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Abstract

A great many problems are naturally formulated in terms of objects and

connections between them and are therefore best modeled as graphs. To

solve these problems on a computer, efficient algorithms are required.

Unfortunately, there are many graph problems for which no efficient al¬

gorithm has been found. Classical examples are the determination of the

clique number and the calculation of the chromatic number. These ex¬

amples are NP-complete, and it is widely believed that no NP-complete
problem can be solved efficiently.

On the other hand, many graphs arising from real world problems
have a special structure, which often makes solving the problem easier.

For instance, the clique number and the chromatic number can be

found in linear time if the graph is perfectly orderable and a perfect
order is given. Recognizing perfectly orderable graphs, however, is NP-

complete.

In this thesis, new algorithms for recognizing subclasses of perfectly
orderable graphs are developed. To begin with, a recognition algorithm
for triangulated graphs is presented which is linear in the size of the com¬

plement. Next, classical results on comparability graphs are reviewed.

These results are then generalized in two ways.

First, modules are generalized such that divide and conquer me¬

thods are still applicable to solve graph problems. In particular, two

types of generalized modules are further investigated. These investi¬

gations lead to a new unique graph decomposition, which refines the

modular decomposition. Second, Gallai's results on the Pg-structure
are translated into analogous results on the P4-structure. The arising
theorems are then used to design efficient algorithms for recognizing
and orienting P4-comparability graphs and similar classes of perfectly
orderable graphs.

Another part of this thesis deals with the recognition of graphs with

threshold dimension two. In 1982, IBARAKI AND PELED conjectured
that a graph has threshold dimension two if and only if its conflict

graph is bipartite. A proof of this conjecture is given based on a theo¬

rem on generalized modules. Furthermore, a hnear time algorithm for

recognizing cobithreshold graphs is presented.
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Zusammenfassung

Viele Probleme sind durch Beziehungen zwischen Objekten charakte¬

risiert und lassen sich deshalb sehr gut als Graphen modellieren. Zur

Lösung dieser Probleme auf dem Computer werden effiziente Algorith¬
men benötigt. Leider wurde für viele Graphenprobleme bis heute kein

effizienter Algorithmus gefunden. Klassische Beispiele dafür sind die

Bestimmung der Cliquenzahl und die Berechnung der chromatischen

Zahl. Diese Beispiele sind NP-vollständig, und es wird angenommen,

dass kein NP-vollständiges Problem effizient gelöst werden kann.

Viele sich aus praktischen Anwendungen ergebende Graphen haben

allerdings eine spezielle Struktur, die das Lösen des Problems oft ein¬

facher macht. Beispielsweise kann die CKquenzahl und die Färbungszahl
in linearer Zeit gefunden werden, falls der gegebene Graph perfekt ori¬

entierbar ist und eine perfekte Ordnung gefunden ist. Die Erkennung
perfekt orientierbarer Graphen ist aber wiederum NP-vollständig.

In dieser Arbeit werden neue Algorithmen zur Erkennung von Un¬

terklassen perfekt orientierbarer Graphen entwickelt. Zunächst wird ein

Erkennungsalgorithmus für Dreiecksgraphen vorgestellt, dessen Laufzeit

linear in der Grösse des Komplements ist. Danach werden klassische

Resultate über transitiv orientierbare Graphen besprochen. Diese Re¬

sultate werden dann auf zwei Arten verallgemeinert.

Erstens werden Module so verallgemeinert, dass Teile-und-Herrsche-

Methoden zur Lösung von Graphenproblemen immer noch anwendbar

sind. Zwei Typen von verallgemeinerten Modulen werden genauer un¬

tersucht. Diese Untersuchungen führen auf eine neue eindeutige Gra¬

phenzerlegung, welche eine Verfeinerung der Modulzerlegung darstellt.

Zweitens werden GALLAl's Resultate über die P3-Struktur in analoge
Resultate bezüglich der P^-Struktur übersetzt. Die sich daraus ergeben¬
den Sätze werden unter anderem zur Konstruktion effizienter Algo¬
rithmen zur Erkennung und Orientierung Pt-transitiv orientierbarer

Graphen benutzt.

Ein weiterer Teil dieser Arbeit behandelt die Erkennung von Graphen
mit Threshold Dimension zwei. Bereits 1982 äusserten IBARAKI UND

PELED die Vermutung, dass ein Graph genau dann Threshold Dimen¬

sion zwei hat, wenn sein Konfliktgraph zweifärbbar ist. Diese Vermu¬

tung wird basierend auf einem Satz über verallgemeinerte Module be¬

wiesen. Auch wird ein linearer Algorithmus zur Erkennung von Co-

bithresholdgraphen vorgestellt.
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Chapter 1

Introduction

Graph theory was founded by EULER in 1736 when he solved the Königs¬

berger Bridge Problem, a famous problem of his days. In Köngisberg,
there were two islands finked to each other and to the banks of the

Pregel River by seven bridges as depicted in Figure 1.1. The problem
was to start at a given land area, walk over each bridge precisely once

and return to the starting point.
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Figure 1.1: The map of a park in Königsberg, 1736.

Euler modeled the situation as a graph by replacing each land area

with a vertex and each bridge with an edge that joined the corresponding
vertices, see Figure 1.2. Rather than solving the problem for this specific

graph, he developed a criterion for any given graph to be so traversable;

namely, that the graph is connected and every vertex is incident to an

even number of edges.

Since then, graphs have been studied intensively and graph theory
has become a major branch of combinatorial mathematics. This is due

1
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a

c

Figure 1.2: The graph of the Königsberg Bridge Problem.

to the fact that a great many problems are naturally formulated in

terms of objects and connections between them and are therefore best

modeled as graphs.

With the availability of computers, the interest in efficient algo¬
rithms for solving graph problems grew rapidly. The most common

measure of the efficiency of an algorithm is the worst case complexity.
It is a function in the size of the input and gives an upper bound for

the number of operations that the algorithm performs on any input of

the corresponding size.

The notion of complexity also led to a classification of problems into

complexity classes [44, 63]. The most important complexity classes are

P and NP, the class of problems for which polynomial algorithms exist

on a deterministic and nondeterministic Turing machine, respectively.
To this day, no proof of P ^ NP has been found, although it is widely
believed that P ^ NP. Indeed, the security of most currently used

cryptosystems is based on this assumption [70].

The hardest problems in NP are called NP-complete. They are de¬

fined to be those problems for which the existence of a polynomial algo¬
rithm would imply a polynomial algorithm for every other problem in

NP. Unfortunately, many important graph problems are NP-complete.
Classical examples are the calculation of the clique number or the chro¬

matic number. Recent results have shown that even the approximation
of these numbers up to certain factors is NP-complete [50, 4].

On the other hand, many graphs that arise from real world problems
have a special structure. This special structure makes it often possible
to solve problems in polynomial time that are NP-complete in general.
Famous examples of such graphs are planar graphs and perfect graphs:
Planar graphs can be drawn in the plane without crossings, and per¬

fect graphs have only subgraphs whose cfique number is equal to the

chromatic number.
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Whereas good recognition and optimization algorithms are known

for planar graphs, the situation is less fortunate in case of perfect graphs.
It is not even known whether the recognition of perfect graphs is in NP

or not. Moreover, most NP-complete problems remain NP-complete
when restricted to perfect graphs. A famous exception is the com¬

putation of the clique number and the chromatic number. In 1981,
GrÖTSCHEL ET AL. [29] found a polynomial algorithm for computing
a maximum clique and a minimum coloring for perfect graphs. Un¬

fortunately their algorithm, the only known to date, makes use of the

ellipsoid method and is therefore of mainly theoretical interest.

In search of certificates for perfection, BERGE [6, 7] made two conjec¬

tures concerning perfect graphs. The first one, proved by LOVÂSZ [48]
in 1972 and since then called the Perfect Graph Theorem, states that

a graph is perfect if and only if its complement is perfect. A slightly

stronger version of this theorem, the Semi-Strong Perfect Graph Theo¬

rem, was proved by REED [69] in 1987 and asserts that the perfection
of a graph solely depends on a derived hypergraph whose edges are the

four element sets that induce a P4 (chordless path on four vertices).

Berge's second conjecture states that a graph is perfect if and only
if it does not contain an odd hole or an odd antihole, that is, an odd

chordless cycle of length greater than three or its complement. This

conjecture, famous under the name Strong Perfect Graph Conjecture,
is one of the most outstanding open problems in graph theory. The

validity of the Strong Perfect Graph Conjecture, however, would not

imply an easy method to recognize perfect graphs: BlENSTOCK [8] has

shown that it is NP-complete to test whether a graph has an odd hole,
so it might be difficult to test whether a graph or its complement has

an odd hole.

One possible way to overcome the difficulty in recognizing and op¬

timizing perfect graphs is to consider large classes of perfect graphs.
The Strong Perfect Graph Conjecture suggests that promising candi¬

dates are graphs defined by properties not satisfied by graphs with odd

holes or odd antiholes. Moreover, in view of Reed's Semi-Strong Per¬

fect Graph Theorem, natural classes of perfect graphs can be defined

by properties associated with the P^-structure. An example of such a

class of graphs are perfectly orderable graphs.

Perfectly orderable graphs were introduced by ChvÂTAL [10] in 1984

as those graphs which admit a perfect orientation, i.e., an acyclic ori¬

entation such that no P4 abed is oriented a —y b and c <— d. He showed
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that a maximum clique and a minimum coloring can be found in linear

time if a perfect orientation is given. This nice optimization behavior,

however, is in stark contrast to the difficulties with the recognition. In

1990, MlDDENDORF AND PFEIFFER [56] proved that it is NP-complete
to test whether a graph has a perfect orientation.

A class of perfectly orderable graphs that can be recognized in poly¬
nomial time are comparability graphs. They are defined as those graphs
which admit an acyclic transitive orientation, i.e., an acyclic orientation

such that no P3 abc is oriented a—yb and b—yc. Consequently, the ori¬

entation of one edge in a Pg implies the orientation of the other edge
in the same P3. The equivalence classes of the transitive closure of this

P3-relation, called P3-classes for short, were first studied by GHOUILA-

HOURI [24]. He showed that a graph is a comparability graph if and

only if its P3-classes are transitively orientable. His proof relied on the

fact that the set of vertices incident to edges in the same P3-class is

a module, that is, a vertex set such that vertices not in the set are

adjacent to every or no vertex in the set.

A penetrating study of modules and the P3-structure was conducted

by Gallai [23]. He showed that maximal nontrivial modules are disjoint
whenever the given graph and its complement are connected. Based on

this result, he proposed a unique graph decomposition, nowadays known

as modular decomposition. Furthermore, he observed that if a graph
and its complement are connected, then all edges not contained in max¬

imal nontrivial modules belong to the same P3-class. This observation

leads to simple algorithms for computing the modular decomposition
and for recognizing and orienting comparability graphs [57].

Besides its connection with comparability graphs, the modular de¬

composition is interesting because it allows the application of divide

and conquer methods to solve graph problems [59, 58]. In Chapter 4,
we generalize modules in a way that still admits the application of di¬

vide and conquer strategies. We then focus on two types of generalized
modules, which we call bipartite modules and split modules. Those gen¬

eralized modules are used to obtain a new unique decomposition which

generalizes the decompositions found by BABEL AND OLARIU [5] and

by Raschle and Simon [67].

In Chapter 5, our results on split modules are applied to P4-compara-
bility graphs. P4-comparability graphs were introduced by HOANG AND

REED [39] as those graphs which admit an acyclic orientation such that

every P4 is transitively oriented. From this definition, it follows that P4-
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comparability graphs are perfectly orderable and that the orientation

of one edge in a P4 implies the orientation of the other edges in the

same P4. Thus the crucial structure here are the P^-classes, that is,
the equivalence classes of the transitive closure of the relation between

edges in which two edges are in relation if they belong to the same P4.

Together with P^-classes, we study the relation between P4S in which

two P4S are in relation if they have three common vertices. In this the¬

sis, the equivalence classes of the transitive closure of the above relation

between P4S are called strong P^-components1. Several GALLAI-type
results on P^-components are obtained. In particular, we generalize
ChvÀTAL's theorem [12] on 3-chains by showing that a graph with¬

out nontrivial modules and split modules has at most one strong P4-

component. Our findings are then used to compute the decomposition
of a graph into maximal nontrivial split modules and to design an im¬

proved algorithm for orienting P4-comparability graphs. As a further

application, we show that a perfect orientation can be found by substi¬

tuting two (marker) vertices for split modules. This substitution yields
a general recognition algorithm for many classes of perfectly orderable

graphs, including Hertz' bipartable graphs [35].
An important subclass of bipartable graphs are graphs with thresh¬

old dimension two. The threshold dimension of a graph introduced by
ChvÀTAL AND HAMMER [13] is the smallest integer k such that the

graph can be written as the (edge-)intersection of k threshold graphs,
and a threshold graph is a graph without induced P4, C4 and 2AV
Threshold graphs and the threshold dimension have applications in 0-

1 programming, in psychology and in the synchronization of parallel
processes [53].

In 1983, YANNAKAKIS [76] showed that it is NP-complete to test

whether an arbitrary graph has threshold dimension k for all k > 3. The

case k = 2 was open for over a decade. Indeed, it was widely believed

that this problem is also NP-complete. Recently, however, RASCHLE

AND SIMON [66] found an 0(\V|4) time algorithm for recognizing graphs
with threshold dimension two. Their algorithm represents a constructive

proof of a conjecture made by IBARAKI AND PELED [41] which states

that recognizing graphs with threshold dimension two is equivalent to

testing whether an associated conflict graph is bipartite. In Chapter 6,
we present an improved version of RASCHLE AND SlMON's algorithm
based on a new structure theorem concerning special cobipartite and

they are the connected components of the 3-overlap graph defined in [38]
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split modules.

A large subclass of the complement of graphs with threshold dimen¬

sion two are cobithreshold graphs. They are the union of two thresh¬

old graphs such that every clique in the union is a clique in one of

the two threshold graphs. Cobithreshold graphs were first investigated

by MAHADEV AND HAMMER [31] in connection with biregular boolean

functions. MAHADEV AND HAMMER also found an 0(\E\2) recognition

algorithm for this class of graphs. In Chapter 7, we analyze the structure

of cobithreshold graphs and give a linear time recognition algorithm.



Chapter 2

Preliminaries

This chapter provides the background for the subsequent chapters. In

the first section, we introduce our graph theoretic terminology. Regard¬

ing undirected graphs, it is compatible with BONDY AND MURTY [9],
GOLUMBIC [27] and MAHADEV AND PELED [53]. For directed graphs,

however, we use a more intuitive notation. For instance, we write
—* —*

G = (V, E) for a directed graph and v —y w or w <— v for an edge
from v to w.

In the second section, we present classical results on perfect graphs
and discuss open problems in connection with the recognition and op¬

timization of this class of graphs. We then focus on perfectly orderable

graphs and review ChvÀTAL's result on their nice optimization behav¬

ior. Since the recognition of perfectly orderable graphs is NP-complete,
one is naturally interested in finding classes of perfectly orderable graphs
that can be recognized in polynomial time. As a first example of such

a class of graphs, we discuss triangulated graphs.

Finally, the last section provides the algorithmical background which

is needed to obtain the complexity results in the later chapters. Classi¬

cal graph algorithms like BFS and LexBFS are modified such that they

can be carried out on the complement in time proportional to the size

of the graph. LexBFS on the complement is used to test whether the

complement of a graph is triangulated. If the complement is not tri¬

angulated, we show how to find the complement of a chordless cycle of

length greater than three in time proportional to the size of the graph.

7
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2.1 Basic terminology

An undirected graph G = (V, E) consists of a set of vertices V and a

collection of edges E, and each edge is an unordered pair of vertices.

We represent a graph G = (V, E) by drawing the vertices as points and

by drawing a fine between the points v and w if and only if the edge
vw exists, see for instance Figure 2.1. Unless stated otherwise, we do

not allow loops and parallel edges, thus no edge has the form vv and no

two edges in E denote the same unordered pair.

If G = (V, E) is a graph and vw an edge, then v is incident to vw and

adjacent to w. In this case, we also say that v sees w. Similarly, we say

that v misses w if v and w are two nonadjacent vertices. A dominating
vertex is a vertex that sees every other vertex, and an isolated vertex

misses all other vertices. A vertex is said to be covered by an edge set

F Ç E if it is incident to at least one edge in P, and the set V(F) of

all vertices covered by F is called the cover of F.

The neighborhood N(v) of a vertex v is defined to be the set of

vertices adjacent to v, and deg(u) = |iV(i;)| is the degree of v. The

closed neighborhood N[v] = N(v) U {v} is the neighborhood including
the vertex v, and the non-neighborhood N(v) = V — N[v] is the set of

vertices missed by v. It is also common to use the term "neighborhood"
for more than one vertex: The neighborhood N(A) of a subset A of V is

the set of vertices not in A but adjacent to at least one vertex in A, i.e.

N(A) = [J N(a) - A.

The complement of a graph G = (V, E) is the graph G = (V, E) that

arises from G by replacing edges with nonedges and vice versa. Conse¬

quently, the neighborhood of a vertex v becomes the non-neighborhood
of v in the complement and vice versa.

A graph H = (W,F) is a subgraph of G = (V, E) if W C V and

PCP. Given a subset W of V and a subset P of E, special subgraphs
are

• the subgraph spanned by F, that is, the graph H = (V(F),F)
where V(F) denotes the set of vertices incident to some edges in

P, and

• the subgraph induced by W, that is, the graph Gw = (W:E(W))
where E(W) denotes the set of edges with both endpoints in W.
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If a graph H is an induced subgraph of G, it is customary to say that

H is contained in G. Furthermore, in this thesis, the term subgraph is

always used for induced subgraphs.

The union of two graphs G\ — (Vi, Pi) and G2 = (V2,E2) is the

graph Gi U G2 — {Vy U V2,Ey U E2). If Vi and V2 are disjoint, we call

this the disjoint union G\ + G2 = (Vi + y2,Pi + E2). The graph that

results from inserting every edge between Vi and V2 into the disjoint
union is called the join of G\ and G2, denoted by G\ © G2.

A complete graph is a graph in which every vertex is adjacent to

every other vertex, and a subset C of V that induces a complete graph
is called a clique. A cfique is maximal if it is not a proper subset of

another clique, and a clique is maximum if no other cfique contains

more vertices. The size of a maximum clique of a graph G is called the

clique number u,'(G).

If the subgraph induced by a subset S of V has no edges, we say

that S is stable. A stable set that cannot be enlarged is maximal and a

largest stable set is maximum. The size of a maximum stable set of G

is called the stability number a(G).

A k-coloring of G = (V,E) is an assignment of k colors to the vertices

in V such that two adjacent vertices receive different colors. In other

words, a k-coloring is a partition of the vertices V = Vy + V2 + • • • + Vjt

such that Vi is a stable set for i = 1,... ,k. The smallest number k

for which a ^-coloring exists is the chromatic number of G, denoted by

X{G), and a ^-coloring is minimal if k = x(G)-

A bipartite graph G = (V, E) is a graph that admits a 2-coloring,
that is, a bipartition V = Vy + V2 exists such that every edge has one

endpoint in Vi and the other in V2. Similarly, a graph G = (V, E) is

split if a split partition Vy + V2 exists, that is, a bipartition V = V\ + V2

such that Vi is a clique and V2 is a stable set (in this order). In case of

a split graph, we often write G — (Vi, V2, E) to indicate that Vi + V2 is

a split partition.

A path of length k is a sequence of vertices vq, vy,. ..
, v^-y such that

two consecutive vertices v% and v^y are joined by an edge. A path
is simple if every vertex in the sequence appears precisely once, and a

path is chordless if it is simple and there are no other edges between the

vertices in the path except for those between two consecutive vertices.

Similarly, a cycle of length A; is a sequence of vertices vq, vy,... , v^-y

such that vx and v1+y are adjacent (indices modulo k). A cycle is simple
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Figure 2.1: Some special graphs with four vertices.

if k > 3 and every vertex in the sequence appears precisely once, and

a cycle is chordless if it is a simple cycle and there are no other edges
between vertices in the cycle except for those between v% and Vi+i. A

chordless cycle of length 2k +1 and k > 1 is also called an odd hole and

its complement an odd antihole.

Some special graphs occur frequently in this work, so it is convenient

to have names for some of them.

Pjc'. The chordless path graph on k vertices.

Ck- The chordless cycle graph on k vertices.

Kn: The complete graph on k vertices.

mKn: The disjoint union of m copies of the Kn.

Furthermore, we often write uovi^2 Vk-i for a P& that consists of

a chordless path vo,vy,... ,Vk-y. The vertices Vq and Vk-y are said to

be the endpoints and the vertices Vy,. . .

, «fc_2 the midpoints of the P&.

If voUi^2^3 is a P4, then the edges Vo^i and v2vz are called the wings
and the edge vyv2 the rib of the P4.

A graph is connected if a path exists between every pair of vertices,
otherwise it is disconnected. The connected components of a graph are its

maximal connected subgraphs. We usually do not distinguish between

the vertices in a connected component and the connected component
itself. If the complement G of a graph G is connected, we say that G is

coconnected.

A connected graph without simple cycles is a tree. Given a graph
G = (V, P), a tree T = (V, F) with P C E is called a spanning tree of

G = (V, E). A spanning forest of graph G = (V, E) is the disjoint union

of spanning trees of the connected components of G (one per connected

component).
—* —»

A directed graph G = {V, P) consists of a set of vertices V and a

—*

set of directed edges E where a directed edge is an ordered pair of
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vertices. We write v—y-w for a directed edge with starting point v and

endpoint w and, in the drawing of a directed graph, the edge »4-w is

represented by an arrow from v to w. Furthermore, we sometimes omit

repeating a vertex when we want to express that certain directed edges
exist. For instance, instead of vq —y ui,ui ^r-v2, v2 —yv^, we simply write

Vq —> Vy f- V2 —y 1>3

A cycle in a directed graph is a sequence of vertices vq, vy,... ,Vk-y

such that vq—yvy—y- -—yvk-i^-vo- A directed graph G is called cyclic
if it contains such a cycle, otherwise it is called acyclic.

—* —*

A topological ordering of a directed graph G = (V, E) is a linear order

vy < v2 < • • < vn of the vertices such that v% -ïVj in E implies i < j.
It is easy to see that a topological ordering of a directed graph exists if

and only if the graph is acyclic. Moreover, a topological ordering can

be computed in linear time by topological sorting, see [27].

The directed graph G = (V, E) that arises from an undirected graph
G = (V, E) by assigning a direction to each edge in E is an orientation

of G = (V, E). Thus, an acyclic orientation is a directed acyclic graph;
hence every acyclic orientation implies a topological ordering.

2.2 Perfect graphs

A graph G is perfect if uj(H) = x(H) holds for every induced subgraph
H of G, and a graph G is minimal imperfect if to(G) < x{G) an(l every

proper induced subgraph is perfect. BERGE observed that odd holes

and odd antiholes are minimal imperfect graphs. This observation led

him to make the following conjecture.

Conjecture 2.2.1 (Strong Perfect Graph Conjecture) A graph is

perfect if it does not contain an odd hole or an odd antihole.

Although the Strong Perfect Graph Conjecture is still open, partial
results towards it have been obtained by LOVÀSZ and REED. In 1972,
LOVÄSZ proved1

Theorem 2.2.2 (Perfect Graph Theorem) The complement of a per¬

fect graph is perfect.

1 An elegant proof can be found in [49]
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A slightly stronger theorem was proved by REED in 1987. It asserts

that the perfectness of a graph solely depends on the structure of the

P4S. In its original version [69], this theorem was expressed in terms of

P,4-isomorphism: Two graphs G and H are P^-isomorphic if they have

the same vertex set and if every set of four vertices that induces a P4

in G induces a P4 in H.

Theorem 2.2.3 (Semi-Strong Perfect Graph Theorem) If a graph
G is P/y-isomorphic to a perfect graph, then G is perfect.

Since the complement of a P4 is again a P4, the Semi-Strong Perfect

Graph Theorem implies the Perfect Graph Theorem. Similarly, the

validity of the Strong Perfect Graph Conjecture implies the Semi-Strong
Perfect Graph Theorem [11].

The above theorems, however, have not led to a polynomial time

algorithm to recognize perfect graphs. To date, it is not even known

whether the recognition of perfect graphs is in NP or not. Moreover, it

seems unlikely that the validity of the Strong Perfect Graph Conjecture
would make the problem tractable: BlENSTOCK [8] has shown that it is

NP-complete to test whether an arbitrary graph has an odd hole.

The situation does not look much better if we consider optimization

problems on perfect graphs. In fact, most optimization problems re¬

main NP-complete when restricted to perfect graphs. An exception is

GrÖTSCHEL, LOVÂSZ AND SchRIJVER's polynomial algorithm for com¬

puting a maximum cfique and a minimum coloring in a perfect graph.
Their algorithm, however, is based on the Ellipsoid method and there¬

fore of mainly theoretical interest. For this reason, subclasses of perfect

graphs with fast combinatorial optimization algorithms have been inves¬

tigated. A famous example of such a graph class are perfectly orderable

graphs.

2.2.1 Perfectly orderable graphs

To define perfectly orderable graphs, we first have to discuss the greedy

coloring algorithm. This algorithm scans the vertices of a graph in

a given linear order vy < v2 < < vn and assigns to V{ the least

color different from that of its already colored neighbors. A graph is

perfectly orderable if it admits a hnear order of its vertices such that, for

every induced subgraph, the coloring computed by the greedy coloring

algorithm using this order is minimal.
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A linear order vy < v2 < • • < vn is said to be perfect if no P4 abed

satisfies a < b and c > d. Similarly, an acyclic orientation is perfect if

it contains no obstruction, that is, no P4 abed which is oriented a —y b

and c^d. Therefore every topological ordering of a perfect orientation

is a perfect order, and the orientation that arises from a perfect order

by directing Vi^-Vj if V{ < v3 is perfect.

Since the greedy coloring algorithm computes a 3-coloring for a P4

abed if a < b and c > d, every perfectly orderable graph admits a perfect
order. ChvÀTAL showed that the converse holds as well.

Lemma 2.2.4 Given a perfect order, the greedy coloring algorithm us¬

ing the order computes a minimal coloring.

Proof. Let vy < v2 < < vn denote the perfect order and suppose

that G is ^-colored by the greedy algorithm. To prove our lemma, it

suffices to show that a clique of size k exists. This is done by induction:

We claim that every clique C of size j < k with vertices of colors

k — j 4- 1, k — j + 2,.. . ,
k can be enlarged with a vertex of color k — j.

Let cy < c2 < . . . < Cj denote the vertices in such a clique C, and let

W be the set of vertices w with color k — j such that w sees a maximal

number of consecutive vertices ct, Cj+i,... Cj and w < C{. Choose w G W

minimal with respect to the perfect order. If w sees every vertex in C,
then we are done. So let x be the largest vertex in C that misses w.

Since x is not colored k—j by the greedy algorithm, there is a vertex

u with color k — j that sees x and satisfies u < x. Moreover, such a

vertex u sees every vertex y E {c{, Ci+y,... ,Cj}, for otherwise uxyw

would be a P4 with u < x and y > w. Hence u belongs to W.

But every vertex in W either misses c;_i or is greater than c;-i.

Clearly u < x < Ci-y, hence x < Ci-y. On the other hand, x is the

largest vertex missed by w, thus w sees c2_i and w > Ci—y. This implies
u < w, a contradiction to our choice of w.

In the above proof, we have also shown that a perfectly orderable

graph has a maximum clique of size x(G), thus perfectly orderable

graphs are perfect2. Furthermore, many other problems that are NP-

complete in general can be solved in polynomial time if a perfect orien¬

tation is given [36, 3]. To find a perfect orientation, however, is much

2A detailed implementation of a linear algorithm for computing x(G) can be

found in [15]
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harder: MlDDENDORF AND PFEIFFER [56] proved that the recognition
of perfectly orderable graphs is NP-complete. Therefore research fo¬

cused on subclasses of perfectly orderable graphs that can be recognized
in polynomial time.

One way to obtain candidates for such subclasses of perfectly or¬

derable graphs is to restrict the number of ways a P4 may be oriented.

Classical examples of such graphs are triangulated graphs and compa¬

rability graphs: They admit an acyclic orientation such that no P3 abc

is oriented a—ybl— c and a—>&H>-c, respectively.

Another way to define subclasses of perfectly orderable graphs is

by graph decompositions. Olariu's stitch decomposition [60] and the

modular decomposition are such examples. Conversely, graph decompo¬
sitions can be used to recognize subclasses of perfectly orderable graphs.

Triangulated graphs, for instance, are recognized by splitting off simpfi¬
cial vertices.

2.2.2 Triangulated graphs

A graph G is triangulated if it does not contain an induced chordless

cycle of length greater than three. A simplicial vertex is a vertex whose

neighborhood induces a clique, and a perfect elimination scheme is an

order of the vertices vy < v2 < < vn such that the vertex vt is

simplicial in C?/„ti„ .

1;... tVx.
It is well-know that a graph is triangulated

if and only if it admits a perfect elimination scheme [27].

To see that the above definition matches the definition in the pre¬

vious section, we first observe that a simplicial vertex cannot be the

midpoint of a P3. Therefore the reverse of a perfect elimination scheme

induces an acyclic orientation such that no P3 abc is oriented a—ybi—c.

Conversely, if G admits such an orientation, then the smallest vertex in

the implied order must be simpficial, thus a perfect elimination scheme

can be constructed by repeatedly taking the smallest vertex.

The first algorithm for recognizing triangulated graphs in linear time

is due to ROSE ET AL. [71]. In a first step, a linear algorithm called

lexicographic breath first search is executed which provides a LexBFS-

ordering of the vertices. ROSE ET AL. showed that every LexBFS-

ordering of a triangulated graph is also a perfect elimination scheme.

To recognize triangulated graphs, it therefore suffices to test whether a

given vertex order is a perfect ehmination scheme. Both algorithms are

given in Section 2.3.
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If a graph is not triangulated, a LexBFS-ordering can be used to

find a chordless cycle of length greater than three in linear time. Let Vi

denote the largest vertex which is not simplicial in G' = G[vuv. _ ^Vn\

(It is explained in Section 2.3 how to find such a vertex in linear time).
Therefore nonadjacent vertices xy and x2 in N(vi)r\{vz+y,... , vn} exist.

Following the proof of Theorem 4.3 [27], we choose xy and x2 such that

x2 is as large as possible. Then there is a chordless cycle Xy, V{, x2,

in G' and this cycle can be found in linear time by computing a shortest

path between xy and s? in G', , -^7, ..
We formulate this result as

a theorem.

Theorem 2.2.5 If a graph is not triangulated, a chordless cycle of

length greater than three can be found in linear time.

2.3 Graph algorithms on the complement

The purpose of this section is to provide basic linear time algorithms for

the complement of a graph. For instance, we present a linear algorithm
for computing a LexBFS-ordering of the complement and a linear algo¬
rithm for recognizing cotriangulated graphs. Those algorithms are then

used in Chapter 7 to recognize cobithreshold graphs in linear time.

As usual, it is assumed that the input graph G = (V, E) is given by
its adjacency lists, i.e., the vertices of the graph are stored in an array

and the neighborhood N(v) of a vertex v is a doubly finked fist attached

to the array element that contains v. Therefore the removal of a vertex

can be carried out in constant time.

For every problem, we first present the classical linear algorithm.
We then discuss the changes that must be made to achieve a running
time of 0(\V\ + \E\) if the input is the complement G = (V,E). The

first problem considered is graph search.

2.3.1 Breath first search

A graph search algorithm takes a graph G — (V,E) and a vertex vq G V"

and computes the vertices "reachable" from vq, that is, the set of vertices

in the connected component of vq. The graph search algorithm known

as breath first search, BFS for short, works as follows.
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breath first search

input: a graph G — (V, E) and a vertex vo E V

output: in B the vertices in the connected component of vq

(1) initialize list W with V;

(2) let Q and B be empty lists;

(3) remove vq from W and append it to Q;

(4) while Q is not empty do

(5) let v be the first vertex in Q;

(6) remove v from Q and append it to B;

(7) remove W C\ N(v) from W and append it to Q

(8) od

Algorithm 2.1

It is easy to see that every vertex belongs to precisely one of the lists

W, Q or B: List W contains the not-reached vertices, fist Q the reached

but not visited vertices, and B the reached and visited vertices. The

list Q serves as "queue data structure".

Line (7) of Algorithm 2.1 can be implemented to run in time pro¬

portional to |JV(u)|: In a first step, the list W is divided into two lists

Wy = W H N(v) and the "remainder" W2 = W - N(v). In a second

step, W2 becomes the new list W and the vertices in Wy are appended
to Q. Therefore Line (7) of Algorithm 2.1 can be replaced by Line (7.1)
and Line (7.2) below.

(7.1) split W into Wy = W n N(v) and W2 = W - N(v);
(7.2) let W = W2 and append the vertices in Wy to Q;

Except for the initialization in Line (1), the running time of Algo¬
rithm 2.1 is proportional to the number of vertices and edges in the

connected component of v0 provided that each vertex stores the infor¬

mation to which list it belongs.

The order of the vertices as they are visited by BFS is called a BFS-

ordering. Therefore, in the above algorithm, the sequence of the vertices

as they appear in B is a BFS-ordering of the vertices in the connected

component of vq .

Algorithm 2.2 is a straight-forward generalization of Algorithm 2.1

to visit every vertex in the graph. As before, Line (5) to Line (10)
compute the connected component of the vertex vq chosen in Line (4),
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thus Algorithm 2.2 implicitly computes the connected components of

G.

connected components

input: a graph G = (V,E)
output: a BFS-ordering B

(1) initialize W with V;

(2) let Q and B be empty fists;

(3) while W is not empty do

(4) remove an arbitrary vertex vq from W and append it to Q;

(5) while Q is not empty do

(6) let v be the first vertex in Q;

(7) remove v from Q and append it to B;

(8) split W into Wy = W n N(v) and W2 = W - N(v);
(9) let W = W2 and append the vertices in W2 to Q

(10) od

(11) od

Algorithm 2.2

Now assume the input of the above algorithm is the complement
graph G = (V,E). Then the adjacency list of a vertex v consists of

the non-neighborhood N(v). We only have to consider Line (8) as the

adjacency lists appear in no other line. But W fl N(v) = W — N(v) and

L — N(v) =In N(v), so Line (8) can be replaced with

(8.1) split W into Wy = W - N(v) and W2 = W D N(v);

Since the execution of Line (8.1) takes time proportional to |JV(v)|, we

have derived an algorithm that runs in 0(|V| + \E\). In other words,
we have

Lemma 2.3.1 Given a graph G = (V,E), a BFS-ordering and the con¬

nected components of its complement G = (V, E) can be computed in

0(\V\ + \E\).

