrahlepitaxie von AlxGal--xAs gewachsen, wobei der Aluminiumgehalt
x von Schicht zu Schicht entsprechend geändert wurde.

Das Elektronengas, das sich im modulationsdotierten Quantentopf aufhalt, wurde
elektrisch kontaktiert und dessenWiderstand sowie Hallwiderstand für Magnetfelder
bis 13 T und Temperaturen bis 40mK gemessen. Die Quantisierung cler Energie
im 76 nm breiten parabolforrnigen Quantentopf fuhrt zur Bildung von Subbandern.
Mittels Elektroden, die auf beiden Seiten des Topfes angebracht wurden, konnte die
Elektronendichte zwischen 1 und 6 . 1015 nl- 2 geiindert werden. Durch Messungen
von Shubnikov-de Haas Oszillationen des Magnetowiderstandes wurden die einzelnen
Subbanddichten aufgelöst.

Indern geeignete Spannungen an die Eleldroden angelegt wurden, konnte die Elektro­
nenverteilung im Quantentopf bei konstanter Dichte um 1.5 nm hin- und hergescho­
ben werden. Mit Hilfe einer eingewachsenen Potentialspitze konnten wir die Differenz
von vVellenfunktionsbetragsquadraten zweier Subbäncler bestimmen. Die erhaltenen
Messwerte stimmen gut mit berechneten Werten iiberein, welche wir mit der Harttee­
Näherung erhalten haben.

Die Streuzeiten der einzelnen Subbander wurden mittels Messung des Magnetowider­
standes bei kleinen Magnetfeldern bestimmt. Wahrend die Streuzeit des energetisch
tieferliegenden Subbandes hauptsachlich vom Abstand der Elektronenverteilung von
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den Störstellen abhangt , ist die Streuzeit des höherliegenden Subbandes bestimmt
durch Abschirmung, die mit der Subbanddichte zunimmt. Eine Berechnung zeigt,
dass die Streuzeiten clurch Coulomb-Steuung an ionisierten Donatoren limitiert sind.
Die spezielle Abhklngigkeit der Streuzeiten von der Position des Elektronengases im
Quantentopf deutet darauf hin, dass während des Wachstums der Probe auf der Sub­
stratseite Donatoren in Richtung des Quantentopfes diffundiert sein konnten.

Der Übergang von einem zu zwei besetzten Sub banelern ist besonders interessant, da
er den Bereich zwischen einem zwei- und dreidimensionalen System kennzeichnet. Die
Phasenkohärenzlenge kann in diesem Bereich durch Messungen universeller Leitwert­
fluktuationen und der Widerstandskorrektur aufgrund der Schwachen Lokalisierung
studiert werden. Beide Grössen deuten auf einen Wechsel der Phasenkohärenzlange
am Übergang hin.

Das durch ein entlang einer beliebigen Richtung angelegte Magnetfeld erzeugte rna­
gnetoelektrische Potential wurde untersucht. Für Magnetfelder in der Ebene des Elek­
tronengases beobachteten wir mit zunehmendem Magnetfeld eine Abnahme der Elek­
tronendichte der höheren Subbander. Diese Abnahme ist viel st.arker, als aufgrund
der diamagnetischen Verschiebung der Subbandenergien vermutet werden könnte. Es
ist vielmehr die zusätzlich vom Magnetfeld bewirkte Anderung der Dispersionsbezie­
hung in der Ebene, die zu der starkenUmverteilung der Ladungsträger zwischen
den Subbklndern führt. Dieser in Störungstheorie zweiter Ordnung berechnete Effekt
erklärt die gemessenen Daten quantitativ,

Das Elektronengas wurde zusatzlieh zum parabolforrnigen Quantentopf in einer weite­
ren Raumrichtung eingeschnürt. Dies wurde mittels einer geteilten Elektrode bewerk­
stelligt. Der so entstandene Quantenpunktkontakt leitet transversale Moden beider
Richtungen. Die gemessenen Leitwerte sind quantisiert, was auf ballistischen Trans­
port im Punktkontakt hinweist. Das Ausmessen der Leitwertsplateaus ermöglicht die
Spektroskopie der Einteilchenenergien im Punktkontakt. Gewisse Leitwertsplateaus
sind unterdrückt, was wir mit einer Entartung von Modenenergien erklarenv Wird ein
Magnetfeld in Richtung des Stromes angelegt, beobachten wir eine Modenkopplung.
welche in einem erweiterten Darwin-Fock-Modell erklärt werden kann. Nicht alle Mo­
clenenergien kreuzen sich mit zunehmendem Magnetfeld. Dass sich einige abstossen ,
wurde auf ein nichtparabolisches Einschlusspotential zurückgeführt.
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Chapter 1

Introduction

The progress in the fabrication of semiconductor structures 01' high purity has achieved
a level where monoatornic layers of different materiale can he grown on top of each

other. Thereby the crystal lattice can be maintained to a very large extent. The

synthesis of artificially quantized structures, in which the eleetrons move through a
restrieted, but almost defeet-free crystalline lattice is therefore possible, In such small

structures, the eleetrons experience quantum effects which strongly modify their be­
havior. Especially the investigation of an eleetron gas confined to a plane (a so-called
two-dimensional electron gas, 2DEG) has lead to fundamental discoveries such as

the integer quantum Hall eflect, for which the 1985 Nobel prize was awarded. This

effeet, where the Hall resistance is quantized in integer fractions of a fundamental

resistance unit, was first ohserved at the oxide-semiconductor interface in gated sil­
iCOt1 [1], the material every microchip is made 01. Although industry is focused on

Si technology, basic research concentrates on the III/V compound GaAs, mainly for
three reasons: (i) GaAs is a direct-bandgap serniconductor allowing for optical ap­
plications, (ii) a higher electron mobility is achieved due to a lower eflective electron
mass and the advantage of modulation doping [2, :3], and (iii ) the cornbination of

GaAs with AIGaAs ternary alloys allows the fabrication of almest defeet-free inter­
faces between semiconductors with different physical properties, hut almest identical

lattice constants.

A high-rnobility 2DEG is forrned at the AlrGar-rrAs/GaAs heterointerface if the
structure is doped remotely, The spatial separation of the ionized dopants from the
2DEG is responsible for the high mobilities achieved in such structures. This paved
the way for the discovery of a new kind of quasi-particles [4] which shows up in
excitations of fractional-quantum Hall states and carries acharge which is only a
fraction of the electron charge (also worth a Nobel prize in 1998).

The AIGaAs system provided new kinds of optical and electronic devices [6]. New
transistors based on 2DEGs are usccl in high-frequency applications, and quantum­

welllasers operate in compact-disc players and are usecl in optical telecommunication.

'rhe development goes to srnaller and smaller strudures ("nano-st1'udures"). The
additional confinement of the electrons leads to 1D ("wires" ) anel OD ("dots") ele­
vices. Today lithography allows for strudure sizes with clirnensions comparahle to

the Fermi wavelength (typical1y ,JO run in sernicolleluctors) anel much smaller than the
eleetron mean-free path (several micrometcrs). In such quantized, "ballistic" systems,

1



2 CHAPTER 1. INTRODUCTION

the transport properties are modified significantly, and electron-electron interactions
become increasingly important. The Coulomb-blockade effect encountered in such
systems has a possible application in the single-electron transistor [7].
While the fabrication of ID and OD structures has advanced consiclerably in recent
years, much less effort has been undertaken in the direction of high-purity 3D sys­
tems. At the crossover from two to three dimensions, the quantum Hall dfect breaks
down. Electrons forrnerly captured in one vertical quantum state spread among ad­
ditional states. Transitions between those states modify the electronic properties. In
pure 3D e1ectron gases, a condensation of the electrons into a 3D Wigner-crystaJ is
predicted [8], but has never been clearly observed experimentally.

In order to realize :3D systems with high mobili the dopants should be spatially
separated from the electron gas, similar to a remotely cloped heterointerface. Evi­
dently no 3D system with infinite extensions can be realized with dopants located
"outside". Hut quantum wells, wide enough for many energy levels to be occupied,
offer the electrons quasi-free motion in the direction across the wen. Such quasi-Sl)
systems are preferably rcalized in a, quantuni well with parabolic potential shape (so­
called parabolic quantum wells, PQvV). Duc to the interaction among the electrons,

. - ..

the effective potential in a PQvV is Hat, and the 3D electron density is uniform [9,10].
The parabolic potential itself is of great interest, apart from this technological aspect
(i.e, the realization of a high- mobility :3D electron gas), Parabolic potentials are of
fundamental importance in physics. In generaJ, motion of a mass areund a potential
minimum can be approximated by a harrrionie oscillation, as long as the displace­
ment from the equilibrium position is srnall enough. 'I'his is refiected in the Taylor
expansion areund the potential minimum, where the first non-zero terrn is quadratic
in the displacement. Using this approximation, vibrations of molecules or of a crystal
lattice are describeel.

In this thesis, a model systern is investigated, where an artificial parabolic potential
is provided for electrons in a semiconductor. The potential acts along one spatial
direction, in the other hvo directions the electro11s are free to move. The motion
of electrons in the parabo]ic potelltial cannot be described classicaIly. The a110wed
energies are quantized. Thus this system is perfectly suited for the investigation of
quantum mechanical phenomena. Typical text-book problerns of quantum mechanics
in one, two anel three dimensions involving potential weHs anel magnetic fields along
a,rbitrary directians can be experimentally realized in the system considereel.

The elescription of the electron states is not as sirnple as the text-book's examples
might suggest. Tllc parabolic weH is realizcd in a semiconeluctor, and the potential
of the periodic lattice can only be neglectcd in 111e approximation of the "envelope"
wave function. If 1110re tl1an one e1ectron sits inside the weH, Coulomb repulsion
between the elect1'Ons occurs. The exact qllantl1ln-rnechanical ca1culation of the elec­
tron motion is a many-bodjr problem, which cannot be solved analytically for more
than a few elect1'Ons. Here, the single-elcctron approximation comes into play, where
thc JTlOtioII of one electron in thc averaged potential of all others is ca1culated. One
aim of this thesis is to investigate experimenta,ll.y, how far the measurcd effects can
be expla.ined withir1 these app1'Oxirnations.

PQWs have attracted a lot of attention because they can be used for unique exper-
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iments inaccessible to other potential shapes. In optical transmission experiments,
the equidistant energy levels of a bare parabolic potential are measured, as if there
was no electron-electron interaction [11, 12]. This striking observation was explained
by a gerleralization of Kohu's theorem [1:3] stating that in the bare parabolic weH
the absorption speetrum is indcpendent of the electron-electron interaction, and also
independent of the number of electrons in the well [JA].

The parabola is the only mathernatical function which maintains its shape if a linear
function of arbitrary slope is added. This fact has useful eonsequences for the ex­
periments with PQvVs. The potential of the as-grown PQvV is parabolic. A voltage
applied to a plane gate near the PQW produces a linearly inereasing potential. The
sum of the two potentiale is again a parabola with the same curvature, but with a
displaced origin. Vve employ this fact in order to tune the spatial position of the

electron gas in growth direction.

In this thesis, the PQvV properfies are investigated by transport measurements, The
sample resistance in a magnetie [leId and the Hall effect reveal the electron population
and scattering times of individual quantum states. From the electron population,
conclusions on the single-partiele energy levels ean be drawn. The sample fabrication
and the properfies of the confined electron gas will be discussed in chapter 2.

'vVe not only intended to probe the quantized energy levels, but also the corresponding
wave functions. This is much more eliffieult Ulan energy spectroscopy and usually
requires the presenee of a highly loealized scattering center whieh is used as a wave­
Iunction probe. Such a sensor has been realized by enhaneing the Al eontent of three
monolayers in the center of the PQ'vV. This way we have measureel the quantum­
mechanical electron probability density at the sensor position, anel by displacing
the electron gas relatively to the probe, the distribution of the probability density
(chapter 3). This novel method allows scanning of the wave function within one single
sarnple. The results agree with caleulations of the single-partide wave functions,

The Si dopants on both sieles of the quantum well limit the electron mobility. The
electrons in the weH are seatterecl by the ionized dopants. It is not dear how the
elopants are clistributed aeross the structure. Segregation of Si eluring growth rnight
oeeur. viVe present a new method, where the influenee of the clopant position on
the electron gas ean be investigateel. By varying the position of the electron gas,
we have a unique lIleans oE probing the distribution of the remote seatterers. 'vVe
have investigatecl in detail tbe dependenee of the eleetron scattering times on the
electron-gas position across the quantum wen (chapter LI).
'vVith gate voItages, not only theposition of tbe electron gas along the growth cli­
reetion ean be tunecl, but also the electron sheet densit:sr. At low clensities, orlly the
PQ'vV ground state is oeeupiecl, emd the systelIl has a pure 2D character. 'vVith t11e
oceupation of upper PQ'vV states, a transition to a quasi-:3D systern can be realizecl.
It is of partieular interest to study tlle electron-eleetron scattering rate at this transi­
tion. Electron-electron scattering leads to a cleerease of the electron phase-eoherenee
length, which has been studiecl by rneasuring fluetuations a.ncl the weak-loealization
peak in the sampie resistanee. 'vVe have observecl eharaeteristie ehanges of those
features at the transition, whieh will be cliscussecl in cllapter 5.

The Pqw is a "text-book system", which can be stucliecl with magnetie fields applied
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along arbitrary direetions. An in-plane magnetic field leads to a diamagnetic shift
of the energy levels, and in addition, the in-plane dispersion relation is modified. In
order to describe the experimental results, the change in the dispersion relation was
usua.lly negleeted. vVe have showed that for a PQvV system this effect is crucial for
describing the measured effects (chapter 6).

The PQW represents a system where a quasi :3DEG is realized. Given that, we
can go back arid reduce the dimensionality, We realized a quanturn point contact

(QPC) by latcrally confining the eleetron gas. This device cliffers significantly from
one Iabricated conventionally at a semiconductor hetereointerface. The QPC defined
on a PQvV can be tuned in both lateral direetions (one clefined vertically by the
PQW, the other laterally by Iithography), and the oeeupied states are described
by two quantum numbers, The QPC resembles an optical waveguide, transmitting
electrons insteacl of photons. One interesting question is what happens in a magnetic
fidel. Because photons have 110 charge, no mode coupling can occur, whereas in
an eleetron waveguide the magnctic field leads to mode coupling which changes the
energy spectrum significantly,

The measured conduetance through the QPC shows plateaus which are at integer
multiples of the fundamental eonduetance unit given by 2e2

/ h, The position of the
coneluctance plateaus and their suppression at certain parameter values have revealed
the quantum-rnechanical single-partiele speetrum in the two-dimensional constriction
and its dependence on a magnetic field (chapter 7).



Chapter 2

Sampie Fabrication and
Characterization

2.1 AIGaAs System

The two semiconduetars A1As and GaAs both consist of atoms arranged in a zinc­
blende lattice with very similar lattice constants". This makes it easy to grow the two
materiale epitaxially on top of each other with negligible strain between the layers

and minimal lattice mismatch. With current epitaxial growth techniques like molec­
ular beam epitaxy (MBE), layer thickness and layer composition can be controlled
perfectly, The layer smoothness reaches the atomic level.

This way monoatomic layers of the ternary compound All;Gal_xAs can be grown,
where the ratio of Ga and Al determines the physical properties of the semiconduetor.
A1As has a larger band gap than GaAs. In the ternary compound with Al-content :1:,

the band gap varies linearly with :c for 0 < :1: < 0.4. If two ternaries with different Al­
content :r are brought together, the difference in the band gap is distributed between
the conductance and valence band offsets. Semiconduetor quantum wells are generally
realized in Al";Gal_:,,As/GaAs heterojunctions, where the two materiale Al:rGal_:rAs
and GaAs are brought together at an atomically flat interface. An n-doped layer in
AlxGal_:rAs provides electrons, which 'fall' into the energetically lower GaAs region.
There they are confined to the interface by the attractive electrostatic potential of the
positively chargecl ionizeel don ors remaining in the Al:rGal_rAs region. The effective
potential for the electrons at the GaAs-/\LrGal_:r:As interface has the shape of a
triangle.

Arbitrary potential shapes can be realized in structures where z is varied continuously
from layer to layer in growth direction. The spatial variation of the conductance band
edge amounts to 79meV per 10 percent of Al [16].

1 At 300K, GaAs has a lattice constant of 5,(353;3 A, while that of AJAs is 5.6605 A [15]
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2.2 SampIes

In section 2.2.1, the vert.ical structure of the samples is discussed. This includes the

parabolic well, spacer layers, doping layers arid a gate eleetroele on the back siele of
the well. The processing of the lateral structure as well as the ohmic contacts to
the 2DEG are described in section 2.2.2. Finally, we briefly discuss the measurement

set-up in section 2.2.3.

2.2.1 Layer Sequence

In this thesis, aseries of samples has been invcstigated with a design as schematically
shown in Fig 2.1. The wafers were grown by IvIBE at the University of California in
Santa Barbara" The samples are realized by growing layers of Al:cGa1-xAs on a GaAs
wafer. Thereby the conduction-band eelgc is modified along the growth direction, i.e.,

perpendicular to the wafer surface.

The shape of the well was achieved by a digital a110y technique [17]. In this approach,

a superlattice as shown in Fig.2.2 with variable amount of Al in each period is grown.
Within 760 Ä, the spatially averaged Al-content :r varies parabolically between 0 and
0.1. At x = 0.1, a conduction band offset of 79rneV is assumed, based on established

experimental data. With a parabolic potential given by U(z) = m*n 2 /2, this
corresponds to an oscillator frequency ofO = 1.68· 1013 and an energy separation
of Mt = 11.0 meV. Similar samples have been investigatcd in transportllS, 19], by
capacitance rncasurements[20] and by optical cxperiments [21].

The wen is embedded between 200 Ä of unelopeel Alo.3Gao.7As spacer layers with
remote Si-doping on both sides, provieling eleetrons which accumulate in the we11.

On the surface siele, the dopants are provielcel by 11 sheets, each with a Si donor
elensity of nominally 5.1015111-2 Si-concentration, arranged in a 200 Athick layer. On

the back siele, the dopants are locatecl within one 8-eloping layer with a concentration

of 5·lO r5 . This asyrnmetry in the doping allows for saturation of the surface
states and an effectively symmetrie location 01' the electron distribution in the well.

A back gate eleetrode consisting 01' a 250 A thick n+ -doped layer is located l.:35/lDr
below the well. In order to enhance the eleetric isolation to the eleetron gas, the back
gate is scparatcd from thc PQvV by 0.5 pm 01' low-tcmperaturc grown GaAs [22]. A
front-gate elcetrode was realized by evaporation 01' TiPtAu on top 01' thc strueturc.
By applying voltages l/fg emel Ubg to thc front- and back gates, thc carrier density anel

the position of the e1ectron distribrltion inside the weIl can be tuned inclepenclently
(chapter 2.6).

The description given above ccmsiders onl.y Ure esserltial features of the sample layout.
A 01' other finesses bad to be consielered in order to fabricatc perfeet sampIes. For

a review oi growth and expcriInerlts on wiele gradcd quantum weHs see Ref. [16] anel
the PhD thesis 01' Hopkins [2:3].

2The wafers were grown by K. Maranowski on 11/17/DG ami 10/27/94. For an overview of the
processed wafers, see appendix C.
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(a) Si dopants Si dopants

Figure 2.1: (a)
Schematic sample layout
(not to scale) showing
the Al concentration

along the growth di­
rection and the donor
layers. Voltages can be
applied to the metal
front gate eleetrode and
the buried n+ -doped
back gate eleetrocle.
(b) Self-consistently
calculated conductance
band profile along the
growth direction z and

3D electron density n3 D

for Ufo- = -:360mV and
r»

lJbg = -1000 m V.
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2.2.2 Optical Lithography and Ohrnie Contacts

After the MBE growth 01' the PQ\V and the cap layers, one has a 2DEG which
extends latcrally over the whole wafer. The transport properfies 01' the 2DEG can be
measured in a Hall-bar structure (Fig. 2.3), which is connected electrically, Also an
ohrnie contaet to the back gate has to be realized. In the fo11owing we explain how
these steps are perforrned.

The processes involved in the fabrication 01' the 11a11 bar mesa are schematically
explained in Fig. 2.4A. Conventional photolithographic techniques used in our lab
allow etching and metallization of micron-sized structures. A 500 nm thick photoresist
is spun onto the sample surface. The structure is transferred to the photoresist
by exposure through a photoma.sk using HV light. A subsequent development 01'
the resist 10ca11y removes the photoresist. In the next step, the sample is either
etchecl (typically 80 nm deep to remove the 2DEG) 01' covered by a metallic film.

We can reliably fabricate structures as small as 2/1rn with this technique. Industrial
processes can go much smaller, actually 0.25/1.rn are routinely achieved in toclay's
chip fabrication - a next chip generation will be realized with 0.18f-lm-technology. For
structures ernaller than 2f-un we usecl electron-beamlithography. With this technique,
the UV light source and the mask are replaced by a focussed electron beam, which is
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0.3

o

Digital alloy

-.; :.....-- 2 nm period

Figure 2.2: Parabolle quantuni well with digital alloy: Exact and averageel Al density
profile .'1:. The well consistst of a superlattice with aperiod of 2 nrn but variable
amount of Al in each period.

Figure 2.3: Schematic Hall bar arid measurement set-up, A. current 1 flows through
the Hall bar via a resistance Tl, the voItage [/1'1' is measured on voltage probes on one
siele, the Hall voltage on opposite sides. A magnetic fielel 13 is usually applied in
a clirection perpendicular to the 2DEG.
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~~2z222Z2"Lz;'4:f~2:221 photoresist spin-coating

~~2ZZGL··_rt:ZZZZZZ:'2Z1 photolithography

etching

f22.~~'21 evaporation of GeAu
l==::========::::::J
l===========::::j lift-off

Figure 2.4: A: Processing steps 01' the etching and contacting 01' a piece 01' 2DEG. B:

Contaeting the back gate.

positioned on the sample surface by deflection through magnetic coils. Thin Hall bars
fabricated 1'01' conductance fluctuation measurements (chapter 5.3) and the split gate
electrodes defining a quantum point contact (chapter 7) are examples 1'01' structures
defined by electron-bearn lithography,

The 2DEG is contacted by evaporation 01' the eutectic GeAu alloy with a mass ratio 01'
Ge:Au=12:88. We have grown four layers in the sequence Ge, Au, Ge, Au with layer
thicknesses 01' 18 mn, 50 nm, 18 nm and 50 nm, respectively, On top a 40 nm thick Ni
layer serves as a diffusion barrier, and finally IOD nur 01' Au allows 1'01' contacting the
pad with bond wires. After evaporation and lift-off, the sarnples have been alloyed
1'01' one minute at a temperature 01' 4()()OC at reduced pressure 01' 50 mbar in a N2
atrnosphere with 5 % 01' H2.

