Generalized Modular Decompositions and the Recognition of Classes of Perfectly Orderable Graphs

A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences
presented by
THOMAS RASCHLE
Dipl. Informatik-Ing. ETH
born 1.5.1960
citizen of Bütschwil, Switzerland
accepted on the recommendation of
Prof. Dr. K. Simon, examiner
Prof. Dr. A. Hertz, co-examiner

Acknowledgment

First of all, I would like to thank Professor Klaus Simon for introducing me to the fascinating theory of perfcct graphs and for giving me the opportunity to do research in this field. Without his support and his encouragement, this thesis would not exist. I am also grateful to Professor Alain Hertz for his acceptance to be my co-examiner, for his careful reading and for the many suggestions which helped improving this text.

Many thanks go to Dr. Andrea Sterbini for introducing me to Ma's method of recognizing threshold dimension two and for the agreeable collaboration over the past years. Many thanks also go to Professor Uri Peled and Professor N.V.R. Mahadev for the enlightening discussions on threshold graphs and for their interest in my work.

It is also a pleasure to thank my officemate Jakob Magun: Discussing graph theory and many other things with him was always great fun. Further thanks go to all my friends in the Graph Theory Group at the ETH for creating an open, stimulating and relaxed atmosphere. This includes Davide Crippa, Daniele Degiorgi, Nicola Galli, Bernhard Seybold and Paul Trunz.

Last but not least, I wish to thank Doris for bearing with me when I simply could not stop talking about graph problems.

Abstract

A great many problems are naturally formulated in terms of objects and connections between them and are therefore best modeled as graphs. To solve these problems on a computer, efficient algorithms are required. Unfortunately, there are many graph problems for which no efficient algorithm has been found. Classical examples are the determination of the clique number and the calculation of the chromatic number. These examples are NP-complete, and it is widely believed that no NP-complete problem can be solved efficiently.

On the other hand, many graphs arising from real world problems have a special structure, which often makes solving the problem easier. For instance, the clique number and the chromatic number can be found in linear time if the graph is perfectly orderable and a perfect order is given. Recognizing perfectly orderable graphs, however, is NPcomplete.

In this thesis, new algorithms for recognizing subclasses of perfectly orderable graphs are developed. To begin with, a recognition algorithm for triangulated graphs is presented which is linear in the size of the complement. Next, classical results on comparability graphs are reviewed. These results are then generalized in two ways.

First, modules are generalized such that divide and conquer methods are still applicable to solve graph problems. In particular, two types of generalized modules are further investigated. These investigations lead to a new unique graph decomposition, which refines the modular decomposition. Second, Gallar's results on the P_{3}-structure are translated into analogous results on the P_{4}-structure. The arising theorems are then used to design efficient algorithms for recognizing and orienting P_{4}-comparability graphs and similar classes of perfectly orderable graphs.

Another part of this thesis deals with the recognition of graphs with threshold dimension two. In 1982, Ibaraki and Peled conjectured that a graph has threshold dimension two if and only if its conflict graph is bipartite. A proof of this conjecture is given based on a theorem on generalized modules. Furthermore, a linear time algorithm for recognizing cobithreshold graphs is presented.

Zusammenfassung

Viele Probleme sind durch Beziehungen zwischen Objekten charakterisiert und lassen sich deshalb sehr gut als Graphen modellieren. Zur Lösung dieser Probleme auf dem Computer werden effiziente Algorithmen benötigt. Leider wurde für viele Graphenprobleme bis heute kein effizienter Algorithmus gefunden. Klassische Beispiele dafür sind die Bestimmung der Cliquenzahl und die Berechnung der chromatischen Zahl. Diese Beispiele sind NP-vollständig, und es wird angenommen, dass kein NP-vollständiges Problem effizient gelöst werden kann.

Viele sich aus praktischen Anwendungen ergebende Graphen haben allerdings eine spezielle Struktur, die das Lösen des Problems oft einfacher macht. Beispielsweise kann die Cliquenzahl und die Färbungszahl in linearer Zeit gefunden werden, falls der gegebene Graph perfekt orientierbar ist und eine perfekte Ordnung gefunden ist. Die Erkennung perfekt orientierbarer Graphen ist aber wiederum NP-vollständig.

In dieser Arbeit werden neue Algorithmen zur Erkennung von Unterklassen perfekt orientierbarer Graphen entwickelt. Zunächst wird ein Erkennungsalgorithmus für Dreiecksgraphen vorgestellt, dessen Laufzeit linear in der Grösse des Komplements ist. Danach werden klassische Resultate über transitiv orientierbare Graphen besprochen. Diese Resultate werden dann auf zwei Arten verallgemeinert.

Erstens werden Module so verallgemeinert, dass Teile-und-HerrscheMethoden zur Lösung von Graphenproblemen immer noch anwendbar sind. Zwei Typen von verallgemeinerten Modulen werden genauer untersucht. Diese Untersuchungen führen auf eine neue eindeutige Graphenzerlegung, welche eine Verfeinerung der Modulzerlegung darstellt. Zweitens werden Gallai's Resultate uiber die P_{3}-Struktur in analoge Resultate bezüglich der P_{4}-Struktur übersetzt. Die sich daraus ergebenden Sätze werden unter anderem zur Konstruktion effizienter Algorithmen zur Erkennung und Orientierung P_{4}-transitiv orientierbarer Graphen benutzt.

Ein weiterer Teil dieser Arbeit behandelt die Erkennung von Graphen mit Threshold Dimension zwei. Bereits 1982 äusserten Ibaraki und Peled die Vermutung, dass ein Graph genau dann Threshold Dimension zwei hat, wenn sein Konfliktgraph zweifärbbar ist. Diese Vermutung wird basierend auf einem Satz über verallgemeinerte Module bewiesen. Auch wird ein linearer Algorithmus zur Erkennung von Cobithresholdgraphen vorgestellt.

Contents

1 Introduction 1
2 Preliminaries 7
2.1 Basic terminology 8
2.2 Perfect graphs 11
2.2.1 Perfectly orderable graphs 12
2.2.2 Triangulated graphs 14
2.3 Graph algorithms on the complement 15
2.3.1 Breath first search 15
2.3.2 Lexicographic breath first search 18
2.3.3 Testing a perfect elimination scheme 20
3 Comparability graphs 25
3.1 Cographs 26
3.2 The modular decomposition 28
3.3 Comparability graphs 30
3.3.1 $\quad P_{3}$-classes 31
3.3.2 Recognition and orientation algorithms 33
3.4 Special prime graphs 36
4 Generalizations of the modular decomposition 39
4.1 Generalized modules 40
4.2 Bipartite modules 43
4.3 Split modules 47
4.4 The combined decomposition 55
$5 \quad P_{4}$-comparability graphs 58
$5.1 \quad P_{4}$-components 60
5.2 Gallai-type theorems 68
5.3 Prime split graphs 75
5.4 Computing the split-modular decomposition 80
5.5 Recognizing and orienting P_{4}-comparability graphs 83
5.6 A general recognition algorithm 88
6 Graphs with Threshold Dimension Two 91
6.1 Threshold graphs 93
6.2 Previous results 96
6.3 Recognizing 2-threshold graphs 101
6.3.1 Part 1 101
6.3.2 Part 2 103
6.3.3 Part 3 109
7 Cobithreshold graphs 117
7.1 Background and terminology 118
7.2 Threshold completions 120
7.3 Special classes of cobithreshold graphs 124
7.4 Recognizing cobithreshold graphs 131
8 Conclusions 138
A List of Symbols 140
List of Figures 142
Bibliography 144
Index 151

Chapter 1

Introduction

Graph theory was founded by EULER in 1736 when he solved the Königsberger Bridge Problem, a famous problem of his days. In Köngisberg, there were two islands linked to each other and to the banks of the Pregel River by seven bridges as depicted in Figure 1.1. The problem was to start at a given land area, walk over each bridge precisely once and return to the starting point.

Figure 1.1: The map of a park in Königsberg, 1736.
Euler modeled the situation as a graph by replacing each land area with a vertex and each bridge with an edge that joined the corresponding vertices, see Figure 1.2. Rather than solving the problem for this specific graph, he developed a criterion for any given graph to be so traversable; namely, that the graph is connected and every vertex is incident to an even number of edges.

Since then, graphs have been studied intensively and graph theory has become a major branch of combinatorial mathematics. This is due

Figure 1.2: The graph of the Königsberg Bridge Problem.
to the fact that a great many problems are naturally formulated in terms of objects and connections between them and are therefore best modeled as graphs.

With the availability of computers, the interest in efficient algorithms for solving graph problems grew rapidly. The most common measure of the efficiency of an algorithm is the worst case complexity. It is a function in the size of the input and gives an upper bound for the number of operations that the algorithm performs on any input of the corresponding size.

The notion of complexity also led to a classification of problems into complexity classes [44,63]. The most important complexity classes are P and NP, the class of problems for which polynomial algorithms exist on a deterministic and nondeterministic Turing machine, respectively. To this day, no proof of $\mathrm{P} \neq \mathrm{NP}$ has been found, although it is widely believed that $\mathrm{P} \neq \mathrm{NP}$. Indeed, the security of most currently used cryptosystems is based on this assumption [70].

The hardest problems in NP are called NP-complete. They are defined to be those problems for which the existence of a polynomial algorithm would imply a polynomial algorithm for every other problem in NP. Unfortunately, many important graph problems are NP-complete. Classical examples are the calculation of the clique number or the chromatic number. Recent results have shown that even the approximation of these numbers up to certain factors is NP-complete [50, 4].

On the other hand, many graphs that arise from real world problems have a special structure. This special structure makes it often possible to solve problems in polynomial time that are NP-complete in general. Famous examples of such graphs are planar graphs and perfect graphs: Planar graphs can be drawn in the plane without crossings, and perfect graphs have only subgraphs whose clique number is equal to the chromatic number.

Whereas good recognition and optimization algorithms are known for planar graphs, the situation is less fortunate in case of perfect graphs. It is not even known whether the recognition of perfect graphs is in NP or not. Moreover, most NP-complete problems remain NP-complete when restricted to perfect graphs. A famous exception is the computation of the clique number and the chromatic number. In 1981, GRÖTSCHEL ET AL. [29] found a polynomial algorithm for computing a maximum clique and a minimum coloring for perfect graphs. Unfortunately their algorithm, the only known to date, makes use of the ellipsoid method and is therefore of mainly theoretical interest.

In search of certificates for perfection, Berge [6, 7] made two conjectures concerning perfect graphs. The first one, proved by Lovász [48] in 1972 and since then called the Perfect Graph Theorem, states that a graph is perfect if and only if its complement is perfect. A slightly stronger version of this theorem, the Semi-Strong Perfect Graph Theorem, was proved by ReED [69] in 1987 and asserts that the perfection of a graph solely depends on a derived hypergraph whose edges are the four element sets that induce a P_{4} (chordless path on four vertices).

Berge's second conjecture states that a graph is perfect if and only if it does not contain an odd hole or an odd antihole, that is, an odd chordless cycle of length greater than three or its complement. This conjecture, famous under the name Strong Perfect Graph Conjecture, is one of the most outstanding open problems in graph theory. The validity of the Strong Perfect Graph Conjecture, however, would not imply an easy method to recognize perfect graphs: Bienstock [8] has shown that it is NP-complete to test whether a graph has an odd hole, so it might be difficult to test whether a graph or its complement has an odd hole.

One possible way to overcome the difficulty in recognizing and optimizing perfect graphs is to consider large classes of perfect graphs. The Strong Perfect Graph Conjecture suggests that promising candidates are graphs defined by properties not satisfied by graphs with odd holes or odd antiholes. Moreover, in view of Reed's Semi-Strong Perfect Graph Theorem, natural classes of perfect graphs can be defined by properties associated with the P_{4}-structure. An example of such a class of graphs are perfectly orderable graphs.

Perfectly orderable graphs were introduced by ChVátal [10] in 1984 as those graphs which admit a perfect orientation, i.e., an acyclic orientation such that no $P_{4} a b c d$ is oriented $a \rightarrow b$ and $c \leftarrow d$. He showed
that a maximum clique and a minimum coloring can be found in linear time if a perfect orientation is given. This nice optimization behavior, however, is in stark contrast to the difficulties with the recognition. In 1990, Middendorf and Pfeiffer [56] proved that it is NP-complete to test whether a graph has a perfect orientation.

A class of perfectly orderable graphs that can be recognized in polynomial time are comparability graphs. They are defined as those graphs which admit an acyclic transitive orientation, i.e., an acyclic orientation such that no $P_{3} a b c$ is oriented $a \rightarrow b$ and $b \rightarrow c$. Consequently, the orientation of one edge in a P_{3} implies the orientation of the other edge in the same P_{3}. The equivalence classes of the transitive closure of this P_{3}-relation, called P_{3}-classes for short, were first studied by GhouilaHouri [24]. He showed that a graph is a comparability graph if and only if its P_{3}-classes are transitively orientable. His proof relied on the fact that the set of vertices incident to edges in the same P_{3}-class is a module, that is, a vertex set such that vertices not in the set are adjacent to every or no vertex in the set.

A penetrating study of modules and the P_{3}-structure was conducted by Gallai [23]. He showed that maximal nontrivial modules are disjoint whenever the given graph and its complement are connected. Based on this result, he proposed a unique graph decomposition, nowadays known as modular decomposition. Furthermore, he observed that if a graph and its complement are connected, then all edges not contained in maximal nontrivial modules belong to the same P_{3}-class. This observation leads to simple algorithms for computing the modular decomposition and for recognizing and orienting comparability graphs [57].

Besides its connection with comparability graphs, the modular decomposition is interesting because it allows the application of divide and conquer methods to solve graph problems [59, 58]. In Chapter 4, we generalize modules in a way that still admits the application of divide and conquer strategies. We then focus on two types of generalized modules, which we call bipartite modules and split modules. Those generalized modules are used to obtain a new unique decomposition which generalizes the decompositions found by Babel and Olariu [5] and by Raschle and Simon [67].

In Chapter 5 , our results on split modules are applied to P_{4}-comparability graphs. P_{4}-comparability graphs were introduced by Hoàng and REED [39] as those graphs which admit an acyclic orientation such that every P_{4} is transitively oriented. From this definition, it follows that P_{4} -
comparability graphs are perfectly orderable and that the orientation of one edge in a P_{4} implies the orientation of the other edges in the same P_{4}. Thus the crucial structure here are the P_{4}-classes, that is, the equivalence classes of the transitive closure of the relation between edges in which two edges are in relation if they belong to the same P_{4}.

Together with P_{4}-classes, we study the relation between P_{4} s in which two $P_{4} \mathrm{~s}$ are in relation if they have three common vertices. In this thesis, the equivalence classes of the transitive closure of the above relation between P_{4} s are called strong P_{4}-components ${ }^{1}$. Several GaLlai-type results on P_{4}-components are obtained. In particular, we generalize ChVÀtal's theorem [12] on 3 -chains by showing that a graph without nontrivial modules and split modules has at most one strong P_{4} component. Our findings are then used to compute the decomposition of a graph into maximal nontrivial split modules and to design an improved algorithm for orienting P_{4}-comparability graphs. As a further application, we show that a perfect orientation can be found by substituting two (marker) vertices for split modules. This substitution yields a general recognition algorithm for many classes of perfectly orderable graphs, including Hertz' bipartable graphs [35].

An important subclass of bipartable graphs are graphs with threshold dimension two. The threshold dimension of a graph introduced by Chvàtal and Hammer [13] is the smallest integer k such that the graph can be written as the (edge-)intersection of k threshold graphs, and a threshold graph is a graph without induced P_{4}, C_{4} and $2 K_{2}$. Threshold graphs and the threshold dimension have applications in 0 1 programming, in psychology and in the synchronization of parallel processes [53].

In 1983, Yannakakis [76] showed that it is NP-complete to test whether an arbitrary graph has threshold dimension k for all $k \geq 3$. The case $k=2$ was open for over a decade. Indeed, it was widely believed that this problem is also NP-complete. Recently, however, Raschle and Simon [66] found an $O\left(|V|^{4}\right)$ time algorithm for recognizing graphs with threshold dimension two. Their algorithm represents a constructive proof of a conjecture made by Ibaraki and Peled [41] which states that recognizing graphs with threshold dimension two is equivalent to testing whether an associated conflict graph is bipartite. In Chapter 6, we present an improved version of Raschle and Simon's algorithm based on a new structure theorem concerning special cobipartite and

[^0]split modules.
A large subclass of the complement of graphs with threshold dimension two are cobithreshold graphs. They are the union of two threshold graphs such that every clique in the union is a clique in one of the two threshold graphs. Cobithreshold graphs were first investigated by Mahadev and Hammer [31] in connection with biregular boolean functions. Mailadev and Hammer also found an $O\left(|E|^{2}\right)$ recognition algorithm for this class of graphs. In Chapter 7, we analyze the structure of cobithreshold graphs and give a linear time recognition algorithm.

Chapter 2

Preliminaries

This chapter provides the background for the subsequent chapters. In the first section, we introduce our graph theoretic terminology. Regarding undirected graphs, it is compatible with Bondy and Murty [9], Golumbic [27] and Mahadev and Peled [53]. For directed graphs, however, we use a more intuitive notation. For instance, we write $\vec{G}=(V, \vec{E})$ for a directed graph and $v \rightarrow w$ or $w \leftarrow v$ for an edge from v to w.

In the second section, we present classical results on perfect graphs and discuss open problems in connection with the recognition and optimization of this class of graphs. We then focus on perfectly orderable graphs and review ChVÀtal's result on their nice optimization behavior. Since the recognition of perfectly orderable graphs is NP-complete, one is naturally interested in finding classes of perfectly orderable graphs that can be recognized in polynomial time. As a first example of such a class of graphs, we discuss triangulated graphs.

Finally, the last section provides the algorithmical background which is needed to obtain the complexity results in the later chapters. Classical graph algorithms like BFS and LexBFS are modified such that they can be carried out on the complement in time proportional to the size of the graph. LexBFS on the complement is used to test whether the complement of a graph is triangulated. If the complement is not triangulated, we show how to find the complement of a chordless cycle of length greater than three in time proportional to the size of the graph.

2.1 Basic terminology

An undirected graph $G=(V, E)$ consists of a set of vertices V and a collection of edges E, and each edge is an unordered pair of vertices. We represent a graph $G=(V, E)$ by drawing the vertices as points and by drawing a line between the points v and w if and only if the edge $v w$ exists, see for instance Figure 2.1. Unless stated otherwise, we do not allow loops and parallel edges, thus no edge has the form $v v$ and no two edges in E denote the same unordered pair.

If $G=(V, E)$ is a graph and $v w$ an edge, then v is incident to $v w$ and adjacent to w. In this case, we also say that v sees w. Similarly, we say that v misses w if v and w are two nonadjacent vertices. A dominating vertex is a vertex that sees every other vertex, and an isolated vertex misses all other vertices. A vertex is said to be covered by an edge set $F \subseteq E$ if it is incident to at least one edge in F, and the set $V(F)$ of all vertices covered by F is called the cover of F.

The neighborhood $N(v)$ of a vertex v is defined to be the set of vertices adjacent to v, and $\operatorname{deg}(v)=|N(\boldsymbol{v})|$ is the degree of v. The closed neighborhood $N[v]=N(v) \cup\{v\}$ is the neighborhood including the vertex v, and the non-neighborhood $\bar{N}(v)=V-N[v]$ is the set of vertices missed by v. It is also common to use the term "neighborhood" for more than one vertex: The neighborhood $N(A)$ of a subset A of V is the set of vertices not in A but adjacent to at least one vertex in A, i.e.

$$
N(A)=\bigcup_{a \in A} N(a)-A
$$

The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$ that arises from G by replacing edges with nonedges and vice versa. Consequently, the neighborhood of a vertex v becomes the non-neighborhood of v in the complement and vice versa.

A graph $H=(W, F)$ is a subgraph of $G=(V, E)$ if $W \subseteq V$ and $F \subseteq E$. Given a subset W of V and a subset F of E, special subgraphs are

- the subgraph spanned by F, that is, the graph $H=(V(F), F)$ where $V(F)$ denotes the set of vertices incident to some edges in F, and
- the subgraph induced by W, that is, the graph $G_{W}=(W, E(W))$ where $E(W)$ denotes the set of edges with both endpoints in W.

If a graph H is an induced subgraph of G, it is customary to say that H is contained in G. Furthermore, in this thesis, the term subgraph is always used for induced subgraphs.

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. If V_{1} and V_{2} are disjoint, we call this the disjoint union $G_{1}+G_{2}=\left(V_{1}+V_{2}, E_{1}+E_{2}\right)$. The graph that results from inserting every edge between V_{1} and V_{2} into the disjoint union is called the join of G_{1} and G_{2}, denoted by $G_{1} \oplus G_{2}$.

A complete graph is a graph in which every vertex is adjacent to every other vertex, and a subset C of V that induces a complete graph is called a clique. A clique is maximal if it is not a proper subset of another clique, and a clique is maximum if no other clique contains more vertices. The size of a maximum clique of a graph G is called the clique number $\omega(G)$.

If the subgraph induced by a subset S of V has no edges, we say that S is stable. A stable set that cannot be enlarged is maximal and a largest stable set is maximum. The size of a maximum stable set of G is called the stability number $\alpha(G)$.

A k-coloring of $G=(V, E)$ is an assignment of k colors to the vertices in V such that two adjacent vertices receive different colors. In other words, a k-coloring is a partition of the vertices $V=V_{1}+V_{2}+\cdots+V_{k}$ such that V_{i} is a stable set for $i=1, \ldots, k$. The smallest number k for which a k-coloring exists is the chromatic number of G, denoted by $\chi(G)$, and a k-coloring is minimal if $k=\chi(G)$.

A bipartite graph $G=(V, E)$ is a graph that admits a 2-coloring, that is, a bipartition $V=V_{1}+V_{2}$ exists such that every edge has one endpoint in V_{1} and the other in V_{2}. Similarly, a graph $G=(V, E)$ is split if a split partition $V_{1}+V_{2}$ exists, that is, a bipartition $V=V_{1}+V_{2}$ such that V_{1} is a clique and V_{2} is a stable set (in this order). In case of a split graph, we often write $G=\left(V_{1}, V_{2}, E\right)$ to indicate that $V_{1}+V_{2}$ is a split partition.

A path of length k is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k-1}$ such that two consecutive vertices v_{i} and v_{i+1} are joined by an edge. A path is simple if every vertex in the sequence appears precisely once, and a path is chordless if it is simple and there are no other edges between the vertices in the path except for those between two consecutive vertices.

Similarly, a cycle of length k is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k-1}$ such that v_{i} and v_{i+1} are adjacent (indices modulo k). A cycle is simple

Figure 2.1: Some special graphs with four vertices.
if $k \geq 3$ and every vertex in the sequence appears precisely once, and a cycle is chordless if it is a simple cycle and there are no other edges between vertices in the cycle except for those between v_{i} and v_{i+1}. A chordless cycle of length $2 k+1$ and $k>1$ is also called an odd hole and its complement an odd antihole.

Some special graphs occur frequently in this work, so it is convenient to have names for some of them.
P_{k} : The chordless path graph on k vertices.
C_{k} : The chordless cycle graph on k vertices.
K_{n} : The complete graph on k vertices.
$m K_{n}$: The disjoint union of m copies of the K_{n}.
Furthermore, we often write $v_{0} v_{1} v_{2} \cdots v_{k-1}$ for a P_{k} that consists of a chordless path $v_{0}, v_{1}, \ldots, v_{k-1}$. The vertices v_{0} and v_{k-1} are said to be the endpoints and the vertices v_{1}, \ldots, v_{k-2} the midpoints of the P_{k}. If $v_{0} v_{1} v_{2} v_{3}$ is a P_{4}, then the edges $v_{0} v_{1}$ and $v_{2} v_{3}$ are called the wings and the edge $v_{1} v_{2}$ the rib of the P_{4}.

A graph is connected if a path exists between every pair of vertices, otherwise it is disconnected. The connected components of a graph are its maximal connected subgraphs. We usually do not distinguish between the vertices in a connected component and the connected component itself. If the complement \bar{G} of a graph G is connected, we say that G is coconnected.

A connected graph without simple cycles is a tree. Given a graph $G=(V, E)$, a tree $T=(V, F)$ with $F \subseteq E$ is called a spanning tree of $G=(V, E)$. A spanning forest of graph $G=(V, E)$ is the disjoint union of spanning trees of the connected components of G (one per connected component).

A directed graph $\vec{G}=(V, \vec{E})$ consists of a set of vertices V and a set of directed edges \vec{E} where a directed edge is an ordered pair of
vertices. We write $v \rightarrow w$ for a directed edge with starting point v and endpoint w and, in the drawing of a directed graph, the edge $v \rightarrow w$ is represented by an arrow from v to w. Furthermore, we sometimes omit repeating a vertex when we want to express that certain directed edges exist. For instance, instead of $v_{0} \rightarrow v_{1}, v_{1} \leftarrow v_{2}, v_{2} \rightarrow v_{3}$, we simply write $v_{0} \rightarrow v_{1} \leftarrow v_{2} \rightarrow v_{3}$.

A cycle in a directed graph is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k-1}$ such that $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_{0}$. A directed graph \vec{G} is called cyclic if it contains such a cycle, otherwise it is called acyclic.

A topological ordering of a directed graph $\vec{G}=(V, \vec{E})$ is a linear order $v_{1}<v_{2}<\cdots<v_{n}$ of the vertices such that $v_{i} \rightarrow v_{j}$ in \vec{E} implies $i<j$. It is easy to see that a topological ordering of a directed graph exists if and only if the graph is acyclic. Moreover, a topological ordering can be computed in linear time by topological sorting, see [27].

The directed graph $\vec{G}=(V, \vec{E})$ that arises from an undirected graph $G=(V, E)$ by assigning a direction to each edge in E is an orientation of $G=(V, E)$. Thus, an acyclic orientation is a directed acyclic graph; hence every acyclic orientation implies a topological ordering.

2.2 Perfect graphs

A graph G is perfect if $\omega(H)=\chi(H)$ holds for every induced subgraph H of G, and a graph G is minimal imperfect if $\omega(G)<\chi(G)$ and every proper induced subgraph is perfect. Berge observed that odd holes and odd antiholes are minimal imperfect graphs. This observation led him to make the following conjecture.

Conjecture 2.2.1 (Strong Perfect Graph Conjecture) A graph is perfect if it does not contain an odd hole or an odd antihole.

Although the Strong Perfect Graph Conjecture is still open, partial results towards it have been obtained by Lovász and Reed. In 1972, Lovísz proved ${ }^{1}$

Theorem 2.2.2 (Perfect Graph Theorem) The complement of a perfect graph is perfect.

[^1]A slightly stronger theorem was proved by ReED in 1987. It asserts that the perfectness of a graph solely depends on the structure of the P_{4} s. In its original version [69], this theorem was expressed in terms of P_{4}-isomorphism: Two graphs G and H are P_{4}-isomorphic if they have the same vertex set and if every set of four vertices that induces a P_{4} in G induces a P_{4} in H.

Theorem 2.2.3 (Semi-Strong Perfect Graph Theorem) If a graph G is P_{4}-isomorphic to a perfect graph, then G is perfect.

Since the complement of a P_{4} is again a P_{4}, the Semi-Strong Perfect Graph Theorem implies the Perfect Graph Theorem. Similarly, the validity of the Strong Perfect Graph Conjecture implies the Semi-Strong Perfect Graph Theorem [11].

The above theorems, however, have not led to a polynomial time algorithm to recognize perfect graphs. To date, it is not even known whether the recognition of perfect graphs is in NP or not. Moreover, it seems unlikely that the validity of the Strong Perfect Graph Conjecture would make the problem tractable: Bienstock [8] has shown that it is NP-complete to test whether an arbitrary graph has an odd hole.

The situation does not look much better if we consider optimization problems on perfect graphs. In fact, most optimization problems remain NP-complete when restricted to perfect graphs. An exception is Grötschel, Lovász and Schrijver's polynomial algorithm for computing a maximum clique and a minimum coloring in a perfect graph. Their algorithm, however, is based on the Ellipsoid method and therefore of mainly theoretical interest. For this reason, subclasses of perfect graphs with fast combinatorial optimization algorithms have been investigated. A famous example of such a graph class are perfectly orderable graphs.

2.2.1 Perfectly orderable graphs

To define perfectly orderable graphs, we first have to discuss the greedy coloring algorithm. This algorithm scans the vertices of a graph in a given linear order $v_{1}<v_{2}<\cdots<v_{n}$ and assigns to v_{i} the least color different from that of its already colored neighbors. A graph is perfectly orderable if it admits a linear order of its vertices such that, for every induced subgraph, the coloring computed by the greedy coloring algorithm using this order is minimal.

A linear order $v_{1}<v_{2}<\cdots<v_{n}$ is said to be perfect if no P_{4} abcd satisfies $a<b$ and $c>d$. Similarly, an acyclic orientation is perfect if it contains no obstruction, that is, no $P_{4} a b c d$ which is oriented $a \rightarrow b$ and $c \leftarrow d$. Therefore evcry topological ordering of a perfect orientation is a perfect order, and the orientation that arises from a perfect order by directing $v_{i} \rightarrow v_{j}$ if $v_{i}<v_{j}$ is perfect.

Since the greedy coloring algorithm computes a 3 -coloring for a P_{4} $a b c d$ if $a<b$ and $c>d$, every perfectly orderable graph admits a perfect order. ChVátal showed that the converse holds as well.

Lemma 2.2.4 Given a perfect order, the greedy coloring algorithm using the order computes a minimal coloring.

Proof. Let $v_{1}<v_{2}<\cdots<v_{n}$ denote the perfect order and suppose that G is k-colored by the greedy algorithm. To prove our lemma, it suffices to show that a clique of size k exists. This is done by induction: We claim that every clique C of size $j<k$ with vertices of colors $k-j+1, k-j+2, \ldots, k$ can be enlarged with a vertex of color $k-j$.

Let $c_{1}<c_{2}<\ldots<c_{j}$ denote the vertices in such a clique C, and let W be the set of vertices w with color $k-j$ such that w sees a maximal number of consecutive vertices $c_{i}, c_{i+1}, \ldots c_{j}$ and $w<c_{i}$. Choose $w \in W$ minimal with respect to the perfect order. If w sees every vertex in C, then we are done. So let x be the largest vertex in C that misses w.

Since x is not colored $k-j$ by the greedy algorithm, there is a vertex u with color $k-j$ that sees x and satisfies $u<x$. Moreover, such a vertex u sees every vertex $y \in\left\{c_{i}, c_{i+1}, \ldots, c_{j}\right\}$, for otherwise $u x y w$ would be a P_{4} with $u<x$ and $y>w$. Hence u belongs to W.

But every vertex in W either misses c_{i-1} or is greater than c_{i-1}. Clearly $u<x \leq c_{i-1}$, hence $x<c_{i-1}$. On the other hand, x is the largest vertex missed by w, thus w sees c_{i-1} and $w>c_{i-1}$. This implies $u<w$, a contradiction to our choice of w.

In the above proof, we have also shown that a perfectly orderable graph has a maximum clique of size $\chi(G)$, thus perfectly orderable graphs are perfect ${ }^{2}$. Furthermore, many other problems that are NPcomplete in general can be solved in polynomial time if a perfect orientation is given [36, 3]. To find a perfect orientation, however, is much

[^2]harder: Middendorf and Pfeiffer [56] proved that the recognition of perfectly orderable graphs is NP-complete. Therefore research focused on subclasses of perfectly orderable graphs that can be recognized in polynomial time.

One way to obtain candidates for such subclasses of perfectly orderable graphs is to restrict the number of ways a P_{4} may be oriented. Classical examples of such graphs are triangulated graphs and comparability graphs: They admit an acyclic orientation such that no $P_{3} a b c$ is oriented $a \rightarrow b \leftarrow c$ and $a \rightarrow b \rightarrow c$, respectively.

Another way to define subclasses of perfectly orderable graphs is by graph decompositions. Olariu's stitch decomposition [60] and the modular decomposition are such examples. Conversely, graph decompositions can be used to recognize subclasses of perfectly orderable graphs. Triangulated graphs, for instance, are recognized by splitting off simplicial vertices.

2.2.2 Triangulated graphs

A graph G is triangulated if it does not contain an induced chordless cycle of length greater than three. A simplicial vertex is a vertex whose neighborhood induces a clique, and a perfect elimination scheme is an order of the vertices $v_{1}<v_{2}<\cdots<v_{n}$ such that the vertex v_{i} is simplicial in $G_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$. It is well-know that a graph is triangulated if and only if it admits a perfect elimination scheme [27].

To see that the above definition matches the definition in the previous section, we first observe that a simplicial vertex cannot be the midpoint of a P_{3}. Therefore the reverse of a perfect elimination scheme induces an acyclic orientation such that no $P_{3} a b c$ is oriented $a \rightarrow b \leftarrow c$. Conversely, if G admits such an orientation, then the smallest vertex in the implied order must be simplicial, thus a perfect elimination scheme can be constructed by repeatedly taking the smallest vertex.

The first algorithm for recognizing triangulated graphs in linear time is due to Rose et al. [71]. In a first step, a linear algorithm called lexicographic breath first search is executed which provides a LexBFSordering of the vertices. Rose ET AL. showed that every LexBFSordering of a triangulated graph is also a perfect elimination scheme. To recognize triangulated graphs, it therefore suffices to test whether a given vertex order is a perfect elimination scheme. Both algorithms are given in Section 2.3.

If a graph is not triangulated, a LexBFS-ordering can be used to find a chordless cycle of length greater than three in linear time. Let v_{i} denote the largest vertex which is not simplicial in $G^{\prime}=G_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$ (It is explained in Section 2.3 how to find such a vertex in linear time). Therefore nonadjacent vertices x_{1} and x_{2} in $N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}$ exist. Following the proof of Theorem 4.3 [27], we choose x_{1} and x_{2} such that x_{2} is as large as possible. Then there is a chordless cycle $x_{1}, v_{i}, x_{2}, \ldots$ in G^{\prime} and this cycle can be found in linear time by computing a shortest path between x_{1} and x_{2} in $G_{\left\{x_{1}, x_{2}\right\} \cup \bar{N}\left(v_{i}\right)}^{\prime}$. We formulate this result as a theorem.

Theorem 2.2.5 If a graph is not triangulated, a chordless cycle of length greater than three can be found in linear time.

2.3 Graph algorithms on the complement

The purpose of this section is to provide basic linear time algorithms for the complement of a graph. For instance, we present a linear algorithm for computing a LexBFS-ordering of the complement and a linear algorithm for recognizing cotriangulated graphs. Those algorithms are then used in Chapter 7 to recognize cobithreshold graphs in linear time.

As usual, it is assumed that the input graph $G=(V, E)$ is given by its adjacency lists, i.e., the vertices of the graph are stored in an array and the neighborhood $N(v)$ of a vertex v is a doubly linked list attached to the array element that contains v. Therefore the removal of a vertex can be carried out in constant time.

For every problem, we first present the classical linear algorithm. We then discuss the changes that must be made to achieve a running time of $O(|V|+|\bar{E}|)$ if the input is the complement $\bar{G}=(V, \bar{E})$. The first problem considered is graph search.

2.3.1 Breath first search

A graph search algorithm takes a graph $G=(V, E)$ and a vertex $v_{0} \in V$ and computes the vertices "reachable" from v_{0}, that is, the set of vertices in the connected component of v_{0}. The graph search algorithm known as breath first search, BFS for short, works as follows.

breath first search

input: a graph $G=(V, E)$ and a vertex $v_{0} \in V$
output: in B the vertices in the connected component of v_{0}
(1) initialize list W with V;
(2) let Q and B be empty lists;
(3) remove v_{0} from W and append it to Q;
(4) while Q is not empty do
(5) let v be the first vertex in Q;
(6) remove v from Q and append it to B;
(7) remove $W \cap N(v)$ from W and append it to Q
(8) od

Algorithm 2.1

It is easy to see that every vertex belongs to precisely one of the lists W, Q or B : List W contains the not-reached vertices, list Q the reached but not visited vertices, and B the reached and visited vertices. The list Q serves as "queue data structure".

Line (7) of Algorithm 2.1 can be implemented to run in time proportional to $|N(v)|:$ In a first step, the list W is divided into two lists $W_{1}=W \cap N(v)$ and the "remainder" $W_{2}=W-N(v)$. In a second step, W_{2} becomes the new list W and the vertices in W_{1} are appended to Q. Therefore Line (7) of Algorithm 2.1 can be replaced by Line (7.1) and Line (7.2) below.
(7.1) \quad split W into $W_{1}=W \cap N(v)$ and $W_{2}=W-N(v)$;
(7.2) let $W=W_{2}$ and append the vertices in W_{1} to Q;

Except for the initialization in Line (1), the running time of Algorithm 2.1 is proportional to the number of vertices and edges in the connected component of v_{0} provided that each vertex stores the information to which list it belongs.

The order of the vertices as they are visited by BFS is called a BFSordering. Therefore, in the above algorithm, the sequence of the vertices as they appear in B is a BFS-ordering of the vertices in the connected component of v_{0}.

Algorithm 2.2 is a straight-forward generalization of Algorithm 2.1 to visit every vertex in the graph. As before, Line (5) to Line (10) compute the connected component of the vertex v_{0} chosen in Line (4),
thus Algorithm 2.2 implicitly computes the connected components of G.
\qquad connected components
input: a graph $G=(V, E)$
output: a BFS-ordering B
(1) initialize W with V;
(2) let Q and B be empty lists;
(3) while W is not empty do
(4) remove an arbitrary vertex v_{0} from W and append it to Q;
(5) while Q is not empty do
(6) let v be the first vertex in Q;
(7) remove v from Q and append it to B;
(8) \quad split W into $W_{1}=W \cap N(v)$ and $W_{2}=W-N(v)$;
(9) let $W=W_{2}$ and append the vertices in W_{2} to Q
(10) od
(11) od

Algorithm 2.2
Now assume the input of the above algorithm is the complement graph $\bar{G}=(V, \bar{E})$. Then the adjacency list of a vertex v consists of the non-neighborhood $\bar{N}(v)$. We only have to consider Line (8) as the adjacency lists appear in no other line. But $W \cap N(v)=W-\bar{N}(v)$ and $L-N(v)=L \cap \bar{N}(v)$, so Line (8) can be replaced with

$$
\text { (8.1) } \quad \text { split } W \text { into } W_{1}=W-\bar{N}(v) \text { and } W_{2}=W \cap \bar{N}(v)
$$

Since the execution of Line (8.1) takes time proportional to $|\bar{N}(v)|$, we have derived an algorithm that runs in $O(|V|+|\bar{E}|)$. In other words, we have

Lemma 2.3.1 Given a graph $G=(V, E)$, a $B F S$-ordering and the connected components of its complement $\bar{G}=(V, \bar{E})$ can be computed in $O(|V|+|E|)$.

Remark 1: A similar approach for depth first search can be found in the SODA'97 paper by Dahlhaus et al. [21]. Remark 2 and 3 have to be seen in connection with their work.

Remark 2: Suppose the input graph is given in a "mixed representation", that is, the adjacency list of a vertex v contains either the
vertices in $N(v)$ or the vertices in $\bar{N}(v)$. Depending on which case applies, we can either execute Line (8) or Line (8.1) in Algorithm 2.2. The result is an algorithm that is linear in the size of the input of the mixed representation.

Remark 3: It is sometimes useful to have a so-called BFS-forest: An edge $x \rightarrow y$ belongs to the BFS-forest if and only if the vertex y was appended to Q while visiting x. One way to compute those edges is to implement Q as a list of lists as follows.

In Line (9), list W_{2} is appended (as a list) to Q, and in Line (6), a vertex v from the first list in Q is chosen. Furthermore, we store v in the head of W_{2} before appending W_{2} to Q. When removing a vertex v from the first list L_{0} in Q, we insert the edge $w \rightarrow v$ in our BFS-forest where w stands for the vertex in the head of L_{0}.

2.3.2 Lexicographic breath first search

In connection with the recognition of triangulated graphs, we are interested in a lexicographical breath first search ordering, LexBFS-ordering for short. A LexBFS-ordering is a special BFS-ordering computed by a refined BFS algorithm.

As mentioned in Remark 3 of the previous section, the data structure Q in Algorithm 2.2 can be implemented as a list of lists. In ordinary BFS, it does not matter in which order the vertices in the same list in Q are visited. In LexBFS, however, vertices adjacent to the first already visited vertices are preferred. In fact, every time a vertex v is visited, a list L in Q is replaced with two lists $L_{1}=L \cap N(v)$ immediately followed by the remainder $L_{2}=L-N(v)$. Since the position of L_{1} and L_{2} relative to the other lists in Q remains the same, a LexBFS-ordering is a special BFS-ordering.

In the implementation of LexBFS given as Algorithm 2.3, we have assumed that every list in Q is not empty, thus no empty lists are inserted in Q and, whenever a list becomes empty, it is immediately removed from Q. With this assumption, Line (8) to Line (11) can be executed in time proportional to $|N(v)|$ as follows.

The vertices w in $N(v)$ are scanned and, if w belongs to a list L in Q but the list in front of L is not empty, an empty list L_{1} is inserted immediately before $L_{2}=L$. In a second scan of the vertices w in $N(v)$, every vertex w in a list L_{2} in Q is moved to the list L_{1} immediately

LexBFS

input: a connected graph $G=(V, E)$ and a vertex $v_{0} \in V$ output: a LexBFS-ordering B
(1) initialize list W with V;
(2) let B be an empty list;
(3) let Q be an empty list of lists;
(4) remove v_{0} from W and append a list consisting of v_{0} to Q;
(5) while Q is not empty do
(6) let v be a vertex in the first list L_{0} of Q;
(7) remove v from L_{0} and append it to B;
(8) forall lists L in Q do
(9) \quad split L into lists $L_{1}=L \cap N(v)$ and $L_{2}=L-N(v)$;
(10) \quad replace L in Q with L_{1} followed by L_{2};
(11) od
(12) \quad split W into lists $W_{1}=W \cap N(v)$ and $W_{2}=W-N(v)$;
(13) let $W=W_{2}$ and append W_{1} to Q
(14) od

Algorithm 2.3

before L_{2} (and L_{2} is removed from Q if it becomes empty). Thus the overall running time of Algorithm 2.3 is linear.

Now assume that the input of the above algorithm is the complement graph $\bar{G}=(V, \bar{E})$. Again changes affect only Line (9) and Line (12) because adjacency lists appear in no other line. As in Algorithm 2.2, we can replace Line (9) with
(9.1) \quad split L into lists $L_{1}=L-\bar{N}(v)$ and $L_{2}=L \cap \bar{N}(v) ;$
and Line (12) with
(12.1) \quad split W into lists $W_{1}=W-\bar{N}(v)$ and $W_{2}=W \cap \bar{N}(v)$;

With the technique described above, Line (8) to Line (11) can be executed in time proportional to $|\bar{N}(v)|$, and the overall running time of Algorithm 2.2 is proportional to $|V|+|\bar{E}|$. Thus

Theorem 2.3.2 Given a graph $G=(V, E)$, a LexBFS-ordering of $\bar{G}=$ (V, \bar{E}) can be computed in $O(|V|+|E|)$.

2.3.3 Testing a perfect elimination scheme

In this section, we address the problem of testing whether a given vertex order $v_{1}<v_{2}<\cdots<v_{n}$ is a perfect elimination scheme. To simplify our notation, let $V_{i}=\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$, let $N_{i}=N\left(v_{i}\right) \cap V_{i+1}$ and let $\min \left(N_{i}\right)$ denote the least vertex in N_{i} (if N_{i} is not empty). Thus, $v_{1}<v_{2}<\cdots<v_{n}$ is a perfect elimination scheme if

$$
\begin{equation*}
\forall i: N_{i} \text { is a clique. } \tag{2.1}
\end{equation*}
$$

We claim that this is equivalent to

$$
\begin{equation*}
\forall i: \exists v_{j}=\min \left(N_{i}\right): N_{i}-v_{j} \subseteq N_{j} \tag{2.2}
\end{equation*}
$$

which reads for all i for which the vertex $v_{j}=\min \left(N_{i}\right)$ exists, the property $N_{i}-v_{j} \subseteq N_{j}$ holds. The proof of this claim is by induction: Suppose that (2.1) and (2.2) hold for $i=2, \ldots n$. If N_{1} is empty, then there is nothing to prove. Otherwise the vertex $v_{j}=\min \left(N_{1}\right)$ exists, hence our induction hypothesis asserts that N_{j} is a clique. Therefore $N_{1}-v_{j} \subseteq N_{j}$ if and only if N_{1} is a clique.

