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Abstract

We present new algorithms for generating polymer structures for starting
Molecular Dynamics simulations in dense phase. High quality polymer struc¬

tures are characterized by low potential energy as well as consistency with

experimental statistical data.

In contrast to common methods that consider energy potentials, our ap¬

proach to finding such structures consists of the transformation of the chem¬

ical problem into a geometric optimization problem. We solve this problem

by means of heuristic search algorithms. The efficiency of the search pro¬

cedures is based mainly on the new parallel-rotation (ParRot) technique as

well as on the concept of a horizon which allows splitting the global packing

problem into a sequence of problems with increasing difficulty.
Our packing algorithms, which are available as a software package, are

applicable for general polymer systems. This permits us to tackle the prob¬
lem of packing long chains into large boxes (up to 50Ä ) in a few hours on

current workstations. We have succeeded in packing systems consisting of up

to 100, 000 particles five times faster than the best known methods. Further¬

more, we succeeded, for the first time, in generating dense conformations of

polycarbonate and polystyrene chains that correspond to experimental statis¬

tical data and which maintain these properties during subsequent Molecular

Dynamics simulations.
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Kurzfassung

Wir präsentieren neue Algorithmen zur Berechnung von dichten Polymer¬

strukturen, welche in Moleküldynamik-Simulationen benötigt werden. Struk¬

turen von hoher Qualität zeichnen sich aus durch tiefe potentielle Energie
sowie durch ihre Übereinstimmung mit experimentell ermittelten statistischen

Daten.

Im Gegensatz zu den üblicherweise verwendeten Verfahren, welche mit

dem Energiepotential arbeiten, beruht unsere Methode, solche Stukturen

zu erzeugen, auf der Transformation des chemischen Problems in ein geo¬

metrisches Optimierungsproblem. Dieses lösen wir mit Hilfe von heuris¬

tischen Suchalgorithmen. Effizienz erreichen wir hauptsächlich durch zwei

neue Konzepte, die parallele Rotation (ParRot) und die Idee eines Horizont-

Parameters, welcher es erlaubt, das globale Packungsproblem in eine Sequenz
von Problemen mit aufsteigendem Schwierigkeitsgrad aufzuteilen.

Unsere Algorithmen, welche in Form eines Software-Pakets erhältlich

sind, können Polymer-Systeme allgemeiner Form verarbeiten. Sie erlauben

es, in kurzer Zeit (einigen Stunden) lange Ketten in grosse periodische Zellen

(bis 50Ä ) auf üblichen Workstations zu packen. Wir konnten beispiels¬
weise ein System von Polymerketten mit insgesamt lOO'OOO Partikeln fünf

mal schneller generieren, als dies mit der besten bisher bekannten Methode

möglich war. Es gelang uns auch, zum ersten Mal dichte Konformatio¬

nen von Polykarbonat- und Polystyrol-Ketten zu erzeugen, die den expe¬

rimentell gemessenen statistischen Daten entsprechen und diese Eigenschaft
auch während anschliessenden Moleküldynamik-Simulationen beibehalten.
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Chapter 1

Introduction

1.1 The Polymer Packing Problem

In the field of Materials Science, computer simulation of atomistic systems
has become a very useful and important alternative to real experiments.
Molecular Dynamics and Monte Carlo simulations are common methods to

reveal and explain properties of materials. A large number of substances such

as plastics, rubbers, synthetic fibers and materials from all living organisms
are composed of polymers. These macromolecules, which consist of tens of

thousands of atoms, have the shape of long chains. Polymeric materials in the

amorphous state are composed of densely packed, randomly entangled chains.

The chemical (covalent) structure of these chains is completely determined

by the type of material used. It does not change during the simulation. In

contrast, the conformation of the system, that is, the positions of the atoms

in space is altered by the simulation process.

Since it is difficult to completely change the initial three dimensional

shape during the simulation of dense atomistically detailed polymer systems,

one should start with a reasonably "good" conformation. The problem con¬

sists of creating a packing of chains that do not intersect and whose three-

dimensional shape corresponds to statistical data derived from real experi¬

ments. The high density together with the connectivity of polymer chains

make this problem a difficult one.

1.2 Drawbacks of Today's Methods

Today's methods used to generate starting structures of dense polymer sys¬

tems usually start with coarse initial guesses which are condensed and relaxed

by molecular dynamics simulation and potential energy minimization. The

1



2 CHAPTER 1. INTRODUCTION

problem mainly lies in the generation of the initial-guess structure. The ini¬

tial guess does not match experimental statistical data, it loses its statistical

properties during condensation and relaxation. Thus, as an example, no sat¬

isfactory conformation of the widely used polycarbonate has been available.

1.3 A New Approach

In this thesis, we describe alternative approaches for generating dense poly¬
mer systems that avoid overlap, and guarantee the chains to obey the proper

chain statistics.

Our approach is based on the idea of transforming the chemical packing

problem into a geometrical optimization problem which is solved by heuristic

search algorithms. The algorithms work at the target density from the start.

They reduce intersections and consider statistical properties simultaneously.
We split the delicate packing problem into a sequence of problems with in¬

creasing difficulty. A horizon parameter defines the range beyond which the

atoms do not perceive each other. It is increased to eventually attain its full

range where each atom can "see" all others. Besides this incremental modi¬

fication of the non-bonded interactions between the atoms, the performance
of the search algorithm relies heavily on the efficiency of the moves used

during the exploration in the search space of conformations. We devised a

new move, the parallel rotation (ParRot) for efficiently relaxing the torsion

angles that are deep inside long chains in dense systems.

1.4 Results

Two considerable advantages of our packing software are its efficiency and

the quality of the structures it generates. We have succeeded in packing sys¬

tems of up to 100,000 particles (periodic box size up to 50Ä ) within hours

on a workstation. For large systems, our method solves the packing prob¬
lem up to five times faster than the best of todays methods. Our software

is able to generate conformations of polymer systems that obey statistical

data derived from real experiments. We show, for the first time, that dense

conformations of polycarbonate and polystyrene chains that correspond to

experimental statistical data and that preserve these properties during sub¬

sequent Molecular Dynamics simulation can be generated.
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1.5 Structure of This Thesis

In chapter 2 we give the necessary background on polymers and computer

simulations of polymer materials. We introduce two simulation methods, the

Molecular Dynamics method (MD) and the Monte Carlo method (MC). They
both ask for 'reasonable' starting conformations of dense polymer systems.
We give a survey of current approaches to the problem of generating such

structures.

Chapter 3 is devoted to our new approach to the polymer packing prob¬
lem. First, we introduce a geometric model of polymers. We show how force

field parameters are transformed to geometric and statistical constraints.

We explain our algorithms PolyGrow and PolyPack for generating simplified
and atomistically detailed polymer systems respectively. Both algorithms

perform heuristic searches in conformational space. We describe the internal

structure and the usage of the polymer packing software in Chapter 4. Then

we show its efficiency as well as the quality of the generated conformations

by means of diverse case studies (Chapter 5).
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Chapter 2

The Context

2.1 Chemical Background

The work presented in this thesis is the result of a fruitful interdisciplinary
collaboration between computer scientists and chemists. For those readers

not belonging to the latter group, I will first give a brief introduction to the

world of polymers. For a more detailed survey see [10].

2.1.1 Polymers Here, There and Everywhere

Molecules range in size from a few atoms, such as H20, to tens of thousands

of atoms. Giant molecules, called polymers, play an important role in the

biological and artificial world and in many fields of research.

A variety of materials are composed of polymers, such as:

• Plastic materials (including bullet proof vests)

• Rubber and all its products

• Synthetic fibers (optic fibers, clothes)

• Cellulose (wood and paper)

• DNA, proteins (all living organisms)

Polymer physics and the mathematics of macromolecules were developed

mainly by chemists in the 1940s and 1950s. The most notable among them

was P. Flory (1908-1982) [7]. For his pioneering work in polymer physics, he

received a Nobel prize in 1974. Polymer physics has eventually grown into

an independent field of research. All of its concepts and models have been

used successfully both in physical chemistry and in molecular biology.

5



6 CHAPTER 2. THE CONTEXT

2.1.2 What Does a Polymer Molecule Look Like?

Anyone who wants to understand the properties of polymer materials should

first have an image of their molecules. Polymers are long molecular chains.

A helpful image is a long, entangled, three-dimensional rope or wire. These

chains are composed of monomer units. A monomer unit is a small group of

just a few atoms connected to other monomers by covalent bonds. A large
number of these monomer units are connected to form a chain. Monomer

units are also called repeat units. Figure 2.1 shows schematically the struc¬

ture of the simplest polymer, a polyethylene chain. To be considered a poly¬

mer, a molecule must consist of a large number R of repeat units. Artificially

synthesized molecules contain from hundreds to tens of thousands of units,
while natural polymers like the DNA molecule are much larger. They are

composed of up to ten billion monomer units.

repeat unit

Figure 2.1: The covalent structure of polyethylene.

So far, we only described the way in which atoms are connected to form a

polymer. This is called the primary or covalent structure of a molecule. The

covalent structure of polymers used in experiments or computer simulations

is always known in advance.

However, the crucial information about polymers in simulations is their

three-dimensional shape, called conformation or tertiary structure. The prob¬
lem of computing the conformation of polymers in a dense environment is

the subject of this thesis.

The term secondary structure is used mainly for proteins to describe their

three-dimensional structure as a sequence of regular, periodic, spatial shapes
such as alpha helices and beta sheets.

At first glance it seems reasonable to assume that a polymer chain looks

like a straight line (Fig. 2.1). However, under most conditions, this is not
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true. A polymer diluted in a solvent, like water, gets tangled up into a ran¬

dom, loose, three-dimensional coil. This is a result of the chain's flexibility.

Although the atoms in the molecule are joined together by strong covalent

bonds, their position in space with respect to each other need not be fixed.

The majority of the most commonly used synthetic polymers, as well as

all protein molecules, have single C-C chemical bonds along their backbone.

Such molecules appear flexible because parts of a molecule may rotate around

the single bonds. For example, a monomer unit of a polyethylene chain con¬

tains two C-C bonds which leads to a total of 2R (freely) rotatable torsion

angles per chain. This large number of degrees of freedom make the chain

look like a random walk in vacuum or diluted in a solvent.

2.1.3 Possible States of Polymer Substances

The three simplest states of ordinary matter are: solid (crystal), liquid, and

gaseous. The gas and the crystal state are not typical for polymers. However,

polymers do not only exist in a liquid state. There is much more diversity
in polymer substances: There are plastics and rubber, fibers, timber and

paper, polymer films and all the various polymers found in nature. This

variety is due to the fact, that polymer substances are composed of very long,

strongly entangled molecular chains. Depending on the kind and strength
of interactions between the monomers, polymers can exist in four different

states:

• Viscous state, polymer melt: The polymer is a liquid of macromolecules.

In thermal motion, the chains easily move with respect to each other.

• Elastic state: The chains are joined together with covalent chemical

bonds or other forces to form a polymer network. Thus, they can

not flow freely. But at small scale, the mobility of the chains is not

constrained by the cross-links.

• Semi-crystalline state: If the temperature of a polymer melt is de¬

creased slowly, the thermal motion is enough to enable the polymer
chains to form crystalline regions.

• Polymer glass: Polymers that are unable to crystallize at low tempera¬

tures, tend to become a glass. Any thermal motion at any scale larger
than the size of a monomer does not exist. In contrast to the semi-

crystalline state, the chains are entangled randomly showing no order

or large scale structure.
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In all the states, the material consists of densely packed, multiple entan¬

gled polymer chains. We will focus mainly on polymer melts and glasses.

2.2 Computer Simulation of Polymers

To explain how polymer materials behave, theoreticians have tried to con¬

struct simple mathematical models of polymers and polymer systems. The

development of powerful computers made it possible to simulate these models

and analyze them numerically. The first simulation of a liquid was carried

out in 1953 by Metropolis, Rosenbluth, Teller and Teller at the Los Alamos

National Laboratories in the United States [25]. The rapid development of

computer hardware made computer simulation possible on most of todays
workstations. A survey of the history of polymer simulation and todays
methods is given in [1].

Computer simulation provides a direct route from the microscopic details

of a system (the masses of the atoms, the interactions between them, molec¬

ular geometry etc.) to macroscopic properties of experimental interest (the
equation of state, transport coefficients, structural order parameters, and so

on.). This type of information is technologically useful, because:

• It may be difficult or impossible to carry out experiments under ex¬

tremes of temperature and pressure, while a computer simulation would

be perfectly feasible.

• The high speed of molecular events is often an experimental difficulty
but it presents no hindrance to the simulator.

• Subtle catalysis or enzyme action are difficult to probe experimentally,
but can be extracted readily from a computer simulation.

When its results are compared with those of real experiments, computer

simulation is also a test of theories and the underlying model.

2.2.1 Mathematical and Computational Models

Basically, an atomistic model of a material consists of the following two

entities:

• A set of N particles. A particle may be an atom in a detailed model,
or a whole monomer in simpler models. The microscopic state of the

system is specified in terms of the positions and momenta of these

particles, r = (n,...,rN), p = ('pi,... ,pN).
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• A potential energy function V(r) which depends on the coordinates of

the particles. The forces acting on each particle can be calculated from

the potential energy function. It thus governs the entire time-evolution

of the system and all its mechanical properties.

The approach used almost universally in computer simulation is to break

up the potential energy into terms depending on the coordinates of individual

particles, pairs, triplets etc.:

^r) = 5>i(ri) + J] J>2(ri,rj)+ ]>]]>] J] ^(n, rj, rk) + ... (2.1)
i % ]>% % ]>% k>]>i

The first term Wi(ri) in eqn (2.1) represents the effect of an external field

on the system (including, for example, the container walls). The remaining
terms represent particle interactions. Three-body and higher terms are only

rarely included in computer simulations. Firstly because summation over

triplets of atoms is time-consuming. Secondly because the average three-

body effects can be partially included by defining an 'effective' pair potential.

Four-body and higher terms are expected to be small in comparison with v2

and Vs. We may thus rewrite eqn (2.1) in the form

V(v)^v1(vl) + YlYlvlff(rt3). (2.2)

where rv = |r*i — rj I -
For the interaction of two atoms we distinguish between

non-bonded (intermolecular) and bonded (intramolecular) atom pairs.
A typical potential function of two non-bonded atoms is shown in figure

2.2. There is an attractive tail at large scale separations, due to correlation

between the electron clouds surrounding the atoms (Van der Waals' disper¬

sion) and a steeply rising repulsive wall at short distances coming from the

non-bonded overlap between the electron clouds. The idealized Lennard-

Jones potential, commonly used in computer simulations, approximates this

behavior:

vLJ{r) = 4e((a/r)12 - (a/r)6) (2.3)

where r is the distance between the atoms and e and a are parameters that

are depend on the type of the atoms involved. Chemical bonds are, in prin¬

ciple, also inter-atomic potential energy terms. Since bond vibrations are

of very high frequency but of low amplitude, the potential energy surface

is often replaced by a rigid distance constraint of fixed length. The same

applies to atoms of adjacent bonds. Bond angles are often kept fixed during
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150

-150

r (nm)

Figure 2.2: The pair potential for argon (Maitland and Smith [21]).

the simulation. However, torsional motion about bonds cannot in general be

neglected since these motions involve energy changes comparable with nor¬

mal thermal energies. Moreover, torsional motions are the main degrees of

freedom allowing a single molecule to change its 3-dimensional shape.

2.2.2 Periodic Boundary Conditions

In comparison to macroscopic systems (N ~ fO23), computer simulations are

usually performed on a small number of particles (N œ fO6). In such small

systems, atoms tend to drift apart. A potential representing a container may

hold the system together, but the large fraction of molecules on the surface

will experience quite different forces from molecules in the interior.