This step melts the GeAu alloy, which diffuses into the GaAs and contacts thc 2DEG
layer. The details 01' this process are not cornpletely unclerstooel [24]' but lead to
reproducibly functioning contacts.

The back gate electrode is more difficult to contact , because it is buried 1.4 pm below
the surface, and the low-temperature grown Ga.As layer seerns to hinder the diffusion
of the GeAu alloy. An etching step has to precede the evaporation 01' the eutectic.

'vVe used a mixture 01' Fb02:1-hS04:H20 = :3::3:50, which etches approximately lAILm
in ~3 minutes. Figure 2AB schematically summarizes the steps involved.

Figure 2.53, shows the photograph 01' a sample structure realized on a PQW. In
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lead to the front gate

Figure 2.5: (a) Photograph of Hall bar defined with optical lithography. The current
1 flows along the Hall bar. The Hall resistivity is measured across the voltage
probes, the longitudinal resistivity p:rJ: along the Hall bar. (b) Geometry of the
measured part of the Hall bar.

Fig, 2.5b, an enla.rgement of the 16/an wide Hall bar region is shown. The fingers
(two coming from above arid one from below) are metallic leads to TiAu front gates,
which are evaporated in a last step (visible in Fig. 2.5a).

2.2.3 Measurernent Set-Up

Two voltage probes on each siele of the Hall bar allow a four-point measurement of
the voltage drop Urr along the elirection of current flow I and the Hall voltage Ury in
perpendicular (Fig. 2.~n. The current I has been generated by applying an oscillating

voltage of typically 100 mV via a resistor ofTl 10 Mn to one siele of the Hall bar,
and grouneling the other siele. Because the sample resistance is much smaller than R,
the current is given by I = UIR which is typically 10 nA. A very low frequency of the
current has been chosen (typically 1:3 Hz), such that capacitive and inductive signals
can be neglected. The voltages U:t :r and U are measured by Lock-In amplifiers.

A volt.age Ufg has been applied between the front-gate electrode and the grouneleel
electron gas (Fig. 2.5a). Similarly, a voltage has been applied between the back­
gate electrode and grouncl.

The resistivity (J1::r is given by (J:D:" = niU ILI, where Hf is the width of the Hall
bar and L then length between two voltage probes. The Hall resistivity is given by

(Jxy I.

2.3 The PQW as a Quasi-3D System

As mentioned above, PQvVs have been proposeel in order to realize high-rnobility
3D electron systems [8]. In a 2DEG, the electrons can be separated spatially from
the ionized elonors (Fig.2.6a). This reduces Coulomb scattering and thus greatly
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improves the eleetron mobility compared to a bulk doped material. It is evident
that such a modulation doping [2, 3] is not applicable to an electron system which
extends infinitely in all three dimensions, Nevertheless a quasi-3D system can be
realized which has two free dimensions and a confinement in the third dimension.
If the confinement width is large compared to the Fermi wave length, several QvV
states can be occupied and motion across the well is possible. In such a strueture,
the dopants can be located outside the quasi-Sl) electron gas.

a

+

Figure 2.6: Realization
01' a modulation doped
:3D system: (a) In a nar­

row quantum well only
one energy level is oc­

cupied by electrons, the
systemhas 2D character.
(b) In a wiele reetangular
quanturn well, Coulomb
repulsion between elec­

trons leads to accurnula­
ti on of the electrons on
both sieles of the well.
However, a parabolic po­
tential (c) transforms to
a reetangular potential

(d), if electron-electron
interactions are inclueled.
This leads to a wide elec­
tron layer with hornoge­
neous 3D electron den­
sity.

Figure 2.6b shows what happens if a wide square well potential is filled with electrons:
The Coulomb interaction separates the electrons into two narrow regions with 2D
character. The self-consistent potential on each side is equivalent to the triangular­
shaped conductance band in a Jieterojunction. Only if the potential is parabolic
(Fig.2.6c), these difficulties can be overcome. ApaTabolic potential can be thought
01' as being cornposed of a hornogeneous slab of a positively chargeel background
with elensity new (Fig. 2.7). This can be made clear if one consielers the Poisson
equation (FU( Idz 2 = e2n:30 luo. The curvature of the parabolic potential U(z) is
proportional to the positive (»)) density. The electrons try to compensate this charge
and start to fill in the minimum 01' the potential. Each (imagineel) positive charge is
compensated by an electron. Thus the electrons will arrange themselves in a slab with
a uniform 3D elensity equal to n3D . The width of the electron slab is n'w InH, where
nH is the density of electrons per area (Fig.2.6d). \Vith U(z )nl,*02 Z2 12, one obtains
the effective electron density n3D = u(Jm~D2 I ,which amounts to 7.8 . 1022 m-3 for
D = 1.68 . 1013 . The frequency n of the PQW is the plasma-frequency 01' the 3D
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z..

Figure 2.7: (a) A slab of homogeneous positive charge n3D produces a parabolic
potential U(z) due to the Poisson equation eP U( e2n3D

/ eeo. The negative
surface charge forrning the boundary of the slab gives rise to a flat potential outside
the slab, if the total negative charge cornpensates the positive charge. (b) Eleetrons
in the well try to compensate 111e positive charge, resulting in a flat potential bottom.

eleetron gas.

2.4 Electron States

In this seetion, the quantum mechanical description of the electron states in the
PQvV is summarized. Before we start to caJculate the single-particle electron wave
function and energy levels, wo clarify the relation between the Bloch wave functions
of electrons in a perioclie potential and the envelope wave functions describing the
bound states of the PQvV (section 2.4.1). In order to calculate the envelope wave
functions, e1eetron-electron interactions cannot be negleeted. In a, self-consistent way,
the Hartree energy and exchange interactions in the local density approach (LDA) are
taken into account. Section 2.4.2 presents such self-consistently calculated envelope
wave functions and energy levels for a PQvV.

2.4.1 Bloch Wave Functions

The electrons in the valence band of a hornogeneous semiconductor without any
tat tiee perturbations are deseri beel the Schrödinger equation

(2.1)

Here tri denotes the electron mass, p the momenttim operator, and V( r) is the periodic
Iattice potential. 'I'he eleetron wave function can be written as

(2.2)
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where uk(1') satisfies the Bloch condition udl' + R) = uk(1'), with R a lattice vector.
Then 'Ih oscillates with the periodicity of the lattice. Aperturbation as induced
by replacing some Ga atoms by Al adds a new term to Eq. 2.1. The complicated
problern of solving the motion of an electron in a perturbed periodic potential can be
simplified if the perturbation varies slowly on the length scale of the lattice period.
A theorem by Slater, Luttinger and Kohn 26] states that such an extra potential
U (r) can be treated as

( ,)17.
2

",. ~ +U(l')\ (p,(1') = E.ilf'i(1') ,
zm. )

I

(2.:3)

where m* is the effective mass, which contains the effect of the lattice potential, and
lf'.i (1') denotes the "envelope" wave function. By means of this theorem, the problern
of electrons in a periodic lattice and an additional perturbing potential is reduced to
the problern of free electrons in the perturbing potential. The envelope wave functions

lf'i(1') are related to the wave functions Wi(l') of the full problern by

Wi(r) = I: (Rn)a(r -- Rn)'
n

(2.4)

(2.5)

The S111n is over alllattice vectors Rn' Here we have introduced the Wannier functions

a(1'), defined by

a(r - Rn) = N-~ I: e-ikRnlj:'k(1').
k

In a magnetic field the problern tofind the wave functions can be simplified in the
same way.With the vector potential A, the Schrödinger equation for the envelope
wave function is [27]

[
1 (1i.- -\7

2'117* i
(1') (2.6)

In the following we refer to the envelope wave functions lf'i(l') as the wave function of
the potential well, In thc next sect.ion, we present a calculation of these wave functions
and the corresponding energy levels for the electrons in a PQW without a magnette
field. The presence of a magnetic field B gives rise to an additional confinement
of the electrons, The case where 17 is oriented perpendicular to the electron gas is
of special importance, because the quantization of the in-plane motion into Landau
levels significantly modifies the resistarrce. This effect is discussed in section 2.5.2.

2.4.2 Self-Consistent Calculation of the Electrol1 States

In the case of a parabolic confinernerlt
given by

, the Schröclinger equation is

h2

----'----'--'- +Usc ( z
2m*

(2.7)
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where Usc(z) = n;* ~V z2 +UH(Z) +Uxc(z) is the effeetive confinement potential, which
is composed of a sum of the parabolic conduction band profile, the Hartree potential

UH(z) and the exchange-correlation potential Uxc(z). Without any electrons inside
the PQvV, Usc(,z) is a parabola and the energy levels are given by

1 7j2
fiJJ (i + ~,~,) + .,) * (2.8)

An eleetron state Ei'!"11 is definecl by the wave number k:11 of the free in-plane motion
and the quantizecl energy Ei = hJl(i + 1/2) in z-direction. Ei is usually called the
subband energy. It clefines the lower edge of subband i; which can be filled with
electrons free to move in the :t- and y-direetion with the same dispersion as the Bloch
electrons of the unperturbed semiconductor, The number of electrons in subband i
is related to the Fermi energy EF by

p(E) is the two-dimensional density of states, wbich is independent of E:

rn"
p = ~~)'.

7T 17-

(2.9)

(2.10)

(2.11)

In the expression above Cl, twofolcl degeneracy 1'01' each level was assumed, account­

ing for the electron spin. Because p eloes not elepend on the energy, n; is sirnply

proportional to the difference between the Fermi energy and the subband bottom:

(E' E'l) m"'1'/'- 'l~, - ;', -,,-" -, " ,2'
7Th

If the PQ\V contains many electrons, electron-electron interactions have to be consid­
ered. The Hartree potential accounts für the electrostatic interaction of tbe electrons
with themselves and with ionized irnpurities. It is determined by the Poisson equa­
tion:

(Fl!]I

dZ 2 Uo
(') 'L'))',;..,;._ i-J

where n.; (z) is the electron concentration and rio the concentration of ionized irnpu­
rities. The distribution of the electrons is obtained from

(2.13)

The total electron sheet density nIl is givenby

(2.14)

'I'he exchange-correlation potential ( can always be written as a functional of

the local electron density" [28, 29]. The problern is to find the correct functional.

"a discovery which was awarded by the Nobel prizo in Chemistry in 1998.
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This is the so-called 10ca1 density approxirnation (LDA). One possible form is given

by [30]

c.: 1.69rneF [.. (llA)]1 + 0.05451n 1 +-- ,
r s r s

(2.1.5)

where rs = (411"17,:3]) (z) j:3t 1/ 3 / ae is the ratio of the rnean electron spacing 1,0 the Bohr
radins ae = 411"tEolj2 jrn*e2

• For GaAs, «» :=::::; 100 A, and r s is about 1.5 for the 3D
densities observed in the PQW. Note that r is a measure for the avetage interaction

energy divided by the avetage kinetic energy of an electron, A value of r s ~ 1 means
small interaction energy, and the Hartree approxirnation is appropriate. On the other
hand, for r s ::::P 1 exchange and correlation effects play an import.ant role which can
be accounted for in the LDA.

The energy levels, wave functions and Usc ( have to be cletermined self-consistcntly
from Eqs. 2.7, 2.12 and 2.15. Figure 2.8 shows such self-consistent calculation" for
a PQvV sarnple [:n, 32]. We chose = () and varied Ufg. Three values of Ufg

corresponcling to three different sheet densities 0H are shown. From top 1,0 bottorn,
one, two and three subbands are occupiecl. While the back siele of the well remains
cssentially unaffected by the front gate voltage, the self-consistent potential spreads
out towards the front gate with increasing Ufg. One also observes the Hat bottom of
the self-consistent potential, indicating an almest homogeneous electron density,

A point of interest is the variation of the energy levels with the gate voltage. Fig­
ure 2.9 shows subband densities calculated without the exchange-correlation potential
(lines) and t.aking exchange-correlation potential into account in the LDA (clashed).
For the considered PQvV, exchange and correlations are small corrections to the
subband energies, except at the threshold where a new subband gets populated,
where the LDA potential slightly enhances the subband energy difference, Such an
exchange-enhancement has been observed experimentally in a two-subband system
using capaci tive measurements [:3:3].

2.5 Transport

Resistance measurements not only provide the resistivity p,,,,,, , but virtually all relevant
properfies of the electron gas under investigation (in the following the more general
terrn "transport measurements" stands for resistivity measurements).

The elastic scaHering time T and the eleetron sheei densitynH are clireetly obtained

from measured P'''T anel in amagnetic flelelB:

(B) =-
l7l-l

(2.16)

(2.17)

4vVe llsed a one-dimellsiollal Scln'()clinger :mcl Poisson solver written by G. Sllicler. The software
is freely aecessible on the internet on http://www.nd.edur gsnider
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profile Usc(z) relative
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wave functions for one,
two and three occupied
subbands. z = 0 cor­
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surface. See text for
details.
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At low temperatures and in bighcr magnetic fields (section 2.5.1), the quantuni nature
of the energy spectrum modifies the resistivity due to the distribution of eleetrons
on different subbands.For a magnetic field applied along the z-clireetion, px;r os­
cillates as a function of 1/B. These so-called Shubnikov-de Haas (SdH) oscillations
are a direet consequence of the quantization of electronic orbits in a magnetic field.
Analyzing the frequencies of SdH oscillations, the distribution of the electrons on dif­
ferent electric subbands arid the individual subband densities are resolved. Fr0111 the
subband densities inforrnation on the energy spectrurn is obtained. That way trans­
port experiments make it possible to measure energy levels in mesoscopic systerns.
Section 2.5.2 describes the theory of SeiH oscillations and how energy speetroscopy is
realized.

2.5.1 Low Temperature, Magnetic Fields

Typical energies in mesoscopic systems (as thc spacing between energy levels due 1,0

electric or magnetic confinement ) are in the range of peV to some meV.For quantum
effeets to manifest themselves in properties of the eleetron gas, the thermal broad-
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Figure 2.9: Self-consistent calculation 01' the subband eleetron densities in a PQW
with a weak spike (Al-content 3.:=0.05) and Ubg 0, considering exchange and cor­
relation in the LDA (dashed) and without such correetions (lines).

ening A:T 01' the Fermi distribution has to be smaller than those energies. At liquid
Helium temperature T = 4:.21\, kBT = 0.:36 nreV. Sometimes a dilution refrigerator
has to be used in order to cool the sample to 50mI<., where kBT = L1.3IleV. 1"01' real­
istic applioations 01' quantuni effects, the envisioned devices should operate at room

temperatures, This means that the energy spacing should be larger than 26 meV. In

order to achieve this, the barrier height must be increased and the lateral dimensions
have to be in the nanometer range:

Typical energy level spacings D.E 01' potential wells 01' width 'ware found to be
D.E ~ Ji2 /rn*w 2

• 1"01' electrons in GaAs this energy is 0.11 meV for x» 100 nm.
In order to increase this energy to kBT at roorn ternperature, structures as small as
10 nm are required.

At higher temperatures, upper subbands In a 2I)EG are thermally occupied due to
the large value 01' kBT. Multi-subband effects, as investigated here for PQvVs at
liquid helium temperatures, become important.

2.5.2 Shubnikov-de Haas Oscillations

While the density 01' states (DOS) of a :3D systern is proportional to the square root
of the energy, it is energy-inclependent in a 2D system. For B = 0, the 2DDOS is
given by Eq. 2.10. We consider a configuration where a magnetic Iield B is applied
perpendicular to the plane 01' thc 2DEG. 1'11e solution to the Schrödinger equation
2.6 are discrete Landau levels (LL) with energies Ei given by 1iwc(l +1/2), where W c
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is the cyc1otron frequency, W c = eB / m *. The LL appeal' in the 2D DOS as discrete
peaks, which are smeared out due to disorder (Fig. 2.11). The degeneracy of each LL
is given by B divided by the flux quantum Since rnore states get available in
each LL as the magnetic field is increased, higher LLs are successively depopulated.
This gives rise to jumps in the Fermi energy, and several physical properfies oscillate
with the magnetic field such as the magnetic susceptibility (de Haas-van Alpheu
effect ) 01' the resistivity (Shubnikov-de Haas ).

p
8=0

p
8>0

*m
nf'j2

L.-. ~_ E
E

Figure 2.11: Density of states (DOS) for B
gradually splits into Landau levels.

o arid for B > 0, where the DOS

Each time when the electron density nH in system is an integer multiple 1/ of
the LL degeneracy, a LL depletion occurs. In such a situation, the Fermi energy lies
in between two LLs. where the DOS is reducecI. Due to the Einstein relation (J'

e2p(EF )D [34] between conductance, DOS and diflusion constant the conductance is
also reelucecl in between two LLs. This leads to a minimum in the conductance when

1/
nHh
Be

(2.18)

The filling Iactor l/ cIenotes the number of filled LLs. From this equation we see that
the conductance oscillates as a function of 1/B. Its frequency is proportional to nH.

At higber fields, where the LI, spacing is larger than thewidth of the corresponding
DOS-peaks, no st.ates are available in between two LLs, and the conduetanceis
expeeted to be zero, Because of a finite Hal! voltage the resistivity is zero, too. In
this simple picture, however, theFerrni cannot lie in between two LL's, as
there are no states available. Therefore no finite regions with zero resistivity are
expected, in contradiction to the experiments. As a consequence, the existence of
localized states in the tails of the DOS peaks js assumed. These localized states
are explained by disorder and do not contribute to the conductance, but allow the
Fermi energy to 1ie between two 1,L This assumption also explains the finite width
of the quantum Hall plateaus. The explanation for the universal values of the Hall
resistance plateaus is rnore cornplicated.

For a multi-subband system with subband energies ,the energy spectrum is given



20 CHAPTER 2. SAiVfPLE FABRJCliTTON AND CHARACTERIZATTON

(2.19)

where the cyclotron frequency W c (X 13 determines the LI, splitting. H Eie is plotted as

a function of 13 one obtains aLL fan for each subband energy (Fig. 2.10a). The width

of a LL peak clepends on the electron rate 1jTs . On the other hand, the

DOS deterrnines the screening of the impurities and Ums the electron scattering rate.

Therefore the DOS distribution has to be deterrnined self-consistently, In the self­

consistent Born approximation the width of a LL is approximately proportional to

JIj, and the conduetivity (J,Tl1 is proportional to the squared DOS at the Fermi energy

[35, 36]. Figure 2.10 shows the calculated DOS. Demartding charge conservation for

13 = 0

dE = nH, (2.20)

the Fermi Energy EI" is obtained by sunnning over the DOS Pi of a11 subbands i. In

Fig. 2.10a the calculated EF is shown for a two-subband system as a function of 13.

Assuming a Hall resistivity (13) which increases linearly with 13, the magnetore­

sistivity P,TX is obtained by tensor inversion of the (J:r:r data.. Figure 2.10b shows the
calculated Px:r(B) corresponcling to the LL fans in Fig. 2.10a. Such calculations ex­

plain specific features in measured (13) traces, such as the superposition of SeIH

oscillations of different frequencies 01' the suppression of quantum-Hall minima when

the Fermi energy lies in degenerate LL of different subbancls [:37, 38, 39, 40].
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Figure 2.12: Measured Sc1H-oscil1ations of the rnagnetoresistivity pxx vs. 13 at T =

1.7 K and for different nH of 2.1 . 1015 (A) and 3.6· 10u; rn,-2 (B). In case (A,), one

subband is occupied, in case (B) two of thern. The peaks of the Fourier transformation

of Px:r(lj13) shown in the inset give the subband densities ti., In (B), two peaks are

seen (arrows), corresponcling to the two occupied subbands, Taken from ReL [41].
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In Fig. 2.10a EF is almost constant at low B. This is expeeted for lu»; < lifTs. In this
regime, EF crosses a LI, each tirne when Eil' E F . This condition is fulfilled when

e+ 1/2 =

'I'he oscillationsin (l/B) are cornposed frequencies proportional ton.. AFourier
analysis of Pa,a;(l/B) reveals the different ru, An example is shown in Fig. 2.12 with
measurements at densities where one and two subbancls are occupied.

From the deterrnined 11;, the energy diflerence Ei can be calculated, A compar­
ison of self-consistently calculated energy levels with measured 1Ii at different gate
voltages convincingly demonstrates that analysis of SclH oscillations is an accu­
rate tool to investigate the energy spectrum. Figure 2.13 shows such a comparison,

taken from Ref, [41].
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Figure 2.1:3: Measured subband densities 11; (syrnbols) for different 1IH controlled by
Ufg and fixed Ubg 0.0 V. The sample has a potential spike with :1:: = 0.1 inserted.
The subband densities Tlo and 111 are obtained from a Fourier-analysis of pJ;r;(1/B),
n2 from Tl2 = nn Tlo Tl}. The lines display self-consistently calculated subband
densities for different nI-I, also controlled with the front gate voltage, similar 1,0 the
experirnent. No fit parameters were usecl. Taken from Ref. [41].

Note that with transport measurements the difference of energy levels 1,0 the Fermi
energy is determined, not individual subband energies. However , if two subband den­
sities are known, their difference is proportional to the difference of the corresponding
subband energies:

In
n; - n., = --') (

,I ,;;.
(2.22)
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Energy spectroscopy with transport experiments is based on this equation. In ad­

dition to subband energies, even electron probability distributions can be measured.
This is demonstrated in chapter :3.4.

We now turn our attention 1,0 experimental data, Fig. 2.14 shows measurements

01' P:r~,(B) and p~:!I(L3) for different front gate voltages Ufg. The back-gate electrode
was grounded 1'01' this measurement. The temperature was 1.7 K. Various aspects 01'
multi-subband transport can be discussecl with the help 01' tbis plot.

First 01' all we observe that the slope of the Hall-resistance decreases with increasing

Ufg . Because of P:r!! cB /nH, this directly the increase of nH with Ufg .

