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Abstract

Linear cryptanalysis and its generalisations are possible ways to attack

an iterated block cipher. Their success relies on a certain number of

assumptions made by the attacker. In this thesis, the validity of some of

these assumptions is investigated.

According to Matsui's Piling-up Lemma, the imbalance of a sum of

independent binary random variables is equal to the product of the imbal¬

ances of these random variables. One uses this fact in linear cryptanalysis
to compute a lower bound on the probability of success of one's attack.

It is shown that, on average, the imbalance of the sum is at least as large
as the product of the imbalances and that for large sample spaces, both

expressions are almost always approximately equal. It is deduced that, at

least as an approximation, the Piling-up Lemma is applicable in a linear

cryptanalysis attack to linked threefold sums even if they are not indepen¬
dent.

The validity of the hypothesis of fixed-key equivalence is investigated.
The hypothesis asserts that for any effective input/output sum (I/O sum)
virtually all key-dependent imbalances are approximately equal to their

average, the average-key imbalance of the I/O sum. A counter-example is

given. It is further proved that, for one round of encryption, the average

and the variance of the key-dependent imbalances are approximately the

same for virtually all I/O sums. Whether the key-dependent imbalances of

an I/O sum can then be considered as "approximately equal" is subjective
and therefore no conclusion about it is drawn. Finally, the average, over

all I/O sums, of the average-key imbalances is computed for any number

of rounds. Based on this result, a new quantitative definition of effective

I/O sums is given.

The validity of the piling-up hypothesis is studied. This hypothesis
is an m-ary analogue to Matsui's Piling-up Lemma. It says that (for
certain imbalance measures) the imbalance of a product of independent

m-ary random variables is in virtually all cases approximately equal to
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iv Abstract

the product of the imbalances of these random variables. The family of

all imbalance measures that are convex-U on the set of m-ary probability

distributions, equal to 1 for a constant random variable and equal to 0

for a uniformly distributed random variable, is considered. It is argued
that they are all equally appropriate for measuring the goodness of an

expression used in the group generalisation of linear cryptanalysis attack.

For the measure if, which belongs to this family, it is shown that the

imbalance of a product of two random variables is on average equal to

the product of the imbalances of the two random variables. It is inferred

that the piling-up hypothesis holds for two random variables when m is

large enough. By induction, it is shown that the hypothesis also holds for

any number of random variables when m is large enough. Finally, it is

argued that if is an appropriate imbalance measure to use in the group

generalisation of linear cryptanalysis.

Keywords. Iterated block cipher, linear cryptanalysis, imbalance,

Piling-up Lemma, hypothesis of fixed-key equivalence, piling-up hypothe¬
sis.



Zusammenfassung

Die lineare Kryptoanalyse und ihre Verallgemeinerungen sind mögliche
Methoden, um ein iteriertes Blockverschlüsselungsverfahren anzugreifen.
Ihr Erfolg basiert auf einer Anzahl Annahmen, welche vom Angreifer
(Kryptoanalysten) gemacht werden. In dieser Doktorarbeit wird die

Gültigkeit einiger dieser Annahmen untersucht.

Nach Matsuis Auftürmlemma (Piling-up Lemma) ist die Unaus¬

geglichenheit einer Summe von binären, unabhängigen Zufallsvariablen

gleich dem Produkt der einzelnen Unausgeglichenheiten dieser Zufallsvari¬

ablen. Diese Tatsache kann in der linearen Kryptoanalyse benutzt werden,
um eine untere Schranke der Erfolgswahrscheinlichkeit eines Angriffs zu

berechnen. Für allgemeine Zufallsvariablen wird gezeigt, dass im Durch¬

schnitt die Unausgeglichenheit der Summe mindestens so gross ist wie

das Produkt der Unausgeglichenheiten, sowie dass für grosse Ergebnis¬
räume beide Ausdrücke in der Regel gut übereinstimmen. Daraus wird

geschlossen, dass in einem Angriff mit linearer Kryptoanalyse das Auftürm¬

lemma auf zusammengekettete Dreifachsummen als Approximation an¬

wendbar ist, selbst wenn diese Dreifachsummen nicht unabhängig sind.

Die Gültigkeit der Hypothese der Gleichartigkeit fester Schlüssel

(hypothesis of fixed-key equivalence) wird erforscht. Die Hypothese
behauptet, dass für jede wirksame Eingangs-/Ausgangssumme
(E/A-Summe) die schlüsselabhängigen Unausgeglichenheiten fast alle

ungefähr gleich ihrem Durchschnitt, der mittleren Unausgeglichenheit der

E/A-Summe sind. Dazu wird ein Gegenbeispiel gegeben. Des weiteren

wird gezeigt, dass für eine Verschlüsselungsrunde der Durchschnitt und

die Varianz der schlüsselabhängigen Unausgeglichenheiten für fast alle

E/A Summen beinahe gleich sind. Ob man die schlüsselabhängigen
Unausgeglichenheiten einer E/A Summe dann als "ungefähr gleich"
betrachten darf, ist subjektiv; aus diesem Grund wird auf einen solchen

Schluss verzichtet. Schliesslich wird der Durchschnitt der mittleren

Unausgeglichenheiten über alle E/A-Summen für eine beliebige Anzahl
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VI Zusammenfassung

von Runden berechnet. Beruhend auf diesem Resultat wird eine neue

quantitative Definition einer wirksamen E/A-Summe gegeben.
Die Gültigkeit der Auftürmhypothese (piling-up hypothesis) wird

studiert. Diese Hypothese ist ein Analogon zu Matsuis Auftürmlemma im

m-wertigen Fall. Sie besagt, dass (für gewisse Unausgeglichenheitsmaße)
die Unausgeglichenheit eines Produktes von m-wertigen, unabhängigen Zu¬

fallsvariablen in praktisch allen Fällen ungefähr gleich dem Produkt der

Unausgeglichenheiten dieser Zufallsvariablen ist. Die Familie der Unaus¬

geglichenheitsmaße, welche auf der Menge der m-wertigen Wahrschein¬

lichkeitsverteilungen konvex sind, sowTie für konstante Zufallsvariablen den

Wert 1 und für gleichverteilte Zufallsvariablen den Wert 0 haben, wird

betrachtet. Es wird behauptet, dass sie alle für die Messung der Güte

eines in einem Angriff mittels der Gruppenverallgemeinerung der linearen

Kryptoanalyse gebrauchten Ausdrucks gleich gut sind. Für das Maß if
aus dieser Familie wird gezeigt, dass die Unausgeglichenheit des Produktes

zweier Zufallsvariablen im Durchschnitt gleich dem Produkt der Unaus¬

geglichenheiten beider Zufallsvariablen ist. Es wird bewiesen, dass die

Auftürmhypothese für zwei Zufallsvariablen gültig ist, falls m groß genug

ist. Mittels vollständiger Induktion wird dann gezeigt, dass bei genug

großem m die Hypothese auch für eine beliebige Anzahl von Zufallsvari¬

ablen gültig ist. Schließlich wird dargelegt, dass if in einem Angriff
mittels Gruppenverallgemeinerung der linearen Kryptoanalyse ein

geeignetes Unausgeglichenheitsmaß ist.

Schlüsselwörter. Iterierte Blockverschlüsselungsverfahren, lineare

Kryptoanalyse, Unausgeglichenheit, Auftürmlemma, Hypothese der

Gleichartigkeit fester Schlüssel, Auftürmhypothese.
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Chapter 1

Introduction

1.1 'What is Cryptology?'

In the last few years, I have often been asked what I was researching. As

I answered 'cryptology', most people's reaction was 'Cryptology? What is

cryptology'? I was asked more than once whether my activity had some¬

thing to do with the study of tombs and graves or of ancient languages.
As I tried to explain that cryptology was 'the theory of secret codes', I

often received the reply 'So you are a kind of spy' ! A minority of my

interlocutors could imagine that some 'large companies' might 'code' com¬

munications with their subsidiaries or protect their local networks with

passwords; but virtually no one wras aware that such coding was relevant

to, or important for, the man in the street.

1.2 Terminology

The word "cryptology" comes from the ancient greek words "kpvtttelis",
meaning "to hide", and "À070Ç", meaning "word", "reason", or "explana¬
tion". Hence, cryptology is the teaching, or the theory, of hiding.

Recently, Simmons has characterized cryptology as the "science of infor¬

mation integrity" [50]. With time, cryptology has become a scientific field

of its own and can be divided roughly into two closely related subfields:

cryptography and cryptanalysis. The former is concerned with production
or construction ("'ypaipetv" means to write) and the latter one with dis¬

mantling. More precisely, cryptography is the design or implementation
of techniques intended to aid the purposes of the cryptographer, namely
achieving secrecy and/or authenticity. A technique provides secrecy if it

1



2 Introduction

determines who can receive a message; it provides authenticity if it deter¬

mines who can have sent a message [32]. In contrast to what one might

assume, secrecy and authenticity are independent in the sense that a sys¬

tem that ensures the one property might not ensure the other. In the

case of secrecy, there is usually a message, called the plaintext or cleartext,
that one wants to be read only by a restricted group of individuals. To

attain this goal, one encrypts the plaintext and obtains the ciphertext.
This is done by means of a cipher (also called a cryptographic system or

cryptosystem). A secret key controls the encryption to ensure that only
the authorized people can decrypt the ciphertext and regain the original

message.

Cryptanalysis is performed by cryptanalysts who try to thwart the

cryptographer's plans, e.g., to read a message not intended for them, to

find the secret key, or to impersonate someone else. One says that they
launch an attack on the algorithm. When they succeed to an extent that

they consider as being enough, one says that they have broken the system.

(One can distinguish several stages in breaking a system [24], but we shall

not struggle with these subtleties.)

Cryptosystems are divided into secret-key systems, also called symmet¬
ric systems, and public-key or asymmetric systems. In the former, the

same secret-key is used both for encryption and decryption; in the latter,
encryption and decryption are performed with two different keys, the pub¬
lic key and the private key, respectively. As the name suggests, only the

private key need be kept secret by the décrypter; this is enough if the goal
is to prevent anyone else from reading the message. The idea of public-key
encryption is due to Diffie and Hellman in 1976 [12].

Cryptographic techniques have existed for a long time. In ancient

times when one wanted to send a secret message to another party, one

sometimes had it written on a slave's head, waited until enough hair had

grown, sent the slave on his way, and, upon his arrival, had his hair cut.

Of course, the message was not urgent. More technical methods were

used, too. Caesar shifted all letters of the alphabet by three positions to

encrypt his text, that is, he permuted the letters of the alphabet. During
the following centuries, more and more complicated permutations were

used; permutations are still the building blocks of many cryptographic
techniques. The 19th century saw the advent of mechanical encryption
methods.

Until 1949, cryptology was mainly an empirical field. In this year

Shannon's celebrated paper [49] made cryptology a science and not just
an art. Shannon presented the model of a secret-key cryptosystem shown

in Figure 1.1. In this model, the secret key Z is passed to both the en-
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crypter and the décrypter. This key is used to encrypt the plaintext X

so as to obtain the ciphertext Y, and then used to decrypt Y back to

recover X. The ciphertext Y is transmitted over an insecure channel, i.e.,

anyone can intercept it. All three quantities X, Y and Z are modeled as

random variables and X is considered to be statistically independent of Z.

This is the model we will use. In his paper, Shannon described two basic

principles on which practical ciphers should be built: diffusion and confu¬

sion. The principle of diffusion stipulates that the statistical structure of

the plaintext should be "dissipated" into the statistical structure involving

long combinations of digits in the ciphertext; this can be achieved when

each digit of the plaintext and/or of the key influences many digits in the

ciphertext. The principle of confusion states that "the relation between

the simple statistics of Y and the simple description of Z be very com¬

plex", i.e., it must be complicated to tell from the ciphertext which key

could have been used. These are still today the principles that prevail in

the design of encryption algorithms.

Enemy

Cryptanalyst

Y

L

Message
Source

X

Encrypter Décrypter
Insecure Channel

i

z

.

Z

SECURE CHANNEL -

Key
Source

Figure 1.1: Shannon's Model of a Secret-Key Cryptosystem.

In [49], Shannon also gave a meaning to the concept of security. He

defined a cryptosystem to be theoretically secure (in today's terminology:
unconditionally secure) if the system is immune against a cryptanalyst
who "has unlimited time and manpower available for the analysis" and
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who knows only the ciphertext. A system is practically secure (today: com¬

putationally secure) against a cryptanalyst if the amount of time and/or
computational power necessary to break the system exceeds the attacker's

capabilities. Shannon showed that theoretically secure systems exist but

that they require that the key be at least as long as the plaintext that it

is used to encrypt.

An important principle in cipher design is Kerckhoffs' assumption.
Kerckhoffs stated that users of a cryptosystem should always assume that

the cryptanalyst knows everything about the process of encryption and

decryption except the value of the secret key. This includes complete

knowledge of the encryption algorithm. This assumption makes practical
sense because everything in a practical cryptosystem except the key must

usually remain fixed for a long time so that the cryptanalyst may well

learn them by non-technical methods. Also, if one keeps one's algorithm

secret, then one may never know whether it is secure or not. A published

algorithm that has been analysed for years by many people and in which

no one claims to have found a serious flaw is much more likely to be se¬

cure than an algorithm kept secret. Kerckhoffs' assumption is accepted

by almost all cipher designers.

Secret-key ciphers are divided into two families: stream ciphers and

block ciphers. In a stream cipher, the encryption process has internal

memory whereas this is not the case in a block cipher. In a stream cipher,
the plaintext is divided into small fragments, often one bit long, and each

fragment is processed in a way that depends on the key and on the cipher
state. In a block cipher, the plaintext is divided into large blocks (typi¬
cally of 64 or 128 bits) and each block is encrypted in the same manner.

This implies that two identical plaintext blocks yield two identical cipher-
text blocks, i.e., patterns of the plaintext leak through. If the plaintext
consists of text, this does not matter; it does matter, however, if it is an

image. There are ways to prevent this [11]. With a stream cipher, this

phenomenon does not occur in general.

1.3 Outline

This thesis treats of an attack on block ciphers called linear cryptanalysis
and of some of its generalisations. In particular it examines the validity
of three assumptions made by the cryptanalyst when applying different

variants of linear cryptanalysis. These assumptions are in fact approxima¬
tions. In each of these, the cryptanalyst approximates an expression that

he would like to but is unable to compute, with another expression that he

can calculate. It was not known previously whether the approximations
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are allowable, but this ignorance has not prevented attackers from making
these assumptions.

Chapter 2 is an introduction to iterated block ciphers and to the linear

cryptanalysis attack. We begin by describing iterated block ciphers and

mention possible ways to attack them. Then we explain the main idea

behind linear cryptanalysis and how the attack itself is performed. We

explain the problems in the calculation of the probability of success of

the attack and a possible solution. We state Matsui's Piling-up Lemma.

Finally, we introduce the imbalance of a binary-valued function and pave

the way for Chapters 3 and 4.

In Chapter 3, we consider the application of the Piling-up Lemma to

dependent random variables. We first prove two identités involving the

imbalance of a sum modulo 2 of binary-valued random variables and the

product of the imbalances of these random variables. The first identity
is an inequality that narrows the set of values that both expressions can

take on; it also shows that in particular cases, the imbalance of the sum

can differ considerably from the product of the imbalances. The second

identity is a generalisation of the Piling-up Lemma; unfortunately, it is not

applicable in practical cases. In the remainder of the chapter, we show

that, on average, the imbalance of the sum is at least as large as the pro¬

duct of the imbalances. We begin with two random variables and proceed
to an arbitrary number of random variables. We show that, if the sample

space on which the random variables are defined is large, then the imbal¬

ance of a sum of random variables is in virtually all cases approximately
equal to the product of the imbalance of the random variables that com¬

pose the sum. WTe also show for any sample space on which the random

variables are defined that, when enough random variables are involved,
the imbalance of the sum is in virtually all cases larger than the product
of the imbalances. We conclude that in linear cryptanalysis one can use

an approximate version of the Piling-up Lemma for linked threefold sums

even if they are not independent.

Chapter 4 is concerned with the hypothesis of fixed-key equivalence.
We begin by recalling some definitions, after which we reformulate the

hypothesis based on our newly defined fixed-key equivalence condition. We

introduce a measure for the validity of the fixed-key equivalence condition
- the larger the measure, the less the condition is satisfied. The measure

is in fact the variance of the key-dependent imbalances. We continue

with some algebraic considerations upon which we base the study of the

hypothesis for one round of encryption. We fix two balanced functions

and compute both the average and the variance of both the average-key
imbalance and the validity measure over all one-round I/O sums that are
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defined by some round function and by the two fixed balanced functions.

We do this first as an example for ciphers where the text blocks and

round keys have length three and then generalise to any length. We show

that the moments calculated do not depend on the balanced functions

chosen. From the results, we conclude that the average-key imbalance

and the validity measure are approximately the same for almost all I/O
sums. This has consequences on the distribution of the key-dependent
imbalances of the I/O sums - we leave it to the reader to decide whether

they can be considered as "almost equal". Finally, we take a brief look at

the multi-round case. We show that the above average of the average-key
imbalance does not depend on the number of rounds. This allows us to

make precise the notion of an effective I/O sum.

The piling-up hypothesis is the topic of the last main chapter, Chap¬
ter 5. The piling-up hypothesis states that there is an m-ary analogue
to the Piling-up Lemma, but with an approximation sign instead of an

equality. Also, the sum modulo 2 is replaced by a group operation. We

show that the piling-up hypothesis holds for a certain imbalance measure

if m is large enough. We first recall the group generalisation of linear

cryptanalysis and some possible m-ary imbalance measures. We choose

the imbalance measure if and examine the validity of the piling-up hy¬
pothesis with respect to if for two independent random variables. We

show that on average the imbalance of the product is equal to the product
of the imbalances. From the properties of the variance, we deduce that

the imbalance of the product is close to the product of the imbalances

in virtually all cases if m is large enough. This means that the piling-up
hypothesis holds for two random variables. Then it holds by induction for

any number of random variables; one must only adapt the meaning of the

approximation sign. Because of this and because it is relatively easy to

compute, we assert that if is the "right" imbalance measure to use in the

group generalisation of linear cryptanalysis.



Chapter 2

The Linear Cryptanalysis
Attack

In this chapter, we describe iterated block ciphers and some attacks on

them. One of the attacks, linear cryptanalysis, is presented in detail. We

mention two hypotheses made by the cryptanalyst when he uses this attack

and recall Matsui's Piling-up Lemma, which is essential in computing the

probability of success of the attack.

2.1 Iterated Block Ciphers

Definition 2.1.1

In an iterated block cipher, the plaintext is first divided into blocks of equal
size and then each block is encrypted separately, but with the same key
(see Figure 2.1). The plaintext block, denoted by X, undergoes a certain

number of similar transformations called rounds. In round i, the input
Y(i — 1) is modified by means of a function g, the round function, which

is also a function of the round key Zi, to produce the round output Y(i).
Thus, Y(i) = g(Y(i — l),Zi). The round keys Zi,...,Zr are produced
from a master key Z by some key schedule algorithm. The number of

rounds is denoted by r. After r rounds, one obtains the ciphertext Y.

The round function is chosen such that the function gz — g(-,z) is

invertible for every value z of the second argument. This is necessary to

be able to decrypt the ciphertext and recover the plaintext. Decryption
is made in the direction opposite to encryption, i.e., from right to left in

Figure 2.1, by using the same round keys and the inverse of g.

7



8 The Linear Cryptanalysis Attack

Most practical ciphers are iterated ciphers. Examples are DES [11],
IDEA [29, 36], the different variants of SAFER [33, 34, 35], FEAL [41, 42,

43], the various LOKI ciphers [8, 9], BlowFish [48], or the RC5 family [46].

key generator

key schedule algorithm

X = Y(0)

9

Zo

Y(l)

Z/r

9

Y(2) Y{r -1)

9

Y(r) = Y

Figure 2.1: An Iterated Block Cipher.

Hereafter, by "block cipher", we mean an iterated block cipher. We

denote the length of the text blocks (the cipher's blocklength) by n and

the length of the round keys by k.

2.2 Attacks on an Iterated Block Cipher

2.2.1 Kinds of Attacks

Attacks on a cipher (and not only a block cipher) are generally divided

into the following categories:

• Ciphertext-only attack: The cryptanalyst is assumed to have access

only to a certain number of ciphertext blocks, which are all the result

of an encryption using the same key. The goal is to use this knowledge
to find 1) the corresponding plaintexts, or 2) (parts of) the secret key,
or 3) a way to decrypt other messages encrypted with the same key.
The goodness of the attack is measured in part by the number of ci¬

phertext blocks necessary to reach a certain probability that the output

of the attack is correct. (This probability increases with the number of

ciphertext blocks.)
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• Known-plaintext attack: The cryptanalyst is assumed to know a

certain number of pairs (X,Y), where X is a plaintext block which,
when encrypted with the actual secret key, yields the ciphertext block

Y. The goal of the attack is to find (parts of) the secret key or a way

to decrypt other messages encrypted with the same key. The goodness
of the attack is measured in part by the number of pairs necessary to

reach a certain probability that the output of the attack is correct.

• Chosen-plaintext attack: The cryptanalyst is assumed not only to

have access to plaintext/ciphertext pairs, but also to be able to choose

a certain number of plaintexts, to have them encrypted with the actual

secret key and to get the corresponding ciphertexts. The goal is the

same as in a known-plaintext attack and the goodness is measured in

part by the number of plaintexts needed.

• Other technical attacks: These attacks are more seldom. Examples
are the chosen-ciphertext attack or the chosen-key attack [48].

• Non-technical attacks: Blackmail, torture, theft, and thelike. These

methods can be easier, cheaper, and faster than technical attacks.

2.2.2 Examples

Before we explain the linear cryptanalysis attack in the next section, we

give here some examples of technical attacks on a block cipher.

An obvious attack is exhaustive key search. It consists in taking a few

ciphertexts and trying out all possible keys until one has found the right
one. That the key found is the right one is verified by decrypting the

ciphertexts and determining whether the plaintexts obtained are valid,
e.g., whether they are sequences of ASCII-characters that make sense in

some language. Usually, two or three decrypted ciphertext blocks are

enough to be sure that the key found is the right one [32]. Exhaustive

key search can be a ciphertext-only attack. It can be also used as a

known-plaintext attack if one knows some plaintext/ciphertext pairs. In

that case, there is no need to test whether the plaintext is valid. On

average, half of the possible values of the key have to be tested. This attack

is how, in a recent contest, DES was broken in 22 hours 15 minutes [47].
This attack is impractical on most modern systems since the number of

possible values of the key is too large.
Another often implemented attack is differential cryptanalysis. This

chosen-plaintext attack, introduced in 1990 by Biham and Shamir [3],
works as follows: one chooses at random a certain number N of plain¬
texts; then, for each plaintext X, one chooses another plaintext block
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X* such that the two plaintexts have a fixed difference AX = a.

For each pair of plaintexts, the difference is the same. (The defin¬

ition of difference can vary from cipher to cipher. For instance, in

DES, it is the bitwise addition mod 2.) The 2N plaintexts are en¬

crypted with the same key. Each pair produces a sequence of differences

AX = Ay(0),Ay(l),..., AY(r) = AY. Differential cryptanalysis uses

the fact that the round function is usually cryptographically weak, i.e., if

one knows the triple (AY(i — l),Y(i),Y*(i)) for a few pairs of plaintexts

(X,X*), then it is feasible to determine (part of) the subkey Zi. This is

achieved by choosing a pair (X, X*) with a specified difference a such that

AY(r — 1) takes a particular value ß with high probability.

Differential cryptanalysis has been tried out on many ciphers. Lai,
Massey and Murphy [36] identified a class of ciphers called Markov ci¬

phers and showed that a Markov cipher is immune against differential

cryptanalysis if, for all possible initial differences a between the plain¬

texts, the (r — l)-round differentials Ay(r — 1) are virtually equally likely.
FEAL, BlowFish, DES, LOKI, IDEA and SAFER are Markov ciphers.
In their attack on DES with this method [5], Biham and Shamir needed

247 chosen plaintexts in order for the probability that the found key is

the right one to be acceptably large. FEAL-4 was broken with only 20

plaintexts by Murphy [44]. (This was actually the first published suc¬

cessful differential cryptanalysis attack on a real cipher.) Later, Biham

and Shamir broke FEAL-4 with 8 plaintexts and FEAL-8 with 2000 plain¬
texts [4]. LOKI91 [8] was found secure against differential cryptanalysis
by Knudsen [23]. According to Lai, IDEA is secure against differential

cryptanalysis already after four rounds [29]. Massey showed [34] that the

amount of work necessary to break SAFER K-64 with differential crypt¬

analysis is at least as large as exhaustive search for six or more rounds;
for SAFER K-128, this probably happens for ten or more rounds. (This
is because the key in SAFER K-128 is twice as long as in SAFER K-64,
and does not mean that SAFER K-128 is less secure than SAFER K-64.)

Linear cryptanalysis is another attack applicable to any block cipher.
We will present it more extensively in the next section.

In the last years, cryptanalysts have developed other attacks deriving
from differential and linear cryptanalysis or generalising them, like:

• truncated differential attack [6, 25];

• differential-linear cryptanalysis [6, 18, 30]; this attack, which combines

differential and linear cryptanalysis, seems very promising; it broke DES

reduced to 8 rounds with only 768 chosen plaintext blocks [30]; it is to

date the only attack that can break IDEA reduced to 4 rounds for an
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arbitrary key [18]; however, it has not yet been applied successfully on

a practical cipher with its full number of rounds.

• linear cryptanalysis using multiple approximations [21, 22];

• linear cryptanalysis using non-linear approximations [27];

• binary generalisation of linear cryptanalysis [16, 17];

• group generalisation of linear cryptanalysis [16];

• partitioning cryptanalysis [16];

• correlation cryptanalysis [19].

Also, it has been found that linear cryptanalysis and differential crypt¬

analysis are related [1, 10, 37].

2.3 Binary Generalisation of Linear Crypt¬

analysis

2.3.1 Philosophy Behind The Attack

Linear cryptanalysis is a known-plaintext attack that was first applied to

FEAL [40] but first became knowm by its current name after Matsui's

attack on DES [38]. In this section, we describe its binary generalisation,
due to Harpes, Kramer and Massey [17]. The attack is based on the

following construction (see Figure 2.2):

X

Zi

9

/o

Y(l)

fo(X)

Zr-i

Y(r - 2)
9

©•
/r_i(y(r-l))

/,r-1

s1...7--1

9
Y

Y(r - 1)

Figure 2.2: The Idea Behind Linear Cryptanalysis.
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One applies a binary-valued function /o to the plaintext and a binary-
valued function /r_i to the output of the second last round; the mod 2

sum of the images is called an (r — 1)-round input/ouput sum (I/O sum)
and is denoted by S1-"r~1. The cryptanalyst chooses /o and /r_i to have

the following properties:

• both functions are balanced, i.e., they take on each of the values 0 and

1 for half of their arguments;

• the expression Ip^1"'7"-1 = 0|Zi = z\,.. .,Zr_i = zr-\] — || is large
for almost all values z\,..., zT-\ of the round keys.

The cryptanalyst does not know the plaintext so he assumes that all

possible plaintexts are equally likely. He models this with a uniformly
distributed random variable. This is usual in cryptanalysis. Then, be¬

cause for fixed round keys all round transformations are invertible, the

possible values of Y (r — 1) are equally likely. If X and Y{r — 1) were in¬

dependent random variables, then fo(X) and fr-i(Y(r — 1)) would be

independent and equally likely to be zero or one. Then also S1- r~1

would be equally likely to take on the values 0 and 1 and one would have

PIS1-7"-1 = 0|Zi = z1,...,Zr_1 = zr-!] - || = 0 for all balanced func¬

tions /o and fr-i- But in a every cipher, X and Y(r—1), when conditioned

on z\,..., zr-i, are not independent and there are balanced functions /o
and /r_i such that \P[S1-7'-1 = 0|£i = z1,...,Zr^1 = zr-i] -\\ > 0.

This property can be exploited. The goal of the cryptanalyst is to find /o
and fr-i such that |P[5'1-"r_1 = 0\Zi = zi,..., Zr_i = zr-i] — \\ is as

large as possible for as many round keys as possible.
Now we have seen the idea upon which linear cryptanalysis is based,

we explain how it is realized.

2.3.2 How The Attack Works

The attack is made under the following assumptions:

• X is a uniformly distributed random variable on the set of all possible
plaintexts;

• the round keys Z\,...,Zr are independent and uniformly distributed;
(this is not actually true but is a good approximation to reality if the

key schedule algorithm is good.)

• the cryptanalyst knows N plaintext/ciphertext pairs (p/c pairs) (X, Y)
where the same key has been used.
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Zx Zr-\

X

9
y(i) Y(r - 2) V(r-i)r

9

/o
MX)

^ fr-i(Y(r-l))
c>——— fr-1

9
Y

9
-l

Y(r-1)

Y(r - 1)

1...7--1S

Figure 2.3: Principle of the Linear Cryptanalysis Attack.

The goal of the attack is to find as many bits as possible of the last

round key. (There are refinements [39], but we will not discuss them in

this thesis.) Basically, the attack itself goes as follows (see Figure 2.3):

For all possible estimates z of the last round key do

Set c(z) = 0;

For all p/c pairs (X, Y) do

Decrypt one round of the ciphertext by means of the key
estimate z;

Call the result Y(r-1);
Set S1-"'1 := fo(X) 0 /r_i(y(r - 1)) ;

If 51"'7'-1 =0, then increase c(z) by one

end

end;

Output as estimate(s) of zr the key(s) for which c(z) is

farthest from N/2, that is, set zr := argmax^ \c(z) — N/2\.

Notice that the outer loop might require many executions: if the round

keys have length k, it requires 2k executions. The algorithm can be

speeded up by choosing /o and /r_i such that S1-~r~~1 involves only k < k

bits of the last round key. Then only 2k executions are required but one

can estimate only those k bits of zr. More generally (see also [16, 17]),
one can build equivalence classes of keys, where two keys zr and z'r are

equivalent if and only if there is a c G {0,1} such that /r_i o (?-1(-, zr) =
fr-i o g~1(-, z'r) 0 c. Then it is enough in the outer loop to examine one
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representative of each class; on the other hand, the attack can only esti¬

mate the class in which the true key lies. One speaks then of the right
class and of wrong classes and the representatives are called the right key
and wrong keys, respectively [16, 17].

The reason why one outputs precisely the above estimate of zr is the

following assumption [17]:

Conjecture 2.3.1 (Hypothesis of Wrong-Key Randomization)
For any I/O sum S1-^1 for which \P[S1-r-1 = 0|Zi = z1,..., Zr_i =

zr-i] — \ is large for virtually all values zi,..., zr-\ of the round keys,
the following is true: for virtually all possible full keys {z\,..., zr) and for

all estimates z of the last round key,

P[S1-r-1 = 0\Z = zr]

P[Si-r-i = o\Z = z]
> 1 for all z ^ zT

This conjecture is plausible for the following reason: if one happens
to choose the right key as the estimate, then the one-round decryption
is in fact inverting the last encryption round, i.e., one follows actually
the dashed path on Figure 2.3, whereas if one chooses a wrong key, one

follows the detour through g~l (solid line). But on the detour, one essen¬

tially performs two more "encryption" rounds than on the dashed path;

therefore, one expects that, on the detour, Y(r — 1) is less dependent
on X than is Y(r — 1) of the more direct way. By the argument of

Subsection 2.3.1, \P[S1-r-1 = 0\Z = zr] - || is (much) larger than

\P[S1-r-1=0\Z = z]-±\.
Moreover, c(z) is a natural estimate of P[S1---r~1 = 0\Z = z] [16].

Thus, ^|c(5) —!| is an estimate of |P[S'1--r_1 = 0\Z = £] —||. According
to the hypothesis of wrong-key randomization, the right key zr should

maximize jj\c{z) — || and hence also maximize \c{z) — y |-

2.3.3 Probability of Success of the Attack

We have seen above that the distance between 1/2 and the probability of

some event is an important figure. The following definition, which is used

throughout the thesis, keeps the expressions shorter [17].

Definition 2.3.2

Let X be a binary-valued random variable; then

I(X) :=2\P[X = 0] - l/2[ = \2P[X = 0] - 1| = \2P[X = 1] - 1|
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is the imbalance of X.

(The factor of two in the definition of I(X) is only for convenience.)
One can also define imbalances based on conditional probabilities.

Definition 2.3.3

Let S1-"1 be an z-round I/O sum. Then

• I(S1-î\z1,...,zl) := \2P\S1-' = 0|(Zi,...,Zt) = (zu .. .,z,)] - 1\ is

the key-dependent imbalance of S1"'1.

• The expectation of the key-dependent imbalance over all keys,

J(51-t): = £7[/(51-*|Zi,...>Zt)] = ^L E /(S1-»!*!,...,*),
^ '

Zi,...,Zt

is called the average-key imbalance of S1"A.

• An I/O sum is called effective if I(Slm"1) tu 1.

Example 2.3.4

Let S1 = /o(X)e/i(r(l)) = h{Z/), where h is balanced. Then /(51) = 0

but, since the I/O sum is the constant h{z\) when Z\ = zi, I(S1\zi) = 1

for all z\ and therefore /(S*1) = 1.

We now come to the probability of success [17].

Definition 2.3.5

• The probability of success of the attack, pglc, is the probability of the

event that the output list contains only the right class.

• The conditional probability of success of the attack, VGLC\zi,...,zr-> is the

probability of the same event given that (Zi,..., Zr) — (z±,..., zr).

It is shown in [16] that, for fixed values of the round keys, if the

hypothesis of wrong-key randomization holds, then the attack finds the

true key as reliably as desired if enough p/c pairs are available.

The conditional probability of success is an increasing function of the

square of the key-dependent imbalance of the I/O sum used; this suggests
that the imbalance is a robust measure for the usefulness of such an I/O
sum [17].

The conditional probability of success PGLC\zi,...,zr 1S the true probabil¬
ity of success since in an actual encryption, a fixed key is used. However,
the cryptanalyst does not know the key and can at most compute the

overall probability of success pglc- To overcome this difficulty, he relies

on the following hypothesis.
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Conjecture 2.3.6 (Hypothesis of fixed-key equivalence)
For any effective I/O sum and for virtually all keys {z\,.. . ,2:r-i), the

key-dependent imbalance I{S1"-r~1\z]_,... ,zr-±) is virtually independent

of the value [z\,..., zr-\) of the key, or equivalently,

/(51-r-1|zi,...,^_i)«7(51-r-1). (2.1)

This hypothesis seems to hold in many cases and, if it holds, has the

following consequences:

1. The conditional probability of success is approximately the same for

all keys, i.e., the actual probability of success of the attack is approxi¬

mately the same whatever key has been used in the encryption.

2. The overall probability of success, pglc, depends on the square of

I(S1'"r~1) in approximately the same way as the conditional probability
of success Pglc\zi,...,zr depends on the square oîI(S1'"r~1\zi,.. .,zr-i).

3. It allows the cryptanalyst to estimate the overall probability of success,

Pglc-

4. It is important for the cryptanalyst to find an I/O sum with an

average-key imbalance as large as possible.

The validity of the hypothesis of fixed-key equivalence is the topic of

Chapter 4.

2.3.4 The Piling-up Lemma

It is usually infeasible to compute the key-dependent imbalances of 51-,'r_1

and thus its average-key imbalance. An efficient way out of this dead-end

can be found in [16, 17] and is briefly described here: one defines threefold
sums Tt, i — 1,.. . ,r, by

T% := fx-i{Y{% - 1)) 0 g%-i(Y(i)) © ht(Zt), (2.2)

where fz-i, g%-\ and ht are binary-valued functions the first two of which

are balanced. Then I(Tt) < l(fi-i(Y(i - 1)) © g^Yij))). If Qi = fl+1,
0 < i < r — 2, then the threefold sums are called linked and we have

rie---err_i = /o(-ï)e/r-i(y(r-i))e/ii(Zi)e---©/ir_i(zr_i)
= 51-r_1©/i1(Zi)©---©/ir_1(Zr_i)
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and J(Ti © • • © Tr_i) < T(51-r-1). Thus, finding linked threefold sums

allows one at least to lower-bound the average-key imbalance of S1"'r~1.

But another problem arises: it is also infeasible in general to compute the

imbalance of Ti © • • • © Tr-\. However, if Ti,..., Tr_i are independent,
then one can use the following lemma.

Lemma 2.3.7 (Piling-up Lemma (Matsui))
Let X\,..., Xs be independent random variables with values on Z2. Then

Proof: A proof can be found in [16]. D

It is usually feasible to compute the imbalance of Ti as the threefold

sum involves only the input, the output, and the round key of a single
round. Then, if T1:..., Tr_i are independent, we have

I(T± © • • • © Tr-i) = /(ïi)J(T2) • • • I(Tr-i). (2.4)

Still, finding linked, independent threefold sums is very difficult. What

one often does is to assume that one's threefold sums are independent and

then to apply the Piling-up Lemma. We call this the piling-up approxima¬

tion and examine the consequences that it entails in Chapter 3. This is

also what Matsui did is his attack on DES [38, 39]. There, he applied (2.4)
with no concern for independence and used the result directly to compute

the probability of success. It is shown in [16] that if Ti is independent of

the round input Y(i — 1) for all i, then T\,... ,Tr-i are independent. A

possible way to find threefold sums with this property is given in [16, 17]
for a class of ciphers where, in each round, part of the key is combined

with the round input by a group operation to form the input to the re¬

mainder of the round function in which only the remainder of the round

key is used. We know of no other general way to construct independent
threefold sums.

Remark 2.3.8

The name linear cryptanalysis comes from the fact that, in his original
attack on DES, Matsui used linear and affine functions instead of general
balanced ones. (Those functions are balanced, too.) On the other hand,
this name is a little presomptuous since, with this "linear approximation",
one- cannot even represent all linear ciphers, as we show in the example
below.
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Example 2.3.9

Consider a one-round cipher where the ciphertext Y depends on the plain¬
text X and on the key Z in the manner Y = A(Z)X, where A(Z) is

an invertible matrix depending on Z. Suppose there are two vectors

a and ß, not both the zero vector, such that a • X — ß • Y, where

a • X = aiXx © «2^2 © • • © ocnXn. Then we have

0 = cfX@ß»Y = a*XQß»A{Z)X = a • X © A{Z)Tß • X

= {a®A{Z)Tß)*X.

But in general, c • x = 0 for all values of x if and only if c — 0. Thus,
we must have a = A(z)Tß for all values z of the key. Now take A(z±) =

L -j and A(z2) — ( n -, ). Let a = («i, a2)T and /? = (/3i,/?2)T- One

gets the four equations «i = /3i ©/32, «2 = &, ^i = ßi: and «2 = ßi ©/?2-
It follows that a± = a>2 = ßi = ß2 = 0, which we had excluded. By
contradiction, we conclude that a • X ^ ß »Y.

2.3.5 Imbalance of Functions

In this subsection, we define the imbalance of a function and show some

obvious, but useful properties of imbalances.

Definition 2.3.10

For any binary-valued function / on some set M, define the imbalance of f
by /(/) := I(f(X)), where X is a uniformly distributed random variable

on M. For instance, balanced functions have imbalance zero.

Lemma 2.3.11

Let g be an invertible function on M and f : M —>• Z2 be any function.

Then I{f o g) = /(/). In particular, f is balanced if and only if f o g is

balanced.

Proof:

The function g is a permutation of M. Thus, / and fog are equal to

zero for the same number of arguments. D

In a very similar way, we also have:

Lemma 2.3.12

Let X be a binary-valued random variable on a sample space ft and tt be

a permutation on ft. Then I(X o n) = I(X).
Proof:

X o it is a binary-valued random variable on Û with the same probability
distribution as X. D
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Remark 2.3.13

In fact, for any binary-valued function / on a finite set M one can consider

M as a sample space and / as a binary-valued random variable on M.

Then the imbalance of / as a random variable coincides with the imbalance

of / as a function. Thus, every property of the imbalance of a random

variable has its equivalent as a property of the imbalance of a function.

We shall use this duality several times. A first illustration of it was given

by Lemmata 2.3.11 and 2.3.12; a second example is given by the two

Lemmata below\

Lemma 2.3.14

Let Q be a finite sample space, and let X be a binary-valued random

variable on Q. Then

1. if\Q\ is even, i.e., \Q\ = 2d, then I(X) is of the form i/fl, 0 < i < ü;

2. if\Ü\ is odd, i.e., |Q| = 20 + 1, thenl(X) is of the form fjg-, 0 < i < &.

Proof:

1. Let a be the number of times X takes on the value 0. Then I(X) —

|2t^ — l| = ^jo! — #|, which is of the stated form.

