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Abstract
As competitiveness in the metal and meta] forming industry grows

more and more, great efforts must be paid to achieve targets on

product quality. Within thc aluminum industries, extrusion plays

an important role. In this process, it is of superior importance to

achieve uniform product quality while minimizing the discard. The

exit temperature of the extrudate profile is a measure of product

quality. It is desired to run the process in such a manner, that this

temperature remains constant throughout the whole extrusion cycle.

This is known as isothermal extrusion. Developing model-based

control strategies to achieve isothermal extrusion was the aim of this

thesis.

Starting from industrial data, empirical in-house process knowledge

shared by the industrial partner of this thesis, as weIl as from

literature on metal-forming processes, a first-principles model of

the aluminum extrusion process investigated was developed. The

motivation for developing such a model was driven by the fact that

other solution approaches, such as system identification methods,

would have required disturbing the production through extensive

experimenting on the plant. This was clearly undesirable and a strong

constraint on the development of any type of model. In addition, a

model based just on experimental data would have only been valid

for the plant from which the data originated. This would have meant

developing numerous models, one for each machine, so as to capture

the dynamics of each particular system.

This detailed model was the starting point for developing control

strategies for the isothermal extrusion of aluminum. As a consequence

of the complexity and thoroughness of this first-principles model,

an open-Ioop control strategy was chosen as a first solution to

the problem. This choice had two motivations: on the one hand

open-Ioop strategies were simpler to implement in the existing



distributed control system (DCS) at the plant. Additionally, this type

of approach was more likely to be understood and accepted by the

plant personnel. On the other hand, more sophisticated closed-loop

strategies could be developed subsequently, exploiting the existing

detailed model and the open-loop trajectories derived therefrom.

This led to the second part of this work where, starting fram the

understanding and knowledge gained through the more sophisticated

first-principles model, a simplified model of the aluminum extrusion

process was derived. This step was a natural consequence of the

mathematical as weil as computational requirements imposed by

a closed-loop control strategy, which could hardly have been met

based on the model derived in the first part of this thesis. The

development of closed-loop contral strategies is of advantage to
exploit the valuable information provieled by the measurement of

the temperature of the extrudate. This allows to take into account

processjmodel mismatches anel disturbances (e.g. noise) entering the

system, two factors neglected by any open-loop strategy. At the same

time, constraints on the system had to be taken into account. This led

to the choice of model predictive control (MPC). This methodology

allows various types of constraints on the system to be considered

directly during the design of the contral strategy.

Relying on the measurements of the temperature of the extrudate for

closed-loop control obviously means ensuring that this information is

accurate. As the temperature sensors found in industrial practice are

prone to partial failure, a monitoring algorithm was designed to detect

faults on this sole source of information for the closed-loop controller.

Here, statistical methods based on cumulative sum (CUSUM) algo

rithms were chosen. Once again the choice of this strategy was driven

by the simplicity with which this algorithm may be implemented in

industrial practice. In addition, the introduction of such a monitoring

scheme could increase the acceptance of closed-loop controllers by the

operators.
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Zusammenfassung

Wettbewerbsfähigkeit in der Metallindustrie verlangt, dass die

Prozesse möglichst effizient und produktiv laufen. Innerhalb der

Aluminiumverarbeitungsindustrie spielt das Strangpressen eine

zentrale Rolle. Hier ist es vor allem wichtig, dass man eine ho

mogene Produktqualität gewährleistet, bei minimalem Ausschuss.

Ein ~/lass für die Qualität des Produktes ist die Austrittstempe

ratur des gepressten Profils. Es ist erwünscht, den Prozess so zu

betreiben, dass die Temperatur des gepressten Profils während

des ganzen Presszyklus möglichst konstant bleibt. Dies nennt man

isothermes Strangpressen von Aluminium. Die Entwicklung einer mo

dellbasierten Regelstrategie für diesen Zweck ist das Ziel dieser Arbeit.

Im ersten Teil dieser Arbeit wird ein Modell des Prozesses entwickelt.

Dafür sind experimentelle Methoden wenig geeignet, da diese umfang

reiche Versuchskampagnen an der Anlage voraussetzen. Dies hätte zu

unerwünschten Störungen oder gar Unterbrüchen des Produktionsbe

triebs geführt. Zudem ist ein empirisches Modell lediglich für genau

die Anlage gültig, auf welcher die Experimente durchgeführt werden.

Dies bedeutet, dass die Herleitung eines Modells für jede Maschine

wiederholt werden muss, um die Dynamik des jeweiligen Systems zu

beschreiben. Somit kommt nur die Herleitung eines auf der Physik

des Prozesses basierten Modells in Frage.

Dieses detaillierte physikalische Modell ist der Ausgangspunkt für

die Entwicklung von Regelstrategien für das isotherme Strangpressen

von Aluminium. Bedingt durch die Komplexität des physikalischen

Modells werden zunächst Open-loop-Regelstrategien entworfen.

Dieser Entscheid beruht auf drei Überlegungen: Erstens sind Open

loop-Regelstrategien einfacher in das vorhandene Leitsystem zu

integrieren. Zweitens werden Open-loop-Regelstrategien vom Perso

nal der Anlage rascher verstanden und akzeptiert. Drittens kann ein

späterer Entwurf anspruchsvollerer Closed-loop-Regelstrategien auf
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die Erfahrungen mit dem vorhandenen physikalischen Modell und die

Open-loop-Strategien gestützt werden.

Im zweiten Teil der Arbeit werden der Entwurf und die Untersuchung

von Closed-loop-Regelstrategien in Angriff genommen. Dafür wird

ein vereinfachtes Modell des Prozesses hergeleitet. Dies wird durch

die bei der Entwicklung des detaillierten physikalischen Modells

gewonnenen Erfahrungen und Prozesskenntnisse ermöglicht. Die

Herleitung eines vereinfachten Modells ist auch die logische Konse

quenz der mathematischen bzw. rechentechnischen Ansprüche, die

eine Closed-loop-Regelstrategie erfordert. In diesem Zusammenhang

sind hauptsächlich die Anforderungen an die Rechenzeiten bei der

Simulation des Prozesses mit dem komplexeren Modell nicht erfüllt.

Eine Closed-loop-Regelstrategie ist dazu noch vorteilhaft, um die
Messung der Temperatur des Profiles ausnutzen zu können. Somit

können eventuelle Modellfehler und Störungen (z.B. Rauschen),

die das System beeinflussen, beim Entwurf der Regelstrategien in

Betracht gezogen werden. Gleichzeitig müssen auch physikalische

Begrenzungen des Systems betrachtet werden, was zur Wahl der

Methode der Modell-prädiktiven Regelung führt. Verschiedene

Begrenzungen des Systems können somit direkt beim Entwurf des

Reglers berücksichtigt werden.

Um die Temperaturmessung des Profils ausnutzen zu können, muss

man ihre Genauigkeit gewährleisten. Da die Temperatursensoren, die

in der Regel beim Strangpressen eingesetzt werden, dazu neigen, Feh

ler zu entwickeln (z.B. Drifts, Bias), ist es nötig, diese Sensoren zu

überwachen. Dafür wird im dritten Teil der Arbeit ein statistischer

Algorithmus eingesetzt, um Fehler bei der Messung der Temperatur zu

detektieren. Dieser Algorithmus wird aufgrund seiner Einfachheit hin

sichtlich Implementierung in einer industriellen Umgebung gewählt.
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Resumen

A medida que la competitividad en la industria metahirgica aumenta,

mayor enfasis y esfuerzo se deben poner para poder garantizar y

cumplir con las normas de calidad establecidas. En la industria deI

aluminio el proceso de extrusion juega un papel central. En este

proceso es imprescindible garantizar una calidad hornogenea de los

productos, manteniendo siempre al minimo los desperdicios de mate

rial. La ternperatura deI perfil de extrusion es una medida importante

de la calidad deI producto. Es necesario que el proceso corra de tal

manera que esta temperatura permanezca constante durante todo

el ciclo de extrusion. Esto se conoce corno extrusion isotermica. EI

fin de esta tesis es el desarrollo de estrategias de control basadas en

un modelo deI proceso que garantizen una extrusion isotermica de

aluminio.

En la primera parte de la tesis se desarrolla un modelo fundamentado

en la fisica deI proceso de extrusion de aluminio. Este modelo esta

basado en conocimientos empiricos sobre el proceso proporcionados

por la empresa conjunto a la cual se llevo a cabo el proyecto, asi

como tambien en la literatura referente a procesos metalurgicos. EI

desarrollo de un modelo experimental, basado quizas en metodos

como la identificacion de sistemas, no fue posible ya que esto hubiera

significado perturbar la produccion con extensas campaiias expe

rimentales en la planta. Esto ultimo era claramente inaceptable y

representa una gran limitante al desarrollar cualquier tipo de modelo

deI proceso, sea este un modelo experimental 0 un modelo basado en

la fisica deI proceso. Por otra parte, un modelo empirico deI proceso

basado solamente en datos experimentales hubiera sido valido solo

para la maquina de la cual se originaban los datos. Esto hubiera

implicado desarrollar un modelo para cada una de las maquinas pre

sentes en la planta que reflejase la dinamica particular de cada sisterna.

EI modelo detallado, fundamentado en la fisica deI proceso, forma
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la base para el cliseiio cle estrategias cle control para la extrusion

isotermica cle aluminio. Debiclo a la complejiclacl clel moclelo cleta

lIado, una estrategia cle control cle lazo abierto fue seleccionacla como

primera solucion a este problema. Otros aspectos cle tipo pnictico

tales como la faciliclacl cle implementacion cle las estrategias cle control

cle lazo abierto en el sistema cle control clistribuiclo presente en la

planta, asi como tambien la aceptacion cle este tipo cle estrategias

por el personal tecnico, fueron cleterminantes para inclinarse por esta

clecision.

En la seguncla parte cle la tesis se cleriva un moclelo simplificaclo clel

proceso para pocler clesarrollar estrategias cle control cle lazo cerraclo.

Esto fue posible gracias a los conocimientos clel proceso obteniclos

al clesarrollar el moclelo cletallaclo en la primera parte. EI clesarrollo
de un modelo simplificado es tambil~n una consequencia 16gica de los

requerimientos computacionales que una estrategia cle control cle lazo

cerraclo suponen, los cuales no hubieran pocliclo ser cumpliclos con el

moclelo clesarrollado en la primera parte. EI control de lazo cerraclo

es ventajoso para pocler explotar la informacion proporcionacla por el

sensor cle temperatura clel perfil cle extrusion. Esto ultimo permite

tomar en cuenta factores como incongruencias entre el moclelo y la

planta, asi corno tarnbien perturbaciones que entran en el sistema

(e.g. ruioo). Par otra parte. en el proceso cle cliseno cle un controlaclor

es imperativo tomar en cuenta los \fmites fisicos clel sistema. Para

este fin se utilizo el metoclo cle moclelo cle control predictivo.

Para hacer uso cle la meclicion cle la temperatura clel perfil es necesario

garantizar su exactitucl. Puesto que los sensores cle temperatura que

se utilizan en este tipo cle procesos tienclen a clesarrollar bias y otros

tipos cle errores, se utilizo un algoritmo para la cleteccion cle fallas

en los sensores. Este algoritmo esta basado en metoclos estaclisticos

y adicionalmente ofrece la ventaja cle una facil implementacion en

concliciones inclustriales.
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Nomenclature

Notation for Extrusion Processes

Notation Meaning Units

T Temperature. [0G]
W Work. P]
F Force. [N]
F die Die Force. [N]
Ffriclion Friction Force. [N]
P Work per unit of time. [W]
Q Heat generation rate. [W]
Qfriction Heat generation rate due to friction. [W]
Qdefonnation Heat generation rate due to deformation. [WJ
A o Cross-sectional area of billet. [m2

]

Al Cross-sectional area of extrudate profile. [m2
]

Ai/j Contact area between seetions i and j. [m2
]

V Volume. [m3J
Vi Volume of seetion i. [m3J

cI' Specific heat. [~]

CPA/ Specific heat of aluminum. [~]

CPFe Specific heat of steel. [~]

R Radius of billet or inner radius

of container. [mJ
R1 Outer radius of container. [mJ
La Initiallength of billet. [m]
Re Reynolds Number. [-J

k Thermal conductivity. [~]
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kAI Thermal conductivity of aluminum. [~]

kFe Thermal conductivity of steel. [~]

T Radial coordinate. [m]
x Axial coordinate. [mJ

q Heat flux per unit area. [~]

Vj . Axial velocity component. [~]

v,. Radial velocity component. [~]

h,. Contact conductance. [m~:C]

h Heat transfer coefficient. [~]

hR Heat transfer coefficient billet/container. [m[cl

g Gravitational acceleration. [~]

9i Component of gin direction i. [~]

P Pressure. [~]

V,'am Ram velocity. [~]

Tdie Radius of die. [m]
d Diameter of die. [m]
t Time. [sJ

kf Flow stress. [~]
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Greek Symbols

Notation Meaning Units

a Thermal diffusivity. [~2]

P Density. [~]

PAI Density of aluminum. [~]

PFe Density of steel. [~]

1> Angular coordinate. [oJ

Tij Shear stress in direction j on a fluid [~]
surface of constant i.

Viscosity. [~]

ai Normal stress in direction i. [~]

a m Mean principal stress. [~]

vfr Coefficient of friction. [-J
W Stream function. [-]
E Strain. [-J

i Strain rate. [l]
Logarithm of extrusion ratio. [-]
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Notation for State-Space Models and Systems

Notation Meaning

A

B,D
C
x,x
Y,Y
u,U
x, X

v.\" _La -

J(

w
V
p

Q
R
J

T,
l'

TI
m

System matrix.

Input-to-state (input-to-ouput) gain matrix.

State-to-ouput gain matrix.

State vector.

Output vector of the system.

Control/manipulated input.

State estimate.

(: 1oe Y6' ~ ( : 1Output ,~uen<e
Kaiman gain.

Noise sequence on state equation.

Noise sequence on observation equation.

Covariance matrix of state estimation error.

Covariam:e matrix for W or W.

Covariance matrix for v or V.
Performance index.

Sampling time.

Reference trajectory vector.

rredirtion horizon.

Control horizon.

Greek Symbols

Notation Meaning

{ Innovation.

E Covariance matrix of innovation {.

T,: Direction of additive change in the state vector.

T y Direction of additive change in the output vector.

r Gain matrix for T",
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a

ß
p

w

v

Gain matrix for Y Y'

Signature of additive change on the state.

Signature of additive change on the state's estimate.

Signature of additive change on the innovation.

Noise sequence on state equation.

Noise sequence on observation equation.

Notation for Statistics and Change Detection

Notation

1t
T
P(B)
Si = Sj
51

I

t
E
L
N
to

t"
9k'
p(Y)

Pe(Y)
h,-a
b

Meaning

Hypothesis.

Stopping time.

Probability of the event B E ß.

Log-likelihood ratio for observations Yi until Yj.

Weighted log-likelihood ratio for observations Yi until Yj.

Mean time between false alarms.

Expectation.

Probability law; L(Y) = Pe.

Normal (or Gaussian) law.

Change time.

Alarm time.

Decision function.

Probability density, pdf.

Parametrized probability density, pdf.

Thresholds.

Minimum magnitude of change.

Greek Symbols

Notation Meaning

Ai Likelihood ratio for observations Yi until Yj·

Äi Weighted likelihood ratio for observations Yi until Yj·

Y Direction of change in a vector parameter.
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f

a

ß

Covariance matrix of the vector random variable Y.
Parameter.

Parameter before change.

Parameter after change.

Threshold.

Variance of the scalar random variable Y.
Mean detection delay.

Magnitude of change.

Error probability.

Power of a statistical test.

xvi



Contents

Abstract

Zusammenfassung

Resumen

Acknowledgments

Nomenclature

1 Introduction
1.1 Motivation...................
1.2 Scope of the Thesis . . . . . . . . . . . . . .

1.3 Control of Aluminum Extrusion: A Review.
1.4 Structure of the Thesis . . . . . . . . . . ..

iii

v

vii

xi

1

1
2
4

8

2 Dynamic Modeling and Optimal Control Strategies for
Aluminum Extrusion 13
2.1 Introduction . . . . . . . 13
2.2 Extrusion Processes . . . 15

2.2.1 Direct Extrusion 16
2.2.2 Indirect Extrusion 18

2.2.3 Material Flow in Extrusion Processes 19
2.2.4 Thermal Dynamics in Extrusion Processes 20
2.2.5 Isothermal Extrusion . . . . . . . . . 21

2.3 Dynamic Model of the Extrusion
Process. . . . . . . . . . . . 22
2.3.1 Modeling the Billet 23

xvii



2.3.2 Modeling the Container, Die, and Ram . . . .. 41

2.4 Simulating the Extrusion Process . -12

2.5 Qualitative Comparison of the Model with the Program

PressForm . . . . . . . . . . 51

2.6 Model Validation . . . . . . 63

2.7 Process Control and Control

Objectives . . . . . . . . 64

2.8 Conclusions and Outlook . . 69

3 Nonlinear Model Predictive Control for the Isothermal
Extrusion of Aluminum 77
3.1 lntroduction..................... 77

3.2 Deriving a Simplified ~/Iodel . 78

3.2.1 Simplified Model of the Extrusion Process 79

3.2.2 Validation of the Simplified Model 84
3.2.3 Validation of the Model with Data from an In-

dustrial Aluminum Extruder. . . . . .. 91
3.3 Nonlinear Model Predictive Control

of Exit Temperature . . . . . . . . . . . . . . . . . .. 93

3.3.1 MPC: Background . . . . . . . . . . . . . . .. 94

3.3.2 Isothermal Extrusion via Nonlinear Model Pre-

dictive Control 99

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Monitoring and Fault Detection of Sensors m
minum Extrusion via Statistical Methods
4.1 Introduction .

4.2 Preliminaries .

4.2.1 Additive Changes in Dynamic Systems

4.3 Detection of Faults in Sensors for

Aluminum Extrusion . . . . . .

4.3.1 Tuning of the Algorithm

4.3.2 Simulation Results

4.4 Conclusions . . . . . . . . . ..

XVlll

Alu
117
117

120
120

128

129
131

134



Contributions of the Thesis

Appendices

A Assumed Geometry of Profile

139

141

141

B Method of Separation of Variables for the Solution of
a Fourth Order Linear Partial Differential Equation 143

C Solving the Equation for the Distribution of Pressure 151

D Smoothing Algorithm

E Simulation of the Extrusion Process
E.l Simulation of the Container

E.2 Simulation of the Die ...
E.3 Simulation of the MandreI .

155

161
161
165

169

F Equations of the Simplified Model for the Various
Bodies Involved 173
F.l Equations of the Model Before the First Disc is Extruded 173

F.2 Equations of the Model Before the Second Disc is
Extruded . . . . . . . . . . . . . . . . . . . 176

G State Estimation via Extended KaIman Filtering 179

Curriculum Vitae 183

xix



xx



Chapter 1

Introduction

1.1 Motivation

As competitiveness in the metal ancl metal forming industry grows

more and more, great efforts must be paid to achieve targets on

product quality. At the same time other aspects, such as praductivity,

safety, and maintenance issues, must be taken into consideration

as weil. In order to hit all these targets, processes must be run in

operating regions that may be difficult to achieve or even unknown

to personnel. Model-based automatie contral of industrial pracesses

offers new possibilities within this context. If a model of the pracess

exists, the process may be investigated carefully and limitations 

inherent to every system - may be identified. More effective control

strategies for the pracess may be first designed and tested on the

model, prior to implementation on the real plant. This has already

been partially recognized by the metal industry and the trend during

the last fifteen years has been to move in this direction.

Albeit all of the arguments previously mentioned and despite the fact

that aluminum extrusion has a long tradition within the metal form

ing industry [1]' little automatie contral is used there. Processes are

mostly run manually by the operators who, based on extensive prac

tical experience, adjust the extrusion velocity so as to achieve the

desired product quality. The main reason for the lack of model-based

control strategies for aluminum extrusion lies in the complexity of

the process. Highly nonlinear flow and heat phenomena take place in
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extrusion. lf these phenomena are to be described accurately, coupled

partial differential equations must be used [2]. Solving these differ

ential equations is a cumbersome task. Nevertheless, models of the

extrusion process exist and are mainly used for the design of the tool

ing. However, these models are not suited for model-based control

purposes since the solution of the equations describing them requires

massive computation times. Nevertheless, there are strong incentives

for the developement of a model of the extrusion process upon which

a control strategy may be based. One of the main problems arising in

the extrusion of aluminum is that of controlling the exit temperature

of the extrudate. A model-based approach to tackle this problem is

desirable for the following reasons:

• Extrusion of complex profiles by hand is difficult and unreliable.

• Extrusion of new profiles requires extensive" experirnenting" un

til the operator has acquired the know-how to extrude in such a

manner as to achieve the desired product quality.

• Manual operation leads to rather conservative extrusion veloc

ity trajectories. Model-based control strategies would help to

extrude at the maximum velocity that the alloy can withstand

without melting. This would lead to an increase in productivity.

• A model of the process is helpful to give the operators more

insight into the process.

• Maintenance issues can be addressed more properly by means of

a model by simulating the behavior of the process under abnor

mal situations.

1.2 Scope of the Thesis

This thesis started as a joint project with Alusuisse Technology and

Management AG, Neuhausen, Switzerland. The development and

implementation of model-based control stategies to run the process

in an optimal manner, therefore achieving isothermal extrusion were
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the main goals of the praject. For this purpose a dynamic model of

the process was required. The development of such a model of the

extrusion pracess as weil as the design of open-loop optimal contral

strategies to achieve isothermal extrusion for the whole praduct range

(prafile geometries) present at Alusuisse was the focus of the first
phase of the praject.

A model was to be derived based on first principles and on physical

understanding of the process. This was due to the fact that the

model had to be applicable for different types of extrusion presses

and a wide range of extrudate profiles. Therefore, models suited

only for a certain type of prafiles or machines and that could have

been based on system identification methods were not acceptable.

The model had to be validated with real industrial data, prior to

implementing any contral strategy derived therefram. Although the

physics of the extrusion pracess is weil known, the main challenge

at deriving a first-principles dynamic model of the pracess that is

suited for contraI purposes lies in achieving reasonable computation

times. Computation times had to be kept low so as to facilitate the

design and implementation of the model-based contral strategies. By

treating the metal as a highly viscous fluid and making appropriate

assumptions regarding its flow, the velocities, pressure, and strain

rates distributions needed for the modeling of the pracess are solved

analytically leaving therefore only the temperature distributions to

be solved numerically. This semi-analytical approach allows for a

considerable reduction in computation times as compared to the

usual Finite Elements Method for the modeling of extrusion processes.