The problem of surface effects can be overcome by implementing periodic

boundary conditions. A cubic box is replicated throughout space to form an

infinite lattice. When a particle moves in the original box, all its periodic

images move exactly the same way. Thus, as a molecule leaves the central

box on one side, one of its images will enter through the opposite face. It is

sufficient to store the coordinates of the particles in the central box. If the

cubic box is large enough, the particles are not able to 'sense' the symmetry
of the periodic lattice. The common experience in simulation work is that

periodic boundary conditions have little effect on the equilibrium thermody-
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X X X

x Ä^r ^ x

x x x

Figure 2.3: Periodic boundary conditions: A cubic box is replicated throughout

space.

namic properties and structures of polymer systems. Thus, cubic periodic

boundary conditions are used almost exclusively in simulations of polymer
melts and glasses.

2.2.3 Conformational Space

The positions r of the particles of a system, can be thought of as coordinates

of a single point in a multidimensional space termed conformational space.

For a system of N particles, this space has 3N dimensions. The potential en¬

ergy function V(r) defines a complex hyper-surface on conformational space.

It usually contains a huge number of local minima and energy barriers of

various sizes. Let us use the term r(t) for the point which describes the

state of the system at time t. As the system evolves in time, r(t) describes a

trajectory on the hyper-surface of the potential energy function.
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2.2.4 The Molecular Dynamics Method (MD)

The most obvious way to simulate a many-particle system is to compute

its real world time evolution by solving the equations of motion (Newton's
equations) derived from the potential energy function V(r). In most cases,

this cannot be done analytically. To solve the equations of motion for a

set of Lennard-Jones particles, an approximate, step-by-step procedure is

needed, since the forces change continuously as the particles move. Molecular

dynamics (MD) is the term used for the technique to compute the time-

evolution and the dynamic properties of many-particle systems.

Computer simulation generates detailed information at the microscopic
level. Methods of statistical mechanics are used to convert this information

into macroscopic terms as pressure and internal energy. Suppose that we can

write the instantaneous value of some property F(r) (for example the end-to-

end distances of the chains) as a function of the actual conformation r. The

system evolves in time, so that r, and hence F(r) will change. It is reasonable

to assume that the experimentally observable 'macroscopic' property F0bs is

really the time average of F(r) taken over a long time interval t0bs- Since

the equations of motion are solved on a discrete step-by-step basis, the time

average may be written in the form

Fobs «< F >ttme= — Y,F(r(t)). (2.4)
tabs

t=1

The practical question regarding the method is whether or not a sufficient

region of conformational space is explored by the system trajectory to yield

satisfactory time averages within a feasible amount of computer time.

Since the system is not likely to cross high energy barriers, the Molecular

Dynamics method will only explore a rather small region of conformational

space. In other words, a system of entangled, densely packed polymer chains

is not likely to change its 3-dimensional shape significantly. Consequently
< F >ume will converge very slowly towards the observable value F0bs.

2.2.5 The Monte Carlo Method (MC)

A much more efficient method is to replace the time average by the ensemble

average. This is done in Monte Carlo simulations. Instead of following
the path r(t) governed by the equations of motion, we choose a sequence

of randomly chosen conformations Fi... r^ to compute the observable P0bs-

But now we have to be careful because the conformations do not appear with

equal probability along the time trajectory r(t) in eqn (2.4). The probability
for a conformation r to appear at a temperature T is
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p(r) ~ e~v^lT (2.5)

Thus, Pobs must be computed as the expected value

Y^k=iF(rk)p(rk)

Ef=iP(rfc)
"*obs ~<^ t1 ^"ensemble \—\W / \

'

\ ®)

Unfortunately, a randomly chosen conformation is most likely to have a

very high energy and thus, very low probability, because there will be pairs

of atoms that are very close to each other, resulting in high Lennard-Jones

energy terms (eqn (2.3)).
In eqn (2.6) we would thus sum mainly properties of non-relevant con¬

formations and < F >ensemble would converge very slowly towards F0bs. The

technique that solves this problem is called importance sampling. The se¬

quence of conformations Fi... rN is chosen randomly, but according to the

probability distribution p. In this case we may rewrite eqn (2.6) as a simple

average

obs

1
N

vEfW' (2-7)
N

fc=i

The most common method to generate a sequence of conformations ac¬

cording to a probability distribution p is the Metropolis acceptance-rejection

algorithm [25]:

procedure MC;

begin
Choose a starting conformation r;

loop
r' <— locally changed r;

probability <— min(l,p(r')/p(r));
if random() < probability then

r <— r';
endif

endloop
end

where random() returns a random number between zero and one. The

current conformation r is changed locally by a move. Examples for Monte

Carlo moves are the displacement of a single atom or the modification of a

torsion angle inside a molecule. The new conformation r' is accepted with
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probability min(l,p(r')/p(r)) or rejected otherwise. A Monte Carlo move

should not completely change the current conformation because such a move

would have a very low acceptance probability. Monte Carlo moves therefore

perform local changes keeping most of the particles frozen.

With this restriction, the problem of locality arises as it did within the

molecular dynamics method. The sequence of conformations is not likely to

cross high energy barriers and the starting conformation cannot be changed

completely.

2.2.6 The Need of Starting Structures

In principle, all simulations should be ergodic (produce all conformations

according to their probability) and it should not matter with which structure

one begins. In pratice, however, since it is difficult to completely change
the starting structure during the simulation of dense polymer systems one

should start with a reasonably "good" structure of low potential energy.

The problem consists of creating a packing where the chains do not intersect

themselves and also do not intersect their periodic images. Additionally,
statistical properties like torsion angle distributions and end-to-end distances

must agree with those experimentally evaluated.

The task of generating dense polymer systems is formidable due to the

high density and the connectivity of the chains. Generating starting struc¬

tures poses an interesting geometric and combinatoric problem which is the

main subject of this thesis.
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2.3 Survey of Current Approaches and Re¬

sults

Much effort has been put into constructing "reasonable" amorphous packings

starting from atomistic models of single polymer chains. Common approaches
can be roughly divided into four groups:

• Cham growing: Methods that grow chains into dense phases by adding
new segments according to a choice criterion for achieving the target

chain properties [24, 34].

• Lattice methods: Coarse "initial guesses" of the polymer chains are

created on a lattice and afterwards relaxed by potential energy mini¬

mization. [2].

• Condensation methods: This method departs from structures with very

low densities that are then condensed step by step during NpT-MD
simulation to experimental densities of polymer systems [f f, 23, 3].

• Polymerization: This native technique, described recently, starts by

preparing the monomer liquid in the periodic box and then polymeriz¬

ing the monomers to a chain [15].

All these methods start with an "initial guess" structure that is subse¬

quently relaxed by potential energy minimization or by simulated annealing
where the temperature is gradually reduced to that of interest.

The main problem lies still in the ad hoc nature of the initial-guess.
The structures generated simply do not provide an ensemble in the sense of

statistical-mechanics. The quality of these structures is very much a func¬

tion of the constructor and the care of testing. The initial guess does not

correspond to experimental statistical data, or it loses its imposed statistical

properties during "condensation" and relaxation.

2.4 A New Approach to the Packing Problem

This thesis presents alternative approaches for generating polymer systems
that avoid severe overlaps, and guarantee the chains to obey the proper chain

statistics. The main ideas implemented in the packing algorithms which differ

from common approaches are:
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• Geometric constraints: The energy potential function to be minimized

is approximated by geometric constraints such as distance constraints,
torsion angle states and torsion angle distributions. Generalized coor¬

dinates, the hard sphere model as well as the rotational isomeric states

model (RIS), are used to derive a set of constraints from an energy

potential function.

• Discrete combinatorial search: The packing algorithm starts with a ran¬

dom configuration which is improved iteratively by means of a heuristic

search algorithm which ultimately furnishes the target configuration.
In contrast to energy minimization and simulated annealing techniques,
the search does not necessarily follow a path driven by physical forces.

It rather tries to solve the combinatorial problem regardless of the

physical problem it is derived from.

• Combination of techniques: The packing algorithm PolyGrow combines

a chain growing process with an iterative technique to remove local

overlaps of atoms. This hybrid algorithm succeeds in generating large

systems of simplified polymer chains.

• Principle of horizon: Since it is difficult to manipulate an atomistically

detailed, highly connected system, an incremental modification of the

non-bonded interaction is implemented in PolyPack. A horizon value

defines the scope beyond which the atoms are "ghosts" to each others.

It is increased to eventually attain its full range where each atom can

"see" all others.

• The parallel rotation move: The performance of the search algorithm

PolyPack relies heavily on the efficiency of the moves used during
the exploration of conformational space. We devised a new efficient

method, the ParRot move [33], for efficiently relaxing torsion angles
that are deeply inside long chains in dense systems. We show that this

move contributes to a large extent to the success of our algorithm.

These techniques are embodied in our packing algorithms Embed, PolyPack

and PolyGrow which are described in detail in the next chapter.



Chapter 3

Packing Algorithms

This chapter is devoted to the presentation and analysis of algorithms to gen¬

erate dense polymer systems that avoid overlap and agree with given chain

statistics. In contrast to most of the commonly used packing techniques that

focus on energy, our algorithms are designed to solve a geometric, combina¬

torial problem. Therefore, the energy potential function, which actually is

to be minimized, is replaced by a set of geometric and statistical constraints.

In this new, simplified model of a polymer system, the problem of finding
a low energy starting structure becomes a combinatorial problem of finding
an arrangement of points which satisfies a set of geometric constraints. Af¬

ter defining possible geometric models, packing techniques for atomistically
detailed and more simplified models are presented.

3.1 Geometric Models of Polymer Systems

As described in section 2.2.1, a model for a polymer system consists of a set

of A" particles, given by their coordinates r = (ri,... ,tn) and a potential

energy function V(r) that governs the time-evolution of the system.

In contrast, a geometric model of a polymer system is composed of a set

of points and a set of constraints, concerning these points. The concept of

periodic boundary conditions to simulate a dense environment (see section

2.2.2), is adopted one-to-one. However, the potential energy function V(r)
is replaced completely by a set of geometric and statistical constraints.

3.1.1 Generalized Coordinates

Instead of defining the conformation of a system by the Cartesian coordinates

of the particles r, one can describe the same system by "internal" coordinates

17
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(i.e. bond lengths, bond angles, torsion angles and a few position and orien¬

tation coordinates). The use of these coordinates, popularized by Flory [7]
and others, drastically reduces the number of parameters.

In the case of polymer chains it has been shown that bond lengths and

bond angles (the angle between two adjacent bonds) are usually confined

to a narrow range about a mean value, and they can therefore often be

considered to be constant for most analyses of flexible chains. Fixed bond

lengths and bond angles give each molecule a locally rigid structure where

torsional rotations about bonds are the remaining degrees of freedom. We

restrict ourself by considering the torsion angles to be the only degrees of

freedom of the system.

Torsion angles cannot always be varied independently. When they belong
to a cyclic substructure, such as a ring of five or six atoms, they are subject
to constraints. Therefore, we consider cyclic substructures to be rigid.

A molecular structure can always be split into a set of rigid groups con¬

nected by torsion angles. Rigid groups are sets of atoms whose relative

positions cannot be modified by changing the torsion angles. These sets are

overlapping because two adjacent groups share the two atoms of the com¬

mon free bond. The bond (with variable torsion angle) connecting two rigid

groups is termed a free bond. Rigid groups and free bonds build a tree

structure where rigid groups are the vertices and free bonds the edges.
A rigid group g^ := {r[ ,... rjy } in the molecule i is defined as the set

of relative coordinates ry for the A^ atoms comprised in the rigid group.

Because the relative coordinates of the atoms are not changed by isometries

in R3, <jfW rather represents the class of atom coordinates related to each

other by translation and rotation operations. To construct the configuration
of a molecule, the algorithm traverses the tree and attaches every group

encountered according to the current torsion angle. The tree structure is

composed of T free bonds and in the absence of cyclic structures T + f

rigid groups (see figure 3.1). A vector of T values for the torsion angles are

sufficient to describe the internal conformation of the molecule, whereas a

position vector and three Euler angles describe the molecules location and

orientation, respectively.
We can entirely describe the molecule i, composed of a set of rigid groups

gk , by an origin vector r0 ,
three Euler angles a^\ ß^ and 7W and a vector

of A" values for the torsion angles:

D^:={^\^\ß^,^M\...,^} (3.1)

Then, the conformation of a system of M molecules is specified by D :=

{DW,...,DM}.
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Figure 3.1: Tree view of a molecule: Nodes represent rigid groups of atoms. They
are connected by torsion angles that can be freely rotated.

3.1.2 Rotational Isomeric State Model (RIS)

A geometric model of a polymer system should account for every kind of

particle interactions contained in the potential energy function V(r). The

forces between atoms that belong to the same or adjacent bonds are replaced

by the constraints of fixed bond lengths and bond angles. These constraints

leave free choices for values of the remaining degrees of freedom, the torsion

angles. However, forces, acting between pairs of atoms far apart in the same

chain influence the distribution of the torsion angle values. Certain torsion

angles as well as certain combinations of adjacent torsion angles are more

likely than others.

To account for these effects, the so called Rotational Isomeric States (RIS)
model [7, 22, 30] is used. In the RIS model, the possible values for torsion
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Figure 3.2: Rotational Isomeric States model for polyethylene.

angles are restricted to discrete values. These RIS states together with values

for the correlations of (usually) two adjacent torsion angles along the polymer
backbone allow to properly account for the chemical details of different poly¬
mer structures. We somewhat relaxed the RIS model insofar as the torsion

angles are not required to exactly assume a given RIS state, but are allowed

a certain tolerance around that state (say, ±20°). The model makes possi¬
ble the description of the conformational behavior of macromolecules with

proper attention to the details of the chemical structure of the chain. Figure
3.2 shows a RIS model for polyethylene. Torsion angles are restricted to the

three discrete states trans (t = 0°), gauche plus (g+ = 120°) and gauche
minus (g~ = —120°), often encountered in many kinds of polymers. Besides

the restriction to these values, a 3 x 3-matrix describes the distribution of all

possible pairs of states of two adjacent torsion angles.
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3.1.3 Excluded Volumes Interaction

The distance between particles that do not belong to the same rigid group,

can be modified by changing the torsion angles. The energy terms in V(r)
of such non-bonded pairs of particles is given by the van der Waals potential
function (eqn (2.3)). We replace this function by a lower distance constraint

for each non-bonded pair of atoms. A radius is assigned to each type of atom,

such that the sum of the radii of two atoms equals the distance where the

van der Waals potential has its minimum. Such an approximation is also

called an excluded volumes interaction or a hard-sphere potential. Atoms

are replaced by hard-spheres which must not overlap in a dense packing.
The hard-sphere potential is a local type of interaction, and, thus, requires

relatively little computation.

3.1.4 Atomistically Detailed Polymers and Simplified
Chains

So far, we have always equated particles and atoms. Indeed, an atomisti¬

cally detailed model replaces each atom by an individual particle. However,

coarser models [f 6, 40] that represent polymers by sequences of spheres, make

possible the simulation of very large systems on most of todays workstations.

Recent results have shown that simulations can be used to predict the be¬

havior of real polymers even if the simulation model does not contain specific
chemical details [18, 8, 12]. In contrast to the atomistically detailed model,
entire monomers, usually composed of 5 to 30 atoms, are replaced by one sin¬

gle spherical particle. A polymer is, thus, modeled by a sequence of spheres
which are connected by bonds of fixed length, like a pearl necklet.

Figure 3.3: Simplified model of a polymer chain.
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We investigate both simplified and atomistically detailed models. Figure
3.3 shows the details of the model for simplified polymer chains we used.

Spheres with uniform radius r are connected by bonds of fixed length /. The

bond angles 6t may also be uniform or varying according to a distribution

function which defines the stiffness of the chain (see section 4.f ). The torsion

angles are unconstrained and constitute the main degrees of freedom.