To verify (2.2) efficiently, we scan the vertices v_{i} in ascending order and collect the vertices $N_{i}-v_{j}$ in A_{j} where v_{j} denotes the smallest vertex in N_{i} (if such a vertex exists), thus

$$
\begin{equation*}
A_{j}=\bigcup_{\forall i: \exists v_{j}=\min \left(N_{i}\right)} N_{i}-v_{j} . \tag{2.3}
\end{equation*}
$$

At the time when v_{j} is reached, the computation of A_{j} is complete and the test $A_{j} \subseteq N_{j}$ can be performed.

In the implementation given as Algorithm 2.4, the vertices in $N_{i}-v_{j}$ are simply appended to the list A_{j}, so A_{j} can contain the same vertex multiple times. The test whether $A_{j} \subseteq N_{j}$ is done in time proportional to the sum of the length of list A_{j} and N_{j} by using an array as described in [27]. Consequently, the running time of Algorithm 2.4 is $O(|V|+|E|)$.

If $v_{1}<v_{2}<\cdots<v_{n}$ is not a perfect elimination scheme, we are interested in the largest vertex v_{i} that is not simplicial in $G_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$. To find this vertex in linear time, we store with each vertex w inserted in list A_{j} the vertex $w^{\prime}=v_{i}$ responsible for the insertion of w. Then w^{\prime} is nonsimplicial for every $w \in A_{i}-N_{i}$ in Line (9), thus we just have to find the largest vertex among those vertices w^{\prime}.
input: a graph $G=(V, E)$ and a vertex order $v_{1}<v_{2}<\cdots<v_{n}$ output: true if $v_{1}<\cdots<v_{n}$ is a perfect elimination scheme of G

```
for \(j=1\) to \(n\) do
    let \(A_{j}\) be an empty list
od;
for \(i=1\) to \(n\) do
    if \(N_{i} \neq \emptyset\) then
                let \(v_{j}=\min \left(N_{i}\right)\);
                append \(N_{i}-v_{j}\) to \(A_{j}\)
    fi
    if \(A_{i} \nsubseteq N_{i}\) then
        return "false"
    fi
od;
return "true"
```

Algorithm 2.4

Theorem 2.3.3 Let $G=(V, E)$ be a graph and $v_{1}<v_{2}<\cdots<v_{n}$ a linear order of its vertices. If this order is no perfect elimination scheme, then the largest vertex v_{i} not simplicial in $G_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$ can be found in linear time.

Now assume that the input is the complement graph $\bar{G}=(V, \bar{E})$. Since $N_{i} \subseteq V_{i+1}$ and $A_{i} \subseteq V_{i+1}$, it is quite natural to work with the complement of those sets in V_{i+1}. So let $\bar{N}_{i}=V_{i+1}-N_{i}$ and let $\bar{A}_{j}=V_{j+1}-A_{j}$. Therefore the test $A_{i} \nsubseteq N_{i}$ in Line (9) translates into $\bar{N}_{i} \nsubseteq \bar{A}_{i}$. Furthermore, according to (2.3), we have

$$
\bar{A}_{j}=V_{j+1} \cap \bigcap_{\forall i: \exists v_{j}=\min \left(N_{i}\right)} \overline{N_{i}-v_{j}}=\bigcap_{\forall i: \exists v_{j}=\min \left(N_{i}\right)} \bar{N}_{i} \cap V_{j+1}
$$

Note that $\bar{A}_{j}=V_{j+1}$ if no index i exists for which $v_{j}=\min \left(N_{i}\right)$, that is, N_{i} is empty. Therefore every \bar{A}_{j} has to be initialized with V_{j+1}, which results in an $O\left(|V|^{2}\right)$ running time.

To obtain a linear running time, we maintain lists C_{j} consisting of those vertices v_{i} for which $v_{j}=\min \left(N_{i}\right)$. Then

$$
v \in \bar{A}_{j} \Longleftrightarrow \forall v_{i} \in C_{j}: v \in \bar{N}_{i} \cap V_{j+1}
$$

So if B_{j} stands for the concatenation of the lists that represent the sets $\bar{N}_{i} \cap V_{j+1}, i \in C_{j}$, then the vertices in \bar{A}_{j} are precisely those vertices which appear $\left|C_{j}\right|$ times in B_{j}.

In Algorithm 2.5, the lists B_{j} are computed from the empty lists by appending $\bar{N}_{i} \cap V_{j+1}$ whenever $N_{i} \neq \emptyset$. In Line (11), we verify that every vertex in \bar{N}_{i} appears $\left|C_{i}\right|$ times in B_{i}. We write $\bar{N}_{i} \subseteq_{x\left|C_{i}\right|} B_{i}$ if this is true and $\bar{N}_{i} \not \mathbb{E X | C}_{i} \mid B_{i}$ otherwise. Therefore Algorithm 2.5 is correct.

is_complement_perfect

input: a graph $\bar{G}=(V, \bar{E})$ and a vertex order $v_{1}<v_{2}<\cdots<v_{n}$ output: true if $v_{1}<\cdots<v_{n}$ is a perfect elimination scheme of G
(1) for $j=1$ to n do
(2) let B_{j} be an empty list;
(3) let C_{j} be an empty list
(4) od;
(5) for $i=1$ to n do
(6) if $N_{i} \neq \emptyset$ then
(7) \quad let $v_{j}=\min \left(N_{i}\right)$;
(8) append $\bar{N}_{i} \cap V_{j+1}$ to B_{j}
(9) append v_{i} to C_{j}
(10) fi;
(11) \quad if $\left|C_{i}\right|>0$ and $\bar{N}_{i} \not \mathbb{X X | C}_{i} \mid$ B_{i} then
(12) return "false"
(13) fi
(14) od;
(15) return "true"

Algorithm 2.5

The test $N_{i} \neq \emptyset$ in Line (6) can be implemented as $\left|\bar{N}_{i}\right| \neq\left|V_{i+1}\right|$. Furthermore, we may assume that the adjacency lists of \bar{G} are sorted according to $v_{1}<v_{2}<\cdots<v_{n}$ (sorting the adjacency lists of a graph is linear, see [27]). Thus Line (7) can be executed in $O\left(\left|\bar{N}_{i}\right|\right)$ as v_{j} is the smallest vertex in V_{i+1} not contained in \bar{N}_{i}. By using an array, the running time of Line (11) is proportional to the length of the lists B_{i} and \bar{N}_{i}; hence Algorithm 2.5 is in $O(|V|+|\bar{E}|)$.

Theorem 2.3.4 For a graph $G=(V, E)$, the test whether a linear order $v_{1}<v_{2}<\cdots<v_{n}$ is a perfect elimination scheme of \bar{G} can be performed in $O(|V|+|E|)$.

We conclude this section with the problem of finding the largest vertex v_{i} that is not simplicial in $G_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$. To begin with, each vertex w inserted into the list B_{j} has to store the vertex $w^{\prime}=v_{i}$ responsible for the insertion of w. If $\left|C_{i}\right|>0$ in Line (11), we perform the test $\bar{N}_{i} \nsubseteq \times\left|C_{i}\right|$ B B_{i} by computing $\bar{N}_{i}-\bar{A}_{i}$ with an array of initially empty lists $T(v), v \in V$.

```
(11.1) forall \(w\) in list \(B_{i}\) do
(11.2) append \(w^{\prime}\) to \(T(w)\)
(11.3) od
(11.4) forall \(w \in \bar{N}_{i}\) do
(11.5) if \(T(w) \nsubseteq C_{i}\) then
(11.10) forall \(w\) in list \(B_{i}\) do
(11.11) let \(T(w)\) be an empty list
(11.12) od
```

It is assumed that the forall-statement scans the vertices in the sequence as they appear in the given list. Therefore $T(w)$ is sorted according to $v_{1}<v_{2}<\cdots<v_{n}$. Since C_{i} is sorted in the same way, Line (11.5) can be carried out in $O(|T(w)|)$; hence the running time of the above code is $O\left(\left|B_{i}\right|+\left|\bar{N}_{i}\right|\right)$.

Note that every vertex $x \in T(w)-C_{i}$ is nonsimplicial because $x<$ $v_{i}<w$ and x sees v_{i} and w but v_{i} and w are nonadjacent. Moreover, if we scan $T(w)$ in reverse order, the first vertex in $T(w)$ but not in C_{i} is the largest nonsimplicial vertex in $C_{i}-T(w)$. Clearly, the largest vertex v_{i} that is nonsimplicial in $\bar{G}_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$ is found this way.

Theorem 2.3.5 Let $G=(V, E)$ be a graph and $v_{1}<v_{2}<\cdots<v_{n} a$ linear order of its vertices. If this order is no perfect elimination scheme of \bar{G}, the largest vertex v_{i} that is not simplicial in $\bar{G}_{\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}}$ can be found in $O(|V|+|E|)$.

Given the vertex v_{i} of the above theorem, we can calculate a chordless cycle in \bar{G} of length greater than three in $O(|V|+|E|)$ with the method described in Section 2.2.2. Together with Theorem 2.3.2, we have the following.

Corollary 2.3.6 Let $G=(V, E)$ be a graph whose complement is not triangulated. Then the complement of a chordless cycle of length greater that three can be found in $O(|V|+|E|)$.

Chapter 3

Comparability graphs

In this chapter, we present historical results in connection with comparability graphs. On the one hand, most of these results are needed in the subsequent chapters. On the other hand, their presentation allows us to demonstrate the methods and proof techniques used in the rest of this thesis. We shall therefore often refer to the theorems and proofs of this chapter to point out the analogy.

In the first section, we introduce P_{4}-free graphs and show that they are precisely those graphs for which every subgraph is either disconnected or codisconnected. The arising decomposition is then generalized to what is nowadays known as the modular decomposition. The uniqueness of the decomposition comes from the fact that the union of two intersecting modules that are not contained in one another induces a disconnected or codisconnected graph.

The modular decomposition of a graph is closely related to its P_{3} structure. In the third section, we therefore analyze this structure and use the obtained results to compute the modular decomposition and to develop algorithms for recognizing comparability graphs.

Finally, in the last section, we review HoÀng and Reed's result on induced subgraphs which exist in prime graphs that are not triangulated. We show that those subgraphs can be found in linear time by applying the theorems of Section 2.3.

3.1 Cographs

A graph is called cograph if it does not contain a P_{4}. Clearly, a P_{4} free graph cannot contain an obstruction, hence cographs (and their complements) are perfectly orderable. The following lemma was found by Seinsche [73] in 1974.

Lemma 3.1.1 (Seinsche) A nontrivial, connected and coconnected graph contains a P_{4}.

Proof. Let G be a smallest counterexample, i.e. G is nontrivial, $P_{4}-$ free, connected and coconnected but every nontrivial induced subgraph is disconnected or codisconnected. Let v be an arbitrary vertex of G and suppose that G_{V-v} is disconnected.

Since G is connected, every connected component of G_{V-v} contains a vertex that sees v. But v is not isolated in \bar{G}; hence a connected component G_{1} of G_{V-v} exists with a vertex that misses v. Following a path in G_{1} from this vertex to a vertex that sees v, we encounter an edge $a b$ with $a v \notin E$ and $b v \in E$. Thus $a b v x$ is a P_{4} for any vertex x adjacent to v in a connected component of G_{V-v} different from G_{1}, a contradiction to our assumption.

If G_{V-v} is codisconnected, the above argumentation applied to the complement leads to a P_{4} in \bar{G}, again a contradiction to our assumption because the complement of a P_{4} is again a P_{4}.

Since a P_{4} is connected and coconnected, cographs are precisely those graphs which are completely decomposed by the following algorithm.

```
if G}\mathrm{ is trivial then
        stop
if G}\mathrm{ is disconnected then
        decompose the connected components of G
if}\overline{G}\mathrm{ is disconnected then
        decompose the connected components of \overline{G}
```

An arbitrary nontrivial disconnected graph is coconnected, so
Fact 3.1.2 Every graph is connected or coconnected.

Consequently no graph is disconnected and codisconnected at the same time, which proves the uniqueness of the above decomposition.

Furthermore, the decomposition can be represented by a tree in which the decomposition operations are distinguished by 0 and 1 -nodes and, if the graph is trivial, by an cmpty node labeled v where v stands for the only vertex in G. The computation of this unique decomposition tree called cotree is given below.

buildCotree (G)

input: a graph $G=(V, E)$
output: the root of the cotree of G
(1) if $|V|=1$ then
(2) let v be the vertex in V;
(3) return an empty node labeled v;
(4) else if G is disconnected then
(5) let G_{1}, \ldots, G_{t} be the connected components of G;
(6) let $r_{i}=$ buildCoTree(G_{i}) for $i=1, \ldots, t$;
(7) return a 0 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(8) else if \bar{G} is disconnected then
(9) let $\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{t}$ be connected components of \bar{G};
(10) let $\boldsymbol{r}_{i}=$ buildCoTree(G_{i}) for $i=1, \ldots, t$;
(11) return a 1-node with children $r_{1}, r_{2}, \ldots, r_{t}$
(12) else
(13) \quad stop (* G is no cograph *)
(14) fi

Algorithm 3.1

If we return a 2 -node instead of stopping at Line (13), the above algorithm computes a decomposition tree for an arbitrary graph. The original graph can then be reconstructed from the decomposition tree if the graph G in Line (13) is stored in the corresponding 2-node.

In the next Section, we discuss a generalization of the above decomposition, the so-called modular decomposition. Since the modular decomposition tree can be found in linear time, the same holds for the above decomposition tree, thus cographs can be recognized in linear time.

3.2 The modular decomposition

The modular decomposition was found by Gallai [23] in 1967 while investigating comparability graphs. To discuss the modular decomposition, we need the following definitions.

Given a graph $G=(V, E)$ and a subset A of V, a vertex $v \notin A$ is called A-null if v misses every vertex in A. Similarly, $v \notin A$ is A universal if it sees every vertex in A. Vertices not in A that are neither A-universal nor A-null are called A-partial.

A module is a nonempty vertex set H such that no H-partial vertex exists. A module H with $1<|H|<|V|$ is a homogeneous set. The following properties of modules are important to prove the results of this section.

Fact 3.2.1 If modules H_{1} and H_{2} intersect, then $H_{1} \cup H_{2}$ is again a module.

Fact 3.2.2 If intersecting modules H_{1} and H_{2} do not contain each other, then $G_{H_{1} \cup H_{2}}$ is either disconnected or codisconnected.

Proof. The first fact is obvious. To prove the second, let H_{1} and H_{2} be two intersecting modules such that none is a subset of the other. If $G_{H_{1}}$ is connected, then an edge between a vertex in $H_{1} \cap H_{2}$ and a vertex $v_{1} \in H_{1}-H_{2}$ exists. But H_{2} is a module, so v_{1} sees every vertex in H_{2}. Moreover, since every vertex in $H_{2}-H_{1}$ sees v_{1} and H_{1} is a module, every vertex in $H_{2}-H_{1}$ sees every vertex in H_{1}. Hence $\bar{G}_{H_{1} \cup H_{2}}=\bar{G}_{H_{1}}+\bar{G}_{H_{2}-H_{1}}$, thus \bar{G} is disconnected.

If $G_{H_{1}}$ is disconnected, then H_{1} is coconnected and the above argumentation applies to the complement, thus $G=G_{H_{1}}+G_{H_{2}-H_{1}}$ and G is disconnected.

A homogeneous set H is connected if G_{H} is connected, and it is coconnected if G_{H} is coconnected. Furthermore a homogeneous set H is called maximal if no other homogeneous set is a superset of H.

The modular decomposition is based on the following theorem.
Theorem 3.2.3 The maximal homogeneous sets of a connected and coconnected graph are disjoint.

Proof. Let $G=(V, E)$ be connected and coconnected and suppose that different maximal homogeneous sets H_{1} and H_{2} intersect. Then $H_{1} \cup H_{2}=V$ because $H_{1} \cup H_{2}$ is a module.

Furthermore, H_{1} and H_{2} are homogeneous sets, so H_{1} and H_{2} are proper subsets of V, thus $H_{1} \nsubseteq H_{2}$ and $H_{2} \nsubseteq H_{1}$. By Fact 3.2.2, $G=G_{H_{1} \cup H_{2}}$ is disconnected or codisconnected, a contradiction to our assumption.

The modular decomposition is given in Algorithm 3.2. It combines the decomposition into connected components of G and \bar{G} with the decomposition into maximal homogeneous sets, thus the uniqueness of the modular decomposition tree follows immediately from Fact 3.1.2 and Theorem 3.2.3.
buildModTree(G)
input: a graph $G=(V, E)$
output: the root of the modular decomposition tree of G
(1) if $|V|=1$ then
(2) let v be the vertex in V;
(3) return an empty node labeled v;
(4) else if G is disconnected then
(5) let $G_{1}, G_{2}, \ldots, G_{t}$ be the connected components of G;
(6) let $r_{i}=$ buildModTree $\left(G_{i}\right)$ for $i=1, \ldots, t$;
(7) return a 0 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(8) else if \bar{G} is disconnected then
(9) let $\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{t}$ be the connected components of \bar{G};
(10) let $r_{i}=$ buildModTree(G_{i}) for $i=1, \ldots, t$;
(11) return a 1-node with children $r_{1}, r_{2}, \ldots, r_{t}$
(12) else (${ }^{*} G$ and \bar{G} are connected and $|V|>1^{*}$)
(13) let $H_{1}, H_{2}, \ldots, H_{t}$ be the maximal homogeneous sets of G;
(14) \quad let $r_{i}=$ buildModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(15) return a 2 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(16) fi

Algorithm 3.2

A nontrivial graph that cannot be decomposed by the above algorithm is called prime, thus a nontrivial graph is prime if it is connected and coconnected and if it has no homogeneous sets.

If h is a vertex in a homogeneous set H, we say that G_{V-H+h} is
derived from G by substituting the marker vertex h for the homogeneous set H. The prime graph that arises from substituting marker vertices for all maximal homogeneous sets of G is called the characteristic graph of G. To reconstruct G from its modular decomposition tree, it suffices to store the characteristic graphs in the 2-nodes of the tree.

If a graph has a nontrivial modular decomposition tree, this tree can be used to apply divide and conquer methods to solve optimization problems like maximum clique, see $[59,58]$ for details. Thus the question arises how fast the modular decomposition of a graph can be computed. A simple $O\left(|V|^{3}\right)$ algorithm is described in Section 3.3. In recent years, however, linear time algorithms for the modular decomposition have been found $[54,21]$. Unfortunately, those algorithms are rather complicated.

3.3 Comparability graphs

A graph is a comparability graph if it admits a transitive orientation, i.e., an acyclic orientation such that no $P_{3} a b c$ is directed $a \rightarrow b \rightarrow c$. Since a transitive orientation cannot contain obstructions, an orientation that is transitive is also perfect. Furthermore, the orientation of one edge in a P_{3} in a transitive orientation determines the orientation of the other edge in the same P_{3}. This observation gives rise to the following definition.

Definition 3.3.1 Two edges are P_{3}-adjacent if they belong to the same P_{3}, and a P_{3}-class is an equivalence class of the transitive closure of the P_{3}-adjacency relation.

Obviously, the orientation of one edge in a P_{3}-class forces the orientation of all other edges in the same P_{3}-class. Therefore every P_{3}-class of a comparability graph can be transitively oriented in precisely two ways. Ghouila-Houri [24] showed that the converse holds as well.

Theorem 3.3.2 (Ghoulla-Houri) A graph is a comparability graph if and only if each of its P_{3}-classes admits a transitive orientation.

We prove of the above theorem in the same way we shall prove our results on P_{4}-comparability graphs in Chapter 5 . First, we study the P_{3}-classes of arbitrary graphs.

3.3.1 $\quad P_{3}$-classes

In the rest of this section, C^{*} stands for a P_{3}-class and $C^{*}(v w)$ for the P_{3}-class that contains the edge $v w$. Given a set H of vertices, a P_{k} is said to be H-partial if it is not contained in G_{H} but has at least one edge in $E(H)$.

Theorem 3.3.3 Let C^{*} denote an arbitrary P_{3}-class. Then no $V\left(C^{*}\right)$ partial P_{3} exists.

Proof. Let $a b c$ be a $V\left(C^{*}\right)$-partial P_{3}. Without loss of generality, we may assume that $a \in V-V\left(C^{*}\right)$ and $b, c \in V\left(C^{*}\right)$. Since c is covered by C^{*}, an edge $c d \in C^{*}$ exists. Clearly $b \neq d, b$ sees d and a misses d, for otherwise the contradiction $C^{*}=C^{*}(a b)$ would arise. We claim that, for every edge $x y \in C^{*}, b$ sees x and y and a misses x and y. It follows that b cannot be covered by C^{*}, a contradiction.

The proof of our claim is by induction. Since it holds for $c d$, the basis is settled. The inductive step consists of showing our claim for an edge $y z$ in a $P_{3} x y z$ on the assumption that it holds for $x y$. If b misses z, then $a b y$ and byz are $P_{3} \mathrm{~s}$, hence $C^{*}=C^{*}(a b)$, a contradiction. If a sees z, then $y z a$ is a P_{3}, hence $a z \in C^{*}$, another contradiction. Thus b misses y and z and a sees y and z as claimed.

Suppose that a $V\left(C^{*}\right)$-partial vertex v exists. Since $G_{V\left(C^{*}\right)}$ is connected, there is a path in $G_{V\left(C^{*}\right)}$ from a vertex that misses v to a vertex that sees v. Following this path, we must encounter an edge $a b$ with $a v \notin E$ and $b v \in E$. But $a b v$ is a $V\left(C^{*}\right)$-partial P_{3}, a contradiction to Theorem 3.3.3. Therefore no $V\left(C^{*}\right)$-partial vertex exists, thus

Corollary 3.3.4 The cover of $a P_{3}$-class is a module.
Conversely, assume that an edge $x y$ has both endpoints in a module H. If $H \subset V\left(C^{*}(x y)\right)$, then a $P_{3} a b c$ in C^{*} with $a, b \in H$ and $c \in V-H$ exists. But this is impossible because c is H-partial, hence

Corollary 3.3.5 If both endpoints of an edge xy belong to a module H, then $V\left(C^{*}(x y)\right) \subseteq H$.

The above corollary applied to G and \bar{G} implies that every minimal homogeneous set is the cover of a P_{3}-class of G or \bar{G}. By Theorem 3.2.3,
the maximal homogeneous sets can therefore be computed "bottom up" from the covers of the P_{3}-classes of G or \bar{G}.

The following theorem states that P_{3}-classes can be uniquely identified by their covers.

Theorem 3.3.6 Two different P_{3}-classes have different covers.
We prepare the proof of this theorem with the following lemma.

Lemma 3.3.7 (Triangle Lemma) Let $\{a, b, c\}$ be a clique such that $C^{*}(a b)$ and $C^{*}(a c)$ are different from $C^{*}(b c)$. Then a is not in the cover of $C^{*}(b c)$.

Proof. We prove the lemma by showing that, for every edge $x y \in$ $C^{*}(b c)$, the edges $a x$ and $a y$ exist but do not belong to $C^{*}(b c)$. Clearly this holds for $x y=b c$.

For the inductive step, we have to prove our claim for an edge $y z$ in a $P_{3} x y z$ on the assumption that it already holds for $x y$. If $a z \notin E$, then the P_{3} ayz implies $a y \in C^{*}(b c)$, a contradiction to our assumption. Therefore $a z \in E$ and $x a z$ is a P_{3}, thus $C^{*}(a z)=C^{*}(x a) \neq C^{*}(b c)$ as claimed.

Proof of Theorem 3.3.6. Suppose that two different P_{3}-classes C_{1}^{*} and C_{2}^{*} have the same cover and let b denote an arbitrary vertex in $V\left(C_{1}^{*}\right)=V\left(C_{2}^{*}\right)$. Then edges $a b$ in C_{1}^{*} and $b c$ in C_{2}^{*} exist. Furthermore, a sees c and and either $a c \notin C_{1}^{*}$ or $a c \notin C_{2}^{*}$.

Without loss of generality, let $a c \notin C_{2}^{*}$. Then $C_{2}^{*}=C^{*}(b c)$ is different from $C_{1}^{*}=C^{*}(a b)$ and $C^{*}(a c)$, thus Lemma 3.3.7 implies that $a \notin V\left(C_{2}^{*}\right)$, a contradiction to our assumption.

The next theorem constitutes the main part of Gallal's decomposition theorem. Together with Theorem 3.2.3, it is considered as one of the deepest results in connection with comparability graphs [45].

Theorem 3.3.8 (Gallai) Let $G=(V, E)$ be a nontrivial connected and coconnected graph and let H_{1}, \ldots, H_{k} be the maximal homogeneous sets of G. Then $E-E\left(H_{1}\right)-\cdots-E\left(H_{k}\right)$ is a P_{3}-class that covers G.

Proof. Since G is connected and, by Theorem 3.2.3, the maximal homogeneous sets of G are disjoint, there is an edge $v w$ in $E-E\left(H_{1}\right)-$ $\cdots-E\left(H_{k}\right)$. Furthermore $C^{*}=C^{*}(v w)$ covers G, as otherwise $V\left(C^{*}\right)$ would be homogeneous and therefore be contained in a maximal homogeneous set H_{i}, a contradiction. By Theorem 3.3.6, there is only one such P_{3}-class, hence $E-E\left(H_{1}\right)-\cdots-E\left(H_{k}\right)$ is a subset of C^{*}. But no other edge belongs to C^{*} because of Corollary 3.3.5.

The above theorem leads to a very simple $O\left(|V|^{3}\right)$ time algorithm for the modular decomposition of a graph. In a first step, we compute the P_{3}-classes $C_{1}^{*}, \ldots, C_{k}^{*}$ of G as well as their covers.

The P_{3}-classes are precisely the vertices in the connected components of $\tilde{G}=(\tilde{V}, \tilde{E})$ where $\tilde{V}=E$ and two vertices are adjacent in \tilde{G} if the corresponding edges belong to the same P_{3} in G. Since the connected components of \tilde{G} can be found in $O(|\tilde{V}|+|\tilde{E}|)$ and every edge in G can be in at most $|V|-2$ different $P_{3} \mathrm{~s}$, we have $|\tilde{E}| \leq|E| \cdot(|V|-2)$. Thus the P_{3}-classes can be computed in $O(|V| \cdot|E|)$.

At each stage of Algorithm 3.2, we test whether G or \bar{G} is disconnected. If so, we recursively compute the modular decomposition tree of the connected components of G or \bar{G}. Otherwise, if G is connected and coconnected, we scan the edges in G until we find an edge $v w$ whose $P_{3^{-}}$ class $C^{*}(v w)$ satisfies $\left|V\left(C^{*}(v w)\right)\right|=|V|$. This can be done in $O\left(|V|^{2}\right)$. By Theorem 3.3.8, the maximal connected homogeneous sets are the connected components of $G^{\prime}=\left(V, E-C^{*}(v w)\right)$.

The same procedure applied to the complement computes the maximal coconnected homogeneous sets in $O\left(|V|^{2}\right)$. From the maximal connected and the maximal coconnected homogeneous sets, the maximal homogeneous sets are easily found in $O\left(|V|^{2}\right)$. The overall running time of our algorithm is therefore $O\left(|V|^{3}\right)$.

3.3.2 Recognition and orientation algorithms

A necessary condition for a graph to be a comparability graph is that each of its P_{3}-classes can be transitively oriented. If a graph has no or precisely one P_{3}-class, then a transitive orientation is easy to calculate because the orientation of one edge in a P_{3}-class forces the orientation of all other edges in the same P_{3}-class. We show that the other cases can be reduced to this one.

Suppose that a graph $G=(V, E)$ has at least two P_{3}-classes. By Theorem 3.3.6, one P_{3}-class, say C^{*}, does not cover the whole graph, thus G has a homogeneous set $V\left(C^{*}\right)$. If a graph has a homogeneous sct H, we proceed as follows.
(i) Replace H with a marker vertex h.
(ii) Compute a transitive orientation of G_{H} and G_{V-H+h}.
(iii) Construct a transitive orientation of G by directing $v w$ with $v, w \in H$ as in G_{H}, $v w$ with $v, w \in V-H$ as in G_{V-H+h}, $v w$ with $v \in V-H$ and $w \in H$ as $v h$ in G_{V-H+h}.

If G has a transitive orientation, the same holds for G_{H} and G_{V-H+h} as they are induced subgraphs. Surprisingly, the converse holds as well.

Lemma 3.3.9 If the orientation of G_{H} and G_{V-H+h} is transitive, then (iii) gives a transitive orientation of G.

Proof. To begin with, we show that no $P_{3} a b c$ is oriented $a \rightarrow b \rightarrow$ c. This is obvious for a P_{3} with all its vertices in H and a P_{3} with at most one vertex in H because a corresponding P_{3} exists in G_{H} or G_{V-H+h}. The remaining P_{3} s have precisely two vertices in H. Since H is homogeneous, such a P_{3} has $a, c \in H$ and $b \notin H$. It is therefore oriented $a \rightarrow b \leftarrow c$ or $a \leftarrow b \rightarrow c$.

Now suppose the constructed orientation \vec{G} is cyclic. As the orientations of G_{H} and G_{V-H+h} are acyclic, every cycle in \vec{G} contains vertices in $V-H$ and edges with both endpoints in H. Consider a shortest cycle in \vec{G} and let $v \rightarrow \cdots \rightarrow w$ denote a longest part of it with vertices in H. Furthermore, let u be the predecessor of v in this cycle. Since H is homogeneous, the edge $u w$ exists and, by construction, $u \rightarrow w$ in \vec{G}. Therefore our cycle can be shortened by substituting $u \rightarrow w$ for $u \rightarrow v \rightarrow \cdots \rightarrow w$, a contradiction.

Note that the above lemma proves Theorem 3.3.2 because (a) if the P_{3}-classes of G can be transitively oriented, the same holds for the P_{3}-classes of $G_{V\left(C^{*}\right)}$ and $G_{V-V\left(C^{*}\right)+h}$, and (b) this division into subproblems can be repeated until the graph has at most one P_{3}-class.

Instead of explicitly performing the substitution of marker vertices for homogeneous sets, Golumbic [27] proposed an algorithm that does
this implicitly by removing P_{3}-classes from the graph. His algorithm for computing the transitive orientation of a graph is given below.

```
orient \((G)\)
    input: a graph \(G=(V, E)\)
    output: a transitive orientation of \(G\) (if such an orientation exists)
```

```
while \(E \neq \emptyset\) do
```

while $E \neq \emptyset$ do
choose an edge $v w$ in E;
choose an edge $v w$ in E;
orient the P_{3}-class $C^{*}(v w)$ of $G=(V, E)$;
orient the P_{3}-class $C^{*}(v w)$ of $G=(V, E)$;
$E \leftarrow E-C^{*}(v w) ;$
$E \leftarrow E-C^{*}(v w) ;$
od

```
    od
```

Algorithm 3.3
The complexity of the above algorithm is $O(|V| \cdot|E|)$. To prove its correctness, let $H=V\left(C^{*}(v w)\right)$. From Lemma 3.3.9 follows that a transitive orientation of G exists such that the orientation of the P_{3} classes in G_{H} is independent of the orientation of the other P_{3}-classes. The only restriction imposed on the orientation of the P_{3}-classes not in G_{H} is that edges between vertices in H and a vertex in $V-H$ are directed in the same way. This constraint is satisfied because G_{H} is coconnected after the removal of $C^{*}(v w)$.

Now consider the orientation of G_{H}. Again Lemma 3.3.9 guarantees that we can orient G_{H} by orienting the P_{3}-classes in a maximal homogeneous set of G_{H} independently from the other P_{3}-classes of G_{H}. So it remains to show that the P_{3}-classes not contained in maximal homogeneous sets of G_{H} are oriented properly. We do this by showing that $C^{*}(v w)$ is the only P_{3}-class not in a maximal homogeneous set.

Note that G_{H} is connected. If G_{H} is coconnected, then Theorem 3.3.8 guarantees that all edges not in a maximal homogeneous set belong to the same P_{3}-class. If G_{H} is codisconnected, then it is easy to see that G_{H} is the join of two coconnected graphs $G_{H_{1}}$ and $G_{H_{2}}$. Hence H_{1} and H_{2} are maximal homogeneous sets and every edge between H_{1} and H_{2} belongs to $\mathrm{C}^{*}(v w)$, thus Algorithm 3.3 is correct.

At this point, it should be mentioned that there is a vast literature on the recognition and orientation of comparability graphs, and that faster but much more complicated algorithms for the recognition of comparability graphs are known. The best results are due to McConnell and Spinrad [55]. In 1997, they presented the first linear time algorithm for computing a transitive orientation of a comparability graph.

To recognize comparability graphs, however, it has to be tested whether the computed orientation is transitive. This problem can be reduced to (boolean) matrix multiplication, for which the fastest algorithms run in $O\left(|V|^{2.38}\right)[16]$.

3.4 Special prime graphs

The purpose of this section is to provide further results on prime graphs. We start with split graphs, which play a key role in the generalized modular decomposition given in the next chapter.

Theorem 3.4.1 (Földes and Hammer) For a graph G, the following conditions are equivalent.
(i) G is a split graph.
(ii) G and \bar{G} are triangulated.
(iii) G contains no $2 K_{2}, C_{4}$ or C_{5}.

In Section 2.3, we have shown that we can test in $O(|V|+|E|)$ whether a graph or its complement is triangulated, thus split graphs can be recognized in linear time. Furthermore, we claim that every split graph G admits a split partition $V^{1}+V^{2}$ such that $V^{\mathbf{1}}$ consists of the first $\omega(G)$ vertices in descending degree order; thus the split partition can also be calculated in linear time.

To prove our claim, let $V_{1}+V_{2}$ denote a split partition such that V_{1} is a maximum clique. Clearly the vertices with degree greater than $\left|V_{1}\right|-1$ belong to V_{1} and the vertices with degree less than $\left|V_{1}\right|-1$ belong to V_{2}. Let $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ be vertices with $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\left|V_{1}\right|-1$. Since v_{1} misses every vertex in V_{2}, we find that $V_{1}-v_{1}+v_{2}$ is a clique and $V_{2}-v_{2}+v_{1}$ is a stable set, so $V_{1}^{\prime}=V_{1}-v_{1}+v_{2}$ and $V_{2}^{\prime}=V_{2}-v_{2}+v_{1}$ is again a split partition such that V_{1}^{\prime} is a maximal clique. Thus our claim follows by induction.

Now suppose that a prime graph contains a C_{4}. In [40], HoÀNG and ReED showed that such a graph must also contain one of the graphs F_{1}, F_{2} or F_{3} in Figure 3.1. The next theorem provides the corresponding complexity result.

Theorem 3.4.2 If a C_{4} in a prime graph $G=(V, E)$ is given, then an F_{1}, F_{2} or F_{3} can be found in $O(|V|+|E|)$.

Figure 3.1: $T h e$ graphs contained in a prime graph with $C_{4} s$.

Proof. Let $v_{0}, v_{1}, v_{2}, v_{3}$ denote the given C_{4} in G. We proceed as HoÀng and Reed in the proof of Claim 3.5 [40].

Step 1: Compute the set A of all vertices that see both v_{1} and v_{3}.
Step 2: Compute the vertices in the connected component A_{1} of v_{0} and v_{2} in \bar{G}_{A}.

Step 3: Find an A_{1}-partial vertex x in $V-A$. Since A_{1} is not homogeneous, such a vertex exists.

Step 4: Find two nonadjacent vertices $w_{1}, w_{2} \in A_{1}$ such that x sees w_{1} and misses w_{2}. Since x belongs to $V-A$, it cannot see v_{1} and v_{3}. If x sees precisely one of the two vertices v_{1} and v_{3}, then $\left\{x, v_{1}, v_{3}, w_{1}, w_{2}\right\}$ induces an F_{1} and we are done. So suppose that x misses v_{1} and v_{3}.

Step 5: Compute the set B of all vertices that see w_{1} and w_{2} and miss x.

Step 6: Compute the connected component B_{1} of v_{1} and v_{3} in \bar{G}_{B}.
Step 7: Find a W_{1}-partial vertex y in $V-W$. Since W_{1} is not homogeneous, such a vertex exists.

Step 8: Find two nonadjacent vertices $u_{1}, u_{2} \in W_{1}$ such that y sees u_{1} and misses u_{2}. If y sees w_{1} and w_{2}, then y sees x as well and $\left\{x, y, w_{1}, u_{2}, w_{2}\right\}$ induces an F_{1}. Similarly, if y sees precisely one of the two vertices w_{1} and w_{2}, then $\left\{y, u_{1}, u_{2}, w_{1}, w_{2}\right\}$ induces an F_{1}. Finally, if y misses w_{1} and w_{2}, then $\left\{x, y, u_{1}, u_{2}, w_{1}, w_{2}\right\}$ induces an F_{2} or an F_{3}, depending on whether x sees y.

Clearly A and G_{A} can be computed in linear time. By Lemma 2.3.1, the connected components of \bar{G}_{A} are obtained in $O(|V|+|E|)$, hence A_{1} and x can be found in linear time. In Section 2.3 Remark 3, we have
explained how to compute a BFS-forest of the complement in $O(|V|+$ $|E|$. A spanning tree of $\bar{G}_{A_{1}}$ is readily obtained from a BFS-tree of \bar{G}_{A} by making directed edges undirected. So a path from a vertex that sees x to a vertex that misses x is available and, following this path, w_{1} and w_{2} can be computed in linear time. Step 5 to 8 are analog to Step 1 to 4 and have therefore the same complexity.

Now suppose that $\bar{G}=(V, \bar{E})$ is given. Step 1 to 8 in the above proof can still be done in $O(|V|+|\bar{E}|)$. Since the complement of a C_{4} is a $2 K_{2}$, Theorem 3.4.2 translates into

Corollary 3.4.3 If a $2 K_{2}$ in a prime graph $G=(V, E)$ is given, then an \bar{F}_{1}, \bar{F}_{2} or \bar{F}_{3} can be found in $O(|V|+|E|)$.

By Theorem 2.2.5, a cycle in a graph that is not triangulated is obtained in linear time. Furthermore, by Corollary 2.3.6, the same complexity result holds for the complement. By observing that an F_{3} and a cycle of length greater than 5 contains a P_{5}, that the complement of a C_{5} is again a C_{5} and that an F_{1} is the complement of a P_{5}, we derive

Theorem 3.4.4 Let G be a prime graph that is not split. Then a C_{5}, $P_{5}, \bar{P}_{5}, F_{2}$ or \bar{F}_{2} can be found in linear time.

Chapter 4

Generalizations of the modular decomposition

In the first section of this chapter, we propose a straight-forward generalization of modules and discuss which measures have to be taken in order to obtain a unique decomposition that generalizes the modular decomposition. We then restrict ourselves to generalized modules that induce bipartite graphs or split graphs, which is why we call them bipartite modules and split modules, respectively.

In the second section, we show that our bipartite modules imply a unique decomposition of nonbipartite prime graphs and we briefly discuss how this decomposition can be computed. In the third section, we prove similar theorems for split modules and nonsplit prime graphs. As it turns out, the arising decomposition generalizes Babel and Olariu's separable-homogeneous decomposition [5] as well as the decomposition found by Raschle and Simon [67]. Computational aspects of this decomposition, however, are only discussed in the next chapter when the required results on the P_{4}-structure are available.

In the last section, we show that the decomposition into bipartite modules, split modules and the complement of bipartite modules can be combined to obtain a new unique decomposition. We do this by proving that bipartite modules, split modules and the complement of bipartite modules do not intersect if the given graph is prime.

4.1 Generalized modules

A module of a graph $G=(V, E)$ as defined in Section 3.2 is a nonempty vertex set H such that no H-partial vertex exists, that is, no vertex in $V-H$ distinguishes between vertices in H. This special neighborhood relation between the vertices in $V-H$ and those in H makes it possible to solve optimization problems with divide and conquer methods. For instance, a maximum weighted clique of G can be found by computing a maximum weighted clique in G_{V-H+h} where G_{V-H+h} denotes the graph after replacing H with a marker vertex h and h has the weight of a maximum weighted clique in G_{H}.

The substitution of marker vertices for modules can also be used to test isomorphism between graphs. For this purpose, some modules have to be identified which yield a unique decomposition tree (isomorphism between trees can be tested in polynomial time [2]). Clearly, those modules must be nontrivial and maximal with respect to set inclusion, i.e., those modules must be maximal homogeneous sets. These requirements are already sufficient for connected and coconnected graphs because
(i) the union of intersecting modules is a module (Fact 3.2.1), and
(ii) the union of intersecting modules that do not contain each other induces a disconnected or codisconnected graph (Fact 3.2.2).

The above statement guarantees that the maximal nontrivial modules of a connected and coconnected graph are disjoint: From (i), it follows that maximal modules are disjoint, and (ii) implies that the union of intersecting nontrivial modules is again a nontrivial module if the given graph is connected and coconnected.

A straightforward generalization of modules is to allow vertices in $V-H$ to distinguish vertices in H.

Definition 4.1.1 A nonempty vertex set H of a graph $G=(V, E)$ is a k-module if a partition $H=H^{1}+H^{2}+\cdots H^{k}$ exists such that no vertex in $V-H$ is H^{i}-partial for $i=1, \ldots, k$.

According to Definition 4.1.1, classical modules are 1 -modules. In this chapter, only 2 -modules are considered, that is, vertices in $V-H$ distinguish at most two types of vertices in H. In the following, we
usually write H if we refer to a 1-module and $W=W^{1}+W^{2}$ if we refer to a 2 -module.

To replace a 2-module $W=W^{1}+W^{2}$, (at least) two marker vertices are required, one for W^{1} and another for W^{2}. A trivial 2-module therefore contains less than three or all vertices of the graph. In analogy to 1 -modules, we call nontrivial 2 -modules 2 -homogeneous sets.

Note that the special neighborhood relation between vertices in a 2-module W and vertices in $V-W$ still allows us to solve optimization problems with divide and conquer strategies. For instance, a maximum weighted clique of $G=(V, E)$ can be found by computing a maximum weighted clique in $G_{V-W+w_{1}+w_{2}+w_{3}}$ where w_{1} stands for a maximum weighted clique in $G_{W_{1}}, w_{2}$ for a maximum weighted clique in $G_{W_{2}}$ and w_{3} for a maximum weighted clique in G_{W}.

To obtain a unique decomposition tree, we only consider maximal 2-homogeneous sets. Maximal 2-homogeneous sets, however, need not be disjoint: Given two intersecting 2-modules $A=A^{1}+A^{2}$ and $B=$ $B^{1}+B^{2}$, it is possible that there are vertices x and y in $V-A-B$ such that x is A-partial but not B-partial whereas y is B-partial but not A-partial, hence x and y are $A \cup B$ partial but do not distinguish the same vertices in $A \cup B$, thus $A \cup B$ is not a 2 -module. To avoid the above counterexample, it is necessary to require that

$$
\begin{equation*}
\text { If } A^{1} \cap B^{1} \neq \emptyset \text { then } A^{2} \cap B \neq \emptyset \text { or } A \cap B^{2} \neq \emptyset \tag{4.1}
\end{equation*}
$$

for every labeling of the partition $A^{1}+A^{2}$ and $B^{1}+B^{2}$. It is also easy to see that if 2 -modules A and B satisfy (4.1), then their union is indeed a 2 -module, thus (4.1) is equivalent to (i) for 2 -modules. So we are looking for constraints on 2 -modules that imply (4.1).

If we allow vertices in W^{1} not to be W^{2}-partial, then intersecting 2-modules A and B could satisfy $A \cap B=A^{1} \cap B^{1}$ and no vertex in $A^{1} \cap B^{1}$ is A^{2}-partial or B^{2}-partial. In this scenario, it seems to be hard to find constraints that guarantee (4.1). We therefore require that, in a 2-module W,
every vertex in W^{1} must be W^{2}-partial
and vice versa. The next lemma proves that (4.2) is indeed sufficient.
Lemma 4.1.2 The union of intersecting 2-modules that satisfy (4.2) is again a 2-module.