Remark 1: A similar approach for depth first search can be found

in the SODA'97 paper by DAHLHAUS ET AL. [21]. Remark 2 and 3 have

to be seen in connection with their work.

Remark 2: Suppose the input graph is given in a "mixed repre¬

sentation", that is, the adjacency fist of a vertex v contains either the
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vertices in N(v) or the vertices in N(v). Depending on which case ap¬

plies, we can either execute Line (8) or Line (8.1) in Algorithm 2.2. The

result is an algorithm that is linear in the size of the input of the mixed

representation.

Remark 3: It is sometimes useful to have a so-called BFS-forest:

An edge x —y y belongs to the BFS-forest if and only if the vertex y was

appended to Q while visiting x. One way to compute those edges is to

implement Q as a list of lists as follows.

In Line (9), list W2 is appended (as a list) to Q, and in Line (6), a

vertex v from the first fist in Q is chosen. Furthermore, we store v in

the head of W2 before appending W2 to Q. When removing a vertex v

from the first list Lo in Q, we insert the edge w —y v in our BFS-forest

where w stands for the vertex in the head of Lq.

2.3.2 Lexicographic breath first search

In connection with the recognition of triangulated graphs, we are inter¬

ested in a lexicographical breath first search ordering, LexBFS-ordering
for short. A LexBFS-ordering is a special BFS-ordering computed by a

refined BFS algorithm.

As mentioned in Remark 3 of the previous section, the data structure

Q in Algorithm 2.2 can be implemented as a fist of lists. In ordinary

BFS, it does not matter in which order the vertices in the same list in Q
are visited. In LexBFS, however, vertices adjacent to the first already
visited vertices are preferred. In fact, every time a vertex v is visited,
a fist L in Q is replaced with two lists Ly = L fl N(v) immediately
followed by the remainder L2 = L — N(v). Since the position of Ly and

L2 relative to the other lists in Q remains the same, a LexBFS-ordering
is a special BFS-ordering.

In the implementation of LexBFS given as Algorithm 2.3, we have

assumed that every list in Q is not empty, thus no empty lists are

inserted in Q and, whenever a fist becomes empty, it is immediately
removed from Q. With this assumption, Line (8) to Line (11) can be

executed in time proportional to |iV(u)| as follows.

The vertices w in N{y) are scanned and, if w belongs to a fist L in

Q but the list in front of L is not empty, an empty list Ly is inserted

immediately before L2 = L. In a second scan of the vertices w in N(v),
every vertex »ma fist L2 in Q is moved to the fist Ly immediately
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LexBFS

input: a connected graph G = (V, P) and a vertex vq £ V

output: a LexBFS-ordering B

(1) initialize list W with V;

(2) let B be an empty list;

(3) let Q be an empty list of fists;

(4) remove vq from W and append a fist consisting of vq to Q;

(5) while Q is not empty do

(6) let v be a vertex in the first fist Lq of Q;

(7) remove v from Lq and append it to B;

(8) forall fists L in Q do

(9) split L into lists Ly = L n iV(v) and L2

(10) replace L in Q with Pj followed by L2;

(11) od

(12) split VF into lists Wi = W n iV(v) and W2

(13) let VF = VF2 and append Wy to Q
(14) od

Algorithm 2.3

before L2 (and L2 is removed from Q if it becomes empty). Thus the

overall running time of Algorithm 2.3 is hnear.

Now assume that the input of the above algorithm is the complement

graph G = (V,E). Again changes affect only Line (9) and Line (12)
because adjacency lists appear in no other fine. As in Algorithm 2.2,
we can replace Line (9) with

(9.1) split L into lists Ly = L - N(v) and L2 = L n N(v);

and Line (12) with

(12.1) split W into fists Wy = W - N(v) and W2 = W n N(v);

With the technique described above, Line (8) to Line (11) can be ex¬

ecuted in time proportional to |iV(u)|, and the overall running time of

Algorithm 2.2 is proportional to |V| + \E\. Thus

Theorem 2.3.2 Given a graph G = (V,E), a LexBFS-ordering of G =

(V,E) can be computed in 0(\V\ + |P|).

= L-N(v);

= W-N(v);
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2.3.3 Testing a perfect elimination scheme

In this section, we address the problem of testing whether a given vertex

order vy < v2 < • • • < vn is a perfect elimination scheme. To simplify
our notation, let Vt = {vl,vljry,. .. ,vn}, let Nt = N(vz) fl Vt+y and let

min(iV2) denote the least vertex in Nt ( if Nt is not empty ). Thus,
^i < v2 < • < vn is a perfect elimination scheme if

Vi : Nt is a clique. (2-1)

We claim that this is equivalent to

Vi : 3v3 = min(iV,) : Nz - v3 C N3, (2.2)

which reads for all i for which the vertex v3 = min(Arz) exists, the

property N% —

v3 C N3 holds. The proof of this claim is by induction:

Suppose that (2.1) and (2.2) hold for % = 2,... n. If Ny is empty, then

there is nothing to prove. Otherwise the vertex v3 = min(iVi) exists,
hence our induction hypothesis asserts that N3 is a clique. Therefore

Ny —

Vj Ç Nj if and only if Ny is a clique.

To verify (2.2) efficiently, we scan the vertices v% in ascending order

and collect the vertices N% —

v3 in A3 where vd denotes the smallest

vertex in Nz (if such a vertex exists), thus

Aj= [J N-v3. (2.3)
Vz 3i^=min(.ZV,)

At the time when v3 is reached, the computation of Aj is complete and

the test Aj Ç N3 can be performed.

In the implementation given as Algorithm 2.4, the vertices in Nt — v3
are simply appended to the fist A3, so A3 can contain the same vertex

multiple times. The test whether Ad Ç N"3 is done in time proportional
to the sum of the length of fist A3 and N3 by using an array as described

in [27]. Consequently, the running time of Algorithm 2.4 is 0(|V| + |P|).
If vy < v2 < • • • < vn is not a perfect elimination scheme, we are

interested in the largest vertex vt that is not simpficial in GsVttVt+li ,vn\-
To find this vertex in linear time, we store with each vertex w inserted

in fist Aj the vertex w' = v% responsible for the insertion of w. Then w'

is nonsimplicial for every w G At — Nt in Line (9), thus we just have to

find the largest vertex among those vertices w'.
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is_perfect
input: a graph G = (V,E) and a vertex order vy < v2 < • • < vn

output: true if vy < • • < vn is a perfect elimination scheme of G

(1) for j = 1 to n do

(2) let A3 be an empty list

(3) od;
_

(4) for i = 1 to n do

(5) if Nt ± 0 then

(6) let Vj — min(iVj);
(7) append N2 —

v3 to A3
(8) fi

(9) if A, % Nz then

(10) return "false"

(11) fi

(12) od;

(13) return "true"

Algorithm 2.4

Theorem 2.3.3 Let G = (V, E) be a graph and vy < v2 < • • < vn

a linear order of its vertices. If this order is no perfect elimination

scheme, then the largest vertex vt not simplicial in Gr{„ti„,+1). }Vn\ can

be found in linear time.

Now assume that the input is the complement graph G = (V,E).
Since Nt C Vt+y and A% C V^i, it is quite natural to work with the

complement of those sets in Vt-\-y. So let N% — Vz+y — Nt and let

A3 = V3+y — A3. Therefore the test A2 ^ Nt in Line (9) translates

into N\ ^ A%. Furthermore, according to (2.3), we have

A3 = V3+1n f] Jh^= f| Nznv3+1.
Vi 3t7j=min(Af,) Vz 3v3=mm(Nt)

Note that A3 = Vj+y if no index i exists for which v3 = min(A^), that is,
Ni is empty. Therefore every A3 has to be initiahzed with V^+i, which

results in an 0(\V|2) running time.

To obtain a linear running time, we maintain lists C3 consisting of

those vertices vt for which v3 = min(ArJ). Then

v <e A3 <^^ \/vz e Cj : v e Nt n vJ+1.
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So if Bj stands for the concatenation of the lists that represent the sets

Ni H Vj+y, i £ Cj, then the vertices in A3 are precisely those vertices

which appear \C3\ times in Bj.

In Algorithm 2.5, the lists Bj are computed from the empty lists by

appending Ni fl Vj+y whenever Ni ^ 0. In Line (11), we verify that

every vertex in Ni appears |C;[ times in Bi. We write Ni Qx\Ci\ Bi

if this is true and JV; <2X|C;| Bi otherwise. Therefore Algorithm 2.5 is

correct.

is_complement_perfect

input: a graph G = (V, E) and a vertex order vy < v2 < • • < vn

output: true if vy < • • < vn is a perfect elimination scheme of G

(1) for j = 1 to ndo

(2) let Bj be an empty list;

(3) let Cj be an empty fist

(4) od;

(5) for i = 1 to n do

(6) if Ni ^ 0 then

(7) let Vj = min(iVi);
(8) append 77; n Vj+y to Bj
(9) append Vi to Cj

(10) fi;
_

(11) if \d\ > 0 and N{ £x|C,-| Bz then

(12) return "false"

(13) fi

(14) od;

(15) return "true"

Algorithm 2.5

The test Ni ^ 0 in Line (6) can be implemented as |iVj| =£ |Vi+i|.
Furthermore, we may assume that the adjacency fists of G are sorted

according to vy < v2 < < vn (sorting the adjacency lists of a graph
is linear, see [27]). Thus Line (7) can be executed in 0(|iV;|) as Vj is

the smallest vertex in Vi+y not contained in Ni. By using an array, the

running time of Line (11) is proportional to the length of the lists Bi
and N't; hence Algorithm 2.5 is in 0(\V\ + \E\).

Theorem 2.3.4 For a graph G = (V,E), the test whether a linear

order vy < v2 < < vn is a perfect elimination scheme of G can be

performed in 0(|V| + \E\).
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We conclude this section with the problem of finding the largest
vertex v% that is not simplicial in G{VttVt+lj.^Vn\. To begin with, each

vertex w inserted into the list B3 has to store the vertex w' = vt re¬

sponsible for the insertion of w. If \Ct\ > 0 in Line (11), we perform
the test Nt ^x|c,| Bt by computing Nz — At with an array of initially

empty lists T(v), v 6 V.

(n.r forall w in list Bx do

(11.2; append w' to T(w)
(11.3' od

(11.4; forall w G Nt do

(11.5) if T(w) £ C\ then

(11.6) (* the vertices in T(w]
(11.7; return "false"

(11.8) fi

(11.9) od

(11.10) forall w in list Bt do

(ll.li; let T(w) be an empty list

(11.12) od

Gx are nonsimplicial *)

It is assumed that the forall-statement scans the vertices in the sequence

as they appear in the given fist. Therefore T(w) is sorted according to

vy < v2 < • < vn. Since Ct is sorted in the same way, Line (11.5) can

be carried out in 0(|T(u;)|); hence the running time of the above code

isO(|£,| + p\f,|).
Note that every vertex x G T(w) — C% is nonsimplicial because x <

vx < w and x sees vt and w but vt and w are nonadjacent. Moreover, if

we scan T(w) in reverse order, the first vertex in T(w) but not in Cx is

the largest nonsimplicial vertex in Cl — T{w). Clearly, the largest vertex

v% that is nonsimplicial in G{VijVt+1 ,...^n} is found this way.

Theorem 2.3.5 Let G = (V,E) be a graph and vy < v2 < - • < vn a

linear order of its vertices. If this order is no perfect elimination scheme

of G, the largest vertex vz that is not simplicial in 0{VîiV,+1)„.)Un) can

befoundmO(\V\ + \E\).

Given the vertex vl of the above theorem, we can calculate a chord¬

less cycle in G of length greater than three in 0(|V| + \E\) with the

method described in Section 2.2.2. Together with Theorem 2.3.2, we

have the following.
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Corollary 2.3.6 Let G = (V,E) be a graph whose complement is not

triangulated. Then the complement of a chordless cycle of length greater
that three can be found in 0(\V\ + \E\).



Chapter 3

Comparability graphs

In this chapter, we present historical results in connection with compa¬

rability graphs. On the one hand, most of these results are needed in

the subsequent chapters. On the other hand, their presentation allows

us to demonstrate the methods and proof techniques used in the rest of

this thesis. We shall therefore often refer to the theorems and proofs of

this chapter to point out the analogy.

In the first section, we introduce P^-free graphs and show that they
are precisely those graphs for which every subgraph is either discon¬

nected or codisconnected. The arising decomposition is then general¬
ized to what is nowadays known as the modular decomposition. The

uniqueness of the decomposition comes from the fact that the union of

two intersecting modules that are not contained in one another induces

a disconnected or codisconnected graph.

The modular decomposition of a graph is closely related to its P3-
structure. In the third section, we therefore analyze this structure and

use the obtained results to compute the modular decomposition and to

develop algorithms for recognizing comparability graphs.

Finally, in the last section, we review HoÀNG AND Reed's result

on induced subgraphs which exist in prime graphs that are not trian¬

gulated. We show that those subgraphs can be found in linear time by
applying the theorems of Section 2.3.

25
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3.1 Cographs

A graph is called cograph if it does not contain a P4. Clearly, a P4-

free graph cannot contain an obstruction, hence cographs (and their

complements) are perfectly orderable. The following lemma was found

by Seinsche [73] in 1974.

Lemma 3.1.1 (Seinsche) A nontrivial, connected and coconnected graph
contains a P4.

Proof. Let G be a smallest counterexample, i.e. G is nontrivial, P4-

free, connected and coconnected but every nontrivial induced subgraph
is disconnected or codisconnected. Let v be an arbitrary vertex of G

and suppose that Gv-v is disconnected.

Since G is connected, every connected component of Gy-v contains

a vertex that sees v. But v is not isolated in G; hence a connected

component Gy of Gv-v exists with a vertex that misses v. Following
a path in Gy from this vertex to a vertex that sees v, we encounter an

edge ab with av (£ E and bv G P. Thus abvx is a P4 for any vertex x

adjacent to v in a connected component of Gv-V different from Gy, a

contradiction to our assumption.

If Gv-v is codisconnected, the above argumentation applied to the

complement leads to a P4 in G, again a contradiction to our assumption
because the complement of a P4 is again a P4.

Since a P4 is connected and coconnected, cographs are precisely
those graphs which are completely decomposed by the following algo¬
rithm.

if G is trivial then

stop
if G is disconnected then

decompose the connected components of G

if G is disconnected then

decompose the connected components of G

An arbitrary nontrivial disconnected graph is coconnected, so

Fact 3.1.2 Every graph is connected or coconnected.
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Consequently no graph is disconnected and codisconnected at the

same time, which proves the uniqueness of the above decomposition.

Furthermore, the decomposition can be represented by a tree in

which the decomposition operations are distinguished by 0 and 1-nodes

and, if the graph is trivial, by an empty node labeled v where v stands

for the only vertex in G. The computation of this unique decomposition

tree called cotree is given below.

buildCotree(G)
input: a graph G = (V,E)
output: the root of the cotree of G

(1) ifl^l^lthen
(2) let v be the vertex in V;

(3) return an empty node labeled v;

(4) else if G is disconnected then

(5) let Gy,... ,Gt be the connected components of G;

(6) let r,- = buildCoTree( G; ) for i = 1,... ,t;

(7) return a 0-node with children ry,r2,... ,rt

(8) else if G is disconnected then

(9) let Gy,G2,... ,Gt be connected components of G;

(10) let rt = buildCoTree( Gt ) for i = 1,... ,t;

(11) return a 1-node with children ry,r2,... ,rt

(12) else

(13) stop (* G is no cograph *)
(14) fi

Algorithm 3.1

If we return a 2-node instead of stopping at Line (13), the above al¬

gorithm computes a decomposition tree for an arbitrary graph. The

original graph can then be reconstructed from the decomposition tree

if the graph G in Line (13) is stored in the corresponding 2-node.

In the next Section, we discuss a generalization of the above de¬

composition, the so-called modular decomposition. Since the modular

decomposition tree can be found in linear time, the same holds for the

above decomposition tree, thus cographs can be recognized in linear

time.
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3.2 The modular decomposition

The modular decomposition was found by GALLAI [23] in 1967 while

investigating comparability graphs. To discuss the modular decomposi¬
tion, we need the following definitions.

Given a graph G = (V, P) and a subset A of V, a vertex v (£ A
is called A-null if v misses every vertex in A. Similarly, v ^ A is A-

universal if it sees every vertex in A. Vertices not in A that are neither

A-universal nor A-null are called A-partial.

A module is a nonempty vertex set H such that no P-partial vertex

exists. A module H with 1 < |P| < |V| is a homogeneous set. The

following properties of modules are important to prove the results of

this section.

Fact 3.2.1 // modules Hy and H2 intersect, then Hy U H2 is again a

module.

Fact 3.2.2 // intersecting modules Hy and H2 do not contain each

other, then Gh1uH2 is either disconnected or codisconnected.

Proof. The first fact is obvious. To prove the second, let Hy and

H2 be two intersecting modules such that none is a subset of the other.

If GHi is connected, then an edge between a vertex in Pi fl H2 and

a vertex vy G Pi — H2 exists. But H2 is a module, so vy sees every

vertex in H2. Moreover, since every vertex in H2 — Hy sees Vy and Hy
is a module, every vertex in H2 — Hy sees every vertex in Hy. Hence

Gh1uh2 = GHt + Gh2-h1, thus G is disconnected.

If Gh± is disconnected, then Hy is coconnected and the above argu¬

mentation applies to the complement, thus G = Ghx + Gh-^-Rx and G

is disconnected.

A homogeneous set H is connected if Gh is connected, and it is

coconnected if Gh is coconnected. Furthermore a homogeneous set H

is called maximal if no other homogeneous set is a superset of H.

The modular decomposition is based on the following theorem.

Theorem 3.2.3 The maximal homogeneous sets of a connected and

coconnected graph are disjoint.
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Proof. Let G = (V,E) be connected and coconnected and suppose

that different maximal homogeneous sets Pi and H2 intersect. Then

Hy U H2 = V because Pi U H2 is a module.

Furthermore, Pi and H2 are homogeneous sets, so Pi and H2 are

proper subsets of V, thus Hy % H2 and H2 % Hy. By Fact 3.2.2,
G = Gh-iuh-2 is disconnected or codisconnected, a contradiction to our

assumption.

The modular decomposition is given in Algorithm 3.2. It combines

the decomposition into connected components of G and G with the

decomposition into maximal homogeneous sets, thus the uniqueness of

the modular decomposition tree follows immediately from Fact 3.1.2

and Theorem 3.2.3.

buildModTree(G)
input: a graph G = (V, E)
output: the root of the modular decomposition tree of G

(1) if|V| = lthen

(2) let v be the vertex in V;

(3) return an empty node labeled v;

(4) else if G is disconnected then

(5) let Gy, G2,... ,Gt be the connected components of G;

(6) let n = buildModTree( G; ) for i = 1,... , t;

(7) return a 0-node with children ry,r2,... ,rt

(8) else if G is disconnected then

(9) let Gi, G2,... ,
Gt be the connected components of G;

(10) let n = buildModTree( Gi ) for i = 1,... , t;

(11) return a 1-node with children ry,r2,... ,rt

(12) else (* G and G are connected and [Vj > 1 *)
(13) let Pi, H2,... ,

Ht be the maximal homogeneous sets of G;

(14) let ri = buildModTree( GHi ) for i = 1,... , *;

(15) return a 2-node with children ry, rr>, ,rt

(16) fi

Algorithm 3.2

A nontrivial graph that cannot be decomposed by the above algo¬
rithm is called prime, thus a nontrivial graph is prime if it is connected

and coconnected and if it has no homogeneous sets.

If h is a vertex in a homogeneous set H, we say that Gy-H+h ls
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derived from G by substituting the marker vertex h for the homogeneous
set H. The prime graph that arises from substituting marker vertices

for all maximal homogeneous sets of G is called the characteristic graph
of G. To reconstruct G from its modular decomposition tree, it suffices

to store the characteristic graphs in the 2-nodes of the tree.

If a graph has a nontrivial modular decomposition tree, this tree

can be used to apply divide and conquer methods to solve optimiza¬
tion problems like maximum cfique, see [59, 58] for details. Thus the

question arises how fast the modular decomposition of a graph can be

computed. A simple OdV^I3) algorithm is described in Section 3.3. In

recent years, however, linear time algorithms for the modular decom¬

position have been found [54, 21]. Unfortunately, those algorithms are

rather complicated.

3.3 Comparability graphs

A graph is a comparability graphif it admits a transitive orientation, i.e.,
an acyclic orientation such that no P3 abc is directed a^-b^c. Since a

transitive orientation cannot contain obstructions, an orientation that

is transitive is also perfect. Furthermore, the orientation of one edge
in a P3 in a transitive orientation determines the orientation of the

other edge in the same P3. This observation gives rise to the following
definition.

Definition 3.3.1 Two edges are P3-adjacent if they belong to the same

P3, and a Pî-class is an equivalence class of the transitive closure of the

Pz-adjacency relation.

Obviously, the orientation of one edge in a P3-class forces the orien¬

tation of all other edges in the same P3-class. Therefore every P3-class
of a comparability graph can be transitively oriented in precisely two

ways. GHOUILA-HOURI [24] showed that the converse holds as well.

Theorem 3.3.2 (GHOUILA-HoURl) A graph is a comparability graph
if and only if each of its P^-classes admits a transitive orientation.

We prove of the above theorem in the same way we shall prove our

results on P^-comparability graphs in Chapter 5. First, we study the

P3-classes of arbitrary graphs.
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3.3.1 P3-classes

In the rest of this section, C* stands for a P3-class and C*(vw) for the

P3-class that contains the edge vw. Given a set H of vertices, a P& is

said to be H-partial if it is not contained in Gh but has at least one

edge in E(H).

Theorem 3.3.3 Let C* denote an arbitrary P3-class. Then no V(C*)-
partial P3 exists.

Proof. Let abc be a V/(G*)-partial P3. Without loss of generality, we

may assume that a G V — V(C*) and b,c G V(C*). Since c is covered

by C*, an edge cd G C* exists. Clearly b ^ d, b sees d and a misses

d, for otherwise the contradiction C* = C*(ab) would arise. We claim

that, for every edge xy G C*, b sees x and y and a misses x and y. It

follows that b cannot be covered by C*, a contradiction.

The proof of our claim is by induction. Since it holds for cd, the

basis is settled. The inductive step consists of showing our claim for an

edge yz in a P3 xyz on the assumption that it holds for xy. If b misses

z, then aby and byz are P3S, hence C* = C*(ab), a contradiction. If a

sees z, then yza is a P3, hence az (E C*, another contradiction. Thus b

misses y and z and a sees y and z as claimed.

Suppose that a y(G*)-partial vertex v exists. Since Gy^c*) is con¬

nected, there is a path in Gy(ç*\ from a vertex that misses utoa vertex

that sees v. Following this path, we must encounter an edge ab with

av ^ E and bv G E. But abv is a y(G*)-partial P3, a contradiction to

Theorem 3.3.3. Therefore no V(G*)-partial vertex exists, thus

Corollary 3.3.4 The cover of a P^-class is a module.

Conversely, assume that an edge xy has both endpoints in a module

H. IfP C V(C*(xy)), thenaPs abc in C* with a, b G P and c G V-H

exists. But this is impossible because c is P-partial, hence

Corollary 3.3.5 // both endpoints of an edge xy belong to a module H,
then V(C*(xy)) Ç H.

The above corollary applied to G and G implies that every minimal

homogeneous set is the cover of a P3-class of G or G. By Theorem 3.2.3,
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the maximal homogeneous sets can therefore be computed "bottom up"
from the covers of the P3-classes of G or G.

The following theorem states that P3-classes can be uniquely iden¬

tified by their covers.

Theorem 3.3.6 Two different P^-classes have different covers.

We prepare the proof of this theorem with the following lemma.

Lemma 3.3.7 (Triangle Lemma) Let {a,b,c} be a clique such that

C*(ab) and C*(ac) are different from C*(bc). Then a is not in the cover

ofC*{bc).

Proof. We prove the lemma by showing that, for every edge xy G

C*(bc), the edges ax and ay exist but do not belong to G*(6c). Clearly
this holds for xy = be.

For the inductive step, we have to prove our claim for an edge yz

in a P3 xyz on the assumption that it already holds for xy. If az g" P,
then the P3 ayz implies ay G G* (6c), a contradiction to our assumption.
Therefore az G E and xaz is a P3, thus C*(az) = C*(xa) ^ C*(bc) as

claimed.

Proof of Theorem 3.3.6. Suppose that two different P3-classes Gj*
and G| have the same cover and let b denote an arbitrary vertex in

V(C*) = V(G2*). Then edges ab in C{ and 6c in CI exist. Furthermore,
a sees c and and either ac g" C* or ac g" C%.

Without loss of generality, let ac g" C2. Then G| = G*(6c) is dif¬

ferent from C\ = G*(a6) and C*(ac), thus Lemma 3.3.7 implies that

a G" V(02 )j a contradiction to our assumption.

The next theorem constitutes the main part of GALLAl's decompo¬
sition theorem. Together with Theorem 3.2.3, it is considered as one of

the deepest results in connection with comparability graphs [45].

Theorem 3.3.8 (GALLAl) Let G = (V,E) be a nontrivial connected

and coconnected graph and let Hy,... , H^ be the maximal homogeneous
sets of G. Then E — E(Hy) — — E(Hk) is a P3-class that covers G.
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Proof. Since G is connected and, by Theorem 3.2.3, the maximal

homogeneous sets of G are disjoint, there is an edge vw in E — E(Hy) —
• • • — E(Hk). Furthermore C* = C*(vw) covers G, as otherwise V(C*)
would be homogeneous and therefore be contained in a maximal homo¬

geneous set Hi, a contradiction. By Theorem 3.3.6, there is only one

such P3-class, hence E - E(Hy) - - E(Hk) is a subset of C*. But

no other edge belongs to C* because of Corollary 3.3.5.

The above theorem leads to a very simple OdVl3) time algorithm
for the modular decomposition of a graph. In a first step, we compute
the P3-classes C*,... ,C% of G as well as their covers.

The P3-classes are precisely the vertices in the connected compo¬

nents of G = (V,E) where V = E and two vertices are adjacent in G

if the corresponding edges belong to the same P3 in G. Since the con¬

nected components of G can be found in 0(|V"| + |P|) and every edge in

G can be in at most |Vj - 2 different P3s, we have |P| < \E\ (|V| - 2).
Thus the P3-classes can be computed in 0(|V| • |P|)-

At each stage of Algorithm 3.2, we test whether G or G is discon¬

nected. If so, we recursively compute the modular decomposition tree of

the connected components of G or G. Otherwise, if G is connected and

coconnected, we scan the edges in G until we find an edge vw whose P3-
class C*(vw) satisfies \V(C*(vw))\ = |Vj. This can be done in 0(\V\2).
By Theorem 3.3.8, the maximal connected homogeneous sets are the

connected components of G' = (V,E — C*(vw)).

The same procedure applied to the complement computes the ma¬

ximal coconnected homogeneous sets in 0(|V|2). From the maximal

connected and the maximal coconnected homogeneous sets, the maxi¬

mal homogeneous sets are easily found in 0(| V|2). The overall running
time of our algorithm is therefore 0(|V|3).

3.3.2 Recognition and orientation algorithms

A necessary condition for a graph to be a comparability graph is that

each of its Pa-classes can be transitively oriented. If a graph has no or

precisely one P3-class, then a transitive orientation is easy to calculate

because the orientation of one edge in a P3-class forces the orientation

of all other edges in the same P3-class. We show that the other cases

can be reduced to this one.
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Suppose that a graph G = (V,E) has at least two P3-classes. By
Theorem 3.3.6, one Pa-class, say C*, does not cover the whole graph,
thus G has a homogeneous set V(C*). If a graph has a homogeneous
set H, we proceed as follows.

(i) Replace P with a marker vertex h.

(ii) Compute a transitive orientation of Gh and Gy-H+h-

(Hi) Construct a transitive orientation of G by directing
vw with v,w G H as in Gh,
vw with v, w G V — H as in Gy-H+h,
vw with v G V — H and w G H as vh in G^-ij+fe.

If G has a transitive orientation, the same holds for Gh and Gy-H+h
as they are induced subgraphs. Surprisingly, the converse holds as well.

Lemma 3.3.9 If the orientation of Gh and Gy-H+h is transitive, then

(Hi) gives a transitive orientation of G.

Proof. To begin with, we show that no P3 a6c is oriented a —y 6 —y

c. This is obvious for a P3 with all its vertices in H and a P3 with

at most one vertex in H because a corresponding P3 exists in Gh or

Gy-H+h- The remaining P3S have precisely two vertices in H. Since

H is homogeneous, such a P3 has a,c G H and 6 ^ P. It is therefore

oriented a—yb<— c or ai—b—yc.
—*

Now suppose the constructed orientation G is cyclic. As the orienta¬

tions of Gh and Gy-H+h are acyclic, every cycle in G contains vertices

in V — H and edges with both endpoints in H. Consider a shortest

cycle in G and let v —>•••—)• w denote a longest part of it with vertices

in H. Furthermore, let u be the predecessor of v in this cycle. Since

H is homogeneous, the edge uw exists and, by construction, u —> w in

G. Therefore our cycle can be shortened by substituting u —y iv for

u —y v —y —y w, a contradiction.

Note that the above lemma proves Theorem 3.3.2 because (a) if

the P3-classes of G can be transitively oriented, the same holds for

the P3-classes of Gy(c) arj-d Gy-v(c*)+h, an(i (&) this division into

subproblems can be repeated until the graph has at most one P3-class.

Instead of explicitly performing the substitution of marker vertices

for homogeneous sets, GOLUMBIC [27] proposed an algorithm that does
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this implicitly by removing Pä-classes from the graph. His algorithm
for computing the transitive orientation of a graph is given below.

__ .
orient (G)

input: a graph G — (V, E)
output: a transitive orientation of G (if such an orientation exists)

(1) while E ^ 0 do

(2) choose an edge vw in E;

(3) orient the P3-class C*(vw) of G = (V, P);
(4) E +-E-C*(vw);
(5) od

Algorithm 3.3

The complexity of the above algorithm is 0(|V| |P|). To prove

its correctness, let H = V(C*(vw)). From Lemma 3.3.9 follows that a

transitive orientation of G exists such that the orientation of the P3-

classes in Gh is independent of the orientation of the other Pj-classes.

The only restriction imposed on the orientation of the P3-classes not

in Gh is that edges between vertices in P and a vertex in V — H are

directed in the same way. This constraint is satisfied because Gh is

coconnected after the removal of C*(vw).

Now consider the orientation of Gh- Again Lemma 3.3.9 guarantees
that we can orient Gh by orienting the P3-classes in a maximal homo¬

geneous set of Gh independently from the other P3 -classes of Gh- So

it remains to show that the P3-classes not contained in maximal homo¬

geneous sets of Gh are oriented properly. We do this by showing that

C*(vw) is the only P3-class not in a maximal homogeneous set.

Note that Gh is connected. If Gh is coconnected, then Theo¬

rem 3.3.8 guarantees that all edges not in a maximal homogeneous set

belong to the same P3-class. If Gh is codisconnected, then it is easy to

see that Gh is the join of two coconnected graphs Ghx and Gh2 Hence

Pi and H2 are maximal homogeneous sets and every edge between Pi

and H2 belongs to C*(vw), thus Algorithm 3.3 is correct.

At this point, it should be mentioned that there is a vast literature on

the recognition and orientation of comparability graphs, and that faster

but much more complicated algorithms for the recognition of compa¬

rability graphs are known. The best results are due to McCONNELL

AND SPINRAD [55]. In 1997, they presented the first linear time algo¬
rithm for computing a transitive orientation of a comparability graph.
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To recognize comparability graphs, however, it has to be tested whether

the computed orientation is transitive. This problem can be reduced to

(boolean) matrix multiplication, for which the fastest algorithms run in

0(|Vf-38) [16].

3.4 Special prime graphs

The purpose of this section is to provide further results on prime graphs.
We start with split graphs, which play a key role in the generalized
modular decomposition given in the next chapter.

Theorem 3.4.1 (FÖLDES AND Hammer) For a graph G, the follow¬

ing conditions are equivalent.

(i) G is a split graph.

(H) G and G are triangulated.

(Hi) G contains no 2K2, Gy or C$.

In Section 2.3, we have shown that we can test in 0(|V| + |P|)
whether a graph or its complement is triangulated, thus split graphs
can be recognized in linear time. Furthermore, we claim that every split

graph G admits a split partition V"1 + V2 such that V1 consists of the

first ~>(G) vertices in descending degree order; thus the split partition
can also be calculated in linear time.

To prove our claim, let Vy + V2 denote a split partition such that Vy is

a maximum clique. Clearly the vertices with degree greater than | Vy | — 1

belong to Vy and the vertices with degree less than \Vy \ — 1 belong to V2.

Let vy G Vi and v2 G V2 be vertices with deg(^i) = deg(v2) = \Vy\ — 1.

Since vy misses every vertex in V2, we find that Vy — vy + v2 is a clique
and V<i — v2 + vy is a stable set, so V{ = Vy — Vy +v2 and V{ = V2 — v2 +vy

is again a split partition such that V( is a maximal cfique. Thus our

claim follows by induction.

Now suppose that a prime graph contains a G4. In [40], HoÀNG AND

REED showed that such a graph must also contain one of the graphs Pi,

F2 or P3 in Figure 3.1. The next theorem provides the corresponding
complexity result.

Theorem 3.4.2 // a C4 in a prime graph G = (V, E) is given, then an

Fy, F2 or P3 can be found in 0(\V\ + \E\).
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o o

n o

• o

Fi F2 F3

Figure 3.1: The graphs contained in a prime graph with C^s.

Proof. Let ^0,^1, ^2,^3 denote the given G4 in G. We proceed as

HoÀNG AND REED in the proof of Claim 3.5 [40].

Step 1: Compute the set A of all vertices that see both vy and v$.

Step 2: Compute the vertices in the connected component Ay of vo

and v2 in Ga-

Step 3: Find an Ay-partial vertex x in V — A. Since Ai is not ho¬

mogeneous, such a vertex exists.

