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Abstract

Today's best-effort Internet infrastructure is well-known for its heterogeneity (both in end-

system capabilities and connectivity) and the significant fluctuations in service quality that can

be observed. These two properties are often problematic from the viewpoint of a networked

application, because they often result in unpredictable application behavior. Network-aware

applications provide an approach to mitigate these problems: they dynamically adapt their

demands to match the varying supply of network resources, e.g., with the goal to achieve pre¬

dictable response times. Such network-aware applications must often trade network resources

for some measure ofquality of the data delivered.

This dissertation puts forth the claim that dynamic adaptation is an attractive and often nec¬

essary means to achieve the goal on predictable service quality. Unfortunately, network-aware

applications are notoriously difficult to construct and evaluate. Two recurring issues need to be

addressed when constructing such applications: how to find out about network resource avail¬

ability and dynamic changes thereof, and how to adapt application behavior (to such dynamic
changes), so that a goal on the response time and the quality of the data delivered can be met.

Addressing these questions the dissertation makes three main contributions.

First, the dissertation presents a reusable framework for network-aware applications. In

contrast to other work, an integral view on the quality-response time tradeoff is adopted, which
means that applications built on the framework try to be smart about how to reduce the quality
of the data delivered, so that a user-specified time limit can be met, and so that the negative

impact on the overall service quality is minimized. Applications are free to define their no¬

tion of quality. The dissertation shows that a framework-based approach to the construction

of such network-aware applications allows for reuse of the core adaptation process and can

therefore shield developers from many of the complexities in dealing with network dynamics.
Reusability is achieved by factoring out three aspects of application-specific functionality: the

data types handled by the application, the algorithms applicable to achieve quality reductions

for a particular type, and the application's notion of quality.

Second, a systematic approach to the evaluation of the complex dynamic behavior of net¬

work-aware applications is presented. There are three questions to ask of such adaptive appli¬
cations. Does adaptation work, and if so, what are the key factors that effect the application's
ability to adapt to the network environment? Does network-aware delivery provide a benefit to

the user? At what costs can such benefits be obtained? The evaluation establishes that adapta¬
tion is robust with respect to many of the parameters that influence adaptation decisions. We

find that network-aware content delivery can provide predictable response times over a wide

range of bandwidths and CPU powers, can be smart about how to tradeoff quality for network

resources, and incurs only small overheads.
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Third, the dissertation shows that the performance of network-aware applications depends
on the accuracy and timeliness of information about network resource availability. Comparing
different alternatives to the task of gathering information about network status, the disserta¬

tion demonstrates that the need for accurate and timely information about network resource

availability can both effectively and efficiently be satisfied with transport-level monitoring. In

addition, our evaluation indicates that the ability to predict bandwidth depends considerably on

the transport protocol used. Our prototype monitoring system demonstrates that the implemen¬

tation of such a monitoring scheme requires only minimal changes to existing protocol stacks

and advocates a simple widening of the application programming interface.



Kurzfassung

Viele verteilte Anwendungen, die "best-effort" Netzwerke wie das heutige Internet als Trans¬

portmedium benutzen, leiden unter den zuweilen grossen Unterschieden und starken Schwan¬

kungen in der Netzwerk Service Qualität, insbesondere der verfügbaren Bandbreite. Adapti¬

ve Applikationen versuchen hier Abhilfe zu schaffen, indem sie ihr Verhalten dynamisch der

Verfügbarkeit von Netzwerk-Ressourcen anpassen, um dem Benutzer eine tolerierbare Service

Qualität zur Verfügung zu stellen—zum Beispiel durch Einhalten einer vom Benutzer festleg¬

baren Antwortzeit. Zu diesem Zweck müssen oft Abstriche in der Qualität der ausgelieferten
Daten in Kauf genommen werden.

Diese Dissertation zeigt, dass dynamische Anpassung an die Gegebenheiten in Netzwerken

ein attraktiver und häufig notwendiger Mechanismus darstellt, um vorgegebene Antwortzeiten

einhalten zu können. Leider entpuppen sich sowohl die Konstruktion als auch die Evaluation

von adaptiven Anwendungen als ausserordentlich schwierige Aufgaben. Bei der Entwicklung
solcher Anwendungen gilt es im Wesentlichen zwei Aspekte zu berücksichtigen: wie erhält die

Anwendung Informationen über die Verfügbarkeit von Netzwerk-Ressourcen, und wie kann

die Applikation ihr Verhalten anpassen, so dass zum Beispiel eine vorgegebene Antwortzeit

eingehalten werden kann. Diese Dissertation leistet die folgenden drei Beiträge.

Erstens stellt die Dissertation ein wiederverwendbares Framework für Anwendungen zur

Verfügung, die sich an Veränderungen der verfügbaren Bandbreite anpassen wollen. Im Gegen¬
satz zu verwandten Arbeiten wird versucht, die Qualität der ausgelieferten Daten so anzupassen,

dass eine benutzer-definierte Zeitlimite eingehalten werden kann und die negativen Auswirkun¬

gen auf die Qualität minimiert werden können. Dabei ist es der Anwendung überlassen, den

Begriff Qualität zu definieren. Die Dissertation zeigt, dass ein framework-basierter Entwick¬

lungsansatz für adaptive Anwendungen geeignet ist, da die Kernprozesse der Anpassung wie¬

derverwendet werden können. Die Entwicklung neuer Anwendungen wird somit vereinfacht,

da sich die Entwickler nicht um die komplexen dynamischen Eigenschaften von Netzwerken

kümmern müssen. Die Wiederverwendbarkeit des Frameworks wird erreicht durch Faktori-

sierung von anwendungs-spezifischer Funktionalität: die Anwendung definiert die verfügbaren

Datentypen, die Algorithmen, welche Qualitätsreduktionen erwirken können, sowie den Begriff
der Qualität der auszuliefernden Daten.

Zweitens wird ein systematisches Vorgehen zur Evaluation von adaptiven, verteilten An¬

wendungen vorgestellt, das es erlaubt, die drei wichtigsten Fragen, die an solche Systeme ge¬

stellt werden quantitativ zu beantworten. Können adaptive Anwendungen die vorgegebene Zeit¬

limiten erfüllen, und falls ja, welches sind die Hauptfaktoren, welche die Anpassungsfähigkeit
einer Anwendung beeinflussen? Sind adaptive Anwendungen in der Lage, einen für Benutzer

messbaren Nutzen zu generieren? Was ist der Preis, der dafür bezahlt werden muss? Die Eva-
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luation zeigt, dass dynamische Anpassung an die Netzwerkumgebung möglich ist und zudem

robust ist gegenüber vielen der äusseren Einflüssen, die das Anpassungsverhalten bestimmen.

Im weiteren lässt sich feststellen, dass vorgegebene Zeitlimiten recht gut eingehalten werden

können, die Qualitätsanpassungen auf eine Art vorgenommen werden, welche die Präferenzen

der Anwendung berücksichtigen und dass die Kosten (Rechenaufwand) bescheiden sind.

Drittens veranschaulicht die Dissertation, dass die Anpassungsfähigkeit von solchen An¬

wendungen von der Genauigkeit und der Aktualität der Informationen abhängt, die sie über die

Verfügbarkeit von Netzwerk-Ressourcen erhalten. Der Vergleich von verschiedenen Ansätzen

der dynamischen Bandbreitenmessung zeigt, dass die Anforderungen an Genauigkeit und Ak¬

tualität der Informationen mit sogenanntem "transport-level monitoring"—einer Kooperation

von Transportprotokoll und Anwendung—effizient erfüllt werden können. Zudem zeigt sich,

dass die Fähigkeit, die verfügbare Bandbreite abzuschätzen, stark von der Wahl des Transport¬

protokolls abhängt. Die Realisierung eines Prototypen demonstriert, dass sich ein solcher An¬

satz mit lediglich kleinen Änderungen an existierenden Protokollimplementationen umsetzen

lässt und dass es daher nützlich wäre, die Schnittstelle zum Betriebssystem um die entspre¬

chende Funktionalität zu erweitern.
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Chapter 1

Introduction

1.1 Motivation

The growth of the Internet in terms of users has been proverbial in recent years, as has been the

increasing interest in using the Internet as a platform for commerce. These trends have been

fueled by the massive growth of the World Wide Web (Web) [14] and the large amounts of

information and services one can find on it. For these reasons, there has been and will continue

to be substantial competition among (Web) service and content providers to attract as large a

set of users as possible1. Competition takes place along at least two dimensions: the contents

provided, and the quality of the services. Moreover, it will be important that new services can

be made available to potential users quickly. While there is an extraordinary diversity in terms

of services and information to be found in the Internet, there are two fundamental aspects in

this competitive situation among content providers that are worth studying in more detail.

First, besides providing the "right" services and information, a key factor to the success of

a content provider in terms of attractiveness is whether the provider is able to serve its users

at satisfactory levels of (content) quality and performance. Content delivery with the goal of

maximizing user satisfaction is called quality-aware.

Second, providers are only competitive if they are able to make such quality-aware ser¬

vices available quickly. This requires short development cycles and that the services be easily

déployable.

While data and service quality may have many dimensions and may vary widely from

application context to application context, a recurring issue—as far as quality-perception is

concerned—is the timeliness of the information delivery. In most systems with the "user in the

loop", it is very important that the information requested by the user is provided by the system

in a predictable and timely manner [122] (e.g., to support interactivity). In this context, we

envision that ultimately the networked user should not only be able to choose the services and

content wanted (as advocated by Fox [57] for instance), but should also be in full control to

(i) indicate her preferences about how she values the quality of the content to be provided, and

most importantly, (ii) to state how long she is willing to wait for the service. In such a world, the

providers must be "smart" about how they satisfy individual user requests. In particular, they

^.g., search engines offer services, news sites offer content. In the remainder, we will use the term content

provider to refer to both service and content provision.

1



2 CHAPTER 1. INTRODUCTION

must be able to deliver as much data that is relevant to the user's information needs as possible
within the time frame allotted.

Despite its recent explosive growth and its diversity of content and services, the Internet, and

in particular the Web, have remained a rather primitive place so far. "One size fits all" is the rule

for servers providing content and services to users. To understand why this approach becomes

increasingly problematic and what can be done to provide a more sophisticated service model

for networked applications it is illustrative to briefly review some of today's Internet realities.

Internet realities

While there exist a number of techniques that allow a content provider, e.g., operating a Web

server, to deal with the burden of high user demands (e.g., server replication, load balanc¬

ing [137], etc.), there are two issues hampering the provision of a service model which aims at

delivering high-quality data and ensuring predictable response times, and these issues cannot

be resolved by simply supplying more hardware to improve the server infrastructure.

First, Internet heterogeneity is almost as proverbial as its growth. Potential clients vary in

several dimensions. First of all, the bandwidth, latency and error characteristics of a client's

network access can vary substantially. For instance, paths in today's Internet span six orders of

magnitude in bandwidth. The speed of a client's network access may range from the bandwidth

of wireless modems (œ 10kbit/s) up to the speed of fiber optics (^ 10 Gbit/s). These discrepan¬
cies in speed are likely to increase. This heterogeneity is problematic for a content provider, as

there is not an obvious best way to deliver the information sought by various users. For example,
either the data provided is reduced in quality (and hence in volume) to such a degree that even a

client with low bandwidth access can receive the data in a timely fashion, or the data is delivered

in high quality, so that at least the clients with high bandwidth access to the provider's server

experience satisfactory levels of performance. Both solutions have their drawbacks. Either the

users with high-speed network access experience lousy information quality that is in no propor¬

tion to the investment made into their network infrastructure, or the users have to wait unduly

long for the information to trickle in over their low-bandwidth access line. Timely delivery is

just one, albeit an important, aspect of the problems incurred by heterogeneity. Furthermore,

clients vary in their processing and displaying capabilities. Thus, content providers must also

deal with varying display capabilities of their clients, for instance.

Second, fluctuations in network service quality, e.g., in bandwidth, are quite common in

today's Internet, both in stationary environments (i.e., for clients with wireline access) and—

even more so—for clients in mobile environments (wireless access) [158]. In wireless overlay
networks [89], quite significant variations in connectivity and network service quality can be

observed. Such fluctuations are often due to congestion in the network. Congestion occurs if the

aggregate demand exceeds the supply of bandwidth. Most congestion-aware transport protocols

(e.g., TCP [79], DECbit [149], or RLM [113]) react to congestion signals, e.g., packet loss or

lower throughput, by reducing the sending rate. Such rate reductions, although in the interest

of network stability and hence in the mutual interest of all the network users, result in increased

transfer times. Since the demand of other network users can fluctuate significantly and is—at

best—extremely difficult to predict, transfer times can exhibit highly unpredictable behavior,

which may not be acceptable from the viewpoint of a quality-aware application.
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Unless bandwidth is abundant, both problems are likely to prevail. This situation implies
that with the current "one size fits all" approach, there will always be users who cannot be

served at predictable and satisfactory levels of quality. There are basically two approaches to

widen the range of users that can be served at predictable levels of quality by overcoming the

problems of network heterogeneity and fluctuating bandwidths: reservation or adaptation.

Reservation

With a reservation-capable network, applications are able to reserve the required resources

(e.g., bandwidth) along the path from the server to the client, such that the desired quality
level for the information can be guaranteed and can be delivered within a time frame allotted

by the user. There are a number of drawbacks that detract considerably from the attractive¬

ness of a reservation-based approach. First, although considerable research efforts have been

dedicated to enhancing the current best-effort Internet infrastructure with reservation capabili¬
ties [37, 204, 203], such capabilities are far from being widely deployed yet. Second, resource

reservation will most likely not come free of charge, and hence reservation may not be a viable

option for certain types of applications. Furthermore, not all reservation requests may be ad¬

mitted at the service levels desired by the applications (e.g., because of scarce resources, or a

cost budget). Therefore, even if reservation mechanisms were ubiquitously deployed in the In¬

ternet, dynamic quality-response time or quality-cost tradeoffs would often become necessary.

Dynamic means that the tradeoffs must be achieved at run-time, and cannot be determined stat¬

ically, e.g., at configuration-time. Such dynamic tradeoffs can only be achieved by adaptation,

e.g., by adjusting the quality expectations, such that the goal on response time can be met, or

by relaxing the requirements on the response time in to obtain the desired level of quality.

Adaptation

The variable supply of network resources suggests that an application must dynamically adapt
to the particular capacity of a network path and to the changes in bandwidth supply to provide

predictable levels of service quality for a broad range of networked users.

In this context, adaptation means a trading of resources, either for other resources or for

some measure of quality of the data delivered. As providers/applications are faced with fluctu¬

ations in network resource availability, they may wish to change the way in which they fulfill a

certain request for data by adapting the consumption of the constrained resources. A first option
for an application to alter its resource consumption is to trade one resource for another. E.g.,

compressing data before shipping spends processing power to save bandwidth (as proposed for

HTTP/1.1 [50] for instance). Techniques that trade one resource for another are transparent to

the user because the data delivered to them is the same, whether the tradeoff is made or not.