Proof. Let $v \in A^{1} \cap B^{1}$ and suppose that $A^{2} \cap B=\emptyset=A \cap B^{2}$. Since v is A^{2}-partial, vertices $x, y \in A^{2}$ exist such that v sees x and misses y. Furthermore, $A^{2} \cap B=\emptyset$ and B is a 2 -module, so x sees every vertex in B^{1} and y misses every vertex in B^{1}, hence every vertex in B^{1} is A^{2}-partial and therefore $B^{1} \subseteq A^{1}$. The symmetric argument asserts $A^{1} \subseteq B^{1}$, thus x sees every vertex in A^{1}, a contradiction to our assumption that every vertex in A^{2} is A^{1}-partial.

To study (4.2) in more detail, we define an $A C_{4}$ (alternating cycle of length 4) to be a sequence of four distinct vertices x, v, w, y such that $v w$ and $x y$ are edges whereas $x v$ and $w y$ are nonedges. We write $v w \| x y$ if x, v, w, y is an $A C_{4}$ and $v w \| y x$ if y, v, w, x is an $A C_{4}$.

Lemma 4.1.3 If $W=W^{1}+W^{2}$ satisfies (4.2), then there is an $A C_{4}$ $a b \| c d$ with $a, d \in W^{1}$ and $b, c \in W^{2}$.

Proof. Suppose that a vertex v in W does not belong to an $A C_{4}$ $a b \| c d$ with $b, c \in W^{1}$ and $a, d \in W^{2}$. Without loss of generality, we may assume that v belongs to W^{2}. Then v partitions W^{1} into nonempty sets $A^{1}=W^{1} \cap N(v)$ and $B^{1}=W^{1} \cap \bar{N}(v)$.

Let $A^{2}=W^{2} \cap \bar{N}\left(A^{1}\right)$ and $B^{2}=W^{2} \cap N\left(B^{1}\right)$. Since every vertex in W^{1} is W^{2}-partial, the vertex sets A^{2} and B^{2} are nonempty. Furthermore there are no edges between vertices in A^{2} and vertices in B^{1}, for otherwise v would belong to an $A C_{4}$. Similarly, every edge between vertices in B^{2} and vertices in A^{1} exists. It is now easy to verify that $W-v=W^{1}+\left(W^{2}-v\right)$ still satisfies (4.2).

By repeatedly removing vertices that do not belong to an $A C_{4} a b \|$ $c d$ with $a, d \in W^{1}$ and $b, c \in W^{2}$, we end up with a vertex set $W=$ $W^{1}+W^{2}$ (not necessarily a 2 -module) that satisfies (4.2) and every vertex belongs to an $A C_{4}$.

By requiring (4.2) for 2 -modules, we established an equivalent statement of (i) for 2-modules. Regarding (ii), however, this is not so easy: For every graph $G=(V, E)$ and every vertex $v \in V$, the set $V-v$ is 2 -homogeneous, and $V-v$ satisfies (4.2) for almost every graph. To make the decomposition unique for a large number of graphs, we have to find further constraints on 2 -modules.

In the rest of this chapter, we discuss decompositions that are unique for prime graphs which are not split, not bipartite or not cobipartite,
respectively. So we are looking for constraints on 2 modules which imply that the union of 2 -modules which do not contain each other induces a split graph, a bipartite graph or a cobipartite graph, respectively. In the following, we require that the 2-modules themselves induce split graphs, bipartite graphs or cobipartite graphs. In other words, we require that $W^{1}\left(W^{2}\right)$ is a clique or a stable set.

4.2 Bipartite modules

In this section, we consider 2 -modules W for which W^{1} and W^{2} are stable sets and for which (4.2) holds. To simplify our terminology, we call those 2-modules bipartite modules:

Definition 4.2.1 A vertex set W of a graph $G=(V, E)$ is a bipartite modulc if a partition $W=W^{1}+W^{2}$ (called bipartition) exists such that
(i) W^{1} and W^{2} are nonempty stable sets,
(ii) every vertex in W is W^{1}-partial or W^{2}-partial, and
(iii) every vertex in $V-W$ is neither W^{1}-partial nor W^{2}-partial.

A bipartite module W is called bipartite-homogeneous if W is a proper subset of V.

Clearly nontrivial bipartite modules are bipartite-homogeneous sets and vice versa. Furthermore, note that the bipartition of a bipartite module is unique.

In the following, we show that the maximal bipartite-homogeneous sets of a nonbipartite prime graph are disjoint. The next lemma prepares this proof.

Lemma 4.2.2 Let A and B be bipartite modules with bipartitions $A=$ $A^{1}+A^{2}$ and $B=B^{1}+B^{2}$. If $A^{1} \cap B^{1} \neq \emptyset$ and neither A nor B is a 1-module, then
(i) $A^{2} \cap B^{2} \neq \emptyset$ and
(ii) $A^{1} \cap B^{2}=\emptyset=A^{2} \cap B^{1}$.

Proof. We prove (i) first. Suppose the contrary, that is, $A^{2} \cap B^{2}=\emptyset$. Let b denote a vertex in $A^{1} \cap B^{1}$. Since b is A^{2}-partial and B^{2}-partial,

44 Chapter 4. Generalizations of the modular decomposition

there are vertices $a \in A^{2}$ and $c \in B^{2}$ which see b. By our assumption, c cannot be in A^{2}, hence c belongs to $V-A$, thus c is A^{1}-universal. Furthermore, because B^{1} is stable, a is in $V-B$ and is therefore B^{1} universal.

Now a is A^{1}-partial, so there is a vertex d in A^{1} that is missed by a. On the one hand, d cannot belong to B^{1} because a is B^{1}-universal. On the other hand, d cannot belong to B^{2} because $c \in B^{2}$ sees d.

So $d \notin B$, hence d is B^{2}-universal, thus $A \cap B^{2}=\emptyset$. Since b is B^{2}-partial, a vertex $e \in B^{2}$ exists which is missed by b. Now e is a vertex in $V-A$ that sees d but misses b, a contradiction because no vertex in $V-A$ may be A^{1}-partial.

It remains to prove (ii). Because of symmetry, it suffices to show that $A^{1} \cap B^{2}=\emptyset$. Suppose the contrary. Then there are vertices $a \in A^{1} \cap B^{1}, b \in A^{1} \cap B^{2}$ and $c \in A^{2} \cap B^{2}$ (the latter because of (i)). Since b is B^{1}-partial, there is a vertex $d \in B^{1}$ which sees b. But d cannot be in $V-A$, for otherwise d would see a, a contradiction because B^{1} is stable. Hence $d \in B^{1} \cap A^{2}$.

Now every A-partial vertex is B^{1}-partial and B^{2}-partial, so it must belong to B. But this is impossible because B^{1} and B^{2} are stable sets. Therefore A is a 1 -module, a contradiction to our assumption.

Let A and B be two intersecting bipartite modules of a prime graph $G=(V, E)$. Without loss of generality, we may assume that the bipartitions $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ are labeled such that $A^{1} \cap B^{1} \neq \emptyset$. Since neither A nor B is a 1 -module, it follows from Lemma 4.2.2 that $\left(A^{1} \cup B^{1}\right)+\left(A^{2} \cup B^{2}\right)$ is a partition of $A \cup B$ and that vertices $v \in A^{1} \cap B^{1}$ and $w \in A^{2} \cap B^{2}$ exist. Clearly every vertex in $A^{1} \cup B^{1}$ is $A^{2} \cup B^{2}$-partial and vice versa. We claim that $A^{1} \cup B^{1}$ and $A^{2} \cup B^{2}$ are stable sets.

If two vertices a and b in $A^{1} \cup B^{1}$ are adjacent, then a and b do not belong to $A^{1} \cap B^{1}$. Because of symmetry, we may assume that $a \in A^{1}-B^{1}$ and $b \in B^{1}-A^{1}$. But a misses v and therefore every vertex in B^{1}, a contradiction. So $A^{1} \cup B^{1}$ is a stable set. By symmetry, the same holds for $A^{2} \cup B^{2}$.

Since $A^{1} \cap B^{1} \neq \emptyset \neq A^{2} \cap B^{2}$, a vertex in $V-(A \cup B)$ is A^{1}-universal (A^{1}-null, A^{2}-universal, A^{2}-null) if and only if it is B^{1}-universal (B^{1}-null, B^{2}-universal, B^{2}-null). Therefore the following analog of Fact 3.2.1 holds.

buildBipartiteModTree(G)

input: a graph $G=(V, E)$
output: the root of the bipartite modular decomposition tree of G
(1) if $|V|=1$ then
(2) let v be the vertex in V;
(3) return an empty node labeled v;
(4) elsif G is disconnected then
(5) let $G_{1}, G_{2}, \ldots, G_{t}$ be the connected components of G;
(6) let $r_{i}=$ buildBipartiteModTree(G_{i}) for $i=1, \ldots, t$;
(7) return a 0 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(8) elsif \bar{G} is disconnected then
(9) let $\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{t}$ be the connected components of \bar{G};
(10) let $r_{i}=$ buildBipartiteModTree(G_{i}) for $i=1, \ldots, t$;
(11) return a 1 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(12) else (* G and \bar{G} are connected and $|V|>1^{*}$)
(13) let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the characteristic graph of G;
(14) if G^{\prime} is a bipartite graph then
(15) let H_{1}, \ldots, H_{t} be the maximal proper modules of G;
(16) let $r_{i}=$ buildBipartiteModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(17) return a 2-node with children r_{1}, \ldots, r_{t}
(18) else (* G^{\prime} is not bipartite *)
(19) let B_{1}, \cdots, B_{k} be the vertex sets of G that correspond
(20) to maximal bipartite-homogeneous sets of G^{\prime};
(21) let $b_{i}=$ buildBipartiteModTree($G_{B_{i}}$) for $i=1, \ldots, t$
(22) let H_{1}, \ldots, H_{t} be those maximal proper modules of G
(23) which are not contained in B_{1}, \ldots, B_{k};
(24) let $r_{i}=$ buildBipartiteModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(25) return a 3 -node with children $b_{1}, \ldots, b_{k}, r_{1}, \ldots, r_{t}$
fi
fi
Algorithm 4.1

Fact 4.2.3 If bipartite modules $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ of a prime graph intersect, then $A \cup B=\left(A^{1} \cup B^{1}\right)+\left(A^{2} \cup B^{2}\right)$ is again a bipartite module.

The uniqueness of the decomposition of nonbipartite prime graphs into maximal bipartite-homogeneous sets now follows immediately.

Theorem 4.2.4 The maximal bipartite-homogeneous sets of a prime nonbipartite graph are disjoint.

Proof. Suppose that two maximal bipartite-homogeneous sets A and B intersect. Then $A \cup B$ is a bipartite module, hence $A \cup B=V$. But this is a contradiction because a bipartite module induces a bipartite graph.

The corresponding decomposition is given in Algorithm 4.1. In the rest of this section, we briefly discuss some aspects of bipartite modules with respect to the computation of maximal bipartite-homogeneous sets. For this purpose, the following definition is useful.

Definition 4.2.5 Two $2 K_{2} s$ are adjacent if they have three common vertices, and $2 K_{2}$-components are the equivalence classes of the transitive closure of the adjacency relation between $2 \mathrm{~K}_{2} \mathrm{~s}$.

Let W be bipartite module. By Lemma 4.1.3, W contains a $2 K_{2}$. Furthermore, it is easy to see that if two $2 K_{2} \mathrm{~S}$ are adjacent, then either both belong to W or none of them is in W. By induction, this holds for all $2 K_{2}$ s in the same $2 K_{2}$-component.

Let C^{*} denote a $2 K_{2}$-component and let $V\left(C^{*}\right)$ stand for the set of vertices which belong to some $2 K_{2}$ in C^{*}. If a $2 K_{2}$ in C^{*} belongs to W, then $V\left(C^{*}\right) \subseteq W$ as mentioned above. Moreover, in this case, it is easy to see that no vertex in $W^{1}-V\left(C^{*}\right)$ is $W^{2} \cap V\left(C^{*}\right)$-partial. Similarly, no vertex in $W^{1}-V\left(C^{*}\right)$ is $W^{1} \cap V\left(C^{*}\right)$-partial. Therefore $V\left(C^{*}\right)$ is a bipartite-homogeneous set.

Fact 4.2.6 If a $2 K_{2}$ in a $2 K_{2}$-component C^{*} belongs to a bipartitehomogeneous set W, then $V\left(C^{*}\right) \subseteq W$ and $V\left(C^{*}\right)$ is also bipartitehomogeneous.

To compute the maximal bipartite-homogeneous sets of a nonbipartite prime graph, we can proceed as follows. First, we compute the $2 K_{2}$-components and test whether they induce bipartite-homogeneous sets. Second, we select those bipartite-homogeneous sets which are maximal with respect to set inclusion. Third, we take the union if some of those sets intersect (by Fact 4.2.3, the union is bipartite-homogeneous). Fourth, we take the union of disjoint sets if the union is again bipartitehomogeneous.

If a maximal homogeneous set W is not one of those computed so far, then W contains vertices W^{\prime} that do not belong to any $2 K_{2}$ in W. Consider again the proof of Lemma 4.1.3. It should be clear that A and B are bipartite modules if W is a bipartite module. So we know that $W-W^{\prime}$ consists of precisely two disjoint bipartite homogeneous sets $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ and every vertex in A and B is in a $2 K_{2}$ in A and B, respectively. In other words, A and B belong to the already computed bipartite-homogeneous sets.

Again following the proof of Lemma 4.1.3, it is easy to see that every vertex in W^{\prime} must be $A^{1} \cup B^{1}$-partial or $A^{2} \cup B^{2}$-partial. To find the maximal homogeneous sets, it therefore suffices to consider all pairs of bipartite-homogeneous sets A and B and to compute the set W^{\prime} of vertices that are $A^{1} \cup B^{1}$-partial or $A^{2} \cup B^{2}$-partial. It then remains to test whether $A \cup B \cup W^{\prime}$ is bipartite-homogeneous.

Since all these steps can be carried out in polynomial time, the bipartite-modular decomposition can be computed in polynomial time. In fact, a more detailed analysis reveals that the bipartite-modular decomposition is in $O\left(|V|^{5}\right)$.

4.3 Split modules

In this section, we consider 2-modules W for which W^{1} is a clique and W^{2} is a stable set and for which (4.2) holds. In other words, W induces a split graph $G_{W}=\left(W^{1}, W^{2}, E(W)\right)$.

For this type of 2 -modules, a statement similar to Fact 4.2 .3 does not hold. For instance, we can choose $A^{1}+A^{2}=\{b, c\}+\{a, d\}$ and $B^{1}+B^{2}=\{c, d\}+\{b, e\}$ of a $C_{5} a, b, c, d, e$, so A and B are 2-modules of the required type but $A \cup B$ does not induce a split graph.

As it turns out, the above problem appears only if the partitions $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ are unrelated to the A-partial and B partial vertices. So we additionally require that every W-partial vertex must be W^{1}-universal and W^{2}-null.

Definition 4.3.1 A vertex set W of a graph $G=(V, E)$ is a split module if a partition $W=W^{1}+W^{2}$ (called split-partition) exists such that
(i) W^{1} is a nonempty clique and W^{2} is a nonempty stable set,
(ii) every vertex in W is W^{1}-partial or W^{2}-partial, and
(iii) $V-W$ can be partitioned into sets P, Q and R where the vertices in P are W-universal, the vertices in Q are W-null and the vertices in R are W_{1}-universal and W_{2}-null.
A split module W is strict if no edges between Q and R exist. Furthermore, a (strict) split module W is called (strict) split homogeneous if W is a proper subset of W.

First, we observe that the split-partition $W^{1}+W^{2}$ of a split module W is unique. This is clear if every vertex in W belongs to a P_{4} in W, for every P_{4} in W must have its midpoints in W^{1} and its endpoints in W^{2}. On the other hand, Lemma 4.1.3 guarantees that every split module contains a P_{4}. The uniqueness of the split partition now follows from the proof of Lemma 4.1.3 as we can uniquely determine to which set the vertex v belongs given we know the split partition of $W-\{v\}$.

Second, note that split modules are split modules in the complement. This, however, does not hold for strict split modules: A strict split module of \bar{G} is a split module of G such that all edges between P and R exist.

In the following, we show that the union of intersecting split modules is again a split module. Lemma 4.3.2 prepares this proof.

Lemma 4.3.2 Let A and B be intersecting split modules with splitpartitions $A^{1}+A^{2}$ and $B^{1}+B^{2}$. Then
(i) $A^{1} \cap B^{1} \neq \emptyset \neq A^{2} \cap B^{2}$, and
(ii) $A^{1} \cap B^{2}=\emptyset=A^{2} \cap B^{1}$.

Proof. We prove (ii) first. Because of symmetry, it suffices to show that $A^{1} \cap B^{2}=\emptyset$. Suppose the contrary and let b denote a vertex in $A^{1} \cap B^{2}$. Since b is A^{2}-partial, there is a vertex $a \in A^{2}$ that sees b. Furthermore, a is A^{1}-partial, so a vertex $c \in A^{1}$ exists which is missed by a.

If a belongs to B, then $a \in B^{1}$ because B^{2} is stable. Since c sees $b \in B^{2}$ and misses $a \in B^{1}$, we infer that c belongs to B. But this is impossible because B^{1} is a clique and B^{2} a stable set.

So we know that a is not in B, hence a is B-universal. Therefore $c \notin B$ and no vertex in A^{2} belongs to B. Since b is B^{1}-partial, there
is a vertex $d \in B^{1}$ that misses b. Then $d \notin A^{2}$ and, as A^{1} is a clique, $d \notin A^{1}$. So d misses c, a contradiction to the fact that c is B-universal.

It remains to prove (i). Suppose that $A^{1} \cap B^{1}=\emptyset$. Then $A \cap B=$ $A^{2} \cap B^{2} \neq \emptyset$ and, by (ii), $A^{1} \cap B^{2}=\emptyset=A^{2} \cap B^{1}$. Let $b \in A^{2} \cap B^{2}$. Since b is A^{1}-partial, there are vertices a and c in A^{1} such that b sees a and misses c. Then a is B^{2}-universal and c is B^{2}-null. So every vertex in B^{2} is A^{1}-partial, which implies $B^{2} \subseteq A^{2}$. This is a contradiction because every vertex in B^{1} is B^{2}-partial but it must not be A^{2}-partial (as such a vertex does not belong to A).

Let A and B be intersecting split modules. Then Lemma 4.3.2 implies that $\left(A^{1} \cup B^{1}\right)+\left(A^{2} \cup B^{2}\right)$ is a partition of $A \cup B$ and that vertices $v \in A^{1} \cap B^{1}$ and $w \in A^{2} \cap B^{2}$ exist. Clearly every vertex in $A^{1} \cup B^{1}$ is $A^{2} \cup B^{2}$-partial and vice versa. We claim that $A^{1} \cup B^{1}$ is a clique and that $A^{2} \cap B^{2}$ is a stable set.

If two vertices a and b in $A^{1} \cup B^{1}$ are not adjacent, then a and b do not belong to $A^{1} \cap B^{1}$. Because of symmetry, we may assume that $a \in A^{1}-B^{1}$ and $b \in B^{1}-A^{1}$. But a sees v and therefore every vertex in B^{1}, a contradiction. Similarly, if two vertices a and b in $A^{2} \cup B^{2}$ are adjacent, we may assume that $a \in A^{2}-B^{2}$ and $b \in B^{2}-A^{2}$. But a misses w and therefore every vertex in B^{2}, again a contradiction.

Since $A^{1} \cap B^{1} \neq \emptyset$ and $A^{2} \cap B^{2} \neq \emptyset$, a vertex in $V-(A \cup B)$ is A-universal if and only if it is B-universal, and it is A-null if and only if it is B-null. Therefore the following analog of Fact 3.2.1 and Fact 4.2.3 holds.

Fact 4.3.3 If (strict) split modules $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ intersect, then $A \cup B=\left(A^{1} \cup B^{1}\right)+\left(A^{2} \cup B^{2}\right)$ is again a (strict) split module.

The uniqueness of the decomposition of prime nonsplit graphs is established by the next theorem, the analog of Theorem 3.2.3.

Theorem 4.3.4 The maximal (strict) split-homogeneous sets of a nonsplit graph are disjoint.

Proof. Suppose that two maximal (strict) split-homogeneous sets A and B intersect. Then $A \cup B$ is a (strict) split module, hence $A \cup B=V$. But this is a contradiction because a (strict) split module induces a split graph.
\qquad buildSplitModTree(G)
input: a graph $G=(V, E)$
output: the root of the split modular decomposition tree of G
(1) if $|V|=1$ then
(2) let v be the vertex in V;
(3) return an empty node labeled v;
(4) elsif G is disconnected then
(5) let $G_{1}, G_{2}, \ldots, G_{t}$ be the connected components of G;
(6) let $r_{i}=$ buildSplitModTree(G_{i}) for $i=1, \ldots, t$;
(7) return a 0 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(8) elsif \bar{G} is disconnected then
(9) let $\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{t}$ be the connected components of \bar{G};
(10) let $r_{i}=$ buildSplitModTree(G_{i}) for $i=1, \ldots, t$;
(11) return a 1-node with children $r_{1}, r_{2}, \ldots, r_{t}$
(12) else (${ }^{*} G$ and \bar{G} are connected and $|V|>1^{*}$)
(13) let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the characteristic graph of G;
(14) if G^{\prime} is a split graph then
(15) let H_{1}, \ldots, H_{t} be the maximal proper modules of G;
(16) \quad let $r_{i}=$ buildSplitModTree $\left(G_{H_{i}}\right)$ for $i=1, \ldots, t$;
(17) return a 2 -node with children r_{1}, \ldots, r_{t}
(22) let H_{1}, \ldots, H_{t} be those maximal proper modules of G
(23) which are not contained in S_{1}, \ldots, S_{k};
(24) \quad let $r_{i}=$ buildSplitModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(25) return a 3 -node with children $s_{1}, \ldots, s_{k}, r_{1}, \ldots, r_{t}$
(26) fi
(27) fi

Algorithm 4.2

The decomposition derived so far is given in Algorithm 4.2. It generalizes Babel and Olariu's separable-homogeneous decomposition [5] for nonsplit prime graphs as their "maximal separable-homogeneous sets" correspond to those maximal split-homogeneous sets W in the characteristic graph in which every vertex belongs to a P_{4} in G_{W}. Independently, Raschle and Simon [67] proposed the decomposition of prime graphs into " P_{4}-split graphs", which are strict split-homogeneous
sets in the characteristic graph or its complement. To prove the uniqueness of the latter decomposition, we need the following lemma.

Lemma 4.3.5 Let G be a prime graph and let A and B be strict splithomogeneous sets of G and \bar{G}, respectively. If A intersects B, then $A \cup B$ is a strict split module of G and \bar{G} and either
(i) $V=A \cup B$ or
(ii) there is precisely one vertex v in $V-A-B$, and v does not belong to any P_{4} of G.

Proof. Let $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ be the split-homogeneous sets of G and \bar{G}, respectively. By Fact $4.3 .3, A \cup B$ is a split module. Furthermore no edges between A-partial and A-null vertices exist whereas all edges between B-partial and B-universal vertices are present, hence $A \cup B$ is a strict split module of G and \bar{G}.

Let R denote the set of $A \cup B$-partial vertices. Then $R \cup A \cup B$ is a module. But G is prime, thus $R \cup A \cup B=V$. Now R is a module, hence $|R| \leq 1$, thus either (i) or (ii) holds.

Remark: Lemma 4.3.5(ii) can be used to decompose prime split graphs because the vertex v is unique. In fact, the modular decomposition together with this decomposition of prime split graphs is precisely Jamison and Olariu's "homogeneous decomposition" [43]. Babel and Olariu [5] further refined the decomposition of prime split graphs. Those results are discussed in Section 5.3 of the next chapter.

If Lemma 4.3.5 applies, then G is a split graph. Thus a strict splithomogeneous set of G cannot intersect a strict split-homogeneous set of \bar{G} given G is prime nonsplit. Together with Theorem 4.3.4, this establishes the uniqueness of Raschle and Simon's decomposition.

Theorem 4.3.6 If a prime graph G is not split, then the maximal strict split-homogeneous sets of G and \bar{G} are disjoint.

We conclude this section with discussing the similarities between modules and (strict) split modules. Since modules are modules in the complement, it seems at first glance that split modules are closer related to modules than strict split modules. On the other hand, given a homogeneous set H and a marker vertex $h \in H$, every P_{4} of G has a corresponding P_{4} either in G_{V-H+h} or in G_{H}. We show that a similar
result holds for strict split-homogeneous sets of G and \bar{G} but not for split-homogeneous sets.

Let $W=W^{1}+W^{2}$ be a strict split module. Then every P_{4} of G with at least one but not all its vertices in W is of the following type.
type (1) $w p q_{1} q_{2}$ where $w \in W, p \in P, q_{1} \in Q, q_{2} \in Q$
type (2) $p_{1} w p_{2} q$ where $p_{1} \in P, w \in W, p_{2} \in P, q \in Q$
type (3) $\quad p_{1} w_{2} p_{2} r$ where $p_{1} \in P, w_{2} \in W^{2}, p_{2} \in P, r \in R$
type (4) $w_{2} p r_{1} r_{2}$ where $w_{2} \in W^{2}, p \in P, r_{1} \in R, r_{2} \in R$
type (5) $r w_{1} p q$ where $r \in R, w_{1} \in W^{1}, p \in P, q \in Q$
type (6) $r w_{1} p w_{2}$ where $r \in R, w_{1} \in W^{1}, p \in P, w_{2} \in W^{2}$

Figure 4.1: The subgraphs induced by a P_{4} of types (3) to (5).
The graphs induced by a $P_{4} a b c d$ in G_{W} together with a P_{4} of type (3) to (5) are depicted in Figure 4.1, (bold lines indicate edges in P_{4} s with vertices in $V-W$). The existence of a P_{4} of type (3) to (5) implies a P_{4} of type (6), and a P_{4} of type (6) together with abcd induces a graph called pyramid, see Figure 4.2.

A pyramid $a b c d r p$ is of a $P_{4} a b c d$ together with an $\{a, b, c, d\}$-universal vertex p and an $\{a, b, c, d\}$-partial vertex r which sees the midpoints of $a b c d$ and misses its endpoints. The complement of a pyramid is a net, thus a net $a b c d r q$ consists of a $P_{4} a b c d$ together with an $\{a, b, c, d\}$-null vertex q and an $\{a, b, c, d\}$-partial vertex r which sees the midpoints of $a b c d$ and misses its endpoints, see Figure 4.2.

Given a strict split-homogeneous set $W=W^{1}+W^{2}$, we can replace $W^{1}+W^{2}$ with two nonadjacent marker vertices $w_{1} \in W^{1}$ and $w_{2} \in W^{2}$.

Figure 4.2: A pyramid abcdrp and a net abcdrq.

Then every P_{4} of G has a corresponding P_{4} either in $G_{V-W+w_{1}+w_{2}}$ or in G_{W}. Figure 4.3 illustrates the substitution of marker vertices for strict split-homogeneous sets of G or \bar{G}. The graph depicted in Figure 4.3(a) has a strict split-homogeneous set $A=\left\{d_{1}, d_{2}\right\}+\left\{e_{1}, e_{2}\right\}$ and a strict split-homogeneous set $B=\left\{a_{1}, a_{2}\right\}+\left\{b_{1}, b_{2}\right\}$ in the complement. Figure $4.3(\mathrm{~b})$ shows the graph after the substitution of adjacent marker vertices a_{1}, b_{1} for A and of nonadjacent marker vertices d_{1}, e_{2} for B.

(b)

Figure 4.3: The substitution of marker vertices for strict split-homogeneous sets of G and \bar{G}.

If $W=W^{1}+W^{2}$ is a split module, then a P_{4} with at least one but not all its vertices in W is of type (1) to (6), or one of its edges has an endpoint in Q and the other in R. In the latter case, the following additional $P_{4} \mathrm{~s}$ are possible.
type (7)
$w_{1} r q_{1} q_{2}$ where $w_{1} \in W^{1}, r \in R, q_{1} \in Q, q_{2} \in Q$

type (8) $r_{1} w_{1} r_{2} q$ where $r_{1} \in R, w_{1} \in W^{1}, r_{2} \in R, q \in Q+$| type (9) |
| :--- |
| $w_{2} p r q$ where $w_{2} \in W^{2}, p \in P, r \in R, q \in Q$ |
| type (10) |
| $w_{2} p q r$ where $w_{2} \in W^{2}, p \in P, q \in Q, r \in R$ |
| type (11) $p w_{1} r q$ where $p \in P, w_{1} \in W^{1}, r \in R, q \in Q$ |

54 Chapter 4. Generalizations of the modular decomposition

type (12) $w_{2} w_{1} r q$ where $w_{2} \in W^{2}, w_{1} \in W^{1}, r \in R, q \in Q$
Note that the following pairs of P_{4} are complementary: type (1) and (2), type (3) and (7), type (4) and (8), type (5) and (9), type (6) and (12), type (10) and (11).

If a split module $W=W_{1}+W_{2}$ is not a strict split module of G or \bar{G}, then substituting two marker vertices for W^{1} and W^{2} does not satisfy the desired property regarding the P_{4} s: There are vertices $q \in Q$ adjacent to some $r_{1} \in R$ and vertices $p \in P$ nonadjacent to some $r_{2} \in R$, thus for every $P_{4} a b c d$ in G_{W} either $q r_{1} b a$ or $r_{2} c p a$ has no corresponding P_{4} in $G_{V-W+w_{1}+w_{2}}$.

To ensure that every P_{4} of G has a corresponding P_{4} in G_{W} or in the graph after the substitution, we replace W with a marker P_{4}. Figure 4.4 illustrates this substitution. The prime nonsplit graph of Figure 4.4(a) has a split-homogeneous set $A=\left\{c_{1}, c_{2}, c_{3}\right\}+\left\{b_{1}, b_{2}, b_{3}\right\}$, which is replaced with the marker $P_{4} b_{1} c_{1} c_{3} b_{3}$ in Figure 4.4(b).

Figure 4.4: The substitution of a marker P_{4} for a split-homogeneous set.

The substitution of maker $P_{4} \mathrm{~S}$ was proposed by Babel and Olariu in [5] whereas the substitution of two marker vertices for strict splithomogeneous sets was given by Raschle and Simon in [67]. Consequently, Babel and Olariu do not perform the substitution shown in Figure 4.3 and Raschle and Simon fail to substitute the splithomogeneous set of Figure 4.4. Of course, both approaches can be combined in a natural way by substituting marker $P_{4} \mathrm{~s}$ only if the splithomogeneous sets are neither strict in the graph nor strict in the complement, otherwise we use two marker vertices as described before.

4.4 The combined decomposition

In this section, we show that the decompositions of the previous two sections can be combined. To begin with, note that the bipartite-modular decomposition can also be applied to the complement of a graph. We call the complement of bipartite modules and bipartite-homogeneous sets cobipartite modules and cobipartite-homogeneous sets, respectively.

Lemma 4.4.1 Let $A=A^{1}+A^{2}$ be a bipartite module and $B=B^{1}+B^{2}$ be a cobipartite module of a prime graph. Then $A \cap B=\emptyset$.

Proof. First, we show that $\left|B^{1} \cap A\right| \leq 1$. Suppose the contrary. Then B^{1} consists of two adjacent vertices $a \in A^{1}$ and $b \in A^{2}$. Since A is not a 1 -module, an A-partial vertex c exists. Without loss of generality, assume that c is A^{1}-universal and A^{2}-null. Because c is B^{1}-partial, c belongs to B^{2}.

Since a is A^{2}-partial, there is a vertex $d \in A^{2}$ which misses a. Moreover, $d \notin B^{2}$ because $c \in B^{2}$ misses d, hence $d \notin B$, thus d is B-null. On the other hand, there is a vertex $e \in B^{2}$ which sees b and misses a. If $e \notin A$, then e sees d, a contradiction as d is B-null. So $e \in A^{1}$. Since b is A^{1}-partial, there is a vertex $f \in A^{1}$ which misses b. Now f sees c and misses e, hence f is B^{2}-partial and it must belong to B. But this is impossible for f misses $e \in B^{2}$ and misses $b \in B^{1}$.

So far, we have show that $\left|B^{1} \cap A\right| \leq 1$. By symmetry, we also know that $\left|B^{2} \cap A\right| \leq 1$. Now suppose that $\left|B^{1} \cap A\right|=1$. Without loss of generality, assume that $b \in B^{1} \cap A^{1}$. Since $\left|A^{1}\right| \geq 2$ and $\left|B^{1}\right| \geq 2$, vertices $a \in A^{1}-B^{1}$ and $c \in B^{1}-A$ exist. Furthermore, c is A^{1} universal, thus a sees c and misses b, hence a is B^{1}-partial, thus $a \in B^{2}$. By our assumption $A^{2} \cap B=\emptyset$. Since b is A^{2}-partial, there are vertices $d, e \in A^{2}$ such that b sees d and misses e. Therefore d is B^{1}-universal and e is B^{1}-null, a contradiction because $c \in B^{1}$ is not A^{2}-partial.

So $\left|B^{1} \cap A\right|=\emptyset$ and, by symmetry, $B^{2} \cap A=\emptyset$, which proves our lemma.

Lemma 4.4.2 Let $A=A^{1}+A^{2}$ be a bipartite module and $B=B^{1}+B^{2}$ a split module of a prime graph. Then $A \cap B=\emptyset$.

Proof. In a fist step, we show that the assumption $A \cap B \neq \emptyset$ and $A \cap B^{2}=\emptyset$ leads to a contradiction. Without loss of generality, let
$a \in A^{1} \cap B^{1}$. Since a is B^{2}-partial, there are vertices $b, c \in B^{2}$ such that a sees b and misses c. Hence b is A^{1}-universal and c is A^{1}-null, thus every vertex in A^{1} is B^{2}-partial, therefore $A^{1} \subseteq B^{1}$. This is a contradiction because A^{1} is a stable set consisting of at least two vertices whereas B^{1} is a clique.

To show our lemma, it remains to prove that the assumption $A \cap$ $B^{2} \neq \emptyset$ also leads to a contradiction. Without loss of generality, let $b \in A^{1} \cap B^{2}$. Since b is A^{2}-partial, there is a vertex $a \in A^{2}$ that sees b. Then $a \notin B^{2}$ because B^{2} is stable.

Case 1: $a \notin B$. Then a is B-universal. Since a is A^{1}-partial, there is a vertex $c \in A^{1}$ that misses a. Moreover, $c \notin B$. Since b is B^{1}-partial, there are vertices $d, e \in B^{1}$ such that b sees d and misses e. Now a sees d and e, hence $d, e \notin A^{2}$, thus $d \notin A$. But d sees c, so c is B^{1}-universal, hence $e \notin A$. But this is a contradiction because e is A^{1}-partial.

Case 2: $a \in B$. Then $a \in B^{1}$.
Case 2.1: $B^{1} \nsubseteq A$. Let c be a vertex in $B^{1}-A$. Then c is $A^{2}-$ universal. Since a is A^{1}-partial, there is a vertex $d \in A^{1}$ that misses a. Furthermore, $d \notin B^{1}$ and, since d is A^{2}-partial, a vertex $e \in A^{2}$ exists which sees d. Now e misses a and sees c, thus e is B^{1}-partial and therefore $e \in B^{2}$. So d is B^{2}-partial, a contradiction as d does not belong to B^{1}.

Case 2.2: $B^{1} \subseteq A$. Then B^{1} consists of $a \in A^{2}$ and another vertex $c \in A^{1}$, thus every vertex in B^{2} distinguishes between a and c. Since both types of vertices in B^{2} constitute modules and our graph is prime, B^{2} consists of $b \in A^{1}$ and another vertex $d \in A^{2}$, i.e. the graph induced by B is the $P_{4} b a c d$. If this P_{4} constituted the whole graph, then A would not be a bipartite module. So we may assume that a B-partial vertex e exists. Then e sees c and misses b, hence e is A^{1}-partial and therefore $e \in A^{2}$. But this is a contradiction because e sees $a \in A^{2}$ and A^{2} is a stable set.

A split module is a split module in the complement, thus the following corollary holds.

Corollary 4.4.3 Let $A=A^{1}+A^{2}$ be a cobipartite module and $B=$ $B^{1}+B^{2}$ a split module of a prime graph. Then $A \cap B=\emptyset$.

The above results imply the uniqueness of the combined decomposition given in Algorithm 4.3

buildExtModTree(G)

input: a graph $G=(V, E)$
output: the root of the extended modular decomposition tree of G
(1) if $|V|=1$ then
(2) let v be the vertex in V;
(3) return an empty node labeled v;
(4) elsif G is disconnected then
(5) let $G_{1}, G_{2}, \ldots, G_{t}$ be the connected components of G;
(6) let $r_{i}=$ buildExtModTree $\left(G_{i}\right)$ for $i=1, \ldots, t$;
(7) return a 0 -node with children $r_{1}, r_{2}, \ldots, r_{t}$
(8) elsif \bar{G} is disconnected then
(9) let $\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{t}$ be the connected components of \bar{G};
(35) fi
let $r_{i}=$ buildExtModTree(G_{i}) for $i=1, \ldots, t$;
return a 1 -node with children $r_{1}, r_{2}, \ldots, r_{t}$ else (${ }^{*} G$ and \bar{G} are connected and $|V|>1{ }^{*}$)
let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the characteristic graph of G;
if G^{\prime} is bipartite, split or cobipartite then
let H_{1}, \ldots, H_{t} be the maximal proper modules of G;
let $r_{i}=$ buildExtModTree $\left(G_{H_{i}}\right)$ for $i=1, \ldots, t$;
return a 2 -node with children r_{1}, \ldots, r_{t}
else (* G^{\prime} is not bipartite, split or cobipartite *)
let $B_{1}, \cdots, B_{k_{B}}$ be the vertex sets of G that correspond
to maximal bipartite-homogeneous sets of G^{\prime};
let $b_{i}=$ buildExtModTree($G_{B_{i}}$) for $i=1, \ldots, k_{B}$;
let $C_{1}, \cdots, C_{k_{C}}$ be the vertex sets of G that correspond to maximal cobipartite-homogeneous sets of G^{\prime};
let $c_{i}=$ buildExtModTree($G_{C_{i}}$) for $i=1, \ldots, k_{C}$;
let $S_{1}, \cdots, S_{k_{S}}$ be the vertex sets of G that correspond to maximal split-homogeneous sets of G^{\prime};
let $s_{i}=$ buildExtModTree($G_{S_{i}}$) for $i=1, \ldots, k_{S}$;
let H_{1}, \ldots, H_{t} be those maximal proper modules of G which are not contained in $B_{1}, \ldots, B_{k_{B}}$,
$C_{1}, \ldots, C_{k_{C}}$ and $S_{1}, \ldots, S_{k_{S}}$;
let $r_{i}=$ buildExtModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
return a 3 -node with children $b_{1}, \ldots, b_{k_{B}}$, $c_{1}, \ldots, c_{k_{C}}, s_{1}, \ldots, s_{k_{S}}$ and $r_{1}, \ldots, r_{t} ;$
fi

Chapter 5

P_{4}-comparability graphs

To obtain subclasses of perfectly orderable graphs that can be recognized in polynomial time, Hoàng and Reed [40] suggested restricting the number of ways a P_{4} may be oriented. Since a perfect order is obstruction-free, perfectly orderable graphs are precisely those graphs which admit an acyclic orientation such that every P_{4} is oriented as one of the $P_{4} \mathrm{~s}$ in Figure 5.1 (up to symmetry). Six classes of graphs are obtained by permitting any nonempty proper subset of these P_{4} s in an acyclic orientation.

Figure 5.1: All obstruction-free orientations of a P_{4}.

If only $P_{4} \mathrm{~s}$ of type 1 and 2 are permitted, the corresponding class of graphs is a subclass of brittle graphs, and brittle graphs can be recognized in $O\left(|E|^{2}\right)$ [72]. If only P_{4} s of type 1 and 3 are permitted, the recognition of the corresponding class of graphs is NP-complete [37]. The remaining graphs admit an acyclic orientation with P_{4} s of type 2 and 3 . We call these graphs wing-comparability and the corresponding orientation wing-transitive. To date, it is not known whether wingcomparability graphs can be recognized in polynomial time.

$\boldsymbol{P}_{\mathbf{3}}$	$\boldsymbol{P}_{\mathbf{4}}$		
nontrivial $\boldsymbol{P}_{\mathbf{3}}$-class	$\boldsymbol{P}_{\mathbf{4}}$-component		
strong $\boldsymbol{P}_{\mathbf{4}}$-component			
Corollary 3.3.4	Corollary 5.1.11		
Theorem 3.3.3	Theorem 5.1.12		
Corollary 3.3.5	Corollary 5.1.13		
Theorem 3.3.6	Theorem 5.2.1		
Lemma 3.3.7	Lemma 5.2.6		Lemma 5.2.8
Theorem 3.3.8	Theorem 5.2.2		

Table 5.1: Analogous results on the P_{3} - and P_{4}-structure.

If only P_{4} s of type 3 are permitted, the corresponding graphs are called P_{4}-comparability and their orientation P_{4}-transitive (every P_{4} is transitively oriented). In [40] and [39], Ho ÀNG and Reed presented an $O\left(|V|^{4}\right)$ algorithm to recognize P_{4}-comparability graphs and an $O\left(|V|^{5}\right)$ algorithm to compute a P_{4}-transitive orientation.

In [67], Raschle and Simon investigated the P_{4}-analog of P_{3} classes and developed an $O\left(|V|^{2} \cdot|E|\right)$ recognition and orientation algorithm for P_{4}-comparability graphs. Another relation between P_{4} s was studied by Babel and Olariu [5]. In the next two sections, we extend both Raschle and Simon's and Babel and Olariu's results by conducting a rigorous study of the P_{4}-structure. As it turns out, most properties of the P_{3}-structure translate smoothly into similar properties of the P_{4}-structure. An overview of the correspondence between those results is given in Table 5.1. We also prove a stronger version of a theorem by Chvìtal [12] on P_{4}-chains.

In Section 5.3, we analyze the P_{4}-structure of split graphs and use the obtained results to decompose prime split graphs. In Section 5.4, we give an $O\left(|V|^{4}\right)$ algorithm to compute the split-modular decomposition and, in Section 5.5, two algorithms for recognizing and orienting P_{4} comparability graphs are proposed. The first algorithm runs in $O\left(|E|^{2}\right)$ time and $O(|V| \cdot|E|)$ space and the other runs in $O\left(|V|^{2} \cdot|E|\right)$ time and $O(|V|+|E|)$ space.

Finally, in the last section, we propose a new algorithm that uses the split-modular decomposition to recognize classes of perfectly orderable graphs. For instance, HERTZ' bipartable graphs can be recognized this way.

$5.1 \quad P_{4}$-components

In analogy to the P_{3}-classes of Section 3.3, we define P_{4}-classes as the equivalence classes of the transitive closure of the P_{4}-adjacency relation where two edges are P_{4}-adjacent if they belong to the same P_{4}. In [40], Hoàng and Reed proved the following analog of Theorem 3.3.2.

Theorem 5.1.1 (HoÀNg AND Reed) A graph is P_{4}-comparability if and only if each of its P_{4}-classes admits a P_{4}-transitive orientation.

We prove the above theorem in Section 5.5. To obtain more general results, however, we investigate relations between P_{4} s rather than relations between the edges in P_{4} s. The following relations between P_{4} s are considered. (Note that nontrivial P_{4}-classes correspond to the weak P_{4}-components defined below.)

Definition 5.1.2 Two $P_{4} s$ are
(1) weak-adjacent if they have a common edge, and
(2) adjacent if two wings or a rib and a wing coincide, and
(3) strong-adjacent if they have three common vertices.

The equivalence classes of the transitive closure of the above (weak, strong) adjacency relation are called (weak, strong) P_{4}-components.

In the rest of this chapter, C^{*} stands for a P_{4}-component and D^{*} for a strong P_{4}-component. Furthermore, we use F^{*} to indicate that a statement holds for P_{4}-components and strong P_{4}-components. The cover of a (strong) P_{4}-component F^{*}, denoted by $V\left(F^{*}\right)$, is the set of vertices which belong to some P_{4} s in F^{*}. Similarly, $E\left(F^{*}\right)$ denotes the set of edges which belong to some $P_{4} \mathrm{~s}$ in F^{*}. Given a $P_{4} a b c d$, we write $F^{*}(a b c d)$ for the (strong) P_{4}-component that contains $a b c d$. Furthermore, we write $a b c d \sim a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ if the $P_{4} \mathrm{~s} a b c d$ and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ are strong-adjacent.