In a second phase of the project closed-loop control strategies based

on modern contraI techniques were to be designed and tested, the

implementation of these closed-loop contral strategies being depen

dent on practical issues such as availability of the plant. Closed-loop

contral was envisioned so as to exploit the valuable information

pravided by the measurement of the temperature of the extrudate.
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In addition, uncertainties such as the uncertainty in the knowledge of

the initial temperature gradient of the billet prior to loading it into

the container as weil as disturbances (e.g. noise) entering the system

were to be at least partially counterbalanced by the use of closed-loop

contro!.

Closed-loop control strategies rely on the measurement of the temper

ature of the extrudate. However, since the temperature sensors used

in aluminurn extrusion are prone to partial failure, the detection of

faults in these devices is an irnportant task. The problem of moni

toring these sensors was to be addressed. For this purpose statistical

methods were chosen. The onset of bias in these sensors is treated

as a jump in the mean of a stochastic process, and the detection of

these jump is tackled using an on-line cumulative sum (CUSUM) algo
rithm. Drifts in the temperature measurement mayaIso be diagnosed

by means of this CUSUM algorithm. This algorithm was to be tested

on simulation examples. However, its eventual implementation in an

industrial environment should be investigated. Within this context

the algorithm had to satisfy certain conditions. Primarily it was not

to pose any major difficulties with regards to computational burden.

1.3 Control of Aluminum Extrusion: A
Review

Earlier contributions to the problem of controlling the temperature

of the extrudate for the aluminum extrusion process may be found

in the literature. This section presents a review of previous work

in this direction. It is by no means an exhaustive review of earlier

contributions, but only a highlight of what are personally considered

to be the most important contributions.

Akeret [3] presents one of the first approaches to the derivation of

a model of the thermal processes that take place in the aluminum

extrusion process. The potential of model-based control to achieve
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isothermal extrusion is mentioned, however no steps towards deriving

these strategies are presented. In subsequent investigations ([4], [5]),

empirical methods are presented for the extrusion of aluminum with

isothermal extrusion as the main goal. In particular, it is remarked

that the problem of isothermal extrusion of aluminum should be

investigated from the systems and control engineering point of view.

That is, the problem should be tackled by means of a model to

describe all the physical phenomena taking place in extrusion and

not just by trial-and-error methods.

An important contribution to the modeling of the extrusion process

is due to Lange. An analytical model is presented in [6] to determine

the temperature distribution within the deformation zone of the

billet. It is postulated that the heat ftux generated through friction

alld the heat ftux due to conduction between the billet and container

must compensate each other at every moment in time in order to

achieve isothermal extrusion. It is assumed that no heat ftows from

the deformation zone to the back of the billet. Particular attention is

paid to the friction between the extrudate section and the die, as weil

as to the effect on the temperature of the extrudate section derived

therefrom. Under these assumptions, ways of predetermining velocity

trajectories to achieve various goals are described. However, only

theoretical results are presented in this investigation.

Stüwe [7] approaches the problem of isothermal extrusion in an

ad-hoc manner. Combining rules of thumb from practitioners with

basic physical understanding of the process, he roughly estimates

changes in the temperature of the extrudate due to the various heat

phenomena that take place during the process. Proper extrusion ve

locity profiles to reach isothermal extrusion for certain configurations

are recommended, however only simulations results are presented in

this work, and it is questionable whether these results are transferable

to more complex extrudate profiles as the ones presented.
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The effects of extrusion ratio, extrusion speed, and speed changes on

the emergent temperature of lead anel high-purity aluminum have

been investigated by Singer et al. [8]. Here as weil, an attempt was

made to correlate the observations with theoretical calculations baseel

on considerations of heat flow during the process. The experimental

data presented reasonably agrees with the theoretical calculations

proposed. One drawback of this approach is the fact that all the

experiments presented were conducted on a laboratory scale press

and under conditions rarely found in an industrial environment.

Furthermore, the extrusion ratio range studied in this investigation

is limited, and nothing is mentioned as to whether the observations

may be extrapolated to a wider range of extrusion ratios or more

industrial-like extrusion conditions.

Granclhi and co-workers have derived a method for controlling

temperatures in deformation processes, such as forging and extrusion

([9], [10]). These approaches are based on modern control theory and

involve deriving state space models directly from available models

of material behavior and hot deformation processes. The nonlinear

finite element method (FEM) is used to model and simulate the

metal-forming process. Nonlinear open-loop control strategies for

producing required microstructural characteristics, uniformity of

deformation, and temperature distribution within the meta! are

derived based on these models. Recognizing the weakness of this

approach as far as computation time is concerned, reduced-order

state space models for the control of metal-forming processes are

derived in [11]. The objective of the design process is to maintain

specified effective strain rates in certain critical elements of the

workpiece. Numerical case studies with discussions are presented

in these investigations. However, even with the reduced-order state

space models, computation times are not feasible for any practical

use. Nevertheless, the work presented by Grandhi et al. is significant

from the point of view of gaining insight into the physics of the

process and the systematic development of a model that is suited to
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theoretically designing control strategies.

Isothermal extrusion of aluminum via iterative learning control is

presented by Pandit and Buchheit [12], [13]. This control scheme im

proves the control of the temperature of the extrudate, from extrusion

cycle to extrusion cycle, by iteratively optimizing an appropriate per

formance index [14]. The method employs the gradient of a functional

which is derived using a Frechet differential. The model used for this

approach is derived via system identification methods and, strong

assumptions are made regarding process linearity, actuators behavior,

and constancy of disturbances. Although theoretically this approach

could be applied for a wide variety of extrusion presses and extrusion

profiles, this would involve carrying out identification experiments

for the whole variety of production configurations in order to identify

each model. In practice this may turn into a cumbersome task as

in most cases production may not be disturbed and, for practical

and acceptance reasons conducting the identification experiments is

nearly impossible. In addition, in certain cases this control strategy

has the disadvantage of requiring too many iterations (extrusion

cycles) until isothermal extrusion is attained. In industrial practice

various types of profiles are extruded batchwise in the same press.

To achieve isothermal extrusion the iterative learning control may

require more learning cycles than are available for a certain profile.

Recently, Tibbetts et al. [15] have presented very promising results

far round-to-round extrusions. This work offers the advantage of

resolving the spatial temperature variations in the deformation

region, not just the time-dependence of an averaged value. It is

unclear, however, whether the models presented in that investigation

can actually be implemented in real-time. It is also unclear whether

these models can be extended to more complicated geometries.

From the above mentioned research contributions, only the work by

Pandit and Buchheit ([12], [13]), has been validated with industrial
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data and actually implemented in an industrial press. The remaining

contributions limit themselves to either simulation examples or to lab

oratory results under carefully controlled experimental conditions. In
addition, no model-based closed-Ioop control strategies for the control

of exit temperature in the extrusion process have been investigated

yet. This thesis is an attempt at tackling the problem of isothermal

extrusion from the industrial point of view, and at adding to the state

of-the-art knowledge of systems engineering of metal-forming processes

by presenting a closed-loop control strategy for the isothermal extru

sion of aluminum.

1.4 Structure of the Thesis

This thesis is divided in three parts. Each part is written in form of
a chapter dealing with one of the three main subproblems and can be

read independently of the others.

For each subproblem a methodology - and not an ad-hoc procedure

based on trial an error - was developed. Consequently, the solution

procedure for each of these subproblems could be systematically

applied in various industrial environments without major adjustments.

The first part deals with the derivation of a detailed dynamic model of

the extrusion process and the design of open-loop control strategies.

Of superior importance while deriving this detailed dynamic model

were computation times. To achieve low computation times the

partial differential equations describing the flow of the metal are

solved analytically, while the equations describing the temperature

distributions are solved numerically. As mentioned earlier this was

possible by treating the metal as a highly viscous fluid and making

appropriate assumptions regarding its flow. The accuracy of this

model was suited for the purposes of designing control strategies.

However, the model is by no means a substitute of other available

models based on Finite Element Methods, when construction and

design purposes have first priority. The model is compared to
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industrial data, and open-loop optimal control strategies are then

designed to achieve isothermal extrusion. The effectiveness of these

control strategies is shown through simulations. These strategies

have been successfully implemented on an industrial plant, covering

a wide range of extrudate profiles and leading not only to guaranteed

product quality but to an increase in productivity.

The second part of the thesis deals with the design of a closed-loop

control strategy for the isothermal extrusion of aluminum. As the

model derived in part one is still too complex to form the basis

for a closed-loop control strategy, a simplified model is derived and

validated with data from an industrial scale aluminum extrusion

press. Further, it is shown that with the aid of this simplified

dynamic model, the problem of isothermal extrusion of aluminum can

be posed and solved as a model predictive control (MPC) problem,

wherein constraints inherent to the system are directly taken into

consideration.

In part three of the dissertation the problem of monitoring and fault

detection of the aluminum extrusion process is addressed. In partic

ular the application of a strategy to detect faults in the temperature

sensors used in the process is investigated. This strategy is based on

statistical methods to detect abrupt changes in systems. The onset of

bias in sensors is thus modelIed as an abrupt change taking place at

an unknown time and the goal is to detect the change and possibly

estimate the change time. The dissertation closes with an overview of

its contributions.
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Chapter 2

Dynamic Modeling and Optimal
Control Strategies for Aluminum
Extrusion

This chapter presents a new approach to the modeling of extrusion pro

cesses. Although the physics of the extrusion process is weil known,

the main challenge and first priority at deriving a first-principles dy

namic model of the process that is suited for control purposes lies

in achieving reasonable computation times. The model developed in

this chapter is based on the heat conduction equation for a moving

body with heat generation terms. By treating the metal as a highly

viscous fluid and making appropriate assumptions regarding its flow,

the velocities, pressure, strain, and strain rates distributions needed

for the modeling of the process are solved analytically leaving there

fore only the temperature distributions to be solved numerically. This

semi-analytical approach allows for a considerable reduction in com

putation times as compared to the usual Finite Elements Method for

the modeling of extrusion processes. The model is validated with data

from an industrial aluminum extrusion press. The validated model is

then used to design various open-loop optimal control strategies ac

cording to different performance criteria.

2.1 Introduction

Extrusion is one of the various methods of deformation processing of

materials. Revenues from this industry in the V.S. are reported to
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amount to D.S. $ 4.5 billion, processing 1.2 billion kilograms of alu

minum in 1991 [1]. Although the need for modern control techniques

to guarantee product quality and increase productivity has been rec

ognized, still virtually no automatic control is used on this process.

The operator controls the process manually by adjustment of the ram

speed. This adjustment of the ram speed to respond to variations in

the temperature of the extrudate is mostly based on the experience

of the operator. Model-based control of the process could improve

performance, therefore leading to an increase in productivity and not

least product quality. A precise and tractable model of the extrusion

process could not only build the framework of a model-based control

strategy but would give the operators more insight into the process,

this perhaps leading to improvement of safety and maintenance issues

as weIl. The development of such a model, as well as the design of op
timal control strategies to guarantee product quality, are the primaI·y

goals of this chapter.

To fully describe the extrusion process, the relationships between the

heat phenomena in the process and the flow of the metal have to be

accounted for. These phenomena are described by partial differential

equations, which in order to model the extrusion process are usually

solved by means of the Finite Element Method (FEM). This tech

nique has been applied to the prediction of flow patterns, strains, and

temperature distributions, in order to facilitate the design and opti

mization of the dies and of the tooling.

In a control framework, the interest lies in the relation of temperature

changes, specifically changes in the temperature of the extrudate, as

sociated to the variations of the speed of the ram (extrusion velocity).

Early approaches to this problem may be found in [2], [3], [4]. Within

this context state space models as well as reduced state space mod

els have been derived using the FEM method [5], [6], the goal being

the design of open-Ioop control strategies for metal-forrning processes

[7]. However, solving the equations that describe the metal-forming

process by means of the FEM requires lengthy numerical computa

tions. Because of this fact, a semi-analytical approach for solving
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the equations which describe the extrusion process is proposed in this

chapter. This approach consists of treating the metal as a highly vis

cous Newtonian fluid. Appropriate assumptions regarding its flow are

made, so that the velocities, pressure, strain, and strain rates distri

butions needed for the modeling of the process are solved analytically.

Only the temperature distributions are thus solved numerically, this

allowing for a considerable reduction in computation times.

This chapter is divided as folIows: in section 2.2 extrusion processes

are presented briefly. Although the focus of this investigation is the

direct extrusion process, the different types of extrusion processes are

reviewed for the sake of clarity and completeness. For a more thorough

and detailed description of extrusion processes the interested reader

is referred to the work of Laue et al. [8]. In section 2.3 a model of

the direct extrusion process is developed based on the heat conduc

tion equation for a moving body with heat generation terms. This

equation is solved numerically using finite differences. The velocity

distributions, which are required for the solution of this equation, are

provided by solving analytically a modified momentum equation. The

process is simulated in section 2.4. In sections 2.5 and 2.6 the model

is compared to PressForm, an established program for the simulation

of metal forming processes, and validated with data from an indus

trial aluminum extrusion press. In section 2.7 performance criteria

are formulated, taking into account practical performance measures

of product quality as weil as physical constraints of the system. Ex

trusion velocity trajectories are then designed to minimize these target

functions. The chapter closes with some concluding remarks in section

2.8.

2.2 Extrusion Processes

Extrusion is adeformation process used to produce long, straight,

semi-finished metal products such as bars, solid and hollow sections,

tubes, wires, and strips. The principle behind this process is simple:

under a high load, a billet is squeezed from a closed container through
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a die to give a reduction in size. Cross-sections of varying complexity

can be extruded, depending on the material and the dies used. The

conditions at which this process takes place vary depending on the

alloy and the extrusion method used. Thus, extrusion can be carried

out at high temperatures as weil as at room temperatures. Four main

characteristic differences exist among the various methods of extrusion

and the processes used:

• The movement of the extrusion relative to the ram - direct or

indirect processes.

• The position of the press axis - horizontal or vertical presses.

• Type of drive - hydraulic (water or oil) or mechanical presses.

• Method of load application - conventional or hydrostatic extru-
SlOn.

Different alloys present different characteristics while being extruded.

Thus, it is impossible to use the same method of extrusion for all

materials. The flow characteristics of the alloy under consideration

playa decisive role in choosing the method to be employed, so as to

obtain optimum quality and productivity. The most common methods

are:

• Direct or forward extrusion.

• Indirect or backward extrusion (using a hollow ram).

2.2.1 Direct Extrusion

The direct process is the most widely used method for extrusion. Fig

ure 2.1 illustrates the main bodies involved in the process, whose main

characteristics are described next. The load is transmitted to the billet

via a hydraulically or mechanically driven ram through an intermedi

ate dummy block.

After the billet is upset to fill the container, extrusion begins to pro

duce the extrudate. Heat is generated by the friction of the surface
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of the billet against the container, by the deformation of the billet,

as weil as by the shearing at the dead metal zone. Part of this heat

is transported towards thc die as the material f10ws through it (con

vective heat transfer). Another portion dis ipates due to conduction

through the tooling (container, and ram) CL weil as through the billet

and the extrudate. Direct extrusion can be performed with or with

out a lubricant, and in the latter case with or without a shell. Some

materials have a strong tendency to stick to the container wall so that

nonuniform f10w occurs. The central region of the billet first f10ws to

wards the die and the peripheral region is extruded only towards the

end of the process. The separation of the pure material, forming the

inside of the billet. from the outside layer, which usually has a rough

cast surface and is coated with oxide and impurities, can be improved

still further by leaving this layer in the container. This is known as

extrusion with a shell and is used mainly with heavy metal alloys to

suppress the formation of pipe in the rear of the extrusion. Aluminum

alloys are preferably extruded using a dummy block with a very close

fit in the container. Consequently, hardly any shell is sheared off.

The surface is not drawn into the billet because, in contrast to heavy

metals, aluminum sticks to the container wall ancl impurities on the

surface are held back. There is also a small temperature difference

between the billet and the container, and the difference in velocity

between the center of the billet and the periphery is much less than in

the case of heavy metals. As the dummy block advances, impurities

on the billet surface and the peripheral segregation are sheared off

Figure 2.1: Di7'ect Extrusion: 1 Container, 2 Ram, 3 Dummy Block,
4 Billet, 5 Die, 6 Die Holder, 7 Extrudate.
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and collected in the discard, which must be large enough to meet the

quality de ired. In ummary. the complete direct extrusion process

may be viewed as consisting mainly of the following steps:

• Loading the billet and dummy block into the press.

• Extruding the billet.

• Decompression of the press and opening the container to expose

the discar'd and the dummy block (stripping).

• Shearing the discard.

• Returning the shear, container and ram to the loading position.

2.2.2 Indirect Extrusion

In indirect extrusion the die at the front end of the hollow ram rnoves

relative to the container but there is no relative di placement between

the billet and the container. The main feature of this process is the

absence of friction between the billet and the surface of the container.

The load required for extru ion is therefore less than that of the direct

extrusion process. Figure 2.2 shows this process.

Figure 2.2: Indirect Extrusion: 1 Billet, 2 Container, 3 Die, 4 Ram.
5 Extrudate.

The advantages of indirect extrusion are partly related to the lower

load needed and partly to the more uniform flow pattern developed

because of the absence of relative motion between the billet ancl the

container. Some other advantages of this process are:

• 0 heat is produced by friction between the billet and the walls

of the container, and thus no temperature increase occurs at the
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billet surface towards the end of extrusion. The surfaces and

edges tend to crack less in this type of process and significantly

higher extrusion speeds can be used.

• The life of the tooling is longer , because of the almost total
absence of friction.

The disadvantage of indirect extrusion is that impurities or defects on

the billet surface affect the surface of the extrudate profile and are not

automatically retained as a shell or discard in the container as in the

direct extrusion process. In addition, the cross-sectional area of the

extrusion is limited by the size of the hollow ram. The individual steps

characteristic of the working cyde in the indirect extrusion process can

be summarized as:

• Loading of the die holder and die.

• Loading of the billet.

• Extrusion.

• Separation of the die holder with the die and the discard from
the extrudate.

2.2.3 Material Flow in Extrusion Processes

Extrusion is a discontinuous process. A billet is not loaded until the

one preceding it has been completely extruded. Temperature varia

tions in the billet, due to friction between the container and the billet

as weil as heat transfer between the ram and the billet arise while it

is being extruded. These temperature variations cause a nonsteady

state flow of material. Changes in the extrusion load throughout the

cyde, as weil as temperature differences that lead to variations in the

material properties over the cross-section and length of the extrudate

are the results of a nonuniform flow from the front of the billet to its

end. The flow characteristics of many metals during extrusion pro

cesses have been studied before. Dürrschnabel [9] presents a detailed

literature survey of studies carried out on the material flow in non

ferrous metal extrusion. The method of Visioplasticity [10], has been
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suggested for analyzing the flow patterns of any metal or nonmetal

material. This method consists of first defining a surface of symmetry

along the direction in which the material is going to flow. A grid of

orthogonal lines on that surface is then drawn. These lines deform to

streamlines while the material flows and lines perpendicular to them

are called potential lines. Prom the deformation of the grid one can

draw conclusions about the deformation state in the flow zone. De

spite the differences in material and extrusion conditions at which the

different investigations have been carried out, all the flow patterns are

alike. They present a dead zone at the corner between the container

and the die and there is almost no relative velocity at the point where

the ram touches the billet.

2.2.4 Thermal Dynamics In Extrusion Processes

The product quality of the extrudate is in the main determined by

the thermal processes taking place in the extrusion process. Tem

perature is one of the most important parameters in extrusion. As

the temperature within the metal increases, the flow stress is reduced

and deformation is easier. However, at the same time, the maximum

speed at which the metal may be extruded is reduced, since localized

temperature peaks can lead to the melting of the metal. This leads

to atom surface. Complex thermal processes commence once the hot

billet is loaded into the container and extrusion begins. The. mainly

consist of the following:

• Production of heat by deformation.

• Production of heat by friction between the billet and container.

• Convection of heat as the billet moves towards the die.

• Conduction of heat within the billet and the tooling.

• Heat transfer from the deformation zone to the billet, to the

container, and to the die.

• Heat transfer between the billet and container and ram, respec
tively.
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Decisive in extrusion is the temperature of the extrudate section,

which depends on all of the above mentioned phenomena. The tem

perature of the extrudate seetion increases if the heat produced by

deformation and friction exceeds the heat losses, and decreases if the

reverse is true. Heat conduction requires a certain time, depending

on the alloy and the extrusion conditions. Thus, heat production pre

dominates above a certain ram speed. This explains the dependence

of the temperature profile along the length of the extrudate on the

ram speed. If this temperature is to be controlled a thorough under

standing of the thermal processes occurring in extrusion is needed.

2.2.5 Isothermal Extrusion

The interest of extruding at a constant exit temperature arises from

the fact that, by doing so, a uniform product quality can be guaran

teed. The goal is to achieve the maximum extrusion speed that the

alloy can withstand without melting over the complete cycle, while

maintaining the temperature of the extrudate seetion at a particular

setpoint. In practice isothermal extrusion may be performed in one of

the following ways:

• Adjusting the extrusion speed while extruding, based on mea

surements of the exit temperature.

• Reduction of the extrusion speed according to apreset speed

program.

• Taper heating the billet. This method involves forcing an axial

temperature gradient along the length of the billet, the cooler

end being at the back of the billet. In this manner, the additional

heat produced by friction/shear at the container/billet interface

is compensated far [11].

From the theoretical point of view, taper heating is the best solution

from all the methods mentioned hitherto. Extrusion could then be

performed at the maximum possible speed throughout the extrusion
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length, enabling to exploit the full power of the press. Some diffi

culties, however, are intrinsic to this method. Achieving a controlled

temperature gradient in extruders with gas furnaces is a cumbersome

task. As for extruders with induction furnaces, producing the nece

sary complicated temperature profiles quickly and accurately is not

feasible. Taper heating is usually used in combination with one of the

other methods.