Step 4-' Find two nonadjacent vertices wy,w2 G Ai such that x sees

wy and misses w2. Since x belongs to V — A, it cannot see vy and 1*3. If

x sees precisely one of the two vertices vy and v%, then {x, vy, v3, wy, w2 }
induces an Pi and we are done. So suppose that x misses vy and v%.

Step 5: Compute the set B of all vertices that see wy and w2 and

miss x.

Step 6: Compute the connected component By of vy and v$ in Gb-

Step 7: Find a Wy-partial vertex yinV — W. Since Wy is not ho¬

mogeneous, such a vertex exists.

Step 8: Find two nonadjacent vertices uy,u2 G Wy such that y sees

uy and misses u2. If y sees wy and w2, then y sees x as well and

{x,y,wy,u2,w2} induces an Pi. Similarly, if y sees precisely one of the

two vertices wy and w2, then {y, uy, u2, wy, w2} induces an Pi. Finally,
if y misses wy and w2, then {x,y,uy,u2,wy,w2} induces an F2 or an

P3, depending on whether x sees y.

Clearly A and Ga can be computed in linear time. By Lemma 2.3.1,
the connected components of Ga are obtained in 0(|^| + \E\), hence

Ai and x can be found in linear time. In Section 2.3 Remark 3, we have
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explained how to compute a BFS-forest of the complement in 0(| V| +
|P|). A spanning tree of Gax is readily obtained from a BFS-tree of Ga

by making directed edges undirected. So a path from a vertex that sees

x to a vertex that misses a; is available and, following this path, Wy and

w2 can be computed in linear time. Step 5 to 8 are analog to Step 1 to

4 and have therefore the same complexity.

Now suppose that G = (V,E) is given. Step 1 to 8 in the above

proof can still be done in 0(|V] + |P|)- Since the complement of a G4
is a 2P2, Theorem 3.4.2 translates into

Corollary 3.4.3 If a 2K2 in a prime graph G = (V,E) is given, then

an Fy, F2 or Fs can be found in 0(\V\ + \E\).

By Theorem 2.2.5, a cycle in a graph that is not triangulated is

obtained in linear time. Furthermore, by Corollary 2.3.6, the same

complexity result holds for the complement. By observing that an P3
and a cycle of length greater than 5 contains a P5, that the complement
of a G5 is again a 05 and that an Pi is the complement of a P5, we

derive

Theorem 3.4.4 Let G be a prime graph that is not split. Then a C5,
Pö; P5, F2 or F2 can be found in linear time.
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Generalizations of the

modular decomposition

In the first section of this chapter, we propose a straight-forward gen¬

eralization of modules and discuss which measures have to be taken

in order to obtain a unique decomposition that generalizes the modu¬

lar decomposition. We then restrict ourselves to generalized modules

that induce bipartite graphs or spht graphs, which is why we call them

bipartite modules and spht modules, respectively.

In the second section, we show that our bipartite modules imply
a unique decomposition of nonbipartite prime graphs and we briefly
discuss how this decomposition can be computed. In the third sec¬

tion, we prove similar theorems for spht modules and nonsplit prime

graphs. As it turns out, the arising decomposition generalizes BABEL

AND Olariu's separable-homogeneous decomposition [5] as well as the

decomposition found by RASCHLE AND SlMON [67]. Computational as¬

pects of this decomposition, however, are only discussed in the next

chapter when the required results on the P4-structure are available.

In the last section, we show that the decomposition into bipartite

modules, split modules and the complement of bipartite modules can be

combined to obtain a new unique decomposition. We do this by proving
that bipartite modules, split modules and the complement of bipartite
modules do not intersect if the given graph is prime.

39
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4.1 Generalized modules

A module of a graph G = (V,E) as defined in Section 3.2 is a nonempty

vertex set H such that no P-partial vertex exists, that is, no vertex in

V — H distinguishes between vertices in P. This special neighborhood
relation between the vertices in V — H and those in P makes it possible
to solve optimization problems with divide and conquer methods. For

instance, a maximum weighted cfique of G can be found by computing
a maximum weighted clique in Gy-H+h where Gy-H+h denotes the

graph after replacing P with a marker vertex h and h has the weight
of a maximum weighted cfique in Gh-

The substitution of marker vertices for modules can also be used to

test isomorphism between graphs. For this purpose, some modules have

to be identified which yield a unique decomposition tree (isomorphism
between trees can be tested in polynomial time [2]). Clearly, those mod¬

ules must be nontrivial and maximal with respect to set inclusion, i.e.,
those modules must be maximal homogeneous sets. These requirements
are already sufficient for connected and coconnected graphs because

(i) the union of intersecting modules is a module (Fact 3.2.1), and

(ii) the union of intersecting modules that do not contain each other

induces a disconnected or codisconnected graph (Fact 3.2.2).

The above statement guarantees that the maximal nontrivial mod¬

ules of a connected and coconnected graph are disjoint: From (i), it

follows that maximal modules are disjoint, and (ii) implies that the

union of intersecting nontrivial modules is again a nontrivial module if

the given graph is connected and coconnected.

A straightforward generalization of modules is to allow vertices in

V — H to distinguish vertices in P.

Definition 4.1.1 A nonempty vertex set H of a graph G = (V,E) is a

k-module if a partition H = H1 +H2 H Hk exists such that no vertex

inV — H is Hl -partial for i = 1,... ,
k.

According to Definition 4.1.1, classical modules are 1-modules. In

this chapter, only 2-modules are considered, that is, vertices in V — H

distinguish at most two types of vertices in H. In the following, we
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usually write H if we refer to a 1-module and W = W1 + W2 if we refer

to a 2-module.

To replace a 2-module W — W1 + W2, (at least) two marker vertices

are required, one for W1 and another for W2. A trivial 2-module there¬

fore contains less than three or all vertices of the graph. In analogy to

1-modules, we call nontrivial 2-modules 2-homogeneous sets.

Note that the special neighborhood relation between vertices in a

2-module W and vertices in V — W still allows us to solve optimization

problems with divide and conquer strategies. For instance, a maximum

weighted clique of G = (V,E) can be found by computing a maximum

weighted clique in Gy-w+w1+w2+ws where wy stands for a maximum

weighted clique in Gw-i, w2 f°r a maximum weighted clique in G\y2 and

w^ for a maximum weighted clique in G\y-

To obtain a unique decomposition tree, we only consider maximal

2-homogeneous sets. Maximal 2-homogeneous sets, however, need not

be disjoint: Given two intersecting 2-modules A = A1 + A2 and B =

P1 + P2, it is possible that there are vertices x and y in V — A — B

such that x is A-partial but not P-partial whereas y is P-partial but

not A-partial, hence x and y are A U B partial but do not distinguish
the same vertices in AU B, thus A U B is not a 2-module. To avoid the

above counterexample, it is necessary to require that

If A1 n P1 ^ 0 then A2 n P ^ 0 or A n P2 / 0 (4.1)

for every labeling of the partition A1 + A2 and P1 -f P2. It is also

easy to see that if 2-modules A and B satisfy (4.1), then their union is

indeed a 2-module, thus (4.1) is equivalent to (i) for 2-modules. So we

are looking for constraints on 2-modules that imply (4.1).
If we allow vertices in W1 not to be VF2-partial, then intersecting

2-modules A and B could satisfy A fl P = A1 PI B1 and no vertex in

A1 HP1 is A2-partial or P2-partial. In this scenario, it seems to be hard

to find constraints that guarantee (4.1). We therefore require that, in a

2-module W,

every vertex in W1 must be VF2-partial (4-2)

and vice versa. The next lemma proves that (4.2) is indeed sufficient.

Lemma 4.1.2 The union of intersecting 2-modules that satisfy (4-2) is

again a 2-module.
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Proof. Let v G A1 n P1 and suppose that A2nP = 0 = AnP2.

Since v is A2-partial, vertices x,y G A2 exist such that v sees x and

misses y. Furthermore, A2 fl P = 0 and P is a 2-module, so x sees

every vertex in P1 and y misses every vertex in P1, hence every vertex

in B1 is A2-partial and therefore P1 ÇA1. The symmetric argument
asserts A1 Ç B1, thus a? sees every vertex in A1, a contradiction to our

assumption that every vertex in A2 is A1-partial.

To study (4.2) in more detail, we define an A04 (alternating cycle of

length 4) to be a sequence of four distinct vertices x, v, w, y such that vw

and xy are edges whereas xv and wy are nonedges. We write vw \\ xy
if x, v, w, y is an AG4 and vw || yx if y, v, w, x is an A04.

Lemma 4.1.3 If W = W1 + W2 satisfies (4-2), then there is an AC±
ab || cd with a,d G W1 and b,c G W2.

Proof. Suppose that a vertex v in W does not belong to an A04
ab || cd with b, c G W1 and a,d £ W2. Without loss of generality, we

may assume that v belongs to W2. Then v partitions W1 into nonempty
sets A1 = W1 n iV(v) and P1 = VF1 D N(v).

Let A2 = VF2 H Ä^A1) and P2 = W2 n A^P1). Since every vertex

in VF1 is W2-partial, the vertex sets A2 and P2 are nonempty. Fur¬

thermore there are no edges between vertices in A2 and vertices in P1,
for otherwise v would belong to an AG4. Similarly, every edge between

vertices in P2 and vertices in A1 exists. It is now easy to verify that

W - v = W1 + (W2 - v) still satisfies (4.2).

By repeatedly removing vertices that do not belong to an A04 ab ||
cd with a,d G W1 and 6, c G W2, we end up with a vertex set W =

W1 + W~ (not necessarily a 2-module) that satisfies (4.2) and every

vertex belongs to an A04.

By requiring (4.2) for 2-modules, we established an equivalent state¬

ment of (i) for 2-modules. Regarding (ii), however, this is not so easy:

For every graph G = (V, E) and every vertex v G V, the set V — v is

2-homogeneous, and V — v satisfies (4.2) for almost every graph. To

make the decomposition unique for a large number of graphs, we have

to find further constraints on 2-modules.

In the rest of this chapter, we discuss decompositions that are unique
for prime graphs which are not split, not bipartite or not cobipartite,
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respectively. So we are looking for constraints on 2 modules which imply
that the union of 2-modules which do not contain each other induces a

split graph, a bipartite graph or a cobipartite graph, respectively. In the

following, we require that the 2-modules themselves induce split graphs,

bipartite graphs ox cobipartite graphs. In other words, we require that

W1 (W2) is a clique or a stable set.

4.2 Bipartite modules

In this section, we consider 2-modules W for which W1 and W2 are

stable sets and for which (4.2) holds. To simplify our terminology, we

call those 2-modules bipartite modules:

Definition 4.2.1 A vertex set W of a graph G = (V,E) is a bipartite
module if a partition W = W1 + W2 (called bipartition^ exists such

that

(i) W1 and W2 are nonempty stable sets,

(ii) every vertex in W is W1 -partial or W2 -partial, and

(Hi) every vertex inV — W is neither W1 -partial nor W2 -partial.

A bipartite module W is called bipartite-homogeneous if W is a proper

subset of V.

Clearly nontrivial bipartite modules are bipartite-homogeneous sets

and vice versa. Furthermore, note that the bipartition of a bipartite
module is unique.

In the following, we show that the maximal bipartite-homogeneous
sets of a nonbipartite prime graph are disjoint. The next lemma prepares

this proof.

Lemma 4.2.2 Let A and B be bipartite modules with bipartitions A =

A1 + A2 and B = P1 + P2. If A1 fl P1 / 0 and neither A nor B is a

\-module, then

(i) A2 n P2 ^ 0 and

(ii) A1 fl B2 = 0 = A2 n P1.

Proof. We prove (i) first. Suppose the contrary, that is, A2 DP2 = 0.

Let b denote a vertex in A1 fl B1. Since b is A2-partial and P2-partial,
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there are vertices a G A" and c G B" which see b. By our assumption,
c cannot be in A2, hence c belongs to V — A, thus c is A1-universal.

Furthermore, because P1 is stable, a is in V — B and is therefore P1-

universal.

Now a is A1-partial, so there is a vertex d in A1 that is missed by
a. On the one hand, d cannot belong to P1 because a is P1-universal.

On the other hand, d cannot belong to P2 because c G P2 sees d.

So d $ B, hence d is P2-universal, thus A fl P2 =0. Since b is

P2-partial, a vertex e E B2 exists which is missed by b. Now e is a

vertex in V — A that sees d but misses b, a contradiction because no

vertex in V — A may be A1-partial.

It remains to prove (ii). Because of symmetry, it suffices to show

that A1 fl B2 = 0. Suppose the contrary. Then there are vertices

a G A1 0 P1, b G A1 H P2 and ce^flS2 (the latter because of (i)).
Since b is P1 -partial, there is a vertex d G P1 which sees 6. But J cannot

be in V — A, for otherwise d would see a, a contradiction because P1 is

stable. Hence d G P1 0 A2.

Now every A-partial vertex is P1-partial and P2-partial, so it must

belong to P. But this is impossible because P1 and P2 are stable sets.

Therefore A is a 1-module, a contradiction to our assumption.

Let A and B be two intersecting bipartite modules of a prime graph
G = (V, E). Without loss of generality, we may assume that the biparti¬
tions A = A1 + A2 and P = P1 + P2 are labeled such that A1 n P1 / 0.
Since neither A nor P is a 1-module, it follows from Lemma 4.2.2 that

(A1 UP1) + (A2 UP2) is a partition of AUP and that vertices v G A1 HP1

and w G A2 PlP2 exist. Clearly every vertex in A1 UP1 is A2 UP2-partial
and vice versa. We claim that A1 U P1 and A2 U P2 are stable sets.

If two vertices a and b in A1 U P1 are adjacent, then a and b do

not belong to A1 H P1. Because of symmetry, we may assume that

a G A1 — P1 and b G P1 — A1. But a misses u and therefore every

vertex in P1, a contradiction. So A1 UP1 is a stable set. By symmetry,
the same holds for A2 UP2.

Since A1 n P1 ^ 0 ^ A2 HP2, a vertex in V - (AUP) is A1-universal

(A1-null, A2-universal, A2-null) if and only if it is P1-universal (P1-null,
P2-universal, P2-null). Therefore the following analog of Fact 3.2.1

holds.
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buildBipartiteModTree(G)
input: a graph G = (V, E)
output: the root of the bipartite modular decomposition tree of G

if |V| = 1 then

let v be the vertex in V;
return an empty node labeled v;

elsif G is disconnected then

let Gy,G2,.. . ,Gt be the connected components of G;
let r% = buildBipartiteModTree( Gi ) for i = 1,... ,t;
return a 0-node with children ry,r2,... ,rt

elsif G is disconnected then

let Gi, G2,.. .

,
Gt be the connected components of G;

let ri = buildBipartiteModTree( Gj ) for i = 1,... ,t;
return a 1-node with children ry, r2,... , tt

else (* G and G are connected and [V| > 1 *)
let G' = (V, E') be the characteristic graph of G;
if G' is a bipartite graph then

let Pi,. . .

,
Ht be the maximal proper modules of G;

let ri = buildBipartiteModTree( Ghi ) for i = 1,. . . ,t;
return a 2-node with children ry,. .. ,rt

else (* G' is not bipartite *)
let By,- ,Bk be the vertex sets of G that correspond

to maximal bipartite-homogeneous sets of G';
let bi — buildBipartiteModTree( Gb{ ) for i = 1,... ,t;
let Hy,... ,Ht be those maximal proper modules of G

which are not contained in By,. ..

, P&;
let ri = buildBipartiteModTree( Gh-, ) for i — 1,... ,t;
return a 3-node with children by, .. .

, bk, ry,. .. ,rt

fi

fi

Algorithm 4.1

Fact 4.2.3 // bipartite modules A = A1 + A2 and B = P1 + P2 of a

prime graph intersect, then A U P = (A1 U P1) + (A2 U B2) is again a

bipartite module.

The uniqueness of the decomposition of nonbipartite prime graphs
into maximal bipartite-homogeneous sets now follows immediately.
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Theorem 4.2.4 The maximal bipartite-homogeneous sets of a prime

nonbipartite graph are disjoint.

Proof. Suppose that two maximal bipartite-homogeneous sets A and

P intersect. Then A U B is a bipartite module, hence A U B — V. But

this is a contradiction because a bipartite module induces a bipartite

graph.

The corresponding decomposition is given in Algorithm 4.1. In the

rest of this section, we briefly discuss some aspects of bipartite modules

with respect to the computation of maximal bipartite-homogeneous sets.

For this purpose, the following definition is useful.

Definition 4.2.5 Two 2K2s are adjacent if they have three common

vertices, and 2K2-components are the equivalence classes of the transi¬

tive closure of the adjacency relation between 2K2s.

Let W be bipartite module. By Lemma 4.1.3, W contains a 2K2.

Furthermore, it is easy to see that if two 2Ä2S are adjacent, then either

both belong to W or none of them is in W. By induction, this holds for

all 2K2s in the same 2PT2-component.

Let 0* denote a 2p2-component and let V(C*) stand for the set of

vertices which belong to some 2P"2 in C*. If a 2P^2 in C* belongs to W,
then V(C*) C W as mentioned above. Moreover, in this case, it is easy

to see that no vertex in W1 - V(C*) is W2 l~l V(C*)-partial. Similarly,
no vertex in W1 - V(C*) is W1 D V(C*)-partial. Therefore V(C*) is a

bipartite-homogeneous set.

Fact 4.2.6 // a 2K2 in a 2K2-component C* belongs to a bipartite-
homogeneous set W, then V(C*) Ç W and V(C*) is also bipartite-
homogeneous.

To compute the maximal bipartite-homogeneous sets of a nonbipar¬
tite prime graph, we can proceed as follows. First, we compute the

2K2-components and test whether they induce bipartite-homogeneous
sets. Second, we select those bipartite-homogeneous sets which are max¬

imal with respect to set inclusion. Third, we take the union if some of

those sets intersect (by Fact 4.2.3, the union is bipartite-homogeneous).
Fourth, we take the union of disjoint sets if the union is again bipartite-
homogeneous.
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If a maximal homogeneous set W is not one of those computed so

far, then W contains vertices W' that do not belong to any 2K2 in W.

Consider again the proof of Lemma 4.1.3. It should be clear that A and

P are bipartite modules if VF is a bipartite module. So we know that

W — W' consists of precisely two disjoint bipartite homogeneous sets

A = A1 + A2 and B = B1 -\- B2 and every vertex in A and P is in a

2K2 in A and P, respectively. In other words, A and P belong to the

already computed bipartite-homogeneous sets.

Again following the proof of Lemma 4.1.3, it is easy to see that

every vertex in W' must be A1 U P1-partial or A2 U P2-partial. To find

the maximal homogeneous sets, it therefore suffices to consider all pairs
of bipartite-homogeneous sets A and P and to compute the set W of

vertices that are A1 U B1 -partial or A2 U P2-partial. It then remains to

test whether A U P U W' is bipartite-homogeneous.

Since all these steps can be carried out in polynomial time, the

bipartite-modular decomposition can be computed in polynomial time.

In fact, a more detailed analysis reveals that the bipartite-modular de¬

composition is in 0(|y|5).

4.3 Split modules

In this section, we consider 2-modules W for which W1 is a chque and

W2 is a stable set and for which (4.2) holds. In other words, W induces

a spht graph Gw = (W1, W2,E(W)).
For this type of 2-modules, a statement similar to Fact 4.2.3 does

not hold. For instance, we can choose A1 -{- A2 — {b, c} + {a,d} and

B1 + B2 = {c, d} + {b, e} of a 05 a, b, c, d, e, so A and P are 2-modules

of the required type but A U P does not induce a split graph.

As it turns out, the above problem appears only if the partitions
A = A1 + A2 and B = B1 + B2 are unrelated to the A-partial and P-

partial vertices. So we additionally require that every VF-partial vertex

must be VF1-universal and VF2-null.

Definition 4.3.1 A vertex set W of a graph G = (V,E) is a spht
module if a partition W = W1 + W2 (called split-partitionj exists such

that

(i) W is a nonempty clique and W2 is a nonempty stable set,

(ii) every vertex in W is W1-partial or W2-partial, and
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(Hi) V — W can be partitioned into sets P, Q and R where

the vertices in P are W-universal,

the vertices in Q are W-null and

the vertices in R are Wy-universal and W2-null.

A split module W is strict if no edges between Q and R exist. Further¬

more, a (strict) split module W is called (strict) split homogeneous if
W is a proper subset of W.

First, we observe that the split-partition W1 + W2 of a spht module

W is unique. This is clear if every vertex in W belongs to a P4 in W,
for every P4 in W must have its midpoints in W1 and its endpoints
in W2. On the other hand, Lemma 4.1.3 guarantees that every spht
module contains a P4. The uniqueness of the split partition now follows

from the proof of Lemma 4.1.3 as we can uniquely determine to which

set the vertex v belongs given we know the spht partition of W — {v}.

Second, note that split modules are split modules in the complement.
This, however, does not hold for strict split modules: A strict spht
module of G is a split module of G such that all edges between P and

R exist.

In the following, we show that the union of intersecting split modules
is again a spht module. Lemma 4.3.2 prepares this proof.

Lemma 4.3.2 Let A and B be intersecting split modules with split-

partitions A1 + A2 and B1 + B2. Then

(i) A1 HP1 /0^ A2nP2; and

(ii) A1nP2 = 0 = A2nP1.

Proof. We prove (ii) first. Because of symmetry, it suffices to show

that A1 fl P2 = 0. Suppose the contrary and let b denote a vertex in

A1 D P2. Since b is A2-partial, there is a vertex a G A2 that sees b.

Furthermore, a is A1-partial, so a vertex c G A1 exists which is missed

by a.

If a belongs to P, then a G P1 because P2 is stable. Since c sees

b G P2 and misses a G P1, we infer that c belongs to P. But this is

impossible because P1 is a clique and P2 a stable set.

So we know that a is not in P, hence a is P-universal. Therefore

c ^ B and no vertex in A2 belongs to P. Since b is P1 -partial, there
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is a vertex d G P1 that misses b. Then d g' A2 and, as A1 is a clique,
d g" A1. So <i misses c, a contradiction to the fact that c is P-universal.

It remains to prove (i). Suppose that A1 fl P1 = 0. Then A fl P =

A2 n P2 ^ 0 and, by (ii), A1 n P2 = 0 = A2 n P1. Let 6 G A2 n P2.

Since b is A1-partial, there are vertices a and c in A1 such that 6 sees a

and misses c. Then a is P2-universal and c is P2-null. So every vertex

in P2 is A1-partial, which implies P2 Ç A2. This is a contradiction

because every vertex in P1 is P2-partial but it must not be A2-partial
(as such a vertex does not belong to A).

Let A and P be intersecting split modules. Then Lemma 4.3.2 im¬

plies that (A1 U P1 ) + (A2 U P2 ) is a partition of A U P and that vertices

v G A1 fl P1 and w G A2 fl P2 exist. Clearly every vertex in A1 U P1 is

A2 U P2-partial and vice versa. We claim that A1 U P1 is a clique and

that A2 fl P2 is a stable set.

If two vertices a and b in A1 U P1 are not adjacent, then a and b

do not belong to A1 DP1. Because of symmetry, we may assume that

a G A1 — P1 and 6 G P1 — A1. But a sees i; and therefore every vertex

in P1, a contradiction. Similarly, if two vertices a and bin A2 U B2 are

adjacent, we may assume that a £ A2 — B2 and b G P2 — A2. But a

misses w and therefore every vertex in B~, again a contradiction.

Since A1 n P1 ^ 0 and A2 f~l P2 / 0, a vertex in V - (A U B) is

A-universal if and only if it is P-universal, and it is A-null if and only if

it is P-null. Therefore the following analog of Fact 3.2.1 and Fact 4.2.3

holds.

Fact 4.3.3 // (strict) split modules A — A1 + A2 and B = P1 + P2

intersect, then A U P = (A1 UP1)-)- (A2 UP2) is again a (strict) split
module.

The uniqueness of the decomposition of prime nonsplit graphs is

established by the next theorem, the analog of Theorem 3.2.3.

Theorem 4.3.4 The maximal (strict) split-homogeneous sets of a non-

split graph are disjoint.

Proof. Suppose that two maximal (strict) split-homogeneous sets A

and B intersect. Then AUP is a (strict) split module, hence AUP = V.

But this is a contradiction because a (strict) split module induces a split
graph. D
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buildSplitModTree(G)
input: a graph G = (V,E)
output: the root of the spht modular decomposition tree of G

(1
(2;
(3:
(4
(5
(6
a

(9
(10
(11
(12
(13
(14
(15
(16
(17
(18
(19
(20
(21
(22
(23
(24
(25
(26
(27

if |V| = 1 then

let v be the vertex in V;
return an empty node labeled v;

elsif G is disconnected then

let Gy,G2,. . . ,Gt be the connected components of G;
let ri = buildSplitModTree( Gi ) for i = 1,... ,t;
return a 0-node with children ry, r2,.. . ,rt

elsif G is disconnected then

let Gi, G2,... ,Gt be the connected components of G;
let ri = buildSplitModTree( Gi ) for i = 1,... ,t;
return a 1-node with children ry, r2,... ,rt

else (* G and G are connected and |V| > 1 *)
let G' = (V, E') be the characteristic graph of G;
if G' is a spht graph then

let Pi,... , Hf be the maximal proper modules of G;
let ri = buildSplitModTree( G#; ) for i = 1,... ,t;
return a 2-node with children ry,... ,rt

else (* G' is not split *)
let Sy, •

,
Sk be the vertex sets of G that correspond

to maximal split-homogeneous sets of G';
let si = buildSplitModTree( Gs, ) for * = 1,... ,t;
let Hy,... ,Ht be those maximal proper modules of G

which are not contained in Sy,.. .

, Sk]
let n = buildSplitModTree( GHi ) for i = 1,... ,*;
return a 3-node with children sy,... ,Sk,ry,... ,rt

Û

fi

Algorithm 4.2

The decomposition derived so far is given in Algorithm 4.2. It gener¬

alizes BABEL AND Olariu's separable-homogeneous decomposition [5]
for nonsplit prime graphs as their "maximal separable-homogeneous
sets" correspond to those maximal split-homogeneous sets W in the

characteristic graph in which every vertex belongs to a P4 in Gw- In¬

dependently, RASCHLE AND SIMON [67] proposed the decomposition of

prime graphs into "P4-spfit graphs", which are strict spht-homogeneous
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sets in the characteristic graph or its complement. To prove the unique¬

ness of the latter decomposition, we need the following lemma.

Lemma 4.3.5 Let G be a prime graph and let A and B be strict split-

homogeneous sets of G and G, respectively. Lf A intersects B, then

A U P is a strict split module of G and G and either

(i) V = A U P or

(ii) there is precisely one vertex v inV — A — B, and v does not

belong to any P4 of G.

Proof. Let A = A1 + A2 and B = P1 + P2 be the spht-homogeneous
sets of G and G, respectively. By Fact 4.3.3, AUP is a split module. Fur¬

thermore no edges between A-partial and A-null vertices exist whereas

all edges between P-partial and P-universal vertices are present, hence

A U P is a strict split module of G and G.

Let R denote the set of A U P-partial vertices. Then P U A U P is

a module. But G is prime, thus R U A U P = V. Now R is a module,
hence \R\ < 1, thus either (i) or (n) holds.

Remark: Lemma 4.3.5(h) can be used to decompose prime split

graphs because the vertex v is unique. In fact, the modular decomposi¬
tion together with this decomposition of prime split graphs is precisely
JAMISON AND Olariu's "homogeneous decomposition" [43]. BABEL

AND Olariu [5] further refined the decomposition of prime split graphs.
Those results are discussed in Section 5.3 of the next chapter.

If Lemma 4.3.5 applies, then G is a split graph. Thus a strict spht-

homogeneous set of G cannot intersect a strict split-homogeneous set

of G given G is prime nonsplit. Together with Theorem 4.3.4, this

establishes the uniqueness of RASCHLE AND SiMON's decomposition.

Theorem 4.3.6 If a prime graph G is not split, then the maximal strict

split-homogeneous sets of G and G are disjoint.

We conclude this section with discussing the similarities between

modules and (strict) split modules. Since modules are modules in the

complement, it seems at first glance that split modules are closer re¬

lated to modules than strict split modules. On the other hand, given a

homogeneous set P and a marker vertex h G H, every P4 of G has a

corresponding P4 either in Gy-H+h or in Gh- We show that a similar
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result holds for strict split-homogeneous sets of G and G but not for

spfit-homogeneous sets.

Let W = W1 + W2 be a strict split module. Then every P4 of G

with at least one but not all its vertices in W is of the following type.

type (1) wpqyq2 where w G W, p G P, qy G Q, q2 G Q

type (2) pywp2q where py G P, w G W, p2 £ P, q £ Q

type (3) pyw2p2r where py E P, w2 VF2, p2 E P, r £ R

type (4) w2pryr2 where 102 G W~, p £ P, ry £ R, r2 £. R

type (5) rwypq where r G P, wy G VF1, p G P, ç G 0,

type (6) rwypw2 where r G R, wy G VF1, p G P, w2 G VF2

P

type (3) type (4) type (5)

Figure 4.1: The subgraphs induced by a P4 of types (3) to (5).

The graphs induced by a P4 abed in Gw together with a P4 of type

(3) to (5) are depicted in Figure 4.1, (bold lines indicate edges in P4S
with vertices in V — W). The existence of a P4 of type (3) to (5) implies
a P4 of type (6), and a P4 of type (6) together with abed induces a graph
called pyramid, see Figure 4.2.

A pyramid abcdrp is of a P4 abed together with an {a, b, c, df}-universal
vertex p and an {a, b, c, c?}-partial vertex r which sees the midpoints of

abed and misses its endpoints. The complement of a pyramid is a net,
thus a net abedrq consists of a P4 abed together with an {a, b, c, dTf-null
vertex q and an {a, b, c, c/}-partial vertex r which sees the midpoints of

abed and misses its endpoints, see Figure 4.2.

Given a strict split-homogeneous set VF — W1 + VF2, we can replace
VF1 +VF2 with two nonadjacent marker vertices Wy G VF1 and w2 G VF2.
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r Q

a p d a d

Figure 4.2: A pyramid abcdrp and a net abcdrq.

Then every P4 of G has a corresponding P4 either in Gy- w+wi+wz or in

Gw • Figure 4.3 illustrates the substitution of marker vertices for strict

split-homogeneous sets of G or G. The graph depicted in Figure 4.3(a)
has a strict split-homogeneous set A = {dy,d2} + {ei,e2J and a strict

spht-homogeneous set P = {ay,a2} + {61, b2} in the complement. Fig¬
ure 4.3(b) shows the graph after the substitution of adjacent marker

vertices ai,&i for A and of nonadjacent marker vertices dy,e2 for P.

Figure 4.3: The substitution of marker vertices for strict

split-homogeneous sets of G and G.

If W — W1 + W2 is a split module, then a P4 with at least one but

not all its vertices in W is of type (1) to (6), or one of its edges has

an endpoint in Q and the other in R. In the latter case, the following
additional P4S are possible.

type (7) wyrqyq2 where Wy G VF1, r G P, qy G Q, q2 G Q

type (8) rywyr2q where ri G P, wy G VF1, r2 G R, q G Q

type (9) w2prq where w2 G W2, p £ P, r £ R, q £ Q

type (10) w2pqr where w2 G VF2, p£P,q£Q,r£R

type (11) pwyrq where p £ P, wy £ VF1, r £ R, q £ Q
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type (12) w2Wyrq where iv2 £ W2, wy £ VF1, r £ R, q £ Q

Note that the following pairs of P4 are complementary: type (1) and

(2), type (3) and (7), type (4) and (8), type (5) and (9), type (6) and

(12), type (10) and (11).

If a split module W = Wy + VF2 is not a strict split module of G

or G, then substituting two marker vertices for VF1 and W2 does not

satisfy the desired property regarding the P4S: There are vertices q G Q

adjacent to some ry £ R and vertices p £ P nonadjacent to some r2 £ R,
thus for every P4 abed in Giy either qryba or r2cpa has no corresponding
P4 in Gy-w+Wl+w2-

To ensure that every P4 of G has a corresponding P4 in Gw or

in the graph after the substitution, we replace W with a marker P4.

Figure 4.4 iUustrates this substitution. The prime nonsplit graph of

Figure 4.4(a) has a split-homogeneous set A = {cy,c2,cs} + {by,b2,b$},
which is replaced with the marker P4 byCyc^bz in Figure 4.4(b).

(a)

d.

ci i [c2 /'

\\&2
61 J

)
X a

C3

Figure 4.4: The substitution of a marker P4 for a split-homogeneous
set.

The substitution of maker P4S was proposed by BABEL AND Olariu

in [5] whereas the substitution of two marker vertices for strict split-

homogeneous sets was given by RASCHLE AND SlMON in [67]. Conse¬

quently, BABEL AND OLARIU do not perform the substitution shown

in Figure 4.3 and RASCHLE AND SlMON fail to substitute the split-

homogeneous set of Figure 4.4. Of course, both approaches can be

combined in a natural way by substituting marker P4S only if the split-

homogeneous sets are neither strict in the graph nor strict in the com¬

plement, otherwise we use two marker vertices as described before.
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4.4 The combined decomposition

In this section, we show that the decompositions of the previous two sec¬

tions can be combined. To begin with, note that the bipartite-modular
decomposition can also be applied to the complement of a graph. We

call the complement of bipartite modules and bipartite-homogeneous
sets cobipartite modules and cobipartite-homogeneous sets, respectively.

Lemma 4.4.1 Let A = A1 +A2 be a bipartite module and B = P1 +P2
be a cobipartite module of a prime graph. Then A H P = 0.

Proof. First, we show that IP1 fl A| < 1. Suppose the contrary. Then

P1 consists of two adjacent vertices a G A1 and b £ A2. Since A is

not a 1-module, an A-partial vertex c exists. Without loss of generality,
assume that c is A1-universal and A2-null. Because c is P1-partial, c

belongs to B~.

Since a is A2-partial, there is a vertex d G A2 which misses a. More¬

over, d (£ B2 because c £ B2 misses d, hence d Ç: B, thus d is P-null.

On the other hand, there is a vertex e £ B2 which sees b and misses a.