However, such trade-offs may not be sufficient, either because the adaptation potential of such

techniques (e.g., lossless compression) does not match the large discrepancies and swings in

bandwidth supply observed, or because there may not be enough of the resource traded for

(e.g., processing power on resource-poor mobile hosts) to provide adequate service. Therefore,

in addition to trading one resource for another, an application that wishes to change its network

resource consumption, e.g., to keep the response time within a user-specified limit, must of¬

ten trade these resources for some measure of quality of the data delivered. If such a tradeoff



4 CHAPTER 1. INTRODUCTION

for quality is necessary, the application ought to be smart about how to reduce quality and try

to minimize the negative impact of the tradeoff on the overall service quality—yet, this is a

capability that many current adaptive applications lack.

Network-awareness

Applications that can actively deal with network heterogeneity and dynamic changes in network

service quality by adjusting their resource demands are called network-aware. Networks are just

one of the many resources employed by an application. The model of a network-aware appli¬

cation emphasizes the crucial role of the network connection: in many cases, the network is on

the critical path, i.e., performance problems in the network are the cause of the degradation of

application performance. In general, however, any component in a system can be a bottleneck,

e.g., performance may be restricted by transfers across a local bus or from the disks, or by the

amount of computation. If application performance is limited by parts other than the network,

such an application should rather try to adjust its behavior in response to these other aspects

of the system (disk I/O latency, bus bandwidth, etc.). In the context of this dissertation we fo¬

cus on the concept of network-awareness implying that an application's behavior is primarily
controlled by the availability of network resources. Our focus on network-awareness does not

imply that other aspects of a system that may effect application performance can be ignored.

On the contrary, end-system resources may be important if an application wants to trade com¬

munication for computation. For example, if an application wants to adjust to network changes

by compressing the data delivered, it is important to make sure that the computation overhead

is not worse than the network overload.

Challenges

Network-awareness is an attractive approach to widen the range of networked users that can be

served at predictable levels of quality (response time and data/service quality). While there have

been various efforts by other researchers to use the concept of network-awareness (adaptivity)
to extend the range of conditions over which a networked application performs acceptably,
in particular in the realm of (real-time) multimedia applications2, there remain a number of

challenges that have hardly been addressed by previous research.

Quality-awareness. Networked services and applications are becoming increasingly com¬

plex. Over time, Web pages, for example, changed from simple text documents (possibly con¬

taining a few images) to complex multimedia documents composed of various components.

Search engines moved from simple text retrieval over image- to speech- or video-retrieval. In¬

teractive, remote simulation that renders multi-dimensional data on a client's computer [98] is

another example of such non-trivial applications. Common to such applications is that they
would benefit from an integral, user-centric approach to the quality of the delivered data. For

instance, it is important to understand the relative importance of the objects within a complex
multimedia document to make suitable bandwidth-quality tradeoffs that minimize the losses

in quality of the whole document. Yet, such an integral approach to quality is what many of

2A detailed survey of related work will be given in Chapter 2.
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the current adaptive systems lack. Most of the systems only make "local" and hence often

uninformed adaptation decisions. For example, transcoding proxies [59, 70] make adaptation

decisions for each object (e.g., image) to be delivered to the client individually—regardless of

the object's context. Furthermore, these systems often employ rather static adaptation policies

for the adaptation decisions. Their main objective is to accelerate the content delivery for a

certain class of resource-constrained clients. Thereby, they often neglect that the bandwidth-

quality tradeoff should try to maximize the quality of the content delivered within the bounds

on response time tolerated by the user.

System-awareness. The tradeoffs made by network-aware applications which tackle the prob¬
lems of heterogeneity and bandwidth variations often include other resources, such as process¬

ing power, disk storage, etc. Many adaptive systems currently in use, however, do not take these

resources (i.e. their availability) into account when deciding how to best match the network re¬

sources available. If the application is to respect user-specified time limits, for instance, it is

necessary that the application takes a more global view on the resources employed to make a

tradeoff, before it decides on the appropriate adaptation strategy.

Application dynamics. Applications that attempt to match the bandwidth volatility in today's
networks often exhibit complex dynamic behavior, which is difficult to study thoroughly. As

a consequence, even though numerous network-aware applications have been described in the

literature, only very few researchers have tried to go beyond an "exemplary" evaluation of their

adaptive systems, e.g., to establish which factors effect adaptation performance the most. There

have been even fewer attempts at quantifying the (user-perceived) benefits of adaptation. There

are two problems that make attempts at quantifying adaptation performance tricky. First, it is

difficult to define metrics that quantify content quality, such that the metrics reflect the "value"

of the data delivered. Second, the run-time complexity of an adaptive system may prove difficult

to track, because there is a large number of factors that can effect its performance.

Application-network coupling. An additional aspect that has barely received attention in

the literature is the interaction between applications and network resource discovery mecha¬

nisms. Large efforts have been undertaken by the network research community to characterize

network performance and to develop mechanisms that allow for dynamic network resource

tracking. Similarly, application developers tried to design their adaptive applications for max¬

imal agility. However, no research studied how precise and timely information about network

resource availability must be to be useful to a network-aware application. Similarly, a lot of

research is devoted to improve the performance of transport protocols, but, the impact of the

transport protocol on application behavior, or more directly on the ability to dynamically track

the network service quality, has hardly been studied.

Ease of deployment. As the pace at which new applications are made public is ever increas¬

ing, there is a clear need for fast development and deployment of new services. As far as the first

issue is concerned, the solutions to the problem of network heterogeneity and network variabil¬

ity adopted by many of the applications currently used are often tailored to the specific needs of

the individual application or a specific programming model [205], and there exists no general
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approach to develop network-aware applications for other application domains. Yet, a useful set

of abstractions, a set of reusable building blocks could be highly effective in shielding develop¬

ers from the many complexities inherent in network-aware systems and could help shorten the

development cycle for new services and applications. When it comes to the issue of deploying

a new application, it is important that the infrastructural changes needed to make a new service

available to a large user community are kept to a minimum.

Goals

To this end—and tackling these challenges—this dissertation sets out to develop a general ap¬

proach to the construction of network-aware applications. The goal is to identify a set of ab¬

stractions common to a significant class of network-aware applications. These abstractions must

allow for a simple, but flexible way to characterize an application's (or user's) notion of quality.
Abstractions and mechanisms are sought that facilitate software reuse and help a large number

of applications to implement a service model that allows to trade off the quality of a service

and the time required to fulfill the service. Moreover, applications building on these software

structures should be easily déployable by Internet content providers.
In addition, this dissertation work aims at broadening the understanding and at improving

the characterization of the complex dynamic behavior of network-aware applications by means

of a systematic performance evaluation that explains the key factors effecting the performance
of network-aware systems. In this context, emphasis is placed on understanding the importance

of on-line bandwidth estimation for the needs of network-aware applications.

1.2 Thesis

The heterogeneity and the volatility in service quality present in the Internet pose a problem to

many quality-aware networked applications. I claim that:

• Network-aware content delivery, with the goal to achieve predictable response times at

the highest levels of quality possible, is capable of extending the range of network condi¬

tions for which acceptable application behavior can be provided. Sender-based adaptation
enables the support of an integral approach to service quality and lends itself well to fast

deployment.

• A framework-based approach to the development of such network-aware applications is

beneficial as it allows for reuse of the core adaptation (i.e., decision making) process and

can therefore shield developers from many of the complexities in dealing with network

dynamics.

• The performance of network-aware applications, defined as the application's ability to

meet a user-specified time limit, depends on the ability of getting accurate and timely
feedback about network resource availability.

• Information about network resource availability can be provided both accurately and ef¬

ficiently by light-weight monitoring at the transport-level. The transport protocol has a

notable impact on the accuracy of models used for bandwidth estimation.
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1.3 Roadmap for the dissertation

The dissertation establishes the thesis in the following way:

• It argues that Internet heterogeneity and variations in bandwidth continue to prevail, that

adaptation is required to meet the goal of predictable content delivery (even if reserva¬

tion schemes were widely deployed in the future), and that sender-based adaptation best

fulfills the goal of easy deployment.

• The dissertation presents the design and implementation of a framework for network-

aware applications and addresses adaptation inherent problems such as agility, start-up

problems, etc. It draws a line between the framework and application specifics and shows

the potential for framework reuse by presenting a sample framework instantiation: Char¬

iot3, a networked image search and retrieval system.

• Furthermore, the dissertation presents a systematic, application-oriented evaluation me¬

thodology based on trace modulation [133] which is applied to the example application
to quantitatively validate the claims that

- Sender-based adaptation is capable of providing acceptable application behavior for

a broad range of network conditions, that is, across a broad range of bandwidths and

bandwidth volatilities.

- The performance of network-aware applications, defined as the application's ability
to meet a user-specified time limit, depends on the ability of getting accurate and

timely feedback about network resource availability.

• The dissertation discusses different approaches to obtain information about network sta¬

tus. It shows that the need for accurate and timely information about network resource

availability can easily be met by passing transport protocol information up to the appli¬
cation, and presents results from a large-scale Internet experiment which show protocol
effects on the ability to estimate and predict available bandwidth.

The dissertation is organized in two parts: while the first part (Chapters 2-6) concentrates on

application-level aspects of network-aware applications, and describes and evaluates the adapta¬
tion framework, the second part (Chapters 7-9) deals with issues of application-network cooper¬

ation and methods of gathering information about and estimating network resource availability.

Chapter 2 discusses related research in reservation-based networks and in network-aware appli¬
cations and thereby provides evidence that the challenges outlined above have largely remained

untackled so far. The chapter also reviews several concepts of software construction that help
increase reuse and motivates why frameworks are an interesting option for the type of appli¬
cations considered here. Chapter 3 introduces the basic concepts of the framework proposed
and describes the details of the service model. Chapter 4 then presents the implementation of

the framework, details the adaptation process, and discusses adaptation inherent problems, such

as agility and the start-up problem. Chapter 5 explains how the framework is instantiated by

presenting a sample application, Chariot, that is derived from the framework, and qualitatively

3
Swiss (CH) Analysis and Retrieval of Image ObjecTs
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discusses the potential of code reuse by other applications. Chapter 6 introduces the evaluation

methodology and presents quantitative results that allow us to identify the key factors effect¬

ing adaptation performance and to assess the importance of timely and accurate information

on network resource availability. Chapter 7 discusses several approaches to on-line bandwidth

estimation. Chapter 8 presents the results of a large-scale Internet experiment used to analyze
the efficacy of different transport-level throughput models and briefly discusses issues related to

bandwidth prediction. Chapter 9 compares application-level and transport-level monitoring in

terms of efficiency as well as timeliness of their bandwidth estimates. Chapter 10 summarizes

our findings and concludes the dissertation.



Chapter 2

Background

The goal of this dissertation is to provide a user-centric service model for networked applica¬
tions that allows to obtain predictable response times while maximizing the "value" of the data

delivered to the user. This chapter discusses approaches that can be taken to achieve this goal

and concludes that adaptation is an attractive—and often necessary—means to achieve these

two objectives. The discussion of related research into network-aware applications reveals the

issues that have largely remained open so far and will consequently be explored by this disser¬

tation.

2.1 Greediness

The first class of applications that attempts to achieve predictable response times while maxi¬

mizing the value of the data delivered builds on the principles of application levelframing. The

concept of application level framing was coined by Clark et al. [38] and states that application
semantics should explicitly be included in the design of a (new) protocol to allow for efficient

data transfer. The idea is that the application should break the data into suitable aggregates (that

can be processed at the receiver independently and possibly out-of-order) and that the lower

layers (e.g., the transport protocol) should preserve these frame boundaries as they process the

data. These aggregates are called application data units (ADUs). Such a framing allows to

completely decouple data manipulation steps (encryption, presentation conversion, etc.), which

are the responsibility of the application, and transfer control functions (flow/congestion con¬

trol, multiplexing, etc.), which are to be provided by the transport protocol. This separation of

concerns adds flexibility, e.g., to choose the appropriate transport protocol. For instance, ap¬

plication developers are free to choose a simple, unreliable transport protocol with no transfer

control functions (e.g., UDP [176]), as long as it supports datagram semantics.

How can application level framing help in establishing the objectives of predictable re¬

sponse times? By means of a loss-resilient encoding of the data to be transferred. Data can

be video, image, text, or other digital media. Each data item to be transferred is encoded and

packed into independent ADUs in such a way that (i) each ADU contains information about its

place within the sequence of ADUs produced, (ii) each ADU contains data that can be decoded

independently at the receiver and (iii) the loss of an ADU does not prevent the (potentially

quality-reduced) content of the data item to be reconstructed at the receiver. Given such a loss-

9
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resilient encoding and segmentation of the application data, the application must only choose

an appropriate fixed rate at which it paces the packets into the network to achieve a certain time

limit. The bandwidth-quality tradeoff will implicitly be made by the network. If bandwidth is

scarce, ADUs will be dropped. As a consequence, quality suffers upon reconstruction of the

content from the ADUs that have reached the receiver.

Turner et al. [184] were among the first to apply these ideas to the transfer of image data.

They proposed a simple, bitmap-based algorithm for encoding images into ADUs, such that

the receiver can recover from dropped packets without requiring the sender to retransmit them.

Amer et al. [5] present a similar scheme for the encoding of GIF images. Similar ideas have

been applied to the encoding of video data. E.g., Albanese et al. [2] describe PET (Priority

Encoded Transmission) of MPEG-video. By adding redundancy in the encoding, PET can

assure the delivery of a user-specified fraction of I-, P- and B-frames [123], given that the loss-

rate does not exceed a certain threshold (used to compute the amount of redundancy needed).

More popular, but unpublished encoding algorithms have been incorporated in the commercially

available tool RealVideo [151, 153].

Such an approach at achieving predictable response times may seem very attractive from

an application developer's perspective because it is simple to implement (given an appropriate
data encoding algorithm exists) and because it does not require that the application deals with

the dynamics of network resource availability. In fact, such encoding-based transmission at a

fixed data rate is becoming increasingly popular as the success of RealVideo and similar con¬

tinuous streaming services indicates. We call such data transmission schemes greedy because

the application consumes as much bandwidth as possible and needed for its own purposes.

However, although attractive for a single (selfish) application, such a greedy transmission

scheme is highly problematic for the network as a whole. These applications "pump" non-

congestion-controlled traffic into the network. That is, their traffic flows (i) are unresponsive
to incipient congestion, as they do not react to packet loss, and (ii) may therefore consume a

disproportionate amount of the bandwidth available. Floyd et al. [53] show that unresponsive
and disproportionate bandwidth flows can not only be drastically unfair to competing TCP (and

other congestion-controlled) connections but can eventually even result in an Internet conges¬

tion collapse (from undelivered packets)1. Therefore, such traffic poses a serious threat to the

stability of the Internet, which has relied heavily on the end-systems/applications to cooperate

and participate in end-to-end congestion control so far [79]. Although routers may in the future

move from the simple first come, first served scheduling policy to more sophisticated policies
that isolate and "punish" unresponsive flows [54, 165, 53], it is important that new transport

protocols or applications employ end-to-end congestion control mechanisms and abide by a

few rules that ensure their traffic streams are TCP-friendly [103]. Empirical evidence indicates

that TCP friendliness is a sufficient condition to guarantee network stability.