2. The proof is similar. D

The dual statement for functions is:

Lemma 2.3.15

Let M be a finite set, and let f be a binary-valued function on M. Then

1. if \M\ is even, i.e., \M\ = 2d, then 1(f) is of the form i/&, 0 < i < ê;

2. if\M\ is odd, i.e., \M\ = 2t?+l, then 1(f) is of the form ff^-, 0 < i < <d.

D

We end the chapter with the following remark.

Remark 2.3.16

When the round keys are fixed, the mapping X i-» Y(r — 1) is invertible;

we denote this invertible function by gZl,...,Zr_1- Then the (r — l)-round

I/O sum »5'1"-r~1 can be written as

Sx-r-1 = fo(X)(Bf^i(gzu...,zr^(X)) = (/o © (fr-iogZl,...,z.r^)) (X).

This emphasizes the dependence on X and shows the nature of the func¬

tion applied to X. Moreover, since one assumes that the plaintext X
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is a uniformly distributed random variable and by Definition 2.3.10, one

can write the key-dependent imbalance of S1r~1 as the imbalance of a

function, namely

/(S1"'-1!*!, . .

., *r_i) = I(f0 © fr-1 o g2l,...,zr^). (2.5)

We shall use this fact extensively in Chapter 4.



Chapter 3

The Imbalance of

mod 2-Sums of Random

Variables

3.1 Matsui's Piling-up Lemma

In the binary generalisation of linear cryptanalysis, one is interested in

the imbalance of T\ © • • • © Tr_i, where T±,..., Tr_i are linked threefold

sums defined by (2.2). If T\,..., Tr_i are independent, then one can apply
Matsui's Piling-up Lemma, which we state here again.

Lemma 3.1.1 (Piling-up Lemma (Matsui))
Let X\,..., Xr be independent random variables with values onZ2. Then

l(^xA=f[l(X,). (3.1)
\l=l / 1=1

Proof: A proof can be found in [16]. D

Then the imbalance of T\ © • • • © Tr_1 is equal to the product of

the imbalances of T\,.. .,Tr_\. This is useful because the imbalance of

the threefold sums is much more easy to compute than the imbalance of

Xi © • • • © TT-\. The problem is now to find independent threefold sums.

This is very difficult in practice. What one does usually is to assume that

one's threefold sums are independent and then to apply the Piling-up

21
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Lemma. We call this the piling-up approximation. As we will see, this can

be dangerous in particular cases but not on the average.

In this chapter, we find relations between the imbalance of a sum of

(not necessarily independent) binary random variables and the product of

their imbalances. In particular, we address the following question: given

r random variables Xi,..., Xr, for which we do not know their relation¬

ship, and given their imbalances I(Xi),..., I(Xr), what can we say about

/(Xi0-exr)?
We will:

• see that I(X\ © • © Xr) can differ considerably from I(Xi) • I(Xr);

• generalise the Piling-up Lemma to dependent random variables;

• examine how much one risks by assuming that I(X\ © • • © Xr) =

I(X1)---I(Xr).

3.2 Two Identities Valid For All Binary Ran¬

dom Variables

In this section, we prove two relations between the imbalance of a mod 2-

sum of binary-valued random variables and the product of the imbalances

of these random variables; both relations are valid for both independent
and dependent random variables.

3.2.1 An Inequality Between I(XX © • • • © Xr) and

I(X1)-^I(Xr)

The first relation is an inequality. Our first step to that inequality is the

following lemma.

Lemma 3.2.1

For any random variables X\ and X2 with values in Z2, we have

I(XX) + I(X2) < 1 + I{X1 © X2) (3.2)

with equality if and only if one of the following holds:

• Py1x2(0,0)>l/2,PXlx2(l,l) = 0;

• Fx1x2(l,l)>l/2,Px1x2(0,0) = 0;

• Px1x2(0,l)>l/2,PXlX2(l,0) = 0;

• PXlX2(l,0) >l/2,PXlX2(0,l) = 0.
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Proof:

Let poo = Px1x2(0,0),poi =-PxiX2(0,l),pio = Px1x2(l,0), and pu =

FxaX2 (1,1). Then PXl (0) = Poo+Poi, Px2 (0) = Poo+Pio and PXl®x2 (0) =

Poo -\-pii — 1 — (poi +Pio)- Hence, the imbalances of Xl, X2, and Xi ©X2

are

I(X±) = |2(poo+Poi)-l|

I(X2) = |2(poo+Pio)-l|

I(X1@X2) = |2(poi+Pio)-li¬

lt remains to show that

f(poo,Poi,Pio)'= |2(poo+Poi) - l| + |2(p0o +P10) - l|-|2(poi +P10) - 1|

is upper-bounded by 1. An easy way to prove this is the following: the

value of the expressions inside of each of the three absolute value signs
can be either non-negative or negative. This gives eight cases denoted by
+ + +, + -|—,..., .

We examine two cases; the others are treated

similarly.

+ ++ Here / = 2(p00 +p0i) - 1 + 2(p0o + P10) ~ 1 - 2(p0i + P10) + 1 =

4poo — 1. But 4poo — 1 < 1 because 2(p0i + pio) — 1 > 0 implies

Poo < 1/2. Moreover, / = 1 if and only if p0o = 1/2, which, because

Poi +P10 > 1/2, also implies p01 +p10 = 1/2.

++ -Here / = 2(p00 + Poi) ~ 1 + %(Poo + P10) - 1 + 2(p0i + P10) - 1 =

4(poo + Poi + P10) — 3 < 1; equality holds if and only if pu =

1 - (Poo +P01 +P10) = 0 and p00 > 1/2, because p0i + Pio < 1/2
implies poo > 1/2. D

Figure 3.1 shows the regions of (poo, Poi, P10) where / is equal to 1.

Now we note that I(XX) + I(X2) + I(X3) < 1 + I(XX © X2) + I(X3) <

2 + I(Xi ®X2 ©X3). By a simple induction, it follows that for any random

variables Xi,...,Xr with values in Z2,

I(XX) + • • • + I(Xr) < (r - 1) + J(Xi © • • • © Xr). (3.3)

Moreover, because a\a2 • • an < (ai+'n'+a")n for any nonnegative numbers

ai,..., an with equality if and only if all ai are equal, we have

I(X1)---I(Xr) < r-r(I(X1) + ---+I(Xr)Y

< r-r((r-l)+I(X1®--.®Xr))r, (3.4)
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Figure 3.1: The regions where / = 1 (they include the boundaries).

with equality everywhere if and only if I(X/j — \((r — l)+/(Xi©- • -©Xr))
for all i.

We show now that equality is indeed possible. Let a, b be real numbers

with 0 < a, b < 1, a + b < 3/2 and a - b > 1/2 (see Figure 3.2), and

choose poo = a — b, poi = b, p±o = 1 — a and pu = 0; then a > 1/2 > b

so/(Xi) = |2a-l| = 2a-l,J(X2) = |26 - 1| = 1 - 2& > 1 - I(XX) and

I(Xi © X2) = \2(a - b) - 1| = 2a - 2b - 1 so we have I(X±) + I(X2) =

1 + /(Xi © X2). Considering all possible such pairs (a, b), we see that the

following holds:

For any random variable X\ and any real number I2 such that

1 > I2 > 1 — I(X\), there is a random variable X2 such that

/(X2) = I2 and /(Xi) + /(X2) = 1 + /(Xi © X2).

Let now j > 2 and suppose that I(Xi) + • • • + I(Xj) = (j — 1) +

/(Xi © • • • © Xj). Choose Ij+1 such that 1 > Ij+1 > j - (I(Xi) -\ h

I(Xj)) — 1 — I(Xi © • © Xj). Then there exists a random variable

Xj+i such that I(XJ+1) = Ij+1 and I(Xj+1) + I(X1 © • • • © Xj) = 1 +

I(X1 © ••• © Xj © Xj+i). But then /(Xi) + ••• + i(XJ+i) = j +

/^©•©Xj+i).
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I(X2)

0
I(Xi)

1/2 1 1

Figure 3.2: Possible choices of a and b and resulting imbalances.

So far we have shown only that equality is possible in (3.3). In or¬

der to show that equality everywhere is possible in (3.4), we still must

show that this procedure can also yield the case I(X3) — -((r — 1) +
I(Xi © • • • © Xr)), j = 1,.. .,r. That is, we must show that once we

have chosen I(X±) = ••• = I(XJ) = l((r - 1) + I(XX © ••• © Xr)),
we can still choose I(XJ+1) = IJ+1 = l((r - 1) + I(X\ © • • • © Xr)) >

j — (/(Xi) + h /(Xj)). The inequality is satisfied if and only if

((r-l)©/^!© Xr)) > J-J-((r-l) + I(X1 ©Xr)) <^

I(Xi © • • • © Xr) > 1

J + l

which holds for all j = 1,..., r - 1 so it is indeed possible. The following
proposition summarizes the results.

Proposition 3.2.2

For any r random variables Xi..., Xr with values in Z2, we nave:

1. /(Xi) + • • + I(Xr) < (r - 1) + I(X!

2. I(X1)---I(Xr)<r~r((r-l) + I(X1^
only ifl(Xi) = l((r - 1) + I(XX © • •

• • • © Xr) and

© Xr))r with equality if and

Xr)) for all i.

Moreover, equality can occur in both inequalities. D

Figure 3.3 visualises the second inequality of Proposition 3.2.2. The

Piling-up Lemma says that if the random variables are independent, then

we are always on the diagonal. The second inequality in Proposition 3.2.2

says that, for r > 2, all points on or above the solid line are possible.
Hence, for dependent random variables, the product of the imbalances
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I(X1 © • • © Xr)
A

J(Xi)-..J(Xr)

Figure 3.3: For r > 2, all points on or above the line are possible.

can differ considerably from the imbalance of the sum. However, in lin¬

ear cryptanalysis, it is preferable to underestimate I{X\ © • • © Xr) as

I(X\) • • • I(Xr) rather than to overestimate it. Here most of the possible
values of I(X1 © • • • © Xr) are larger than or equal to I(Xi) • I(Xr) so

one could say that there is nothing to worry about. But, as we will see

later, for given I(Xi),..., I(Xr), small values of I(Xi © • • © Xr) occur

more often than large ones.

3.2.2 Generalisation of Matsui's Piling-up Lemma

As next, we derive a formula involving both I(Xi) • I(Xr) and

I(Xi © • • • © Xr) that, when applied to independent random variables,
reduces to the Piling-up Lemma. Again we require a preliminary result.

Lemma 3.2.3

For any integer r > 2 and any real numbers x\,..., xr in {0,1}, we have

X\ Jjq E (-2)"1 E
l<ii<---<ifc<r

&ii
' " '

"&ik

fc=l

Proof:

A proof can be found on page 120 of [31].

(3.5)
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For instance, we can write:

• x\ © x2 = (x\ + x2) — 2x\x2;

• xi © x2 © x3 — (xi + X2 + £3) - 2(xia:2 + x\X3 + 2^3) + 4xix2x3.

We can can consider xi,.. . ,a;r in Lemma 3.2.3 as realizations of bi¬

nary random variables; taking expectations on both sides of (3.5) yields a

formula for the expected value of Xi © • • © Xr

Corollary 3.2.4

For any real-valued random variables X\,...,Xr with values in {0,1},

E[©^]=E(-2)fc_1 E E[Xh • Xlk}. (3.6)
i=l k—l 1<îi <--<îfc<r i—i

Definition 3.2.5

For any real-valued random variables Xi,..., Xr and any r > 1, define

A(Xi,...,Xr) :=E[X1---Xr]-E[X1]---E[Xr}. For r = 2, A(X1}X2) is

the covariance of Xi and X2.

Lemma 3.2.6

If X\,..., Xr are real-valued random variables with values in {0,1}, then

they are independent if and only if\(Xn ,..., Xlk ) = 0 for all k, 2 < k < r,

and all 1 < ii < • • • < ik < r.

Proof:

The condition is obviously necessary. That it is sufficient follows from

the fact that E[Xn,..., XJ = Px%1 ...X%K (1,..., 1) for all ife, 2 < fc < r,

and all 1 < ii < • < ik < r, and that all the random variables considered

have only two possible values, namely 0 and 1. D

This definition allows us to generalise the Piling-up Lemma. But first we

need the following lemma:

Lemma 3.2.7

For any integer r > 1 and any real numbers bi,..., br, the following iden¬

tity holds:

r k

E(-i)r~* £ n(1+^) = &^2---^ + (-iri. (3.7)
k=l l<ix<---<ik<r 1=1
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Proof:

For any real numbers ci,..., cr, we have

n(Cj-i)=(-ir+é(-i)r"* e n
3=1 k=l l<>i<-"<3fc<r 1=1

C%\

Now set c3 = bj + 1 and put the term (—l)r on the other side of the

equation. D

For instance, we have:

• l + 6i =h + 1;

• (1 + 6i)(l + b2) - [(1 + 6i) + (1 + 62)] = 6162 - 1;

• (1 + h)(l + 62)(l + 63) - [(1 + h)(l + b2) + (1 + 6i)(l + 63) +

(1 + 62)(1 + b3)] + [(1 + bx) + (1 + 62) + (1 + 63)] = &1&2&3 + I-

We can now formulate our second general relationship between

I(Xi © • • • © Xr) and /(Xi) • • -I(Xr). Recall that sgn(&), the sign of

a real number b, is equal to 1 if & is positive, to —1 if & is negative, and to

0 if b = 0.

Theorem 3.2.8

For any real-valued random variables Xi,..., Xr taking values in {0,1},

I(Xi © • • • © Xr) =
r r

I2 (E(-2)fc_i e a^ **))+(-i)r_i n £^x*)
k=2 1<îi< --<%k<r i=l

where e% — sgn(2E[Xt] — 1).
Proof:

By (3.6), we have

E[(BX>] = E(-2)*-1 E E[xtl---x,k]
i=l k=l 1<îi<- -<tk<r

= EH2)*"1 E (\(Xtl.-.XtK) + f[E[Xtl])
k=l l<n<---<ik<r 1=1
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= X)(-2)*~1 E A(XX1..-XU)
k=l l<n<---<ik<r

+ E (-2)*"1 E ]W«<]
k=l l<t1<---<tk<rl=l

= £(-2)^ Yl KXn---Xlk)
k=2 l<i1<---<ik<r

+ ^(-ir1È(-iy* E na+£.,/(*«))

where, in the last equality, we have used the fact that E[Xt] =

1(1 + elI(Xl)) for all i. By Lemma 3.2.7, the second term is equal to

|((-l)r_1 YZ=1 elI(Xl) + 1). This implies that

r

J(X!©---©Xr) = |2^[0Xt]-l
i=i

r r

= |2(E(-2)fc_1 E A(x,1---x,j) + (-irin^(^)
k=2 l<ii<---<zfc<r t=l

D

In our opinion, this result is more of theoretical than of practical im¬

portance since it is infeasible to compute A(Xn • • Xlk) in practical cases

as it requires the knowledge of the joint distribution of X%x,..., X%k. But

if we know the joint distribution of Xi,..., X^, k = 2,..., r, then we can

also compute I(Xi © • • © Xr) without the above formula.

In the remainder of this chapter, we will be concerned with the distri¬

bution of the values of I(Xi © • ©Xr) over all binary-valued random vari¬

ables Xi,..., Xr that have some given imbalance I(X{),...,I(Xr), and

with the corresponding average and variance. The results allow us to tell

whether it is advisable to approximate I(Xi © • • ©Xr) by I(Xi) I(Xr)
in general. We begin by considering the case r — 2.

3.3 Two Random Variables

This section deals with the average and the variance of the values of

I(Xi © X2) over all random variables Xi and X2 that have the same

imbalances I(X\) and /(X2), respectively. We begin with an example.
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Example 3.3.1

Let Xi and X2 be two random variables on a sample space ft, with \ft\ =4.

By Lemma 2.3.14, a random variable on ft can have imbalance 0, 1/2, or 1.

Let first I(Xi) = /(X2) = 0, i.e., let Xi and X2 take on each of the values

zero and one for two arguments. There are (2) = 36 pairs of random

variables having this property. Computing now I(Xi © X2) for the 36

possible pairs (Xi,X2), we find 24 times that I(Xi © X2) = 0 and 12

times that J(Xi © X2) = 1, and that I(X1 © X2) = 1/2 never occurs. We

denote this by the triple (24,0,12). On the average, I(Xi © X2) = 1/3.
One can do this for any value of I(Xi) and /(X2). Table 3.1 shows the

corresponding triples and, below each triple, the corresponding average.

The results are of course symmetrical in I(Xi) and I(X2).

An alternative view is proposed in Figure 3.4: considering all 256 pairs
of random variables (Xi,X2) on ft, this figure indicates for how many

pairs (Xi,X2) the possible pair of values (i~(Xi)/(X2),/(Xi©X2)) occurs.

Empty circles mean that the first entry in the pair is a possible value of

/(Xi)/(X2) and that the second entry is a possible value of I(Xi © X2),
but that the pair (I(Xi)I(X2), I(Xi © X2)) never occurs. The full line

shows the lower bound I(Xi © X2) > 2^I(Xi)I(X2) — 1 that we proved
in Proposition 3.2.2.

I(X2)
0 1/2 1

I(Xi)

0

(24,0,12)

1/3

(0,48,0)

1/2
(12,0,0)

0

1/2

(0,48,0)

1/2

(48,0,16)

1/4

(0,16,0)

1/2

1

(12,0,0)
0

(0,16,0)

1/2
(0,0,4)

1

Table 3.1: The Distribution of the Possible Values of I(X\ © X2) and

their Average.

One sees that, in most cases, I(Xi © X2) > i~(Xi)/(X2) and (from
Table 3.1) that, for I(Xt) and I(X2) fixed, the average of I(X1 © X2)
is always at least as large as /(Xi)7(X2). We want now to show this

for any sample space ft writh an even number of elements and arbitrary
imbalances I(Xi) and /(X2). For this purpose, we could calculate and

use the probability distribution of /(Xi © X2) given I(Xi) and i"(X2).
However, it is easier to handle the average in a direct way as we do below.

We will be concerned with the probability distribution when we take up

the question of more than two random variables.
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I(Xi)I(X2]

Figure 3.4: Comparison between I(Xi)I(X2) and I(Xi © X2)
for \ft\ = 4, with frequency of occurrence for each pair

(I(Xi)I(X2), I(Xi®X2)).

Here is how we proceed: we take some sample space ft with an even

number 2$ of elements. Then we consider two integers 0 < ii,i2 < ïï and

compute I(Xi ©X2) for all random variables Xi (resp. X2) with imbalance

/(Xi) = ii/ê (resp. I(X2) = i2/$)- The random variables X\ and X2 are

chosen independently and uniformly at random from the set of all random

variables with imbalance I(Xi) = iijê and /(X2) = ^/'â, respectively.
The distribution of the values obtained has a certain average and a certain

variance. We denote these as Eld[I(X1®X2)\I(Xi) = fJ(X2) = ^] and

Var#(I(Xi(&X2)\I(Xi) = |,/(X2) = *), respectively.

Remark 3.3.2

We choose \ft\ even because in this case the imbalance of a random vari¬

able defined on ft is of the form i/d for some integer i, 0 < i < -d

(Lemma 2.3.14). This covers all cases of interest because in "real" cases,

threefold sums are functions of a uniformly distributed random vector,

consisting of the plaintext and the key, that takes values in a set with an

even number of elements, in fact a power of two. By the duality explained
in Subsection 2.3.5, we can take that set as the sample space and the

threefold sums as random variables on that sample space.

Remark 3.3.3

We allowed ourselves above to write an expected value and a variance

for the following reason: we can consider a random variable X (resp. Y)
whose values are random variables and that is uniformly distributed on
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the set of all random variables having imbalance ii/'d (resp. i2/$). That

is, to write X = x (resp. Y — y) means that x (resp. y) is a random

variable with imbalance ii/'d (resp. i-z/'d); thus, an expression like I(x(Dy)
has a precise meaning and then E#[I{X\ ©X2)|/(Xi) = ^,/(X2) = ^] is

nothing but the expected value of I(X © Y) taken over the independent
random variables X and Y.

Lemma 3.3.4

Let Xi and X[ be random variables defined on a sample space ft and

I(Xi) = I(X[). Then there is a permutation it on ft such that X[ = Xi ott

or X[ — Xi o 7T © 1 as functions on ft.

Proof:

Let A = {u ft\Xi(u) =0),5 = {wG Ü\Xi(lü) = 1}, and A' =

{u £ tt\X[(u) = 0}. Since I(X±) = I(X{), either \A'\ = \A\ or \A'\ = \B\.
In the former case, there is a bijection tt : ft —^ ft that maps A' into A.

Then X{ = Xi o tt. In the latter case, there is a bijection tt : ft —> ft that

maps A' into B. Then X[ = X± o tt © 1. D

We will make use of the following Lemma several times.

Lemma 3.3.5

The multiset {I(Xi © X2)|X"2 random variable with I(X2) = ^/'d} is the

same for all random variables Xi with imbalance I(Xi) = ii/'d.
Proof:

Let Xi and X[ be two random variables with imbalance ii/'d. Then,
by Lemma 3.3.4, there is a permutation tt on ft such that X{ = Xi o tt or

X[ = Xi o tt © 1 as functions on ft. Let X2 = X2 o tt or X2 = X2 o tt © 1,

respectively. Then I(X[ © X2) = I{(X1 © X2) o tt) = I(XX © X2) by
Lemma 2.3.12. The proof is completed by noting that as X2 runs over the

set of all random variables with imbalance i2/'à, X2ott and X2 o tt © 1 run

over the same set. D

A consequence of this Lemma is that the average over all pairs (Xi, X2)
with constant imbalance ii/'d and i2/$ is the same as if we considered only
one particular random variable Xi with imbalance ii/'d and then took the

average over all random variables X2 with I(X2) = z2/# constant. Because

I(X2 © 1) = I(X2) and I(Xi © X2 © 1) = I(XX © X2), it is even enough
to consider only all random variables X2 for which P[X2 = 1] is some

constant greater than or equal to 1/2.
A simple choice for Xi is the random variable that is 1 on the first 'd+ii

elements of ft, and equal to 0 on the remaining ones, where the elements

of ft have been numbered in some way and %i > 0. The imbalance of Xi
is equal to ii/'d. Let then P[X2 = !] = ($ + i2)/2â with i2 > 0, which
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gives I(X2) = i2/d. There are (^?i ) such random variables X2. Now if

PXl,X2(l, 1) = m/2ê for some m, then Pxi,x2(l50) = (ê + ii — m)/2'd,

Pxux2(0,l) = (0 + t2
- ro)/2# and PXl,Ä2(0,0) = (m -

h
- i2)/2ê,

that is, P[Xi © X2 = 0] = (2m -ii- i2)/2tf, which implies I(XX © X2) =

\2m-n-i2-0\ß. For any m, there are C+'1) WV-J = (*£') L-7/-J
random variables X2 with Px2(l) = (rd-\-i2)/2,d and Pxi,x2 (1? 1) = Ta/2fd.

Which values can ra take on? Obviously, 0 < m < -d + zi; it must also

satisfy 0 < ra — i\ — i2 < "d — i±, i.e., ii -\- i2 < m < 'd + i2. Altogether,
we must have %i + i2 < m < "d + mm.(ii,i2). The average we want to

compute is symmetrical in ii and i2 so we can assume ii < i2, which

implies %i -+- i2 < m < $ + î'i- Thus, we have proved the following lemma.

Lemma 3.3.6

Let 'd, ii and i2 be integers with $ > 1 and 0 < ii,i2 < "d. Then the

average of I(X\ © X2) over all pairs of random variables (Xi,X2) such

that J(Xi) = ii/i? and I(X2) = i2/ê is

E,

& /(X1©X2)/(X1)
H

T(X \-
%2

= f(&,il,Ï2):

where

(3.8)

i?+i

f^,hj)--=jrWr E
X'd+j) m=i+j

2m — x) — i — j
'tf + A / ti-i

s

,
m )\m-i-jt

ifO < i < j < ê, and f(û,itj) := f(ê,j,i) if i > j.

(3.9)

D

Next, we will be concerned with the properties of the function /. In

general, there is no simple form for /(i?,i3 j) because of the absolute value

in its definition. But if i or j is zero, we can show the following.

Lemma 3.3.7

Let d > 1 and k > 0 be integers. Then

1. For 'd even, ê — 2a:

/(2a,0,2fc)

/(2a,0,2fc+l)

a + k)(a-k) (a?k)
2a2

\2a+2k)

(a + k + l)(a-k) {a+k+i) L+k)
2a2 ( Aa )

\2a+2k+l)
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2. Fore odd, ê = 2a + 1;

/(2a + l,0,2fc) =

/(2a + l,0,2fc + l) =

2(a + k + l)(a - k + 1) {a+k+1) ( £+k )
(2a+ 1)2

2(a + k + l)(a-k) L+SJ2

/ 4a+2

ba+2fc+l )

(2a+ 1)2 ( 4a+2 \

l2a+2Ä+2J

Proof:

1. In this case, for 0 < j < 2a,

f(2a,0,j)=
1

2a

\2a+j/ m=j

2771 — 2a — j
'2a\ f 2a

x

jn) \m-j.

We use the fact that the summand is the same for m as for 2a + j — m.

This implies that

f(^ 0, j) = —±— £ f2« + 3 ~ 2m) (2a) 2a

rn

where A stands for a + j/2 - 1 if j is even, and for a + (j — l)/2 if

j is odd. We have gotten rid of the unpleasant absolute value. Now,

by Gosper's method [14], we find T(m) such that the term in the new

sum is equal to T(m + 1) — T(m), namely

T(m) =

m(m — j) /2aN 2a

2a m J \m —

2
J

yA
Then the sum is equal to Em=j(r(m+ 1)-rH) = T(A+ 1) -T(j) =

T(A © 1), since T(j) = 0. Dividing by a(2*" ) completes the proof.

2. The proof is very much the same as in 1. Here, for all 0 < j < 2a + 1,

/(2a + l,0,j) =

-, 2a+l

(2« +1)QS 2m - 2a - j - 1
'2a + 1\ (2a + V

,
m )\m-3À

We use the fact that the summand is the same for m as for 2a+l+j -ra.

Thus, we have

/(2a + l,0,j) =

-^__^ (2a + 1 + j - 2ro) (
(2a +

2a + 1\ /2a + Ï

m J\m-j/
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where A stands for a + j/2 if j is even, and for a + (j — l)/2 if j is odd.

Now, again by Gosper's method, we find T(m) such that the expression

inside the sum is equal to T(m + 1) — T(m), namely

T{m)
=
npzA(2a + 1)

v '
2a + l \ m J\m

Then the sum is equal to T(A + 1) - T(j) = T(A + 1), since T(j) = 0.

Dividing by (2a + 1) (2^"^ ) and multiplying by two completes the

proof.

Remark 3.3.8

One could argue that, in linear cryptanalysis, one avoids at all costs having
balanced threefold sums since then the piling-up approximation yields

I(Ti © • • © Tr-i) = I(Ti) I(Tr-i) = 0, that is, one lower-bounds the

average-key imbalance of the (r—l)-round I/O sum 5,1""r_1 with the trivial

lower bound 0. Thus, it is pointless to consider the case ii — 0 (or i2 — 0),
because this corresponds to I(Xi) — ii/'d — 0 (or to I(X2) = i2/fi = 0).
Nonetheless, Lemma 3.3.7 is useful as we will see later (Proposition 3.3.14).

We next prove that f($, i, j) > ijI'd2 and that, for large $, /($, i, j) <

ii/'d2 + c/\rd for some constant c. We need the following definition.

Definition 3.3.9

For all integers $,i, j for which it exists, define

g(v^,j) := < v^+>)

[9(&,3,i), i>3-

(3.10)

Lemma 3.3.10

For all integers i9, i,j such that $ > 1 and 0 < i, j < "d, we have g{d, i,j) =

Proof:

Because both g(i9,i,j) and ii/'d2 are symmetrical in i and j, it is

enough to prove the lemma for i < j. By (3.10), for i < j, ^(^,i,j) is the

expected value of (2M — i — j — $)/$ where M is a hypergeometrically
distributed random variable, that is,

M

\ rn )\m-i- j) / \d + j)'

But then E[M] = (iï+i)(tf+j)/2iï [7] and the lemma follows immediately.D
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Now we have f(rd,ii,i2) > g('d,ii,i2) = iii2/$2 = I(X1)I(X2) for

ii < %2- Because / and g obey the same symmetry rule in ii,i2, this

property extends to all 0 < ii, i2 < ê so we have proved:

Proposition 3.3.11

Let 'd, ii and i2 be integers with $ > 1 and 0 < ii,i2 < 'd. Then the

average of I(Xi © X2) over all pairs of random variables (Xi,X2) such

that I(Xi) = ii/'d and I(X2) = ii/'d is lower-bounded by ii^/ê2. D

Now we want to find out by how much, on the average, I(Xi © X2) is

greater than /(Xi)/(X2). To this end, we make the following definition:

Definition 3.3.12

For all integers "d,i,j such that °d > 1 and 0 < i, j < -d, define f(*d,i,j) '.—

f($,i,3)-g($,i,j) = f(ö,i,j)-tj/#2.

This function has the following properties:

Lemma 3.3.13

Let $,%,] be integers. If $ > 1 and 0 < i < j < 'd, then f(i9, i, j) can be

written as:

i-Mi, i) = s^ry eLt/^j v-i+i- 2m)O ( *:;).

Moreover, if -d > 1 and 0 < i,j < r), then the following are true:

2. Ifi + j> ê, then f(<d,i,j) = 0, otherwise f(ê,i,j) > 0.

3. Ifi+j < $, then /(#,* + 1,j + 1) < /(#,», j).

4. Ifi+j < & then f(&,i,j + 2) < f(0,i,j) and f(iï,i+ 2,j) < f($,i,j).

Proof:

1. We have f($,i,j) = /(#,*, j) - Q&hj) =

Y^ \\2m-i-j-'&\-(2m-i-j--d)
V I I

•

Jir-n _/] n
_

r%H I 1 Vim n n if* \ I

20

u\-d+n) m=+3' m=i+3
m J \m — i — j/

For any real number a, \a\ — a is equal to 2(—a) if a < 0, and to 0

if a > 0. This explains the factor 2 above. But 2ra — i — j — ê is

negative only for ra < (# + i + j — 2)/2 if ê + i 4- j is even, and for

ra < (# + z + j — l)/2 if ti + ? + j is odd. Both cases are covered by
the inequality m < [(ti + i + j — l)/2j. Finally, we changed the index

of summation by means of the substitution ra —> ra + i. (That is, we

wrote everywhere ra + i instead of ra.)
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Both / and the statement to be proved are symmetrical in i and j so

it is enough to perform the proof for i < j.

For i+j > ti, we have [(ê-i+j-l)/2\ < l(i+j-i+j-l)/2\ = j-lso

the sum's upper limit is smaller than its lower limit. The sum computes

to 0.

If i + j < -d, say, $ = i + j + a for some a > 1, then the sum's upper

limit is equal to \_(2j + a — 1)/2J, which is larger or equal to j; thus, the

summation is not empty. It remains to show that it always contains

at least one non-zero summand. One shows easily that the binomial

coefficients never vanish. They are multiplied by # — i + j — 2ra =

2j — 2m + a. For a = 1 and a — 2, the sum's upper limit is j so the

sum consists of one summand with ra — j, but then 2j—2ra+a = a ^ 0.

For larger a, there is more than one summand and hence there is at

least one m for which 2j — 2m + a / 0.

For the same reason as in 2., it is enough to prove it for i < j.
If i -f j = <d — 1 or if i + j = fî — 2, then the statement follows

from 2. Otherwise, let $ > i + j + 2 be fixed. Define b(i,j,m) :=

(0 - i + j - 2m)O Ci;) / (2»3). Then, for i < j,

2
L19-^7-1]

f(#,hj) =

-£ 5Z h(h3im) and

/OM + U + i) = | E Ki + U + i.m).
m=j+l

We show that 6(z + l,j + l,ra) < b(i,j,m) for all integers ra in the

range j + l<m<($-i + j- l)/2, for i? + i + j odd and even. This

is obviously enough for our purpose. Now

6(i + l,j + l,ra)
_

(m-j)(tf + i-r-l)(tf + j + l)

b(i,j,m) (m + i + l){'â-i)(&-j)
< 1 & (3.11)

(ra-j)(^ + z©l)(^ + j + l) < (m + i + l)($-i)(i9-j). (3.12)

When we increase ra, then the left side of (3.12) grows faster than the

right side; it is therefore enough to show (3.12) for the largest possible
value of ra, i.e., for ra = (fl — i + j — l)/2 (even if this might not be an

integer). In that case, (3.12) reduces to

(tf-i-j-l)(tf + i + l)(tf + j + l) < (tf-H + j + i)(tf_ï)(#_j).

This is true if and only if & + i + j + 2ij +1 > 0, which obviously holds.
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4. If i + j — $ — 1 or if i + j = ê — 2, then both statements follow from

2. Let i + j < ê — 2. Notice that because / is symmetrical in i and j,

both inequalities are equivalent. However, we will prove the first one

for i < j and the second one for i < j — 1; then both inequalities hold

for all i,j because:

• i>j => j<i-l and f(iï,i,j+2) = f(iï,j + 2,i)<f(iï,j,i) =

Mm)-
• i>j-l => j<i and f(û,i + 2,j) = f(-d,j,i + 2)<f(0,j,i) =

Mm);

Let b(i,j, ra) be defined as in the proof of 3. We have for i < j

2L^^J
Mm) =

^ Yl b(i,j,m);
m=j

9
2 J

o
L 2 J

Mu + 2) = - Ç 6(i,j + 2,m) = - Y, &(*,i + 2,m+l);
m=j+2 m = j+l

I i9 —i+j—3 i |
-fl-i +j-1 i

M* + 2,j) = | ]T b(* + 2,j,m) = | E 6(i + 2,j,m-l).
m=j m=j+l

Let i < j. In order to prove the first property, we show that

b(i,j + 2,ra + 1) < b(i,j,m) for j + 1 < m < (â - i + j + l)/2.
This holds because

b(i,j + 2, ra + 1) (# - ra)(ra - j)(ê - j)($ - j - 1)

b(i,j,m) (tf-m-i+j>l)(m+24-l)(tf4-j + l)(tf+j + 2)
'

which is smaller than 1 since the ith term in the numerator is smaller

than the 2th term in the denominator and all terms are positive. (Re¬
member, i < j; furthermore, # — ra — i + j + 1 > 0 for all ra in the

above range.)

We now turn to the second property. Let i < j — 1. We show that

ft(i' + 2, j,m-l) < b(i,j,m) for j + 1 < ra < (tf-«' + j + l)/2. We have

b(i + 2,j,m- 1)
_

(# + z+ !)(# + « ©2)(ra- j)(<d - i - m + j

b(i,j,m) (tf-i)(#-ä-l)(ra-M + l)(#-ra + l)

For 0 < z < t? - 2 and j +1 < ra < (# — i -fj +1)/2, the denominator is

positive. Now consider ra as a real number. Then the derivative of the

numerator with respect to ra is (i? + i + !)(# + ? + 2)($ — i + 2j — 2m),
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which is larger than (ti — i)(ti — i — l)(ti — i — 2m), the derivative of the

denominator. Thus, it suffices to show that the quotient is smaller

than 1 for the largest value of ra that we allow, that is, for ra =

(ti — i + j + l)/2. This happens if and only if

ti2(-2i + 4j - 2) + 4jti(i + j + 1)

+ (2i3 + U2j + 6i2 + 2«j2 + 8z'j + 6i + 2j2 + 4j + 2) > 0.

This holds because we assumed that i < j — 1 so — 2% + 4j — 2 >

2% + 2 > 0. D

We can thus say:

Proposition 3.3.14

Let f be dehned by Deßnition 3.3.12. Then f is nonnegative and takes its

maximum at (ti, 0,1) and at (ti, 1,0) for even ti, and at (ti, 0,0) for odd ti.

Moreover, for large id, both maxima are approximately equal to l/Vwd.
Proof:

Because of Lemma 3.3.13, / is non-negative and the points where /
reaches its maximum can be only (i,j) = (0,0), (i,j) = (0,1) or (i,j) =

(1,0). Because of symmetry, it suffices to compare /($, 0,0) and f(ti,0,1).
At these points, / is equal to / so we can apply Lemma 3.3.7. If ti = 1,

then/(l, 0,1) = 0 while/(l, 0,0) = 1. If#> 1, then ti = 2a or ti = 2a + l

for some a > 1. From Lemma 3.3.7, it follows that

/(2a, 0,1)
=

/(2a+ 1,0,0)
=

2a + 1

/(2a, 0,0) /(2a+ 1,0,1) 2a

for all a > 1. Thus, the points where / reaches its maximum are the ones

mentioned. There,

f7. nn
(a + 1)« (ffi) O 2a + l(ï)2

/(2a, 0,1)
=

——g 4
= — ^- and

2«
(2a+l)

4"
(to)

/(2a + 1,0,0) =

2(«+1)2 O (ï;1)
_

2-+i(2:)
2

a

(2a + 1)2 (4«+2) 4a + 1 (£}

With Stirling's approximation for the factorial [7, 15], we have (2) / (^) «
\j2/irn for large n. Thus, the maximum of / for large ti is approximately

equal to l/\/27ra « \/y/rrti. D

Figure 3.5 shows the behaviour of /(32, i, j). We summarize the above

results and translate them into the language of imbalances and expecta¬
tions and obtain:
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Figure 3.5: f(ti, i, j) for ti = 32.

Theorem 3.3.15

Let ft be some sample space with 2ti elements and ii,i2 be integers,
0 < ii,i2 < ti. Then the average of I(Xi © X2) over all pairs of random

variables (Xi,X2) such that I(Xi) = ii/ti and I(X2) = i2/ti is lower-

bounded by iii2/ti2 and upper-bounded by %ii2/ti2 + (1 + E(ti))/\frrti,
where lim^^oo e(ti) — 0. D

Notice that because of the properties of /, the difference between

I(Xi)I(X2) and the average of I(Xi © X2) tends to decrease as I(Xi)
or I(X2) increases and not only when ti does. In linear cryptanalysis,
one is interested in large imbalances. Thus, from this point of view, the

approximation of I(Xi © X2) by I(Xi)I(X2) is, on the average, a pes¬

simistic one. However, the spread of the different values of I(Xi © X2)
around the average might be wide, in which case the approximation is

risky in the sense that in many cases I(Xi © X2) might be much smaller

than I(Xi)I(X2). In order to remove this doubt, we now investigate the

variance of I(Xi ©X2) over all above mentioned pairs (Xi,X2).
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For that purpose, we first compute the average of I2(Xi ©X2). By the

same argument as for the average of I(X\ ®X2), it suffices to hold Xi fixed

and to let X2 run over all random variables with PX2(1) = (ti + i2)/2ti.
The average is given by the following function.

Lemma 3.3.16

Let ti, ii and i2 be integers with ti > 1 and 0 < ii,i2 < ti. Then the

average of I2(Xi © X2) over all pairs of random variables (Xi,X2) such

that I(Xi) = ii/ti and I(X2) = i2/ti is

E$

where

T2lv ~ v \ t/v ^ *1 -r^r X %2

I2(Xi(BX2) I(Xi) = ^,I(X2)
=

-j
= h(ti,h,i2), (3.13)

\v+3/ m=i-\~3
v / \ / \ j/

if 0 <i<j<ti, and h(ti,i,j) := h(ti,j,i) ifi > j. D

Fortunately, h(ti,i,j) can be written in a simple form.

Lemma 3.3.17

For all integers ti, i, j such that ti > 1 and 0 < i, j < ti,

^
O.O 1 „02 .02 O.Q 1 I .09

"T"
.09 J' W'10)

2i?-l 2i?-H2^2 2tf-l \ti2 $2)

Proof:

By the definition of h, it is enough to prove the lemma for i < j.

Similarly to Lemma 3.3.10, we note that for i < j, h(ti, i,j) is the expected
value of (2M -i — j- ti)2/ti2, where M is hypergeometrically distributed.