3.2 The Polymer Packing Problem (PP)

After having introduced several concepts to derive a set of constraints from

a potential energy function, we are now ready to formulate the geometric

Polymer Packing problem (PP):
A polymer system is a set of polymer chains. A chain is composed of

hard-spheres joined with each other in rigid groups. Each sphere represents

an atom or a monomer. The only degrees of freedom are the torsion angles,
the values of which, the RIS states, are restrained to a discrete and finite set

of possible angles. These discrete RIS states are, to second-order, pairwise
correlated and obey given distributions. Given a target density, a number

of polymer chains, and the corresponding RIS states with their distribution;
find values for all torsion angles for which the following conditions hold:

f. The density of the periodic system equals a given value.

2. Hard-spheres do not overlap.

3. The pairwise distribution for the torsion angles is respected.

In some instances, sphere overlap bounded by a constant is allowed. This

can also be modeled by reduced radii. The difficulty of finding dense poly¬
mer conformations which obey all three conditions is caused by a conflict

between conditions 2 and 3. The only way to remove a collision between two

atoms of the same chain is to manipulate the torsion angles and thus, their

distribution. On the other hand, choosing the torsion angles according to a

given distribution may cause new overlaps of the atoms.

This is one reason why dense structures generated with common tech¬

niques (i.e. energy minimization or simulated annealing) often do not respect

postulated, experimentally measured torsion angle distributions.
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3.3 The Combinatorial Chain Packing Prob¬

lem (CP)

In order to analyze the Polymer Packing Problem theoretically, we introduce

the Combinatorial Chain Packing Problem (CP). This combinatorial opti¬
mization problem models a simplified subproblem of the Polymer Packing
Problem. It enables us to show theoretically the difficulties of packing large,

highly connected systems.

A system consists of a set of chains. In the simplified case, a chain is

a sequence of hard-spheres with fixed bond lengths and bond angles. The

degrees of freedom, the torsion angles, are restrained to a discrete and finite

set of possible angles. Given the description of such a system, find values for

all torsion angles such that the hard-spheres do not overlap.

3.3.1 CP is NP-complete

Because CP is a discrete, combinatorial optimization problem, we are able

to analyze its theoretical time complexity. Complexity theory distinguishes
two main classes of problems: Those which can be solved by polynomial time

algorithms and those for which a polynomial time algorithm does not exist,

to the best of current knowledge. The latter set of problems constitutes the

class of NP-hard problems [9, 41]. The combinatorial chain packing problem
is NP-complete. In practice, this means that the only way to find an optimal
solution in general is to try all possible combinations of torsion angle values.

The time complexity of this exhaustive, brute force algorithm is exponential
in the number of torsion angles.

CP belongs to the class of non-deterministic polynomial problems (NP).
A non-deterministic machine would guess a set of torsion angle values and

verify the resulting conformation, both in polynomial time.

Reduction

To prove that CP is NP-complete, we must show that CP can be reduced

in polynomial time to some known NP-complete problem. We choose the

Partition problem: Given a list of positive integers zi,...,zn, does there

exist a partition of {1,... ,n} into disjoint subsets / and J such that the

sums over these subsets are equal: "Y^%eIz% = J23£jzj}- This is one of the

earliest known NP-complete problems [14].
We need to show that there is a transformation that maps every instance

of the Partition problem into some instance of the Chain Packing problem,
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with two properties. First, the transformation must be computable in poly¬
nomial time. Secondly, a partition must exist for the instance of the Partition

problem if and only if a conformation without overlap exists for the system

generated by the transformation of this instance. Having such a transforma¬

tion, we can formulate the following algorithm:

function Partition^,..., zra):Boolean;
begin

system <— TransformPartitionIntoSystem(zi,... , zn);
conformation <— Pack(system);
return conformation is solution;

end

If we can find an appropriate transformation, in case we have a polynomial-
time algorithm for the Chain Packing problem, we have as well a polynomial-
time algorithm for Partition, namely the one above. Given a vector of positive

integers z\,..., zn we construct a molecule as figure 3.4 shows:

Figure 3.4: Transformation of the Partition problem into the Chain Packing prob¬
lem.

All atoms have a diameter of one unit. The stationary part of the molecule

is a straight chain of twice as many atoms as the sum of z\,..., zn, with a

gap one atom wide in the middle. A bond of length n units leaves the atom

left of the gap at a right angle. The atom at the other end of this bond

is the first atom of a mobile chain. The bonds connecting this chain have
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lengths zi + 1,1, z2,l, Z3,l, ....zn-\, 1, zn, 1. All torsion angles are static (have
only one admissible value) except the bonds of length f that are part of the

mobile chain. They are allowed to be in eis (0°) or trans (f80°) state. The

molecule's structure forces the last atom of the mobile chain to move along
the stationary part, producing collisions with the stationary atoms. There

is only one way to avoid such a collision, namely if the last atom fits exactly
into the gap. If and only if such a packing is possible, a partition for the

numbers Z\,..., zn exists. This partition can be read off the mobile chain.

If the bond of length z% points to the left, the value z% becomes a member

of the first sum, if it points to the right, it is included in the second sum.

Bonds that point to the right increase the distance to the gap, the others

reduce this distance. If the two sums are equal, the last atom fits perfectly
into the gap. This transformation has the postulated properties. CP is thus

NP-complete.

Implications

The proof of the NP-completeness of CP shows where the difficulty of packing
has its origin. At first glance, the molecule generated by the transformation

from the Partition problem does not seem to have a realistic covalent struc¬

ture as a whole. Nevertheless it can be interpreted as part of a dense system.
The moving part of the molecule represents a new chain to place, while the

stationary part can be interpreted as surrounding, densely packed molecules,

leaving only small gaps open. This corresponds exactly to the situation we

encounter when trying to fit a molecule into the interstice left over by sur¬

rounding molecules.

One procedure used to squeeze a set of molecules into a tiny box is the

so called Chain Growing algorithm (see 3.6). It starts with a small part of a

chain and attaches further parts one by one. At early stages of this process,

no collisions occur, since the box is empty, allowing the chain to grow in

any direction. However, at later stages, the remaining parts need to be fitted

exactly into gaps left over by early stages. At this point, the algorithm usually

gets in trouble. We have now found the theoretical reason for this. There

is, in general, no better strategy than just trying all possible combinations

of torsion angles to avoid later collisions. Our theoretically derived molecule

causes the same problems. No matter how the mobile torsion angles are

chosen, no collisions occur in upper parts of the mobile chain. However the

last atom must fit exactly into the only gap at the origin. This consideration

leads to the conclusion that there is no smart way to foresee in early stages
how to let a chain grow in order to solve later packing problems.

Given the fact that CP is NP-complete, what conclusions should be
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drawn? The NP-completeness of CP does not imply that all instances of

CP are hard to solve. It just means that some of them are difficult, i.e. the

ones generated by the transformation from instances of the partition prob¬
lem. We now know that there is no smart algorithm to solve the problem

universally, for arbitrary instances. However, there might be a fast algo¬
rithm which finds solutions for most of the instances and fails only for a few

of them. NP-completeness, thus, justifies the use of heuristic search tech¬

niques. Heuristic procedures usually offer parameters to tune the algorithm
for specific problem instances.

3.4 The Complexity of Packing Algorithms

We introduce three packing algorithms: Embed, PolyGrow and PolyPack.

They all belong to the class of heuristic search methods. The efficiency of

these algorithms can be analyzed in two ways. In this chapter, we discuss

their worst case time complexity. The time needed to pack specific instances

of the Polymer Packing Problem (PP) is investigated in chapter 5.

The theoretical time complexity of an algorithm is defined by the com¬

puting time required as a function of the size of the problem to be solved

(see [4]). The size of a polymer system is given by the total number of atoms

contained in the system. There are usually many problem instances of the

same size. The computing time for a certain problem size is thus determined

by the time needed to solve the worst case instance. Worst case analysis
leads to the fact that the chain packing problem is NP-complete (see section

3.3.1).
However, it may be the case that the problem instances which cause the

original problem to be NP-complete are not of interest. This is true for the

Polymer Packing Problem. In chapter 5 we show that Embed, PolyGrow and

PolyPack are able to pack realistic problem instances in polynomial time.

Our packing algorithms all have the structure of an iterative search. To

analyze their time complexity independently of specific problem instances,

we split the computing time into two separate factors: The time to compute

one iteration step and the number of iterations needed. The time complexity
of one iteration step can be derived from the structure of the algorithm while

the number of iterations is difficult to predict in our cases.
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3.5 Embed: A Simple Embedding Algorithm

As a first embedding algorithm, we present Embed, which is similar to a

steepest descent energy minimization algorithm, but driven by geometric
constraints. The algorithm is simple and general in the sense that it can

handle problems of the following form: Given a set of A" points pi... Pn and

a set of G geometric constraints C\... cg, find coordinates for pi... p^ such

that all constraints are satisfied. Examples of geometric constraints are:

• An exact distance constraint: |p» — Pj| = d

• An lower bound on angles: Z(pt,Pj,pk) > a

• A chirality constraint: Vol(pt, p.,, Pk,Pi) < 0

Embed starts with an arbitrary conformation. The conformation is im¬

proved iteratively until all geometric constraints are satisfied, or until we run

our of patience:

procedure Embed;

begin
Initialize pi... Pn', hers <— 0;

repeat

solutionFound <— true;

forall p 6 pi... pn do

Ap^O;

k^O;
forall c G Ci... cg concerning p do

if p does not satisfy c then

p' <— location nearest to p which satisfies c;

Ap^Ap + (p'-p);
k^k+ f;
solutionFound <— false;

endif;

endfor;
if k > 0 then

p <- p + Ap / k;
endif

endfor

iters <— iters + f;
until solutionFound or iters > maxlters;

end
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Unfortunately, the process can get stuck. It may be the case that the

actual embedding cannot be improved although there are still unsatisfied

constraints. In this case, the search needs to be stopped and restarted from

a new starting conformation.

The outermost loop of Embed implements the iterative search process. It

is repeated until a solution is found. Inside the iteration loop, the actual

conformation is improved by two nested loops. The first loop visits all points

Pi... Pn- The innermost loop runs over all the constraints concerning the

current point p. If p violates constraint c, the new position p' for p is

evaluated, as the point nearest to p that satisfies c.

Pi /p' x

Figure 3.5: Computation of Ap for distance and angle constraints.

Figure 3.5 shows how p' is determined for distance and angle constraints.

Each constraint c concerning p leads to a different displacement vector Ap
for p. At the end of the innermost loop, p is moved by the arithmetic mean of

all these displacement vectors. Instead of computing a simple mean value, it

would be feasible to evaluate a weighted average of the displacement vectors if

certain constraints are more important than others. As a further extension,
overrelaxation could be implemented by stretching the final displacement
vector by a factor greater than one. The advantages of this algorithms are:

• It is efficient for systems up to about fOO points (see section 5.2.f for

detailed analysis).

• It is easy to understand and to implement.

• No numerical problems arise. Apart from the evaluation of the new

position p', which is dependent on the specific geometric constraints,

Embed makes use only of simple vector additions and substractions.

• The method can be adopted to many different kinds of geometric prob¬

lems, because it can handle many types of geometric constraints.
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3.5.1 Analysis of Embed

It is difficult to theoretically analyze Embed in general because its behavior

depends on the structure of the specific embedding problem. In general, an

iterative search results in one of three patterns of behaviour: Convergence,

divergence and oscillation. Divergence is impossible in this case because

repulsive forces (e.g. lower bounds on distances) only act up to a certain

range.

P1 1 P2 -J P3

P1 1 P2 -1 P3

Figure 3.6: Oscillating states of Embed.

An example of two oscillating states is shown in figure 3.6. Given three

points Pi,P2,P3 hi the plane and two distance constraints |pi — p2| =

f and |p2 — P3I = 1. If the positions of the points are updated in the

order pi, p2, P3,P2, Pi • • •
and |pi — p2| = 1 and |p2 - p3| = 2 at the

beginning, Embed does not find a solution but oscillates between the two

shown states. However, if the points are updated in the natural order

Pi) P2) P3) Pi) P2) P3 • • •
Embed finds the exact solution in only two steps. As

our experiments show, oscillation occures very seldom with realistic embed¬

ding problems.
Embed converges almost always but not necessarily to a solution of the em¬

bedding problem. Figure 3.7 shows an embedding problem with two different

stable fixpoints.
Given four points Pi,p2,P3,P4 in the plane and six distance constraints

|Pl - P2I = f, |P2 - Psl = f, |P3 - P4| = 1, |P4 - Pll = 1, |Pl - Psl =

V2, |p2 — P4I = V2, the unit square is the unique solution of the embedding

problem. It is only one of two fixpoints of Embed. The second is shown in

figure 3.7. Since the displacement vectors of all points annihilate each other,
Embed gets stuck in this state. When started with points randomly selected

from the unit square Embed finds the correct solution about 55% of the time.

In three dimensions, Embed overcomes local minima more easily as its

application to chain packing problems shows. Embed succeeds more than

98% of the time in packing a simplified polymer chain of fOO spheres of

diameter 0.9 at density 0.9 with fixed bond angle of 60° and bond length 0.9.

Density f.O means one sphere per cube unit. (See section 5.2.f).



30 CHAPTER 3. PACKING ALGORITHMS

Pii *
3

i
\ /

\ -$/
\ /

\ /

/\

/ \J?
/ \

/ \

./ \

|P2

0 789

1 115

0 789

P4~ i "P3

Figure 3.7: Two fixpoints of Embed: The solution and a local minimum.

As a further example we computed the coordinates of Ceo, a Fullerene

that has the shape of a soccer ball:

Figure 3.8: Embed computes the coordinates of the soccer ball iteratively.

The soccer ball is composed of 60 points and all 90 exact distance con¬

straints due to bond lengths. In order to get a ball, 30 additional lower

distance bounds on the diagonals are needed. 20 runs from different ran¬

domly chosen starting conformations led to the following result: Within fOO

iteration steps, Embed always finds a conformation whose internal distances

do not differ by more than 5% from the imposed ones. To compute fOO

iterations takes about 5 seconds on a SGI R5000 workstation.

3.5.2 The Complexity of Embed

As mentioned in section 3.4, in analyzing the complexity of Embed, it is best

to distinguish two distinct issues: The time to compute one iteration step

and the number of iterations needed. We evaluate the complexity of one

iteration step by analyzing the structure of Embed. The number of iterations

depends on the structure of the embedding problem. We measured it for

specific packing problems in section 5.2. f.
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Let us assume that the number of points involved in a single geometric
constraint is limited by a constant k. For distance and angle constraints:

k = 3. Not more than k G displacement vectors need to be computed in

each iteration step. To average them and to move the points takes not more

then another k G time steps. The time complexity of an iteration step is

therefore of the order 0(G).
In the case of polymer chains, there are A^2 lower bounds on distances

representing the excluded volume condition of the atoms. The time com¬

plexity of an iteration step is therefore of the order 0(N2). However, if a

grid structure is used, the complexity can be reduced to O(N) because not

all constraints need to be considered (see section 4.2.3).
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3.6 PolyGrow: Packing Simplified Polymers

In section 3.1.4 a simple model for large systems of polymers was introduced.

A polymer chain is represented by spherical particles connected by bonds of

fixed length. PolyGrow is an algorithm to generate dense systems of simplified

polymers. Our hybrid algorithm combines the iterative algorithm Embed,

described in the previous section, with the chain growing technique.

