Doctoral Thesis

A measurement of K0, K0->3pi0 and an improved test of CPT

Author(s):
Bargassa, Pedram

Publication Date:
1999

Permanent Link:
https://doi.org/10.3929/ethz-a-003823132

Rights / License:
In Copyright - Non-Commercial Use Permitted
A measurement of $K^0, \overline{K}^0 \rightarrow 3\pi^0$ and an improved test of CPT

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH
for the degree of
DOCTOR OF NATURAL SCIENCES

presented by
PEDRAÍME BARGASSA
born 31 December 1968
in Tehran, Iran

accepted on the recommendation of
PD Dr. T. Nakada, referent
Prof. Dr. H.-J. Gerber, co-referent
Dr. A. Schopper, co-referent

July 1999
Abstract

The CPLEAR experiment at CERN is aimed to study CP-, T- and CPT-symmetries in the neutral-kaon system. The neutral kaons are produced in $p\bar{p}$ annihilations at rest:

$$pp \rightarrow K^0K^+\pi^-, K^0K^-\pi^+.$$

The observation of the sign of the accompanying charged kaon allows one to determine for each event, whether the neutral kaon is a K^0 or a K^0. This gives to CPLEAR the capacity of extracting relevant physical parameters through time-dependent asymmetries between the rates of initially pure K^0 and \bar{K}^0 decaying into various final states.

In this work an analysis of $K^0,\bar{K}^0 \rightarrow \pi^0\pi^0\pi^0$ decays is presented. This analysis has lead to the determination of the real and imaginary part of the CP-violation parameter η_{000} which are measured to be:

$$Re(\eta_{000}) = 0.18 \pm 0.14(stat) \pm 0.06(syst)$$

$$Im(\eta_{000}) = 0.15 \pm 0.20(stat) \pm 0.03(syst).$$

These values, although still compatible with CP-conservation, represent the best sensitivity to CP-violation in this decay mode; they lead to an upper limit $|\eta_{000}| < 0.58$ at 90% confidence level. Using the result on $Re(\eta_{000})$ and $Im(\eta_{000})$ together with unitarity relations in the neutral-kaon system, the imaginary part of the CPT-violation parameter δ is found to be:

$$Im(\delta) = (1.3 \pm 3.6) \cdot 10^{-5}.$$

This value is in agreement with CPT-invariance; it leads to a mass difference between the neutral kaon and its antiparticle:

$$M_{K^0} - M_{\bar{K}^0} = (1.8 \pm 5.1) \cdot 10^{-19}GeV/c^2.$$

The limit on this mass difference is of the order of the inverse of the Planck scale and experimentally confirms the CPT-invariance in the neutral-kaon system up to these scales.