A second type of congestion-collapse, so-called fragmentation-based congestion collapse [53], may occur with

the class of applications sketched. If the ADU size does not match (i.e. is larger than) the network path's maximum

transmission unit (MTU), ADUs must be fragmented and reassembled at the network layer. If one fragment is lost,

the whole ADU is worthless and the remaining fragments of the ADU waste precious network resources [91].
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2.2 Reservation

A second approach to achieving predictable response times is to reserve the resources (e.g.,

bandwidth) needed from a sophisticated network infrastructure that supports multiple traffic

classes and resource reservations. The Internet research community has devoted much ef¬

fort to designing an integrated services Internet architecture2, which is an architecture capable

of supporting real-time applications as well as (best-effort) data applications (see, for exam¬

ple [37, 11, 49, 83, 138,204] and references therein for a small sampling of the literature in this

area). The Internet Engineering Task Force (IETF) recently promoted to "Proposed Standard"

level extensions to the Internet architecture that will enable the Internet to support reservations.

These reservations manage resources (e.g., bandwidth) that are set aside for a particular traf¬

fic stream (see [203, 166, 167, 200, 201] for the relevant RFCs and for additional supporting

material). In this architecture, networked applications can still send best-effort packets, but in

addition they have the option of requesting a reservation for their traffic streams. To obtain a

reservation, an application requests a certain amount (characterized by a traffic specification)

and quality (specified by a service specification) of service; the network then decides whether

or not it can satisfy this request. While there are many mechanistic differences between the

various integrated services proposals, they all share the two fundamental aspects that (i) appli¬
cations have the ability to reserve bandwidth, and (ii) the network exercises control—known

as admission control—over these reservation requests, so that it can ensure the level of service

given to reserved traffic.

Provided the ability to reserve bandwidth, a quality-aware application (e.g., faced with a

limit on the response time) must merely determine its resource needs, that is, estimate how

much data it wants to transfer across the network to satisfy the user's information needs, and

then request that the appropriate amount of bandwidth be set aside for its traffic streams. Such

an approach, i.e. the delegation of all the complexity needed to ensure a certain service quality to

the network, may seem to be an attractive solution from an application developer's perspective,
because it promises to keep applications simple and lean. However, reservation is no panacea—

for a number of reasons.

First, despite the considerable research efforts, reservation-capable networks are not widely

deployed yet. And considering the slow rate at which wide-scale Internet infrastructure changes
are taking place, it is likely that in the future some network architectures (or their implementa¬

tions) may not support reservations at all or may support them only to a limited degree, or that

not all sites are willing to invest in the infrastructural upgrade. Second, as network providers

attempt to develop usage-based charging schemes [64], there will be financial incentives to

restrain applications from uncontrolled use of network resources. Third, not all reservation re¬

quests may be admitted at the service levels desired by the applications (e.g., because of scarce

resources). Moreover, to support quality-aware applications, end-to-end QoS guarantees may

be necessary. This implies that not only network aspects must be considered, but that end-

system and operating system resources must also be taken into account [129]. This requirement
holds especially for continuous media applications as they have the most stringent resource re¬

quirements [172, 161], As a consequence, resource orchestration may become crucial to allow

2In this context, the term service refers to network capabilities offered to applications. The initial proposal by
Clark et al. [37] differentiates between guaranteed, predicted (real-time) and best-effort (datagram) service.
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for meeting the user's QoS requirements on an end-to-end basis [128, 26].

As a consequence, even though an integrated services network may allow to make band¬

width reservations, and thus may have the potential to simplify application development, an

application must still address (at least) the two issues of (i) how to find out what and how much

to reserve, and (ii) how to adjust to meet the confirmed reservation, which may be less than

the application has asked for. Note that from a software engineering point of view, reservation-

based applications and purely adaptive applications that use a best-effort-only network require
the same software technology: the application must be able to adjust its resource demands,

either to meet a limit imposed by a reservation or to meet some constraints imposed by the

network. In either case the application must be adaptive.
Since quality-aware applications may have to be adaptive in any case and because, in fact, a

number of current networked applications are adaptive (e.g., vat [81], vie [112], ivs [20], etc.),

one may question whether the added complexity of enhancing the Internet infrastructure with

reservation capabilities is justified by the performance benefits that can be derived from such an

infrastructure.

Breslau et al. [24] are the first to take a systematic approach at the debate "reservation versus

best-effort (and adaptation)". Using an analytical model, Breslau et al. address the fundamen¬

tal question whether the Internet should retain its best-effort-only architecture, or whether it

should adopt one that is reservation-capable. The differences between the network models are

characterized in terms of application performance and total welfare for all applications using
the network. In addition to raw network-centric performance numbers, the authors incorporate
two elements in their analysis: the utility functions of the application studied (how application

performance depends on network service) and the adaptive nature of the applications (how ap¬

plications react to changing network service). The question cannot be answered conclusively,
since it would be necessary to know the future cost of bandwidth and the nature of future traffic

load. For some types of traffic load, the differences between the network models depend on

the cost of bandwidth and on how much cost the increased complexity of reservations add to

the network. However, one of the conclusions of the study is that for certain types of traffic

load, adaptive applications (as opposed to rigid, non-adaptive applications) make the case for

reservation-capable networks almost vanish.

2.3 Adaptation

The discussion in the previous sections revealed that neither reservation nor loss-resilient data

encoding with constant-rate transmission of the encoded data provide the ultimate solution

for the problem of supporting a service model that allows to achieve predictable response

times. Reservation-capable networks can still call for dynamic adaptation; and non-congestion-
controlled transmission of content is not a ("socially") viable option. Therefore, there is clearly
a need for network-aware content delivery to cope with the problems of heterogeneity and band¬

width volatility in today's networks. Clearly, adaptation is not a cure to all these problems either,

but, we find that it is often an attractive and necessary means to achieve the objectives. In fact,

adaptation is often complementary to those other approaches.
There are many different forms of network-awareness. E.g., continuous media applica¬

tions often perform delay (or play-out point) adaptation to ensure smooth reproduction of the
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Media type Specific encodings Distillation axes

Text Plain, HTML, RTF,

Postscript, PDF

Richness (formatting),

Content (summary, headings)

Image GIF, JPEG,

TIFF, PPM, XBM

Resolution, color depth,
color palette, requantization

Audio MPEG, MIDI, WAV Low-pass filtering

Video,

Image Sequence

MPEG, H.261,

NV, M-JPEG

Frame rate, selective frame dropping,
hierarchical filtering,

Table 2.1 : Media types and distillation dimensions.

audio/video signal received (e.g., vat [81], RealAudio [151]). Other applications hide client

heterogeneity by trading performance for the levels of security with which the data is en¬

coded [160]. Among the countless different forms of network-aware content delivery we con¬

centrate on techniques that trade bandwidth for some measure of quality of the data delivered

and/or for processing power (to respect a user-specified time limit). As a result of the discus¬

sion in Section 2.1, we concentrate on content delivery that is controlled by a congestion-aware

transport protocol. In this context, adaptation implies the ability to produce a range of variations

(or versions) for any object to be transferred across the network so that an appropriate version

can be chosen to match the current network environment. Such quality adaptation is often

called transcoding or distillation. The two terms designate the transformation that converts a

(multimedia) object from one form to another, trading off object fidelity for size. Clearly, such

transformations are media type specific. Table 2.1 gives a partial list of possible adaptation

strategies for commonly used media types. Mohan et al. [124] note that "modality changes"

provide further attractive distillation axes for complex multimedia objects. E.g., a video stream

could be transcoded into a few key frames representing different scenes from the video; or voice

could be converted to text to achieve space savings.

There is a fairly large and rapidly growing literature of approaches based on concepts of

network-aware adaptation. This section classifies the approaches to network-aware content

delivery taken by other researchers. It then turns to discuss whether and how (well) these ap¬

proaches address the challenges listed in Chapter 1. Thereby we defer discussion of reusability

aspects to Section 2.4.

The different approaches to network-aware content delivery can be classified according to

various criteria. First, which party in a networked application is responsible for (i.e., initiates)

the adaptation: the sender, the receiver(s), or intermediary nodes in the network (e.g., proxies)?

Second, which "layer" in the adaptive application is responsible for resource discovery and

for making the adaptation decisions: the operating system, the application, a collaboration of

system and application, or the user? Third, what is the main objective of the adaptation: to tide

networked applications over bandwidth fluctuations, network heterogeneity, or heterogeneity
in client capabilities? There are further criteria, such as the communication paradigm used

(unicast vs. multicast) or the media types supported. Table 2.2 gives an overview of the related

work discussed in this section, classified according to the three criteria above. The last column

lists specific attributes on communication paradigms or media types, if they deviate from the

"default", which comprises unicast communication and support for multiple media types.
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System Citation Where to adapt? Who decides? Objective" Remarks

Odyssey [130]

Prayer [16]

Receiver

Receiver

Sys./App.

SysVApp.

BW-F

BW-F

RLM [113] Receiver Application BW-F/H Multicast, Video

TOMTEN [39] Receiver User BW-F/H

GloMop [59]

(Han et al.) [70]

(Chandra et al.) [34]

(Hemy et al.) [72]

Proxy

Proxy

Proxy

Proxy

Application

Application

Application

Application

CL/BW-H

CL-H

CL-H

BW-F/H

Image

Image (JPEG)

Audio/Video

HIPPARCH [93] Sender System BW-F

InfoPyramid [124]

RAP [152]

Sender

Sender

Application

Application

CL/BW-H

BW-F/H Video

"Legend: BW - bandwidth, CL = client; H = heterogeneity, and F = fluctuations

Table 2.2: Overview of the related work reviewed.

2.3.1 Receiver-initiated adaptation

Odyssey. To cope with the turbulences of mobile environments, mobile clients accessing re¬

mote data must dynamically adapt their behavior by trading the quality of fetched data for the

speed of fetching it. Noble et al. [132, 130] claim that such adaptation is best provided by

application-aware adaptation—a collaboration between the operating system and its applica¬
tions—at the receiver. In this collaboration, the operating system is responsible for providing
the mechanisms for triggering when to adapt, while applications are free to set adaptive policies
that define how to adapt. The Odyssey prototype [132] provides a central authority responsible
for (network and client) resource tracking, registration of application resource needs with the

system and an upcall-mechanism [35] which notifies the application when significant changes
in resource supply have been detected by the monitoring subsystem. The collaborative effort

between system and applications is well suited to support application concurrency on resource-

constrained mobile devices as it allows for fair (or at least controlled) partitioning of resources

among competing applications. Noble et al. modified three existing applications to make use of

the Odyssey system [132]: a public-domain video player (xanim), a Web browser (netscape),
and a speech recognizer (Janus). In the Odyssey system, adaptation decisions are made at the

client and are based on ranges of availability. The range (or window of tolerance) expresses the

application's resource expectations for "normal" operation, as well as the application's desire

to be notified if the availability of the resource strays outside the window.

Prayer. In Prayer [16], Bharghavan et al. use ideas similar to those present in Odyssey. They
also postulate the collaboration of system and application by splitting adaptation policy (appli¬
cation) and adaptation mechanisms (system). In Prayer, resource availability is monitored by
a central authority and adaptation decisions are based on (multiple) ranges of availability. The

application can specify multiple "QoS classes" (the analogon of Odyssey's window of toler¬

ance) and associate with each QoS class a handler that implements the application's policy for

the specified resource range. The system monitors resource availability, determines the appro¬

priate QoS class and calls the respective handler if a change occurs. The authors stipulate that
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decisions be made at the client/receiver and assume that there is a consistency mechanism that

notifies the server (or proxy) of any QoS class change.

RLM. McCanne et al. [113, 109] pioneered scalable transmission of multicast video data.

The authors devised a layered video encoding [115] that is used to selectively forward the dif¬

ferent encoding layers on multiple IP-multicast groups. For scalability reasons, the adaptation
is receiver-driven. Receivers are responsible to deal with heterogeneity and fluctuations in the

transmission rate. By joining a subset of the multicast groups they specify their subscription
level. This scheme only allows for coarse-grain congestion control, because it is limited by the

(somewhat slow) speed at which changes of multicast group membership can be propagated. A

receiver drops layers of the video signal if it observes packet loss. From time to time, it probes

availability of additional bandwidth by adding a new layer. The application is in full control of

the adaptation decisions.

TOMTEN. De Silva et al. [39] propose a completely user-centric adaptation scheme. The

user makes adaptation choices at application start and whenever she becomes dissatisfied with

the quality of the service received. Upon user intervention the TOMTEN system reacts by

discovering the available resources, assessing the change in available resources since its last

invocation, and by determining possible adaptation strategies that are then presented to the user.

With TOMTEN there is no need to change applications to benefit from the reactive framework.

Application calls to/from the network are intercepted and redirected either through adaptation
modules that may filter the application data stream or through a different network interface.

Filtering is often performed at a proxy. Their filter implementation supports the JPEG and

MPEG formats. The TOMTEN system performs no continuous monitoring, since the adaptation
mechanism is completely reactive.

2.3.2 Proxy-based adaptation

GloMop. GloMop stands for global mobile computing by proxy. Fox et al. [58, 59] pioneered

on-the-fly adaptation by transformational proxies. These proxies host datatype-specific distil¬

lation services that can be invoked to dynamically adapt the quality of the data delivered. The

authors claim that pushing adaptation into the network infrastructure is a widely applicable,

cost-effective, and flexible solution to addressing the problems of client heterogeneity. The

solution is widely applicable because it supports various applications and because there is no

need to change server- or client-side applications. A proxy appears as client to servers and as

server to clients. The solution is cost-effective because it allows for incremental deployment
of proxies when scalability becomes a concern (see Section 2.4 for details). Some of the ideas

described by Fox et al. [58, 59, 61] have been commercialized (mostly to adapt Web content

for display on personal digital assistants (PDAs), such as the 3Com PalmPilot): Proxynet [147],

Intel's Quick Web [148], AvantGo [8], and possibly others.

Despite its success—as indicated by the large number of followers—the proxy-based trans¬

coding proposed by Fox et al. [58, 59] exhibits a number of shortcomings. The main objectives
are adaptation to client heterogeneity and acceleration of Web content delivery. Variability in

bandwidth availability is not taken into account. The transcoding proxies often consider a few
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types of client devices and employ static, ad-hoc content adaptation strategies. In particular,

they do not consider the time required to transcode the media objects (which among other

factors depends on the proxy workload). Furthermore, they simply assume that the connection

between server and proxy is high-bandwidth, which turns out to be an over-simplification in

reality [131]. As a result, proxy-based transcoding cannot make a sophisticated quality-time
tradeoff and may even fail to reduce response time. Recent work on transcoding proxies tries to

remedy some of these shortcomings (as described in the following two paragraphs).

(Han et al.). Han et al. [70] present an analytical framework which describes when to trans-

code and when not to transcode for proxies. The idea is that transcoding is only performed
when response time is reduced. Their analysis is based on models for the transcoding time, the

size of transcoded images, and on accurate predictions of both server-proxy and proxy-client
bandwidth. This analysis is used to derive decision heuristics that decide when and how to

adapt. The heuristics are adopted in the actual implementation. It is important to note that these

heuristics are static adaptation policies; the proxy does not use the models to dynamically derive

adaptation decisions. The authors also describe (but did not implement) automated transcoding,

a process by which the proxy adapts its image coding to network variability while trying to

meet an upper bound on the delay tolerated by the end user. The actual implementation of an

HTTP-proxy adapts to client heterogeneity, image content, and user preferences.