The quantum character manifests itself in the Hall plateaus at fields B > 1 T which

lie at positions h/e2
1J , where 1/ is an integer filling factor. Weak spin-split plateaus

(odd )/) are observed only at 1/ = :3 arid )/ = 5. Parallel to plateaus in P:qn minima in
Pxx appear, which are close to zero for higher fields (B > 2 '1').
A striking feature appears at Ufg - 220 m V. The low-field magnetoresistance in­

creases with B. The reason is the population 01' a second subband. It is shown in
chapter 4.1.4 that such a Ieature is expected for two-subband transport with different

subband densities and different subband mobilities.

For Ufg > -220mV, the SdH oscillations are eomposed 01' two Irequencies reflecting
the two subband densities. At lügher fields, we observe a missing QH plateau at

u = 4for Urg = -220mV arid at 1/ 6 for Ufg = -160mV. Simultaneously to
those situations, the minimum in is lifted. This suppression was explained as a

consequence of degeneratcd LLs originating from different subbands [42, i13, 40]. We
will come back 1,0 this explanation when we observe a similar effect in ballistic quasi­

one dimensional channels where an energy degeneracy at the Fermi energy leads 1,0

suppression 01' conductanceplateaus (chapter 7).

2.6 Tuning the Electron Gas

With voltages applied 1,0 the front- and back gate electrodes of the PQvV, the electron
sheet density nH and the position ,0,.z of the electron distribution along the z-axis can

be tuned independently. In the Iirst section, we examine how the clensity is tuned,
while in the secend section measurements and calculations of the displacement ,0,.z

are presentecl.

2.6.1 Density Tuning

A basic relation between gate voltage anel eleetron sheet density can be deriveel in a
simple rnodel, vvhich is described here. The PQW is ernbeclded between a front- alld
a back gate eledroele (Fig. 2.15). The electron gas forms a slab of finite thickness
and eleetron sheet dellsityoH.A voltage [lrg applied between the front gate and the
eleetron gas in duces a surfaee charge on the fror!t, gate surface. In anaJogy, Ubg

inchlces erb on t11e back gate electrode. The surfaee eharges call be related to the gate

voltages through the capacities Cf anel . vVith dj being the separationbetween

the frollt gate anel the frontsicle boundary of the electron slab (Fig. 2.15), one obtains
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Figure 2.14: HaII- and magnetoresistivity measured at T = 1.7 K on sample 6 (x=O.l).
Uf g was varied between -:340 mV ancl 80mV in steps of 60rnV, and Ubg = OmV. The
arrows indicate suppressed Elan plateaus or suppressed minima in the magnetoresis­
tivity.
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Figure 2.15: PQW between two capacitor plates, an adequate model to describe the
tuning of electron sheet density in the well and the electron distribution displacement.

(Tf U'OUfg/ (Zr. Charge conservation demands

e(nH (
. Ubg)

nD) = (Tf + (Tb = U'o -1 + - .
If db

(2.2;3)

Here, tit: is a contribution from the positively chargeel donor atoms between the
capacitor plates, This expression for nH describes the measured dependencies of nH on

Ufg and Ub g very accurately. Figure 2.16 shows measurements of nH(Ufg ) . The fitted
slopes of 5.4 .101.5 m-2V-1 (one occupieel subband. low density) and 8.1.101.5m--2V-1

(high density) correspond to a df of 133 nm and 89 nrn , respeetively (assurning a
perrnittivity of the AlC:;aAs layers between the gate and the electron gas of e 13).
This makes sense since both values lie inside the well (which extends frorn z 64: nm
and z == 140nm). 1"01' one occupiecl subband, tbe front siele of the electron gas lies
in the back side of the well. This is in agreement with self-consistent calculations,
where it was found that the first subband starts to get populated in the back siele of
the well (seetion 2.4.2). The value of df 133 nm is slightly too high, which can be
explained by the disability of the e1eetron gas to screen the front gate electric :fie1el
effectively, Therefore the 2D:FG model of a metallic slab is of limited validity in the
case of one occupied subband. i.e., low electron densities. When the second subband
gets populated, the slope increases considerably. This is due to the combination of
arnore efficient screening arid the wider extent of the seconel wave function towards
the front gate.

Measuring the zero-field resistivity, the mobili ty coulel be monitored as well, ex­
ploitingig the relation fl = 1 (Fig. 2.16). For low densities, It increases with
gate voltage and thus with nIl. At the eross-over from one to two occupieel subbands
at Ufg ~ 250mV, the mobility decreases and above -200mV increases again. Tbe
dip in mobility is causecl by an opening of an additional scattering channel, Ilamely
intersubband scatterirlg.Due to a elecreasing probability of large-angle scattering
at lügher densities, the rnobility increases again, until at Ufg ~ 50 mV it decreases
monotonically. 'I'here a third subband i8 occupiecl, anel intersubbancl scattering aga.in
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Figure 2.16: Hall densityuj] and mobility /1 the electron gas in a PQW as a
function of the front gate voltage llfg' Also indicated are the fitted slopes for no(Ufg )

of 8.1 . 1015m- 2V- 1 (dashed) and 5A . 1015 m 1 (dotted).

modifies the mobility behavior.

2.6.2 Displacing the Electron Gas

An import.ant property of a PQ\V is that the superposition of the well potential with
a linear potential results in a parabola of the same curvature, but with a spatially
displaced energy minimurn. By applying voltages to the gate electrodes, the electron
gas is displaced along the z direction. In order to maintain a certain sheet density
nIl, both front- and back gate are used to tune the displacement . In this section
Cl, quantitative model is described which gives a relation between the applied gate
voltages and the displacement z of the eleetron gas.

We use the same capacitor-rnodel as in the previous section, The surface eharges 0"f

and O"b on the gates produce electric fields. The total field pointing towards the back
gate is given by

E
O"f - O"b

2ffO
(2.24)

This fielel eorresponds to a constant potential gradient,which adds to the parabola.
If a linear potential Uo(z) = z is superimposed on - ni*D 2

Z2 /2, the curvature
of the parabola remains the same. whereas the potential minimum is displaced by

eE
rn*n2 •

Expressed in terrns of the surfaee eharges on the gates, one obtains

(2.25)

(2.26)

Using O"f = EfoUr/df , one obtains for the displacernent per front gate voltage
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(2.27)
e

2rn*fPdr '

Depending on the position of the front side of the electron slab (df between 64 nm
ancll00nm), the shift lies between 110 nm/V arrcl69 nrrr/V. These values agree with

those obtained from self-consistent calculations anel the measured values, as presenteel

in the next two sections.

Measurement of D.z

By applying appropriate gate voltages, nH can be kept constant while the electrons
are displaced aJong the growth direction. In the experiment, nH is controlled by mea­
suring the I-lall resistance at B 0.2 T, where quantum effects are not yet important.
What is the relation between the applied gate voltage llrg and the displacement D.z?
In the plane spanned by lIrg and Ubg, the restriction that I1H is constant defines lines

as shown in Fig. 2.17. Frorn those lines the information on the displacement D.z
per gate voltage can be extracted, if one assumes the capacitor relation between the
geometric and the electrical variables described in Eq. 2.2:3.

Equation 2.2:3 elescribes the relation between ,Ubg, (Ir arid db . At constant nH,

the width iu of the electron slab is constant. Therefore (h + db = L is fixed, too. If

this relation isinserted into Eq. 2.2:3, one gets

lIrg)
dr

.::::: L (e _n,H ..._'_1D_

u'o
l~:g )nD" - ']' l ) ( ,I1H[,bg - ( .J -- Cf (---

ffO

We write Ure dist ance dr between front-gate and electron gas as the sum of the

distance do to an electron gas centereel in the well and the displacement D.Z, (Ir
do + D.z (Fig. 2.18). The displacernent D.z is assumed to be linear in the applied

voltage; D.z u(Urg - Uf~), where U& is the front gate voltage at which the electron
distribution is centered in the well. By fitting Eq. 2.28 to experimental data as shown
in Fig. 2.17, the coefficient (l' is obtained. Uf~ is known from measurements of the
subbanel densities, see chapter :L:3.For the distance do we assumed clo = 1020 A-U) /2,
see Fig. 2.18. The 2DEG widt.hto is given by I1H (see chapter 2.3). In Table 2.1

the results for clifferentnH are shown ancl compared to data obtainecl from self­
consistent calculations of the wave functions [

The displacernent per front-gate voltage increases with the electron elensity. This is
expla.ined by the larger cxtent of thc electron distribution screening the parabolic
potential eloser to the front gate electroele. Thus the applied voltage drops m a
s1na11er region anel thc electric field causing the clisplacement is increased.

Simulation of the Electron Displacement

In a self-consistent calculation, we kcpt nre total carricr dcnsity constant anel variecl
Uf'g anel Ubg. In Fig. 2.19, nIe caJculated wave functions are shown for a PQvV without
a potential perturbation for two different gate voltages. In order to obtain D..z(Urg),
we trace the position of the maximum ~ 12 12 - 1Cf'11 2 in the calculation as a
funetion of the applied Urg' vVe cho08e the quantit:y ~1Cf'12 bccause it can be mea8ureel
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density nH for sample 2
(lines). The dots cor­
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the experiment. Ub g
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(see chapter :3). An approxirnately linear relationship :6.z(Ufg ) is found, which depends
on the total electron density (insert of Fig. 2.19). The obtained values are summarizecl
in Tablc 2.1.



28 CHAPTER 2. SAMPLE FitBRICitTION AND CHARACTERIZATION

+ da +
Q) + + Q).......
ces .......
0) + + ces

0)....... 0

c +1020 Ä- ..Y.
0 + o
~ ces- .0+ +

+ +

Figure 2.18:PQvV between two capacitor plates with a centered 2DEG. The distance

da is measured between the front gate anel the surface siele of the 2DEG, shown here

as a slab of width tu.

s

Figure 2.19: Self-consistently calculated ~ 1'f1 2 at n.11=3.9·1015 m-2 for two different

Ufg and l~)g' The relative positions ~2: of maxirna in ~lcpl2 are traced as a function
of [ffg (insert) in order to monit.or ~ 12 as a funcf.ion of the spatial coordinate. The
insert shows the obtaincd [orn.tF=2A·l0l s 1n-2 (triangles ) and n11=3.9·H)15 m- 2

(rectangles) .
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Table 2.1: Parameters for fitted CTbg··I[ffo.) of a sample with ;r; - 0.05. Measured
'- \ c

(ü m ea s . ) and calculated (ÜcaIc.) values for the electron-gas displacement per Irent-gate
voltage are indi catecl for cl ifferent constant Hall densities nH. Thefit parameters
include the Front-gate voltage l]i~ where the electron distribution is centered in the
well, the distance da from the front gate 1,0 the upper surface of the electron gas, the
well width 'W, the charge density correction nD and the distance L between front and
back gate.

'nl-1 LU nD L Ü m eas . CYcalc.

111V A A 103

2..5 -90 860 321 1.16 1.48 -0.65±0.05
:3.0 -70 828 :385 -0.80 1 -0.79±0.05
~L5 -40 796 449 -0.:35 1.~)9 -0.91±0.05
4.0



Chapter 3

Wave Function Spectroscopy

The wave-like nature 01' massive particles is among the most important findings in the

physics 01' this century. In 1928 Davisson and Germer found that electrons travelling
through a crystallattice exhibit interference phenomena. This was the experimental
dernonstration 01' the quanturn-rnechanical wave-particle duality, Interferenee which
was well-known frorn optics with visible light, also worked for massive particlesl The
wavelength attributed to a parfiele depends on its momentum exactly as de Broglie
had postulated in 192:3. Since then, the visualization of a particle's wave nature
immanent to quantum mochanies has become a fascinating issue. With the discovery
01' scanning tunneling microscopes, it recently became possible to observe standing­
wave patterns on a metallic surface on which atoms different from the substrate

material were arranged with monoatomic precision, The interference 01' the electrons
scattered by the foreign atoms generates faseinating patterns. The famous pietute
01' the standing waves scattered at individual atoms arranged in a circle ('quantum
corrals') found respect areund the world [45,

In some sense, these wave patterns in an eleetron sea are similar to surface waves
broken at rocks in a shallow pool. Ir1 this analogy to classical physics, the standing
waves arising in an organ pipe corresponcl to the quantized states in a potential well.
Although this is the standard exarnple in many books on quantum mechanics, these
waves are difIicult to deteet experimentally. This has to do with the requirements

imposed on the detector. The typical wavelength of eleetrons confined in a semicon­
ductor quantum well is sorne tens 01' nanomcters. In order to resolve the shape 01' the
wave function, the resolution 01' the detector has to be smaller than this size.

But what can we actually measure? The wave functions themselves have no direet
physical interpretation. Only the squared modulus 01' the wave function Iias the
meaning of a probability density distribution, H is this quantity, which we want to
detect.

The aim 01' this chapter is to present a new approach to investigate quantum-rnechanical
probability density distributions of electrons in a screened wide potential weIl. We
taclde this problem by making use 01' the possibiLities offered by MBE-growth. The
probe is a thin sheet 01' three atomic layers of AIGaAs placed in the center of the
quantunI weIl. Making use oE tbe result oE first-order perturbation theory that the
shift in energy of tbe electron states due to sucb a potential spike is proportional to
the squarecl wave funetion, we sirnply bave to measure the energy shift imposed by the

:30
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probe to learn something ab out the wave functions and thus the electron probability
at the spike position. Our methoel is baseel on low-temperature magnetotransport
measurements. \J\7e extract the energy shifts from measured subband densities.

The concept is introducecl in section :LL. Abrief overview of the experimental det.ails
(samples and measurernent set- up ) is given in section :3.2, followed by the presentation
of the rneasured subband densi differences for various samples and sheet densities.
In the third section we deterrnine the width t» of the electron distribution as a function

of the total electron sheet density OB. The purpose of this is to demonstrate the
intrinsic property of a PQ\V that nB divided byw is a constant, corresponding to
the :3D electron density. The aim of section :3.4 is to combine the perturbation idea
with the idea of displa.cing the electron distribution (presented in chapter 2.6.2) in
order to scan the spatial shape of the squared wave functions, The last section gives

an outlock on future experiments. Part of the results presented in this chapter has

been published in Ref. [47].

3.1 Concept of Wave Function Spectroscopy

Wave functions of intentionally modi:fiecl surface states on metals have been probed
using the scanning tunneling microscope . In semiconcluctors, various attempts
to rneasure the wave function of confinecl states have been undertaken. In particular,
the wave function Fourier spectrum of bound states of Si doping layers located in
the quantum well of a double- barrier resonant tunneling diode were measured by
resonant rnagnetotunneling [,18]. Extending this idea to an array 01' quantuni wires,
it was shown in Ref. [49] that the magnetotunneling differential conductance is a full
representation 01' the ID wavefunctions in k-space.

In amore clirect approach wave functions are measured by analyzing the energy shift
01' quantized states due to an inserted, highly-localized potential perturbation. In

this way, wave functions 01' electrons confined in semiconductor quantum wells [50]
and in surface states 01' metals have been investigated.

In order to probe probability densities wi interband optical transitions in Ref. [50],
the conduction band as well as the valence band states had to be considered, and
the probability density distribution of electrons and holes were assumed to be equal.
Additional complications result from light-hole- and heavy-hole-transitions.

The cor1cept we use forprobing the potential-weH wave funetion was introducecl in
Ref. [50] and is based on first-order perturbation theory. A nanow potential barrier
at the position :Z:owithin the PQ\V describecl by [/08(;; zo) shifts the quantum­
rnechaJlical eigenstates Yi ) \vith energies Ei i11 first-order perturbation theory ac­
cording to (see Fig. :3.1)

Ei = E+'(, I (3.1)

Measuring the shifted energies on lIlany sa.mples with different spike positions Zo
anel comparing them to an unperturbecl sampIe, the probability density distribution

j<P'i(Zo)j2 for different subbandsi was Inapped out in Ref.[,SO]. In OUT sampIes, the spike
position is fixed. The electroll distribution itself can be displaced along the growth
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Figure :3.1: Self-consistent potential, subband energies and e1ectron probability­

density distributions for a sample without (dashed) and with a 9 Ä thick Alo.1 GaO.9As­
spike inserted in the center of the well at Zo (lines). With spike, the wen is 9 A wider,

which leads to the spatial displacement 01' the potential on the right siele. The energies

are indicated relatively to the Fermi energy.

direction with respect to the spike by applying electric fields across the parabola.

Thus the unaltered shape 01' the spatially shifted wave functions can be probed at
one spike position in the same sample,

We determine the single-particle energies of the screened PQW by measuring Shubnikov­
dc Haas oscillations 01' the longitudinal resistivity. The frequencies of the SdH os­
cillations yield thc subband electron densities n, (see chapter 2.5.2). Based on the

energy independent density 01' states p = rn" /7rn2 01' a two-dimensional system (rn*

= effective e1ectron rnass), we obtain the difference 01' the Fermi energy E F to the
respective subband energy levelE;. In order to eliminate Ev; which itself elepenels on
tbe subband energy levels, one subtracts two subband densities, ti; and TI,j. Therefore,
transport experirnentsmeasure differences of subband energies E; - E

1
' (n l' - 'ni)r:

- ,1TL'

According to Eq. (:3.1), the influence of the potential spike is then written as

+ (I CL2)

We obtain the difference 01' squared wave functions by comparing energy differences
of two samples with different spike strengths U and

T'he denominator c.

2

,j( [2 (3.:3)mr

1S a well known growth pararneter determined from the
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amount of Al in the potential spike. With this approach we have developed a method
to measure differences in probability densities of occupied conduetion band sublevels,
based on low ternperature magnetotransport experiments.

3.2 Experimental Details

A set 01' foul' different samples has been grown as discussed in chapter 2.2. The
evaluated samples are mimbered 15, 18, 21, and 22 (see Appendix C). In sample
15 the unperturbed parabolic potential is realized. In the other samples, a three
monolayers thick AlrGar-J,As potential spike was inserted in the center of the PQW,
with x = 0.05, 0.1 and 0.15, respectively. The spike potential is eleseribeel by U5(z
zo). With a spike width 01' 8.5Ä, an Al content z and a potential height of ;);·790 meV,
we obtain U = J> 6720 A·meV. These potential perturbations are suffieiently weak to

be treated in first-order perturbation theory.

Magnetotransport measurements have been earried out in a, dilution refrigerator at

temperatures below 100 nll<:. The electron density were varied between 1 ... 5.1015 rn- 2

by applying voltages [lfg and Ub g between the electron gas arid the front- arid back­
gate electrodes, respeetively. Typical eleetron mobilities are around 1:3 m 2 /Vs, as
obtained from the resistance at zero magnetic field. Sdl-l-oscillations can typically be

observed above 0.2 T.

Here we concentrate on the ease of two occupieel subbands. For the experimental
realization of our idea, we have displaced the electron distribution inside the well by

applying appropriate gate voltages,keeping the Hall density nH constant., as obtainecl

from the low field Hall effect.

3.3 Width of the Electron Distribution

If the wave functions are eentered in the well, the lowest-subband wave function 'Po
has its maximum at the spike position, whereas the antisyrnmetric 'Pr vanishes at Zoo

Aeeording 1.0 perturbation theory (Eq. :3.1), the encrgy shift of the Er subband is
zero and that of the Eo subband is given zo) 1

2 . Away from this symmetrie

situation, Icpo(zoW decreases, whereas l'Pd 12 increases. This means that Eo de-
creases and Er increases. Thus in the symmetrie situation, the two lowest subbands
are elosest in energy and repel each other if the electron distribution is displaced.
Für centored wave functions, thc e1ectron probability l'Po(zoW at the spike position
zois obtained direetly by a measurernent of the spike-induced change of the subband
energy differenee. For the e1ectrons displa.ced I'rorn the eenterecl situation, l'Pr (zo) 12

is nonzero, and the differenee of thc two probahility densities is obtained. This ease
1S diseussed in section 3.'1. Here we eorlecntrate on the eentered situation.

Sinee the wave funetions are norrnalized ancl loealized over a width w, its anlplitude
must be proportional to 11/w. By measuringzoW, we ean thus determine the
width of the electron distribution. In the I'ollowing, such measurements at different

nH are presented. Furthermore we investigate how 1 (zo) 1
2 deereases as the sheet

density is inereased. vVe earl tlms estabJisll that the wiclthw inereases linearly with
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the 2D eleetron elensity nH, i.e. that the 3D electron elensity n3D = nH/w is constant.

B

200
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Figure ~L2: Measured magnetoresistivities and Hall resistivities Pxy are elisplayeel
for the two sets 01' gate voltages (A) and (B) as defined in Fig. 2.17. The Hall elensities
are equal, but the electron distributions are displaced along the growth direetion.

In Fig. 2.17, contour lines 01' constant lIHin the Ufg-Ubg plane have been shown 1'01'
sample 2. Two sets of gate voltageshave been denotecl by A and B corresponding to a
balanced electron distribution (A) and a distri bution displaced towards the front gate
(B). In Fig. ~L2 we show corresponding measurernents 01' fh:c(B) and p,cy(B). rIhe Hall
resistivities for the two sets increase linearly with 15 with the same slope, refleeting
the equal Hall densitiesnn. SdH oscillations can be observed in Px.T(B). These were
recorded for each pair of li fg arid Ub g along a line of constant 1II-I (symbols in Fig. 2.17).
The subband density no 01' the ground state can be evaluated most accurately from
a Fourier transforrnation. Tbc density 111 is then deterrnined using 111 = IIH -no. At

constant IIH, the difference of the probability density 6. 1

2 = l\Po(zo)1 2 -1\Pl(Zo)1 2 in
Eq, C.:L~n is proportional to the clifferences of 111 - no for two spike strengths.

Figure ;3.~5 shows measurements of 111 110 at different sheet densities nH and for
samples 1-:1 with different spikes (describecl by its AI content !T = 0.0,0.05,0.1 and
0.15, respectively). The individual curves display maxirna at approximately the same
Ufg for each Ir. At such a peak, a maximurn amount of electrons stays in the upper
subband, i.e., 110 is lowest. Frorn Eq. 2.22, it can be seen that this corresponds to
a minimum in the energy difference Er - . which is as discussed above the
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Figure :L3: Measured 17] 170 as a funetion of for nB = 2.4.1015 m- 2
, 2.9.1015

;3.4· 1015 m- 2 and ~L9 . 1015 was adapted to fix nB. Each measurement was

performed on four samples with different potential spikes described by their Al content

x.

indication of a. balanced situation where the wave funetions are centered in the well.
The difference of two curves at this balanced situation gives the density difference
due to the spike alone. From such differences, the energy shift can be determined.