3.6.1 Chain Growing

PolyGrow starts with an empty box. The system is generated by growing
chains atom by atom. During the chain growing process, PolyGrow uses

backtracking [13] to look ahead a fixed number of steps. This way, the grow¬

ing chain does not turn into dead end regions too easily. If there is no way to

continue the current chain, PolyGrow tries to repair the collision generated

by the new atom by applying Embed locally in the region of the collision. In

other words, earlier placed chains are pushed away to make space for the new

chain. The main procedure of PolyGrow looks as follows:

procedure PolyGrow:Boolean;

begin
create empty box;
for chain <— 1 to nrOfChains do

trials <— 0;
while trials < chainTrials do

if AddChain() then break;

RemoveChain() ;

trials <— trials +1;

endwhile;
if trials = chainTrials then return false;

endfor;
return true;

end;

The main loop of PolyGrow tries to add a given number of chains to the

empty box. The procedure AddChain, which generates a new chain, may get

stuck when it tries to place a new chain in a disadvantageous, densely packed

region. Since both the starting location as well as the chains conformation

are randomly chosen, it is reasonable to restart AddChain a fixed number of

times. Let us look at the procedure to add a new chain in detail:
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procedure AddChaimBoolean;

begin
len <- 0;
while len < chainLen do

if AddAtom() then

len <— len +1;
else

if len < cutLen then return false;
trials <— trials +1;
if trials > cutTrials return false;
remove cutLen atoms; len <— len — cutLen;

endif;

endwhile;
return true;

end;

AddChain places a chain by adding atoms one by one. The procedure
AddAtom may fail when there is no way to elongate the actual chain. In this

case, AddChain removes a fixed number of atoms at the chain's end hoping to

find a better way through the dense environment the next time. In contrast

to an exhaustive backtracking search, AddChain cuts the chain not more than

a constant number of times. The main ideas of PolyGrow are implemented
in the procedure AddAtom:

procedure AddAtom:Boolean;

begin
forall p G possible positions do

if LookAhead(p, searchDepth) then

attach new atom at position p;

return true;

endif;

endfor;
forall p G possible positions do

attach new atom at position p;

if RelaxRegion(p) then return true;

remove new atom;

endfor;
return false;

end;

First, a discrete set of possible positions for the new atom is evaluated.



34 CHAPTER 3. PACKING ALGORITHMS

This step depends on the particular model of the polymer system. The po¬

sitions are tested by the procedure LookAhead in random order. LookAhead

performs a backtrack search of constant depth. It checks whether the chain

can be elongated via the new position by a certain number of atoms without

overlaps. This is important because the chains are not completely flexible.

Their stiffness is determined by the the choice of the bond angle distribution

(see section 4.1).

procedure LookAhead(p, depth):Boolean;
begin

if depth < 0 then return true;

forall psucc G possible successors of p do

if Psucc does not overlap then

if LookAhead(pSUCc, depth-1) then return true;

endif;

endfor;
return false;

end;

If a promising position p is found inside the first loop of AddAtom, a new

atom is attached at this location. Otherwise another strategy is applied:
The second loop tests all possible positions in the order of their expected

quality. Such an order can be generated by using the knowledge gained

during the first loop. The new atom is attached at position p although
it may generate overlaps with existing atoms. If the new atom does not

overlap with any other atoms, AddAtom returns successfully. Otherwise, the

newly produced overlaps need to be removed. This is not a trivial task, since

the colliding atoms belong to earlier generated chains. If such atoms are

moved, adjacent bond lengths as well as bond angles will change. However,
neither bond lengths, nor bond angle statistics should be disturbed during
the collision correction. The only way to modify the positions of atoms inside

a chain while keeping bond lengths and bond angles fixed, is a simultaneous

rotation of at least seven torsion angles. This complex operation is discussed

in section 3.7.6 in more detail. It needs to be performed simultaneously on

all the chains, contributing to the collisions of the newly positioned atom.

3.6.2 Local Relaxation

Fortunately there is a way to avoid such complex calculations. Since the

atoms which need to be moved form a rather small and local system of

particles, Embed is perfectly suitable to solve the local packing problem. First,
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all atoms within a certain distance to the new atom are marked to be moved

by Embed. Additionally, if an atom is marked, two atoms before and after

it on the same chain are marked also. This step guarantees that there is

enough flexibility to change the positions of atoms inside the chain. The

geometric constraints consist of exact distance constraints derived from bond

lengths and bond angles, and of lower distance bounds from the hard-spheres
condition. Thus, the RelaxRegion call simply applies Embed on the set of

marked atoms.

Figure 3.9: Embed is used to make space for a new atom, keeping all bond angles
and bond lengths fixed. The gray circles show the positions of the atoms before

the relaxation.

3.6.3 The Complexity of PolyGrow

To analyze the time complexity of PolyGrow, we split the computing time

into the time used by AddAtom to add a new atom to the system and the

number of times AddAtom is called.

The time used by AddAtom is independent of the problem size. The num¬

ber of possible positions for the new atom is constant. For each position, a

search of constant depth is started. If there is no space for the new atom,

RelaxRegion is called at most once for each new position. The number of

particles RelaxRegion moves is independent of the problem size. Therefore,
the time used to add one atom is independent of the total number of particles
in the system.

Since AddAtom can fail, it is difficult to predict how many times it is called

during the packing process. If A" is the number of particles, AddAtom is called

exactly A" times in case it never fails. This leads to linear time complexity

O(N) in the best case.
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As our experiments show, PolyGrow reaches linear time complexity for

realistic systems of simplified polymer chains (see section 5.2.2).
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3.7 PolyPack: Packing Detailed Polymers

PolyGrow is efficient in packing simplified polymer systems. However, if

atomistically detailed conformations of dense polymer systems are of inter¬

est, PolyGrow is not a suitable algorithm. The success of PolyGrow is based

on the efficiency of the local relaxation technique. In case of simplified chains,
local relaxation is efficient because an entire monomer is represented by a sin¬

gle sphere. The smallest number of torsion angles that need to be modified

simultaneously along a chain, in order to keep bond angles and bond lengths
fixed is seven (see section 3.7.6). A simultaneous rotation of seven subse¬

quent torsion angles relocates only four spheres of a simplified chain, but

six rigid groups if single atoms are considered. The first and the last group

are not translated, but rotated about their own axes. The rigid groups of

polycarbonate, for example, consist of three to twelve atoms. Thus, at least

40 atoms of every chain involved in a collision, together with a large number

of additional constraints to keep the groups rigid, form a system too large
to be relaxed by Embed. To generate dense, atomistically detailed polymer

systems, we present an alternative algorithm, called PolyPack. In contrast

to the previously discussed methods, PolyPack uses generalized coordinates

(see section 3.1.1). This way, the number of parameters is reduced drasti¬

cally. A monomer unit of polycarbonate, for example, consists of 33 atoms

(99 degrees of freedom when Cartesian coordinates are used), but only 8 tor¬

sion angles. Consequently, PolyPack performs an iterative, heuristic search

in torsion angle space.

3.7.1 The Optimization Target

PolyPack tries to reach two competing goals, the agreement of the torsion

angle values with the proposed distribution and the elimination of atom

overlaps in a dense, periodic environment. To assess the quality of a system

conformation, we introduce a penalty or cost function inspired by the hard-

sphere type of interaction. The collision function coll between two atoms k

and / is measured as the fractional overlap of the two hard-spheres relative

to the sum of the two hard-sphere radii:

coll(M) :=max|o,f-^—^j (3.2)

where r^ and rf are the hard-sphere radii for the atoms k and / respectively,
and rfc and r^ their location. The distance || rfc — r^ \\L is measured according
to the minimal image convention for a system in a periodic box of side length
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L. An overall-cost function may now be defined as the maximum over all

atom collisions

cost°°(D) := max coll(fc,/) (3-3)
(k,l) atom pair

where D is the conformation, defined in torsion angle space (see 3.1.1). How¬

ever, it is hardly possible in practice to find a "reasonable" conformation by

starting a search with a random conformation and taking into account all

collisions from the beginning. To overcome this problem, we reduce at first

the number of collisions considered and gradually increase that number to

eventually include the full range of interactions among the atoms.

The Horizon Parameter

This can be achieved by limiting the "horizon" h beyond which pairs of

atoms are "ghosts" to each others. If two atoms of the same molecule are

considered, they are linked by a series of free bonds. If the number of free

bonds along the shortest path joining these two atoms is larger than the

horizon value h, the collision contribution of this atom pair is ignored.
In the case of a pair of atoms belonging to different molecules, the in-

termolecular collision is considered only if both atoms are separated by less

than h/2 free bonds from their molecule's central free bond. That way colli¬

sions between atoms near the center of a molecule can be eliminated in early

stages of the search. Figure 3.10 shows all atom pairs whose overlaps are

considered at horizon 2.

Figure 3.10: The considered collisions at horizon 2.

The overall cost function cost(D, h) of a conformation D is defined as the

maximum value of the collision function over all possible atom pairs within

a given horizon h. The cost function reads

cost(D, h) := max coll(fc,/). (3.4)
(k,l) atom pair within h
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3.7.2 The Optimization Strategy

PolyPack addresses the problem of minimizing the cost function cost(£>, h)
under the constraint of torsion angle distributions, given by the RIS model.

The search begins with an arbitrary conformation. An outer loop initializes

the horizon value with zero and increases it step by step until it reaches its

maximum value, where all possible collisions are considered. At each stage,

the inner loop of PolyPack tries to minimize the cost function for the fixed

horizon h by performing moves on the actual conformation D. Besides the

simple move of changing a single torsion angle, we implemented a variety of

other moves to manipulate D in torsion angle space. The choice of acceptance

or rejection of these moves is driven by the cost function cost(D, h) and the

probability of the resulting conformation prob(-D) given by the RIS model.

3.7.3 The Basic Optimization Step

The basic optimization step consists of the optimization of all torsion angles
in random order. When a torsion angle (fit is chosen, the algorithm systemat¬

ically scans the set of its RIS states, and attempts to eliminate all the values

of (pt that cause collisions that exceed a set threshold cgoai. In a second step,

the algorithm picks one value for (pt of the remaining values according to its

RIS probabilities prob(£>, (pl). If none of the RIS states decreases the collision

below the threshold cgoai, then the one angle giving the lowest collision value

is chosen (see figure 3.11). The parameter cgoai is analogous to a tempera¬

ture parameter in a physical system. It permits to overcome cost-function

barriers.

3.7.4 The Search Loops

The search starts with an arbitrary conformation. In the innermost loop, the

molecular structure is iteratively improved by performing optimization steps

based on different types of moves. The iteration continues until the collision

function coll(_D, h) attains a local minimum of reaches a lower limit.
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Figure 3.11: Selection of a new torsion angle value considering atom collisions and

torsion angle probabilities.

procedure Optimize(D, cgoai, h);
begin

repeat
forall move G set of moves do

OptimizationStep(£>, move, cgoai,h);
endfor

until (cost(D,h) < cgoai) or configuration D not changed;
end.

If none of the attempted optimization steps decreases cost(D,h) below

Cgoaii the search path is trapped in a minimum (almost certainly local). To

overcome the barriers of the cost function in the high-dimensional conforma-
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tional space, we opted for a local shaking to randomize the system, similar

to a sudden increase in temperature in the simulated annealing technique.
The " shake" procedure consists of an instantaneous increase of the collision

limit cgoai followed by a step-by-step reduction of cgoai until its original value

is reached again. It turns out to be a robust method to escape local minima:

procedure Shake(£>, cgoai, h);
begin

Usave * U
i

Cshake <— (cOSt(L>, K) + Coffset);
repeat

Optimize(_D,cs/iafce,/i);
if COSt(£>, h) < Cshake then Cshake <— (cshake ~ Cdelta);

until Cshake < cgoai or configuration D not changed;
if cost(DSave, h) < cost(D, h) then D <— DsaVe',

end.

In the case where the "shake" algorithm fails to improve the structure,

the procedure automatically returns the original structure.

We now have all ingredients to formulate the complete embedding algo¬
rithm PolyPack. At the beginning, the horizon h is set to zero. In other

words, no collisions are taken into account. The starting configuration is

constructed by choosing torsion angle values according to the RIS probabili¬
ties. Then the centers of gravity of the chains are spread evenly throughout
the box.

The outer loop consists of increasing the horizon h by an amount hstep
until h reaches its maximum, where all possible collision pairs are consid¬

ered. For each value of h, an optimization step is performed. If one of those

optimization steps does not succeed, the "shake" procedure is used. To sum¬

marize the entire algorithm:
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procedure HorizonLoop(_D, cgoai);
begin

Construct an appropriate starting structure D;
for h <— 0 to hmax by step hsteP do

trial <— f;

repeat

Optimize(D, cgoai,h);
if cost(D, h) > cgoai then

Shake(D, Cgoai, h);
endif

tna/ <— (trial + 1);
until tna/ > trialmax or cost(D, ft.) < cgoai;

endfor

end.

Figure 3.12 illustrates the principle of increasing the horizon value. At

early stages, the packing problem is easy to solve because only few atom

collisions are considered. With increasing horizon, the problem becomes

more and more difficult. At each stage, the search procedure uses the result

from the previous stage as starting conformation.

Figure 3.12: Gradually increasing problem difficulty by using horizon parameter.

The efficiency of the algorithm strongly relies on the capabilities of the

moves performed at each optimization stage to relax the torsion angles.

3.7.5 The Moves

Our algorithm uses five moves. The simplest one in the framework of gen¬

eralized coordinates is to modify one torsion angle at a time; it is called a

single rotation (see figure 3.13).
To overcome problems caused by the manipulation of single torsion angles

inside long chains, we devised an alternative move, the Parallel Rotation

move (section 3.7.6).
The two next moves treat a single rigid object. The entire molecule can

be translated by a small displacement vector, or rotated around its center of
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Rotation of a single torsion angle Parallel Rotation

Rotation of the entire molecule

IM

Translation of the entire molecule Rotation of a rigid group

Figure 3.13: The five moves used in PolyPack.

mass. The first move modifies the global position of the chain, the second

one its orientation. No torsion angles are changed.
The last move has been introduced specifically for those polymer chains

that consist of rings along their backbone. The rigid group comprising the

ring is connected to its neighboring rigid groups by two collinear bonds.

When the two torsion angles around the ring are varied by the same amount

but in opposite directions, the ring rotates while the rest of the molecule

remains in place. This group rotation move is of high efficacy for particular
molecular structures.

3.7.6 Parallel Rotation (ParRot)

Since PolyPack employs the model of generalized coodinates, the internal

3-dimensional structure of a molecule can only be changed by modifying its
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torsion angles. Unfortunately, the simplest move, the modification of a single
torsion angle, suffers major drawbacks. First, the displacement of atoms far

from the rotating angle is likely to be large. This leverage effect makes

impossible to correct overlaps by a single rotation without evoking a large
number of new collisions. Second, the rotating part of the molecule changes
its orientation with regard to the periodic box. This change of orientation

on its own can cause severe inter and intra-molecular atom overlaps due to

the periodicity of the system.
The concerted rotation move offers a solution to these problems [6]. In¬

stead of changing a single torsion angle, a series of seven torsion angles is

changed simultaneously. One angle may be modified freely while six angles

complensate its rotation as figure 3.14 shows.

Figure 3.14: The Conrot move: (\)\,..., 4>q compensate the rotation of the driver

angle <fio-

The concerted rotation ConRot affects only the positions of the atoms

between (f>0 and (f>6. Six torsion angles are needed to compensate the rotation

of (f>o because the location (3 degrees of freedom) as well as the orientation

(another 3 degrees of freedom) of the chain following 06 must remain fixed.

Given the seven original values (f>o,... ,(f>e and a new value (p'Q for the "driver"

angle, the new values (f>[,..., (f>'6 are computed such that atoms subsequent to

4>6 do not move while all bond lengths and bond angles are kept fixed. This

delicate problem needs to be solved numerically since it has no analytical
solution [6]. A lot of programming and computing effort is needed to perform
this complex move.

In view of these difficulties, we devised the much simpler parallel rotation

move ParRot. Instead of correcting both, the location and orientation of the

subsequent chain, only its orientation is kept fixed. Consequently, only three

compensating torsion angles (\>\, (p2 and (f>3 are involved in a parallel rotation

move. The chain beyond (f>3 moves parallel to its original position and all its

atoms are translated by the same vector, independently of their distance to

to rotation center.