Addressing the lack of system-awareness in previous work, Han [69] studies the impact
of a mobile client's processing speed on the adaptation decisions at a proxy. Based on the

observation that PDAs can have very low processing speeds, Han compares three alternatives of

proxy-based image transcoding: (i) the browser at the client must scale and decompress image

content; (ii) the proxy pre-scales, and the browser decompresses; (iii) the proxy pre-scales,

decompresses and transmits a grayscale bitmap, the browser merely displays the image. The

study concludes that proxies which take the CPU limitations of their clients (PDAs) into account

can dramatically reduce the end-to-end latency for an image download by migrating some or all

CPU-intensive tasks from the slow PDA to the transcoding proxy.

(Chandra et al.). Examining previous work's ad-hoc adaptation decisions that barely consid¬

ered quality aspects in their tradeoffs for bandwidth, Chandra et al. [34] postulate that "informed

transcoding techniques" help to balance the need for good quality of multimedia content while

reducing consumed network bandwidth. By "informed" the authors mean that a transcoding

proxy must take media specifics into account and must consider "image information quality"

(as analyzed by Ford [55]) when making adaptation decisions. As far as media specifics are

concerned, they carefully analyze the JPEG image format and find that the "input quality" of

an image is an important factor that effects transcoding costs and output size (these findings
are consistent with the results reported by Walther in a study done at ETH Zürich [189]). If

the input quality is not taken into account, uninformed transcoding decisions may lead to the

transcoded image being larger than the original image.

(Hemy et al.) The proxy-based approaches mentioned so far only adapt content delivery to

client heterogeneity. Hemy et al. [72] devised a transcoder that adapts the bandwidth of MPEG

system streams containing both video and audio signals to also account for fluctuations in net-
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work bandwidth. They employ smart selective frame dropping to ensure that quality distortions

of the MPEG stream displayed at the receiver are kept to a minimum. Note, their transcoder

may also be co-located with the server (but it still acts as a proxy from the client's point of

view).

2.3.3 Sender-initiated adaptation

HIPPARCH. Knutsson et al. [93] employ lossless data compression at the transport layer,

i.e., in the TCP protocol stack, to maximize "user-perceived throughput", i.e., to minimize

the transfer time. By virtue of using lossless compression the adaptation is transparent to the

application. The adaptation scheme assumes that all CPU resources are available to perform

compression. Their system dynamically adapts the compression ratio to match the transmis¬

sion rate and processing speed. The adaptation decisions are based on buffer occupancy at the

sender. Empty buffers indicate that the sender cannot keep up with the network, therefore, the

compression ratio is reduced. On the other hand, if buffers build up, the network is too slow

and the sender reacts by increasing the compression ratio. If the receiver cannot keep up, the

buffers at sender fill up (due to TCP's flow control).

InfoPyramid. The system described by Mohan et al. [124] tries to adapt multimedia Web con¬

tent to optimally match the capabilities of client devices. They employ two (application-level)

concepts. First, the InfoPyramid is a multi-modal, multi-resolution representation hierarchy
for digital media data, which—besides the commonly used distillation mechanisms (see Ta¬

ble 2.1)—allows for progressive content delivery, video-to-image sequence, image-to-text, or

speech-to-text transcoding. Second, there is the customizer, which selects a content representa¬

tion that meets the capabilities of a particular client and that maximizes the "value" delivered

to the user. The authors introduce an application-independent concept to characterize the "val¬

ue" of content, which is based on the rate-distortion theory by Shannon [164]. While being an

interesting approach because of its application independence and because it allows for a formal¬

ization of the optimization problem, the authors note that the characterization may not always

correspond with user perception.

RAP. As an example for the multitude of video applications that use sender-based adaptation,
we review the work of Rejaie et al. [153, 152]. In [153], the authors describe an end-to-end

TCP-friendly [103] rate adaptation protocol (RAP), which is suited for unicast playback of

realtime streams and for other semi-reliable rate-based applications. In contrast to RLM, it

exercises fine-grained unicast congestion control. Rejaie et al. [152] present a mechanism for

using layered video transmission (e.g., [115]) in the context of unicast congestion control. Their

quality adaptation mechanism adds and drops layers of the video stream to perform long-term

coarse-grain adaptation, while using a TCP-friendly congestion control mechanism to react to

congestion on very short timescales. The mismatches between the two timescales are absorbed

by using buffering at the receiver.
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2.3.4 Discussion

This section discusses the related work presented in the previous sections according to the two

main criteria used for their classification: who initiates the adaptation process (where to adapt):

receiver, proxy, or sender? who decides: system, application, collaboration of system and

application, or the user? The different approaches are reviewed according to the five issues

introduced in Chapter 1. We claim that the issues of quality-awareness, system-awareness,

application dynamics, application-network integration (resource tracking), and ease of deploy¬

ment have largely remained unchallenged by related research so far. Thereby, we first address

fundamental benefits and problems (e.g., of a proxy-based architecture) before we point out

strengths and weaknesses of specific approaches.

Where to adapt?

Proxy. One big benefit of proxy-based adaptation is that it is totally transparent to the content

providers; they do not have to change the way they author or serve content. In addition, the

proxy approach is also transparent to the client; the client application need not be changed.
Because of its transparency, the proxy approach allows for incremental deployment, which is

a cost-effective solution to scalability problems [57]. The flexibility offered by a proxy-based

approach has also been recognized in a variety of other application contexts, especially in the

mobile environment [202].

On the other hand, there are a number of drawbacks to this approach: First and foremost, a

transcoding proxy can commonly make only very limited quality-aware decisions. E.g., it can

transcode an image such that the image delivered fits with the client's displaying and processing

capabilities and such that the delivery of that particular image is accelerated. However, the

proxy often has no knowledge about the context of the particular image (is it important or

even visible within the complex Web page requested or not?), and thus must make a rather

uninformed "local" adaptation decision. In fact, most proxy-based approaches currently in use

deal only with client heterogeneity; they concentrate on a few static adaptation policies. As

a consequence, proxies are hardly suited to make response time-quality tradeoffs for complex

applications. Second, with a proxy approach, content providers have no control over how their

content will appear to different clients. Third, for a proxy to make data-specific distillation

decisions it must be able to analyze the content or structure of the data through the proxy

(see [124] for a detailed critique on this aspect). Furthermore, a proxy-based approach must

track the bandwidth of both the server-to-proxy and proxy-to-client connection to make sound

adaptation decisions as argued by [131]. Other aspects, such as the question where to place

proxies, or how to (dynamically) compose the services provided by proxies, are subject to on¬

going research [6].

Receiver. Burdening the receivers with the task to find good bandwidth-quality tradeoffs has

the big benefit of a solution that is scalable. Servers do not have to process feedback from and

make adaptation decisions for the many clients that request network-aware content delivery.
A second aspect that is in favor of receiver-initiated adaptation is that—compared to proxy-

based adaptation—it is better suited to make informed (or "global") adaptation decisions that

are based on the context of the object to be transcoded [130]. Receiver-initiated adaptation can
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therefore better opt for an integral response time-quality tradeoff than a proxy-based approach.

(The same applies to sender-initiated adaptation when compared to a proxy-based solution).

Furthermore, a receiver-based approach only needs to monitor one connection, namely the one

to the server.

The flip side of receiver-initiated adaptation is that the receiver merely initiates the adap¬

tation, but the actual transcoding necessary to achieve a bandwidth-quality tradeoff must be

carried out somewhere else, e.g., at the server or at a proxy. There are two options to deal with

this situation, both of which are problematic: First, if applications are to choose among differ¬

ent (quality-reduced) versions of the original media object stored at the server/proxy, the client

must know which versions exist at the peer. Such a solution may require an inordinate amount

of coordination with the peer. Second, the client may request that the versions are dynamically

distilled at the server/proxy. To make an informed decision about the quality of the object to be

delivered the client would have to take the distillation costs into account. The costs depend on

the resource availability at the peer, which is often beyond the control or even the knowledge of

the client.

Sender. The pros of sender-initiated adaptation are that the content provider is in full control

of the content quality and can make informed decisions that take the context of objects to be

transcoded into account. Therefore, the sender can more easily achieve a response time-quality
tradeoff than the other alternatives. Elaborate coordination with the client is not necessary.

Moreover, CPU resource availability at the client is likely to fluctuate less strongly as at the

server3. Thus, the sender-based approach can more reliably make tradeoffs that incorporate
client capabilities. Again, only one connection needs to be monitored.

On the down side, we note that sender-based approaches do not scale as well as the receiver-

based solutions. In addition, server applications have to change the way how they serve content.

Table 2.3 summarizes the discussion of the three alternatives.

Who decides?

System. System-only decision making is totally transparent to the application (Noble [130]

names this type of adaptation application-transparent). On the positive side, this means that no

application modifications are required. Furthermore, since the OS takes care of resource track¬

ing, there is a central point of control for all concurrent resource-aware applications. Hence,

the system can enforce resource allocations and employ resource optimizations across multiple
concurrent applications. System-controlled monitoring and adaptation is best suited to ensure

high agility. An agile system is a system that reacts swiftly to changes in resource availability.
On the down side, application-transparency also means that the system has no knowledge

of application specifics and is therefore not in a position to make application-specific, quality-
aware adaptation decisions. In fact, it cannot perform a bandwidth-quality tradeoff. Therefore,

such an approach is hardly suited to support application diversity. Furthermore, the lack of

knowledge about application resource needs may result in an under-utilization of the adaptation

3Dinda [41] reports that the load on desktop machines, which typically act as clients, varies less strongly in

absolute terms than the load on other machines, such as compute servers or production clusters.
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Proxy Receiver Sender

Quality-

awareness

- "local" decisions -f "global", quality-aware decisions

— no time limit + integral time-quality tradeoff

- must analyze content — coordination with peer + full control over

content quality- no quality control by content provider/author

System-

awareness

+ can incorporate client

CPU availability

- no control over peer

CPU resources

+ can incorporate client

CPU availability

Dynamics not applicable

App./Net.

coupling

— must track bandwidth

of two connections

+ only one connection to monitor

Ease of

deployment/

development

+ transparent to content

provider and client

— must change client — must change how

content is served

+ incremental deployment
for scalability

+ scalability — costs for scalable

solution

Table 2.3: Where to adapt? Comparison of receiver-, proxy-, and sender-based adaptation.

potential that is inherent in the application. An additional drawback is that a system-based ap¬

proach requires modifications to the operating system. This requirement can drastically hamper

deployment, especially if necessary on the client-side.

System/Application. The collaborative effort between system and application (termed appli¬
cation-aware adaptation by Noble [130]) is attractive for the following reasons. The application
can decide on the adaptation strategy, and thus make application-specific, quality-aware adap¬
tation decisions. Knowledge of application resource needs and the advantages of a central au¬

thority for tracking end-system and network resource availability mentioned above complement
one another ideally to allow for system-aware adaptation decisions.

These advantages come at the cost of requiring application and operating system changes,
which may hinder deployment. Furthermore, since the application decides on behalf of the user

how the quality is to be adapted to meet the network resource supply, the decisions may not

exactly reflect the user's notion of quality.

Application. Application-centric (or laissez-faire [130]) adaptation allows for quality-aware
decisions. The applications get the adaptation behavior they want. Again, knowledge about ap¬

plication resource needs helps to make informed adaptation decisions. Furthermore, no system

support is required, which is a plus when it comes to deploying the application.

On the down side, being external to the system means that the application is less well-

positioned to monitor end-system and network resources. (The effects of application concur¬

rency are difficult to track.) As a consequence, the adaptation is likely to be less agile. Again,

deciding on behalf of the user may not fully reflect user-intended adaptation behavior. Fur¬

thermore, each application must be programmed to support adaptivity. (A framework-based

approach as proposed in this dissertation may leverage some of the development costs.)
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System System/Application Application Application/User

Quality-

awareness

— no quality
tradeoff

+ application-specific, quality-aware

decisions possible

— choices not

meaningful
— no user control, appVsystem decides on behalf of user + full control

System-

awareness

+ central authority, system can

enforce resource allocation

— no support for application

concurrency

— unknown requirem. + application resource requirements known

Dynamics + agility ± agility — agility

Resource

tracking

+ central authority for monitoring,

accurate and efficient

— external to system: monitoring

complicated, less accurate

Deployment/

Development

+ application

transparency

- application modifications necessary,

complicates programming model

— requires OS modifications + no system support required

Table 2.4: Who decides? Comparison of the different approaches.

Application/User. User-controlled adaptation differs from all the other approaches in that the

user is in full control to make the adaptation decisions she intends and to get the quality she

wants. The problems, however, are that adaptation choices which are offered to the user by the

application may not be meaningful to the user, e.g., because they are often specified in terms

of low-level system and network QoS parameters, such as bandwidth or delay. Unless the user

has a clear understanding of the application resource requirements, it may be difficult for her to

foresee the effects of the adaptation choices presented. A second concern is that with the user

in the loop, application agility may suffer drastically.

Table 2.4 summarizes the discussion of the four alternatives.

Summary

The following paragraphs briefly review the related work and discuss whether or how the chal¬

lenges identified in Chapter 1 are addressed.

Quality-awareness. No proxy-based solution has shown the potential of enabling quality-
aware adaptation yet. Client-based solutions would require considerable amounts of coordina¬

tion with the peer entities that perform the transcoding. Video applications often leave no choice

in how they adapt, since most of them only implement one of the distillation-axes mentioned in

Table 2.1, e.g., selective frame dropping [72], or hierarchical filtering [113,152]. Solutions that

have the operating system decide on how to adapt (e.g., [93]) cannot make a tradeoff for quality
either. This leaves us with only one system, InfoPyramid [124], which takes an integral view at

the bandwidth-quality tradeoff to be achieved by network-aware applications.

System-awareness. There are only a few network-aware applications that take the CPU re¬

sources needed for a bandwidth-quality tradeoff into account. Odyssey [132] and the study by
Han [69] consider client CPU resources. The only study that takes a look at how the transcoding
costs influence dynamic adaptation decisions is the one conducted by Han et al. [70]. In their
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analytical framework for transcoding proxies, they use estimates for the transcoding costs and

for the available bandwidth to determine whether transcoding would be able to speed up content

delivery.

Application dynamics. The ability of the video applications to adapt to client heterogeneity

and bandwidth fluctuations has been evaluated either by simulation [113, 152] or by live exper¬

iments [72]. With the exception of the Odyssey prototype most other systems either have not

been evaluated at all or have not gone through more than an exemplary evaluation that shows

that their approach may work (e.g., [93]). Noble et al. [132, 130] address two important ques¬

tions. First, how agile is the application (or system) in the face of changing network bandwidth?