Following Eq. ~3.3, we directly obtain lepo(zo) 1
2 by dividing the difference of two eurves

in Fig. 3.:3 by the spike strength differerice 0,[1 = 0,:z;·6720 A·meV anel the DOS.
In Fig. :3,4 the obtained data is surnmarized. The error bars refer to deviations

between different pairs of samples. A linear fit through the origin gives a slope of
1:.l0 A/I015 m-2. In order to relate the width 1.0 of the eleetron gas to the amplitude

of lepo 1
2, assumptions about tbe shape of the wave funetions have to be made. In

the case of a deep square well of width Cl, the arnplitudeis given by 2/Cl, such that
Cl = 2/lepoI2. The width LU of the sinusoidal wave function can be defined asw = Cl/2,
such that 10 1/ 1

2. Thus the slope fitted in Fig. 304 eorresponds to "Lu/nH. 'I'his
value a.grees with the designed 1.:3 . 10-23 In3.

3.4 Scanning the Wave Function

Here we demoristrate that one..eledron probability elensity distributions of PQvVs
in the presenee of electron..electron interactions can be probed by magnetotransport
rneasurements. In section :L1 of this chapter we probecl the differenee of the elec­

trori probability elensity between 1WO oecupiecl subbands at the position of a highly
localized and well .. defmed potential spike. In this section we show how we can scan
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Figure 3.4: Measured Isoo(ZO)!-2 vs nH (svmbols). The dashed line is a linear fit to
the data crossing the origin, corresponding to a linear increase of the 2DEC width
with nH. The deviations for low n1-1 are because the effeetive potential has no Hat
bottom anyrnore.

the profile of the probabili ty density distribution by displacing the wave functions
through the spike. This is clone by applying voltages to the front and back gates.
Because the curvature of the parabolic potential rernains unaffeeted by the superpo­
sition of a constant electric field, the electron wave functions are merely displaced.
This statement rernains valid in the presence of electron screening.

The measurements of Tl1 - no presented in 3.:3 contain an the inforrnation we
need to extract the probability density distribution. The distinct maxima in n1 - no

get more pronounced for larger spike strength T. The difference in n1 -- no for two
samples with different spikes is smaller at higher densities, This is due to the fact
that the width of the wave functions increases with density leading to a reduced
amplitude of the wave functions at the spike positions.

According to Eq.(:L3), the data in Fig. 3.3 can be used clirectly to plot 6.lsol 2 as a
function of the gate voltages. For this purpose, we interpolated the data in order to
subtract unequally spaccd data points from different sam ples. The central result is
shown in Fig. :3.,5, where all combinations of data from sarnples 2,3 and LI are shown
(symbols) for two different Hall densities.

Duc to the measured relation between wave-function displacement 6.z and the
gate voltage [!fg (Table 2.1), we can nlap the measured 6.lsol 2 as a function of spa­
tial coordinate instead of gate voltage, and COlnpare them to the calculated wave
functions. The upper axis of Fig. :3.:5 indicates the obtained 6.z. The solid line corre­
sponds to tbc ca.lculated spatial probability density distributions. Note that there is
no fit parameter. Tbe data provides cleaT evidence that differences of single particle
probahility densities are measured. \\7ith increasing electron density, the screening
of the pa,rabolic potential becomes more prorlOunced anel the wave functiorls spread
out. Simultaneously, the eunplitude of wave functions is reelucecl due to their
normalization. Both features are observecl in presentecl clata (Fig. 3.5) anel are



3.5. DISCUSSION AND CONCLUSIONS 37

(a) (b)

-200

,....,

's 2-·

100 ~z(A) -200

_ ..__.•.l....-._..._l.....__L. _.._u t. __ ._.. -.l- L ... -.-l_.__ .__
-400 -200 0 -300 -100 100

Ut\r (mV) Ur" (mV)
b b

Figure :3..5: Mcasured (symbols) and calculated (solid lines) clifferences 01' probability
density distributions 6.lepl2 01' the two lowest subbands for (a) nH=2.4-1015 m-2 and
(b) .9.10 15 m- 2 . The data are obt.ained by subtracting interpolated values 01'

n1 no from Fig. 3.:J. Triangles correspond to differences from samples with z = n.l0
and z - 0.15, circles from those with :r = 0.05 and :r = n.10 and rectangles to
:r = 0.05 and :r 0.15. The error bars correspond to an estimated error of 2.10 7

m -1. The front-gare voltages Ufg are linearly transforrned to positions 6.z (upper

x-axis) as obtained frorn a capacitor model.

solely due to electron-screening of the parabolic potential.

3.5 Discussion and Conclusions

The rnethoel introduced is baseel upon the validity fitst-erder perturbation theory.
Calculations show that in our samples with a three monolayers thick potential spike,
the second-order contribution is at least live tirnes smaller than the first order, even
for the spike with :r 0.15. Also, the the spike-induced change in the self-consistent
potential leads to small energy corrections. Experimentally, the accuracy is mainly
limited by the measured Hall- and subband densities, Thereby the range of measured
SdH oscillations in l/B deterrnines the resolution of the measured subband densities
(for a discussion of the error induced the Fourier transforrnation of SelH data,
see Ref. [23]). One contribution to the error results from deviations in the eleetron
sheet density from lIH due to multisubband effects, These are found to be small
because the low-fiekl Hall resistance is linear with magnetic Held for all measured
gate voltages. Deviations frorn sample to sample must be considerecl as well. From
our data it can be deduced that they are mainly restricted to small displacements in
gate voltages, which are not corrected in our analysis. Keeping in mind that the four
sarnples were grown on different wafers, this confirrns the perfeet control of sample
growth conditions. The upper limit for tbc error in lIH is estimated to be 1·1014rn-2 ,
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giving an error in no whieh is about half of this value. This corresponds to an error
of 2.107 m- I in 61<p12 (error bar in Fig. 3.5).

Due to the parabolicity of the as-grown potential, the shape of the electron distri­

bution is maintained along a line of constant 17n in Fig. 2.17. This is true as lang
as the displaced electron distribution doesnot touch the hard walls surrounding the
PQvV. For the parabola investigated, the eleetron distribution can be approximated
classically by a rectangular funetion of wiclthw ;::::: s10A at a density of tl.1015m -2.

At this density the electron distribution can Ums still be moved ± 125 Aaway from
the center , without changing its shape, Quantum mechanically the wave functions
belonging to different subbands have different wiclths and reach into the hard walls
of the PQW. Thus a displacement of the wave functions from the center of the PQW
will result in small modifications of individual wave functions, Due to its larger spa­

tia] extent, <PI is altered more than <po. This leads to modifications of 61<p12 far away

from the center of the electron distribution, whereas 61<p12 remains mainly unaffected

in the center (Fig. 2.19). Therefore the assumption of a pure displacement of wave

functions is reasonable areund the symmetrie situation.

In conclusion, we have prcsented Cl, method to locally probe diflerences of one-electron
probability densities of electrons in a screened potential well. This has been done in
Cl, transport experirnent at different electron sheet densities. Ahhough in principle
the method can be applied to any kind of potential well using a large number of

samples, in the special case of a PQW, the spatial distribution of probability density
differences can be mapped out with only two samples. We have demonstrated that
in PQ\iVs, the spatial distribution can be seanned by displacing the wave functions

without changing their shape. Our experimental results are in exeellent agreernent

with self-consistent subband calculations.

The wave function spectroscopy introduced in this chapter may also be reversed.
Suppose the wave funetions are known by self-consistent calculation. Then the un­
known potential of an objeet can be measurecl. In this way for instance the potential
of a layer of self-assembled quantmn dots eould be deterrnined. Due to strain of

the 1nAs dots embedded in GaAs, the efIective potential is modified. The experirnent
would allow to test theoretical rnodels of this strain-inclueed potentia.l change. This
experiment is eurTerltly being perfonnecl in our gronp.



Chapter 4

Scattering Times in Parabolic
Quantum Wells

In this chapter we discuss the relevant scattering rnechanisms an electron experiences
in PQvYs at low temperatures, where both optical- and acoustic-phonon scattering
are negligible. The dominant mechanism is scattering by the ionized dopants located
in the layers on both sides of the PQvy. This kind of scattering is an elastic process
since the energy-transfer frorn the electron to the impurity is negligible due to the
small electron mass. The momentuni relaxation of the electrons determines the con­

ductivity. Elastic scattering rates are obtained from the measured sample resistance.
Theoretically, the conductivity is calculated from the relation between the current
and the electric field , as it is obtained from the solution of the Boltzrnann equation,
where the transition rate of electrons scattered frorn an initial state i to a final state
f needs to be known. In conventional 2DEGs at low temperatures, the initial and
final states are both in the sarne subband. In a rnull.i-subband systems as PQvYs,
also intersubband transitions have to be considered,

In the first section, we summarize how to calculate the scattering tirnes, including
abrief overview on screening in a multiple subband system, and a presentation of
the different scattering mechanisms involved. In principle, the mobilities of individual
subbands are obtained from the measured magnetic-field dependence of the resistivity,
This is explained in the third section. Experiments measuring the Drude and the
single-particle scattering times of the individual subbands are discussed in Ure fourth
section. There we ernploy the wave Iunction displacernent introduced in chapter 2.6.2,
in order to learn more about the spatial arrangement of the scatterers.

4.1 Calculation of Scattering Tirnes

4.1.1 Fermis Golden Rule

We describe how the single-particle scattering time is calculated in the one-subband
case. The scattering rate 1 s of a particle subjected to the potential <P is calculatcd
using Ferrni's Colden Rule:

:39
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(4.1 )

The wave functions of the initial state 'i and final state f are composed of the subband

wave functions cp( z) in z-direction ancl plane waves il-1/2eiki( 1'11 in :/:- and y-direetion,

where ki/ is the in-plane wave vector and rff = (:r, y) the in-plane coordinate, The
calculation of the matrix elernent involves an integration over rll corresponding to a

Fourier transformation oE cj), whic:h beeomes a function of q = kfJ --kil' There remains

an integration over z:

(4.2)UIcj)li) ./ (z)cp(z)dz./
'-----"..----v

(1)(q,z)

This matrix element is the integral of the in-plane Fourier-transformed potential
<1>( q, z) times the subband wave functions. It can in most cases be divided into
a form factor F(q) and the z-independent contribution from the potential, <p(q).
Without any spatial correlation between the individual scatterers, the averaged
square of the matrix elernent is proportional to

(4.:3)

The final form 1'01' the scattering rate is obtained by replacing the sum over the final

states f in Eq. 4.1 by an integral (wer the anglef between kif and k~, which is related

to q = Iql by q = J2k'ff(1 - cos t9):

1 rn

2Trn
(4.'1)

The time Ts describes the time an electron travels without being scattered, It is
weighted uniforrnly over alllJ. However, electronswhich are scattered by a small

angle contribute less to a resistance modification than large-angle scattering events.

In order to obtain the Drude scattering time TD, the integrand of Eq. 4.4 has to be
weighted by the factor 1 costi. This follows frorn the solution 01' the linearized
Boltzrnann equation, where the electron distribution in an electric field is consiclerecl.

4.1.2 Electron Screening

At low temperatures, the rnobility of a 2DEG is limited by electron scattering due
to the electric field 01' remote ionizecl impurities. The electrons do not feel the full
Coulomb potential 01' the dopants, The spatially varying electric field is screened by

the electron gas. In rernotely dopecl 2DEGs, the separation of the dopants from the
electron gas leads to a weak, slowly varying scatterrng potential", In this seetioI) \\Te

clescribe how the screenecl eleetrostatie potential is caleulated.

1 Here, 'weak' means that the electrostatic potential induces acharge density which can be lin­
earized with respect to the applied potential
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We regard a point charge separated by a distance d from the potential well, In
general, the screening by an electron gas is clescribed by introducing two electrostatic
potentiale [53]. The first, ({>ext arises solely frorn thepoint charge, while the second, (f>

is the fuIl physical potential due to the impurity as weIl as the eleetron gas. Similarly,
next and 'I/, are the external and the full charge density, respeetively. The charge
density nincl induceel by the external charge is givenb:v nincl n ncxt. In analogy to
the relation between the eleetric displacement D and the eleetric fielel E, a dieleetric
constant E( r r") is defined, such that

((>ext(r) = / dr/E(r r/)(p(r). (4.5)

The relation between ({> and the induced charge clensity is given by the polarization

P:

nind(r) = / dr' r r')(f>(r/).

Using nind =~ n next and writing the potential q>ext as a funetion of the external charge
next by using the Greens funetion v(r - r') the Poisson equation, one obtains

E(r - r/) b(r r/) - ./ iPr"v(r - r")P(r l r"). (4.7)

For two-dimensional systems it is convenient to Fourier-transform the above equations
in the coordinates of the two-dimensional plane, as is suggested by the form of Eq. 4.2.
Then ({>ext becomes

({>ext(q, = / dz' E(q, z - ip(q,

The polarization can be calculated in first-order perturbation theory frorn the wave
functions Yi( z) [54, 55] and is given in the Raudom Phase Approximation (RPA) by

P(q, z, Zl) ""' 11I,U' A (', q')!.,; _(' ~!J...." l} 'TI" ("I) _( ... /)"" Y) N , (4.9)
I)

with the static eleetron density-density correlation funetion

(4.10)
+q)

E'jkll+q

nHF'A, (' ,) = 2", ""' f ('.1 q,,\ J...." ----1-'''-''-------''--
. l kn0ikll

The diagonal terrns III;PA were calculated Stern [56]. The off-diagonal elements
were described in Refs. [57, . It is import.ant to note that nI}PA is not zero for un­
occupied subbands j, if subbandi is occupied. Therefore also unoccupied subbands
may contribute to the screening of the scat tering potential, although they are not
involved in the solution of the Boltzrnann transperr equation (at zero temperature}.
But how can a non-oecupred subband contribute to screening? In the matrix form al­

ism introduced here, we consicler the response of an eleetron system to a perturbing
potential, which usually originates from positively chargecl donors outside the 2DEG
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Figure '1.1: Higher subbands may also contribute to screening, as it is illustrated here
in a two-subband system, where locally three subbands are occupied due to positively

charged scatterers.

layer. The subband energies are bent downwards at the position of the charge, as il­

lustrated in Fig. 4.1. Generally unoccupied subbands rnay be pulled below the Fermi

energy locally.

Introducing the matrix elements cD'l(q) = J d;;'rpi( (z)<p(q, z), one obtains the
matrix equation [5Ll, 59]

<I> ex t (', ), = '\",
"I) q L

im

with the dielectric function given by

(q) <I> im, (q), (4.11 )

(q) + .I .I dzdz'n~PA (z)rp,j(z )v(q, z z'). (4.12)

The Fourier-transforrned Greens function is given by

u(q, z - (4.13)

Inserting this equation into
matrix

. 4.12. one obtains final form for the clielectric

(q) (4.14)

with the Coulomb form factor

F::1,lm(Q) = .1.1

(17) given hy

(z) (Lti5)
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In order to obtain the screened potential <P from the external potential <pext, Eq./1.11
has to be inverted. This means that the inverse dieleetric matrix Ei/im has to be
found. Then, the matrix element <Pi,i of the screened potential can be calculated with

<I\i(q) = L
im

(4:.16)

This formalism is a good approximation of screening in a multi-subband system, if

the wave functions !.pi are known. The equations above assume the same dielectric
constants in AIGaAs and GaAs. General expressions for the form factor for special
geometries with varying clielectric constants were derivecl in Ref. [60]. Experiments on
silicon inversion layers [61] and GaAs-AlGaAs heterojunctions [58] with two occupied
subbands showed good agreement with this theory. The matrix-RPA forrnalism was
also applied to multi-subband 8-dopecl systems with up to 6 occupied subbands [62].

A simpler approximation is the Themas-Fermi approximation in two dimensions,
where the incluced charge is proportional to the DOS arid to <1>:

nind(q, 2 rI.) ;f. (q: z) -(.e .. ,±,q,_6
7Th

(4.17)

With this surmise, the screened potential <P becomes

<1>( q, (4.18)

where OB is the effective Bohr radins (OB =:: l(HL\ für GaAs).

4.1.3 Scattering Mechanisms

This section gives an overview of the scattering potentiale for the different scattering

mechanisms, Besides Coulomb scattering, we also mention scattering by individual
Al- and Ga- atoms in the AIGaAs alloy as well as scattering at the rough interfaces
between the well and the surrounding Al(;aA..s. However, these two mechanisms are
found to play cl, minor role in the determiriation of the overall scattering rate in PQvVs.

Coulomb Scattering

Here we consider electron scattering by ionized irnpurities. The unscreened scattering
potential of a singleionized irnpurity located at r (0,0, zo) is given by

1

47iEEo Ir - r, I'
The two-dimensional Fourier transform of the scattering potential is given by

J

(4.19)

(4.20)

(4.21 )
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Thus the transition matrix element reads

('1.22)

whereF":i (q, f (::.: c-q!z-zo I is the Coulomb form Iactor.

In the PQvV samples, ionized impurities are located on both sides of the wen, and

two contributions have 1.0 be consiclered.

Alloy Scattering

Alloy scattering refers 1.0 the scat.tering present in alloys due 1.0 the random dis­

tribution of component atorns among the available lattice sites [63]. In a square
well where the electrons reside in, the terriary cornpound Al,rGa1-xAs, the averagcd

squared scattering potential is given by [63, 64, 65]

(
' ' ""1,),:3 1

:C I-,Ti (bI! ~--.
4 '210'

(L1.23)

where af is the alloy unit cell (az L1.65A), the conduction band offset between
AlAs and GaAs (7::50 meV), andw the width of the potential well,

For a, PQvV, where :1: varies continuously along the well, the term :c(1- :c) is replaced
by the Form factor J dzcpi(z (z):r(z)(1-:r(z)). Using Eqs. 4.4 and L1.23, we estirnate
the single-particle alloy scattering rate 1.0 be 1.8 . 1010s-1, assuming x = 0.05 and

10 76nm.

Interface Roughness Scattering

Boundaries between serniconductor layers are never perfectly Rat. Interface rouglmess
contributes to the scatteriug rate. In the casc of a quartturn well, a simple picture
considers the variation of the quantuni well energies as a function of the variation of

the well width, The scattering rate is proportional to this energy variation. For a
square-weil potential of width iu the averaged squared matrix element of the random

interface roughness potential is [66, 67,

The pararneter 6. denotes the amplitude of the well width fluctuations and A is the
correlation 1ength of the fluctuations. We see that the interface roughness potential

decreases with the well wid th as 1 ,Ass urning 6. 5 A (two monolayers) arid
A 300 A [69] gives für aw = 76nm wide PQ\V a scattering rate of 1.7 . 108s-1 ,

which is small compared to the alloy scattering rate. The values for both, alloy and

interface-roughness scattering, are small compared 10 the Coulomb contribution, as

found experimentally (chapter 4.2.3) and by calculations (chapter '"1.2 ..5).
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4.1.4 Scattering Times in a Two-Subband Quantum WeIl

The question arises how the mobility in different subbands of a PQvV is characterized.

By using Ohrri's law j Zi JiE one can attribute individual coneluetivities o; to each
subbaneli. The Drude scattering times I, and subband mobilities fli == er.Lrn: are
obtainecl from the conductivities using the Drude result a, = nie2T,(B) [tri" with a
magnetic-field dependent scattering time T,(B) (e,rn* electron charge and effeetive

mass).

In a magnetic field, the conductivity a,

(li = Ti (B = 0)):
thus Ti(B) decrease like a Lorentzian

(4.25)
1+

Ti(B) = ----c:'

which is easily verified by inverting the "PC'lel" tensor given by

111

ni
B

nie

(4.26)

(4.27)

The total conductivity is simply Zi a.. The reeistance p~,~:(B) is obtained by inversion
of the conductivity matrixv For small B, the resistance increases quadratically with

the rnagneticfield, i.e. p~::t(B) P'l':e(O)(l + aB 2
) [70] with

11.01011.1 11 10

rn2(nolo + nl Tl)2
(4.28)

From this so-called positive magnetoresistance the scattering tirnes Ti of Cl, two­
subband system can be extracted [TL, 70,

The possibility of intersubband scattering increases the phase space for final states.

This enhances the scattering probability and thus decreases the mobility, which was
first observed in Refs. [7:3, 7cl]. The solution of the Boltzmann equation taking in­
tersubband scattering into account has been given by Siggia [5 tl]. In most cases the
subband scattering tirnes elo not depend on B in the usual way, i.e. IlB) is not given
by Eq. 4.25 anyrnore. Thisimportant fact was first mentioned by Zarernba [75]. Ac­

cordingly, the positive magnetoresistance is not given by Eq. 4.28 anyrnore. In his
model based upon the Boltzrnann equation , Zarernba takes intersubband scattering
into account explicitly, This leads to a rnodiJied B-dependence of Ti(B), which can
be written as [75]

Ti(B) = Re (~(K + iw,l);;' (4.29)

where the k, are the Fermi wave vectors.
scatteting matrix defined by

cB [in, and K the
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K ( 1~1. . I~3)
B";i 1\.2

(
.1) (0) P'(l.) +1).(.0)

00 . 00 10

1) (1)
10

__ p(l)
10

p(O) __ pU) + p(O)
. 11 . 11 . 10

)
(4.30)

The coefficients P)~::l are related to the transition rates Pnm (t9 ) o; l(nIP(19)lrn)1 2 be­
tween subband states n andm and scattering anglet9 by Fourier transformation in 19.
p(O) is the transition rate intezrated over the aIlowed scattering veetors, while in p}Jl). D .. .... .. . ... 0 •

the integrand is multiplied by coszJ. Both transition rates are generaIized expres­
sions 01' tbe one-subband case in Eq. 4.4. The difference Pi~O) Pi~l) corresponds to
the single-subband Drude scattering rate, where the matrix element of the scattering
potential is weighted by (1 - cosd). Transforming Eq. 4.29, one obtains

(4:.31)

In tbe special case K:l = 0, Eq. 'L31 reduces to the independent-subband case of
Eq. 4.2.5. Note that in the diagonal elernents I{1.2, also the isotropic part 01' inter­
subband scattering is included. It was shown that intersubband scattering cannot be
neg1eetecl 1'01' our PQ\;V samples and K 1 2 cannot be assumed to be small [76, 77].