If e g' A, then e sees d, a contradiction as d is P-null. So e £ A1. Since

b is A1-partial, there is a vertex / G A1 which misses b. Now / sees c

and misses e, hence / is P~-partial and it must belong to P. But this

is impossible for / misses e G B2 and misses b £ P1.

So far, we have show that \Bl Pi A| < 1. By symmetry, we also know

that |P2 H A| < 1. Now suppose that IP1 n A\ = 1. Without loss of

generality, assume that b £ B1 fl A1. Since \AX\ > 2 and IP1! > 2,
vertices a £ A1 — P1 and c £ P1 — A exist. Furthermore, c is A1-

universal, thus a sees c and misses b, hence a is P1-partial, thus a £ B2.

By our assumption A2 fl P = 0. Since b is A2-partial, there are vertices

d,e £ A2 such that b sees d and misses e. Therefore d is P-universal
and e is P1-null, a contradiction because c £ P1 is not A2-partial.

So (P1 fl A| = 0 and, by symmetry, P2 fl A = 0, which proves our

lemma. D

Lemma 4.4.2 Let A = A1 +A2 be a bipartite module and B — B1+B2
a split module of a prime graph. Then Afl P = 0.

Proof. In a fist step, we show that the assumption A fl P ^ 0 and

A fl P2 =0 leads to a contradiction. Without loss of generality, let
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a £ A1 HP1. Since a is P2-partial, there are vertices b,c £ B2 such that

a sees 6 and misses c. Hence b is A1-universal and c is A1-null, thus every

vertex in A1 is P2-partial, therefore A1 Ç P1. This is a contradiction

because A1 is a stable set consisting of at least two vertices whereas P1

is a clique.

To show our lemma, it remains to prove that the assumption A fl

P2 j^ 0 also leads to a contradiction. Without loss of generality, let

b £ A1 fl P2. Since b is A2-partial, there is a vertex a £ A2 that sees b.

Then a £~ B2 because P2 is stable.

Case 1: a £~ B. Then a is P-universal. Since a is A1-partial, there

is a vertex c G A1 that misses a. Moreover, c (Jl B. Since b is P1-partial,
there are vertices d,e £ B1 such that b sees d and misses e. Now a sees

d and e, hence d,e ^ A2, thus d (£ A. But <i sees c, so c is P1-universal,
hence e ^ A. But this is a contradiction because e is A1-partial.

Case 2: a£B. Then a £ B1.

Case 2.1: B1 <2 A. Let c be a vertex in P1 - A. Then c is A2-

universal. Since a is A1-partial, there is a vertex d £ A1 that misses

a. Furthermore, d $ P1 and, since c? is A2-partial, a vertex e G A2

exists which sees d. Now e misses a and sees c, thus e is P1-partial
and therefore e £ B2. So d is P2-partial, a contradiction as d does not

belong to P1.

0ase i?.J?; P1 C A. Then P1 consists of a G A2 and another vertex

c £ A1, thus every vertex in B2 distinguishes between a and c. Since

both types of vertices in P2 constitute modules and our graph is prime,
P2 consists of b £ A1 and another vertex d! G A2, i.e. the graph induced

by P is the P4 bacd. If this P4 constituted the whole graph, then A

would not be a bipartite module. So we may assume that a P-partial
vertex e exists. Then e sees c and misses b, hence e is A1-partial and

therefore e G A2. But this is a contradiction because e sees a G A2 and

A2 is a stable set. D

A spfit module is a spht module in the complement, thus the follow¬

ing corollary holds.

Corollary 4.4.3 Let A = A1 + A2 be a cobipartite module and B =

B1 + B2 a split module of a prime graph. Then A fl P = 0.

The above results imply the uniqueness of the combined decompo¬
sition given in Algorithm 4.3
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buildExtModTree(G)
input: a graph G — (V, E)
output: the root of the extended modular decomposition tree of G

if \V\ = 1 then

let v be the vertex in V;
return an empty node labeled v;

elsif G is disconnected then

let Gy, G2,... ,Gt be the connected components of G;
let rt = buildExtModTree( G% ) for i = 1,... ,t;
return a 0-node with children ry, r2,... ,rt

elsif G is disconnected then

let Gy,G2,... ,Gt be the connected components of G;
let r, = buildExtModTree( G, ) for i = 1,... , t;
return a 1-node with children ry,r2,... ,rt

else (* G and G are connected and |V| > 1 *)
let G' — (V', E') be the characteristic graph of G;
if G' is bipartite, split or cobipartite then

let Hy,... ,Ht be the maximal proper modules of G;
let rt = buildExtModTree( GH, ) for i = 1,... , t;
return a 2-node with children ry,... , rt

else (* G' is not bipartite, split or cobipartite *)
let Pi, , BkB be the vertex sets of G that correspond

to maximal bipartite-homogeneous sets of G';
let K = buildExtModTree( GB, ) for t = 1,... ,kB]
let 0i, • • •

, 0fcc be the vertex sets of G that correspond
to maximal cobipartite-homogeneous sets of G';

let cx = buildExtModTree( Gc, ) for » = 1,... ,kC]
let Sy, , Sks be the vertex sets of G that correspond

to maximal split-homogeneous sets of G';
let Sl = buildExtModTree( GSt ) for i = 1,... , kS]
let Hy,... ,Ht be those maximal proper modules of G

which are not contained in Pi,... , BkB ,

01, • •

, Ckc and Sy,. ..

, Sks '>

let rt = buildExtModTree( GHl ) for î = 1,... ,t;

(32) return a 3-node with children by,.. MB,
(33) cy,... ,ckc, sy,... ,sks and ry,. • ,rt]

(34) fi

(35) fi

Algorithm 4.3
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P4-eomparability graphs

To obtain subclasses of perfectly orderable graphs that can be recog¬

nized in polynomial time, HoÀNG AND REED [40] suggested restricting
the number of ways a P4 may be oriented. Since a perfect order is

obstruction-free, perfectly orderable graphs are precisely those graphs
which admit an acyclic orientation such that every P4 is oriented as one

of the P4S in Figure 5.1 (up to symmetry). Six classes of graphs are

obtained by permitting any nonempty proper subset of these P4S in an

acyclic orientation.

•<—•—>•—>• type 1

• ^» >• ^« type 2 (indifferent)

• >•< • >• type 3 (transitive)

Figure 5.1: All obstruction-free orientations of a P4.

If only P4S of type 1 and 2 are permitted, the corresponding class

of graphs is a subclass of brittle graphs, and brittle graphs can be rec¬

ognized in 0(|P|2) [72]. If only P4S of type 1 and 3 are permitted, the

recognition of the corresponding class of graphs is NP-complete [37].
The remaining graphs admit an acyclic orientation with P4S of type 2

and 3. We call these graphs wing-comparability and the corresponding
orientation wing-transitive. To date, it is not known whether wing-

comparability graphs can be recognized in polynomial time.

58
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Ps P4

nontrivial P3-class P4-component strong P4-component

Corollary 3.3.4 Corollary 5.1.11

Theorem 3.3.3 Theorem 5.1.12

Corollary 3.3.5 Corollary 5.1.13

Theorem 3.3.6 Theorem 5.2.1

Lemma 3.3.7 Lemma 5.2.6 Lemma 5.2.8

Theorem 3.3.8 Theorem 5.2.2

Table 5.1: Analogous results on the P3- and P4-structure.

If only P4s of type 3 are perinitted, the corresponding graphs are

called P4-comparability and their orientation P^-transitive (every P4 is

transitively oriented). In [40] and [39], FrOÀNG AND REED presented an

0(|y |4) algorithm to recognize P4-comparability graphs and an 0(|V| )
algorithm to compute a Pi-transitive orientation.

In [67], RASCHLE AND SlMON investigated the P4-analog of P3-

classes and developed an 0(|V|2 • |P|) recognition and orientation algo¬
rithm for Pi-comparability graphs. Another relation between P4S was

studied by BABEL AND OLARIU [5]. In the next two sections, we ex¬

tend both Raschle and Simon's and Babel and Olariu's results by

conducting a rigorous study of the P^-structure. As it turns out, most

properties of the P3-structure translate smoothly into similar proper¬

ties of the P4-structure. An overview of the correspondence between

those results is given in Table 5.1. We also prove a stronger version of

a theorem by CHVÀTAL [12] on P4-chains.

In Section 5.3, we analyze the P4-structure of split graphs and use

the obtained results to decompose prime split graphs. In Section 5.4, we

give an OdV^4) algorithm to compute the spht-modular decomposition
and, in Section 5.5, two algorithms for recognizing and orienting P4-

comparabifity graphs are proposed. The first algorithm runs in 0(|P|2)
time and 0(|V| • |P|) space and the other runs in 0(|"F |2 |P|) time and

0(|V| + \E\) space.

Finally, in the last section, we propose a new algorithm that uses the

split-modular decomposition to recognize classes of perfectly orderable

graphs. For instance, HERTZ' bipartable graphs can be recognized this

way.
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5.1 P4-components

In analogy to the P3-classes of Section 3.3, we define P^-classes as the

equivalence classes of the transitive closure of the P^-adjacency relation

where two edges are P^-adjacent if they belong to the same P4. In [40],
HoÀNG AND REED proved the following analog of Theorem 3.3.2.

Theorem 5.1.1 (HoÀNG AND Reed) A graph is P4-comparability if
and only if each of its P^-classes admits a P^-transitive orientation.

We prove the above theorem in Section 5.5. To obtain more general

results, however, we investigate relations between P4S rather than re¬

lations between the edges in P4S. The following relations between P4S

are considered. (Note that nontrivial P4-classes correspond to the weak

Pi-components defined below.)

Definition 5.1.2 Two P^s are

(1) weak-adjacent if they have a common edge, and

(2) adjacent if two wings or a rib and a wing coincide, and

(3) strong-adjacent if they have three common vertices.

The equivalence classes of the transitive closure of the above (weak,
strong) adjacency relation are called (weak, strong) P^-components.

In the rest of this chapter, 0* stands for a P^-component and D*

for a strong Pi-component. Furthermore, we use P* to indicate that

a statement holds for Pi-components and strong P4-components. The

cover of a (strong) Pi-component F*, denoted by V(F*), is the set

of vertices which belong to some P4S in F*. Similarly, E(F*) denotes

the set of edges which belong to some P4S in F*. Given a P4 abed,
we write F*(abcd) for the (strong) Pi-component that contains abed.

Furthermore, we write abed ~ a'b'c'd' if the P4S abed and a'b'c'd' are

strong-adjacent.

Consider again the relations between P4S given in Definition 5.1.2.

Clearly two adjacent P4S are also weak-adjacent. We claim that two

strong-adjacent P4S are also adjacent. To prove this claim, we examine

the graphs induced by a P4 abed and a fifth vertex v. Up to symmetry,
all possibilities are enumerated in Figure 5.2 (bold fines indicate edges
in P4S). Now it is easy to infer that every strong-adjacent P4 is one of

the types given in Table 5.2 (up to symmetry), thus strong-adjacent P4S

are indeed adjacent.
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F

a b c d a b

v

____X

F2A\ ^Vn F\ A
dabcdabcd

F7
V

Fs T

-0 « * • l
bcdabcdabc

V

F9 T

» » i *

Fy- *

10

• t • •

a b c da b c d

Figure 5.2: All possibilities of a P4 together with a fifth vertex v.

type strong-adjacent P4 graph in Figure 5.2

(a) abvd F2, F5

(b) abcv F4, F9

(<0 bcdv Eq, Fs

(d) bavd F%, P3

Table 5.2: All types 0/P4S strong-adjacent to a P4 abed.

The converse, however, does not hold: Weak adjacent P4S need not

be adjacent and adjacent P4S need not be strong-adjacent. A weak form

of the converse are the following lemmas.

Lemma 5.1.3 Two different P±s with a common rib are connected by
a sequence of strong-adjacent P4S.

Proof. Let abed and a'bed' denote the two P4S with common ribs. If

abed and a'bed' are not strong-adjacent, then \{a, a', b, c, d, eü'}| = 6.

If a misses d!, then abed ~ abed' ~ a'bed'. The analogous argument

applies if a' misses d, so it remains to discuss the case ad',a'd £ E.

If a sees a', then abed ~ aa'dc ~ a!ad'c ~ a'bed'. Otherwise, if a

misses a', we find that abed ~ aba'd ~ a'bad! ~ a'bed'.
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Lemma 5.1.4 If the rib of a P4 is the wing of another P4, then those

P4S are connected by a sequence of strong-adjacent P4S.

Proof. Because of symmetry, we may assume that abed and beef
denote the two P4S. If abed and beef are not strong-adjacent, then

\{a,b,c,d,e,f}\ =6.

If a misses e, then abed ~ abce ~ beef. Similarly, if a sees /, then

abed ~ fabc ~ beef. So suppose that a sees e but misses /.

If d sees e, then abed ~ ftaerf ~ 6ae/ ~ free/. If d misses e and rf

misses /, then abed ~ aecd ~ /ecc? ~ /ec6. Otherwise, if d misses e and

cZ sees /, then abed ~ bedf ~ free/.

Two weak-adjacent P4S that are not adjacent have a common rib,
hence it follows from Lemma 5.1.3 that

Corollary 5.1.5 The P4-components and the weak Pi-components are

identical.

The above corollary implies that P4-components correspond to non-

trivial Pi-classes. The P4S to which an edge vw belongs are therefore

contained in the same P^-component, that is, for every edge vw, there

is at most one Pi-component C* with vw £ E(C*). For this reason, we

do not always distinguish between 0* and E(C*). So we write vw £ C*

instead of vw £ E(C*) and C*(vw) for the P^-component that contains

the edge vw.

Regarding P4-components and strong Pi-components, a result sim¬

ilar to Corollary 5.1.5 is impossible because the net of Figure 4.2 is a

counterexample: It has only one Pi-component but consists of three

strong Pt-components. The next lemma shows that, in some sense, the

net is the only exception.

Lemma 5.1.6 // two adjacent P4S do not belong to the same strong

Pi-component, then these two P^s induce a net.

Proof. Let abed and a'b'c'd' be those two adjacent P4S. Since they

are adjacent but in different strong Pi-components, we may assume

that \{a, b, c,d, a',b', c',d'}\ = 6. Furthermore, by Lemma 5.1.3 and

Lemma 5.1.4, those P4S have a common wing. Without loss of general¬

ity, let ab = a'b', thus either a' = a and b' = b or a' = b and b' = a.



5.1. Pi-components 63

Case 1: a' = b and b' = a. We show that abed and bac'd! = a'b'c'd'

belong to the same strong Pi-component, hence this case is impossible.
If c misses c', then abed ~ c'abc ~ d'e'ab. So suppose that c sees c'.

If c sees d', then afeccZ ~ a&ccf ~ bac!d' is a sequence of strong

P4-components. If c misses d', then bac'd' ~ bee'd'. Furthermore

Lemma 5.1.4 imphes that 6cc'c7 and a&c<i belong to the same strong

P4-component, so we are done.

Case 2: a' = a and b' = b. If d sees c', then abed ~ abe'd ~ abc'd',
a contradiction. So we may assume that d misses c' and, because of

symmetry, that d' misses c.

If c misses c', then abed ~ c'feccZ and Lemma 5.1.4 applies to c'&ccZ

and abe'd', hence abed and abe'd' are in the same strong Pt-component,
a contradiction. Therefore c sees c'.

Finally, if d sees d!', then abed ~ &ccZ<f ~ bc'd'd ~ abe'd', again a

contradiction. So <i misses cZ' and the induced subgraph is a net as

claimed.

In the rest of this section, we relate the cover of Pi-components and

strong Pi-components to strict spht modules and split modules. For

that purpose, we need the notion of separable (strong) P4-components.

Definition 5.1.7 A (strong) Pi-component F* is separable if its cover

V(F*) can be partitioned into vertex sets V1 + V2 such that every Pi

in F* has its midpoints in V1 and its endpoints in V2.

The foUowing lemma exhibits the fundamental structure of separable

(strong) P4-components.

Lemma 5.1.8 Given a separable (strong) Pi-component with vertex

partition V1 + V2. Then neither a P3 abc with a £ V1 and b,c £ V2

nor a P3 abc with a,b £ V1 and c £ V2 exists.

Proof. Let F* stand for the (strong) Pi-component. In a first step, we

show that no P3 or P3 as described in our lemma has edges in E(F*).
Assume a P3 abc with a £ V1 and b, c £ V2. Since P* is separable, be

cannot belong to E(F*), so suppose that ab £ E(F*). Then a P4 bade in

F* exists with d £ Vy and e £V2. If ce G E, then bade ~ abce and abce

contradicts the separability of F*. Hence ce G' E. But de £ E implies
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bade ~ bcde, and dc ^ E imphes bade ~ dabc. This is a contradiction

because the P4S bcde and dabc violate the separability of F*.

Now assume a P3 with a, b £ V1, c £ V2 and a P4 cade exists in F*.

Then d £ V1 and e £ V2. lib sees d, then cade ~ cade and ca<i6 violates

the separability of P*; hence b misses d. If b sees e, then cade ~ adeb

and aJe& would violate the separability of P*; thus b misses e. In fact,
we have shown that if b misses the vertices incident to one wing of a P4 in

F*, then the same holds for the vertices incident to the other wing. But

Corollary 5.1.5 and the separability of F* imply that (strong-) adjacent

P4S in P* have a common wing. So by induction on the P4S in F*, no

wing is incident to b, a contradiction to our assumption that b belongs
to the cover of F*.

The remainder of the proof is based on what we have already shown,

namely that an edge in a P3 or a P3 as defined in our lemma does not

belong to a P4 in F*. We call those P3 and P3 forcing because every

P4 with an edges in such a P3 or P3 is forced out of F*. Next, we show

that no forcing P3 abc can exist.

Since F* covers b, there is a P4 dbef in F* and therefore d £ V". If

cd £ E, then bdc is a forcing P3, and if ad g1 E, then bad is a forcing

P3; in both cases a contradiction to bdef £ F*. Therefore cd ^ E and

ad £ E; thus cadb is a P4. Since F* is separable, cadb ÇjL F*. Moreover

cadb and dbef are adjacent but do not induce a net, hence cadb ~ dbef,
thus cadb contradicts the separability of F*.

It remains to prove that no forcing P3 abc exists. Since F* covers c,

there is a P4 cdef £ F*, hence d £ V1. Moreover bd £ E, for otherwise

the forcing P3 deb would contradict dcef £ F*. We say that an edge
vw £ F* with v £ V2 and w £ V1 is

typel if b sees v and a forcing P3 wbu exists, and

type2 if b sees w and a forcing P3 ubv exists.

Figure 5.3 illustrates this definition. (Solid lines indicate edges that

must exist whereas dotted fines indicate edges that must not exist.)

Obviously cd is type2. We claim that every wing of a P4 in F* is

either typel or type2. From this follows immediately that P* cannot

cover b, a contradiction to our assumption.

The proof of the above claim is by induction on the P4S in P*. Since

cd is type2, we have already settled the basis. For the inductive step,
it suffices to show that one wing in a P4 in F* is typel or type2 on the
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> V

V
v b u

vw is typel vw is type2

Figure 5.3: A typel and type2 edge as defined in the proof of
Lemma 5.1.8.

assumption that this already holds for the other wing in the same P4.

So let vwxy denote an arbitrary P4 in F* and assume that vw is typel

or type2.

Case 1: vw is typel. Then v misses u, for otherwise the forcing

P3 wvu would contradict vw £ F*. We distinguish the following two

subcases.

Case 1.1: u = y. If 6 misses x, then xyb is a forcing P3, a contra¬

diction to vwxy £ F*. Therefore b sees x; thus b sees y and xbv is a

forcing P3, i.e. xy is typel.

Case 1.2: u 7^ y. Then \{b,u,v,w,x,y}\ = 6. Furthermore, both

bx ^ E and by 0 E cannot hold, as otherwise vwxy ~ bwxy but bw

cannot belong to a P4 in F*. If bx (£ E and by £ E, then xyb is a

forcing P3, a contradiction to bwxy £ F*. If bx G E and by g" P, then

vwxy ~ vbxy, a contradiction because vbxy violates the separability of

F*. Therefore bx £ E and by £ E holds; thus b sees x and wby is a

forcing P3, i.e. xy is type2.

Case 2: vw is type2. Then u sees w, for otherwise the forcing P3

wuv would contradict vwxy £ F*. Again we distinguish two subcases.

Case 2.1: x = u. If b misses y, then vwxy ~ vbxy and vbxy con¬

tradicts the separability of F*. Therefore b sees y and xfeu is a forcing

P3; thus xy is typel.

Gase #.j2: x 7^ m. Then |{&, u, v, w,x, y}\ = 6. Assume that b

misses x. Then b misses y as well, for otherwise the forcing P3 xyb
would contradict vbxy £ F*. If u misses y, then either vwxy ~ uwxy

and uwxy contradicts the separabifity of F* or buxy ~ bwxy ~ vwxy,

a contradiction to foi^y G" P* because of the forcing P4 buv. So m sees
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y and vbuy ~ vwuy ~ vwxy, a contradiction as vbuy g' F* because of

the forcing P4 ubv.

Therefore our assumption was wrong; so b sees x. Moreover b sees

y, as otherwise vwxy ~ vbxy and vbxy would violate the separability of

F*. Thus b sees x and wby is a forcing P3, i.e. xy is type2.

Suppose that a vertex v is not covered by a (strong) Pi-component

F*(abcd). Then the only possible graphs are the Pi, the P7 and the

Pio of Figure 5.2, i.e. v is either {a,b, c, c?}-universal, {a, b, c, d}-nvl\ or

it sees the midpoints but misses the endpoints of the P4 abed. We use

this observation to proof the next lemma.

Lemma 5.1.9 Let F* be a (strong) Pi-component and v a vertex not

covered by F*. If v and a Pi in F* induces an F7, then the graph
induced by v and any Pi in F* is an P7.

Proof. Our proof is by induction on the P4S in a (strong) Pi-

component P*. For the inductive step, we show that a P4 a'b'c'd'

together with v induces an P7 on the assumption that an adjacent P4
abed together with v induces an P7. We distinguish the following cases:

Case 1: Two wings coincide. Without loss of generality, we may

assume that the wing ab coincides with the wing a'b'; thus either a' = a

and b' = b or a' = b and b' = a. The latter, however, is impossible
because a'b'c'd' and v would not induce an Pi, P7 or Pio- In the former

case, the only possible induced graph is the P7 as claimed.

Case 2: A wing coincides with a rib. A wing of abed cannot coincide

with b'c' as otherwise the graph induced by a'b'c'd' and v would not be

an Pi, P7 or Pio. Therefore, a wing of a'b'c'd' must coincide with be.

This implies that the graph induced by a'b'c'd' and v is an Pi; thus

\{a,d,a',b',c',d'}\ = 6.

Without loss of generality (symmetry), let b = a' and c — b'. Then

d' sees a and d, for otherwise abvd' or dcvd! would be a P4 in P* that

covers v. So ad'dc is a P4 in F*, a contradiction because ad'dc and v

induce an P5. D

If a V(P*)-partial vertex r exists, then there is a P4 abed in F* such

that r is {a, b, c, c?}-partial, hence r together with abed induces an P7.

By Lemma 5.1.9, the vertex r sees the midpoints of every P4 in F* and

misses its endpoints; thus F* is separable.
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Furthermore, if C* is a Pi-component, then r cannot be adjacent to

a V(C*)-n\ill vertex q, as otherwise every P4 abed in F* would imply a

P4 qrba in C*, a contradiction to our assumption that r is not covered

by P*. The next corollary summarizes our findings.

Corollary 5.1.10 Let F* be a (strong) Pi-component whose cover is

not a module. Then F* is separable and every V(F*)-partial vertex is

V1 -universal and V2-null. Moreover, if C* is a Pi-component, then no

edge between a V(C*)-partial and a V(C*)-null vertex exists.

Next, we investigate the relation between separable (strong) Pi-

components and modules. Let F* denote a separable (strong) Pi-

component and consider an edge vw with both endpoints in V2. From

Lemma 5.1.8, it follows that no vertex in V1 is {v, w}-partial, hence v

and w have the same neighborhood relative to V — V2. By induction,
this holds for every pair of vertices in the same connected component
of Gyi, thus a connected component of Gy? is a module. Since the

analogous argumentation applies to V1 and G, we have the following

analog of Corollary 3.3.4.

Corollary 5.1.11 In a prime graph, the cover of a separable Pi-com¬

ponent is a strict split module and the cover of a separable strong Pi-

component is a split module.

Recall that every P4 not contained in a strict split-homogeneous
set VF = VF1 + VF2 has a corresponding P4 in the graph after the

substitution of two nonadjacent marker vertices for VF1 and VF2. But

such a P4 either has all its vertices in V —W or is of type (1) to (6) listed

on Page 52. In each case, this P4 is not VF-partial, thus the Pt-analog
of Theorem 3.3.3 holds.

Theorem 5.1.12 Let C* denote an arbitrary P4-component. Then no

V(C*)-partial Pi exists.

Let VF be a strict spht module and abed a P4 in Gw- If VF C

V(C*(ab)), then a VF-partial P4 would exist, a contradiction to Theo¬

rem 5.1.12. Hence V(C*(ab)) Ç W.

Similarly let VF be a split module and D* a strong Pi-component
that contains a P4 with all its vertices in VF. If VF C V(D*), then strong-

adjacent P4S abed ~ a'b'c'd' in D* exist such that {a, b, c,d} Ç VF and
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{a',b',c',d'} % W. But every possibility of Table 5.2 contradicts the

definition of a spht module, thus the analog of Corollary 3.3.4 holds.

Corollary 5.1.13 Let W be a vertex set and abed be a P4 of Gw- If

W is a split module, then V(D*(abcd)) Ç VF. Similarly, if W is a strict

split module, then V(C*(ab)) Ç W.

The above corollary together with Lemma 4.1.3 implies that every

minimal strict spht module is the cover of some Pi-component and that

every minimal split module is the cover of some strong Pi-component.

5.2 GALLAI-type theorems

In this section, we prove the Pi-analogs of GALLAl's decomposition
theorem. The key theorem is the following Pi-analog of Theorem 3.3.6.

It states that (strong) Pi-components can be uniquely identified by their

covers.

Theorem 5.2.1 Two different (strong) Pi-components have different
covers.

The proof of the above theorem is rather lengthy, which is why we

moved it to the end of this section. Given Theorem 5.2.1 holds, however,
it is quite easy to show the following GALLAI-type theorem for (strong)
P4-components.

Theorem 5.2.2 Let G = (V,E) be a prime graph that is not split.
Then the P4S not contained in one of the maximal strict split-homogeneous
sets of G constitute a P4-component that covers G, and the P4S not con¬

tained in one of the maximal split-homogeneous sets of G constitute a

strong Pi-component that covers G.

Proof. If no strong Pi-component covers G, then, by Corollary 5.1.10

and Corollary 5.1.11, the cover of every strong Pi-component induces a

split graph. Since G is prime nonsplit, Theorem 3.4.4 implies a 05, P5,

P5, F2 or F2, where the F2 and P2 refer to the graphs in Figure 3.1.

But each of those graphs contains two strong-adjacent P4S that induce

a 04, 05 or 2K2, hence the corresponding strong P4-component does

not induce a split graph, a contradiction.
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So we know that a strong Pi-component, say D*, covers G. Let abed

be a P4 not contained in one of the maximal split-homogeneous sets of

G. Then D*(abcd) covers the whole graph, for otherwise V(D*(abcd))
would be split-homogeneous and therefore be contained in a maximal

split-homogeneous set, a contradiction to our assumption. But Theo¬

rem 5.2.1 implies that D* = D*(abcd), thus we have shown the second

part of our theorem.

To prove the first part, let 0* be the Pt-component that contains

all P4S in D*. Then 0* covers G and the above argumentation remains

valid if we replace strong P^-components and split-homogeneous sets

with Pi-components and strict spht-homogeneous sets.

Corollary 5.1.10 together with Corollary 5.1.11 implies that the cover

of a strong Pi-component that does not cover the whole graph is either

homogeneous or split-homogeneous in the characteristic graph. There¬

fore every strong Pi-component in a graph without homogeneous and

spht-homogeneous sets covers the whole graph. By Theorem 5.2.1, there

is at most one such component, thus we have

Corollary 5.2.3 // a graph G has neither homogeneous sets nor split-

homogeneous sets, then every P4 in G belongs to the same strong Pi-

component.

A star-cutset of a graph G = (V, E) is a vertex set S such that

Gy-s is disconnected and 0s contains a dominating vertex. In [12],
CHVÀTAL showed that if neither G nor its complement has a star-cutset,
then every two P4S are "3-chained", that is, every two P4S belong to the

same strong Pi-component. We claim that the above corollary is a

stronger version of ChvÀTAL's theorem. We do this by proving that a

graph with homogeneous or spht-homogeneous sets has a star-cutset in

the graph or its complement but not vice versa. The latter is easy as

the P5 is an example of a graph that has star-cutset but has neither

homogeneous nor split-homogeneous set.

Now suppose that a graph G = (V, E) has a homogeneous set P. If

there are P-null vertices, then (N(h) C\ V — H) + h is a star-cutset for

every vertex h £ H. If no P-null vertices exist, then G = Gh + Gy-H,
hence every vertex h £ H is a star-cutset of 0. Next, suppose that

G = (V,E) has a spht-homogeneous set VF = W1 + W2. Then S =

W1 U R U P is a star-cutset as every vertex in VF1 is dominating in Gs

and Gquwz is disconnected (even if Q = 0).
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In the remainder of this section, we prove Theorem 5.2.1. In a first

step, we show the theorem for Pi-components. The following lemmas

prepare this part of the proof.

(0
—>

W V W V w

(ill)

W V VJ V w

>
,

/N
V W V W V w

-v-

(ii) (iv)

Figure 5.4: Lemma 5.2.4 illustrated.

Lemma 5.2.4 Let vw be an edge of a Pi and z a vertex different from

v and w.

(i) If vw is a wing and vz,wz £ E — C*(vw), then z sees all the

vertices in the Pi.

(ii) If vw is a wing, z misses v and wz £ E — C*(vw), then the Pi

can be labeled vwxy and z sees x but misses y.

(iii) If vw is a rib and vz,wz £ E — C*(vw), then the Pi can be

labeled uvwx and either z misses u and x or z sees u and x.

(iv) If vw is a rib, z misses v and wz £ E — C*(vw), then Pi can

be labeled uvwx and uz,xz £ C*(vw).

Proof, (i) Without loss of generality, let vwxy be the P4 in question.
From Figure 5.2 follows that only the Pi is possible.

(ii) The P4 can be labeled xyvw or vwxy. Again from Figure 5.2

follows that the former case is impossible whereas in the latter case only

an P7 does not contradict wz £ E — C*(vw).
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(Hi) A Pi xvwy implies an Pi, F2 or P7. But an F2 cannot satisfy
both vz $ C*(vw) and wz g C*(vw).

(iv) In this case, only the P3 does not contradict wz £ E — C*(vw),
see Figure 5.2.

Lemma 5.2.5 Let vw be a rib of a P4 and z a vertex that sees w but

misses v. If |0*(iu2)| > 1, then C*(wz) = C*(vw).

Proof. Suppose the contrary C*(wz) 7^ C*(vw). FromLemma5.2.4(iv)
follows that the P4 in which vw is the rib can be labeled uvwx with

uz,xz £ C*(vw). Moreover, as |0*(w^)| > 1, the edge wz belongs to a

P4 as well.

Case 1: wz is a wing. Then Lemma 5.2.4(h) applies to wz and u;

hence the P4 with the wing wz can be labeled wzab. The same lemma

also applies to zw and v; therefore the same P4 can be labeled zwde.

But no P4 can be labeled in both ways.

Case 2: wz is a rib. Then Lemma 5.2.4(iv) applied to wz and u

and zw and v respectively guarantees a P4 awzb with ua, ub, va, vb £

C*(wz). Thus either bvwx or ubxw is a P4; in both cases a contradiction

to C*(wz) ^ C*(vw).

The next lemma deals with the pyramid, see Figure 4.2. It is the

analog of Lemma 3.3.7 for P^-components.

Lemma 5.2.6 Let abcdrp be a pyramid. If C*(ab) is different from

C*(rb) and C*(rc), then r and p are not covered by C*(ab).

Proof. If {ab, be, cd} = C*(ab), there is nothing to prove. Therefore,
assume a P4 a'b'c'd' weak-adjacent to abed. Note that the P4S rbpd and

rcpa guarantee that all edges in the pyramid different from ab, be and

cd do not belong to C*(ab).

In the following case analysis, we show that a'b'c'd'pr is another

pyramid which satisfies C*(rb') / C*(ab) and C*(rc') ^ C*(ab). By

induction, this holds for every P4 in C*(ab); thus r is incident to no

edge in C*(ab) as claimed.

Case 1: A wing of abed coincides with a wing of a'b'c'd'. Without

loss of generality, let a'b' be the common edge. Then Lemma 5.2.4(h)
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applies to a'b' and r; hence a' = a, b' — b and r sees c' but misses

d'; thus C*(rb') = C*(rb) ^ C*(ab). Similarly, Lemma 5.2.4(i) ap¬

plies to a'b' and p; hence p sees c' and d'; thus a'b'c'd'rp is a pyramid.
Moreover C*(rc') = C*(rc) 7= C*(ab) because of the P4S rcpa and re'pa.

Case 2: A wing of abed coincides with the rib of a'b'c'd'. Then

Lemma 5.2.5 applies to b'c' and r; thus C*(ab) = C*(rb) or C*(ab) =

C*(rc), a contradiction to the premise of our lemma.

Case 3: The rib of abed coincides with a wing of a'b'c'd'. Without

loss of generality, let a' = b and b' = c. From Lemma 5.2.4(i) applied
to a'b' and r follows that r sees c' and d'. But the same Lemma also

applies to a'b' and p; so p sees c' and d'. Thus \{a' ,b', c', d', d, r, p}\ =
7. Furthermore d sees d', as otherwise the P4 dcrd' would contradict

C*(ab) yé: C*(rc). So bedd' and dd'rb are P4s; hence C*(ab) = C*(rb),
a contradiction to our assumption.

Corollary 5.2.7 Let abedrp denote a pyramid. Then V(C*(rb)) =

V(C*(ab)) implies C*(rb) = C*(ab).

Proof. Suppose V(C*(rb)) = V(C*(ab)) and C*(rb) ^ C*(ab).
Then C*(rc) = C*(ab), as otherwise a contradiction to Lemma 5.2.6

would arise. Therefore C*(ab) = C*(rc) is different from C*(rb), thus

Lemma 5.2.6 apphes to the pyramid rbpdae; hence a cannot be covered

by C*(rb), a contradiction to our assumption.