2.3 Dynamic Model of the Extrusion
Process

The complex phenomena that take place in extrusion include

nonsteady-state flow, nonuniform distribution of strains, strain rates,

and temperatures in the deforming meta\. The Finite Element Method

(FEM) is the method most widely used to model and sinlldate metal

forming processes. The theory underlying this method has been de

scribed by several authors [12], [13]. The FEM is used to predict flow

patterns, strain, and temperature distibutions, in order to facilitate

the design and optimization of the dies and the tooling. However,

the solution of the equations that describe the metal-forming process

by means of the FEM requires lengthy numerical computations. A

semi-analytical approach for solving the equations which describe the

extrusion process is proposed in this section. A oynamic model for

the direct extrusion process is developed based on the heat conduc

tion equation for a moving body with heat generation terms. This

equation is solved numerically using finite differences. The metal is

considered to be a highly viscous Newtonian fluid. Thus, the velocity,

pressure, strain, and strain rate distributions required for the solu

tion of the equations of motion and continuity are provided by solving

these equations analytically. This semi-analytical approach allows for

reasonable computation time as compared to the FEM.
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2.3.1 Modeling the Billet

Heat Balance

To model the billet it is assumed that the metal flows. If a fixed

coordinate system is chosen, the equation to be solved is the heat

conduction equation for a moving body. Heat source terms are added

to the equation to account for the heat which evolves due to friction

and to deformation of the metal. Axial symmetry is assumed and

cylindrical coordinates are chosen. The complete derivation of this

equation can be found in [14]. The equation is the following:

where:

aT aT q(x,r,t)
- vx - - v,· - + ,

ax ar PCp
(2.1)

thermal diffusivity,

T

k

p

Cp

r

x

q

v,.

temperature,
k

PCp
thermal conductivity,

density,

specific heat,

radial coordinate,

axial coordinate,

heat source term,

axial velocity component,

radial velocity component.

This equation is written more compactly as:

(2.2)
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which is strictly applicable for constant PCp. Here, p is a position

vector, g, stands for the substantial (or total) derivative defined by

D {) {) {)
D t == {) t + Vx {) x + VI' {) r

and the operator \72 is defined for cylindrical coordinates as folIows:

{)2 {)2 1 {)
+ +--{) x 2 {) r2 r {) r .

(2.3)

(Conduction through solid 2)

All the material properties like density, heat capacity, thermal con

ductivity, and therefore thermal diffusivity are considered to be in

dependent of the temperature and of the space. Since the thermal
conductivity is taken as being independent of the space coordinates,

the body is said to be isotropie. For the solution of equation (2.1), a

velocity distribution v(t, p) with an initial condition T(to, p) = To(p)
and a set of boundary conditions must be defined.

Temperature Boundary Conditions

Two materials having different thermal conductivities, k1 and kz, and

being in imperfect contact are considered here. These materials share

a common boundary as shown in Figure 2.3. The temperature pro

file through the solids experiences a sudden drop across the interface

between the two materials. This temperature drop can be explained

as folIows: the actual metal-to-metal contact takes place at a limited

number of spots and the void between them is filled with air, which is

the surrounding fluid. Since the thermal conductivity of air is much

smaller than that of the metal, a steep temperature drop occurs across

the gap. The boundary condition for such an interface can be devel

oped by formulating a heat balance:

(Conduction through solid 1)

(Heat transfer across gap)
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interlace

TI, ='. -----=(

Solid 2
k~

T,

Solid 1
k,

Figure 2.3: Interface Boundary Condition.

-k? 8T21.
- 8 x i

(2.4)

The subscript i denotes the interface and hc in (m~l~c) is the contact

conductance. The surface of the billet is in contact with the surface of

the container so that for this surface the boundary conditions can be

postulated as described above. Such a boundary condition is generally
called an interface boundary condition [14]. The frontal surfaces of the

cylinder may be treated similarly. One of these surfaces is in contact

with the ram, the other with the die. This is taken into account

by using the appropriate contact conductances corresponding to the

different materials. Since rotational symmetry to the central axis of

the billet is assumed, another boundary condition must be introduced
for the points lying on the axis of symmetry. For these points the

following boundary condition is formulated:

8TI = 0
8 r 1'=0 .
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The following is an overview of all temperature boundary conditions:

hc
- k (nillef - T,lie)

hc
- k (Tbillel - TCOllfailler)

hc
- k (Tbillef - T"wlI)

o (symmetry),

(2.6)

(2.7)

(2.8)

(2.9)

where:

R radius of the billet,

L length of the billet,

hc contact conductance,

k thermal conductivity.

Momentum and Mass Balance

For the solution of equation (2.1) the velocity distribution is still re

quired. This is done by taking into account the equations of continuity

and motion. The general equation of continuity for cylindrical coor

dinates is the following [15]:

op 1 0 (prvr ) ! 0 (pvq,) 0 (pv.r ) _ 0
ot + ~ or + r o</J + ox - .

It may be written more conveniently in vector notation:

opfit = - (V . pv). (2.10)

This equation may be derived by writing a mass balance over a sta

tionary differential volume element dV. The equation expresses how

the density of a fluid varies with time at a fixed point when the mass
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velocity vector pv changes. In the last equation, (V' . pv) is the di
vergence of pv. Its significance is the net rate of mass efHux per unit

volume. The equation of motion can be similarly derived by writing a

momentum balance over a stationary differential volume element dV.

Expressed in cylindrical coordinates it takes the general form [15]:

r-component

op
or

x-component

(
OV" o v,. V(!) ovr· v;' Ovr.)

p - + v,. - + - - - - + v,· - =
ot or r 0<jJ r OX

(
10 (rT,.,.) 10Tn1> Taxi> oTX,.) (211)- + - -- - - + -- + pg,., .
r or r 0<jJ r OX

(
OVx OVr vd> OVx OVx) _

Pot + V,. 0 r + r 0<jJ + vr 0 X -

4>-component

op (1 0 (rT,.x) 10T,·x OTXX) (212)- - - - + - -- + -- + pgx, .
OX r or r 0<jJ OX .

(
OVd> OV(!) vr/> oVr/> V,.VdJ OVdJ)

P -+v,.-+--+--+vx - =
ot or r 0<jJ r OX

1 op
----

r 0<jJ

Written in vector notation, this is:

o
ot pv = -[V'. pvv] - V'p - [V'. T] + pg. (2.14)

The terms [V' . pvv] and [V' . T] are not simple divergences due to

the tensorial nature of pvv and T. The quantity [V' . pvv] represents

the rate of momentum loss (a vector) by fluid flow, - V'p the net

pressure force, [V' . T] the rate of momentum gain by viscous force,

and pg the gravitational force per unit volume. For the solution of

the equations of continuity (2.10) and motion (2.14), a number of
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assumptions are made which are stated next. The metal is treated

as a highly viscous, noncompressible Newtonian fluid with density

p, and viscosity J.L assumed to be independent of time, position, and

temperature. With these assumptions the equation of motion can be

expressed in terms of velocity gradients as folIows:

(
OVr o V,. Ve oVr v~ Ovr)

r-component p - + v,.- + - - - - +v",- =
ot or r 0<jJ r . OX

x-component (
0 V'" o V'" Va> OV" OV"')

P ot + Vr or + r 0<jJ + v'" OX

(2.16)

(
OVa> oVo Va> oVa> VrVo Ova)

<jJ-component p - + V r - + -- + -- +Vx - =
ot or r 0<jJ r OX

Additionally, gravitational forces are neglected and rotational symme

try is assumed. The latter implies that aa<]) = 0 and V<]) = O. Thus,

terms related to V<J), and to variations with respect to <jJ in the equation

of motion vanish. With this, the equation of motion is further reduced

to:

(
OV,. o V,. OVr)

r-component p ot + V,. or + VX OX =

op [0 (1 0 ) 02V7.]-- + J.L - - -(rv,.) +-
or or r or ox2
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x-component (
8VT 8vr 8vx ) _p -- + V,. - + V J ' - -

8t 8r 8x

8 p [1 8 ( 8 V.r) 8
2

vx]-- + /1 -- r- +--
8 x r 8 r 8 r 8 x 2 .

(2.19)

Considering the high loads, which translate into high pressures within

the billet, as weil as the high temperatures at which the extrusion is

carried out, it may be assumed that the pressure forces are in equilib

rium with the viscous forces and that the mass forces may be neglected.

Therefore, the terms on the left hand side of the last two equations

are assumed to be negligible when compared to the third term on the

right hand side related to the viscosity. Taking into account all the

assumptions previously mentioned, the continuity equation and the

equation of motion take the following form:

continuity 0
18 (rv,) 8 (vx )- +--
r 8r 8x

(2.20)

motion: r-component

motion: x-component

8p = /1 [~ (~8 (rv,.)) + 8
2

V'](2.21)
8r 8r r 8r 8x2

8p [1 8 (8vx ) 8
2

vx ]
8x = /1 ~ 8r r 8r + 8x2 (2.22)

Finally, elastic deformations within the billet and the deformation of

the metal within the die are also neglected. Plug flow is assumed for

the metal at the entrance of the die, and the flow of the metal within

it is assumed to obey the Hagen-Poiseuille law. The geometry of the

profile is assumed to be a ring with equivalent area and perimeter

to the particular profile in question (see Appendix A for a detailed

explanation and derivation). All of the aforementioned assumptions

are restated and summarized in Table 2.1 to give a clear overview of
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them I before continuing with the detailed discussion of the solution of

the equations.

Assumptions for solving equations of motion and continuity:

• Rotational symmetry is assumed (this means: lo = 0; vo= 0,
4J is the polar angle in cylindrical coordinates).

• Metal is considered to be a Newtonian fluid.

• Mass forces are negligible:

P (~ + v·~ + v· ~) « 11 [!..fl... (rfl.s...r.) + 4]ot ' 0,. x ox ... 7" 0,. 0" ox-
p(~ + v,.~ + v1· ~) « JL [i,: Ul,: (rv,)) + ~] .

• Negligible gravitational forces.

• Elastic deformations within the billet are neglected.

• Plug flow at the entrance of the die is assumed.

• Deformation within the die is neglected.

• Hagen-Poiseuille law is valid for flow within the die.

• p, JL ;:::; constant.

• Reduction of profile geometry to a ring with equivalent area and
perimeter.

Table 2.1: Assumptions for solving equations of motion and continuity.

Velocity Boundary Conditions

The following boundary conditions are imposed on the system:

V x Ix=o V,.am ; \I r

Vxl"=R V.7;(X, R) ; \I X

Vxlx=L v(L,r)

v,. 1"=0 0 ; \I x (rotational symmetry)

v,.lx=o 0; \Ir

O;\lx

0; \I r.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

I These assumptions, with the exception of Newtonian fluid. are supporLed through experimental
results [9], [161.
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For steady flows with two nonvanishing velocity components and with

constant p and p" the solution of the differential equations (2.20) 

(2.22) may be simplified by introducing the stream function IJI. Lines

of IJI = constant are called streamlines. In a steady-state flow, these

are the curves actually traced out by the particles of the fluid. The

velocity components are now expressed as derivatives of IJI so that

the equation of continuity is automatically satisfied. The two nonva

nishing components of the equation of motion are then combined to

eliminate the terms containing the components of p. The procedure

is shown below:

V r
181J1

--- Vxr 8x '
181J1
~fh'

(2.30)

From equations (2.21) and (2.22) the following relationships may be

derived:

8(8 P)
8x 8r

8(8 p )
8r 8x

82 p

8x8r

p,~ [~ (~8 (rVr)) + 82vr]
8x 8r r 8r 8x2

8 [1 8 (8Vl') 8
2 v:r]p,- -- r- +--

8r r 8r 8r 8x2

82 p
8r8x'

(2.31 )

(2.32)

(2.33)

In the last equations, the terms for the derivatives of the velocities with

respect to the radial and axial coordinates may be substituted for their

corresponding terms as functions of IJI, which are derived from (2.30),

thus yielding the following fourth order partial differential equation:
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The velocity boundary conditions (2.23) - (2.29) are still valid. How

ever, another boundary condition is introduced to account for the

symmetry to the central axis. Expressed in terms of \IJ this yields:

\IJ(r = 0, x) = constant, \/ x. (2.35)

Equation (2.34) may be solved by the method of separation of vari

ables. The solution is presented here; the complete derivation may be

found in Appendix B. First the stream function \IJ is expressed as a

product of two functions. One of these functions is dependent on the

radial coordinate only, the other only on the axial coordinate:

\IJ(r, :1:) Y(r) ~(x). (2.36)

Taking into account equations (2.30) and (2.36), the velocity boundary

conditions may be expressed also in terms of the two functions Y(r)
and ~(x):

VrLr=O = ~ Y/(r) ~(.r)1 = V r(I/II

r :1"=0

VJ·lr=R = ~ Y/(r) ~(x)lr=R

v.1·lx=L = ~ Y/(r) ~(x)lr=L

vrl,=o = ~ Y(r) ~/(x) = 0; \/ x
r

vrIJ·=o = ~ Y(r) ~/(x) = 0; \/r
r

V,lr=R = ~Y(r)~/(x) = 0; \/x
r

v,·IJ·=L = ~ Y(r) ~/(x) = 0; \/r
r

1 -( )1 0 (2.37)~ - - x
r x=O

v,(x, R) (2.38)

v,.(L, r) (2.39)

~ ~ Y(r)I,=o = 0 (2.40)

~ ~ ~/(x)t = 0 (2.41 )
r J·=O

~ ~ Y(r)lr=R = 0 (2.42)

~ ~ ~/(x)1 = 0.(2.43)
r x=L
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From equation (2.40) it can be concluded that the stream function

lIJ(r, x) vanishes at the axis of symmetry. Equation (2.35) is there

fore fulfilled. The introduction of some identities leads to the Bessel
differential equation of zero order [17]:

"
1, ?)f (r) + - f (r) + w- f (r
r

o. (2.44)

Solutions of equation (2.44) are called the Bessel functions. In this

case, since the Bessel differential equation is of zero order, its solu

tions are called Bessel functions of zero order. The solution of equa

tion (2.34) by the method of separation of variables is bound to the

eigenvalues of Y satisfying certain conditions (see Appendix B). All

of the boundary conditions may eventually not be satisfied simultane

ously. In the approach taken here, the following boundary condition

was dropped:

Vxlr=R = ~ Y'(r) ~(x)1 = vx(x, R) - Vram ·
r "=R

This implies that the axial velocity component at the outer surface

of the cylinder will result from the solution and may not be prede

termined. A detailed derivation of equation (2.44), including a more

extensive explanation of the aforementioned characteristics of the so

lutions and its implications for the problem, can be found in Appendix

B.

Velocity Distribution at the Entrance of the Die

As mentioned before, plug f10w is assumed for the metal f10wing at

the entrance of the die. Additionally, it is assumed that the metal

f10wing into the die obeys the Hagen-Poiseuille law. Such an assump

tion implies that the f10w is laminar, incompressible, steady-state, and

Newtonian. Furthermore it is assumed that the metal behaves as a
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continuum, that there is no slip at the wall, and that end effects may

be neglected. The latter conditions can be expressed mathematically

in the following manner:

OVx

ox
op
or

p

v,.

0,

0,

constant,

0,

VXII'=l'di. 0

Re < 2100 (Re = Reynolds Number).

Under these last assumptions, the axial velocity is described as follows

[18]:

r2

A 4" + B ln(r) + C. (2.45)

Let d be the diameter of the die's channel. The metal is treated as a

Newtonian fluid. Thus the following is valid:

d
'1

Jv.,,(r)rdr

°
1 2
"2 V ram R . (2.46)

Here, Ao, Adie , V'"Q1f/' VexiI, and R stand for the cross-sectional area of
the billet, cross-sectional area of the die's channel, velocity of the ram,

velocity at the entrance of the die, and radius of the billet, respectively"

From equations (2.45) and (2.46) the following expression far the axial

velocity distribution within the die can be derived:

(2.47)
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where (! and (!l are normed variables defined as folIows:

r d
(! = R' (!l = 2R .

If the extruded profile in consideration is hollow (ring with inner di

ameter d1 and outer diameter d2 ), the following boundary conditions
are valid:

V.1: ( (!l (2.48)

In this case the condition of continuity is:

and the following axial velocity distribution results:

vx((!) = C (Al + B ln((!) + 1)

where:

(2.49)

(2.50)

A

B

In((!2) - In((!Jl

ln((!l)(!~ - In((!2)(!T'

(!I - (!~

C
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Modeling the Heat Sources

Plastic deformations take piace while the billet is being extruded.

The heat generated within the billet in the course of the extrusion

derives mainly from the transformation of the mechanical energy con

sumed during deformation. When the energy stored in the elastically

deformed material prior to start fiowing (yielding) reaches a critical

value, plastic fiow starts. This is called the von Mises yield criterion

[19]. The mean principal stress for the cylindrical coordinates under

consideration is:

(2.51)

where CI.Il CI, and CItiJ denote the principal normal stresses for the prin

cipal axes. Expressed as a function of the principal stresses, the von

Mises rule takes the following form:

(2.52)

The term kj is called the fiow stress. Plastic fiow starts when this

critir.al valup is rpached. Combining equations (2.51) and (2.52) thl;

following expression results:

{
3 2 2 2 }4
2[(CI~. - CIm ) + (CI, - CIm ) + (CIo - CIm )] . (2.53)

Consider a volume element dV. Assuming that elastic deformation can

be neglected because of the high hydrostatic pressure, the deformation

energy dWexpended during a time element dt is [20]:

dW
P = - = kjEdV

dt
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where f denotes the strain rate. The strain rate is a function of the

velocity distribution, which in turn is a function of the axial and ra

dial coordinates. The strain rate may be calculated by the following
equation [20]:

2 [(Ovx )2 (OVr )2 (Vr )2 1 (OV.,. OV,.)2] ( )- - + - + - + - - + - . 2.55
3 OX or r 2 or OX

If the friction between the billet and the container is neglected, equa
tions (2.54) and (2.55) may be used to calculate the heat sources

within the billet during extrusion. In this case, the heat source term
in equation (2.1) is given by:

q(x,r,t) = kJf. (2.56)

The flow stress kJ, which is a function of the temperature and of

the strain rate f, may be determined experimentally. The following

empirical relationship for kJ is found in the literature [21]' [22]:

(2.57)

The coefficients A, e, <1>, and n depend on the alloy under consider

ation. Values für various alloys can be found in [21]. For uniaxial
deformation, the strain f may be defined as [23]:

dx
df =

x
(2.58)

To calculate the strain for the extrusion process, this equation must
be integrated from the initiallength of the billet Lo to the finallength

of the extrudate profile LI. Thus:

Lid LI
f = J~ = In L

o
'

La X
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If the deformation is assumed to take place under constant volume the

following is true:

AoLo (2.60)

Here Ao and Al stand for the cross-sectional areas of the billet and

extrudate profile, respectively. From the last equation it follows that

the strain may be approximated by:

In LI
Lo

The ratio ~ is known as the extrusion ratio.

'P. (2.61)

If friction forces are considerable, another term must be added to

equation (2.54) to account for this heat source. The heat generated

per unit of time due to friction between the outer surface of the billet

and the inner surface of the container is:

qfT' = lifT' p(R, x) vAR, x) .

Here, lifT' stands für t.he coefficient of friction.

Modeling the Pressure Forces

(2.62)

The pressure distribution may be determined by means of equations

(2.21) or (2.22). The introduction of the stream function into equation

(2.21) leads to the following expression:

8p(r, x) = f.l [~ (_ ~ (
2 111) _ ~ 83 111]

8 r 8 r r 8r 8x r 8 x 3 .
(2.63)

This equation may be solved by using the method of separation of

variables analogously to the way equation (2.34) was solved. In this
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seetion the solution is just stated; a detailed solution may be found in

Appendix C. Upon introduction of the separation functions Y and :=:
into equation (2.63), the following expression results:

ap(r, x) = J.L [_ ~ (~YI :=:1) _ ~ Y:=:/II]
ar ar r r

(2.64)

Further substitutions and transformations as indicated in Appendix

C lead to the following equation:

p(r, x) = J.L ~ fi(r) [ - :=:;(x) + :=:~:~x)] + c. (2.65)

The integration constant may be determined by assuming zero pres

sure at the exit of the die. The assumptions mentioned before for the

velocity and pressure distributions within the die (Hagen-Pouseuille

flow) imply that:

constant. (2.66)

This equation leads to the following expression for the pressure drop

in the die:

6p(x)
CA

4J.L6x R2 (2.67)

where 6x is the width of the die, while C and Aare the constants

defined in equation (2.50). The integration constant in equation (2.65)

is readily derived from the following relationship:

J.L ~ /;(0) [- :=:;(L) + :=:~:~L)] - 4J.L6x ~~ + c = O. (2.68)
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Extrusion Force

The extrusion force rnay be considered to be equal to the surn of the die

and friction forces. Each of these force cornponents rnay be calculated

frorn the pressure distribution described above.

Die Force

The pressure distribution at the die is given by equation (2.65) eval

uated at x = L:

[
';;,I/(L)]

p(r, L) = /1 L fi(r) - =:;(L) +~
, w,.

+ c. (2.69)

The force at the die rnay be calculated by integrating the following
equation:

R 2r.

Fdie = JJp(r,L)rdrd<jJ.
o 0

Inserting equation (2.69) into the last equation yields:

(2.70)

(2.71)R [ ';;/I/(L)]
Fdie = 21r/1 Jr fi(r) - =::(L) +~ dr + 1rcR2

.
o W,

With the help of equation (B.38) (see appendix B), this last equation

transforrns into:

(2.72)

Recapturing equations (2.40) and (2.42):

v,·j,.=o ~ Y(r) =:'(x) = 0; V x ===} ~ Y(r)lr=o = 0
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V,·lr=R

finally yields:

where:

Frietion Force

~ Y(r) =:'(X) = 0; Vx ===} ~ Y(r)1 = 0
r r "=R

C = 2 f..17r A C 6x Vmm .

(2.73)

(2.74)

The friction force is given by:

Fjrictioll
2". L L

JJVj,. Rp(R, x) dxd</J = 27r Vjr R Jp(R, x) dx. (2.75)
o 0 0

In the last equation Vj,. stands for the coefficient of friction. This

integration gives:

[ [
~ ~ (=:"(L) - =:"(0))]]Fjridioll = 27rvj,.R LC+J.LLf;(R) (.::.;(O)-('::'i(L))+ w2 .

, 1.

(2.76)

2.3.2 Modeling the Container, Die, and Ram

The container can be modelIed as a hollow cylinder, exchanging heat

with diverse mediums. This implies different boundary conditions for

the inner and outer surfaces. At the outer surface the container ex

changes heat with the environment (T ~ 30°C), and at the inner sur

face it exchanges heat with the billet. Radiation of the outer surface of

the container into the environment is neglected. The heat conduction
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equation is set up for a hollow cylinder, assuming rotational symmetry

to the central axis:

ßT
ßt

(2.77)

taking into account the following boundary conditions:

h
- k (T - Too )

he
- k (T - ni/let)

h
- k (T - Too )

h
- k (T - Too )

(2.78)

(2.79)

(2.80)

(2.81)

where T oo , Tbillet, he , h, R, and R 1 stand for temperature of the sur

roundings, temperature of the container/billet surface, contact con

ductance aluminum/steel, heat transfer coefficient steel/air, inner and

outer radius of the container, respectively. Similarly, the die is mod

ellecl as a hollow cylinder, exchanging heat with the environment

through the outer surface and with the extrudate section through the

inner surface. The ram is modelIed as a full cylineler similar to the

billet. The equation to be solveel is the same as for the container, with

substitutions for the appropriate bounelary conelitions.