With n, known, Eq. ,1.29 allows a fit to (B), with KI, K 2 and K 3 being the fit

parameters [75] (Fig. i1.2a).

4.2 How Does Elastic Scattering Vary Across a
PQW?

In this section, we study the elastic scattering tirnes 01' electrons in two subbands 01'
a pQ"r. This is clone at constant electron sheet clensity, but different positions 01' the
eleetron distribution along the growth direction. We find that the scattering times
obtained by magnetotransport measurements decrease as the electrons are displaced
towards the well edges, aIthough the lowest-su bband density increases, By comparing
the measurements with calculations 01' the scattering tirnes 01' a two-subband system,
new information on the location 01' the relevant scatterers arid the anisotropy of
intersubband scattering is obtainecl. It is founcl that the scattering time 01' electrons
in the lower subband depends sensitively on the position of the scatterers, which
also explains the measured clependence 01' the scattering on the carrier density, The
measurernents indicate a segregation 01' scat.terers from the substrate siele towards the
quantum well durmg growth

4.2.1 Introduction

The striking success 01' Ga[Al]As semiconductor heterostructures originates from the
extremely high mobilities obtained in these materiale. Gnekey ingredient for the
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fabrication of such samples is modulation doping, where dopants and electrons are
spatially separated. At low temperatures, impurity scattering, alloy scattering and
interface roughness scattering limit the eleetron mobility [79, 65]. If more than one
subband is occupied, intersubband scattering takes place in addition[M, 59, 73, 80].

Information on the relevant scattering processes is usually obtained by measuring
how single-particle (Ts ) and Drude scattering times ) vary with carrier density ?LIr.

1"01' two-dimensional electron gases (2DEGs) realized in A1GaAs hetcrostructures, it

is found that impurity scattering is dominant. Due to screening, one finds T (X 11~,

with A( between 1 and 1.5, depending on the dist.ance between the dopants and the

2DEG [79].

In a two-subband system with subband densities 110 and nl, the Drude scattering

times Ti of subbandi are usually found to monotonically with n; [71, 75].
Recent results show that in a parabolic quantum well (PQW), TO may also slowly
decrease, i.e. "( < 0, when a seconcl subband is occupied [76, 77]. In the fol1owing,
we investigate this unusual depenclence ancl show that it may be due to a certain

arrangement of the ionized impurities.

4.2.2 Experimental

'I'he inset of Fig. 4.2a shows the structure of the sample. In the center of the well, a

three monolayer thick Alo.05Gaü95As layer forrns a potential spike. The experiments
were carried out with standard Hall-bar geornetries at temperatures of 100 mK. Four­

point measurements using a current of 10 nA at a frequency of 1~~ Hz were performed
with a rnagnetic field B applied perpendicular 1,0 the electron gas.

Figure 4.2a. shows a measurement 01' themagnetoresistivity Pxx(B) at nH = 2.9 .

1015rn- 2 . From the low-field magnetoresistivity, TO and Tl are obtained by fitfing to

the two-subband rnodel described in section 4.1

vVe measured P:rr(B) at l1n 2.9 . 1015 (controlled by the low-field Hall volt­
age) and different positions 01' the e1eetron distribution along the growth direction

(Fig. 4.2b). The eleetronswere displaced by applying voltages Ufg (Ubg) between the
front (back) gate eleetroele arid the eleetron gas.

Variations 01' both amplitude and period of the Shubnikov-de Haas (SdH) oscillations
with changing Vfg are clearly visible. The amplitude at afixed magnetic field decays
as the wave functions are displaced towards the substrate. This corresponds to a

decreasing Ts [80, 81]. An anal:ysis of Ts is presenteel in seetion 4.5.

As described in chapter 2.6. we find tbe displacernent D.Z per front gate voltage

by fitting Uhg as a function of at constant l1H to a capacitormoc1el. 1"01' l1H =
2.9 ·1015 rrl- 2

, we obtain a elisplacement of 1000 AjV[ill]. Thuswe can plot the elata
as a funetion of instead of gate voltages.

From the SelH frequency vV'e el/aluaten.o(D.2) 4.3a). j\ minimum occurs in no
at U(g' ~ -1:30 InV amI is related to the narrow potential spike in the center of the
PQW. The spike leads to subbanel energy shifts clepencling sensitivelyon the eleetron

distribution along the growth direction. A. displacement of the electrons tlms changes

no anel ?/,J. The cliiference between the two lmvest subbaIlcl energies is minimal when
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the wave functions are centered with respect to the spike. Therefore, the minimum in
no provides the reference for the location of the wave functions in growth direction[47] ,

where 6.z = O.

4.2.3 Detorrnination of Drude Scattering 'I'imes

By fitting the magnetoresistance data IvithEq. 4.29, we evaluated TO and Tl for
different 6.z (Fig. 4.:3a). The lower-subband scattering time TO is found to be larger
than Tl. Both TO and Tl show a maximum as a function of 6.z. The maximum in Tl

occurs where the wave functions are centered. i. e. O.

Assuming a decrease of Ti with decreasing n, due to screening (J > 0), we expect

a minimum in TO at 6.z 0, which disagrees the measurement. On the other

hand, the scattering rate depends on the distances frorn the relevant scatterers [82].

Für 6.z = 0, the electrons are as Iar away as possible from the ionized impurities,

which gives rise to large Ti. The fact that TO is large around 6.z 0 indicates that the

clensity-clependence is weaker tlian the dependence on the distance to the relevant

scatterers. In centrast to the 110 subband. both~nl and Tl have a maximum at
6.z = O. The relative change of 111 with 6.is larger than that of no. Hence, Tl is
more strongly influenced by its density dependence than by 6.z, which explains the

coincidence of the maximum in Tl with =, O.

The maximum of TO is shifted towards the surface, inelicating strenger scattering

on the substrate siele. Although this could be explained by assuming more dopants

than expeeteel from the MBE growth protocol, we can exclude this, because the total
amount of Si brought Oll the wafer was measured accurately. However there might be
segregation of dopants on the substrate siele towards the PQW during growth, which
would enhance seattering significantly.

Additional insight can be gained by stuc1ying the spatial variation of the matrix ele­

ments K, (Fig. 4.6a). Usually, Drude scattering times are irrsensitive to small-angle

scattering. For intersubband scattering, [( eontains the part of the scattering rate

weighted by cos ä. This gives inforrnation about the amount of small-angle inter-
subband scattering, Since almest no structure ](3 is observecl, while 1\1 increases

stronger on the substrafe side, large-angle must be higher on the substrate
siele. In order to increase large-angle scattering C;oulolnb scatterers with fixecl den-
sity~ the clistance to the e1cctron gashas to be climinished. 'rhis happens if seatterers
segregate towarels the electron gas.

4.2.4 Detennination of Single-Particle Scattering Tilnes

The single-partiele scattering tinle Ts cletennincs thc wiclth of the Lanelau levels anel

tbe a.mplitude of the oscillations in the DOS in thc presence of a nlagnetic fielel.
From the amplitude of the SelH oseillations, T5 from the 10wer-energy subbancl is
obtained by fitting the arnplitucle 6.p of the ScllI-oscillations by [80]

(4.32)
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FiguTe 4.2: (a) Fit of f>;r;r(B) for Ufg rnV ( 1000mV) to the two-subband
scattering model. Inset: schernatic sample layout along the growth direction. (b)
Set of measured (B) for different electron positions along the growth direction at

'1111 = 2.9 . 101 5
. Values for aTe indicated, and Ub g is varied between -2.2 V

(top) and +2.2 V (bottom) in steps of 0.'1 V. Subsequent data are offset for clarity
by 50 n. From top to bottorn, the electron distribution is displaced towards the
substrafe. The data for fall on top of each other since nH is constant. One set of
minirna corresponding to tbe same filling factor in the lower subband are connected

a dashed line.
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Calculated scattering times for a scattering distribution where 1.5.1015 1:11- 2 of dopants
are shifted 1'1'011'1 the substrate siele towards tl1ePQ\V, showing goocl agreement with
the measured data, (c) The same calculations as in (b), but with the dopants as in
the growth protocol.
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where the Dingle term is DT(X) X/ sinh X. At low temperatures T and high
magnetic fields, the Dingle term approaches unity. Figure 4.4 shows a logarithmic
plot of the left side of Eq. 4.32 divided by the Dingle term, as a function of 1/B,
for a measurement on a PQvV. In this representation, the SdH amplitude decays
as logi! - Ti/TsWc, i.e. linearly with I/B. Frorn the slope 01' the linear curve one
obtains Ts• Because the Sdfl-oscillations are due to the subband z = 0, we interpret
the obtained T s as the single-particle scattering time 01' thei = 0 subband. Single­
particle scattering times 1'01' two occupied subband have been deterrnined in a. 2D
heterjunction structure [8:3].

1

-0

8
~
f- 0.1~

~
C\J
----0
--'0
a.

---- 0.01a.
<J

0.001 0 1 4 5

Figure 4.4: Dingle plot: logarithm of Sc1H-arnplituele c1ivieled by the Dingle term
(Eq. 4.32), as a function 01' the inverse magnetic fidel. Taken for Ubg = Gon mV and
[ffg Uj7nlV (sampie 21, T = n.();)). The slope 01' the linear fit deterrnines the
single-particle scattering time TsO'

An analysis 01' T s is presenteel in Fig. . In the measured data we observe a decrease
01' Ts , as the wave functions are displaced frorn the front gate siele to the back gate
side, where norninally less ionized impurities are located. This indicates once more
that on the back-gute siele there ei ther have to be more scatterers, or the scatterers

are closer to the PQvV than expeeteel. The values for Ts are ab out ten times smaller
than the Drude scattering tirnes Tl). Because in Tl) the forward scattering events
are counted less than in TS, this means that electrons in the PQvV are scattered
predominantly by small angles ä. This is explained by the Hat potential produced
by the remote ionized impurities, In calculations the ratio TO/Ts typically reaches
values 01' lOü. It hasbeen shown Co1ericlge [Scl] that spatial correlation of small­
angle scattering events can significantly increase the single-particle scattering time
compared to calculated values, while the change in Drude scattering time is less
pronounced.
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Figure i1.5: MeasuredTs 1'01' difierentpositions 01' the electron gas across the quantum
well. Towards the back-gare siele, Ts monotonically decreases, inclicating that there

have to be more scattereres 01' the scatterers are locateel closer to the well than on

the Front-gate siele.

4.2.5 Calculation of the Scattering Times

As we will show, a calculation 01' the TI supports the assumption 01' segregatecl Si

atoms. The matrix elements 01' the scattering potential were obtained by numerical

integration using self-consistently calculated wave functions. Then the transition

rates Pr~~;, were calculatecl by integrating tbe squared matrix elements over the allowed
scattering vectors. Screening was indudeel in the Themas Fermi approximation. In

Appendix A we compare Tl101rl as Fermi screening with the RPA forrnalisrn introduced

in section ,1.1.2. 'Ne find that Thomas Fermi screening gives results similar to RPA
screening if a third virtually occupiecl subband is taken into ac count. For the two­

subband RPA forrnalism, the results clearly differ. Because 01' limited computing

time, we present here the '[,1101na8 Fermi results here.

The Ti were calculated from Eq. 4.29. Besides C01110nrb scattering, we inducleel alloy
scattering and interface roughness scattering in the calculation. We founel that the
scattering rate is dorninated by Coulomb scattering. Therefore the other scattering

rnechanisms could be negleeteel the in the calculations presenteel in the following.

Initially, two layers 01' Coulornb scatterers were included. The dopants on the surface
siele were gatherecl in a single 8-1ayer :300 A above the well, with a concentrat.ion 01'
NI = :3.1016m- 2

• The secend layer is the doping layer 200 A below the well (N2 2.8·
1015 m- 2

) . These values correspond to half 01' the nominal Si concentration brought

on the wafer during the TvLBE-growth, qualitatively accounting for deep donors and

non-ionized impurities. Figure 4.:3c shows the obtained scattering tirnes. As one

would expeet for this donor configuration, TU monotonically increases as the eleetrons

are displaced towards the substrate siele, whichis not in a.greement with the measured
data (Fig. L1. 3a).
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In oreler to take segregateel Si atoms into account, we placed N3 = 1.5 . 1015 m ?

scatterers at the eelge of the well on the substrate side, and reduced N 2 by the same

amount (Fig 4.3c). As in the experiment, we obtain a maxirnum in 'Ta displaced
towards the surface siele and a maximum of TI at ~.z = O. At the surface siele, Ta

decreases only slowly, saturating at a value cornparable to the simulation with N:\ = O.
It is the balance between the monotonically decreasing Ta shown in Fig. 4.3c, and the

range and strength of the extra layer, which deterrnines the exact shape of TO( ~z)
'I'he calculated scattering times are about (lO percent larger than the measured ones.

It is well-known that for PQvVs calculations overestirnat« the scattering times. Pos­
sible explanations are size-effect scattering frorn the eelges of the electron gas [85]
or enhanced background irnpurities due to the greater reactivity of Al with oxygen

and carbon-containing molecules in the MBE cliamber. In addition, the calculated

values elepenel on how screening of the scattering potential is implemented and which

concentration of ionized impurities is assumed. We did not attempt to simulate Ti

accurately. Here only the qualitative behavior, in particular its spatial dependence,
is of importance.

The calculated K i nicely reproduce the experimental da.ta (Fig 4.6b).

4.2.6 Density-Depcndence of the Scattering T'imes

With this strong evidence for segregated scatterers at the substrate siele of the well,

we come back to the previously unexplained structurein the c1ensity-depenc1ence oE

'Ti [77]. In this experirnent, Ubg was kept fixed , while and therefore nH was changed.

In Fig. 4:.7, the rneasured and calculated values for To, Tl, no and n1 are shown. In
the measurement, 'Ta slightly decreases as 111 gets populated. In the calculation, the
additional scattering layer gives rise to a weak increase of Ta with nH when the second

subband is occupied (large symbols), whereas a steep decrease results in the case of no
additional layer (small symbols). Thus the additional scatters are responsible for the

slope of To(n.lr). Since nH is driven by \fg, the eleetron distribution expancls tovvards
the surface siele with increasing nH .I'hus the scatterers on both sieles of the weH

compete anel eletermine the shape of T(nlr). As discusseel above, for srnaH n1, Tl is
not so sensitive to additional scatterers, whichis reflected in similar values obtainecl
horn the two simulations shown in Fig. ·1.7b.

4.2.7 Conclusions

In conclusion, we llClVe presenteel an investigation of Druele scattering tirnes in a
1110elulation-doped nmlti-subband quantum weIl. Usirlg front- and back gate vo1tages,
tll(:~ position of the electron distribution anel the subband densities were tuneel. The

Drude scattering tirnes of individual subbanels were measured. It was found that Ta

is dominated by the clistance of tbe 2DEG to the impurities and not by its density

dependence. Its behavior could thcrefore be used to 10cate additional scatterers at

the substrate edge of the \veIl, which are presurnabl:y due to segregation of dopants

during growth. Tbe nreasureel times coulel be quahtative1y reproduced in a
calculation assuHling that half of tbe substrate-siele donors have diffused to the edge
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of the weIl. Using these results, previous measurements of the density dependence
of 70 could be explained. While obtained for Cl, PQvV, the presented method of
investigating the scattering times as a funetion of the eleetron-gas position might
yield further information on scatterers in other types of sarnples.



Chapter 5

Phase-Coherent Transport

In this chapterv we present measurements of weak localization (WL) and univer­
sal conductance fluctuations (UCF), two effects arising from phase-coherent electron
transport. Contrary to inelastic scattering processes, correlations in the quantum­
mechanical phase of electrons are not destroyed by elastic impurity scattering. This

leads to phase-coherent transport over a length which can be significantly larger

than the elastic scattering length lel. The coherenee of a quantum-rnechanical sys­
tem is a prerequisite for quanttun computing, a topie which has been diseussed a lot

recently [86, 87, 88].

The vVL an d (JCF effect manifest thernselves as quantum interference corrections
to the Drucle resistivity, which are important at low temperatures. With the PQvV
system, we can investigate the phase-coherence length at the erossover from a two­
to a three-dimensional electron gas.

5.1 Phase-Coherence Length

In the description 01' electron transport by the Boltzrnann equation, thc electrons
are assumed to move along classical traj bctween two seattering events. If
interference of scattering from different centers cannot be neglected, the rnotion of
elcctrons is described by quantum-rnechanical waves with a phase 4J oscillating in
time and space. This phase is well-defined as long as no scattering events modify the
encrgy of the electron. The loss of phase is called deccherence. A length scale l4) is
defined, whieh measures the distance an electron travels until its ability to interfere
with itself is lost. Imagine two Feynman paths [89] starting at point A and ending at
point B. The ability 01' the two paths to interfere at point B is lost if the fluctuation 01'
the acquired phase shifts is larger than say . It is important that the environrnent
randomizes the interferirig particle's phase in an unpredictable way. The phase 4J at
point 13 is a statistical variable, \vhieb can be characterized by a distribution Iunction

4J). The phase-coherence Iength lei> is ddinecl such that on paths with a length lcP

the width of P(- the VariaJlee of the phase 1S

Elastic seattering of eleetrons irnpurities anel clefects does not eontribute to de­
coherence at low temperatures, because no energy transfer to the defect is possible
[90]. However uncler eertain corlditions, if an internaI elegree of freedom as spin is

57
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involved, dephasing can occur in the absence of any inelastic process, as was pointed
out in Ref. [91]. Thus inelastic processes as scattering of electrons with other elec­
trons 01' spin-flip-processes arernainly responsible for decoherence, An electron needs
the time TIjJ = lUD to travel the distance l,6 diffusively (D is the diffusion constant}.

Theoretically it is found that the phase-coherence time Tq, increases with decreasing
temperature as o; 1 , where p varies between 0.5 and 3 [92, 91, 9:3, 94]. How­
ever many experiments show a saturation T at low ternperatures, which has been
ascribed to residual heating of the electron gas by the environment 01' by spin-Hip
scattering processes due to magnetic impuri ties. Only recently these two mecha­
nisms could be clearly excluded [95]. A new , but controversial theory was proposed,
where electron seattering by zero-point fluctuations of the intrinsic electromagnetic
environment explains the low-ternperature saturation of T(p [95, 96]. An alternative
explanation was proposed by Altshu1er \vhi is based on dephasing by an external

microwave fidd [97].

Theories clescribing the behavior of Tq, as a function of the electron density do exist
for strictly 2D electron motion and for the case of :3D motion like in thin meta]
films [98, 99]. To our knowledge no work has been done to investigate the influence of
intersubband scattering on phase coherence. \Ve therefore investigate wh at happens
to phase coherence if a second subband is populated, i.e. at the crossover from 2D
to 3D.

V'fe focus on two effects due to phase coherence, which can be used to measure

• At B = 0, there is a peak in P:l;:l;(B). T11is is the so-called weak-localization
(WL) peak .

• The conductance fluctuates as a function of some external parameter, like Usg

01' B (universal conductance fluctuations, lJCF).

Making use of these two effects, we present in the two following sections investigations
of phase-coherent transport in PQvVs.

5.2 Weak Localization

Weak localization js observed in the magnetoresistivity of 2DEGs at low tempera­
tures. Areund B = 0 a peak in (B) occurs (Fig. 5.1). The explanation for this
relies on phase coherence leadirig to an enhanced backscattering probability due to
time-reversal invariance of pairs of clockwise and anticlockwise paths [92, 100, 34].
This coherent backscattering leads to a reduction of the diffusion constant and cor­
responding1y to a rec1ucecl conc1uctivity. The conductivity reduction at B = 0 due to
coherent backscattering is denoted by ~cro. It dcpcncls on the channe1 width IV. For
one occupied subband, HT > l6 and für Tel T an expression for ~cro is obtained [34]:

(

T
')' In 1 +
~7';'~n Tel

(5.1 )
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Figure 5.1: Weak-localization peak in the magnetoresistance measured on a PQvV in
the two-subband regime at T = 100mK.

'I'he conductance reduction increases logarithmically with T,p and is of order e2
/ h.

A magnetic field breaks the syrnmetry of tirne-reversed paths, and the enhanced
backscattering disappears successively with increasing field. The conductance in­
creases to its classical value. A typical field can be derived, at which the vVL peak

disappears. Consider a 100p over which an eleetron propagates phase-coherently.
Let the loop 1ength be L. The area enclosed by the loop is F ~ L 2

• A mag­
netic flux through this area shifts the electron phases with respeet to each other by
2,t' eAds / h 2eBF/h, Interference is lost if the phase shift gets larger than unity,
i.e.P > h/2el:3. The strenger the magnetic field, the smaller are the 100ps which
still contribute to WL, until finally the conductance reaches its classical value. On
the other hand, loops which are larger than the phase-coherence length ly~ = viDTq>

do not contribute. Thus if the field reaches a value ßB where loops of size srnaller
than l~ start 1.0 100se their phase, the concluctance starts to increase. The condition
for this is given by

DT < . h .
2eßB :2

(5.2)

By measuring the magnetoresistivity peak, inforrnation about the phase-coherence
time is obtained:

• The peak-height is proportional to the logarithrn of

• The wiclth ßB of the peak is given by ßB cx: 1/Dryo.

For arbitrary magnette fields, a forrnula can be derived [92], which describes the exact
shape of Pl;:r(B) for given Tc/, arid Tel. \Ve tried to fit magnetoresistance data of a PQW
with this forrnula [76]. A parabolic background in the rnagnetoresistance attributed
to electron-electron interaction had to be considered . Figure 5.2 shows a fit of
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Figure 5.2: Fit of the \/VL conductivity correction /'::;.ü(B) for sample 21 with :r = 0.05,
Ubg OmV and Ufg = -340rnV.

the vVL peak in Ül':reB) measured for nfj 1.2· lOtS m- 2
• The obtained value for Tc/)

is 14 ps, the elastic scattering time Tel = 2.6 ps. The quality of the fits detetiorated
when we went to lügher densities. The forrnula clescribing ü(B) is not strictly valid
any more for two reasons:

• With increasing density the elastic scattering time Tel might increase strenger
than ,we are Ums no longer in the regime Tel

• The system is not strictly 2D any more at the crossover from one to two po­
pulated subbands.