Consider again the relations between P_{45} given in Definition 5.1.2. Clearly two adjacent P_{4} s are also weak-adjacent. We claim that two strong-adjacent $P_{4} \mathrm{~s}$ are also adjacent. To prove this claim, we examine the graphs induced by a $P_{4} a b c d$ and a fifth vertex v. Up to symmetry, all possibilities are enumerated in Figure 5.2 (bold lines indicate edges in $P_{4} \mathrm{~s}$). Now it is easy to infer that every strong-adjacent P_{4} is one of the types given in Table 5.2 (up to symmetry), thus strong-adjacent $P_{4} \mathrm{~s}$ are indeed adjacent.

Figure 5.2: All possibilities of a P_{4} together with a fifth vertex v.

type	strong-adjacent P_{4}	graph in Figure 5.2
(a)	$a b v d$	F_{2}, F_{5}
(b)	$a b c v$	F_{4}, F_{9}
(c)	$b c d v$	F_{6}, F_{8}
(d)	$b a v d$	F_{6}, F_{3}

Table 5.2: All types of $P_{4} s$ strong-adjacent to a P_{4} abcd.

The converse, however, does not hold: Weak adjacent $P_{4} \mathrm{~s}$ need not be adjacent and adjacent P_{4} s need not be strong-adjacent. A weak form of the converse are the following lemmas.

Lemma 5.1.3 Two different $P_{4} s$ with a common rib are connected by a sequence of strong-adjacent P_{4} s.

Proof. Let $a b c d$ and $a^{\prime} b c d^{\prime}$ denote the two P_{4} s with common ribs. If $a b c d$ and $a^{\prime} b c d^{\prime}$ are not strong-adjacent, then $\left|\left\{a, a^{\prime}, b, c, d, d^{\prime}\right\}\right|=6$.

If a misses d^{\prime}, then $a b c d \sim a b c d^{\prime} \sim a^{\prime} b c d^{\prime}$. The analogous argument applies if a^{\prime} misses d, so it remains to discuss the case $a d^{\prime}, a^{\prime} d \in E$.

If a sees a^{\prime}, then $a b c d \sim a a^{\prime} d c \sim a^{\prime} a d^{\prime} c \sim a^{\prime} b c d^{\prime}$. Otherwise, if a misses a^{\prime}, we find that $a b c d \sim a b a^{\prime} d \sim a^{\prime} b a d^{\prime} \sim a^{\prime} b c d^{\prime}$.

Lemma 5.1.4 If the rib of a P_{4} is the wing of another P_{4}, then those $P_{4} s$ are connected by a sequence of strong-adjacent $P_{4} s$.

Proof. Because of symmetry, we may assume that $a b c d$ and $b c e f$ denote the two $P_{4} \mathrm{~s}$. If $a b c d$ and $b c e f$ are not strong-adjacent, then $|\{a, b, c, d, e, f\}|=6$.

If a misses e, then $a b c d \sim a b c e \sim b c e f$. Similarly, if a sees f, then $a b c d \sim f a b c \sim b c e f$. So suppose that a sees e but misses f.

If d sees e, then abcd $\sim b a e d \sim b a e f \sim b c e f$. If d misses e and d misses f, then abcd $\sim a e c d \sim f e c d \sim f e c b$. Otherwise, if d misses e and d sees f, then $a b c d \sim b c d f \sim b c e f$.

Two weak-adjacent $P_{4} \mathrm{~s}$ that are not adjacent have a common rib, hence it follows from Lemma 5.1.3 that

Corollary 5.1.5 The P_{4}-components and the weak P_{4}-components are identical.

The above corollary implies that P_{4}-components correspond to nontrivial P_{4}-classes. The P_{4} s to which an edge $v w$ belongs are therefore contained in the same P_{4}-component, that is, for every edge $v w$, there is at most one P_{4}-component C^{*} with $v w \in E\left(C^{*}\right)$. For this reason, we do not always distinguish between C^{*} and $E\left(C^{*}\right)$. So we write $v w \in C^{*}$ instead of $v w \in E\left(C^{*}\right)$ and $C^{*}(v w)$ for the P_{4}-component that contains the edge $v w$.

Regarding P_{4}-components and strong P_{4}-components, a result similar to Corollary 5.1.5 is impossible because the net of Figure 4.2 is a counterexample: It has only one P_{4}-component but consists of three strong P_{4}-components. The next lemma shows that, in some sense, the net is the only exception.

Lemma 5.1.6 If two adjacent $P_{4} s$ do not belong to the same strong P_{4}-component, then these two P_{4} s induce a net.

Proof. Let $a b c d$ and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ be those two adjacent P_{4} s. Since they are adjacent but in different strong P_{4}-components, we may assume that $\left|\left\{a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\}\right|=6$. Furthermore, by Lemma 5.1.3 and Lemma 5.1.4, those P_{4} s have a common wing. Without loss of generality, let $a b=a^{\prime} b^{\prime}$, thus either $a^{\prime}=a$ and $b^{\prime}=b$ or $a^{\prime}=b$ and $b^{\prime}=a$.

Case 1: $a^{\prime}=b$ and $b^{\prime}=a$. We show that $a b c d$ and $b a c^{\prime} d^{\prime}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ belong to the same strong P_{4}-component, hence this case is impossible. If c misses c^{\prime}, then $a b c d \sim c^{\prime} a b c \sim d^{\prime} c^{\prime} a b$. So suppose that c sees c^{\prime}.

If c sees d^{\prime}, then $a b c d \sim a b c d^{\prime} \sim b a c^{\prime} d^{\prime}$ is a sequence of strong P_{4}-components. If c misses d^{\prime}, then $b a c^{\prime} d^{\prime} \sim b c c^{\prime} d^{\prime}$. Furthermore Lemma 5.1.4 implies that $b c c^{\prime} d$ and $a b c d$ belong to the same strong P_{4}-component, so we are done.

Case 2: $a^{\prime}=a$ and $b^{\prime}=b$. If d sees c^{\prime}, then $a b c d \sim a b c^{\prime} d \sim a b c^{\prime} d^{\prime}$, a contradiction. So we may assume that d misses c^{\prime} and, because of symmetry, that d^{\prime} misses c.

If c misses c^{\prime}, then $a b c d \sim c^{\prime} b c d$ and Lemma 5.1.4 applies to $c^{\prime} b c d$ and $a b c^{\prime} d^{\prime}$, hence $a b c d$ and $a b c^{\prime} d^{\prime}$ are in the same strong P_{4}-component, a contradiction. Therefore c sees c^{\prime}.

Finally, if d sees d^{\prime}, then $a b c d \sim b c d d^{\prime} \sim b c^{\prime} d^{\prime} d \sim a b c^{\prime} d^{\prime}$, again a contradiction. So d misses d^{\prime} and the induced subgraph is a net as claimed.

In the rest of this section, we relate the cover of P_{4}-components and strong P_{4}-components to strict split modules and split modules. For that purpose, we need the notion of separable (strong) P_{4}-components.

Definition 5.1.7 A (strong) P_{4}-component F^{*} is separable if its cover $V\left(F^{*}\right)$ can be partitioned into vertex sets $V^{1}+V^{2}$ such that every P_{4} in F^{*} has its midpoints in V^{1} and its endpoints in V^{2}.

The following lemma exhibits the fundamental structure of separable (strong) P_{4}-components.

Lemma 5.1.8 Given a separable (strong) P_{4}-component with vertex partition $V^{1}+V^{2}$. Then neither a P_{3} abc with $a \in V^{1}$ and $b, c \in V^{2}$ nor a \bar{P}_{3} abc with $a, b \in V^{1}$ and $c \in V^{2}$ exists.

Proof. Let F^{*} stand for the (strong) P_{4}-component. In a first step, we show that no P_{3} or \bar{P}_{3} as described in our lemma has edges in $E\left(F^{*}\right)$. Assume a $P_{3} a b c$ with $a \in V^{1}$ and $b, c \in V^{2}$. Since F^{*} is separable, $b c$ cannot belong to $E\left(F^{*}\right)$, so suppose that $a b \in E\left(F^{*}\right)$. Then a $P_{4} b a d e$ in F^{*} exists with $d \in V_{1}$ and $e \in V^{2}$. If $c e \in E$, then bade $\sim a b c e$ and abce contradicts the separability of F^{*}. Hence $c e \notin E$. But $d c \in E$ implies
$b a d e \sim b c d e$, and $d c \notin E$ implies bade $\sim d a b c$. This is a contradiction because the $P_{4} \mathrm{~s} b c d e$ and $d a b c$ violate the separability of F^{*}.

Now assume a \bar{P}_{3} with $a, b \in V^{1}, c \in V^{2}$ and a P_{4} cade exists in F^{*}. Then $d \in V^{1}$ and $e \in V^{2}$. If b sees d, then cade $\sim c a d b$ and $c a d b$ violates the separability of F^{*}; hence b misses d. If b sees e, then $c a d e \sim a d e b$ and adeb would violate the separability of F^{*}; thus b misses e. In fact, we have shown that if b misses the vertices incident to one wing of a P_{4} in F^{*}, then the same holds for the vertices incident to the other wing. But Corollary 5.1.5 and the separability of F^{*} imply that (strong-) adjacent $P_{4} \mathrm{~s}$ in F^{*} have a common wing. So by induction on the $P_{4} \mathrm{~s}$ in F^{*}, no wing is incident to b, a contradiction to our assumption that b belongs to the cover of F^{*}.

The remainder of the proof is based on what we have already shown, namely that an edge in a P_{3} or a \bar{P}_{3} as defined in our lemma does not belong to a P_{4} in F^{*}. We call those P_{3} and \bar{P}_{3} forcing because every P_{4} with an edges in such a P_{3} or \bar{P}_{3} is forced out of F^{*}. Next, we show that no forcing $\bar{P}_{3} a b c$ can exist.

Since F^{*} covers b, there is a P_{4} dbef in F^{*} and therefore $d \in V^{2}$. If $c d \in E$, then $b d c$ is a forcing P_{3}, and if $a d \notin E$, then $b a d$ is a forcing $\bar{P}_{3} ;$ in both cases a contradiction to $b d e f \in F^{*}$. Therefore $c d \notin E$ and $a d \in E$; thus $c a d b$ is a P_{4}. Since F^{*} is separable, $c a d b \notin F^{*}$. Moreover $c a d b$ and $d b e f$ are adjacent but do not induce a net, hence $c a d b \sim d b e f$, thus $c a d b$ contradicts the separability of F^{*}.

It remains to prove that no forcing $P_{3} a b c$ exists. Since F^{*} covers c, there is a P_{4} cdef $\in F^{*}$, hence $d \in V^{1}$. Moreover $b d \in E$, for otherwise the forcing $P_{3} d c b$ would contradict $d c e f \in F^{*}$. We say that an edge $v w \in F^{*}$ with $v \in V^{2}$ and $w \in V^{1}$ is
type 1 if b sees v and a forcing $P_{3} w b u$ exists, and
type 2 if b sees w and a forcing $P_{3} u b v$ exists.
Figure 5.3 illustrates this definition. (Solid lines indicate edges that must exist whereas dotted lines indicate edges that must not exist.)

Obviously $c d$ is type2. We claim that every wing of a P_{4} in F^{*} is either type1 or type2. From this follows immediately that F^{*} cannot cover b, a contradiction to our assumption.

The proof of the above claim is by induction on the P_{4} s in F^{*}. Since $c d$ is type2, we have already settled the basis. For the inductive step, it suffices to show that one wing in a P_{4} in F^{*} is typel or type 2 on the

Figure 5.3: A type1 and type2 edge as defined in the proof of Lemma 5.1.8.
assumption that this already holds for the other wing in the same P_{4}. So let $v w x y$ denote an arbitrary P_{4} in F^{*} and assume that $v w$ is type1 or type2.

Case 1: $v w$ is type1. Then v misses u, for otherwise the forcing $P_{3} w v u$ would contradict $v w \in F^{*}$. We distinguish the following two subcases.

Case 1.1: $u=y$. If b misses x, then $x y b$ is a forcing P_{3}, a contradiction to $v w x y \in F^{*}$. Therefore b sees x; thus b sees y and $x b v$ is a forcing P_{3}, i.e. $x y$ is type1.

Case 1.2: $u \neq y$. Then $|\{b, u, v, w, x, y\}|=6$. Furthermore, both $b x \notin E$ and $b y \notin E$ cannot hold, as otherwise $v w x y \sim b w x y$ but $b w$ cannot belong to a P_{4} in F^{*}. If $b x \notin E$ and $b y \in E$, then $x y b$ is a forcing P_{3}, a contradiction to $b w x y \in F^{*}$. If $b x \in E$ and $b y \notin E$, then $v w x y \sim v b x y$, a contradiction because $v b x y$ violates the separability of F^{*}. Therefore $b x \in E$ and $b y \in E$ holds; thus b sees x and $w b y$ is a forcing P_{3}, i.e. $x y$ is type2.

Case 2: $v w$ is type2. Then u sees w, for otherwise the forcing \bar{P}_{3} $w u v$ would contradict $v w x y \in F^{*}$. Again we distinguish two subcases.

Case 2.1: $x=u$. If b misses y, then $v w x y \sim v b x y$ and $v b x y$ contradicts the separability of F^{*}. Therefore b sees y and $x b v$ is a forcing P_{3}; thus $x y$ is typel.

Case 2.2: $x \neq u$. Then $|\{b, u, v, w, x, y\}|=6$. Assume that b misses x. Then b misses y as well, for otherwise the forcing $P_{3} x y b$ would contradict $v b x y \in F^{*}$. If u misses y, then either $v w x y \sim u w x y$ and $u w x y$ contradicts the separability of F^{*} or $b u x y \sim b w x y \sim v w x y$, a contradiction to buxy $\notin F^{*}$ because of the forcing P_{4} buv. So u sees
y and $v b u y \sim v w u y \sim v w x y$, a contradiction as $v b u y \notin F^{*}$ because of the forcing $P_{4} u b v$.

Therefore our assumption was wrong; so b sees x. Moreover b sees y, as otherwise $v w x y \sim v b x y$ and $v b x y$ would violate the separability of F^{*}. Thus b sees x and $w b y$ is a forcing P_{3}, i.e. $x y$ is type 2 .

Suppose that a vertex v is not covered by a (strong) P_{4}-component $F^{*}(a b c d)$. Then the only possible graphs are the F_{1}, the F_{7} and the F_{10} of Figure 5.2, i.e. v is either $\{a, b, c, d\}$-universal, $\{a, b, c, d\}$-null or it sees the midpoints but misses the endpoints of the $P_{4} a b c d$. We use this observation to proof the next lemma.

Lemma 5.1.9 Let F^{*} be a (strong) P_{4}-component and v a vertex not covered by F^{*}. If v and a P_{4} in F^{*} induces an F_{7}, then the graph induced by v and any P_{4} in F^{*} is an F_{7}.

Proof. Our proof is by induction on the $P_{4} \mathrm{~s}$ in a (strong) P_{4} component F^{*}. For the inductive step, we show that a $P_{4} a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ together with v induces an F_{7} on the assumption that an adjacent P_{4} abcd together with v induces an F_{7}. We distinguish the following cases:

Case 1: Two wings coincide. Without loss of generality, we may assume that the wing $a b$ coincides with the wing $a^{\prime} b^{\prime}$; thus either $a^{\prime}=a$ and $b^{\prime}=b$ or $a^{\prime}=b$ and $b^{\prime}=a$. The latter, however, is impossible because $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and v would not induce an F_{1}, F_{7} or F_{10}. In the former case, the only possible induced graph is the F_{7} as claimed.

Case 2: A wing coincides with a rib. A wing of $a b c d$ cannot coincide with $b^{\prime} c^{\prime}$ as otherwise the graph induced by $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and v would not be an F_{1}, F_{7} or F_{10}. Therefore, a wing of $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ must coincide with $b c$. This implies that the graph induced by $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and v is an F_{1}; thus $\left|\left\{a, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\}\right|=6$.

Without loss of generality (symmetry), let $b=a^{\prime}$ and $c=b^{\prime}$. Then d^{\prime} sees a and d, for otherwise $a b v d^{\prime}$ or $d c v d^{\prime}$ would be a P_{4} in F^{*} that covers v. So $a d^{\prime} d c$ is a P_{4} in F^{*}, a contradiction because $a d^{\prime} d c$ and v induce an F_{5}.

If a $V\left(F^{*}\right)$-partial vertex r exists, then there is a $P_{4} a b c d$ in F^{*} such that r is $\{a, b, c, d\}$-partial, hence r together with $a b c d$ induces an F_{7}. By Lemma 5.1.9, the vertex r sees the midpoints of every P_{4} in F^{*} and misses its endpoints; thus F^{*} is separable.

Furthermore, if C^{*} is a P_{4}-component, then r cannot be adjacent to a $V\left(C^{*}\right)$-null vertex q, as otherwise every $P_{4} a b c d$ in F^{*} would imply a $P_{4} q r b a$ in C^{*}, a contradiction to our assumption that r is not covered by F^{*}. The next corollary summarizes our findings.

Corollary 5.1.10 Let F^{*} be a (strong) P_{4}-component whose cover is not a module. Then F^{*} is separable and every $V\left(F^{*}\right)$-partial vertex is V^{1}-universal and V^{2}-null. Moreover, if C^{*} is a P_{4}-component, then no edge between a $V\left(C^{*}\right)$-partial and a $V\left(C^{*}\right)$-null vertex exists.

Next, we investigate the relation between separable (strong) $P_{4}-$ components and modules. Let F^{*} denote a separable (strong) P_{4} component and consider an edge $v w$ with both endpoints in V^{2}. From Lemma 5.1.8, it follows that no vertex in V^{1} is $\{v, w\}$-partial, hence v and w have the same neighborhood relative to $V-V^{2}$. By induction, this holds for every pair of vertices in the same connected component of $G_{V^{2}}$, thus a connected component of $G_{V^{2}}$ is a module. Since the analogous argumentation applies to V^{1} and \bar{G}, we have the following analog of Corollary 3.3.4.

Corollary 5.1.11 In a prime graph, the cover of a separable P_{4}-component is a strict split module and the cover of a separable strong P_{4} component is a split module.

Recall that every P_{4} not contained in a strict split-homogeneous set $W=W^{1}+W^{2}$ has a corresponding P_{4} in the graph after the substitution of two nonadjacent marker vertices for W^{1} and W^{2}. But such a P_{4} either has all its vertices in $V-W$ or is of type (1) to (6) listed on Page 52. In each case, this P_{4} is not W-partial, thus the P_{4}-analog of Theorem 3.3.3 holds.

Theorem 5.1.12 Let C^{*} denote an arbitrary P_{4}-component. Then no $V\left(C^{*}\right)$-partial P_{4} exists.

Let W be a strict split module and $a b c d$ a P_{4} in G_{W}. If $W \subset$ $V\left(C^{*}(a b)\right)$, then a W-partial P_{4} would exist, a contradiction to Theorem 5.1.12. Hence $V\left(C^{*}(a b)\right) \subseteq W$.

Similarly let W be a split module and D^{*} a strong P_{4}-component that contains a P_{4} with all its vertices in W. If $W \subset V\left(D^{*}\right)$, then strongadjacent $P_{4} \mathrm{~s} a b c d \sim a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ in D^{*} exist such that $\{a, b, c, d\} \subseteq W$ and
$\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \nsubseteq W$. But every possibility of Table 5.2 contradicts the definition of a split module, thus the analog of Corollary 3.3.4 holds.

Corollary 5.1.13 Let W be a vertex set and abcd be a P_{4} of G_{W}. If W is a split module, then $V\left(D^{*}(a b c d)\right) \subseteq W$. Similarly, if W is a strict split module, then $V\left(C^{*}(a b)\right) \subseteq W$.

The above corollary together with Lemma 4.1.3 implies that every minimal strict split module is the cover of some P_{4}-component and that every minimal split module is the cover of some strong P_{4}-component.

5.2 GaLLAI-type theorems

In this section, we prove the P_{4}-analogs of Gallal's decomposition theorem. The key theorem is the following P_{4}-analog of Theorem 3.3.6. It states that (strong) P_{4}-components can be uniquely identified by their covers.

Theorem 5.2.1 Two different (strong) P_{4}-components have different covers.

The proof of the above theorem is rather lengthy, which is why we moved it to the end of this section. Given Theorem 5.2 .1 holds, however, it is quite easy to show the following Gallai-type theorem for (strong) P_{4}-components.

Theorem 5.2.2 Let $G=(V, E)$ be a prime graph that is not split. Then the $P_{4} s$ not contained in one of the maximal strict split-homogeneous sets of G constitute a P_{4}-component that covers G, and the $P_{4} s$ not contained in one of the maximal split-homogeneous sets of G constitute a strong P_{4}-component that covers G.

Proof. If no strong P_{4}-component covers G, then, by Corollary 5.1.10 and Corollary 5.1.11, the cover of every strong P_{4}-component induces a split graph. Since G is prime nonsplit, Theorem 3.4.4 implies a C_{5}, P_{5}, \bar{P}_{5}, F_{2} or \bar{F}_{2}, where the F_{2} and \bar{F}_{2} refer to the graphs in Figure 3.1. But each of those graphs contains two strong-adjacent P_{4} s that induce a C_{4}, C_{5} or $2 K_{2}$, hence the corresponding strong P_{4}-component does not induce a split graph, a contradiction.

So we know that a strong P_{4}-component, say D^{*}, covers G. Let abcd be a P_{4} not contained in one of the maximal split-homogeneous sets of G. Then $D^{*}(a b c d)$ covers the whole graph, for otherwise $V\left(D^{*}(a b c d)\right)$ would be split-homogeneous and therefore be contained in a maximal split-homogeneous set, a contradiction to our assumption. But Theorem 5.2.1 implies that $D^{*}=D^{*}(a b c d)$, thus we have shown the second part of our theorem.

To prove the first part, let C^{*} be the P_{4}-component that contains all $P_{4} \mathrm{~s}$ in D^{*}. Then C^{*} covers G and the above argumentation remains valid if we replace strong P_{4}-components and split-homogeneous sets with P_{4}-components and strict split-homogeneous sets.

Corollary 5.1.10 together with Corollary 5.1.11 implies that the cover of a strong P_{4}-component that does not cover the whole graph is either homogeneous or split-homogeneous in the characteristic graph. Therefore every strong P_{4}-component in a graph without homogeneous and split-homogeneous sets covers the whole graph. By Theorem 5.2.1, there is at most one such component, thus we have

Corollary 5.2.3 If a graph G has neither homogeneous sets nor splithomogeneous sets, then every P_{4} in G belongs to the same strong P_{4} component.

A star-cutset of a graph $G=(V, E)$ is a vertex set S such that G_{V-S} is disconnected and G_{S} contains a dominating vertex. In [12], Chyìtal showed that if neither G nor its complement has a star-cutset, then every two $P_{4} \mathrm{~s}$ are " 3 -chained", that is, every two $P_{4} \mathrm{~s}$ belong to the same strong P_{4}-component. We claim that the above corollary is a stronger version of ChVìtal's theorem. We do this by proving that a graph with homogeneous or split-homogeneous sets has a star-cutset in the graph or its complement but not vice versa. The latter is easy as the P_{5} is an example of a graph that has star-cutset but has neither homogeneous nor split-homogeneous set.

Now suppose that a graph $G=(V, E)$ has a homogeneous set H. If there are H-null vertices, then $(N(h) \cap V-H)+h$ is a star-cutset for every vertex $h \in H$. If no H-null vertices exist, then $\bar{G}=\bar{G}_{H}+\bar{G}_{V-H}$, hence every vertex $h \in H$ is a star-cutset of \bar{G}. Next, suppose that $G=(V, E)$ has a split-homogeneous set $W=W^{1}+W^{2}$. Then $S=$ $W^{1} \cup R \cup P$ is a star-cutset as every vertex in W^{1} is dominating in G_{S} and $G_{Q \cup W^{2}}$ is disconnected (even if $Q=\emptyset$).

In the remainder of this section, we prove Theorem 5.2.1. In a first step, we show the theorem for P_{4}-components. The following lemmas prepare this part of the proof.

Figure 5.4: Lemma 5.2.4 illustrated.

Lemma 5.2.4 Let $v w$ be an edge of $a P_{4}$ and z a vertex different from v and w.
(i) If $v w$ is a wing and $v z, w z \in E-C^{*}(v w)$, then z sees all the vertices in the P_{4}.
(ii) If $v w$ is a wing, z misses v and $w z \in E-C^{*}(v w)$, then the P_{4} can be labeled vwxy and z sees x but misses y.
(iii) If $v w$ is a rib and $v z, w z \in E-C^{*}(v w)$, then the P_{4} can be labeled uvwx and either z misses u and x or z sees u and x.
(iv) If $v w$ is a rib, z misses v and $w z \in E-C^{*}(v w)$, then P_{4} can be labeled uvwx and $u z, x z \in C^{*}(v w)$.

Proof. (i) Without loss of generality, let $v w x y$ be the P_{4} in question. From Figure 5.2 follows that only the F_{1} is possible.
(ii) The P_{4} can be labeled $x y v w$ or $v w x y$. Again from Figure 5.2 follows that the former case is impossible whereas in the latter case only an F_{7} does not contradict $w z \in E-C^{*}(v w)$.
(iii) A $P_{4} x v w y$ implies an F_{1}, F_{2} or F_{7}. But an F_{2} cannot satisfy both $v z \notin C^{*}(v w)$ and $w z \notin C^{*}(v w)$.
(iv) In this case, only the F_{3} does not contradict $w z \in E-C^{*}(v w)$, see Figure 5.2.

Lemma 5.2.5 Let $v w$ be a rib of a P_{4} and z a vertex that sees w but misses v. If $\left|C^{*}(w z)\right|>1$, then $C^{*}(w z)=C^{*}(v w)$.

Proof. Suppose the contrary $C^{*}(w z) \neq C^{*}(v w)$. From Lemma 5.2.4(iv) follows that the P_{4} in which $v w$ is the rib can be labeled $u v w x$ with $u z, x z \in C^{*}(v w)$. Moreover, as $\left|C^{*}(w z)\right|>1$, the edge $w z$ belongs to a P_{4} as well.

Case 1: $w z$ is a wing. Then Lemma 5.2.4(ii) applies to $w z$ and u; hence the P_{4} with the wing $w z$ can be labeled $w z a b$. The same lemma also applies to $z w$ and v; therefore the same P_{4} can be labeled $z w d e$. But no P_{4} can be labeled in both ways.

Case 2: $w z$ is a rib. Then Lemma 5.2.4(iv) applied to $w z$ and u and $z w$ and v respectively guarantees a $P_{4} a w z b$ with $u a, u b, v a, v b \in$ $C^{*}(w z)$. Thus either $b v w x$ or $u b x w$ is a P_{4}; in both cases a contradiction to $C^{*}(w z) \neq C^{*}(v w)$.

The next lemma deals with the pyramid, see Figure 4.2. It is the analog of Lemma 3.3.7 for P_{4}-components.

Lemma 5.2.6 Let $a b c d r p$ be a pyramid. If $C^{*}(a b)$ is different from $C^{*}(r b)$ and $C^{*}(r c)$, then r and p are not covered by $C^{*}(a b)$.

Proof. If $\{a b, b c, c d\}=C^{*}(a b)$, there is nothing to prove. Therefore, assume a $P_{4} a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ weak-adjacent to $a b c d$. Note that the $P_{4} \mathrm{~s} r b p d$ and rcpa guarantee that all edges in the pyramid different from $a b, b c$ and $c d$ do not belong to $C^{*}(a b)$.

In the following case analysis, we show that $a^{\prime} b^{\prime} c^{\prime} d^{\prime} p r$ is another pyramid which satisfies $C^{*}\left(r b^{\prime}\right) \neq C^{*}(a b)$ and $C^{*}\left(r c^{\prime}\right) \neq C^{*}(a b)$. By induction, this holds for every P_{4} in $C^{*}(a b)$; thus r is incident to no edge in $C^{*}(a b)$ as claimed.

Case 1: A wing of abcd coincides with a wing of $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$. Without loss of generality, let $a^{\prime} b^{\prime}$ be the common edge. Then Lemma 5.2.4(ii)
applies to $a^{\prime} b^{\prime}$ and r; hence $a^{\prime}=a, b^{\prime}=b$ and r sees c^{\prime} but misses d^{\prime}; thus $C^{*}\left(r b^{\prime}\right)=C^{*}(r b) \neq C^{*}(a b)$. Similarly, Lemma 5.2.4(i) applies to $a^{\prime} b^{\prime}$ and p; hence p sees c^{\prime} and d^{\prime}; thus $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r p$ is a pyramid. Moreover $C^{*}\left(r c^{\prime}\right)=C^{*}(r c) \neq C^{*}(a b)$ because of the $P_{4} \mathrm{~s} r c p a$ and $r c^{\prime} p a$.

Case 2: A wing of abcd coincides with the rib of $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$. Then Lemma 5.2.5 applies to $b^{\prime} c^{\prime}$ and r; thus $C^{*}(a b)=C^{*}(r b)$ or $C^{*}(a b)=$ $C^{*}(r c)$, a contradiction to the premise of our lemma.

Case 3: The rib of abcd coincides with a wing of $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$. Without loss of generality, let $a^{\prime}=b$ and $b^{\prime}=c$. From Lemma 5.2.4(i) applied to $a^{\prime} b^{\prime}$ and r follows that r sees c^{\prime} and d^{\prime}. But the same Lemma also applies to $a^{\prime} b^{\prime}$ and p; so p sees c^{\prime} and d^{\prime}. Thus $\left|\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, d, r, p\right\}\right|=$ 7. Furthermore d sees d^{\prime}, as otherwise the $P_{4} d c r d^{\prime}$ would contradict $C^{*}(a b) \neq C^{*}(r c)$. So $b c d d^{\prime}$ and $d d^{\prime} r b$ are $P_{4} \mathrm{~s}$; hence $C^{*}(a b)=C^{*}(r b)$, a contradiction to our assumption.

Corollary 5.2.7 Let abcdrp denote a pyramid. Then $V\left(C^{*}(r b)\right)=$ $V\left(C^{*}(a b)\right)$ implies $C^{*}(r b)=C^{*}(a b)$.

Proof. \quad Suppose $V\left(C^{*}(r b)\right)=V\left(C^{*}(a b)\right)$ and $C^{*}(r b) \neq C^{*}(a b)$. Then $C^{*}(r c)=C^{*}(a b)$, as otherwise a contradiction to Lemma 5.2.6 would arise. Therefore $C^{*}(a b)=C^{*}(r c)$ is different from $C^{*}(r b)$, thus Lemma 5.2.6 applies to the pyramid $r b p d a c$; hence a cannot be covered by $C^{*}(r b)$, a contradiction to our assumption.

Proof of Theorem 5.2.1 for P_{4}-components. Suppose the contrary, i.e. two different P_{4}-components C_{1}^{*} and C_{2}^{*} satisfy $V\left(C_{1}^{*}\right)=$ $V\left(C_{2}^{*}\right)$. Then C_{1}^{*} (and C_{2}^{*}) cannot be trivial and a $P_{4} a b c d$ in C_{1}^{*} exists. Clearly, each vertex in $\{a, b, c, d\}$ is incident to at least one edge in C_{2}^{*}. Therefore, the vertices $\{a, b, c, d\}$ together with the other endpoint of such an edge, say v, induce one of the graphs depicted in Figure 5.2. Moreover $C_{1}^{*} \neq C_{2}^{*}$, which leaves the graphs $F_{1}, F_{2}, F_{3}, F_{4}$ and F_{7}. We show that each of these graphs is impossible.
\boldsymbol{F}_{3} : Then $v c \in C_{2}^{*}$ and Lemma 5.2.5 applies to $b c$ and v; hence $C^{*}(b c)=C^{*}(v c)$, a contradiction to $C_{1}^{*} \neq C_{2}^{*}$.
\boldsymbol{F}_{4} : Then $v d \in C_{2}^{*}$. Since the situation is symmetric relative to v and d, we may assume that $v w$ denotes another edge in a P_{4} that contains $v d$. Hence $d v w$ is a P_{3} and $|\{a, b, c, d, v, w\}|=6$.

Suppose w misses c. Then w sees b, as otherwise the $P_{4} b c v w$ would imply $C_{1}^{*}=C_{2}^{*}$. Hence $b w v d$ is a P_{4} in C_{2}^{*}, Lemma 5.2.5 applies to $w v$ and c; thus $C^{*}(w v)=C^{*}(c v)$, a contradiction to $C_{1}^{*} \neq C_{2}^{*}$. Therefore our supposition was wrong, so w sees c.

Furthermore w misses a, for otherwise the $P_{4} \mathrm{~S} a w v d$ and $a w c d$ would imply $C_{1}^{*}=C_{2}^{*}$. The same contradiction arises if w sees b, this time because of the $P_{4} a b w v$. Hence $a b c w$ is another P_{4} in C_{1}^{*}.

Obviously, the same argumentation holds for the third edge of the P_{4} and, by induction, for every edge in C_{2}^{*}. Therefore, no edge in $C^{*}(v d)$ is incident to a or b, a contradiction to our assumption that $V\left(C_{1}^{*}\right)=V\left(C_{2}^{*}\right)$.
\boldsymbol{F}_{7} : Without loss of generality, let $v b$ be the edge in C_{2}^{*}. Then $v b$ cannot be the rib of a P_{4}, as otherwise a contradiction to Lemma 5.2.5 applied to $v b$ and a would arise. Therefore $v b$ is a wing, Lemma 5.2.4(ii) applies to $v b$ and a; thus our P_{4} can be labeled $v b x y$ and a sees x but misses y. If $y=d$, then $a x d c$ is a P_{4} which contradicts $C_{1}^{*} \neq C_{2}^{*}$. Hence $|\{a, b, c, d, v, x, y\}|=7$.

Case 1: $c x \notin E . \quad$ As $x b$ is a rib, we can apply Lemma 5.2.5 to $x b$ and c; hence $C_{1}^{*}=C_{2}^{*}$, the usual contradiction.

Case 2: $c x \in E$. If d sees x, then $a b c d v x$ is a pyramid which satisfies $V\left(C^{*}(v b)\right)=V\left(C^{*}(a b)\right)$, Corollary 5.2.7 applies and again $C_{1}^{*}=C_{2}^{*}$. The same contradiction arises if c sees y, this time because of the pyramid vbxyac and $V\left(C^{*}(v b)\right)=V\left(C^{*}(a b)\right)$. Therefore $d x, c y \notin E$. So $y x c v$ and axcd are $P_{4} \mathrm{~s}$; hence $C^{*}(c d)=C^{*}(y x)$, again a contradiction to $C_{1}^{*} \neq C_{2}^{*}$.
\boldsymbol{F}_{2} : Then $v c \in C_{2}^{*}$. Without loss of generality (symmetry), let $v x$ be another edge in a P_{4} which $v c$ belongs to. In the following case analysis, we show that abvd together with x again induces an F_{2}, i.e. the structure repeats itself. Therefore, by induction, all edges in C_{2}^{*} together with a, b and d induce an F_{2}; thus a, b and d are not covered by C_{2}^{*}, a contradiction to $V\left(C_{1}^{*}\right)=V\left(C_{2}^{*}\right)$.

Case 1: x sees b and d. If x sees a, the $P_{4} \mathrm{~s} a x d c$ and axvc imply $C_{1}^{*}=C_{2}^{*}$, a contradiction. Therefore x misses a and the $P_{4} a b v d$ together with x induces an F_{2} as claimed.

Case 2: x misses b or d. If x misses b, Lemma 5.2 .5 applies to $b v$ and x, a contradiction to $C_{1}^{*} \neq C_{2}^{*}$. Hence x sees b but misses d. Then $c v$ cannot be the wing of a P_{4} that contains $v x$, as otherwise a contra-
diction to Lemma 5.2.4(i) applied to $v c$ and d would arise. Therefore $c v$ is a rib, Lemma 5.2.4(iii) applies $c v$ and d; thus our P_{4} can be labeled $u c v x$ and, together with d, induces an F_{7}. But we have already shown that such an F_{7} leads to a contradiction.
\boldsymbol{F}_{1} : Let $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ be a P_{4} weak-adjacent to $a b c d$. Obviously, $v \notin$ $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\}$. Moreover, as all other possibilities have been ruled out, $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and v induce another F_{1}. Therefore, by induction, v is $V\left(C_{1}^{*}\right)$ universal; thus v is not covered by C_{1}^{*}, a contradiction.

It remains to show Theorem 5.2.1 for strong P_{4}-components. This proof is prepared by the following lemma, the analog of Lemma 3.3.7 for strong P_{4}-components.

Lemma 5.2.8 Let abcdrq be a net. If $D^{*}(a b c d)$ is different from $D^{*}(a b r q)$ and $D^{*}(d c r q)$, then r and q are not covered by $D^{*}(a b c d)$.

Proof. Let $D^{*}=D^{*}(a b c d)$. We show that every $P_{4} a^{\prime} b^{\prime} c^{\prime} d^{\prime} \in D^{*}$ together with r and q induces a net $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r q$ and that neither $a^{\prime} b^{\prime} r q$ nor $d^{\prime} c^{\prime} r q$ is in D^{*}.

If $a b c d$ is the only P_{4} in D^{*}, then there is nothing to prove. For the inductive step, we show that our claim holds for some $P_{4} a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ on the assumption that it already holds for a strong-adjacent $P_{4} a b c d$. By the symmetry of the net, it suffices to consider the four cases of Table 5.2.

Case 1: $a^{\prime} b^{\prime} c^{\prime} d^{\prime}=a b v d$. Then $a b r q$ and abvd are adjacent but not in the same strong P_{4}-component, thus Lemma 5.1.6 applies and $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r q$ is a net. Moreover, $d c r q \sim d v r q$, hence $d v r q \notin D^{*}$.

Case 2: $a^{\prime} b^{\prime} c^{\prime} d^{\prime}=a b c v$. Again $a b c v$ and $a b r q$ are adjacent but not in the same strong P_{4}-component, thus $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r q$ is a net, and $v c r q \notin D^{*}$ follows from $\operatorname{dcr} q \sim v c r q$.

Case 3: $a^{\prime} b^{\prime} c^{\prime} d^{\prime}=b c d v$. Since $b c d v$ is adjacent to $d c r q$, by Lemma 5.1.6, $b c d v r q$ is a net, a contradiction to $b r \in E$.

Case 4: $a^{\prime} b^{\prime} c^{\prime} d^{\prime}=b a v d$. The $P_{4} b a v d$ is adjacent to abrq, thus Lemma 5.1.6 implies that bavdrq is a net, a contradiction to $b r \in E$.

Since two P_{4} s are strong adjacent if and only if the complement of those P_{4} s are strong adjacent, Lemma 5.2.8 also holds for the complement of a net, that is, for a pyramid.

Corollary 5.2.9 Let abcdrp be a pyramid. If $D^{*}(a b c d)$ is different from $D^{*}(a p c r)$ and $D^{*}(b p d r)$, then r and p are not covered by $D^{*}(a b c d)$.

Now we are ready to show Theorem 5.2.1 for strong P_{4}-components. Its proof relies on the fact that we have already proved Theorem 5.2.1 for P_{4}-components.
Proof of Theorem 5.2.1 for strong P_{4}-components. Suppose the contrary, that is, two different strong P_{4}-components D_{1}^{*} and D_{2}^{*} satisfy $V\left(D_{1}^{*}\right)=V\left(D_{2}^{*}\right)$. Without loss of generality, we may assume that $V\left(D_{1}^{*}\right)=V$ (for otherwise we consider the graph $\left.G_{V\left(D_{1}^{*}\right)}\right)$.

Since D_{1}^{*} covers V, there is a P_{4}-component C^{*} that covers V. By Theorem 5.2.1, this P_{4}-component is unique, hence $D_{1}^{*} \subseteq C^{*}$ and $D_{2}^{*} \subseteq$ C^{*}, thus a sequence $X_{1}^{*}=D_{1}^{*}, X_{2}^{*}, \ldots, X_{k-1}^{*}, X_{k}^{*}=D_{2}^{*}$ of strong P_{4} components exists such that at least one P_{4} in X_{i}^{*} is adjacent to a P_{4} in X_{i+1}^{*}. Assume that this sequence is minimal with respect to k.

Since at least one P_{4} in D_{1}^{*} is adjacent to a P_{4} in X_{2}^{*} but $D_{1}^{*} \neq$ X_{2}^{*}, by Lemma 5.1.6, a net $a b c d r q$ exists with $a b c d \in X_{2}^{*}$ and $a b r q \in$ D_{1}^{*}. If $d c r q \notin D_{1}^{*}$, then Lemma 5.2.8 implies that c and d are not covered by D_{1}^{*}, a contradiction. Hence $d c r q \in D_{1}^{*}$ and the same lemma implies that X_{2}^{*} does not cover r and q. Therefore X_{2}^{*} is separable, thus every $P_{4} a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ in X_{2}^{*} together with r and q induces the net $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r q$. Furthermore two strong-adjacent $P_{4} \mathrm{~s}$ must be of type (a) or (b) and, by induction, every $P_{4} a^{\prime} b^{\prime} r q$ and $d^{\prime} c^{\prime} r q$ belongs to D_{1}^{*}.

Now consider a P_{4} in X_{2}^{*} that is adjacent to a P_{4} in X_{3}^{*}. By Lemma 5.1.6, those two P_{4} are in a net $a^{\prime} b^{\prime} c^{\prime} d^{\prime} r^{\prime} q^{\prime}$ with $a^{\prime} b^{\prime} c^{\prime} d^{\prime} \in X_{2}^{*}$ and $a^{\prime} b^{\prime} \boldsymbol{r}^{\prime} q^{\prime} \in X_{3}^{*}$. But $a^{\prime} b^{\prime} r q \in D_{1}^{*}$ is adjacent to $a^{\prime} b^{\prime} r^{\prime} q^{\prime} \in X_{3}^{*}$, a contradiction to our assumption that our sequence is minimal. Therefore $X_{2}^{*}=D_{2}^{*}$. But this is again a contradiction because X_{2}^{*} does not cover the whole graph.

5.3 Prime split graphs

In this section, we analyze the structure of the (strong) P_{4}-components in prime split graphs. These results are then used to extend the splitmodular decomposition of Section 4.3.

We start with investigating prime graphs that are covered by a (strong) P_{4}-component.

Theorem 5.3.1 Let G be a prime graph. If G is covered by a strong P_{4}-component, then its maximal split-homogeneous sets are disjoint. Similarly, if G is covered by a P_{4}-component, then its maximal strict split-homogeneous sets are disjoint.

Proof. Because of Theorem 5.2.2, Theorem 4.3.4 and Theorem 4.3.6, it suffices to show our theorem for prime split graphs G. Let D^{*} denote the strong P_{4}-component that covers G and suppose that two different maximal split-homogeneous sets $A=A^{1}+A^{2}$ and $B=B^{1}+B^{2}$ have nonempty intersection. Then $A \cup B$ is a split module, see Fact 4.3.3, hence $A^{1} \cup B^{1}+A^{2} \cup B^{2}$ is a split-partition of G. Furthermore, Corollary 5.1.13 guarantees that no P_{4} in D^{*} is in G_{A} or G_{B}.

Now suppose a $P_{4} a b c d$ in D^{*} satisfies $a b \in G_{A}$. Then it is impossible that $c \in A$ and $d \notin A$, for otherwise d would be A^{1}-partial. Similarly $c \notin A$ and $d \in A$ would imply that c is A^{2}-partial. Therefore both c and d are in $B-A$. As the symmetric argumentation applies to $c d \in G_{B}$, we also know that a and b are in $A-B$. Therefore no P_{4} in D^{*} has a vertex in $A \cap B$, a contradiction because D^{*} covers G.

The above argumentation remains valid if we replace strong P_{4}-components, split modules and split-homogeneous sets with P_{4}-components, strict split modules and strict split-homogeneous sets. This proves the second part of the theorem.

By the above theorem, it suffices to discuss the decomposition of prime split graphs that are not covered by any strong P_{4}-components. We first consider graphs containing vertices in no P_{4}.

Theorem 5.3.2 Let $G=\left(V^{1}, V^{2}, E\right)$ be a prime split graph and v a vertex in no P_{4} of G. Then $V^{1}+V^{2}-v$ is strict split-homogeneous in G and in \bar{G}.