Proof of Theorem 5.2.1 for P4-components. Suppose the con¬

trary, i.e. two different P4-components 0* and 0| satisfy V(C*) =

F(0|). Then C* (and C%) cannot be trivial and a P4 abed in 0* exists.

Clearly, each vertex in {a, b,c, d} is incident to at least one edge in 0|.
Therefore, the vertices {a, b, c, d} together with the other endpoint of

such an edge, say v, induce one of the graphs depicted in Figure 5.2.

Moreover 0* 7^ 0|, which leaves the graphs Pi, P2, P3, P4 and F7. We

show that each of these graphs is impossible.

_*_: Then vc G C2 and Lemma 5.2.5 applies to be and v; hence

C*(bc) — C*(vc), a contradiction to Cy / 0|.

F±: Then vd £ 0|. Since the situation is symmetric relative to

v and d, we may assume that vw denotes another edge in a P4 that

contains vd. Hence dvw is a P3 and \{a,b,c,d,v,w}\ = 6.
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Suppose w misses c. Then w sees b, as otherwise the P4 bcvw would

imply 0* = 0|. Hence bwvd is a P4 in 0|, Lemma 5.2.5 applies to wv

and c; thus C*(wv) = C*(cv), a contradiction to C\* 7^ 0|. Therefore

our supposition was wrong, so w sees c.

Furthermore w misses a, for otherwise the P4S awvd and awed would

imply 0* = 0|. The same contradiction arises if w sees 6, this time

because of the P4 abwv. Hence abcw is another P4 in Cy.

Obviously, the same argumentation holds for the third edge of the

P4 and, by induction, for every edge in 0|. Therefore, no edge in

C*(vd) is incident to a or b, a contradiction to our assumption that

V(CÏ) = V(02*).

Ft: Without loss of generality, let vb be the edge in 0|. Then vb

cannot be the rib of a P4, as otherwise a contradiction to Lemma 5.2.5

applied to vb and a would arise. Therefore vb is a wing, Lemma 5.2.4(h)
applies to vb and a; thus our P4 can be labeled vbxy and a sees x but

misses y. If y = d, then axdc is a P4 which contradicts Cy 7^ 0|. Hence

\{a,b,c,d,v,x,y}\ = 7.

Case 1: ex g^ E. As xb is a rib, we can apply Lemma 5.2.5 to xb

and c; hence C± = C\, the usual contradiction.

Case 2: ex £ E. If d sees x, then abcdvx is a pyramid which satisfies

V(C*(vb)) = V(C*(ab)), Corollary 5.2.7 apphes and again 0* = 0|.
The same contradiction arises if c sees y, this time because of the pyra¬

mid vbxyac and V(C*(vb)) = V(C*(ab)). Therefore dx,cy <£ P. So

yxcv and axed are P4S; hence C*(cd) = C*(yx), again a contradiction

to 0*^02*.

.__: Then vc £ C2. Without loss of generality (symmetry), let

vx be another edge in a P4 which vc belongs to. In the following case

analysis, we show that abvd together with x again induces an F2, i.e.

the structure repeats itself. Therefore, by induction, all edges in 0|
together with a,b and d induce an F2; thus a,b and d are not covered

by CI, a contradiction to V(C'Ï) = V(C_).

Case 1: x sees b and d. If x sees a, the P4S axdc and axvc imply
CI = 0|, a contradiction. Therefore x misses a and the P4 abvd to¬

gether with x induces an F2 as claimed.

Case 2: x misses b or d. If x misses b, Lemma 5.2.5 applies to bv

and x, a contradiction to 0* 7= 0|. Hence x sees b but misses d. Then

cv cannot be the wing of a P4 that contains vx, as otherwise a contra-
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diction to Lemma 5.2.4(i) applied to vc and d would arise. Therefore cv

is a rib, Lemma 5.2.4(iii) apphes cv and d; thus our P4 can be labeled

ucvx and, together with d, induces an P7. But we have already shown

that such an P7 leads to a contradiction.

F-y: Let a'b'c'd' be a P4 weak-adjacent to abed. Obviously, v g1

{a',b',c',d'}. Moreover, as all other possibihties have been ruled out,
a'b'c'd' and v induce another Pi. Therefore, by induction, v is V(Cy)-
universal; thus v is not covered by 0^, a contradiction.

It remains to show Theorem 5.2.1 for strong Pi-components. This

proof is prepared by the following lemma, the analog of Lemma 3.3.7

for strong P4-components.

Lemma 5.2.8 Let abedrq be a net. If D*(abcd) is different from D* (abrq)
and D*(dcrq), then r and q are not covered by D*(abcd).

Proof. Let D* = D*(abcd). We show that every P4 a'b'c'd' G D*

together with r and q induces a net a'b'c'd'rq and that neither a'b'rq
nor d'e'rq is in D*.

If abed is the only P4 in D*, then there is nothing to prove. For the

inductive step, we show that our claim holds for some P4 a'b'c'd' on the

assumption that it already holds for a strong-adjacent P4 abed. By the

symmetry of the net, it suffices to consider the four cases of Table 5.2.

Case 1: a'b'c'd' = abvd. Then abrq and abvd are adjacent but

not in the same strong Pi-component, thus Lemma 5.1.6 applies and

a'b'c'd'rq is a net. Moreover, dcrq ~ dvrq, hence dvrq g" D*.

Case 2: a'b'c'd' = abev. Again abev and abrq are adjacent but not

in the same strong Pi-component, thus a'b'c'd'rq is a net, and verq g- D*

follows from dcrq ~ vcrq.

Case 3: a'b'c'd' — bedv. Since bedv is adjacent to dcrq, by
Lemma 5.1.6, bcdvrq is a net, a contradiction to br G E.

Case 4'- a'b'c'd' = bavd. The P4 bavd is adjacent to abrq, thus

Lemma 5.1.6 implies that bavdrq is a net, a contradiction to br £ E.

Since two P4S are strong adjacent if and only if the complement of

those P4S are strong adjacent, Lemma 5.2.8 also holds for the comple¬
ment of a net, that is, for a pyramid.
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Corollary 5.2.9 Let abcdrp be a pyramid. If D* (abed) is different from

D*(apcr) and D*(bpdr), then r and p are not covered by D*(abcd).

Now we are ready to show Theorem 5.2.1 for strong Pi-components.
Its proof relies on the fact that we have already proved Theorem 5.2.1

for P4-components.

Proof of Theorem 5.2.1 for strong Pi-components. Suppose
the contrary, that is, two different strong Pi-components D\ and D\
satisfy V(D\) — V(D%)- Without loss of generality, we may assume

that V(D\) — V (for otherwise we consider the graph Gy^*))-
Since P* covers V, there is a Pi-component 0* that covers V. By

Theorem 5.2.1, this Pi-component is unique, hence P* Ç 0* and P| C

C*, thus a sequence X\ = D\,X^,. .. ,X^_X,X\ = F)\ of strong P4-

components exists such that at least one P4 in X* is adjacent to a P4

in X*+1. Assume that this sequence is minimal with respect to k.

Since at least one P4 in P* is adjacent to a Pi in X| but P* 7^
X£, by Lemma 5.1.6, a net abedrq exists with abed £ X| and abrq £

D\*. If dcrq g7 D\, then Lemma 5.2.8 imphes that c and d are not

covered by D\, a contradiction. Hence dcrq £ D* and the same lemma

implies that X| does not cover r and q. Therefore X| is separable, thus

every P4 a'b'c'd' in X| together with r and q induces the net a'b'c'd'rq.
Furthermore two strong-adjacent P4S must be of type (a) or (b) and,
by induction, every P4 a'b'rq and d'e'rq belongs to P*.

Now consider a P4 in X| that is adjacent to a P4 in Xg. By
Lemma 5.1.6, those two P4 are in a net a'b'c'd'r'q' with a'b'c'd' £ X|
and a'b'r'q' £ X£. But a'b'rq £ D\ is adjacent to a'b'r'q' £ XI, a con¬

tradiction to our assumption that our sequence is minimal. Therefore

X2 = P|. But this is again a contradiction because X| does not cover

the whole graph.

5.3 Prime split graphs

In this section, we analyze the structure of the (strong) Pt-components
in prime split graphs. These results are then used to extend the split-
modular decomposition of Section 4.3.

We start with investigating prime graphs that are covered by a

(strong) Pi-component.
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Theorem 5.3.1 Let G be a prime graph. If G is covered by a strong

Pi-component, then its maximal split-homogeneous sets are disjoint.

Similarly, if G is covered by a Pi-component, then its maximal strict

split-homogeneous sets are disjoint.

Proof. Because of Theorem 5.2.2, Theorem 4.3.4 and Theorem 4.3.6,

it suffices to show our theorem for prime spht graphs G. Let D* denote

the strong Pi-component that covers G and suppose that two different

maximal spht-homogeneous sets A = A1 + A2 and P = P1 + P2 have

nonempty intersection. Then A U P is a spht module, see Fact 4.3.3,
hence A1 U P1 + A2 U B2 is a split-partition of G. Furthermore, Corol¬

lary 5.1.13 guarantees that no P4 in D* is in Ga or Gb-

Now suppose a P4 abed in D* satisfies ab £ Ga- Then it is impossible
that c £ A and d g" A, for otherwise d would be A1-partial. Similarly
c Q1 A and d £ A would imply that c is A2-partial. Therefore both c and

d are in P — A. As the symmetric argumentation applies to cd £ Gb,

we also know that a and b are in A — B. Therefore no Pi in D* has a

vertex in A fl P, a contradiction because D* covers G.

The above argumentation remains valid if we replace strong Pi-com¬

ponents, split modules and split-homogeneous sets with P4-components,
strict split modules and strict spht-homogeneous sets. This proves the

second part of the theorem.

By the above theorem, it suffices to discuss the decomposition of

prime spht graphs that are not covered by any strong Pi-components.
We first consider graphs containing vertices in no P4.

Theorem 5.3.2 Let G = {V1 ,V2 ,E) be a prime split graph and v a

vertex in no Pi of G. Then V1 + V2 — v is strict split-homogeneous in

G and in G.

Proof. Since no Pi-component covers the whole graph, every P4-

component of G is separable and therefore imphes a strict split-homoge¬
neous set. Let W = Wx+W2 be a maximal strict spht-homogeneous set.

If a VF-partial vertex r misses a VF-universal vertex p, then a P4 rwypw2

exists with wy £ Wy and w2 £ W2, a contradiction to the maximahty
of VF because V(C*(rwy)) U VF is a larger strict spht-homogeneous set.

Therefore VF is strict split-homogeneous in G, thus our lemma follows

from Lemma 4.3.5.
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The next lemma shows that, in the remaining cases, the graph is not

covered by any Pi-component of G or G.

Lemma 5.3.3 Let G = (V1 ,V2,E) be a prime split graph that is cov¬

ered by a Pi-component of G and a Pi-component of G. Then G is

covered by a strong Pi-component.

Proof. From Theorem 5.3.1 follows that the maximal strict split-

homogeneous sets are disjoint, hence every P4 not in a strict split-

homogeneous set belongs to the P4-component that covers G. By substi¬

tuting nonadjacent marker vertices for maximal strict split-homogeneous

sets, we therefore do not add P4S to the Pi-component that covers G,
and it is easy to see that we do not disconnect the Pi-component that

covers G. Furthermore, if a strong Pi-component covers the graph af¬

ter the substitution, the same holds for the original graph. Therefore

it suffices to show the theorem for prime spht graphs without strict

split-homogeneous sets in G and G.

Suppose the theorem does not hold. Then the cover of every strong

Pi-component is spht-homogeneous but neither strict split-homogeneous
in G nor strict split-homogeneous in G. Let D* denote a strong Pi-

component that is maximal in the sense that no other strong Pi-compo-
nent covers V(D*). Then vertices p £ P, q £ Q and ry,r2 £ R exist

such that p misses ry and q sees r2. Let abed be a P4 in D*.

Case 1: ry = r2. If g misses p, then qrybpd is a P5, thus D*(qrybp)
is not spht-homogeneous, a contradiction to our assumption. If q sees p,

the same argument applies to the complement, so ry = r2 is impossible.

Case 2: ry 7^ r2. Then p sees r2 and q misses ry, for otherwise we are

back in Case 1. Note that we have the same situation in the complement,
so we may assume that p misses q. Now abr2q ~ apr2q ~ dpr2q ~ dcr2q,
and a simple inductive argument shows that V(D*) Ç V(D*(abr2q)), a

contradiction to the maximahty of D*.

The following lemma provides the desired structural result.

Lemma 5.3.4 Let G = (V1 ,V2, E) be a prime split graph such that

every vertex belongs to a P4. If no Pi-component covers the whole graph,
then (V, E — E(V")) consists of at least three connected components.

Proof. In this proof, we call a Pi-component 0* maximal if no

other Pi-component covers V(C*). Let 0* denote such a maximal Pi-

component. As C* does not cover the whole graph, VF = V(C*) is
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strict spht-homogeneous. If VF is also strict split-homogeneous in G,
then Lemma 4.3.5 imphes that not every vertex belongs to a P4, a

contradiction to our assumption. Therefore a vertex p £ P misses a

vertex r £ R.

Let abed be a Pi in 0* and consider the bipartite graph G' =

(W,E(W) — E(V2)). Clearly G' has at most two connected compo¬

nents P and 0 with b £ B and c £ C. Between b and every vertex

u £ P, a (not necessarily simple) path b,d,xy,x2,... ,Xk = u in G'

exists. Clearly every pair of consecutive vertices Xi and Xi+y together
with r and p induces a P4 rxipx%+y or rxi+ypxl, and those P4S belong
to C*(rbpd). If G' has only one P4-component, then V(C*) is covered

by C*(rbpd), a contradiction to the maximahty of 0*. Therefore the

replacement of 0* with a maker P4 abed neither increases the number of

connected components of (V, E — E(V')) nor does it unify maximal P4-

components. We perform this substitution of marker P4S for maximal

Pi-components until every maximal Pi-component consists of a single
P4. It should be clear that the resulting graph is prime and split, so it

suffices to show our theorem for graphs G = (V1, V2, E) in which every

Pi-component is a P4 and vice versa.

Let abed denote a P4 and let Q, R and P denote the vertex partition
relative to {a, 6, c,d}. Suppose that Q 7^ 0 and let Pq Ç P denote the

vertices adjacent to some vertices in Q. Consider H = {a, b,c,d} U P U

(P — Pq)- Clearly every vertex in Q misses every vertex in H. Let pq
be a vertex in Pq and let q £ Q denote one of the vertices that sees pq.
Then pq sees every vertex in R, for otherwise qpqbr and qpqcr would

be adjacent P4S, a contradiction for every Pi-component consists of a

single P4. Furthermore, if pq misses a vertex in p £ P — Pq, the same

contradiction arises because of the adjacent P4S qpqap and qpqdp. We

conclude that every vertex in Pq sees every vertex in H, hence H is

homogeneous, a contradiction.

So we have shown that Q = 0 for every P4 abed in G. Since every

vertex belongs to a P4, the split partition is unique, hence V1 = {b, c} +
P and V2 = {a, <i} + P. Note that b sees every vertex in V2 except for d,
and d sees every vertex in V1 except for b. By symmetry, every vertex

in V1 misses precisely one vertex in V2 and vice versa. Such a graph
is called a thick spider in [5], and it is obvious that (V, E — E(V2)) has

IV^I = \V2\ components. But G contains a pyramid, hence IV1! > 3.



5.3. Prime split graphs 79

buildSplitModTree(0)
input: a graph G = (V,E)
output: the root of the spht-modular decomposition tree of G

11) else (* G and 0 are connected and jV| > 1 *)
12) let G' = (V, E') be the characteristic graph of 0;

13) if G' is spht and a vertex v in V is in no P4 then

14) let H be the vertex set of G that corresponds to v;

15) let n = buildSplitModTree( GH )]
16) let r2 = buildSphtModTree( Gy-H )]
17) return a 2-node with children ry and r2

18) elsif G' = (Vl,V2,E') is split and (V,E - E(V1)) has

19) more than two connected components then

20) let Hy,... ,Ht be the vertex sets of G that correspond

21) to the connected components of (V, E — P(F1));
22) let rt = buildSphtModTree( GHt ) for i = 1,... ,t;

23) return a 3-node with children ry,... ,rt

24) elsif G' = (V\V2,E') is spht and (V',E - E(V2)) has

25) more than two connected components then

26) let Hy,... ,Ht be the vertex sets of G that correspond

27) to the connected components of (V, E — E(V2))]
28) let rt = buildSplitModTree( GH, ) for i = 1,... ,t;

29) return a 4-node with children ry,... ,rt

30) else (* G' is covered by a strong Pi-component *)
31) let Sy, , Sk be the vertex sets of G that correspond

32) to maximal spht-homogeneous sets of G';

33) let sz = buildSplitModTree( GSt ) for i = 1,... , k;

34) let Hy,... ,Ht be those maximal proper modules of G

35) which are not contained in 5*1,... , Sk]

36) let rt = buildSplitModTree( GH, ) for i = 1,... ,t;

37) return a 5-node with children sy,. . .

, Sk, ry,. .. ,r%

38)
39) fi

Algorithm 5.1
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Lemma 5.3.4 holds for the complement as well, that is, if the graph
0 = (V, E) is not covered by a P4-component of 0, then (V, E-E(VX))
has at least three connected components. It is also easy to see that

(V,E — P^F1)) is connected if the number of connected components
of (V, E — E(V2)) is greater than two. Theorem 5.3.5 summarizes our

findings.

Theorem 5.3.5 Let G = (V1, V2,P) be a prime split graph in which

every vertex belongs to a Pi. If no strong Pi-component covers the whole

graph, then either (V, E — E(V2)) or (V,E — E(V1)) consists of at least

three connected components.

The split-modular decomposition extended with the results of The¬

orem 5.3.1, 5.3.2 and 5.3.5 is given in Algorithm 5.1.

5.4 Computing the split-modular decom¬

position

The purpose of this section is to propose an efficient implementation of

Algorithm 5.1, that is, we prove Theorem 5.4.1.

Theorem 5.4.1 The split-modular decomposition of an arbitrary graph
G = (V,E) can be found m 0(|V|4).

In our implementation of Algorithm 5.1, we use an associated graph
0 = (V,E) to compute the strong P4-components. This associated

graph is defined as follows.

• The vertices of V are the ribs of the P4s in 0 and G.

• For every P4 abed in G, there is an edge between be and ad in E.

We call these edges p-edges because they represent the P4S of G.

• For every P4 abed of G and G such that ab is a vertex in V, there

is an edge between ab and be in P.

Figure 5.5 illustrates this construction. The given graph G contains

fourteen P4s (the corresponding p-edges are indicated by thick hnes),
and its separable strong Pi-components ai&icic?i and a2b2c2d2 induce
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G f G hg

61 ci 62c2
,

üydyM > I()2tt2

Figure 5.5: A graph G = (V,P) and its associated graph G = (V,É).

the maximal spht-homogeneous set {by,b2,cy,c2}+{ay,a2,dy,d2}. Note

that the strong Pi-components of G coincide with the connected com¬

ponents of 0. This holds in general, as we prove in the next lemma.

Lemma 5.4.2 The strong Pi-components of G are the connected com¬

ponents of G and vice versa.

Proof. First we prove that if two p-edges belong to the same connected

component of G, then the corresponding P4S are in the same strong P4-

component. Since every vertex in G is incident to a p-edge, it suffices

to give a proof for two p-edges that do not induce a 2K2.

If two p-edges have a common endpoint, then the corresponding P4S

or their complements have a common rib, thus, by Lemma 5.1.3, they

belong to the same strong Pi-component. So suppose that two p-edges
ey and e2 have no common endpoint but an endpoint of ey is joined to

an endpoint of e2 by an edge, say e3. If e3 is a p-edge, then it follows

from the above argumentation that the corresponding P4S belongs to

the same strong Pi-component. Otherwise, if ez is no p-edge, then the

endpoints of ez are either the ribs of P4S in 0 and one rib is the wing of

the other P4 or the same holds in the complement; thus Lemma 5.1.4

guarantees that those P4S belong to the same strong P4-component.

Second we show that if two P4s belong to the same Pi-component,
then the corresponding p-edges are in the same connected component of

G. Clearly it suffices to show that two p-edges corresponding to strong-
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adjacent P4S do not induce a 2K2. If abed denotes one P4, then the

other P4 is of type (a) to (d) as given in Table 5.2.

Case 1: The P4 is of type (a). Then the complement of the two P4S

have a common rib, hence the corresponding p-edges have a common

endpoint.

Case 2: The P4 is of type (b). Then the two P4s have a common

rib, and again the corresponding p-edges have a common endpoint.

Case 3: The Pi is of type (c). Then, by construction, there is an

edge between be and cd.

Case 4-' The P4 is of type (d). Let bavd denote our P4. Then adbv

is a P4 in the complement, and ad is a rib of the P4 bdac (in 0); thus

there is an edge between bd and ad.

We compute G and its connected components in a preprocessing

step. Since a P4 is uniquely defined by its wings, this can be done in

|P| = 0(|P|2). By Lemma 5.1.3, all P4s with the same rib belong to

the same Pi-component; thus we can assign strong Pi-components to

the ribs of P4S in G. Furthermore, for every edge vw in G, we store the

number p(vw) of P4S that contain vw.

To prove Theorem 5.4.1, we show that, except for the exploration of

0, our algorithm runs in 0(|y4|). Since there are at most | V^| recursive

calls, it suffices to show that each recursive step can be done in OdV"!3).

Clearly, the computation of the connected component of G and G

can be found in OdV^2). If 0 is connected and coconnected, we cal¬

culate the characteristic graph G'. This step is in 0(|V|3) as shown in

Section 3.3 Page 33. Next, we check whether G' is split. This can also

be done in linear time by testing whether G' and G are triangulated,
see Theorem 3.4.1 (ii).

If G' is split, we compute a maximum clique of G'. By Lemma 4.3.5,
Theorem 5.3.2 and the discussion on Page 48, the maximum cfique of

0' is unique, thus G' — (V1 ,V2 ,E') where V1 denotes the maximum

clique. If G' = (V1 ,V2 ,Ef) contains a vertex in V1 that misses ev¬

ery vertex in V2, we decompose G accordingly. Otherwise, we test

whether (V,E~' - E~'(V2)) or (V,E - E(VX)) has more than two con¬

nected components. If so, we decompose G into the subgraphs induced

by those connected components. Obviously all these steps can be done

in 0(\V\2).
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In the remaining cases, by Theorem 5.2.2 and Lemma 5.3.3, G is

covered by a strong Pi-component D*. To find D*, we scan the edges
in G until we find an edge whose assigned strong Pi-component satisfies

|]/(P*)| = \V\. Next, we scan the P4s abed in D*, decrease p(ab), p(bc)
and p(cd) and then compute the connected components 0i,... ,C\ of

the subgraph defined by the edges vw with p(vw) > 0.

Note that the 0^s are homogeneous sets in G or strict split-homo¬

geneous sets or spht-homogeneous in G'. We can easily distinguish
between these three possibilities in 0(|V|2) by using an array of ver¬

tices for every connected component Ci that stores 02-universal, 0;-
null and 0^-partial vertices. However, maximal split-homogeneous sets

need not be induced by a single connected component 0^: The graph
of Figure 5.5 is such an example. As in case of the bipartite-modular

decomposition, we have to take the disjoint union of the so far com¬

puted split-homogeneous sets if the union is again split-homogeneous.
This can be done in 0(|y|3) by first calculating the sets P, R and Q
for every split-homogeneous set and then performing the tests whether

the union of two sets is spht-homogeneous.

In a last step, again as in case of the bipartite-modular decomposi¬

tion, we have to find the maximal split-homogeneous sets that contain

vertices which do not belong to a P4 in the maximal spht-homogeneous
set. This last step can be implemented by examining all pairs of the

so far computed split-homogeneous sets A and P together with the set

of A1 U P1-partial or A2 U P2-partial vertices. By precalculating P, R

and Q for the so far computed split-homogeneous sets, this step can be

carried out in 0(|F|3). The overall running time per recursive call is

therefore OdV^3), which proves our theorem.

5.5 Recognizing and orienting P/i-compara-

bility graphs

In order to obtain an acyclic Pi-transitive orientation, it suffices to

compute an acyclic orientation of the edges in the P4S (all other edges
can be oriented by topological sorting). In the following, we only discuss

this part of the orientation.

If no Pi-component covers a proper subset of the vertices of G,
then Theorem 5.2.1 guarantees that G has at most one nontrivial P4-

component. In this case, a Pi-transitive orientation is easy to compute
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because the orientation of one edge of a P4 in a Pi-component forces

the orientation of all Pi-edges in the same P4-component.

So suppose a Pi-component 0* does not cover the whole graph.

Then either V(C*) is homogeneous or 0* is separable. If G contains

a homogeneous set H, we compute a Pi-transitive orientation of G as

follows.

(i) Replace H with a marker vertex h

(ii) Compute a Pi-transitive orientation of the Pis in Gh and in

Gy-H+h-

(Hi) Construct a Pt-transitive orientation of the P4S in G by directing

P4-edges
vw with v,w £ H as in Gh,

vw with v, w G V — H as in Gy-H+h,
vw with v £ H and w £ V — H a,s hw in Gy-H+h-

Obviously, a P^-transitive orientation of G induces a Pi-transitive

orientation of Gh and Gy-H+h- The converse holds because of the

following lemma.

Lemma 5.5.1 If the orientation of the P4S in Gh and Gy-H+h is Pi-

transitive, then (Hi) gives a Pi-transitive orientation of the P45 in G.

Proof. To begin with, we show that every P4 in G is oriented properly.

This is obvious for P4S with all vertices in H and for P4S with all vertices

in V — H. The remaining P4S have precisely one vertex in H, hence such

a P4 has a corresponding P4 in Gy-H+h- Since both P4S are oriented

in the same way, those P4S are oriented properly.

Now suppose the orientation of G is cyclic. As the orientation of Gh

and Gy-H+h is acychc, every cycle contains edges with both endpoints
in H and edges with an endpoint in V — H. Choose a cycle with a

minimal number of vertices in H and let v —)••—>• w denote the longest

part of this cycle in H. Furthermore, let u be the predecessor of v and x

the successor of w in this cycle; thus u, x £ V — H. Since uv is directed,
it must belong to a P4 with precisely one vertex in H. By substituting

w for v in this P4, we obtain a P4 that is oriented in the same way.

Therefore u —y w, a contradiction because we have found a cycle with

fewer vertices in P.
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If the cover of C* is not homogeneous, then 0* is separable. In

Section 5.1, we have seen that the coconnected components of Gw1

and the connected components of Gw2 are homogeneous sets, so we

can substitute marker vertices for those components and compute a

Pi-transitive orientation of the P4S as described above. In the graph

after the substitution, the vertex set corresponding to V(C*) is strict

spht-homogeneous. If a graph has a strict spht-homogeneous set VF,

however, we can proceed as follows.

(i) Replace VF1 and VF2 with nonadjacent marker vertices wy and w2.

(ii) Compute a P^-transitive orientation of the P4S in Gw and in

Gy-W+wi+w2-

(Hi) Construct a Pi-transitive orientation of the P4S in G by directing

Pi-edges
vw with v, w £ W as in Gw,

vw with v, w G V — VF as in Gy-w+vn+w?,
vw with v £ V — W and tv £ W1 as vwy in Gy-w+wx+w-2 and

vw with v G V — VF and w G VF2 as vw2 in Gy-w+Wl+w2-

A Pi-transitive orientation of G induces a Pi-transitive orientation

of Gw and Gy-w+wx+w2- The converse is established by the next

lemma.

Lemma 5.5.2 If the orientation of the P45 in Gw and Gy-w+w1+w2
is Pi-transitive, then (Hi) gives a Pi-transitive orientation of the P4S

in G.

Proof. The structure of this proof is identical to that of Lemma 5.5.1.

So we first show that every Pi in G is oriented properly. Again this is

obvious for Pi s with all vertices in VF and for P4S with all vertices in

V — W. The remaining P4s are of types (1) to (6), for each of which

a corresponding P4 in Gy-w+w1+w2 exists that is oriented in the same

way. Thus every P4 is oriented properly.

Now suppose the orientation of 0 is cyclic. As the orientation of

Gw and Gy-w+w1+w2 1S acyclic, every cycle contains edges with both

endpoints in W and edges with an endpoint in V — W. Choose a cycle
with a minimal number of vertices in VF and let v —>—)• w denote the

longest part of this cycle in VF. Furthermore, let u be the predecessor
of v and x the successor of w in this cycle; thus u, x g" VF.



86 Chapter 5. P4-comparability graphs

Since uv is directed, it must belong to a P4 of types (1) to (6).
Moreover v and w cannot belong to the same set of the split-partition
VF1 + VF2 because this would imply u —y w, i.e. a cycle with fewer

vertices in VF exists. Without loss of generality, let v £ W2 (otherwise
we invert the orientation of the directed edges). Hence u £ P.

Then uv is in no P4 of types (1) or (2), as otherwise u —y w2 and

u —y wy in Gy-w+w!+w2 and therefore u —y w, again a contradiction

because this implies a cycle with fewer vertices in VF. For the same

reason, uv cannot belong to a Pi of types (4) to (6), see Figure 4.1. Now

assume that uv is in a P4 of type (3), say pyvur. Then Gvr-W+u)i+w2
contains the P4S pyw2ur and rwypyw2; hence r —y Wy in Gy-w+wx+w2
and therefore r —y w in G. Thus u ~+ v —>•—> w can be replaced
with u^rr^-w, a contradiction as this again implies a cycle with fewer

vertices in VF.

Note that the above lemmas prove Theorem 5.1.1 because (a) if

the Pi-classes of G can be P4-transitively oriented, the same holds for

the Pt-classes of Gh, Gy-n+h, Gw and Gy-w+w1+w2, an(l (&) this

division into subproblems can be repeated until the graph has at most

one P4-class.

In the proof of Lemma 5.5.2, we have only used the fact that every

P4 with at least one but not all its vertices in VF is of type (1) to (6).
Therefore the described divide and conquer method is also applicable
to the cover VF = V(C*) of a separable Pi-component. We use this fact

to prove Algorithm 5.2, the Pi-analog of GoLUMBIc's algorithm.

Note that, for a homogeneous set H, the removal of some edges in

Gh does not create new P4S with at least one edge in Gy-H- Similarly,
it is easy to see that, for a strict split-homogeneous set VF = VF1 + VF2,
the only P4S with some edges in Gy-w that are created by the removal

of edges between VF1 and VF" are of type (6). The latter accounts for

Lines (6) to (9) in Algorithm 5.2, i.e. we remove only the wings of the

P4S in a separable P4-component 0* from the graph 0 = (V, E -f E').
Now let 0* = C*(vw) be the P4-component of G = (V, E + E') as

in Line (5). The orientation of the P^-components of Gy(c*) is inde¬

pendent of the orientation of the other Pi-components if we guarantee
that Pi-edges between vertices in V(C*) and a vertex in V — V(C*)
are directed in the same way. We show that the latter constraint is

satisfied because the corresponding Pi-edges belong to P4S in the same

Pi-component. This is obvious if V(C*) is homogeneous. Otherwise 0*
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orient(0)
input: a graph G = (V,E)
output: a Pi-transitive orientation of the P4S in G

(1) let E' denote the set of edges in no P4 of 0;

(2) let E denote the set of Pledges of 0;

(3) while E / 0 do

(4) choose an edge vw in P;

(5) orient the P4-component C*(vw) of 0 = (V, E + E');
(6) if C*(vw) is separable then

(7) let Enb be the ribs of the P4S in C*(vw);

(8) E' <— E' + Er%y,

(9) fi;

(10) E ^-E-C*(vw);
(11) od

Algorithm 5.2

is separable, hence every P4 with one but not all its vertices is of types

(1) to (6) on Page 52. For PiS of types (1) to (5), it follows from Fig¬
ure 4.1 that they belong to the same P4-component. For P4s of type (6)
,
the removal of the wings in 0* ensures that the corresponding P4S

belong to the same Pi-component.

Now consider the orientation of Gy^c*)- Without loss of generality,
we may assume that Gy^c*) is prime as the substitution of marker

vertices for homogeneous sets does not unify different Pi-components.
Then Theorem 5.3.1 applies, hence all P4s not in maximal strict split-

homogeneous sets belong to 0* and are therefore oriented correctly
relative to the maximal strict split-homogeneous sets. Similarly, the

removal of the wings of the P4S in 0* does not affect the remaining

Pi-components of Gy^c*) as those Pi-components belong to disjoint
maximal strict split-homogeneous sets.

So Algorithm 5.2 is correct and runs in 0(|V|2 |P|), the time needed

to find the P4-components of 0 in BFS-manner.

Theorem 5.5.3 P4-comparability graphs can be oriented and recognized
in 0(\V\2 \E\) time and 0(\V\ + \E\) space.

To be more precise, the running time of our algorithm is bounded

by 0(S2 \E\) where S is the maximal degree of a vertex. This can easily
be seen because, given an edge vw, there are at most 5 Pgs containing
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vw, and it can be tested in 0(5) time whether this P3 belongs to a

P4 (providing the adjacency fists of G are sorted). If we sacrifice the

0([V| + |P|) space, we can improve the running time of our algorithm.

Theorem 5.5.4 P4-comparability graphs can be oriented and recognized
in 0(|P|2) time and 0(\V\ \E\) space.

Proof. First note that every P4 is uniquely determined by its wings,
thus all P4S of 0 = (V,E) can be found in 0(|P|2) time. To compute

and orient the Pi-components of G, we use the graph G = ( V, P) where

V = E and two vertices ey, e2 are adjacent in G if ey and e2 are adjacent

edges in a P4 of G, i.e. ey and e2 form a P3 that is part of a P4. Obviously
the connected components of G correspond to the Pi-components of G.

The initial construction of G requires scanning every P4 of G. As

mentioned before, this can be carried out in 0(|P|2). Furthermore

0(|P|) = 0(|Vj • |P|) because an edge can belong to at most 2n P3s.