2.4 Simulating the Extrusion Process

Having set up the moelel for the billet anel the elifferent tooling pieces:

the next step is to simulate the whole process. To simulate the billet,

equations (2.1), (2.20), (2.21), anel (2.22) have to be solveel simulta

neously to account for their respective bounelary conditions. Solving
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them numerically would require massive computation times and would

be of no advantage over using the FEM. Therefore, the following ap

proach was pursued: the velocity distributions and heat sources terms

were calculated in an analytical way. At each time step, the main

program invokes the velocities and heat sources needed to calculate

the temperature distributions. The temperature distribution for that

time interval is then calculated numerically using a finite differences

method. The procedure is repeated for each time interval. Figure

2.5 shows a scheme of the calculation sequence for each time step. A

Forward-Time-Central-Space (FTCS) finite difference approximation

of the derivatives with respect to the time and spatial coordinates was

used:

8I' T"+l - 1'''l.) 1.) (2.82)
8t 6.t
8I' I'i,"J+l - I'[j_l

(2.83)
81' 26.1'
8I' 1'{'+I,j - I'{':.-l,j

(2.84)
8x 26.x

82I' 7';7j+l - 2I'i,j + I';7j-l
(2.85)81'2 6.1'2

82I' Tt'tl,j - 21'11. + 7';"--I,jI,,] (2.86)
8x2 6.x2

The grid for the discretization of the billet is portrayed in Figure

2.4. At each time step the grid is readjusted, taking into account the

changing geometry (decrease in length) of the billet. To simulate the

remaining bodies (container, die) an identical finite-difference scheme

was selected. In this case, however, neither heat sources nor velocity

terms have to be taken into account as the equation to be solved is

the homogeneous heat conduction equation (2.77). Table 2.2 presents

some data relevant for the simulations. A simulation of an extrusion

cyde was conducted and the evolution of the temperature distribution

of the billet during the extrusion cyde is shown in Figures 2.6-2.11.

Figures 2.12 and 2.13 show the temperature of the extrudate section
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Figure 2.4: Finite-diffeTence networ-k.

and extrusion force, respectively. The plots corresponding to the tern

perature distributions for the remaining bodies (i.e. container, die

holder, and die) may be found in Appendix E.

For this simulation a constant extrusion velocity of 6 mm/s was

chosen. The initial temperature distribution of the billet was taken as

a eonstant gradient with 6.T = 70°C. 6.T stands for the differenre

between the initial temperatures at the front and rear ends of the

billet whieh were eh sen io be T Jmnt = 51·5°(' and T,e01 = 44 'C.

The front part of the billet is where the higher temperatures may be

found 2 (in Figures 2.6 - 2.11 zero length indicates the front of the

billet). It is in this part of the body that deformation takes place.

The energy used to deform the billet is transformed into heat, which

is refteeted in the higher temperatures found at the front of the body.

As shown in the figures, temperature variations at the back of the

billet are relatively small. The metal just ftows into the deformation

zone, however, no major thermal phenomena take plaee in that part

of the body. As the extrusion proeeeds, the temperature at the front of

2pO' the front part of the billet. a finer me h was used for the discretization and a smoothing
algorithm was developed to avoid numerical problems in this region (see Appendix 0).
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Figure 2.5: Calculation sequence JOT each time step.

the billet decreases. This is due to the fact that the remaining

material cools down as it flows and eventually cools the front of the
cylinder by convection. The friction force is linearly dependent on the

length of the billet (see equation (2.76)). Thus, the extrusion force

decreases as the billet length decreases. However, towards the end of

the extrusion cycle an increase in the extrusion load is noticed (Figure

2.13). This occurs when the billet has been extruded to a smalliength

and there is a high resistance to radial flow towards the center of the
billet. An increase in the heat generation rate due to deformation

is a consequence thereof. This increase in the heat of deformation

cannot be dissipated quickly enough and the temperature at the front

of the billet increases slightly again. This is more clearly noticed in the
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Physical and Material Constants

Billet

Billet's initial length (m) 1.2
Billet's diameter (m) 0.3
Extrusion ratio (-) 27.5
Density aluminum3 (kgm- 3 ) 2700
Specific heat aluminum (Jkg-1K- 1) 920
Thermal conductivity aluminum (Wm-1K- 1) 165
Heat conductance Al/steel~ (Wm- 2K- 1) 4000

Container

Container's length (m) 1.4
Container's outer diameter (m) 1.120
Density of steel5 (kgm- 3 ) 7900
Specific heat steel (Jkg-1/{-I) 477
Thermal conductivity steel (Wm-1K- 1) 14.5
Heat conductance Al/steel (Wm-2K- 1) 4000
Heat transfer coefficient steel/air6 (Wm- 2K- 1) 7

Rarn
Flam's diameter (m) 0.224
Ram's length (m) 1.0

Table 2.2: Physical Constants, Tooling and Billet Data.

temperature of the extrudate (Figure 2.12). The front part of the

container which is in dirpct contact with the part of thp billet that

is being deformed (see Appendix E) also heats up. The temperature

of the rest of the container remains more or less constant throughout

the whole extrusion cycle. A slight decrease in temperature can be

observed for the container near the outer surface. This surface is

exchanging heat with the environment. The temperatures of the die

and mandrei increase rapidly as the extrusion cycle proceeds. These

bodies are in direct contact with the front part of the billet where

most of the heat is being produced.

3Density. specific heat, and thermal conductivity of aluminum from reference [2~1.

"From reference Il~l.

"Density, specific heat. and thermal conductivity of steel from reference 12~1.

GAs calculated b)· Dilger [25). .
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Figure 2.6: Temperature distribution in the billet at t = 25 s.

Temperature Distribution of the Billel at I = 50 s
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Figure 2.7: Temperature distribution in the billet at t = 50 s.
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Temperalure Dislribution ot the Bilk!l al I = 75 s
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Figure 2.8: Temperature distribution in the billet at t = 75 s.

Temperature Distribution 01 the Billet at I = 100 s
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Figure 2.9: Temperature distribution in the billet at t = 100 s.
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Temperalure Distribution 01 Ihe Billet at t = 125 s
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Figure 2.10: Temperature distribution zn the billet at t = 125 s.

Temperature Distribution of the Billel a1 t = 150 s
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Figure 2.11: Temperature distribution in the billet at t = 150 s.
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Exit Temperature 01 the Extrudate Sectlon
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Figure 2.12: Exit Temperature of the Extrudate.
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Figure 2.13: Extrusion force.
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2.5 Qualitative Comparison of the Model
with the Program PressForm

PressForm is a simulation package developed at the Institute of Form

ing Technology of the Swiss Federal Institute of Technology Zurich.

The program is designed to simulate metal forming processes such as

extrusion, rolling, and drawing. It is based on the Finite Element

Method (FEM) and it is capable of simulating the forming processes

in three or two dimensions for design purposes. Prior to validating

the model presented in the previous seetions with measurements from

the plant a qualitative comparison with the program PressForm was

performed. PressForm was to serve as a benchmark by means of which

the capability of the detailed model presented in previous seetions to

reflect the physical phenomena taking place within the billet could be

measured and judged. However, the results must only be compared

qualitativelyas there are some underlying differences between the two

models. It must also be kept in mind that the model presented in this

thesis is intended for control purposes, and as such it is expected to

ultimately be quantitatively in agreement with the measurements of

the plant. The differences between the two models are pointed out

next. PressForm assurnes a constant and homogeneous temperature

of the tooling throughout the complete extrusion cycle. As mentioned

in previous seetions the model derived in this thesis is not restricted

to this. The temperature of the tooling is taken as a function of time

as weil as of the radial and axial coordinates. An important difference

lies also in the assumed behavior of the flow stress as a function of

time, temperature, strain, and strain rate. PressForm assurnes the

following behavior:

Q ]mkf = C [iexp (RT) (2.87)

Here C and mare experimentally determined constants. R stands for

the universal gas constant, T for temperature, Q for internal energy,
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and i: for strain rate. The model presented in this thesis assumes the

following relationship:

(2.88)

In the last equation A, 6, ll>, and n are experimentally determined

constants dependent on the alloy being considered. f stands for the

strain. The difference between these two approaches will be reflected in

the temperature distributions within the billet, as the heat generation

rate due to deformation is directly proportional to it (see equation

(2.54)). For the comparison to be meaningful the flow stress kJ used

in PressForm must be fitted to the flow stress given by equation (2.88)

and the alloy in question. The strain in equation (2.88) is set equal to

the logarithm of the extrusion ratio cp = In ~ where Ao and AI stand

for the cross-sectional area of the billet and cross-sectional area of the

extrudate profile, respectively. For the comparison with PressForm, a

particular geometry was chosen which is depicted in Figure 2.14.

01

1.201

r Container 0.2201

501
Profile 1

I I Die l + OJ

L.._~J~ ._._._._._._.ß~::._._._._._9Jl.3=.~~._.fo~::~j
I. 1.1201

0.6

Figure 2.14: Geometry for comparison with PressForm.

The fit of the flow stress was conducted for the temperature range of
400 - 700 oe and the strain rate range of 0 - 20 S-I. Figure 2.15 shows

the flow stress kJ as a function of temperature and strain rate as given

by the original parameters for the alloy in question and by equation

(2.88), as well as the fitted flow stress as given by equation (2.87). For

the comparison with PressForm, a homogeneous initial temperature

of the billet of nil/et = 515 oe was chosen. The simulations were

performed for a constant extrusion velocity of 6 mm/sand an initial
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Fit 01 the Flow Stress
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Temperalure fC]

700

Figure 2.15: Fit of fiow stress as afunction of strain rate and temper
ature.

temperature of the tooling of 7/001 i "9 = 433°C. Table 2.3 summarizes
the data for the comparison of the two models.

Simulation Conditions for Comparison with PressForm

Initial Conditions

Initial temperature of billet
Initial temperature of tooling
Extrusion velocity
Extrusion ratio

(OC)
(OC)

(mms- I )

(-)

515
433

6
3

Table 2.3: Simulation Conditions for Comparison with PressForm.

Since the most interesting and relevant physical phenomena of the
extrusion process take pIace in the foremost part of the billet where

deformation takes place and the metal flows into the die, this is the

pertinent zone to be compared between the two models. Temperature

and velocity distributions within the billet, as weIl as extrusion forces
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for the two models are shown in Figures 2.16 - 2.27. The qualitative

agreement between the two models is clear. As mentioned before, the

disagreement between the two is more marked in the temperature

distributions than in the flow patterns of the meta!. This derives

mostly from the different behaviors assumed for the flow stress as a

function of temperature and strain rate and its relationship to the

heat generated due to deformation. The lower temperatures at the

rear end in Figure 2.17 are explained as folIows: for computational

purposes in the simulations with PressForm the length of the billet is

assumed to be approximately equal to the deformation zone. Thus

the rear part of the billet as shown in Figure 2.17 is exchanging heat

with the ram, causing the temperature to drop at the rear end of the

billet. The assumption of a shorter billet for the simulations with

PressForm naturally influences the extrusion force calculated. In
particular the friction forces are bound to be different. The marked

difference in the extrusion forces could derive therefrom. Nonetheless,

the overall qualitative behavior of the forces calculated by the two

models coincides. Although the qualitative agreement for the velocity

distributions is clearly reflected in Figures 2.18 - 2.21, comparison

of the flow patterns in Figures 2.22 - 2.23 may at first lead to some

misinterpretations. In particular the differenee in axial veloeities in

the front part of the billet seem to be rather marked. Lets exam

ine thus these figures in more detail to clarify the validity of the results.

Both models make the assumption of the metal being an incompress

ible fluid. Thus a volumetrie flow balance for the metal yields the

following in both eases:

(2.89)

where:

Vmm Ram velocity,

Vexit Velocity at entranee of die,

Ao Cross-seetional area of billet,

Adie Area of opening of die.
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These calculations were performed by taking the velocity at the en

trance of the die calculated by each of the models. The results are

presented in Table 2.4.

Calculation of Volumetrie Flow

PressForm

A o (m2
) 8.3. 10-2

A die (m2
) 3. 10-3

V ram (ms- 1) 6.10-3

Ve:"it (ms- 1) 0.14
V,.arnAO (m3s- 1) 5 . 1O-~

VexitAdie (m3s- 1) 4.3.10-4

Model

A o (m2 ) 8.3.10-2

A'he (m2 ) 3. 10-3

V ram (ms- I ) 6. 10-3

Vexit (ms- 1) 0.2
vmmAo (m3s-') 5. 10-4

VexitAdie (m3s- 1) 6.10- 4

Table 2.4: Volumetrie fiow balance.

The condition of constant volumetrie flow is satisfied for both models.

The disagreement between the model presented in this thesis and the

theoretically calculated value may originate from the rough size of the

mesh used, and numerical inaccuracies derived therefrom. Overall,

however, qualitative agreement of the model presented in this thesis

with PressForm is satisfactory.

At this point the question may arise as to why not use PressForm

directly to design model-based control strategies for the isothermal

extrusion of aluminum. The answer to this question lies in the

computation times demanded by PressForm. Simulating five seconds

of an extrusion cycle with PressForm requires approximately three
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and a half hours of CPU time on a SILICONGRAPHICS INDY, whereas

the simulation of a complete extrusion cycle of 150 seconds requires

approximately 4 minutes of CPU time on a COMPAQ Deskpro XL5133

(pentium 133 MHZ).

A final remark with respect to this last question is appropriate at

this point. Once again the point is stressed that the model developed

in this thesis is for control purposes. Although the model should

reflect the physical phenomena taking place within the billet, this

should be done while maintaining low computation times. The whole

development of the model by means of the semi-analytical approach

was conducted with this goal in mind. If design purposes are of

importance or if the accurate study of thermo-mechanical properties

within the billet is intended, very fine discretization meshes are
of interest and the model presented in this thesis is by no means

a substitute of weil established simulation packages such as PressFo rm.

Nevertheless, it was feit that a comparison of the model proposed in

this thesis with PressForm, a weil known and accepted program within

the forming technology community, was indeed necessary to confirm

the plausibility of the semi-analytical approach proposed in previous

sections to accurately solve the equations that describe the extrusion

process.
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Temperalur8 OlslnbutlOn 01 the BIllet all = 5 s
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Figure 2.16: Temperature distribution in the billet at t = 5 s.
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Figure 2.17: Temperature distribution zn the billet at t
FOTm.
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Nlial VelOClty DISlnbullon ollhe Blllel all =5 s
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Figure 2.18: Axial velocity distribution within the billet at t = 5
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Figure 2.19: Axial velocity distribution within the billet at t 5 s:
PressForm.
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Radial Veloclty Dlstnbullon ollhe Billei al I := 5 s
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Figure 2.20: Radial velocity distribution within the billet at t 5 s.
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Figure 2.21: Radial velocity distribution within the billet at t 5 s:
PressForm.
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Streamlines wrthin the BilIeI al I = 5 s
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Figure 2.22: Streamlines within the billet at t 5 s.
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Figure 2.23: Streamlines within the billet at t
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Extrusion Force

Figure 2.24: Extrusion force .
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Figure 2.25: Extrusion force: PressForm.
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Figure 2.27: Die f01'ce: PressForm.
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2.6 Model Validation

To validate the model presented in the previous sections, various ex

periments were conducted on an industrial aluminum extrusion press.

A number of velocity trajectories were run whereby the temperature

of the extrudate seetion was recorded. Prior to loading the billet into

the container, the temperature of the billet was measured at three

points along the surface of the billet. From these recorded values a

linear temperature profile along the axis of the billet was inferred. The

initial temperature of the container was measured at one point and

assumed to be constant throughout. The measurements shown cor

respond to the same alloy being extruded, as weil as to the same

die geometry. However, the initial conditions of the billet (initial

temperature distribution) were not the same. For the first measure

ment the initial temperature gradient of the billet was t:i.T = 500 G,
with the temperature at the front and rear ends of the billet being

T j 1'01lt = 5000 G and T,'em' = 4500 G, respectively. For the second

measurement t:i.T = 100 G, with Tjl'ollt = 5000 G and T,'em' = 4900 G.
Figures 2.28 and 2.29 show the response of the extrudate temperature

to the corresponding velocity trajectories for each measurement.

While in the first measurement the velocity was kept almost constant

throughout the whole extrusion cycle, in the second measurement

the velocity was varied. The second measurement, however, must be

judged with care. Here the strong variations in the velocity were not

intentional. Instead they correspond to an abnormal situation within

the cycle. This mishap, however, offered a unique measurement with a

strong excitation of the system, something that usually is neither per

mitted nor desired since this causes serious load peaks that may lead

to the cracking of the die. It is worth remarking that in this unusual

extrusion cycle a probable partial malfunctioning of the temperature

sensor is responsible for the apparent mismatch between the dynam

ics of the temperature measurement and the model at the beginning

of the cycle. However, this last measurement provided data to verify

whether the model reflects the dynamics of the extrudate temperature
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when strong variations in the velocity take place. In both cases the

results show quite a satisfactory agreement between measurement and

model. It is worth noting that for both cycles the simulation takes less

than four minutes of CPU time on a DEC AlphaServer 2100-600.
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Figure 2.28: Measured and simulated response 0/ the extrudate tem
perature to a constant Tam velocity.

2.7 Process Control and Control
Objectives

The ultimate goal of applying any contral strategy to aluminum ex

trusion is to guarantee a homogenous product quality. Based on this,

various performance criteria may be defined. In practice it is desirable

to extrude isothermally to achieve product uniformity. However, the

bounds of the extrusion velocity that can be achieved with the specific

press in question must be taken into consideration. Mathematically

this may be expressed as a constrained optimization problem.
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Figure 2.29: Measured and simulated response 01 the extrudate tem
pemture to a variable mm velocity.

For example:

minimize J(v(t))
v (2.90)

subject to:

Vmin < v(t) < Vmax (2.91 )

where:

J
1

tfinal

t=i/irlal

J (Text,·"date(v( t)) - Tsetpoil1f)2 dt .
t=O

(2.92)

Division by the final time t final in the last equation is neeessary as
this time depends on the veloeity profile of the extrusion eyde. If this
was not done, the integral term eould be minimized by maximizing
the veloeity, therefore minimizing the final time while disregarding
the variations of the temperature from the setpoint. Although the

65



performance index in the last equation could have been formulated as

a function of the length of the billet, the formulation as a function of

time was chosen so as to avoid the conversion from exit temperature

as a function of time to exit temperature as a function of length and

thus save computation time.

The model developed allows the calculation of optimal velocity

trajectories which minimize the performance index defined. The

optimizations are carried out using a Sequential Quadratic Program

ming (SQP) method (e.g. routine constr from MATLAB [26]).

Initial temperature distributions of the billet and tooling for these

optimizations are set equal to those of the measurement in which

the velocity was kept constant throughout the whole extrusion cycle

(Figure 2.28). In the first optimization, the ram velocity is allowed
to vary between the bounds, but it is held constant throughout the

extrusion cycle. In the second optimization, the velocity is allowed

to vary not only between bounds but also during the extrusion cycle

(linear interpolation of the extrusion velocity through various points

in time). Figure 2.30 illustrates the results of the optimizations. In

the second case the temperature of the extrudate stays nearer to the

setpoint through the complete cycle. Table 2.5 shows the measured

and simulated extrusion times. It is worth noting that while in both

cases the extrusion time is reduced, it is only in the second case that

the temperature remains approximately constant and closer to the

setpoint. No overshoot of the temperature is observed in this case

either.

~ Extrusion Time [s] I
Measurement 1 132
Optimization with
constant velocity 112
Optimization with
variable velocity 110

Table 2.5: Measured and simulated extrusion times.
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Figure 2.30: Optimal velocity trajectories according to performance
index (2.90) and subject to (2.91).

As mentioned in Section 2.2.5, another practical approach for isother

mal extrusion is taper heating the billet. Here an axial temperature

profile is induced on the billet. The idea is to compensate the heat

produced by friction/shear at the container/billet interface. Ideally,

each cross-section of the billet should enter the deformation zone at

the same constant temperature. This temperature gradient could then

be considered in the optimization problem stated above. The idea is

to predict an optimal temperature gradient and thus an optimal ini

tial temperature distribution in the billet so as to achieve isothermal

extrusion. Since in practice the furnaces used to preheat the billet

are not able to produce complicated temperature profiles on the billet

quickly and accurately, only linear temperature gradients are consid

ered here. The problem of optimizing the initial temperature gradi

ent in the billet is also stated as a constrained optimization. Due to
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physicallimitations this temperature gradient cannot be steeper than

a certain value. This value is determined by the power of the oven

that preheats the billet as weil as by the residence time of the billet in

the oven before it is loaded for extrusion. The optimization problem

is now stated as folIows:

subject to:

where:

J
1

tJinal

minimize J(v(t))
v, TJ,-o,.,f, T,·em·

Vmin :::; v(t) :::; Vmax

BI :::; TJm"t :::; B2

B3 :::; T,·ea,- :::; B4

f=tjlnal

J (Text,·udote(v(t)) - Tsetpoint)2 dt.
f=O

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

Here TJ1o,,! and T,·ea,. stand for the initial temperatures at the front

and rear ends of the billet, respectively. Bi stands for the respective

bounds on these parameters so that the gradient does not exceed a

certain predefined value. Figures 2.31 and 2.32 illustrate the results

of this optimization problem. The maximum value allowed for the

temperature gradient was set to 6.T = 50°C. Isothermal extrusion is

achieved almost throughout the complete cycle.
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Figure 2.31: Optimal velocity trajectories according to performance
index (2.93) and subject to (2.94)-(2.96).

2.8 Conclusions and Outlook

A dynamic model of the aluminum extrusion process has been

derived. This model describes in detail the thermal dynamics of

the most important bodies involved in the extrusion process. These

are the billet, die, die holder, container, and the extrudate profile.

The equations that describe the extrusion process are complicated

partial differential equations. A new semi-analytical approach for

solving these equations has been presented. In this approach the

metal is treated as a highly viscous Newtonian fluid and appropriate

assumptions regarding its flow are made. The velocities, pressure,

strain, and strain rates distributions needed for the modeling of the

process are solved analytically, leaving only the temperature distri

butions to be solved numerically. This innovative semi-analytical

approach presented is of great advantage, since the computa

tion times are drastically reduced in comparison to the classical
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Figure 2.32: lnferred and optimal initial temperature pmfiles in the
billet.

methods based on Finite Elements. Simulations of the extrusion

process were conducted and the results are found to be in agreement

with the physical understanding of the thermal dynamics of extrusion.