As there is no theory clescribing p:l':JB) that takes intersubband scattering into ac­
count and is valid for Tel P:::: T . we have concentratecl on the evaluation of the height.
/'::;.üo and width' ßB of the vVL-peak. Going from one to two occupied subbands, we
have observed a change in both quantities (Fig. 5.:3). First we cliscuss Ure density-
dependence for one occupied subband ( < ..-220 mV):

• The peak height /'::;.üo increases with density. If /'::;.ü(J is proportional 1,0 ln(l +
T4~ITel), this means that TI,) increases faster than Tel, i.e. if Tel CX n~I then (X n~

with k' > k,

• The width /'::;.B slightly increases for < -220 mV. Because D increases with
nH, this would signify that T is decreasing with nH if /'::;.B cx 1/DTq~. This is in
contradiction 1,0 the interpretation 01' the /'::;.ü data,

Both the width and the height decrease with subband density if a seconcl subband
is populated (Ufg > 220 mV), again giving contradietory results for To sum
up, we observcd a change in the behavior 01' the vVL-peak at the crossover from
one to two occupied subbands. Both the width and the height of the peak increase

Ib..B was dcfined by b..O'(b..B) b..O'o/2.
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with density for one occupied subband, and decrease for two occupiecl subbands. No
conclusions can be drawn on the magnitude of the dephasing time T</> because there
is no appropriate theory available.
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Figure 5.:): Measured height ß(To (a) anel width ßB (b) of WL peak (symbols) vs
Ufg , measured at Ubg = 0 V on sample 21 with :C = 05. The lines connect measured
mobility data points (right axis), which indicate the occupation of the secend arid

third subband (arrows).

5.3 Universal Conductance Fluctuations

Quantum interference effects lead to significant sample-to-sample fluctuations in the
conductance for samples that differ onlyin the positions of their respective scatterers.
Experimentally it is difficult to compare conductance fluctuations among different
sarnples. More conveniently a magnetic field is applied to one sample, as a small

change in magnetic Held has a similar on the interference pattern as a change
of the sample impurity configuration. The magnitude of the conductance fluctuaticns
is characterized by the standard deviation of the conductance G

(5.3)

Suc11 universal conductance rluctuations (UCF) are observed in the magnetoresistance
of 2DEGs if the sample is not very much larger than 11,\' The magnitude ßG is of
order e2 / h at T 0 [98, 10]], irrespective of sample conductance G.

PQvVs enable to tune the electron density of the system and thus to investigate UCF
with one to three occupied electric subbands. Here, the transition from one to two
occupied subbands, which represents a dimensional crossover from a pure 2D system
to an intermediate regime between 2D and 3D, is particularly interesting [105, 106].
The experiments presented here have been carried out within a Diploma thesis of M.
Huberty [l(rJ].
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5.3.1 Theory

Unlike the vVL reduction of backscattering due to phase eoherenee, the interfer­
ence between paths contributing to UCF are reduced statistically when many phase­

coherent sections of a sample are put in series. Thus the fluctuation magnitude de­
creases if the distance L between two voltages probes is made larger. lf the width l/V
of the sample is smal1er than l,!~, the root-rnean-square magnitude of the conductance
Iluctuations can be written in the form

e
2 (_l2.)

11 L
(5A)

where Cl is of order unity and a function of the typical length scales of the sample,

i.e. the elastic seattering 1ength lei, the channel width IIV and the channel 1ength
L [34]. In principle, the dependenee of (X allows the deterrnination of l<t"
however the value of C\ has to be known to evaluate let) quantitatively,

Similarly to the width of the \VL pcak, a correlation fielel tiBc can be defined. 1'01'
tiB larger than tiBc , the fluctuating conduetanee at field B is uncorrelatedwith the
conduetanee atB + tiB. For T = 0 and H/ < lri!) one obtains [102]

(5.5)

With both, tiBc and tiG, the phase-coherence 1ength lrp can be evaluated from mea­

sured p:1'1;(B) traces,

5.3.2 Experimental setup and data evaluation

Figurc 5.4 shows the geometry of the sample we used (samplc 4~~Dl). The length L
between two voltage probes varies between 1.5 uu: and 11 11m. The Hall bar width
Hf is 2 plYl. We also fabrieatecl sarnples with lV = l rzrn, where, however, the voltage
probes were pinched off and no transport measurements were possible. The sarnples

were structured using e-beam lithography. Ln the first step, a front gate was defined,
serving as a self-aligned etch-stopper for the following mesa-etching step. Thus gate
anelHall-bar could be aligned very precisely.

Figure 5.5 shows a measurernent of the density and mobility of a sample. 'I'he mobility
is reduced by a factor of about two cornpared to the values for wider Hall bars,
indicating the influence of tbe eelges.

\\Te l1'leasured magnetofluctuations in the conduetanee of PQvV sampies which we
earl establish as UGF. In a magnetic fiele! perpendicu1ar to the 2DEG, we were able
to extract very reasonable estirnates of the fluctuation amplitue!es anel corre1ation

fielcls. Fig. 5.6a shows an examp1e of a rneasurement of p:Ll'(B). '1'he clata has been
fit ted by a po1ynonlial of power 6. In Fig..5.6b, the difference of the background
ancI the measured resistance is presented. Via matrix inversion, the fluctuations

in Gare obtained (Fig 5.6c). The amplitude tiG is foune! to be proportional to
L -3/2 run], indieating that 1rp > Il' = 2pm. Tlle observecl eorrelation fiele! is about
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Figure ,5.4: Photograph and schemc of the 2 ~lm thick UCF sample.

5InT', independent of the sample size L.
be made from this data, shown in Fig. 5.7.
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Figure 5.,5: Electron sheet density and rnobility as a function of Ufg.

Fig. 5.7 summarizes the magnitudes of C'tl'b and 02l./) as obtained from correlation
fields and fluctuation amplitudes, The numerical prefactors C\ and O2 probably
depend on the gate voltage. The relevant length scales leI, li/, and lIV are an compa­
rable, Theories exist only for asyrnptotic regimes, where different length scales can

be well separated. In the intermediate regirne, the prefactors C\ and O2 are expected

to depend sensitively on changes in elecisive length scales. For 1'1) > I/V, a flux
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cancellation effect leads to additional structure in the prefactors [104].

The quantity Cile/> displays a dip at the secend-subband occupation threshold and
a strong increase at lügher densities. This resernbles the behavior of lei. Possible
explanations are [10.5, 106]

• The clepenelence of Cr and C2 is dorninatedby l«.

• In the two-subband regime two channels fluctuate independently. This gIVes

rise to an enhancement of the conductance-fluctuation amplitude.

• The phase-coherence length is infiueneed by electron-electron scattering, which
on the one hand reduces due to an increased phase space für scattering events,
and on the other hand modifies screening, which may lead to a decrease of the

scattering rate.

More theoretical work eonsiclcring electron-electron intersubband scattering is needed
to account Ior the observed depenelencies.

In field orientations between the perpendicular and the in-plane case, the fluctuations

scale with the perpendicular field component for one occupied subband.For two

and three occupied subbands, this sealing disappears for large in-plane fields, which

indicates a 2D t3D dimensional erossover [1 m3].
Near the in-plane orientation and in-plane, we observe conductance fluctuations which
depend on the in-plane cornponent of thcfield. The fact that DCF is observed iIl a
2DEG with an in-plane field can be explained in two ways:

• For more than one subband occupied, Ure electrons can scatter between sub­
bands, whieh enables rnotion along the z-direction. The electron system is in

an intermediate regime between 2D and :lD, where flux-enclosing loops in an

in- plane field configuration are possi b1e.

• At magnetic fields where the magnetic length IR is smaller than w,motion is
essentially three-dirnensional. This is due to the magnetic confinement which

localizes the wave functions at z-posi tions which clepend on the longitudinal
moment.um Ä:y (see inset ofFig. 5.8b) [107].

The typical loop size reduces from 1(;, to w1V. such that the correlation field is
expected to increase by I/V/w :::::: 2000/50 :::::: 40, see Eq.5.5. At the same time, the

fluctuation ampli tudes are smaller than in a perpendicular field. This is because

an intersubband scattering event is needed for a closed loop, which is usually less
proba.ble than an intrasubband scattering event.

In Fig. ;'),Sa, measurernents of thc magnetoresistance R are shown for in-plane mag­

netic fielels BII between 0 and 8 T. Dips in the magnetoresistance are related to sub­
band depletions [74]. At Ufg = 1:30rnl/, two dips are clearly resolved (arrows), ancl
a weaJ( thirel dip is ohservecl (clashed arrow), indicating a partially populated fourth

subband. In the different field regimes, we have different subbands occupiecl anel can
analyze the DCF qllasi-period and
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Figure 5.8: (a) Magnetoresistance R vs }jll for three different Ufg . The indicated
dips denote field positions where 2D subbands are depopulated. (b) Differential
magnetoresistance at [lfg = mV for two contact lengths, with two different
measurements for each length. The curves were smoothed and offset for clarity, At
BII 0, two subbands are occupied. Above :3..5 T the upper subband is emptied due
to a diamagnetic shift. 1JCF can still be observed. Tbc inset explains how electrons
can move along the z-direction for one occupied subband and high magnetic fields.
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In Fig. 5.8b, we plotted the differential magnetoresistance for [Jfg -295 mV. Quasi­
periods of about 1 T are recognizable, which is by a factor of about 30 larger than in
perpendicular fields ' and agrees with our expectations.

5.4 Conclusions

We have investigated the \VL and UCF effects in an electron gas at the crossover
from two to three dimensions. For a strictly 2D system (nH 1.2 ·1015m- 2

) , wehave
found frorn the \VL correction Tcl> = 1Aps (Te] 2.6ps), corresponding to lq, O.64/lm
(lei = 0.39Ilm). At the crossover to three dimensions the length scales Ir;', lei and lIV
are not well separated and no theory exists to relate the resistivity corrections to the
phase-coherence length l4~' \Ve thereforehave described the measured characteristics
of the resistivity corrections. Both the height 6(/0 and width 6B of the WL peaks
increase with nH until a secend subband starts to gel, populated, where both quantities
decrease with nH.

Frorn the lJCF amplitudes and quasi-periods, we calculated the values Cll4) and C2lq,

definec1 in Eqs, 5,4 and 6.5. Both quantities generally increase with nH. At the
occupation threshold of the second subband. the increase of CJq, is retardet but
catches up at higher densities. The occupation of the second subband therefore
manifests itself in both 01' the investigated quantum-interference phenomena..

2A quasi period is about ß times larger than l:1Bc . Thc quasi-psriods in the perpendicular case
are about 301n1'.



Chapter 6

Subband Densities and in-Plane
Magnetic Field

We learned how electrons in a 2DEG behave if they are exposed to a perpendicular

magnetic Held. Sdll-oscillations in the rnagnetoresistivity allowed us to determine the
electron densities 01' different subbands and draw conclusions on the energy structure
(chapter 2.5.2). Here, »re look into what happens if the magnette Held is applied
parallel to the 2DEG. There are two principal effects arising from such an in-plane

field:

• The subband energy levels are diamagnetically shifted. The shift is proportional
to the extension 01' the wave functions arid results from the additional magnetic

confinement Tn*w~z2/2 along the z-direction.

• The dispersion relation is mcdified in the in-plane direction. This leads to

a distortion 01' the Fermi surfaces arid consequently to a modified DOS. For
multi-subband systems, the Fermi surfaces 01' the individual subbands rnay even

separate in k-space, leading to anomaliss in transport quantities [108].

Both effects diamagnetic shift and Ferrni-surface distortion - lead to a carrier re­
distribution among the snbbands. If a perpendicular B-cornponent is applied in
addition, the SclH-oscillations a measure for subband densities tu, This way

we have investigated the dependence of n, on a weak in-plane magnetic field as a func­
tion 01' the tunable shape of the well potential. We have rneasured a strong carrier
redistribution between the subbands, which cannot be explained by the diamagnetic
energy shift alone. We give an explanation based onindividual magnetic-field depen­

dent density 01' states in different subbands. The rneasured carrier redistribution is
quantitatively reproduced by a calculation 01' the energy strncture considering the in­
plane Held in second-order perturbation theory. The results presented in this chapter
have been published in HeL [109]. The data has been obtained 1'01' the diploma thesis

01' Beat Ruhstaller [110]. Sorne measurernents have been repeated in semester works
done by L. Rosehier and M. Huberty.

68
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An electron system confined in one spat.ial dirnension with an additional magnetic
field is a textbook example that allows to study the behavior of quantum mechanical
energy levels and wave functions in detail, If the magnetic Held is oriented perpen­

dicular to the plane of the electron system, the Hamiltonian can be separated with

respect to the in-plane and perpendicular motion, Therefore the Landau quantum

numbers and subband quantum numbers are independent of each other and level
degeneracies occur at cert.ain magnetic fields . In the case of a parabolic confin­

ing potential, the Hamiltonian can be sol ved aualyticelly for any orientation of the
magnetic field [111, 112].For arbitrary confining potentials one relies on perturba­
tive approaches. A lot of theoretical [113 -122]. as well as experimental work has

been done in this field [12:3 125, 108]. Here, we focus on the importance of secend
order perturbation theory for a small but arbitrarily oriented - magnetic field. In
particular, we find a strong redistribution of the subband electron densities due to

an in-plane magnetic field, which we quantitatively explain by a subband-dependent

density of states.

In a PQ\rV with plasma frequency n, the in-plane field has two effects: The energy

levels are diamagnetically shifted proportional to (1 +w~ /n2) (l / 2) , and the dispersion

relation of the in-plane electron motion is modified, which can be described by a
magnetic-field dependent effective mass [114, 121, 125]. For a PQW, the effective
mass is m,*(1+w~/n2)(l/2). Thus the two-dimensional density of states (DOS) depends

on the in-plane magnetic field.

Experimentally, the electron densities 11, of the subbandsi in the presence of an in­

plane magnetic field BII can be deterrnined by analyzing Shubnikov-de Haas (SdH)
oscillations in a transport measurement. In the case of one occupied subband, the dia­

magnetic shift of the subband energy has no influence on the measured subband den­

sity. However, the moelified eJFective mass can be determined by measuring the tem­

peratlue dependence of the SdH-oscillations[126, 127] or by optical experiments [125] .
Only if more than one subband is populated, the diamagnetic energy shift may lead
to aredistribution of subband densities. The parallel-Held dependence of ni has
been rneasured 1'01' heterojunctions [124] for parabohc quantum wells[127]. In

ReL [127], measurernents 01' a PQ\V \vere cOlnpared with the analytical solution of
the parabolic cord1ning potential, although the eflective potential is eloser to a reet­
angular weIL In order to relale Ille rneasured )7i(])'II) 10 the diamagnetic energy shift,
a perturbative expression for the diamagnetic shift was considered in HeL [12:3] and

[124]. However, the varying DOS was not laken into account. As was pointed out by
ReL [118], the varying DOS can have a significant eJFect on the depopulation of the
upper subbancl.

In this chapter, we present 111eaSUrenJents conl1rming that the influence of the BW
dependent DOS on the measured subband densities is dominant over the diarnagnetic
shift in the considered PQ\Vs. vVe have rneasured BII-dependencies of subband den­
sities in a wide PQvV with tunab]e electron sheet densit.y and potential symmetry.

The eiIeet of these pararneters on )/, is stl1clied for small B II. '1'he data is compared

to a perturbative calculation of the energies to second order, using self-consistently
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Figure 6.1: Measured magnetoresistances as a function of the perpendicular field
B.l for different tilt angles Cl between and 65°. The P:rx-values are offset for clarity.
The upper part of the figure shows a contour plot of the same data as a function of
BII and B1.. Darker regions correspond to sm aller Pxx (the grey scale is indicated on
the right side). i\ small deviation of the minimum position to higher Eh is observed
with increasing B II.

calculated wave-functions at BOas a basis. The first-order term deterrnines the
diamagnetic shift, whereas distortions of the Fermi sphere are due to the secend-erder
term. As we will show, the latter effect on n, is of the same order of magnitude as the
diamagnetic shift. It may even dominate the B11-dependence of n; in the case when
the DOS in the individual S11 bbands differ. By applying a front-gate bias, we exper­

imentally contro] the difference between the subband-dependent DOS and study its
influence on the measured subband elensities.

6.2 Experiment

In order to increase the asyrnrnetry inclucecl by the Irent-gate bias, the measurernents

were taken on sarnple no 18 with a 3 monolayer thick Alo.15 Gao.ssAs-spike situated
in the center of the well.

The sample was mounted on a revo1ving stage. Measurements were performed at 1.7
K. The tilt angle Cl' between the sarnple normal and the direction of the magnetic
field was deterrnined by sealing both the Hall resistance and the Shubnikov-de
Haas (Sd Hj-rninima in the rnagnetoresistance Prr to eos Cl' (with the sample being in
the single-subhand regirne). We estimate the accuracy of the obtained angle a to be
bettet than 0.2 degrees.
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Figure 6.2: Density of the lowest subband no normalized to the density no(BII 0) as
a function of the in-plane field, as obtained from measurements presented in Fig. 6.1.
For the deterrnination of lIo,fi11ing factors of the 10o-subband between 12 and 28 and
tilt angles between _"1 0 and 6;)° have been evaluated.

In the case of two occupied subbands anelEl (densities 110 and 171)' the SelH­
minima do not scale with cos Q anyrnore. In a weak perpendicular field B.L, PX'l: is

periodic in 1/B.L with a frequency proportional tono. The oscillation due to the
E,-subband is weak and not observed for low densities 111 (Fig. 6.1). If the sample
is tilted by an angle ü, the degeneracy of each Landau level is still deterrnined by
B.L' Analyzing the B.L- positions of even filling factors allows one to determine 110 in
tilted fields.

Figure 6.1 shows measured traces of plotted as a function of the perpendicular
magnetic field Ih = B cos CI' with the tilt angle cy as a parameter. As there is no
spin-splitting observed at low magnette fields, each minimum in Pa'x(BII) corresponds
to an evenEo-subbancl filling factor 1/0, which is deduced from the P,ra,-trace at 0: = O.
The subband density no = t'l/olh I h is determined by the B.L-position of such a
minimum. In F'ig. 6.2, we present 110 as a function of the in-plane field B II by using
B II B 1. tan 0:. Several filling Iactors 1/0 between 12 and 28 and tilt angles 0: between
-4° and 65° have been evaluated. In the case of two occupied subbands, 170 generally
increases with B II, corresponding to a c1epletion of the upper subbanc1[12Ll, 128]. We

limit the c1iscussion to small rnagnetic fields BII' B1. < 1 1'.1'0 first order, the increase

of 110 is quadratic in BII' \Ve therefore introduce the coefficient

l . lL')2Al = erlo/ a )11' (6.1)

which we determine from a parabolic fit 1,0 the rneasured data,

Although we are interested 0l11y in the s111a11-B behavior here, the subband densities
can also be measured for higher BII. Above sorne field B d , a11 electrons from the upper
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subband have settled in the lower subband. the density of which then remains constant

(arid equal to the total sheet density nlI). Fig. 6.:3 shows such a measurernent. The
data has been fitted by a parabola for B II < 2.:3 T. This is motivated by the analytical

solution for a parabolic confinement [111, 112]. From the fit, a depletion field of
2.3 T is determined. We refer to the depletion field in the discussion of universal
conduetance fluctuation in an in-plane magnetic field (chapter 5.3).

The variation of; (Eq. 6.1) with the total density and the symmetry of the wen is of
interest here. 11'01' this purpose, measurements as presented in Fig. 6.2 were performed

for different front-gate biases . The total sheet density nH increases with [/fg and
the electron distribution moves closer to the sample surface. Figure 6.5 presents the

measured plotted as a function of nH. Note that the potential syrnmetry also

changeswithnlI, due to the inserted potential spike and the boundaries of the wen.
Up to densities areund ns = :3.0.1015

, ; increases and reaches a maximum value
of 1.7· 1014 m-2 rr-2 •

In the foUowing section, we compare the data to a perturbative calculation of the
diamagnetic shift and the DOS, and to the analytical solution for a parabolic confining
potential. Only if the B11-dependence of the DOS ..... obtained by the second-order

term of the perturbation calculation is included. the calculation can account for the
measured J.
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Figure 6.4: Calculated values for (E? - -1 and (-z)io for different sheet densities
nH. The dominating contribution to "i originating frorn the second-order term is
proportional to (z)io/(Ef ES). The insets show at two different nH the self consistent
potential Usc , the wave functions and the energ.Y levels E? for subbandsz = 0,1,2.
The Fermi energy is indicated as a dashed line.

6.3 Comparison with theory

6.3.1 First order perturbation theory

In the fol1owing we calculate the energy spectrurn of a two-dimensiona.l electron sys­
tem subjected to an in-plane Held B II. The perpendicular field does not have to be in­
cluded in the calculation, as we use small fields. where the Landan-ladder is smoothed
out to an approximately const.ant DOS. A perturbative calculation of the effective
cyclotron mass rn" in tilted fields is presented in HeL , where the B'II-dependence
ofm* originates from a shift in Landau- separation due to the coupling Hatnil­
tonian. The effective mass obtained from the Landau-level spacing is equivalent to
that considering the dispersion modification due to an in-plane field.