When replacing V(C*) with marker vertices, G can be updated by

relabeling and deleting vertices of G; hence all these updates can be done

in 0(|V| |V|) + 0(|P|) = 0(jV| • |P|). But a connected component of G

is explored at most twice (to find a Pi-component that does not cover

0 and to orient the P4-component). Therefore, after the initialization

of G, our algorithm runs in 0(|V| • |P|) + 0(jV| + \É\) = 0(\V\ \E\). D

5.6 A general recognition algorithm

In this section, we show how to apply the split-modular decomposition
to recognize perfectly orderable graphs. If a graph is disconnected or

codisconnected, it is straight-forward to obtain a perfect order. If a

graph 0 = (V, E) contains a homogeneous set H, then we substitute

a marker vertex h for H, find a perfect order of Gh and Gy-H+h- A

perfect order of G can then be constructed from the perfect order of

Gy-H+h by replacing h with the vertices in H where the vertices in

H retain their order in Gh- As in the previous section, no obstruction

can arise as every P4 in G has a corresponding Pj in Gh or Gy-H+h
oriented in the same way.

It remains to find a perfect order of prime graphs. Note that to

avoid an obstruction, it suffices to orient one wing in every P4 from
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the midpoint to the endpoint. We call this a partial obstruction-free

orientation. If a partial obstruction-free orientation is acyclic, then a

perfect orientation is easily obtained by topological sorting.

If G is a prime spht graph G = (V1 ,V2 ,E), then any order that sat¬

isfies vy < v2 for vy £ V1 and v2 £ V2 is perfect. On the other hand, ev¬

ery partial obstruction-free orientation of a spht graph G = (V1, V2, E)
has to orient some edges from V1 to V2. Since split-homogeneous sets

induce spht graphs, we substitute nonadjacent marker vertices w1 and

w2 for split-homogeneous sets VF = VF1 + VF2 and compute a perfect
order in Gy-w+w1+w2 with w1 < w2. A perfect order of G is then

obtained by replacing w1 and w2 with the vertices in VF1 and VF2. The

following lemma shows that this method is correct.

Lemma 5.6.1 A graph G with split-homogeneous set W = VF1 + VF2

has a perfect order if and only if Gy-w+wx+w2 has a perfect order that

satisfies w1 < w2.

Proof. If Gy-w+w1+w2 has a perfect order that satisfies w1 < w2,
then the order arising from replacing w1 and w2 with the vertices in

VF1 and VF2 is obstruction-free as every P4 in G except for P4S with a

wing in Gw bas a corresponding P4 in Gy-w+w1+w2 oriented in the

same way. P4S with a wing in Gw are either in Gw or of type (12) as

defined on Page 53. In both cases, the wing in Gw is oriented from the

midpoints to the endpoints.

Conversely, let G be a perfect orientation of G and let abed be a P4

in Gw Then a +-b or c —y d. Without loss of generality, let c—yd. From

G, we construct an orientation G' of Gy-w+a+c by orienting every edge

as in G except for edges av with v<—a and v —y d in G. The latter edges
are oriented v —y a in G'. We claim that G" is a perfect orientation and

that inserting c—y a in G' leaves the graph acyclic.

Since G is a perfect orientation, an obstruction in G' corresponds to

a P4 with a wing whose orientation in G' is different from that in G.

Therefore an obstruction is a P4 vaxy with v—y a in G' and v+-a in G.

It is easy to see that this P4 must be of type (2) or (3). But this is a

contradiction because vdxy would be an obstruction in G.
—* —*

Now assume that G' has a cycle. Since G is acyclic, this cycle
contains an edge whose orientation in G is different from that in G.

Let u -+ a in G' be this edge in the cycle and let x denote the successor

of a in the cycle. Then u -+ d and d —y x in G by construction. We
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can therefore replace every occurrence of u —y a —y x in our cycle with

u —y d —y x, thereby obtaining a cycle in G, a contradiction to our

assumption that G is acyclic.

Finally, suppose that inserting c —> a in G' causes a cycle c —y a —y

v ->••—> c. By replacing c—y a -+ v with c-)-(f->u and by replacing
u —y a —y x with u -+ d—y x as before, we obtain a cycle in G, again a

contradiction to our assumption.

The graph after replacing maximal split-homogeneous sets with mar¬

ker vertices need not be prime relative to the spht-modular decompo¬
sition. The above method can therefore be applied repeatedly until we

end up with a prime graph without maximal spht-homogeneous sets. To

find a perfect order that satisfies the additional constraints w1 < w2,
however, might be difficult.

On the other hand, if the graph admits at most two partial obstruc¬

tion-free orientations according to some predefined rules, then we just
have to test whether topological sorting together with the additional

constraints yields an acychc orientation. This is clearly the case for

rules which enforce that a +- b or c —y d implies a' -f- b' or c' —y d' for

any pair of strong-adjacent P4S abed and a'b'c'd'. Orienting every Pi

transitively is an example of such a rule.

Furthermore, every set of rules that orients the wings of strong-

adjacent P4S is almost sufficient: The only exception of strong-adjacent
P4S without a common wing is the P5. So if we give a set of rules that

orients the wings of strong-adjacent P4S and the wings in the P5S, then

there are at most two orientations possible, thus the corresponding class

of perfectly orderable graphs can be recognized in polynomial time.

In [35], HERTZ proposed a simple rule to obtain a partial obstruction-

free orientation from a 2-coloring of the edges in the complement given
the edges ab and cd of a P4 abed and the edges ab and de of a P5

abode have different colors. He also showed that the arising partial
obstruction-free orientation is acychc. Even without this result, we can

easily recognize this class of graphs since, by the above remarks, a graph
without spht-homogeneous sets has precisely two such 2-colorings. So

we just have to orient the edges according to HERTZ ' rule and test

whether the arising orientation is acychc.



Chapter 6

Graphs with Threshold

Dimension Two

Graph dimension theory deals with the (edge-)intersections of graphs
with special properties. COZZENS AND ROBERTS [20] gave the following
definition.

Definition 6.0.1 The V dimension of a graph G = (V,E) is the least

integer k such that E = Ey fl E2 fl • fl Pft and each of the graphs

Gi — (V, Ei), i = 1,... k, has property V.

The term "dimension" in Definition 6.0.1 comes from the interval

dimension problem, one of the first graph dimension problems that has

been investigated. The interval dimension or boxicity b(G) of a graph is

the least number k such that G is the intersection of k interval graphs.
Since an interval graph is the intersection graph of intervals on the real

hne IR, a graph with boxicity k is the intersection graph of iso-oriented

boxes in the Euclidean space IR
.
A graph with boxicity 2 is therefore

the intersection graph of axially parallel rectangles in the plane, which

is why such graphs is also called rectangle graphs, see Figure 6.1.

The representation of a graph by geometrical objects is interesting
because it is possible to use geometrical algorithms to solve certain

graph problems [47]. For instance, if a geometrical model of a boxicity k

graph is given, a maximum chque can be found in 0(|V"|^-1^ log(|P|)),
see [42]. However, the maximum stable set problem, the minimum

91
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Figure 6.1: A rectangle graph, its rectangle model and the two interval

models ly and I2.

coloring problem and the minimum chque cover problem remain NP-

complete even for rectangle graphs [42]. Furthermore, YANNAKAKIS [76]
showed that the recognition of graphs with boxicity k is NP-complete
for all k > 3, and KRATOCHVIL [46] obtained the same complexity result

for the case k = 2.

Closely related to the boxicity of a graph is its threshold dimension,
defined as the least integer k such that the graph is the intersection of

k threshold graphs. Threshold graphs are a proper subclass of interval

graphs, hence the boxicity of a graph is less or equal to its threshold

dimension. The motivation for studying the threshold dimension of

graphs also comes from the many appfications in integer programming

[13, 14, 33], in psychology [18, 19] and in the synchronization of parallel

processes [25, 34, 61, 62, 64, 74].

Unfortunately, it is NP-complete to test whether a graph has thresh¬

old dimension k for all k > 3, see YANNAKAKIS [76]. So research fo¬

cused on the recognition of graphs with threshold dimension two. These

graphs are also interesting because of their nice optimization behav¬

ior: Both graphs with threshold dimension two and their complements

(called 2-threshold graphs) are perfectly orderable [31, 15, 35].

For over a decade, the complexity status of the recognition of thresh¬

old dimension two remained open. In fact, it was widely believed that

the problem is NP-complete [18, 32, 52, 64]. Recently, however, Ma [51]
and, independently, RASCHLE AND SlMON [66] succeeded in finding
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polynomial time algorithms for the recognition of graphs with thresh¬

old dimension two.

Ma's idea to recognize graphs with threshold dimension two is to

construct a geometrical representation for such a graph. The running
time of his algorithm is 0(|y|5). Recently, STERBINI AND RASCHLE [75]
proposed an improved version of Ma's algorithm that runs in 0(|1/|3).
Although this is currently the fastest algorithm, we discuss neither Ma's

approach nor the improvements made by STERBINI AND RASCHLE for

the following reasons. First, Ma's algorithm is rather complicated and

relies on other quite complicated algorithms hke the 0(|V|2) recognition
of 2-chain graphs and the 0(|F|2) recognition of partial order dimension

two. Second, the geometrical arguments used in Ma's and STERBINI

AND RASCHLE's work do not fit in with the graph theoretical outline of

this thesis.

This chapter is thus devoted to a in-depth discussion of RASCHLE

AND SlMON's approach. Their main result is a constructive proof of

a conjecture by IBARAKI AND PELED which states that a graph is 2-

threshold if and only if its edges can be colored with two colors such

that the nonincident edges in a P4, 04 or 2A"2 receive different colors.

This immediately leads to a 0(|P|2) algorithm for the recognition of

2-threshold graphs.

In the next section, we give CHVÀTAL AND HAMMER's definition of

threshold graphs and threshold numbers and discuss their motivation for

studying threshold graphs. In Section 6.2, we review previous results

in connection with 2-threshold graphs and state the main theorems.

Finally, Section 6.3 gives a constructive proof of the IbaRAKI-Peled

conjecture. Part 1 and 2 of this proof follow RASCHLE AND SlMON's

original work [66] whereas Part 3 contains new and hopefully simpler
proofs based on a new structure theorem on what we call the A04-
structure of graphs.

6.1 Threshold graphs

Threshold graphs were introduced by CHVATAL AND HAMMER [13] in

1973. Their motivation for studying these graphs comes from the ag¬

gregation of hnear inequalities in integer programming. It is frequent
in integer and zero-one programming that the problem is given in the

form "maximize ex such that Ax < &," and it is well-known that the
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work involved in solving the problem often increases sharply with the

number of linear inequalities. Therefore, given a set of constraints

n

y a%jXj <bi, i = l,2,...,m (6-1)

one is interested in finding a system with the smallest number k of linear

inequahties

n

5>'^;<fc; i = l,2,...,fc (6.2)
i=i

such that (6.1) and (6.2) have precisely the same set of zero-one solu¬

tions. In particular, one wishes to know whether k = 1, namely whether

the constraints (6.1) can be aggregated to a knapsack constraint in the

same binary variables.

If (6.1) are set-packing constraints, that is, if A is a zero-one matrix

and b is the vector of ones, system (6.1) can be represented as a graph
0 = (V,E) whose vertices correspond to the columns of A = (~jj)
and two vertices are adjacent if the corresponding columns have a 1 in

a common row. A solution of (6.1) corresponds to a stable set of G

and vice versa. This observation inotivates the following definition of

threshold graphs and threshold numbers.

Definition 6.1.1 Let G = (V,E) be a graph with V = {vy,v2,... ,vn}.
For any subset S Ç V, its characteristic vector x — (xy,x2,... ,xn) is

defined by Xi — 1 if V{ £ S and Xi = 0 otherwise (for i — 1,2,... ,n).
The threshold number t(G) of G = (V, E) is the least integer k for which

linear inequalities

ayyXy -\- a12X2 + . . . + alnXn < ty,

\ (6.3)
aklxy + ak2x2 + ... + aknxn < tk,

exist such that a subset S of V is a stable set of G if and only if its

characteristic vector x = (xy, x2,... , xn) satisfies the above inequalities.
A graph with t(G) < 1 is called threshold graph.

Since each subset S of V corresponds to a corner of the unit hyper-
cube in IRn, a threshold graph is a graph for which a hyperplane exists
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that cuts the n-space in half such that the corners of the hypercube

corresponding to the stable sets of G he on one side of the hyperplane
and the corners of the hypercube corresponding to nonstable sets he on

the other side. In this interpretation, the threshold number of a graph
is the minimal number of half spaces needed such that their intersection

contains precisely the stable sets of G.

ChvÄTAL AND HAMMER [14] showed that the threshold number can

be defined in an equivalent way.

Theorem 6.1.2 The threshold number t(G) is the least integer k such

that G is the union of k threshold graphs.

For a given graph G = ( V, E), a set of threshold graphs Gi = (V, E2)
i = 1,... , k, with E = Pi U • • U Ek is a threshold cover of size k. The

threshold number of a graph is therefore the least integer k for which a

threshold cover exists.

We conclude this section by showing that the threshold number of

a graph is identical to the threshold dimension of its complement. Re¬

call that the threshold dimension is defined to be the least integer k

such that the graph is the intersection of k threshold graphs. Thus

the threshold dimension of the complement G is the least integer such

that G can be written has the union of the complements of k threshold

graphs. Our claim now follows from the fact that the complement of a

threshold graph is again a threshold graph. The latter is a consequence

of Theorem 6.1.3(n).

Theorem 6.1.3 For a graph G = (V,E), the following statements are

equivalent:

(i) G is a threshold graph, i.e. there is a linear inequality ayXy +

a2x2 + • • + anxn < t whose zero-one solutions are precisely the char¬

acteristic vectors of the stable sets of G.

(H) G does not contained a P4, C4 or 2K2.

(in) Every induced subgraph Gw contains a dominating or an iso¬

lated vertex.

(iv) G can be constructed from one vertex by repeatedly adding an

isolated or a dominating vertex.

Proof. (i) => (ii) Suppose a P4, 04 or 2P2 exists and let it be

labeled as in Figure 6.2. Then {^1,^3} and {^2,^4} are stable sets
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Figure 6.2: The forbidden subgraphs of a threshold graph.

whereas {vy,v2} aim {^3,^4} are cliques. Therefore every inequality

ayXy + a2x2 + -\- anxn < t has to satisfy 01+03 < t, 02+04 < t,

ay + a2 > t and 03 + 04 > t, which is impossible.

(ii) => (Hi) Since Gw is Pt-free, by Lemma 3.1.1, every subgraph
Gw is either disconnected or codisconnected. If Gw 1S disconnected

and has no 2K2, then at most one connected component contains edges
and all other connected components are isolated vertices. If Gw 1S

disconnected and has no 2P2, the above applies to the complement,
thus Gw contains at least one dominating vertex.

(Hi) =^ (iv) follows by induction.

(iv) => (i) We show by induction on the number of vertices that a

hnear inequality ayXy + a2x2 -{- + anxn < t that satisfies (i) exists

such that ai,... , an and t are positive integers. If the graph consists

of a single vertex vy, we assign ai = 1 and t = 1. For the induction

step, we assume that the hnear inequality ai^i + 02^2 + • • • + anxn < t

has the desired properties. If we add a dominating vertex vn+y, then

we assign are_j_i = t. If we add an isolated vertex vn+y, then we assign

an-|_i = 1 and t = 2t + 1 and at = 2a2 for i = 1,... ,
n.

6.2 Previous results

In this section, we review previous results on the threshold dimension.

It is convenient to work on the complement rather than on the graph,
so we consider the problem of finding the threshold number instead of

the threshold dimension.

In a first step, we transform the threshold number problem into a

coloring problem with additional constraints. For this purpose, we need

the notion of alternating cycles and threshold completions.
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An alternating cycle AC2k in a graph G = (V, E) is a sequence of

vertices vo,vy,. . . ,v2k-y such that VtV^y £ E for i odd and vtvt+y £ E

for i even (indices modulo 2k). Note that, by convention, we always
take üo^i to be a nonedge. The edges uzVj+i £ E for i odd are called

the edges of the alternating cycle. If all the edges of an alternating cycle

belong to S C E, it is an alternating cycle in S. Figure 6.3 illustrates

the only possible A04 and the only two possible A06s. There are no

alternating cycles smaller than an A04 and, by Theorem 6.1.3(h) and

Figure 6.2, threshold graphs are precisely those graph without induced

A04.

Vz v2

V5

vq vy

ACa

Vi vz
#——^

/ \

\

v4 V2

/

/

V

\

/> V2 1

\ vq s

\ /
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V5 "l

vq*- -<
AC,

Figure 6.3: The alternating cycles AC'i and AG's (dashed lines indicate

nonedges).

For a given graph G = (V, E) and a subset S Ç E, an edge set E'

is called a completion of S if S Ç E' C E. Furthermore P' is a P

completion if G' = (V, E') satisfies the graph property V. The problem
of finding a V completion is also known as graph sandwich problem, see

Golumbic, Kaplan and Shamir [28].

We claim that Algorithm 6.1 solves the threshold sandwich problem.
The algorithm is correct because every vertex in Gw is incident to

an edge in S Cl E(W), thus, by Theorem 6.1.3(m), Gw must have a

dominating vertex. It is also easy to implement Algorithm 6.1 to run

in linear time by storing and updating the degree of the vertices in Gw
similar to the implementation of topological sorting in [27]. Thus we

have

Fact 6.2.1 If an edge set S C E has a threshold completion, then a

threshold completion of S can be found in 0(|V| + |P|).



98 Chapter 6. Graphs with Threshold Dimension Two

threshold completion

input: a graph G = (V, E) and edge sets S Ç E

output: a threshold completion T of E

(1) T^0;

(2) VF <r- V(S);
(3) while VF ^ 0 do

(4) if Gw contains an dominating vertex v then

(5) T+-T + {vw £ E(W)}]
(6) W^W-{v}
(7) else

(8) stop (* S has no threshold completion *)
(9) fi

(10) od

Algorithm 6.1

Obviously the threshold number problem is equivalent to finding a

minimal partition of E into edge sets for which a threshold comple¬
tion exists. A necessary and sufficient condition for the existence of a

threshold completion is the following.

Fact 6.2.2 An edge set S has a threshold completion if and only if G

does not contain an alternating cycle in S.

Proof. Let E' be a threshold completion of S and let VF denote the

set of vertices in an alternating cycle in S. Since every vertex in VF

is incident to edges in S(W) and E(W), the graph G'w = (W,E'(W))
contains neither dominating nor isolated vertices. It follows from The¬

orem 6.1.3(ii) that G' = (V,E') cannot be a threshold graph, a contra¬

diction to our assumption, which proves the "only if" part.

To prove the "if" part, suppose that S has no threshold completion
and G does not contain an alternating cycle in S. Without loss of

generality, let G be minimal in the sense that S(W) has a threshold

completion in Gw for every W C V. Then every vertex is incident to a

nonedge of G and to an edge in S. So we can grow a path alternating
between nonedges and S'-edges until an alternating cycle is obtained.

In the light of Fact 6.2.1 and Fact 6.2.2, the threshold cover problem
looks like an edge coloring problem.
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Find the smallest integer k for which a partition Pi + ... + Ek

of E exists such that no alternating cycle has all its edges in

El for i = 1,... ,
k.

However, the constraint that every Et must not contain an alternating

cycle is much more complex than ordinary graph coloring. It is therefore

natural to look for constraints which are easier to deal with. CHVATAL

AND HAMMER [14] considered minimal A04-free edge partitions instead

of the more restrictive A02/-freeness. For this purpose, they defined the

graph G* as follows.

Definition 6.2.3 Two edges xy and vw of a graph G = (V, E) are in

conflict if they are the edges of an ACi, and the conflict graph G* =

(V*,E*) is defined by taking V* = E and by joining two vertices of G*

if the corresponding edges in G are in conflict.

Notation: As in Chapter 4, we write xy \\ vw if x,v,w,y is an A04
and xy || wv if x, w, v, y is an A04. Thus xy || • • || vw or xy || • • • || wv
holds for any pair of edges xy and vw in the same connected component
of G*.

Trivially x(G*) < £(G) because a threshold cover of size t(G) in¬

duces a coloring of G* of the same size. CHVATAL AND HAMMER [14]
asked whether there are graphs G with t(G) > x(G*)- COZZENS and

LEIBOWITZ [18] found examples of such graphs for the case x(G*) > 4.

On the other hand, IBARAKI AND PELED [41] showed that t(G) = x(G*)
if G* is bipartite and G is a spht graph. They also conjectured that

t(G) = x(G*) holds if G* is bipartite. In this chapter, we give a con¬

structive proof of IBARAKI AND PELED's conjecture. In other words,
our main result is

Theorem 6.2.4 If G* is bipartite, then an AC2\-free bipartition of G*

can be found in 0(|P|2).

The above theorem implies that if the bipartition of G* is unique,
then the color classes of G* are a solution to our problem. In general,
however, the number of connected components k of G* is rather large,
and the number of 2-colorings of G* is 2k.

We prove Theorem 6.2.4 by presenting an 0(|P|2) algorithm that

gradually transforms a given 2-coloring of G* into a 2-coloring of G*

without monochromatic alternating cycles. In a first step, we show that

it suffices to avoid the ACq rather than all alternating cycles.
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Theorem 6.2.5 (Corollary 6 in [30]) Let G = (V,E) be a graph
with x(G*) = 2 and let Ey and E2 denote the color classes of G. If
G has an alternating cycle in Ey, then G has an ACq in Ey or E2.

Proof. Since G* is bipartite, there is no A04 in Pi or E2. Let

0 = vo, vy,... , i>2Z-i be a minimal alternating cycle in Pi.

First, we show that vtvt+z £ E2 if vz, v%+y, vl+2, and vz+z are distinct.

If vtv^y £ E, then vtvt^3 £ E because 0 is minimal, and vlvl+z £

E2 because ^^4.3 || vl+yv1+2. Otherwise, if v^^y £ Ey, then the

minimality of 0 prohibits v%v%+z £ Ey. But v%v%+z £ E would imply

v%Vi+y || v^zVi+i, thus indeed f2v24-3 E2 as claimed.

To prove the theorem, let t>o, vy,... , v2\-y be a labeling of our mini¬

mal alternating cycle 0 such that vq , vy,... ,vk is a longest sequence of

distinct vertices. By the above remarks, vzvz+z £ E2 for i = 0,... ,
k — 3.

We distinguish the following cases.

Case 1: k > 5. Since vqVz, ^1^4 and v2v^ belong to E2, the sequence

v0,vy,Vi,v5,v2,vz is an A06 in E2.

Case 2: k = 4. Since vo^^i^ £ E2, either v$ = vq or v$ = v2. If

v5 — v2, then vqv2 £ E, for otherwise 0 could be shortened by replacing

vo,... ,v$ with vq,v^. Furthermore v0v2 £ Ey because v0v2 || ^1^4,

hence Uo, t>i, ^2, ^3, ^4, v2 1S an A06 in Pi.

If V5 = vq, then VoV2 £ E for otherwise we could obtain a shorter

alternating cycle than C by replacing vq, ... ,v§ with v0, Vy, v2, v§. But

vqv2 £ E2 because vqv2 || U4V3, thus vq, vy, Vi, vq, v2, v$ is an A06 in P2.

Case 3: k = 3. Then V4 = vy because ^0^3 £ E2. Furthermore, it

is easy to see that the vertices ^2,^3,^4 and V5 are distinct, hence v2v$

is in P2. Since k = 3, the vertex v6 cannot be different from v2,... ,vs,

thus vq = V3. But this is a contradiction as ^1^2 || v5 vq-

Case 4'- k = 2. Then v$ = Vo. Since k — 2, the vertex v$ cannot

be different from v2,vz,Vi, hence v$ = v2. Again this is a contradiction

because Vyv2 || ^3^4.

As we saw in Figure 6.3, there are only two possibilities of an ACq.
We define these two possibilities as follows.

Definition 6.2.6 An ACq vq,... ,v$ in one of the color classes of G*
is called an alternating polygon of length 5 or 6 (i.e APs and APq for

short) according to the number of distinct vertices in vq, ... ,v^.
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Figure 6.4: An alternating polygon of length 5 and 6.

In Figure 6.4 and subsequent figures, edges in one color class (usually
Pi) are indicated by dotted lines and edges in the other color class

(usually E2) by thick hnes. As illustrated in the figure, an AP5 and an

APß force edges in the other color class by the bipartiteness of G*. Thus

an APq vq,. . . ,v§ implies the complementary APq Vo,Vy,Vi,v^,v2, vz in

the complementary color class. Similarly, an AP5 vq, ... ,v$ implies the

edges vyVi, vyv$, v2Vi and v2v$ in the complementary color class. Note

also that all the edges of an AP5 except possibly vy v2 and all the edges
of an APq belong to connected components of G* with size greater than

one.

6.3 Recognizing 2-threshold graphs

By Theorem 6.2.5, to prove the main result, it suffices to transform a

given 2-coloring of G* into an A06-free 2-coloring of G*. We do this in

three parts.

6.3.1 Part 1

In this part, we show how to transform an APq-free 2-coloring of G* into

an A06-free 2-coloring. Parts 2 and 3 show how to obtain an APß-free

coloring.

Theorem 6.3.1 From a given AP6-free 2-coloring of G*, an AC^-free
2-coloring of G* can be computed in 0(|P|2).
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Proof. In this proof, we call an edge vyv2 £ E critical if an AP5

vo,... ,t>5 exists. Since a critical edge ^1^2 in an A04 vyv2 \\ xy results

in an APq V4,v§,v2,y,x,vy, we conclude that every critical edge VyV2 is

an isolated vertex in G*. We claim that the following statement holds.

The 2-coloring of G* obtained by inverting the color of all

critical edges is A06-free.

Certainly no new APq can arise because every edge e of an AP6 belongs
to a connected component of G* with size greater than one. On the

other hand, all the original AP5S are destroyed. So it remains to show

that no new AP5 is created.

Suppose the contrary, i.e. that a new AP5 w0,-.. , W5 is created.

Let Vo,. ..

, v5 be the AP5 in the old coloring that caused vyv2 = wyw2

to change its color. Without loss of generality, we may assume that

vy = wy and v2 = w2.

Note that all considered edges other than vyv2 retain their color

(their connected component in G* has size greater than one). There¬

fore {^4,^5} fl {w0,... ,w$} = 0, and the situation is as illustrated in

Figure 6.5.

wQ(= w3)

Figure 6.5: A configuration in the proof of Theorem 6.3.1

Since vyVi and W0W4 have the same color and WoVy $ E, we find that

V4W4 £ E and similarly v5w5 £ E. But V4W4 || v5w5, hence these edges
must have different colors. If V4W4 has the same color as v2v$, then

^5,^4,^4,^5, w0, v2 is an APq in the old coloring of G*, and otherwise

V4, v5, W5, W4, w0,vy is an AP6 in the old coloring. Both cases contradict

our assumption that the original coloring of G* is APö-free.
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To achieve the desired running time, we observe that the above proof
does not make use of the vertex vq = vz of the AP5 vq,. .. ,v§. Therefore

the argument still holds if we relax the definition of a critical edge and

say that an edge vyv2 £ E is critical when there are vertices ^4,^5 such

that «4^5 (£ E, {vyVi,vyV5,v2Vi,v2v$} C P and all these four edges

belong to the complementary color class of vyv2 and their connected

components of G* have size greater than one.

The decision whether an edge ^1^2 is critical or not can now be

made in linear time as follows. Mark all vertices x for which the edges

xvy and xv2 are in the complementary color class of Vyv2 and their

connected components in G* have size greater than one. Then scan

through the adjacency lists of the marked vertices to discover a pair

t>4,U5 of nonadjacent vertices. Clearly each of these operations can be

done in 0(|V| + |P|), which completes our proof.

6.3.2 Part 2

It remains to construct an APq -free 2-coloring of G*. In order to study
an APq more closely, we extend our notation.

Definition 6.3.2 The vertices v0, vy of an APq vq, ... ,v§ are called the

base of the APq and the edge v2v$ its front. If in addition vov2,vyv$ £ E

and vov2,vyv$ belong to the color class of vqVq, then v0,... ,v5 is called

a double APq.

Figure 6.6 illustrates a double APg. Note that the complementary
APq v0,vy,V4,v5,v2,v3 is also a double APq.

Figure 6.6: A double APq.
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In this part, we transform a given double APg-free 2-coloring of G*

into an APô-free 2-coloring. The next three fundamental facts on APqs

are also proved in [30].

Fact 6.3.3 Let vq, ... ,v& be an APq and v2v5 = Xoyo || •• || %hVh a

path in G* satisfying {xo,--- ,Xh,yo,--- ,Vh} H {i>o,t>i} = 0. Then an

APq with base vo,^i and front x^yh exists.

Proof. We use induction on h. The case h = 0 is just our assumption.
If h > 1, then the induction hypothesis implies the existence of an AP6

v0,vy,yh-y,... ,xh-y or an APq v0, vy, xh-y,... ,yh-i- In the former

case, from xh-yyh-y || xhyh and {xh,yh} 0 {v0,vy} = 0 we infer the

existence of the APq vo,Vy,yk-y,yh,Xh,Xh-y- Then the complemen¬

tary APq vo, vy, Xh, ~A-i, yh—i, yh satisfies our claim. The latter case is

similarly treated. û

Fact 6.3.4 Let vq, ... ,v$ be a double APq and v2v$ = a?oyo || || %hyh
a path in G*. Then {a?0, • ,Xh,yo, ,yh} H {v0, vy} = 0 and a double

APq with base uo,vi and front x^yh exists.

Proof. Again we use induction on h. The case h = 0 is our as¬

sumption. For h > 1, the induction hypothesis implies {xo,... ,Xh-y,

Vo,--- ,yh-i}n{v0,vy} = 0 and the double APq v0,vy,yh-y,... ,xh-y-

Therefore {xh, yh}^\{vo, vy} = 0. From this and the fact that Xh-yyh-i \\
%hVh, we obtain the double APq v0,Vy,yh-y,yh,Xh,Xh-i, whose com¬

plementary double APg vo,vy,Xh,Xh-y,yh-i,Vh satisfies our claim.

Fact 6.3.5 Let vq,... ,vz, be an APq and v2v$ = «oyo || •• || %hVh a

path in G* satisfying {xh, Vh}r\ {vo, vy} =£ 0. Then a double APq exists.

Proof. Without loss of generality, we may assume that {xo,... , Xh-y,

yo,... ,yh-y} fl {vo,^i} = 0- Thus Fact 6.3.3 guarantees either an

APq v0,vy,yh-y,.-- ,xh-y or an APq v0,vy,xh-y,... ,yh-\- Because

of symmetry, it suffices to discuss the first possibility.

Again without loss of generality, assume that yh = vo as illustrated

in Figure 6.7 (the case Xh — vy is similar). From Xh-yyh-i \\ ^hVh =
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Figure 6.7: A configuration in the proof of Fact 6.3.5

XhVo, we obtain the AP5 vo,vy,yh-y,vo,Xh,-y,Xh, which also induces

the complementary edges vyXh-y,vyXh,yh-iXk-i and yh-yXh-

On the other hand, vyyh-y is an edge of the AP6 t?o, ^i, Vh-i, , %h-i

and therefore another edge xy £ E with xy || vyyh-y exists. Thus

xh,xh-y,vy,x,y,yh-y is a double APq.

Now we are ready to prove the main result of Part 2.

Theorem 6.3.6 From a given double APQ-free 2-coloring of G*, an

APß-free 2-coloring of G* can be computed in 0(|P|2).

Proof. Let Pi + P2 be the bipartition of G*. We assume there is an

AP6 vo,... ,V5, for otherwise we are done. With respect to these fixed

vertices Vo and vy, let

H = {xy £ E I xy is the front of an APq with base vo, ^1}

Since Pi + P2 is double APq-free, Fact 6.3.5 and Fact 6.3.3 imply that

if an edge xy belongs to H, then all edges in the same connected com¬

ponent C*(xy) belong to H. Therefore, if we swap the color of all edges
in H, we obtain another 2-coloring of G*. For this new 2-coloring, we

assert the following.

No edge in H is an edge of an APq. (6-4)

In order to prove this assertion, we assume that the new coloring has an

APq wq, . - - ,W5 with one of its edges in H, and obtain a contradiction.

Without loss of generality, we assume that wqW^ £ H and that wqw^ £

E2. (We always refer to the "old" coloring if not mentioned otherwise,
thus wo,.-- ,w$ is an APq in the new coloring.) Since W0W5 \\ wyWi,
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either vo,vy,wo,wy, w4,w5 or v0, vy,ws,Wi,wy,w0 is an APq in Pi. The

symmetry allows us to assume the first case.

Figure 6.8 illustrates this situation, including the edges vowy, vyWi £

E2 of the complementary APe v0,vy,Wi,W5,wo, wy in E2. The vertices

w2 and wz remain to be specified.

Figure 6.8: The base configuration in the proof of Theorem 6.3.6

Since all edges incident to vq or ^i retain their color and vowy, VyWi £

E2, a choice of w2 = vq or wz = ^i would contradict our assumed APq

wq, ,w5 in the new coloring. The following possibilities remain.

Case 1: \{v0,vy,w0,.. • ,w5}\ = 8.

Case 1.1: wyw2 £ H. Then wyw2 £ E2 and W0W3 £ Ey. From

wyw2 £ H, Fact 6.3.3 implies the existence of an APq in Pi with base

Vo,Vi and front wyw2. But vowy £ E2, and therefore vow2,vyWy £ Ey
must be edges of this APq .

A closer look reveals that vo, vy, wy, wo, wz, w2

is an APq in Pi, thus its complementary APq guarantees voWo,vyWz £

E2, as illustrated in Figure 6.9.

Case 1.1.1: WzWi £ H. The above argument applied to wzWi

instead of wyw2 results in v^Wi,vyWz £ Ey, which is impossible.

Case 1.1.2: wzWi ^ H. Then wzW4 £ Ey and therefore w2w$ £ E2.

Further, since vyWz, w2w§ £ E2 and wzw2 (£ E, we must have vyw^ £ E.

Moreover, vyw§ £ E2, for otherwise vq, vy, w<s, W4, wz,w2 would be an

APq in Pi, which would result in w2w§,wzW4 £ H, contrary to our

case. Further, as depicted in Figure 6.9, since woVo,vyW4 £ E2 and

voVy ^ E, we must have W0W4 £ E. But woWi £ E2 implies the double

APô Wi,w$,wo,wy,v0,vy whereas w0Wi £ Ey impfies the double APq

Wo,Wy,Wi,ws,vo,vy, a contradiction to our assumption.