We have [7]

E[M] = (*+0(f+i) and Var{M) =

(tf+0(tf+j) A
_

tf+i\ *-i

2tf
v '

2i? V 2^ / 2^ — 1"

Then h(ti, i,j) = & [4E[M2] - 4(ti + * + j)£[M] + (ti + î + j)2] and the

lemma follows.
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Now the variance of I(X\ ©X2) is given by V(ti,ii,i2) := h(ti, ii,i2) —

f2(ti,ii,i2). Because f(ti,ii,i2) > iii2/ti2, we can upper-bound the vari¬

ance by

=

*«(a> -i)
=• A^!l^- (3-16>

For 0 < ii,«2 < ^, A is minimal for ii = ti or Ï2 = ti, where A = 0, and

maximal for ii = i2 = 0 with A($, 0,0) = 27?1_1. Hence, the expected value

of I(Xi © X2) - I(Xi)I(X2) lies between 0 and roughly l/yfUti and its

standard deviation is upper-bounded by something of the order of l/y2/&.
The bound (3.16) is rather loose. Numerical results show that

V(ti,ii,i2) is much smaller than that. The normalized variance, defined

for any random variable X by the variance of X/E[X], and by infinity if

E[X] — 0, is equal to hff2 — 1. For instance, if ii = i2 = 0 and ti is large,
this is approximately equal to tt/2 — 1 « 0.57. The normalized variance

seems to reach its maximum at %i = \,i2 = ti — 1 (where it can be easily

computed and is equal to (ti + l)/(ti — 1)). With (3.16), the normalized

variance is upper-bounded by Ati4/i\i\ — 1 = (2~#-in272 '
which is not

bounded in the range 0 < ii,i2 < ti. Figure 3.6 shows the behaviour of

the normalized variance for ti — 32.

3.3.1 Implication for The Piling-up Approximation
for Two Random Variables

In the piling-up approximation, one approximates I(X± © X2) by

I(Xi)I(X2). If I(Xi ©X2) > I(Xi)I(X2), then the approximation is pes¬

simistic and we are on the safe side. But it can happen that I(Xi © X2)
is much smaller than I(Xi)I(X2).

If ti is "small" and I(Xi),I(X2) are small, too, then the average

of I(Xi © X2) is approximately Ifyirti, which is much larger than

I(Xi)I(X2); because in this case the normalized variance lies around 0.57,
most of the values of I(Xi (BX2) are larger than I(Xi)I(X2) and it is safe

to approximate I(Xi © X2) by I(Xi)I(X2).
Let I(Xi) and I(X2) be fixed, and let ti be "large". Then, by Theo¬

rem 3.3.15, we can say that the average of I(Xi © X2) is between

I(Xi)I(X2) and I(Xi)I(X2) + 1/VrTti; thus, it is close to I(Xi)I(X2).
Moreover, for large ti, the average of I2(Xi ©X2) is by Lemma 3.3.17 equal
to h(ti,n,i2) = ^n + ^i2(Xi)i2(x2) - ^(i2(Xi) + i2(x2)) »
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Figure 3.6: Normalized Variance p^%[ ^
— 1 for ti — 32.

I2(Xi)I2(X2). This means that most values of I(Xi © X2) are close to

I(Xi)I(X2). Thus, if ti is large, one may use the piling-up approximation
even for dependent random variables without risking too much.

3.4 Any Fixed Number of Random Variables

We now turn to the study of any number of random variables. We take

some given integers i\,..., ir such that 0 < ik < ti for all k and look at

the average of I(Xi © • • © Xr) and of I2 (Xi © • • • © Xr) over all r-tuples
of random variables (Xi,...,Xr) such that I(Xk) = ik/ti, k = 1,...,r. If

we wanted to compute the averages directly, e.g., by counting arguments

as on Page 33, we would have to deal with sums over 2r~1 — 1 indices

which contain complicated multinomial coefficients and are therefore in-

feasible to compute. We will see that, fortunately, the averages can be

computed recursively using properties of the probability distribution of

I(Xi © • • © Xr) given that I(X1) = h/ti,..., I(Xr) = ir/ti. We begin
by calculating this probability distribution for r = 2.
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3.4.1 The Conditional Probability Distribution of

I(X1 © X2) given J(Xi) and I(X2)

Let Xi be a random variable with I(Xi) = ii/ti. We have seen in Sec¬

tion 3.3 that for 0 < %i < i2 < ti, of the (^2 ) random variables X2

with I(X2) = i2/ti, there were (*+*) (m!;/iJ that gave I(Xi © X2) =

|2m — îi — «2 — ^|/^, where ii + i2 < m < ti + ii. Sometimes, there is an

m' 7^ m such that \2m' — ii—i2 — ti\ — \2m — ii — i2 — ti\. Thus, if we want

to count the number of X2 such that I(Xi © X2) is equal to, say, t/ti, we
must know for which £ there are two different values m and m' such that

\2m — ii — i2 — ti\ = \2m' — ii — i2 — ti\ — L

Now \2m — ii — i2 — ti\ = \2m' — ii — i2 — ti\ for different m and m! only
if 2m — %i—i2— ti = tiJrii-\-i2 — 2m', i.e., only if m! — ti + ii+i2—m. Such

ra and m' must satisfy z'i + %2 < ra, m' < ti + z'i ; now ra' = $ + z'i + 22 — ra

and zi + i2 < m,m' < ti + %i both hold if and only if %i + i2 < m < ti

and m' = ti + zi + i2 — m. Thus, if m > ti, then m has no counterpart m'

since this implies m! < ii + i2. Finally, there is one value of m for which

one must be careful: if %i + i2 < ti and m — (ti + z'i + *2)/2 (which lies

between z'i + i2 and $ so m' exists), then m' = m so that in fact m has

no counterpart. This corresponds to the case £ = 0 and can happen only
if ti + ii + i2 is even.

Let first ii -\- i2 > ti. Then ra > ii + z-2 > ti, so ra has no coun¬

terpart ra'. Moreover, |2ra — ii — i2 — ti\ = 2m — %i — «2 — $- Thus,
there are (1?^11) (ml71'It2) random variables X2 such that /(Xi © X2) =

(2ra — z'i — 22 — ^)/^. Since (2ra — ?'i — i2 — î?) = £ if and only if m =

(i? + *i +t2 + Q/2, there are (^(^++,2+o) (è(*-V-*2+^)) random variables

X2 such that I(Xi®X2) — £/ti. Furthermore, since £ — 2m—ii—i2—ti and

ii+i2 <m <ti-\-ii, the probability is non-zero if and only if £ = ti + ii +i2
mod 2 and ii + i2 — ti < £ < ti + ii — i2.

Next, let ii + i2 = $. Then |2ra — ii — i2 — ti\ — 2\m — ii — i2\ =

2(ra — ii — 22) = 2ra — ii — i2 — ti. Iî m > ii + i2, then m > ti and ra has

no counterpart ra'. If ra = ii + i2, then ra = ($ + ii + 2-2)/2 and again,
as we have seen in the second paragraph, ra has no counterpart because

ra' = ra. (The latter case corresponds to £ = 0.) Thus, we can draw the

same conclusions as for %i + i2 > ti.

Now let ii + i2 < ti < ra. Again ra has no counterpart and 2ra — %i —

i2 — ti is positive so we can draw the same conclusions as for ii + i2 > ti.
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Since 2ra — i\ — i2 — ti > ti — i\ — i2, the £'s that correspond to this case

are the ones with I > ti — (ii + i2).

Next, we look at the case i\ -\-i2 < ti, m < ti, m ^ (ti-\-ii + i2)/2. Here

ra' exists and ra' = ti + i± + i2 - ra. Thus, there are C^1) (m^~-t2) +

,*+;ix
,

^_n
x

=
,^+tlx / *-Zl x

^+ïl
x /,?_,! n

mndom variables X2

such that /(Xi © X2) — |2ra - z'i - 22 - #|/#. Without losing generality,

we can choose ra < ra'. (Otherwise, exchange ra and ra'.) Then ra <

(# + *i+ *2)/2 and therefore |2ra - z'i — 22 — ti\ = $ + 21 + i2 — 2m.

Moreover, ti + i\ + 12 — 2ra = £ if and only if ra = (ti + 21 + 22 - £)/2
so there are (^+n+î2a_£)/2) ((tf-^-J-^J + ((1?+îl+î2l+^)/2) ((^-^-^2+^/2)
random variables X2 such that I(X± © X2) = £/#. Those £ corresponding

to this case are the ones with 0 < £ < ti — (i\ + i2).

Finally, we consider £ — 0, which occurs for ii + i2 < ti, ra =

(ti + i\+ i2)/2 and ti + ii + 22 even. Similarly, we conclude that there are

((tf+t+z2)/2) ((<?-£-^/a) random variables X2 such that I(X1 ©X2) = 0.

If we divide everywhere by (^ ), the number of random variables

X2 with I(X2) = 12/ti, we get the conditional probability distribution of

I(X\ ©X2) given I(X\) and I(X2). Thus, we have proved:

Proposition 3.4.1

Let Xi and X2 be random variables on a sample space ft with 2ti ele¬

ments, and let ii,i2 be integers, 0 < ii < i2 < ti. Then the conditional

probability P := Pj(x1©x2)|j(x1)i(x2)(||^, f ) that I(XX © X2) = £/ti

given that I(X\) = ii/ti and I(X2) — i2/ti is equal to the following:

i1+i2>ti => P = S(£),

ii+i2<ti, £>ti-(h+i2) => P = S(£),

h+i2<ti, 0<£<ti-(n+i2) => P = S(£)-rS(-£), and

£ = 0 => P = S(0) if ti + 2'i + 22 is even,

and P = 0 otherwise,

where s(e)=G(* +ir+\+j G(* -t~-\+«
If 21 > 22, then the above formulas hold after having exchanged %i and

22. D
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Remark 3.4.2

Because the lower index of the binomial coefficients must everywhere be

an integer, we must have £ = ti + 21 + 22 mod 2. Otherwise the above

probabilities are zero.

Hereafter in this chapter, unless stated otherwise, we write a condi¬

tional probability distribution without subscripts and without explicitely

naming its arguments, e.g., P(£\ii,... ,ir) will mean the probability that

J(Xi © • • • © Xr) = £/tf given that J(Xi) =i1/ti,...,I(Xr) = ir/ti.

Next, we derive the exact conditions for P(£\ii,i2) — 0.

Lemma 3.4.3

Let 0< 21,22 <ti. If£>0 and£ = ti-\-ii^i2 mod 2, then P(£\ii,i2) =0

if and only if £ > ti — \ii — i2\ or £ < i\ + 22 — ti. Otherwise, P(£\ii,i2) = 0

always holds.

Proof:

The last statement in the lemma follows immediately from the fact

that P(£\h,i2) = 0 for £ < 0 and from Remark 3.4.2. Let now £ > 0,

£ = ti + 21 + 22 mod 2. By Proposition 3.4.1, we can write P(£\ii,i2) as

P(t\h,i2) = S(£)+öS(-£), where

ti + h \f ti-ii \ If 2ti \

\(ti + 21 + 22 + £)) \\(ti - 21 - 22 + £)) j \ti + 22y

1> ii+i2<ti and 0 < £ < ti - (21 + i2),

0, otherwise.

It is easy to check that S(£) = 0 if and only if £ > ti — |z'i — i2\ or

£ < ii+i2-ti. Moreover, ö = 1 only if h+i2 < ti and 0 < £ < ti-(ii+i2),
but in that case neither £ > ti — \ii — i2\ nor £ < %i + i2 — ti are satisfied

so S(£) > 0 and thus P > 0. Thus, we have successively:

• F = 0, 6 = 0, P = S(£), S(£) = 0, £ > ti - \h - i2\ or £ < h + 22 - ti;

• £ > ti- \h -i2\ or £ < h +i2-ti, S(£) = 0 and 6 = 0, P = S(£), P = 0.

D

Now the expected value of I(X± © X2) and of i2(Xi © X2) given I(X{)
and /(X2) can be written as

S(l) =

s =
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f(ti,H,i2) = ^-PM2!,22), (3.17)
I

h(ti,n,i2) = JZ^M*1'*2)' (3.18)
l

where we can let the sums run over all the non-negative integers since

only a finite number of terms are different from zero. From here on in this

chapter, all sums without precise limits will be sums over all the non-neg¬

ative integers. This spares us unnecessary perspiration when dealing with

different parities of ti and of the i^s.

3.4.2 Only One Random Variable

Before we turn to the study of more than two random variables, we take

a brief look at the case of only one random variable. The statements here

are all trivial but important for what follows. Let 0 < i\ < ti. Then:

• the probability that I(XX) = £/ti given that I(X±) = h/ti is P(£\ii) =
ài,h ;

• the average of I(Xi) over all random variables with I(Xi) = ii/ti is

/(*i) = *i/#;

• the average of I2(Xi) over all random variables with I(Xi) = ii/ti is

h(ii)=i2/ti2.

3.4.3 Various Properties For More Than Two Ran¬

dom Variables

We now consider expressions for more than two random variables. In the

following, we show properties of the probability distribution of

I(Xi © ••• © Xr) given I(Xi),.. .,I(Xr), of its expected value and of

the expected value of its square. These properties hold for any r > 2

unless stated otherwise. In particular, we show that the probability dis¬

tribution of I(Xi © • © Xr) given I(Xi),..., I(Xr) can be written with

terms involving only the probability distribution of I(X\ ©X2) given I(X-\)
and /(X2), and we deduce from this properties of the expected value of

I(X\ © • • © Xr) and of I2 (X\ © • • • © Xr) conditioned on particular values

of/(Xi),...,/(Xr).
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Proposition 3.4.4 (Recursion for P)
For any integers ti and ii,. .., ir such that ti > 1 and 0 < ii, ' '

1 vf
\. \J .

the probability P(£\ii,..., ir) that I(Xi © • • • © Xr) = £/ti given that

I(Xi)=h/ti,...,I(Xr) = ir/ti, can be written recursively as

P(t\iu...,ir) = ^P(£|Mr)PW2i,...,2r_i).
k

(3.19)

Proof:

Here we write P explicitely with indices. We abbreviate I(X^) as 1^

and I(Xi © •• © Xfz) as Ii,...^, k = l,...,r. By the observations of

Subsection 3.4.2, (3.19) holds for r — 2. Let now r > 2. We have

PIl....,r\h-IrW^--^ir) = ^2Ph T./l....,T.-l|Jl-/r(^feNl>---5V)
k

= ^2Ph r\h.....r-lh..Jr(£\k>ill---->ir)Ph r-llh-IrWl^-'^r)
k

= ^2Ph r\h r-lIr(£\k^r)Ph r-llh-I-r-li^l^'-^r-l)
k

= ^2Ph.2\Iil2(£\k^r)Ph r-ilIi-Ir-iWl' ''ir-l),
k

where in the penultimate equality we have used the facts that, if

I(X\ © • • © Xr_i) and I(Xr) are given, then the probability distribu¬

tion of I(Xi © • • • © Xr) does not depend further on I(Xi),..., 7(Xr_i)
and that I(Xi © • -©Xr_i) does not depend on I(Xr). To obtain the last

equality we made the substitutions Xi © • © Xr_i —y Xi and Xr —>• X2

in the first probability term. Notice that the above sequence of equalities
also holds for r = 2.

The next corollary follows now by induction.

Corollary 3.4.5

For any integers ti > 1, r > 3 and z'i,..., ir such that 0 < 2i,..., ir < ti,

P(£\ilt...,ir) =

Y] P(£\hr,ir) x P(kr\kr-i,ir-i) x •• x P(k4\k3,i3) x P(k3\ii,i2).
kr ,ACr_i ,...,«3 1—i
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In analogy to the two-variable case, we introduce functions / and h for

the expected values of/(Xi©- -©Xr) and 72(Xi©- • -©Xr), respectively,

given that I(Xi) = i1/ti,...,I(Xr) = ir/ti.

Definition 3.4.6

Let ti and ii,.. .,ir be integers such that ti>l and 0 < i\,..., ir < ti. De¬

note by f(ii,...,2r) (resp. h(i\,...,ir)) the average of I(X\ © • • • © Xr)

(resp. of I2(Xi © ••• © Xr)) over all r-tuples of random variables

(Xi,...,Xr) suchthat I(XX) = ii/ti,..., I(Xr) =ir/ti, that is,

f(ii,...,ir) := J]-P(£|2i,...,2r), (3.20)

= E* [l(Xi © • • © Xr) I(Xi) = lj,. .

h(ii,...,ir) := 22^-J P(£\ii,...,ir)
i

•,/(*r) = £,
(3.21)

= E#[l2(Xi®---(BXr)I(Xi) = lj,.
(We cease writing the argument ti in / and h.)

..,/(xr) = j;.

We now look at some properties of / and h. We show that both

functions can be defined recursively. We find lower and upper bounds

for / and necessary and sufficient conditions for the lower bound to be

achieved. We show that the bounds are close to each other when ti is

large. Finally, we show that the value of / and h converges as r increases.

Lemma 3.4.7 (Recursion for /)
For any integers ti > 1 and 0 < ii,...,ir < ti, f(ii,...,ir) =

Y,k f(k,ir)P(k\ii,.. .,ir-i)-
Proof:

For r = 2, the equation follows from the observations of Subsection

3.4.2. For r > 2, we use Proposition 3.4.4 and equation (3.17).

/(2i,...,2r) = ^-P(£|zi,...,2r) = ^{p(^|Mr)PWi,...,2r_l)
t l,k

£
= Y,(j2#PWk,lr))P(k\lU...,lr-l) = ]£/(Mr)P(fc|*l,...,*r-l).

k I k

Notice again that, thanks to the observations of Subsection 3.4.2, we could

also perform the proof for r = 2 by the above sequence of equalities. D
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This recursion formula for / allows us to generalise the properties of /
from 2 to r random variables. As the first such property, we show that

the expected value of I(X\ © • • • © Xr) is lower-bounded by the product
of imbalances I(Xi) • • I(Xr).

Corollary 3.4.8

For any integers ti > 1, r > 1, and 0 < ii,...,ir < ti, f(ii,...,ir) >

1?
x x

1?
•

Proof:

By the observations of Subsection 3.4.2, the corollary holds for r = 1.

We showed in the preceding section that the corollary holds for r = 2. For

r > 2, assume that the corollary holds up to r — 1. Then

f(i1:...,ir) =

>

Next, we give necessary and sufficient conditions for the lower bound

of Corollary 3.4.8 to be achieved. For that, we use the following lemma.

Lemma 3.4.9

For any integers ti > 1, r > 1, and 0 < z'i,..., ir < ti, if£<ii~\ 1- ir —

(r - l)ti, then P(£\h,..., ir) = 0.

Proof:

By the observations of Subsection 3.4.2, the lemma holds for r = 1.

By Lemma 3.4.3, the assertion holds also for r = 2. Let r > 2. Suppose
that P(k\ii,.. .,2r-i) = 0 for all k such that k < %i -\ \-ir-i — (r — 2)ti
and let £ < i± H \-ir-(r- l)ti. Then

P(£\ll,...,lr) = ^P(£|£,2r)PWi,...,2r-l)
k

Y, P(£\k,lr)P(k\li,...,lr-l).
k>n-\ ^r_1_(r_2)'!?

If/c > 2'iH \-ir-i-(r-2)ti, then£ < ix-\ \-ir-(r-l)ti < k+ir-ti. But

then P(£\k, ir) — 0 according to Lemma 3.4.3. Thus the last sum above is

zero and the lemma follows. D

: 22f(k,ir)P(k\i1,...,ir-i]

J2jpP(khi--->lr-l) = ^Y,-P(k\ii,...,lr-l)
k k

Ir
r / - n ^

1-1 1>r

^/(*l,..-,*r-l) >

^X---X^- D
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Notice that the statement of this lemma also follows immediately from

inequality (3.3). However, the following corollary cannot be so derived.

Corollary 3.4.10

For any integer r > 1, the function f is equal to its lower bound in

Corollary 3.4.8, i.e., f(ii,..., ir) = ^ x • • • x l-±, if and only if ii H \-ir >

(r - l)ti.

Proof:

By the observations of Subsection 3.4.2, the assertion of the corollary

holds for r = 1. By Lemma 3.3.13, the assertion holds for r = 2. Let

r > 2 and suppose that the corollary holds up to r — 1.

Let z'i-1 \-ir > (r—l)ti. Because ir < ti, we must have 2'iH Mr—i >

(r - 2)ti. Then f(iu . ..,ir-i) = f x • • • x *==! and

f(ii,...,ir) = ^2f(k,ir)P(k\i1,...,ir-i)
k

= Yj f(k,ir)P(k\ii,...,ir-i)

= ^ E ^p(*i*i,...,v-i)
fc>1?—%T

k

= -f(li,...,lr-l) = -X.--X-,

where in the third equality we used the fact that the assertion of the

corollary holds for r = 2, and in the second and the fourth equalities the

fact that P(k\ii,.. .,ir~i) = 0 for k < ti — ir as then k < (r — l)ti —

(r - 2)ti - ir < ii H \-ir - (r - 2)ti - ir = h-\ + ir-i - (r - 2)ti,
which implies P(fc|2i,..., ir-i) — 0 by Lemma 3.4.9.

Let now i\ + - - + ir < (r — l)ti. We examine the cases 21 H 1- ir-1 >

(r — 2)ti and 21 + h 2r_i < (r — 2)^ separately.

Let 2i + --- + 2r_i > (r-2)ti. Then f(n,.. .,ir-i) = % x ••• x ^.
If k = 2'i H h «r-i - (r - 2)t?, then k + ir=h-\ \-ir-(r-2)ti <ti

so f(k,iT) > irk/ti2. Thus, among all fc's such that fc > 2i + \- ir-\ —

(r — 2)ti, there is at least one k with f(k,ir) > irk/ti2. Hence,
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f(ii,...,ir) = Y,f(k,ir)P(k\ii,...,ir-i)
k

= ^/(A;,2r)P(A;|2i,...,2r-i)
k>h-\ hv-i-(r-2)i?

> | S ^P(fc|*l,...,»r-l)
k>h-\ Mr— i-(r-2)i9

k

Ir £i- \ Il ^r
= -/(2i,...,2r_i) = -X---X-,

where to get the second and the fourth equalities we used Lemma 3.4.9.

If »i H h »r—i < (r-2)ti, then f(n,...,ir-i) > % x •-• x ±=±.

Thus,

f(h,...,ir) = Y f(k, ir)P(k\ii,..., ir-i)
k

k

V j./. - \
^

1>1 ?>r
=

^/(.l,...,.r-l) > ^X-X^.

We translate our conclusions into the language of imbalances and expec¬

tations to obtain:

Proposition 3.4.11

Let ft be some sample space with 2ti elements, let r G N, and let %i,..., ir

be integers, 0 < ii,...,ir < ti. Then the average of I(X\ © • • © Xr)
over all r-tuples of random variables (Xi,...,Xr) such that I(Xi) =

ii/ti,...,I(Xr) = ir/ti is lower-bounded by ii x • • • x ir/tir. The lower

bound is attained if and only if z'i + • • + ir > (r — l)ti. D

Next, we show that the expected value of i"2(Xi © • • • ©Xr) can be written

recursively.
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Lemma 3.4.12 (Recursion for h)
For any integers ti > 1 and 0 < ii,..., ir <ti,

h(ii,...,ir) = (3.22)

1 2ti i2
,.

,
1 /_,. ,

,

22 \

=

2¥^
+ 2¥^^h(Zl'---'V-l)~^^lV^1'---'^-l)

+ ^J-

Proof:

For r = 2, the proof is made by noticing that (3.22) reduces to (3.15)
if we apply the identity h(ii) = i\/ti2 of Subsection 3.4.2. For r > 2, we

assume that the corollary holds up to r — 1 and use Proposition 3.4.4 and

equation (3.18) to obtain

h(ii,...,ir) = z2[$) p(t\h,---Ar)
t

= Y,{^)2p^k^r)P(k\l^---^-l)
£,k

= £(£(^(«iMr)WNi,...,v-i)
k

^
t

'

= Yjh(k,ir)P(k\ii,...,ir-i)
k

= E^^(1 + ^(2^-^2+^)))pWi'---v-i)
k

1 1

= ^—j(l + ^(2^2h(ii,...,ir-i)-ti(ti2h(i1,...,ir-i)+i2.))).

We now briefly investigate the value of / for small z'i,..., ir.

Approximation 3.4.13

If ii,..., ir are small and £ is large, then P(£|2i,..., ir) « 0.

Motivation:

For r = 2 this follows from Proposition 3.4.1: 21,22 small implies

21+22 < ti; moreover, (i^-lW' (^-W' (|(*+^+i2-*)) and

(i(l9_î7-1î2-£)) are sma^ compared to (^ ); thus, P(£\h,i2) is small. For

r > 2, we suppose that the approximation holds up to r — 1 and use

Proposition 3.4.4:
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P(£\il,...,ir) = YtP(£\k1ir)P(k\iu...1ir-1)
k

« ^2 P(£\k,ir)P(k\ii,...,ir-i) « 0,

k small

where both approximations hold by induction: the first because

P(k\i\,..., ir-i) is negligible for large k, and the second because P(£\k, ir)

is negligible for small k.

Approximation 3.4.14

Ifii,...,ir are small, then f(h,...,ir) ~ 1/Vrrd and f(ii,...,ir) œ

1/Vrrd.
Motivation:

Consider first r = 2. From the proof of points 3 and 4 in Lemma

3.3.13, we have

i -fl-n+12-1 i

f(ii,h) =

^ Y &(*i^2,m)
m=i2

I -ô-ri+12-1 |

and /(21 +1,22 + 1) = - ^2 b(ii + l,i2 + l,m).
m=i2+ l

There is one term more in f(ii,i2) than in f(ii + 1,22 + 1), namely

|fe(2i,22,22), which is equal to %(ti - h - «2) (?+**)/{#+J- For small

iii *2j by Stirling's approximation of the factorial [7], this is approximately

equal to /l~'&(i ^ )%1+%2^2/ti, which is small compared to l/\frrti. The

terms that appear in both sums can be compared by means of the ratio

b(ii -\-l,i2-\-l,m)/b(ii,i2,m) (equation (3.11)). For small m, this is small

compared to 1, but b(ii,i2,m) is also small so the terms for small m do

not differ much. The terms that really influence the value of / are those

with m large; but for these b(i\ + 1,22 + l,m) and b(ii,i2,m) are almost

equal. Thus, f(h,i2) and /(21 +1,22 +1) are almost equal for small 21,22-

Similar reasoning applies for f(ii,i2 + 2) and /(21 + 2,22). Hence, for

small 21,22, modifying 21 and 22 does not change the value of / much. But,

by Lemma 3.3.7 and Stirling's approximation, f (0,0), f (0,1) ~ l/s/rrd.
Thus, f(ii,i2) ~ l/\/7n? for small 21,22. Now, because f(ii, i2)—f(h, i2) =

iii2/ti2 <C l/v^, we also have that f(h,i2) ~ 1/V^ti for small i\,%2.
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For r > 2, suppose that the approximation is valid up to r — 1. Then,

by Proposition 3.4.7,

f(ii,...,ir) = ^2 f(k,ir)P(k\ii,.. .,ir-i)
k

~ ^2 f(k,ir)P(k\ii,...,ir-i) ~ -p= J] P{k\iiT--,ir-i)
k small

v k small

— VP(fc|2'i,...,2r_i) =
-==,

Trti *-£ Vrrti

where the first and the last approximation follow from Approximation

3.4.13 and the second approximation from the fact that the approximation

to be proved holds for r = 2. Finally, f(ii,...,ir) ~ 1/V7n# because

f(il,...,lr)- f(il,...,ir) = fX---Xlf <1/VÄ Ü

In Approximations 3.4.13 and 3.4.14, we approximated sums over all

k by sums over only the small fc's; one could worry that this contradicts

Lemma 3.4.9. But in the above approximations, we supposed that the 2's

were small, which implies that 2i + • • • + ir-i — (r — 2)ti is negative and

so Lemma 3.4.9 does not apply. (P(^|2'i,..., ir) is zero for negative £.)

We translate this result into the language of imbalances and expectations

to obtain:

Approximation 3.4.15

Let ft be some sample space with 2ti elements, let r > 2 and let ii,..., ir

be integers, 0 < ii,.. .,ir <t ti. Then the average of I(Xi © • • • © Xr)
over all r-tuples of random variables (X1}...,Xr) such that I(Xi) —

ii/ti,..., I(Xr) = ir/ti is approximately 1/^fwd. D

3.4.4 Large Sample Spaces

In a linear cryptanalysis attack, one often encounters threefold sums with

a fairly large imbalance, typically 1/4 or 1/2, and ti equal to a very

large power of two (see Remark 3.3.2). In that case, the lower bound

*fc x • x lf on the average of I(Xi © • • • © Xr) might very well be

(much) larger than l/\frrti. Let r be fixed. Since ti is large, we can

write f(ii,i2) < %ii2/ti2 + l/^frrti for all 2i,22. Then, by the recursion

formula for / (Proposition 3.4.7), a simple induction shows that
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/(••-•-) ^-^^(i^(^¥(-ï(i+ï)-)))
2i ir r — 1

< — —- + —==
-

ti ti Jj^d

Thus, if we let ti go to infinity while keeping ^ constant, the product

^ • • • ^ dominates ^+= and we can conclude that f(ii,..., ir) ~ ^ • • • ^f-
Before giving an example, we state this result, which is important for our

work.

Approximation 3.4.16

Let ft be some sample space with 2ti elements, let r > 2 and let ii,...,ir

be integers, 0 < z'i,..., ir < ti. Ifti is large enough so that ^ • ^ is much

larger than 1f=, then the average of I(Xi © • • • © Xr) over all r-tuples of

random variables (Xi,...,Xr) such that I(Xi) = ii/ti,...,I(Xr) — ir/ti
is approximately ^ • • • ^. D

Example 3.4.17

We cannot generally compute f(ii,..., ir) for large ti in practice, but we

can show for small values of ti what happens as ti increases. Let r = 16 and

(/(Xi),/(X2),...,7(Xr)) = ^(3,4,5,7,9,11,12,12,14,16,17,21,23,28).
The product of the imbalances is approximately 4.29 * 10-8. For ti = 32,

the average of I(X\ © • • © Xr) is approximately 3.13/32, for ti — 64, it

is approximately 4.47/64, for ti = 128, it is approximately 6.35/128, and

for ti — 256, it is approximately 9.00/256. One sees that as ti increases,

the average decreases. As ti goes to infinity, the average converges to

approximately 4.29 *10~8.

And what happens to h(ii,..., ir), the average of i~2(Xi © • • • © Xr),
2 -2

as ti increases? By (3.15), we have h(ii,i2) « ^-^ = 72(Xi)i"2(X2) for

large ti. The recursion formula (3.22) for h implies that h(ii,...,ir) «

•2 -2

h
. . .

K
_

t2 ( v\ T2
1?2
=

P(Xi)
• • •

F(Xr) for large ti.

Implication for the piling-up approximation: In this subsection, we

have seen that, for large ti, the average of I(X± ©• • -©Xr) is approximately

equal to I(Xi) • I(Xr) and that the average of I2(Xi © • • • © Xr) is

approximately equal to /2(Xi) • • -72(Xr). Although this assertion is not
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precise and does not give a quantitative value for the variance, it allows

us to say that for large ti, I(X\ © • • © Xr) is approximately equal to

I(Xi) • I(Xr) in most cases, even when the random variables in question

are not independent.

3.5 Letting The Number of Random Variables

Go To Infinity

In this last section of the chapter, we investigate the behaviour as r goes

to infinity of the probability distribution of I(Xi © • • • © Xr), given that

I(Xi) — ^-,..., I(Xr) — tf. We begin with an example.

3.5.1 An Example

Example 3.5.1

Table 3.2 gives some examples of the value of f(ii,..., ir) and h(ii,..., ir)
for 1 < r < 16. We abbreviate the vector (21,22,23,24,25,26,27,28,29,210,

in-, ii2i *i3j *14> *i5> iio) as 2. The 2-sequences are chosen increasing for con¬

venience, but we recall that / and h are symmetrical in all their arguments.

(a) ti = 32, 2 = (0,0,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0);

(b) ti = 32, i = (2, 2,4,6,6,6,8,8, 8,8,12,12,12,12,12,12);

(c) ti = 32, 2 = (3,3,3,3,5, 5,6,7, 7, 7, 7,7,8,8,8,8);

(d) ti = 32, 2 = (20,22, 22, 22, 28, 28, 28,29, 29, 29,30,30,30,32,32,32);

(e) ti = 133,2 = (11,11,13,14,17,21,22,34,34,34,40,56,59,64,78,90).

The results suggest that the sequences (f(ii, ..,ir)) and (h(i\,...,ir))
converge and that, if the arguments ik are not too close to ti, then the

convergence is very fast. How can this be explained?

The convergence of the values of h can be explained by the recursion

formula (3.22). Let (ir)r&i be some sequence of integers, 0 < ir < ti.

Define

Then, by (3.22), h(ii,...,ir) = F(h(ii,.. .,V-i), v), r >2. Now
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2i2 — ti
F(x,i) -F(y,i) = x-y and F(x,ti)=x, all x,y in E.

The absolute value of .J^-t) *s smaher than 1 for 0 < 2 < ti, and

equal to 1 for 2 = ti. The Banach Fixed-Point Theorem [28] tells us

that, for i < ti, F(-,i) has exactly one fixed point and that the itera¬

tion xn+i = F(xn,i) converges to that fixed point for any starting value.

The fixed point is easily shown to be 1/2?? for all 2; thus, the sequence

(h(ii,..., ir)) converges to 1/2$ if infinitely many ik are smaller than ti.

(The speed of convergence might vary from sequence to sequence.) Since

h(i\,...,ir-i-,ti) = h(ii,...,ir-i), the convergence halts for one step each

time ik — ti occurs.

It is more complicated to showT the convergence of / because we have

no recursion formula similar to that for h. We begin our investigation of

this matter by going back to the recursion formula for P(£\ii,..., ir), the

conditional probability that I(Xi © • • • © Xr) = £/ti given that I(X\) =

ii/ti,...,I(Xr) = ir/ti (Proposition 3.4.4).

3.5.2 The Convergence of The Probability Distribu¬

tion Explained With Markov Chains

In what follows, we consider a sequence (2r)reN of integers, 0 < ir < ti,

specified in advance, that has infinitely many terms different from ti. For

each r > 1, let W(r) be a random variable with probability distribution

PW(r)(£) = P(£\h, ..,ir)- Note that W(r) takes values in {0,1,.. .,#}.
The sequence (W(r))r is a discrete-time stochastic process. Because

P(£\ili...,ir) = y%2P(£\k,ir)P(k\i1,...,ir-1)1 (3.23)
k

we have

PW(r)(£) =Y,P(£\k^r)PW(r-l)(k)- (3.24)
k

In general, (W(r))r is not a Markov chain. But we can imagine a non-

homogeneous Markov chain (V(r))r with values in {0,1,..., ti} and transi¬

tion probabilities Pv(r)\v(r-i)(^\k) = Aki(ir), where Aki(ir) — P(£\k,ir).
Then we have Pv^r)(£) = ^kP(£\k,ir)Pv(r-i)(k)- This implies that, if

W(0) and V(0) have the same probability distribution, then W(r) and
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V(r) also do for all r > 1. Our goal is to show that, if infinitely many of

the ir are smaller than ti, then (V(r))r has two steady-state distributions

and to calculate these. This will explain the convergence of f(ii,.. .,ir)
observed above. We denote the states of V by 0,.. .,ti, where "being in

state i" means that V(r) — i. Then Au(ir) — P(£\k,ir) is the probability

of going from state k to state £. We do all our calculations for V(r) and

pass the conclusions allowed on to W(r). We first show that the possible

states at a particular "time instant" all have the same parity.

Lemma 3.5.2

If £ and ti + ir + k do not have the same parity, then Aki(ir) = 0.

Proof:

This is a restatement of Remark 3.4.2. D

Because Pw^(£) = P(^|2i) = öt^, W(0) is a constant. Thus, at

all time instants r, W(r) has parity determined by i\,.. .,ir. If we take

V(0) = ii, the same holds for V(r).
To facilitate the study of the behaviour of V(r), we consider the states

with odd and even parity separately. We rewrite the transition matrix

A(ir) with the rows (resp. columns) corresponding to the even-parity

states in the upper (resp. left) half and the rows (resp. columns) corre¬

sponding to the odd-parity states in the lower (resp. right) half. We ob¬

tain in this manner a transition matrix E(ir) subdivided into four matrices

Eee(ir), Eeo(ir), Eoe(ir), and E00(ir), where Eee(ir) is the submatrix that

governs the transition from the even-parity states to the even-parity states

as time increases from r — 1 to r, Eeo(ir) is the submatrix governing the

transition from the even-parity states to the odd-parity states, and so on,

i.e.,

-&ee \}r) *-JeoV'r)

t^oe V'r) -L-Joov,r)

We choose to begin the indices of the submatrices at 0. For instance, the

2, j-entry of Eeo(ir) is P(2j + l|22,2r)- The fact that Aki(ir) = 0 if £ and

ti + ir-\-k have different parity implies that, for all r, Eee(ir) = E00(ir) = 0

if ir = ti + 1 mod 2 and Eeo(ir) = Eoe(ir) = 0 if ir = ti mod 2. We also

wish to differentiate between ti even and ti odd because the transition

matrices are not the same. We reserve the notation E(ir) only for ti even

and write 0(ir) for the transition matrix when ti is odd.
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We now concentrate on the matrices Eee(ir),Eeo(ir),..., O00(ir). Be¬

cause 0 < k, £ < ti in P(£\k, ir), their indices run from 0 to some maximum

which is either ti/2, (ti — l)/2 or ti/2 — 1. The form of these matrices,

which depends only on ir and on the parity of ti, will explain the conver¬

gence phenomenon encountered. We show in the appendix to this chapter

that, for any ti and any ir-i,ir < ti, each of the matrices Eee(ir), E00(ir),

Oee(ir), 00o(ir), Eoe(ir-i)Eeo(ir), Eeo(ir-i)Eoe(ir), Ooe(ir-i)Oeo(ir) and

Oeo(ir-i)Ooe(ir), if it is not the zero matrix because of the parity of

ir-i, ir and ti, induces a homogeneous, irreducible, recurrent and aperiodic

Markov chain (Proposition 3.A.1). We now calculate the corresponding

unique stationary distribution, which is at the same time their steady-state

distribution [13]. We first make the following definition.

Definition 3.5.3

• For ti even, let

ei :=
7^(U2T\, (""!,.,[-; M"; I 1 and

e2

22tf-2 y2\ti
1 ff 2ti

22tf-2 I Itf _]/> Itf _3

• For ti odd, let

oi := i^iirjjrj,.,!:),!:)) and

o2 :=

These vectors are probability vectors, i.e., their components are non-

negative and sum up to one. They have the following property.

Lemma 3.5.4

For any ti and any ir, we have, if the matrices below are non-zero:

1. e-iEee(ir) = ei, e2Eoe(ir) = e1, exEeo(iT) = e2, e2E0O(ir) = e2 if ti

is even;

2. Oi000(ir) = Ol, o2Oeo(ir) = Oi, OiOoe(ir) = o2, O20ee(ir) = o2 ifti

is odd.
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Proof:

We show that e2E00(ir) — e2 and that eiEee(ir) = e±. The proof of

the other equalities is similar. These matrices are non-zero if and only if

ti and ir are even.

The easier proof is that of the equality e2E00(ir) = e2. We have to

show that Etilo1 P(2* + !|2 + l,*r)e2,m = e2,s for 0 < s < ti/2 - 1.

Let

/ ti + 2m + l \f ti-2m-l \

mW :-

\j_^ + 2m + l+ir + 2s + l)J\±(ti-2m-l-ir + 2s + l)J '

T n ,=
( ti + 2m + l \f ti-2m-l \

'~

\W Jr1rn + l+ir-2s-l))\\(ti-2m-l-ir-2s- 1)) '

Then, according to Proposition 3.4.1,

( Q2^. \P(2s + l\2m + l,ir) =
yd + 2ry

r iSm(s) + Tm(s), 2m + 1 + ir < ti and 0 < 2s + 1 < ti - 2m - 1 - i

Sm(s), otherwise.

We note also that Tm(s) = SL(m+1)(s). Let tn = ^ïhïïU_2n-i)- Then

e2,m = *m for m = 0,1,..., ti/2 — 1 and im = i_(m+i) for all integers m.