The mayor advantages of ParRot are:

f. The geometric problem has an analytical solution that can be proven to
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Figure 3.15: The ParRot move: 01,02,03 compensate the rotation of the driver

angle Mo¬

have at most two solutions. This leads to its high success rate and effi¬

ciency as part of PolyPack. Furthermore ParRot has particularly high

acceptance rates when it is used as move in Monte Carlo algorithms

[33].

2. ParRot does not suffer any leverage effect, because of the conservation

of the orientation of the moving chain segment.

3. In contrast to the rotation of a single torsion angle, ParRot causes no

additional intra molecular collisions, because the moving chain segment
remains parallel to its original orientation.

4. Unlike ConRot, ParRot is a global move which is able to change the

entire conformation of a molecule, even in a dense environment.

A typical ParRot move consists of the following steps: (i) a bond with

torsion angle of initial value 0O is selected within the chain; (ii) one of the

two chain parts starting from that bond is selected and the direction vectors

u and u_i_ defining its orientation are calculated; (hi) a new value 0Qew is

assigned to this torsion angle; (iv) sets of new values 4>lew, 4>2ew, and 0gew for

the three torsion angles 4>i,4>2, 03 consecutive to 0o on the side of the moving
chain part are calculated so that u and uj_ remain unchanged. Only the four

values {00,01,02,03} are changed during the move. In this formulation, we

will use the torsion angle 0o as the "driver angle" for the ParRot move.

The three compensating torsion angles {0ïew,02ew, 03ew} satisfy a system
of two equations. They account for the constraints of both the vectors u and

uj_ being constant for the ParRot move. We have

u = T(0Sew)T(0r)T(0r)e;c = T(0o)T(01)T(02)e;c (3.5)

ul = T(0r)T(0r)T(0r)T(0r)e, = T^T^T^TOaK (3.6)
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$2
<J>3

Figure 3.16: The ParRot move leaves u and uj_ unchanged

where the rotation T(0) = Rx(0)Rz(7r + 9) - as defined by Mattice and

Suter [22] - is composed of two rotations specifying the transformation of a

vector in the frame of reference of bond i + f into the frame of bond i. The

angle 9 denotes the bond angle between the bond i and i + f that must not

necessarily be the same for all the bond junctions.

a,+2

Figure 3.17: Denotations of a bond's local frame of reference

Solving eqn (3.5) provides us with a solution for 02 which reads

COS 91 COS 92 - Va;(0Sew, 00, 01, 02)
COS0

new

2
sm u2 sm fi

where v^ is the x-component of the vector

V(0r, 00, 01, 02) = T(0r)_1u(0O, 01, 02).

(3.7)

(3.8)

Eqn (3.7) has either zero, one, or two solutions depending on the absolute

value of its right-hand side being larger than, equal to, or smaller than f.

Upon substituting the values of (f>2ew into eqn (3.6), one obtains a single

equation giving for each value of (f>2ew a corresponding value for 0fw being
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the unique solution of the linear equation

"COS 0fw a -b 1 V
sin 0fw b a l-v2 v2_

where the parameters a := sin #1 cos #2 + cos02ew + cos #1 sin #2 and b :=

sin 92 sin (f>2ew depend on the new value for the second torsion angle 4>2ew.
For each existing solution of eqn (3.7), eqn (3.9) has exactly one solution.

Consequently the number of possible sets of torsion angles fulfilling the con¬

dition in eqn (3.6) can be analytically determined to be either zero, one, or

two, by solving eqn (3.7). A typical set of trajectories of the moving torsion

angles for a driving angle varying from 0 to 2tt and the relative distance to

the original position of the moving chain segment are shown in figure 3.19.

Note that this displacement is the same for all moved atoms beyond the

third flexible bond and that its amplitude for a varying driving torsion angle
almost always remains below the typical van der Waals radius of the atoms

involved.

Figure 3.18: 3d-trajectories generated by the moving chain segment of ParRot

(bt = 1.0, 9% = 120°, 0i = -50°, 02 = 10°
... 80°, 03 = 30°, 0O = 0

... 360°)

The proposed packing algorithm has as target the distribution of torsion

angles. To obtain the distribution desired, one has to correct for the bias in

the choice of the torsion angles introduced by the ParRot move. This bias

results from the simultaneous rotation of the four involved torsion angles
that are dependent of each other via eqn (3.5) and eqn (3.6). A uniform
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Figure 3.19: Displacement distance of moved chain segment in ParRot

distribution for the driving angle does not lead to a uniform distribution for

the three driven torsion angles. A relative weight, the Jacobian weight [6], for

the set of torsion angles 0o, 0i, 02, 03 that is a solution of eqn (3.7) and eqn

(3.9), has to be considered in the choice of a configuration. This Jacobian

weight is given by [33]

J(02) =| u • (ui x u2) I (3.10)

where U! and u2 are the unit bond vectors at the torsion angles 0i and 02,

respectively.
To conclude, we have devised a new simple and robust move that has

been shown [33] to be very efficient in relaxing all the torsion angles even

deeply inside a long chain in a dense environment.

3.7.7 General Parallel Rotation

So far, we described the parallel rotation move in connection with a simple
chain of free bonds connecting single atoms. In this model, two adjacent
free bonds meet at the center of the common atom, i.e. at a single point.

However, the tree model (figure 3.f) used in PolyPack, which decomposes

1 1 1 1 1 1 1 1 1 i ' i ' i ' i 1 1 '

_ /-—
_

- ^^
x

Solution 1

>^
Solution 2

^0

1 ,\



3.7. POLYPACK: PACKING DETAILED POLYMERS 49

a molecule into free bonds and rigid groups asks for a more general ParRot

move. As shown in figure 3.20, adjacent free bonds do not need to meet at a

single point.

Figure 3.20: Generalized parallel rotation: Virtual bonds with fixed torsion angles
need to be added while collinear bonds are excluded. Rigid groups are drawn as

white spheres.

A rigid group, thus, cannot be replaced by a singe atom at the intersection

point. It must be replaced by a virtual bond (the dashed lines) connecting the

free bonds. Between the four free bonds with variable torsion angles 0o ... 03,
three virtual bonds need to be inserted as terms in equations 3.5 and 3.6.

Fortunately, their torsion angles are constant. Thus, the resulting equations

can be solved the same way as the original ones. A second issue which needs

to be taken into account when dealing with general molecules, is shown in

figure 3.20. The free bond following 0i is collinear to 0i. Collinear bonds

appear in polycarbonate for example (see section 5.3.6). The collinear tor¬

sion angle does not constitute a separate degree of freedom and thus, cannot

contribute to the compensation of the rotation of driver angle 0o- Therefore,
it is combined with 0i for the computation of the ParRot move. The in¬

troduction of virtual bonds together with the elimination of collinear bonds

make possible the application of the ParRot move to arbitrary molecular

structures.

3.7.8 The Complexity of PolyPack

PolyPack uses generalized coordinates. It packs systems of M identical

molecules with T torsion angles each. We define the problem size as the

total number of degrees of freedom, i.e. the number of torsion angles M T.

The total number of atoms is proportional to the number of degrees of free¬

dom for realistic molecules, since the size of rigid groups is independent of

the problem size and varies from two to a maximum of about 30 atoms.

A single move consists of the rotation of a set of atoms and the computa¬

tion of the new maximum collision after the move. The maximum of rotating
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atoms is proportional to the size T of the molecules. The number of pairs of

atoms which need to be checked for new collisions is proportional to M T2

since all rotating atoms have to be checked against all atoms in the system.
The introduction of a grid (see section 4.2.3) reduces the cost of the collision

check procedure to the order T. The complexity of the execution of a single
move is thus proportional to T.

A single torsion angle is optimized by performing moves for a constant

number of angles given by the RIS model. Therefore, its complexity remains

proportional to T. The time needed to optimize all M T torsion angles is

thus of the order M T2.

The number of optimization steps performed at a fixed horizon value can¬

not be derived directly from the structure of the algorithm. It is dependent
on the characteristics of the problem i.e. the density of the system and the

covalent structure, the number (M) and the size (T) of the molecules. We

isolate this non predictable factor i. The horizon loop is executed hmax times.

Since hmax is proportional to T, we end up with a time complexity of the

order 0(i M T3) for PolyPack.



Chapter 4

Polymer Packing Software

The packing algorithms described in the previous chapter have been imple¬
mented as comprehensive and user-friendly tools for generating starting con¬

formations for any molecular structures. The software is written in ANSI C.

This language guarantees high performance and portability because optimiz¬

ing C-compilers are available on almost every type of machine and operating

system.

PolyGrow and PolyPack are the two main applications for computing

systems of simplified chains and packings of atomistically detailed polymer

systems, respectively. Both programs feature interactive visualization based

on the X-Window system. They are also available in a command line version

convenient for batch jobs and systems without X-Window support.

This chapter describes the usage of the applications from a users point

of view as well as part of the program's internal structure. A user does not

need to understand or modify the applications source code. General packing

problems as defined in section 3.2 are specified via text files or command line

parameters.

Since a few parameters are sufficient to define the properties of simplified

polymer chains, PolyGrow is easy to use. The packing process is started

with just a set of command line parameters. However, in atomistic mod¬

els, the covalent structure as well as detailed geometric information of the

molecules comprised in the system of interest need to be specified. Conse¬

quently PolyPack interacts with existing biochemical software and exchanges
information via files of standardized formats.

4.1 PolyGrow

The application PolyGrow is invoked by the following command:

51
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polygrow N chainLen

The user provides two mandatory and various optional command line

parameters. The first parameter A" determines how many particles need to

be squeezed into a cubic periodic box. The side length L of the periodic box

depends on the number of particles A" as well as on the target density g of

the system:

L = (4-1)

The density is measured in particles per cubic unit and is set to f.O by

default, unless another value is specified via the optional parameter -d.
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Figure 4.1: Distribution of chain lengths of a system of 10000 particles.

The second mandatory parameter fixes the number of particles per chain.

If this value is set to zero, the chain lengths are distributed exponentially,
where the number of chains of length / is given by

ni e k k(l + k)e k (4.2)

The constant k can be evaluated from the system size, namely k = yN,
such that the number of particles enclosed in all chains equals the total

number of particles given by the parameter N.

The optional command line parameters of PolyGrow are summarized in

table 4.1. Since the particles of a simplified chain usually do not represent
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single atoms but entire monomer units, the angles between subsequent bonds

need not be fixed at a typical bond angle value. Some applications require to

generate chains whose bond angles vary according to a certain distribution

function. This way, chains of diverse stiffnesses can be simulated by tuning
the distributions standard deviation. The two optional parameters -a and

-k of PolyGrow may be used to choose among those two different models.

If a bond angle value is specified via the parameter -a, chains of fixed bond

angles are generated. In contrast, if a value kappa is stated by the parameter

-k, the bond angles will be distributed according to

prob(Ö) OC ekappa(l-cos(ö)) (43)

Figure 4.2 shows the distribution of bond angles for different values of

kappa. A stretched bond angle is defined to have zero degrees. Thus, the

larger kappa becomes, the more angles will be nearly stretched and the less

flexible the chains will be. On the other hand, small values for kappa allow

the chains to bend almost freely because larger angles become more probable.

Bond angle

Figure 4.2: Distributed bond angles. The parameter kappa determines the stiffness

of the chains.

After the start of PolyGrow with the appropriate parameters, the co¬

ordinates of the specified system are generated by using the chain growing

algorithm described in section 3.6. This process is visualized if the X in¬

terface is activated by the -x parameter. Various buttons allow the user to

trace the algorithm step by step or in a fast forward mode. The chains are

displayed as wireframes to visualize their structure or as sequences of spheres
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Parameter Meaning Default

-a bondAngle Use fixed bond angles. The size must be

specified in degrees (0 ... 360).

60°

-b Generate polymer brush. All chains grow

from z = 0. The box is periodic only in

x and y dimensions. Chains, thus, cannot

cross the z = 0 plane.

no

-d density The density must be specified in particles

per cubic unit. It determines the size of

the cubic box.

f.00

-k kappa Use distributed bond angles. The param¬

eter kappa describes the stiffness of the

chains (see figure 4.2).

fixed

angles

-1 bondLen The distance between consecutive parti¬

cles.

0.9

-n nrAngles Number of possible positions generated
when a new particle is attached to a chain.

20

-o maxOverlap The maximum admitted overlap of

two particles in the final conformation

(0.0... f.O)

O.fO

-r atomRadius Radius of the particles. 0.50

-s searchDepth Search depth of the procedure LookAhead,

described in section 3.6.

fO

-t chainTrials Defines, how many times a chain is re¬

moved and regrown before PolyGrow stops

(see section 3.6). 0 means infinity.

0

-x Display interactive X-Window interface. no

Table 4.1: Command line parameters of PolyGrow.
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to give an impression of the density of the system. When the algorithm suc¬

ceeds in packing all particles, their coordinates are written to a text file of

the following format:

Grid parameters:

box_len = 10.772174

atom_radius = 0.500000

bond_len = 0.900000

brush = no

angle_fixed =

yes

bond_angle = 1.047198

kappa = 4.000000

Grow parameters:

nr_particles = 1000

chain_len = 100

max_overlap = 0.200000

nr_angles = 20

search_depth = 10

nr_chain_trials = 0

100

8.0792 0.5384 4.8462

8.3654 0.1757 4.0738

8.0073 0.4415 3.2920

[...]

100

4.8475 7.0019 7.0019

5.1723 6.1666 7.0844

6.0176 6.0382 7.3655

[...]

The header section contains all parameters needed to describe the prop¬

erties of the system. The rest of the file is composed of blocks for every chain.

Each block begins with an integer value, specifying the length of the chain

followed by the coordinates of the individual particles.

4.2 PolyPack and PolyCmd

The packing algorithm PolyPack is available as a software package which con¬

tains four tools. To generate conformations of atomistically detailed polymer

systems, we provide a visual, interactive application called PolyPack and its
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command line version PolyCmd, suitable for batch job mode. Additionally we
offer a file conversion tool mdf 2pp and PolyStat for analyzing the generated
conformations. Two separate sections are devoted to the two latter tools.

The description of the packing problem of an atomistically detailed poly¬
mer system is too extensive to be specified by a few command line param¬

eters. PolyPack and PolyCmd read the specification of the problem from a

description file with the extension ". PP". The format of this file is explained
in detail in appendix B. It contains the geometry of the molecules involved,
as well as the parameters of the RIS model. PolyPack is able to pack multi¬

ple molecules with identical covalent structures. The problem description file

therefore contains the specification of just one molecule. Such a description is

composed of a list of atoms, their radii, the covalent structure (the molecular

graph defined by the covalent bonds), the decomposition of this graph into

rigid groups of atoms and rotatable torsion angles, and the 3-dimensional

shape of every rigid group given by a set of coordinates. In addition, the list

of torsion angles contains the corresponding RIS-states and a pointer into

the list of RIS matrices, also contained in the problem description file. Given

an appropriate .PP-file, PolyPack computes coordinates for all the atoms,

comprised in the system, and writes them to an output file.

4.2.1 PolyPack and Existing Biochemical Software

The problem description file of PolyPack is unsuitable to be created or

edited by hand. Since there are user friendly tools to construct molecules

on the screen, it is much more convenient to use such a tool and convert its

files to the .PP-format. For this purpose, we developed the conversion tool

mdf 2pp. One of the most commonly used software used in polymer science

is MSI/Biosym's Insight. This application offers commands to construct

various polymers. The monomer units can be selected from a large library.
A molecule is stored in two files. Molecule description files with the extension

.
MDF basically contain a list of atoms with their specific attributes and a list

of bonds, defining the covalent structure of the molecule. The coordinates of

the atoms, declared in the molecule description file, are stored in a separate

file with the extension
.
CAR. Our conversion tool reads the molecule descrip¬

tion file and a corresponding coordinates file. The appropriate RIS model

can be chosen by a command line parameter from a list of available models

which are coded in mdf 2pp. These three components suffice to generate a

complete problem description file.