Proof. Since no P_{4}-component covers the whole graph, every $P_{4}{ }^{-}$ component of G is separable and therefore implies a strict split-homogeneous set. Let $W=W^{1}+W^{2}$ be a maximal strict split-homogeneous set. If a W-partial vertex r misses a W-universal vertex p, then a $P_{4} r w_{1} p w_{2}$ exists with $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$, a contradiction to the maximality of W because $V\left(C^{*}\left(r w_{1}\right)\right) \cup W$ is a larger strict split-homogeneous set. Therefore W is strict split-homogeneous in \bar{G}, thus our lemma follows from Lemma 4.3.5.

The next lemma shows that, in the remaining cases, the graph is not covered by any P_{4}-component of G or \bar{G}.

Lemma 5.3.3 Let $G=\left(V^{1}, V^{2}, E\right)$ be a prime split graph that is covered by a P_{4}-component of G and a P_{4}-component of \bar{G}. Then G is covered by a strong P_{4}-component.

Proof. From Theorem 5.3.1 follows that the maximal strict splithomogeneous sets are disjoint, hence every P_{4} not in a strict splithomogeneous set belongs to the P_{4}-component that covers G. By substituting nonadjacent marker vertices for maximal strict split-homogeneous sets, we therefore do not add P_{4} s to the P_{4}-component that covers G, and it is easy to see that we do not disconnect the P_{4}-component that covers \bar{G}. Furthermore, if a strong P_{4}-component covers the graph after the substitution, the same holds for the original graph. Therefore it suffices to show the theorem for prime split graphs without strict split-homogeneous sets in G and \bar{G}.

Suppose the theorem does not hold. Then the cover of every strong P_{4}-component is split-homogeneous but neither strict split-homogeneous in G nor strict split-homogeneous in \bar{G}. Let D^{*} denote a strong $P_{4^{-}}$ component that is maximal in the sense that no other strong P_{4}-component covers $V\left(D^{*}\right)$. Then vertices $p \in P, q \in Q$ and $r_{1}, r_{2} \in R$ exist such that p misses r_{1} and q sees r_{2}. Let $a b c d$ be a P_{4} in D^{*}.

Case 1: $r_{1}=r_{2}$. If q misses p, then $q r_{1} b p d$ is a P_{5}, thus $D^{*}\left(q r_{1} b p\right)$ is not split-homogeneous, a contradiction to our assumption. If q sees p, the same argument applies to the complement, so $r_{1}=r_{2}$ is impossible.

Case 2: $r_{1} \neq r_{2}$. Then p sees r_{2} and q misses r_{1}, for otherwise we are back in Case 1. Note that we have the same situation in the complement, so we may assume that p misses q. Now $a b r_{2} q \sim a p r_{2} q \sim d p r_{2} q \sim d c r_{2} q$, and a simple inductive argument shows that $V\left(D^{*}\right) \subseteq V\left(D^{*}\left(a b r_{2} q\right)\right.$), a contradiction to the maximality of D^{*}.

The following lemma provides the desired structural result.
Lemma 5.3.4 Let $G=\left(V^{1}, V^{2}, E\right)$ be a prime split graph such that every vertex belongs to a P_{4}. If no P_{4}-component covers the whole graph, then $\left(V, \bar{E}-\bar{E}\left(V^{2}\right)\right)$ consists of at least three connected components.

Proof. In this proof, we call a P_{4}-component C^{*} maximal if no other P_{4}-component covers $V\left(C^{*}\right)$. Let C^{*} denote such a maximal P_{4} component. As C^{*} does not cover the whole graph, $W=V\left(C^{*}\right)$ is
strict split-homogeneous. If W is also strict split-homogeneous in \bar{G}, then Lemma 4.3 .5 implies that not every vertex belongs to a P_{4}, a contradiction to our assumption. Therefore a vertex $p \in P$ misses a vertex $r \in R$.

Let abcd be a P_{4} in C^{*} and consider the bipartite graph $G^{\prime}=$ $\left(W, \bar{E}(W)-\bar{E}\left(V^{2}\right)\right)$. Clearly G^{\prime} has at most two connected components B and C with $b \in B$ and $c \in C$. Between b and every vertex $u \in B$, a (not necessarily simple) path $b, d, x_{1}, x_{2}, \ldots, x_{k}=u$ in G^{\prime} exists. Clearly every pair of consecutive vertices x_{i} and x_{i+1} together with r and p induces a $P_{4} r x_{i} p x_{i+1}$ or $r x_{i+1} p x_{i}$, and those P_{4} s belong to $C^{*}(r b p d)$. If G^{\prime} has only one P_{4}-component, then $V\left(C^{*}\right)$ is covered by $C^{*}(r b p d)$, a contradiction to the maximality of C^{*}. Therefore the replacement of C^{*} with a maker $P_{4} a b c d$ neither increases the number of connected components of $\left(V, \bar{E}-\bar{E}\left(V^{2}\right)\right)$ nor does it unify maximal P_{4} components. We perform this substitution of marker $P_{4} \mathrm{~s}$ for maximal P_{4}-components until every maximal P_{4}-component consists of a single P_{4}. It should be clear that the resulting graph is prime and split, so it suffices to show our theorem for graphs $G=\left(V^{1}, V^{2}, E\right)$ in which every P_{4}-component is a P_{4} and vice versa.

Let $a b c d$ denote a P_{4} and let Q, R and P denote the vertex partition relative to $\{a, b, c, d\}$. Suppose that $Q \neq \emptyset$ and let $P_{Q} \subseteq P$ denote the vertices adjacent to some vertices in Q. Consider $H=\{a, b, c, d\} \cup R \cup$ $\left(P-P_{Q}\right)$. Clearly every vertex in Q misses every vertex in H. Let p_{q} be a vertex in P_{Q} and let $q \in Q$ denote one of the vertices that sees p_{q}. Then p_{q} sees every vertex in R, for otherwise $q p_{q} b r$ and $q p_{q} c r$ would be adjacent $P_{4} \mathrm{~s}$, a contradiction for every P_{4}-component consists of a single P_{4}. Furthermore, if p_{q} misses a vertex in $p \in P-P_{Q}$, the same contradiction arises because of the adjacent $P_{4} \mathrm{~s} q p_{q} a p$ and $q p_{q} d p$. We conclude that every vertex in P_{Q} sees every vertex in H, hence H is homogeneous, a contradiction.

So we have shown that $Q=\emptyset$ for every $P_{4} a b c d$ in G. Since every vertex belongs to a P_{4}, the split partition is unique, hence $V^{1}=\{b, c\}+$ P and $V^{2}=\{a, d\}+R$. Note that b sees every vertex in V^{2} except for d, and d sees every vertex in V^{1} except for b. By symmetry, every vertex in V^{1} misses precisely one vertex in V^{2} and vice versa. Such a graph is called a thick spider in [5], and it is obvious that ($V, \bar{E}-\bar{E}\left(V^{2}\right)$) has $\left|V^{1}\right|=\left|V^{2}\right|$ components. But G contains a pyramid, hence $\left|V^{1}\right| \geq 3$.
\qquad buildSplitModTree(G)
input: a graph $G=(V, E)$
output: the root of the split-modular decomposition tree of G
(11) else (* G and \bar{G} are connected and $|V|>1^{*}$)
(12) let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the characteristic graph of G;
(13) if G^{\prime} is split and a vertex v in V^{\prime} is in no P_{4} then
(14) let H be the vertex set of G that corresponds to v;
(15) let $r_{1}=$ buildSplitModTree(G_{H});
(16) let $r_{2}=$ buildSplitModTree($\left.G_{V-H}\right)$;
(17) return a 2-node with children r_{1} and r_{2}
(18) elsif $G^{\prime}=\left(V^{1}, V^{2}, E^{\prime}\right)$ is split and $\left(V^{\prime}, E-E\left(V^{1}\right)\right)$ has
(19) more than two connected components then
(20) let H_{1}, \ldots, H_{t} be the vertex sets of G that correspond
(21) to the connected components of ($V^{\prime}, E-E\left(V^{1}\right)$);
(22) \quad let $r_{i}=$ buildSplitModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(23) return a 3 -node with children r_{1}, \ldots, r_{t}
(24) elsif $G^{\prime}=\left(V^{1}, V^{2}, E^{\prime}\right)$ is split and $\left(V^{\prime}, \bar{E}-\bar{E}\left(V^{2}\right)\right)$ has
(25) more than two connected components then
(26) let H_{1}, \ldots, H_{t} be the vertex sets of G that correspond
(27) to the connected components of ($\left.V^{\prime}, \bar{E}-\bar{E}\left(V^{2}\right)\right)$;
(28) \quad let $r_{i}=$ buildSplitModTree($G_{H_{i}}$) for $i=1, \ldots, t$;
(29) return a 4-node with children r_{1}, \ldots, r_{t}
(30) else (${ }^{*} G^{\prime}$ is covered by a strong P_{4}-component ${ }^{*}$)
(31) let S_{1}, \cdots, S_{k} be the vertex sets of G that correspond
(32) to maximal split-homogeneous sets of G^{\prime};
(33) let $s_{i}=$ buildSplitModTree($G_{S_{i}}$) for $i=1, \ldots, k$;
(34) let H_{1}, \ldots, H_{t} be those maximal proper modules of G
(35) which are not contained in S_{1}, \ldots, S_{k};
(36) \quad let $r_{i}=$ buildSplitModTree $\left(G_{H_{i}}\right)$ for $i=1, \ldots, t$;
(37) return a 5 -node with children $s_{1}, \ldots, s_{k}, r_{1}, \ldots, r_{t}$
(38) $\quad \mathbf{f i}$
(39) fi

Lemma 5.3.4 holds for the complement as well, that is, if the graph $G=(V, E)$ is not covered by a P_{4}-component of \bar{G}, then $\left(V, E-E\left(V^{1}\right)\right)$ has at least three connected components. It is also easy to see that ($V, E-E\left(V^{1}\right)$) is connected if the number of connected components of ($V, \bar{E}-\bar{E}\left(V^{2}\right)$) is greater than two. Theorem 5.3.5 summarizes our findings.

Theorem 5.3.5 Let $G=\left(V^{1}, V^{2}, E\right)$ be a prime split graph in which every vertex belongs to a P_{4}. If no strong P_{4}-component covers the whole graph, then either $\left(V, \bar{E}-\bar{E}\left(V^{2}\right)\right)$ or $\left(V, E-E\left(V^{1}\right)\right)$ consists of at least three connected components.

The split-modular decomposition extended with the results of Theorem 5.3.1, 5.3.2 and 5.3.5 is given in Algorithm 5.1.

5.4 Computing the split-modular decomposition

The purpose of this section is to propose an efficient implementation of Algorithm 5.1, that is, we prove Theorem 5.4.1.

Theorem 5.4.1 The split-modular decomposition of an arbitrary graph $G=(V, E)$ can be found in $O\left(|V|^{4}\right)$.

In our implementation of Algorithm 5.1, we use an associated graph $\tilde{G}=(\tilde{V}, \tilde{E})$ to compute the strong P_{4}-components. This associated graph is defined as follows.

- The vertices of \tilde{V} are the ribs of the $P_{4} \mathrm{~s}$ in G and \bar{G}.
- For every $P_{4} a b c d$ in G, there is an edge between $b c$ and $a d$ in \tilde{E}. We call these edges p-edges because they represent the $P_{4} \mathrm{~s}$ of G.
- For every $P_{4} a b c d$ of G and \bar{G} such that $a b$ is a vertex in \tilde{V}, there is an edge between $a b$ and $b c$ in \tilde{E}.

Figure 5.5 illustrates this construction. The given graph G contains fourteen $P_{4} \mathrm{~s}$ (the corresponding p-edges are indicated by thick lines), and its separable strong P_{4}-components $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$ induce

Figure 5.5: A graph $G=(V, E)$ and its associated graph $\tilde{G}=(\tilde{V}, \tilde{E})$.
the maximal split-homogeneous set $\left\{b_{1}, b_{2}, c_{1}, c_{2}\right\}+\left\{a_{1}, a_{2}, d_{1}, d_{2}\right\}$. Note that the strong P_{4}-components of G coincide with the connected components of \tilde{G}. This holds in general, as we prove in the next lemma.

Lemma 5.4.2 The strong P_{4}-components of G are the connected components of \tilde{G} and vice versa.

Proof. First we prove that if two p-edges belong to the same connected component of \tilde{G}, then the corresponding P_{4} s are in the same strong P_{4} component. Since every vertex in \tilde{G} is incident to a p-edge, it suffices to give a proof for two p-edges that do not induce a $2 K_{2}$.

If two p-edges have a common endpoint, then the corresponding $P_{4} \mathrm{~s}$ or their complements have a common rib, thus, by Lemma 5.1.3, they belong to the same strong P_{4}-component. So suppose that two p-edges e_{1} and e_{2} have no common endpoint but an endpoint of e_{1} is joined to an endpoint of e_{2} by an edge, say e_{3}. If e_{3} is a p-edge, then it follows from the above argumentation that the corresponding $P_{4} \mathrm{~s}$ belongs to the same strong P_{4}-component. Otherwise, if e_{3} is no p-edge, then the endpoints of e_{3} are either the ribs of $P_{4} \mathrm{~s}$ in G and one rib is the wing of the other P_{4} or the same holds in the complement; thus Lemma 5.1.4 guarantees that those P_{4} s belong to the same strong P_{4}-component.

Second we show that if two $P_{4} \mathrm{~s}$ belong to the same P_{4}-component, then the corresponding p-edges are in the same connected component of \tilde{G}. Clearly it suffices to show that two p-edges corresponding to strong-
adjacent $P_{4} \mathrm{~s}$ do not induce a $2 K_{2}$. If abcd denotes one P_{4}, then the other P_{4} is of type (a) to (d) as given in Table 5.2.

Case 1: The P_{4} is of type (a). Then the complement of the two $P_{4} \mathrm{~s}$ have a common rib, hence the corresponding p-edges have a common endpoint.

Case 2: The P_{4} is of type (b). Then the two P_{4} s have a common rib, and again the corresponding p-edges have a common endpoint.

Case 3: The P_{4} is of type (c). Then, by construction, there is an edge between $b c$ and $c d$.

Case 4: The P_{4} is of type (d). Let bavd denote our P_{4}. Then $a d b v$ is a P_{4} in the complement, and ad is a rib of the P_{4} bdac (in \bar{G}); thus there is an edge between $b d$ and $a d$.

We compute \tilde{G} and its connected components in a preprocessing step. Since a P_{4} is uniquely defined by its wings, this can be done in $|\tilde{E}|=O\left(|E|^{2}\right)$. By Lemma 5.1.3, all $P_{4} \mathrm{~s}$ with the same rib belong to the same P_{4}-component; thus we can assign strong P_{4}-components to the ribs of $P_{4} \mathrm{~s}$ in G. Furthermore, for every edge $v w$ in G, we store the number $p(v w)$ of P_{4} s that contain $v w$.

To prove Theorem 5.4.1, we show that, except for the exploration of \tilde{G}, our algorithm runs in $O\left(\left|V^{4}\right|\right)$. Since there are at most $|V|$ recursive calls, it suffices to show that each recursive step can be done in $O\left(|V|^{3}\right)$.

Clearly, the computation of the connected component of G and \bar{G} can be found in $O\left(|V|^{2}\right)$. If G is connected and coconnected, we calculate the characteristic graph G^{\prime}. This step is in $O\left(|V|^{3}\right)$ as shown in Section 3.3 Page 33. Next, we check whether G^{\prime} is split. This can also be done in linear time by testing whether G^{\prime} and \bar{G}^{\prime} are triangulated, see Theorem 3.4.1(ii).

If G^{\prime} is split, we compute a maximum clique of G^{\prime}. By Lemma 4.3.5, Theorem 5.3.2 and the discussion on Page 48, the maximum clique of G^{\prime} is unique, thus $G^{\prime}=\left(V^{1}, V^{2}, E^{\prime}\right)$ where V^{1} denotes the maximum clique. If $G^{\prime}=\left(V^{1}, V^{2}, E^{\prime}\right)$ contains a vertex in V^{1} that misses every vertex in V^{2}, we decompose G accordingly. Otherwise, we test whether ($V, \bar{E}^{\prime}-\bar{E}^{\prime}\left(V^{2}\right)$) or ($V, E-E\left(V^{1}\right)$) has more than two connected components. If so, we dccompose G into the subgraphs induced by those connected components. Obviously all these steps can be done in $O\left(|V|^{2}\right)$.

In the remaining cases, by Theorem 5.2.2 and Lemma 5.3.3, G is covered by a strong P_{4}-component D^{*}. To find D^{*}, we scan the edges in G until we find an edge whose assigned strong P_{4}-component satisfies $\left|V\left(D^{*}\right)\right|=|V|$. Next, we scan the $P_{4} s a b c d$ in D^{*}, decrease $p(a b), p(b c)$ and $p(c d)$ and then compute the connected components C_{1}, \ldots, C_{k} of the subgraph defined by the edges $v w$ with $p(v w)>0$.

Note that the C_{i} s are homogeneous sets in G or strict split-homogeneous sets or split-homogeneous in G^{\prime}. We can easily distinguish between these threc possibilities in $O\left(|V|^{2}\right)$ by using an array of vertices for every connected component C_{i} that stores C_{i}-universal, $C_{i^{-}}$ null and C_{i}-partial vertices. However, maximal split-homogeneous sets need not be induced by a single connected component C_{i} : The graph of Figure 5.5 is such an example. As in case of the bipartite-modular decomposition, we have to take the disjoint union of the so far computed split-homogeneous sets if the union is again split-homogeneous. This can be done in $O\left(|V|^{3}\right)$ by first calculating the sets P, R and Q for every split-homogeneous set and then performing the tests whether the union of two sets is split-homogeneous.

In a last step, again as in case of the bipartite-modular decomposition, we have to find the maximal split-homogeneous sets that contain vertices which do not belong to a P_{4} in the maximal split-homogeneous set. This last step can be implemented by examining all pairs of the so far computed split-homogeneous sets A and B together with the set of $A^{1} \cup B^{1}$-partial or $A^{2} \cup B^{2}$-partial vertices. By precalculating P, R and Q for the so far computed split-homogeneous sets, this step can be carried out in $O\left(|V|^{3}\right)$. The overall running time per recursive call is therefore $O\left(|V|^{3}\right)$, which proves our theorem.

5.5 Recognizing and orienting P_{4}-comparability graphs

In order to obtain an acyclic P_{4}-transitive orientation, it suffices to compute an acyclic orientation of the edges in the $P_{4} \mathrm{~s}$ (all other edges can be oriented by topological sorting). In the following, we only discuss this part of the orientation.

If no P_{4}-component covers a proper subset of the vertices of G, then Theorem 5.2.1 guarantees that G has at most one nontrivial P_{4} component. In this case, a P_{4}-transitive orientation is easy to compute
because the orientation of one edge of a P_{4} in a P_{4}-component forces the orientation of all P_{4}-edges in the same P_{4}-component.

So suppose a P_{4}-component C^{*} does not cover the whole graph. Then either $V\left(C^{*}\right)$ is homogeneous or C^{*} is separable. If G contains a homogeneous set H, we compute a P_{4}-transitive orientation of G as follows.
(i) Replace H with a marker vertex h
(ii) Compute a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ in G_{H} and in G_{V-H+h}.
(iii) Construct a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ in G by directing P_{4}-edges
$v w$ with $v, w \in H$ as in G_{H},
$v w$ with $v, w \in V-H$ as in G_{V-H+h},
$v w$ with $v \in H$ and $w \in V-H$ as $h w$ in G_{V-H+h}.

Obviously, a P_{4}-transitive orientation of G induces a P_{4}-transitive orientation of G_{H} and G_{V-H+h}. The converse holds because of the following lemma.

Lemma 5.5.1 If the orientation of the $P_{4} s$ in G_{H} and G_{V-H+h} is P_{4} transitive, then (iii) gives a P_{4}-transitive orientation of the $P_{4} s$ in G.

Proof. To begin with, we show that every P_{4} in G is oriented properly. This is obvious for P_{4} s with all vertices in H and for $P_{4} \mathrm{~s}$ with all vertices in $V-H$. The remaining P_{4} s have precisely one vertex in H, hence such a P_{4} has a corresponding P_{4} in G_{V-H+h}. Since both $P_{4} \mathrm{~s}$ are oriented in the same way, those P_{4} s are oriented properly.

Now suppose the orientation of G is cyclic. As the orientation of G_{H} and G_{V-H+h} is acyclic, every cycle contains edges with both endpoints in H and edges with an endpoint in $V-H$. Choose a cycle with a minimal number of vertices in H and let $v \rightarrow \cdots \rightarrow w$ denote the longest part of this cycle in H. Furthermore, let u be the predecessor of v and x the successor of w in this cycle; thus $u, x \in V-H$. Since $u v$ is directed, it must belong to a P_{4} with precisely one vertex in H. By substituting w for v in this P_{4}, we obtain a P_{4} that is oriented in the same way. Therefore $u \rightarrow w$, a contradiction because we have found a cycle with fewer vertices in H.

If the cover of C^{*} is not homogeneous, then C^{*} is separable. In Section 5.1, we have seen that the coconnected components of $G_{W_{1}}$ and the connected components of $G_{W_{2}}$ are homogeneous sets, so we can substitute marker vertices for those components and compute a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ as described above. In the graph after the substitution, the vertex set corresponding to $V\left(C^{*}\right)$ is strict split-homogeneous. If a graph has a strict split-homogeneous set W, however, we can proceed as follows.
(i) Replace W^{1} and W^{2} with nonadjacent marker vertices w_{1} and w_{2}.
(ii) Compute a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ in G_{W} and in $G_{V-W+w_{1}+w_{2}}$.
(iii) Construct a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ in G by directing P_{4}-edges
$v w$ with $v, w \in W$ as in G_{W},
$v w$ with $v, w \in V-W$ as in $G_{V-W+w_{1}+w_{2}}$,
$v w$ with $v \in V-W$ and $w \in W^{1}$ as $v w_{1}$ in $G_{V-W+w_{1}+w_{2}}$ and $v w$ with $v \in V-W$ and $w \in W^{2}$ as $v w_{2}$ in $G_{V-W+w_{1}+w_{2}}$.

A P_{4}-transitive orientation of G induces a P_{4}-transitive orientation of G_{W} and $G_{V-W+w_{1}+w_{2}}$. The converse is established by the next lemma.

Lemma 5.5.2 If the orientation of the $P_{4} s$ in G_{W} and $G_{V-W+w_{1}+w_{2}}$ is P_{4}-transitive, then (iii) gives a P_{4}-transitive orientation of the P_{4} s in G.

Proof. The structure of this proof is identical to that of Lemma 5.5.1. So we first show that every P_{4} in G is oriented properly. Again this is obvious for $P_{4} \mathrm{~s}$ with all vertices in W and for $P_{4} \mathrm{~s}$ with all vertices in $V-W$. The remaining $P_{4} \mathrm{~s}$ are of types (1) to (6), for each of which a corresponding P_{4} in $G_{V-W+w_{1}+w_{2}}$ exists that is oriented in the same way. Thus every P_{4} is oriented properly.

Now suppose the orientation of G is cyclic. As the orientation of G_{W} and $G_{V-W+w_{1}+w_{2}}$ is acyclic, every cycle contains edges with both endpoints in W and edges with an endpoint in $V-W$. Choose a cycle with a minimal number of vertices in W and let $v \rightarrow \cdots \rightarrow w$ denote the longest part of this cycle in W. Furthermore, let u be the predecessor of v and x the successor of w in this cycle; thus $u, x \notin W$.

Since $u v$ is directed, it must belong to a P_{4} of types (1) to (6). Moreover v and w cannot belong to the same set of the split-partition $W^{1}+W^{2}$ because this would imply $u \rightarrow w$, i.e. a cycle with fewer vertices in W exists. Without loss of generality, let $v \in W^{2}$ (otherwise we invert the orientation of the directed edges). Hence $u \in P$.

Then $u v$ is in no P_{4} of types (1) or (2), as otherwise $u \rightarrow w_{2}$ and $u \rightarrow w_{1}$ in $G_{V-W+w_{1}+w_{2}}$ and therefore $u \rightarrow w$, again a contradiction because this implies a cycle with fewer vertices in W. For the same reason, $u v$ cannot belong to a P_{4} of types (4) to (6), see Figure 4.1. Now assume that $u v$ is in a P_{4} of type (3), say $p_{1} v u r$. Then $G_{V-W+w_{1}+w_{2}}$ contains the $P_{4} \mathrm{~s} p_{1} w_{2} u r$ and $r w_{1} p_{1} w_{2}$; hence $r \rightarrow w_{1}$ in $G_{V-W+w_{1}+w_{2}}$ and therefore $r \rightarrow w$ in G. Thus $u \rightarrow v \rightarrow \cdots \rightarrow w$ can be replaced with $u \rightarrow r \rightarrow \boldsymbol{w}$, a contradiction as this again implies a cycle with fewer vertices in W.

Note that the above lemmas prove Theorem 5.1.1 because (a) if the P_{4}-classes of G can be P_{4}-transitively oriented, the same holds for the P_{4}-classes of G_{H}, G_{V-H+h}, G_{W} and $G_{V-W+w_{1}+w_{2}}$, and (b) this division into subproblems can be repeated until the graph has at most one P_{4}-class.

In the proof of Lemma 5.5.2, we have only used the fact that every P_{4} with at least one but not all its vertices in W is of type (1) to (6). Therefore the described divide and conquer method is also applicable to the cover $W=V\left(C^{*}\right)$ of a separable P_{4}-component. We use this fact to prove Algorithm 5.2, the P_{4}-analog of Golumbic's algorithm.

Note that, for a homogeneous set H, the removal of some edges in G_{H} does not create new $P_{4} \mathrm{~s}$ with at least one edge in G_{V-H}. Similarly, it is easy to see that, for a strict split-homogeneous set $W=W^{1}+W^{2}$, the only $P_{4} \mathrm{~s}$ with some edges in G_{V-W} that are created by the removal of edges between W^{1} and W^{2} are of type (6). The latter accounts for Lines (6) to (9) in Algorithm 5.2, i.e. we remove only the wings of the $P_{4} \mathrm{~s}$ in a separable P_{4}-component C^{*} from the graph $G=\left(V, E+E^{\prime}\right)$.

Now let $C^{*}=C^{*}(v w)$ be the P_{4}-component of $G=\left(V, E+E^{\prime}\right)$ as in Line (5). The orientation of the P_{4}-components of $G_{V\left(C^{*}\right)}$ is independent of the orientation of the other P_{4}-components if we guarantee that P_{4}-edges between vertices in $V\left(C^{*}\right)$ and a vertex in $V-V\left(C^{*}\right)$ are directed in the same way. We show that the latter constraint is satisfied because the corresponding P_{4}-edges belong to $P_{4} \mathrm{~s}$ in the same P_{4}-component. This is obvious if $V\left(C^{*}\right)$ is homogeneous. Otherwise C^{*}
input: a graph $G=(V, E)$ output: a P_{4}-transitive orientation of the $P_{4} \mathrm{~s}$ in G
(1) let E^{\prime} denote the set of edges in no P_{4} of G;
(2) let E denote the set of P_{4}-edges of G;
(3) while $E \neq \emptyset$ do
(4) choose an edge $v w$ in E;
(5) orient the P_{4}-component $C^{*}(v w)$ of $G=\left(V, E+E^{\prime}\right)$;
(6) if $C^{*}(v w)$ is separable then
(7) \quad let $E_{\text {rib }}$ be the ribs of the $P_{4} \mathrm{~s}$ in $C^{*}(v w)$;

$$
E^{\prime} \leftarrow E^{\prime}+E_{r i b}
$$

(9) f ;
(10) $E \leftarrow E-C^{*}(v w)$;
(11) od

Algorithm 5.2 \qquad
is separable, hence every P_{4} with one but not all its vertices is of types (1) to (6) on Page 52. For P_{4} s of types (1) to (5), it follows from Figure 4.1 that they belong to the same P_{4}-component. For P_{4} s of type (6) , the removal of the wings in C^{*} ensures that the corresponding P_{4} s belong to the same P_{4}-component.

Now consider the orientation of $G_{V\left(C^{*}\right)}$. Without loss of generality, we may assume that $G_{V\left(C^{*}\right)}$ is prime as the substitution of marker vertices for homogeneous sets does not unify different P_{4}-components. Then Theorem 5.3.1 applies, hence all $P_{4} \mathrm{~s}$ not in maximal strict splithomogeneous sets belong to C^{*} and are therefore oriented correctly relative to the maximal strict split-homogeneous sets. Similarly, the removal of the wings of the $P_{4} \mathrm{~s}$ in C^{*} does not affect the remaining P_{4}-components of $G_{V\left(C^{*}\right)}$ as those P_{4}-components belong to disjoint maximal strict split-homogeneous sets.

So Algorithm 5.2 is correct and runs in $O\left(|V|^{2} \cdot|E|\right)$, the time needed to find the P_{4}-components of G in BFS-manner.

Theorem 5.5.3 P_{4}-comparability graphs can be oriented and recognized in $O\left(|V|^{2} \cdot|E|\right)$ time and $O(|V|+|E|)$ space.

To be more precise, the running time of our algorithm is bounded by $O\left(\delta^{2} \cdot|E|\right)$ where δ is the maximal degree of a vertex. This can easily be seen because, given an edge $v w$, there are at most δP_{3} s containing
$v w$, and it can be tested in $O(\delta)$ time whether this P_{3} belongs to a P_{4} (providing the adjacency lists of G are sorted). If we sacrifice the $O(|V|+|E|)$ space, we can improve the running time of our algorithm.

Theorem 5.5.4 P_{4}-comparability graphs can be oriented and recognized in $O\left(|E|^{2}\right)$ time and $O(|V| \cdot|E|)$ space.

Proof. First note that every P_{4} is uniquely determined by its wings, thus all P_{4} s of $G=(V, E)$ can be found in $O\left(|E|^{2}\right)$ time. To compute and orient the P_{4}-components of G, we use the graph $\tilde{G}=(\tilde{V}, \tilde{E})$ where $\tilde{V}=E$ and two vertices e_{1}, e_{2} are adjacent in \tilde{G} if e_{1} and e_{2} are adjacent edges in a P_{4} of G, i.e. e_{1} and e_{2} form a P_{3} that is part of a P_{4}. Obviously the connected components of \tilde{G} correspond to the P_{4}-components of G.

The initial construction of \tilde{G} requires scanning every P_{4} of G. As mentioned before, this can be carried out in $O\left(|E|^{2}\right)$. Furthermore $O(|\tilde{E}|)=O(|V| \cdot|E|)$ because an edge can belong to at most $2 \mathrm{n} P_{3} \mathrm{~s}$.

When replacing $V\left(C^{*}\right)$ with marker vertices, \tilde{G} can be updated by relabeling and deleting vertices of \tilde{G}; hence all these updates can be done in $O(|V| \cdot|\tilde{V}|)+O(|\tilde{E}|)=O(|V| \cdot|E|)$. But a connected component of \tilde{G} is explored at most twice (to find a P_{4}-component that does not cover G and to orient the P_{4}-component). Therefore, after the initialization of \tilde{G}, our algorithm runs in $O(|V| \cdot|E|)+O(|\tilde{V}|+|\tilde{E}|)=O(|V| \cdot|E|)$.

5.6 A general recognition algorithm

In this section, we show how to apply the split-modular decomposition to recognize perfectly orderable graphs. If a graph is disconnected or codisconnected, it is straight-forward to obtain a perfect order. If a graph $G=(V, E)$ contains a homogeneous set H, then we substitute a marker vertex h for H, find a perfect order of G_{H} and G_{V-H+h}. A perfect order of G can then be constructed from the perfect order of G_{V-H+h} by replacing h with the vertices in H where the vertices in H retain their order in G_{H}. As in the previous section, no obstruction can arise as every P_{4} in G has a corresponding P_{4} in G_{H} or G_{V-H+h} oriented in the same way.

It remains to find a perfect order of prime graphs. Note that to avoid an obstruction, it suffices to orient one wing in every P_{4} from
the midpoint to the endpoint. We call this a partial obstruction-free orientation. If a partial obstruction-free orientation is acyclic, then a perfect orientation is easily obtained by topological sorting.

If G is a prime split graph $G=\left(V^{1}, V^{2}, E\right)$, then any order that satisfies $v_{1}<v_{2}$ for $v_{1} \in V^{1}$ and $v_{2} \in V^{2}$ is perfect. On the other hand, every partial obstruction-free orientation of a split graph $G=\left(V^{1}, V^{2}, E\right)$ has to orient some edges from V^{1} to V^{2}. Since split-homogeneous sets induce split graphs, we substitute nonadjacent marker vertices w^{1} and w^{2} for split-homogeneous sets $W=W^{1}+W^{2}$ and compute a perfect order in $G_{V-W+w^{1}+w^{2}}$ with $w^{1}<w^{2}$. A perfect order of G is then obtained by replacing w^{1} and w^{2} with the vertices in W^{1} and W^{2}. The following lemma shows that this method is correct.

Lemma 5.6.1 A graph G with split-homogeneous set $W=W^{1}+W^{2}$ has a perfect order if and only if $G_{V-W+w^{1}+w^{2}}$ has a perfect order that satisfies $w^{1}<w^{2}$.

Proof. If $G_{V-W+w^{1}+w^{2}}$ has a perfect order that satisfies $w^{1}<w^{2}$, then the order arising from replacing w^{1} and w^{2} with the vertices in W^{1} and W^{2} is obstruction-free as every P_{4} in G except for P_{4} s with a wing in G_{W} has a corresponding P_{4} in $G_{V-W+w^{1}+w^{2}}$ oriented in the same way. P_{4} s with a wing in G_{W} are either in G_{W} or of type (12) as defined on Page 53. In both cases, the wing in G_{W} is oriented from the midpoints to the endpoints.

Conversely, let \vec{G} be a perfect orientation of G and let $a b c d$ be a P_{4} in G_{W}. Then $a \leftarrow b$ or $c \rightarrow d$. Without loss of generality, let $c \rightarrow d$. From \vec{G}, we construct an orientation \vec{G}^{\prime} of $G_{V-W+a+c}$ by orienting every edge as in \vec{G} except for edges $a v$ with $v \leftarrow a$ and $v \rightarrow d$ in \vec{G}. The latter edges are oriented $v \rightarrow a$ in \vec{G}^{\prime}. We claim that \vec{G}^{\prime} is a perfect orientation and that inserting $c \rightarrow a$ in \vec{G}^{\prime} leaves the graph acyclic.

Since \vec{G} is a perfect orientation, an obstruction in \vec{G}^{\prime} corresponds to a P_{4} with a wing whose orientation in \vec{G}^{\prime} is different from that in \vec{G}. Therefore an obstruction is a $P_{4} v a x y$ with $v \rightarrow a$ in \vec{G}^{\prime} and $v \leftarrow a$ in \vec{G}. It is easy to see that this P_{4} must be of type (2) or (3). But this is a contradiction because $v d x y$ would be an obstruction in \vec{G}.

Now assume that \vec{G}^{\prime} has a cycle. Since \vec{G} is acyclic, this cycle contains an edge whose orientation in \vec{G} is different from that in \vec{G}^{\prime}. Let $u \rightarrow a$ in \vec{G}^{\prime} be this edge in the cycle and let x denote the successor of a in the cycle. Then $u \rightarrow d$ and $d \rightarrow x$ in \vec{G} by construction. We
can therefore replace every occurrence of $u \rightarrow a \rightarrow x$ in our cycle with $u \rightarrow d \rightarrow x$, thereby obtaining a cycle in \vec{G}, a contradiction to our assumption that \vec{G} is acyclic.

Finally, suppose that inserting $c \rightarrow a$ in \vec{G}^{\prime} causes a cycle $c \rightarrow a \rightarrow$ $v \rightarrow \cdots \rightarrow c$. By replacing $c \rightarrow a \rightarrow v$ with $c \rightarrow d \rightarrow v$ and by replacing $u \rightarrow a \rightarrow x$ with $u \rightarrow d \rightarrow x$ as before, we obtain a cycle in \vec{G}, again a contradiction to our assumption.

The graph after replacing maximal split-homogeneous sets with marker vertices need not be prime relative to the split-modular decomposition. The above method can therefore be applied repeatedly until we end up with a prime graph without maximal split-homogeneous sets. To find a perfect order that satisfies the additional constraints $w^{1}<w^{2}$, however, might be difficult.

On the other hand, if the graph admits at most two partial obstruc-tion-free orientations according to some predefined rules, then we just have to test whether topological sorting together with the additional constraints yields an acyclic orientation. This is clearly the case for rules which enforce that $a \leftarrow b$ or $c \rightarrow d$ implies $a^{\prime} \leftarrow b^{\prime}$ or $c^{\prime} \rightarrow d^{\prime}$ for any pair of strong-adjacent $P_{4} \mathrm{~s} a b c d$ and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$. Orienting every P_{4} transitively is an example of such a rule.

Furthermore, every set of rules that orients the wings of strongadjacent $P_{4} \mathrm{~s}$ is almost sufficient: The only exception of strong-adjacent P_{4} s without a common wing is the P_{5}. So if we give a set of rules that orients the wings of strong-adjacent $P_{4} \mathrm{~s}$ and the wings in the $P_{5} \mathrm{~s}$, then there are at most two orientations possible, thus the corresponding class of perfectly orderable graphs can be recognized in polynomial time.

In [35], Hertz proposed a simple rule to obtain a partial obstructionfree orientation from a 2 -coloring of the edges in the complement given the edges $a b$ and $c d$ of a $P_{4} a b c d$ and the edges $a b$ and $d e$ of a P_{5} abcde have different colors. He also showed that the arising partial obstruction-free orientation is acyclic. Even without this result, we can easily recognize this class of graphs since, by the above remarks, a graph without split-homogeneous sets has precisely two such 2 -colorings. So we just have to orient the edges according to Hertz' rule and test whether the arising orientation is acyclic.

Chapter 6

Graphs with Threshold Dimension Two

Graph dimension theory deals with the (edge-)intersections of graphs with special properties. Cozzens and Roberts [20] gave the following definition.

Definition 6.0.1 The \mathcal{P} dimension of a graph $G=(V, E)$ is the least integer k such that $E=E_{1} \cap E_{2} \cap \cdots \cap E_{k}$ and each of the graphs $G_{i}=\left(V, E_{i}\right), i=1, \ldots k$, has property \mathcal{P}.

The term "dimension" in Definition 6.0.1 comes from the interval dimension problem, one of the first graph dimension problems that has been investigated. The interval dimension or boxicity $b(G)$ of a graph is the least number k such that G is the intersection of k interval graphs. Since an interval graph is the intersection graph of intervals on the real line \mathbb{R}, a graph with boxicity k is the intersection graph of iso-oriented boxes in the Euclidean space \mathbb{R}^{k}. A graph with boxicity 2 is therefore the intersection graph of axially parallel rectangles in the plane, which is why such graphs is also called rectangle graphs, see Figure 6.1.

The representation of a graph by geometrical objects is interesting because it is possible to use geometrical algorithms to solve certain graph problems [47]. For instance, if a geometrical model of a boxicity k graph is given, a maximum clique can be found in $O\left(|V|^{(k-1)} \log (|E|)\right)$, see [42]. However, the maximum stable set problem, the minimum

Figure 6.1: A rectangle graph, its rectangle model and the two interval models I_{1} and I_{2}.
coloring problem and the minimum clique cover problem remain NPcomplete even for rectangle graphs [42]. Furthermore, Yannakakis [76] showed that the recognition of graphs with boxicity k is NP-complete for all $k \geq 3$, and Kratochvíl [46] obtained the same complexity result for the case $k=2$.

Closely related to the boxicity of a graph is its threshold dimension, defined as the least integer k such that the graph is the intersection of k threshold graphs. Threshold graphs are a proper subclass of interval graphs, hence the boxicity of a graph is less or equal to its threshold dimension. The motivation for studying the threshold dimension of graphs also comes from the many applications in integer programming [13, 14, 33], in psychology [18,19] and in the synchronization of parallel processes [25, 34, 61, 62, 64, 74].

Unfortunately, it is NP-complete to test whether a graph has threshold dimension k for all $k \geq 3$, see Yannakakis [76]. So research focused on the recognition of graphs with threshold dimension two. These graphs are also interesting because of their nice optimization behavior: Both graphs with threshold dimension two and their complements (called 2 -threshold graphs) are perfectly orderable [31, 15, 35].

For over a decade, the complexity status of the recognition of threshold dimension two remained open. In fact, it was widely believed that the problem is NP-complete [18, 32, 52, 64]. Recently, however, MA [51] and, independently, Raschle and Simon [66] succeeded in finding
polynomial time algorithms for the recognition of graphs with threshold dimension two.

MA's idea to recognize graphs with threshold dimension two is to construct a geometrical representation for such a graph. The running time of his algorithm is $O\left(|V|^{5}\right)$. Recently, Sterbini and Raschle [75] proposed an improved version of MA's algorithm that runs in $O\left(|V|^{3}\right)$. Although this is currently the fastest algorithm, we discuss neither MA's approach nor the improvements made by Sterbini and Raschle for the following reasons. First, MA's algorithm is rather complicated and relies on other quite complicated algorithms like the $O\left(|V|^{2}\right)$ recognition of 2-chain graphs and the $O\left(|V|^{2}\right)$ recognition of partial order dimension two. Second, the geometrical arguments used in MA's and Sterbini and Raschle's work do not fit in with the graph theoretical outline of this thesis.

This chapter is thus devoted to a in-depth discussion of Raschle and Simon's approach. Their main result is a constructive proof of a conjecture by Ibaraki and Peled which states that a graph is 2threshold if and only if its edges can be colored with two colors such that the nonincident edges in a P_{4}, C_{4} or $2 K_{2}$ receive different colors. This immediately leads to a $O\left(|E|^{2}\right)$ algorithm for the recognition of 2-threshold graphs.

In the next section, we give Chvàtal and Hammer's definition of threshold graphs and threshold numbers and discuss their motivation for studying threshold graphs. In Section 6.2, we review previous results in connection with 2 -threshold graphs and state the main theorems. Finally, Section 6.3 gives a constructive proof of the Ibaraki-Peled conjecture. Part 1 and 2 of this proof follow Raschle and Simon's original work [66] whereas Part 3 contains new and hopefully simpler proofs based on a new structure theorem on what we call the $A C_{4}{ }^{-}$ structure of graphs.

6.1 Threshold graphs

Threshold graphs were introduced by Chvátal and Hammer [13] in 1973. Their motivation for studying these graphs comes from the aggregation of linear inequalities in integer programming. It is frequent in integer and zero-one programming that the problem is given in the form "maximize $c x$ such that $A x \leq b$," and it is well-known that the
work involved in solving the problem often increases sharply with the number of linear inequalities. Therefore, given a set of constraints

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \ldots, m \tag{6.1}
\end{equation*}
$$

one is interested in finding a system with the smallest number k of linear inequalities

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j}^{\prime} x_{j} \leq b_{i}^{\prime} \quad i=1,2, \ldots, k \tag{6.2}
\end{equation*}
$$

such that (6.1) and (6.2) have precisely the same set of zero-one solutions. In particular, one wishes to know whether $k=1$, namely whether the constraints (6.1) can be aggregated to a knapsack constraint in the same binary variables.

If (6.1) are set-packing constraints, that is, if A is a zero-one matrix and b is the vector of ones, system (6.1) can be represented as a graph $G=(V, E)$ whose vertices correspond to the columns of $A=\left(a_{i j}\right)$ and two vertices are adjacent if the corresponding columns have a 1 in a common row. A solution of (6.1) corresponds to a stable set of G and vice versa. This observation motivates the following definition of threshold graphs and threshold numbers.

Definition 6.1.1 Let $G=(V, E)$ be a graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For any subset $S \subseteq V$, its characteristic vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined by $x_{i}=1$ if $v_{i} \in S$ and $x_{i}=0$ otherwise (for $i=1,2, \ldots, n$). The threshold number $t(G)$ of $G=(V, E)$ is the least integer k for which linear inequalities

$$
\begin{array}{rc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & \leq t_{\mathbf{1}} \\
& \vdots \tag{6.3}\\
a_{k 1} x_{1}+a_{k 2} x_{2}+\ldots+a_{k n} x_{n} & \leq t_{k}
\end{array}
$$

exist such that a subset S of V is a stable set of G if and only if its characteristic vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies the above inequalities. A graph with $t(G) \leq 1$ is called threshold graph.