Let first ^ - s > 1. Then

f 2ti \
'&,2~1

(ti + i) ^ ^(2s©l|2m+l,2r)e2)î
m=0

2^-1-8 f-1

^ (5m(s)+rm(s))im+ ]T 5m(s)*r
m=0

^^-1-5 f-1

/ J
{Sm(s)tm + 5-(m+i)(s)t_(m+i)) + 2_^ Sm(s)tm

171=0 m=—ft-*-— s

ö._l

2
-1-

/ _,
d7n\s)tr

l r
— -d

i

Let now ^ - s < 0. Then (**. )p(2s + l\2m + l,ir)e2,m = Sm(s) for

0<ra<f-lso that
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/ 2ti \
2 2 2

( J ^ P(2s +l|2m +l,2r)e2,m = ^ Sm(s)tm = ^ 5m(s)tm,

where we used the fact that Sm(s) — 0 for m < hl^- + s. Because of this

and because tm = 0 for m > f, we have

2
-1

/ v
&m\s)tm — / j

bm\S)t

1
V f

#+2m+l

\/

i?-2m-l

^ (
2$

92i?-2 ^
^(19+2m+l+^r.+2s+l)y U(i?-2m-l-îr+2s+l

E/ tf+2m+l
\/

tf-2m-l W 2V \

^f19+2m+l+^T.+2s+l)y U(i?-2m-l-tT.+2s+l)/ U-2m-l/

ö-2 Z^ U (^f2m-Hr+2s+2), ±- (iH2m-tT--2s), \(i?-2m-ir+2s), § (tf-2ra-^r-2s-2)

1 / 22? W 2i? \ / 2ti \ f 2ti
"

22^2 U _ 2S - 1 j U + 2J
_ Htf + 2r)

~ ^ U + *r,

where in the third equality we used the fact that some factorials cancel

each other and where in the fourth equality we used Proposition 3.A.2

with a = 2ti, b = ^ + s + 1, c = ^ -s,d= ^- + s. Notice that up

to the last equality actually the equations hold for any integer s.

The proof of e\Eee(ir) = ei is a little more complicated, although

similar. We have to show that ^2m=o p{2s\2rn^r)&i,m = ei)5 for

0 < s < f. Let

( ti + 2m \f ti-2m \
bm{S) ''~

\±(ti + 2m + ir + 2s)J\±(ti-2m-ir + 2s)J

=

/ ti + 2m \f ti-2m \

m[S) '

U(tf + 2m + ir - 2s)J U(tf -2m- ir - 2s)J
'

Then, according to Proposition 3.4.1

P(2s\2m,ir) =
2ti \

ti + ir)

Sm(s) 4- Tm(s), 2m + ir < ti, 0 < 2s < ti — 2m — ir;

Sm(s), otherwise.

We note also that Tm(s) — S-m(s). Let tn — 22j_2 ($%n) for n ^ 0 and

*o = |pra (2/)- Then ei,m = tm for m = 0,1,..., § and im = t_m for

all integers m. Let now s > 0 and ^^^ — s > 0. Then
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20
- m

ß + ir,^ ' m=0

S2 P(2s\2m,ir)ei,1

^^~S 0/2

= ^2 (5'm(s)+Tm(s))tm+ ^2 Sm(s)tm

^-s 0/2

—

/ J
\bm{S)tm + b—m{S)t—mJ + y

^
ùm\S)tm

tÂ 1 ^ ( 2ti \

2^ Sm(s)tm =

^9^2 Z^ ^m^Htf-2m)
m=-r2 hs 771=-^ \-s

where in the last equality we used the fact that, on its left, So(s)to is

counted twice but t0 is the only one of the t^s that has a factor 1/2.

Suppose now that ^ - s < 0. Then (^ir)P(2s\2m,ir) = Sm(s) for

0 < m < ti/2 so that

0/2 0/2

(#+ ) S F(2s|2m,2r)ei,m = ^ Sm(s)tm
\ r/ m=0 m=0

0/2 0/2

/ >

^(5)^771 -

22l?_2 Z^ 5m(s)l
22? \

2?-2m/'
m^-1-?; \~S m

where we used the fact that Sm(s) = 0 for m < ^^^ + s. Because of this

and because [^22m) = 0 for m > |-, we have

*_2 E 5-(5)^_2mj -

22^-2 E5wL_2m)

LPMPM
=
J 2M

=
eiJ w

2-2\ti-2s \ti + ir \ti + ir 's\ti + i

where in the third last equality we used Proposition 3.A.2 again. For

s = 0, we have, by Proposition 3.4.1, P(0|2ra,2r) = Sm(0) so that
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'

2ti

^ti + ir

v 0/2 0/2 0/2

J^P(0|2m,îr)ei)m = ^2 Sm(0)ei^m = ^2 Sm(0)tm
'
m=0 771=0 777=0

=

g
E Sm^WZ2{ti-2m) =

2 22^2 E5-(°)(
m=-0/2

1 1 /2^ 22?

2220-2\ ^ / Itf + Î,
*0

'

22?

tf + 27

mGZ

ei,o

22?
N

ti -2m.

'

2ti
N

In particular, we have eiEeo(ir-i)Eoe(ir) = ei, e2Eoe(ir-i)Eeo(iT) —

e2, oi<9oe(2r-i)Oeo(2V) = oi, and o20eo(ir-i)0oe(iT) — o2. We have

found the stationary distribution, and thus the steady-state distribution

when 2r-i,2r < ti, of the eight implicitely defined homogeneous Markov

chains mentioned above.

3.5.3 The Convergence of The Average

By Lemma 3.5.4 and because E(ir) and 0(ir) are either of the form

V °

we have:

0
or of the form

0

0
for different parities of ti and ir,

Corollary 3.5.5

Let ti > 1 and ir be integers, 0 < ir < ti. Then

• Forti even, ir even, (e1,0)E(ir) = (ei,0) and (0,e2)£'(2r) = (0,e2).

• Forti even, ir odd, (e1,0)E(ir) = (0,e2) and (0,e2)-E(2r) = (ei,0).

• Forti odd, ir even, (o2,0)O(ir) = (0,Oi) and (0,o\)O(ir) = (o2,0).

• Forti odd, ir odd, (o2,0)O(ir) = (o2,0) and (0,o1)O(ir) = (0,c»i),

where 0 denotes a sequence of sufficiently many zeros to make the multi¬

plication well defined. D

Now let ti be even. The conclusion for ti odd are similar. For any

r > 1, the product E(ii) • E(ir) is either of the form
A

0

the form
A

0

0 0

B £Joe\J'r)

-CJeo\}r)

0

B
or of

0
where A (resp. B) is a pro¬

duct of matrices that are either the identity matrix or matrices of the form

Eee(i) or Eeo(i)Eoe(j) (resp. E00(i) or Eoe(i)Eeo(j)). By Corollary 3.A.10,
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as r increases, pA (resp. pB) converges to e\ (resp. e2) for any start¬

ing probability distribution p. This implies that (p, 0)
A

0

0

B
(resp.

(0,P)
A

0

0

B
) converges to (ei,0) (resp. (0,e2)) for any probability

distribution p. Moreover,

0
(ei,0)

(0,e2)

£JoeV/r)

0

^eov'r)

t^oeytr)

0

0

= (0,e2) and

= (ei,0).

It follows that, if p is the probability distribution of a constant random

variable, any sequence (pE(ii) • E(ir))r such that infinitely many ir are

smaller than ti has the two accumulation points (ei, 0) and (0, e2).
Thus, for any sequence (ir )r that contains infinitely many

terms smaller than ti, the sequence of probability distributions

(pi(x1e:-®xr)\i(x1)i(x2)--i(xr)(Vi>fi---,tf))r has the two accumula¬

tion points (eio,0,en,0,ei2,0,...) and (0,e20, 0, e2i, 0,e22, • • •)• (This is

after rearrangement. Recall that e\ is a probability distribution on the

even values beginning with 0, and that e2 is a probability distribution

on the odd values.) Hence, the sequence of averages (f(ii,...,ir))r has

two accumulation points, namely the expected values of these two distrib¬

utions. The expected values are computed below, based on the following
Lemma.

Lemma 3.5.6

For any integer ti > 1,

1 V^ k( 2d \ - =(2r9\.
x-

2^k=ihj\-d-k)
~ 2I0J'

For any ti > 2 even,

2-E^2*(^)=<_-22);

3- EtLV(2k + l)(^k+1)) = Ä(Xt). ^ich is equal to #{^).

For any ti > 3 odd,

5- E^1,/2(2fc)(/<L) = (* - 1) ("£?), "*** fr equal to 0("Z?).
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Proof:

1. With Gosper's method [14], we find T(k) such that T(k + 1) - T(k) =

k(2»k), namely T(k) = -1(0 + *) (/_*J. Then HL *(*-*) =

ELo *(*-*) = r(i? + l) -r(0) = -T(0) = f (2/), since T(0 + 1) = 0.

2. With Gosper's method, one finds T(k) such that T(k + 1) - T(k) =

2k(2k), namely T(k) = -ti(,%~2_2). Then T(f + 1) = -ti{2%2) = 0

and the sum is equal to T(§ + 1) - T(0) = ^ (2/T22)

3. The left side of the equation is the left side of 2. substracted from the

left side of 1.

4. Again with Gosper's method, one finds T(k) such that T(k + 1) —

T(k) = (2*+l)(,_(22*+1)), namely T(k) = -i?(„f2^i)- NowT(^) =

-ti(2l~2) = 0 and the sum is equal to T(^±±) - T(0) = ti(2^?)-

5. The left side of the equation is the left side of 4. substracted from the

left side of 1. D

Corollary 3.5.7

1. The expected value of (e10, 0, en, 0, ei2, 0,...) is (2/j22) /22i}-2 ;

20-2
.

20-2

20-2
.

2. The expected value of (0, e2o, 0, e2i, 0, e22, • • •) is P/lf) /2

3. The expected value of (0, oio, 0, on, 0,012, • • •) is (%I2) /2

4. The expected value of (o20, 0,021,0, 022, 0,...) is (2$I2) 2

Proof:

Divide the last four identities of Lemma 3.5.6 by ti22,&~2. D

With Stirling's approximation to the factorial, one shows that both

(2/r22) /^~2 and (2/Ti2)/22l?-2 behave like 1/VrZd as ti becomes large.

In particular, for ti = 32, we have (2/j22) h2i}-2 « 0.98029/v/7n? and

(2£l?) /22*~2 « 1.01191/vÖ. One obtains the data given in Table 3.2.

3.5.4 Implication For The Piling-up Approximation

We saw at the end of Section 3.4 that the average of I2 (Xi © • • -®Xr) given
I(Xi) — ii/ti,.. .,I(Xr) = ir/ti converges, as r increases, to 1/22?. Here

we have seen that the average of I(X\ © • • © Xr) converges to l/\frrti.
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Thus, the variance of I(X\ © • • • © Xr) converges to ^(| — ^) and the

normalized variance, defined as the variance of X/E[X], to tt/2 — 1 ps 0.57.

Thus, for ti fixed, if r is large enough and sufficiently many of the

numbers i\,..., ir are smaller than ti, then for random variables Xk with

I(Xk) — ik/ti for all k, I(XX © - - • © Xr) is about l/\frrti. Because the

normalized variance is approximately 0.57 and because I(Xi) I(Xr)
is much smaller than l/\frrti if r is large enough, in almost all cases

I(Xi © • • • © Xr) > I(Xi) • • I(Xr). For this reason, it is not too risky to

approximate I(Xi © • © Xr) with I(Xi) I(Xr) if r is large.

3.6 Conclusions

We saw in Subsection 3.4.4 that, when the sample space on which the ran¬

dom variables are defined is large, then I(X± © • ©Xr) is approximately

equal to I(Xi) I(Xr) in most cases, even if the random variables in

question are not independent.

Moreover, we concluded in Subsection 3.5.4 that, for any sample space,

if r is large enough, then the approximation I(X\ © • • • © Xr) ~

I(Xi) • I(Xr), although it is not actually valid, errs on the safe side

from the linear cryptanalysis point of view.

Thus, in linear cryptanalysis, by Remark 3.3.2 and Subsection 3.5.4,
one can safely approximate the imbalance of Ti © • • © Tr-i by the pro¬

duct of the imbalances of T±,..., Tr-i, even if the threefold sums are not

independent.

3.A Proofs

Proposition 3.A.1

For any integers ir-i,ir < ti, each of the matrices Eee(ir), E0O(ir),
^ee\^r)i ^oo\^r)j ^JoeV,r—l)^JeoV'r)j £Jeov,r — l)-£Joev/r)i ^oe\}r— l)^'eoyjr)
and Oeo(ir-i)00e(ir), provided it is not the zero matrix because of the

parity ofir-i,ir and ti, is the transition matrix of a homogeneous, irre¬

ducible, recurrent and aperiodic Markov chain.

Proof:

In all cases, we use from Lemma 3.4.3 the fact that P(£\ii,i2) — 0 if

and only if £ > ti — \ii — i2\ or £ < ii -\-i2 — ti.

ti even, ir even

Here Eeo(ir) — Eoe(ir) = 0 so that E(ir)
J^ee \}r)

0

0

£Joo\1'r)
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Eee(ir) : (Eee(ir)) = P(2s\2m,ir), m,s = 0,...,ti/2 and

2s < ti - 2m + ir

(Eee(ir))ms ^ 0 & { 2s < ti - ir + 2m

2s > 2m + 2r - $

272 + S < 2

<S> s — m <

m — s <

-â+ir
2

0-y
2

0-V
— 2

so that Eee (ir) has the following form (stars stand for non-zero entries):

O-»/ *

-^Jeey,r )

0-

0

f ^V o

E00(ir) : (E0O(ir)) = P(2s + l\2m + l,ir), m,s = 0,.. .,ti/2-l <md

2s + 1 < 2? - 2m - 1 + zr
1

2s + 1 > 2m + 1 + 2r - ti

171 + S <
d+ir

(E00(ir))m^ ^Q& <2s + l<ti-ir + 2m +
l

& s - m < ^^

m — s <

2

— 2
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so that E00(ir) has the following form:

£Joo\1>r) —

f-i->\ o

ti even, ir odd

&-ir
2

I
* 0

0

0**0

t t
t"/-" "1 Of

~2~X ~2

2
x

\ 0

* *

* *

* 0

0 :

0

«- %- - 1

^
2

Here Eee(ir) — E00(ir) = 0 so that E(ir)
0

-t-'oe \1r )

i-Jeo\}'r)

0

Eoe(ir): (Eoe(ir))ms = P(2s\2m + l,ir), m = 0,...,ti/2-l,
s = 0,..., ti/2 and

2s<ti-2m-l + ir

(Eoe(ir))mg ^ 0 & { 2s < ti - ir + 2m + 1

2s>2m-rl + ir-ti

m + s < 0-Hr-l
— 2

^ s-m< ^±i
m-s< ^f^
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so that Eoe(ir) has the following form:

0

^oey-r) —

0-V-l

0

0

/ *

fl-Zr+l
2

I
* 0

0

*

o '• •

'

•

'

: .
* >)c *

0 •• •0**0

t t
V-p -i- 67- 1 J_

2 2

0

2

I

* 0

* *

* 0

0

0/

ir — l

Eeo(ir) : (£eo(2r))ms
s = 0,...,2?/2-l and

= P(2s + l|2m,2r )i m 0,...,ti/2,

'2s-\-l <ti-2m-\-ir

(Eeo(ir))ms ^ 0 & { 2s + 1 < ti - ir + 2m

2s + 1 > 2m + ir ~ ti

<£>

m + s< ^±ip±
s-m< ^^
m-s< ^Mfti
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so that Eeo(ir) has the following form:

0

0^ ( *

^eoV'r) —

0-y+l
->•

È
2

*

0

\o

ti odd, ir even

0-Zr-l
2

I
* * 0

* * * 0

0*0

t
l-r—1

t
2
1

o \

•. o

* *

* *

* 0

0

<-

0/

zr—1
2

Here Oee(ir) = 000(ir) = 0 so that 0(zr) =
0

{J
oey-r )

Ueo\1r)

0

Ooe(ir) : (Ooe(ir)) =P(2s|2m + l,2r), m, s = 0,..., (ti - l)/2 and

2s < # - 2m - 1 + 2r

(0oe(2r))ms 7e 0 <£> { 2s < 2? - 2r + 2m + 1

2s>2m + l + ir-ti

m + s< ^^1
4» s -m < "d~%r+1

m — s <

— 2

0-Zr-l
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so that Ooe(ir) has the following form:

^Joe\1r) —

0-Zr+l

2

0

0-1

2

I
0 \

. o

* *

* *

* 0

0

2 i2L
r^

2
-1

oy

Oeo(ir) : (Oeo(tr))ms = P(2s + l|2m, ir), m, s = 0,..., (ti - l)/2 and

2s + l<ti-2m + ir

(Oeo(ir))ms ^0&l2s + l<ti-ir + 2m

2s + l>2m + ir-ti

m + s< Ê±îr=±

<£> s -m < r&-^~1

m s<

— 2

0-îr
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so that Oeo(ir) has the following form:

0-ir-l 0-1

^eo\^r) —

ti odd, ir odd
, vr

Here Oeo(ir) = Ooe(ir) = 0 so that 0(ir) =
{Jeev'rj

0

0

UooK^r)

Oee(ir) : (Oee(ir))mq = P(2s\2m, ir), m, s = 0,..., (ti - l)/2 and

2s < ti - 2m + ir

(Oee(ir))m/s ï 0 & { 2s < ti - ir + 2m

2s > 2m + ir - ti

m + s <
0+ir

— 2

4» s -m < ^^
m — s <

0-V
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so that Oee(ir) has the following form:

Uee \}r) —

0

;

0->/ *

0— j-r
2

X^\ o

*

*

0

*

0**0

t t
jr— 1 Jr+ 1

0—V
2

0-1

2

* * 0 ••• 0 \

•. 0

* *

* *

* 0

0 :

* 0

j ^r -l

j-r+l
2

oy

000(ir) : (000(ir))ms =P(2s + l|2m + l,2r), m, s = 0,..., (tf - l)/2
and

m + s< ^±v -1

(00O(2r))ms ^0<^ <j2s

+

l<#-2'r
+2m+

l & s_m<^

2s + 1 < ti - 2m - 1 + i7

2s
+

1 < ti - ir
+2m+

1

2s + 1 > 2m + 1 + ir - ti m — s <
0-y

so that 000(ir) has the following form:
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0 /

0

Uoov'r) —

0-tT
->• *

0

0-1
->• Vo

0-ir
2

* * *

0*0

t
ir—l

0

0

0-1

2

4-

* 0

* *

* 0

0 :

oy

ir— 1

The matrices Eee to 000 depend only on ti and ir. Each of the four ma¬

trices Eee(ir),E00(ir),Oee(ir) and 000(ir), when ti and ir have the same

parity, can be viewed as transition matrices of a homogeneous Markov

chain on the even-parity states and the odd-parity states, respectively
(each of these matrices defines implicitely a Markov chain). From the

form of these matrices, it can be easily seen that, if ir < ti, this Markov

chain is irreducible, recurrent and aperiodic. (Irreducibility is obvious.

The Markov chain is recurrent because any two states are reachable from

one another, even if the largest index with a non-zero element in the first

column of the matrix is smaller than the smallest index with a non-zero

element in the last column. Aperiodicity follows from the fact that any

two states are reachable from one another and that there is at least one

state that has a self-loop, i.e., it is reachable from itself.) The other four

matrices Eoe(ir),Eeo(ir), Oeo(ir) and Ooe(ir), which are non-zero when ti

and ir have different parities, are the ones that make us leave the odd-

parity states for the even-parity states or vice-versa. Because of this and

because of dimensional considerations, we cannot consider them as tran¬

sition matrices of a homogeneous Markov chain. However, we can do this
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for the products Eoe(ir^i)Eeo(ir),Eeo(ir-i)Eoe(ir),00e(ir-i)Oeo(ir) and

Oeo(ir-i)Ooe(ir) (which are non-zero only when 2r_i
= ir = ti-\-l mod 2),

since they yield quadratic matrices that leave the state parity invariant.

For instance, the form of EeoEoe is as follows.

Eeo(ir-i)Eoe(ir) —

-I—(

0

min(^,$ — ir+ir-l \ 0
> 2

max(0, î=ij=i - f )

mm(f,2

2

0 0 -lr-1

)

=5»M

+

«-

o3

<-
<M

• i-H

a

The other three products are similar. Thus, they implicitely define a

homogeneous, irreducible, recurrent and aperiodic Markov chain, either

on the even-parity states, or on the odd-parity states. D

Proposition 3.A.2

For any positive integer a and any integers b,c,d>0,

mez

a a

b + m, c + m, d — m, a — b — c — d — m

a

^a—c—dj \a—b—dj

(3.26)
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Proof:

The lemma holds if b + d > a or if c + d > a because then both sides

are zero. Otherwise, (3.26) holds for a — 1: it suffices to verify (3.26) for

the cases (b,c,d) = (0,0,0), (0,1,0), (1,0,0), (1,1,0), (0,0,1); in these

cases, the computation is easy. Now denote the left side of (3.26) by S(a)
and the multinomial coefficient by t(a, m). We show that S(a + 1)/S (a) —

(a + 1)2/(a + 1 — b — d)(a + l — c — d). This is enough because the right side

of (3.26) has the same quotient for two successive values of a. To this end,
we use Zeilberger's method [52], a generalisation of Gosper's, to find T(m)

such that T(m + 1) -T(m) = t(a + l,m) - {a+1_b[a^+1_c_d) t(a,m),

namely

T(m)
=

(m + b)(m + c)(a + l)
[m)

(a + l-b- d)(a + 1 - c - d)(m -a-1 + b + c + d)

xf ° ).
\b + m, c + m, d — m, a — b — c — d — mJ

Now because T(m) = 0 for m outside of a certain range, we have

0 = ^(T(m + 1)-T(m))
mGZ

(a

+

1)'Er / -i \ va + -u / \'
\t(a + l,m) -

-.
—

-t(a,m)
Lv

J

(a+1 -b-d)(a + l-c-d)
v

.

Ei
(a + 1)2

\-^ /t(o +
l,m)-7 7 A

'

,

-> t(a,
V ' '

(n-l-^—h — r^\(n±^— n — A\ £-^l v '

(a +
1
-b-d)(a + l

-c-d)

= S(a + 1)--
u

fc*1)
1

-5(a).v J

(a + l-b-d)(a + l-c-d)

We now prove the convergence property mentioned on Page 66. In the

following, indices of matrices and vectors begin with zero.

Definition 3.A.3

Let a, b and N be nonnegative integers with a < N and b > 2N — a. A

stochastic matrix A is of type (a, b, N) if it is an (N + 1) x (N + 1) matrix

such that Aij / 0 if and only if \i — j\ < a and i + j <b.

Lemma 3.A.4

Let A and A be stochastic matrices of type (a,b,N) and (a,b,N), re¬

spectively. Then the stochastic matrix AÄ is of type (min(iV,a + a),
mm(2N,a + b,b + a),N).
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Proof:

We have (AA)ki — Y^mAkmAm£, which is positive if and only there

exists m such that all the following inequalities are satisfied:

k — m < a

Akm > 0 <=> (m — k < a

m > k — a

m < k + a

k + m < b

m — £ < ä

Ami >0 <$ t£-m<a

m + £<b

im
> max(fc — a,£ — ä

m < min(fc + a,i + a).

m < mm(6 — k,o — £)
m \ c -r a

vm < b-£

(3.27)

From the first set of six inequalities follows that

k-£<a + a, £ - k < a + ä, k + £<a + b, and k + £<ä + b. (3.28)

On the other hand, from the inequalities (3.28) follows that

k-a<£ + ä, £-a<k + a, £-a<b-k, and k-a<b-£. (3.29)

Moreover, because a + b, a+b > 2N and k,£ < N, we also have £ — a < b—£

and k — a <b — k. From this and with (3.29), we have

max(& — a, £ — a) < mm(k + a,£ + a) and

max(fc — a,£ — a) < min(6 — k, b — £),

and there is at least one m that satisfies the last three inequalities
in (3.27). Hence, (AÄ)kl ^ 0 if and only if (3.28) is satisfied, i.e., if

and only if \k — £\ < a + à, k + £ < a + b, and k + £ < a + b. But

\k — £\ (resp. k + £) cannot be larger than N (resp. 2iV) so AÄ is of type

(min(N, a + a), min(2iV, a + b,b + d),N). D

Lemma 3.A.5

Let a, a, N, b, b be positive integers with a, a < N, b > 2N — a and

b > 2N — à. Consider the recursion

ar+i = min(iV, ar +a\a), br+i = min(2iV, ar + b\b, br + a\ä) (3.30)

with the initial conditions

ai = a\ä, bi = b\b, (3.31)
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where in both equations a\a (resp. b\b) means that either a or a (resp.
either b or b) can occur; more precisely, at each step, either

ar+i = mm(N, ar + a) and br+i = min(2iV, ar + b,br + a) or (3.32)

ar+i = min(iV, ar + a) and br-\-i = min(2iV, ar + b,br + a). (3.33)

Let k0 := max(rf1, Tf ])• Then a2ko = N and b2ko = 2N.

Proof:

The proof consists of the following steps:

1. for all r > 1, ar < N =>» ar+i > ar;

2. for all r > 1, ar = N =^ ar+i = N;

3- a3ko = N and b3ko = 2N.

Proof of the three parts:

1. If ar < N, then either ar+i = N > ar or ar+i = ar + a\ä > ar.

2. If ar = N, then ar+i = min(iV, N + a\a) — N.

3. Without losing generality, let a < a. Then k0 = |"^]. We have ai > a,

and by a simple induction one shows that an > an for n < ko. Then

afc0 = min(7V,afc0_i + a|a). But a^0-i + a\a > a(ko — 1) + a\a >

a(ko — 1) + a = ako > N. Thus, ako = N, and, by 2., a3k0 — X.

Furthermore, we have bk0+n > min(2iV, bko +an) for n > 0: this is true

for n — 0 since bko < 2N and hence bk0 > min(2Ar, bk0). Let it be true

for some n\ then

bko+n+i = min(2iV, ako+n + b\b, bko+n + a\a)
= mm(2N,N + b\b,bko+n + a\ä)

(from above and by 2. of Lemma 3.A.5)

= min(27V, bk0+n + a\a) (since b,b > N)

> min(2A^, bko+n + a) > min(2iV, min(2iV, bko + an) + a)
= mm(2N,2N + a,bko+a(n + l)) = mm(2N,bko + a(n+ 1)).

Then b3k0 > min(2iV, bko + 2ako). Because 2a&o > 2N, we have bsko —
2N. D

Corollary 3.A.6

Let A and A be stochastic matrices of type (a, b, N) and (à, b, N), respec¬

tively. Then there exists m £ N such that any product of m matrices

containing only A's and A}s gives a matrix with no zero entry.
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Proof:

By Lemma 3.A.4, any partial product of A's and A's involving n mul¬

tiplicands yields a matrix of type (an, bn,N), where an and bn are defined

by (3.30) and (3.31). [When the (r + l)-st matrix in the product is A, then

(3.32) is applied, otherwise (3.33) is applied.] But then, by Lemma 3.A.5,
a3ko = N and b3ko = 2iV, where k0 = max(ff], [yD- Thus, the product
of 3k0 matrices yields a matrix of type (N,2N,N), which has no zero

entry. Hence, it is enough to set m = 3&o- ^

Lemma 3.A.7

Let A be a stochastic matrix with no zero entry. Denote by \\ \\i the

vector norm defined by \\x\\i = £^ \xt\. Then there exists 0 < A < 1 such

that ||£cA||i < À • ||x||i for all vectors x with Y2tx% — 0.

Proof1:

If xA = 0, then the inequality is satisfied for any À. Let now xA ^ 0. Let

Amin := min^j^j. This is positive and upper-bounded by 1/n. Let H

be the matrix all entries of which are equal to Amm, and let G — A — H.

All entries of G are nonnegative. Then xH = 0 and xA = xG. Further,
we have ||ccM||i < ||#||i • ||-^||i for any matrix M of suitable dimension,
where ||M||i = max, J2 \MV\ [28]. But then

mm
\\G\\i =maxy^|t7„| =maxy^G^ =maxV(iy-imm) = 1—NA

3 3 3

which implies H^Hi = ||a:<?||i < ||a;||i ||G||i = (1 - JVAmin)||a;||i. D

Proposition 3.A.8

Let A and A be stochastic matrices of type (a, b, N) and (à, b, N), respec¬

tively, that are the transition probability matrices of two Markov chains

(Xn) and (Yn) that have the same steady-state distribution n. Dehne the

sequence of matrices (Bn) as follows: Bi = A or Bi — A; then, at each

step, either Bn+i = BnA or Bn+i = BnA. (That is, we consider any

product containing only A's and A's.) Then limn^oo pBn = n for any

starting probability vector p.

Proof:

By Corollary 3.A.6, there exists m G N such that any product B of m

matrices containing only .A's and A's gives a matrix with no zero entry.
By Lemma 3.A.7, for every such matrix B, there exists 0 < X(B) < 1

such that ||#P||i < A(I?) • ||#||i for all vectors x with J2i x% — 0- Since

there is only a finite number of such products, there exists Ax such that

1I thank Pascal Vontobel for making the proof clearer and shorter.
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H^P^Ii < A* • ||#||i for all vectors x with ]T)Z xt = 0 and for all such

products P. In particular, ||ccPm||i < A¥-||a:||i since Bm is such a product.

Then, by induction, hm/^oo xBkm = 0 and thus limn_>oo xBn = 0. (The
latter holds because ||ccA||i < ||cc||i for any vector x and any stochastic

matrix A, and because Bn is stochastic for any n.)
Now the steady-state distribution n is also a stationary distribution of

the Markov chains (Xn) and (Yn) so nA = nA = tt and thus 7tBn = tt

for all n > 1. Hence,

lim pBn = lim (p — 7r)Bn + lim 7rPn = 0 + tt = n. D
n—>oo n—^oo n^-oo

Remark 3.A.9

Instead of only two stochastic matrices A and A, one can also consider

any finite number of stochastic matrices different from the identity matrix.

The conclusions are the same.

Corollary 3.A. 10

Let the matrices Eee(k),Eeo(k),Eoe(k), and E00(k) be as in Proposi¬
tion 3.A.1, and let e\ and e2 be deßned by Definition 3.5.3. Let p be

a probability vector and let Bo be the identity matrix. Then:

1. Dehne (Pn)neN such that at each step, Pn+i = Bn or Pn+i = BnEee(i)
or Bn+i = BnEeo(i)Eoe(j) for some i,j < ti, and such that among the

second and the third recursion, at least one is applied an inhnite number

of times. Then lim^^oo pBn — e\.

2. Define (Pn)nGN such that at each step, Pn+i = Bn or Pn+i = BnE0O(i)
or Bn+i = BnEoe(i)Eeo(j) for some i,j < ti, and such that among the

second and the third recursion, at least one is applied an inhnite number

of times. Then lim^-^oo pBn = e2-

Proof:

We prove the first statement. The proof of the second statement is

similar. The matrices Eee(i) and Eeo(i)Eoe(j) are stochastic and of type

(^p, *±i, f ) and (min(f ,ti-l-^),mm(ti,ti-^), f ), respectively. More¬

over, all have e1 as steady-state distribution. The statement holds then

by Proposition 3.A.8 and Remark 3.A.9. D



Chapter 4

The Hypothesis of

Fixed-Key Equivalence
This chapter treats of the hypothesis of fixed-key equivalence [16, 17].
Recall that the cryptanalyst wishes for the following reasons that this

hypothesis holds:

• It assures him that the probability of success of his linear cryptanalysis
attack is roughly the same regardless of which key has been used in the

encryption.

• It allows him to calculate, or at least to estimate, his probability of

success.

We begin by recalling some definitions, among others the statement

of the hypothesis itself. Then we introduce a measure that allows us

to quantify the validity of the hypothesis, i.e., to give a meaning to the

approximation sign. We proceed then by presenting some properties of

balanced functions and of invertible functions. After this, we come to the

heart of the problem and study the validity of the hypothesis of fixed-key

equivalence for one round. We give the approximation sign '«' a quanti¬
tative meaning, but we leave to the reader the decision as to the "validity"
of the hypothesis. Finally, we take a brief look at the multiple-round case.

4.1 Reminder and Definitions

4.1.1 Modification of The Statement of The Hypoth¬
esis

Recall that the «'-round input/output sum (I/O sum) is defined as S1-"1 =

fo(X) © fi(Y(i)), where the functions Jo, h • ^2 —^ ^2 are balanced, X is

83
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the plaintext and Y(i) is the output of the zth round of the cipher. When

the round keys for rounds 1 toi are fixed, say, Z\ = Zi,..., Z% = z%, then

the transformation from X to Y(%) is performed by an invertible function

that we denote by gZl,...,Zl- Then the «-round I/O sum can be written as

fo(X) © h(gZl, ..,*,(*)) = (fo © U ° gZl,...,Zl)(X). (4.1)

This emphasizes the dependence on X and shows the form of the function

applied to X. This is the notation we shall use hereafter. Recall also that

the key-dependent imbalance of S1'"* given Z\ = zi,..., Z% = z% is defined

by

I(S1-l\zi,...,Zi): = \2P[S1-*=0\(Zi,...,Zl) = (zi,...,zt)]-l\. (4.2)

The average-key imbalance of 51"î is the expected value of the key-depen¬
dent imbalance over all keys, i.e.,

7(S1"-*): = E[I(S1-^Zli...tZt)] = ^yt ]T /(S1-*!*!,...,*,), (4.3)

since the round keys are considered to be independent random variables

uniformly distributed on TL\. The I/O sum 51"-1 is called effective if

I(SX"A) pu 1. We come now to the hypothesis of fixed-key equivalence
as stated in [16] and [17].

Conjecture 4.1.1 (Hypothesis of Fixed-Key Equivalence)
For any effective i-round I/O sum S1"'1 and for virtually all keys Zi,..., z%,

the key-dependent imbalance I(S1'"'l\zi,..., zf) is virtually independent of

the value (z\,..., zt) of the key, i.e.,

I(S1-l\zi,...,zl)^I(S1-'). (4.4)

(Note that we state the hypothesis for i rounds and not just for i = r — 1

rounds as in (2.1); this makes no difference since r and i can take on any

value.)

In the statement of this hypothesis, there is much room for interpreta¬
tion: what does the approximation sign mean? What is to be understood

by "virtually all keys"? When is an I/O sum to be considered as "effective",
i.e., when can one consider its average-key imbalance to be approximately
equal to 1? When an average of numbers between 0 and 1 is almost 1,
then it is natural to conclude that virtually all of these numbers are close

to 1 and therefore close to the average. But in linear cryptanalysis, an I/O
sum with an average-key imbalance of 1/2 is already to be considered as
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good and should therefore fall within the category of "effective" I/O sums.

We find in the following example "effective" I/O sums for which (4.4) is

not fulfilled.

Example 4.1.2

Consider a cipher with text blocklength 3 and round key length 3 defined

by the round function of Table 4.1.

o T—1 o 1—1 o T—1 o 1—1

z o o T—1 1—1 o o 1—1 1—1

X
o o o o 1—1 1—1 rH 1—i

0,0,0) (0,0,0) (;o,o,o) ([0,0,0) (o,o,o;) (0,0,0) ([0,0,0) ([0,0,0) (0,0,1
0,0,1) (1,0,0) (;o,o,i) ([1,0,0) (1,1a) (0,0,1) ([0,1,1) ([0,1,0) (1,1,1

0,1,0) (1,1,0) ([1,0,1) ([0,0,1) (i,i,i;) (1,0,0) ([1,0,0) ([0,1,1) (1,1,0

0,1,1) (0,1,0) (;i,o,o) ([0,1,1) (o,o,i;) (1,0,1) ([1,0,1) ([1,0,0) (0,0,0

1,0,0) (0,0,1) (;i,i,i) <[1,0,1) (i,o,o;) (1,1,0) [1,1,1) ([1,0,1) (0,1,1
1,0,1) (1,1,1) <:i,i,o) [1,1,0) (1,0,1;) (0,1,0) [0,0,1) ([1,1,0) (1,0,1
1,1,0) (1,0,1) :o,i,o) [0,1,0) (0,1,0s) (1,1,1) '0,1,0) ('0,1,1) (0,1,0

1,1,1) (0,1,1) ([0,1,1) <[1,1,1) (o,i,i;) (0,1,1) ([1,1,0) ([1,1,1) (1,0,0

Table 4.1: Example of a round function.

As we will see below, for any round function, the variance of the key-

dependent imbalances can never exceed 1/4. For all 1-round I/O sums

defined by a pair of balanced functions (/o,/i), we have computed the

average-key imbalance and the variance of the key-dependent imbalances.

The largest average-key imbalance is 17/32 and it is reached for five pairs

(/o,/i)- For these pairs, the variance can take on different values: for

fo(X) = Xi © X2 © X3 and fi(X) = X±X2 © X2 © X3, it is only 7/1024.
For fo(X) = Xi®X2®X3 and h(X) = XxX3®X2X3®Xi, it is 167/1024.
In the other three cases, it is 71/1024. Obviously, the first pair (/0, /i) is

the best from the cryptanalyst's point of view. However, if one searches

for only the pair of balanced functions that produces the largest, or at

least one of the largest, average-key imbalance, one might very well find

the second pair, which has a fairly large variance of the key-dependent
imbalances and for which (4.4) does not hold.

For this reason, we regard the hypothesis of fixed-key equivalence as

stated above as inadequately formulated. We modify it as follows.
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Definition 4.1.3

An z-round I/O sum S1'"1 satisfies the fixed-key equivalence condition, or

the fixed-key equivalence condition is valid for S1'"1, if I(Sl'"l\zi,... ,zt) k,

I(S1-"1) for virtually all keys zi,...,z%.

Conjecture 4.1.4 (Hypothesis of Fixed-Key Equivalence)
For given blocklength n, round-key length k and integer i, almost all

effective i-round I/O sums satisfy the hxed-key equivalence condition.

This version, too, contains some imprecision. Our goal is to give this a

quantitative meaning. We will not end by concluding whether the hypothe¬
sis of fixed-key equivalence holds or not; what we will do is to quantify how

well the approximation (4.4) holds. The reader can then decide whether

this is well enough in his opinion to say that the hypothesis of fixed-key

equivalence is valid.

Throughout this chapter, we will sometimes refer to the hypothesis of

fixed-key equivalence simply as "the hypothesis".

4.1.2 A Measure of The Validity of The Fixed-Key

Equivalence Condition

The statement that "the key-dependent imbalances are approximately

equal to the average-key imbalance" contains the expression "approxi¬

mately equal", which leaves much room for interpretation. To give it a

quantitative meaning, we define a measure of the validity of the approx¬

imation (4.4) for an I/O sum. It will be equal to 0 if and only if the

approximation is in fact an equality for all keys (in which case one says

that the I/O sum satisfies the fixed-key equivalence condition exactly), it

will be "small" if and only if the I/O sum satisfies the fixed-key equiva¬
lence condition to a certain extent, and it will be bounded by a constant

for all I/O sums. Moreover, it will allow us to compare the validity of the

fixed-key equivalence condition for different I/O sums.

Definition 4.1.5

For any z'-round I/O sum S1'"1, define

nS1"*)^-^ £ (I(S1~*\z1,...,z%)-7(S1~*))2. (4.5)

This is in fact nothing else than the variance of the key-dependent
imbalances and depends only on the two balanced functions and the round

function that define the I/O sum.
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We will soon see some properties of V, based on the following Lemma.

Lemma 4.1.6

Let ai,...,an be real numbers in the interval [0,1] with average a~ =

- Y^i=i ai- Denote DY Var(a) the variance of the numbers ai,...,an and

by max(yar(a)) the greatest variance that the numbers ai,...,an can

have under the condition that their average be a. Then

1. If XlILi ai iS an integer, then max(Var(a)) = a~(l — a).

2. If Yl7=i ai JS n°t an Integer, then a(l — ä) — ^ < max(Vrar(a)) <

a(l — a).

Proof:

Imagine the numbers ai,..., an as points in the interval [0,1], e.g., as

in Figure 4.1. Now take two points that are not endpoints of the interval

0 a2 «2304 ...
a~ a-n-i 1

O0, Ol| • •• •—• [ • m j 0"n

Figure 4.1: A Possible Distribution of Numbers on The Interval [0,1].

and move the left one to the left and the right one to the right by the same

amount until one of the points reaches the end of the interval. This does

not change the average but increases the variance: if the left point is to

the left of ä and the right point to the right of a, then the squared distance

of both points to ö increases; if both points are on the left of o, then by
this procedure the squared distance between the left point and ä is larger
than the squared distance between the right point and 0, increases faster

than the latter decreases, and after a while the points will possibly be on

opposite sides of a; if both points are to the right of a, a similar thing
happens.

Continue with this procedure until you cannot move anymore points.
At the end, there is at most one point left in the interior of the inter¬

val, and all other points sit either at 0 or at 1. (There cannot be two

points in the interior because one could still move them as above.) Any

starting configuration ends up with LEJLi °d points at 1, one point at

ElLi ai ~~ LZÜi a*J (ü7 X)ILi ai is n°t an integer), and the other points at

0. Thus, this procedure leads to the configuration that maximizes Var(a)
under the constraint of a given average ä.

1. If an = Y^i=i ai is an integer, then no point remains in the interior,
since otherwise the numbers would not add up to an integer. Thus, we
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end up with an points at 1 and the others at 0. The corresponding
variance is (a~n(l — a)2 + (n — än)ä2)/n = a(l —a).