Figure 4.3 illustrates how PolyPack interacts with Biosyms biochemical

software. The automatically generated problem description file is read by

PolyPack or PolyCmd. These packing programs store their results as coordi-
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Figure 4.3: PolyPack and existing biochemical software
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nate files in .CAR-format, which then can be either analyzed by PolyStat or

further processed by Insight.

4.2.2 Usage of PolyPack and PolyCmd

The interactive program PolyPack is started without any command line pa¬

rameters. Problem description files and coordinate files are loaded and saved

via menu commands. All additional parameters about the system and pack¬

ing process can be tuned interactively as well. In contrast, PolyCmd reads the

name of the problem description file and other parameters from the command

line. It is invoked by the following command:

polycmd <problem>.pp

A variety of additional parameters, explained in table 4.2, must be spec¬

ified in order to completely define the packing problem.

Parameter Meaning Default

-a nrAngles Number of discrete positions, a torsion an¬

gle is divided into

20

-c horizon A checkpoint file is read. The packing

process continues with the corresponding
horizon value.

none

-d density The density must be specified in g/cm3.
It determines the size of the periodic box

using the total weight of all atoms.

f.00

-g goal The desired maximal overlap (0.0 ...
f .0). O.fO

-i increment The increment by which the horizon is in¬

creased

f

-m minRange The minimal number of torsion angles that

must lie between two atoms of the same

molecule such that their overlap is consid¬

ered.

f

-p period The size of the periodic box in Angstroms. fO

-s nrStructures The number of molecules contained in the

system.

f

-t nrShakes The number of times Shake is called before

the horizon is increased.

2

Table 4.2: Command line parameters of PolyCmd.
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Most of the parameters of PolyCmd are explained in section 3.7, where

the algorithm PolyPack is illustrated. However, there is a mechanism con¬

cerning its implementation on real machines. Because the packing process

can take hours or even days, it may happen that the program needs to be

stopped during computation. Therefore, a possibility of checkpointing is of

great importance. Checkpointing means saving the state of a computation in

external memory so that the computation can be interrupted and resumed.

Every time, the packing at a certain horizon is completed, PolyCmd writes

its actual coordinates to a file called checkpoint .x. car where x represents

the actual horizon. This way, the computation can be restarted at the saved

stage. If PolyCmd is executed with the parameter -c horizon, it reads the

file checkpoint. <horizon>. car and continues where it was stopped before.

4.2.3 Implementation Details

The architecture of both PolyPack and PolyCmd is shown in figure 4.4. The

two applications have all non-visual software layers in common. These layers
and thus, PolyCmd as a whole, can be compiled on a large number of Unix

platforms because no additional packages other than standard C-libraries are

needed. However, to compile PolyPack, X-Window and Motif-libraries must

be available.

Data structures

The information needed to describe the molecular system can be split into a

static and a dynamic part. On the one hand, the description of the problem,

containing the covalent structure of the molecules as well as the information

about rigid groups and rotatable torsion angles, remains unchanged during
the embedding process. This static data needs to be stored only once as

unique template, since we are dealing with a set of identical molecules.

On the other hand, the dynamic information is specific to the conforma¬

tion of the molecules, and, thus, must be stored for each molecule individually
even for identical molecules. These data are composed of the values of the

torsion angles supplemented with the location and orientation of the molecule

as a whole. The Cartesian coordinates of the atoms can be gained from both

the static and the dynamic data.

Detecting Atom Collisions

Having to consider atom pair interactions usually leads to calculations where

most of the computational effort is spent in detecting atom collisions. It is,
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thus, important to optimize this procedure. The effort of collision detection

can be drastically reduced by introducing a grid which divides the simulation

box into cubic cells of edge length w. The grid spacing is chosen in such a way

that potentially colliding atom pairs can only be found in either the same

or two neighbor cells. Therefore w must be greater or equal to twice the

maximal hard sphere radius rmax. This choice ensures that collisions among

atoms that are more that one cell apart are impossible.

Since w is independent of the problem size, the volume of these cells

and the average number of atoms in one cell are constant. To find atoms

colliding with a specified one, 27 cells need to be scrutinized. Thus, the time

to determine the overall maximal collision after a move scales linearly with
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the number of moved atoms.

A further improvement of the grid algorithm can be exploited. As de¬

scribed in section 3.7.2, at each stage of the search, a new embedding is chosen

accordingly to its associated RIS probability among a set of embeddings in

which the maximum collision value is below the current collision limit cgoai-

The collision of two hard spheres of radii r\ and f2, respectively, is defined

as (r\ + r-2 — d)/(r\ + r2) where d is the distance between the two atoms.

Therefore the upper limit dmax of d of two atoms generating a collision value

larger than cgoai is given by

dmax = 2(ri + r2)(f - cgoai) (4.4)

As collisions below cgoai need not be detected, a grid of cells of width

w = dmax suffices for a given cgoai- In our algorithm, the grid is dynamically

updated to adapt to the current value cgoai- The number of atoms in one

cell decreases as l/c^oal, which accordingly speeds up the collision detection.

Such an adaptable grid greatly improves the efficiency of the algorithm.

Software Layers

As we have seen so far, the data structure layer of PolyPack and PolyCmd
consists of three main entities: A static problem description object, a set

of dynamically changing conformation objects, specifying the 3-dimensional

shape of every individual molecule, and a cubic grid, used to detect atom

collisions efficiently. The grid object is used only temporarily during the

packing process. In contrast, there must be a way to save and reload the

problem description as well as the set of conformations. The input-output

layer therefore contains procedures to read and write files in .PP and .CAR

format (see section 4.2.f).

The basic operations to manipulate the system, stored in the data struc¬

ture layer, are five moves described in section 3.7.5. Namely, there is the

rotation about a single bond (SingleRot), the concerted parallel rotation

(ParRot), the rigid group rotation and two moves to change the molecules

position and orientation. The packing algorithm modifies the molecular sys¬

tem only via these five moves.

A special interface layer, enclosed only in PolyPack, enables visualization

and step by step tracing of the packing algorithm. Interactivity and tracing
is helpful to analyze the effects of parameters on the packing process.
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4.3 The Conversion Tool MDF2PP

The first stage of any molecular simulation consists in creating a template
for the molecular structure to be simulated. In our case, as only systems
of homogeneous material are considered, a unique template for one of the

molecules suffices.

We assume this structure template to comply to the MSI/Biosym file

formats. A detailed description of the file formats is given in appendix B.

Our conversion tool mdf 2pp parses a .MDF- and a corresponding .CAR-file and

generates the tree representation .
PP needed by the PolyPack software bun¬

dle. It first reads the adjacency list contained in the .MDF-file and constructs

a weighted graph of atoms and bonds. The weights, also contained in the

molecule description file, determine, whether a bond is single (no attribute)
double (2.0) etc, or part of a ring structure (1.5).

In a first step, a graph traversal procedure detects all cycles and marks

all bonds, belonging to one or more cyclic subgraphs. Such bonds are not

freely rotatable and, thus, considered to be rigid in our model. Additionally,
bonds with weights, other than f.O as well as bonds which connect only a

single atom to the molecule, are excluded from the list of free bonds.

The obtained set of free bonds defines a unique decomposition of the

molecule into rigid groups. In a second step, the corresponding .CAR-file

is used to define the internal, three dimensional shape of each identified

rigid group. It contains coordinates for every atom, declared in the .MDF-

file. The coordinates file may represent any folding of the molecule, as long
as its internal geometry, that is, bond lengths, bond angles and chiralities

correspond to the model of interest.

Two important components can be extracted neither from the molecule

description file nor from the coordinates file, namely the hard sphere radii

and the RIS states for each torsion angle together with their probabilities
and pairwise correlations matrices. Hard sphere radii of atoms, appearing
in polymers are hardwired in mdf 2pp as constants. The conversion tool also

contains a library of RIS models which are selected by a command line pa¬

rameter:

mdf2pp <filename> (-bI-eI-pI-si I-s2I-cI-m|-n|-f <model>.RIS)

The first parameter specifies the filename of the template, which must ex¬

ist as the two files <filename>.MDF and <filename>.CAR. Seven RIS mod¬

els are included, namely those for polybead, polyethylene, polypropylene,

polystyrene in two versions, polycarbonate, polyMma or none. If the user
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wants to add a new type of polymer he chooses the -f option. The corre¬

sponding RIS-model must be specified in a description file called <model>. RIS.

The syntax and semantics of this file are described in appendix B.

The generated .PP-file is flexible enough to specify a general geometric

packing problem as defined in section 3.2.

4.4 Generating Statistics with PolyStat

To analyze coordinate files generated by PolyPack, a tool called PolyStat is

provided. It computes overlap statistics and torsion angle distributions which

can be compared to the target data. PolyStat is invoked by the following
command:

polystat <filename.pp> <filename.car> [-p period] [-m minRange]

Besides the specification of the
.
PP-file and its corresponding coordinates

file, two optional parameters may be added. The first parameter is used to

override the box size defined in the coordinates file. The second parameter

defines the minimal number of torsion angles that must lie between two atoms

of the same molecule such that their overlap is considered. PolyStat writes

the following entities to standard output:

• Parameters of the system such as the size of the periodic box, the

number of rigid groups and torsion angles, the maximum horizon value

etc.

• The Euler representation of the chains conformations: For each chain,
this representation consists of three coordinates specifying the location

of the first atom, three angles defining the orientation of the entire

chain and a set of torsion angles (see section 3.1.1).

• Average distances: For all integers d less than the number of atoms per

chain, the average distance between atoms at and af_^d for all chains

j is plotted.

• Distance distribution: For all real r = iAr, the number n of atom pairs
who's distance is within iAr... (i + 1 ) Ar is plotted. The value n is

scaled by the factor v/(7rArN(N — 1 )r2), where v is the volume of the

periodic box and A" the total number of particles of the system.

• The average square radius, which is the average over the squares of all

distances between atom pairs, belonging to the same chain.
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• Atom collisions, namely the maximum collision (defined in section

3.7. f) as well as a histogram of all collisions in the system.

• Angle distribution: A history of all occurring torsion angle values.

• Correlations: The actual and the postulated pairwise torsion angle
distribution matrices.



Chapter 5

Case Studies

5.1 Selection of Examples

The first part of this chapter is devoted to the packing of various simplified

polymer systems. Simplified polymer chains have a plain and fixed covalent

structure. However, there are diverse attributes of the system itself which are

variable, such as the system size, the density, the lengths of the individual

chains and their stiffness. All those parameters have notable impacts on

the difficulty of the corresponding geometric packing problem. The behavior

and time complexity of PolyGrow are, thus, discussed with respect to these

system attributes.

The subject of the second part of this chapter are systems of atomisti¬

cally detailed polymers. We discuss three polymer structures among a vast

number of existing materials: Polyethylene, polycarbonate and polystyrene.

Polyethylene represents simple structures with no side chains. Polycarbon¬
ate is a very famous structure for which a lot of theoretical and experimental
data is available. Finally polystyrene has a rather complex covalent struc¬

ture composed of flexible side chains who make the question of tacticity
and chirality an important issue. For the latter two polymers, all known

3-dimensional conformations deviate from the experimentally measured tor¬

sion angle distributions. Therefore, they constitute a great challenge for out

packing algorithm PolyPack. The characteristics of the three polymer struc¬

tures we chose cover a wide spectrum of materials which are investigated

today.

65
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5.2 Simplified Polymers

The characteristics of a system of simplified polymer chains are determined

by a set of parameters: The total number of particles (atoms), the lengths
of the chains, the density which determines the size of the periodic box, the

diameter of the particles, the bond length and the size of the bond angles
or a bond angle distribution function (see section 3.1.4). We investigated
the behavior and the time used by Embed and PolyGrow in function of these

parameters.

5.2.1 Analysis of Embed

A system of M simplified polymer chains with fixed bond angles, containing
a total of A" particles leads to a packing problem with A" points, A^2 lower

bounds on distances and 2A" — 3M exact distance constraints. The lower

bounds ensure, that the points do not get closer than twice the atoms radius.

The N — M bonds and the A" — 2M bond angles are kept fixed by as many

exact distance constraints.

As starting conformations (the input of Embed), we generated random

chains with the proper bond lengths and bond angles but without considering
atom overlaps.

Figures 5.1 and 5.2 show the performance of Embed versus the size and

the density of the systems respectively. For our test runs, we chose the

following parameters: Atom diameter 0.9, bond length 0.9, bond angle 60°

and number of chains f 0. All spatial dimensions are specified without unit.

They are interpreted relatively to the system of density f .0 with one sphere
of diameter f .0 per cube unit. The results shown in the diagrams are average

values of 20 runs at each case.

The left diagram in figure 5.1 shows the number of iterations and the

time needed to compute one iteration step in function of the number of

particles in the system. The density is kept constant at 0.9 particles per

cube unit. The time spent in each iteration step grows linearly because the

time needed to rearrange a singe particle is independent of the problem size.

The introduction of a grid (see section 4.2.3) reduces the number of lower

distance bounds which have to be considered for a singe particle from A" to a

constant independent of N. The fact that the number of iterations needed to

solve the embedding problem grows linearly with the system size can not be

explained so easily. It is caused by the characteristics of the particular class

of packing problems we investigated, namely systems of simplified polymer

systems. The multiplication of the two linear curves leads to a quadratic
time complexity of Embed, shown in the diagram on the right.
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Figure 5.2 shows the same properties as figure 5.1 but in function of the

density of the system while the number of particles is constant (100) at each

case. The time-per-iteration-curve jumps at density 0.80 because the size of

the grid cells has to be adjusted at this point. The total computing time

shows a non linear behavior. The packing problem is easy to solve up to

a density of about 0.95. Beyond this point, the difficulty of the problem
increases rapidly. Above f .30, Embed is unable to solve the packing problem.

If we compare these results (figure 5.1) to the ones obtained with PolyGrow

(figure 5.3) we see that Embed is efficient only for small systems containing

up to about fOO particles. However, as part of PolyGrow, Embed is the per¬

fect alternative to the complex computation of a set of concerted rotations.

There, only local problems need to be solved where most of the geometric
constraints are already satisfied.
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5.2.2 Analysis of PolyGrow

To analyze the time complexity of PolyGrow we choose a base system com¬

posed of f000 particles of diameter 0.90, chains of length f 00, system density
0.90 and a bond angle distribution parameter k of 4.0. These parameters

are adopted from [17]. By varying a single parameter, the dependence of the

execution time in function of this particular parameter can be evaluated.

Linear dependence on system size
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E
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Figure 5.3: Computing time of PolyGrow (MIPS R5000 at 180 MHz) compared to

results obtained with the program GenPol (MIPS R10000 at 195 MHz).

Figure 5.3 shows the time used by PolyGrow to pack system of various

sizes. The time increases linearly with the system size. We compare our

results with the performance of GenPol [17], the fastest method to generate

simplified amorphous polymer systems at present. On the bi-logarithmic
scale polynomials become straight lines. The gradient corresponds to the

degree of the polynomial. PolyGrow shows a linear behavior while the time

used by GenPol increases slightly steeper.

The white squares show the time used by GenPol, the black triangles

represent average values over 5 runs of PolyGrow. The two lines above and

D GenPol

A PolyGrow
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below the triangles show the standard deviation. PolyGrow is between two

and five times faster than GenPol depending on the system size.

Non linear dependence on the systems density

The dependence of the execution time on the systems density is not linear.

Above a certain value the problem even becomes unsolvable because there

is no way to pack the chains without overlapping spheres. Up to the con¬

ventional density of 0.9 particles per cube unit, the execution time does not

increase dramatically as figure 5.4 shows.
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Figure 5.4: Computing time of PolyGrow versus the system density of the system

to be packed (Ultra-Sparc-II at 248 MHz).

However, PolyGrow is unsuitable for densities above f.O. For very high

densities, GenPol is more suitable. It is able to pack systems up to 1.5

particles per cube unit.