Second, does adaptation provide any benefit to individual applications? Although seminal in

the methodology used, the evaluation exhibits room for improvements. E.g., quality metrics

are defined to establish that adaptation can provide benefits to the applications; however, these

metrics are not used by the adaptation process itself and thus appear to represent fairly arbitrary
choices. The evaluation does not try to establish which are the key factors that make adaptation

work successfully (e.g., is agility the only relevant factor?).

Application-network coupling. Hardly any related work addressed the importance of appli¬
cation-network interaction. Although Noble et al. have shown that the Odyssey system (with its

fixed strategy for bandwidth tracking) is agile enough (for the three applications considered),

many questions remain unanswered. E.g., how much agility is actually needed to make adapta¬
tion perform reasonably? What impact on performance has to be witnessed if the system is less

agile or if the bandwidth estimates are less accurate?

Ease of development/deployment. Proxy-based solutions can be deployed most easily, fol¬

lowed by sender-based approaches. Application-level adaptation is to be preferred to approaches

requiring cooperation from the operating system, unless changes to the system have a very lim¬

ited scope, e.g., only affect a single server. Issues relating to the development of network-aware

applications will be treated in the following sections.

2.4 Reuse

As we have seen in the discussion above, network-aware applications that can cope with hetero¬

geneity and fluctuating bandwidth are fairly complex software systems. Mastering complexity
in software construction has been notoriously difficult. Once mastered successfully, one would

like to reuse the software architectures, designs and source code (to speed up development of

similar applications for instance). However, as experience shows, reuse does not simply hap¬

pen, systems must be designed for reuse. This section first briefly mentions some common

reuse techniques, then discusses related work where such techniques have been applied to en¬

able reuse of (parts of) network-aware applications.
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2.4.1 Reuse techniques

Various researchers and practitioners have embraced the paradigm of object-oriented design
and implementation to achieve modularity and to increase software reuse [78, 155]. There are

many techniques (or concepts) that foster software reuse: subroutine libraries, toolkits, design

patterns [65], frameworks [86], or components [180] to name a few. We briefly describe those

techniques that have been applied to the construction of network-aware applications, omitting
subroutine libraries.

Toolkits. A toolkit is a set of related and reusable classes designed to provide useful, general-

purpose functionality [65]. Generic class libraries for basic data structures such as linked lists,

stacks, queues, heaps, etc. provide an example of a toolkit [175]. The C++ I/O stream library

is another example. Toolkits don't impose a particular design on the application; they provide

building blocks upon which an application can be constructed (much like a subroutine library

does). Therefore, toolkits emphasize code reuse.

Frameworks. A framework is an abstract design for a particular kind of application, and

usually consists of a number of cooperating classes [86]. The abstract design provided by the

framework can be customized to form a particular application. Customization is often achieved

by creating application-specific subclasses of abstract classes from the framework. In contrast

to toolkits, frameworks dictate the architecture of the applications derived from them [65] and

define the flow of execution [181]. A framework captures the design decisions that are com¬

mon to its application domain. Frameworks thus emphasize design reuse over code reuse. A

distinguishing feature of this sort of reuse is that it leads to an inversion of control between

application and the software on which it is based [181]: Applications call toolkits (or libraries).

A framework calls the application, that is, the application-specific code. Usually, two types of

frameworks are distinguished [86]: white-box and black-box frameworks. A white-box frame¬

work is a framework in which components are reused mostly by inheritance. Black-box frame¬

works achieve reuse of components by composition. An example of a white-box framework

for the construction of an optimizing compiler is described by Adl-Tabatabai et al. [1]. The

protocol framework implemented by Hiini et al. [76] is an example of a black-box framework.

Libraries and toolkits are often more widely applicable than frameworks and thus allow for

more flexible reuse. Frameworks are usually very specific to a particular application domain,

because they dictate the flow of control for applications derived from the framework. On the

other hand, carefully crafted frameworks allow for much more powerful—since design-level—
reuse and have therefore a higher potential to increase productivity. The applications derived

from a framework have similar structures since they share the same flow of control. As a result,

they are easier to maintain and appear more consistent to their users, that is, to application

developers. The flip side of a framework-based approach to the development of software is the

difficulty to design good frameworks and the often high learning efforts required to apply them.
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2.4.2 Reuse in network-aware systems

Libraries

Odyssey. Odyssey [132] provides system support for network-aware applications and is im¬

plemented in the NetBSD operating system. Odyssey's functionality is provided by extensions

to the operating system application programming interface (API). The API extensions are con¬

tained in a library that can be linked with the application. Each of the three applications built on

top of the Odyssey API [130] has a different application structure, although at least the video

player and web browser exhibit enough common traits that would allow for a more sophisticated

type of reuse.

Toolkits

Software Feedback Toolkit. Cen [30] developed a toolkit for software feedback systems.

This toolkit applies linear control systems theory directly to the creation of software feedback

systems, which are inherently non-linear. The technique involves decomposing the entire range

over which a system must adapt into smaller sub-ranges, within which a well-behaved, linear

control system is valid. If the system crosses the boundary between two sub-ranges, the system

provides a form of meta-adaptation that switches to a different control system that is valid for

the new range. Within the linear portions, formal analysis can be used to prove certain properties
of the system. Using the toolkit, adaptive systems can be built hierarchically using a number of

basic feedback components, such as low-pass filters, hysteresis-based switches, multiplexors,
and so on. The work of Cen demonstrates the applicability of the toolkit with examples from

the realm of adaptive multimedia systems. In [31], Cen et al. describes an audio/video-player
based on multiple smaller scale feedback systems: a packet-rate control based on packet-loss

and latency feedback, a flow and congestion control system for Internet media streaming, and a

control system used for audio/video synchronization.

MASH. Merging "best practices" from three multimedia toolkits (MIT's VuSystem [73], LBL

and UCB's MBone tools vat [81] and vie [112], and Berkeley's continuous media toolkit [169]),

McCanne et al. [110] describe a programming infrastructure that facilitates the construction of

networked continuous media applications. The programming infrastructure, called MASH, pro¬

motes reuse at three levels. First, it describes a "system architecture" that models a continuous

media stream as a collection of source, filter and sink objects. A media stream is generated

by a source object and is piped through one or more filter objects before it reaches the sink

object where it is consumed. Second, MASH is a toolkit containing a variety of source, filter

and sink objects. Sources might be video capture devices, filters might be color space convert¬

ers, compressors, packetizers, etc., and sink objects might be network transmission protocols

(e.g., RLM [113]) or playout devices. Third, a programming model based on so-called "split

objects" forms the core of the MASH toolkit. A split object is an abstract entity whose methods

can be implemented either in C++ or in an object-oriented extension of the scripting language
Tel [135] called OTcl [196]. Method calls can be invoked from either side (C++ or OTcl)

and are dispatched to the appropriate implementation. If efficiency is of outmost importance
methods should be implemented in C++. If flexibility (e.g., to support rapid prototyping) is the
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major concern, methods are preferably implemented in OTcl. The source, filter and sink objects
mentioned above are all based on this programming model. By means of composition, these

tools can be assembled to build applications or to provide higher levels of abstraction for the

developer. McCanne et al. [110] claim that the split object approach at developing networked

software promotes easy and flexible code reuse.

Frameworks

TACC. Infrastructural proxies must be scalable to large number of users and must be highly

available. To provide a general solution that meets the challenges of scalability and availabil¬

ity, Fox et al. [61, 57] introduce a programming model for Internet services (TACC). TACC is

based on transformation (distillation, filtering, format conversion, etc.), aggregation (collect¬

ing and collating data from various sources, as search engines do), caching (both original and

transformed content), and customization (maintenance of a per-user preferences database that

allows transformation "workers" to tailor their output to the user's needs or device characteris¬

tics). The cluster-based TACC server architecture described in [61] serves as a framework for

building adaptive network services. The developers of new services can use this framework as

an off-the-shelf solution to scalability, high availability, and fault tolerance, and can thus fo¬

cus on the content of the service being developed. The developer of a proxy that must support

transcoding for a new media type, for example, must merely devise an appropriate transcoding
module (or worker) and register it with the TACC-framework. TransSend [58, 60], a Web ac¬

celerator using dynamic distillation, is a sample instantiation of the TACC-framework.

Resuming the discussion of toolkits and frameworks, we find the pros of both approaches
confirmed by the related work cited above. The two toolkits (as well as the Odyssey library)
allow for very flexible reuse. Many diverse applications can benefit from reuse. On the other

hand, using the TACC-framework relieves the developer of a new application of the burden to

bother with how to structure it. Considering the challenges for network-aware content delivery
identified (Chapter 1), we expect adaptive applications addressing all the issues of quality- and

system-awareness to be highly dynamic and complex software systems. The core adaptation

process must take many parameters into account (e.g., network and end-system resource avail¬

ability, application resource demands, quality expectations, etc.) to make suitable adaptation
decisions and will therefore exhibit a highly non-trivial control flow. Compared to toolkit-

based software development, a framework-based approach is better suited to shield developers
from both the structural and run-time complexity of a system addressing the aforementioned

challenges, mainly because it allows for reuse of the control flow, that is, the entire adaptation

process.

2.5 Summary

This chapter discusses three approaches that could be used to provide a service model for

networked applications that allows to achieve predictable response times while maximizing
the "value" of the data delivered to the user. First, greedy—since unresponsive, and non-

congestion-controlled—transmission of data encoded according to the principles of application
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level framing can have a disastrous impact on Internet stability and is therefore not a viable

option for such applications. (Furthermore, greedy data transmission is not a viable option be¬

cause routers will be able to isolate and "punish" such non-conforming applications in the near

future [53].) Second, exploiting the reservation-capabilities of an integrated services packet net¬

work is an attractive approach that can simplify application development. However, reservations

do not solve all the problems, as an application may be required to adjust its resource demands

to meet a granted reservation. Therefore, we conclude that adaptation—the third approach—is

an attractive and often necessary means to achieve the objectives of timely content delivery.
The discussion of related research on network-aware content delivery reveals that the five

challenges listed in Chapter 1 (quality-awareness, system-awareness, application dynamics,

application-network integration, and ease of deployment) have hardly been addressed so far.

To the best of our knowledge, there is no prior work which provides an integral approach that

tackles all the challenges. Some of the applications or systems described by previous work have

covered individual aspects. The classification of the different approaches to network-aware con¬

tent delivery prepares the ground for the design decisions explained in the next chapter.
Based on the review of commonly used techniques for software reuse and the discussion

of related work that applies these techniques to enable reuse of (parts of) network-aware appli¬

cations, we conclude that a framework-based approach to the development of network-aware

applications is best suited to meet the challenges put forth.
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Framework concepts

Application frameworks capture the design decisions that are common to their application do¬

main. This chapter first spans the application domain (Section 3.1) and details the service model

for network-aware applications that address the challenges listed in Chapter 1 (Sections 3.2

and 3.3). By drawing on the results of the discussion of related work in Chapter 2, this chapter
then describes implications of the service model and presents the concepts and design decisions

that form the basis of our framework-based approach to the development of network-aware

applications (Sections 3.4 and 3.5). The design decisions to be made include the choice of

the component of a network-aware application that is responsible for the adaptation decisions

(sender, receiver, or intermediary network nodes), and the structure of the framework.

3.1 Application domain

The application domain of our framework is characterized as follows: we focus on client-server

applications that allow users (clients) to request services from a remote site (server). The remote

site responds with the delivery of data that satisfies the user's request. We assume that the

response from the server contains a set of objects (text, images, video or audio sequences, byte

code, etc.), which are retrieved from secondary storage (e.g., by a file server) or computed on-

the-fly (e.g., by a search engine). In such applications, the response usually has a considerably

larger volume than the request and dominates the transmission costs. Hence, the response from

the server includes a bulk transfer across a best-effort network. As a direct consequence of the

discussion in Section 2.1, we assume that this bulk data is transferred from the server to the

client using a congestion-aware transport protocol such as TCP [176]. In the following, we

sometimes refer to server and client as sender and receiver (of the bulk-transfer).

This definition of the application domain is widely applicable and comprises a large and

important class of client-server applications currently deployed in the Internet. Many of these

applications can benefit from an enhanced service model that provides predictable response

times (see below). The discussion of concrete applications is deferred to Chapter 5.

Note that this definition of the application domain is restrictive and limits the applicability
(and reuse potential) of the framework. E.g., the definition excludes multi-party applications
that rely on multicast content dissemination and it limits the direct applicability of our frame¬

work to continuous media applications transferring delay-sensitive data. These restrictions are

27
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introduced because there already exists a significant body of related research that covers these

two areas (see Section 5.2.4 for a discussion).

3.2 Service model

Since the latency of congestion-controlled bulk transfers in a best-effort network may be highly

unpredictable, the service provided by such client-server applications can be enhanced by al¬

lowing the user to specify how long it is willing to wait for the delivery of the requested data.

The application should then strive for a predictable response time and should try to fully utilize

the time frame allotted (to maximize the quality of the data delivered). The minimal set of

(user) interactions with such an application (and hence the service model to be supported by the

framework) can be described as follows.

User-requests must comprise three parts: (i) a set of objects to be retrieved (or computed),

(ii) quality restrictions on the objects, and (iii) a limit T on the response time. The set of objects

can be either explicitly or implicitly specified by the user. For example, if the user requests

a (compound) document that consists of multiple objects, the in-lined objects are implicitly

requested. The quality restrictions characterize the minimum quality of the objects delivered

that is tolerable and the maximum quality that is beneficial for the user. The upper bound on

quality may be imposed by the requester's processing or display capabilities. Thus, the quality
restrictions may also be implicitly specified, e.g., by the type of the client device. Lower bounds

specify the minimal quality an object may have and still be useful to the user. Note, that (some

of) these bounds may also be unspecified, in which case application defaults apply.
The goal of the framework, and hence the service provided by applications built thereon, is

to deliver the requested objects to the user within the time frame allotted. For this purpose, the

application may adapt, that is reduce, the quality of the objects transferred to the client. The

range for quality adaptation is bounded by the quality restrictions on the objects. If the objects
must be adapted to meet the goal on the response time, the adaptation must happen such that

the overall quality of the entire response is maximized (the term "overall quality" is defined in

the following section).

3.3 Quality

Central to the service model is the definition of the term quality. The notion of quality is clearly
user- and application-specific. Only the application (developer) knows what quality is. So the

central issue is that we must find a software structure that allows the application developer to

specify what quality means in the context of a specific application. In the context of the service

model outlined, two general aspects can be identified that characterize the overall quality of a

response: (i) the quality of an individual object, and (ii) the importance of an object within its

context, that is, the relevance of the object.

Object quality. How to grasp the concept of object quality? To prepare the grounds for a

quality-aware decision making by network-aware applications, we must be able to compare the

quality of two objects (or two versions of the same object) and to quantify the difference in
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quality. The term quality should capture the data's "usefulness" or "value" to an end-user. The

quality of an object may have many datatype-specific attributes. E.g., the quality of an image
could depend on the resolution, color depth, level of compression, and so on. As a consequence,

the value of an object may be effected by a number of datatype-specific factors whose contri¬

butions to the value depend on the application context. To be useful in a general setting of a

framework for network-aware applications the abstractions for object quality must be flexible

enough to be applicable to many data types and application contexts. We use utility functions

to quantify an object's value (or utility) to the end-user1. Utility functions are (multivariate)

functions that map the potentially multiple dimensions of quality into a single real number in

the range [0,1]. A utility of 0 means that an object has no value to the user. A utility of 1

implies maximal value. Utility functions provide a flexible abstraction to characterize qual¬

ity. They allow to quantify object quality with a single number, which can be easily used by

generic, application-independent adaptation strategies. In step with the registration of the data¬

types handled, the application can define appropriate utility functions for each of the data-types

supported2.