2. If an — Y^=i a% m not an integer, then a point remains in the interior

of the interval at position ß = Yl7=i ^ ~~ LSlLi °d (0 < /? < 1). Then

there are \an\ —an — ß points at 1 and n — an + ß — 1 points at 0.

The corresponding variance is ((an — ß)(l — a)2 + (n — an + ß — l)a2 +

(ß — ä)2)/n — a(l — a) — ß(l — ß)/n. The statement of the Lemma

follows now from the fact that 0 < (3(1 - ß) < 1/4. D

Corollary 4.1.7

For any i-round I/O sum S1 ""*:

1. 0 < V(S1-1) < 1/4;

2. V(S1--'Ï) = 0 if and only if S1—* satisûes the ûxed-key equivalence
condition exactly;

3. V(S1 •*) = 1/4 if and only if half of the key-dependent imbalances of

S1'"'1 are zero and the remaining key-dependent imbalances are 1.

Proof:

1. The lower bound holds by definition. Since V(S1,"%) is the variance of

the key-dependent imbalances, we have, by Lemma 4.1.6, V(Sl'"î) <

7(S1-t)(l-l(S1-')) <l/4.

2. Is obvious.

3. Let V(S1'^i) — 1/4, i.e., we have the largest value V can take on. This

means that there is a value / of the average-key imbalance such that

V = 1(1 — I). This implies that 1 = 1/2; this situation can be reached

from a starting configuration with average i" = 1/2 by applying the

procedure described in the above Lemma. Because we end up with

equality in V = 1(1 — I), we are in situation 1. of the Lemma and at

the end there is no point, that is, no key-dependent imbalance, in the

interior of the interval. Thus, half of the key-dependent imbalances

must be 1 and the others 0. The proof of the converse is trivial. D

The hypothesis of fixed-key equivalence holds if and only if V(S1---1) «
0 for almost all effective I/O sums. Again, what is meant by the approx¬

imation sign is subjective. Since Vr(51"^) is a variance, it would be nice

if it were (much) smaller than the square of the average 7(51"""î) for al¬

most all effective I/O sums, since in this case we could in good conscience

consider 7((S1-"î|zi,..., z/) as "almost the same" for all z\,..., z%. Before

proceeding further, we give an example.
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Example 4.1.8

Let n = 3, f0(X) = XXX2 © X3, fi(X) = Xx © X2 © X3 for the balanced

functions, and g(X, Z) = (X3,X2,X2X3Z1 © Xx © X2Z2 © X3Z3) for the

round function. (Here, exceptionally, the Z/s denote the components of

the first-round key.) Then

S1 = XiX2 © X2X3Zi © Xi © X2(Z2 © 1) © X3Z3.

Table 4.2 shows the value of S1 as a function of X and Z. In this example,

/(S1) = 1/4 and y(51) = 1/16.

z

X

0 10 10 10 1

00110011

0 0 0 0 1111

0 0 0

0 0 1

0 1 0

0 1 1

10 0

1 0 1

1 1 0

1 1 1

00000000

0 10 10 0 0 1

11001000

10 0 10 110

11111111

10 10 1110

110 0 10 0 0

10 0 10 110

JOs^z)-» 1/2 0 1/2 0 0 1/2 0 1/2

Table 4.2: Value of S1 in function of X and Z.

Remark 4.1.9

Hereafter in this chapter, we use the following notation: /i and f2 stand

for any balanced functions, not necessarily the balanced functions applied
to the output of the first and the second round, respectively. For instance,
we might say that an i-round I/O sum is of the form fi(X) © f2(Y(i)) for

some balanced functions /i and f2.

4.2 Balanced Functions

In this section, we study some properties of balanced functions, in par¬

ticular sums of two balanced functions. These observations are not only

necessary for our further argumentation, but they also give some insight
into the behaviour of balanced functions.
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4.2.1 Playing With Balanced Functions

Recall that the imbalance of a function / is defined as the imbalance of

the random variable f(X), where X is a uniformly distributed random

variable and that, if g is an invertible function, then /(/ o g) — 1(f) (see
Subsection 2.3.5).

Lemma 4.2.1

For any integer n > 2, we have:

1. For any function /:Z^ Z2, /(/) G {0, ^=r,..., 1}.

2. If fi,f2 : Z£ -> Z2 are baianced, then I(fi © f2) <E {0, -hv,..., 1}.

3. For any positive integer i, any Gxed keys zi,...,z% and any i-round I/O
sum S1'"1, the key-dependent imbalance I(S1'"l\zi,..., z/) must take on

one of the values 0, ^2, 2^=2, •

•, 1, where n is the text block length.

Proof:

1. This follows immediately from Lemma 2.3.15.

2. Call the subset of Z2 on which /1 is equal to 0 "the first half of Z' and

the rest of Z2 "the second half of Z'. In the first half, f2 has value 0

a times and value 1 2n_1 — a times for some 0 < a < 2n~1. The same

holds for /1 © /2. In the second half, f2 has value 0 2n_1 — a times

and value 1 2n~1 — (2n_1 — a) = a times, while /1 © f2 takes on the

value 1 2n_1 — a times and the value 0 2n_1 — (2n_1 — a) = a times.

Hence, on the whole of Z2, fi © f2 is equal to zero 2a times. Thus,
I(h © Î2) = \2P[(h © f2)(X) = 0] - 1| = |2|^ - 1| = |^ - 1|, which

is of the stated form.

3. By Remark 2.3.16, the key-dependent imbalance of 51"'* is equal to

I(fi®f2°9zi,...,zl), where gZl,...,z, is some invertible function and /1 and

f2 are some balanced functions. By Lemma 2.3.11, /2 o gZlt„.)Zi is bal¬

anced. By point 2. of this Lemma, I(h®f2°gZu...,z/) G {0, ^2 ,..., 1}.
D

Corollary 4.2.2

Let f : 14 -+ Z2 and 0 < i < 2n~x with 1(f) = i/2n-\ Then f takes on

the value zero either 2n_1 + i or 2n~1 — i times.

Proof:

Let X be a uniformly distributed random variable on Z2 and a =

P[f(X) = 0]. Then

-^ = /(/) = \2P[f(X) = 0] - 1| = \2a - 1| ^
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2a -1
>n-

or 2a
m-

<£>

>n—1

a =
)n

+ i 2
or a —

n-l
— %

D

Proposition 4.2.3

Let fi : Z£ -+ Z2 be balanced. Then the set {/1 e /2 /2 balanced}
, 2

— l \
2

contains 2(2T7,_2_J elements with1 i(h e /2) = «/2n~2, i = 1 on—2
1, . .

.,
z,

and \2n-2) elements with I(fi © h) = 0.

Proof:

Let again {x G Zg| /i(cc) = 0} be "the first half of Z£" and the rest of

Z2 be "the second half of Z2". We have seen in the proof of Lemma 4.2.1

that if fi2 takes on the value 0 a times in the first half, then /1 © f2 will

a ) functions f2
with this property. (One must choose a elements in the first half of Z2 for

which f2 is zero and a elements in the second half for which /2 is one.)
Let i ^ 0. In order to have I(fiOf2) = i/2n-2 = 2i/2n~1, /i©/2 must

have value 0 either 2n~~1 + 2% times or 2n_1 — 2i times (by Lemma 4.2.2).
So necessarily 2a — 2n~1 ± 2i, i.e., a = 2n_2 ± i. The total number of

o o o

possibilities for f2 is then (2L2+J + (2»-2_J = 2(22-2_J •

Now in order to have /(/1 © f2) = 0 = 0/2n~2, /1 © /2 must have value

0 2n_1 times so necessarily 2a = 2n~1, i.e., a = 2n~2. Thus, the total
-1-1,2

2«-2)

Example 4.2.4

Table 4.3 shows these numbers for n = 3.

D

Value of

Hfi © h)

number of times

combinatorial numerical

1

1/2

0

2G)2
2(t)2
(If

2

32

36

Table 4.3: Frequency of occurrence of I(fi © f2) for n — 3 for a fixed

balanced function f\.
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4.2.2 Algebraic Considerations

In this subsection, G will always be the set of invertible functions on Z2.
We recall that G with the operation o, the concatenation of functions, is

a group.

Lemma 4.2.5

For any balanced function f : Z2 -+ Z2, the set H(f) = {g G G\ f o g = /}
is a subgroup ofG.

Proof: H(f) Ç G is obvious. Let gi and g2 be elements of H(f). Then

f °(gi° £2) = (/ ° gi) ° #2 = / ° 52 = / and / o e/"1 = (/ o 5l) o g'1 =

/ o (gi o ^r1) = /. Thus, 9l o s, g ff(/) and ft1 G #(/). D

Lemma 4.2.6

For any balanced function f : Z2 —> Z2 and any g £ G, the right coset

H(f) o g is characterised by

H(f)og = {h£G\foh = fog}.

Proof:

If h G H(f) o g then there is h' G #(/) with h = h' o g. But then

f oh! — f and f o h — f o h' o g
— fog.

lîfoh = fog, then f o h o g-1 = /, i.e., fo o g-1 G H(f), from which

it follows that /i G H(f) o g. D

Corollary 4.2.7

For any balanced f : Z2 —>• Z2 and any g £ G, there are \H(f)\ functions

h in G such that f <=> h = f o g. D

Corollary 4.2.8

For any balanced f : Z2 —y Z2, the multiset {f ° g\ g £ G} contains each

balanced function |iï"(/)| times.

Proof:

Let e be the neutral element of (G,o). By Corollary 4.2.7, for each

balanced function / there are \H(f)\ elements h G G with foh = foe = f,
and all functions of the form / o h, h G G, are balanced. D

Lemma 4.2.9

Let f, fi,f2 : Z2 —> Z2 be balanced, let gi,g2 G G with f o g1 = fi and

f ° 92 = /2, and let /1 7^ /2. (By Corollary 4.2.8, gi and g2 exist.) Then

H(f)ogi nH(f)o92=0.
Proof:

If there were an element g in H(f) o gi n H(f) o p2j then there would

exist /ii and h2 in iJ(/) such that g = hi o g1 = /i2 o j2. But then
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h = / ° 9i = / ° h o gi = f o g = f o h2 o g2 = f o g2 = /2, which is a

contradiction. D

Corollary 4.2.10

For any balanced f : Z%-+ Z2, |#(/)| = (2-)!/(2f_1).
Proof:

By Lemma 4.2.9, there are as many cosets oiH(f) as there are balanced

functions, namely, {*'_/). Thus, (2")! = \G\ = (2;ii)|#(/)|. D

Proposition 4.2.11

For any balanced functions fi,f2 : Z2 -> Z2, the multiset

{/1 0/2 0 3 | </e G} ias (2") elements, of which

/2n"1^2 (2n)!

U-2J (^
have imbalance 0 and

/ 2-1 \2 (2-)!

U*-2-*; (22:,)
have imbalance -—r-

,

2n-2
'

l<i< 2n~2.

Proof:

By Corollary 4.2.8, the multiset {/2 o g\g g G} contains each bal¬

anced function \H(f2)\ — (2n)l/(2l_1) times. By Proposition 4.2.3, the set

{/i©/| / : Z2 —> Z2 balanced} contains (22_i) elements, of which (^-2)

2"-2_J have imbalance z/2n ,
for

z = 1,..., 2n~2. Combining these two facts completes the proof. D

4.3 Validity of The Hypothesis of Fixed-Key

Equivalence for One Round

In this long section, we study the validity of the hypothesis of fixed-key

equivalence for one round, that is, with i = 1 in (4.4). We use an averaging

argument: we consider a fixed pair (fi,f2) of balanced functions; then

both the average-key imbalance I(S1) and the validity measure V(S1)
depend on the round function only. We compute the proportion of round

functions that yield a particular value of I or of V; then we can calculate

the average and the variance of / and V over all round functions. These

moments depend only on the text length n and the key length k. This

means that we are not considering only effective I/O sums. Nevertheless,
we shall be able to say how well (4.4) holds in general for 1-round I/O
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sums. More importantly, the results will also allow us to say for any

number of rounds what average-key imbalance can be expected from an

I/O sum; this will help in making the notion of an effective I/O sum more

precise.

We begin by considering the cases k = n = 1 and k = n — 3.

4.3.1 Text and Key of Length 1

In this case, the balanced functions are fi(X) = X © a\ and f2(X) —

X © a2 for some a\ and a2 in Z2 and the round function is g(X,z) =

Xeß(z) for some function ß : Z2 -> Z2. Then S* = f1(X)Bf2(g(X, Z)) =

ot\ ©a2 @ß(Z); thus, I(S1\z) = 1 for all z and I(SX) — 1 so all one-round

I/O sums satisfy the fixed-key equivalence condition exactly and the hy¬

pothesis of fixed-key equivalence holds exactly.

4.3.2 Text and Key of Length 3

We skip to the case where both the text and the key have length 3 be¬

cause this case is still simple enough to keep a general view but already

complicated enough to give us an idea about how to tackle the problem
for general text and key lengths.

By Proposition 4.2.11, we know that if G is the set of all invertible

functions on Z|, then for any fixed balanced functions f\ and f2, the

multiset {/i © f2 o g\g G G} contains 2Q SI/(I) = 1152 elements
try

with imbalance 1, 2(^) -81/(4) = 18432 elements with imbalance 1/2 and

it)2 ' 8!/G) = 20736 elements with imbalance 0.

By Lemma 4.2.1, the key-dependent imbalance of S1 can take on the

values 0,1/2 or 1. For any round function g, let ag be the number of

first-round keys z for which I(S1\z) = 0, ßg the number of z for which

J(5'1|^) = 1/2 and jg the number of z for which /(S^z) = 1. (ag, ßg, jg

sum up to 8.) Then

1(SX) =
ßg + 27g

and y(5x) =

ßg 1" 47g - (/(S1))2.

We continue to consider a fixed pair (/1, f2) of balanced functions. In

order to determine how many round functions give a particular value of

I(SX) or of V(S1), we calculate, for each triple of non-negative integers
(a, ß, 7) with a + ß + 7 = 8, the number of round functions g such that

(ag,ßg,^g) = (a,ß,j). We use the fact that choosing a round function

is equivalent to choosing eight invertible functions, one for each possible
value of the first-round key. What must we do in order to get (a, ß, 7)?
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• Among the 8 first-round keys, we must choose 7 for which I(S1\z) = 1;

for each of these 7 keys, we have a choice among 1152 possible invertible

functions for gz.

• Among the remaining 8 — 7 keys, we must then choose ß for which

I(S1\z) — 1/2; for each of these keys, there are 18432 possible invertible

functions gz.

• For each of the remaining 8 — 7-/3 keys, there are 20736 possible
invertible functions.

Thus, there are (8) (8~7) x 1152^ x 18432^ x 207368-7-/3 round func¬

tions giving (a,ß,j). The probability, taken over all round functions, of

obtaining (a,ß,y) is then

(
8

) \ßl X 11527 X 18432/? x 207368~7-/3 x 40320"8 =

^~A x F x 16^ x 188-^^ x 35"8.

It should be noticed that different (a,ß,j) can yield the same value

of /(S*1) or of V(S1); by adding the corresponding numbers we get the

distribution of the values of I and of V over all round functions; this

distribution is shown in Tables 4.4 and 4.5.

The interpretation of the tables is the following: when the text and the

key both have length three, then for any balanced functions

/13/2 : ^2 ~+ ^2? approximately 25% of the round functions for instance

will give /(51) = 1/4 and approximately 4% of the round functions will

give y(S'1) = 1/8. One sees that for most round functions, V(S1) is

"small", which could indicate that (4.4) holds for most one-round I/O
sums. We also notice that, for most round functions, the average-key im¬

balance is also "small". But if an average of non-negative numbers that

are upper-bounded by 1 is small, then most of those numbers must be

small and so must also be their variance. Thus, it is natural that V(S1)
be small in most cases. Our hope is to prove that, in most cases, V is

sufficiently small to allow us to say that (4.4) holds.

We can consider the round functions g as realizations of a discrete,

uniformly distributed random variable and V(SX) resp. /(S*1) as functions

of it. Then what is shown in the tables is the probability distribution of

V(S1) and of Ifê1). The corresponding expected values and variances

are:

E[7] = 0.2571 = 9/35;

Var(l) = 9.59184 * 10~3 = 47/4900;
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I 16*/ proportion

0 0 4.89 *10~3

0.063 1 3.48 *10-2

0.125 2 1.10* HT1

0.188 3 2.06 *10"1

0.250 4 2.50*10-1

0.313 5 2.08* HT1

0.375 6 1.20 *10"1

0.438 7 4.87 *10~2

0.500 8 1.38 *10~2

0.563 9 2.70 *10"3

0.625 10 3.71 * 10~4

0.688 11 3.56 *10"5

0.750 12 2.39 *10-6

0.813 13 1.09 *10"7

0.888 14 3.25 *10~9

0.938 15 3.25*10"1:L

1 16 4.44 *10~13

Table 4.4: Distribution of the

values of /(51).

E[V] = 0.0671 = 47/700;

Var(V) = 7.97549 * 10"4 = 87539/109'760'000.

The exact fractional expressions will be proved later (Corollary 4.3.6 and

end of this section).

4.3.3 Any Text and Key Lengths

One can follow the same procedure for any text length n > 2 and any

key length k > L However, even for n = 4, the tables of the distribution

of the values of I(SX) and of V(S1) become too large to overview. Thus,
we concentrate on the probability distribution of 1 and V over all round

functions and on their average and variance, for which we will find simple
forms. We will prove that, if n and k are sufficiently large, then the

variance of i^and of V is so much smaller than their average that we

can consider I and V as having virtually constant value. Then we shall be

able to make quantitative statements about the validity of (4.4), because /

and V are the average and the variance, respectively, of the key-dependent
imbalances.

V 256* V proportion

0 0 6.80 *10~3

0.027 7 5.29 *10"2

0.047 12 1.76 *10"1

0.059 15 3.45 *10"1

0.063 16 2.21 *10-1

0.090 23 2.68 *10"2

0.109 28 4.98 *10~2

0.121 31 6.70 *10"2

0.125 32 4.00 *10"2

0.152 39 6.27 *10"3

0.172 44 5.03 *10-3

0.184 47 2.26 *10"3

0.188 48 7.94 *10"4

0.215 55 2.20 *10~4

0.234 60 4.71 *10~5

0.250 64 3.26 *10"6

Table 4.5: Distribution of the

values of ^(S1).
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In the general case, there are 2k possible keys for the first round. Thus,

choosing a round function is the same as choosing 2k invertible functions.

We again consider two fixed balanced functions fi,f2 '.2i2-+ Z2. We have

seen in Lemma 4.2.1 that the key-dependent imbalance I(S1\z) must take

on one of the values 0, ^U, -^=2 >
•

•,
1- We make the following definitions.

Définition 4.3.1

• For any round function g and any integer i, 0 < i < 2n~2, let ai(g) be

the number of keys z such that I(S1\z) = i/2n~2.

• Let a — (ao,ai,.. .,a2-2) and denote by 1(a) (resp. V(a)) the

average-key imbalance (resp. the value of the validity measure) resulting
from the distribution a of the key-dependent imbalances.

Knowing a, the values of 1(a) and V(a) are easy to calculate:

Lemma 4.3.2

If n > 2 and k > 1, then

1(a) =

V(a) =

ai +2a2 H h 2n"2a2«-2
2n~22fe

ai + 4a2 H + 22^~2)a;2n-2
22(n-2)2/c

and

- (/(a))!

Proof:

The right side of the first equation is

)fi-2

)k 2-^
i=0

V

X Hj(slw = 2^}

which is the average of the key-dependent imbalance I(SX \z) over all keys.
The proof of the second equality is similar: one considers the variance of

the key-dependent imbalance over all keys, which is

1
>n-2

£ (2^) xIH7^=2^}| -e**»
i=0 v / D

Next, we compute, for each a, the number and the proportion of the

round functions g such that a(g) = a.
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Proposition 4.3.3

Let P(a) denote the probability, taken over all round functions g, that

cx(g) = a. Then, for any n > 2 and any k > 1,

P(a) = (2k W2fc-^x...x(2fc-Q—-"-Q2V
\a2r,-2j \ a2r,-2_i J \ oti J

(2r,-1\\2\a2"-'z / (2"-x\ \ 2\ a2«-2-i / / ( 2"-1 U2\ttl

fci)) »('(feD) -- «fei
n-u2N 2h

n-2
(2n-1\

x\[+++] (4-6)

(Purposely, we have not converted the binomial coefficients on the ßrst

line into a multinomial coefficient.)
Proof:

There are (a*J x (^-j;3) x • • x (*-«„-,--«*) ways to split

a set of 2k elements (the set of all keys for the first round) into 2n~2 + 1

sets with a2n-2,a2r,-2_i,.. .,ai,ao = 2k —

a2r,-2
— • — ai elements,

respectively.

Moreover, we know from Proposition 4.2.11 that if G is the set of in¬

vertible functions on Z2, then for any balanced functions fi,f2 : Z£ -+ Z2,
the multiset {/1 © f2 o g\g e G} contains

/2n-l\2 /2n\j
elements with imbalance 0 and

?n-v (/-.)
2

2n-l y (2n)\ %
2 (

9n_2
. ) / 2" \

elements with imbalance
_2 ,

1 < i < 2n
2

Thus, once a% keys have been chosen, 1 < i < 2n~2, there are

/ 2n-l \
2

^

U-2-^7 J^Ü)

ways to choose at invertible functions gz such that I(S1\z) = i/2n~2,
l<i<2n~2,and

^-V (2n)!N2fc"aa"-a"-"ai
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ways to choose the remaining 2k — a2n-i — a\ invertible functions gz

such that I(S1\z) = 0. Hence, the number of round functions such that

a(g) = a is

(2k )J2k-a^)x...J2k-a^---a>)x
\a2n-2/ \ a2n-2_i J \ Ql /

-2n-iy (2n)|^a=»"-2 / /2-l\2_(2«)!_\a2-2-1
>

o ) JJ3) x{2{ i ) WD)
O \ &i / o \ 2 — Qiorf-2 Oil

x|2|
2"-1 A2 (2")! \

x
((2^\2 (2»)!

X

Finally, dividing by (2n)!^2 \ the number of possible round functions, and

simplifying the expression yields the result (4.6). D

This allows us now to write E[I], Var(I), E[V] and Var(V), the aver¬

age and the variance of / and of V over all round functions, where fi, f2
are two fixed balanced functions, as functions of n and k only. We begin
with E[l}.

Corollary 4.3.4

For any integers n > 2 and k > 1, we have E[I] = *S^P(a)I(a) —
a

(2"-1\2\2k 2k 2/"-a2„_2 2k-a2r,-2 a2

W E E - E
\2"-x) J a2r,_2=0a2„-2_1=0 ai=0

( 2" )x(2k-a»->)x---x(2k-a*"-2 a2)x

/ (2"-1\ \ 2\ V-2 /
/ f2,l~1\ s 2\ a2"-2-i / , ( 2"--1 \ x 2\ ai

ai + 2a2 + • • • + 2n"2a2
x 7n /

2n-22Ä | D

Fortunately, this can be written in a simple form. The following defin¬

ition will be a big help.
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Definition 4.3.5

For any non-negative integers i and j, we define

/(.-,»:= 2' K>-''

(?)

Proposition 4.3.6
9

For any integers n > 2 and k > 1, we have E[I] = \2-"-v fà (2"-1)
Proof:

In order to simplify the notation, we introduce ra := 2n_2 and

p :— 2k. We take the long expression in Corollary 4.3.4 and equate it

to (2-7-2) /2(22_1). Then we move to the other side of the equation ob¬

tained the term before the sums and the denominator of the last fraction

to get the equation

p p—am p—am a2 f / \ / \ / \

e e - e Q>crr x-xtam/ra2)

x (ax + 2oj2 H Vm am)
Pm I \2m)

2

m

/2m\:
v

m )

Now we take out of each sum everything that does not depend on its index

and use the definition of /. The equation becomes

P / \ V-Urn

£ (p )/(m,m)«- E r"am)/(m-l,m)'"-'
arn=0 v 7

am_i=0

p—am «2 / x

p - am a2

E
'"

/(l,mr(a1+2a2 + -+mam)
a1=o

\ »i /

,
/4ra\ \ p_1

,2
m

/2mV

V
m

/

(4.7)

It appears as if we could define the left side of the equation recursively.
In fact, we can: for any integers n > 0, k > 1 and a > 0 and any complex
number b, we define recursively
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Hi (n, k, a, b) := V () f(k, k + a)7#i (n - 7, k - 1, a + 1, b + k-f) (4.8)

with the initial condition Hi(n,0,a,b) := b. As the reader can easily

check, the left side of (4.7) is Hi(p, ra, 0,0). In the appendix to this chapter

(Proposition 4.A.5), we prove that, for all k > 0,

Hi(n,k,a,b)= (4.9)

(k
n n—1 r k k n

l-r^2f(j^ + a)) ^\b[l + ^f(J,k + a)]+nY,JfU,k + a)[
3=1

' ^
3=1 3=1

'

where empty sums are treated as zero. (Since 1 + ]Cj=i /0\ ^ + a) y^O for

all £, neither (4.8) nor (4.9) gives problems when the first argument of Hi

is zero.) Thus,

1 + J2f(^m)) p^i/0»+0.
3=1

' ^
3=i

J

Finally, we use Lemmata 4.A.1 and 4.A.2 by multiplying their identities

by the appropriate constant and by changing the index of summation:

• Statement 1) of Lemma 4.A.1 implies 1 + £ x f(j,m) = ©/'(2Y''.

• Statement 1) of Lemma 4.A.2 implies YlT=i j/Ü?m) — rn/2.

Then ffifom.O.O) = *f ((ffl/(^)2)P_1. D

The other moments Var(I), E[V] and Var(V) can also be rewritten with

the help of Proposition 4.3.3:

Lemma 4.3.7

1. Var(I) + (E[I})2 = E [j2] =

2h 2 -o:2r,-2 OL2 ,
n nm—0 \ 2

EY^ D/ .(a1+2a2-\ h2n za2n-2\
2^ P(aH 2^2* j
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2. E[V] = J2
2 -a9„-2 Oi2

£ p(a)x
a2„-2=0 ai=0

"ai+4a2 + --- + 22^-Ll'a2n-2
22(n-2)2fc

2fc 2fe-a2„_2--- • — a.2

= E - E P(a)
CC2n_2=0 ai=0

- [Var(l) + (E[I\)2] i

ai + 2a2 + Y2n-la2n-2^i>n-2.

2n-22fe

ai + 4a2 + • • • + 22^_2)a2.-2
22(n-2)2fc

3. Var(V) + (E[V})2 = E [V2] =

2k 2/f-a2f,_2 a2

= E •• E ^")x
a2„_2=0 oci=0

a\ + 4a2 + • • - + 22(n-2)a2„-2 (ax + 2a2 + • + 2n-2a2n-2 \ 2

22(u-2)2fc

2k 2 —

a2„_2 ol-2

= E - E p(")
Oi9n -2=0 CK 1=0

ai

2n-22fc

+ 4a2 + --- + 22^-2)a2..
22(n-2)2fc

-2

+

ai + 4a2 + • • + 22(n-2)a2„-2 /«i + 2a2 + • • • + 2n-2a2„-
22(n-2)2fc

ai + 2a2H h 2n~'za2n-2

2n-22fc

n-2 -

\ 4

27i-22fc
D

There are simple forms for these expressions, too. The way to find

them is similar to that used in the proof of Proposition 4.3.6. We need

the following functions.

Definition 4.3.8

For any integers n > 0, k > 1 and a > 0 and any complex numbers b and c

(b and c subject to the conditions mentioned below), we define recursively

H2(n,k,a,b2) := V (n)f(k, k + aVH2(n -

7, k - 1, a + 1, (b + kj)2):
^oVT/
( - tt/2 < arg(6) < tt/2 or 6 = 0) (4.10)
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H3(n,k,a,b) := Y (U )f(k,k + a)7#3(n - 7, k - l,o + 1, b + k2j);
^0Vt/

(no condition) (4-11)

H4(n,k,a,b2) := £ (")/(&, k + a^H^n-j, k-l,a+ 1, (b + /c27)2);

( - tt/2 < arg(6) < tt/2 or 6 = 0) (4.12)

H5(n,k,a,b4) := ^ (^f(k,k + ayH5(n-j,k-l,a+l,(b +kj)%
j=0

( - 7r/4 < arg(6) < 7r/4 or 6 = 0) (4.13)

HG(n, k,a,b,c2) :=

J2 f") f(k, k + ayH6 (n-1,k-l,a + l,b + k2j, (c + kj)2)

( - tt/2 < arg(c) < tt/2 or c = 0) (4.14)

(Hq has one argument more than the other functions) with the initial

conditions H2(n,0,a,b2) = H±(n,0,a,b2) = 62, Hs(n,0,a,b) = b,
H5(n, 0, a, 64) = 64 and H6(n, 0, a, 6, c2) = 6c2.

We have then (still with m = 2n 2 and p = 2fe)

Var(I) + (E[I] )'
-, / /2m\ 2

% p
t \ m ) \

m
202 I (4m\
F v V2m/

H2(p,m, 0,0); (4.15)

£7[V]
-, //2m\2xp

\ m J

771
2„2 I /4m\
y V l2mi

pif3(p,m,0,0) - [Var(I) + (E[I] )2] ; (4.16)

Var(V) + (E[V\)2 = (4.17)
/2m\2\ p

V 771 / \

mV V fom)
p2 H4(p,m,0,0) -2pH6(p,m,0,0,0) + H5(p,m,0,0)

Similarly to the result (4.9), we find the following formulas for

H2(n,k,a,b2),.. .,Hq(u, k,a,b,c2).
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Proposition 4.3.9

For any integers n > 0, k > 0 and a > 0 and any complex numbers b and

c (b and c subject to the conditions of Dehnition 4.3.8), we have

TO-2

H2(n, k,a,b2)= (l + Y^ f(h k + o)

k \ 2 / \ / k

b2 (i+Ë /(j> k+«)) +2 (2) (Ê^o> k+°))

+ (l)(1 + E/Ü>Ä + o)) [j]j2/0',fc + a) + 26^j7(i,fc + a)|};

H3(n,k,a,b) = M +^/y,fc + a)

n-l

&(i + E/0',fc + a)) +ttD'2/(j)fc + a)};
^

7=1 '
7=1

^

(A;

x n—2 /-

i + E^fc+a)) {

&2(i + E^+«)) +2(2) (E^/ü,ä+o))

\ / V
J=1

J lJ=1 J=1
J J

71—4

F5(n,M,64)= (l + E^''A: + a)) (l + E^^A; + a)

+ (i)(1+E^fc+a)) [^E^ü.fc+o)
fc fe k

+ 6 62 £ i2/(j, * + a) + 46 ]T j3/0\ * + a) + ]T j4/(j, fc + a)
j=i j=i j=i

(continued on next page)
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(continued from previous page)

fa O fa O

+ 2 (£) (*+E-ft* *+°)) ^2(E^''fc+a))
k k

+lîhYJ3f{hk + a)Y,ffi3ik + a)
3=1 3=1

E^'2/(^+a)) +4E^0''A:+a)E^^A;+a)
3=1

'

3=1 3=1

k s. 3

)+ 6(Y)(l + f]/(j,fc + a)) 4b(JTjf(j,k + a

y k n 2 k

+ 24Q(è,7(i,fc + a))4
A; 71-3

HQ(n,k,a,b,c2)= (l + J2f(j,k + a)j U 1 + £ /(j, fc + a) J 6c2

/ \ / "/ \2r/v rC

+ (i)(1+E^fc + a)) ^E^^'^ + ^ + ^E^Ü'^ + a)
.7=1

' L

.7 = 1 J=l

rC A- /v "

+ 2cY/33f(j,k + a) + c2YJJ2fU,k + a)+J2j4f(j,k + a)
3=1 3-1 3=1

+ 2 Ç) (* + £ /ü. * + «)) f»(E J/Ü. * + «))
k k

+ 2cY,jfÜ,k + a)Y,ffU,k + a)
3=1 3=1

(k
x 2 fe k

Y^32fU,k + a)) +2YJ3f(3,k + a)Y,ff(hk + a)
3=1

'
3=1 3=1

+ 6
n

f k n 2 fc ^

Y,jf(j,k + a)) ^j2/0',A; + a) .

\7=i
'

3=1 J
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Proof:

Most of the appendix to this chapter is dedicated to the proof of these

identities. D

Corollary 4.3.10

(Recall that m = 2n"2 and p = 2k.)

H2(p,m,0,0) =

H3(p,m,0,0) =

H4(p,m, 0,0) =

(4m\ \ p

\2m) \

(2DV
H5(p,m, 0,0) =

(Am\
\ p

rm) Y m2 f rm)
\2m) \

„

m
, / \2mJ

V-2

/2m\2 } 4m - 1
\ ra

'

-Hi p

m

+
(2m\-

\ m )

p(p - 1)
m

4
'

(2m\-

Ira/
4m-1'

P
m3(16m2 — 5m — 2)

(4m-l)(4m-3)
+ p(p-l)

m

(4m - l)2

/4m\

\2m)

/2mV

V 777 /

m3(16m2 - 5m - 2) .

„.
3m2

(4m-l)(4m-3) (4m-l)2_

+

(4m\ \ P 2
r-

\2m)

2m\2/2m\

V 777 /

P(P - 1)
m4

, ^ , _,
3 777/

2m-1
+ p(p-l)(p-2)

2 4m-1

<4m>

\ P"4

+

/4t77\

(2D2
H6(p,m, 0,0,0) =

/4m\ \ p

r2m>2

p(p-l)(p-2)(p-3)
m

16

+

/2777V

V
777

/

/4m\

\2m)

(2m\2
V 777 /

P

777

(Am\

\ p~2

m3(16m2 - 5m- 2)

(4m-l)(4m-3)

,4

+ P(P-1)
77V

(4m- 1)2_

Pip ~ 1)
m

2(2m-l)
+ p(p-l)(p-2)

m

4(4m - 1)

Proof:

From Proposition 4.3.9, we have

777

H2(p,m, 0,0) 1 + E^''m)
3=1

p— 2
f / \ / 777 n 2

(\
/ m \ r 777 -l -v

Ji+E/tt) £m)
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/ 777 x p—1 f
m -\

H3(p,m,0,0) = (l + ^/(j,m)j ^^j2/(j,m)l;
\

3=1
/ V

J=1
)

(777
x p—2 f / \ /

m \
2

777 m

Hb(p,m,0,0) = (l + E/O'.m))
^

7= 1 '

+ (l)(1 + E/Ü'm)) E^Ü>"0

p—4

3

r

m

/• 777 x 3 r

777

(i+E/fr)) E^/ü,
V

j=i
/ Lj=i

m

777

^
777 x 2

(777
x 2 •

777

777 / 777

E^'2/0''m) +4f^j7ü',m)E^3/ü''m)- (E^'2^m)
J=l

' \=1 3=1 S=l

+ 6
rP

777 XT/771 \2777

i+E/o\))6 E^''m)) E^'2^^m)
j=i

'L S=i '
j=i

p
777

+24'4j(E^''m)

(ra
x p—3

i+E^m))

p
777

P
m

+
2(2j(vi

+ E^^m)

777 777

)2
r m

E'4/ü,)
J— ^3=1

(777
x 2 / 777

E^>) +2(Ei/ü^xy/ü,)- (E^m)
j=i

' S=i j=i S=i

(\
/ m x 2 m

y(£;/(i,m)) £i2/(i,m)

Now we use Lemmata 4.A.1 and 4.A.2. By multiplying with the appropri¬
ate constant and changing the index of summation, we get:

m /4m\

• Statement 1) of Lemma 4.A.1 implies 1 + V^ f(j, m) =

2 ;

3=1 { 777 J

• the statements of Lemma 4.A.2 imply
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(a) r3li3fU,rn) = f;

(b) EJm=iJ2/(j,m) = ifiî^;
rm rff(A \ —

m3
(c) E3=iiJ/Ü,">)

=

5^u

(d) E£iJ4/Ü,m) =

J+f (-3m4(&) + «m*(£lï) + 4m»(2m - if £-) )

_

m3(16m2-5m-2) (^)
—

(4ra-l)(4ra-3) /2m-\2 •

The proof is completed by substituting these identities into the expressions

for H2(p, m, 0,0),..., HQ(p, m, 0,0,0) and making some factorisations. D

Finally, we use Corollary 4.3.10 and equations (4.15), (4.16) and (4.17)
to obtain closed expressions for Var(I), E[V] and Var(V). The results

are summarized in the theorem below, which we state without proof. (The
proof uses only elementary and standard algebraic transformations.)

Theorem 4.3.11

jke-t /i,/2 : ^2 —> 1*2 be two balanced functions. Then the expecta¬

tion and the variance (over all round functions g of ciphers with block

length n and round key length k) of Ifê1) and Vr(51), where /(51) is the

average-key imbalance of S1 and Vr(S'1) is dehned by (4.5), where S1 =

fi(X) © f2(g(X, Z)), and where X is a random variable uniformly distrib¬

uted on Z2, are

E[I] =

/2ra\2
V 777 /

9 (Am\ '

Z\2m)

1 1
(2m)A 1 1

ynr(T\
=

\m) x

-(W\T\\21 ;
p(4m-l) 4p (*m\2 p(4m-l) p{

'J} '

\2t77/

— 1 / 1
/2m\4 \

E^ = -îri^ri-^) = Ö*-1)^/) and

Var(v) =

<P-W-P>
+

T^D2(3m-2)
p3(4m-l)2 p3m(4m-l)(4m-3)

4/2ra\

\ m )

/4mA2
bra/

(p-lf
,
(p-l)(3-2p)

+

p3(2m-l) p3(4m-l)
+

(ra) °(P-1)(3-2P)
/4ra\4 8p3
V2ra/

where m = 2n 2 and p — 2h. D
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The formulas for the four moments are finally quite simple and we

wonder whether they could be found in a less fastidious way. Table 4.6

shows the value of the four moments for some block lengths n with key

length k = n.

n, k E[I] Var(I) E[V) Var(V)
2

3

4

5

6

7

8

1/3
9/35 = 0.257

1225/6435 = 0.190

1.38 *10-1

9.86 *10-2

7.01 * lO"2

4.97 *10-2

1/18 = 5.5*10-2

9.59*10-2

1.90*10-2

4.15 *10-4

9.62 *10-5

2.31 *10-5

5.66 *10-6

1/6
6.71 * 10"2

2.85 *10"2

1.29*10-2

6.06*10-2

2.94*10-3

1.44*10-2

8.10*10-2

7.98 *10"4

1.02 *10"4

1.25 *10"5

1.51 *10-6

1.85 *10~7

2.29 *10"8

10

12

14

16

2.49 *10~2

1.25 *10"2

6.23*10-3

3.12*10-2

3.48 *10-7

2.17* 10-8

1.35 *10-9

8.46* 10"11

3.56 *10"4

8.88 *10~5

2.22 *10-5

5.55 *10-6

3.54*10-1U

5.52 *10-12

8.62 *10-14

1.35 *10-15

Table 4.6: Value of the four moments for different block sizes.

We shall soon give a meaning to the results. But before doing so, we

want to study the asymptotic behaviour of the four moments as n and k

go to infinity.

Theorem 4.3.12

The asymptotic behaviours of E[I], Var(I), E[V] and Var(V) as n —> oo

and k —> oo are the following (where a(n, k) ~ b(n, k) means that

limn_>00 lim^oo a(n, k)/b(n, k) = 1, and so on).

E[I] ~ A-2~nl2^ independently of k;

Var(7) ~ 7Yzl2~{~n+^ for all k;
71

E[V] n~k ^—?
2~n;

7T

Var(V) nrà 2^—^2^2n+kl

Proof:

By Stirling's approximation of the factorial [7], (2a) ~ 22a/^/ïuï. Then

(2D2/Ö ~ V2/- Hence> since p = 2k and m = 2n'2 go to infinity
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if and only if k and n do, we have, by Theorem 4.3.11,

E[J] Z -J— = \-2~nl2, independently of k;
2 V 7rm V 7T

Var(l) S
1 ( 1 1

p \4m — 1 27rm /

2vrm — 4m + 1
m
f-2 1 tt — 2

r*j

p • 2vTm(4m — 1) 4vt £>m tt

2~(n+k).

m 7ï — 2p—l p
7T-2 1 7T — 2

MV] = (p-l)Var(I) ~
^-— &

— = 2
1 J

Att pm Att m tt

Finallv
because (p~1)2

4-
(p-1)^-2?)