Case 1.2: wzw<y £ H. This case is symmetric to Case 1.1.
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Case 1.1 Case 1.1.2

Figure 6.9: Cases in the proof of Theorem 6.3.6

Case 1.3: wyw2 £" H and WzWi £~ H. In this case wyw2,wzWi £ Ey

and woWz,w2w$ £ E2. Since ^ow;5,w4U'3 £ Ey and W5W4 ^ P, we must

have vqWz £ E. Further, ^0^3 £ Ey, for otherwise w2w^,W3Wi £ H

because of the APq vq , vy, W4, w§, w2, wz. The symmetric argument leads

to vyw2 £ Ey, which contradicts vowz \\ vyw2, see Figure 6.10.

Case 1.3 Case 2

Figure 6.10: Cases in the proof of Theorem 6.3.6

Case 2: vQ = ws and vy ^ w2. If Wyw2 £ H, then WqWz =

wo^o _ P, a contradiction. Therefore Wyw2 £~ H, hence wyw2 £ Ey and

ivoWz = W0V0 £ E2. Further, since wyvo, w2w§ £ E2 and VoW2 ^ E,
we have wyw$ £ E. But wyw§ does not have an admissible coloring
because wyw$ £ E2 implies the double APq wo,wy,vo,vy,Wi,w§ and

wyw<s £ Ey implies the double APq W4,w<s,vo,vy,wo,wy.
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Case 3: vo ^ wz and vy = w2. This case is symmetric to Case 2.

Case 4'- vo = wz and vy = w2. Then wyVy,voWi $. H, hence

WyVy,v0W4 E Ey and w0v0,vyw5 £ E2. Since w0vo,vyW4 £ Ey and

v0vy $. E, we have W0W4 £ E. Further, w0Wi £ Ey, for otherwise the

double APq Wi,w^,vy, vo,wy,wo exists. The symmetric argument leads

to Wyw5 £ Ey, which contradicts WgWi \\ Wyw$, see Figure 6.11.

W5

Wo
"

'"'"wimijiimiimijnäJiW Wy

Figure 6.11: Case 4 in the proof of Theorem 6.3.6

Since all the cases above lead to contradictions, we conclude that the

new coloring does not have an APq with an edge in H, and therefore

our assertion (6.4)) holds.

But then the new coloring has fewer APßS than the old one. Con¬

tinuing in this way, we achieve an APq -free coloring in |P| steps. To

show the 0(|P|2) running time, it therefore suffices to prove that the

determination whether an APq vq, ... ,v& exists for a given edge v2v^

and the computation of H can be done in 0(|V| + |P|)-

First we consider the former problem. Since the coloring of G*

is double APs-free, Fact 6.3.5 impfies {x,y} fl {^0,^1} = 0 for each

APq v0,... ,v5 with xy \\ v2v5; hence the APq v0,vy,v2,x,y,VQ also

exists. Therefore a fixed edge V3U4 conflicting with ^2^5 can be chosen

in advance. The remaining search for the base vo, ^i is in OdV^I + |P|).

As to the computation of H, an edge xy is in H if and only if it is

the front of an APq with base «o, «i. Again, it is easy to see that if such

an AP6 exists, then an APq with base fo,^i, front xy and an edge vw

must also exist whenever vw \\ xy. Therefore, the computation of H is

also in 0(|V| + |P|).
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6.3.3 Part 3

In this part, we present an efficient method to transform a 2-coloring
of G* into a double APg-free 2-coloring, which is the remaining task

according to Theorem 6.2.4. In order to do this, we need a deeper

analysis of the A04-structure in the presence of an APq.

We start with studying the connected components of G* for arbitrary

graphs. In analogy to the previous chapters, we call the edges in a

connected component of G* an ACi-class. In the rest of this section,
0* stands for an A04-class and C*(vw) for the A04-class that contains

the edge vw. Let P, Q and R denote the sets of F(0*)-universal,
Vr(0*)-null and V(0*)-partial vertices, respectively. Note that every

edge with one endpoint in Q must have the other endpoint in P.

The next theorem analyzes the neighborhood relation between the

vertices in V(C*) and those in V - V(C*).

Q(Z>

Figure 6.12: Case (i) and (ii) of Theorem 6.3.7.

Theorem 6.3.7 Let C* be a nontrivial ACi-class of an arbitrary graph
G = (V,E). If P ^ 0, then a unique partition V(C*) = V1 + V2 exists

such that every edge in C* has one endpoint in V1 and the other in V2,
and either

(i) V1 is a clique, V2 is a stable set and every vertex in R is V1-

universal and V2-null or

(ii) V1 and V2 are cliques and no vertex in R is V1- or V2-partial.

Proof. Let v be an arbitrary vertex in R. Clearly an A04 ab || cd in

0* exists such that v is {a, b, c, d}-partial. If v is {a, 5}-universal and
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{c, „}-null, then av || cd, a contradiction to v £" V(C*). Without loss of

generality, we may assume that v sees b but misses a. Then v sees c,

for otherwise bv || dc, a contradiction to v $ V(C*). Similarly, v misses

d, because otherwise dv || ba. By induction, every edge in 0* has one

endpoint in V1 = N(v) n V(C*) and the other in V2 = N(v) n V(C*).

Next, we show that V1 is a chque. Suppose the contrary, i.e. there

are nonadjacent vertices x and z in V
.
Since x is covered by 0*, an edge

xy £ C* exists. Then v misses y and therefore xy || zv, a contradiction

to» <£V(C*).

Since V1 is a chque, every pair of conflicting edges in 0* induces a

P4 or a 04. We show that either every A04 in C* is a P4 or every A04
in 0* is a 04. Suppose that this does not hold. Then A04S ab || cd and

cd || ef in C* exist such that abed is a P4 and c, d, e, f is a 04. Clearly
a,d,e £ V2 and b,c,f £ V1, thus e is different from a,b,c and d.

Furthermore 0* ^ C*(de) because cu || e„ and because v is not covered

by C*. So ab \\ ed is impossible, hence a sees e. Now cv || ae || de, a

contradiction to v $. V(C*).

It remains to prove that (i) holds if every A04 in 0* is a P4 and that

(ii) holds if every A04 in 0* is a 04. We first consider the case that

every A04 in C* is a P4. Assume that V2 contains adjacent vertices

a and x. Then there is a P4 abed with ab, cd £ C*. Now x sees d, for

otherwise cv || ax || cd, a contradiction to v £ V(C*). Thus we have

shown that given x sees one endpoint of a P4 with its wings in C*, then

x sees the other endpoint as well. It follows by induction that x cannot

be covered by 0*, a contradiction to our assumption. So V2 is a stable

set. Since every vertex in V1 + V2 belongs to a P4 in Gyi+yz, the

partition V1 + V2 is unique and, as we have chosen v arbitrarily, every

vertex in R sees V1 but misses V2.

Finally, we prove that if every pair of conflicting edges in 0* induces

a 04, then (ii) holds. To show that V2 is a clique, we assume the

contrary, i.e. there are nonadjacent vertices a and x in V2. Let ab || cd
denote a 04 in 0*. Then xd ^ E, for otherwise bv || dx || ba, a

contradiction to v ^ V(C*). By induction, x misses every point V2,
which implies that x cannot be covered by C*, a contradiction. So

we have shown that V2 is a chque. Since Gyi+yz is connected, the

partition V(C*) = V1 + V2 is unique, hence every vertex in R induces

the same partition. D

Remark: The above theorem shows that the cover of an A04-class



6.3. Recognizing 2-threshold graphs 111

is a module, a special spht module or a special cobipartite module.

From the theorems of Chapter 4, it follows that Theorem 6.3.7 can be

used to obtain a unique graph decomposition. A GALLAI-type theorem,

however, does not hold, even if G* is bipartite: The complement of a

Pq is a prime graph with bipartite G* and it has two A04-classes which

both cover the whole graph.

If 0* is bipartite and there is a double APq vq, ... ,v§, then Fact 6.3.4

asserts that 0* = C*(v2v§) does not cover the whole graph. Now this is

just the interesting case with respect to the recognition of 2-threshold

graphs. So we study this situation in more detail.

Without loss of generality, assume that vq, ... ,vs is a double AP6

in Ey. From the definition of a double APq and the existence of its

complementary double AP6, we derive

{voV2,V0V5,VyV2,VyV5,VzV4\ Ç Ey, /ß_g\
{VoVz,VoVi,VyVz,VyVi,V2V5} Ç E2.

Let VF stand for the cover of 0* = C*(v2v5), that is, VF = V(C*). Note

that vo and v2 see both endpoints of v2v^, so Theorem 6.3.7 implies
that vo and vy belong to P. Therefore W1 = {k £ W \ v0k £ Ey} and

VF2 = {k £ W | v0k £ E2} is a partition of VF.

Lemma 6.3.8 VF1 + VF2 is a partition of W into cliques.

Proof. Let x and y be nonadjacent vertices in VF1. Then vox,voy £

Ey. By Fact 6.3.4, there is a double APq vo,vy , x,. ..

,
hence vyx £ Ey.

But this contradicts vyx || voy. The same contradiction arises if we

assume that x and y are nonadjacent vertices in VF
.

Next assume that case (ii) of Theorem 6.3.7 holds. Then v2, v4, vz, v$

is a 04. Without loss of generahty, we may assume that a vertex r in

R sees v2,V4 and misses vz,v§. If r misses vo, then V0V5 || rvi || V3U5 ||
v2r || U3U0, a contradiction because ^0^5 and »0^3 have different colors.

But if r sees vy, then ^1^5 || vor \\ VyVz, again a contradiction because

VyVs and ^1^3 have different colors.

Therefore either VF is a module or Theorem 6.3.7(i) holds. In the

latter case, v2v$ |j v2V4 induces a P4. Without loss of generality, we

assume that this P4 is f2^5^3V4-

Lemma 6.3.9 Q U RU {^0,^1} is a stable set and
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R

V3 J

Vi

Figure 6.13: Case (ii) of Lemma 6.3.9.

(i) W is a module or

(ii) W —

v2 — V4 is a clique, {^2,^4} is a stable set and every vertex

in R sees every vertex in W except for v2 and V4.

Proof. Since VF = V(C*), vertices in Q can only be adjacent to

vertices in P. If a vertex q £ Q sees vq, then Vyv2 || voq || ^1^3, a

contradiction because vyv2 and «1^3 have different colors. The case

that a vertex in Q sees vy is similar, thus Q U {vo,i>i} i§ stable, which

proves the lemma if R = 0.

If R ^ 0, then Theorem 6.3.7(i) holds, thus V2V5V3U4 is a P4. Since

Gw induces a split graph and every vertex in VF is in a P4 in Gw, the

spht partition of VF is unique and v2 and V4 belong to the stable set

in the split partition. On the other hand, the stable set consists of at

most two vertices because of Lemma 6.3.8. So it remains to show that

R U {vq, Vy} is stable.

If a vertex r £ R sees v0, then vyv2 || v0r || V1U4, a contradiction

because Vyv2 and Vyv± have different colors. The case that a vertex

in R sees vy is similar, thus every vertex in R misses vo and vy. If

adjacent vertices ry and r2 in R exist, then vov2 || rir2 || t>ot>4, again a

contradiction to (6.5).

The above lemma impfies that every A04 vw || xy with v,w £ W

satisfies x,y £ W. The next corollary follows by induction.

Corollary 6.3.10 If vw £ E(W), then C*(vw) Ç E(W).
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Next, we investigate A04-classes that contain edges between V — W

and VF and edges with both endpoints in V — W.

Lemma 6.3.11 If an edge vw with v £ V — W and w £ W satisfies

C*(vw) f]E(V — VF) 7^ 0, then v is W-universal and every edge between

v and a vertex in W belongs to C*(vw) and has the same color as vw.

Proof. We first show the lemma for the case that no vw belongs to

an A04 vw || xy with x, y £ V — K.

If v £ R, then ot5 £ Ey and wz £ E2 because vv$ || ^0^4 and

vvz || v0v2, see Lemma 6.3.9(ü) and Figure 6.13. Furthermore y £ Q
because v sees w £ W and y misses w. But this is contradiction to the

coloring of Wz and vv5 because vvz || xy [| vv$.

So v is VF-universal. If y £ Q, then xy \\ vz for every vertex z £ W,
thus every edge between v and a vertex in VF belongs to C*(vw) and

has the same color a,s vw.

If y £ R, then x £ P and vv2 \\ xy \\ vv±. By Lemma 6.3.9(H),
v2 misses V4, hence Gw is connected. Thus every vertex zq £ W is

connected to either v2 or V4 by a path of length 2k + 1, say Zq, ...

, z2k-

Therefore vzq || xzy [| vz2 || xzz || • • || vz2k with z2k = v2 or z2k = V4.

So again every edge between v and a vertex in VF belongs to C*(vw)
and has the same color as vw.

It remains to show our lemma in the general case. Let xoyo || xyyy ||
• • || Xk+yyk+l be a path in G* that connects vw = xoyo with an edge

xk+yyk+\ in E(V — K). Furthermore, let a^+i-Ufc+i be the first edge
in this path with both endpoints in V — VF and let xk £ V — VF and

yk £ W. We have already shown that our lemma holds for xkyk- By

induction, it suffice to prove that it holds for xk-yyk-y.

Clearly xk-y £ V — W and yk-y £ VF. Since no vertex is Gw-

dominating, every edge between xk-y and a vertex in VF belongs to

an A04 whose other edge connects xk with a vertex in VF. Therefore

every edge between xk-y and VF belongs to C*(xkyk) = C*(vw) and

has the same color as xkyk- Finally, if xk-y were not VF-universal,
then Xk-y £ R, hence xk-yv^ || U0V3 and .T£_iV3 || vqv2 and therefore

Xk-iVs £ Ey and Xk~yvs £ E2, a contradiction because every edge
between Xk-y and VF has the same color.

Let vw be an edge as described in the above lemma and suppose

that vw is the front of an double APq ko, ky, v,... ,
w. Then vv2 and
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vvz belong to C*(vw) and have the same color. By Fact 6.3.4, both

ko,k2,v,... ,v2 and ko, k2, v,... ,vz are double APqs in the same color,
a contradiction to kov2 || kyVz- So the following corollary holds.

Corollary 6.3.12 // an edge vw with v £ V — VF and w £ W satisfies

C*(vw) fl E(V — W) ^ 0, then vw cannot be the front of an APq (in
any 2-coloring of G*).

Based on the structural results obtained so far, we propose the fol¬

lowing recursive procedure to compute a double AP6-free 2-coloring of

the edges of G.

(i) Replace VF1 and VF2 with nonadjacent marker vertices wy and w2.

(ii) Compute a double AP6-free 2-coloring in Gw and in Gv-w+wx+w2-

(Hi) Construct a 2-coloring of the edges of G by coloring
vw with v,w £ W as in Gw,
vw with v,w £ V — VF as in Gy—w+w1+w2,
vw with v £ V — W and w £ W1 as wi in Gy-w+w1+w2 an-d

vw with v £ V — W and w £ W2 as vw2 in Gy-w+w1+w2-

(iv) Assign to vw the color Pi

if w £ W1 and v £ W1 or

if w £ W1 and v £ V - W and C*{vw) n E(V - W) = 0.

(v) Assign to vw the color P2

if w £ W2 and v £ W2 or

if w £ VF2 and v £ V - W and C*(vw) D E(V - W) = 0.

The next theorem proves that the computed 2-coloring is indeed a dou¬

ble AP6-free 2-coloring of G*.

Theorem 6.3.13 If the 2-coloring of Gw and Gy-w+w1+w> is double

APQ-free, then (Hi), (iv) and (v) construct a double APQ-free 2-coloring

ofG.

Proof. In a fist step, we show that the coloring computed by (Hi) to

(v) does not contain an A04 in Pi or P2. This holds for the coloring
computed by (Hi) because every A04 in G has a corresponding A04
either in Gw or in Gy-w+wx+w2 with the same colors, so it suffices to
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consider edges vw in A04S that might change their color in (iv) and

(v).

If an edge vw has its endpoints in VF1, then x,y £ W2 for every

AO4 vw || xy because VF1 is a cfique and x, y £ VF by Corollary 6.3.10.

So A04S with one edge in E(W) are colored properly by (iv) and (v),
and it remains to discuss A04s with an edge between V and VF.

If an edge vw satisfies v £ V-W,w £ VF1 and C*(viv)r\E(V-W) =

0, then no A04 vw || xy has x £ W and y £ V — W, for otherwise v

and y would have to be R-vertices, which is impossible because v sees

w £ W whereas y misses w. Thus every edge xy in an A04 vw || xy

satisfies x £ V — VF and y £ VF. Moreover y £ W2 because VF1 is

a clique. Therefore vw and xy received their colors in (iv) and (v),
respectively, and the AO4 vw || xy is therefore properly colored. As the

case v £ V — VF, w £ VF2 is similar, the coloring constructed in (Hi),
(iv) and (v) is indeed a 2-coloring of G*.

To show that the constructed 2-coloring contains no double APq, we

assume that a double APq uq, ... ,1/5 exists and show that this assump¬

tion leads to a contradiction. Without loss of generality, let u0,... ,
m 5

be an APq in Ey, thus

UoU2,UoU5,UyU2,UyU5,UzU4} Ç Ey, /QQ\
U0Uz,UoU4,UyUz,UyU4,U2U5} C E2.

Because of symmetry, it suffices to distinguish the following three cases.

Case 1: u2,U5 £ W. Then Corollary 6.3.10 implies uz,Ui £ W.

Since u2u$ £ E2, not both u2 and u$ belong to VF1 because of (iv).
Without loss of generality, let u2 £ W2.

If u0 £ V - W, then C*(u0u2) H E(V - VF) ^ 0, for otherwise

uou2 £ Ey by (v). So Lemma 6.3.11 applies to uou2 and «0^3 has the

same color as uou2, a contradiction to (6.6).

If Mo £ W, then uy £ W because of Uqu2 \\ UyUz and Corollary 6.3.10.

Since uqu2, uyu2 £ Ey and u2 £ VF", by (v), both Uo and uy must belong
to W". But this is a contradiction because VFW is a clique.

Case 2: u2 £W and u5 £ V-W. From Corollary 6.3.12 follows that

C*(u2us) n E(V - W) = 0. Therefore uz £ W 01 u4 £ W. Furthermore

u2 £ W2 because of (v).

If u0 £ V - W, then C*(u0u2) fl E(V - W) ^ 0, for otherwise

«o^i £ E2 by (v). From Lemma 6.3.11 follows that every edge between
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uq and a vertex in VF has the same color as uqu2, thus uz and u4 cannot

belong to VF. But this contradicts u3 £ W or 164 £ W.

The same contradiction arises if uy £ V — W, thus uo,uy £ W. Since

u2 £ W2 and uou2,uyu2 £ Pi, by (v), both uq and uy must belong to

VF1. But this is impossible because VF1 is a cfique.

Case 3: u2,u5 £ V — IF. Then «3,^4 G V — VF, for otherwise we

consider the complementary double APq uo,uy,Ui,u$,u2,uz and are

back in Case 1 or 2. Furthermore uo,uy £ V — W cannot hold, as

otherwise the same APq would be contained in Gv-w+wx+w2- So «o £

W or uy £ W. Since uqu2 || uyu3 and by Corollary 6.3.10, we may

assume that „0, uy £ VF.

Let uo G IF1 and uy £ VF2 without loss of generality. Then both

C*(uyu2) fl E(V - VF) ^ 0 and C*(_i_5) n P(V - VF) ^ 0 because

otherwise «i«2 G E2 and «1^5 G P2 by (v). Now Lemma 6.3.11 ap¬

plies to uyu2 and uyu$, hence «0^2 £ 0*(_i„2) and ""0^5 G 0*(„iMs),
thus none of the edges of our double APq received its color in (iv) or

(v). Therefore wy, w2, u2, „3, „4, U5 is a double APô in Gv_vk+w1+w27 a

contradiction to our assumption.

The following theorem together with the foregoing theorems estab¬

lishes the claimed running time to cover G with two threshold graphs.

Theorem 6.3.14 A double APQ-free 2-coloring of G* can be computed
in 0(\E\2).

Proof. The initial computation of G* and its 2-coloring can be carried

out in 0(|P|2). When replacing W = V(C*) with marker vertices, G*

can be updated by relabeling and deleting vertices of G*, hence all these

updates can also be made in 0(|P|2).
For the search for the double APßS, we exploit the fact that a given

edge xy £ Et, i £ {1,2}, is the front of a double APq if and only if

\C*(xy)\ > 1 and the set P = {v £ V j xv £ E - E% and yv £ E - PJ
is not a chque. Observe that the vertices in L can be marked in 0(| V |)-
time. To obtain a nonedge in L, if any, simply build and use the adja¬

cency hsts of G_. The running time for all those searches is therefore

0(|P|2). D



Chapter 7

Cobithreshold graphs

In this chapter, we study the recognition of cobithreshold graphs. HAM¬

MER AND MAHADEV [31] called a graph cobithreshold if it is the comple¬
ment of a bithreshold graph, and they defined a graph to be bithreshold

if it is the intersection of two threshold graphs and every stable set

of the graph is stable in one of the two threshold graphs. Since the

complement of a threshold graph is again threshold, we can define co¬

bithreshold graphs as follows.

Definition 7.0.1 A graph G = (V,E) is cobithreshold if it is the union

of two threshold graphs Ty and T2 such that every clique of G is also a

clique of Ty or T2.

The two threshold graphs Ty, T2 in the above definition are also

called a cobithreshold cover. Clearly, a cobithreshold cover is a threshold

cover of size 2, thus cobithreshold graphs are a subclass of 2-threshold

graphs. Besides being 2-threshold, cobithreshold graphs are interesting
because of their connection with Boolean functions [53].

In [31], HAMMER AND MAHADEV proposed an 0(|V|4) algorithm
for recognizing cobithreshold graphs. In search of faster recognition al¬

gorithms, subclasses of cobithreshold graphs were considered. Indeed,
Hammer et al. [33] and Petreschi and Sterbini [64, 65] found lin¬

ear time algorithms for the recognition of bipartite cobithreshold graphs
and strict 2-threshold graphs, respectively. In [1], De AGOSTINO ET AL

suggested reducing the recognition problem for cobithreshold graphs to

the recognition of bipartite cobithreshold graphs to achieve an 0(|V|3)

117
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recognition algorithm. The first substantial improvement for the gen¬

eral case, however, is due to RASCHLE AND STERBINI [68], who found

a linear time algorithm for recognizing cobithreshold graphs.

This chapter describes RASCHLE AND STERBINl's approach. The

next section contains results on threshold and 2-threshold graphs as far

as they go beyond those of Section 6.1 and Section 6.2. In Section 7.2,
we describe a new threshold completion algorithm and a new linear

algorithm for testing whether a threshold cover is a cobithreshold cover.

Those algorithms are needed in Section 7.3 to solve the recognition

problem for some special classes of graphs. The general case is then

treated in Section 7.4.

7.1 Background and terminology

The following result on threshold graphs is needed for testing in linear

time whether a threshold cover is a cobithreshold cover. Let G = (V, E)
be a graph and let Sy < ... < Sk denote the distinct, positive degrees
of the vertices with <^o = 0 (even if no vertex of degree 0 exists). The

degree partition of V is then given by V — Do + Dy + ... + Dm where

Dt is the set of all vertices of degree 5t.

Theorem 7.1.1 Let G = (V,E) be a threshold graph with degree par¬

tition V = Do + Dy + ... + Dm. Then a vertex v £ Dx sees a vertex

w £ Dj if and only if i + j > m.

Proof. This proof is by induction on the number of vertices in G. If

G consists of a single vertex, we are done. For the inductive step, let

Po+ - • - +Pm denote the degree partition of the graph G before we added

the isolated or dominating vertex vn according to Theorem 6.1.3(iv).
If vn is isolated, then the new vertex partition is (Po U {un}) + Pi +

• + Dm. Similarly, if vn is dominating and G contains a dominating

vertex, the new vertex partition is D0 + • • + Dm—y + (Dm + {»«})
Finally, if vn is dominating and G contains no dominating vertex, then

Po ^ 0 and the new vertex partition is D'0 + D[ + • • + D'm + D'm+1 +
-D'm+2 w^h D'0 = 0 and Pm+2 = {vn} and D[ = Dx-y for i = 1,... ,

m+

1. In every case, it is easy to see that the theorem holds.

If a graph is 2-threshold, its conflict graph G* must be bipartite. It

is therefore easy to see that a 05 and the graphs P2 and P3 in Figure 3.1
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are not 2-threshold, thus Theorem 3.4.4 implies the following.

Fact 7.1.2 // a cobithreshold graph G is not split, the complement of

an F2 or a Pi abed such that be belongs to an Ad can be found in

linear time.

Let Ty and T2 be the two threshold graphs in a 2-threshold cover or in

a cobithreshold cover. Since both have the same vertex set V, we usually

identify Ti and T2 with the corresponding edge sets. Furthermore, we

refer to the edges in Ty and T2 as the black and red edges, respectively,
and call the resulting 2-coloring of the edges of G a 2-threshold coloring

or a cobithreshold coloring. Note that, unlike the 2-colorings in the

previous chapter, an edge in G can be red and black at the same time,
that is, it can be bicolored.

On the other hand, in a 2-threshold coloring, no bicolored edge be¬

longs to an A04, and the two edges of an A04 must receive different

colors. We call a 2-coloring of the edges of G that satisfies the above

conditions a proper 2-coloring of G. Furthermore, we say that a cfique is

uniformly colored if every edge in this cfique has the same color. Clearly,

every clique in a cobithreshold coloring is uniformly colored.

As in Definition 6.2.6, an A06 with all its edges in the same color

is called alternating polygon of length 5 or 6 depending on the number

of vertices involved, see Figure 6.4. In the figures of this chapter, red

edges are indicated by dotted lines and black edges by bold lines, thus

Figure 6.4 shows a red AP5 and a red APq.

Lemma 7.1.3 A proper 2-coloring can be extended to a cobithreshold

coloring in linear time if every clique is colored uniformly and every

edge in an AP5 belongs to an ACi.

Proof. Since every cfique is uniformly colored, it suffices to show

that we can color additional edges such that both the red edges and the

black edges are edge sets of threshold graphs. By Theorem 6.2.5, this

is equivalent to proving that no AP5 or APq exists.

In an AP5 vq, ...

, V5, the edges Vov$ and U3V4 are in AC4S. But our

coloring is proper and every clique is uniformly colored, so vyv2 must be

bicolored because of vy V4 || V0V5 and because of the triangle {vy,v2,Vi}.
Hence vyv2 is in no A04, a contradiction.

In an AP6 v0,... ,v5, the edges v0v5, vyv2 and vzVi belong to A04s.

Furthermore, vo misses v2 and vy misses vs, as otherwise the triangles
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{vo,v2,v$} or {^1,^2,^5} would not be uniformly colored. So V0V5 ||
v2vy, a contradiction as vqv^ and vyv2 have the same color.

In the rest of this chapter, we develop an algorithm that computes

a cobithreshold coloring whenever the given graph is cobithreshold. To

begin with, we give two rules which allow us to infer the color of further

edges in a cobithreshold coloring provided that we already know the

color of some other edges in that cobithreshold coloring. Those rules

follow easily from the fact that no edge in an A04 can be bicolored and

that every clique is uniformly colored.

Rule 1: If vw \\ xy, then xy receives the color different from the

color of vw.

Rule 2: If a clique C contains v and w and vw belongs to an AC4,
then every edge between vertices in 0 receives the same color as vw.

In the next section, we show that coloring the edges in the A04S

suffices to compute a cobithreshold coloring of G.

7.2 Threshold completions

Let 0 = (V,E) be a graph and Ey,E2 Ç E edge sets that satisfy

ab, cd G Pi U P2 for every AC4 ab \\ cd in G. (7.1)

We claim that Algorithm 7.1 computes a threshold completion Ti of Pi

if threshold completions of Pi and P2 exist.

If fine 13 is never executed, it follows from Theorem Q.1.3(iv) that Ty

is a threshold completion of Pi. So suppose that Algorithm 7.1 stops at

line 13. Then Gu contains neither an isolated nor a dominating vertex

and either VF = 0 or VF ^ 0 and Wud = 0. If VF = 0, then, since Gu

is not a threshold graph, an A04 ab \\ cd exists such that both edges
belong to P2, thus P2 has no threshold completion. Otherwise, if VF 7^ 0

and Wud — 0, then Gw has no dominating vertex. But every vertex in

Gw is incident to an edge in E(W) fl Ey, hence Pi has no threshold

completion.

Algorithm 7.1 runs in hnear time as the number of vertices in Wud

is proportional to the number of edges incident to the vertex u chosen

in hne 15, and u is removed during the next execution of the while loop.



7.2. Threshold completions 121

threshold completion

input: a graph G = (V,E) and edge sets Ey,E2 Ç P as in (7.1)
output: a threshold completion Ty of Pi

(1) Ti^0;

(2) U +-V;

(3) while U ^ 0 do

(4) if Gu contains an isolated vertex u then

(5) U^U-{u}
(6) elsif Gu contains a dominating vertex u then

(7) Ty ^ Ty + {uv £ E(U)};
(8) U^-U -{«}
(9) else (* no vertex in Gu is isolated or dominating *)

(10) VF^-V(PinP(P));
(H) Wud ^— {vj £ U | w is W-universal or dominating in Gw }
(12) if VF = 0 or Wud = 0 then

(13) stop (* Pi or P2 has no threshold completion *)
(14) fi;

(15) choose u £ Wud with maximal degGu(u);
(16) U +-{u} + NGu(u)
(17) fi

(18) od

Algorithm 7.1

The following lemma states that a maximum threshold completion exists

and that it is computed by our algorithm.

Lemma 7.2.1 Let Ty denote the threshold completion of Ey computed

by Algorithm 7.1. Then every threshold completion T[ of Ey satisfies

T[ ÇTy.

Proof. Let T[ denote an arbitrary threshold completion of Pi. Clearly,
the removal of an isolated vertex in Gu does not affect any threshold

completion. Similarly, as all edges incident to a dominating vertex in

Gu are added to Ty, the removal of a dominating vertex in Gu does

not lose any edge relative to T[. So assume that Gu contains neither

isolated nor dominating vertices and therefore VF ^ 0 ^ Wud-

We claim that u is dominating in Gwud- Suppose a vertex w £ Wud

exists that does not see u. Then from our definition of Wud follows

u,w G U — W. In this case, VF is a cfique because two nonadjacent
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vertices x,y £ W would induce ux || wy which contradicts ux, wy S' Pi.

Similarly, a vertex x in Nu(u) — W cannot miss a vertex y in VF, as

otherwise ux || wy, again a contradiction to ux,wy ^ Ey. So every

vertex v £ W is dominating and satisfies deg[7(v) > degv(u), which is

impossible as we have chosen u as the vertex with maximal degree in

Gu, thus indeed u is dominating in Gwud-

Next we claim that N[w] Ç N[u] for every w G Wud- Otherwise,
since u sees w, a vertex y £ N(w) — N[u] exists. Similarly, since

degjj(u) > degu(w), a vertex x £ N(u) — N[w] also exists. But

ux, wy £" Ey because u and w belong to Wud, a contradiction to ux || yw,
which proves our claim. Therefore, no edge vw incident to a vertex v in

U — N[u] can belong to T[, so the removal of U — N[u] in line 16 does

not lose any edges relative to T[.

Corollary 7.2.2 Given a graph G = (V,E) and edge sets Ey,E2 such

that every AC4 ab || cd satisfies ab, cd G Pi U E2. Then Algorithm 7.1

applied to Ey and E2 computes a cobithreshold cover Ty, T2 with Ey Ç Ty

and E2 C T2 if such a cobithreshold cover exists.

Therefore a cobithreshold cover T{,T^ with Ey Ç T[ and P2 Ç T2'
exists if and only if the two threshold graphs Ti and T2 computed by

Algorithm 7.1 constitute a cobithreshold cover. To test whether Ti, T2
is a cobithreshold cover, we have to verify that E = Ty (J T2 and that

every clique of G is also a cfique of Ti or T2. The first task is trivial, so

it remains to discuss how to perform the second.

Let Do,Dy,.. . ,Dm denote the degree partition of T2. By Theo¬

rem 7.1.1, a vertex in Dl sees a vertex in D2 if and only if i + j > m.

We claim that Algorithm 7.2 stops at Line 15 if and only if a clique 0

of G exists such that precisely one edge of 0 belongs to Ti — T2 but 0

is not a clique of Ti.

Let vw be an edge in Ti — T2 with v £ Dt and w £ D
3
such that

i < j, and let A" = Dk + P^+i + • + Dm where k = m — i + 1. Since

vw does not belong to T2, we have i + j < m and therefore 2i < m,

hence j-\-k>i + k>m and 2k > m. In other words K U {v, w} is a

clique of G and vw is the only edge not in T2.

Let 0 denote an arbitrary clique 0 of G such that vw is the only

edge in 0 that belongs to Ti — T2. Then every vertex different from v

and w in 0 must belong to K, hence 0 C K-\-{v, iv}. To make sure that
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cobithreshold cover test

input: a graph G = (V,E) with 2-threshold cover Ty,T2 and

the degree partition D0, Dy,... ,
Dm of T2

(1) forall v G V do

(2) a[v]<-m+l
(3) od;

(4) c<r-m+l;

(5) forall vw £Ty- T2 do

(6) let v £ D% and w £ D} with i < j;

(7) k<-m-i + l;

(8) a[v] +- min{a[v], k};
(9) a[w]<—min{a[it;],Ä};

(10) c+-min{c, k};
(11) od;

(12) forall xy G T2 - Ti do

(13) let x £ Dh and y G Di with h > l;

(14) if / > c or h > a[y] then

(15) stop (* Ti,T9 is no cobithreshold cover *)
(16) fi

(17) od

Algorithm 7.2

0 has no edge in T2 — Ti, it suffices to verify that every edge between

vertices in A" and every edge uv and uw with u £ K belongs to Ti.

The edges between vertices in K are precisely those edges xy with

x £ Dh and y £ D\ where h > 7 > k. Similarly, as k = m — i + 1 and

i < j, edges between K and v or w are precisely those edges xy with

x £ Dh and y £ Di, h > I, for which h > k and y = v or y = w.