With the magnetic field BII along the z-direction described by A = (0, -Bllz, 0), t.he
momentum operator in z-direction, the elementary charge e and electron effective
massm*, the Hamiltonian ofnon-interacting electrons mobile in the :r-y plane and
confined in the z-direction by a potential ) takes the form

172

H= )
2117* + .' +21n*
.~

Ho

17
-f-
. 21n*

e13
11hk'ft- . ~

- 4 •

m*'----.....y...----
H'

(6.2)

The wave function is separated into plane waves along the z- and y-clirect.ion (wave
numbers Ä:;r and ky ) and the solution ) to Ho + Hf with energy E,(k:y ) . The
total energy is e;iven bv EJ ( ) + Jj2(k; + A~2)/2n{*. Non-degenernte

•.1 '-- ,/. '.. ,,' 3/

perturbation theory is applied to the eigenstates 01' 110 with energies E? and wave
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functions !..f'?, treating Hf as being a small perturbation (small in-plane fields BIl).
The first-order correction to the energy results in

(6.:3)

where (... )i.i denotes the matrix elernents corresponding to the wave funetions q)Jl

and rfJj, respectively, and ko = eB11 /h. The diamagnetic shift in energy [11~~] is
quadratic in BII and proportional to 2. The magnitude of the shift increases

with subband number z due to the increasing spatial extent of higher subband wave
functions, Additionally, the Fermi surface is displaced in z-direction by ko. This
displacement has no influence on the DOS and the effective mass m*. We now
calculate the magnetic-field dependence of the subband density no = m* /7rh2 (EF ­
Eo), which is given by the BII-clependenee of 1'.,'0 and . The Fermi energy EF' depends
on BII due to the rearrangement of subband densities, In the fo11owing, we assume

that two subbands Eo and E] are oeeupied (EF > Eo, Er). With ßn no - n1!BII=0'

we obt.ain for 1 = dno/ dB
11

with

2117*

8
/'j = ~n .

I .)
(6.'1)

(6.5)

By solving the Poisson- and Sehrödinger equations for OUT' PQW self-consistently, we
find the wave functions !..f'? arid energies E? for different gate biases, The consistency

of these values can be eheeked by comparing the obt ained E? with the measured

subband densities n, at zero in-plane field, divided by the DOS[40]. If the calculated
!..f'? and E? are inserted into Eq. (6.4), Olle obtains values for 1 which are up to 7
times smaller than the measured ones (Fig. 6.;3).

6.3.2 Second-order terrn and subband-dependent DOS

In order to calculate the modiJieation of eJfective mass, we have to take into
account second-order pert.urbation theory. The linear term in k:l/ (Eq. 6.2) becornes
quadratic in the second-orderperturbation, which modi fies the dispersion along this
direction. Negleeting powers ofB11larger than two, and eonsidering only contributions
to the perturbation sum frorn neighboring subbands, leads to the following corrections

1,0 Ei ( k:J; , k'I):

(6.6)
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/30, (6.7)

'I'his second-order term Ieads to a modified dispersion relation in y-direction h2
k;/2m~

with rn; = m/'1(1- 2ßiBI1), whereas the .r-direction parallel 1.0 BII remains unaffected.
The Fermi disc is distorted 1.0 an ellipse. This can be accounted for by a modified,

subband-dependent effective massjl l d. 1

rni = ::::;rn*(l+ (6.

Therefore the DOS Pi depends on BII' and on the subband index i:

Pi = p(l + (6.9)

I = ~II (~+ --+--) +IIH 4 (6.10)

In the first term we recognize the first-order result of Eq. (6.4), with 6' replaced by
6' + (/30 + /31)/2. As we will show in the next section, this corresponds 1.0 a cloubled
value in the case of a parabolic confining potential. Because of the increase in DOS
with B

11
, the lower subband accommodates more carriers, which gives rise to an

increase in 110 of the same order as from diamagnetic shift itself,

The secend terrnbeing proportional 1.0 the sheet density IIH and the clifference of

the DOS-parts /30 and cancels out in an exact parabolic potential. For arbitrary
potential», the Bn-dependence of the DOS can be quite different for the two sub­
bands, leading to an additional redistribution of the carrier densities between the
two subbands. The influence of this terrn on lIo(BII) can even dorninate.

If we insert the calculated andEq. (6. and (6.10), we in fact observe
strongly different arid the second term of Eq. (6.10) dominates the resulting )'
(Fig. 6.5). In centrast 1.0 the first-order result, this calculation is 1I1 good agreement
with the experimental values, and perfectly reproduces the maximum arounel IIS

:LO· 101 5 m- 2
. For small enuugh lnagnetic fields, lligher orders in the perturbation

series are small corrections 1.0 the DOS enhancernent and 1.0 the diamagnetic shift.

In the equations above we assumed that 1, which is a prerequisite for the

applicability of perturbation theory. The pararneter /J is proportional 1.0 the ratio of

the Landau energy r"eBll/rn* 1.0 the subband energy elifference, as well as on (z)Ioll1
11

,

with the squared magnetic length l~lI = 1i1eBII' 1'11US both, the Landau energy
cornpared 1.0 the subband difIerence, and the ofT-diagonal z-rnatrix element compared
1.0 the magnetic length, have 1.0 be small for the applicabili ty of perturbation theory,

In the approximation used here, the subband-dependent correction 1.0 the DOS varies
quadratically with the in-plane fielel. In the description of the subband density, we
therefore have 1.0 be careful in converting the energy levels 1.0 subband densities, 'I'he
subband densities are written as n, plEF - ). With TlH = 110 +111 we obtain for

T

6.3.3 Exact solution for a parabolic potential

In the exact solution for a paTabolic quantum well with potential U(z) = rn*n2z2/2,

the subband energy levels for an ir1-plane field BII are given by [111, 112] En =
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Figure 6.5: Measurcd v = dno/dEII as a function ofnH (symbols). Note thatnH was
varied by applying a front-gare bias, and Ums also the symrnetry with respect to the
potential spike changed with increasing nH.The error bars indicate deviations in ,

originating from evaluation with different fi1ling factors. The clotted line corresponds
to first-order perturbation theory (Eq. 6 . the solid line indicates the full secend­
order calculation, the dashed line is the first term 671(8/2 + (ßo + ,B1 )/L1), which
neglects subband-dependent DOS.

h(w; +n2)~(n +1/2). The DOS is independent of the subband number and is found
to be

(6.11)

Thus one obtains for ,

(6.12)

Consiclering that (z)io = n/2rn*n, (z)~1 hlrn*n and 11 - (Z2)OO = n/nl*!l, we
exactly recover the result of Bq. (6.7) arid (6.9). lt is worth noting that in the case
of a parabolic potential, perturbation theory up to oreler Eil gives the exact result.

Considering Bq. (6.10), we find that + )/2 = 8, and 130 01 = O. Thus the
second-order result is exactly twice the result of Bq. (6.4), and the term
proportional tonH inEq. (6.10) vanishes.

6.4 Discussion and Conclusions

'I'he data presented in Fig. 6.5 provides evidence that the EWdriven carrier redistri­

bution among the two subbauds is dominated the Eil dependent DOS. vVe observe
a maximum in ,(nH) which is due to a subband specific DOS, described by the terrn
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in Eq. (6.10) containing ßo - e.. Using Bq. (6.7) one finds that
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(6.13)

and

(G.H)

As an illustration, we consic1er the calculated wave functions and energy levels for
our samples. Sinee the l110St important contribution to the carrier redistribution is

the ßo - ßl term, we present (Ef - Egt1 and io in Fig. 6A, plotted as a function
of nE. Both functions clearly show a maxirnum at approximately the same position,

There, the self-consistently calculated wave functions are centered with respeet to the

spike, In this situation, the two oeeupied su bbands are symmetric and asyrnmetric
states, with minimum energy difference - E'g. At the same time, the matrix

element (z)io is maximal. Generally, the inverse energy diflerence arid the squared
ofF-diagonalrnatrix element respond similarly to achanging external parameter.

vVe expect a less pronounced maximum for weaker potential spikes, This is confirrned
in a measurement on a sirnilar sample (no. 17) with a potential spike described by its

Al content :1: = 0.05, where we find a monotonic increase of l(nH) (Fig. 6.6). We want
to emphasize that even without a potential spike, the subband carrier redistribution

is strongly influenced by the DOS contribution proportional to ßo ßl.

For arbitrary confining potentiale, one has to compare relevant matrix elernents and
energy differences. In Table 6.1, we present the calculated values for a heterostruc­

ture", a parabolic potential, a PQVV with and without spike, and a double quantum

weIl (DQ\,v)2. In order to clarify the relative importance of the diamagnetic shift and

the DOS, we split I frorn Bq. (6.10) into the two contributions Idia D..n8/2 and

IDOS = D..n(lJo + {h)/4 + nII(ßO ßl)/4c.The weaker the turmeling coupling between
the left and the right siele of the well, the rnore important the ßo - PI term becomes.
In addition, this term has to be weighted the total carrier density nH rather than

by the subband density difference. In a heterostructure, ,Bo /)1 is negative, which
weakens ~(Dos, such that Idia cleterrnines carrier redistribution. The large I'DOS

forDQvV structures is a result of the we11- known effective mass change for peanut­
and lense-shaped 1"er1ni contours [108].

In conclusion, we have described the BII-dependence of the subbanc1 c1ensity no by arl
ana1ytical expression, elerivecl from seconcl-order perturbation theory. '['he compa.ri­
son with measurements on PQ\Vs gives good agreernent for BII < 1 'I'. In contrast to
eadier publicat10ns [12:3, 124], our resuIts are not dorrtinatec1 by the diarnagnetic shift,

but by the influerlce of BII on the DOS of the two subbands which leads to a redistri­
bution of thc carrier dcnsities among the subbanc1s. This explanation was confirrned

in rneasurements where the shape of the conflning potential coulcl be controllecl.

It shoulc1 be \vorthwhile to check this effect by cyclotron resonance experiments, where

we expect a pronoullced splitting of absorption because the eJfective Inasses in
this two-subband system displa.y a cliffercntBwdispersion.

Ispacer layer 100 A, residual concentration 2.7.10 20

2 well wiclth 140 A, barrier 28 A a,:; in Ref.[108]
, donor layer 6.5.1015 m- 2
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Figure 6.6: Measured values of I (symbols) for different nH compared 1,0 results from
second-order perturbation theory (line) for a sample with a weak potential spike (Al­
content :1:=0.0.5, width 8.5 A) contered in the potential well, The error bars correspond

1,0 evaluations at different filling factors. The dotted line describes the eliamagnetic
shift only, the dashed line includes the + terrn.

Table 6.1: Calculated coefhcients 8, and (in )i nH and no 'nI (in 101;; 1n-2),

and carrier redistribution coefficients (in L014 n l --
2T- 2 ) for a heterostructure, a

parabolic potential, a PQ\V without anel with spike as rneasured, and a double quan­
tum well (DQ\V).[ is split into the diamagnetic shift part idia (containing 8) and the
DOS-part AfDOS (containing anel PI)' In the DQ\V and PQ\V the wave funetions

sample + nI-I 110 -- nI

heterostructure 0.01:3 (J.():32 -0.027 4.9 4.6 0.15 0.04
parabolic potential 0.02:1 0.024 0 :3.2-9.6 :3.2 0.19 0.19

PQ\V 0.104 0.080 0.058 2.8 1.:3 0.~~4 0.67
PQ\V+spike 0.128 0.045 0.181 2.8 0.9 0.29 1.:37
DQ\V 0.011 0.001 0.311 0.'1 ooCn 4:. OLl



Chapter 7

Ballistic Onc-Dimcnsional Systems

An electron system is in the ballistic regirne,when its size is smaller than the elastic
mean freepath Lel. The high mobility of 2DEGs allows for ballistic electron transport
over several tens of micrometers in AJGaAsheterostructures. Modern lithographic
techniques enables 1.0 confine a 2DEG into wires and dots with sizes comparable to
the electron Fermi wavelength. Ir1 such quant.um-mechanical elIeets manifest

themselves strongly, 1'01' example:

• A quantuni point contact (QPC) is a ID system, where a 2DEG is confined
laterally by a constriction of a width comparable to the Fermi wavelength [129].
The conductance is quantized in units of / h., which was first observed in
1988 [liW, 1:31] and is attributed 1.0 forrnation of ID-subbancls (also called
rnoeles 01' quanturn channels}, each the same current .

• In quantuni clots the energy speetrurn consists 01' OD states [132]. Each state can
be occupied by two electrons. The vertical confinernent is usually much strenger
than the lateral one. Henee only one vertical quant.um state is oeeupiecl, and
the energy speerrum is detennined by the lateral confinement. Electron-electron
interaction is important and leads to chargi ng effects as the number of electrons
is changecl, and also to level anticrossing, i .e., the approach and subsequent
repulsion 01' two energy levels instead a crossing, which can be understood
by consielering Coulornb-interaction in a Hartree approximation.

Special attention has been paid to the Darwin-Fock [1:3:3, 134]-like energy structure
01' lithographically patterned quantum dots [135, 1:36] and 01' self-assernbled quantuni
dots [1:37] in a perpendiclllarmagnetie field. The energy structure of a quantuni
elot 1S related 1.0 that of the modes that pass through a QPC. In both systems, the
lateral confinement deterrnines the energy spectrum. The electrons in a quantum clot
occupy OD st ates. Their encrgies can be probed by tunneling through barriers into
the confined region. In a QPC, one direction is not confined, such that a current can
flow through a constriction. As we will dernonstrate, spectroscopy 01' single-particle
energy levels in the absence of charging efFects is possi b1e.

In a, conventional QPC, the 2DEC at thc CjaAs/ AIGaAs heterointerfaee is conflnecl
in one lateral direetion by a sp1it-gate electrode ort top oE the sampIe surface. The
constriction is tbin in growth direction (md in the split-gate direction. Only the
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grounel state in growth direction is occupied, and the constriction is more similar to
a slit than to a disk.

A QPC where the constriction is wide in both dimensions is called a 3D QPC [1:38],
see Fig. 7.1a. The fabrication of a circular opening is difficult to achieve. It can
be realized in metalls by bringing a tip into proximity with a rnetallic surface and
subsequently retracting the tip, such that a stretched, narrow connective wire results.

Here we present the realiz ation of 3D QPCs with a tunable constriction shape. It
is controllably fabricatcd by Iithographically clefining a split-gate eleetroele on top
of a 2DEG confined in a PQW. The confinements in the two direetions are of sim­
ilar magnitude and are controlled by the split-gate electrode, and by the back gate
controlling the PQ\;\;! potential, respectively (Fig, 7.1b).

The Fermi energy is adjusted by the voltage Usg applied between the split gate and

the 2DEG. 13y rneasuring the conductance G(l/sg) of the QPC, speetroseopy of the
magneto-electric ID subbands has been reaEzed.\Ve have rnapped out the relative
positions anel elegeneracies of the subband energies and investigated their behavior
when a magnetic field is applied. The obtained single-particle spectrum resembles the
Darwin-Fock states of a quantuni dot. Due to thenon-circular shape of the coufiniug
constriction, the energy speetrum of a systern with broken rotational symmetry can be
studied, in centrast to the states of a symmetric quantum dot, which are degenerate
at B O.

(a)

Quantum Dot QPe

(b)

USG

UBG

split gate

Figure 7.1: (a) Quantum dot and TD quantuni point contact in a magneticfielcl. (b)
Realisation of a 3D QPC using a PQ\V as a host structure.

The interaction between different channels is 01' special interest. With no interaction,
the energy levels simply cross as a funetion 01' sorne controlling parameter (as the
back-gate voltage) . A coupling 01' the t\VO confinement directions leads to the anti­
crossings of levels. However, 1D subband-Ievel "lockings" were predicted as well [139].
Although we cannot exclucle levellocking, no deal' indication 1'01' such behavior has
been founel experimentaIly. The results presented in this chapter have been published
in Refs. [140, 78].
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and 1 describe the eleetron states quantized

1"01' each In, a ladder forms whose steps are

The energy structure of a parabolically confined :3D QPC has been calculated in
Ref. [li~8]. Here, transversal modes in both lateral direetions are important. Whereas
the 1D channels in a conventional QPC are described by one quantum number 1, in
a 3D QPC channels frorn both confinement directions (Iabe1ed as y- and z-direction
in Fig. 7.1b) can be occupied. The channels are labeled by 1 (y-direetion) and m
(z-direetion). One can think of sevcral l Dvsubband ladders In, the steps of which are

labeled by 1 (Fig. 7.2). This assumption is valid if the Hamiltonian can be separated

for the y- and z-directions. Level degeneracies can occur because of the two quantum

numbers (l,nl.).

The conductance through a QPC is quantized in integer multiples N of 2e2
/ 11, [131,

BO], where corresponds to the number of occupied, spin-degenerate channels. This

quantization results from a cancellation of the energy depenelence in the produet of
velocity and DOS in a 1D system [34]. The total number N of ladder steps below
the Fermi level is given by if a total of j11 _. 1 ladders are occupied

and Zm denotes the occupied channels of the rn-th ladder. The 3D QPC can be
imagined as M separate but coupled -- QP In this respect , the system is similar

1,0 spatially separated QPCs arranged in parallel, as realized laterally with a double
split gate [141, H2] and vertically by a split gate on top of a double quanttun well
structurejldd], where transport characteristicshave revealed no interaction between
the one-dimensional subbands.

Each time when the Fermi energy passes through a ID subband energy, the conduc­
tance changes by 2e2

/ h, This enables 11S 1,0 measure the subband energy spectrum
with respect to the Fermi energy. H the Fermi energy passes the energy level of two
degenerate channels, the conductance changes by 4e2/h, i.e., one concluetance plateau

1S rmssing.

We list the possible modifications of 3D QPC shape and its energy spectrum:

• The split-gate voltage changes Fermi energy relative to the 1]) sub..
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bands as weIl as the constriction wiclth in y-elirection.

• The back-gate voltage Ubg moelifies the constrietion in z-direction. For in­
creasing Ub g , the density in the confinernent increases and the wielth of the
screened parabolic potential widens .

• A magnetic field influences the energy spectrum of the magneto-electric ID
subbands. The modification depends on the field orientation.

'vVe investigate magnetic field elireetions parallel and perpendicular to the channel
(but always parallel to the 2DEG). While a perpendicular magnetic field B1. only
shifts the energy position of the modes and varies N, a parallel fieldB11induces
coup1ing between certain classes of modes, which leads to level anticrossing as a
Iunction of the Held. We will describe the influence of the magnetic field on the
energy of the modes in a simple pietute and model the origin of the mode coupling.

Figure 7.:3: Photograph of mesa structure (left) arid AFM image of the split gate
defining the QPC (right).

7.2 Exper-iment

The host structure for the electron gas is a 760 Awide PQvV with a weak, 3 monolayer
thick Alo.osGao95As potential spike in the center. A back gate clcetroele is located
1.35 pm below the weil On the top of the structure, a 400 nm wiele split gate electrocle
was defined by standard electron beam lithography and evaporation of 30 nm Ti Au
(Fig. 7.:3). A voltage Usg was applied between the quasi 2DEG and the split gate.
The series resistance of the Hallbar and the QPC as well as the Hall resistance outside
the QPC have been measured at 100 mK using a standard Hall-bar geometry. The
mobility of the electron gas is areund 1:3 IVs, corresponding to a mean free path
of ahout Irzm.

The contact resistance of the C}PC has been deterrnined frorn the difference between
the measured Iour-point resistance across the split gate and the resistanee of the Hall



7.3. TUNING THE SHAPE OF THE CONSTRICTION 83

bar, whieh was measured separately at Usg = OV. Small eorrections 1.0 the Hall-bar
resist ance of the order of a few pereents were necessary 1.0 map the lowest conductance
plateau 1.0 the value of 2e2

/ h. From the plateau values 2Ne2
/ h of the eonductanee

we found the number N of oecupied l Dvsubbcnds.
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Figure 7.4: Measured Hall density IIn and subband densities 110, 111 and 112 vs. Ubg

for sample :34A. The subband elensity 112 was obtained from the measured 11H, no and

111·

7.3 Tuning the Shape of the Constriction

The lithographic width of the split-gate opening is 400 nm. By applying negative
gate voltages Usg , the wielth gets ernaller and simultaneously the electron density in
the channe! decreases, because of an increase of the conduction band eclgeEc in the

eonstriction. Self-consistent solutions of the Sehredinger and Poisson equations for
channels elefineel by Cl. split-gatehave shown that the confining potential is parabolic
with a flat bottom [34]. Fm small openings a pure parabolic confinement U(y) =
nlw,~y2 /2 is a good approximation. The width IV of the split-gate can be defined
by the separation of the equipotentials at the Fermi energy. With Hl = 2y l and
U(yl) = E F - E c one obtains

IV 2 ------'- oe
1

(7.1)

'I'he electron density in the constrictior, is deterrnined by the position of the Fermi
encrgy BF relative to the conduetance band edge rninimum in the QPC. For constric-
tions defined by split-gate electrodes, usually does not vary much with decreasing
Usg ' The main effect of Usg is to EH conductance band E; relative to EF , unt.il
the last channel is depl eted.
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Figure 7.5: Measured coneluctance vs U sg for different Ubg between -3.3 V and +0.02 V
in steps of 0.08 V at Bi. = 0.21', (sample 34A), The dashed lines mark positions,
where ID subbands with different m are filled simultaneously and therefore one con­
ductance plateau is skipped. 'I'he two curls indicate positions where simultaneous
filling of (0,1) and (4,0) repectively (1,1) and (3,0) occurs.

The confinement along the y-clirection has been estirnated by divieling EF - E; by the
number of occupied channels". We have found a ID subband spacing of flE :::::: 2 meV
for u.; 0meV.

We now discuss what happens if the confinernent in z-direction is tuned by varying

Ub g . Figure 7.4 shows the 2D subband densities Tlo, TI], and 17,2 as obtained from
SdH measurements and the HaU clensity TlH as a function of the back-gate voltage.
The difference Tlo Tll monotonically decreases with increasing Ub g . This is due to
the extension of the electron gas in z-direction with increasing density, as discussed

in chapter 3.3. For increasing iIbg , the confinernent in z-direction widens, whereas
the y-direetion rernains unaffected to first approximation. Thus the shape of the
3D QPC-constrictiorl gets more and more circular. The subband density difference
'110 -- Tl1 corresponds to a subband spacing !::.E 01' 9 meV at Ubg :3 1/ and of
~~ 111eV at Ubo == 0\/.

o

The rneasured conductance as a function of Usg is presented in Fig. 7.5. Different
traces corresponcl to different . Für Ub g - -3.30 V, five well-resolved conductance
plateaus are observed. Since für this gate voltage we expeet the confinement in z­

direction to be much stronger than in y-clirection, we attribute these plateaus to
channels belonging to the ground state of the z-confinement, labeled by m = O. As

is increased, the confinement in z-direction weakens, and channels with TI? = 1

1 EI" in the channel has been obtained from rneasurements in a streng magnetic field per-
pendicular to the 2DECi, wbereEF :::::; , as described in Ref. [84].
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Figure 7.6: Transconductance dei/ dUfg as grayscale vs. U fg and Ubg' Black regions
corresponel to conductance plateaus (1O\v transconductance}, while bright regions indi­
cate crossings of the Fermi energywith a 1D subband energy, where the transconduc­
tance is high. Thus the bright lines correspond elirectly to the 1D subband energies,
which are indicated by (I, rn). The dashed lines indicate the location of the subband
energies withm = 1. The structure at high Usg and Ubg has not been reprocluced
and is attributed to resonance effects due to a nearby impurity.

get occupiecl. Thefirst indication for this is the disappearance of the N = 5 plateau
at Ubg ~1.0V and Ugg = -1.0:3V. There, the energy of the (l,rn) = (4,0)-channel
coincides with the energy of the (0,1 )-channel, and the two channels are occupied
simultaneously. Thus the corresponeling plateau at N 5 disappears. We label the
plateaus by [lo, h] with 10 Ud the number of occupieel channels with m = 0 (m = 1).
The occupation numbers for the plateaus at -:3.:3V are [1,0], [2,0], ... [S, 0].
A further increase of Ubg successively suppresses the 0] and [:3,O]-p1ateaus, while
the [2,0]- and [1,0] plateaus rernain unaffected. This indicates that the shape of the
constriction never gets completely circular, because then also the energy levels (1,0)
and (0,1) woulel be clegenerate and the 2 plateau would be missing. In fact,
the (1,0) arid (0, l j-subbands can only be degensrate if an exactly circular shape is
realized.