-

(p-i)(p+2m-2)
j^many,

oecause
p3(2m_!) + p3(4m_i)

-

p3(2m_i)(4m_i)
we have

P^ 77+2777-2

8p2m2 '

T. „.. P,m
1

,

3 2 p + 2m-2 4 1
Varf v)

~ +
— —

p(4m)2 £>(4m)2 ttttl 8p2m2 TT2m2 4p

(tt2 - S)pm - 2ttp - 4Trm
p^n

tt2 - 8 1
= ^

tt2 - 8
2_(2n+Jc)

28>7T2p2m3 8vT2 p/TT,2 7T

4.3.4 Interpretation of The Results

Suppose that the block length n and the key length k are large enough.

Then, whatever the choice of the balanced functions f\, f2, on the av¬

erage 1(S1) « J^2~n/2 and V(SX) « ^+= 2~n. Moreover, the relative

variances Var(I/E[I]) and Var(V/E[V]) are of the order of 2~k. Hence,

we can say that I(S1) (resp. V(51)) is very close to J| 2~nl2 (resp.

E+= 2~n) for almost all I/O sums involving /i and /2. But this fact holds

for any fij2. Thus, 7(S1) « \ß 2~n/2 and V(51) « ^ 2~n for almost

all I/O sums, and the longer the round keys, the smaller the proportion
of I/O sums for which Ifë1) and V(SX) are far from these values.

Remember that I(S1) is the average and V(51) is the variance of the

key-dependent imbalances. Hence, for almost all I/O sums, the relative

variance of the key-dependent imbalances is V(S1)/I(S1)2 « ~= pa 0.57.

It is now for everyone to decide for himself whether he considers the key-
dependent imbalances to be "approximately equal".
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4.4 Validity of The Hypothesis of Fixed-Key

Equivalence for More Than One Round

In the case of more than one round, we were not able to compute the

average and the variance of I and of V as we did for one round. The

main reason is the following: in the 1-round case, we made intensive use

of the fact that defining a round function is equivalent to defining as many

invertible functions as there are possible first-round keys. Then we based

our proofs on the number of functions of the form /i © /2 ° # that have

a certain imbalance, where /i and f2 are balanced and fixed and g runs

over all invertible functions on the binary 77-tuples. With that result, we

calculated the number of round functions for which the 1-round I/O sum

has a certain distribution of the key-dependent imbalances. Counting
was feasible because, for any first-round key z\, the distribution of the

functions gZl = g(-,zi), as g runs over all possible round functions, is

uniform on the set of invertible functions on the binary n-tuples.

In the multiple round case, Ground I/O sums are constructed by means
of functions of the form fi ® f2 ° gZl ° • • ° gZl >

where gZl,..., gZi are

invertible and thus gz% o • • • o gZl is also invertible, and /1 and f2 are again
balanced. However, the distribution of the functions gZl°" '°gz-L on the set

of invertible functions on the binary n-tuples, as g runs over all possible
round functions, is no longer uniform for all values z\,...,Zi of the round

keys. Because of this, we were not able to count the number of round

functions for which the i-round I/O sum has a certain distribution of the

key-dependent imbalances.

We tried to see whether it was possible somehow to calculate the ex¬

pected value and the variance of / and V recursively in the number of

rounds. The only moment with which we succeeded was the average of

I(fi(X) © f2(Y(i)) over all round functions for fixed balanced functions

/1 and f2. According to (2.5), we can write the key-dependent imbalance

of S1---1 as I(S1—l\zi, ...,Zi) = I(fi © f2 o gZlt„.}Zi). Let u be the number

of possible round functions and let Ei[I] be the average of the average-key
imbalance of S1'"1 over all round functions g, with fixed balanced functions

/1 and f2. Then

9 9 Zx

= ^E^EWi®/20^) and

z\ 9
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E,[T] =

Z\ ,.. .,£?

=
fè) E fèE^E7^®^20^.-^)0^)
2fc7 ^ \2k^u

Z2,---,zz zi g

^V" E ^[J]
2fc

^itf,

where in the penultimate equality we used the fact that /2 o gZ2>...>z^ is a

balanced function that does not depend on z\. This somewhat surprising

equality is summarized in Theorem 4.4.1. But before stating this theorem,

we show that one cannot do the same for the other moments. Consider, for
2

instance, the average of / (51"'1) over all ciphers. For i = 1 this becomes

Ei[f] i£7V) = àEQrE'CAoA'*.))
9 9

v
Z!

tfk E -J2Iifl®f2ogZl)-I(fief2ogz[).
Zl,Z)~1

If we try to use the same factorisation as before, we get, for instance for

7 = 2,

9 3 zi,z2
'

=

^2ä E ^2fc E -"52Iifi® ih °9z2) °gZl)-l(fi® U2 °gZ'2) °9z[)
Z-2 >~2 21,2;>-n

r—2.
But now the expression in square brackets is not equal to Ei[I ], because

in general /2 o gZ2 is different from /2 o gz,. Even if we try to average

further over all balanced functions f2 and/or all balanced functions f\, we
stumble over this obstacle. Nevertheless, as said above, we still have:
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Theorem 4.4.1

-Let fi, f2 : Z2 —> Z2 be two balanced functions. Then the expectation

(over all round functions g of ciphers with block length n and round

key length k) of the average-key imbalance for i rounds I(S1"-'1), where

S1—1 = fi(X) (&f2(Y(i)) is an i-round I/O sum, where Y(i) is the output

of the ith round of the cipher dehned by the round function g and where

X is a random variable uniformly distributed on Z2, is independent of' i

and of the length of the round keys and is equal to

E[I] = f^r- (4-18)

This gives one a point of reference when using linear cryptanalysis to

attack a cipher. Note that (2„_2) /2(2n_1) is also the joint average over all

ciphers and all pairs of balanced functions fi, f2. On the other hand, for

a fixed cipher, the average of I(fi(X) © f2(Y(i)) over all pairs of balanced

2«-2) /2(2„_1J.
Suppose now that one has an (r—l)-round I/O sum with corresponding

balanced functions /o and fr-i- If its average-key imbalance is substan-

tially larger than (2„-2) /2(2„_1), then the cipher in question "fits well" to

the I/O sum. In general, this does not imply the converse statement that

the I/O sum fits well to the cipher, because the average over all /o and

fr-\ of the average-key imbalance may be larger than [2n-2) /2(2n-i) m
which case the I/O sum found might have no exceptional property. How¬

ever, one would expect that, for a cipher that is more resistent than the

average cipher against linear cryptanalysis, the average over all pairs of

/9T7~^\//977\
balanced functions fo,fr-i will be smaller than (2ra_2) /2(2T,_1) so that

the (r — l)-round I/O sum found with average-key imbalance substan-

2".-2) /2(2n-i) would be "very good" to use in a linear

cryptanalysis attack.

These considerations and Theorem 4.3.12 lead us to formulate the

following more precise definition of an effective I/O sum:

Definition 4.4.2

An I/O sum is effective if its average key imbalance is substantially larger

than Jl2~n>2.
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Example 4.4.3

In his attack on DES [39], Matsui found a sum of linked threefold sums

with imbalance 1.19* 2-20, which lower-bounds the average-key imbalance

of a 14-round I/O sum. This is substantially larger than W|;2~32. To

calculate the imbalance, he used the Piling-up Lemma without caring
whether the threefold sums were independent. Thus, the true imbalance

might be different. However, as explained in Subsection 3.5.4, the true

imbalance is probably close to 1.19 * 2-20. According to our definition

above, his 14-round I/O sum is effective.

4.A Proofs

4.A.1 Two Lemmata

Lemma 4.A.1

For any integer m > 0,

-, sr^m /m\2
_ (2m\ .

1- 2^k=0 \k) ~

V m/'

9 X^m h(m\2
—
m (2m\ •

z-
2^k=0K\k)

—

2 \m)>

4- H^ffî'^m + i)^);

5- Er=o *4 (?)2 = 3 fe1') +m\m-lf (2<r|») •

Proof:

The first two identities can be found in [45, p. 622].

3. We use () = f (^) ; to be general, we define g(j, m) := £0 k° (?)'•
Then

m/\2 777 o / i\2 777 / lX2

k=0 x '
k=l x 7

k=l K J

m-1
/ 1N 2 777-1 j-2 / oX / lX 2

J-2 , . 0x 777-1
/ lX 2

2V^-2W M fm
-

^«-Er:' e*
i=0 x 7 fc=0

so that g(j,m) = m2 V^",2 (3~2)g(i,m - 1). Applied to j = 2, this

gives (?(2,m) = m?g(0,m — 1).
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4. g(3,m)=m2(g(0,m-l)+g(l,m-l)) = ?£(m + l)(2^)

5. #(4, m) =m2(£/(0,m-l) + 2p(l,m- 1) + #(2,m-l))
= m*(2^)+m2(m-l)2(2^). D

Lemma 4.A.2

For any integer m>l,

i-Z7=o(7)2(-k)
= fCy

Mn-l (2m\2
'fc=0 I k )

\m— l /2m\2
<fc=0 \ k )

\777 —1 /2m\2

2- ESMT) (»•-*)'= 5^©.

>m—1 /2m\2
* ES (T) ("> - *)

I M4Ö+8m4(£l?) +4m»(2m-1)2(^) ).

Proof:

We begin with the proofs of 2. and 4. We use Lemma 4.A.I.

£?:)"<"•-«" ^g Cr)'--*.-
1

2

1

2

1

2

1

2

m
2 V^ {2rn

k=0

2 2m

E
ft=0

/4m

V &

/o \ 2 2m /n x 2-i

v~> , / 2m \ v-^
,
of 2777,

2m 2^ k'
' ' x ^

fc=0
Ar

fe=0
A;

_

2/4m\
,

2/4m-2N
m"l I - 277T [

^
) + 4m^

'

4m

4m

2m,

2/4mN

2m-1

m
2 ^4m - 2A

N2m- 1/
""

\2m

2
/4m\ Am2

1 /4mN

2 Urn,

2m/ 4m(4m - 1)

4m3

4m- 1

m

— m

'4mN

2
m '4mN

2(4m-l) ^2m,T

Statement 4. is proved in the same way by again using Lemma 4.A.1:

m-l
/o x 2 2m

/o x 2

e T <»-*>4= eT (-*)
fc=0

v 7
fc=0 v 7
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1

2

1

2

2m /o x 2
2m\

E
fc=o

777

k
(m4 - 4m3A; + 6m2A;2 - 4mA;3 + A;4)

a
/4m\

t
o

/4m\
„ 91 9

/4m - 2N
4 ' *

- 4m3m I
_

I + 6m24m2 (
,2m,V2m,

,

4m2
/n ,,

/4m - 2

_4m_(2m+i) 8mc
'4m - 2s

2m-1

+4m2(2m-l)2
4m - 4N

1

2

N2m - 27
_

0 4 /4mA „ 4 /4m - 2\
A 2 . _2 /4ra - 4N

-3m4 +8m4 +4m2(2m-l)2(
\2m/ \2m-l/

v y
\2m-2.

Statement 1. cannot be proved directly (i.e., by simple sum manipula¬

tions). By using Gosper's method [14], one finds Tk such that Tk+i —Tk =

(2D2 (m - *), namely Tk = £(\"f. Then E^ (T)' (m - k) =

T —T— m (2m\2
J-m -1-0

—

4 \m ) •

Using the same method, one finds Sk with Sk+i — Sk — (2) (m — A;)3
to be

Sk —
2A;4 - 2A;3(2m + 1) + k2m(2m + 3) /2mN

4(2m - 1)

\m— 1 (2m\2
Then ES (7) im - kf = Sm - S0

m
3

'2m>2

4(2777—1) V 777

_ (2m\

l)\m )
D

In the remainder of the appendix, we prove Equation (4.9) and Propo¬
sition 4.3.9.

4. A.2 Preliminary Identities

Lemma 4.A.3

For any non-negative integers n, i, and j and any real number x,

77

E
n\ /n — w\ Iw

x«V V J J *r"=(; X*+;r(1+*r~!" (419)

with the convention 0° = 1.

Proof:

If x = 0, then the equation becomes (£) Ç) (°) = (^0(^)0*; this

holds because (°) is 0 if i / 0 and 1 if i = 0. Suppose now x ^ 0. The

summand on the left side is zero if w < i or if w > n — j so we can let the
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sum run only from i to n — j. Furthermore, multiplying out the binomial

coefficients transforms the equation into

n-3
, ,

77!
„„ 77'

_ Tw _ _ ri (l i T\n-i-j
—^ i\j\(w — i)\(n — w — j)l i\j\(n — i — j

Multiplying both sides by i\j\x~%fn\ yields

n-3 /
__ _

-\|

W=l
(w — i)\(n — w — j)\

But the left side of this equation is equal to ES=o J (n
w

3)xW an(^ hence

the equation holds by the binomial formula [7]. D

Lemma 4.A.4

For any integers n > 0 and k and any complex numbers b, c and x, the

following identities hold:

nJE^(>, = (i + »)";

Jcj E^G)*TD = (;)(* +*)b-2.-

i«5^C)',(7) = (î)(i+ir;

^E:=o(>"(v) = C)(i+^r4;

Sa) EIU iZ)xw(b + M = (1 + *)"& + (?)z(l + a;)""1*;;

2bJ EJUO^ + ^HV) = (?)(l + a;)"-16 + 2ß)a;(l + a;)'l-2fc

2c; E:=oC)^(HH(V) = ®(l+*r-2& + 3®!r(l+*)'-s*

2d; eiuo^+mcv) = G)(i+^r-s6+4G)x(i+a;r^fc

3a; EÛ=o O^O» + M2 = (1 + z)"&2 + (ï)œ(l + x)n~1(2bk + k2)

+2(l)x2(l + x)n~2k2;

3b) E:=oO^C'+M2rr) = (îki+s)"-1*"

+2{l)x(l + x)n-2(2bk + k2) + 6g)x2(l + x)n~3k2;

3c) E:=oC)^(6 + M2(V) = (5) (1+ *)-**»

+3(")z(l + z)"-3(26£ + A;2) + 12("k2(l + a;)""4*2;



118 The Hypothesis of Fixed-Key Equivalence

4a) ZZ=0(l)xw(b + kw)3 = (l + x)nb3 + Q)x(l + x)n-1(3b2k + 3bk2 + k3)

+2ß)x2(l + x)n-2(3bk2 + 3k3) + 6(J)x3(l + x)n~3k3;

4b) E:=o (l)^(b + kwf(n-w) = Q)(l + x)»-W

+2(5)^(1 + a;)n-2(3&2A; + 36A;2 + A;3)

+6ß)a;2(l + x)n~3(3bk2 + 3k3) + 24g)x3(l + a;)n-4A;3,-

5a) YZ=Q(nw)xw(b + kwY = (l + xTb±

+ ()x(l + x)71'1 (Ab3k + 6b2 k2 + 4bk3 + k4)

+2(l)x2(l + x)n~2(6b2k2 + 12bk3 + 7k4)

+6g):r3(l + x)n~3(4bk3 + 6A;4) + 24(J)x4(l + x)n~4k4;

6a) ES=o iw)xW(b + k2w)(c + kw) = 0- + x)nbc

+ (î)x(l + x)n-1 (ck2 + bk + k3) +2(fjx2(l + x)n-2k3;

6b) EZ=oOxW(b + k2w)(c + kw)(n-w) = G)(l+x)^bc

+2(l)x(l+x)n-2(ck2 + bk + k3)+Ç>(l)x2(l+x)n-3k3;

6c) El=o OxWib + k2w)(c + kw? = (1 + xTb(?

+ (rl)x(l + x)71'1 (c2k2 + 2bck + 2ck3 + bk2 + kA)

+2(l)x2(l+x)n-2(2ck3+bk2+3k4)+Ç>(7l)x3(l+x)n-3kA.

Proof:

Some of the identities are trivial. The proofs of the others make use of

Lemma 4.A.3 and of the following identities, valid for any real number w

and any integer n:

. to»=6(»)+6(?) + (Y);

.u.« = 24(ï)+36Œ)+14(-) + (ï).

• (Ï)(V)=2(Î); (?)(Y)=3ß); (ï)(V)=4(î);

•(;)("ra)=3ß); ß)(V)=6G);

•G) (":')=•*(")

We will use identities 2a), 2b), 2c) and 3a) also with A;2 instead of k.
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4. A.3 Proof of (4.9) and of Proposition 4.3.9

All proofs make repeated use of Lemma 4.A.4.

Proposition 4.A.5

For any integers n > 0, k > 1 and a > 0 and any complex number b, let

Hi(n, k, a, b) be dehned by the recursion

Hi(n, k,a,b):=Y^ (j f(k, k + a)JHi(n - 7, k - 1, a + 1, b + fc7)

(4.20)

and the initial condition H\(n, 0, o, b) :— b. Then, for any integer k > 0,

Hi(n,k,a,b)= (4.21)

(l + J2f(j,k + a)Y Un)^jf(j,k + a) + (l+J2f^k^^)b}-
3=1

7 v \ /
j—!

\
j-i

Proof:

It is easy to see that (4.21) implies Hi(n,0,a,b) = b. (Empty sums

are treated as zero.) We prove the general case by induction. Let k > 1

and let the proposition hold up to A; — 1. Then (ignoring the stars *; they
will be used in the proof of the identity satisfied by the function i/T3)

Hi(n,k,a,b) = ^(n\f(k,k + a)wHi(n-w,k-l,a + l,b + k*w)
w=0

^ '

n xx , fc—1 x n-w—i

]T r)f(k,k + a)w(i + E^fc + a)j
k-1

, k-1
n — w~

X
W) E ^/0', k + a)+fl + Y, f(j, k + a)) (b + k*w) \
J

3=1 ^3=1 ' >

k-l
,

k-1

)K—±
y K—± x

E^0'}ä + o)+(i + E^'^ + u))(6 + ä*«;)
3=1

^
.7=1

'
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(k

—l \ 77— 1 (

i + E/(^+a)J {
k-1

U VIA 1 + E3tî /G, k + a)

77-1

fc-1

+ (l + E/0',fc + a))
V

J=i
/

/n\ /(A;, A; + a)

1 +
f(k,k + a)

n

i + E;=r/0',* + a)

i +
/(*,* +a)

77-1

fc-1
V 1 +E,=i /Ü, * + a) V 1 + E?=î /0\ Ä + a)

AT

(ft

—1 x 77— 1 (

i + E/ü'^+a)J i

Er/(l,+a)0(^fkf^
J=i

v1/vi + Ej=i/u^ + a

77-1

fc-1

/n\ f(k,k + a]

1 + ELmHa) 77

vfc-1
l + E^i/Ü.fc + o)/

/i + ELi/0'.fe + û)' 77-1

^ i + E*=î /a,k + a) Vi + E*=î /ü,* + û)
V

(we cancel all terms 1 + E?=i f{J-> ^ + a) and factor out some other terms)

(k

x 77

l + E/0',fc + a)) &

j=i
'

+ (ïj(1+E^,*+o)j
/ fc-l \ 77— 1

= (i + E^''A;+o) x

77-1 rfc-1

I ^r/0',A; + a) + r/(A;./c + a)

(i + E/ü'Ä?+a))6+(i)E^^''fc+a)|- D

The proofs of the other identities use even longer formulae. To keep them

a little shorter, we introduce some abbreviations.
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Definition 4.A.6

• fk := f(k,k + a);

• Fhl:=ZlJ=iJlf(j,k + a).

The following identities, which are easy to prove, will be very useful.

Lemma 4.A.7

.
1 _|_ fk

-

1+F0,h
.

1 "•"
Fo,fc-i l+i^o.fc-i '

• Fi)k = kfk + -Pi.fc-i;

• F2,k — k fk + F2jk-i;

• ^3,ft = k fk + F3jk-i;

• -F4,ft = k fk + F^k-i;

• Flk = k2f2 + 2kfkFi^i+Flk_i;

• Flk = k4f2 + 2k2fkF2,k-i + n,k-v

• *?,* = *3/*3 + 3*?ftFi,k-i + 3*/**?^ + Flk_i;

• *ïfc = *V4 + 4fcVfc3Fi,fc-i + GVfî*?*-! + Wft^fc-i + *?,fc-i '

• Fi.fcFa.fc = A:3/2 + fc2/fc*i,fc-i + kfkF2,k-i + Fltk-XF2,k-i;

• i^fti^ft = A?4/? + k3fkFi,k-i + fc/fci^fc-i + Fi,ft-i^3,ft-i;

• i?,Ä = A;4/*3 + 2fc3/2F1,fe_1 + A;2/,F2fc_! + Ä2/*2^^-!

+2kfkFi,k_iF2^i + F*tk_1F2,k-i.

Now we are ready to face and defeat the other monsters.
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Proposition 4.A.8

For any integers n > 0, k > 1 and a > 0 and any complex number b such

that -ir/2 < arg(fe) < n/2 or b — 0, let H2(n,k,a,b2) be deßned by the

recursion

H2(n, k, a, b2) := ^ () f(k, k + afH2(n - 7, k - 1, a + 1, (b + kj)2)

(4.22)
7=0

and the initial condition H2(n, 0, a, b2) := b2. Then, for any integer k > 0,

/ft \ 77-2 ( / ft \ 2

l + ^2f(j,k + a)
3=1

H2(n,k,a,b2)= h+£/(j,fc + a)j
^

3=1
'

i)(1 + E/^A;+a)) E^^+a) + 2&E^(^+a)

+ 2
n

3=1

ft

^JfU.k + a)

3= 1 3= 1

2-1

(4.23)

Proof:

It is easy to see that (4.23) implies H2(n,0,a,b2) = b2. We prove the

general case by induction. Let k > 1 and assume that the proposition
holds up to k — 1. First we rewrite (4.23) with the above introduced

abbreviations:

H2(n,k,a,b2)= (l+Fo
77-2

n

1 + F0,k (4.24)

+ lj J(l + *b,* F2)fc + 2bFhk + 2
n

F\i,fcj /•

Then

H2(n, k, a, b2) = Y, (j fkH2(n - w, k - 1, a + 1, (b + kw)2)
w=o

\w/

= ÈCM^-
77—W—2

1 + F0b-i

w=0

(b + kw)'

+2
n — w

Fi,k-i

+ C 1 W) {} + -Fo'fc"1 F2jk_i + 2(b + kw)Fi,k-i
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77-2 ( n

n fk
l + *b,k-l) <Ev M1-L.ÏT

(b + kw)2 l+Fo,fc-i

+2(n7)^_1+(i+^-1)F2lÄ_1(w-u;;
+2(i+Fo,*-iW*-i(&+Mr~ j I

2
/ 1 + Fo.fc

l + F0,fc-lj <( [1 + ^fc-l

/ft / 1 + F0,fc

77

+
77

+ 2

lJl + F0,k-i \l + F0,k-i

fn\ ( fk

\1 + F0,k-i J

77-1

(2&A; + A;2)

2 / i _l t? \
n-2

+ 2F2
_x

,2/ \1 + Fo,k-i J Vl + Fo^-i

n\ f 1 + F0,fc \

k'

2) \1 + F0)fc_i

+ ( 1 + F0)fe-i j F2jfc_i I

+ 2(l + F0lfc_ijFi>fc_i
fk

'n\ ( 1 +
F

77-1

0,ft

1) \1 + Fo,fe_i

n\ / 1+ Fc
77-1

0,ft

+2
77

i; Vi + ^b.ft-i
\ 77-2

1+Fr0,fc

2yi + Fo,fc_i Vl + Fo,fc_i

77-2 2 r

= 1 + Fr0,ft
1 + F0,k

77

+ IJ11 + F0, 2bkfk + k2fk + F2tk-i + 2bFi>k-i

+2
n

,2 x2
kzfi + F2+2kfkFi,k^

71,-2

= 1+F0,ft H%

+
»

i + fw F2)fe + 26Flifc + 2
n

^i,fc
D
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Proposition 4.A.9

For any integers n > 0, k > 1 and a > 0 and any complex number b, let

Hz(n, k, a, b) be deüned by the recursion

H3(n, k, a, b) := J^ ( j f(k, k + ayH3(n - 7, k - 1, a + 1, b + k2-f)

(4.25)
7=0

and the initial condition H3(n, 0, a, b) :— b. Then, for any integer k > 0,

(4.26)H3(n,k,a,b) =

/ k x 77— 1
f / k x

(i+E/(^+a)j jMi+E^^'^+a)) + (i)E^^fc+a)
77

3=1 3=1 3=1

Proof:

The proof is essentially the same as that of Proposition 4.A.5: square

there every symbol that has a star, or, if you prefer, set * = 2 everywhere.D

Proposition 4.A.10

For any integers n > 0, k > 1 and a > 0 and any complex number b such

that -tt/2 < arg(6) < n/2 or b = 0, let H±(n,k,a,b2) be dehned by the

recursion

Hi(n,k,a,b2) := ^ (
n

J/(fc, k + a)wH4(n - w, k - l,a + 1, (b + k2w)2)

(4.27)

and the initial condition H^n, 0, o, b2) := b2. Then, for any integer k > 0,

77-2

H4(n, k, a, b2) = ^ + E /Ü, k + <0j j f 1 + E /Ü>k + an

(\
/ fc x r fc fc

l)(1 +E/(^ + a) E^'4/(j^ + «) + 26^j2/(j,/c + a)

+ 2
77

3=1

f fc N

E^'2/(^+a)
K3=l

3=1

2-1

3=1

(4.28)
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Proof:

The proof is essentially the same as the one of Proposition 4.A.8: re¬

place in that proof H2 by H4, Fitk-i (resp. Flfk, F2,fc_i, F2jfc) by F2jfc_i
(resp. F2}k: F4)fc_i, F^k); also replace A; (resp. A;2) by A;2 (resp. A;4) at all

places except in indices, in limits of a sum or in the second argument of

H2. D

Proposition 4.A.11

For any integers n > 0, k > 1 and a > 0 and any complex number b such

that —vt/4 < arg(&) < 7r/4 or b — 0, let H5(n, k, a, b4) be dehned by the

recursion

H5(n,k,a,b4) := ]T (jf(k,k + a)wH5(n-w,k-l,a + l,(b + kj)4)
w=0

^ '

(4.29)
and the initial condition H$(n, 0, a, b4) := b4. Then, for any integer k > 0,

(fc

\ 77—4 ( , ft x 4 -

i + E^'^+a)) jfi+E^''*+o)) &4

+ (i) f1 + E fU>k + «)) Ub3J2jfU,k + a)
\ J \

3=i
/ L

3=1

ft ft ft

+ 6 62^j2/0-/c + a)+4^j3/(j,fc + G) + ^j4/(i,A; + a)
j=i j=i j=i

(l + è/0'^ + a))
fc

x

2

+ 2
77

(ft
x. z; «; «;

52jf(J,k + a)) +i2&E^^fc + a)E^2^fc + a)
J=l

'
J= l 3=1

/ ft x 2 ft fc

+ 3 J]j2/(i,A; + a) + 4^j/(j, fc + a) £ j3/(j,fc + a)
\7=1 J=l J=l

+ 6
77

\ r / \ '

±-rJ2f(j,k + a)) 46(^i/(i,fc + a))
.7=1 ' L S=l '

2 fc

+ 6E*Hfl) E^Ü^ + o)
vj=i

+ 24
77

J=l

4

(4.30
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Proof:

To prove that (4.30) implies H$(n,0,a,b4) — b4 is easy. We prove the

general case by induction. Let fc > 1 and assume that the proposition

holds up to fc — 1. First we rewrite (4.30) with the above introduced

abbreviations:

HB(n,k,a,b*) = (1 + F0,fc

3 r

77—4

1 + Fr0,fc
b4

n

+ I
x

) 11 + Fo,fc ) 4^Fljfc + 662F2,fc + 46F3)fe + F4,

+ 2Q ) (l + Fo,k)
2

[662F2fc + 126F1)fcF2;fc + 3F2, + 4F1)feF3,fc

+ 61
77

AbFlk + 6FlkF2,k + 24i
77

-^1,ft (4.31)

Then

H5(n, fc, a,b4) = 53 ( J /(fc, fc + a)wH5(n-w, k-l,a + l,(b + fc7)-
0/1—n \ /

77

w=0

77—70—4 4 r

= Eog/n—

+(»7)(l+^

1 + F0;fc_i (6 + fe^)'

3 r

4(6 + fcu;)3Fi)fc_i

+ 6(6 + kw)2F2^i + 4(6 + kw)F3,k-i + F4,k-i

^

n — w\ (
_

+ 2f
2 jfl + F0>ft_i 6(6 + kw^F?^

+ 12(6 + fct£7)Fiift_iF2,fc-i + 3^^! + 4F1)fc_1F3jfc_i

4(6 + fc^F3,^ + 6F1%_1F2)fc_1+ 6(
3 j(l + F0>fc-i

+ 24
n — w

Fi,k-i
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77—4 77

= i + *b)fc-i E
77 fk

w

u;=0
wj V 1 +F0)fc-i

fl + ^fc-i) (6+fcw;)4 + 4^1 + Fo!fc_ij Fi,fc_ir~W;j(6+fc77;y

+ Ç>(l + F0,k-i\ F2,k-1(~W)(b + kw)2

+ 4(l + F0,k-i>\ F3,k-1("~W\b + kw)

+ 1 + F0)fe_i F4)fe_i
77 — W

+ 12(l+F0,k^ Flk_^ 2Wyb + kw)2

+ 24 fl + Fo,fc-i) F1,fc_1F2]fc-i r
~

J (6 + few)

+ 6 l + Fo>fc-i F2
n — w

+81 + F0)fc_i Fith-iF^)k-.i
n — w

+ 24(l + Fo,*-i) F?,t-i (" 3 ) (» + kw)

+ 36 (l + F0,k.)F^F^ ("
-

W) + lAF}^ (" ^
77—4 4 r

= 1 + *0,fc-l H Fo.fc-1
1 +

Fr

0,fc

1 + Fo,fc_i

+
77 fk ( 1 + Fo,

77-1

fc

+ 2

i;i + F0,fc_i vi + F0jfc_i;

A2/ 1 + F0)fc

k2 7^2 ,3 , 7,4

77 fik

2) \1 + Fq^-i/ \l + F0)fc-i

46^ fc + Wkz + Abkö + k

77-2
^

^Qb2k2 + 12bk3 +7k4

+ 6
71 h y( i + ^o.fc

,3; Vi + ^fc-J U + ^fc-i

77-3

46fc3 + 6fcz

24'
77 fk Y( 1+ *!>*

4; Vi+^o,*-!/ Vi+^o,*-i

77—4

fc4

(continued on next page)
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(continued from previous page)

+ 4M+F0,fc-ij Fi,fc_i

fk

n 1 + F0;fc

1 + F(

77-1

0,fc-l

+ 2

V

+ 6^
+ 24

77 1 + F0,fe
n-2

2) l + F0,k-i \l + F0ik-i

n\ / fk

3j\l + F0ik-i

fn\ ( fk

3b2k + 3bk2 + kc

7 1 + F0,fe \n'3

l + F0)fc-i
36fc2 + 3fc3

1 + F(
77-4

0,ft

Aj\l + F0tk-iJ \l + Fo,k-i
fc

+ 6fl + F0,fc-ij F2,fc-i

/ft

77 1 + F0,fc
77— 1

lAl + F(0,fc-l

+ 2|

+ 6

77 1 + F0,fc
77-2

2jl + F0,k-i \l + FQ,k-i

'n\ ( fk

2bk + fc

l+-^0,fc \ \k2

+ 4fl + Fo,fc-il F3,fc-i

fk
+ 2

3j\l+Fo,k-iJ VI+ ^-1

'n\ / 1 + F0;fe

aJvi+^fc-i
/ 1 + F0,fc

77-1

77-2

n

2jl+Fo,k-i\l + Fo,k-iJ
v3 • x / -. . t-t \ 77—1

fc

77

+ [1 + F^)F^-1[i)[T+±F^i

+ 12fl + Fo,fc-iJ Flk_i

fk

77 1 + F(
77-2

0,fc

2j\l+F0,k-iJ
x 77—3

+ 3
\

+ 12

77 1+Fr0,fc

3yi + F0,fc_i Vl + ^o.fc-1

fn\( fk V

26fc + fc

1 + F(
77—4

0,fc

4^1+^-1 y vi+^fc-i

+ 24M+F0,fe_iJ Fi,k-iF2,k-i

fk

'n\ / 1 + F0,fc
'

,2J Vl+F0,fc_i

fc

n-2

+ 3
n 1 + Fr

77— 3

0,fc

3jl + F0,k-i \l + F0,k-i
fc

(continued on next page)
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(continued from previous page)

+ 6(l + F0)fc_1) F2
77 1+Fr

77-2

0,fc

2) \1 + Fq k-i

+ 81 + F0,fc_i Fi^-iFs^.i
n 1 + F(

77-2

0,ft

+ 24[l + Fo,kl )Flk-i
n

2) \1 + F0jk-i
\ n-3

1+Fr0,ft

1 + Fc0,fc-l
6

+ 4
77 /ft 1+Fr

77—4

0,fc

^yi + Fo^-i Vl + F0,fc_i
fc

+ 36 l + F0lfc-iW)ft_Afc-i
77 1 + F(

77-3

0,fc

K3J \1 + F0)fc_i

+ 24F4
fc_!

V\/ 1 + F0,fc
AJ U + ^o.ft-i

77—4

(all I 1 + Fq^-i ) -expressions inside the curly brackets cancel, and we

factor out the binomial coefficients)

77—4

= 11 + Fo.jb-1 ) m+%

3

+r ^ ,2 i 2

/fe(463fc + 6bV + 46fcd + fc4) + 4Fi,k-ib"

+ 6F2)fc_i62 + 4F3jfe_i6 + F4,fc_i

/ \ r \ 2

77

+ 21 l + Fo,,

+ 24

/2(662fc2 + 126fc3 + 7fc4)

+ 4F1)fc_1/fc(362fc + 36fc2+ fc3) + 6F2)fc_i/,(26fc + fc2) + AF3jk-ifkk

+ 6*i,fc-i&2 + 12Fi,fc-iF2jfe_i& + 3F22fc_1 +4F1,fe_1F3,fe_i

J /3(46fc3 +6fc4) + 4FM_1/2(36fc2 + 3fc3)

+ 6F2jfc_1/2(fc2) + 6Flk_Jk(2bk + fc2)

+ 12Fi^iF2^ifk(k) + 4F3fc_16 + 6F2,_Afc-i

'n

+ 6g 1+fo,*

f3j.3 2;.2
/^fc4 + 4F1,k-1fîk*+6Fftk_1fihri + 4F3fc_1/,fc + F4^
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77— 4

= 1 + F0,fe_i

77

I 1 + F0,k

463(fc/fc + Fl!fc_0 + 662(fc2/fc + F2jfc_i)

+ 46(fc3/Ä + F3!fc_i) + (fc4/fc + FA>k-i)

'n

+ IJ11+F0.Ä

+ 2[2)I1+F0)fc 662(fc2/2 + 2fc/fcF1,fc_1+F1%_1)

+ 126(fc3/2 + k2fkFi,k-i + fc/fcF2;fc_i + Fi,k-iF2,k-i)

+ 3(k4f2 + 2k2fkF2^i)

+ 4(fc4,/2 + fc3/fcF1)fc_x + kfkF3ik-i + Fhk-iF3,k-i)

n

+ 6[3)[1 + F0, 46(fc3/3 + 3k2f2Fi,k_i + 3kfkFlk_1 + Flk_x)

+ 6(fc4/3 + 2k3f2Fi,k-i + k2f2F2,k-i + fc2/*i?,*-i

+ 2kfkFljk-iF2,k-i +F2fc_1F2)fc_i)

+ 24
77

c4l4 ?373 2 7.2
ftk* + m,k-ifàkkà + 6Flk_Jifc + AFlk_Jkk + Flk-i

1 + F0>k
77—4

1 + Fo,

77
3 r

+ I
i

I ^1 + F0,k) [AbàFitk + §VF2,k + 46F3)fc + F4,fc

+ 2 (n] (l + F0tk)
2

[662F2fc + 126FMF2,fc + 3F2fe + 4F1)fcF3,fc

77

,3,
+ 6r;)(l + F0)fcj 46F3k + 6F2,F2)fe + 24

77

Fl,k

D
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Proposition 4.A.12

For any integers n > 0, fc > 1 and a > 0 and any complex numbers 6 and

c such that —tt/2 < arg(c) < tt/2 or c = 0, let He(n, fc, a, b, (?) be dehned

by the recursion

H6(n,k,a,b,c2) := (4.32)
77 s x

E (
n

) f(k> k + ar#e(n -

w, k - 1, a + 1, b + k2w, (c + kw)2)
7/J=0

and the initial condition He(n,0,a,b,c2) := be2. Then, for any integer

k>0,

77-3

beH6(n,k,a,b,c2)= h+]r/(j,fc + fl)J I f 1 + ]T/(j,fc + o)

/\/fc \2rfc ft

+ (i)(1+E/^/c+a)) ^E^/^fc+a)+2&cE^^Ä;+a)
j=i j=i j=i

+ 2c^j3/(i,fc + a) + c2^j2/(j,fc + a) + ^//(i,fc + a)
j=l 3=1 d=l

+ 2(2)(1+E^fc+a))[6(E^ü'fc+a))
rC K s ru \ "

+ 2C^j70^ + a)^J2/(j,A; + a)+(X;j2/0^ + o))
.7

= 1 .7
= 1 ^.7=1 '

J

=

fc

J

=

fc

+ 2^j7(j,fc + a)^j3/(j,fc + a)
j=i j=i

(4.33)

Proof:

To prove that (4.33) implies H6(n,0,a,b,c2) = 6c2 is easy. We prove

the general case by induction. Let fc > 1 and assume that the proposition
holds up to fc — 1. First we rewrite (4.33) with the usual abbreviations:
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77-3 3 r

H6(n,k,a,b,c2) = 1 + F0) 1 + Fr0,ft 6c2

2 r

6F2)fc + 26cFi,fc + 2cF3!fc + c2F2,k + F4,fc

6F2fc + 2cFltkF2,k + Flk + 2Fi.fcF3.fc

+ 6
77

Fl,kF2,k (4.34)

Then

H6(n, fc, a,b,c2) = ^2 [) fkH6(n -w, fc-1, a + 1,6 + k2w, (c + fcîTj)2)
w=0

\W'

77

71
77—TU—3

w=0

n — vf

(b+kw)(c+kwf= Y,[w)fk[^Fo,k-i) i(l + F0,k-i

2

(b +k2w)F2>k^i + 2(6 +fc77j)(c +kw)Fx,k-i

+ 2(c + kw)F3,k-i + (c + fc7ü)2F2,fc_i + F4,fe_i

+ (
1

l(l + F0,fc_i

+2Y 1 + *,-! (6 + A;277j)F12fc_1 + 2(c + kw)Fltk-1F2,k-1

+ F2,k-i + 2FLjfc_iF3)fc_1

+ 6
n — w

Fi,k-iF3,k-i

77 —3 77

- 1+Fr0,ft-l E
i(j=0

77 /fc
tt>

wj Vl + F0jfc_i

(l + F0,fc_iJ (6 + fcw;)(c + fc7ij)2

+ (l + *M-i) ^2,fc-i ("
~ W) (b + k2w)

+ 2(l + F0,k-i) Fi,k-i(^~W)(b + k2w)(c + kw)

(continued on next page)
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(continued from previous page)

-+2M+Fb,fc-iJ F3)fc_i r
~

WJ (c + kw)

+ (l + Fo,k-iS) F2yk-i(n~](c + kw)2

+ 1 + F0jfc_i F4,fc-i

+ 2 1 +%iWlH

77 — W

x

1
,

(6 + fc277j)

+ 4U + Fo.fc-1 jFi,k-iF2,k-i r 2)(c + kw)

+ 2[l + Fo,k-i)F2
n — w

l + Fo>fc-ijFi,fc-iF3>fc-if 2 )+GFlk-iF2,k-i[ 3

1 + F0,fc_i

+

77—3
'

#1 + F0,fc_ij
/ 1 + Fp!fc

^1 + Fo.fc-i Vl + ^o,ft-i
2

1 + F0,fc
n

6c^

77 fift

1 + Fotk-iJ

77-1.

c2fc2 + 26cfc+2cfc3+6fc2 + fc4]

+ 2
77 fk 1 +

Fr
n-2

0,fc

2) \1 + Fo.jt-i/ Vl+^o,ft-i
2cfc3 + 6fc2 + 3fc4

+ 6
77 /fc AV 1 + ^o.fc

K3) Vl + -Pb,fc-i/ Vl + Fo>fc_i

+ (l + Fo,fc_i ) F2,fc_i

n-3

77 1 + F0,fc
lAl + Fo,fc_i

fc4

77-1

+ 2
n fk 1+Fr

n-2

0,fc

\2y 1 + F0)fc_i \1 + F0)fc_i

+ 2fl + F0)fc_1) Fi,fc_i

fc

n\fl + F0,fc
77-1

lAl + Fo.fc-i
6c

+ 2

+ 6

77 fifc 1+Fr
77-2

0,fc

2/ 1 + F0,fe_i V1 + F0,fc_i

77 fk

,3; vi + ^fc-J vi + ^b.fc-i

cfc2 + bk + fc

77-3
r

(continued on next page)
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(continued from previous page)

+ 2(l+Fo;fc_ij F3}k-i

'»A fk

'ri\( 1 + F0;fe
77-1

17 Vl + Fo,fc-i

+ 2
1+Fr

77-2

0,ft

2) 1 + Fosfc_i Vl + F0)fc_i

+ f 1 + F0,fc_i j F2,fc_i

fk

V\ ( 1 + F0,k

lJ\l + F0^i

+ 2

+ 61

77 1 + Fr

77-1

n-2

0,fc

2) 1 + Fo;fc_i \1+ F0)fc_i j

\V 1 + Frn fk 0,fc

3J\1 + F0ik-J \l+F0,k-i

c

-1

fc
L J

_

L

c2

2ck + k2

77-3 -|

fc2
*- -

_

+ M+F0)fc_iJ F4)fc_i

+ 2^1 + F0>fc-1^F1%_1
fk

rn\ ( 1 +
F<

77-1

0,fc

1) Vl + Fo.fc-1,

fn\ / 1 + F0,fe
77-2

2) \1 + Fo,k-i

+ 3
n 1 +

Fr
77—3

0,fc

3J 1 + F0jfc_i \1 + F0)fc_i

+ 4(1+ F0,fc_i j Fijfc_iF2jfc_i

/ft /

fc5

+ 31
77

77^ ( 1 + F0)fc

,1
+

Fo,

l + Fo,fc

77-2

2/ Vl
+

Fo;fc-i
77— 3

'fc
,3/ 1 + Fq^-i \1 + Frj;fc-1

A / 1 + F0)fc

+2(i+^_1)f?,ik_1g)(ï

77-2

+ F0jfe-1

+ 4(1 + F0ifc_i ) Fi!fc_iF3jfc_i

'n\ / 1 + F0)ai

n\ f 1+ F
77-2

0,ft

+6*?,-^-i(;;)(t

2/ \1 + Fo.ft-i

\ 77-3'

+ F0. fc-i

(all ( 1 + F0jfc_i j-expressions inside the curly brackets cancel, and we

factor out the binomial coefficients)
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77-3 3 r

= 1+F0ifc_i 1 + F0,fc be'

+mi+^ fk(c2k2 + 2bck + 2cfc3 + 6fc2 + fc4) + F2.fc_i6

+ 2Fijfc_i6c + 2F3;fc_ic + F2)fe_ic2 + F4,k-i

77

+ 2 ( 1 + F0jfc

+ 6

/2(2cfc3 + 6fc2 + 3fc4) + F2,k-ifkk2

+ 2F1,fc_1/fc(cA;2 + 6fc+ fc3) + 2F3,fc_1/fcfc+ F2,k-ifk(2ck+ fc2)

+ F2fc_16 + 2Fi,k-iF2,k-ic + Flk_i + 2Fi.fc_xF3.fc_i

/ffc4 + 2Fi,fc_i/2fc3 + F2)fe_i/2fc2 + F2fc_i/fcfc2
77

+ 2Fi,fc_iF2,fc_i/fcfc + F2fc_1F2,fc_i

77— 3

= 1 + Fo.fc-i 1 + F0,fc 6c2

+ -i+^ b(k2fk + F2|fc_i) + 26c(fc/fc + Fi,fc_i)

+ 2c(fc3/fc + F3,fc_i) + c2(k2fk + F2|fc_i) + (fc4/fc + F4.fc_i)

77

+ 2 1 + F0,fc 6(fc2/2 + 2fc/fcFi,fc_i+F2fc_1)

+ 2c(fc3/2 + fc2/fcFi)fc_i + kfkF2,k-i + Fi.fc.iFa.fc-i)

+ (^4/fc + k2fkF2,k-i + k2fkF2,k_i + Flk_i)

+ 2(k2f2 + fc3/fcFi,fc_i + kfkF3)k-i + Fi.fc_iF3.fc_1)

+ 6
77

„4x3 „3*2 2 r2

k*ft + 2fc^/AfF1.fc_1 + fcfiF2,fc_1 + k2fkF2k_i

+ 2fc/fcFi.fc_iF2.fc_i +F2fc_1F2,fc_i
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77-3 3 r

= 1+Fr0,fc 1 + Fo.fc 6c2

+2 0(i+fo,;

6F2,fc + 26cFi,fc + 2cF3.fc + c2F2,k + F4,k

bFi,k + 2cFi.fcF2.fc + F2)fe + 2Fi.fcF3.fc

+ 6
77

Fl,kF2,k
D



Chapter 5

The Piling-Up Hypothesis

Matsui's Piling-up Lemma is used in the binary generalisation of linear

cryptanalysis (and also in Matsui's original linear cryptanalysis) to com¬

pute the probability of success of the attack (see Chapter 2). Harpes has

shown [16] that in the group generalisation of linear cryptanalysis, which

is briefly described below, the imbalance of a product of independent ran¬

dom variables is not in general equal to the product of their imbalances.