Importance of an object. How to characterize the importance of an object within its con¬

text? Again, this is highly application- and user-dependent. While the definition of object

quality typically depends on the data-type, the definition of importance is very content- and

context-dependent. (E.g., advertisements in a Web page may have low relevance, while other

images may be more important to a user.) Again, for reasons of flexibility, we characterize the

importance of an object within its context by means of a single number, which we will call the

relevance score.

A definition for the overall quality of a response follows quite naturally using utility func¬

tions to characterize the quality of individual objects and relevance scores to define the impor¬
tance of an object relative to its context. We define the overall quality of a response as the

weighted sum of the individual object qualities, that is, as the weighted sum of the utility values

for each of the objects. The weights for the objects are given by the relevance scores.

3.4 Implications of the service model

The service model calls for two types of adaptation: adaptation to client heterogeneity and

adaptation to network variability.

First, the bounds on the minimum quality tolerable by and the maximum quality beneficial

to the client require the application to adapt to client capabilities. Otherwise, precious network

resources may be wasted. If an object is delivered in a quality lower than the minimum quality,

1
Utility functions are a widely used concept to quantify the value or outcome of a complex situation, decision,

etc. Utility functions have been used by other researchers in the network community, e.g., by Breslau et al. [24]

(see Section 2.2). Utility functions are very popular in the economic literature on the topic of risk management and

decision making. Utility theory [120] provides the mathematical foundations for utility-based decision making.
2An alternative approach to characterize the value of an object is to use an application-independent, e.g.,

information-theoretic measure, of the content delivered. Mohan et al. [124] follow such an approach in their

InfoPyramid system (see Section 2.3.3). Their approach is based on the rate-distortion theory by Shannon [164].
While elegant because of their application-independence, such approaches at quantifying the value of content may

not always correspond with user perception [124].
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utility for the user is zero and the object is transmitted in vain. Likewise, if the maximum

quality is exceeded (e.g., if an image is sent in a higher resolution than supported by the client's

display), bandwidth is wasted without a gain in utility.

Second, the goal of maximizing quality dictates that the application must account for both

network heterogeneity and bandwidth volatility. Adapting to bandwidth fluctuations means that

the application need not only dynamically adapt to decreasing bandwidth (by reducing qual¬

ity), but should also try to opportunistically exploit extra bandwidth (by "revoking" previous

adaptation decisions) to deliver as many high quality objects as possible within time T.

As a consequence, network-aware applications adhering to the service model above must

address the following two questions: (i) how to find out about (dynamic changes in) the band¬

width available on the path from the sender to the receiver, and (ii) how to adapt the delivery

process (to such dynamic changes) such that the objectives of the service model are met. For

the sake of brevity we refer to these two tasks as (i) "resource discovery", and (ii) "adaptation"
in this chapter.

This section discusses implications of the service model for the design of network-aware

applications. The design decisions arejustified by drawing on the results of the previous chapter.

According to our classification of related work (Section 2.3), there are two important design
decisions to be made for network-aware applications. First, which party in a networked appli¬
cation is responsible for (i.e. initiates) the adaptation: the sender, the receiver, or intermediary
nodes in the network (e.g., proxies)? This question is addressed in Section 3.4.2. Second, which

entity in the adaptive application is responsible for resource discovery and making the adapta¬

tion decisions: the operating system, the application, both, or the user? Section 3.4.3 answers

this question.

Furthermore, design decisions must be made as to how to structure a network-aware appli¬
cation that provides a service such as defined in Section 3.2. There are three issues pertaining
to the problem of structuring such network-aware applications: how to layer the functional¬

ity (adaptation and resource discovery) within the application, how to divide the functionality
of the adaptation process between application and framework, and finally how to structure the

adaptation process itself. These issues are treated in Sections 3.4.4, 3.4.5 and 3.5, respectively.

3.4.1 Model-based adaptation

Before we can turn to resolving the questions listed above, we must first study how the require¬
ments for quality-aware adaptation that are laid out in Sections 3.2 and 3.3 can be met. In other

words, we must study how such network-aware applications must adapt to meet their goals on

response time and quality.
Steenkiste [171] identifies three generic adaptation models for network-aware applications.

We briefly review the three models.

Performance-based adaptation. The application monitors its performance (e.g., its through¬

put) and controls adaptation based on these observations. The control parameters (e.g.,
the sending rate) are typically adjusted incrementally, because there is not enough in¬

formation available to calculate the parameters explicitly. By monitoring the application

performance (e.g., by observing how many packets are dropped), network performance
is obtained only implicitly. The main advantage of performance-based adaptation is its
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simplicity (for applications that have a simple definition of performance). The adapta¬
tion is robust, as it does not depend on accurate information about resource supply and

demand. The drawbacks are that such a scheme is purely reactive and that it allows only
for "one-way" adaptation. Such a scheme is reactive, because it merely reacts to service

degradations, but does not try to anticipate them. The adaptation is "one-way", because

degradation in network resource availability can be observed (and reacted to), but probing
is necessary to learn about a sudden abundance of network resources. Performance-based

adaptation is employed in TCP [176] and some of the video applications mentioned in

Section 2.3 [113, 152].

Feature-based adaptation. The application monitors some feature of the application and uses

that information to adapt. A "good" feature correlates with application performance.
This type of adaptation can be viewed as a generalization of performance-based adapta¬
tion (performance is a feature of an application). However, careful choice of the feature

helps eliminate some of the drawbacks of performance-based adaptation: feature-based

adaptation can be proactive and symmetric. That is, changes in resource availability may
be anticipated, and there is no need to probe for resource availability. TCP Vegas [22]

and the video application developed by Hemy et al. [72] serve as examples here.

Model-based adaptation. In contrast to the alternatives above, the application has a model of

its performance as a function of the various parameters characterizing its run-time envi-

ronment,e.g., network bandwidth, transcoding costs, and so on. Given information about

the run-time environment, the application uses the model to select the settings for the

control parameters that will give the best performance. The advantage of model-based

adaptation is that it can potentially quickly zoom in on the right control parameter values.

A disadvantage could be its robustness, as the adaptation may be sensitive to the accuracy

of network status information and the correctness of the model. Building an accurate

model may be difficult for complex applications. On the other hand, complex appli¬
cations cannot benefit from the simplicity of performance- or feature-based adaptation
either, because it is difficult to find an appropriate feature that correlates with application

performance. A sample application performing model-based adaptation is described by

Siegelletal. [168].

The question is, which ofthese adaptation models is best suited to the type of network-aware

applications specified by the service model? The service model dictates that the network-aware

application should strive for predictable response times and maximize quality of the objects
delivered within the user-specified time limit. Response time is an end-to-end metric. As such

it covers all aspects of the networked application which may effect the response time. E.g.,
the response time not only covers the time required to transfer a set of objects (images, text,

...) across the network, but also includes the time needed to compute, transcode, or retrieve the

objects. Thus, a first consequence of the service model is that the adaptation must be system-

aware (as well as network-aware) and must take at least the CPU resources into account that

are needed to make the quality-time tradeoff.

The service model further implies that application performance depends on two issues, the

application's ability to meet a time limit and its ability to maximize quality. Performance- and

feature-based adaptation are ill-suited to fulfill the goals of the service model for the following
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reasons. First, the complexity of the performance definition makes it difficult to find an ap¬

propriate application feature that correlates with performance. Second, even if such a feature

existed, it would be application-specific and thus hardly useful in the context of an application
framework. And most importantly, implicit knowledge about application performance (as ob¬

tained by observing an application feature) does not suffice to achieve an explicitly quantified

performance goal (that is, to meet a user-specified time limit). As a consequence, we employ
model-based adaptation.

3.4.2 Sender-initiated adaptation

We now address the question which party in a networked application is best suited to initiate

adaptation: the sender, the receiver, or a proxy? Reviewing the discussion of the three ap¬

proaches in Section 2.3.4, we find that a proxy-based solution exhibits severe deficiencies when

it comes to quality-aware adaptation. Limited to process one object at a time and lacking infor¬

mation about the context of a particular object, a proxy can often only make "local" decisions.

Therefore, proxies are ill-suited to perform an integral quality-time tradeoff. Moreover, for any

proxy-based solution the issue of where to place the proxy must be resolved. As automatic

placement and location of proxies remain an active area of research [6], proxies must typically
be configured statically.

There are three reasons that favor sender-initiated adaptation over receiver-initiated adap¬
tation. First, a sender-based scheme leaves the content provider in control about how content

should appear at the client (if he should decide to override the preferences stated by the user).

Second, in contrast to sender-initiated adaptation, receiver-initiated adaptation would call for

elaborate coordination with the peer (the server), which performs the necessary transcoding.

Third, since the response time metric calls for system-awareness, the (CPU) costs both for the

transcoding at the server and for the presentation at the client must be considered for adaptation
decisions. CPU resource availability at the client is likely to be more easily predictable than the

resource availability at the server [41]. As a result, the sender-initiated approach can more reli¬

ably make tradeoffs that incorporate client capabilities than a receiver-initiated scheme, which

would have to take server resource availability into account.

3.4.3 Application-level adaptation

As far as the question about the entity that controls adaptation is concerned, we opt for ap¬

plication-level adaptation. This decision is driven by the requirement that the network-aware

applications derived from our framework should be easily déployable, as well as by the ob¬

jective to find a compromise between quality-awareness and agility. First, the requirement for

ease of deployment precludes approaches that involve the (operating) system in the adaptation

process and hence require modifications to the system. Second, quality-awareness would ide¬

ally be achieved by user-level adaptation. However, a user-based approach would come at the

cost of agility, that is, the application's ability to react swiftly to changes in the network (see
Section 2.3.4). Therefore, application-level adaptation represents a reasonable tradeoff between

these two conflicting issues.
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3.4.4 Application layering

As we have settled on sender-initiated, application-level adaptation, we are now left with the

question of how to layer the functionality within the sending application. As stated above,

network-aware applications must tackle two problems: (i) network resource discovery, and (ii)

adaptation. We separate the treatment (and the implementation) of these two issues for the

following reasons. First, although adaptation depends on the information about network status,

the two issues can be considered to be orthogonal. Second, both on-line network resource

discovery and dynamic network adaptation are complex tasks. Thus, a split of mechanisms for

adaptation and mechanisms for network resource tracking helps reduce software complexity.
Third and most importantly, solutions to the two problems exhibit considerably different reuse

potentials. The adaptation mechanisms are tightly coupled with the service model and are

therefore useful only for applications from the application domain sketched above. On the

other hand, mechanisms for network resource discovery/tracking are useful in a much broader

scope. As a consequence, the issue (ii)—how to adapt the delivery process—is captured by a

framework which is described and evaluated in Chapters 4-6. Solutions to the issue (i)—how

to find out about dynamic changes in available bandwidth—are provided in a toolkit, which is

detailed in Chapters 7-9.

3.4.5 Framework versus application functionality

The question that we address next is: what parts of the functionality of network-aware adap¬

tation can be captured in a reusable framework, and what remains to be done by applications

derived from the framework?

The answer to this question follows quite naturally from the definition of the service model

in Section 3.2. Clearly, the application (developer) must specify the kind of objects (i.e., the

data types) that can be requested/handled. The application must also define its notion of quality,
that is, how to interpret and quantify the quality of a response (Section 3.3). And finally, only
the application developer knows which options for quality reductions should be supported (and

these options typically are different for each data type).

The framework must then provide application-independent adaptation mechanisms that aim

at providing predictable response times while maximizing the quality of the objects delivered.

The adaptation mechanisms captured in the framework are detailed in the following chapters.
Note that client functionality (user interaction, caching, server selection, etc.) could also be

divided into application-dependent and application-independent components. However, as our

focus lies on adaptation mechanisms and their dynamics, we do not consider client issues in the

design of our framework and leave it to the application developer to provide the corresponding
client functionality. We also leave it to the application developer to provide the user with addi¬

tional flexibility to interact with the framework, e.g., to define and change the notion of quality
at run-time as proposed in [116,45].

3.4.6 Application structure

The definition of the service model and our findings from the discussion of related work entail a

number of implications for structuring network-aware applications which we briefly summarize
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Figure 3.1: Application structure for sender-initiated, application-level adaptation.

here. Figure 3.1 schematically depicts the chosen structuring of network-aware applications

adhering to the service model defined in Section 3.2. The figure illustrates and summarizes the

four design decisions adopted in this section: first, we concluded that for reasons of quality-
and system-awareness adaptation should be sender-initiated. Second, application-level adap¬
tation facilitates deployment and represents a good tradeoff between agility and user control.

Third, complexity arguments and the reuse potential lead us to separate adaptation mecha¬

nisms from mechanisms for network resource discovery and monitoring. Finally, the adap¬
tation mechanisms are captured in the framework to be detailed in the following. Three aspects
of application-specific functionality are factored out of the framework: the data types handled

by the application, the algorithms applicable to achieve quality reductions for a particular type,
and the application's notion of quality.

3.5 Framework structure: Feedback control loop

The framework essentially captures the adaptation process, thus, to come up with a design for

our framework, we must first reason about suitable structures for the adaptation process. A

useful structure for network-aware applications using request-response type communication is

a software feedback control loop [30, 17], where the time left for the response—initially set

to T—constitutes the command variable of the closed-loop control. The feedback driving the

sender adaptation comprises information about the currently available bandwidth as obtained

by mechanisms discussed in Chapter 7.

We model sender-initiated adaptation in a closed-loop control system with the three phases
adapt (Padapt), prepare (Pprep), and transmit {Ptrans), as depicted in Figure 3.2. The three phases
share the list of requested but not yet transmitted objects. Padapt is responsible for obtaining
information about the available bandwidth, determining whether the amount of data to transmit

must be reduced or whether it may be increased. In case adaptation is needed, Padapt must

decide which objects to adapt, and which transformations to apply. The term "transformation"

refers here to any activity including transcoding, conversion, or computation. For each object,
these decisions are recorded in a so-called quality state that is attributed with each of the objects
in the request list. Once a (final) decision on the quality of an object to be delivered has been

made, Pprep must carry out the transformation of the object to the quality that has been assigned
by Padapt and which is reflected by the object's quality state. Ptrans delivers completely prepared
objects to the client. The three phases are executed repeatedly. To keep the overhead incurred by
transformations as small as possible, Padapt does not invoke the transformations directly (after
an adaptation decision has been made), but defers their execution to forthcoming phases Pprep to



3.6. SUMMARY

application (sender)

control loop (framework)

list of

request reception requested
"

objects
- connection handling

request parsing

object (re-) ordering

r
adaP'(Padapt)

- monitor/poll bandwidth

- react to changes in

bandwidth by object

quality adaptation

prepare (Pprep)

transform available

version of object to

desired object quality

transmit (Ptrans)

Figure 3.2: The control loop, which is deployed at the sender, consists of three phases adapt (Padapt),

prepare (Pprep), and transmit (Ptrans).

allow for "last-minute" adaptation. While PadaPt may need to change the quality state of several

objects at the same time, Pprep makes only one object ready for transmission at a time, that is,

in one iteration of the control loop.