The quality of the model has been confirmed by comparison with

data from au iudustrial aluminum E'xtrusion press. For this purpose

the parameters of the ftow stress in equation (2.57) were adjusted

to take into account the particular alloy in question. In addition,

a qualitative comparison with the program PressForm [27], a well

established and accepted program for the simulation of metal

forming processes, was performed. In particular it was expected

that the model reftected the dynamics of the temperature of the

extrudate accurately. This was important as the main purpose of

the model was to design optimal control strategies that guarantee

isothermal extrusion. The results of the comparison with both

the industrial data and PressForm were satisfactory so that the
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model was subsequently used to design optimal control strategies

according to certain performance indexes. It has been shown that

these control strategies can be used to achieve isothermal extrusion.

In particular, it has been shown that the problem of controlling

the temperature of the extrudate is not only a problem of properly

adjusting the extrusion velocity during the extrusion cycle but also

one of optimally choosing an initial temperature gradient of the billet.

The combination of these two strategies allows for a considerable

reduction of extrusion time while guaranteeing isothermal extrusion.

Thus the quality of the product may be improved and productivity

increased. Indeed, these optimal trajectories have been succesfully

implemented for various extrudate profiles in an industrial aluminum

extrusion press located at a plant of Alusuisse in Sierre, Switzerland 7.

The optimal control strategies presented in this chapter are open

loop. The introduction of feedback control may be of advantage, in

particular if disturbances (e.g. noise) are taken into consideration.

The constraints inherent to the system (i.e. maximum and minimum

extrusion velocity that may be achieved in the particular press in

question) also play a critical role in this respect. A closed-Ioop

control strategy that takes all these facts into account is desirable.

In view of all of the above, a plausible strategy could be to approach

the problem of closed-Ioop control for the isothermal extrusion of

aluminum within the framework of model predicitive control (MPC).

This seems reasonable as with MPC constraints may be directly

taken into account while designing closed-Ioop control strategies.

Within this context, however, a simplified dynamic model of the

extrusion process is required, as the model presented here is still

far too complex for the design of a model-based control strategy.

Nevertheless, the model presented here may perfectly be used as a

benchmark to which other simplified models may be compared.

'For reasons of industrial confidentiality, neither results of the implemented optimal contral
strategiesI nOT figures concerning the improvement in productivity can be disclosed.
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An additional problem to be faced is that of monitoring the tempera

ture sensors used in aluminum extrusion. Since these devices are prone

to partial failure (i.e. development of bias), and since the measure

ment of the temperature of the extrudate is imperative for the design

of any closed-loop control strategy, the detection of malfunctions in

the temperature sensors is of superior importance. The derivation

of a simplified dynamic model, the design of a closed-loop control

strategy, as weil as the monitoring and fault detection of the tempera

ture sensors used in aluminum extrusion is the subject of subsequents

chapters.
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Chapter 3

Nonlinear Model Predictive
Control for the Isothermal
Extrusion of Aluminum

By deriving a simplified model of the extrusion process, control of the

temperature of the extrudate profile can be posed and solved as a

nonlinear model predictive control problem. This results in a closed

loop control strategy that directly handles constraints inherent in the

process, such as bounds on the extrusion velocity.

3.1 Introduction

From a control point of view, one of the main problems arising in the

extrusion of aluminum is that of keeping the temperature of the ex

trudate constant throughout the extrusion cycle while extruding with

maximum velocity. This is necessary to ensure product quality and

homogeneity at a maximum production rate. Various model-based ap

proaches to trying to control the temperature of the extrudate may be

found in the literature. Due to the nature of the process and the com

plex heat phenomena that take place in extrusion, most of the models

upon which these approaches are based are complex and require long

computation times [1]' [2]. As a consequence, most model-based con

trol strategies für aluminum extrusion are open-loop and are based on

the off-line design of optimal velocity trajectories (i.e., optimal with

respect to various performance indexes) for a specific profile. Due

to disturbances that may be present in an industrial environment, as
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weil as due to model/plant mismatch, a closed-loop control strategy

would be desirable. This chapter derives a closed-loop strategy for

the control of the exit temperature in aluminum extrusion. Seetion

3.2 of this chapter presents a simplified model that is tractable for

implementing closed-loop control. In seetion 3.3 isothermal extrusion

of aluminum is then posed and solved as a nonlinear model predictive

control problem. By using this closed-loop strategy the temperature

of the extrudate section can be made to remain constant throughout

the whole extrusion cycle. The chapter closes with some concluding

remarks in seetion 3.4.

3.2 Deriving a Simplified Model

The detailed dynamic model of the aluminum extrusion process
derived in the previous chapter proved to be suitable for designing

open-loop optimal control strategies for the isothermal extrusion of

alurninum. Computation time was drastically reduced as compared

to other approaches to modeling the extrusion process [1]' [2].

Nevertheless, that model is still not suitable for designing easily any

model-based feedback control strategy. Optimal velocity trajectaries

were calculated off-line for a class of extrudate profiles. However,

designing these trajectories for the whole product range that may

be present in an industrial environment is still a cumbersome task.

One would have to fit the parameters of the model for each extrudate

profile and then precompute the optimal velocity trajectories far each

product class.

For the design of a closed-loop control strategy a sirnplified and more

tractable model is still needed. This seetion is devoted to the task of

deriving such a model. Based on the physical understanding of the

process, a simplified model is derived and then compared to the more

complex and detailed model presented in Chapter 2. The simplified

model is also compared to industrial data. The model presented in

this seetion is based on the idea of dividing the billet into various zones
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and formulating heat baiances around each of these zones. Although

some rather strong assumptions are made with regard to the variations

of temperatures in radial direction, which are neglected, as weIl as

with regard to the deformation of the metal, which is assumed to take

place only in the foremost part of the billet, the model is tractable and

physically appealing. Input-output behavior (i.e., extrusion velocity

and exit temperature of the extrudate section) is described weIl by

this simplified model, so that it is attractive for subsequent use in the

design of a closed-loop model-based controller for isothermal extrusion

of aluminum.

3.2.1 Simplified Model of the Extrusion Process

The model derived in this section is based on the model presented

by Akeret [3]. The billet and the tooling are divided into various

discs. A cross-sectional representation of this is shown in Figure 3.l.

Rotational symmetry with respect to the central axis is assumed.

n ' n+

n+9
n+3

n+2 n+5

n+8

n+8

n+8

, "
I I I I I

3: :i-q i :i+l:
I I I I I
I I I I I

_ .•. _l_.~.~._J_..

, ,
I I I I

:i-I: i :i+l: n-I
I I I I
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I I I I I__.•. _l_.~.~._J_.

, ,
I I I I
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I I I I I.- _.~._l_·16~·_J_·

Figure 3.1: Model 01 the extrusion process.

Material and heat balances are formulated for each zone. The number

of discs, representing the undeformed part of the billet, decreases as
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the extrusion proceeds. Initially, the billet is divided into n - 1 discs

and the deformation zone (zones n, n + 1, and n + 2). The metal is

treated as a noncompressible fluid, and plug flow is assumed for its

flow. Further, it is assumed that deformation of the metal takes place

only in the front part of the billet. Radial temperature variations
within the billet are neglected. Thus, at each moment in time the

temperature within each zone is assumed to be uniform. Heat within

the billet flows as a result of the flow of the metal (convection), as well

as through conduction. Heat is also generated as a result of friction

between the billet and the container. The billet also exchanges heat

with the tooling (i.e., the container, disc n + 8, die, n + 3, n + 5, and

die holder n + 9). After a length equivalent to the width of a disc

has been extruded, its temperature is assumed to remain constant in
time, and the heat balance is now formulated for the remaining zones.
Consider for instance disc i. The following equation represents the

heat balance for this zone before it is extruded:

dT; (T;-1 - T;)
ßzAOPA.ICPAldi = - A;/n+ShR(T; - Tn+s) + kA1Ao ßz

- kAIAo(Ti;:+tl + Ai/n+Sllf,·kfvram + PA/CPAI Ao(7"i-l - T;)vram (3.1)

where:

n

T;

kf

Ao

A i / n+S

11/,.

hR

ßz

kAI

PAI

CPAI

number of discs,

temperature of zone i,

flow stress,

cross-sectional area of billet,

contact area between section and container,

coefficient of friction,

heat transfer coefficient billet/container,

width of disc,

thermal conductivity of aluminum,

density of aluminum,

specific heat of aluminum,

ram velocity .
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In equation (3.1) the first term on the right-hand side represents the

heat flux between the respective disc and the container. The heat

transfer coefficient hR is given by:

(3.2)

Here, k Fe stands for the thermal conductivity of the container (steel),

while Rnne,' and R] represent the inner and outer radius of the con

tainer, respectively. The heat transfer coefficient hR is calculated un

der the steady-state assumption that the heat flux between the billet

and the container can be equated to the heat flux due to radial con

duction inside the container [4]. The second and third terms on the

right-hand side of equation (3.1) stand for the heat flux due to con

duction between the specific zone in question and its adjacent zones.

The friction force between the billet and the container is given by [5]:

(3.3)

Thus the work due to friction while extruding a disc of width dz is:

(3.4)

The heat produced due to friction per unit of time is therefore given

by:

Qjridion (3.5)

This is the fourth term on the right-hand side of equation (3.1). The

fifth term on the right-hand side of equation (3.1) is the heat flux due
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to convection of the meta!. In [6], the following empirical relationship

for k j is found:

kj = A (1 - Bf) exp( -CT)f.D . (3.6)

The coefficients A, B, C, and D depend on the alloy under consider

ation. Values for various alloys can be found in [6]. The following

equation for the strain rate € is derived in [7]:

. 6vram <p
f = ---.

Rinne,.
(3.7)

Here, <P stands for the logarithm of the ratio between the cross-seetion

of the billet and the cross-seetion of the extrudate profile. R.;/II1er" is the

inner radius of the container, which can be taken to be equal to the

radius R of the billet. Equation (3.7) is only valid if the geometry of
the deformation zone is assumed to be constant. However, as soon as

the ram reaehes the deformation zone, the volume of the deformation

zone no longer remains constant, but starts decreasing. This has a

direet eonsequenee for the strain rate, as the material at this point

experienees a rapid acceleration as it passes through the deformation

zone. To exaetly deseribe the deformation phenomena taking place

at this point, the volume of the deformation zone and thus the strain

rate would have to be eonsidered as a function of time. An alternative

approach is to approximate the strain rate € at thi point of the proeess

by the maximum strain rate at the entry of the die as given by the

following expression [5]:

2Vexit

d
(3.8)

Here the variable d stands for the diameter of the die, and VeJ'if for

the velocity of the metal at the exit of the die. Once zone i has been

extruded the following is assumed:

dTi = O.
dt
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The equations for the remaining zones describing the billet are posed

analogously to equation (3.1) taking into consideration their respec

tive geometries. Für zones n + 1 and n + 2, it is assumed that the

metal does not flow (dead zone). Therefore the terms correspond

ing to the heat generated by both friction and convection vanish for

these two sections. It is further assumed that deformation takes place

only in zone n. For this zone the following term representing the heat

generation rate due to deformation must be included [8]:

QdeJO/'l1ULtioll = kJ E~, .

In this equation ~, stands for the volume of section n, and kJ and E

for flow stress and strain rate, respectively. The equations for these

zones are listed in Appendix F. At the beginning of the extrusion the

container exchanges heat with the entire billet. The thermal behavior

of the container is thus described by the following equation:

dTll+s
PFeCPFeV11+S~ = Al/l1+shR(Tl - T 11 +S) + A 2/11 +shdT2 - T I1 +s)+ ...

+ Ai/l1+shR(Ti - T,,+s) + ... + A11-1/71+shR(Tn-t - T,,+s)

+ An+l/n+shR(Tn+l - T,,+s) - A n+8 hFe/Ail·(T71 +S - Ta;")

- hFe/FeA71+S/n+9(T,,+S - T I1 +9) (3.10)

where:

v,,+S

hFe/Ail'

PFe

CPFe

Ai/j

An+

volume of section n+8,

heat transfer coefficient container/air,

density of steel,

specific heat of steel,

contact area between sections i and j,

outer surface of section n + 8 .

The other variables in equation (3.10) have the same meaning as in

equation (3.1). After a length equivalent to a disc has been extruded, it
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is assumed that the container exchanges heat only with the remaining

discs. Thus, after the first disc has been extruded, the equation which

describes the thermal dynamics of the container may be posed in the

following manner:

~~ ( )PFeCPFeVn+s~ = A2/n+shR(T2 - T n+s ) + ... + Ai/n+shR Ti - Tn+s

+ ... + An-l/n+shR(Tn-l - Tn+s) + An+l/n+shR(Tn+l - Tn+s)

- An+shFe/AiI·(Tn+s - Tail·) - hFe/FeAn+s/n+9(Tn+s - Tn+9)· (3.11)

3.2.2 Validation of the Simplified Model

The model derived in section 3.2.1 can now be compared to the more

detailed model described in chapter 2. This last model has been vali

dated with data from an industrial-scale aluminum extrusion press so
that it may indeed be taken as a reference. Various simulations were

conducted with both models and compared. In the first set of simu

lations (Figure 3.2), the initial temperature distribution of the billet

was taken as a gradient with 6.T = 50 °G. Here 6.T stands for the

difference between the initial temperatures at the front and rear end

of the billet, which were chosen to be TfT"Ont = 515 °G, and T,·ea,· = 465
°G. The simulations were stopped once the length of the billet reached

0.1 m. The number of discs into which the billet was divided was also

varieo. to investigate its effect on the behavior of the model. The re

sults of these simulations are presented in Figure 3.2. The subdivision

of the billet in just two discs is a rather crude representation of the

process so that a simulation of the extrusion process in this manner

is very inaccurate. The simulations with 6, 10, and 15 discs yield

better results and are presented in Figure 3.3 again, for the sake of

clarity. As shown in Figure 3.3, simulating the process with 10 or

15 discs does not seem to influence the results significantly. Six discs

are sufficient for describing the general input-ouput behavior of the

process. Simulation times for an extrusion cycle using this model are

under 30 seconds on a SUN ULTRAI/200E so that this model could

indeed be used for areal-time implementation. In the sequel only the
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simulation with six discs is considered. To investigate how weil the

behavior of the exit temperature is described when the velocity does

not remain constant in time, further simulations were conducted in

which the extrusion velocity was varied. Figure 3.4 shows the results

of these simulations. The simplified model reproduces the dynam

ics of the temperature of the extrudate sufficiently weIl. It is only

towards the end of the extrusion cyde that the two models diverge.

In agreement with theoretical calculations [5], a temperature increase

towards the end of extrusion is observed if the heat generation rate

due to deformation and friction is higher than the heat exchange rate

between the container and the billet. It is in this part of the process

that the nonlinearities stemming from the terms describing the heat

of deformation are the strongest. As expected, the simplified model is

not capable of describing very accurately the dynamics of the process

in this region. However, for most of the extrusion cyde the agreement

between the models is satisfactory.

Simulation of Extrusion with Initial Temperalure Gradient 01 soGe
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Figure 3.2: Comparison of simplijied model with detailed model. Con
stant extrusion velocity of 6 mm/s. Initial temperature of billet:
Tfront = 515 °G, T,-em- = 465 °G. cp = In(Ao/A J ) = 3.
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For the second set of simulations an initial temperature gradient of

ßT = 70°C was chosen (Tfrollt = 515°C, T,ear = 445°C). Again,

the number of discs into which the billet was divided was also varied

to investigate its effect on the behavior of the model. The results are

presented in Figure 3.5. The simulation with six discs again reflects

the input-output behavior quite weil. Figure 3.6 shows the results of

the simulation where the extrusion velocity was not held constant but

was varied during the extrusion cycle. Once again the simulations

were stopped when the remainder of the billet was 0.1 m long.

Simulation 01 Extrusion with initial Temperature Gradient 01 70°C
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Figure 3.5: Comparison 0/ simplijied model with detailed model. Con
stant extrusion velocity 0/ 6 mm/s. Initial temperature 0/ billet:
T f , ollt = 515°C, T,'ear = 445°C. <p = In(Ao/A)) = 3.
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Figure 3.6: Comparison of simplified model with detailed modelfor var
ious extrusion velocity pmfiles. Initial temperatu1'e of billet: TJm"t =
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The simulations shown previously indicate that the extrusion velocity

has only limited influence on the exit temperature when the initial

temperature gradient of the billet is steep. Figures 3.7 - 3.9 show the

heat f1uxes for the deformation zone and zone 6 for the simulation

with an initial temperature gradient of 6.T = 50 oe and with the

billet divided into six dises. The velocity profile corresponds to the

second velocity profile shown in Figure 3.4.

As mentioned in the previous chapter, the front part of the billet is

the most important zone as it is here where the most interesting and

determining phenomena take place. The rate of heat input into and

out of the deformation zone may appear at a first glance to balance

each other. However, the difference in these rates as shown in Figure

3.7 is clearly negative for a good part of the cycle, indicating that

the temperature of this zone and therefore the exit temperature will

decrease during the extrusion cycle. Only in the first part of the

extrusion cycle does the rate of heat input into the deformation zone
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Figure 3.7: Heat fiuxes and temperature zn the deformation zone.
Initial temperature of billet: Tfl"ont = 515 oe, T"eol" = 465 oe.
'P = In(Ao/A j ) = 3.

outweigh the rate of heat loss. The jumps in the extrusion velocity do

have a marked effect on the heat generation rate due to deformation as

clearly seen in Figure 3.8. However, the ftux of the cool metal from the

rear part of the billet to the front has an overall cooling effect on the

different zones and the deformation zone as weil. As depicted in Figure

3.8 the net heat ftux due to convection for this last zone is negative.

Heat is also lost due to conduction from the deformation zone into its

adjacent zones so that the heat ftux due to conduction is also negative

(Figure 3.8). Thus, for a good part of the seond half of the extrusion

cycle, any increase in the temperature that the heat generation rate

due to deformation may cause in the deformation zone is overriden

by the heat losses. Convective cooling of the body is perhaps more

clearly observed in the temperature of zone 6. This temperature drops

throughout the course of the extrusion cycle (Figure 3.9) indicating

that in the rear part of the billet convection is the determining factor
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for the given initial temperature gradient and veloeity profile. It is

worth noting, onee again, the inerease of the heat generation rate due

to deformation that ean be observed towards the end of the extrusion

eycle. As mentioned before, this happens when the length of billet

has beeome small and deformation is rather strong. This heat is not

dissipated fast enough, eausing an inerease in the temperature of the

deformation zone and eventually of the exit temperature. It must

be remarked that the eapability of the simplified model to refleet the

dynamies of the proeess in this part of the proeess is questionable.

The expression for the strain rate in this region as given by equation

(3.8) is only an approximation of the real behavior of the strain rate

for this part of the proeess. However, this last segment of the proeess

usually eorresponds to the diseard, so that it is of no major praetieal

signifieanee. In praetiee, the process is usually stopped before this
section of the extrusion cycle is reached.

Aale 01 Haal Generation due 10 DetormatJOn

11:;: ~. ;1
o 20 40 00 M 100 1~ 140 100 1M

Nel Heal F1UlC Aale due 10 Convection: Deformation Zone

1,:L-~--J-U--: j
o 20 40 60 80 100 120 140 160 180

!~~-. j
o 20 40 60 80 100 120 140 160 180

ILmelsJ

Figure 3.8: Rate of heat loss and gain: deformation zone. Initial tem
perature of billet: TI1'OTI! = 515 oe, 1','e",' = 465 oe. r.p = In(Ao/A J ) =
3.
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3.2.3 Validation of the Model with Data from an
Industrial Aluminum Extruder

In this seetion tne simplified model is eompared to data from an in

dustrial aluminum extruder provided by Alusuisse Teehnology and

Management AG. Figures 3.10-3.11 show the behavior of the temper

ature of the extrudate and their respeetive extrusion veloeity profiles

for different initial temperature gradients of the billet. Onee again the

initial temperature distributions of the billet were taken as a gradi~

ent between the temperatures measured at the front and rear ends of

the billet (Tfmnt , ~·ea·r). The simplified model resembles the measure

ments quite reasonably. The mismateh between the model and the

measurements is more pronouneed on the first part of the extrusion

eycle in all eases. However, the differenee between measured and sim

ulated temperatures deereases rapidly as the extrusion proeeeds. The

initial mismateh between the model and the measurements is mainly

due to the erude assumptions made for the derivation of the model.
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Another source of mismatch may come from the actual initial tem

perature gradient of the billet when loaded into the container. Even

if the billet is loaded into the container immediately after measuring

its initial temperature, the difference between this measured gradient

and the actual initial temperature gradient of the billet before extru

sion begins may be significant. This is why closed-loop control may

be necessary in practice. Overall, however, the general dynamics of

the temperature (input-output behavior) are described quite well by

the simplified model.
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Figure 3.10: Comparison 0/ the simplijied model with measured data.
Initial temperature gradient 0/ billet: f:1T = 60 °G. Ttf'ont = 500 °G,
T,'ear = 440 °G. <p = ln(Ao/A j ) = 3.4.
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Initial temperature gradient of billet: 6.T = 55 °G. TImTlI = 490 °G,
T,'e",' = 435 °G. Extrusion ratio: r.p = ln(Ao/A J ) = 3.4.

3.3 Nonlinear Model Predictive Control
of Exit Temperature

The model presented in the previous section can now be used for the

design of closed-loop control strategies for the isothermal extrusion

of aluminum. Previous work in this direction may be found in the

literature. Buchheit and Pandit [9]-[10] present an iterative learning

control strategy for aluminum extrusion based on the model of the

extrusion process derived by Lange [11]. Although this model makes

some rather crude assumptions with respect to the thermal behavior

of the billet in the extrusion process, it is tractable and weB suited

for real-time control. A major disadvantage of this control strategy,

however, is the fact that too many iterations (extrusion cycles) may be

required until isothermal extrusion is achieved. In industrial practice

different types of profiles are extruded batchwise in one and the same
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extrusion press. For the desired optimum to be achieved, the iterative

learning control may require more learning cycles than are available

for a certain profile. More recently, Schwartz et al. [12] proposed

a control approach based on neural networks and a complex model

described by the finite element method (FEM). The focus of that

investigation being the control of microstructures for round-to-round

extrusion using the ram force as the input signal and the ram velocity

as the output of the controller, no attempt is made at controlling the

exit temperature of the extrudate. One drawback of that approach is

the fact that it requires cumbersome computational training of the

artificial network upon which the whole control approach is based.

Tibbetts et al. [13], [14] present an approach very similar to the one

presented in chapter 2. However, it is unclear whether the models

presented can actually be used for real-time control and whether the
method used may be extended to more complicated geometries.