However, he noticed that in most cases both values were very close to each

other. This led him to propose a conjecture that he called the piling-up hy¬

pothesis. The purpose of this chapter is to study whether this hypothesis
holds.

In Section 5.1, we present briefly the attack called the group generalisa¬
tion of linear cryptanalysis and state the piling-up hypothesis. Section 5.2

is concerned with the validity of this hypothesis for a certain imbalance

measure; we show for this measure that the hypothesis holds by proving
that on average the imbalance of a product of two random variables is

equal to the product of the imbalances of these random variables and by

proving that on average the squared distance between the imbalance of

the product and the product of the imbalances is small. We relegate a

long proof to the appendix.

5.1 Group Generalisation of Linear Cryptana¬

lysis

This attack [16] is a further generalisation of linear cryptanalysis in which

one replaces:

137
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• binary-valued balanced functions by m-ary balanced functions (777 > 2),
that is, functions that take on each value in {0,1,.. .,777

— 1} for the

same number of arguments;

• mod 2-addition 0 by a group operation * on Zm;

• I/O sums S = f(X) 0 g(Y) by I/O differences D = f(X) * gÇY)-1,
where g(Y)~x is the inverse of g(Y) under the group operation *;

• threefold sums T = f(X) 0 g(Y) 0 h(K) by I/K/O combinations C =

f(X)*h(K)*g(Y)-1.

Also, the binary imbalance I(X) — \2P[X = 0] — 1| is replaced by one

of the following.

777 — 1
-,

(/^imbalance) h(p) :=— — V k (5.1)
2(777 — 1) *-** I 777

v '
i=0

777 — 1 _.

(Euclidian imbalance) h(p) '—
\

7^ p2 (5-2)
\ 777 — 1 t—*1 777 — 1
\ 7-0

777

(Z°°-imbalance) Ioc(p) '= max pt
-— (5.3)

777. — 1

1

m

777 / 1 \
(peak imbalance) Ip(p) '— max pi ] (5.4)

777 — I * \ m )

(peak-to-peak imbalance) Ipp(p) '= maxpt —mmpt (5.5)

(redundancy imbalance) Ired(p) := 1 — -—-— (5.6)
log 777

where H(p) is the entropy of a random variable with probability vector

p. A probability vector p — (po,pi,.. .,pm-i) is a vector whose compo¬

nents are non-negative and sum up to 1. It corresponds to the proba¬

bility distribution of some m-ary random variable X with Px(i) = Pi,

i — 0,1,.. .,m — 1. We shall talk of p as a probability vector when p

is any point in IRm with the above property and more specifically as a

probability distribution when p is related to some random variable. Both

concepts are equivalent. Note that the value of the imbalances does not

change if one permutes the indices of p. (We call that operation a permu¬

tation of p.) For the imbalance of a random variable X with probability
distribution p, we shall write interchangeably I(X) or I(p), depending
on which is more convenient. Harpes has shown [16] that the following
properties hold for all of the above imbalances:

• 0 < I(p) < 1 for all probability vectors p;
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• I(p) =0&pl = ^ for alH;

• I(p) = 1 <^ there is an i with p% = 1 and p3 — 0 for all j ^ i.

Hereafter, we omit the redundancy imbalance from consideration because

it does not possess some natural properties that the others do; for instance,

as can be easily seen, all the others reduce for m = 2 to the binary
imbalance defined in Chapter 2. Also, we will write I when we mean that

the imbalance considered may be any of the five imbalances Ii,I2,Ioo,Ip,
and Ipp.

Remark 5.1.1

The generalisation of linear cryptanalysis applies only for 777 equal to a

power of 2 when, as we consider, both the plaintext and the ciphertext
are binary n-tuples and thus have 2n possible values. In that case, m-ary

balanced functions must take on each value for 2n/m arguments; but this

number is an integer only if m — 2l with 0 < I < n. Nevertheless, because

in this chapter we are concerned only with imbalances, we will not restrict

ourselves to powers of two for m. Everything in this chapter, unless stated

otherwise, is valid for any integer m > 2.

Harpes has shown other properties of the imbalances, valid for any

group operation * on Zm and any independent 777-ary random variables X

and Y [16]:

a) As a function on m-ary probability distributions, I is convex-U;

b) I(X*Y) <mm(I(X),I(Y));

c) l1(X*Y)<^^I1(X)-I1(Y);

d) I2(X * Y) < VnT^ÏI2(X) I2(Y).

e) The one-peak distribution p — (_±i___j£ I__ =:z£), where ^r <
J * r \ m ' m ' ' m '' 777 —1 —

e < 1, has imbalance I(p) — |_|.

f) If X and Y have one-peak distributions, then X*Y also has a one-peak
distribution and

I(X*Y)=I(X)-I(Y). (5.7)

However, (5.7) does not hold in general for independent random variables

X and Y, as can be seen from the following example, taken from [16]:
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Example 5.1.2

Let p = (1,1,0,0) and q = (1,0,1,0) be probability distributions for

independent random variables X and Y. Let the group operation * be

04, addition mod 4. Then X 04 Y is uniformly distributed and thus

_(_re4Y) = 0. However, h(X) = \,I2(X) = ^/„(X) = \,IP(X) = |
and IpP(X) = | and 1" has the same imbalance as X. Thus I(X 04 F) =

0^I(X)I(Y).

However, it seems that in most cases the imbalance of a product of

independent random variables is approximately equal to the product of

the imbalances of the individual random variables. This fact led Harpes
to suggest the following hypothesis:

Conjecture 5.1.3 (Piling-up Hypothesis)
For any integer r > 2, for any group operation * onZm,

r

I(Xi * • • • * Xr) « J[ I(Xj). (5.8)
3=1

for almost all m-ary independent random variables X\,..., XV

(In fact, Harpes restricted his hypothesis to products of I/K/O combina¬

tions, but if the hypothesis holds in our broader sense, it also holds in

Harpes's sense.) The statement of this hypothesis is again not very pre¬

cise. Our goal is to give a quantitative meaning to the approximation

sign. It is enough to consider the case where r — 2, i.e., only two random

variables, since if (5.8) holds for r = 2, then it holds for any r > 2 by
induction. If we know how well (5.8) holds for r = 2, then we also know

how well it holds when r > 2.

Remark 5.1.4

It is enough to consider the piling-up hypothesis (5.8) for random variables

that are not balanced: if one of them is balanced, then their product is

balanced and we have equality with 0 on both sides. Thus, in what follows,
all random variables will be assumed to have non-zero imbalance. This

allows us to make the following definition.

Definition 5.1.5

For any imbalance measure I, define the piling-up factor as
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We will write Ai for the piling-up factor based on the imbalance I\, and

so on.

The piling-up factor normalizes the departure from the piling-up hypo¬
thesis and allows one to compare in particular cases how far one is from

the equality I(X\ * X2) — I(Xi)I(X2). The piling-up hypothesis for two

random variables reads:

For any group operation * on Zm,

A(Xi,X2)«l (5.10)

for almost all m-ary independent random variables Xi,X2.

Remark 5.1.6

The bounds c) and d) on Page 5.1 become now:

c) Ai(X,Y)<2-^-,

d) A2(X,F) <^/m~^ï.

Remark 5.1.7

All imbalance measures that are convex-U on the set of all probability
distributions, equal to 1 for a constant random variable, and equal to 0

for a uniformly distributed random variable are in a sense equally appro¬

priate for measuring the usefulness of an expression (an I/O sum or an

I/O difference or a threefold sum or an I/K/O combination) for use in

an attack. Imbalance does not provide an absolute goodness of such an

expression but rather a relative goodness that allows one to compare dif¬

ferent expressions. Thus, in a particular situation, it is enough to prove

that the piling-up hypothesis holds for one imbalance measure and then to

use that imbalance measure to estimate the probability of success of the

attack. Note that this does not imply that if the hypothesis holds for one

imbalance measure, then it also holds for the other imbalance measures.

5.2 Validity of the Hypothesis for the Imbal¬

ance J|
In the remainder of the chapter, we prove that the piling-up hypothesis
holds for the imbalance measure if (that is, the square of the Euclidian
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imbalance 72). The imbalance I2 is convex-U because it is the square of a

non-negative convex-U function. We have

777 — 1
-,

777 — 1
-, r,

H(v) = -^Ep?—^ = ^tE («-!)• («•")
m — 1 *-^

m — 1 m — 1 -*—' V mJ
7—0 7=0

Sometimes, one of the above forms is more convenient than the other. The

corresponding piling-up factor is

Matsui's Piling-up Lemma says that A2(Xi,X2) = 1 for all independent
random variables X\,X2 when m = 2. Harpes has shown [16] that the

same holds for m = 3. For that reason, we could consider only m > 4;
this we will do, but only from that point where by this restriction we can

avoid laborious case distinctions.

5.2.1 Averaging Over One Random Variable

In this subsection, we consider a random variable X\ with probability dis¬

tribution p, a second probability vector q, and the average of I2(Xi *X2)
over all random variables X2 independent of X± that have g or a permuta¬
tion of q as their probability distribution. We show that for any m > 2 and

any group operation * on Zm, this average is always equal to I2(p)I2(q).

Definition 5.2.1

For any probability vector p of length m and any permutation tt of

{0,..., m — 1}, let p_ be the probability vector defined by (p_X := p^^)
ThenI2(P7r)=I2(p).

Remark 5.2.2

If Xi and X2 are independent and J_i (resp. X2) has p (resp. q)
as its probability distribution where p% — Px1 (i) and qi — Px2 (i),
then the probability that J_i * X2 be equal to i is Px1xX2{^) —

Ej_o pXi U)pX2 0'_1 * i) = E^o1 Pj^-1«, where j'1 is the inverse of j
under the group operation *. Thus, the imbalance of Xi * X2 is given by

IUX, * X2) = -^ >J ( > ] P3q}-lxl
- IJ . (5.13)
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Now the number of random variables that have probability distribution q

is the same as the number of random variables that have probability dis¬

tribution qn, and this holds for every permutation g_ of q. Thus, in order

to calculate the average of (5.13) over all random variables X2 that are

independent of X\ and have q or a permutation of q as their probability

distribution, it is enough, for each permutation of q (including the identity

permutation), to consider a single random variable X2 having that prob¬

ability distribution. Thus, we must average the right side of (5.13) over

all probability vectors q_ with tt
_ Sm, where Sm is the symmetric group

of order m. NeverthelesSj we shall continue talking about "the average

over all random variables X2 that are independent of Xi and have q or a

permutation of q as probability distribution".

We seek the value of

_. 777 — 1 / 777— 1
.. x 2

e[i2(x1*x2)} = - yj -J5- yj Ewm^«)-- . (s-")
7T6S„, 7=0

V
3=0

/

where we will later discuss the validity of using expected value notation

here. The product of the imbalance of Xi and X2 is

(\
2 / 777-1

-. x /
777-1

1
x

7 V
J_0

7 V
7-0

7

We will prove that (5.14) is identical to (5.15). We need the following
Lemmata.

Lemma 5.2.3

For any m-ary probability vectors p and q and any i G Zm,

• 777 — 1
1 \2 / 777— 1

1 \2

$_( E»-1«)-- = _E( _E^-o)-~) (5-16)
7T

^
J_0

7
7T

^
J—0 '

where ^- is the sum over aii permutations tt of {0,..., m — 1}.
Proof:

For any permutation tt, define the set of pairs M- := {(J,tt(j))\0 <

j < m — 1}, and consider the functions h : Zm -+ Zm,h(j) := j-1 * 7,

and / : Sm -+ Sm, f(ir) := tt o h. Both h and / are invertible and thus

the function F : M- ->• M/(-) is also invertible. Explicitely, Mf(-) =

{OWO*-1 * 0)1° < J < m ~ !}• Thus, the set of all A_/(-), tt G Sm, is

equal to the set of all M-, tt G Sm. Now consider the pairs of indices of

the products pq in (5.16). On the left, one sums over all Mf^,7r G Sm,
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and over all pairs of indices in M^(-), while on the right, one sums over

all Mn,7T G Sm, and over all pairs of indices in M-. Thus, equality must

hold. D

Lemma 5.2.4

Let ao, oi,..., am-i be real numbers. Then, for any 0<k^l<m — l,

777— 1

^o-(fe) = (m-1)! ^ a, and ^a-(fc)a-W = (m - 2)! ^ a%a2,

TT 7—0 tt 0<i^3<m— 1

where J^ is the sum over all permutations in Sm. (There are analogous
identities for more than two indices.)
Proof:

For any 0<k^l<m — 1 and any 0<i^j<m — 1, there are

(m — 1)! permutations that map k to i and there are (m — 2)! permutations
that map k to i and I to j. D

We are now ready to prove the following theorem.

Theorem 5.2.5

Let m > 2 be an integer and if be dehned by (5.11); let q be a probability
vector with m elements and Xi be a random variable with values on

(Zm, *). Then the average of If (Xi * X2) over all random variables X2

independent ofXi that have q or a permutation of q as their probability
distribution is

E[I2(Xi * X2)] = I2(Xi) I2(q). (5.17)

Proof:

Let p be the probability distribution of Xi. Then the aforementioned

average is

-, 777— 1 / 777 — 1
1 \

2

e[i2(Xi*x2)] = _ y:~ E Eiw*o-'-.>-i)<te<5-14))
7T 7—0

^
J=0

7

777— 1
.. , 777— 1

1 \
2

= E ^ ^tî E ( E M-o) --) ^Lemma 5-2-3)
7=0 TT

^
J —0

7

-, / 777— 1
-, \ 2

1 m v^ / v-^ 1 \

(m -
1)! m - 1 E ( E Ptf*W m)

V ^
TT

V
J=0

7

-i / /TTl— 1 x 2 ~ 777 — 1
-. x

(^3ijT^_tE((E^wJ --Eftfew + ^j
v '

tt
v v

3=0
'

3=0
'
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1 m x~^ v--

(m-1).
... _

V

0<7,J<777 —1
TT

7TÜ)
77—1

7T

777 — 1
1 2

y^ v^
1 m v~^

1

"^ïïï
v:t7^T

^
Pj

2_
^ü) +

(m-D!
^rri 2_

^s(m-1)! m-1 ^^ /w^j;
-

(m _ nj m_ i __, ^2
V y

J=0 TT
V '

TT

-, 777 — 1
1 m

_tE^2E<
(m-1)! m-1 ^^A^^ü)
V ;

3=0 TT

1 m ^-- v^1

(m-1)!...
_V y

0<7^J<777-1 TT

(3)

1 0
m-1

1

1 2 x-^ x—r 1
m

III/ -1.
-J -.

EY^

1 "7

^
1

P3 2_ 9t0) +
(m_l)!

ro^-ï 2^ ^

(m - 1)! m - 1 ^ ^J ^ u) (m _ !)i m _ ! __, m2
V '

3=0 TT
V ^

TT

-. 777— 1 777— 1

t^tiv ^r E p* ( - !)! E *? (byLemma 5-2-4)
^ ''

J=0 7=0

1 m ^-^ ^—a
+ 7 TT7 T >^ PtPj(m-2)\ > gÄgj
(m — l)!m— 1

^—^ -^—'
v y

0<7^<777-l 0<A:#Z<m-l

777 — 1 777 — 1

m ml

3ÛÏ ;^3ï I> <m - ^ E * +
7^=(m — l)!m — 1 ^—' J '

^—' (m
—

1)! m — Im2
V '

3=0 7=0 V '

777— 1 777 — 1
-

m ^-^ 2 v-^ 2
1 m v-^ v-^

^tti E p, E «. + ^ri ^7^1 E w> E
J=0 Z=0 0<7^<777-l 0<fc^Z<777-l

2 1
+

QkQi

m — 1 m — 1

777 — 1 777 — 1
1

, 777 — 1 x / 777— 1

lEtfErf+ièï^-Erfïïi-E
m-1^ J ^ m-lm-lV *-^ J J \ ^ J m-1

j=0 7=0 X
J=0 7 V

7=0 7

(777
— 1 777— 1

..

1
777 — 1

-. 777 — 1

Ep? Erf +
^3T-^T Ep?-^3T E«?

J=0 7=0 J=0 7=0

777 —
1 777

—

1
H // t- -L lit- J-

-,

—

Ep?Eft2-^m — 1 ^-^ J ^—' 777,/

J=0 7=0 7

\ 2 • 777— 1 777— 1
.. 777— 1

-. 777 — 1
-,

^t) (V>?E««--E^--Eft2 +
^

y x
j=0 7=0 3=0 t=0
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s \ 2 y m-1 . x y m-1 -. x

= (^ri) (E^-^J(E«.2-^J
v / \

J=0
7 X 7=0 7

= IUp)-II(q) = /|(Xi)-i|(q). D

Remark 5.2.6

We wrote an expected value in (5.17) for the following reason: we can

define a random variable Y whose values are 777-ary random variables and

which is uniformly distributed on the set of all random variables that have

g or a permutation of q as their probability distribution. That is, if Y = y

then y is an 777-ary random variable that has g or a permutation of q as its

probability distribution. Then an expression like if (Xi *y) has a meaning,
and the theorem says that EY[I2(Xi *Y)} = If (X^if (q). (The subscript
Y in Ey means that the expectation is taken on Y)

Theorem 5.2.5 still does not provide an m-ary analogue to Matsui's

Piling-up Lemma since we do not yet know how far the values if (Xi * X2)
are in general from if (Xi) I2(X2). In order to find this, we reuse our

model of a random variable Y uniformly distributed on the set of all ran¬

dom variables having g or a permutation of q as probability distribution,
but this time we look at the variance rather than the expected value.

We first consider Ey[I2(Xi*Y)\. We have, for Xi and X2 independent,

(x
2 /777 —1 y TO—1

.. x 2x 2

7 v
%=0 v

3=0
7 7

(x
2 777 —1 777 —1 • 777— 1

1 \
2
/
m~ 1

1 \
2

^Tt) E E ( E PA-^
"

„J ( E P'« " „J
/ î=0 k=0 v

3=0
7 v

1=0 7

Because A;-1 runs over Zm as A; runs over Zm, we can replace qi-ixk by
gj-i^-i. Then the expected value is

EY[I2i(X1*Y)]=(-^-) -x (5.18)
\m — 1 ) m!

777 —1 777—1 /777 —1
- x 2 / 777 —1

1 \2

E E E ( E^o-1-)--) ( E^c-1-*-1)-- •

z=0 k=0 TTG5m
V
3=0

J V
1=0

mJ

Hereafter in this chapter, we omit the group operation * in subscripts
where no misunderstanding can occur. The following Lemma simplifies
the indices in (5.18).



5.2. Validity of the Hypothesis for the Imbalance 1% 147

Lemma 5.2.7

For any m-ary probability distributions p and q,

EY[I2i(Xi*Y)]= (5.19)
y x 2 -, m— 1 777— 1 y 771— 1

-, x 2 / 777 — 1
-. x 2

(^i) ^ E E E ( E R«-«)
-

mJ (. E »«*<«»
- -J •

V 7
7=0 fe=0 TTGSir,

V
j=0

7 V
1=0

7

Proof:

We show that the expressions inside the sum over k are equal in (5.18)
and in (5.19). We use the same technique as in Lemma 5.2.3. Let i

and k be fixed. For any permutations tt and tt, define the sets of four-

tuples M^tt := {(j, 7t(j), Z, tt(0) I 0 < j,l < m — 1} and consider the

functions hi,h2 : Zm -+ Zm,hi(j) := j-1 * i,h2(l) := l~x * fc-1, and

/ij/2 : Sm ->• Sm,fi(tt) := tt o /7i,/2(tt) := 7r o /72. The four indices

of the p's and g's in (5.18) run over all tt G Sm and all elements of

MhWM-t)- Since (/2 o /f1)^/) = (tt o /7"1 o /i2)(/) = tt(7 * k * /),
the four indices of the p's and g's in (5.19) run over all tt G 5m and all

elements of M^ , * ,-h,|.
But because hi,h,2,fi and /2 are invertible,

{M/iW,/2(TT)|7r G 5m} = {M^^-i^tt G S}- Thus> both expres¬

sions inside the sum over k must be the same. D

The averages we are taking for the moment are not symmetrical in

Xi and X2, respectively in p and q. Thus, we provisionally distinguish
between probability vectors we write with p and such we write with q.

The following definitions will help keeping the formulas shorter.

Definition 5.2.8

For a probability vector q, define

Qi '= Ylq%r'i Qv :== E^93.
S5

r^s

Qijk := E^ qWsQtl Qijki = E QWsQt<&'>
r,s,t all different r,s,t,u all different

All Q's with more than one index can be written as functions of the

Qi. We need the following:

Lemma 5.2.9

1- Qn = i-Q2;

2. Q21 — Q2 — Qs',

3- Q31 — Q3 — Q4',
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4. Q22 — Q2 ~ Q4;

5. Qm = l-3Ç2 + 2Q3;

6. Q2n = Q2-2Qz + 2Qi-Ql\

7. Qnii = 1 - 6Q2 + 8Q3 + 3Q22 - 6Q4. Q

We will also use the following abbreviations:

Definition 5.2.10

For an 777-ary probability vector p and for any j G Zm, define

n

• Prs:=Prs(j):=YyPnPS3ni
n

• Prst := Prst(j) = YsPnPjnP^n'
77

Notice that the F's are not defined the same way as the Q's. Moreover,
they depend on j. They have the following properties, that we state

without their simple proofs.

Lemma 5.2.11

Let e, be the neutral element, j be an element of order two, and i be any

element, of (Zm, *). Then

1. Prs(ex) = Fr_)_s and Prst(ex) — Pr-\-s+t;

Z. rrs\% ) = r^sr\iy,

3. Prs(j) = PrsU'1) = Psr(j) and Prst(j) = Pr+t,8(j).

If we fix i and k, the inner summation including only tt,j and I in

(5.19) can be decomposed into nine parts as follows:

(777
— 1

1 \
2 /m

— 1
1 \ 2

E prf-M
- - ) ( E pu*w

~ - ) =

v.co„, 3=0 7 V
1=0 7

1

©(»*) -
A©(*) + A-®(«*)

(5-20)m2 m3 7774

where
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®(ik) = E(E^^o)) wZpi^
tt

^
3

7 ^
;

\2
(iki) j

3

y \ 2

®(ik) = ^E^3VW (E^^(îfe0
TT 3

^
I

®(ik) = ^(Ep^w) '

TT
V

Z 7

/ \ 2

TT
^

J
7

Z

(D(^) = EEpj?TwEpiH*0'
7T J

@(ik) = ^^piq^ki),
TT Z

®(**o = E(E^^ü)) '

TT J
/

®w = EE^^W'
TT 3

m® = E1-
TT

We show in the appendix to this chapter (Proposition 5.A.1) that

®(*fc) = (m-l)ÏQ4P22(ik)

+ (m - 2)\Q31(2P12(ik) + 2P21(ik) - 4P22(ik))

+ (m - 2)\Q22(P2 + 2P2x(ik) - 3P22(ik))

+ (m - 3)\Q2n(2P2 + 4Pn(ik) - 6Pi2(ik) - 6P21(ik)

+ 12P22(ik) - 2P22 - 4Pli(ik))
+ (m - 4)!Qiiu(l - 2F2 - 4Pn(ih) + 4P12(ik) + 4P2i(ik)

+ P2 + 2P2x(ik) - 6P22(ik))

©(ik) = (m-l)!Q3P2i(^) + (m-2)!g2i(P2 + 2Pii(*fc)-3P2i(*fe))
+ (m- 3)!Qin(l -P2- 2P11(ik) + 2P21(ik))

®(ik) = (m - 1)\Q2P2 + (m - 2)\QU(1 - P2)

@(ik) = (m - l)\Q3P12(ik) + (m- 2)\Q2i(P2 + 2Pn(ik) - 3Pi2(ik))

+ (m - 3)!Qin(l -P2- 2Pn(ik) + 2P12(ik))

©(ik) = (m - l)lQ2Pu(ik) + (m - 2)\Qn(l - Pi±(ik))
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®(ik) = (m-1)!

Q)(ik) = ®(ik)

®(ik) = ®m

®(ik) = m!

for all i,k. At this point we restrict our study to the interesting cases

m > 4. (Indeed, what happens to ®(ik) if m < 4? Factorials of negative
integers are not defined. In fact, if one does the calculation for m < 4,
then one finds that the term beginning with (777 — 4)! does not occur if

m < 4 and that the one beginning with (m — 3)! does not occur if m < 3.

The same holds for ©(ik) and @(ik)) In the next step we sum the above

result over all i and k in Zm. We use the fact that

Y,Prs(ik) = Y^ E^Mm = E^ E E*&»= E^ EPs
i,k i.k n 77 77

= ^2 Pnm Ps =m PrPs (5.21)
77

In particular, Ei k Pis(ik) = mPs. Hence, if we sum each of the nine

parts over i and k and make use of Proposition 5.2.9, we get

^2 ®(ik) = P%(m - 4)! 2m3Q4 - 8m2Q3 - (2m3 - 12m2)Q2
%,k

+ (m4 - 6m3 + 6m2)Ql + (m2 - 6m)

+ P2(m - 4)! -4m2Q4 + 16mQ3 + (2m3 - 6m2 - 12m)Q2

- (2m3 - 12m2 + 12m) Ql - (2m2 - 8m)

+ E Pi2i^ (m ~ 4)! [~(2^2 - 2m)<24 + (8m - 8)Q3
i,k

- 4mQ2 + (2m2 -6m + 6)Ql + 2

+ (m - 4)! 2m2g4 - 8mQ3 - (2m2 - 12m)Q2

-m2Ql + (m2 -4m)
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^©(ik) = m(m-2)\(l-Q2-P2+mQ2P2)

J2®(*k) = m2(m-2)!(l-g2-P2+mg2P2)
i,k

E®w = E®w
%

j
rv %

j
K

^®(ik) = m!

i, k

Y^®(ik) = m2(m-1)1
t,k

E®w = E®w

E®w =E®w

E®(z^) = 7772m!

7,fc

Then

E(®(**0 - -©(**) + -^(D(^) - -®(**o + 4>©w " ^3®(*fe)
^^v 777 ml 777 mz mö
i,k

77?/ m"3 777* /

= P22(m - 4)! [2m3g4 - 8m2g3 - (2m3 - 12m2)g2

+ (m4 - 6m3 + 6m2)Q22 + (m2 - 6m)

+ P2(m - 4)! -4m2g4 + 16mg3 + (4m2 - 24m)g2

- (2m3 - 12m2 + 12m) Q% - (2m - 12)

+ E P?i(ik) (m ~ 4)! f-(2m2 - 2m)g4 + (8m - 8)g3
i,k

4mQ2 + (2m2 - 6m + 6)Q% + 2

2/o2
+ (m - 4)! 2m2g4 - 8mg3 - (2m + 12)g2 - m2Q

m + 6

m

Finally, multiplying by (rr^-)2 r^y gives the desired expected value so we

have:
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Proposition 5.2.12

Let m > 4 be an integer and I2 be dehned by (5.11); let p and q be

probability vectors with m components and Xi be a random variable

with values on (Zm, *) and probability distribution p. Then the average

ofl2(Xi*X2) over all random variables X2 independent ofXi and having

q or a permutation of q as their probability distribution is

E[IÏ(Xi*X2)] =

1

PA

+ P2

(m-l)2(m-2)2(m-3)2 [

2m3g4 - 8m2g3 - (2m3 - 12m2)g2

+ (m4 - 6m3 + 6m2)Q\ + (m2 - 6m)

-4m2QA + 16mQ3 + (4m2 - 24m)g2

- (2m3 - 12m2 + 12m)Q\ - (2m - 12)

+ ^P12i(7fc)[-(2m2-2m)g4-r-(8m-8)g3
i,k

- 4mQ2 + (2m2 - 6m + 6)g2 + 2

+
2/-i22m2g4 - 8mg3 - (2m + 12)Q2 - m Q2

m + 6

m
(5.22)

D

However, this is not yet fully satisfying because ]T^ k P2X (ik) still de¬

pends on the probability vector p. Thus, if we take a permutation of

p, then E[l2(Xi * X2)] changes. Averaging over all permutations of p

will allow us to get rid of this inconvenience and to obtain an expression

symmetrical in P and Q.

5.2.2 Averaging Over Two Random Variables

In the preceding subsection, the random variable X\ was fixed. We now

want to average further the expressions found above, namely over all Xi

having p or a permutation of p as probability distribution. We do this

by considering a random variable X which is uniformly distributed over

the set of all random variables having p or a permutation of p as proba¬

bility distribution. This means that in the end we obtain averages over

all pairs of independent random variables (Xi,X2) such that X\ has p

or a permutation of p as its probability distribution and X2 has q or a
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permutation of q as its probability distribution. We seek expressions for

such an average of I2 (X\ * X2) and of I2 (X\ * X2).
The first of these averages is easy to obtain.

Theorem 5.2.13

Let m > 4 be an integer and I\ be dehned by (5.11); let p and q be

probability vectors with m elements. Then the average of if (Xi * X2)
over all pairs of independent random variables (Xi,X2) such that X\ has

p or a permutation of p as probability distribution and X2 has q or a

permutation of q as probability distribution, is

E[I2(Xi * X2)] = Il(p) I22(q). (5.23)

Proof:

This follows immediately from Theorem 5.2.5 since what one must do

is to average the right side of (5.17) over all such random variables Xi.

But if (q) is a constant and I2(Xi) = I2(p) for all the random variables

Xi considered. D

To obtain the average of I2(Xi * X2), we must average the right side

of (5.22) over all random variables Xi having p or a permutation of p as

probability distribution. Again, by the same argument as for the average

over X2, it is enough to consider only the average over all permutations of

p. Since P% remains constant when one permutes the components of p, the

only part of the expression that will be affected is ^ k P2i(ik). Averaging

J2t u P?i(lk) over ah probability vectors obtained from a permutation of

p (including the identity permutation) gives

J.
777!I / j / j

"

11 \"'"/ rrï\ / j / j \ / j.t"K{n)P-K{ikn)

= ^ïïE E z2P^(l)P^{n)PTr{tkl)P-K(ikn)- (5.24)
m

7,fc Z,71 7T

Here we drop the distinction made between the probability distribu¬

tions written as p as those written as q. Further considerations are based

on the following Lemma.
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Lemma 5.2.14

Let e* be the neutral element and j be any element of (Zm, *), and let p

be an m-ary probability vector. Then

777— 1 777 — 1

^2 E E PAi)PAn)P^{3i)Pix{3n) = (5-25)
Z=0 U=0 TVGSrn

'ml Pi, j = e»

1-6P2+ 8P3 + (2m - 3)P22 - 2mP4 J, ord(j) = 2

1 - 4P2 + 4P3 + (m- 1)P22 - mP4 ], ord(j) > 2.

< (m-l)(m-3)

777!

(m-1) (m-2)

Proof:

If j = e*, then

777— 1 777— 1 777 — 1 777 — 1

E E E ^(z^tt^ttoz)^^) = E E E poplin)
Z=0 77=0 ?TGSm 7rG5m Z=0 77=0

(777
— 1 x 2

v. com z=o
7

If ord(j) = 2, then we split the sum into partial sums where I = n;

I = jn; and where I, n, jl, and jn are all different. If / = 77 (which happens
for 777 pairs (l,n)), then, by Lemmata 5.2.4 and 5.2.9,

TTG-Sm Tr£Sm

= (m - 2)! J]) pfp2 = (m - 2)!(P| - P4).
0<7^J<777-1

If / = jn, which also occurs for m pairs (/, 77), then 77 = jl and we have

Yl P<K{i)P-K{n)P-K{3i)P*{3n) = E Pl{i)Pl{n) = (m-2)!(P22-P4).



5.2. Validity of the Hypothesis for the Imbalance 1% 155

And if l,n,jl and jn are all different, which occurs for the remaining

m(m — 2) pairs (l,n), then, by Lemmata 5.2.4 and 5.2.9,

Y Pir{l)P-n{n)PiT{3l)P-K{3n) = (m - 4)\ ^ PrPsPsPu

Tr£Sm r,s,t,u all different

= (m - 4)!(1 - 6P2 + 8P3 + 3P22 - 6P4).

Now summing over all pairs (I, n) gives

Y E Pir(l)P*(n)PTr(3l)P*Un)

l,n TTGSm

= 2m(m-2)!(P2-P4)

+m(m - 2)(m - 4)!(1 - 6P2 + 8P3 4- 3P22 - 6P4)

777!

(m — l)(m — 3)
I-6P2+ 8P3 + (2m - 3)P22 - 2mP4

The proof for the case ord(j) > 2 is similar. The sum over all pairs

(/, 77) is split into partial sums over pairs where: I = n; n = jl;l = jn (each
time m pairs); l,n,jl,jn all different (m(m — 3) pairs). The first partial
sum gives (777 — 2)!(P2 — P4), the second and the third one (m — 3)!(P2 —

2P3 + 2P4 - P22), and the last one (m - 4)!(1 - 6P2 + 8P3 + 3P22 - 6P4).D

Now the multiset {ik\i,k G Zm} contains each element of (Zm, *) m
times. Let 77 be the number of elements of order two in (Zm, *). Then, by
Lemma 5.2.14 and with (5.24),

iEE*?i(*>
7T l,k

^9 rnn /
_ , 0

\

= mP2 + I TÜ
5r(l-6P2 + 8P3 + (2m-3)P|-2mP4)

(m
—

l)(m
— 3) V J

ffliffl — 77, — i\ / \

+
(m- l)(m - 2) 0

" 4P2 + 4P3 + (m - 1)P2 ~ mP) (5'26)

Armed with this result and Proposition 5.2.12, we can state:



156 The Piling-Up Hypothesis

Proposition 5.2.15

Let 777 > 4 be an integer, let * be a group operation on Zm such that

the group (Zm, *) has n elements of order two and let I2 be dehned

by (5.11); let p and q be probability vectors with m components and

let (X, Y) be a uniformly distributed random variable on the set of all

pairs of independent random variables whose hrst component has p or a

permutation of p, and whose second component has q or a permutation
of q, as probability distribution. Then

EXy[I2(X * Y)] = Am(p, q) + nBm(p, q)

where

Am(p,q)
777

(m-l)3(m-2)2(m-3)

Q\Pl (m5 - 4m4 4- 18m2 - 18m

+

+

+ 8m

+

m (m2 - 4m + 6\ Q\ {l - 2mP2\ + Pi {l - 2mQ2)

8m (m2 - 3m + 3) [q2 (p3 - ^P4) 4- P22 [q3 - ^
(g3 - jQé) (l - 2mP2) + (P3 - ~Pa) (l - 2mg2)

32m(m - l) (q3 - jQ4) (p3 - ^P4)
4m + 12) (l - 2mg2) (l - 2mP2) }

1
H (m

777

and

pm(p,q) =

2m^

(m-l)4(m-2)2(m

g^(m2-3m + 3) + (l
x P2 (m2 - 3m + 3) + (l

-3)J

2mg2) + 4(m - 1) (q3 -^Qa
2mP2)+4(m-l)(p3-^P4)

Proof:

One averages the right side of (5.22) over all permutations of p. With

(5.26), the proof consists only of expansions and factorisations. D
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Notice that Exy[I2 (X * Y)] depends only on the number of elements

of order two in (Zm, *). We are still not finished: this expression is

too complicated and what we are really interested in is the variance of

I2(Xi * X2), not the average of I2(Xi * X2).

Lemma 5.2.16

For any m and any probability vectors p and q,

Am(p,q) ~ (m-3)Bm(p,q)=ll(p)I2i(q).