Since each subset S of V corresponds to a corner of the unit hypercube in \mathbb{R}^{n}, a threshold graph is a graph for which a hyperplane exists
that cuts the n-space in half such that the corners of the hypercube corresponding to the stable sets of G lie on one side of the hyperplane and the corners of the hypercube corresponding to nonstable sets lie on the other side. In this interpretation, the threshold number of a graph is the minimal number of half spaces needed such that their intersection contains precisely the stable sets of G.

Chvítal and Hammer [14] showed that the threshold number can be defined in an equivalent way.

Theorem 6.1.2 The threshold number $t(G)$ is the least integer k such that G is the union of k threshold graphs.

For a given graph $G=(V, E)$, a set of threshold graphs $G_{i}=\left(V, E_{i}\right)$ $i=1, \ldots, k$, with $E=E_{1} \cup \cdots \cup E_{k}$ is a threshold cover of size k. The threshold number of a graph is therefore the least integer k for which a threshold cover exists.

We conclude this section by showing that the threshold number of a graph is identical to the threshold dimension of its complement. Recall that the threshold dimension is defined to be the least integer k such that the graph is the intersection of k threshold graphs. Thus the threshold dimension of the complement \bar{G} is the least integer such that G can be written has the union of the complements of k threshold graphs. Our claim now follows from the fact that the complement of a threshold graph is again a threshold graph. The latter is a consequence of Theorem 6.1.3(ii).

Theorem 6.1.3 For a graph $G=(V, E)$, the following statements are equivalent:
(i) G is a threshold graph, i.e. there is a linear inequality $a_{1} x_{1}+$ $a_{2} x_{2}+\cdots+a_{n} x_{n} \leq t$ whose zero-one solutions are precisely the characteristic vectors of the stable sets of G.
(ii) G does not contained a P_{4}, C_{4} or $2 K_{2}$.
(iii) Every induced subgraph G_{W} contains a dominating or an isolated vertex.
(iv) G can be constructed from one vertex by repeatedly adding an isolated or a dominating vertex.

Proof. $\quad(i) \Rightarrow(i i)$ Suppose a P_{4}, C_{4} or $2 K_{2}$ exists and let it be labeled as in Figure 6.2. Then $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{4}\right\}$ are stable sets

Figure 6.2: The forbidden subgraphs of a threshold graph.
whereas $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are cliques. Therefore every inequality $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq t$ has to satisfy $a_{1}+a_{3} \leq t, a_{2}+a_{4} \leq t$, $a_{1}+a_{2}>t$ and $a_{3}+a_{4}>t$, which is impossible.
$($ ii $) \Rightarrow$ (iii) Since G_{W} is P_{4}-free, by Lemma 3.1.1, every subgraph G_{W} is either disconnected or codisconnected. If G_{W} is disconnected and has no $2 K_{2}$, then at most one connected component contains edges and all other connected components are isolated vertices. If \bar{G}_{W} is disconnected and has no $2 K_{2}$, the above applies to the complement, thus G_{W} contains at least one dominating vertex.
$(i i i) \Rightarrow(i v)$ follows by induction.
(iv) \Rightarrow (i) We show by induction on the number of vertices that a linear inequality $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq t$ that satisfies (i) exists such that a_{1}, \ldots, a_{n} and t are positive integers. If the graph consists of a single vertex v_{1}, we assign $a_{1}=1$ and $t=1$. For the induction step, we assume that the linear inequality $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq t$ has the desired properties. If we add a dominating vertex v_{n+1}, then we assign $a_{n+1}=t$. If we add an isolated vertex v_{n+1}, then we assign $a_{n+1}=1$ and $t=2 t+1$ and $a_{i}=2 a_{i}$ for $i=1, \ldots, n$.

6.2 Previous results

In this section, we review previous results on the threshold dimension. It is convenient to work on the complement rather than on the graph, so we consider the problem of finding the threshold number instead of the threshold dimension.

In a first step, we transform the threshold number problem into a coloring problem with additional constraints. For this purpose, we need the notion of alternating cycles and threshold completions.

An alternating cycle $A C_{2 k}$ in a graph $G=(V, E)$ is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{2 k-1}$ such that $v_{i} v_{i+1} \in E$ for i odd and $v_{i} v_{i+1} \in \bar{E}$ for i even (indices modulo $2 k$). Note that, by convention, we always take $v_{0} v_{1}$ to be a nonedge. The edges $v_{i} v_{i+1} \in E$ for i odd are called the edges of the alternating cycle. If all the edges of an alternating cycle belong to $S \subseteq E$, it is an alternating cycle in S. Figure 6.3 illustrates the only possible $A C_{4}$ and the only two possible $A C_{6}$ s. There are no alternating cycles smaller than an $A C_{4}$ and, by Theorem 6.1.3(ii) and Figure 6.2, threshold graphs are precisely those graph without induced $A C_{4}$.

Figure 6.3: The alternating cycles $A C_{4}$ and $A C_{6}$ (dashed lines indicate nonedges).

For a given graph $G=(V, E)$ and a subset $S \subseteq E$, an edge set E^{\prime} is called a completion of S if $S \subseteq E^{\prime} \subseteq E$. Furthermore E^{\prime} is a \mathcal{P} completion if $G^{\prime}=\left(V, E^{\prime}\right)$ satisfies the graph property \mathcal{P}. The problem of finding a \mathcal{P} completion is also known as graph sandwich problem, see Golumbic, Kaplan and Shamir [28].

We claim that Algorithm 6.1 solves the threshold sandwich problem. The algorithm is correct because every vertex in G_{W} is incident to an edge in $S \cap E(W)$, thus, by Theorem 6.1.3(iii), G_{W} must have a dominating vertex. It is also easy to implement Algorithm 6.1 to run in linear time by storing and updating the degree of the vertices in G_{W} similar to the implementation of topological sorting in [27]. Thus we have

Fact 6.2.1 If an edge set $S \subseteq E$ has a threshold completion, then a threshold completion of S can be found in $O(|V|+|E|)$.
\qquad threshold completion
input: a graph $G=(V, E)$ and edge sets $S \subseteq E$
output: a threshold completion T of E
(1) $T \leftarrow \emptyset$;
(2) $W \leftarrow V(S)$;
(3) while $W \neq \emptyset$ do
(4) if G_{W} contains an dominating vertex v then
(5) $\quad T \leftarrow T+\{v w \in E(W)\}$;
(6) $W \leftarrow W-\{v\}$
(7) else
(8) stop (* S has no threshold completion *)
(9) fil
(10) od

Algorithm 6.1

Obviously the threshold number problem is equivalent to finding a minimal partition of E into edge sets for which a threshold completion exists. A necessary and sufficient condition for the existence of a threshold completion is the following.

Fact 6.2.2 An edge set S has a threshold completion if and only if G does not contain an alternating cycle in S.

Proof. Let E^{\prime} be a threshold completion of S and let W denote the set of vertices in an alternating cycle in S. Since every vertex in W is incident to edges in $S(W)$ and $\bar{E}(W)$, the graph $G_{W}^{\prime}=\left(W, E^{\prime}(W)\right)$ contains neither dominating nor isolated vertices. It follows from Theorem 6.1.3(ii) that $G^{\prime}=\left(V, E^{\prime}\right)$ cannot be a threshold graph, a contradiction to our assumption, which proves the "only if" part.

To prove the "if" part, suppose that S has no threshold completion and G does not contain an alternating cycle in S. Without loss of generality, let G be minimal in the sense that $S(W)$ has a threshold completion in G_{W} for every $W \subset V$. Then every vertex is incident to a nonedge of G and to an edge in S. So we can grow a path alternating between nonedges and S-edges until an alternating cycle is obtained.

In the light of Fact 6.2.1 and Fact 6.2.2, the threshold cover problem looks like an edge coloring problem.

Find the smallest integer k for which a partition $E_{1}+\ldots+E_{k}$ of E exists such that no alternating cycle has all its edges in E_{i} for $i=1, \ldots, k$.

However, the constraint that every E_{i} must not contain an alternating cycle is much more complex than ordinary graph coloring. It is therefore natural to look for constraints which are easier to deal with. ChVÁtal and Hammer [14] considered minimal $A C_{4}$-free edge partitions instead of the more restrictive $A C_{2 l}$-freeness. For this purpose, they defined the graph G^{*} as follows.

Definition 6.2.3 Two edges $x y$ and vw of a graph $G=(V, E)$ are in conflict if they are the edges of an $A C_{4}$, and the conflict graph $G^{*}=$ (V^{*}, E^{*}) is defined by taking $V^{*}=E$ and by joining two vertices of G^{*} if the corresponding edges in G are in conflict.

Notation: As in Chapter 4, we write $x y \| v w$ if x, v, w, y is an $A C_{4}$ and $x y \| w v$ if x, w, v, y is an $A C_{4}$. Thus $x y\|\cdots\| v w$ or $x y\|\cdots\| w v$ holds for any pair of edges $x y$ and $v w$ in the same connected component of G^{*}.

Trivially $\chi\left(G^{*}\right) \leq t(G)$ because a threshold cover of size $t(G)$ induces a coloring of G^{*} of the same size. Chvátal and Hammer [14] asked whether there are graphs G with $t(G)>\chi\left(G^{*}\right)$. Cozzens and Leibowitz [18] found examples of such graphs for the case $\chi\left(G^{*}\right) \geq 4$. On the other hand, Ibaraki and Peled [41] showed that $t(G)=\chi\left(G^{*}\right)$ if G^{*} is bipartite and G is a split graph. They also conjectured that $t(G)=\chi\left(G^{*}\right)$ holds if G^{*} is bipartite. In this chapter, we give a constructive proof of Ibaraki and Peled's conjecture. In other words, our main result is

Theorem 6.2.4 If G^{*} is bipartite, then an $A C_{2 l}$-free bipartition of G^{*} can be found in $O\left(|E|^{2}\right)$.

The above theorem implies that if the bipartition of G^{*} is unique, then the color classes of G^{*} are a solution to our problem. In general, however, the number of connected components k of G^{*} is rather large, and the number of 2 -colorings of G^{*} is 2^{k}.

We prove Theorem 6.2.4 by presenting an $O\left(|E|^{2}\right)$ algorithm that gradually transforms a given 2 -coloring of G^{*} into a 2 -coloring of G^{*} without monochromatic alternating cycles. In a first step, we show that it suffices to avoid the $A C_{6}$ rather than all alternating cycles.

Theorem 6.2.5 (Corollary 6 in [30]) Let $G=(V, E)$ be a graph with $\chi\left(G^{*}\right)=2$ and let E_{1} and E_{2} denote the color classes of G. If G has an alternating cycle in E_{1}, then G has an $A C_{6}$ in E_{1} or E_{2}.

Proof. Since G^{*} is bipartite, there is no $A C_{4}$ in E_{1} or E_{2}. Let $C=v_{0}, v_{1}, \ldots, v_{2 l-1}$ be a minimal alternating cycle in E_{1}.

First, we show that $v_{i} v_{i+3} \in E_{2}$ if v_{i}, v_{i+1}, v_{i+2}, and v_{i+3} are distinct. If $v_{i} v_{i+1} \in \bar{E}$, then $v_{i} v_{i+3} \in E$ because C is minimal, and $v_{i} v_{i+3} \in$ E_{2} because $v_{i} v_{i+3} \| v_{i+1} v_{i+2}$. Otherwise, if $v_{i} v_{i+1} \in E_{1}$, then the minimality of C prohibits $v_{i} v_{i+3} \in E_{1}$. But $v_{i} v_{i+3} \in \bar{E}$ would imply $v_{i} v_{i+1} \| v_{i+3} v_{i+2}$, thus indeed $v_{i} v_{i+3} \in E_{2}$ as claimed.

To prove the theorem, let $v_{0}, v_{1}, \ldots, v_{2 l-1}$ be a labeling of our minimal alternating cycle C such that $v_{0}, v_{1}, \ldots, v_{k}$ is a longest sequence of distinct vertices. By the above remarks, $v_{i} v_{i+3} \in E_{2}$ for $i=0, \ldots, k-3$. We distinguish the following cases.

Case 1: $k \geq 5$. Since $v_{0} v_{3}, v_{1} v_{4}$ and $v_{2} v_{5}$ belong to E_{2}, the sequence $v_{0}, v_{1}, v_{4}, v_{5}, v_{2}, v_{3}$ is an $A C_{6}$ in E_{2}.

Case 2: $k=4$. Since $v_{0} v_{3}, v_{1} v_{4} \in E_{2}$, either $v_{5}=v_{0}$ or $v_{5}=v_{2}$. If $v_{5}=v_{2}$, then $v_{0} v_{2} \in E$, for otherwise C could be shortened by replacing v_{0}, \ldots, v_{5} with v_{0}, v_{5}. Furthermore $v_{0} v_{2} \in E_{1}$ because $v_{0} v_{2} \| v_{1} v_{4}$, hence $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{2}$ is an $A C_{6}$ in E_{1}.

If $v_{5}=v_{0}$, then $v_{0} v_{2} \in E$ for otherwise we could obtain a shorter alternating cycle than C by replacing v_{0}, \ldots, v_{5} with $v_{0}, v_{1}, v_{2}, v_{5}$. But $v_{0} v_{2} \in E_{2}$ because $v_{0} v_{2} \| v_{4} v_{3}$, thus $v_{0}, v_{1}, v_{4}, v_{0}, v_{2}, v_{3}$ is an $A C_{6}$ in E_{2}.

Case 9: $k=3$. Then $v_{4}=v_{1}$ because $v_{0} v_{3} \in E_{2}$. Furthermore, it is easy to see that the vertices v_{2}, v_{3}, v_{4} and v_{5} are distinct, hence $v_{2} v_{5}$ is in E_{2}. Since $k=3$, the vertex v_{6} cannot be different from v_{2}, \ldots, v_{5}, thus $v_{6}=v_{3}$. But this is a contradiction as $v_{1} v_{2} \| v_{5} v_{6}$.

Case 4: $k=2$. Then $v_{3}=v_{0}$. Since $k=2$, the vertex v_{5} cannot be different from v_{2}, v_{3}, v_{4}, hence $v_{5}=v_{2}$. Again this is a contradiction because $v_{1} v_{2} \| v_{3} v_{4}$.

As we saw in Figure 6.3, there are only two possibilities of an $A C_{6}$. We define these two possibilities as follows.

Definition 6.2.6 $A n A C_{6} v_{0}, \ldots, v_{5}$ in one of the color classes of G^{*} is called an alternating polygon of length 5 or 6 (i.e $\boldsymbol{A} \boldsymbol{P}_{5}$ and $\boldsymbol{A P}_{\mathbf{6}}$ for short) according to the number of distinct vertices in v_{0}, \ldots, v_{5}.

$A P_{5}$

$A P_{6}$

Figure 6.4: An alternating polygon of length 5 and 6.

In Figure 6.4 and subsequent figures, edges in one color class (usually E_{1}) are indicated by dotted lines and edges in the other color class (usually E_{2}) by thick lines. As illustrated in the figure, an $A P_{5}$ and an $A P_{6}$ force edges in the other color class by the bipartiteness of G^{*}. Thus an $A P_{6} v_{0}, \ldots, v_{5}$ implies the complementary $A P_{6} v_{0}, v_{1}, v_{4}, v_{5}, v_{2}, v_{3}$ in the complementary color class. Similarly, an $A P_{5} v_{0}, \ldots, v_{5}$ implies the edges $v_{1} v_{4}, v_{1} v_{5}, v_{2} v_{4}$ and $v_{2} v_{5}$ in the complementary color class. Note also that all the edges of an $A P_{5}$ except possibly $v_{1} v_{2}$ and all the edges of an $A P_{6}$ belong to connected components of G^{*} with size greater than one.

6.3 Recognizing 2-threshold graphs

By Theorem 6.2.5, to prove the main result, it suffices to transform a given 2-coloring of G^{*} into an $A C_{6}$-free 2 -coloring of G^{*}. We do this in three parts.

6.3.1 Part 1

In this part, we show how to transform an $A P_{6}$-free 2-coloring of G^{*} into an $A C_{6}$-free 2 -coloring. Parts 2 and 3 show how to obtain an $A P_{6}$-free coloring.

Theorem 6.3.1 From a given $A P_{6}$-free 2-coloring of G^{*}, an $A C_{6}$-free 2-coloring of G^{*} can be computed in $O\left(|E|^{2}\right)$.

Proof. In this proof, we call an edge $v_{1} v_{2} \in E$ critical if an $A P_{5}$ v_{0}, \ldots, v_{5} exists. Since a critical edge $v_{1} v_{2}$ in an $A C_{4} v_{1} v_{2} \| x y$ results in an $A P_{6} v_{4}, v_{5}, v_{2}, y, x, v_{1}$, we conclude that every critical edge $v_{1} v_{2}$ is an isolated vertex in G^{*}. We claim that the following statement holds.

The 2 -coloring of G^{*} obtained by inverting the color of all critical edges is $A C_{6}-$ free.

Certainly no new $A P_{6}$ can arise because every edge e of an $A P_{6}$ belongs to a connected component of G^{*} with size greater than one. On the other hand, all the original $A P_{5}$ s are destroyed. So it remains to show that no new $A P_{5}$ is created.

Suppose the contrary, i.e. that a new $A P_{5} w_{0}, \ldots, w_{5}$ is created. Let v_{0}, \ldots, v_{5} be the $A P_{5}$ in the old coloring that caused $v_{1} v_{2}=w_{1} w_{2}$ to change its color. Without loss of generality, we may assume that $v_{1}=w_{1}$ and $v_{2}=w_{2}$.

Note that all considered edges other than $v_{1} v_{2}$ retain their color (their connected component in G^{*} has size greater than one). Therefore $\left\{v_{4}, v_{5}\right\} \cap\left\{w_{0}, \ldots, w_{5}\right\}=\emptyset$, and the situation is as illustrated in Figure 6.5.

Figure 6.5: A configuration in the proof of Theorem 6.3.1

Since $v_{1} v_{4}$ and $w_{0} w_{4}$ have the same color and $w_{0} v_{1} \notin E$, we find that $v_{4} w_{4} \in E$ and similarly $v_{5} w_{5} \in E$. But $v_{4} w_{4} \| v_{5} w_{5}$, hence these edges must have different colors. If $v_{4} w_{4}$ has the same color as $v_{2} v_{5}$, then $v_{5}, v_{4}, w_{4}, w_{5}, w_{0}, v_{2}$ is an $A P_{6}$ in the old coloring of G^{*}, and otherwise $v_{4}, v_{5}, w_{5}, w_{4}, w_{0}, v_{1}$ is an $A P_{6}$ in the old coloring. Both cases contradict our assumption that the original coloring of G^{*} is $A P_{6}$-free.

To achieve the desired running time, we observe that the above proof does not make use of the vertex $v_{0}=v_{3}$ of the $A P_{5} v_{0}, \ldots, v_{5}$. Therefore the argument still holds if we relax the definition of a critical edge and say that an edge $v_{1} v_{2} \in E$ is critical when there are vertices v_{4}, v_{5} such that $v_{4} v_{5} \notin E,\left\{v_{1} v_{4}, v_{1} v_{5}, v_{2} v_{4}, v_{2} v_{5}\right\} \subseteq E$ and all these four edges belong to the complementary color class of $v_{1} v_{2}$ and their connected components of G^{*} have size greater than one.

The decision whether an edge $v_{1} v_{2}$ is critical or not can now be made in linear time as follows. Mark all vertices x for which the edges $x v_{1}$ and $x v_{2}$ are in the complementary color class of $v_{1} v_{2}$ and their connected components in G^{*} have size greater than one. Then scan through the adjacency lists of the marked vertices to discover a pair v_{4}, v_{5} of nonadjacent vertices. Clearly each of these operations can be done in $O(|V|+|E|)$, which completes our proof.

6.3.2 Part 2

It remains to construct an $A P_{6}$-free 2-coloring of G^{*}. In order to study an $A P_{6}$ more closely, we extend our notation.

Definition 6.3.2 The vertices v_{0}, v_{1} of an $A P_{6} v_{0}, \ldots, v_{5}$ are called the base of the $A P_{6}$ and the edge $v_{2} v_{5}$ its front. If in addition $v_{0} v_{2}, v_{1} v_{5} \in E$ and $v_{0} v_{2}, v_{1} v_{5}$ belong to the color class of $v_{0} v_{5}$, then v_{0}, \ldots, v_{5} is called a double $A P_{6}$.

Figure 6.6 illustrates a double $A P_{6}$. Note that the complementary $A P_{6} v_{0}, v_{1}, v_{4}, v_{5}, v_{2}, v_{3}$ is also a double $A P_{6}$.

Figure 6.6: A double $A P_{6}$.

In this part, we transform a given double $A P_{6}$-free 2 -coloring of G^{*} into an $A P_{6}$-free 2-coloring. The next three fundamental facts on $A P_{6} \mathrm{~s}$ are also proved in [30].

Fact 6.3.3 Let v_{0}, \ldots, v_{5} be an $A P_{6}$ and $v_{2} v_{5}=x_{0} y_{0}\|\cdots\| x_{h} y_{h}$ a path in G^{*} satisfying $\left\{x_{0}, \ldots, x_{h}, y_{0}, \ldots, y_{h}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$. Then an $A P_{6}$ with base v_{0}, v_{1} and front $x_{h} y_{h}$ exists.

Proof. We use induction on h. The case $h=0$ is just our assumption. If $h \geq 1$, then the induction hypothesis implies the existence of an $A P_{6}$ $v_{0}, v_{1}, y_{h-1}, \ldots, x_{h-1}$ or an $A P_{6} v_{0}, v_{1}, x_{h-1}, \ldots, y_{h-1}$. In the former case, from $x_{h-1} y_{h-1} \| x_{h} y_{h}$ and $\left\{x_{h}, y_{h}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$ we infer the existence of the $A P_{6} v_{0}, v_{1}, y_{h-1}, y_{h}, x_{h}, x_{h-1}$. Then the complementary $A P_{6} v_{0}, v_{1}, x_{h}, x_{h-1}, y_{h-1}, y_{h}$ satisfies our claim. The latter case is similarly treated.

Fact 6.3.4 Let v_{0}, \ldots, v_{5} be a double $A P_{6}$ and $v_{2} v_{5}=x_{0} y_{0}\|\cdots\| x_{h} y_{h}$ a path in G^{*}. Then $\left\{x_{0}, \ldots, x_{h}, y_{0}, \ldots, y_{h}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$ and a double $A P_{6}$ with base v_{0}, v_{1} and front $x_{h} y_{h}$ exists.

Proof. Again we use induction on h. The case $h=0$ is our assumption. For $h \geq 1$, the induction hypothesis implies $\left\{x_{0}, \ldots, x_{h-1}\right.$, $\left.y_{0}, \ldots, y_{h-1}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$ and the double $A P_{6} v_{0}, v_{1}, y_{h-1}, \ldots, x_{h-1}$. Therefore $\left\{x_{h}, y_{h}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$. From this and the fact that $x_{h-1} y_{h-1} \|$ $x_{h} y_{h}$, we obtain the double $A P_{6} v_{0}, v_{1}, y_{h-1}, y_{h}, x_{h}, x_{h-1}$, whose complementary double $A P_{6} v_{0}, v_{1}, x_{h}, x_{h-1}, y_{h-1}, y_{h}$ satisfies our claim.

Fact 6.3.5 Let v_{0}, \ldots, v_{5} be an $A P_{6}$ and $v_{2} v_{5}=x_{0} y_{0}\|\cdots\| x_{h} y_{h}$ a path in G^{*} satisfying $\left\{x_{h}, y_{h}\right\} \cap\left\{v_{0}, v_{1}\right\} \neq \emptyset$. Then a double $A P_{6}$ exists.

Proof. Without loss of generality, we may assume that $\left\{x_{0}, \ldots, x_{h-1}\right.$, $\left.y_{0}, \ldots, y_{h-1}\right\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$. Thus Fact 6.3.3 guarantees either an $A P_{6} v_{0}, v_{1}, y_{h-1}, \ldots, x_{h-1}$ or an $A P_{6} v_{0}, v_{1}, x_{h-1}, \ldots, y_{h-1}$. Because of symmetry, it suffices to discuss the first possibility.

Again without loss of generality, assume that $y_{h}=v_{0}$ as illustrated in Figure 6.7 (the case $x_{h}=v_{1}$ is similar). From $x_{h-1} y_{h-1} \| x_{h} y_{h}=$

Figure 6.7: A configuration in the proof of Fact 6.3.5
$x_{h} v_{0}$, we obtain the $A P_{5} v_{0}, v_{1}, y_{h-1}, v_{0}, x_{h-1}, x_{h}$, which also induces the complementary edges $v_{1} x_{h-1}, v_{1} x_{h}, y_{h-1} x_{h-1}$ and $y_{h-1} x_{h}$.

On the other hand, $v_{1} y_{h-1}$ is an edge of the $A P_{6} v_{0}, v_{1}, y_{h-1}, \ldots, x_{h-1}$ and therefore another edge $x y \in E$ with $x y \| v_{1} y_{h-1}$ exists. Thus $x_{h}, x_{h-1}, v_{1}, x, y, y_{h-1}$ is a double $A P_{6}$.

Now we are ready to prove the main result of Part 2.
Theorem 6.3.6 From a given double $A P_{6}$-free 2-coloring of G^{*}, an $A P_{6}$-free 2 -coloring of G^{*} can be computed in $O\left(|E|^{2}\right)$.

Proof. Let $E_{1}+E_{2}$ be the bipartition of G^{*}. We assume there is an $A P_{6} v_{0}, \ldots, v_{5}$, for otherwise we are done. With respect to these fixed vertices v_{0} and v_{1}, let

$$
H=\left\{x y \in E \mid x y \text { is the front of an } A P_{6} \text { with base } v_{0}, v_{1}\right\}
$$

Since $E_{1}+E_{2}$ is double $A P_{6}$-free, Fact 6.3.5 and Fact 6.3.3 imply that if an edge $x y$ belongs to H, then all edges in the same connected component $C^{*}(x y)$ belong to H. Therefore, if we swap the color of all edges in H, we obtain another 2 -coloring of G^{*}. For this new 2-coloring, we assert the following.

No edge in H is an edge of an $A P_{6}$.
In order to prove this assertion, we assume that the new coloring has an $A P_{6} w_{0}, \ldots, w_{5}$ with one of its edges in H, and obtain a contradiction. Without loss of generality, we assume that $w_{0} w_{5} \in H$ and that $w_{0} w_{5} \in$ E_{2}. (We always refer to the "old" coloring if not mentioned otherwise, thus w_{0}, \ldots, w_{5} is an $A P_{6}$ in the new coloring.) Since $w_{0} w_{5} \| w_{1} w_{4}$,
either $v_{0}, v_{1}, w_{0}, w_{1}, w_{4}, w_{5}$ or $v_{0}, v_{1}, w_{5}, w_{4}, w_{1}, w_{0}$ is an $A P_{6}$ in E_{1}. The symmetry allows us to assume the first case.

Figure 6.8 illustrates this situation, including the edges $v_{0} w_{1}, v_{1} w_{4} \in$ E_{2} of the complementary $A P_{6} v_{0}, v_{1}, w_{4}, w_{5}, w_{0}, w_{1}$ in E_{2}. The vertices w_{2} and w_{3} remain to be specified.

Figure 6.8: The base configuration in the proof of Theorem 6.3.6
Since all edges incident to v_{0} or v_{1} retain their color and $v_{0} w_{1}, v_{1} w_{4} \in$ E_{2}, a choice of $w_{2}=v_{0}$ or $w_{3}=v_{1}$ would contradict our assumed $A P_{6}$ w_{0}, \ldots, w_{5} in the new coloring. The following possibilities remain.

Case 1: $\left|\left\{v_{0}, v_{1}, w_{0}, \ldots, w_{5}\right\}\right|=8$.
Case 1.1: $w_{1} w_{2} \in H$. Then $w_{1} w_{2} \in E_{2}$ and $w_{0} w_{3} \in E_{1}$. From $w_{1} w_{2} \in H$, Fact 6.3.3 implies the existence of an $A P_{6}$ in E_{1} with base v_{0}, v_{1} and front $w_{1} w_{2}$. But $v_{0} w_{1} \in E_{2}$, and therefore $v_{0} w_{2}, v_{1} w_{1} \in E_{1}$ must be edges of this $A P_{6}$. A closer look reveals that $v_{0}, v_{1}, w_{1}, w_{0}, w_{3}, w_{2}$ is an $A P_{6}$ in E_{1}, thus its complementary $A P_{6}$ guarantees $v_{0} w_{0}, v_{1} w_{3} \in$ E_{2}, as illustrated in Figure 6.9.

Case 1.1.1: $w_{3} w_{4} \in H$. The above argument applied to $w_{3} w_{4}$ instead of $w_{1} w_{2}$ results in $v_{0} w_{4}, v_{1} w_{3} \in E_{1}$, which is impossible.

Case 1.1.2: $w_{3} w_{4} \notin H$. Then $w_{3} w_{4} \in E_{1}$ and therefore $w_{2} w_{5} \in E_{2}$. Further, since $v_{1} w_{3}, w_{2} w_{5} \in E_{2}$ and $w_{3} w_{2} \notin E$, we must have $v_{1} w_{5} \in E$. Moreover, $v_{1} w_{5} \in E_{2}$, for otherwise $v_{0}, v_{1}, w_{5}, w_{4}, w_{3}, w_{2}$ would be an $A P_{6}$ in E_{1}, which would result in $w_{2} w_{5}, w_{3} w_{4} \in H$, contrary to our case. Further, as depicted in Figure 6.9, since $w_{0} v_{0}, v_{1} w_{4} \in E_{2}$ and $v_{0} v_{1} \notin E$, we must have $w_{0} w_{4} \in E$. But $w_{0} w_{4} \in E_{2}$ implies the double $A P_{6} w_{4}, w_{5}, w_{0}, w_{1}, v_{0}, v_{1}$ whereas $w_{0} w_{4} \in E_{1}$ implies the double $A P_{6}$ $w_{0}, w_{1}, w_{4}, w_{5}, v_{0}, v_{1}$, a contradiction to our assumption.

Case 1.2: $w_{3} w_{4} \in H$. This case is symmetric to Case 1.1.

Case 1.1

Case 1.1.2

Figure 6.9: Cases in the proof of Theorem 6.3.6

Case 1.9: $w_{1} w_{2} \notin H$ and $w_{3} w_{4} \notin H$. In this case $w_{1} w_{2}, w_{3} w_{4} \in E_{1}$ and $w_{0} w_{3}, w_{2} w_{5} \in E_{2}$. Since $v_{0} w_{5}, w_{4} w_{3} \in E_{1}$ and $w_{5} w_{4} \notin E$, we must have $v_{0} w_{3} \in E$. Further, $v_{0} w_{3} \in E_{1}$, for otherwise $w_{2} w_{5}, w_{3} w_{4} \in H$ because of the $A P_{6} v_{0}, v_{1}, w_{4}, w_{5}, w_{2}, w_{3}$. The symmetric argument leads to $v_{1} w_{2} \in E_{1}$, which contradicts $v_{0} w_{3} \| v_{1} w_{2}$, see Figure 6.10.

Case 1.3

Case 2

Figure 6.10: Cases in the proof of Theorem 6.3.6

Case 2: $v_{0}=w_{3}$ and $v_{1} \neq w_{2}$. If $w_{1} w_{2} \in H$, then $w_{0} w_{3}=$ $w_{0} v_{0} \in H$, a contradiction. Therefore $w_{1} w_{2} \notin H$, hence $w_{1} w_{2} \in E_{1}$ and $w_{0} w_{3}=w_{0} v_{0} \in E_{2}$. Further, since $w_{1} v_{0}, w_{2} w_{5} \in E_{2}$ and $v_{0} w_{2} \notin E$, we have $w_{1} w_{5} \in E$. But $w_{1} w_{5}$ does not have an admissible coloring because $w_{1} w_{5} \in E_{2}$ implies the double $A P_{6} w_{0}, w_{1}, v_{0}, v_{1}, w_{4}, w_{5}$ and $w_{1} w_{5} \in E_{1}$ implies the double $A P_{6} w_{4}, w_{5}, v_{0}, v_{1}, w_{0}, w_{1}$.

Case 3: $v_{0} \neq w_{3}$ and $v_{1}=w_{2}$. This case is symmetric to Case 2.
Case 4: $v_{0}=w_{3}$ and $v_{1}=w_{2}$. Then $w_{1} v_{1}, v_{0} w_{4} \notin H$, hence $w_{1} v_{1}, v_{0} w_{4} \in E_{1}$ and $w_{0} v_{0}, v_{1} w_{5} \in E_{2}$. Since $w_{0} v_{0}, v_{1} w_{4} \in E_{1}$ and $v_{0} v_{1} \notin E$, we have $w_{0} w_{4} \in E$. Further, $w_{0} w_{4} \in E_{1}$, for otherwise the double $A P_{6} w_{4}, w_{5}, v_{1}, v_{0}, w_{1}, w_{0}$ exists. The symmetric argument leads to $w_{1} w_{5} \in E_{1}$, which contradicts $w_{0} w_{4} \| w_{1} w_{5}$, see Figure 6.11.

Figure 6.11: Case 4 in the proof of Theorem 6.3.6

Since all the cases above lead to contradictions, we conclude that the new coloring does not have an $A P_{6}$ with an edge in H, and therefore our assertion (6.4)) holds.

But then the new coloring has fewer $A P_{6}$ s than the old one. Continuing in this way, we achieve an $A P_{6}$-free coloring in $|E|$ steps. To show the $O\left(|E|^{2}\right)$ running time, it therefore suffices to prove that the determination whether an $A P_{6} v_{0}, \ldots, v_{5}$ exists for a given edge $v_{2} v_{5}$ and the computation of H can be done in $O(|V|+|E|)$.

First we consider the former problem. Since the coloring of G^{*} is double $A P_{6}$-free, Fact 6.3.5 implies $\{x, y\} \cap\left\{v_{0}, v_{1}\right\}=\emptyset$ for each $A P_{6} v_{0}, \ldots, v_{5}$ with $x y \| v_{2} v_{5}$; hence the $A P_{6} v_{0}, v_{1}, v_{2}, x, y, v_{5}$ also exists. Therefore a fixed edge $v_{3} v_{4}$ conflicting with $v_{2} v_{5}$ can be chosen in advance. The remaining search for the base v_{0}, v_{1} is in $O(|V|+|E|)$.

As to the computation of H, an edge $x y$ is in H if and only if it is the front of an $A P_{6}$ with base v_{0}, v_{1}. Again, it is easy to see that if such an $A P_{6}$ exists, then an $A \dot{P}_{6}$ with base v_{0}, v_{1}, front $x y$ and an edge $v w$ must also exist whenever $v w \| x y$. Therefore, the computation of H is also in $O(|V|+|E|)$.

6.3.3 Part 3

In this part, we present an efficient method to transform a 2-coloring of G^{*} into a double $A P_{6}$-free 2 -coloring, which is the remaining task according to Theorem 6.2.4. In order to do this, we need a deeper analysis of the $A C_{4}$-structure in the presence of an $A P_{6}$.

We start with studying the connected components of G^{*} for arbitrary graphs. In analogy to the previous chapters, we call the edges in a connected component of G^{*} an $A C_{4}$-class. In the rest of this section, C^{*} stands for an $A C_{4}$-class and $C^{*}(v w)$ for the $A C_{4}$-class that contains the edge $v w$. Let P, Q and R denote the sets of $V\left(C^{*}\right)$-universal, $V\left(C^{*}\right)$-null and $V\left(C^{*}\right)$-partial vertices, respectively. Note that every edge with one endpoint in Q must have the other endpoint in P.

The next theorem analyzes the neighborhood relation between the vertices in $V\left(C^{*}\right)$ and those in $V-V\left(C^{*}\right)$.

Figure 6.12: Case (i) and (ii) of Theorem 6.3.7.

Theorem 6.3.7 Let C^{*} be a nontrivial $A C_{4}$-class of an arbitrary graph $G=(V, E)$. If $R \neq \emptyset$, then a unique partition $V\left(C^{*}\right)=V^{1}+V^{2}$ exists such that every edge in C^{*} has one endpoint in V^{1} and the other in V^{2}, and either
(i) V^{1} is a clique, V^{2} is a stable set and every vertex in R is $V^{1}-$ universal and V^{2}-null or
(ii) V^{1} and V^{2} are cliques and no vertex in R is V^{1} - or V^{2}-partial.

Proof. Let v be an arbitrary vertex in R. Clearly an $A C_{4} a b \| c d$ in C^{*} exists such that v is $\{a, b, c, d\}$-partial. If v is $\{a, b\}$-universal and
$\{c, d\}$-null, then $a v \| c d$, a contradiction to $v \notin V\left(C^{*}\right)$. Without loss of generality, we may assume that v sees b but misses a. Then v sees c, for otherwise $b v \| d c$, a contradiction to $v \notin V\left(C^{*}\right)$. Similarly, v misses d, because otherwise $d v \| b a$. By induction, every edge in C^{*} has one endpoint in $V^{1}=N(v) \cap V\left(C^{*}\right)$ and the other in $V^{2}=\bar{N}(v) \cap V\left(C^{*}\right)$.

Next, we show that V^{1} is a clique. Suppose the contrary, i.e. there are nonadjacent vertices x and z in V^{1}. Since x is covered by C^{*}, an edge $x y \in C^{*}$ exists. Then v misses y and therefore $x y \| z v$, a contradiction to $v \notin V\left(C^{*}\right)$.

Since V^{1} is a clique, every pair of conflicting edges in C^{*} induces a P_{4} or a C_{4}. We show that either every $A C_{4}$ in C^{*} is a P_{4} or every $A C_{4}$ in C^{*} is a C_{4}. Suppose that this does not hold. Then $A C_{4} \mathrm{~s} a b \| c d$ and $c d \| e f$ in C^{*} exist such that $a b c d$ is a P_{4} and c, d, e, f is a C_{4}. Clearly $a, d, e \in V^{2}$ and $b, c, f \in V^{1}$, thus e is different from a, b, c and d. Furthermore $C^{*} \neq C^{*}(d e)$ because $c v \| e d$ and because v is not covered by C^{*}. So $a b \| e d$ is impossible, hence a sees e. Now $c v\|a e\| d c$, a contradiction to $v \notin V\left(C^{*}\right)$.

It remains to prove that (i) holds if every $A C_{4}$ in C^{*} is a P_{4} and that (ii) holds if every $A C_{4}$ in C^{*} is a C_{4}. We first consider the case that every $A C_{4}$ in C^{*} is a P_{4}. Assume that V^{2} contains adjacent vertices a and x. Then there is a $P_{4} a b c d$ with $a b, c d \in C^{*}$. Now x sees d, for otherwise $c v\|a x\| c d$, a contradiction to $v \notin V\left(C^{*}\right)$. Thus we have shown that given x sees one endpoint of a P_{4} with its wings in C^{*}, then x sees the other endpoint as well. It follows by induction that x cannot be covered by C^{*}, a contradiction to our assumption. So V^{2} is a stable set. Since every vertex in $V^{1}+V^{2}$ belongs to a P_{4} in $G_{V^{1}+V^{2}}$, the partition $V^{1}+V^{2}$ is unique and, as we have chosen v arbitrarily, every vertex in R sees V^{1} but misses V^{2}.

Finally, we prove that if every pair of conflicting edges in C^{*} induces a C_{4}, then (ii) holds. To show that V^{2} is a clique, we assume the contrary, i.e. there are nonadjacent vertices a and x in V^{2}. Let $a b \| c d$ denote a C_{4} in C^{*}. Then $x d \notin E$, for otherwise $b v\|d x\| b a$, a contradiction to $v \notin V\left(C^{*}\right)$. By induction, x misses every point V^{2}, which implies that x cannot be covered by C^{*}, a contradiction. So we have shown that V^{2} is a clique. Since $\bar{G}_{V^{1}+V^{2}}$ is connected, the partition $V\left(C^{*}\right)=V^{1}+V^{2}$ is unique, hence every vertex in R induces the same partition.

Remark: The above theorem shows that the cover of an $A C_{4}$-class
is a module, a special split module or a special cobipartite module. From the theorems of Chapter 4 , it follows that Theorem 6.3.7 can be used to obtain a unique graph decomposition. A Gallai-type theorem, however, does not hold, even if G^{*} is bipartite: The complement of a P_{6} is a prime graph with bipartite G^{*} and it has two $A C_{4}$-classes which both cover the whole graph.

If G^{*} is bipartite and therc is a double $A P_{6} v_{0}, \ldots, v_{5}$, then Fact 6.3.4 asserts that $C^{*}=C^{*}\left(v_{2} v_{5}\right)$ does not cover the whole graph. Now this is just the interesting case with respect to the recognition of 2 -threshold graphs. So we study this situation in more detail.

Without loss of generality, assume that v_{0}, \ldots, v_{5} is a double $A P_{6}$ in E_{1}. From the definition of a double $A P_{6}$ and the existence of its complementary double $A P_{6}$, we derive

$$
\left\{\begin{array}{l}
\left.v_{0} v_{2}, v_{0} v_{5}, v_{1} v_{2}, v_{1} v_{5}, v_{3} v_{4}\right\} \subseteq E_{1}, \tag{6.5}\\
v_{0} v_{3}, v_{0} v_{4}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{5}
\end{array}\right\} \subseteq E_{2} .
$$

Let W stand for the cover of $C^{*}=C^{*}\left(v_{2} v_{5}\right)$, that is, $W=V\left(C^{*}\right)$. Note that v_{0} and v_{2} see both endpoints of $v_{2} v_{5}$, so Theorem 6.3.7 implies that v_{0} and v_{1} belong to P. Therefore $W^{1}=\left\{k \in W \mid v_{0} k \in E_{1}\right\}$ and $W^{2}=\left\{k \in W \mid v_{0} k \in E_{2}\right\}$ is a partition of W.

Lemma 6.3.8 $W^{1}+W^{2}$ is a partition of W into cliques.
Proof. Let x and y be nonadjacent vertices in W^{1}. Then $v_{0} x, v_{0} y \in$ E_{1}. By Fact 6.3.4, there is a double $A P_{6} v_{0}, v_{1}, x, \ldots$, hence $v_{1} x \in E_{1}$. But this contradicts $v_{1} x \| v_{0} y$. The same contradiction arises if we assume that x and y are nonadjacent vertices in W^{2}.

Next assume that case (ii) of Theorem 6.3.7 holds. Then $v_{2}, v_{4}, v_{3}, v_{5}$ is a C_{4}. Without loss of generality, we may assume that a vertex r in R sees v_{2}, v_{4} and misses v_{3}, v_{5}. If r misses v_{0}, then $v_{0} v_{5}\left\|r v_{4}\right\| v_{3} v_{5} \|$ $v_{2} r \| v_{3} v_{0}$, a contradiction because $v_{0} v_{5}$ and $v_{0} v_{3}$ have different colors. But if r sees v_{1}, then $v_{1} v_{5}\left\|v_{0} r\right\| v_{1} v_{3}$, again a contradiction because $v_{1} v_{5}$ and $v_{1} v_{3}$ have different colors.

Therefore either W is a module or Theorem 6.3.7(i) holds. In the latter case, $v_{2} v_{5} \| v_{2} v_{4}$ induces a P_{4}. Without loss of generality, we assume that this P_{4} is $v_{2} v_{5} v_{3} v_{4}$.

Lemma 6.3.9 $Q \cup R \cup\left\{v_{0}, v_{1}\right\}$ is a stable set and

Figure 6.13: Case (ii) of Lemma 6.3.9.
(i) W is a module or
(ii) $W-v_{2}-v_{4}$ is a clique, $\left\{v_{2}, v_{4}\right\}$ is a stable set and every vertex in R sees every vertex in W except for v_{2} and v_{4}.

Proof. Since $W=V\left(C^{*}\right)$, vertices in Q can only be adjacent to vertices in P. If a vertex $q \in Q$ sees v_{0}, then $v_{1} v_{2}\left\|v_{0} q\right\| v_{1} v_{3}$, a contradiction because $v_{1} v_{2}$ and $v_{1} v_{3}$ have different colors. The case that a vertex in Q sees v_{1} is similar, thus $Q \cup\left\{v_{0}, v_{1}\right\}$ is stable, which proves the lemma if $R=\emptyset$.

If $R \neq \emptyset$, then Theorem 6.3.7 (i) holds, thus $v_{2} v_{5} v_{3} v_{4}$ is a P_{4}. Since G_{W} induces a split graph and every vertex in W is in a P_{4} in G_{W}, the split partition of W is unique and v_{2} and v_{4} belong to the stable set in the split partition. On the other hand, the stable set consists of at most two vertices because of Lemma 6.3.8. So it remains to show that $R \cup\left\{v_{0}, v_{1}\right\}$ is stable.