The approach presented in this section derives a closed-loop control

strategy for isothermal extrusion of aluminum via Model Predictive

Control (MPC). The following subsection provides a brief background

of the theoretical principles of MPC. Further subsections show the

application of MPC to the aluminum extrusion process to achieve

isothermal extrusion.

3.3.1 MPC: Background

Model Predictive Control is a widely used method within the chemical

and petrochemical industries whereby discrete control actions are

obtained solving on-line optimization problems at each time step.

Its popularity within the process control community derives from

the ease with which physical constraints of multivariate systems may

directly be taken into account in the controller design procedure.

This is done by properly defining constraints on the inputs, states, or

outputs of the system and solving the optimization problem subject

to these constraints. Factors reflecting marketplace variations may

also be included in the performance index to be minimized, so that
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the MPC framework is equally weIl suited for integrating economic

aspects while designing control strategies.

Successful applications of MPC can be traced back to the late 1970's.

Cutler and Ramaker [15], as weil as Prett and Gillette [16], were among

the first to successfully apply this technique to industrial processes.

Since the publication of these papers, MPC has progressed rapidly,

mainly in the petrochemical industries, building an impressive track

record. Richalet et al. report the successful application of MPC to

a PVC plant, to the main fractionator of a fluid catalytic cracker, as

weIl as to a power plant steam generator [17]. Various applications of

!vIPC or of some variation thereof have been reported more recently

for control of wastewater treatment plants [18], for control of pulp

ing plants in the paper industries [19], as weIl as for the controlled

drying of timber [20]. There exists an enormous amount of literature

regarding MPC applications as weil as theoretical aspects of it. The

interested reader is referred to the works of Garcfa et al. [21] and Lee

[22] for two very extensive and thorough survey papers on this topic.

MPC: Formulation

A general system description is given by:

i:( t)

y(t)

f(x(t), u(t)),

h(x(t), u(t))

x(to)

(3.12)

where f: R" x Rm --+ R" and h: R" x RnJ --+ RI". Here, x ER",
y ER", and u E RnJ are the state, output, and control input vectors,

respectively. As mentioned before, MPC is a discrete-time method,

where the control action is obtained by repeatedly solving on-line fi

nite horizon optimization problems, subject to system dynamics and

constraints on the states and inputs. The optimization underlying an

MPC algorithm is solved at each sampling instant tk, and is usually
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formulated as folIows:

min J(Xk, ud
Uk(t)

tf

min JL(x(t), u(t), t) dt
udt) tk

(3.13)

subject to:

x(t) - f(x(t), u(t)) 0,

y(t) - h(x(t)) 0

I(x(t), u(t)) 0

c(x(t), u(t)) > 0

where:

(3.14)

(3.15)

(3.16)

(3.17)

Jk objective function to be minimized,

x(t) state vector of the system,

Xk state vector of the system at time tk,

xdt) state trajectory of the model for all t E [tk' tJ], given the

condition Xk at tk,

y(t) output vector of the system,

udt) contral trajectory to be ca1culated for the time interval

tE [tk' tJ], and the initial condition Xk,

f model dynamics used for state prediction,

h model for computation of predicted outputs,

I, c equality and inequality constraints functions, respectively,

tk initial time of computation,

tJ terminal time of computation.

The terminal time of computation tJ is determined by the prediction
horizon p, and it is given by tJ = tk + pTs , where Ts stands for the

sampling time. The control input is ca1culated for a contral horizon m,

with m ::::: p, and for times tk + mTs ::::: t ::::: tk + pTs , the input vector
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udt) = o. The aforementioned optimization can be reformulated in

the discrete-time domain as folIows:

where:

p

min Jk == min L Li(x(k + ilk), u(k + i - 1Ik))
U(k) U(k) i=]

(3.18)

x(k + ilk)

U(k)

predicted state vector at time k + i based on the

states x(klk) at time k, obtained by using

prediction model (3.12),

control moves u(k + i), i = 0, ... ,m - 1 calculated

by the optimization at time k; u(k + ilk) = 0 for

i ~ m; u(klk) denotes the control move implemented

at time k.

If for a specific problem the interest lies in the output of the system

following a desired output trajectory rk(t) (tracking problem), the op

timization problem can be restated as folIows:

where:

p

min Jk == min L Li(e(k + ilk), u(k + i - 1Ik))
U(k) U(k) ;=1

(3.19)

e(k + ilk)

y(k + ilk)

r(k + i)

prediction error vector given by

e(k + ilk) = y(k + ilk) - r(k + i),

predicted output vector based on measurement y(klk)

at time k, obtained by using the output model,

reference trajectory over time interval

[tk, tk + pTsJ.

It is sometimes more convenient to define the optimization problem in
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terms of the increments in the contral move !J.U(k) = {!J.u(k+ilk), i =

0, ... , m - I}, where:

!J.u(klk)

!J.u(k + ilk)

control increments at time k given by:

!J.u(klk) = u(klk) - u(k - 11k - 1),

contral increments at time k + i given by:

!J.u(k + ilk) = u(k + ilk) - u(k + i - 1Ik),

i E [l,m - 1].

MPC Implementation: Receding Horizon (RH)

The general control structure of an MPC scheme is depicted in Figure

3.12.

Reference
u y

Figure 3.12: General MPC structure.

The state is estimated via an observer, using the inputs and measured

outputs. This estimatp. is usecl to predict the trajectory of the ('on

trolled variables y over a prediction horizon p when the manipulated

variables u are variecl over a control horizon m. At time step k, the op

timizer computes m future contraI moves (u(klk), ... ,u(k+ m -llk))
such that the predictecl outputs deviate minimally from the selected

reference trajectory. As mentioned before, constraints on the inputs

and outputs are clirectly incorporated into the optimization. Although

the open-Ioop optimization problem solved at time k calculates an op

timal sequence of m present and future contral moves, only the first

contral move, u(kIk), is injected into the plant over the time [k, k + 1].

At time step k + 1, the prediction horizon p, and the control horizon

mare shifted ahead by one step. Feedback is incorporated by using
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•

plant measurements to update the state estimation vector x. The op

timization problem is now solved again using the estimate x(k + 1) as

the initial condition for the prediction. This form of implementation

is known as receding or moving horizon approach [23] and its principle

is depicted in Figure 3.13.

Past Future

_______ 13~f~~e_n~~I~aj~c~l}'_! .. • __

• Predicted Output y(k+ilk)

• •
k k+l k+m-l k+p

___ Control Horizon ___

.....t---- Prediction Horizon ----4.~

Figure 3.13: Receding Horizon Implementation.

The MPC framework has been briefly outlined in this section. The

following sections deal with the particular application of MPC to the

aluminum extrusion process.

3.3.2 Isothermal Extrusion VIa Nonlinear Model
Predictive Control

Isothermal extrusion of aluminum is of interest in industrial practice

to guarantee uniform product quality [5]. To achieve this, the ex

trusion velocity must be adjusted continously throughout the whole

extrusion cycle to balance the various heat phenomena taking place in

the process. The objective is therefore the calculation of the velocity

profile v(t) needed so that the temperature of the extrudate section

Text"udate(t) deviates minimally from the desired reference temperature
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1'o5eII'O;III. The determination of this velocity profile can be posed as an

optimization problem. The target function to be minimized is the

following:

J
t=tjl'wl

J (1'e.c/r"dale(t) - 1'o5eII'0;1I1)2 dt.
1=0

(3.20)

This objective function should be minimized using some control input

u(t), which in this case is the extrusion velocity. An alternative way

of stating the optimization problem results if the extrusion cycle is

subdivided into aseries of time intervals 6. t. At each time step i

a prediction of the process over a horizon p is made. The input is

then chosen over a control horizon m so as to minimize the following

quadratic objective:

p .. ?
J(i) = L [1'e1·lr"dnte(Z + J) - 1'o5elpoilllt .

)=1

(3.21)

In order to obtain a smooth velocity profile and thus avoid strong

variations of the manipulated variable, equation (3.21) is extended to:

p . rn-I

J(i) = L [1'ex1r"dale(i + j) - 1'o5etpo;ntl
2 + L [>.6. u(i + j)f . (3.22)

)=1 )=0

The factor >. in equation (3.22) influences the behavior of the control

algorithm. Large values of >. penalize strong variations of the ma

nipulated variable. Small values of >. give more importance to the

deviations of the measured output from the setpoint. Moreover, the

extrusion velocity may vary only within certain bounds. These bounds

correspond to the maximum and minimum extrusion velocities achiev

able at the extrusion press in consideration. Taking into account the

nonlinear model for the extrusion process described in Seetion 3.2,
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the nonlinear programming problem to be solved at each time step is

stated as:

subject to:

minimize J(i)
Ui···Ui+m-l

Umin < Ui+j :::; Umax , j = 0,1, ... , m - 1
dTdt - j[T(t), u] = o.

(3.23)

(3.24)

(3.25)

Here, T is a vector of dimension (n + 9) (number of zones) and whose

components are the temperatures of each of the zones. The problem

stated above is a nonlinear model predictive control problem by means

of a p-step ahead prediction of the behavior of the process [24].

Estimating the States of the System

The only measurements that are usually available in the extrusion

process are the temperature of the extrudate and the extrusion ve

locity. The former is taken to be the output of the model, while the

latter is the control input. The remaining states of the model mllst

be estimated by means of an observer. For this nonlinear system,

this filtering problem may be solved by means of an extended KaIman

filter (EKF) [25]. For the extrusion process, it is assumed that the

system's noise is an additive purely random noise with expected value

E(Wi) = Wi and covariance matrix Qi. Thus:

T i +1 = g(T;, Ui) + fiWi . (3.26)

The measurement is corrupted by some noise, which is also assumed

to be additive purely random noise:

Yi = h(T;, Ui) + Vi (3.27)

with expected value and covariance matrix E(Vi) = 0 and R;, respec

tively. Both noise sequences Wi and Vi are assumed to be independent.
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Additionally, it is assumed that the initial state T o has an expected

value E(To) = 1'0, a covariance matrix Po, and that it is independent

of the two noise sequences Wi and Vi. With these assumptions the

equations for the filter are stated as follows [26]:

(3.28)

(3.29)

(3.30)

(3.32)

Here Ti and '1\ stand for the estimate of Ti before and after measure

ment, respectively. At each time step, the partial derivatives fJhdfJTj
and fJgdfJT i are evaluated at Ti = Ti and Ti = Ti, respectively. Fig

ure 3.14 shows results of the estimations of some of the states of the

system. For these simulations the noise sequences of the system (Wi)

and measurement (vJ were chosen to be zero mean, with covariance

Q = R = 5. These results correspond to a model in which the billet

was subdivided into six discs. The resuIts of the estimation of the re

maining states are equally satisfactory and can be found in Appendix

G.

Control of Exit Temperature

The control algorithm outlined in the previous sections can now be

tested through simulations. The complete control scheme was imple

mented in MATLAB/SIMULINK. A block diagram is shown in Figure

3.15. For the first set of simulations the noise sequences of the mea

surement and the system were taken to be zero mean white noise

with covariance Q = R = 5. The initial temperature gradient of
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Figure 3.14: E5timation 015tate5 via EKF.

the billet was chosen to be b.T = 50°C (with Tjront = 515°C, and

~'eQ7' = 465°C). The control and prediction horizons were set to

m = 5 5 and p = 25 5, respectively. A sampling time of Ts = 1 5

was chosen. Figures 3.16 and 3.17 show results for Tsetpoint = 520°C
and Tsetpoint = 530°C, respectively. Results for various values of the

factor Aare shown. In all the simulations, the temperature of the

extrudate stays dose to the setpoint temperature Tsetpoi11t throughout

the complete extrusion cyde. For the simulations shown in Figure

3.18 an initial temperature gradient of the billet of b.T = 70°C (with

Tjm11 ! = 515°C, and ~'eQ7' = 445°C) was chosen. Once again simula

tü..ns for Tsetpoint = 520°C and 530°C are shown.
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Figure 3.16: Nonlinear model predictive contra/: exit temperature with
respective velocity trajectories fo1' an initial temperature gradient of
the billet of 6.T = 50 oe. Tsetpoint = 520 oe. ep = In(Ao/Ad = 3.
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In the last case, where the initial temperature gradient is t1T = 70

oe and the temperature setpoint is T Setl'oint = 530 oe, the steep initial

temperature gradient of the billet forces the velocity to hit the upper

bound for a long portion of the extrusion cycle. The heat produced

due to deformation is not able to balance the heat losses of the billet

to the container and convection. This is shown in Figures 3.20 - 3.21,

where the various heat f1uxes for the deformation zone are portrayed.

In Figure 3.20 the solid line represents the rate of heat gain for the

deformation zone due to deformation, and convection of the metal

into that zone. The dashed line represents the rate of heat loss to the

container and die, and the rate of heat loss due to convection of the

metal f10wing out of this zone. The rate of heat loss outweighs the rate

of heat gain for a significant part of the extrusion cycle. Consequently

the temperature decreases. The controller tries to correct this and

hits the upper bound of the velocity for most of the extrusion cycle

(maximum heat production rate due to deformation).
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Figure 3.21: Rate of heat loss and gain: deformation zone. Initial
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Simulations with the velocity trajectories calculated by the MPC con

troller and the respective initial conditions discussed previously were

conducted with the detailed model presented in the previous chapter.

The results are depicted in the Figures 3.22 - 3.25. The temperature

of the extrudate section as simulated by the detailed model does not

exactly remain constant. However, the differenee between this tem

perature and the setpoint temperature is always smalI. Onee again,

this eonfirms the eapability of the simplified model to reflect the dy

namies of the temperature of the extrudate. The results with the

detailed model and the trajeetories generated by the simplified model

are meaningful. It must be stated that the use of the detailed model

for MPC purposes would not be justified, eonsidering the simulation

time needed with this model and the results aehieved by using the

simplified model.
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Figure 3.22: MPC trajectories with detailed model. Initial temper
ature gradient 01 the billet: t1T = 50 oe. Tsetpoi71f = 520 oe.
<p = In(Ao/A\) = 3.
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Figure 3.25: MPG trajectories with detailed model. Initial temper
ature gradient 01 the billet: 6.T = 70 °G. Tsctpoint = 530 °G.
'P = In(Ao/A t ) = 3.

The MPC strategy presented previously yields good results as far as

isothermal extrusion is concerned. However, as seen in the case of the

simulation with an initial temperature gradient of 6.T = 50 oe (with

Tlronl = 515°G, and T,'cor = 465 Oe) and a setpoint temperature of

Tsrtpoml = 520 oe, thf' extrusion time may he rather long. To achieve a

constant temperature of the extrudate at a faster extrusion time, the

initial temperature of the gradient has to be chosen properly. This

has already been mentioned in previous chapters. A simulation was

conducted again for an initial temperature gradient of 6.T = 50 oe,
this time with Tlmnl = 490 oe, and T,'cor = 440 oe, and Tsctpoint = 520
oe. The results are portrayed in Figure 3.26. A reduction of 25 oe
in the temperature Tlmnt from the simulation previously mentioned

already causes a considerable reduction in the extrusion time while

still achieving isothermal extrusion. This once again highlights the

importance of properly choosing the initial temperature of the billet

so as to achieve isothermal extrusion at an acceptable extrusion time.
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It may questioned at this point as to why use feedback contral in the

extrusion process if by properly choosing the initial temperature of

the billet isothermal extrusion may be perfectly achieved by means of

open-loop contro!. The answer to this lies in the uncertainty on the

knowledge of the actual initial temperature of the billet as weil as in

the noise entering the system. These effects can cause performance

degradation of the open-loop strategies. Feedback control is able to at

least partially counterbalance these effects, therefore ensuring isother

mal extrusion.
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Figure 3.26: Nonlinear model predictive control: exit temperature with
respective velocity trajectories for an initial temperature gradient of
the billet of t1T = 50 °G. Tfmnt = 490 0 G, and T,'em' = 440 0 G.
Tsetpo;nt = 520 °G. <p = In(Ao/Ad = 3.

3.4 Conclusions

In this chapter a simplified dynamic model for the extrusion of

aluminum has been derived and presented. The model has been

validated not only by comparison with a more detailed and exact
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model, but also by comparison with measurements of an industrial

aluminum extruder. The model was then used to design a feedback

control strategy for the isothermal extrusion of aluminum. It has been

shown that the control problem of isothermal extrusion of aluminum

can be posed and solved as a nonlinear model predictive control

problem. Bounds on the extrusion velocity, a natural constraint

of the system, can therefore readily be taken into account while

designing the control strategy. The performance of the controller

has been tested through simulations for different initial conditions

of the temperature gradient of the billet, as weB as for different

setpoint temperatures. It has been shown that if the initial tem

perature of the billet has been chosen in an unfavorable manner,

isothermal extrusion may not be achieved even if the extrusion is

carried out at the maximum speed possible on a particular extru
sion press. As far as the author knows, this is the first time in

the literature that a model-based closed-loop control strategy for

the isothermal extrusion of aluminum has been derived and presented.

Other problems that arise in extrusion processes may be tackled in

a similar manner. In many cases, requiring uniform product quality

may not be as important as für example maximizing productivity

(minimizing extrusion time). This problem may be posed in a similar

manner by defining the appropriate target function (minimum-time

control problem), taking into account the respective constraints

(maximum extrusion temperature that the metal can withstand,

maximum extrusion velocity, etc.) If the importance lies rather on

the side of microstructure considerations, other objective functions

may be defined. Constraints on the maximum extrusion temper

ature and maximum flow stress must then be taken into consideration.

The MPC strategy presented in this chapter has only been tested

through simulations. Nevertheless, the model is simple and tractable

so that an eventual implementation in an industrial environment

should not pose any major problems. However, a relevant aspect
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here may be the computation times required for the optimizations.

Indeed, computation times still have to be reduced by a factor of 2-4

by optimizing the algorithm in order for it to be considered for imple

mentation in an industrial environment.
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Chapter 4

Monitoring and Fault Detection of
Sensors in Aluminum Extrusion
via Statistical Methods

The accurate measuring of the temperature of the extrudate profile in

aluminum extrusion is achallenging task. The temperature sensors,

mostly pyrometers usually found in industrial practice, are prone to

partial failure, and hence may be unreliable. The detection of faults on

these sensors via statistical methods is the main focus of this chapter.

4.1 Introduction

The increasing complexity of industrial processes, tighter standards

on product quality, higher demands on reliability and safety of plant

components, as well as an increasing awareness of the impact of

industrial accidents on society and environment within the last 15

years have led the control and systems engineering community to turn

its attention to the field of monitoring and fault detection of systems

and industrial processes. Indeed, it could be argued that even though

there are still important open questions and problems within the

framework of designing automatie feedback control algorithms, most

processes and systems are already being controlled rather efficiently.

However, control engineers have the responsibility of ensuring that

control applications are performing according to specifications. With

systems becoming increasingly automated and instrumented, control

engineers are finding it harder to effectively monitor the performance

117



of control algorithms and to diagnose problems associated therewith.

As a consequence, poorly performing applications often go unnoticed

for a lengthy period of time, this perhaps leading to poor quality

and risk not only to personnel but ultimately to society. In addition,

there exist tremendous economic incentives for industry to adequately

address abnormal operations. Nimmo [1]' estimates that the chemical

process industries in the V.S. could save up to $10 billion/year by

better handling abnormal situations. Within the research community,

the importance of the field of fault detection has been pointed out

in the seminal paper of Willsky [2] as well as by Himmelblau [3],

Basseville [4], and Isermann [5].

The problem of detecting faults and changes in dynamic systems

usually reduces to the generation of special signals called residuals,
which are derived by comparing measurements of the actual system

with a model of the plant. In the "no-fault" situation these residuals

ideally are zero. If a fault occurs or if the dynamics of the system shift

from its normal operating mode, these residuals increase, triggering

an alarm indicating that an abnormal event has occurred. The

generation of these residuals is a question that must be answered

based on the specific application at hand. The key question is how

to generate the residuals as well as how to decide whether a fault

adually did take place or not. üne approach is based on parameter

estimation methods. Further details to this may be found in [6].

üther approaches are based on the principles of filtering theory.

Banks of filters as well as filter-based methods have been used for

instance in the aerospace industries to monitor instruments and

navigation systems [7], [8]. If the residual monitored is the innovation

of a KaIman filter, by definition this is an independent Gaussian

random sequence with zero mean. If an additive fault occurs, this

sequence will violate this assumption and the fault detection problem

reduces to testing the whiteness of the innovation sequence [9], [10].

Sophisticated statistical techniques are used for the on-line testing

of the whiteness of the innovation. These techniques are based on
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sequential statistical analysis, maximum likelihood estimation, as

weil as change point detection theory ([9], [11]' [12]).

Detecting faults and changes in dynamic systems is only the first

problem to be tackled. Equally important is the identification of the

origin of the fault in order to apply proper corrective action and bring

the system back to normal operation mode. For this purpose residuals

can be designed in such a way that they are uniquely sensitive to

certain faults and insensitive to modeling errors and disturbanees,

therefore triggering an alarm only when a particular fault or abnor

mal situation has taken place. The design of these robust failure

detection systems leads to the concepts of analytical redundancy

[13], [14] and the generation of residuals via parity equations [15], [16].

The detection of faults in temperature sensors used in aluminum

extrusion is the focus of this chapter. In the extrusion process the

importance of carefully controlling the temperature of the extrudate

has already been addressed by the author [17]' as weil as by Tibbetts

et al. [18]. This temperature is a measure of quality and must

be carefully controlled. Accurate measuring of this temperature is

difficult, and usually done by means of a pyrometer. However, these

measuring devices are known to be unreliable and prone to partial

failure, i.e. development of a bias [19]. In order to ensure the control

of the temperature of the extrudate, this sensor must be monitored

and a strategy should be designed so as to promptly detect any

malfunctions in this sensor.

The sensor fault detection problem is tackled by using an Extended

Kaiman Filter to generate the appropriate residual to be monitored.

Mathematically, this problem is formulated as one of the quiekest

detection of abrupt changes in a stochastic process. Only additive

changes in dynamic systems are considered throughout the whole

chapter. A cumulative sum algorithm (CUSUM), as proposed by Niki

forov [8], is used for solving the problem. In section 4.2, the framework
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for fault detection via statistical methods is recast. Seetion 4.3 applies

the technique of change point detection for the detection of sensor

faults in aluminum extrusion. The chapter closes with an outlook and

some concluding remarks.

4.2 Preliminaries
Certain types of faults in sensors, such as the onset of a bias at a par

ticular point in time, may be modelIed as additive changes in dynamic

systems. As mentioned in the previous section, these changes can be

detected by monitoring specifically designed residuals and statistically

testing hypotheses of whether a change did take place 01' not. The fol

lowing paragraphs outline the method used for sensor fault detection

in seetion 4.3.