An important concern that must be considered when designing a feedback control system is

the issue of potential instabilities. A control system is said to be instable if its response to an

impulse (e.g., a change in the network environment) does not lead to a constant behavior as time

approaches infinity, that is, if the system's response variable oscillates indefinitely. Section 4.5

describes how the concern of potential instabilities in the adaptation behavior is respected in

our framework. The evaluation of a sample application derived from the framework shows

that sender-initiated, model-based adaptation is robust with respect to most of the parameters

that influence adaptation decisions (see Chapter 6). In other words, the evaluation shows that

adaptation produces stable results regardless of how the factors influencing adaptation decisions

are varied.

3.6 Summary

The chapter sketches the application domain and describes the service model for the type of

applications supported by our framework-based approach to the development of network-aware

applications. The definition of the application domain is widely applicable and comprises a

large and important class of client-server applications currently deployed in the Internet. The

service model dictates that applications adhering to the service model must attempt to deliver

the requested data within a user-specified time frame andmust try to maximize the quality ofthe

content delivered. The chapter introduces abstractions to characterize the quality of a response.

The definition of quality takes the quality of individual objects as well as the relative importance
of the objects within a request into account.

Merging the findings from related work with the implications of the service model, we ar¬

rived at the following design decisions, which take the requirements stated in Chapter 1 into

consideration. First, adaptation decisions should be made at the application-level to ease de-
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ployment of network-aware applications. Second, the sender should be in charge to make the

adaptation decisions. Sender-initiated adaptation supports an integral approach to service qual¬

ity. Third, model-based adaptation is well suited to meet a quantitative performance target, such

as a predictable response time, because it accounts both for network and end-system resource

availability when making adaptation decisions.

To reduce complexity of the software system, we separate the adaptation functionality from

the mechanisms to discover and monitor bandwidth availability. The adaptation mechanisms are

captured in the framework, while the mechanisms for network resource discovery are provided

by a toolkit. Finally, the chapter proposes to structure the adaptation mechanisms as a software

feedback control loop consisting of three phases adapt, prepare and transmit.



Chapter 4

Feedback loop and adaptation

4.1 Overview

As stated in the previous sections, the goal of a network-aware sender is to meet a user-specified
bound on the delivery time by adapting the quality of the objects delivered to the available net¬

work capacity. Thereby, the objective of the adaptation process must be to utilize the available

resources as efficiently as possible and therefore to maximize the user-perceived quality within

the bounds (time, bandwidth, and boundary conditions on quality) given.

This chapter describes the implementation of the application framework that provides a so¬

lution to one of the two problems network-aware applications are faced with, the problem of

finding out when and how to adapt. The discussion of these two issues proceeds top-down:
Sections 4.2 and 4.3 introduce the basic ideas of when and how to adapt, respectively. Sec¬

tion 4.4 describes the response time model which is used to determine when to adapt, and

Section 4.5 details the decision-making process and answers the question how to adapt. While

Sections 4.2^1.5 describe the framework dynamics and point out where and how application-

specific information can (and must) be factored out of the software control system to provide a

reusable framework, Section 4.6 describes the static structure of the framework. Sections 4.7

and 4.8 discuss adaptation inherent problems such as start-up and agility. Section 4.9 briefly
touches additional adaptation-related issues and summarizes the chapter. Abbreviations that are

frequently used in the following chapters are listed in Table 4.1.

The adapt phase (Padapt) is the key phase in the framework. It is repeatedly invoked and is

responsible for the following tasks. First, it must obtain feedback about network status. Second,

based on this information it must decide whether quality adaptation of the objects to be delivered

is required or not. And third, if adaptation is required, Padapt must decide how to adapt. The

first two tasks are addressed in the following section. The third task is detailed in Section 4.3.

4.2 When to adapt?

There are two alternatives to obtain feedback about "relevant" changes in network service qual¬

ity. First, Padapt can poll information about network status and then decide about the relevance

of a change in bandwidth. Second, Padapt can determine the tolerance window for network re¬

source availability (within which no adaptation is required) and register with the monitor layer

37
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tadapt

fprep

"irans

adapt phase

prepare phase

transmit phase

T

tieft

cprep

tprep

Hrans

tneeded

ldiff

dleft

user specified time limit for response delivery

time left to deliver response, initialized to T

CPU resources needed to prepare objects for transmission

time needed to prepare objects

time needed to transmit objects (given bw(t))
time needed to deliver response (given ttram, tprep)
error variable of control loop (tneeded - tuft)
data remaining to be transmitted

bw(t)
load(t)

estimate of bandwidth available in [now, now +1]
estimate of system load in [now, now +1]

Table 4.1 : Abbreviations used in this chapter.

for asynchronous notification if service quality strays out of the tolerance window. (The second

approach has been taken by Noble et al. [ 132], for example.) Whether a change is relevant or not

may depend on a number of (interdependent) factors in addition to network resource availabil¬

ity (see Section 4.4). Since the factors may be interdependent, it is difficult to find meaningful

tolerance windows for each of the factors individually. Thus, we are pursuing a polling-based

approach for the sake of simplicity. The mechanisms employed for network resource discovery

are discussed in Chapters 7-9.

Two issues must be addressed to decide whether adaptation is required or not. First, what

are the information requirements for the decision? Second, which changes in the application's

run-time environment are significant enough to call for adaptation?

Since the response time is the primary "optimization" goal, Padapt must try to estimate how

much time it would take to transfer the (remaining) objects in the request list to the client if each

of the objects is shipped "as is". For the purpose of estimating the time needed (tneeded) for the

transfer, Padapt must establish the amount of data remaining to be transmitted (dieft), and must

have an estimate on how much bandwidth will be available on the path from the server to the

client. We assume that Padapt can request (from lower layers) estimates, or rather predictions,

bw(t) of the bandwidth available in the time interval between now and time t in the future1. d\eft
is the sum of the object sizes di of all the objects i which have not yet been delivered. For objects
i that are retrieved from secondary storage, di is readily available. The size of objects that must

be computed on-the-fly, or that must be transcoded (e.g., to meet client capabilities) may not

be as easily obtainable. For such objects, di must be computed by translating the application-
level quality metrics (e.g., resolution, color depth, etc. for image objects) to the storage space

required to hold an object of equivalent quality. This translation is application-specific and must

therefore be factored out of the framework. The application must provide a translation function

data : Quality —t N for each class of objects supported.

Given d\ep and a function bw(t), we can compute tneeded by integrating (i.e. by summing up

1
Inaccurate predictions may lead to suboptimal adaptation decisions, however, the repetitive nature of the

control loop often allows to take corrective action as discussed at the end of Section 4.2.
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piecewise continuous parts of) the function bw(t) over time t until an area (i.e. data volume) is

covered which matches d[eft. tneeded represents the time needed to transfer d[eft given bandwidth

bw(t). In a best-effort network the available bandwidth can hardly be predicted at the minute

level of detail suggested by the function bw(t). Thus, approximations are required. We assume

that Padapt obtains estimates of the average available bandwidth over a time frame [now, now+1]
(referred to by bw(t))2. If t\eft exceeds the time for which the predictor can reliably predict

bw(t), we make the simplifying assumption that the bandwidth is constant beyond that point.

Corrective action must be taken if tneeded and the time left to deliver the response, tieft, differ

significantly. Significance depends on a number of factors, among others the size of the objects

and the granularity of the quality adaptation possible. If the requested objects are large and if

the granularity of adaptation is coarse, that is, if there are only a limited number of transcod¬

ing options, then the smallest delta in quality and hence data volume that can be achieved by

adaptation is quite large. Thus, t[eft and tneeded must differ substantially so that corrective action

can be taken. The converse is true if objects are small and/or adaptation granularity is fine.

For a more detailed discussion of agility aspects, see Section 4.8. To simplify the concept of

"significance" we use an application-specified threshold e to trigger adaptation (Section 4.5).

Note that Padapt needs to estimate bandwidth bw(t) only for the time needed to prepare and

transmit the next object to be able to satisfy the user's request within the time limit—the reason

is that the control loop gets an opportunity to take corrective action during the next iteration of

Padapt, if required. In case there are no such estimates, the bandwidth estimates are inaccurate,

or if the application is not agile enough, that is, if transmission of the next object takes longer
than the system can reliably predict bw(t), the situation is slightly more complicated. Either the

control loop gets a chance to take corrective action (because the time limit did not expire), or

the data cannot be sent in the allotted time. In the latter case, the application must be able to

deal with the breakdown of the service model (Section 4.9).

4.3 How to adapt?

The goal of Padapt is to bring tneeded in line with tieft by either reducing or increasing the quality
of the objects remaining to be delivered3; these actions thereby reduce or increase d\eft. The

following questions must be considered while the sender tries to compensate for the difference

tdiff = tieft — tneeded by adapting the quality of the data awaiting delivery:

Victim choice. Which object(s) should be chosen for adaptation?

Quality distribution. How should the amount of quality adaptation be distributed among the

chosen objects? How to find the amount of quality adaptation needed given the volume

of data adaptation required (ddi/f = tdiff • bw(t))l

Algorithm selection. Which transformations should be used to accomplish a desired adapta¬
tion?

2In addition, some bandwidth predictors may provide confidence intervals [bwmin(t),bwmax{f]\ for the average

bandwidth. Section 4.9 discusses how such information can be used to make more robust adaptation decisions.

3Recall, that Padapt works on a so-called quality state defined for each object in the request list. Increasing the

quality of an object means that previously assigned quality reductions, reflected in the current quality state, are

undone.
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These questions are application-specific, interdependent, and often ambiguous. They are

application-specific, e.g., because the application defines the transformations applicable; they

are interdependent, e.g., because the victim choice is influenced by the quality adaptations that

are possible. They are ambiguous in the sense that there are often several alternatives which can

achieve the quality-time tradeoff striven for. The service model dictates that the main objective

for the decision making must be to maximize the overall quality when reducing | tdiff I •
This

criterion helps to disambiguate different alternatives that are all able to meet the time limit.

Victim choice. If quality reduction is required, objects should be chosen that have a small im¬

pact on overall quality (but ideally achieve a high data reduction). Conversely, in case expansion
is needed, objects should be selected that achieve a high gain in overall quality (compared to the

increase in data incurred). The abstractions provided by the definition of quality (Section 3.3)

allow to tailor the victim choice to the application's specific needs, e.g., they let the application
select the objects that are the least relevant; choose the objects with the smallest contribution to

overall quality; or even pick objects randomly.

Quality distribution. Given a set of victims to be reduced (or expanded), ideally the indi¬

vidual objects are reduced in quality inversely proportional to their contribution to the overall

quality of the response. The problem is that two objectives at different levels must be satis¬

fied. On one hand, a balance of quality reduction must be achieved according to the relative

importance of the victims. On the other hand, a certain amount of data reduction must be ac¬

complished to match the available bandwidth and to meet the time limit. The main problem is

that the mapping from network to application quality measures is generally ambiguous (in con¬

trast to the application-to-network mapping performed to compute tneeded)- E.g., to effect a size

reduction of a factor a, images may typically be either scaled down by a factor a/oc, or reduced

in color depth by a factor a, compressed with an appropriate compression ratio that achieves

the same reduction, or transcoded by a suitable combination of the three transformations. Due

to this ambiguity and due to the difficulty of specifying quality in an application-independent
manner (see Section 3.3) there is no generic inverse function data'1 : N -> Quality that would

allow to efficiently carry out the quality distribution intended. A straightforward solution that

simply computes and compares the data and quality reduction for all the algorithms applicable
would be highly inefficient (Section 4.5.1).

Algorithm selection. The choice of the (transformation) algorithm to accomplish a given

quality adaptation (or to produce an object at a given level of quality) is closely related to the is¬

sue of how much quality adaptation is required for each victim. There is usually an application-

dependent choice as indicated above. The framework requires that the application specifies a

list of transformation algorithms for each type of objects supported. Each algorithm must pro¬

vide a list of parameter values applicable. In addition, the application must provide functions

that help the adaptation process estimate the data and quality reduction potential of an algorithm
on a per-object basis (see Sections 4.6 and 5.1.3).

The problem of making adaptation decisions is further complicated since (i) the adaptation

potential of an object (limited by the boundary conditions on min/max quality) must be taken
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into account, and (ii) the transformations applied on the objects consume host resources and

time. Therefore, the transformations indirectly influence tneeded- The issues related to decision

making are discussed in Section 4.5; issues related to (ii) are addressed in the following section.

4.4 Modeling response time

As indicated in Section 3.4.1, response time is an end-to-end metric and as such covers all

aspects of a network-aware application which may effect the response time. That section con¬

cluded that adaptation must be system-aware and that model-based adaptation is best suited to

meet the explicitly defined performance goal of a time limit. This section describes the perfor¬

mance model that lies at the heart of the framework's control loop.

4.4.1 System-awareness

There are a number of factors that effect the response time of network-aware content delivery.

First and foremost, the available bandwidth determines the transmission time (Section 4.2).

Second, quality adaptations, e.g., by means of transformations, consume processing power at

the sender and may take a non-negligible time to be completed. Third, decision making during

the adapt phases does not come for free either. Furthermore, presentation conversion (e.g.,

decoding) of the data delivered consumes CPU resources at the client.

Our performance model, which drives the adaptation process, must account for all the rele¬

vant factors for the following reasons: on one hand, quality reductions may result in the desired

reduction of transmission time. On the other hand, the adaptation overhead implies higher CPU

costs. Obviously, situations must be avoided where a reduction of object quality in an attempt

to reduce the error variable | tdiff I to zer0 incurs overheads, that is, prepare and adapt costs,

tprep + tadapt, that are higher than the gain in transmission time (i.e. tprep + tadaPt > tdiff)-
We exclude the decision making overheads (tadapt) and the costs for presentation conversion

at the client from our performance model for the following reasons. For the sake of simplicity
we assume tadapt to be small enough to be negligible compared to tprep and the transmission

delays (this assumption is validated in Chapter 6). If this were not the case, that is, if tadapt
consumed substantial amounts oftime, adaptation would be useless. Client-side overheads, e.g.,

for presentation conversion, are non-negligible, especially for resource poor mobile devices as

shown by Han [69]. These costs can be excluded from the model, because they can either be

entirely avoided or accounted for by making proper use of the flexibility provided by the service

model (see Section 4.9).

As a consequence, our performance model merely includes transmission and transcoding
costs (ttrans and tprep). Two issues remain to be resolved: how to compute tprepl, and how to

calculate the expected response time (tneeded)7 The second issue is discussed in Section 4.4.2.