If a vertex $r \in R$ sees v_{0}, then $v_{1} v_{2}\left\|v_{0} r\right\| v_{1} v_{4}$, a contradiction because $v_{1} v_{2}$ and $v_{1} v_{4}$ have different colors. The case that a vertex in R sees v_{1} is similar, thus every vertex in R misses v_{0} and v_{1}. If adjacent vertices r_{1} and r_{2} in R exist, then $v_{0} v_{2}\left\|r_{1} r_{2}\right\| v_{0} v_{4}$, again a contradiction to (6.5).

The above lemma implies that every $A C_{4} v w \| x y$ with $v, w \in W$ satisfies $x, y \in W$. The next corollary follows by induction.

Corollary 6.3.10 If $v w \in E(W)$, then $C^{*}(v w) \subseteq E(W)$.

Next, we investigate $A C_{4}$-classes that contain edges between $V-W$ and W and edges with both endpoints in $V-W$.

Lemma 6.3.11 If an edge vw with $v \in V-W$ and $w \in W$ satisfies $C^{*}(v w) \cap E(V-W) \neq \emptyset$, then v is W-universal and every edge between v and a vertex in W belongs to $C^{*}(v w)$ and has the same color as $v w$.

Proof. We first show the lemma for the case that no $v w$ belongs to an $A C_{4} v w \| x y$ with $x, y \in V-K$.

If $v \in R$, then $v v_{5} \in E_{1}$ and $v v_{3} \in E_{2}$ because $v v_{5} \| v_{0} v_{4}$ and $v v_{3} \| v_{0} v_{2}$, see Lemma 6.3.9(ii) and Figure 6.13. Furthermore $y \in Q$ because v sees $w \in W$ and y misses w. But this is contradiction to the coloring of $v v_{3}$ and $v v_{5}$ because $v v_{3}\|x y\| v v_{5}$.

So v is W-universal. If $y \in Q$, then $x y \| v z$ for every vertex $z \in W$, thus every edge between v and a vertex in W belongs to $C^{*}(v w)$ and has the same color as $v w$.

If $y \in R$, then $x \in P$ and $v v_{2}\|x y\| v v_{4}$. By Lemma 6.3.9(ii), v_{2} misses v_{4}, hence \bar{G}_{W} is connected. Thus every vertex $z_{0} \in W$ is connected to either v_{2} or v_{4} by a path of length $2 k+1$, say $z_{0}, \ldots, z_{2 k}$. Therefore $v z_{0}\left\|x z_{1}\right\| v z_{2}\left\|x z_{3}\right\| \cdots \| v z_{2 k}$ with $z_{2 k}=v_{2}$ or $z_{2 k}=v_{4}$. So again every edge between v and a vertex in W belongs to $C^{*}(v w)$ and has the same color as $v w$.

It remains to show our lemma in the general case. Let $x_{0} y_{0}\left\|x_{1} y_{1}\right\|$ $\cdots \| x_{k+1} y_{k+1}$ be a path in G^{*} that connects $v w=x_{0} y_{0}$ with an edge $x_{k+1} y_{k+1}$ in $E(V-K)$. Furthermore, let $x_{k+1} v_{k+1}$ be the first edge in this path with both endpoints in $V-W$ and let $x_{k} \in V-W$ and $y_{k} \in W$. We have already shown that our lemma holds for $x_{k} y_{k}$. By induction, it suffice to prove that it holds for $x_{k-1} y_{k-1}$.

Clearly $x_{k-1} \in V-W$ and $y_{k-1} \in W$. Since no vertex is $G_{W^{-}}$ dominating, every edge between x_{k-1} and a vertex in W belongs to an $A C_{4}$ whose other edge connects x_{k} with a vertex in W. Therefore every edge between x_{k-1} and W belongs to $C^{*}\left(x_{k} y_{k}\right)=C^{*}(v w)$ and has the same color as $x_{k} y_{k}$. Finally, if x_{k-1} were not W-universal, then $x_{k-1} \in R$, hence $x_{k-1} v_{5} \| v_{0} v_{3}$ and $x_{k-1} v_{3} \| v_{0} v_{2}$ and therefore $x_{k-1} v_{5} \in E_{1}$ and $x_{k-1} v_{3} \in E_{2}$, a contradiction because every edge between x_{k-1} and W has the same color.

Let $v w$ be an edge as described in the above lemma and suppose that $v w$ is the front of an double $A P_{6} k_{0}, k_{1}, v, \ldots, w$. Then $v v_{2}$ and
$v v_{3}$ belong to $C^{*}(v w)$ and have the same color. By Fact 6.3.4, both $k_{0}, k_{2}, v, \ldots, v_{2}$ and $k_{0}, k_{2}, v, \ldots, v_{3}$ are double $A P_{6} \mathrm{~S}$ in the same color, a contradiction to $k_{0} v_{2} \| k_{1} v_{3}$. So the following corollary holds.

Corollary 6.3.12 If an edge $v \boldsymbol{w}$ with $v \in V-W$ and $w \in W$ satisfies $C^{*}(v w) \cap E(V-W) \neq \emptyset$, then $v w$ cannot be the front of an $A P_{6}$ (in any 2 -coloring of G^{*}).

Based on the structural results obtained so far, we propose the following recursive procedure to compute a double $A P_{6}$-free 2 -coloring of the edges of G.
(i) Replace W^{1} and W^{2} with nonadjacent marker vertices w_{1} and w_{2}.
(ii) Compute a double $A P_{6}$-free 2-coloring in G_{W} and in $G_{V-W+w_{1}+w_{2}}$.
(iii) Construct a 2-coloring of the edges of G by coloring $v w$ with $v, w \in W$ as in G_{W},
$v w$ with $v, w \in V-W$ as in $G_{V-W+w_{1}+w_{2}}$, $v w$ with $v \in V-W$ and $w \in W^{1}$ as $v w_{1}$ in $G_{V-W+w_{1}+w_{2}}$ and $v w$ with $v \in V-W$ and $w \in W^{2}$ as $v w_{2}$ in $G_{V-W+w_{1}+w_{2}}$.
(iv) Assign to $v w$ the color E_{1}
if $w \in W^{1}$ and $v \in W^{1}$ or
if $w \in W^{1}$ and $v \in V-W$ and $C^{*}(v w) \cap E(V-W)=\emptyset$.
(v) Assign to $v w$ the color E_{2}
if $w \in W^{2}$ and $v \in W^{2}$ or if $w \in W^{2}$ and $v \in V-W$ and $C^{*}(v w) \cap E(V-W)=\emptyset$.

The next theorem proves that the computed 2-coloring is indeed a double $A P_{6}$-free 2-coloring of G^{*}.

Theorem 6.3.13 If the 2 -coloring of G_{W} and $G_{V-W+w_{1}+w_{2}}$ is double $A P_{6}$-free, then (iii), (iv) and (v) construct a double $A P_{6}$-free 2-coloring of G.

Proof. In a fist step, we show that the coloring computed by (iii) to (v) does not contain an $A C_{4}$ in E_{1} or E_{2}. This holds for the coloring computed by (iii) because every $A C_{4}$ in G has a corresponding $A C_{4}$ either in G_{W} or in $G_{V-W+w_{1}+w_{2}}$ with the same colors, so it suffices to
consider edges $v w$ in $A C_{4} s$ that might change their color in (iv) and (v).

If an edge $v w$ has its endpoints in W^{1}, then $x, y \in W^{2}$ for every $A C_{4} v w \| x y$ because W^{1} is a clique and $x, y \in W$ by Corollary 6.3.10. So $A C_{4} \mathrm{~S}$ with one edge in $E(W)$ are colored properly by $(i v)$ and (v), and it remains to discuss $A C_{4}$ s with an edge between V and W.

If an edge $v w$ satisfies $v \in V-W, w \in W^{1}$ and $C^{*}(v w) \cap E(V-W)=$ \emptyset, then no $A C_{4} v w \| x y$ has $x \in W$ and $y \in V-W$, for otherwise v and y would have to be R-vertices, which is impossible because v sees $w \in W$ whereas y misses w. Thus every edge $x y$ in an $A C_{4} v w \| x y$ satisfies $x \in V-W$ and $y \in W$. Moreover $y \in W^{2}$ because W^{1} is a clique. Therefore $v w$ and $x y$ received their colors in (iv) and (v), respectively, and the $A C_{4} v w \| x y$ is therefore properly colored. As the case $v \in V-W, w \in W^{2}$ is similar, the coloring constructed in (iii), $(i v)$ and (v) is indeed a 2 -coloring of G^{*}.

To show that the constructed 2-coloring contains no double $A P_{6}$, we assume that a double $A P_{6} u_{0}, \ldots, u_{5}$ exists and show that this assumption leads to a contradiction. Without loss of generality, let u_{0}, \ldots, u_{5} be an $A P_{6}$ in E_{1}, thus

$$
\left\{\begin{array}{l}
\left\{u_{0} u_{2}, u_{0} u_{5}, u_{1} u_{2}, u_{1} u_{5}, u_{3} u_{4}\right. \tag{6.6}\\
\left.u_{0} u_{3}, u_{0} u_{4}, u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{5}\right\}
\end{array}\right\} \subseteq E_{1}, \begin{gathered}
\\
\hline
\end{gathered} .
$$

Because of symmetry, it suffices to distinguish the following three cases.
Case 1: $u_{2}, u_{5} \in W$. Then Corollary 6.3 .10 implies $u_{3}, u_{4} \in W$. Since $u_{2} u_{5} \in E_{2}$, not both u_{2} and u_{5} belong to W^{1} because of (iv). Without loss of generality, let $u_{2} \in W^{2}$.

If $u_{0} \in V-W$, then $C^{*}\left(u_{0} u_{2}\right) \cap E(V-W) \neq \emptyset$, for otherwise $u_{0} u_{2} \in E_{1}$ by (v). So Lemma 6.3.11 applies to $u_{0} u_{2}$ and $u_{0} u_{3}$ has the same color as $u_{0} u_{2}$, a contradiction to (6.6).

If $u_{0} \in W$, then $u_{1} \in W$ because of $u_{0} u_{2} \| u_{1} u_{3}$ and Corollary 6.3.10. Since $u_{0} u_{2}, u_{1} u_{2} \in E_{1}$ and $u_{2} \in W^{2}$, by (v), both u_{0} and u_{1} must belong to W^{2}. But this is a contradiction because W^{2} is a clique.

Case 2: $u_{2} \in W$ and $u_{5} \in V-W$. From Corollary 6.3.12 follows that $C^{*}\left(u_{2} u_{5}\right) \cap E(V-W)=\emptyset$. Therefore $u_{3} \in W$ or $u_{4} \in W$. Furthermore $u_{2} \in W^{2}$ because of (v).

If $u_{0} \in V-W$, then $C^{*}\left(u_{0} u_{2}\right) \cap E(V-W) \neq \emptyset$, for otherwise $u_{0} u_{1} \in E_{2}$ by (v). From Lemma 6.3 .11 follows that every edge between
u_{0} and a vertex in W has the same color as $u_{0} u_{2}$, thus u_{3} and u_{4} cannot belong to W. But this contradicts $u_{3} \in W$ or $u_{4} \in W$.

The same contradiction arises if $u_{1} \in V-W$, thus $u_{0}, u_{1} \in W$. Since $u_{2} \in W^{2}$ and $u_{0} u_{2}, u_{1} u_{2} \in E_{1}$, by (v), both u_{0} and u_{1} must belong to W^{1}. But this is impossible because W^{1} is a clique.

Case 9: $u_{2}, u_{5} \in V-W$. Then $u_{3}, u_{4} \in V-W$, for otherwise we consider the complementary double $A P_{6} u_{0}, u_{1}, u_{4}, u_{5}, u_{2}, u_{3}$ and are back in Case 1 or 2. Furthermore $u_{0}, u_{1} \in V-W$ cannot hold, as otherwise the same $A P_{6}$ would be contained in $G_{V-W+w_{1}+w_{2}}$. So $u_{0} \in$ W or $u_{1} \in W$. Since $u_{0} u_{2} \| u_{1} u 3$ and by Corollary 6.3.10, we may assume that $u_{0}, u_{1} \in W$.

Let $u_{0} \in W^{1}$ and $u_{1} \in W^{2}$ without loss of generality. Then both $C^{*}\left(u_{1} u_{2}\right) \cap E(V-W) \neq \emptyset$ and $C^{*}\left(u_{1} u_{5}\right) \cap E(V-W) \neq \emptyset$ because otherwise $u_{1} u_{2} \in E_{2}$ and $u_{1} u_{5} \in E_{2}$ by (v). Now Lemma 6.3 .11 applies to $u_{1} u_{2}$ and $u_{1} u_{5}$, hence $u_{0} u_{2} \in C^{*}\left(u_{1} u_{2}\right)$ and $u_{0} u_{5} \in C^{*}\left(u_{1} u_{5}\right)$, thus none of the edges of our double $A P_{6}$ received its color in (iv) or (v). Therefore $w_{1}, w_{2}, u_{2}, u_{3}, u_{4}, u_{5}$ is a double $A P_{6}$ in $G_{V-W+w_{1}+w_{2}}$, a contradiction to our assumption.

The following theorem together with the foregoing theorems establishes the claimed running time to cover G with two threshold graphs.

Theorem 6.3.14 A double $A P_{6}-$ free 2 -coloring of G^{*} can be computed in $O\left(|E|^{2}\right)$.

Proof. The initial computation of G^{*} and its 2-coloring can be carried out in $O\left(|E|^{2}\right)$. When replacing $W=V\left(C^{*}\right)$ with marker vertices, G^{*} can be updated by relabeling and deleting vertices of G^{*}, hence all these updates can also be made in $O\left(|E|^{2}\right)$.

For the search for the double $A P_{6} \mathrm{~s}$, we exploit the fact that a given edge $x y \in E_{i}, i \in\{1,2\}$, is the front of a double $A P_{6}$ if and only if $\left|C^{*}(x y)\right|>1$ and the set $L=\left\{v \in V \mid x v \in E-E_{i}\right.$ and $\left.y v \in E-E_{i}\right\}$ is not a clique. Observe that the vertices in L can be marked in $O(|V|)$ time. To obtain a nonedge in L, if any, simply build and use the adjacency lists of G_{L}. The running time for all those searches is therefore $O\left(|E|^{2}\right)$.

Chapter 7

Cobithreshold graphs

In this chapter, we study the recognition of cobithreshold graphs. HamMER AND MAhadev [31] called a graph cobithreshold if it is the complement of a bithreshold graph, and they defined a graph to be bithreshold if it is the intersection of two threshold graphs and every stable set of the graph is stable in one of the two threshold graphs. Since the complement of a threshold graph is again threshold, we can define cobithreshold graphs as follows.

Definition 7.0.1 A graph $G=(V, E)$ is cobithreshold if it is the union of two threshold graphs T_{1} and T_{2} such that every clique of G is also a clique of T_{1} or T_{2}.

The two threshold graphs T_{1}, T_{2} in the above definition are also called a cobithreshold cover. Clearly, a cobithreshold cover is a threshold cover of size 2, thus cobithreshold graphs are a subclass of 2-threshold graphs. Besides being 2 -threshold, cobithreshold graphs are interesting because of their connection with Boolean functions [53].

In [31], Hammer and Mahadev proposed an $O\left(|V|^{4}\right)$ algorithm for recognizing cobithreshold graphs. In search of faster recognition algorithms, subclasses of cobithreshold graphs were considered. Indeed, Hammer et al. [33] and Petreschi and Sterbini [64, 65] found linear time algorithms for the recognition of bipartite cobithreshold graphs and strict 2-threshold graphs, respectively. In [1], De Agostino et al suggested reducing the recognition problem for cobithreshold graphs to the recognition of bipartite cobithreshold graphs to achieve an $O\left(|V|^{3}\right)$
recognition algorithm. The first substantial improvement for the general case, however, is due to Raschle and Sterbini [68], who found a linear time algorithm for recognizing cobithreshold graphs.

This chapter describes Raschle and Sterbinis approach. The next section contains results on threshold and 2-threshold graphs as far as they go beyond those of Section 6.1 and Section 6.2. In Section 7.2, we describe a new threshold completion algorithm and a new linear algorithm for testing whether a threshold cover is a cobithreshold cover. Those algorithms are needed in Section 7.3 to solve the recognition problem for some special classes of graphs. The general case is then treated in Section 7.4.

7.1 Background and terminology

The following result on threshold graphs is needed for testing in linear time whether a threshold cover is a cobithreshold cover. Let $G=(V, E)$ be a graph and let $\delta_{1}<\ldots<\delta_{k}$ denote the distinct, positive degrees of the vertices with $\delta_{0}=0$ (even if no vertex of degree 0 exists). The degree partition of V is then given by $V=D_{0}+D_{1}+\ldots+D_{m}$ where D_{i} is the set of all vertices of degree δ_{i}.

Theorem 7.1.1 Let $G=(V, E)$ be a threshold graph with degree partition $V=D_{0}+D_{1}+\ldots+D_{m}$. Then a vertex $v \in D_{i}$ sees a vertex $w \in D_{j}$ if and only if $i+j>m$.

Proof. This proof is by induction on the number of vertices in G. If G consists of a single vertex, we are done. For the inductive step, let $D_{0}+\cdots+D_{m}$ denote the degree partition of the graph G before we added the isolated or dominating vertex v_{n} according to Theorem 6.1.3(iv).

If v_{n} is isolated, then the new vertex partition is $\left(D_{0} \cup\left\{v_{n}\right\}\right)+D_{1}+$ $\cdots+D_{m}$. Similarly, if v_{n} is dominating and G contains a dominating vertex, the new vertex partition is $D_{0}+\cdots+D_{m-1}+\left(D_{m}+\left\{v_{n}\right\}\right)$. Finally, if v_{n} is dominating and G contains no dominating vertex, then $D_{0} \neq \emptyset$ and the new vertex partition is $D_{0}^{\prime}+D_{1}^{\prime}+\cdots+D_{m}^{\prime}+D_{m+1}^{\prime}+$ D_{m+2}^{\prime} with $D_{0}^{\prime}=\emptyset$ and $D_{m+2}=\left\{v_{n}\right\}$ and $D_{i}^{\prime}=D_{i-1}$ for $i=1, \ldots, m+$ 1. In every case, it is easy to see that the theorem holds.

If a graph is 2-threshold, its conflict graph G^{*} must be bipartite. It is therefore easy to see that a C_{5} and the graphs F_{2} and F_{3} in Figure 3.1
are not 2 -threshold, thus Theorem 3.4.4 implies the following.
Fact 7.1.2 If a cobithreshold graph G is not split, the complement of an F_{2} or a P_{4} abcd such that bc belongs to an $A C_{4}$ can be found in linear time.

Let T_{1} and T_{2} be the two threshold graphs in a 2-threshold cover or in a cobithreshold cover. Since both have the same vertex set V, we usually identify T_{1} and T_{2} with the corresponding edge sets. Furthermore, we refer to the edges in T_{1} and T_{2} as the black and red edges, respectively, and call the resulting 2 -coloring of the edges of G a 2 -threshold coloring or a cobithreshold coloring. Note that, unlike the 2-colorings in the previous chapter, an edge in G can be red and black at the same time, that is, it can be bicolored.

On the other hand, in a 2-threshold coloring, no bicolored edge belongs to an $A C_{4}$, and the two edges of an $A C_{4}$ must receive different colors. We call a 2 -coloring of the edges of G that satisfies the above conditions a proper 2 -coloring of G. Furthermore, we say that a clique is uniformly colored if every edge in this clique has the same color. Clearly, every clique in a cobithreshold coloring is uniformly colored.

As in Definition 6.2.6, an $A C_{6}$ with all its edges in the same color is called alternating polygon of length 5 or 6 depending on the number of vertices involved, see Figure 6.4. In the figures of this chapter, red edges are indicated by dotted lines and black edges by bold lines, thus Figure 6.4 shows a red $A P_{5}$ and a red $A P_{6}$.

Lemma 7.1.3 A proper 2-coloring can be extended to a cobithreshold coloring in linear time if every clique is colored uniformly and every edge in an $A P_{5}$ belongs to an $A C_{4}$.

Proof. Since every clique is uniformly colored, it suffices to show that we can color additional edges such that both the red edges and the black edges are edge sets of threshold graphs. By Theorem 6.2.5, this is equivalent to proving that no $A P_{5}$ or $A P_{6}$ exists.

In an $A P_{5} v_{0}, \ldots, v_{5}$, the edges $v_{0} v_{5}$ and $v_{3} v_{4}$ are in $A C_{4}$ s. But our coloring is proper and every clique is uniformly colored, so $v_{1} v_{2}$ must be bicolored because of $v_{1} v_{4} \| v_{0} v_{5}$ and because of the triangle $\left\{v_{1}, v_{2}, v_{4}\right\}$. Hence $v_{1} v_{2}$ is in no $A C_{4}$, a contradiction.

In an $A P_{6} v_{0}, \ldots, v_{5}$, the edges $v_{0} v_{5}, v_{1} v_{2}$ and $v_{3} v_{4}$ belong to $A C_{4}$ s. Furthermore, v_{0} misses v_{2} and v_{1} misses v_{5}, as otherwise the triangles
$\left\{v_{0}, v_{2}, v_{5}\right\}$ or $\left\{v_{1}, v_{2}, v_{5}\right\}$ would not be uniformly colored. So $v_{0} v_{5} \|$ $v_{2} v_{1}$, a contradiction as $v_{0} v_{5}$ and $v_{1} v_{2}$ have the same color.

In the rest of this chapter, we develop an algorithm that computes a cobithreshold coloring whenever the given graph is cobithreshold. To begin with, we give two rules which allow us to infer the color of further edges in a cobithreshold coloring provided that we already know the color of some other edges in that cobithreshold coloring. Those rules follow easily from the fact that no edge in an $A C_{4}$ can be bicolored and that every clique is uniformly colored.

Rule 1: If $v w \| x y$, then $x y$ receives the color different from the color of vw .

Rule 2: If a clique C contains v and w and $v w$ belongs to an $A C_{4}$, then every edge between vertices in C receives the same color as $v w$.

In the next section, we show that coloring the edges in the $A C_{4} \mathrm{~s}$ suffices to compute a cobithreshold coloring of G.

7.2 Threshold completions

Let $G=(V, E)$ be a graph and $E_{1}, E_{2} \subseteq E$ edge sets that satisfy

$$
\begin{equation*}
a b, c d \in E_{1} \cup E_{2} \text { for every } A C_{4} a b \| c d \text { in } G . \tag{7.1}
\end{equation*}
$$

We claim that Algorithm 7.1 computes a threshold completion T_{1} of E_{1} if threshold completions of E_{1} and E_{2} exist.

If line 13 is never executed, it follows from Theorem 6.1.3(iv) that T_{1} is a threshold completion of E_{1}. So suppose that Algorithm 7.1 stops at line 13. Then G_{U} contains neither an isolated nor a dominating vertex and either $W=\emptyset$ or $W \neq \emptyset$ and $W_{u d}=\emptyset$. If $W=\emptyset$, then, since G_{U} is not a threshold graph, an $A C_{4} a b \| c d$ exists such that both edges belong to E_{2}, thus E_{2} has no threshold completion. Otherwise, if $W \neq \emptyset$ and $W_{u d}=\emptyset$, then G_{W} has no dominating vertex. But every vertex in G_{W} is incident to an edge in $E(W) \cap E_{1}$, hence E_{1} has no threshold completion.

Algorithm 7.1 runs in linear time as the number of vertices in $W_{u d}$ is proportional to the number of edges incident to the vertex u chosen in line 15 , and u is removed during the next execution of the while loop.
\qquad threshold completion
input: a graph $G=(V, E)$ and edge sets $E_{1}, E_{2} \subseteq E$ as in (7.1) output: a threshold completion T_{1} of E_{1}
(1) $T_{1} \leftarrow \emptyset ;$
(2) $U \leftarrow V$;
(3) while $U \neq \emptyset$ do
(4) if G_{U} contains an isolated vertex u then
(5) $U \leftarrow U-\{u\}$
(6) elsif G_{U} contains a dominating vertex u then
(7) $\quad T_{1} \leftarrow T_{1}+\{u v \in E(U)\}$;
(8) $\quad U \leftarrow U-\{u\}$
(9) else (* no vertex in G_{U} is isolated or dominating *)
(10) $\quad W \leftarrow V\left(E_{1} \cap E(U)\right)$;
(11) $\quad W_{u d} \leftarrow\left\{w \in U \mid w\right.$ is W-universal or dominating in $\left.G_{W}\right\}$
(12) \quad if $W=\emptyset$ or $W_{u d}=\emptyset$ then
(15)
(16) $U \leftarrow\{u\}+N_{G_{U}}(u)$
fi
od
Algorithm 7.1

The following lemma states that a maximum threshold completion exists and that it is computed by our algorithm.

Lemma 7.2.1 Let T_{1} denote the threshold completion of E_{1} computed by Algorithm 7.1. Then every threshold completion T_{1}^{\prime} of E_{1} satisfies $T_{1}^{\prime} \subseteq T_{1}$.

Proof. Let T_{1}^{\prime} denote an arbitrary threshold completion of E_{1}. Clearly, the removal of an isolated vertex in G_{U} does not affect any threshold completion. Similarly, as all edges incident to a dominating vertex in G_{U} are added to T_{1}, the removal of a dominating vertex in G_{U} does not lose any edge relative to T_{1}^{\prime}. So assume that G_{U} contains neither isolated nor dominating vertices and therefore $W \neq \emptyset \neq W_{u d}$.

We claim that u is dominating in $G_{W_{u d}}$. Suppose a vertex $w \in W_{u d}$ exists that does not see u. Then from our definition of $W_{u d}$ follows $u, w \in U-W$. In this case, W is a clique because two nonadjacent
vertices $x, y \in W$ would induce $u x \| w y$ which contradicts $u x, w y \notin E_{1}$. Similarly, a vertex x in $N_{U}(u)-W$ cannot miss a vertex y in W, as otherwise $u x \| w y$, again a contradiction to $u x, w y \notin E_{1}$. So every vertex $v \in W$ is dominating and satisfies $\operatorname{deg}_{U}(v)>\operatorname{deg}_{U}(u)$, which is impossible as we have chosen u as the vertex with maximal degree in G_{U}, thus indeed u is dominating in $G_{W_{u d}}$.

Next we claim that $N[w] \subseteq N[u]$ for every $w \in W_{u d}$. Otherwise, since u sees w, a vertex $y \in N(w)-N[u]$ exists. Similarly, since $\operatorname{deg}_{U}(u) \geq \operatorname{deg}_{U}(w)$, a vertex $x \in N(u)-N[w]$ also exists. But $u x, w y \notin E_{1}$ because u and w belong to $W_{u d}$, a contradiction to $u x \| y w$, which proves our claim. Therefore, no edge $v w$ incident to a vertex v in $U-N[u]$ can belong to T_{1}^{\prime}, so the removal of $U-N[u]$ in line 16 does not lose any edges relative to T_{1}^{\prime}.

Corollary 7.2.2 Given a graph $G=(V, E)$ and edge sets E_{1}, E_{2} such that every $A C_{4} a b \| c d$ satisfies $a b, c d \in E_{1} \cup E_{2}$. Then Algorithm 7.1 applied to E_{1} and E_{2} computes a cobithreshold cover T_{1}, T_{2} with $E_{1} \subseteq T_{1}$ and $E_{2} \subseteq T_{2}$ if such a cobithreshold cover exists.

Therefore a cobithreshold cover $T_{1}^{\prime}, T_{2}^{\prime}$ with $E_{1} \subseteq T_{1}^{\prime}$ and $E_{2} \subseteq T_{2}^{\prime}$ exists if and only if the two threshold graphs T_{1} and T_{2} computed by Algorithm 7.1 constitute a cobithreshold cover. To test whether T_{1}, T_{2} is a cobithreshold cover, we have to verify that $E=T_{1} \cup T_{2}$ and that every clique of G is also a clique of T_{1} or T_{2}. The first task is trivial, so it remains to discuss how to perform the second.

Let $D_{0}, D_{1}, \ldots, D_{m}$ denote the degree partition of T_{2}. By Theorem 7.1.1, a vertex in D_{i} sees a vertex in D_{j} if and only if $i+j>m$. We claim that Algorithm 7.2 stops at Line 15 if and only if a clique C of G exists such that precisely one edge of C belongs to $T_{1}-T_{2}$ but C is not a clique of T_{1}.

Let $v w$ be an edge in $T_{1}-T_{2}$ with $v \in D_{i}$ and $w \in D_{j}$ such that $i \leq j$, and let $K=D_{k}+D_{k+1}+\cdots+D_{m}$ where $k=m-i+1$. Since $v w$ does not belong to T_{2}, we have $i+j \leq m$ and therefore $2 i \leq m$, hence $j+k \geq i+k>m$ and $2 k>m$. In other words $K \cup\{v, w\}$ is a clique of G and $v w$ is the only edge not in T_{2}.

Let C denote an arbitrary clique C of G such that $v w$ is the only edge in C that belongs to $T_{1}-T_{2}$. Then every vertex different from v and w in C must belong to K, hence $C \subseteq K+\{v, w\}$. To make sure that
\qquad cobithreshold cover test
input: a graph $G=(V, E)$ with 2-threshold cover T_{1}, T_{2} and the degree partition $D_{0}, D_{1}, \ldots, D_{m}$ of T_{2}
(1) forall $v \in V$ do
(2) $a[v] \leftarrow m+1$
(3) od;
(4) $c \leftarrow m+1$;
(5) forall $v w \in T_{1}-T_{2}$ do
(6) \quad let $v \in D_{i}$ and $w \in D_{j}$ with $i \leq j$;
(7) $\quad k \leftarrow m-i+1$;
(8) $a[v] \leftarrow \min \{a[v], k\}$;
(9) $a[w] \leftarrow \min \{a[w], k\}$;
(10) $c \leftarrow-\min \{c, k\}$;
(11) od;
(12) forall $x y \in T_{2}-T_{1}$ do
(13) \quad let $x \in D_{h}$ and $y \in D_{l}$ with $h \geq l$;
(14) if $l \geq c$ or $h \geq a[y]$ then
(15) stop (${ }^{*} T_{1}, T_{2}$ is no cobithreshold cover $\left.{ }^{*}\right)$
(16) fi
od

Algorithm 7.2

C has no edge in $T_{2}-T_{1}$, it suffices to verify that every edge between vertices in K and every edge $u v$ and $u w$ with $u \in K$ belongs to T_{1}.

The edges between vertices in K are precisely those edges $x y$ with $x \in D_{h}$ and $y \in D_{l}$ where $h \geq l \geq k$. Similarly, as $k=m-i+1$ and $i \leq j$, edges between K and v or w are precisely those edges $x y$ with $x \in D_{h}$ and $y \in D_{l}, h \geq l$, for which $h \geq k$ and $y=v$ or $y=w$.

In the algorithm, the variable c holds the smallest value k for any $v w \in T_{1}-T_{2}$, and $a[u]$ stores the smallest value k for an edge $v w \in$ $T_{1}-T_{2}$ with $u=v$ or $u=w$. Therefore all edges $x y \in T_{2}-T_{1}$ with $x \in D_{h}$ and $y \in D_{l}, h \geq l$, satisfying $l \geq c$ or $h \geq a[y]$ belong to a clique with precisely one edge in $T_{1}-T_{2}$, thus the algorithm stops at Line 15 if and only if a clique exists with precisely one edge in $T_{1}-T_{2}$ and at least one edge in $T_{2}-T_{1}$.

If we exchange T_{1} and T_{2} in Algorithm 7.2, the resulting algorithm stops at Line 15 if a clique C of G exists with precisely one edge in $T_{2}-T_{1}$ but C is not a clique of T_{2}.

If a clique of G is neither in T_{1} nor in T_{2}, then it has at least one edge $v w \in T_{1}-T_{2}$ and another edge $x y$ in $T_{2}-T_{1}$, thus $\{v, w, x, y\}$ is a clique of size 3 or 4 that is not in T_{1} or T_{2}. But a clique of size 3 that is not a clique of T_{1} or T_{2} has precisely one edge in $T_{1}-T_{2}$ or precisely one edge in $T_{2}-T_{1}$. Therefore either the above algorithm or the algorithm with T_{1} and T_{2} exchanged stops whenever such a clique exists.

Now assume that every clique of size 3 is a clique of T_{1} or T_{2}. Then a clique of size 4 that is not a clique of T_{1} or T_{2} has precisely one edge that belongs to $T_{1}-T_{2}$. Therefore Algorithm 7.2 also detects those cliques, and the following lemma holds.

Lemma 7.2.3 Given a graph G and two edge sets $E_{1} \subseteq E$ and $E_{2} \subseteq E$ such that $a b, c d \in E_{1} \cup E_{2}$ whenever $a b \| c d$ in G. Then there is a linear time algorithm that either computes a cobithreshold cover T_{1}, T_{2} of G with $E_{1} \subseteq T_{1}$ and $E_{2} \subseteq T_{2}$ or decides that no such cobithreshold cover exists.

7.3 Special classes of cobithreshold graphs

In this section, we show how to recognize some special classes of cobithreshold graphs in linear time. We start with cobithreshold split graphs.

Since a split graph has no C_{4}, it cannot contain an $A P_{5}$; thus, by Lemma 7.1.3, it suffices to find a proper 2-coloring of G that colors every clique uniformly. But every $A C_{4}$ in a split graph is a $P_{4} a b c d$ with $a, d \in S$ and $b, c \in K$. So we may bicolor every edge between vertices in K. Every maximal clique not contained in K can be written as $\{v\} \cup N(v)$ with $v \in S$, hence the color of such a clique can be assigned to the vertex v.

Let \tilde{S} denote the graph with vertex set S such that two vertices a and d are adjacent in \tilde{S} if there is a $P_{4} a b c d$ in G. Then G is cobithreshold split if and only if \tilde{S} is bipartite. We claim the following.

Lemma 7.3.1 For a split graph $G=(V, E)$ with $V=S+K$, a spanning forest of \tilde{S} can be computed in linear time.

We restrict ourselves to graphs in which no two vertices in S have the same neighborhood. If a graph fails to satisfy this property, we
generate a new graph $G_{\text {subst }}$ by removing copies of such a vertex. A spanning forest of \tilde{S} is readily obtained from a spanning forest of $\tilde{S}_{\text {subst }}$ by connecting the copies of a vertex v to one vertex adjacent to v in the spanning forest of $\tilde{S}_{s u b s t}$.

Lemma 7.3.1 follows from the two subsequent Lemmas.
Lemma 7.3.2 Let $G=(V, E)$ denote a cobithreshold split graph with stable set S and clique K such that no two vertices in S have the same neighborhood. Then at most two vertices have the same degree and $|V|^{2}=O(|E|)$.

Proof. To begin with, we show that at most two vertices in S have the same degree. Every pair of vertices a and d in S with $\operatorname{deg}(a)=\operatorname{deg}(d)$ belongs to a $P_{4} a b c d$, i.e. a and d are adjacent in \tilde{S}. Thus more than two vertices in S with the same degree would induce a triangle in \tilde{S}, a contradiction because \tilde{S} must be bipartite.

Let Δ denote the maximal degree of a vertex in S. Then $|K| \geq \Delta$ and, since at most two vertices in S have the same degree, $|S| \leq 2 \Delta$; thus $|S|=O(|K|)$ and therefore $|V|^{2}=(|S|+|K|)^{2}=O\left(|K|^{2}\right)$. But K is a clique, hence $|K|^{2}=O(|E|)$ and $|V|^{2}=O(|E|)$ as claimed.

Lemma 7.3.3 Given a cobithreshold split graph with stable set S and clique K such that no two vertices in S have the same neighborhood. Then a spanning forest of \tilde{S} can be computed in linear time.

Proof. For every vertex w in K, let $w_{\text {min }}$ denote a vertex with minimal degree in $N(w) \cap S$ and let $w_{\max }$ denote a vertex with maximal degree in $\bar{N}(w) \cap S$. By Lemma 7.3.2, those vertices can be found in linear time. Let F be empty. We scan the vertices v in S and, for every vertex $u \in \bar{N}(v)$ with $\operatorname{deg}\left(u_{\text {min }}\right) \leq \operatorname{deg}(v)$, we add an edge $v u_{\text {min }}$ to F. Similarly, for every vertex $w \in N(v)$ with $\operatorname{deg}\left(w_{\text {max }}\right) \geq \operatorname{deg}(v)$, we add an edge $v w_{\text {max }}$ to F. Again by Lemma 7.3.2, this can be done in linear time. We claim that (S, F) is a spanning forest of \tilde{S}.

Note that for each pair of vertices a and d in S with $\operatorname{deg}(a) \geq \operatorname{deg}(d)$, a P_{4} abcd exists if and only there is a vertex w in K such that w sees d and misses a. Therefore all edges $v u_{\min }$ and $v w_{\max }$ belong to \tilde{S}. To show that (S, F) is indeed a spanning forest, we suppose the contrary. Then a $P_{4} a b c d$ exists such that a and d belong to different connected
components of (S, F). Without loss of generality, let $\operatorname{deg}(a) \geq \operatorname{deg}(d)$. Now $\operatorname{deg}\left(c_{\max }\right) \geq \operatorname{deg}(a) \geq \operatorname{deg}(d) \geq \operatorname{deg}\left(c_{\min }\right)$ and, by construction, $a c_{\text {min }}$ and $d c_{\text {max }}$ belong to F. But this is a contradiction as $c_{\text {min }} c_{\text {max }}$ also belongs to F.

Next, we consider cobithreshold graphs that contain a $P_{4} a b c d$ such that $b c$ belongs to an $A C_{4}$.

Lemma 7.3.4 Let G be a cobithreshold graph and let abcd denote a P_{4} in G such that bc belongs to an $A C_{4}$. Then a cobithreshold coloring of G can be computed in linear time.

Figure 7.1: All possibilities of a P_{4} together with a fifth vertex v.
Proof. Up to symmetry, the P_{4} abcd together with a fifth vertex v induces one of the graphs depicted in Figure 7.1. Except for the C_{5}, all graphs A, B, \ldots, I are cobithreshold. We say a vertex v is type A, B, \ldots, I if v and the $P_{4} a b c d$ induce either the corresponding graph in Figure 7.1 or its symmetric counterpart, e.g. a B-vertex either sees b, c and d and misses a or sees a, b and c and misses d.

Without loss of generality, let $a b$ be black. In the rest of this proof, we give an algorithm for coloring the edges of G based on the color of $a b$ and $b c$. Since we can execute this algorithm twice, once with $b c$ colored black and another time with bc colored red, by Lemma 7.2.3, we may assume that we know the color of $b c$.

In Step 1 and 2, we show that the color of $a b$ and $b c$ implies the color of every edge in G that has no endpoint of type I and that this
coloring can be found in linear time.
Step 1: Edges with at least one endpoint in $\{a, b, c, d\}$. The color of $a b$ and the repeated application of Rule 1 determines the color of a number of edges in Figure 7.1. These edges are indicated by bold lines if they are black and by dotted lines if they are red (e.g. in E, the edges $c d$ and $v d$ are red whereas $b c$ and $b v$ are black because of $a b\|c d\| v b$ and $a b\|v d\| c b)$.

Furthermore, by Rule 2, the edges in the cliques $\{a, b, v\},\{b, c, v\}$ and $\{c, d, v\}$ receive the same color as $a b, b c$ and $c d$ respectively, and the color of $a v$ in C is determined by Rule 1 because of $b c \| v a$. Thus all edges with at least one endpoint in $\{a, b, c, d\}$ are colored.

Step 2: Edges between vertices in $V-\{a, b, c, d\}$ except for edges incident to type I vertices. Let $v w$ denote such an edge, i.e. $v, w \in$ $V-\{a, b, c, d\}$ and neither v nor w is type I. Depending on the neighborhood of v and w relative to b and c, we distinguish the following cases.

Case 1: v or w is $\{b, c\}$-partial. Without loss of generality (symmetry), suppose that v sees b but misses c. Then v is type C, D, E or H, hence $v b$ belongs to an $A C_{4}$. If w misses b, then $v w \| c b$ and $v w$ can be colored according to Rule 1. Otherwise, if w sees b, then $\{b, v, w\}$ is a clique and, by Rule $2, v w$ receives the same color as $v b$.

Case 2: v and w are $\{b, c\}$-universal. Then $\{b, c, v, w\}$ is a clique, Rule 2 applies and $v w$ receives the same color as $b c$.

Case 3: v and w are $\{b, c\}$-null. Then $v w \| b c$, hence $v w$ can be colored by Rule 1.

Case 4: v is $\{b, c\}$-universal and w is $\{b, c\}$-null or vice versa. Because of symmetry, it suffices to discuss the former case. So v is type A, B or F and w is type G. Furthermore, suppose that w sees d (the symmetric case is similar). If v misses d, then $v w \| d c$ and $v w$ is black. Otherwise, if v sees d, then $\{d, v, w\}$ is a clique and, by Rule $2, v w$ may be colored in the same way as $w d$.

Step 2 again takes linear time if we precompute which of the above cases applies to which graph in Figure 7.1 (or its symmetric counterpart).

After the completion of Step 2, only edges incident to type I vertices are not colored. Furthermore, in the rest or this proof, we only use the fact that $b c$ is colored, not the assumption that $b c$ belongs to an $A C_{4}$.

Observation 1: The set of all type I vertices is stable. An edge $v_{1} v_{2}$ between two type I vertices satisfies $a b \| v_{1} v_{2}$ and $c d \| v_{1} v_{2}$, thus a third color would be required.

Observation 2: The set of all type A vertices is a clique and every edge between type A vertices is bicolored. Let w_{1} and w_{2} be two type A vertices. Because of the clique $\left\{a, b, w_{1}\right\}$ and $\left\{c, d, w_{1}\right\}$, the edge $b w_{1}$ is black and $c w_{1}$ is red. If w_{1} misses w_{2}, then $b w_{1} \| d w_{2}$ and $c w_{1} \| a w_{2}$, so $b w_{1}$ cannot be red and $c w_{1}$ cannot be black, a contradiction because of the clique $\left\{b, c, w_{1}\right\}$. Thus w_{1} and w_{2} are adjacent and, by Rule 2 applied to the cliques $\left\{a, b, w_{1}, w_{2}\right\}$ and $\left\{c, d, w_{1}, w_{2}\right\}$, the edge $w_{1} w_{2}$ must be bicolored.

Step 3: Edges vw between type I vertices v and vertices w of type B, \ldots, H. It is easy to verify, see Figure 7.1, that a $P_{3} w x y$ exists with $x, y \in\{a, b, c, d\}$. Clearly, this P_{3} can be extended to a $P_{4} v w x y$, thus the color of $v w$ follows from applying Rule 1. Since the color of $v w$ solely depends on the color of $a b, b c, c d$ and on the type of w (or its symmetric counterpart), Step 3 can be carried out in linear time.

For the remaining steps, we need some further precomputation.

- For each type I vertex v, let $n(v)$ denote a vertex of type B, \ldots, H that sees v, or let $n(v)=0$ if no such vertex exists.
- For each type A vertex w, let $m(w)$ denote a vertex of type A, \ldots, H that misses w, or let $m(w)=0$ if no such vertex exists.

Obviously, the values $n(v)$ and $n(w)$ can be computed in linear time.
Step 4: Edges incident to type I vertices v which see some type A vertices \boldsymbol{w} with $m(\boldsymbol{w}) \neq 0$. Since $m(\boldsymbol{w})$ is of type A, \ldots, H, it sees a vertex $x \in\{a, b, c, d\}$. But $x m(w)$ is already colored and $v w \| x m(w)$, hence the color of $v w$ can be determined by Rule 1. Furthermore, every type A vertex z that sees v but satisfies $m(z)=0$ sees every vertex w, hence $\{v, w, z\}$ is a clique and $v z$ receives the same color as $v w$. Since edges between v and a vertex of type B, \ldots, H were colored in Step 3, the color of every edge incident to v is determined, and it should be clear that Step 4 can be carried out in linear time.

Step 5: Edges incident to type I vertices v with $n(v) \neq 0$. Because of Step 3, it again suffices to color edges between v and type A vertices w. Moreover, we may assume that $m(w)=0$, as otherwise the
edges incident to v were colored in Step 4. Therefore w sees $n(v)$ and $\{v, w, n(v)\}$ is a clique. From the argumentation in Step 3 follows that $v n(v)$ belongs to an $A C_{4}$, so Rule 2 applies and $v w$ must be colored as $v n(v)$. So Step 5 is linear.