4.2.1 Additive Changes in Dynamic Systems
Consider the rn-dimensional independent Gaussian random sequence

(Ytk~l' Let the distribution of Y t be .L:(Yt ) = N(e,'E), where eis
the mean vector and 'E the covariance matrix of the Gaussian dis

tribution. We are concerned with the following problem: until time

to - 1 included, the vector e is equal to eo and from time to the vector

is equal to e1 . The change in the parameter e and the change time

to must be detected. This problem may be viewed from the hypothe

sis testing point of view where the null hypothesis 'Ho corresponds to

the case where no change has occurred and the hypothesis 'H1 to the

case where a change in the parameter e has taken place. Under the

hypothesis of a change, the model of the observation can be written
in the following manner:

ij

ij

t < to
(4.1)

where to is the unknown change time. Let 9 be adecision function
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with domain Yrt and range {Ho, Hd· Here, Ydv = [Yo Yl ... YNl'.
For some to: 0 -::; to -::; t consider the hypothesis H 1 that the observa

tion vectors Ydv , ... , ~~V_l are distributed according to the probability

density PlJu(ydV
), and ~t,I, ... ,~N are distributed according to PIJ,(Y).

Consider on the other hand the no-change hypothesis Ho, that all

observations Ydv , ... , ~N are distributed according to PlJu(YdV
). The

decision function 9 is based on the likelihood ratio of the two proba

bility densities:

(4.2)

This result follows from the Neyman-Pearson lemma [20], which states

that a test is optimal in the sense of maximizing the power ß for a

fixed size 0' if and only if it is based upon the likelihood ratio. The

power ß and the size 0' are measures of the quality of the test and are

defined as folIows:

P (g(Ydv ) = H1IHo) ,

1 - P (g(YdV
) = HoIH1)

(4.3)

(4.4)

Thus, 0' is the probability of accepting hypothesis H 1 when Ho is true.

On the other hand, ß is the probability of accepting H 1 when this is

true. The size of the test 0' can be thought of as a false alarm rate,

which naturally should be kept as low as possible. Ideally, the power

ß should be close to one. The hypothesis testing problem can thus be

posed as folIows:

r' when po,(Yo':) < An
Poo(YJ )

g(Yr{) (4.5)

H 1 when po, (Yo;) > AnpOo(Yo )
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In the last equation >'Q is a conveniently chosen threshold. In practice

it is very usual, for computational purposes, to use the logarithm of

the likelihood ratio [4]. The log-likelihood ratio is therefore defined as

folIows:

In (Pill (Y~)) .
Pllo(YO )

(4.6)

Until now the hypothesis testing problem has been solved by using

a fixed sampie size Yd". When the sampie size is not fixed a pri07'i

but depends upon the data that has already been observed, sequential

analysis is the proper approach for solving hypothesis testing problems

[21]. A sequential probability ratio test (SPRT) is therefore a better

suited tool for the on-line detection of changes in dynamic systems.

The decision function 9 in this case depends on the stopping time T
as folIows:

when ST ~ h
(4.7)

when ST :s: -a

where:

T = min{n ~ 1 : (Sn ~ h) U (Sn:S: -an (4.8)

This test simply sequentially observes data (Yn)n2:1 and makes one of

the following decisions at time n:

• accept Ho when Sn :s: -a;

• accept 1t1 when Sn ~ h;

• continue to observe and to test when -a :s: Sn :s: h.
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The change detection problem can be solved differently according to

the various levels of apriori information available about the param

eters Bo and BI. Usually, the parameter Bo is known or at least may

be estimated. However, information about BI is usually scarce. The

worst-case sceuario is when neither the magnitude nor the direction

of the change are known. In this case the parameter BI is replaced

by its maximum likelihood estimate. This results in the generalized

likelihood ratio (GLR) algorithm. The GLR is defined as folIows:

sUPo, Po, (Y1, ... , Yn )

pOo(Yl,···, Y;,)
(4.9)

The GLR solution to the change point detection problem in this case

is based upon the following decision function [9]:

9k (4.10)

Change Detection via GLR Algorithms

Assume that the process under consideration can be modelIed in a

state-space representation, i.e., the equations of the model are of the

following form:

{
X(k + 1)

Y(k)
A(k)X(k) + B(k)U(k) + W(k)
C(k)X(k) + D(k)U(k) + V(k)

(4.11)

where the state X, the control U, and the observation Y have the

dimensions n, m, T, respectively, and where W(k) and V(k) are two

independent white noise sequences with covariance matrices Q and R,
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respectively. It is assumed that the changes enter the system in an

additive form as shown below:

{
X(k + 1)

Y(k)
A(k)X(k) + B(k)U(k) + W(k) + rYr(k, ta)
C(k)X(k) + D(k)U(k) + V(k) + ='ly(k, ta)

(4.12)

Here, rand =. are matrices of dimensions n x nand r x i', respectively,

and Yr(k, ta) and l y (k, ta) are the dynamic profiles of the assumed

changes, of dimensions n :::; n and i' :::; r, respectively. The change

time ta is unknown so that the following holds:

Yr(k, tu) = l y (k, ta) = 0 for k < ta. (4.13)

Various faults may be modelIed in this way. If for instance 1
"

= 0

and 1 y is a vector whose components are all zero except for the jth

component which equals 1 for k ~ ta, this corresponds to the onset of

a bias in the jth component of Y (jth sensor). Faults in the actuators

may be modelIed analogously by setting 1 y = 0 and Ix to be a vector,

the components of which are all zero but for the jth component. If

the system on normal operation is monitored by a KaIman filter, then

the filter equations are given by [22]:

X(k + 11k)

X(klk)

E(k)

A(k)X(klk) + B(k)U(k)

X(klk - 1) + K(k)E(k)

Y(k) - C(k)X(klk - 1) .

(4.14)

(4.15)

(4.16)

The KaIman gain K(k), the state estimation error covariance P(klk),
and the covariance of the innovation L; (k) may be calculated by means
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of the following equations:

K(k)

P(klk)

P(k + 11k)

I:(k)

P(klk - l)C(k)TI:(k)-1

(In - K(k)C(k)) P(klk - 1)

A(k)P(klk)A(k)T + Q

C(k)P(klk - l)C(kf + R.

(4.17)

(4.18)

(4.19)

(4.20)

The effect on the state, state estimate, and innovation of the filter of

an additive fault entering the system is:

X(k)

X(klk)

f(k)

XO(klk) + a(k, to)

XO(klk) + ß(k, to)

fO(k) + p(k, to) ,

(4.21 )

(4.22)

(4.23)

where XO(klk), XO(klk), and fO(k) are the responses of the system if

no abrupt change occurs. The terms a(k, to), ß(k, to), and p(k, to) are

the responses of the system due to the abrupt change taking place at

t = to. These quantities may be computed recursively with the aid of

the following equations:

a(k, to)

ß(k, to)

p(k, to)

A(k)a(k-1,to) + fY x (k-1,to) (4.24)

A(k)ß(k - 1, to) + K(k)p(k, to) (4.25)

C(k)[a(k, to) - A(k)ß(k - 1, to)] + ='Yy(k, to)(4.26)

and the initial conditions:

a(to, to)
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ß(to - 1, to) = O. (4.28)

By definition f.(k) is the innovation under normal conditions and is zero

mean, Gaussian, and with covariance matrix E(k). Thus, detecting

the change has been reduced to a standard detection problem in white

noise [23]. The filter residuals f.O(k) are observed and to determine the

presence of a change, to estimate the change time to and perhaps the

magnitude of the change if this is unknown, the on-line GLR algorithm

may be used. This consists of performing the following calculations:

supS;
1"

v

The stopping time is given by:

ta = min {k ?: 1 : g" ?: h} .

Change Detection via CUSUM Algorithms

(4.32)

Although the algorithm described previously has been effectively used

in a wide variety of applications ([2]' [7], [24], [25], [26], [27], [28]) it

requires long computations. This is due to the fact that the change

time to is estimated with the aid of the maximum likelihood estima

tion. This requires an exhaustive search for all possible past time

instants (i.e. j S; k in equation (4.29)). This difficulty can partially

be overcome in various ad-hoc manners [2]. An alternative way of

tackling the problem is by means of the so-called CUSUM algorithm

[9], [11]. Here, the likelihood ratio is averaged with respect to all pos

sible values of BI' For this, a proper probability distribution is used

as weighting function:
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(4.33)S-/ ;00 PO, (Yd
V

) ((J)
k = In (y,N)dF 1·

-00 Po" a

If the sequence Yd" is a scalar Gaussian sequence with known variance

(J"2, the distribution F( (JI) is concentrated on two points (Jo - (J"b and

(Ja + (J"b. Thus, the weighted likelihood ratio (4.33) becomes [8]:

(4.34)

The on-line X2-CUSUM algorithm is based on performing the above

mentioned calculations and can be summarized as folIows:

g/

min t ~ 1 : gt 2 h

{
b2

max - (t - k + 1)
I::;k::;t 2

+ In cosh (~ jt(Yj - (Ja)) } (4.35)

where b = 10, ~ Oul is the signal-to-noise ratio. If the threshold h is

chosen as the unique positive solution of the following equation:

(4.36)

equation (4.35) may be rewritten as folIows:
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min{t:::: 1: max (~lt(YJ - BO)I:::: Ct-HI)}'
l$k9 (J J=k

(4.37)

The algorithm (4.37) stops at the first time t at which the cumulative
I

sum .1 L (Yj - Bo) reaches the upper boundary C'-k+J 01' the lower
(T j=k

boundary -Ct-Hl'

The framework for fault detection via statistical methods has been

recast. Subsequent sections deal with the applications of these tech

niques, in partiClilar of the CUSUM algorithm, for the monitoring

and detection of faults in the temperature sensors used in aluminum

extrusion.

4.3 Detection of Faults in Sensors for
Aluminum Extrusion

This section concern the monitoring and fault detection in the direct

aluminum extrusion process via CUSUM algorithms. Figure 4.1 shows

a cliagram of the process as weil as the main bodies involved.

Figure 4.1: Direct ExtTusion: 1 ContaineT, 2 Ram, 3 Dummy Block,
4 Billet, 5 Die, 6 Die Holder, 7 Extrudate.

Accurate measuring of the temperature of the extrudate profile is a
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difficult task which has been addressed in previous investigations [19].
In industrial practice, the temperature of the extrudate is recorded by

means of pyrometers. These devices are prone to failure. In particular

they tend to develop bias. This seetion presents the detection of bias

in these type of sensors via CUSUM algorithms as presented in the

previous section.

4.3.1 Tuning of the Algorithm

The design parameters of the on-line CUSUM algorithm described in

seetion 4.2.1 are the signal-to-noise ratio band the threshold h. The

ratio b determines the minimum magnitude of change that is to be

detected and lower values than the chosen one will go unnoticed. The

on-line X2-CUSUM algorithm described by equation (4.37) has been

shown to be closely related to a two-sided CUSUM algorithm [29].
This latter algorithm can be implemented in a recursive manner and

consists of the following on-line ca1culations:

where:

min {t :2 1 : (g; :2 h + In 2) U (g; :2 h + In 2)} (4.38)

g; (g;-l + Yt ~r
g; (g;-l - Yt ~r
gü gö = 0

(x)+ max(O, x), J fh - Bo· (4.39)

Measures of the performance of the algorithm are the mean detec

tion delay fand the mean time between false alarms T. These two
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quantities are defined as conditional expectations with respect to the

distributions of the parameter before and after change:

t
f (4.40)

Intuitively, it can be said that large values for t (few false alarms) and

low values for f (fast detection) are desired. In practice a trade-off

for these two quantities must be accepted since they cannot be chosen

independently of each other [30]. The mean time between false alarms

t and the mean detection delay f are also related to the magnitude

of the change °and the threshold h in the following manner [11]:

t exp(lolh) - 1 - lolh 4? (-~) 1
(4.41)>

02 lol<p (-~)
+ -

2

f <
2h 24? (~) + 1 (4.42)-+
101 lol<p (~)

where:

.1"

<p(x) = J 4?(x)dx,
-00

1 ?
4?(x) = ~exp( -x-j2),

v27r
°= fh - eo·

Thus in summary the fault detection algorithm consists of the follow

ing steps:

1. Choose a minimum magnitude, 0, for the change to be detected.

2. Choose a convenient mean time between false alarms, t.
3. Calculate the threshold from equation (4.41).
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4. Check if the mean delay of detection f as given by equation

(4.42) is acceptable for the system in question. If not, go back

to 2.

5. Implement the algorithm given by equation (4.39).

6. Stop the calculations when equation (4.38) is satisfied.

4.3.2 Simulation Results

For the simulations a minimum bias of 6 = 5 oe was chosen to be

detected. The threshold h is chosen in accordance with the two

sided CUSUM algorithm (4.39). A mean time between false alarms of

T = 600 s was chosen. Figure 4.2 shows the behavior of the decision

function in the case of a fault which is introduced at time t = 55 s.

Figure 4.3 shows the temperature of the extrudate for the whole ex

trusion cyde. The algorithm successfully detects the onset of the bias

with a delay of detection of f ~ 10 s.

Two-Sided CUSUM Algorithm

Ihreshold
deeision funetion

§

i
~ 4 Change Time al I = 55 s

.~

"2
o

3

o'-----_--'----_---'--_-----"_-----'--'----'--..L--'--_---'-__.l...-_--'-_----'
o 10 20 30 40 50 60 70 80 90

time(s]

Figure 4.2: Behavior of the decision function: introduction of a fault
(onset of bias) in the sensor at t = 55 s.
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Although the two-sided CUSUM algorithm(4.39) is derived under the

assumption that the magnitude of the change is known aprioTi, this

algorithm may still be used to detect other types of faults (i.e. drifts).

A drift with a slope of m = 0.1 oe/s is introduced, again at time

t = 55 s. Figure 4.4 shows the behavior of the decision function when

a fault of this type is present. The fault is detected, however, with

a longer delay of detection f than before. For aluminum extrusion,

however, this delay of detection is not so critical so that it may be

tolerated.

Temperalure 01 the Extrudale
560r--~-~-~-~--~-~-~--r--.

~500
5

I
~480

460

440

anse' 01 ablas a I = 55 s

420
o 20 40 60 80 100

hme [sI
'20 '40 1S0 '80

Figure 4.3: TempemtuTe of the extrudate JOT the onset of a bias in the
senSOT at t = 55 s.
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Two-Sided CUSUM Algorithm

9060706040 50
lime(s]

302010

Change Time at t = 55 s

Ihreshold
decision funclion

0'----'---'---'----"-"'---'---''-''----'''---'-----'------'---'o

Figure 4.4: Behavior of the decision function: detection of a drift in
the sensor.

Temperalure 01 Ihe EXlrudale
560.--~--_,-----.--~---.----~--~-~~--,

540

520

Drift in sensor trom time I '" 55 s

460

440

420'----'-----'-----'------'------'------'-----"'----'-----'
o 20 40 60 80 100 120 140 160 180

lime[s]

Figure 4.5: Temperature of the extrudate for a drift in the sensor
starting at t = 55 s.
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4.4 Conclusions

Sensors used in aluminum extrusion for measuring the temperature

of the extrudate are prone to partial failure. The monitoring of these

sensors and the detection of certain types of faults via statistical

methods has been shown through simulations. The problem of de

tecting a fault in the sensor has been treated as the on-line detection

of a change in the mean of a stochastic process. For this purpose

a CUSUM algorithm has been used. It has been shown that thc

onset of bias as weil as the detection of drifts in the sensors can be

successfully detected using this method. This algorithm may be easily

implemented on-line in a recursive manner. For its use in practice,

however, either the chosen parameter 0 or the threshold h calculated

theoretically by means of equation (4.41) once an adequate mean time
between false alarms has been chosen, must be properly adjusted to

compensate for model inadequacies. This is the part of the procedure

that must be adjusted empirically once the model/plant mismatch

has been estimated. Naturally, the mean detection delay f in this

case will not be the optimal one as given by the theory. However, as

for this process this is not too critical, a detection delay greater than

the optimal one can be tolerated.

A further point may be worth mentioning at this point. This fault

detection scheme could perfectly serve as the basis for a more sophi 

ticated and complete monitoring and fault detection scheme of the

overall process, whereby malfunctions in the actuators, pressure valves

and remaining devices which are prone to failure could be detected

promptly. This would invariably pave the way to enhanced device

diagnostics capabilities, allowing plant personnel to perform predictiye

maintenance without waiting for a scheduled shutdown and ultimately

decreasing downtime of the plant. Enhanced diagnostics capabilities

would also provide earlier warnings of current and prospective haz

ardous conditions, thereby reducing potential risks to field personnel.
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Contributions of the Thesis
Upon ending this dissertation, a brief summary of the contributions

of the thesis is presented in this chapter.

• For the purpose of deriving model-based optimal control strate

gies for the isothermal extrusion of aluminum a dynamic model

of the process has been presented. Although the physics of the

process is weil known, the main challenge in deriving a first

principles dynamic model of the process that is suited for control

purposes consists of achieving reasonable computation times. By

treating the metal as a highly viscous fluid and by making ap

propriate assumptions regarding its flow, it was possible to an

alytically solve the velocity, pressure, strain, and strain rates

distributions needed for the modeling of the process, leaving

only the temperature distributions to be solved numerically. By

means of this innovative semi-analytical approach for solving the

partial differential equations describing the physical phenomena

taking place in extrusion, computation times have been drasti

cally reduced as compared to other methods of modeling this

process (e.g. Finite Element Method). An immediate conse-

quence of this was the straightforward design of open-Ioop con

trol strategies to achieve isothermal extrusion. These optimal

velocity trajectories were obtained by minimizing performance

indexes related to practical measures of product quality.

• The open-Ioop control strategies, which have been tested and

implemented in various industrial extruders, optimally adjust

the extrusion velocity throughout the extrusion cycle, thereby

achieving a constant temperature of the extrudate profile during

a significant part of the extrusion cycle. Moreover, since on

average the extrusion velocities calculated by these strategies

are higher than those usually achieved by experienced operators,

productivity has been increased. In some cases the duration of

the extrusion cycles has been reduced by as much as 20-25%.
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• Assisted by the model, it was possible to show that the problem

of isothermal extrusion is not solely a problem of optimally ad

justing the velocity throughout the whole extrusion cycle, but

also one of optimally choosing the initial temperature gradient

of the billet. In some cases, if the initial gradient is not chosen

properly, isothermal extrusion is not achieved during the entire

cycle even if the extrusion is carried out at the maximum ve

locity allowed at a particular press. Although this is physically

intuitive and may seem trivial, in practice sometimes isothermal

extrusion is demanded when in fact it is not physically realiz

able given the initial conditions and the pre-heating ovens at

hand. The question then is not how to optimally adjust the ex

trusion velocity, but how to optimally control the ovens heating

the billets to achieve an optimal initial temperature gradient.

• Based on model predictive control (MPC) principles, closed-loop

control strategies have been derived and tested through simula

tions. This was possible due to the development of a simplified

dynamic model of the process. This model is described by means

of ordinary nonlinear differential equations and has been thor

oughly validated, not only by comparison to the complex model

previously mentioned, but also by comparing it to industrial

data. MPC allows to take into account constraints inherent to

the system directly during the controller design procedure. Ad

vantageous here is the fact that noise entering the system and

uncertainties (e.g. lack of knowledge of the initial temperature

gradient of the billet) may be at least partially counterbalanced.

• A methodology has been presented for detecting faults in the

sensors measuring the temperature of the extrudate. This was

necessary as these sensors are prone to partial failure and the

measurements of the temperature are critical for any closed-Ioop

control strategy. Through simulations it has been shown that

bias and drifts in these sensors can be detected on-line by means

of sophisticated statistical methods.
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Appendix A

Assumed Geometry of Profile

For the detailed model of the extrusion process the geometry of the

profile is always assumed to be a ring with a cross-sectional area and

perimeter equivalent to the actual profile in question. Let AP7'o/ile be

the actual cross-sectional area of the profile and Up7'o/i/e its perimeter.

To obtain the inner and outer radius Tl and T2 of a ring with equal

cross-sectional area and perimeter we have:

Ap7'O/'i/e

U pl'o/ile

71'(T~ - Ti)
271'(T2 + Tl)'

(A.1)

(A.2)

Prom these equations it is trivial to obtain the following relationship

for the inner and outer radius of a ring with equal cross-section and

perimeter:

Tl
Up7'o/ile A pl'o/i/e (A.3)

471' U p7'O/ile
,

T2
U p7'O/ile

+
A pl'o/'ile (A.4)

471' Up7'o/ile

For example, if the cross-sectional area of a profile is a square with the

side a (and thus the area a2 and the perimeter 4a) from the equations
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derived above a ring with the same cross-sectional area will have a

inner and outer radius equal to:

a a
Tl

4 1r
a a

T2 - +
4 1r

(A.5)

(A.6)

By making this transformation of geometry, the solution for the veloc

ity distributions at the exit of the die is simplified and can be readily

solved as discussed in section 2.3.1.
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Appendix B

Method of Separation of Variables
for the Solution of a Fourth Order
Linear Partial Differential
Equation

The equation to be solved is the following:

with the following boundary conditions:

v,·lr=o O;'Vx

v,·lx=o 0; 'Vr

Vrl"=R O;'Vx

Vrlx=L 0; 'Vr

Vxlx=o Vm11l ; 'V r

Vxlr=R vAx, R)

Vxlx=L v(L, r)

\l1(r=O, x) constant 'V x.

(B.2)

(B.3)

(BA)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

In the last equation \l1 stands for the stream function which is defined
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as folIows:

v,.
181J1

- - -, V J '

l' 8x
181J1
l' 81' .

(B.lO)

To solve this boundary value problem it is assumed that the function

\l1(r, x) may be separated into two functions, each of them depending

only on one of the space variables 1', x, in the form:

lJI(r, x) = 1(1') :=:(x).

Combining equations (8.11) and (B.1) yields:

(B.11)

1"" :=: + 2 1":=:" + 1 :=:'111 - ~ 1':=:" - ~ 1'" :=: + 3) 1":=: - 3
3

1':=: = O.
r l' 1'- l'

(B.12)

Taking into account the definition of the stream function as expressed

by equation (B.lO), the boundary conditions yield:

~ 1(1')1"=0 = 0 (8.13)

~ l(r)I,.=R = 0 (B.14)

:=:'(x)lx=o = 0 (B.15)

:=:'(x)lr=L = 0 (B.16)

v,.I,.=o = ~ 1(1') :=:'(x) = 0; V x ==>
l'

V,.I,=R = ~ 1(1') :=:'(x) = 0; "Ix ==>
l'

v,lx=o = ~ 1(1') :=:'(x) = 0; "Ir ==>
l'

V,.lx=L = ~ 1(1') :=:'(x) = 0; "Ir ==>
l'

vrlx=o = ~ 1'(1') :=:(x) I
l' x=o

Vxlx=L = ~ 1'(1') :=:(x)IX=L
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~ T'(r) ~(X)I"=R
T(O) constant.