Influence of the stiffness of the chains

The stiffness of the simplified polymer chains is determined by the parameter

k which defines the bond angle distribution (see section 4.1).
The time needed to pack systems of different bond angle distributions is

shown in figure 5.5. The graph shows the average time as well as the standard

deviation over 20 runs. The problem becomes more difficult with increasing
k. PolyGrow is also able to pack polymer chains with fixed angles. The last

bar in figure 5.5 shows the time used to pack a system with a typical bond

angle of 60°. The only degrees of freedom of such a system are the torsion

angles. This makes the packing problem more difficult for PolyGrow.
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Figure 5.5: Computing time of PolyGrow versus the parameter n of the bond angle
distribution (Ultra-Sparc-II at 248 MHz).

Independence of the lengths of the chains

The final parameter to be analyzed is the chain length. As figure 5.6 shows,
the execution time of PolyGrow is independent of the lengths of the chains.
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Figure 5.6: Computing time of PolyGrow versus the length of the chains. (Ultra-
Sparc-II at 248 MHz)

The standard deviations over 20 runs is much higher than the differences

in the average values. The task to finish a chain and to begin an new one

during the chain growing process does neither take too much time, nor does

this additional degree of freedom simplify the problem significantly.
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5.3 Atomistically Detailed Systems

5.3.1 Polyethylene

In order to test the PolyPack-algorithm, we applied it to three widely used

polymers structures. The simplest structure we investigated is polyethylene.
Its covalent structure is shown in figure 5.7. Polyethylene is composed of a

simple chain of carbon atoms completed by the necessary hydrogen atoms.

We used this molecule to analyze various properties of PolyPack. As a typical

density of a polyethylene glass we chose 0.892g/cm3 for all test runs.

Figure 5.7: Covalent structure of polyethylene.

First, we measured the scaling behavior of the computing time with re¬

spect to the number of chains and the length of these chains. Secondly,
we tested the effects of the horizon technique, the parallel rotation and the

shake technique by packing the same system first with and then without the

specific method. Thirdly, we ascertained the effectiveness of different moves

at different stages of the embedding process. The more complex polymers

polycarbonate, and polystyrene are discussed separately at the end of this

section.

5.3.2 Measured Time Complexity

We applied PolyPack to systems of various size in order to study its scaling
behavior with respect to the number of chains and the length of these chains.

On a bi-logarithmic scale, a polynomial time complexity is represented

by a straight line. Its gradient equals the order of the asymptotic growth.

Figure 5.8 shows the growth of computing time in function of the number

of chains. The computational effort versus the length of the chains is shown

in figure 5.9. The time is measured in seconds on an Ultra-Sparc-II at 248

MHz. For large systems, the points lie almost perfectly on a straight line.
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Figure 5.8: Computing time of PolyPack versus number of chains.
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The relative computing time t is thus polynomial both in the number of

molecules M and the length of the molecules T:

taAf -V (5-1)

with ß = f.5 ± 0.2 and v = 2.8 ± 0.2. In section 3.7.8 we derived a time

complexity of the order 0(i M T3). The influence of the unknown value i

for these specific problem instances can now be estimated by comparing the

two results.

The efficiency of PolyPack seems to be low when compared to the one

of PolyGrow shown in figure 5.3. However, the chain length of polyethylene
is measured in monomers instead of particles (atoms). A polyethylene-f00-
chain is composed of 302 atoms and f00 torsion angles. PolyPack is designed
to handle complex atomistically detailed molecules. Since it operates in
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torsion angle space, the computing time depends mainly on the number of

torsion angles rather than on the number of particles. Therefore, PolyPack is

more efficient for complex structures with many atoms per degree of freedom.

Additionally torsion angles on side chains, not belonging to the backbone, are

modified very efficiently by PolyPack. Thus, polycarbonate and polystyrene
are better examples than simple polyethylene to demonstrate the efficiency
of PolyPack.

5.3.3 Effects of Packing Techniques

In section 3.7, we described a variety of methods to improve the packing of

macromolecules. Since most of these methods have a heuristic character, it

is difficult to predict their effect on the convergence of the algorithm theoret¬

ically. We measured the effects of the most important techniques (ParRot,
Shake and the introduction of a horizon parameter) and compared their per¬

formances on a given system of fO polyethylene chains of 50 repeat units

each. The system contains f 520 atoms and M T = 500 torsion angles.
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Figure 5.10: Effects of ParRot and Shake.

To measure the effectiveness of ParRot and Shake, we started PolyPack

with and without using the ParRot move and with zero, one, or two shakes at

each horizon value. For all six variants, we packed the system of polyethylene
chains 20 times, each time with a different starting conformation. Each

run produced a packing with a final maximum overlap value. The average

overlaps as well as the standard deviations over the 20 runs are shown in

figure 5.10. The omission of the ParRot move as well as the shake method

each increases the final overlap by about one standard deviation, indicating
that both techniques improve the performance of PolyPack significantly.
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Figure 5.11: Influence of increment step size of the horizon parameter.

In section 3.7.4 the parameter hstep was introduced. It defines the amount

by which the horizon parameter h is increased during the outermost loop of

the packing algorithm. Since the chains of our test system consist of 50

repeat units and 50 torsion angles on the backbone, the maximum value for

the horizon parameter hmax is 50. If hstep is set to f, the system is optimized
for all horizon values from 0 up to 50. This strategy is very time consuming,
but it produces the most accurate results. On the other hand, if hstep is set

to 50, the concept of a horizon parameter is eliminated since the system is

optimized only once, considering all atom collisions from the beginning. hstep
is used to control the trade off between the computing time and the quality
of the generated structure. Figure 5.11 presents the average over collision

values of fO runs, as well as their standard deviation for several step sizes

ranging from f to 50.

The benefit of the horizon method is shown even more impressively in

figure 5.12. We packed a system of fO polyethylene chains of 20 monomers

without increasing horizon and with a horizon step size of f. In the first

case, when all collisions are taken into account from the start, the packing

process gets stuck at more than 50% maximum overlap. In the latter case,

a conformation with only 12% maximum overlap ist found. The peaks on

the collision curve are caused each time the horizon is increased and new

collisions are considered.
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Figure 5.
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5.3.4 Effects of Moves

Our algorithm makes use of five different moves (section 3.7.5). We measured

the effectiveness of a particular move as the ratio of the number of times it

succeeded in improving the system (reducing the maximum collision), relative

to the total number of times it was employed during the packing process.

Figure 5.13 shows the success ratio for all moves described in function of

the value of the horizon parameter. As expected [33], the ParRot move

outperforms the other moves, especially at the late stages of the packing

process when most of the collisions are considered.

5.3.5 Accuracy of Results

The accuracy of a conformation is measured by two criteria, the maximum

overlap of spheres and the agreement of the distribution of the torsion angles
with the distributions given by the RIS model.

According to the standard RIS model of polyethylene [22], torsion angles
on the backbone are limited to the three RIS states trans, gauche+ and

gauche~. Thus, nine states, a pair of two adjacent angles can occupy. The

RIS a priori probabilities for these states to occur are shown in figure 5.14

as white bars.

We generated 20 different conformations of a system of fO polyethylene
chains composed of 50 building blocks each at 0.892g/cm3. The mean value
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Figure 5.13: Success ratio of all five moves used in PolyPack.

over the maximum overlaps of these 20 structures was 0.216, which means

a maximal encountered atom overlap of 21.6% of their hard core radii on

average. The average distribution over all pairs of torsion angles of all com¬

puted structures is shown in figure 5.14 as black bars. The small horizontal

bar indicates the mean value while the upper and lower bars represent the

standard deviation. The figure shows that PolyPack is able to reproduce a

given distribution accurately even at hight densities.

Another way to assess the end structure after packing is to minimize the

total system energy (with flexible bond lengths, bond angles, and contin¬

uous torsion angles) using an appropriate force field, and then to compare

the three-dimensional shape before and after the minimization. A small

difference between the two structures shows that the geometric constraints

imposed in the packing algorithm form an appropriate model for the bonded

and non-bonded forces. The conformation of a system of five polyethylene
chains of 200 repeat units before and after energy minimization is shown

in figure 5.15 (parent chains only). The local remaining overlaps between

atom pairs are removed during the minimization procedure without signifi¬

cantly modifying the chain configuration. This is to say that, for instance,
the end-to-end distance or gyration radius, which are strongly dependent on

the RIS model, are free of the perturbations suffered in the usual packing

approaches. The new algorithm can faithfully reproduce a desired dihedral

angle distribution, provided by RIS models or possibly experimental results.

/'^Aa»; »ii,1' vr.\
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Figure 5.15: Five polyethylene chains before (black) and after (gray) energy min¬

imization.
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Figure 5.16: Covalent structure of polycarbonate.

5.3.6 Polycarbonate

The covalent structure of polycarbonate is shown in figure 5.16. Nuclear

Magnetic Resonance (NMR) experiments show that at most 15% of the tor¬

sion angles belonging to the carboxyl group (cp\ and (p2) are in the cis-state

(—60° < 4> < 60°) [39]. Other references [36] state that the quota of an¬

gles in eis state is even near 10%. In all present atomistic conformations,
used in computer simulations, the percentage of torsion angles in eis state

is above 25% [42]. One of the best results has been achieved with the so

called "amorphous cell" method [35]. In [37], this method was applied to a

system of polycarbonate chains. 26% of the carboxyl angles contained in the

resulting conformation are in eis state. The detailed distribution of 4>\(4>2)
is shown in diagram (4) of figure 5.17.

We used PolyPack to generate a system of seven polycarbonate chains

containing 25 monomer units each. The system contains 5, 789 atoms and

f, 400 torsion angles (degrees of freedom). We packed it into a periodic box

of size 39.5Â corresponding to a density of 1.20g/cm3. The target torsion

angle distributions we used are derived from the standard RIS model of

polycarbonate [22, 30]

Pl9 =
0.910

0.045

0.045

0.000
-TOQ

0.2387 0.0113

0.2387 0.0113

0.2387 0.0113

0.2387 0.0113

(5.2)
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Figure 5.17: Distribution of 4>Carboxyi of conformation generated with PolyPack

compared to best known conformation.
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where Pv describes the distribution of torsion angle states of (pt and

(f>j. The packing process took 139 hours on an Ultra-Sparc-II at 248 MHz.

PolyPack succeeded in generating a conformation with 9% of the carboxyl

angles (cp\ and fa) being in eis state. Diagram (f) in figure 5.17 shows the

distribution of carboxyl angles of the system generated by PolyPack. The

angles appear strictly separated in clearly defined state intervals. PolyPack

does not care about the distribution within these intervals but it cares for

the percentage of angles inside each interval. The geometric model, used by

PolyPack is very strict in two ways. Firstly, it only allows torsion angles
to be inside certain intervals and secondly, it keeps all bond lengths and

bond angles to be fixed. Such a strict conformation is transformed from the



80 CHAPTER 5. CASE STUDIES

geometric world back to the chemical world by energy minimization and a

molecular dynamics run.

We first applied the pcff9f-forcefield (included in Biosym Discover) and

minimized the energy using the steepest descent method. We selected a

maximum atom displacement of 0.2Â per step and iterated f0,000 steps.

Continuing, we started a Molecular Dynamics run of fOO pico seconds at a

temperature of 300K and fOOK. Finally we minimized the energy a second

time. The distribution of carboxyl torsion angles after these three steps is

show in Diagram (2) and (3) of figure 5.17 respectively.

Surprisingly the percentage of eis conformations increased but only to

16% which is within an acceptable range. Our resulting structure is now

used in various simulations as the conformation which best corresponds to

experimental data.

5.3.7 Polystyrene

As a third example of an atomistically detailed polymer we investigate poly¬

styrene, a molecule with rotatable side groups attached to the main chain.

Figure 5.18 shows its covalent structure as well as all rotatable torsion angles.

Figure 5.18: Covalent structure of polystyrene.

In contrast to polycarbonate and polyethylene, a monomer unit of poly¬

styrene can assume two distinguishable conformations of different chirality
because the side chain can be on the left or on the right side of the adjacent

hydrogen atom. Figure 5.19 shows the view along the backbone of the two

conformations together with the two states trans and gauche+. The direction

in which the torsion angle is measured depends on the position of the side
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chain. A polymer is called isotactic if all monomers have the same orientation

and atactic otherwise. The results we present in this section are obtained

with isotactic polystyrene.

trans trans

gauche"1" gauche"1"

Figure 5.19: Left- and right handed conformations of a monomer of polystyrene.

The relative orientations of the rings in polystyrene can be measured

experimentally by replacing single carbon atoms of the rings by carbon-f 3

atoms. The spins of these labeled atoms are stimulated and the polaristation-
transfer between the nuclei is evaluated by Nuclear Magnetic Resonance spec¬

troscopy (NMR) (see [31]). A two dimensional NMR spectrum of amorphous

polystyrene is shown in diagram (a) of figure 5.20. The height of a point at

(uja,ujb) is given by

f(uA,uB) =
nAUB ^ J£ rv

(5.4)

where N is the total number of spins, nA and nB are the number of spins
that belong to group A and group B, and r%J is the distance between spin i

and spin j. A spin belongs to group A or group B if its resonance frequency
is within uja ^a + dujA or ujb ... ujb + dujB respectively. High values near

the diagonal indicate, that proximate rings tend to be parallel to each other.

The NMR spectrum of atomistically detailed models of polystyrene can

be computed using formula 5.4. The spectrum calculated from an average

over 24 atomistic simulations of polystyrene is shown in Diagram (b) in

figure 5.20. The spectra obtained from experimental data and from atomistic

simulations differ significantly, because the underlying conformations used in

simulations do not correspond the angle distributions given by the RIS model

of polystyrene. For example, the values in the upper right corner of diagram

(b) are much too high due to an overpopulation of trans-trans states along
the backbone.

We used PolyPack to generate conformations of isotactic polystyrene that

correspond to given torsion angle distributions. We used a system composed
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Figure 5.20: NMR measurements of polarization-transfer between carbon-13 nu¬

clei in specifically labeled amorphous polystyrene. Conformations generated with

PolyPack (c) show higher correspondence to experimental data (a) than those

generated with conventional methods (b).

of 9 chains of 40 monomers each at a density of 1.05g/cm3 which corresponds
to a box size of 39Â. There are f080 torsion angles and 5778 atoms comprised
in the system. The packing process took 18 hours on an Ultra-Sparc-II at

248 MHz.

Pl9 =
0.000

0.435

0.435

0.130
(5.5)

P2l =
0.050

0.410

0.410

0.130
(5.6)

P\2 and P21 specify the pairwise distribution of the trans (t) and gauche

(g+) states of torsion angle pairs attached to the same and to neighboring
side chains respectively. The matrices are derived from Rapold and Suter's

2-state RIS model of polystyrene at 300K [22, 30]. We set the probability for

trans-trans states in P\2 to zero to make sure that they stay rare even after

energy minimization.

As mentioned in the previous section, the moves used by PolyPack are

more restricted than those in typical force fields. Bond lengths and bond

angles are kept fixed and torsion angles are restrained to certain intervals.

Thus, PolyPack is not able to remove all non-bonded overlaps completely. In

subsequent energy minimization and molecular dynamics runs, these overlaps
are balanced at the expense of local bond length, bond angle and torsion angle
motions.
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Figure 5.21: Correlation matrices of adjacent torsion angles in glassy amorphous

polystyrene.

Diagram (f) of figure 5.21 gives the distribution of torsion angles of the

meso dyads generated by PolyPack with A(f> = ±25°. It corresponds per¬

fectly to the matrix P12. The relaxation of the strict conformation is illus¬

trated in diagram (2) and (3). They show the distribution of torsion angles
after energy minimization and after 20ps of molecular dynamics simulation

at 300K. Diagram (4) exhibits the distributions of a conformation gener¬

ated with the commonly used amorphous cell method [35]. In contrast to

the distribution in diagram (3), there are significantly more points near the

center which corresponds to the trans-trans state, typical for conformations

computed with conventional packing methods.