Now let S denote the set of all type I vertices v that
(i) are not adjacent to a type A vertex w with $m(w) \neq 0$ and
(ii) satisfy $n(v)=0$.

Note that the uncolored edges are precisely those edges incident to a vertex in S. Furthermore, let $K=N(S)$. Because of (ii), every vertex in K is of type A and, because of (i), every vertex w in K misses only vertices of type I.

The next Step again requires some precomputation. Let X denote the set of all type I vertices x that see a vertex $r(x) \notin K$. Furthermore, for every vertex w in K, let $s(w)$ denote a vertex in X that misses w, or $s(w)=0$ if no such vertex exists. Clearly $r(x)$ and $s(w)$ can be computed in linear time.

Step 6: Edges in $A C_{4} s$ that are not entirely in G_{S+K}. For every vertex v in S that sees a vertex $w \in K$ with $s(w) \neq 0$, a P_{4} $\operatorname{vwr}(s(w)) s(w)$ exists. Since $r(s(w)) \notin K$, the edge $r(s(w)) s(w)$ was colored in Step 1 to 5 , so Rule 1 determines the color of $v w$. Furthermore, as $\{v\} \cup N(v)$ is a clique, every edge incident to v receives the same color as $v w$. Clearly, this can be achieved in linear time.

Now let $v w \| x y$ be an $A C_{4}$ with $v \in S$ but not entirely in G_{S+K}. Then y cannot belong to S. On the other hand, as w is type A and $m(w)=0$, the vertex y must be of a type I. Therefore either $n(y) \neq 0$ or a type A vertex u adjacent to y satisfies $m(u) \neq 0$. In both cases, y sees a vertex $z \notin K$ and a P_{4} vwzy exists, so $y \in X$ and $s(w) \neq 0$, i.e. every edge incident to v and therefore every edge in an $A C_{4}$ is colored by the above procedure.

Step 7: Regarding the $A C_{4} \mathrm{~s}$ in G_{S+K}, we compute a spanning forest of \tilde{S} as described in Lemma 7.3.1. Then we color the connected components of \tilde{S} in accordance with the colored edges in Step 1 to 6, and we end up with a proper 2-coloring of the edges in G.

We claim that this 2-coloring can be completed to a cobithreshold coloring of G. Let $R \subseteq S$ denote the set of vertices in S that belong to components whose vertices are incident to no edge colored in Step 1 to 6. Since the color of every edge in G_{V-R} is implied from the color of
$a b$ and $b c$ by Rule 1 and 2, the coloring of G_{V-R} can be completed to a cobithreshold coloring, c.f. Lemma 7.2.3. To apply Lemma 7.1.3, it suffices to show that every clique is uniformly colored and that no $A P_{5}$ exists.

The latter is easy as the neighborhood of no vertex in an $A P_{5}$ is a clique, so no vertex in R belongs to an $A P_{5}$, thus every $A P_{5}$ is in G_{V-R}, which is impossible because of the cobithreshold coloring of G_{V-R}. For the same reason, every clique in G_{V-R} is uniformly colored. But every maximal clique of G that is not entirely in G_{V-R} can be written as $\{v\} \cup N(v)$ with $v \in R$, hence it is uniformly colored because of Step 7 and because edges between vertices in $N(v)$ are bicolored.

A similar result holds if a $P_{4} a b c d$ is known together with two nonadjacent type B vertices, one adjacent to a and the other adjacent to d, as depicted in Figure 7.2. We call this graph the bridge abcdef.

Figure 7.2: The bridge abcdef.

Lemma 7.3.5 Let G be a cobithreshold graph that contains a bridge abcdef. Then a cobithreshold coloring of G can be computed in linear time.

Proof. Again assume that $a b$ is black. In Figure 7.2, the edges colored by repeatedly applying Rule 1 are indicated by bold and dotted lines, respectively. Moreover, as $\{b, c, e\}$ and $\{b, c, f\}$ are cliques, the edges $b c, c e$ are black and $b c, b f$ are red. Note that $b c$ receives both colors, hence it cannot belong to an $A C_{4}$.

In order to color the remaining edges, we proceed as in the proof of Lemma 7.3.4, i.e. we consider the type $A \ldots I$ vertices relative to the $P_{4} a b c d$. This time, however, no type C, E and G vertices exist as otherwise $b c$ would belong to an $A C_{4}$.

As in the proof of the previous lemma, the color of the edge $a b \mathrm{im}$ plies the color of every edge in G that has no endpoint of type I and
this coloring can be computed in linear time.
Step 1: Edges with at least one endpoint in $\{a, b, c, d\}$. We have already seen how the edges between $\{a, b, c, d, e, f\}$ must be colored. Furthermore, the application of Rule 1 colors some edges as shown in Figure 7.1. So it remains to discuss the edges incident to a type A, B and F vertex v. If v is type A, then, by Rule 2 , the edges in the cliques $\{a, b, v\}$ and $\{c, d, v\}$ receive the same color as $a b$ and $c d$, respectively.

Now suppose v is type B or F. Because of symmetry, we may assume that v misses a. If v sees e or f, then $\{b, c, e, v\}$ or $\{b, c, f, v\}$ is a clique, hence Rule 2 implies the color of the edges $b v$ and $c v$. If v misses both e and f, then $b v \| d f$ and $c v \| a e$, so the color of $b v$ and $c v$ is determined by Rule 1 .

Step 2: Edges between vertices in $V-\{a, b, c, d\}$ except for edges incident to type I vertices. Let $v w$ denote such an edge, so $v, w \in$ $V-\{a, b, c, d\}$ and neither v nor w is type I. Depending on the neighborhood of v and w relative to b and c, we distinguish the following cases.

Case 1: v or w is $\{b, c\}$-partial. Without loss of generality (symmetry), suppose that v sees b but misses c. Then v is type D or H, hence $v b$ belongs to an $A C_{4}$. If w misses b, then $v w \| c b$, a contradiction to our assumption that $b c$ is both black and red. Otherwise, if w sees b, then $\{b, v, w\}$ is a clique and, by Rule $2, v w$ receives the same color as $v b$.

Case 2: v and w are $\{b, c\}$-universal. If e sees both v and w, then $\{b, e, v, w\}$ is a clique and, by Rule $2, v w$ receives the same color as $b e$. If e misses v or w, then $a e \| v c$ or $a e \| c w$. But $\{c, v, w\}$ is a clique, thus $v w$ must be red by Rule 2.

Case 3: v or w is $\{b, c\}$-null. This case is impossible because v and w are neither type G nor type I.

The remaining Steps are identical to those in the proof of Lemma 7.3.4 and therefore omitted.

7.4 Recognizing cobithreshold graphs

In this section, we give a recursive algorithm for coloring the edges in a cobithreshold graph. For every graph $G=(V, E)$, let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ denote the prime graph that arises from substituting marker vertices
for maximal homogeneous sets of G and, for every vertex $v \in V^{\prime}$, let $H(v)$ stand for the corresponding module in G.

```
(1) if \(G\) has an isolated vertex \(v\) then
recurse on \(G-\{v\}\)
elsif \(G\) has a dominating vertex \(v\) then
bicolor the edges incident to \(v\);
recurse on \(G-\{v\}\)
elsif \(G\) is disconnected then
color \(G\) as described in Lemma 7.4.1;
elsif \(\bar{G}\) is disconnected then
color \(G\) as described in Lemma 7.4.2;
elsif \(G^{\prime}\) is not a split graph then
find a bridge or a \(P_{4} a b c d\) with \(b c\) in an \(A C_{4}\);
color \(G\) according to Lemma 7.3.4 or Lemma 7.3.5
else ( \({ }^{*} G^{\prime}\) is a split graph *)
let \(S\) and \(K\) be the vertex sets as defined in Lemma 7.4.3
if \(V^{\prime}=S+K+v\) and \(H(v)\) is not a threshold graph then recurse on \(G_{H(v)}\); color the edges not in \(G_{H(v)}\) as described in Lemma 7.4.4
else (* every homogeneous set induces a threshold graph *) if \(H(K)\) is not a clique then color \(G\) as described in Lemma 7.4.5 else ( \({ }^{*} H(K)\) is a clique \({ }^{*}\) ) color \(G\) as described in Lemma 7.4.6
```

Algorithm 7.3
Lines (1) to (5) of Algorithm 7.3 are correct as an isolated or dominating vertex can always be added to a threshold graph, see Theorem 6.1.3(iv), hence those vertices may be added to both threshold graphs T_{1} and T_{2} that constitute a cobithreshold cover of $G-\{v\}$.

The following Lemma discusses Lines (6) and (7).

Lemma 7.4.1 A cobithreshold graph G without isolated vertices is disconnected if and only if G is the disjoint union of two nontrivial connected threshold graphs G_{1} and G_{2}.

Proof. Obviously the disjoint union of two threshold graphs is a cobithreshold graph. Conversely, since G has no isolated vertices, G
consists of nontrivial connected components $G_{1}, G_{2}, \ldots, G_{k}$ with $k \geq 2$. But every pair of edges in different connected components induces a $2 K_{2}$, thus we can color at most two nontrivial connected components G_{1} and G_{2}. Moreover, every edge in such a component receives the same color, hence G_{1} and G_{2} are threshold graphs.

Now suppose that \bar{G} is disconnected but has no dominating vertex. Recall that the join $G_{1} \oplus G_{2}$ of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ $\left(V_{2}, E_{2}\right)$ is the graph $\left(V_{1}+V_{2}, E_{1}+E_{2}+E_{12}\right)$, where E_{12} is the set of edges between vertices in V_{1} and vertices in V_{2}.

Lemma 7.4.2 A cobithreshold graph $G=(V, E)$ without dominating vertices is codisconnected if and only if G is the join of two nontrivial coconnected graphs G_{1} and G_{2} such that
(i) G_{1} is the complement of a complete bipartite graph with bipartition $\left(V_{1}^{1}, V_{1}^{2}\right)$ and
(ii) G_{2} is a threshold graph.

Moreover, $G_{V_{1}^{1}+V_{2}}$ and $G_{V_{1}^{2}+V_{2}}$ constitute a cobithreshold cover of G.
Proof. If is easy to verify that $G_{V_{1}^{1}+V_{2}}$ and $G_{V_{1}^{2}+V_{2}}$ constitute a cobithreshold cover of the join of G_{1} and G_{2}. Conversely, as G has no dominating vertices, G must be the join of nontrivial coconnected graphs $G_{1}, G_{2}, \ldots, G_{k}$. Furthermore, every edge between different coconnected graphs G_{i} and G_{j} belongs to a C_{4}, hence such an edge receives precisely one color.

To begin with, we show that G is the join of two coconnected graphs G_{1} and G_{2}. If $k \geq 3$, we can choose pairs of nonadjacent vertices a_{1}, b_{1} and a_{2}, b_{2} in G_{1} and G_{2}, respectively, and a single vertex v in G_{3}. Without loss of generality, let $a_{1} a_{2}$ be black; hence, by Rule $1, b_{1} b_{2}$ is red. Since $\left\{a_{1}, a_{2}, v\right\}$ and $\left\{b_{1}, b_{2}, v\right\}$ are cliques, by Rule $2, a_{1} v$ is black and $b_{2} v$ is red. But this is impossible because of the clique $\left\{a_{1}, b_{2}, v\right\}$.

Next, we prove that at least one of the two graphs G_{1} and G_{2} is a threshold graph. Otherwise $A C_{4} \mathrm{~s} a_{1} b_{1} \| c_{1} d_{1}$ in G_{1} and $a_{2} b_{2} \| c_{2} d_{2}$ in G_{2} would exist. But $a_{1} b_{1}$ and $c_{1} d_{1}$ have different colors; hence Rule 2 applies to the cliques $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$ and $\left\{c_{1}, d_{1}, a_{2}, b_{2}\right\}$, and therefore $a_{2} b_{2}$ is bicolored, a contradiction because $a_{2} b_{2} \| c_{2} d_{2}$.

Note that not both \bar{G}_{1} and \bar{G}_{2} can contain a triangle, as triangles a_{1}, b_{1}, c_{1} in \bar{G}_{1} and a_{2}, b_{2}, c_{2} in \bar{G}_{2} imply that $a_{1} a_{2}$ is bicolored because
of $a_{1} a_{2}\left\|b_{1} b_{2}\right\| c_{1} c_{2} \| a_{1} a_{2}$. If both G_{1} and G_{2} are threshold graphs, let G_{1} denote that graph whose complement has no triangle. Since G_{1} is threshold and coconnected, it contains an isolated vertex. But \bar{G}_{1} has no triangle, so all other vertices in G_{1} induce a clique and G_{1} is the complement of a complete bipartite graph as claimed.

Now suppose that G_{1} is no threshold graph. Then G_{1} contains no P_{4} because a $P_{4} a_{1} b_{1} c_{1} d_{1}$ in G_{1} implies that, for any vertex v in G_{2}, the edges $b_{1} v$ and $c_{1} v$ have different colors because of the cliques $\left\{a_{1}, b_{1}, v\right\}$ and $\left\{c_{1}, d_{1}, v\right\}$, which is impossible because of the clique $\left\{b_{1}, c_{1}, v\right\}$. But a P_{4}-free graph is either disconnected or codisconnected; hence G_{1} is disconnected.

Furthermore, no vertex v in G_{1} can miss a and c in an $A C_{4} a b \| c d$ in G_{1}, as otherwise $a x\|v y\| c x$ holds for every pair of nonadjacent vertices x, y in G_{2}, a contradiction to the fact that $a x$ and $c x$ have different colors because of the cliques $\{a, b, x\}$ and $\{c, d, x\}$. Therefore G_{1} has no isolated vertices and, by Lemma 7.4.1, G_{1} consists of two nontrivial connected threshold graphs T_{1} and T_{2}.

If T_{1} were no clique, it would contain a vertex v and an edge $a b$ such that v sees b and misses a, a contradiction because $a b \| c d$ for every edge $c d$ in T_{2} but no vertex in T_{1} can miss a and c in an $A C_{4} a b \| c d$. Since the same reasoning holds for T_{2}, both T_{1} and T_{2} are cliques, hence \bar{G}_{1} is complete bipartite.

If G^{\prime} is no split graph, by Fact 7.1.2, a $P_{4} a b c d$ with $b c$ in an $A C_{4}$ or the complement of an F_{2} can be found in linear time. Since the corresponding graphs also exist in G and the complement of an F_{2} is a bridge, we can indeed color the edges as described in Lemma 7.3.4 and Lemma 7.3.5.

It remains to show how to color connected cobithreshold graphs G that are also coconnected and whose associated prime graph G^{\prime} is split. As G^{\prime} is also connected and coconnected, Lemma 3.1.1 implies that G^{\prime} contains a P_{4}, hence its conflict graph contains a nontrivial connected component C^{*}. The next lemma exhibits the structure of G^{\prime}.

Lemma 7.4.3 Let $G=(V, E)$ be a prime cobithreshold split graph and let $C^{*} \subseteq E$ be a nontrivial connected component of its conflict graph. Furthermore let S denote the stable set and K the clique in the induced split graph $G_{V\left(C^{*}\right)}$. Then either
(i) $V=S+K$ or
(ii) $V=S+K+v$ and $N(v)=K$.

In part, the above lemma can be derived from Theorem 6.3.7. Nevertheless, we give a full proof in order to make this chapter independent of Section 6.3.
Proof. Let $H=V-K-S$. Since $G_{V\left(C^{*}\right)}$ is a split graph, every $A C_{4}$ $a b \| c d$ with edges in C^{*} is a $P_{4} a b c d$. If a vertex $v \in H$ sees a but misses b, then either $a b \| c v$ or $a v \| d c$, in both cases a contradiction to $v \in H$. Thus every $\{a, b\}$-partial vertex in H sees b and misses a. Moreover, an $\{a, b\}$-partial vertex v in H is also $\{c, d\}$-partial, for otherwise either abvd or $v b c d$ is a P_{4}, again a contradiction to $v \in H$.

Therefore an $\{a, b, c, d\}$-partial vertex in H sees b and c and misses a and d. By induction, this hold for every P_{4} with a wing in C^{*}. But every $V\left(C^{*}\right)$-partial vertex is $\{a, b, c, d\}$-partial for at least one $P_{4} a b c d$, therefore a $V\left(C^{*}\right)$-partial vertex sees every vertex in K and misses every vertex in S.

Furthermore, an edge between a $V\left(C^{*}\right)$-partial vertex v and a $V\left(C^{*}\right)$ null vertex q implies a $P_{4} q v b a$, a contradiction to $v \in H$. Similarly, a $V\left(C^{*}\right)$-partial vertex v sees every a $V\left(C^{*}\right)$-universal vertex p, as otherwise, if v misses p, the graph $G_{\{a, b, c, d, v, p\}}$ is split with clique $\{b, c, p\}$ and stable set $\{a, d, v\}$ such that no two vertices in $\{a, d, v\}$ have the same neighborhood but three vertices have the same degree, so G would not be cobithreshold as shown in the proof of Lemma 7.3.2.

But now the union of $V\left(C^{*}\right)$ and all $V\left(C^{*}\right)$-partial vertices is a module and G is prime, so every vertex in $V-V\left(C^{*}\right)$ must be $V\left(C^{*}\right)$ partial. In this case, however, the set of all $V\left(C^{*}\right)$-partial vertices is a module; thus at most one vertex v can be $V\left(C^{*}\right)$-partial, i.e. $H=\{v\}$ and therefore $N(v)=K$ as claimed.

In the rest of this section, let $V^{\prime}=S+K$ or $V^{\prime}=S+K+v$ as described in Lemma 7.4.3. Let $a b \| c d$ be an $A C_{4}$ in G^{\prime}. Obviously, every edge in a maximal homogeneous set that corresponds to a or b receives the same color as $a b$, i.e. the corresponding graph is threshold.

But every vertex in $S+K$ belongs to a P_{4}, hence every maximal homogeneous set that corresponds to a vertex in $S+K$ is a threshold graph. Thus, if a maximal homogeneous set is not threshold, then it must be $H(v)$.

Lemma 7.4.4 If $H(v)$ contains an $A C_{4}$, then every cobithreshold coloring of $G_{H(v)}$ together with the coloring arising from
(a) bicoloring edges with one endpoint in $H(K)$ and the other in $H(K+v)$ and
(b) coloring edges incident to $H(S)$ as the corresponding vertex in an S-coloring
can be extended to a cobithreshold coloring of G.

Proof. From the previous discussion follows that an $A C_{4} u v \| x y$ in $H(v)$ exists. Suppose $H(b), b \in K$, is no clique and let $a b c d$ a P_{4} in G^{\prime}. Then $a_{1} b_{1} \| b_{2} c_{1}$ for any choicc $a_{1} \in H(a), c_{1} \in H(c)$ and $b_{1}, b_{2} \in$ $H(b)$ such that b_{1} misses b_{2}. But this is a contradiction because both $\left\{a_{1}, b_{1}, u, v\right\}$ and $\left\{a_{1}, b_{1}, x, y\right\}$ are cliques. Similarly, suppose $H(a), a \in$ S, is not stable. Then any pair of adjacent vertices $a_{1}, a_{2} \in H_{a}$ implies $a_{1} a_{2} \| u v$ and $a_{1} a_{2} \| x y$, again a contradiction as $u v$ and $x y$ have different colors.

Hence $H(K)$ is a clique and $H(S)$ is a stable set, thus every $A C_{4}$ in G is either in $G_{H(v)}$ or in $G_{H(S+K)}$ and therefore our coloring is a proper 2 -coloring of G. Furthermore, it is easy to verify that every maximal clique of G is uniformly colored. Finally, an $A P_{5}$ has no vertex in $H(S)$ as the neighborhood of vertex in an $A P_{5}$ is not a clique. Similarly, an $A P_{5}$ has no vertex in $H(K)$, as no vertex in an $A P_{5}$ is dominating. Thus every $A P_{5}$ is in $G_{H(v)}$ but $G_{H(v)}$ has no $A P_{5}$ because of its cobithreshold coloring. The claim of our Lemma now follows from Lemma 7.1.3.

It remains to discuss Lines (18) to (22) of Algorithm 7.3. Therefore we may assume that every maximal homogeneous set of G induces a threshold graph.

Lemma 7.4.5 If $H(v)$ is a threshold graph and $H(b)$ is not a clique for a vertex $b \in K$, then a cobithreshold coloring of G can be found in linear time.

Proof. Since every vertex in $S \cup K$ belongs to a P_{4}, we may assume that a $P_{4} a b c d$ exists. For any pair of nonadjacent vertices $b_{1}, b_{2} \in H(b)$ and any choicc of $a_{1} \in H(a), c_{1} \in H(c), d_{1} \in H(d)$, the $P_{4} a_{1} b_{1} c_{1} d_{1}$ is a P_{4} with $b_{1} c_{1}$ in a C_{4}. By Lemma 7.3.4, this P_{4} can be used to compute a cobithreshold coloring of G in linear time. Furthermore, it
is straightforward to find such a P_{4} in linear time as $O\left(\left|V^{\prime}\right|^{2}\right)=O\left(\left|E^{\prime}\right|\right)$ by Lemma 7.3.2.

In the next lemma, we color cobithreshold graphs corresponding to Line (22) in Algorithm 7.3.

Lemma 7.4.6 If $H(v)$ is a threshold graph and $H(K)$ a clique, then a cobithreshold coloring of G can be found in linear time.

Proof. Let $S^{\prime}=\{s \in S \mid H(s)$ is not stable $\}$. Then edges in G incident to $H(s), s \in S$, receive the color of $s \in \tilde{S}$. Compute a 2 coloring of \tilde{S} and let $S_{\text {red }}^{\prime}$ and $S_{\text {black }}^{\prime}$ denote the vertices in S^{\prime} colored red and black in \tilde{S}, respectively. Then every edge between vertices in $\bigcup_{x \in \bar{N}\left(S_{r e d}^{\prime}\right)} H(x)$ must be colored black, and every edge between vertices in $\bigcup_{x \in \bar{N}\left(S_{\text {black }}^{\prime}\right)} H(x)$ must be colored red. This coloring of the edges in G can be found in linear time as the corresponding coloring of the vertices in G^{\prime} can be found in linear time because of $O\left(\left|V^{\prime}\right|^{2}=O\left(\left|E^{\prime}\right|\right)\right.$ by Lemma 7.3.2.

It is easy to verify that every $A C_{4}$ in G is colored. Moreover, as the coloring of \tilde{S} is unique and the remaining edges are colored by Rule 1, this coloring admits a cobithreshold cover that can be computed in linear time, c.f. Lemma 7.2.3.

As to the complexity of Algorithm 7.3, we rely on the modular decomposition of the graph. The modular decomposition of an arbitrary graph is computed in linear time, see [17,54, 21]. It also provides the socalled modular decomposition tree and, at each level, the corresponding prime graph.

Given the modular decomposition, Lines (1), (3), (6) and (8) can be executed in constant time by inspecting the corresponding node in the modular decomposition tree. The test whether G^{\prime} is a split graph can be carried out in $O\left(\left|V^{\prime}\right|+\left|E^{\prime}\right|\right)$, see [27]. With a split partition of V^{\prime}, the computation of S and K in Line (14) is in $O\left(\left|V^{\prime}\right|+\left|E^{\prime}\right|\right)$.

Finally, the computation of Line (15) and (19) can be done in constant time per node in the decomposition tree given we have precomputed the type of modules contained in the subtree of a node, i.e. whether the corresponding graph is threshold. This precompilation can be done in linear time bottom up from the leaves of the modular decomposition tree. Thus, the overall running time of Algorithm 7.3 is linear.

Chapter 8

Conclusions

In the previous chapters, we presented several new algorithms to recognize classes of perfectly orderable graphs. Most of these algorithms are based on results obtained from the generalization of Gallai's modular decomposition. In fact, we believe that our extension of Gallai's theory is the main contribution of this thesis to algorithmic graph theory.

Many problems, however, had to remain unsolved. In the following, we give a brief overview of further directions of research related to our work.

- In Chapter 4, we introduced k-modules as generalizations of modules and then focused on 2 -modules. As it turned out, special 2 -modules can be used to obtain new unique decompositions for arbitrary graphs. We wonder whether other k-modules can also be specialized such that they imply unique graph decompositions and, if so, whether those decompositions can be applied to recognize further classes of perfectly orderable graphs.
- A key theorem in Gallais work on comparability graphs states that different P_{3}-classes cover different vertex sets. Since the cover of a P_{3}-class is a module, comparability graphs can be oriented by substituting marker vertices for modules, either explicitly or implicitly.

In Chapter 5, we showed that a similar theorem holds for P_{4} components. Since the cover of a P_{4}-component is a strict split
module, P_{4}-comparability graphs can also be oriented by substituting marker vertices for strict split modules, again explicitly or implicitly.
It is an open problem, however, whether $2 K_{2}$-components and bipartite modules, perhaps in conjunction of P_{4}-components, can be applied to recognize other more general classes of perfectly orderable graphs. Theorem 6.3.7 indicates that this might well be.

- Yet another open problem related to our work is the question whether there is a polynomial algorithm for recognizing graphs with quasi threshold dimension two ${ }^{1}$, that is, graphs which are the intersection of two graphs without induced P_{4} and C_{4}. Since the complement of a graph with quasi threshold dimension two is the union of two graphs without induced P_{4} and $2 K_{2}$, it is necessary that its edges can be 2 -colored such that the two edges in a $2 K_{2}$ and the two wings of a P_{4} have different colors. So the question naturally arises whether this condition is also sufficient.
With the results presented in this thesis, it is not difficult to see that such a graph can be decomposed into graphs with unique 2colorings with respect to the edges in $2 K_{2} \mathrm{~S}$ and the wings in P_{4} s. By applying substitution, it can also be shown that the problem were solved if a polynomial algorithm for recognizing graphs with unique 2 -colorings exists. To date, however, such an algorithm is not known.

[^3]
Appendix A

List of Symbols

Set Theory

$\forall x$	For all x.
$\exists y$	There exists a y.
$x \in X$	x is a member of X.
$A \subseteq X$	A is a subset of X.
$B \subset X$	B is proper subset of X.
$\|X\|$	The cardinality of a set X.
$A \cap B$	The intersection of A and B.
$A \cup B$	The union of A and B.
$A+B$	The union of disjoint sets A and B.
$A-B$	The difference set A minus B.
\emptyset	The empty set.

Graph Theory

$G=(V, E) \quad$ The undirected graph G with vertex set V and edge set E.
$G=\left(V_{1}, V_{2}, E\right) \quad$ The split graph G with vertex set $V_{1}+V_{2}$ and edge set E where V_{1} is a clique and V_{2} a stable set.

$\vec{G}=(V, \vec{E})$	An orientation of the graph $G=(V, E)$.	
$v w$	The undirected edge between v and w.	
$v \rightarrow w$	The directed edge from v to w.	
$\bar{G}=(V, \bar{E})$	The complement of $G=(V, E)$.	
$G_{W}=(W, E(W))$	The subgraph of G induced by the vertex set W.	
$(V(F), F)$	The subgraph of G spanned by the edge set F.	
K_{n}	The complete graph with n vertices.	
$m K_{n}$	The disjoint union of m copies of the K_{n}.	
C_{k}	The chordless cycle on k vertices.	
P_{k}	The chordless path on k vertices.	
$A C_{2 k}$	The alternating cycle on $2 k$ vertices.	
$N(v)$	The neighborhood of a vertex v in G.	
$\bar{N}(v)$	The non-neighborhood of a vertex v in G.	
$N(W)$	The neighborhood of a vertex set W.	
$N[v]$	The closed neighborhood of a vertex v.	
$\omega(G)$	The clique number of G.	
$k(G)$	The clique cover number of G.	
$\alpha(G)$	The stability number of G.	
$\chi(G)$	The chromatic number of G.	
$t(G)$	The threshold dimension of G.	
$G_{1} \cup G_{2}$	The union of G_{1} and G_{2}.	
$G_{1}+G_{2}$	The disjoint union of G_{1} and G_{2}.	
$G_{1} \oplus G_{2}$	The join of G_{1} and G_{2}.	
$a b c d \sim a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	abcd and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ are strong-adjacent $P_{4} \mathrm{~s}$.	
$a b \\| c d$	The sequence c, a, b, d is an $A C_{4}$.	

List of Figures

1.1 The map of a park in Königsberg, 1736. 1
1.2 The graph of the Königsberg Bridge Problem. 2
2.1 Some special graphs with four vertices. 10
3.1 The graphs contained in a prime graph with $C_{4} \mathrm{~s}$. 37
4.1 The subgraphs induced by a P_{4} of types (3) to (5). 52
4.2 A pyramid $a b c d r p$ and a net $a b c d r q$. 53
4.3 The substitution of marker vertices for strict split-homogeneous sets of G and \bar{G}. 53
4.4 The substitution of a marker P_{4} for a split-homogeneous set. 54
5.1 All obstruction-free orientations of a P_{4} 58
5.2 All possibilities of a P_{4} together with a fifth vertex v. 61
5.3 A type1 and type2 edge as defined in the proof of Lemma 5.1.8. 655.4 Lemma 5.2.4 illustrated.70
5.5 A graph $G=(V, E)$ and its associated graph $\tilde{G}=(\tilde{V}, \tilde{E})$. 81
6.1 A rectangle graph, its rectangle model and the two inter- val models I_{1} and I_{2} 92
6.2 The forbidden subgraphs of a threshold graph. 96
6.3 The alternating cycles $A C_{4}$ and $A C_{6}$ (dashed lines indi- cate nonedges). 97
6.4 An alternating polygon of length 5 and 6 101
6.5 A configuration in the proof of Theorem 6.3.1 102
6.6 A double $A P_{6}$. 103
6.7 A configuration in the proof of Fact 6.3.5 105
6.8 The base configuration in the proof of Theorem 6.3.6 106
6.9 Cases in the proof of Theorem 6.3.6 107
6.10 Cases in the proof of Theorem 6.3.6 107
6.11 Case 4 in the proof of Theorem 6.3.6 108
6.12 Case (i) and (ii) of Theorem 6.3.7. 109
6.13 Case (ii) of Lemma 6.3.9. 112
7.1 All possibilities of a P_{4} together with a fifth vertex v 126
7.2 The bridge abcdef. 130

Bibliography

[1] S. De Agostino, R. Petreschi, and A. Sterbini. An $O\left(n^{3}\right)$ recognition algorithm for bithreshold graphs. Algorithmica, 17:416-425, 1997.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms. Addison-Wesley, Reading MA, 1974.
[3] S. R. Arikati and U. N. Peled. A polynomial algorithm for the parity path problem on perfectly orientable graphs. Discrete Applied Mathematics, 65:5-20, 1996.
[4] S. Arora and S. Safra. Interactive proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268-292, 1996.
[5] L. Babel and S. Olariu. On the structure of P_{4}-connected graphs and the separable-homogeneous decomposition. In $W G^{\prime} g^{\prime} 7$, volume 1335 of Lecture Notes in Computer Science, pages 25-36, 1997.
[6] C. Berge. Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind. Wissenschafliche Zeitschrift der Martin-Luther-Universität, Halle-Wittenberg, Mathematischnaturwissenschaftliche Reihe, 114:114-115, 1961.
[7] C. Berge. Sur une conjecture relative au problème des codes optimaux. In Communications de 1sième assemblée générale d'URSI, Tokio, 1962.
[8] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Mathematics, 90:85-92, 1991.
[9] J. A. Bondy and U. S. R. Murty. Graph theory with applications. North-Holland, Amsterdam, 1976.
[10] V. Chvátal. Perfectly ordered graphs. Annals of Discrete Mathematics, 21:63-65, 1984.
[11] V. Chvátal. A semi-strong perfect graph conjecture. Annals of Discrete Mathematics, 21:279-280, 1984.
[12] V. Chvátal. On the P_{4}-structure of perfect graphs III: Partner decompositions. Journal of Combinatorial Theory, Series B, 43:349353, 1987.
[13] V. Chvátal and P. L. Hammer. Set-packing problems and threshold graphs. In CORR, volume 73-21, University of Waterloo, Canada, 1973.
[14] V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming. Annals of Discrete Mathematics, 1:145-162, 1977.
[15] V. Chvátal, C. T. Hoàng, N. V. R. Mahadev, and D. DeWerra. Four classes of perfectly orderable graphs. Journal of Graph Theory, 11:481-495, 1987.
[16] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression. In 19th Annual ACM Symposium on the Theory of Computing, pages 1-6, 1987.
[17] A. Cournier and M. Habib. A new linear time algorithm for modular decomposition. LNCS, 787:68-84, 1994.
[18] M. B. Cozzens and R. Leibowitz. Threshold dimension of graphs. SIA M Journal on Algebraic and Discrete Methods, 5:579-595, 1984.
[19] M. B. Cozzens and R. Leibowitz. Multidimensional scaling and threshold graphs. Journal of Mathematical Psychology, 31:179191, 1987.
[20] M. B. Cozzens and F. S. Roberts. On dimensional properties of graphs. Graphs and Combinatorics, 5:29-46, 1989.
[21] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical modular decomposition. In Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 26-35, 1997.
[22] P. Duchet. Classical perfect graphs. Annals of Discrete Mathematics, 21:67-96, 1984.
[23] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Hungarica, 18:25-66, 1967.
[24] A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d'une relation d'ordre. C. R. Acad. Sci. Paris, 254:1370-1371, 1962.
[25] M. C. Golumbic. Threshold graphs and synchronizing parallel processes. Coll. Mathematica Societatis János Bolyai, Combinatorics, Keszthely, pages 331-352, 1976.
[26] M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24:105-107, 1978.
[27] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, London, 1980.
[28] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal of Algorithms, 19:449-473, 1995.
[29] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169-197, 1981.
[30] P. L. Hammer, T. Ibaraki, and U. N. Peled. Threshold numbers and threshold completions. Annals of Discrete Mathematics, 11:125145, 1981.
[31] P. L. Hammer and N. V. R. Mahadev. Bithreshold graphs. SlAM Journal on Algebraic and Discrete Methods, 6:497-506, 1985.
[32] P. L. Hammer, N. V. R. Mahadev, and U. N. Peled. Some properties of 2-threshold graphs. Networks, 19:17-23, 1989.
[33] P. L. Hammer, N. V. R. Mahadev, and U. N. Peled. Bipartite bithreshold graphs. Discrete Applied Mathematics, 119:79-96, 1993.
[34] P. H. Henderson and Y. Zalcstein. A graph-theoretic characterization of the $P V_{\text {chunk }}$ class of synchronizing primitives. SIAM Journal on Computing, 6:88-108, 1977.
[35] A. Hertz. Bipartable graphs. Journal of Combinatorial Theory, Series B, 45:1-12, 1988.
[36] C. T. Hoàng. Efficient algorithms for minimum weighted colouring of some classes of perfect graphs. Discrete Applied Mathematics, 55:133-143, 1994.
[37] C. T. Hoàng. On the complexity of recognizing a class of perfectly orderable graphs. Discrete Applied Mathematics, 66:218-226, 1996.
[38] C. T. Hoàng, S. Hougardy, and F. Maffray. On the P_{4}-structure of perfect graphs V: Overlap graphs. Journal of Combinatorial Theory, Series B, 67:212-237, 1996.
[39] C. T. Hoàng and B. A. Reed. P_{4}-comparability graphs. Discrete Mathematics, 74:173-200, 1989.
[40] C. T. Hoàng and B. A. Reed. Some classes of perfectly orderable graphs. Journal of Graph Theory, 13:445-463, 1989.
[41] T. Ibaraki and U. Peled. Sufficient conditions for graphs to have threshold number 2. Annals of Discrete Mathematics, 11:241-268, 1981.
[42] H. Imai and T. Asano. Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. Journal of Algorithms, 4:310-323, 1983.
[43] B. Jamison and S. Olariu. P-components and the homogeneous decomposition of graphs. SIAM Journal on Discrete Mathematics, 8:448-463, 1995.
[44] D. S. Johnson. A catalog of compexity classes. Handbook of Theoretical Computer Science, Elsevier, pages 67-161, 1990.
[45] D. Kelly. Comparability graphs. In I. Rival, editor, Graphs and Order, NATO ASI Series, pages 3-40, Banff, Canada, 1984.
[46] J. Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Applied Mathematics, 52:233-352, 1994.
[47] J. Kratochvíl and J. Nešetřil. Independent set and clique problems in intersection defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae, 31:85-93, 1990.
[48] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2:253-267, 1972.
[49] L. Lovász. Selected topics in graph theory, Volume 2. Academic Press, London, 1983.
[50] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In Proceedings of the 25th ACM Symposium on the Theory of Computing, pages 286-293, San Diego, California, 1993.
[51] T. H. Ma. On the threshold dimension 2 graphs. Technical report, Institute of Information Science, Academia Sinica, Nankang, Taipei, Republic of China, 1993.
[52] N. V. R. Mahadev and U. N. Peled. Strict 2-threshold graphs. Discrete Applied Mathematics, 21:113-13, 1988.
[53] N. V. R. Mahadev and U. N. Peled. Threshold graphs and related topics, volume 56. Annals of Discrete Mathematics, 1995.
[54] R. M. McConnell and J. P. Spinrad. Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 536-545, 1994.
[55] R. M. McConnell and J. P. Spinrad. Linear-time transitive orientation. In Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 19-25, 1997.
[56] M. Middendorf and F. Pfeiffer. On the complexity of recognizing perfectly orderable graphs. Discrete Mathematics, 80:327-333, 1990.
[57] R. H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In I. Rival, editor, Graphs and Order, NATO ASI Series, pages 41-101, Banff, Canada, 1984.
[58] R. H. Möhring. Algorithmics aspects of substitution decomposition in optimization over relations, set systems and boolean functions. Annals of Operations Research, 4:195-224, 1985.
[59] R. H. Möhring and F. J. Rademacher. Substitution decomposition and connections with combinatorial optimization. Annals of Discrete Mathematics, 19:257-356, 1984.
[60] S. Olariu. A decomposition for strongly perfect graphs. Journal of Graph Theory, 13:301-311, 1989.
[61] E. T. Ordman. Threshold coverings and resource allocation. In Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, pages 99-113, 1985.
[62] E. T. Ordman. Minimal threshold separators and memory requirements for synchronization. SIAM Journal on Computing, 18:152165, 1989.
[63] C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
[64] R. Petreschi and A. Sterbini. Strict 2-threshold exclusion graphs. In Theoretical Computer Science - Proceedings of the Fourth Italian Conference, pages 293-304, L'Aquila, 1992.
[65] R. Petreschi and A. Sterbini. Recognizing strict 2-threshold graphs in $O(m)$-time. Information Processing Letters, 54:193-198, 1995.
[66] T. Raschle and K. Simon. Recognition of graphs with threshold dimension two. In 27th Annual ACM Symposium on the Theory of Computing, pages 650-661, Las Vegas NE, 1995.
[67] T. Raschle and K. Simon. On the P_{4}-components of graphs. Discrete Applied Mathematics, to appear.
[68] T. Raschle and A. Sterbini. Recognizing cobithreshold graphs in linear time. In 16 th International Symposium of Mathematical Programming, Lausanne, 1997.
[69] B. Reed. A semi-strong perfect graph theorem. Journal of Combinatorial Theory, Serie B, 43:223-240, 1987.
[70] R. L. Rivest. Cryptography. Handbook of Theoretical Computer Science, Elsevier, pages 717-755, 1990.
[71] D. J. Rose, R. E. Tarjan, and G. S. Leuker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5:266-283, 1976.
[72] A. Schäffer. Recognizing brittle graphs: remarks on a paper of Hoàng and Khouzam. Discrete Applied Mathematics, 31:29-35, 1991.
[73] D. Seinsche. On a property of the class of n-colorable graphs. Journal of Combinatorial Theory, Series B, 16:191-193, 1974.
[74] A. Sterbini. 2-thresholdness and its implications: from the synchronization with $P V_{\text {chunk }}$ to the Ibaraki-Peled conjecture. PhD thesis, University "La Sapienza", Rome, 1994.
[75] A. Sterbini and T. Raschle. An $O\left(n^{3}\right)$ recognition algorithm for threshold dimension 2 graphs. Information Processing Letters, 67(5):255-259, 1998.
[76] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on Algebraic and Discrete Methods, 3:351358, 1982.

Index

2-threshold graph, 92
$2 K_{2}$-component, 46
$A C_{4}, 42$
$A C_{4}$-class, 109
$P_{3}, 10$
adjacency, 30
class, 30
P_{4}
weak adjacent, 60
P_{4}-classes, 60
P_{4}-comparability graph, 59
P_{4} component, 60
P_{4}-transitive, 59
$P_{k}, 10$
acyclic, 11
adjacency, 8
alternating cycle, 97
alternating polygon, 100
BFS-ordering, 16
bicolored edge, 119
bipartite graph, 9
bipartite module, 43
bithreshold graph, 117
boxicity, 91
breath first search, 15
characteristic
vector, 94
characteristic graph, 30
clique, 9
clique number, 9
cobipartite homogeneous set, 55
cobipartite module, 55
cobithreshold cover, 117
cobithreshold graph, 117
coconnected, 10
cograph, 26
coloring, 9
comparability graph, 30
complement, 8
complementary $A P_{6}, 101$
complete graph, 9
completion, 97
conflict graph, 99
connected component, 10
cotree, 27
cover, 8
cycle, 9,11
chordless, 10
simple, 10
cyclic, 11
degree, 8
endpoint, 10
graph, 8
connected, 10
directed, 10
disjoint union, 9
join, 9
union, 9
graph sandwich problem, 97
greedy coloring algorithm, 12
homogeneous set, 28
incidence, 8
induced subgraph, 8
LexBFS-ordering, 18
maximal homogeneous set, 28
midpoint, of a $P_{k}, 10$
minimal coloring, 9
minimal imperfect, 11
modular decomposition, 28, 29
module, 28
neighborhood, 8
closed, 8
net, 52
non-neighborhood, 8
null vertex, 28
obstruction, 13
odd hole, antihole, 10
orientation, 11
partial $P_{k}, 31$
partial vertex, 28
path, 9
chordless, 9
simple, 9
perfect
elimination scheme, 14
graph, 11
orientation, 13
perfectly orderable graphs, 12
prime graph, 29
pyramid, 52
rectangle graph, 91
rib, 10
simplicial vertex, 14
spanned subgraph, 8
spanning tree, 10
split
graph, 9
module, 47
partition, 9
stability number, 9
stable set, 9
star-cutset, 69
subgraph, 8
threshold
cover, 95
dimension, 92
graph, 94
number, 94
topological
ordering, 11
sorting, 11
transitive orientation, 30
tree, 10
triangulated graph, 14
universal vertex, 28
vertex
dominating, 8
isolated, 8
wing, 10
wing-comparability, 58
wing-transitive, 58

Curriculum Vitae

Name:	Thomas RASCHLE
Date of Birth:	$\quad 1^{\text {st }}$ of May, 1960
Place of Birth:	\quad Bütschwil
Nationality:	Swiss
$1967-1973$	Primarschule Bütschwil
$1973-1976$	Sekundarschule Bütschwil
$1976-1980$	Heberlein Maschinenfabrik AG (Mechanikerlehre)
$1977-1980$	Berufsmittelschule St.Gallen
$1980-1983$	Zweitweg-Matura St.Gallen
$1981-1982$	Maschinenfabrik Egli (Maschinenbau)
$1982-1983$	Fremasoft (Programmierung)
$1983-1984$	ETH Zürich (1.Vordiplom Physik)
$1984-1987$	Universität Zürich (1.Vordiplom Mathematik)
$1985-1989$	Ericsson Information Systems AG bzw.
	Nokia Data AG (Programmierung)
$1988-1993$	ETH Zürich (Dipl. Informatik-Ing. ETH)
1991	Swissair AG (Praktikum)
1992	Alcatel AG (Praktikum)
$1993-1998$	ETH Zürich (Assistenz)
$1998-1999$	Roland Messerli AG (Programmierung)

[^0]: ${ }^{1}$ they are the connected components of the 3 -overlap graph defined in [38]

[^1]: ${ }^{1}$ An elegant proof can be found in [49]

[^2]: ${ }^{2}$ A detailed implementation of a linear algorithm for computing $\chi(G)$ can be found in [15]

[^3]: ${ }^{1}$ Quasi threshold graphs are also called trivially perfect in [26] or arborescencecomparability graphs in [22].