Proof:

Equation (5.11) can also be written as I2(p) = (777P2 — l)/(m — 1) and

similarly for I2(q). A comparison between Am and Bm shows that, for the

components where Q3 — ^Qa or P3 — ^P4 occur, the coefficients in Am
are always m — 3 times as large as those in Bm. Thus, Am — (m — 3)Bm is

composed of coefficients containing only Q2,Q\,P2, and P2. One shows

that in Am — (m — 3)Bm the coefficient of Q2P2 is
t^—jtt5

the coefficients
9

of g2(l — 2mP2) and of P22(l — 2mQ2) are (m^ ,
and the coefficient of

(1 - 2mg2)(l - 2mP2) is î^ïjt • Therefore,

Am(p, q)-(m- 3)Bm(p, q)

[mAQ2P2 + m2Q22(l - 2mP2) + m2P22(l - 2mg2)
(m-1)4

+ (l-2mg2)(l-2mP2)]

-(-±-^(mQ2 - l)2(mp2 - I)2 = Il(p)lt(q).
D

After the next definition, we will be able to write the variance of

I2 (Xi * X2) on a more compact way.

Definition 5.2.17

For any non-uniform probability vector p, define

4Ps - mPt - 3P2
_

iPs-mP.-SP2
_

2
m'

4(p) (mP2-l)2
(m l> (5-27>

At last, we have:
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Theorem 5.2.18

Let m > 4 be an integer, let * be a group operation on Zm such that

the group {Jim, *) has n elements of order two and let I2 be dehned by

(5.11); let p and q be probability vectors with m elements and (X, Y) be

a uniformly distributed random variable on the set of all pairs ofindepen¬

dent random variables whose hrst component has p or a permutation of

p, and whose second component q or a permutation of q, as probability

distribution. Then

EXY[A22(X*Y)} = 1 and

,a2/v T^v
2m2(n + m-3)

VarxyA I*r = -^ x

(m —

l)^(m
— 2)z(m — 3)À

(m-l) + F(p)){(m-l) + F(q))

Proof:

The first equation is a restatement of Theorem 5.2.13. As to the second

equation, we first have

_

Am(p,q)+nBm(p,q)
_

Am(p, q)-(m- 3)Bm(p, q)

_

(n + m-3)Bm(p,q)
=

(n + m - 3)Bm(p,q)

Am(p,q)-(m-3)Bm(p,q)
"

ll(p)ll(q)

(m - l)4
= (n + m-3)Bm(p,q)y—^

,2,
-r-.

(mQ2 -

iy(mP2
- iy

Moreover, we can rewrite Bm(p, q) differently; for q, we have

Q2 (m2 - 3m + 3) + (l - 2mÇ2) + 4(m - 1) [q3 - ~Qa)
= (mQ2 - l)2 - 3(m - 1)Q22 + 4(m - 1)Q3 - m(m - 1)Q4

_

(mg2-l)2 (( 1N ,
4(m-l)2g3-m(m-l)2g4-3(m-l)g2'

"

m-1 \}m ij+
(mQ2 - l)2

,

(mQ2 - l)2
777—1

and accordingly for p. Thus,

(m-l)+F(q))
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Bm(p,q) =

2m'

x

x

(m-l)4(m-2)2(m-3)2

Ql (m2 - 3m + 3) + (l - 2mg2) 4- 4(m - 1) (q3 - ^g4)
P2 (m2 - 3m + 3) + (l - 2mP2) + 4(m - 1) (p3 - jPa)

2m' (mQ2-l)2(mP2-iy

(m - l)4(m - 2)2(m - 3)2 (m - l)2

x ((m -1)4- F(p)) ((m - 1) 4- F(q)).
Then

Var(A2) (n + m-3)Bm(p,q)
(m - iy

2m2(n + m-3)

(m-l)2(m-2)2(m-3)2

(mg2-l)2(mP2-l)2

(m-l) + F(p))((m-l)+F(q) D

Remark 5.2.19

If m > 4 is a power of 2, then if the group operation is 0m, addition

mod m, we have 77 = 1, and if it is 0, bitwise addition mod 2, we have

77 = m — 1. Thus, Var(A2) is always twice as large for 0 as for 0m, and

for all other groups it lies between these values. (All groups whose order

is a power of 2 must have at least one element of order 2: all elements

have as order a power of 2; let ord(a) = 2k; then ord(a2 ) = 2.)

Finally, we prove that V"arxy(A|(X * Y)) is upper-bounded by an

expression that behaves like 1/m for large m. We need the following

inequality.

Lemma 5.2.20

For any positive integer m and any vector r = (r0,..., rm-i) in ILm, we

have

,2D2möR4 - imzR3Ri -

mlRz2 + 8mR2R( - 4Ä? > 0
, (5.28)

where Rj = ^S rh WJ^ equality if and only if either all ri are equal,

or m is even and half of the n are equal to some real number s± while the

other ri 's are equal to some real number s2

Proof:

Let G(r) := m3Ä4 - 4m2R3Ri - m2R\ + 8mR2R\ - \R\. It is easily
seen that G(cxr) = a4G(r) for any real number a. Let 1 denote the all-one
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vector in Rm. We show next that G(r + 1) = G(r) for all r in lm. Let

r% + 1, i = 0,1,.. .,m
Then

1, t — (£o3 • • j*m-i)j an(i ^j — Ei=io V

Ji = Ri + m, T2 = R2 + 2Ri + m,

T3 = R3+ 3R2 + 3Ri +m, T4 = P4 + 4R3 + 6R2 +4Ri+m

and

G(t) = m3T^ - 4m2T3Ti - m2r| + 8mT2T2 - 4TX4
= m3 (A4 4- 4P3 + 6P2 4- 4Pi + m)

- 4m2(i?3 + 3R2 + 3Ri + m)(Ri + m) - m2(R2 + 2RX + m)2
4- 8m(R2 + 2Ri + m)(Ri + m)2 - 4(it!i 4- m)4

= Ä4(m3) + ,R3(4m3 - 4m3) 4- R2(6m3 - 12m3 - 2m3 + 8m3)

4- i?i(4m3 - 4m3 - 12m3 - 4m3 4- 16m3 4- 16m3 - 16m3)

+ l(m4 - 4m4 - m4 4- 8m4 - 4m4)

4- #i(-12m2 - 4m2 + 32m2 + 8m2 - 24m2)
+ RiR2(-12m2 - 4m2 + 16m2) 4- RiR3(-±m2)

+ Rl(-m2) + R\(16m - 16m) 4- R2iR2(8m) + R\(-4)
= m3R4 - 4m2RiR3 - m2R22 + 8mR\R2 - 4i?4

= G(r).

Now G(r + al) = G(r) for all r 6lm and all aGl, because G(r + ctl) =

a4G(^r + 1) = a4G(r/a) = G(r). Thus, it is enough to prove (5.28) on

the hyperplane

777
—

1
i lib -L

\a 1 a G It} = {r ^ r% = o} = \r Ri = o}.
7=0

But if Ri = 0, then G(r) = màR4: — m2R2. Thus, we have to

show that m3i?4 — m2R2 > 0 for all r with Ri = 0. But in fact,
m3Ä4 — m2R?2 > 0 for all r in Rm : consider a random variable X such that

Px(r2) = 1/m, i = 0,.. .,m - 1. Then £[X] = £ E"1 *f = ^ and

£[^2] = à ES1 rt = à^ from which it follows that m3,R4 - m2R2 =

m4Var(X) > 0.

As to equality in (5.28): it is easy to verify that the above condition is

sufficient. Now let G(r) — 0 but do not let all r% be equal. Let t = r — — 1.

Then G(t) = 0 and Ti = 0. Again, consider a random variable X such

that Px(i2) = 1/m, i = 0, 777 — 1 ; then 0 G(t) = mAVar(X) so X
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is constant. Thus, all t2 are equal. Because EEö ** = ^' ^ follows that

half of the ti are equal to some real number t and the other ti are equal to

—t, and that m is even. Then half of the n are equal to $i := t + Ri/m
and the others are equal to s2 := —t + Ri/m. Ü

Corollary 5.2.21

For any integer m > 2 and any non-uniform m-ary probability distribution

P:

F(p)<-*(^)\ (5.29)

Proof:

2

( G(p) \(m-l)2 Jm-iy

It follows now that (m - 1) + F(p) < {rn~1)^~2)2 and hence that

T/ ,A2, ^
2(77 + m-3)(m-2)2 m 2(n + m-3)

VarXy(A2)
< —,

— ~
. (5.30

mz(m — 3y mz

When m is a power of two, then l<n<m — l;it follows from (5.30) and

Theorem 5.2.18 that if m is a large enough power of two, then A2(Xi *X2)
is almost always equal to one, that is, that the piling-up hypothesis holds

for two random variables. Actually, depending on what one means by "«",
values of m like 8 or 16 might be enough; for instance, if it is enough for a

random variable with expected value 1 to have a variance of at most 0.3

in order that it be declared as "more or less constant", then the piling-up

hypothesis must be considered as valid in the following two examples: if

m = 8 and * is mod 8-addition, then n = 1 and the upper bound in (5.30)
is 432/1600, which is small enough; or if m = 16 and * is the bitwise

addition mod 2, then n = 15 and the upper bound is 10976/43264. In

both cases, such a "small" m would be enough. If m is not a power of

two, we also have 77 < 777 — 1 (although the upper bound cannot always be

reached) so we can draw the same conclusions.

We summarize the results of the chapter as:

Theorem 5.2.22

Let m be a large integer and * be a group operation on Zm. Then

I2(X1*X2)«J22(X1)-I2(X2)

for almost all independent m-ary random variables Xi and X2. D
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Remark 5.2.23

Because the piling-up hypothesis holds for if, we believe that this im¬

balance measure is the "right one". It is also easy to compute for any

probability distribution. Moreover, in the binary case, as mentioned in

Chapter 2, the probability of success of the attack, for some fixed value of

the key, increases with the square of the key-dependent imbalance; but the

square of the imbalance is precisely I2, since I2 reduces to the binary im¬

balance when m = 2. This strengthens our conviction that I2 is the right
measure to use both in the binary generalisation of linear cryptanalysis
and in the group generalisation of linear cryptanalysis. This should also

allow a better comparison of both attacks.

5.A Proof of The Nine Parts

Proposition 5.A.1

Let m > 4 be an integer, p and q probability vectors of length m and i, k

two elements of the group (Zm, *). Dehne

®m = E(E^^œ) (E^(»*o) '

TT
^

3
7 ^

Z
7

®(ik) — EE^^w (E^tt^o) ,

TT J
^

Z
7

®(**0 = E(E^7T(.Al)) '

TT
^

I
7

®(ik) = E(E^^w) Ewh*0'
TT

^
3

7
Z

®(ik) = EE^^wE^^W'
TT 3 I

®m =

/ , / ,PlQir(tkl),
TT Z

Q)(ik) = E(E^^ü)) '

71 3

®(ik) — EE^W'
TT 3

®(ik) " El
7T

(continued on next page)
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(continued from previous page)

where ^^ is the sum over all permutations of {0,1,..., m — 1}. Then

®(ik) = (m - l)\Q4P22(ik)

+ (m - 2)\Q31(2P12(ik) + 2P2i(ik) - AP22(ik))

+ (m - 2)!g22(P| 4- 2P21(ik) - 3P22(ik))

+ (m - 3)\Q2n(2P2 + 4Pn(ik) - 6Pi2(ifc) - 6P2i(ik)

+ 12P22(ik) - 2P| - 4P121(iA;))
+ (m - 4)!Qim(l - 2P2 - 4Pn(*Är) +4Pi2(ifc) +4P2i(»A;)

+ P22 + 2P21(7/c)-6P22(7A:))

®(ik) = (m - l)!Q3P2i(ifc) 4- m - 2)!g2i(P2 4- 2Pn(ik) - 3P2±(ik))

+ (m - 3)!Qm(l - P2 - 2Plx(ik) + 2Pn(ik))

®(ik) = (m-l)\Q2P2 + (m-2)\Qn(l-P2)

®(ik) = (m-l)!Q3Pi2(*Ä) + (m-2)!Q2i(P2 + 2Pn(ifc)-3Pi2(iAr))

4- (m - 3)!Qiii(l - P2 - 2Pn(ik) + 2P12(ik))

®(ik) = (m-l)\Q2Pii(ik) + (m-2)\Qii(l-Pii(ik))

®(ik) = (m-1)!

®(ik) = ®(ik)

®(ik) = ®(ik)

®(ik) = ml,

where the Q's and the P's are dehned by Dehnitions 5.2.8 and 5.2.10,

respectively.

Proof:

We make repeated use of Lemma 5.2.4 and of identities similar to the

ones proved there. In what follows, ex will be the neutral element of

(Zm, *). We begin by proving the simpler expressions. The expression
for ®(ik) is obvious. The identities for ®(ik) and ®(ik) are proved as

follows:

®(ik) = ^2p3J2^ü) = E^(m-1)!E& = (m-1)!
3 * 3 i

®(ik) = 5^(E^^ü)) =EE^^)H)
71" 3 TT 7,J

= E^^E^w^u)=E^2Eçîu) +E^^E^w^o)
1,3 TV J TT l^é3 TT
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= Erf^-^'E^ +E^E^
3 i t^3 k^l

= (m - 1)1 Q2P2 + (m-2)1 Qn(l-P2)

since Y^vt3P*P3 = H%,3PiP3 ~Yy3P23 = 1 - P2- The identities for ©(ik)
and ®(ik) are proved in a similar way. Next, we are concerned with

®(ik). We have

®(ik) = Y^^PjQAj) E^^(^) =EE^E^WH*')-
TT J I 3 I IT

Here we must begin to distinguish between different values of ik.

1. ik — e*. Then

®(ik) = ®(ex) = Ew*E ^0)^(0

3,1 *

= (m-1)! Q2P2 + (m-2)\ Qn(l - P2). (5.31)

(Just repeat the proof of the identity for ®(ik))

2. ik / e*. We break up the sum over all j, I into sums over: j = I / zTcZ;

j = ikl ^ I; and j,Z, 7/cZ all different. This gives

®(ik) = Y,P2jY1 Q*M*(*3) + E PoPi E £(3)
3 K 3^1 k

3=ikl

+ 5E wE^w^^o
J^Z TT

J^7&Z

= J^Pj(m - 2)! ]T gygs + ^2plkiPi(m - 1)! ^ rf
J r^s Z 7

+ E P^z(m-2)!^çrgsZs
3^1 rj^s

3^tkl

= (m-2)!gnP2 + (m-l)!g2Pii(^)

+(m-2)!Qii(l-P2-Pn(*A0)
= (m - 1)! Q2Pn(ik) + (m-2)\ Qn(l - Pn(ik)) (5.32)

where in the penultimate equality we used the fact that

Yl PoPi = ^2pjPi ~ E^ ~ ^PikiPi = 1 - P2 - Pn(ifc).
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But (5.32) reduces to (5.31) if we put ik = e* since Pn(e*) = P2

(Lemma 5.2.11); thus, (5.32) is valid for both ik = e* and ik ^ e*.

We now consider ®(ik). We have

®(ik) = E( E^?7rü) ) E^?7r(tfc0 = E^^^E^OJ^^O^H-
tt J I J,l,n TT

(5.33)

We again distinguish between different values of ik. Let first ik — ex.

Then

©(e~) = E^^^nE^U)?7r(0^TT(n)-
J,Z,77 TT

We break up the sum into sums where: j — I — n; j = Z ^ n; j — n ^ I;
I = n z£ j; j, Z, n all different. The first partial sum is

J TT J 7

The second is

E^nE^(j)^TT(n) = E^n(m_2)!E^a
J7^n tt 3j^n r^s

= (m - 2)! ]Tp2(l - Pj)g21 = (m - 2)!g21(P2 - P3).

The third and fourth give the same as the second, because

p3PWn Ett 9Tr(j)QTr(z)QTT(n) is symmetrical in j, Z and n. The last partial
sum is

E P3PlPnYl^(3)^(i)^(n)
3,l,n all different tt

= E p3piPn(m - 3)1 ^2 QrqsQt

3,l,n all different r,s,t all different

= (m - 3)l^2pjpi(l -pj -pi)Qm
3&

= (m - 3)!gm (jT,p3pi - E^ ~ E^rf)
J# J=# 3&

= (m-3)\Qm(l-P2-2(P2-P3))
= (m-3)\Qm(l-3P2 + 2P3).
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All in all, we have

®(e„) = (m-l)!g3P3+3(m-2)!g2i(P2-P3)

4- (m-3)!Qni(l-3P2 + 2P3). (5.34)

Before we go on, we introduce a new notation for subsets of the set

of all n-tuples: [j] will stand for the set of all j; [j,l] for the set of all

pairs (j, 1) with j ^ Z; [j,l = 77] for the set of all triples (j,l,n) such that

Z = 77 but j is different from Z and 77; [j, I = 77, m] for the set of all 4-tuples

(j,l,n,m) all components of whose are different except for Z = 77; and so

on. (Two indices separated by at least one comma are always different.)
Let now ik 7^ e«. We break up the sum as follows (these are all the

possibilities for the indices j, Z, 77 and ikl, since Z ^ ikl):

A] j = I = n

El \j = l,n = ikl]

Q\ [j = l,n,ikl]

L)j j = 77 = ikl

E\ [j = n,l,ikl]

F| [j = ikl,I — 77]

Q\ [j,l =n,ikl]

Hj [j = ikl,l,n]

U [j,l,n = ikl]

[J] [j,l,n,ikl]

and we denote the corresponding partial sums with ®\A\ to ®[J\. In the

same way as above, one proves now that

©E

®E

®\c

©E

©E

©E

®\G

®E

©m =

©m =

(m-2)!P3g2i

(m-2)LP21(7fc)g21

(m-3)!(P2-P3-P2i(*A0)Qin

(m-l)!Pi2(*fc)Q3

(m-2)!(P2-P3-Pi2(*Ä))(32i

(m-2)!P2i(zAr)Q2i

(m-3)!(P2-P3-P2i(iÄ))Qin

(m - 2)!(Pn(ifc) - P2i(*Ä) - Pi2(ik))Q21

(m - 2)\(Pii(ik) - P21(ik) - P12(ik))Q21

(m - 3)\((l-3P2+2P3-2Pn(ik) + 2Pi2(ik) + 2P2i(ik))QHi-

Note that wre do not have to calculate all of these expressions because

the quantity p3pipn ^ qt-K^q^ik^Q^in) inside of the sum over all j, I, n in

(5.33) is symmetrical in j and 77 so we have (4)[p| = @)[Bl ©[Gl — ®\C
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and @[j] = (4)[Hj. Adding these expressions gives

®(ik) = (m - l)\Q3Pi2(ik) + (m - 2)\Q2i(P2 + 2PLi(ik) - 3Pi2(ik))

4- (m - 3)!Qiii(l - P2 - 2Pn(ik) + 2P12(ik)). (5.35)

This expression can also be used when ik = e, because, if we replace

Pi3(ik) = Pt3(ex) by Pi+3, then (5.35) reduces to (5.34).
We next consider ®(ik). Letp0 := P(ïfc)-iJ5 Pr = ^2nPn and prs(j) :=

HnPnPS3n and note tnat P3 = P3 and Prs(j) = Pr-a((^)-1j'(*&))• Then

©(^) = EE^?^) Epiî^)
TT J

^
Z

7

= EE^^W"^) E^w) '

TT J
^

Z
7

i.e., this is ®((ik)~x) with p's instead of p's; hence,

@(*fc) = (m-1)

+ (m - 2)

+ (m - 3)

g3Pi2((^)-1)

g2i(P2 4- 2P1i(W-1) - 3Pi2((ifc)-1))

Qm(l - P2 - 2Pii(^r1) + 2Pi2(W-1)).

Making the replacements P3 = P3, Pn((0;)-1) = Pii((afc)_1) = Pn(ifc)
and Pi2((ik)~1) = Pi2((^)_1) = P2i(ik) finishes the proof of this identity.

Finally, we look at ®(ik). We have

®(ik) = 5Z(E^tt(j)) (E^^(**o)
TT

^
J

7 ^
Z 7

= 2^ P3PlPnPz / J(ÎTv{3)(ÎTT{l)(l-K{ikn)(lTv{ikz)

3,l,n,z tt

We consider separately the cases ik = e^, ord(z/c) = 2, and ord(zfc) > 2.

Let ik = ex. In this case, we have

®(e~) = E P3PlPnPzY^q-K{3)qi,{l)qir{n)(ln{z)-
3,l,n,z tt

We split in the usual way into the cases:
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a [j =

BJ [j

G\ b' =

D\ [J

1 b' =

— n — z]

= n,z]

= z,n]

,n = z]

,71, Z]

F| [j = n = z, I] [K] [j, l = n,z]

Q\ [j = n,l = z] U [j =z,l,n]

HI b =n,l,z] M [JJ = z,n]

1 \j = z,l = n] Nj b\l,n = z]

H \j,l = n = z] Q\ \J,l,n,z]

and call the corresponding expressions ©Al to (T)[Q|- But note that

P3PiPnPz Yy-K qTr(3)qTr(i)qir(ikn)qTr(ikz) is symmetrical in j and Z, as well as in n

and z so that we have ©El = ®0 = ©E = CDS ®E] = ©El = ®H
and ©E = ©El = (DE = (DE = ®M = ®M- Now

©H = E^E^ü) = E^(m-1)!E^4 = (m-1)!p^4;
J TT J 7

®H = E^E^o)^(*) = E^(1_^)(m-2)!E^
Z^3 TT J 7-^S

= (m-2)!(P3-P4)Q3i;

©E = E#*E«Ww = Ep?(E**-*?)(m-2>!E«^
z^J tt 3 z r^s

= (m-2)!(P22-P4)g22;

®E = E P^PriPz^ql^TT^q^z)
[3,n,z] tt

= E p23PnPz(m - 3)\ ^2 qlqsqt
[3,n,z] [r,s,t]

= (m-3)!g2n^^T1(l -pj -_pn)
n^3

= (m - 3) \Q2ll Y, {P]PU ~ p]Pn ~ P2p2n)
n^3

= (m-3)!(P2-2P34-2P4-P22)g2ii;

®\Q\ = E PjPiPnPz^2q-K(3)q7r(i)q7c(n)q7r(z)
[3,l,n,z] tt

E PjPiPnPz(m - 4)! ^2 qrqsqtqw

b,l,n,z] [r,s,t,w]

= (m - 4)!(1 - 6P2 4- 8P3 + 3P22 - 6PA)QU11.

Adding all expressions, we get
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0(c) = (m_i)LP4Q4+4(m-2)!(P3-P4)g3i

4- 3(m-2)!(P22-P4)g22

+ 6(m-3)!(P2-2P3 + 2P4-P22)Q2n
4- (m-4)!(l-6P24-8P34-3P22-6P4)gmi. (5.36)

Now let ord(ik) = 2. Since the technique we use is always the same,

we write only how we split the sum, which of the expressions obtained

are equal because of symmetry and their dependence on the P's and g's.
Here

®(ik) = E P3PlPnPz^2qTT{3)qTt{l)qK{ikn)q-K{ikz)
3,l,n,z tt

and the sum is split as follows:

[U [j — I = ri = z, ikn = ikz] 17 [j = n = ikz, I, z — ikn]

\2\ [j — I — n — ikz, z = ikn] |18| [j = n, Z = ikz, 77, ikn]

3 [j = I = n,z, ikn, ikz] 19 [j = n, Z, z, ikn, ikz]

[4] [j = I — z — ikn, n = ikz] 20 [j = z — ikn, I — n = ikz]

\E\ [j — I — zin: ikn, ikz] 121 [j = z,l — n, ikn, ikz]

\E\ [j —I = ikn = ikz,n = z] 22 [j — ikn = ikz, I = n — z]

\7\ [j — h n — z, ikn = ikz] 23 [j, I = n = z, ikn = ikz]

8 b = ^ = %kn, 77, z, ikz] |24| [j = ikn, I — n,z, ikz]

[9] [j = l,n — ikz, z = ikn] 25| [j, I = 77 = ikz, z = ifcn]

10| [j — ^ — ikz,n,z,ikn] |26| [j = ikz, I = n,z, ikn]

11 [J = /, 77., ^, ikn, ikz] |27 [j,l = n, z, ikn, ikz]

12 [j = n — z,l = ikn = ikz] 28 [j = z — ikn, Z, 77 = z fez]

|13| \j = n = z,l,ikn = ikz] 1291 [j = z,l = ikn, 77,7&z]

|14| [j — n = ikz, I = z — ikn] 1301 [j = z,l = ikz, n, ifcn]

|15| b —n,l = z, ikn, ikz] 131 [j = z,Z, n, ikn, ikz]

16 [j = n,l = ikn,z,ikz] 32 [j = zä;t7,Z = z,n,ikz]
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33] [j, I — z — ikn, n — ikz] |4Q] [j = ikn, l,n,z, ikz]

341 [j — ikz, l — z,n, ikn\

35] b'j I — z,n, ikn, ikz]

36] b — z^n = *^3 ^ n = z]

1411 [j = ikz, I = 7&T7, 77, z]

|42l b» ^ = ikn, n, z, ikz]

43l b? ^n — ik>z->z — ikn]

371 b'j ^ — *^n = ikz, n — z

38] b? l,n = z, ikn — ikz]

39] b = ^n> ' = *^> n> *]

44l [j — ikz,l,n,z,ikn]

451 b'j ^ — ^^3 nJ z,ikn]

46] [j,l,n,z,ikn,ikz]

Because p3pipnpz X^ q^^q^q^kr^q^ikz) is symmetrical in j and Z,
as well as in 77 and z, the following expressions are equal:

®\2\ and ©[4];

©[3] and ©[5];

©[8] and ©[TH

(DEI and ©[22

®Œ3] and ©[23

©H and ©[20

®[T5] and ©[2Ï

©ŒS, ©EU, ©ESS and ©[34

©CE (DES. ®E8] and ©[33

©ŒS1, ©[26], ©[29] and ©[32

(DUS (DES (DSD and ©g5

©ES and ©[37

©[39] and ©gî

©HS ©[42], ©BÜ and ©[45
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The expressions are equal to:

®m

®m

®m

®m

®m

®m

®m

®E

©E

®\m

®M

®M

®\m

®\m

®M

®\m

®\m

®M

®m

®m

©as

®M

(m-2)

(m-2)

(m-3)

(m-1)

(m-2)

(m-2)

(m-3)

(m-3)

PaQa]

Pzi(ik)Q3i;

(Ps — Pa — P2,i)Q2ii]

P22(^)g4;

(P2 - P4 - P22(ik))Q22;

(P2i(ik) - P22(ik) - P3i(ik))Q3i;

(P2Pn(ik) - 2P3i(ik))Q2n;

(P2 - 2P3 4- 2P4 - P2 - 2P2i(ik) + AP3i(ik)

+ 2P22(ik) - P2Pn(ik))Q2ii,

(m-2)\P3i(ik)Q3i;

(m - 3)\(P3 - PA - P3i(ik))Q2ii]

(m - 2)\P22(ik)Q22]

(m - 4)!(P| - P4 - P22(*A;))Qiiii;

(m - 3)!(P2i(tÄ) - P3i(*Ä) - P22(tfc))Q2n;

(m - 3)!(P2i(ifc) - P22(ik) - P3i(zÄ))g2ii;

(m - 3)!(P2Pn(*fc) - 2P3i(tfe))Q2n;

(m - 4)!(P2 - 2P3 + 2P4 - P2 - 2P2i(*fc) 4- 4P3i(ifc)
+ 2P22(ifc)-P2Pn(i*))Qiiii;

(m - 2)!(P2i(iÄ) - P3i(*fe) - P22(*A;))Q3i;

(m - 3)!(P2 - 2P3 4- 2P4 - P2 - 2P21(ik) + 2P31(ik)

+ 2P22(ik))Q2n;

(m-2)\(P21(ik)-2P22(ik))Q22;
(m - 3)\(Pn(ik) - P2Pn(ik) - P2x(ik) - 4P2i(ik)

+ 4P3i(ik) + 4P22(ik))Q2n;

(m - 4)!(Pii(*fc) - P2Pn(ik) - AP2i(ik) + P31(ik)

+ 2P22(ik))Qiin;

(m - 4)!(1 - 6P2 4- 8P3 4- 3P22 - 6P4 - 5Pn(ik) + 20P2ï(ik)
- UP22(ik) - 20P3i(ik)

+ 5P2Pn(ik)+2P21(zk))Qi'1111:

that is,
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®(ik) = (m-l)\Q4P22(ik)

+ 4(m-2)\Q3i(P2i(ik)-P22(ik))

+ (m - 2)\Q22(P2 + 2P2t(ik) - 3P22(ik))

+ (m - 3)\Q2n(2P2 - 2P| + 4Pn(ik) - 4P2r(ik)

+12P22(ik) - 12P2i(ik))

+ (m- 4)!gim(l - 2P2 + P22 - 4Pn(»fc) + 2P2±(ik)

+8P2i(ik) - 6P22(ik)); (5.37)

we again have the phenomenon that this reduces to (5.36) if one sets

ik — e*. Now

m

m

8

10

11

12

E

14

UÄ

m

17

.3 =

.3 =

.3 =

.3 =

.3 =

.3 =

.3 =

.3 =

.3 =

.3 =

'i =

.3 =

; =

.3 =

.3 =

.3 =

et ord(ik) > 2. Then the sum is split as follows:

Ï3] [j = 77 = z, I, ikn = î&z]= n = z,ikn = 7&z]

= n, z — ikn, ikz]

= 77 = ikz, z, ikn]

= n,z,ikn,ikz]

= z — ikn,n,ikz]

= z,n = ikz, ikn]

= z,n,ikn,ikz]

— ikn = ikz,n = z]

,77 = z,ikn = ikz]

= ikn,n — ikz,z]

— ikn,n,z,ikz]

= ikz,n,z — ikn]

,n,z = ikn, ikz]

— ikz,n,z,ikn]

n = ikz, z,ikn]

,n,z,ikn,ikz]

|19[ [j = nJ — z — ikn, ikz]

I2QI [j =n — ikz,I = z,ikn]

21] [j = n,l = z, ikn, ikz]

22] b' = n = ikz-, I = ikn, z]

|23l b — n,l — ikn, z, ikz]

24] [i —rt,l = ikz, z = 7&n]

25l [j = n,l,z = ikn, ikz]

26] b = n — *^5 ^ zi ikn]

27l b' = n,l = ikz, z, ikn]

[281 b = n,I, z,ikn,ikz]

29l \j = z = ikn, I — n, 7&z]

j = n — z,l — ikn = ikz]

[3Ö1 {j = z,l = n = ikz, ikn]

[311 b' = *>* = n,ikn,ikz]

|32| b' = *^n = ^z, Z = n = ^]

|33l b", I — n = z, ikn — ikz]

34] b = ^n> I — n — ikz, z]
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35] b — ikn, I — n,z, ikz] 53] b', I — z,n — ikz, ikn]

36] [i = ikz, I — n,z = ikn] |54l [j, I — z,ri, ikn, ikz]

37l b'j I — ri,z = ikn, ikz] 55] b = ^n = z^5 l,n — z]

38l b = *^z' I — n,z, ikn]

39] b'j I = n = ikz, z, ikn]

[561 b'j ^ = *&^ — *&£? n = z]

57] [i, l,n = z, ikn = ikz]

4Ü1 b, ^ — n,z,ikn,ikz] 58] b' — ^^j ^ — ^-z,n,z

4T1 b' — Z = Z'^n, ^ = *^3 n] |59l b' = *^n5 Z, 77 = 7&£, £

42| [j — z — ikn, Z, 77, ifcz] 6Ü1 b = *^n5 ^n> ^ *^z]

43] b = -2, Z = ikn, n — ikz] |61| [j = ikz, I = ikn, n, z

44 [j = z,l—ikn,n,ikz] [62 \j,l = ikn,n = ikz,z

|45| b' = z, Z = î'fcz, 77, ikn] M \j>1 — ikn,n,z,ikz]

46 [j — z,n = ikz,l,ikn] 64 b' =
- ikz,l,n, z = ikn

|47| [j = z,l,n,ikn,ikz] 65 b",J — ikz,n, z — ikn

48 b = ^n31 — z,n — ikz] 66 [j,l ,n,z = ikn,ikz]

|49| b = ^n31 = z,n, ikz] 67 b' == ikz,l,n,z,ikn]

50 b = *^> ^ = -^ — *&n? nl 68 b'^ — ikz,n,z,ikz]

51 b', ^ — z — ikn, n, ikz] 69 [j,l ,77 = z/cz, z,ikn]

52l b — ikz, I — z,n, ikn] 70 b",J ,n,z,ikn,ikz]

Again, because p3pipnPz Ett ^0)^)^(7^)^(7^) is symmetrical in j
and Z, as well as in 77 and z, the following expressions are equal:

©[2] and ©0;

(DE] and ®[5t

©[4] and ©H;

©E] and ©E

©El and ©E

©E] and ©E

©E and ©[32

©E] and ©g3
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©HS ©EU ®M and ©[30

©EI and ©[M

©El (DES ©BD and ©[50

©ES ©ES ©SS and ©E2

©El. ©ES' ©S3] and ©[48

©ES, ©S3' ©SS and ©e

©ES. ©SS. ®\M and ©[51

©EU, (DES» ©BU and ©[49

©ES. ©SO], ©S3 and ©[54

©El and ©E

©El and ©[ëH;

©El. ©E2> ©El and ©E

©ES, ©ES' ©Ell and ©e

©ES and ©E9

The expressions are equal to:

©ffl

®n

<m

©a

(M

(DEI

©ŒÏÏ

©E

©25

(777

(ra

(777

(777

(m

(m

(m

(ra

(m

2)

3)

2)

3)

1)

2)

2)

2)

3)

P*g22;

P3i(*fe)Q2ii;

Pis(ik)Q3i;

(P3 -Pa- P3i(ik) - Pi3(ik))Q2n;

P22(ik)QA]

(Pi - P4 - P22(ik))Q22;

Pii2(ik)Q3i;

(P12(ik) - P22(ik) - P13(ik) - Pii2(ik))Q3i;

(P2Pu(ik) - P31(ik) - P13(ik) - P112(ik))Q211]
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©E

©E

©E

©E

©EI

©E2

©EE

©E4

©ES

©E5

©EI

©E

©E

©E

©E

©EG

©Eg

(m - 3)!(P2 - 2P3 4- 2P4 - P2 - 2P12(ik) + 4P13(ik)

+ 2P3i(ik) + 2P22(ik) + 2P112(ik) - 2P2Pu(ik))Q2ii;

(m-2)\P3i(ik)Q3i;

(m - 3)!(P3 - Pa - P3i(ik))Q211)

(m-3)\P22(ik)Q2n-

(m - 4)!(P| - Pa - 2P22(ik))Qnil;

(m - 3)\Pi2i(ik)Q22;

(m - 3)l(P2i(ik) - P22(ik) - P3i(ik) - Pi2i(ik))Q2n;

(m - 3)\P2ii(ik)Q2n;

(m - A)\(P2i(ik) - P31(ik) - P22(ik) - P2ii(ik))Qim;

(m - 3)l(Pr2(ik) - P22(ik) - P13(ik) - Pi2i(ik))Q211;

(m - 3)l(P2Pii(ik) - Pi3(tÄ) - P3i(*fc) - P2u(ik))Q211;

©ES = (r77-4)!(P2-2P34-2P4-P2i-Pi2(7/c)4-2Pi3(7'Ä;)
- 2P2i (ik) + 3P22 (ik) + 3P3i (ik)+Pi2i (ik)

+ P2ii(ik) - P2Pii(ik))Qim;

(m-2)\(P21(ik)-P31(ik)-P22(ik))Qsi]

(m - 3)!(P2 - 2P3 4- 2P4 - P2 - 2P21(ik) + 2P22(ik)
+ 2P3i(ik))Q2n;

(m - 2)\(P2x(ik) - P22(ik) - 2Pi2i(ik))Q22;

(m - 3)!(Pin(*A0 - P2n(ik) - Pi2i(*fe) - Pu2(ik))Q211;

(m - 3)\(Pu(ik) - 2P12(ik) + 2P13(ik) - 2P21(ik) + 3P22(ik)
+ 2P3i(ik) - P2x(ik) - Pm(ik) + Pn2(ik) + P211(ik)
+ 3Pi2i(ik) - P2Pii(ik))Q2n;

(m - 4)!(Pn(*fc) - 2Pi2(*fc) 4- 2P13(ik) - 2P21(ik) + 2P22(ik)
+ 2P3i(ik) - 2Pm(ik) + 2P112(ik)

+ 2Pi2i(ik) +2P2n(ik) - P2Pii(ik))Qmi;

®ÏÏS\ = (m-4y.(l-6P2 + 8P3-6P4 + 3P22-6Pii(ik)
+ 12PX2(ik) - 12Pi3(ik) + 12P21(ik) - UP22(ik)
- 12P3i(ik) + 6P2Pn(ik) + 2P^(ik) + 4:Pm(ik)

-4Pii2(ik)-8Pi2i(ik)-4P2ii(ik))Qiiii.
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Everything added together gives

®(ik) = (m-l)\QAP22(ik)

+ (m - 2)!Q3i(2Pi2(*fc) + 2P2i(ifc) - 4P22(z/c))

4- (ra - 2)\Q22(P2 + 2P2x(ik) - 3P22(ik))

+ (ra - 3)!g2n(2P2 4- 4Pu(*fc) - 6P12(ik) - 6P2i(ik)

+12P22(ik) - 2P2 - 4:P2x(ik))
+ (m - 4)!Qiin(l - 2P2 - 4Pn(ife) 4- 4Pi2(zA;) 4- P2i(*fc)

+P2 + 2P^(ik) - 6P22(ik)). (5.38)

Moreover, this formula can be used for all ik since when ord(ik) is one or

two, then the P's are changed as stated in Lemma 5.2.11 and the formula

reduces precisely to the ones we had in (5.36) and (5.37). D



Chapter 6

Concluding Remarks

The linear cryptanalysis attack is coming of age. It has been tried out on

many ciphers, with greater or less success; it has been formalized and a

few attempts to generalise it have been made; ways to design ciphers or at

least to make cipher primitives resistant to linear cryptanalysis have been

investigated; and all ciphers designed in the last few years take this attack

into account. Like many aspects of cryptology, linear cryptanalysis and

its generalisations rely on a number of assumptions. In this work, three

of these have been studied.

Linked threefold sums can be used to lower-bound the probability of

success of an attack using the binary generalisation of linear cryptanalysis.
In order to apply the Piling-up Lemma, these threefold sums must be

independent. However, their independence is very difficult to determine in

practical cases. By an averaging argument, we showed that, in virtually all

cases, the Piling-up Lemma can be used validly with dependent threefold

sums if one replaces equality by approximation.
The hypothesis of fixed-key equivalence assures the cryptanalyst that

the probability of success of the attack is more or less independent of the

key used in the encryption and that the average-key imbalance of the I/O
sum used in the attack is a good measure for the probability of success.

Again by an averaging argument, we showed that, for virtually all one-

round I/O sums, the key-dependent imbalances are approximately equal
to the average-key imbalance. However, we were not able to specialize this

assertion to the effective I/O sums. An important by-product of our in¬

vestigation, valid for any number of rounds, was a quantitative definition

of an effective I/O sum.

In the m-ary variant of linear cryptanalysis called the group generalisa¬
tion of linear cryptanalysis, there is no analogon to the Piling-up Lemma.
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However, once more by an averaging argument, we were able to show that,
if m is large enough, one can state a similar identity for virtually all cases

by replacing the equality by an approximation.
Several open problems related to our work are worth investigating

further. We wish to mention the following ones:

• As to the topic of Chapter 4, one could restrict the averaging to block

ciphers whose round functions g have the property that, for all values of

the key z, the functions g(-,z) belong to the same subgroup of the group

of invertible functions. Accordingly, the definition of an effective I/O
sum could be modified for I/O sums derived from a cipher belonging to

such a subset of all block ciphers.

• We proved that, for virtually all I/O sums, the key-dependent imbal¬

ances were approximately equal to the average-key imbalance for virtu¬

ally all keys. However, our procedure does not allow us to say that this

holds also for virtually all effective I/O sums since most I/O sums are

not effective. It is therefore of interest to study the fixed-key equivalence
condition for I/O sums whose average-key imbalance is larger than a cer¬

tain threshold. The threshold should be different for all blocklengths.

• We proved the piling-up hypothesis for the imbalance measure I2 only
for two random variables and concluded that it holds for any number

of random variables by induction if one changes the definition of the ap¬

proximation sign. Although this question is not very important and the

calculation would no doubt be tedious, we are interested in computing
the same kind of averages for more than two random variables as we

did for two random variables.

• Finally, the hypothesis of wrong-key randomization presented in Chap¬
ter 2, which is the most important of all the hypotheses since it ensures

that the attack can find the key, remains untouched by our work.
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