In the algorithm, the variable c holds the smallest value k for any

vw £ Ty — T2, and a[u] stores the smallest value k for an edge vw £

Ty — T2 with u = v or u = w. Therefore all edges xy £ T2 — Ty with

x £ Dh and y £ Di, h > I, satisfying / > c or h > a[y] belong to a clique
with precisely one edge in Ti — T2, thus the algorithm stops at Line 15

if and only if a chque exists with precisely one edge in Ty — T2 and at

least one edge in T2 — Ty.

If we exchange Ty and T2 in Algorithm 7.2, the resulting algorithm
stops at Line 15 if a clique 0 of 0 exists with precisely one edge in

T2 — Ti but 0 is not a clique of T2.
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If a clique of G is neither in Ti nor in T2, then it has at least one

edge vw £ Ty — T2 and another edge xy in T2 —Ty, thus {v, w, x, y} is a

cfique of size 3 or 4 that is not in Ti or T2. But a clique of size 3 that is

not a clique of Ty or T2 has precisely one edge in Ti — T2 or precisely one

edge in T2 — Ty. Therefore either the above algorithm or the algorithm
with Ti and T2 exchanged stops whenever such a cfique exists.

Now assume that every clique of size 3 is a clique of Ti or T2. Then

a clique of size 4 that is not a chque of Ti or T2 has precisely one edge
that belongs to Ti — T2. Therefore Algorithm 7.2 also detects those

cliques, and the following lemma holds.

Lemma 7.2.3 Given a graph G and two edge sets Ey C P and E2 Ç P

such that ab, cd G Pi UP2 whenever ab \\ cd in G. Then there is a linear

time algorithm that either computes a cobithreshold cover Ty,T2 of G

with Ey Ç Ty and E2 C T2 or decides that no such cobithreshold cover

exists.

7.3 Special classes of cobithreshold graphs

In this section, we show how to recognize some special classes of co¬

bithreshold graphs in hnear time. We start with cobithreshold split

graphs.

Since a split graph has no 04, it cannot contain an AP5; thus, by
Lemma 7.1.3, it suffices to find a proper 2-coloring of G that colors

every clique uniformly. But every A04 in a split graph is a P4 abed

with a,d £ S and b,c £ K. So we may bicolor every edge between

vertices in K. Every maximal clique not contained in K can be written

as {v}L)N(v) with v £ S, hence the color of such a cfique can be assigned
to the vertex v.

Let S denote the graph with vertex set S such that two vertices a and

d are adjacent in S if there is a P4 abed in G. Then G is cobithreshold

spht if and only if S is bipartite. We claim the following.

Lemma 7.3.1 For a split graph G = (V, P) with V = S+K, a spanning

forest of S can be computed in linear time.

We restrict ourselves to graphs in which no two vertices in S have

the same neighborhood. If a graph fails to satisfy this property, we
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generate a new graph Gsubst by removing copies of such a vertex. A

spanning forest of S is readily obtained from a spanning forest of Ssubst

by connecting the copies of a vertex v to one vertex adjacent to v in the

spanning forest of Ssubst-

Lemma 7.3.1 follows from the two subsequent Lemmas.

Lemma 7.3.2 Let G = (V,E) denote a cobithreshold split graph with

stable set S and clique K such that no two vertices in S have the same

neighborhood. Then at most two vertices have the same degree and

\V\2 = 0(\E\).

Proof. To begin with, we show that at most two vertices in S have the

same degree. Every pair of vertices a and d in S with deg(a) = deg(d)
belongs to a P4 abed, i.e. a and d are adjacent in S. Thus more than

two vertices in S with the same degree would induce a triangle in S, a

contradiction because S must be bipartite.

Let A denote the maximal degree of a vertex in S. Then \K\ > A

and, since at most two vertices in S have the same degree, \S\ < 2A;
thus |5| = 0(\K\) and therefore |V|2 = (\S\ + |P|)2 = 0(\K\2). But K

is a clique, hence |A"|2 = 0(|P|) and jX^|2 = 0(\E\) as claimed.

Lemma 7.3.3 Given a cobithreshold split graph with stable set S and

clique K such that no two vertices in S have the same neighborhood.
Then a spanning forest of S can be computed in linear time.

Proof. For every vertex w in K, let wm[Q denote a vertex with minimal

degree in N(w) fl S and let w;max denote a vertex with maximal degree
in N(w) fl S. By Lemma 7.3.2, those vertices can be found in hnear

time. Let P be empty. We scan the vertices v in S and, for every

vertex u £ N(v) with deg(ttm;n) < deg(v), we add an edge vumm to P.

Similarly, for every vertex w £ N(v) with deg(wmax) > deg(v), we add

an edge vwma,x to P. Again by Lemma 7.3.2, this can be done in linear

time. We claim that (S, F) is a spanning forest of S.

Note that for each pair of vertices a and din S with deg(a) > deg(d),
a P4 abed exists if and only there is a vertex w in K such that w sees

d and misses a. Therefore all edges vumin and vwmSbX belong to S. To

show that (S,F) is indeed a spanning forest, we suppose the contrary.
Then a P4 abed exists such that a and d belong to different connected
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components of (S, F). Without loss of generality, let deg(a) > deg(d).
Now deg(cmax) > deg(a) > deg(d) > deg(cm;n) and, by construction,

acmin and e?cmax belong to P. But this is a contradiction as cmincmax

also belongs to P. n

Next, we consider cobithreshold graphs that contain a P4 abed such

that be belongs to an A04.

Lemma 7.3.4 Let G be a cobithreshold graph and let abed denote a P4

in G such that be belongs to an AC4. Then a cobithreshold coloring of
G can be computed in linear time.
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Figure 7.1: All possibilities of a P4 together with a fifth vertex v.

Proof. Up to symmetry, the P4 abed together with a fifth vertex v

induces one of the graphs depicted in Figure 7.1. Except for the 05,
all graphs A,B,... ,L are cobithreshold. We say a vertex v is type

A,B,... ,Iiïv and the P4 abed induce either the corresponding graph
in Figure 7.1 or its symmetric counterpart, e.g. a P-vertex either sees

b, c and d and misses a or sees a, b and c and misses d.

Without loss of generality, let ab be black. In the rest of this proof,
we give an algorithm for coloring the edges of G based on the color of ab

and be. Since we can execute this algorithm twice, once with be colored

black and another time with be colored red, by Lemma 7.2.3, we may

assume that we know the color of be.

In Step 1 and 2, we show that the color of ab and be implies the

color of every edge in G that has no endpoint of type / and that this
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coloring can be found in linear time.

Step 1: Edges with at least one endpoint in {a,b,c,d}. The color

of ab and the repeated application of Rule 1 determines the color of a

number of edges in Figure 7.1. These edges are indicated by bold lines

if they are black and by dotted lines if they are red (e.g. in P, the edges
cd and vd are red whereas be and bv are black because of ab || cd || vb

and ab || vd || cb).

Furthermore, by Rule 2, the edges in the cliques {a,b,v}, {b, c, v}
and {c, d, v} receive the same color as ab, be and cd respectively, and

the color of av in 0 is determined by Rule 1 because of be \\ va. Thus

all edges with at least one endpoint in {a, b, c, d} are colored.

Step 2: Edges between vertices in V — {a,b,c,d} except for edges
incident to type I vertices. Let vw denote such an edge, i.e. v,w £

V — {a, b, c, d} and neither v nor w is type I. Depending on the neigh¬
borhood of v and w relative to b and c, we distinguish the following cases.

Case 1: v or w is {b,c}-partial. Without loss of generality (sym¬
metry), suppose that v sees b but misses c. Then v is type 0, D, E or

H, hence vb belongs to an A04. If w misses b, then vw || cb and vw can

be colored according to Rule 1. Otherwise, if w sees b, then {b, v,w} is

a clique and, by Rule 2, vw receives the same color as vb.

Case 2: v and w are {b, c}-universal. Then {b,c,v,w} is a chque,
Rule 2 applies and vw receives the same color as be.

Case 3: v and w are {b,c}-null. Then vw || be, hence vw can be

colored by Rule 1.

Case 4- v is {b,c}-universal and w is {b,c}-null or vice versa. Be¬

cause of symmetry, it suffices to discuss the former case. So v is type

A, B or P and w is type G. Furthermore, suppose that w sees d (the
symmetric case is similar). If v misses d, then vv: \\ dc and vw is black.

Otherwise, if v sees d, then {d, v, w} is a clique and, by Rule 2, vw may

be colored in the same way as wd.

Step 2 again takes hnear time if we precompute which of the above

cases applies to which graph in Figure 7.1 (or its symmetric counter¬

part).

After the completion of Step 2, only edges incident to type I ver¬

tices are not colored. Furthermore, in the rest or this proof, we only use

the fact that be is colored, not the assumption that be belongs to an A04.
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Observation 1: The set of all type I vertices is stable. An edge vyv2

between two type I vertices satisfies ab || Vyv2 and cd || vyv2, thus a

third color would be required.

Observation 2: The set of all type A vertices is a clique and every

edge between type A vertices is bicolored. Let wy and w2 be two type

A vertices. Because of the clique {a,b,wy} and {c, d, wy}, the edge bwy

is black and cwy is red. If wy misses w2, then bwy || dw2 and cwy || aw2,
so bwy cannot be red and cwy cannot be black, a contradiction because

of the clique {b,c,wy}. Thus wy and w2 are adjacent and, by Rule 2

applied to the cliques {a,b,wy,w2} and {c,d,wy,w2}, the edge wyw2

must be bicolored.

Step 3: Edges vw between type I vertices v and vertices w of type

P,... ,H. It is easy to verify, see Figure 7.1, that a P3 wxy exists

with x,y £ {a, b, c, d}. Clearly, this P3 can be extended to a P4 vwxy,

thus the color of vw follows from applying Rule 1. Since the color of

vw solely depends on the color of ab, be, cd and on the type of w (or its

symmetric counterpart), Step 3 can be carried out in hnear time.

For the remaining steps, we need some further precomputation.

• For each type / vertex v, let n(v) denote a vertex of type P,... ,
H

that sees v, or let n(v) — 0 if no such vertex exists.

• For each type A vertex w, let m(w) denote a vertex of type

A,... ,
H that misses w, or let m(w) = 0 if no such vertex ex¬

ists.

Obviously, the values n(v) and n(w) can be computed in linear time.

Step 4: Edges incident to type I vertices v which see some type A

vertices w with m(w) ^ 0. Since m(w) is of type A,... ,H, it sees a

vertex x £ {a,b,c,d}. But xm(w) is already colored and vw || xm(w),
hence the color of vw can be determined by Rule 1. Furthermore, every

type A vertex z that sees v but satisfies m(z) = 0 sees every vertex w,

hence {v,w,z} is a cfique and vz receives the same color as vw. Since

edges between v and a vertex of type P,... ,
H were colored in Step 3,

the color of every edge incident to v is determined, and it should be

clear that Step 4 can be carried out in linear time.

Step 5: Edges incident to type I vertices v with n(v) ^ 0. Be¬

cause of Step 3, it again suffices to color edges between v and type A

vertices w. Moreover, we may assume that m(w) — 0, as otherwise the
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edges incident to v were colored in Step 4. Therefore w sees n(v) and

{v, w,n(v)} is a cfique. From the argumentation in Step 3 follows that

vn(v) belongs to an A04, so Rule 2 applies and vw must be colored as

vn(v). So Step 5 is linear.

Now let S denote the set of all type I vertices v that

(i) are not adjacent to a type A vertex w with m(w) ^ 0 and

(ii) satisfy n(v) = 0.

Note that the uncolored edges are precisely those edges incident to a

vertex in S. Furthermore, let Ä" = N(S). Because of (ii), every vertex

in K is of type A and, because of (i), every vertex w in K misses only
vertices of type I.

The next Step again requires some precomputation. Let X denote

the set of all type I vertices x that see a vertex r(x) £" K. Furthermore,
for every vertex w in K, let s(w) denote a vertex in X that misses w,

or s(w) = 0 if no such vertex exists. Clearly r(x) and s(w) can be

computed in hnear time.

Step 6: Edges in AC4S that are not entirely in Gs+k- For ev¬

ery vertex v in S that sees a vertex w £ K with s(w) ^ 0, a P4

vwr(s(w))s(w) exists. Since r(s(w)) £" K, the edge r(s(w))s(w) was

colored in Step 1 to 5, so Rule 1 determines the color of vw. Further¬

more, as {v} U N(v) is a chque, every edge incident to v receives the

same color as vw. Clearly, this can be achieved in linear time.

Now let vw || xy be an A04 with v £ S but not entirely in Gs+k-
Then y cannot belong to S. On the other hand, as w is type A and

m(w) = 0, the vertex y must be of a type I. Therefore either n(y) ^ 0

or a type A vertex u adjacent to y satisfies m(u) ^ 0. In both cases, y

sees a vertex z (£ K and a P4 vwzy exists, so y £ X and s(w) ^ 0, i.e.

every edge incident to v and therefore every edge in an A04 is colored

by the above procedure.

Step 7: Regarding the A04S in Gs+k, we compute a spanning
forest of S as described in Lemma 7.3.1. Then we color the connected

components of S in accordance with the colored edges in Step 1 to 6,
and we end up with a proper 2-coloring of the edges in G.

We claim that this 2-coloring can be completed to a cobithreshold

coloring of G. Let R C S denote the set of vertices in S that belong to

components whose vertices are incident to no edge colored in Step 1 to

6. Since the color of every edge in Gy-R is implied from the color of
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ab and be by Rule 1 and 2, the coloring of Gy-R can be completed to

a cobithreshold coloring, cf. Lemma 7.2.3. To apply Lemma 7.1.3, it

suffices to show that every clique is uniformly colored and that no AP5

exists.

The latter is easy as the neighborhood of no vertex in an AP5 is a

cfique, so no vertex in R belongs to an AP5, thus every AP5 is in Gy-R,
which is impossible because of the cobithreshold coloring of Gy-R. For

the same reason, every cfique in Gy—R is uniformly colored. But every

maximal cfique of G that is not entirely in Gy-R can be written as

{v} U N(v) with v £ R, hence it is uniformly colored because of Step 7

and because edges between vertices in N(v) are bicolored.

A similar result holds if a P4 abed is known together with two non-

adjacent type P vertices, one adjacent to a and the other adjacent to

d, as depicted in Figure 7.2. We call this graph the bridge abedef.

f

1». »»»il»

d

Figure 7.2: The bridge abedef.

Lemma 7.3.5 Let G be a cobithreshold graph that contains a bridge

abedef. Then a cobithreshold coloring of G can be computed in linear

time.

Proof. Again assume that ab is black. In Figure 7.2, the edges colored

by repeatedly applying Rule 1 are indicated by bold and dotted fines,

respectively. Moreover, as {b, c, e} and {b, c, f} are cliques, the edges
be, ce are black and be, bf are red. Note that be receives both colors,
hence it cannot belong to an A04.

In order to color the remaining edges, we proceed as in the proof
of Lemma 7.3.4, i.e. we consider the type A... I vertices relative to

the P4 abed. This time, however, no type 0, P and G vertices exist as

otherwise be would belong to an A04.

As in the proof of the previous lemma, the color of the edge ab im¬

plies the color of every edge in G that has no endpoint of type / and
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this coloring can be computed in hnear time.

Step 1: Edges with at least one endpoint in {a, b, c, d}. We have

already seen how the edges between {a, b, c, d, e, /} must be colored.

Furthermore, the appfication of Rule 1 colors some edges as shown in

Figure 7.1. So it remains to discuss the edges incident to a type A, B

and P vertex v. If v is type A, then, by Rule 2, the edges in the cliques

{a,b,v} and {c, d, v} receive the same color as ab and cd, respectively.

Now suppose v is type P or P. Because of symmetry, we may as¬

sume that v misses a. If v sees e or /, then {b, c, e, v} or {b, c, f, v} is

a chque, hence Rule 2 impfies the color of the edges bv and cv. If v

misses both e and /, then bv || df and cv || ae, so the color of bv and cv

is determined by Rule 1.

Step 2: Edges between vertices in V — {a, b, c, d} except for edges
incident to type I vertices. Let vw denote such an edge, so v,w £

V — {a, b, c, d} and neither v nor w is type I. Depending on the neigh¬
borhood of v and w relative to b and c, we distinguish the following cases.

Case 1: v or w is {b, c}-partial. Without loss of generality (symme¬
try), suppose that v sees b but misses c. Then v is type D or H, hence

vb belongs to an A04. If w misses b, then vw || cb, a contradiction to

our assumption that be is both black and red. Otherwise, if w sees b,
then {b, v, w} is a cfique and, by Rule 2, vw receives the same color as vb.

Case 2: v and w are {b,c}-universal. If e sees both v and w, then

{b,e,v,w} is a cfique and, by Rule 2, vw receives the same color as be.

If e misses v or w, then ae || vc or ae || cw. But {c,v,w} is a clique,
thus vw must be red by Rule 2.

Case 3: v or w is {b,c}-null. This case is impossible because v and

w are neither type G nor type I.

The remaining Steps are identical to those in the proof ofLemma 7.3.4

and therefore omitted.

7.4 Recognizing cobithreshold graphs

In this section, we give a recursive algorithm for coloring the edges in

a cobithreshold graph. For every graph G = (V,E), let G' = (V',E')
denote the prime graph that arises from substituting marker vertices
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for maximal homogeneous sets of G and, for every vertex v £ V', let

H(v) stand for the corresponding module in G.

cobithreshold recognition

(1) if G has an isolated vertex v then

(2) recurse on G — {v}
(3) elsif G has a dominating vertex v then

(4) bicolor the edges incident to v;

(5) recurse on G — {v}
(6) elsif G is disconnected then

(7) color G as described in Lemma 7.4.1;

(8) elsif G is disconnected then

(9) color G as described in Lemma 7.4.2;

(10) elsif G' is not a split graph then

(11) find a bridge or a P4 abed with be in an A04;

(12) color G according to Lemma 7.3.4 or Lemma 7.3.5

(13) else (* G' is a split graph *)
(14) let S and Ä" be the vertex sets as defined in Lemma 7.4.3

(15) if V = S + K + v and H(v) is not a threshold graph then

(16) recurse on Gjj(vy,
(17) color the edges not in Gfj(v) as described in Lemma 7.4.4

(18) else (* every homogeneous set induces a threshold graph *)
(19) if H(K) is not a clique then

(20) color G as described in Lemma 7.4.5

(21) else (* H(K) is a cfique *)
(22) color G as described in Lemma 7.4.6

Algorithm 7.3

Lines (1) to (5) of Algorithm 7.3 are correct as an isolated or dom¬

inating vertex can always be added to a threshold graph, see Theo¬

rem 6.1.3(zu), hence those vertices may be added to both threshold

graphs Ti and T2 that constitute a cobithreshold cover of G — {v}.

The following Lemma discusses Lines (6) and (7).

Lemma 7.4.1 A cobithreshold graph G without isolated vertices is dis¬

connected if and only if G is the disjoint union of two nontrivial con¬

nected threshold graphs Gy and G2.

Proof. Obviously the disjoint union of two threshold graphs is a

cobithreshold graph. Conversely, since G has no isolated vertices, G
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consists of nontrivial connected components Gy,G2,... , Gk with k > 2.

But every pair of edges in different connected components induces a

2Ar2, thus we can color at most two nontrivial connected components

Gi and G2. Moreover, every edge in such a component receives the

same color, hence Gi and G2 are threshold graphs.

Now suppose that G is disconnected but has no dominating vertex.

Recall that the join Gi © G2 of two graphs Gi = (Vy, Pi ) and G2 =

(V2,p2) is the graph (Vy + V2, Ey + P2 + P12), where Pi2 is the set of

edges between vertices in Vy and vertices in V2.

Lemma 7.4.2 A cobithreshold graph G = (V,E) without dominating
vertices is codisconnected if and only if G is the join of two nontrivial

coconnected graphs Gy and G2 such that

(i) Gy is the complement of a complete bipartite graph with biparti¬
tion (V±,V2) and

(ii) G2 is a threshold graph.

Moreover, Gyi+y^ and Gy2+y2 constitute a cobithreshold cover of G.

Proof. If is easy to verify that Gyi+y^ and GV2+y2 constitute a

cobithreshold cover of the join of Gi and G2. Conversely, as G has no

dominating vertices, G must be the join of nontrivial coconnected graphs

Gi, G2,. •

,
Gk- Furthermore, every edge between different coconnected

graphs Gt and G3 belongs to a 04, hence such an edge receives precisely
one color.

To begin with, we show that G is the join of two coconnected graphs
Gi and G2. If k > 3, we can choose pairs of nonadjacent vertices ay, by
and a2,b2 in Gi and G2, respectively, and a single vertex v in G3.

Without loss of generahty, let aya2 be black; hence, by Rule 1, byb2 is

red. Since {ay,a2,v} and {by,b2,v} are cliques, by Rule 2, ayv is black

and b2v is red. But this is impossible because of the clique {ay,b2,v}.

Next, we prove that at least one of the two graphs Gi and G2 is a

threshold graph. Otherwise A04S ayby || cydy in Gi and 02^2 || c2d2 in

G2 would exist. But ayby and cydy have different colors; hence Rule 2

applies to the cliques {ay, by,a2, b2} and {cy, dy, a2, b2}, and therefore

a2b2 is bicolored, a contradiction because a2b2 \\ c2d2.

Note that not both Gi and G2 can contain a triangle, as triangles

ay,by,cy in Gi and a2,b2,c2 in G2 imply that ai<22 is bicolored because
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of ai<ï2 || byb2 || C1C2 || aya2. If both Gi and G2 are threshold graphs,
let Gi denote that graph whose complement has no triangle. Since Gi

is threshold and coconnected, it contains an isolated vertex. But Gi

has no triangle, so all other vertices in Gi induce a chque and Gi is the

complement of a complete bipartite graph as claimed.

Now suppose that Gi is no threshold graph. Then Gi contains no

P4 because a P4 ai&ici^i in Gi impfies that, for any vertex v in G2, the

edges byv and cyv have different colors because of the cliques {ai,&i,i>}
and {cy ,dy,v}, which is impossible because of the chque {by, cy, v}. But

a Pi-free graph is either disconnected or codisconnected; hence Gi is

disconnected.

Furthermore, no vertex v in Gi can miss a and c in an A04 ab \\ cd
in Gi, as otherwise ax \\ vy || ex holds for every pair of nonadjacent
vertices x,y in G'2, a contradiction to the fact that ax and ex have

different colors because of the cliques {a, b,x} and {c, d, x}. Therefore

Gi has no isolated vertices and, by Lemma 7.4.1, Gi consists of two

nontrivial connected threshold graphs Ti and T2.

If Ti were no clique, it would contain a vertex v and an edge ab such

that v sees b and misses a, a contradiction because ab || cd for every

edge cd in T2 but no vertex in Ti can miss a and c in an A04 ab \\ cd.

Since the same reasoning holds for T2, both Ti and T2 are cliques, hence

01 is complete bipartite.

If G' is no split graph, by Fact 7.1.2, a P4 abed with be in an A04

or the complement of an P2 can be found in linear time. Since the

corresponding graphs also exist in G and the complement of an P2 is a

bridge, we can indeed color the edges as described in Lemma 7.3.4 and

Lemma 7.3.5.

It remains to show how to color connected cobithreshold graphs G

that are also coconnected and whose associated prime graph G' is spht.
As G' is also connected and coconnected, Lemma 3.1.1 implies that G'

contains a P4, hence its conflict graph contains a nontrivial connected

component 0*. The next lemma exhibits the structure of G'.

Lemma 7.4.3 Let G — (V, E) be a prime cobithreshold split graph and

let C* Ç E be a nontrivial connected component of its conflict graph.
Furthermore let S denote the stable set and K the clique in the induced

split graph Gy(c*)- Then either

(i) V = S + K or
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(ii) V = S + K + v and N(v) = K.

In part, the above lemma can be derived from Theorem 6.3.7. Nev¬

ertheless, we give a full proof in order to make this chapter independent
of Section 6.3.

Proof. Let H = V — K — S. Since Gy^c*) 1S a split graph, every A04
ab \\ cd with edges in 0* is a P4 abed. If a vertex v £ H sees a but misses

b, then either ab\\ cv or av || dc, in both cases a contradiction to v £ H.

Thus every {a, 6}-partial vertex in H sees b and misses a. Moreover,
an {a, 6}-partial vertex v in H is also {c, c?}-partial, for otherwise either

abvd or vbed is a P4, again a contradiction to v £ H.

Therefore an {a, b, c, rf}-partial vertex in H sees b and c and misses

a and d. By induction, this hold for every P4 with a wing in C*. But

every V(0*)-partial vertex is {a, b, c, t/}-partial for at least one P4 abed,
therefore a V(0*)-partial vertex sees every vertex in K and misses every

vertex in S.

Furthermore, an edge between a Vr(0*)-partial vertex v and a V(C*)-
null vertex q imphes a P4 qvba, a contradiction to v £ H. Similarly, a

Vr(0*)-partial vertex v sees every a Vr(0*)-universal vertex p, as other¬

wise, if v misses p, the graph G{a,&,c,d,i;,p} is spht with chque {b, c,p}
and stable set {a,d,v} such that no two vertices in {a,d, v} have the

same neighborhood but three vertices have the same degree, so G would

not be cobithreshold as shown in the proof of Lemma 7.3.2.

But now the union of V(C*) and all V(0*)-partial vertices is a

module and G is prime, so every vertex in V — V(C*) must be V(C*)-
partial. In this case, however, the set of all Vr(0*)-partial vertices is a

module; thus at most one vertex v can be Vr(0*)-partial, i.e. H = {v}
and therefore N(v) = K as claimed.

In the rest of this section, let V = S + K or V = S + A' -fnas

described in Lemma 7.4.3. Let ab || cd be an A04 in G'. Obviously,
every edge in a maximal homogeneous set that corresponds to a or &

receives the same color as ab, i.e. the corresponding graph is threshold.

But every vertex in S + A' belongs to a P4, hence every maximal

homogeneous set that corresponds to a vertex in S + K is a threshold

graph. Thus, if a maximal homogeneous set is not threshold, then it

must be H(v).
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Lemma 7.4.4 // H(v) contains an AC4, then every cobithreshold col¬

oring of Gfl-(„) together with the coloring arising from

(a) bicoloring edges with one endpoint in H(K) and the other in

H(K + v) and

(b) coloring edges incident to H(S) as the corresponding vertex in

an S-coloring

can be extended to a cobithreshold coloring of G.

Proof. From the previous discussion follows that an A04 uv || xy

in H(v) exists. Suppose H(b),b £ K, is no chque and let abed a P4 in

G'. Then ayby \\ b2cy for any choice ay £ H(a), cy G H(c) and 61,62 G

H(b) such that &i misses 62. But this is a contradiction because both

{ay,by,u,v} and {ay,by,x,y} are chques. Similarly, suppose H(a),a £

S, is not stable. Then any pair of adjacent vertices 01,02 £ Ha implies

aia2 || uv and ai<22 || xy, again a contradiction as uv and xy have

different colors.

Hence H(K) is a chque and H(S) is a stable set, thus every A04 in

G is either in Gh(v) or m Gh{s+k) an<l therefore our coloring is a proper

2-coloring of G. Furthermore, it is easy to verify that every maximal

clique of G is uniformly colored. Finally, an AP5 has no vertex in H(S)
as the neighborhood of vertex in an AP5 is not a clique. Similarly, an

AP5 has no vertex in H(K), as no vertex in an AP5 is dominating. Thus

every AP5 is in Gh(„) ^u^ Gjj(») nas no ^-^5 because of its cobithreshold

coloring. The claim of our Lemma now follows from Lemma 7.1.3.

It remains to discuss Lines (18) to (22) of Algorithm 7.3. Therefore

we may assume that every maximal homogeneous set of G induces a

threshold graph.

Lemma 7.4.5 If H(v) is a threshold graph and H(b) is not a clique

for a vertex b £ K, then a cobithreshold coloring of G can be found in

linear time.

Proof. Since every vertex in S U K belongs to a P4, we may assume

that a P4 abed exists. For any pair of nonadjacent vertices 61, 62 G H(b)
and any choice of ay G H(a),cy £ H(c),dy £ H(d), the P4 ai6iCi<ii
is a P4 with byCy in a 04. By Lemma 7.3.4, this P4 can be used to

compute a cobithreshold coloring of G in linear time. Furthermore, it
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is straightforward to find such a P4 in linear time as 0(|y'|2) = 0(|P'|)
by Lemma 7.3.2.

In the next lemma, we color cobithreshold graphs corresponding to

Line (22) in Algorithm 7.3.

Lemma 7.4.6 If H(v) is a threshold graph and H(K) a clique, then a

cobithreshold coloring of G can be found in linear time.

Proof. Let S' = {s £ S\H(s) is not stable}. Then edges in G

incident to H(s),s £ S, receive the color of s £ S. Compute a 2-

coloring of S and let S'red and S'black denote the vertices in S' colored

red and black in S, respectively. Then every edge between vertices in

LLeïvYS' ) H(x) must be colored black, and every edge between vertices

in [Jrc.'Wtc;1 \ H(x) niust be colored red. This coloring of the edges in G

can be found in hnear time as the corresponding coloring of the vertices

in G' can be found in linear time because of 0(|"F'|2 = 0(|P'|) by
Lemma 7.3.2.

It is easy to verify that every A04 in G is colored. Moreover, as the

coloring of S is unique and the remaining edges are colored by Rule 1,
this coloring admits a cobithreshold cover that can be computed in

linear time, cf. Lemma 7.2.3.

As to the complexity of Algorithm 7.3, we rely on the modular de¬

composition of the graph. The modular decomposition of an arbitrary

graph is computed in hnear time, see [17, 54, 21]. It also provides the so-

called modular decomposition tree and, at each level, the corresponding

prime graph.

Given the modular decomposition, Lines (1), (3), (6) and (8) can

be executed in constant time by inspecting the corresponding node in

the modular decomposition tree. The test whether G' is a split graph
can be carried out in 0(|V| + |P'|), see [27]. With a split partition of

V, the computation of S and K in Line (14) is in 0(1^'! + |P'|).

Finally, the computation of Line (15) and (19) can be done in

constant time per node in the decomposition tree given we have pre-

computed the type of modules contained in the subtree of a node, i.e.

whether the corresponding graph is threshold. This précompilation can

be done in linear time bottom up from the leaves of the modular de¬

composition tree. Tiras, the overall running time of Algorithm 7.3 is

linear.
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Conclusions

In the previous chapters, we presented several new algorithms to recog¬

nize classes of perfectly orderable graphs. Most of these algorithms are

based on results obtained from the generafization of Gallai's modular

decomposition. In fact, we believe that our extension of Gallai's the¬

ory is the main contribution of this thesis to algorithmic graph theory.

Many problems, however, had to remain unsolved. In the following,
we give a brief overview of further directions of research related to our

work.

• In Chapter 4, we introduced ^-modules as generalizations of mod¬

ules and then focused on 2-modules. As it turned out, special
2-modules can be used to obtain new unique decompositions for

arbitrary graphs. We wonder whether other ^-modules can also

be specialized such that they imply unique graph decompositions

and, if so, whether those decompositions can be applied to recog¬

nize further classes of perfectly orderable graphs.

• A key theorem in GallaIs work on comparability graphs states

that different P^-classes cover different vertex sets. Since the cover

of a Pg-class is a module, comparability graphs can be oriented

by substituting marker vertices for modules, either explicitly or

implicitly.

In Chapter 5, we showed that a similar theorem holds for P4-

components. Since the cover of a Pi-component is a strict spht

138
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module, P4-comparability graphs can also be oriented by substi¬

tuting marker vertices for strict spht modules, again explicitly or

implicitly.

It is an open problem, however, whether 2AVcomponents and

bipartite modules, perhaps in conjunction of P4-components, can

be applied to recognize other more general classes of perfectly
orderable graphs. Theorem 6.3.7 indicates that this might well

be.

• Yet another open problem related to our work is the question
whether there is a polynomial algorithm for recognizing graphs
with quasi threshold dimension two1, that is, graphs which are

the intersection of two graphs without induced P4 and 04. Since

the complement of a graph with quasi threshold dimension two

is the union of two graphs without induced P4 and 2K2, it is

necessary that its edges can be 2-colored such that the two edges
in a 2A^2 and the two wings of a P4 have different colors. So the

question naturally arises whether this condition is also sufficient.

With the results presented in this thesis, it is not difficult to see

that such a graph can be decomposed into graphs with unique 2-

colorings with respect to the edges in 2Ä2S and the wings in P4S.

By applying substitution, it can also be shown that the problem
were solved if a polynomial algorithm for recognizing graphs with

unique 2-colorings exists. To date, however, such an algorithm is

not known.

1
Quasi threshold graphs are also called trivially perfect in [26] or arborescence-

comparability graphs in [22].



Appendix A

List of Symbols

Set Theory
Va; For all x.

3y There exists a y.

x £X a; is a member of X.

ACX A is a subset of X.

B CX B is proper subset of X.

1*1 The cardinality of a set X.

AnP The intersection of A and P.

AUP The union of A and P.

A + B The union of disjoint sets A and P.

A-B The difference set A minus P.

0 The empty set.

Graph Theory
0 = (V, E) The undirected graph G with vertex set F and edge

set P.

0 = (Vi, V2, E) The split graph G with vertex set Vi + V2 and edge
set P where Vi is a chque and V2 a stable set.
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G = (V, Ê) An orientation of the graph G = (V, P).

vw The undirected edge between v and w.

v^-w The directed edge from v to w.

G = (V,Ê) The complement of G = (V, P).

Gw = (W,E(W)) The subgraph of G induced by the vertex set VF.

(y(P),P) The subgraph of G spanned by the edge set P.

Ar„ The complete graph with n vertices.

mKn The disjoint union of m copies of the Kn.

Ck The chordless cycle on k vertices.

Pk The chordless path on k vertices.

AC2k The alternating cycle on 2k vertices.

N(v) The neighborhood of a vertex v in G.

AT(u) The non-neighborhood of a vertex v in G.

A^(VF) The neighborhood of a vertex set VF.

ATjt;] The closed neighborhood of a vertex u.

<_(G) The clique number of G.

k(G) The clique cover number of G.

a(G) The stability number of G.

x(G) The chromatic number of G.

i(G) The threshold dimension of G.

Gi U G2 The union of Gi and G2-

Gy + G2 The disjoint union of Gi and G2.

Gi ® G2 The join of Gi and G2.

a&cd ~ a'b'c'd1 abed and a'b'c'd' are strong-adjacent P4S.

afe || cc? The sequence c, a, 5, <f is an A04.
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