We succeeded in generating conformations of isotactic polystyrene that
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correspond well to the RIS model (less than 10% trans-trans states). They
maintain this property in molecular dynamics runs. Moreover diagram (c)
in figure 5.20 shows, that the NMR spectra derived from our conformations

show significantly better agreement with the experimental data than those,

generated by conventional methods.
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Conclusions

6.1 Interdisciplinary Collaboration

The work and results we presented in this thesis have their source in a fruit¬

ful interdisciplinary collaboration between chemists and computer scientists.

Interdisciplinary cooperation causes some difficulties not necessarily present

in the teamwork of scientists from the same field. People from different

disciplines have different backgrounds and knowledge and they speak differ¬

ent languages. For a chemist, for example, the direction in which a torsion

angle is measured inside a polymer with side chains, is not worth mention¬

ing. A computer scientist on the other hand, takes for granted, that all

torsion angles are measured the same way, either clockwise or anti-clockwise.

Consequently, both parties need to learn to communicate problems precisely
without unspoken assumptions.

However, the advantages of interdisciplinary work surmount these draw¬

backs easily. Computer scientists and chemists for example, regard a problem
like polymer packing differently, influenced by their different backgrounds.
The pooling of the knowledge opens many new ways of solving such a prob¬
lem. A computer scientist does not care whether intermediate states gener¬

ated by the search algorithm are physically possible states or whether the

forces that change the conformation during the packing process have a phys¬
ical explanation. All he cares about is that the resulting conformation meets

the requirements stated by the chemist.

6.2 Geometry is an Effective Filter

Apart from implementation details, there is basically only one way to sim¬

ulate on an atomistic level the behavior of materials over time. The actual

85
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forces and velocities of the particles lead to their new coordinates in the next

step of the simulation. In contrast, any way to generate the initial confor¬

mation is reasonable, as long as the resulting conformation meets the stated

requirements. Thus, polymer packing is an open problem and there is no

unique way how to solve it. We approach it as a geometric optimization

problem. No significant information gets lost when the chemical world is

transformed into a set of geometric and statistical constraints. This trans¬

formation is even an effective filter that simplifies the problem by selecting

only relevant properties of the initial system.

6.3 Parrot - A Universal Move

The study of the polymer packing problem from a geometric point of view

asked for a more efficient move than simple torsional rotation. The parallel
rotation technique allows relaxation deep inside long chains in a dense en¬

vironment. The performance of the search algorithm relies heavily on the

efficiency of the ParRot move. Although ParRot was devised especially for

the polymer packing algorithm, we found that it has many more applica¬
tions. All algorithms that need to change the conformation of dense, highly
connected systems profit from this kind of move. We showed in [33] that the

integration of parallel rotation into existing Monte Carlo algorithms increases

their efficiency significantly. It may be the case that even in nature, densely

packed polymers move somehow similar to parallel rotation.

6.4 Effective Heuristics

We showed that the combinatorial chain packing problem is NP-complete.

Many discrete combinatorial problems turn out to be NP-complete. The

NP-completeness property results from worst case analysis. It justifies the

use of heuristic techniques which may be effective for a certain class of in¬

stances which are of interest. However, for arbitrary instances, no theoretical

guarantee for efficiency can be given.

Among the heuristic techniques we integrated into our packing algo¬

rithms, two turned out be especially successful. We implemented the concept

of a horizon which allows the splitting of the global packing problem into a

sequence of problems with increasing difficulty. The idea of solving simpler

problems first and using their outputs as input for more difficult ones is

applicable in various other optimization problems.
For packing simplified polymer systems, we combined a constructive chain
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growing process with an iterative technique to remove local overlaps of atoms.

This hybrid algorithm succeeds in generating very large polymer systems.
Chain growing is very efficient but it may run into troubles during the pack¬

ing process. On the other hand, relaxation is much more expensive but it is

needed only locally in the environment of the newly placed atom. The com¬

bination of constructive and iterative processes turns out to be a suitable

way of constructing large, simplified polymer systems.

6.5 Software for Polymer Packing

The goal of this project was not only to devise new methods for packing

polymers theoretically, but to offer a user-friendly software package that is

compatible with existing biochemical software, that can be used effectively
and intensively by material scientists. The real case studies in the previ¬

ous section show, that our software finally reached this goal. The programs

PolyPack and PolyGrow became important tools used in the process of gen¬

erating realistic starting structures because without realistic starting struc¬

tures, there is no realistic simulation!
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Appendix A

Glossary

Chemistry

Amorphous system: A system which is not in an ordered crystalline state

but consists of randomly entangled chains (section 2.1.3).

Cis state: A state of a torsion angle where both adjacent bonds

point to the same side (section 3.1.2).

Concerted rotation: ConRot: The simultaneous rotation of seven adjacent
torsion angles which changes a polymer chain locally,
while keeping all bond angles and bond lengths fixed

(section 3.7.6).

Conformation: The 3-dimensional shape of a molecule (section 2.1.2).

Covalent structure: The way the atoms of a molecule are joined together

by bonds (section 2.1.2).

Euler angles: Three angles which specify the orientation and rota¬

tion of a body in 3-dimensional space (section 3.1.1).

Excluded volumes: The non-bonded interaction of atoms is modeled by
hard spheres which are not allowed to overlap, (section
3.1.3).

Gauche state: A state of a torsion angle between eis and trans (sec¬
tion 3.1.2).

Generalized coordinates: The specification of the 3-dimensional shape of a

molecule by its torsion angles, (section 3.1.1).
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Glass: A non-crystallized amorphous polymer system, (sec¬
tion 2.1.3).

Molecular Dynamics: Simulation of the time evolution of molecules by solv¬

ing the equations of motion (section 2.2.4).

Monte Carlo:

Parallel rotation:

Parent chains:

Generation of a sequence of conformations according
to their probability to appear (section 2.2.5).

ParRot: The simultaneous rotation of four torsion an¬

gles which conserves the orientation of the moving part

of the chain (section 3.7.6).

The chains contained in the original box of a periodi¬

cally replicated grid (section 2.2.2).

Periodic boundary conditions: A cubic box is replicated throughout space.

The periodic images move like the particles in the orig¬
inal box. This way a dense environment is simulated,

(section 2.2.2).

Polymer:

Primary structure:

RIS model:

Relaxation:

Repeat unit:

Tertiary structure:

Trans state:

A chain-like molecule composed of a sequence of uni¬

form repeat units (section 2.1.2).

The way the atoms of a molecule are joined together

by bonds (section 2.1.2).

Rotational Isomeric States model. Defines a set of

states for all torsion angles and their pairwise distri¬

bution (section 3.1.2).

The minimization of the energy of a molecular system

(section 3.6.2).

One unit of a polymer which is replicated to form a

chain, (section 2.1.2).

The 3-dimensional shape of a molecule (section 2.1.2).

A state of a torsion angle where adjacent bonds point
to opposite sides, (section 3.1.2).

Van der Waals interaction: The force which acts between two non-bonded

atoms, (section 2.2.f).
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Computer Science

Backtracking:

Complexity:

Heuristic search:

Iterative search:

NP-complete:

O-Notation:

Polynomial time:

A method for traversing a search tree, (section 3.6).

The complexity of an algorithm is measured by the

number of time (or space) units it uses with respect to

the size of the problem to be solved, (section 3.4).

A search method which uses insight and knowledge
about a class of problem instances, (section 3.3.1).

A search method which starts with an initial guess and

improves it repeatedly until it finds the solution or a

local optimum, (section 3.5).

A problem is NP-complete if it belongs to the class of

Non-deterministic Polynomial problems and if it is at

least as complex as all problems in NP. For an NP-

complete problem, no polynomial time algorithm ex¬

ists to the best of todays knowledge, (section 3.3.1).

A function f(n) : N — N is of the order 0(g(n)) if

3c > 0, no : \/n > no : f(n) < c g(n).

An algorithm is polynomial if its complexity is of the

order 0(nk) where n is the size of the input and k an

arbitrary constant.

Worst case analysis: Only those problem instances that cause the maximum

effort are considered, (section 3.4).
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Notation

G: Number of geometric constraints.

h: Horizon: Number of free bonds separating two atoms, (section
3.7.1).

L: Side length of the cubic periodic box.

M: Number of molecules (polymer chains).

N: Total number of particles or atoms.

R: Number of repeat units per polymer chain.

T: Number of rotatable torsion angles (free bonds) per polymer chain.

9: Bond angle.

(ft: Torsion angle.



Appendix B

File Formats

MSI/Biosym's Molecule Description File (.MDF)

A
.
MDF-file mainly contains the covalent structure of the molecule together

with additional atom and bond attributes as this clipping shows:

!BIOSYM mo lecular_data 4

[..]

©molecule POLYCARB_B0

CARB_1:C C cp [. .] Cl/1.5 C5/1.5 HC

CARB_1:HC H he [. .] c

CARB_1:C1 C cp [. .] C/1.5 C2/1.5 HI

CARB_1:H1 H he [. .] CI

CARB_1:C2 C cp [. .] Cl/1.5 C3/1.5 C7

CARB_1:C3 C cp [. .] C2/1.5 C4/1.5 H3

CARB_1:H3 H he [. .] C3

CARB_1:C4 C cp [. .] C3/1.5 C5/1.5 H4

CARB_1:H4 H he [. .] C4

[..]

The .MDF-file is used by the conversion tool mdf2pp to generate the de¬

composition of the molecule into rotatable torsion angles and rigid groups.

MSI/Biosym's Coordinates File (.CAR)

A
.
CAR-file contains coordinates for every atom, declared in the correspond¬

ing .MDF-file:
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i BIOSYM archive 3

PBCOFF

C 3.313660622 -2 504962206 -11 698267937 CARB 1 [.

HC 2.429594755 -2 005253792 -12 065854073 CARB 1 [.

Cl 4.420852184 -1 754677892 -11 284504890 CARB 1 [.

Hl 4.390906811 -0 676178515 -11 332902908 CARB 1 [.

C2 5.566863537 -2 402448654 -10 808005333 CARB 1 [.

C3 5.605681896 -3 800502777 -10 745265961 CARB 1 [.

H3 6.489747524 -4 300211430 -10 377680779 CARB 1 [.

C4 4.498489857 -4 550786972 -11 159029007 CARB 1 [.

H4 4.528435707

[..]

-5 629286766 -11 110631943 CARB 1 [.

RIS-Model Description File (.RIS)

The .RIS-file specifies the states and correlations for a specific polymer. The

following example shows a RIS model for a-tactic polystyrene:

RIS 1 {A-tactic polystyrene}

BACKB0NELIST 2

CA Cl

DIHEDRALLIST 1

DIHEDRAL CA Cl

SIDECHAIN C2

PREDC0RR

MM 2 rowmdex

MR 3 rowmdex

RM 4 rowmdex

RR 5 rowmdex

SUCCC0RR

M 0 rowmdex

R 1 rowmdex

ILIST 2

INTER -5 45

INTER 85 135

{ 20 trans }

{ 110 gauche+ }

C0RRELATI0NLIST 2
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CORRELATION 2 2

0.0000 0.4350

0.4350 0.1300

CORRELATION 2 2

0.0500 0.4100

0.4100 0.1300

First, all atoms belonging to the backbone are listened. For each type of

dihedral (free torsion angle), there is an entry in the list of dihedrals. The

angle is identified by the two atoms of the free bond. Their order defines the

direction, the predecessor and the successor of the bond. If there is a side

chain attached to one of the two atoms, this atom must be declared first.

The first atom of the side chain adjacent to the bond must also be specified.
The correlation with the predecessor and the successor angle are specified by
the number of the correlation matrix and one of the two identifiers rowindex

or columnindex which define whether the state of the angle corresponds to

the row or column index of the correlation matrix. For a-tactic polymers,
four correlations with the predecessor and two correlations with the succes¬

sor may be specified. The letters M and R identify meso and racemo dyads

respectively. The RIS states are defined by an angle interval. The number

of RIS states must correspond to the dimension of the selected correlation

matrices. The list of RIS correlation matrices, which are referenced by the

free bonds, completes the .RIS-file.

PolyPack Problem Description File (.PP)

The .PP-file, generated by mdf2pp contains the complete description of a

polymer packing problem. It starts with a list of atoms:

POINTLIST 332

POINT 0 'C 0 'CARB_1' 1 1..5000

POINT 1 'HC 0 'CARB_1' 0 1..0700

POINT 2 'Cl' 0 'CARB_1' 1 1..5000

POINT 3 'Hl' 0 'CARB_1' 0 1..0700

POINT 4 'C2' 0 'CARB_1' 1 1..5000

[..]

A list of distances specifying adjacent atoms, type, weight and length
follows:
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DISTANCELIST 351

DISTANCE 0 2 BOND

INTER 1 .4000 1 .4000

DISTANCE 0 9 BOND

INTER 1 .4000 1 .4000

DISTANCE 0 1 BOND

INTER 1 .0800 1 .0800

DISTANCE 2 4 BOND

INTER 1 .4000 1 .4000

DISTANCE 2 3 BOND

INTER 1 .0800 1 .0800

[..]

1.50 ILIST 1

1.50 ILIST 1

1.00 ILIST 1

1.50 ILIST 1

1.00 ILIST 1

Free bonds are identified by four atoms which define their torsion angle
value. A type identifier is followed by two integers which reference the two

rigid groups, connected by the bond. After the weight, four integers define

the correlations, the free bond is involved in. The first and third number

identify the correlation matrices valid for the current bond in connection

with its predecessor and its successor along the backbone. The second and

fourth number are interpreted as boolean values and specify, whether the

current bond defines the row or column index in the corresponding matrix.

This information is important in case of non-symmetric matrices. A list of

intervals on the torsion angle values define the RIS states. The dimension

of the referenced correlation matrices must correspond to the number of

declared RIS states.

DIHEDRALLIST 79

DIHEDRAL 2 4 15 29 OMEGA 0 1 0.00 1 1 0 1 ILIST 4

INTER -2.6180 -2.0944

INTER -1.0472 -0.5236

INTER 0.5236 1.0472

INTER 2.0944 2.6180

DIHEDRAL 4 15 11 12 OMEGA 1 2 0.00 -1 1 -1 1 ILIST 0

DIHEDRAL 4 15 16 17 OMEGA 1 3 0.00 -1 1 -1 1 ILIST 0

DIHEDRAL 4 15 29 20 OMEGA 1 4 0.00 0 1 11 ILIST 4

INTER -2.6180 -2.0944

INTER -1.0472 -0.5236

INTER 0.5236 1.0472

INTER 2.0944 2.6180

[..]



fOf

The list of torsion angles is followed by the list of rigid groups. Every

group is composed of a list of atoms and their coordinates which describe its

internal 3-dimensional structure.

GIDGROUPLIST 80

RIGIDGROUP 8

4 5.5669 -2..4024 -10.8080

2 4.4209 -1..7547 -11.2845

0 3.3137 -2..5050 -11.6983

9 3.3525 -3..9030 -11.6355

7 4.4985 -4..5508 -11.1590

5 5.6057 -3..8005 -10.7453

6 6.4897 -4..3002 -10.3777

8 4.5284 -5..6293 -11.1106

RIGIDGROUP 5

15 6.7839 -1..5777 -10.3532

4 5.5669 -2..4024 -10.8080

11 6.3099 -0..8918 -9.0584

16 7.2905 -0..7282 -11.5336

29 7.9162 -2..5079 -9.8830

[..]

The list of RIS correlation matrices, which are referenced by the free

bonds, completes the .PP-file.

C0RRELATI0NLIST 4

CORRELATION 4 4

0.1250 0.0000 0..1250 0..0000

0.0000 0.1250 0..0000 0..1250

0.1250 0.0000 0..1250 0..0000

0.0000 0.1250 0..0000 0..1250

[..]

CORRELATION 4 2

0.2387 0.0113

0.2387 0.0113

0.2387 0.0113

0.2387 0.0113

[..]
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