The plateau at N = 5 recovers at 2.ti V. H turned into [4,1] with foul' tri = 0­
arid one m = 'l-channel occupied. A further increase of Ubg suppresses the plateau
again, which is attributed to the interrnixing of the (1,1 )-state. At Ubg = -1.0 V,
the plateau recoversin the forrn 01' [:3,2].

A better visualization 01' the energy structure is given by plotfing the transconduc­
tance dCi/dUsg as grayscales against Usg and (Fig, 7.6). Dark regions correspond
to a conductance plateau. T11e1r width is deterrnined by the potential shape in trans-
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Usg (V)

-1. 2 arid 5 are observed. While
= 4 is omitted. With increasing

Figure 7.7: Measured Ci vs 1'01' different BJ.. (Ub g O.OV). For clarity, the curves
are offset in the [J,,,-direction. The oJfset is increased bv 20 mV from curve to curve.

~o v

TlreEh values range between 0 anel 6 '1' with steps of 0.1 T. With decreasing B 1.,

plateaus are successively destroyed, while plateaus with higher quantum numbers
may be recovered at lower fields. The plateaus are labeled with numbers [Zo, h] as

discussed in the text.

port direction [144] and by k'BI'. The bright grayscales denote rising conductance
edges, where 1D subbands cross the Fermi energy. The white dashed lines in Fig, 7.6
indicate the channels (1,0),(1,1), arid (1,2), which interfere with the TI? = O-channels.
We learn from Fig. 7.6 that at Ubg = :3.:3 V. the confinement in z-direction described
by the frequency W z 01' the parabolic potential is at least five times strenger than in
y-directior1, while at Ub g = 0.0 mV, the relatioubetween W z and w!! is about 1:2. As
Eq. 7.1 tells us, the diameter y(J ( 01' the constriction is proportional to l/w!! (1/~'z)'

Thus the shape of the opening is elliptic with axis ratio of yo/zo = wz/w!/l amounting
to to 2:1 for Uh g = O.OV and 5:1 1'01' :3.:3V.

7.4 ID Subband Spect.rum in Magnetic Fields

In the following, we focus on Ubg 0, where in the 2DEG two subbands are occupied,
and /ls = ;1.6·101Srn- 2

• The two subband densities are determined from Shubnikov-de
Haas oscillations and are found to be /10 2.6· 101S m- 2 and 17.1 = 2.0 . 101.5111- 2.

vVe applied a magnetic field in the direction perpendicular (Eh) and parallel (BII)
to the direction of the current flow, but Ir1 thcplane 01' the 2DEG (Fig. 7.1b). In
Fig. 7.7 we present measurernents at different Th.
At BJ.. = 0 T, well defined conductance plateaus at
there 1S a weak plateau at :3. the one at
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Figure 7.8: Measured conductance as a function of the split-gate voltage Usg and for

differentmagnetic fields 13
1
1 ( 0.5V). The curves are offset in the Usg-direction

by 20mV each. The 13
11

values range from °arid ;J T with a step size of 0.1 T.

13J.. the N = :3 plateau fully recovers atB1. .~ 2 T, aneliV = 4 re covers at :3.LI T. At

this field, the plateau at N = 5 is suppressed. It re covers 211, areund 4.2 T at a value

which is close to 10(,2 jh. This suppression and recovery of conductance plateaus is
attributed to the degeneracy of 1D subbands at the Fermi energy. As a11 observed

plateaus seem to re cover 211, higher fields, suppression of N = ;J at 13J.. 3.4 T is
due to the crossing of the fifth level of the m = O-ladder with the lowest level of the

m = J-Iadder. The observed platcaus at lh °T are labeled by [la, lt] [1,0], [2,0],
[3,0], [4,1], [5,2], ... , while at Bs. = 6 T the numbers are [1,0], [2,0], [:3,0], [4,0], [5,0],

'I'he conductance data in a parallel ficld B II is presented in Fig. 7.8. For BII 51', the

O(Usg)-trace showecl seven plateaus at = 1,2, ... 7. In the presented measurernent ,

the plateaus are less flat than usual. We attribute the wiggles in the plateaus to
resonance effects in the constriction due to impurities nearby [129]. 'I'he N = :3­
plateau is not well pronounced , but it never disappears cornpletely. The O]-platea.u

evo1ves into a [4,1] plateau with clecreasing field, arid similarly [6,0] evolves into 1],

whereas the N = 7 plateau is represented in three ways: [7,0],[6,1] and [5,2]. The

plateau at N = LI seeins to disappear at BI1 < 21', but the differential concluctance
shows that a small feature always remains at the plateau position, as will be discussed
below.

In Fig. 7.9 we plot the transconeluctance dOjdUsg in a gray scale plot as a function
of and 13. Two measurernents are shown with Ure two different B directions
parallel and perpendicular to the channel, respecti vely. In boHI plots, the crossing of

the we11 resolved Tri = °1aeleler with the pronounceel Tn 1 ladder can be seen.
At a given field, subsequent conductance plateaus appeal' about equielistantly in Usg'
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With inereasing field, the m = 1 ladeler moves quiekly away from the m = O-ladder.
This is explained by a diamagnetic shift 01' the 2D-subband energy difference [113].
The m = (l-Iadder spacing strangly deperids on the orientation of the magnetic field.

For Bi., it increases with increasing field, 1'01' BII' it decreases.

In order to understand the structure shown in Fig. 7.9, we model the energy levels 01'
a parabolic constriction given by

U(y, + ~2)
"'" . ' ( 1'7 '))

I.~

For perpendicular fields along the y-direction the gauge A (B1..z, 0, 0) is used,
for parallel fields along the .r-directiou A (0, -B11z, 0). Vve first discuss the
perpendicular-Iield case, before we move to the mode-coupling in the parallel case.

In the Hamiltonian, Bl. couples to the :T- and z direetions which are perpendicular
to the field elireetion. Along the "free" z-direction, the dispersion relation and thus
the eifeetive mass is moelifieel, whereas the z-confinement is enhanced due to the

diamagnetic shift proportional to (1+ z)(1. A term which couples the z- and
z-direction results in a shift 01' the Fermi surface in k;l;-direction. Negleeting electron­

electron interactions, 110 coupling of the ,11- and direction is expected, such that the
ID subbands cross each other. Fm a parabolic confinement, the subband energies are

given by

(rn +- 1/2), (7.3)

where Wc,l. = eBl.lrn* is the cyclotron frequency, Fig. 7.ge shows the energy fan

for W y 2.0meV and W z 5.0meV.Them O-ladder crosses the m = l-Iadder

without any indication of coupling. The step size rernains constant with Bi.' The
spread of the step-size with increasing B_L in the measurernent (Fig. 7.9a) can be

explained by a DOS-reeluetioll in the 2DEG outside the QPC, leading to a decrease

of the Fermi energy withincreasing B1. [1 109]. 1"01' the confinement potential
given by Eq. 7.2, the DOS increases with E5_L as (1 +- w(~ /W;)1/2 [111], where Wc is the
cyc1otron frequency.

For magnetic fields BII parallel to the current direetion, the dominant effect is the
change in energy spacing 01' the ID subband ladders. The magnetic field couples the
z- and the y-direetion, which are both electrically confined by the QPC opening. In a
situation with rotational symrnetry along the field direction, this leads to the ordinary

Zeeman effect, similar to the splittirrg 01' the Darwin-Fock states. A ca1culation 01'
the energy levels 1'01' parabo1ic confinenrents \vith aTbitrcuy (.;..,'y and W z gives the result
(see Appendix B)

(7.4)

\vith
" 1 ( "

(.;..,'1.2 2 0.)~ +
1+ 0.)2) ± _,

z 2 (7.5)

At B = O. 0.)1 eorresponds 10 , and (.;..,'2 1S equa1 to W z . Figure 7.9d shows the

ealculated energy speetrurn 1'01' = 2 rneV anel W z 5 meV. The larger 01' the two
frequencies increases with B II• while the smaller ane deereases.
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Figure 7.9: Graysca1e plot 01' the transconductance clO/ clUsg as a function 01' [fsg

and 131. (a) and 1311 (b). Black regions correspond to conductance plateaus (zero
transconduct.ance}, while bright regions inclicate rising eelges of the conductance, and
thus crossings of E F with a ID subbanel energy. Calculated ID energy levels Ei,m

for a 3D QPC with magnette field Eh perpendicular (c) and BII parallel (d) to the
current direction. The energies are inelicated relative 1,0 E o.o. 'I'he constriction is
defined by w y = 2rneV and W z .5 meV.
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In the experiment at Ub g = 0.5 V and Usg = -1.3 V, the number of occupieel ID
levels of them = O-ladder increases from 7 at zero field to ab out 11 for BII = 5 T,
corrcsponding to a decrease of the spacing of the lower ID subband ladder. Asstiming
that the ladder steps are also spread due to the DOS-effect by a Iactor of 6/5 at

B.L 5.0 '1', we arrive at a filling of N ~ 13, which is in agreement with the calculated
energy spectrum in Fig. 7.9el.

If the QPC confinemcnt is not exactly parabolic, the Hamiltonian cannot be de­
couplecl into two parabolic oscillators because of the magnetic confinement. The
energy levels anticross as a function 01' B«. This effect has been calculated for dots

• il

in the special case of a square wen confinement [H5, D5]. An indication 1'01' such
an anticrossing in our 3D QPC is presentecl in Fig 7.10, which is a close-up of the
measurements shown in Fig. 7.9. The (:3,0) level does not cross the (0,1) level. A
small dark region always remains, This mcans that the transconductance has always
two peaks, which stay separate. The plateau-like feature in the G(llsg)-traces never
complete1y disappears at N 4, see Fig. 7.8.

As an illustration, we calculated the energy spectrum for a parabolic potential in
z-direction disturbed by a potential spike in the form 01' a three monolayer thick
Alo.osGao.95As-layer at z O. We started with the analytically obtained wave func­
tions for a parabolic confinement in y- and z-elirection and BII along the x-direction,
and treat the spike in first-order perturbation theory. By diagonalization 01' the
Hamiltonian consielering the states m 0,1 = 0,1, 2, ~), 4 and tri = 1,1 0,1,2 we
obtain the energy levels plotted in Fig. 7.11. A splitting 01' most levels is observed.
The splitting is sm aller than in the experiment (close-up in Fig. 7.10). Note that
the separation between the m = 0- anel the m l-Iadder decreases when a spike
is introduced. This is sirnilar to the decrease 01' the 2D subband spacing, as was
calculated in first-order pert.urbation theory in chapter :3.

7.5 Conclusions

In conclusion. we measured thc subband 01' a 3D QPC realized on a. sernicon­
ductot PQ\V structure by analyzing the transconductance through the QPC at differ­
ent magnetic fields with two different orientations parallel to the 2DEG. In the case
where B is oriented perpendicular to the axis 01' the 3D QPC, coupling between ID
subbands is neither observecl nor expected. For field clirections along the direction 01'
current, a level anticrossings is observed. \Ve ca.nnot attribute this anticrossing to the
influence 01' a potential spike a.lone, because it is too strong. Other non-parabolicities
01' the confining potential might be tbe cause 01' the observecl anticrossing. \Ve have
found no level-lockings within tbe experünental resolution.
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Figute 7.10: Close-up of Fig. 7.9b, showing anticrossing of the (0,1) with the (:3,0)
level. In addition to the grayscale of the transconductance, the individual transcon­
ductance traces are shown explicitly.
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Figure 7.11: Calculated energy spectrum for 1.5meV and W z = 5.0meV (a)
without spike and (b) with a 8.5 A thick AloosGao.9sAs potential spike at fixed z­

position.



Chapter 8

Conclusions and Outlook

Parabolle quantum wells have been reaEzed in the AlGaAs-GaAs-system in a very
preeise way using molecular beam epitaxy, 'I'hey represent a unique model system
in which quantum states and their respective influenee on classical and semi-classical
phenornena can be investigated.

vVe have measured the width 01' the electron gas as a function of the electron sheet

density and introduced a method to map out the quantum-mechanical density dis­
tribution of the electrons, Transport experirnents are a versatile tool to study the

single-particle energy levels. For the considered samples, it has been found that
the electron energy quantization in magnetic fields of arbitrary orientation can be

understood by considering text- book examples of quartturn mechanical problems de­
seribing single electrons in quantum wells. It has been found that the obvious model
not always describes the experimental results, For a multi-subband system in an in­
plane magnetic field, a second-order effect rnodifies the first-order result by a factor

of seven , in agreement with the measurements.

Intersubband seattering and multi-subband screening deterrnines the mobility of wide
electron gases. The model systern of a PQ'V allows the displacement of the eleetron

distribution along the growth direction. We have used this fact to demoristrate a new

method to investigate the spatial distribution of scatterers across the structure.

In addition to the parabolic wel] confinement. the electron gas has been eonfined in
one lateral direetion using sub-rnicrometer lithography techniques. We h ave fabri­
cated a QPC in which the one-dimensiorial subbands are described by two quantum
nurnbers. Internetions between subbands with variable energy separation have been
measured and have been describcd by a generalized Darwin-Fock rnodel.

A next step would be the confinement of the third direction. In this way GD dots

wou1d be definecl, where three quanttun numbers deterrnine the encrgy levels. Sueh
a eomplex systenl would allow the study of multiple tunable energy degeneraeies in a,
few-c1cctron system, wherc rnany-particle interadions might be investigated in detail.

In 2D eleetron 1'ocusing experiments in multi-subband systems, the individual sub­
bands are expected to modify the resistanee due to thcir different eyclotron radius.
Conlmensllrability between thc respective cyc1otron radius and the sanlple geometry
leads to peaks in the rnagnetoresistance. This allows the study the interaetion be­

tween 2D subbands. It is an example of hmv classieal behavior, namely the cyc1otron
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motion of eleetrons, is influenced by the population of an additional quantum state,

Parabolic quanttim wells are in the special regime where the eross-over from two
to three dimensional systems can be investigated. Intersubband scattering still holds
many open questions, in particular with respeet to inelastie seattering events. A more
profounc1 investigation on how scattering between eleetrons of the Senne subband and
between different subbands affects the phase coherenee length will be necessary.

Shu bnikov-de Haas minima at odc1 in tegerfilling factors are governecl by spin ef­
feets. Preliminary experiments have shown that additional structure shows up in the
magnetoresistanee being related to competing spin levels of different subbands. More
detailed studies in Chis regimemight unravel the complicated situation of neighboring
Laudan levels that are described by three quantum numbers, i.e. subband, Landau

and spin quanturn number.

With self-aligned gate teehnique [146, 1i171, QPCs can be fabricated where the eleetron
densities in- and outside the one-dimensional channel are controlled independently
by different gate eleetrodes. A situation can be rcalized, where electrons from the
lower subband are injected into an upper snbband. By varying the energy between
the Fermi seas in the source and drain electrode more details of the intersubband
scattering process might be found.



Appendix A

Comparison of Screening
Approximations

In this appendix we investigate the influenc« of the screening approximation on the
scattering times. \Ve cornpare results obtaincd for Thomas Fermi screening and IlPA
screening and investigate the eflect of a third S11bband in the RPA matrix forrnalisrn
for two occupied subbanels.

Figure A.l presents calculated scattering tirnes for 3 . 1016m-- 2 , N 2 1.:3 .
1015 m- 2 and N3 = 1.5.1015 (for a definition of i see chapter 4.2.5).

In (a) and (b), 'fIH = 2.9 . 1015 m--2 waskept constant and the electron gas was
displaced along the growth direction. In (a), the Themas-Fermi result is compared
to the :3-subband IlPA result. The scattering times correspond reasonably for both
subbands. In (b), the RPA result obtained for a 2-subband matrix is compared to
that of a 3-subbanclrnatrix. A qualitative change is observecl: In the 2-subband RPA
result, the upper-subband scattering time is larger than the lewer-subband scattering
time.

In (c) and (cl), we compare results for different nH obtainecl by keeping Ubg = 0 and
varying Ufg. Again the ~3-subband RPA result agrces better with the '1']<' result than
with the 2-subband RPA data.

We therefore conclude that the IlPA-matrix forrnalism is not a goocl approximation
to our 2-subbancl PQ\V systern. Better results are obtained by regarcling virtual
screening of an unocuppied third subband. or by considering TF screening.
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Figure A.1: Comparision of calculated scattering tirnes. In (a) and (b), simulations
of the scattering times as a function of the electron-gas displacement across the PQvV
are shown. In (a), the TF approximation is compared to a three-subband RPA. In
(h), the three-subband RPA is cornpared to the two-subband }lPA. Similar data is
shown in (c) and (d ) for the scattering times as a function nH varied by Ufg'



Appendix B

2D Parabolic Confinement

vVe calculate the ellergy states and wave functions of electrons confined paraboli­

cally in two dirnensions and in a magnetic fielclB11 (Fig 7.1a). In the gauge A =
(0, Bllz, 0), we obtain the Hamiltonian

H = m.. ') . + '). . + ')
~rn ~m '-' + (B.I)

In the genoral case, the cross-terrn containing PyZ hinders the separation of the prob­

lem into y and z direction. Ir B = 0 arid thus W c = 0, one readily obt.ains two

decoupled harrnonic oscillators with frequencies and W z . The cross-term can be

removed by a rotational transforrnation. vVe regend the two-dimensional space with
Pli and z as coordinates. The new "spatial" coordinates u and v are obtained by

( ))'1 )

7T1,Wy
(

cos e
sin ()

sin ()) (u) .
cos () v

(B.2)

Correspondingly pz and y transform into the "momentum" coordinates 11n and II v :

( ]Jz ) ( cos () -SinO) (I1u
) (B.:3)

sin () cos 0 11v

The minus sign in y is necessary in order to fulfi11 the cornmutation relations:

111U J

[v, II,,]

[u,
[Iln , n,,]

i ri
ih

o
o

(BA)

(B.5)

(B.6)

(B.7)

(B.8)

The Hamiltonian expressed in the transforrned coordinates contains a cross term
proportional to VI), which we require to vanish:
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In any case no cross term proportional to nun/} appears, such that the problem has
been separated on ce this equation is fulfilled. The solution given by the rotation-angle
e is expressed as

cos 20 = (13.10)

The clecoupled Harniltonian then reads

112 IV mH-_U, ~"'- .. +') +)2m ~Tn '

with the frequencies

u
2 + (B.11)

1 2 2 2) 1= (u.-'+w +w =F-2 c. y z 2 (B.12)

We now solve the Schröclinger equation

Hyi,j = (B.13)

The energy eigenvalues are eviclently given by

Ei,J 71w1/, (i + 1 + (j + 1/2) (B.14)

We focus our attention Oll the wave functions
the ladder operators

. For i ts calculation we construet

(B.15)

(B.16)

(B.l7)

(B.IS)

Here we introduced the length Uo and Vo = J7i/wv m* , respeetively.
The grouncl state is defincd by Expressecl in thc unrotated coordinates

y and z, one obtains the couplecl differential equation (Yo vn,jwym*)

d
--(Po.o(y,
dy
d .

-YO,o(y,

(B.19)

(13.20)

which can be solved by the ausatz



98 APPENDIX 13. 2D PARABOLIC CONFJNKMENT

2 2lpo,O(Y, z) = C exp[oz + ßy + ,XV]· (13.21 )

One obtains

y6(u.-'1L +Wv + W u) eos 20)
(1) I)'»)\ ).~~

3=

A( = '---- ,__

(13.23)

(13.24)

The norrnalization of lpo,o is obtained by choosing

[/2

C (13.2:3)

(13.26)('czt ).i,r ,(V
v, '1"0,0,"(y,

I-ligher states can be eonstrueteel by applying the creation operators at and on the

grounel state:

We finally give the explicit form of the creation operators:

t (1 7) ( 'I. . • 1..1)'1/. (;·)?L . (' i - •

I sm 0 --.:.. . y -- ----Uo -'. + eos () -:-
:.,,'u Uo dy Uo

. ( 1 W v d) . (1zeos 0 . y - --Uo - + sm () - z
W" Vo '1'0

cl)Uo-clz
cl)

'1'0 clz .

(13.27)

(13.28)

Note that when W c = 0 then eos () 0, sin () -1, 0.).u WlI arid W u W" Z •
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assumed perpendicular to the constriction.



Appendix C

List of SampIes

sample

6

21
22

18
1:3
14:
17
33A
33AII
33D
43D1

:1:=0.1
x:=O.O:3
x=0.10
.1::::::0.15
:<:=0.00
:[;=0.1:3
:r:=0.05
:<:=0.05
:r=0.05

05
:<:=0.15

wafer

941027A

961117B

96111

961117D
961117A

941027A

961117B

961117B

961117B

961117B

961117D

structure
oIe! HaUbar
oIe! 11a11 bar
olel Hall bar
old Ha11 bar
old Hall bar
old HaU bar
olel Ha11 bar

new HaU bar, QPC
new Hall bar, QPC
newHa11bar, QPC
thin UCF Hall bar
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