(B.19)

(B.20)

Rearranging equation (B.12) in descending order of derivatives of ~

(first separation) yields:

~"" T + ~" (2 T" - -r
2

TI) + ~ (T"" - ~ T'" + ~ T" - ~ TI) = O.
r r2 r3

(B.21)

Aseparation is feasible if ~ satisfies the following fourth-order differ

ential equation:

~"" + a~" + ß~ = 0 (B.22)

where a and ß are constants. This implies that the following differen

tial equations are valid:

2 T" - ~ T' - aT = 0
r

TII// - ~ T'" + ~ T" - 3
3

TI - ß T = O.
r r2 r

Solving equation B.23 for T" yields:

T" = !TI + ~T
r 2

(B.23)

(B.24)

(B.25)

which is further differentiated to provide the following equations:
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T'" = (- 2- + ~) T' + ~ (~TI + ~ T) = ~ T' + ~ T (B.26)
r2 2 r r 2 2 2 r

T"" = ~ T' - ~ T + ~ (~ T' + ~ T) =
2 r 2 r2 2 l' 2

0' (0'2 0' )-T' + - - - Y.
r 4 2r2

(B.27)

Substitution of the corresponding terms into equation (B.24) results

in

0' T'- +
r (

0'2 _ ~) T _ ~ (~TI + ~ T) + ~(~ T' + ~ T)
4 2 r2 r 2 2 r r2 r 2

- :3 T' - ßT = (:2 - ß) T = 0.(B.28)

This last equation reveals that (B.1) may be separated only if its

eigenvalues satisfy the following relationship:

(B.29)

Equations (B.23) and (B.24) thus provide no additional information

for the solution of the problem. This is reflected in the fact that

not all the boundary conditions may be satisfied. If the problem

of indirect extrusion is taken into consideration (vx(x, r)lx=ü = 0,

vx(x,r)IJ'=L = -V"Qm), the boundary conditions are easier to satisfy.
The problem can therefore be solved. The result for the axial velocity

must be compensated to account for the difference to the axial veloc

ity component in the case of direct extrusion. Equation (B.1) shows

that adding a constant correction factor of 6v to any of the velocity
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components does not have any influence on the solution as long as a

correction factor of:

(B.30)

is added to the stream function \IJ. For this new formulation of the

problem the boundary conditions are:

Vrl,·=o ~ T(r) 3'(x) =O;\:Ix ===} ~ T(r)lr=o = 0 (B.31)
r

V,I,.=R ~ T(r) 3'(x) =O;\:Ix ===} ~ T(r)I,.=R = 0 (B.32)
r

V,.I,,=O = ~ T(r) 3'(x) = 0; \:Ir ===} 3'(X)!.r=o = 0 (B.33)
r

V,·lx=L = ~ T(r) 3'(x) = 0; \:Ir ===} 3'(x)l.r=L = 0 (B.34)
r

v.rlx=o = ~ T'(r) 3(X)! = 0 ===} 3(x)I.1:=o = 0 (B.35)
r x=O

V.rlx=L = ~ T'(r) 3(x)I.1:=L v(L, r) - V,.am (B.36)

V.1:lr=R = ~ T'(r) 3(x)I,.=R V.I(x, R) - V,."m· (B.37)

From the first boundary condition, it can immediately be deduced that

the stream function \IJ vanishes at the axis of symmetry (r = 0) 1 and is

therefore constant. The introduction of the following transformation:

f(r) = ~ T'(r)
r

into equation (B.25) yields the following expression:

") 1 '() a (f(r +-f r --fr)=O.
r 2
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The inverse transform of (B.38) thus reads as folIows:

Y(r) 2r J'(r)
0'

(B.40)

which, together with the following substitution,

2

leads to the following Bessel equation of zero order1:

(B.41)

f"(r) + ~ J'(r) + w2 f(r)
r

The boundary conditions

O. (B.42)

o

0,

(B.43)

(B.44)

under consideration of equation (B.40), lead to:

J' (r) 1,.=0

J'(r)I,.=R
-----------

o

O.

(B.45)

(B.46)

'See f-I. N. Özi~ik. Heat Conduction, Wiley & Sons, 2nd edition, 1993; J.W. Brown, R. and V.
Churchill. Fourier Series and Boundary Value Problems, f-IcGraw-Hill, 5th edition. 1993.
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The eigenvalues Wi for a normed radius of one may now be calculated.

The functions fi (r) corresponding to each eigenvalue Wi are the Bessel

functions of zero order. Any velocity distribution vx(r) can now be

expressed as a linear combination of the Bessel functions f;(r). The

coefficients of the Bessel functions, "-i, may be calculated by means of

the following formula:

,.=1
.r r v,.(r) fi(r) dr

,.=0
,.=1
.r r H(r) dr

,.=0

(B.47)

Numerical values of the Bessel functions may be found tabulated in

standard references2 If equation (B.1) is solved as indicated above

(first separation), the boundary condition:

(B.48)

cannot be satisfied for a general velocity distribution vx(x, r). This

velocity distribution vx(x, r) will result from the solution and may not

be predetermined. If the velocity at the surface vx(x, R) is predeter

mined and the aforementioned boundary condition must be satisfied,

another approach must be taken to find a solution. In this case equa

tion (B.12) must be rearranged in descending order of derivatives of

Y (second separation). The solution is then developed in a similar

manner to the one shown for the first separation. For the model in

question the first separation was chosen3 .

lSee. for instance. H. S. Carslaw and J.c. Jaeger. Conduction of Heat in Solids. Oxford Uni
\'ersity Press. 2nd. edition, 1959.

3Details to the solution with the second separation are found in: A.Sclullid. Basisinformationen
der ~lodellbildung des Strangprozesses, Technical Report 96/01. Alusuisse-Lonza Services AG,
1996.
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Appendix C

Solving the Equation for the
Distribution of Pressure

The pressure distribution, as already described, mayaiso be expressed

in terms of the stream function \lJ. It then takes the following form:

8p(r,x) = I.l [~(_~ 8
2

\lJ) _ ~83\lJ] (C.l)
8 r 8 r r 8r 8x r 8 x3 .

Introduction of the two separation functions Y and =: into the last

equation leads to the following expression:

8 p(r, x) = I.l [_~ (~Y'(r)=:'(x)) - ~ Y(r) =:"'(x)]. (C.2)
8r 8r r r

Applying the identities (B.38) and (BAO) to the last equation results

in:

By integrating the last equation the following result is obtained:

[

,='" (x)]
p(r, x) = I.l f - =:'(x) + ~w2 + <p(x) ,
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where ip(x) is an unknown funtion of the space coordinate x. To

determine ip(x) we first elerive the last equation with respect to the

spatial coordinate x:

op(r, x) = f [_ ="() :=:1I11(X)] '()'" J.L ~x+ ? +ipx.
uX w-

(C.5)

The introduction of the stream function into equation (2.22) anel sub

sequent applications of identities (B.38) anel (BAO) yield the following

expression for the distribution of pressure:

op~r,x) = J.L[:=:(x)(~YII'(r)+ 1
3
Y'(r)- \ YII(r))+~Y'(r):=:II(x)].

x r r r- r
(C.6)

Considering equations (B.25) and (B.26) as weil as the identities

(BAO) and (BAI), the last two equations may be set equal to pro

vide:

[
-1111 ( )]

J.Lf w2:=:(x) - 2:=:"(X) + .:::. w2X + ip'(x) = 0 (C.7)

Equation (B.22) forces the term in parentheses to vanish. It may thus

be conclueled that:

ip'(x) = 0 --+ ip(x) = constant.
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The pressure distribution is therefore given by:

+ c (C.9)

where c is an integration constant. The integration constant may be

determined by assuming zero pressure at the exit of the die. The

assumptions for the velocity and pressure distributions within the die

(Hagen-Pouseuille flow) mentioned in chapter 2 imply that:

ap(r, x) 1 0 ( aVl')oX = f.l ~ 0 r r 07: = constant. (C.lO)

The above equation leads to the following expression for the pressure

drop in the die:

CA
6p( x) = 2 f.l 6x R2 (C.l1)

where 6x is width of the die. C and Aare the constants defined in

equation (2.50). The integration constant in equation (2.65) is readily

derived from the following relationship:

(C.12)
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Appendix D

Smoothing Algorithm

When the heat conduction equation with heat generation terms as

given by:

8T
8t

(0.1)

is solved numerically, oscillations may show up if the size of the

discretization mesh used is not properly chosen. This problem can

be avoided by reducing the mesh size of the discretization grid.

However, since the computation time rises markedly when the size

of the mesh is reduced, it is convenient to tackle the problem of

numerical oscillations by means of a different approach. In this thesis

a smoothing algorithm was used for the solution of the above equation

by means of numerical methods.

First, it is convenient to recast the classical approximation approach.

Let three neighboring points i-I, i, and i + 1 of the mesh be given.

The size of the mesh is denoted by h, and the values of the function at

these points are denoted by fi-l, f;, and fi+l, respectively. A second

degree polynomial is fitted through these points, such that the origin

lies at point i, and that it exactly passes through fi-l, f;, and f;+I'

That is:

P(x) ax2 + bx + c
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with the following conditions:

P(O)

P(-h)

P(+h)

(D.3)

(DA)

(D.5)

The coefficients a, b, and c are readily derived from the last equations:

C li (D.6)

b
li+1 - li-1 (D.7)

2h
li+1 + 1;-1 - 21i (D.8)a

2h2

For the first and second derivatives at the origin (point i) the following

expressions are obtained:

P'(O)

P"(O)

1;+1 - li-l
2h

li+1 + 1;-1 - 21i
h2

(D.9)

(D.lO)

It is clear from the last equations that only immediate neighbors

have an influence on the subsequent development of each point.

Since the fitted polynomial passes exactly through the funct.ion

values li-I, j;, and li+1 at the given points, numerical oscillations

are fully transferred to immediate neighboring points. Natural

damping of these oscillations can sometimes take place if the process

is self-dissipative. However, if the convection term - \7v in equation

(D.l) is dominant, this natural dissipation and therefore numerical

damping of the oscillations does not take place. The numerical values

must be smoothed.

The smoothing algorithm proposed in this thesis is based on the fol

lowing idea: let five points i - 2, i-I, i, i + 1, and i + 2 with their

respective function values li-2, li-1, j;, li+1, and li+2 be given. The
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size of the mesh is denoted by h. A second-degree polynomial in x,
P(x) with origin at i, is fitted through these points in such a manner

that it exactly passes through li and that the difference between the

remaining function values li-2, li-I, 1i+1, li+2 and the approximated
function values at points i - 2, i - 1, i + 1, i + 2 is minimized in a

least-squares sense. That is:

P(x)

P(O)

P(-h)

P( -2h)

P(h)

P(2h)

~-I

~-2

~+l

~i+2

ax2 + bx + C

li = c

ah2 - bh + f;

4ah2
- 2bh + li

ah2 + bh + li

4ah2 + 2bh + li

(ah2 - bh + li - li-l)

(4ah2 - 2bh + li - ft-2)

(ah2 + bh + li - Ii+d

(4ah2 + 2bh + li - li+2)

with:

o

O.

O(~~1 + ~~2 + ~~1 + ~~2)

oa
O(~~1 + ~~2 + ~~I + ~~2)

ob
From the above equations the following expressions results:

(D.ll)

(D.12)

(D.13)

P(O)

P(O)

P"(O)

li
211+2 + li+1 - 1i-l - 2f;-2

lOh
41;+2 + 11+1 + 1;-1 + 4f;-2 - 10Ii

17h2

In this case the function value for a particular point is not only

influenced by its immediate neighboring points, but also by neigh

boring points of the latter. In the model presented in this thesis,
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two different types of boundary conditions are founcl. BOllndary con

clitions between clifferent bodies (physical boundary) and boundary

conclitions between the various zones into which the billet was clivided

(numerical boundary). It is common for boundary conditions 1 to

introcluce fictitious nodes and fictitious temperatures at the borclers

of the body or zone in question.

In the case of a physical boundary, the boundary condition is expressed

as folIows:

aT = hc (T, _ T) .an k P

Here, T stands for the temperature at the surface of the body, Tp for its

respective partner temperature, hc for the contact concluctance, and

k for the thermal concluctivity. n is anormal vector to the surface.

With the uSllal approximation algorithm this fictitious temperature is

given by:

2hhc
TF = k (~J - !i) + fi±J.

The smoothing algorithm proposed here yielcls the following expres

sion:
lOhhc

T Fl + 2TF2 =~ (Tp - j;) + f;±l + 2fi±2.

Since the boundary condition is of rank 1, there is still one degree of

freeclom that rnay be exploited. This could be used for example for

the following simplification:

TFl = TF2

In the case of a numerical bounclary the idea is to choose the fictitious

temperarature such that the transfer from one zone to the other is as

smooth as possible. In the case of the classical approximation, only

the continuity of the temperature gradient can be demandecl. With

the smoothing algorithm previusly presented, the curvature of the

graclient mayaIso be forcecl to be continous. Let H be the mesh size

outside of, and h the mesh size in the interior of the zone in question.

'See ~1. N. Özi~ik. Heat Conduction, Wile;' & Sons, 2nd. edition, 1993
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Let E be:
H

E =
h

The following expressions result for the smoothing algorithm:

TF+J -34ii + 20b - 101i + 81i-2 + 31i-1

TF+2 17ii - 5b + 51i - 31i-2 - li-I

TF - I -34ii - 20b - 101; + 81;-2 + 31;-1

TF - 2 17ii + 5b + 51i - 31i-2 - li-I'

The following variables must be calculated on-line:

ii a"f2 + aJ2fj

b al2f2 + a22fl

c li

where:

f 2 = -4Tp±2E2 - Tp±J E2 + 5(E2+ 1)1; - 41i±2 - li±l

f l = ± (2Tp±2E + Tp±1 E + 3(1 - E)li - 21i±2 - li±Jl.

The coefficients all, a12, and an may be calculated apriori by means

of the following relationships:

-"I
all

(Cl''Y - ß2)
ß

al2
(Cl''Y - ß2)

Cl'
an + (Cl''Y - ß2)

where:

Cl' 17(1 + E4
)

ß 9(1-E3)

"I 5(1 + E2)
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Appendix E

Simulation of the Extrusion
Process

E.l Simulation of the Container

Temperalure Distribution 01 Container al I = 25 s

500
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_460
oE.

:s 440
;;;

8-
E 420

{:'.

400

380

-0.2

-0.4

-0.6

-0.8

-1 0
Normed radius [r/rcontU"le~

Figure E.l: Temperature distribution 0/ the container.

....
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Temperalure Dislribution 01 Conlainer at I = 50 s
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Temperalure Distribution 01 Container all = 75 s
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Figure E.2: Tempemture distribution in the container.
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Temperature Distribution of Container al t = 100 S
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Temperature Distributton of Container al I = 125 s
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Figure E.3: Temperature distribution in the container.
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Temperature Distribution 01 Container at I = 150 5

500

480

E
460

~ 440
~
1:.
E 420
!!

400

380

-0.2

-0.4

-0.6

Normed lenglh [IIlcontaine~

-0.8

-1

0.4

Normed radius (r/rcontaine)

Figure E.4: Temperature distribution in the container.
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E.2
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Simulation of the Die
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Figure E.5: Temperature distribution 01 the die.
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Figure E.6: Temperature distribution 01 the die.
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Temperalure Distribution ollhe Die all = 100 s
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Figure E.7: Temperature distribution 0/ the die.
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Figure E.8: Tempemture distribution of the die.
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E.3 Simulation of the Mandrei

Temperalure Distributk>n ollhe Mandrel all = 25 5
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0.4
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mandfei
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Figure E.9: Tempemture distribution 0/ the mandrel.
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Temperalure Dlstribulion of the Mandrel al I = 50 s
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Figure E.1O: Temperature distribution 0/ the mandrel.
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Temperalure Dislribution of lhe Mandrei all = 100 s
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Figure E.ll: Temperature distribution of the mandrel.
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Temperalure Distribution ollhe Mandrei at t = 150 s
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Figure E.12: Temperature disi1'ibution oi the mandrel.
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Appendix F

Equations of the Simplified Model
for the Various Bodies Involved

F.1 Equations of the Model Before the
First Disc is Extruded

n+8

I , I I I
I I I I I

I 2 : :i-I: i :i+l:
I I I I I
I I I I I
I I I I I_ .~._I_·I~~·_J_· .

n+9

Figure F.l: Disc model of extrusion before the first disc is extruded.

Für disc 1:

dT1 (Tl - T2 )
6.zAOP..llCPAldi = - Al/ll+shR(TI - T,,+s) - kAIAo 6.z

+ AI/n+SVf,.kfVram - PAICPAIAoTIVram (F.1)

Für discs 2 ~ i ~ n - 1:

dTi (T,-l - T,)
6.zAoPAICPAldi = - Ai / 71 +shR(T, - T,,+s) + kAIAo 6.z

(T,-T,+l)
- kAIAo 6.z + Ai/n+SVf,.kfV,.am + PAICPAIAo(T,-1 - T,)vmm

(F.2)
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For discs n to n + 2 (deformation zone):

dTn (T,'-1 - T,,) (T" - T,,+I)
V"PAICPAldi = 2kAl Ao (.0.z + d) - 2kA1 A n/,,+1 (R - T2)

2k A
(7;, - Tn+2) 2k A (7;, - T,,+~)

- Al n/,,+2 - Al 1 (A + d)Tl uZm

+ PAICPAIAo(Tn-l - 7;,)vmm + k f f. Vn (F.3)

dT,'+l (Tn+1 - Tn)
Vn+1PAICPAI~ = - 2kAIAnln+l (R - T2)

- A n+I/,,+8 hR(T,,+1 - 7;'+8) - AI1+I/n+3hFe/AI(T,,+1 - T,,+3) (FA)

dTn +2 _ 2k A (7;'+2 - T,,)
Vn+2PAICPAI~ - - AI n/n+2 Tl

For disc n + 3:

dT,,+3
V,'+3PFeCPFe~ = hFe/AIA"+I/n+3(Tn+l - Tn+3)

- hFe/FeAn+3/n+9(TI1+3 - T,,+9)

- Al1+3hFe/.-lil·(T,,+3 - Tail·)

For disc n + 4:

V. dT,,+~ 2k A (T" - TnH ) + 2k A (7;'+6 - Tn+~)
11+~PAICPAI~ = "AI 1 (.0.zm + d) "AI 1 (.0.zm + .0.z1)

- hFe/AIAn+3/n+4(Tn+4 - T,,+3)

- hFe/AIAn+~/n+5(Tl1+~ - 7;'+5)

(F.7)
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For disc n + 5:

dTn+5
V,'+5PFeCPFe~ = - hFp/A/AI1+2/1I+5(TII+5 - T"+2)

+ h Fe/ FeA7I+~/1I+5(T,,+~ - T,'+5)

- An+5hFe/A;,.(T,'+5 - Ta;,.) (F.8)

For disc n + 6:

V. dTI1+6 _ 2k. A (T,'+7 - T,'+6) 2k A (T,'+6 - T,,+~)
1I+6PA/CPAI-dt - 4/ l (A A) - 4/ I (A A)

. uZj + uZ2 . uZm + uZj

- hFe/A;,.An+6(T,,+6 - 'Tc,;,.)

+ PA/CPAIAo(T,,+~ - T I1 +6)V,.nm (F.9)

For disc n + 7:

V. dT"+7
1I+7PA/CPA/~

(F.ll)

For disc n + 8 (container):

dT,,+8 )
V,'+8PFeCPFe~ = Al/n+8hR(TI-Tn+8) + A2/11+8hR(T2-Tn+8 + ...

+ A i / II +8hR(T, - T,'+8) + ... + An-l/n+8hR(Tn-l - Tn+8)

+ An+l/II+8hR(T,'+1 - T I1 +8) - An+8hFe/Aü·(Tn+8 - Ta;")

- hFe/FeAn+8/n+9(T,,+8 - Tn+9)
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Für disc n + 9:

dT,,+9
VII+9PFeCPFe~ = hFe/FeAlI+ /11 9(TII+8 - T,'+9)

+ hFe/ Fe AII+3/11+9(T,,+3 - T,'+9)

(F.12)

F.2 Equations of the Model Before the
Second Disc is Extruded

n+8

I I
I I t I

2 :i-I: i :i+l:
• I I I
I I I I

I I I I •

-- -_""'-'-"IiJ- J
-- -

n+9

Figure F.2: Disc model of e.Ttrusion before second disc is extruded.

Für disc 1:

dTI = 0
dt

(F.13)

Für disc 2:

dT2
6.zAoPA/CPAr-di

Für discs 3 :S i :S n - 1:

dT, (7;-1 - 7;)
6.ZAOPAICPAIdt: = - Ai / n+ hR(Ti - Tn 8) + kA1Ao 6.z

(Ti - Ti+d
- kA1Ao 6.z + Ai/n+ vf,·kfvmm + PAICPA1 Ao(7;-1 - T,)Vmm

(F.15 )
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For disc n + 8 (container):

dTn +8
VII+8PFeCPFe~ = A2/n+8hR(T2 - T n+8) + ... + A i / n+8h R(T; - T n+8)

+ ... + An-I/II+8hR(T,'-1 - T n+8) + A n+1/ n+ h R(Tn+1 - T,1+8)

- A1!+8hFe/Aü·(Tn+8 - Ta;,·) - hFe/FeAn+8/n+9(Tn+8 - T n+9) (F.16)

For the remaining zones, the respective equations stated in seetion F.1

are still valid.
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Appendix G

State Estimation via Extended
KaIman Filtering

Slale 1: Estimated and Real Value State 3: Estimated and Real Vatue
550 55O,---------------,
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- Stale 3
- Eslimation 01 Siale 3

200150100
time [51
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400l-------------'

o400OL---50~--'-00-,---'50---:-'200

Iime[s]

Slale 2: Estimaled and Real Value
550,--------------,

Stale 4: Estimated and Real Value
550,-------------,

- Slate 4
-- Estimation of stale 4

~ 500 - Siale 2
~ -- Estimahon 0' slate 2

;;

8.
~ 450 ' .. '\1\

200150'00
time (sI

50
400 --------------'

o400OL---,-50~--1-00---,50---J200

time (s]

Figure G.I: Estimation 01 states via EKF.
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Siale 5" Estimaled and Real Value Slale 9: ESllmaled and Real Value
5SO,--------------, 550,-------------,
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- Stale 6
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~500 11

~

I
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....
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Figure G.2: Estimation of states via EKF.
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