To compute tprep the framework requires that each transformation algorithm algo registered4
provides a function prepare-costs(algo,obj,param) returning an estimate for the costs, cprep, in¬

curred by transforming object obj from its original quality state to the one currently assigned

4As will be detailled in Section 4.6 an application can register with the framework the transformation algorithms
to be used for each of the media types supported.
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Figure 4.1 : Interoperation of phases Padapt, Pprep and Ptrans f°r a request of three objects.

by the decision making algorithms (Section 4.5). The "target quality" is reflected by the trans¬

formation parameter param. cprep denotes the costs in terms of resources used, e.g., as given

by system and user CPU time on Unix systems. cprep is used to compute an estimate of the

effective tprep needed for a transformation by using an operating system dependent function

prepareJime(cprep, load(t)). load(t) denotes a prediction for the host's average computational

load in the interval [now, now +1]. Accurate prediction of host load is beyond the scope of this

dissertation. We refer to related work, e.g., by Dinda et al. [41, 42], for further information

on this topic. For Unix systems with best-effort scheduling, the time tprep needed to complete

a computation-intensive task that consumes cprep CPU time at a system load of load can be

approximated by cprep load{t).

4.4.2 Communication latency hiding

The performance model, which models the response time (tneeded) given t[rans and tprep depends
on how the phases Pprep and Ptrans interoperate. In a simple implementation of the software con¬

trol loop, the phases of the framework execute sequentially. In reaction to a bandwidth drop,

adaptation produces stable results if tprep + ttrans for the adapted objects is smaller than ttrans for

the original objects. However, sequential execution of the phases wastes bandwidth while the

host is busy preparing the next object for transmission and wastes CPU resources while trans¬

mitting objects over a slow end-to-end path. With a slow connection, the sender is almost con¬

stantly congestion-controlled, and there are ample CPU cycles. An improved implementation

of the control loop tries to keep Ptrans constantly sending and uses threaded prepare and transmit

phases to hide the latency of the object transformations. Communication latency hiding calls for

a different response time model: tneeded is approximated with / • tprep+max(ttrans, ( 1 — /) tprep),
where / denotes the fraction oftprep that is not available for latency hiding [179]. For the sake

of simplicity and because this is often a realistic situation for applications that are bottlenecked

by the network, we assume / = 0.

Figure 4.1 schematically depicts how the three phases PadaPt, Pprep and Ptrans interoperate.

Object i +1 is prepared/transcoded while object i is being transmitted. The two phases Pprep and

Ptrans synchronize before Padapt is invoked. Padapt operates exclusively. The (small) overheads

of the adapt phase are not hidden with communication because PadaPt must first decide what

data is to be transmitted and in which quality.
There are two additional aspects worth noting in Figure 4.1. First, adapt phases make adap¬

tation decisions based on all objects (and not just a single object) that await transmission by the
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Program 4.1: Function compute-tdiff (request,bw(t), load(t),tieft) returning t^ff.

dieft = ^ data(quality(obj))
objÇ.request

Urans — transmitJime(dieft,bw(t))

cprep = X preparejcosts(algorithm(obf), ob>j,param(obj))
objErequest

tPreP = prepareJime(cPrep,load(t))

tneeded = OverallJime(tprep,ttrans)

tdiff — tneeded Heft

time PadaPt is invoked.

Second, objects are prepared in sequential order, and Pprep is only started after both the

preceding Pprep and Ptrans phases have finished (e.g., in Figure 4.1, Pprep for objj is deferred

until Pprep for obj'2 and Ptrans for obj\ have finished and the adaptation decisions have been

revised). The rationale behind this procedure is that adaptation decisions should be deferred as

long as possible to minimize the risk of making wrong decisions, that is, decisions that incur

unnecessary transformation costs. A second reason for this choice of the phase schedule is that

it can be implemented easily. We note that such a simplistic phase schedule may be far from

optimal because unnecessary idle times may be incurred, during which no data is transmitted

(e.g., in Figure 4.1 after Ptrans of obJ2)- Clearly, more sophisticated scheduling schemes could

be devised that try to re-arrange the objects with the objective to minimize the communication

idle time.

4.4.3 Performance model

Program 4.1 summarizes the performance model that lies at the heart of the control loop's
model-based adaptation process (to be described in Section 4.5). The program outlines the

steps involved in computing the error variable tdiff that drives the adaptation process. The

function computeJdiffO takes the request, i.e. the list of objects not yet transmitted, the func¬

tions bw(t), load(t), and the time tieft remaining for the response delivery as arguments. bw(t)
and load(t) model future network and end-system resource availability, computeJdiffO em¬

ploys two application-specific functions that model the application's resource demands. data()
calculates an estimate of the size of an object at a given level of quality (see Section 4.2).

prepare„costs() produces estimates for the costs incurred to transcode an object from its orig¬
inal version to the quality specified (by the quality state). Both functions must be supplied by
applications that are built upon the framework (see Chapter 5).

Although the intrinsics of different inter-operation schemes and the various resource models

are outside the scope of the framework, the discussion in the previous sections emphasizes the

need for suitable abstractions. To allow for future refinements and extensions we encapsulate
the performance model for the response time by a set of functions, such as transmitJime(),

prepare-Costs(), prepareJime() and overall.time() that can be used to compute tneeded-
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Program 4.2: Pseudo code for function adapt (request, bw(t), load(t), tieft).

tdiff = computeJdiff(request, bw(t) ,load(t) ,t\eft)
try

if ( tdiff >£) then // prevent network overload

tdiff — reduce(request,bw(t),load(t),tieft) ;

elsif ( tdiff < —e ) then // prevent under-utilization

tdiff = expand(request, bw(t), load(t), f/e/f) ;

if ( \tdiff\>£ ) then

throw new NoAdaptationPossible ( ) ;

catch ( NoAdaptationPossible exception)
handle (exception); // application specific handler

end

4.5 Quality-aware decision making

The performance model captured by computeJdiff() is used by the function adaptQ, which

is sketched in Program 4.2, and is invoked repeatedly by PadaPt after obtaining new bandwidth

feedback bw(t). If tdiff strays out of the tolerance window, that is, if tdiff exceeds an application-
specific threshold 8, adaptation is required and the remaining objects in the request are subject
to the adaptation process described in the next sections. E reflects the user's (or application
developer's) tolerance on how much the response time can deviate from the time limit specified.
e helps to limit oscillations and hence potential instabilities in the adaptation process.

To accomplish the adaptation, the sender must address the three issues described in Sec¬

tion 4.3. Given the list of objects that must be transmitted, there are several possible approaches
to identify the victims, distribute the quality reduction, and select the transformation algorithms.
We discuss two such approaches in the following sections.

Independent of the concrete decision-making procedure is how the application deals with

situations where adaptation is not possible. E.g., if the adaptation potential of the objects in

the request is too small, then an application-specific exception handler is invoked that decides

how to deal with the situation (see Program 4.2). E.g., the handler could invoke a user-dialog
either to inform the user that the time limit cannot be respected or to renegotiate the time limit

(Section 4.9).

4.5.1 Generic solution

To avoid congestion and network under-utilization, the adaptation process should aim at finding
a combination of objects to adapt, and transformations to apply, such that | tdiff I is minimized

and the overall quality metric is maximized. Unfortunately, an exhaustive search for the global
minimum of | tdiff I in the whole solution space is not attractive, as we illustrate in the next

paragraphs.
Given a request consisting of N objects, given that an average of M transformation algo¬

rithms are applicable to adapt the quality of these objects, and given that each of these al¬

gorithms take an average of m different parameter values, there are n « £J=o Cf)m' possible
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Program 4.3: Pseudo code for function reduce(request, bw(t), load(t),t[eft).

victim = choose-victim(request) ;

do

state = savejstate(yictim) ;

do

reduction possible = reduce_victim(victim) ;

tdiff — computeJdiff(request, bw(t), load(t), t[eft) ;

while ( ( no reduction oftdiff achieved ) && ( quality reduction possible ) ) ;

if ( no reduction of tdiff achieved ) then

resetstate(victim, state) ;

fi

victim — choose-victim(request) ;

while ( ( 3 victim ) && ( tdiff > 0 ) ) ;

return tdtff,

transformations applicable to each of the N objects. If we assume that all the possible combina¬

tions fulfill the boundary conditions on object quality, there are approximately nN possibilities
to adapt the request to the currently available bandwidth. In each iteration of Padapt, the sender

must compute tdiff for each of the nN points in the solution space. For all the combinations

with | tdiff | < e the sender must compute the overall quality as the weighted sum of relevance

scores and utilities of the individual objects (Section 3.3) and choose the one with maximal

overall quality. This decision making algorithm is simple and able to produce well-founded

quality-aware decisions as it covers all of the issues listed in Section 4.3 in an integral approach.
However, the run-time complexity may be fairly (or even intractably) high.

As long as there is no additional information about the functions used to compute tdiff (e.g.,

gradients that may direct the search), or as long as the quality boundaries are not very restric¬

tive, the size of the solution space cannot be reduced, and hence the complexity is too high to

make this approach feasible in the general case. Therefore, we cannot base the framework's

adaptation mechanisms on a generic method that performs an exhaustive search, since we ex¬

pect the methods of the framework to provide a solution for all possible extensions. However,

we can provide the application with several strategies [65] for the adaptation process (one being
exhaustive search for example) and leave it to the application developer to decide on the most

appropriate strategy to use in the context of the application.

4.5.2 An approximative solution

If N or n are large, the sender must employ some approximations or introduce simplifications
in the adaptation process to reduce the complexity of the adaptation process. Otherwise, the

search is so expensive that the resource consumption of Padapt can no longer be neglected. High
decision making overheads render adaptation useless.

The idea that forms the basis of our approximative solution is that different transformation

algorithms are likely to have different impacts on the quality (or utility) of an object (but may
exhibit similar adaptation potentials). If the application (or the user) provides the framework
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Program 4.4: Pseudo code for function choosejvictim(request).

bestjnetric = -°°;

foreach ( obj G request ) do

state = savestate(obj) ;

i f ( reduce_victim(obj) ) then

\ize = data(quality(state)) — data(quality(obj)) ;

^utility — utility(quality(state)) — utility(quality(obj)) ;

metric = computejnetric(Asize,Autiiity) ;

i f ( metric > bestjnetric ) then

bestjnetric — metric ; victim — obj ;

end

end;

reset.state(obj, state) ;

od ; return victim ;

with a prioritized list of transformation algorithms (high priority implies low impact on utility),
then the adaptation process can approximate the search for a minimal | tdiff I by iteratively trying
to apply the possible transformation algorithms with their respective parameters with the objec¬
tive to find a local minimum that is within the tolerance. If one algorithm does not achieve the

desired result, the next algorithm is chosen. To resolve the issues mentioned in Section 4.3 the

adaptation phase proceeds along the steps outlined in Program 4.3, which exemplarily sketches

the reduceQ function invoked in Program 4.2; the expandQ function works similarily.
The function reduceQ in Program 4.3 repeatedly chooses a victim and tries to reduce the

quality of the chosen victim until tneeded is in line with t[eft, that is, until tdiff reaches zero.

The process of reducing the quality of a victim iteratively tries to find a state that achieves a

reduction of tdiff. Quality reductions of an object are only commited, that is, the quality state of

the object is only changed, if it results in a reduction of tdiff. This procedure has been chosen

to prune the solution space and to avoid situations where the transcoding costs (tprep) exceed

the transmission costs (ttrans) for the particular object. The function reduceQ relies on two

important auxiliary functions. First, the function choose.victim(request) is responsible to find

a victim for quality reductions that satisfies the requirement of having a low impact on overall

utility of the response. Second, the function reduce-victim(object) is responsible for quality
reduction of an individual object. Quality reductions on an object are achieved "stepwise", that

is, by repeatedly invoking the function reduce.victim(object).
Program 4.4 illustrates the function choose.victimÇ) which identifies among the objects that

are requested but not yet delivered an ideal candidate for quality reductions. Whether the quality
of an object should be reduced depends on the utility of the object to the user and on the size re¬

duction achievable. To get an estimate of the impact on the metrics response time and utility that

a quality reduction of a particular object may have, we fictitiously carry out the "next" reduction

step for this object and compute the difference in utility (Autuity) and size (Asize). To accomplish
a single reduction step the function reduce.victimQ is employed (see below). The metric that

steers the choice of a victim is caclulated by the function compute_jnetric(Asize,Amiity). This

function allows for several interpretations (or victim selection strategies [65]) that can be chosen
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Program 4.5: Pseudo code for function reduce.victim(obj).

foreach ( algo 6 applicablejalgorithms(type(obj)) ) while ( no reduction achieved ) do

if ( is.reducible(obj,algo) ) then

paramJter = transform.param(algo, original (obj), current(obj)) ;

advance(paramJter) ;

target.quality = target.quality(algo, original(obj), paramJter) ;

if ( minimum.quality < target.quality ) then

setJState(obj, target-quality) ;

// how to transcode? costs? size?

find-versionjnatch(obj, target.quality, version-cache) ;

if ( no matching version found in cache ) then

find "best" base version and algorithm sequence (algo.chain)

that transcodes the base version into targeted quality state;

"best" = version/algO-chain that incurs smallest costs

end // otherwise, no costs incurred

end

end

end ; return reduction achieved ;

by the application developer. E.g., the object with the lowest impact on utility can be chosen

(min0bjerequest(Autiiity)), or an object with low impact on utility but high potential for size re¬

duction can be selected (e.g., minobjerequest(Aut,iity/ASiZe)), etc.

Program 4.5 sketches how an individual object is reduced in quality. As mentioned above,

the problem of ambiguity in selecting an appropriate transformation algorithm for a particular

quality reduction is resolved by the priorization of the transformation algorithms applicable
to the object at hand. The algorithms are applied in the order specified by the application

(developer). If the object is reducible with respect to the selected transformation algorithm

(is.reducible()), the parameter level that transcodes the object from its original version to its

currently assigned quality state is looked up. The next reduction step is produced by advancing
in the list of applicable parameters for the transformation at hand. If the resulting target quality
does not violate the restrictions on minimum quality, the new object quality can be assigned.

Then, the algorithm sequence that transforms the object from its current quality to the target

quality state must be determined. We use the term algorithm sequence (algo-chain) to indicate

that several transformations may be necessary to achieve the desired quality reduction. Trans¬

formations can be expensive in terms of CPU usage. Therefore, it may be beneficial to cache

(intermediate) results of such transformation steps, that is, to store different versions of an ob¬

ject, in a version cache. The algorithm sequence that incurs the smallest transformation costs

should be chosen. For this purpose, we first try to find in the version cache a version of the

object to be delivered that matches the newly assigned quality state. If such a version is found,

no transformations are required and cprep = 0. If no matching version is detected, the cache

is searched for the version that is best suited to serve as base version for the transcoding. The

prepare costs decide about the usefulness of base versions. Finally, the algorithm sequence that

transforms the object from its base version to the target quality state is determined and recorded.
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4.6 Framework structure

The previous sections in this chapter have detailed the decision making process/algorithm and

have therefore described the dynamic behavior of the Padapt phase that lies at the heart of our

application framework. This section first describes the static structure of the framework, that is,

the data structures employed. Second, it briefly describes how the data structures collaborate to

carry out the tasks of request processing, Padapt, Pprep and Ptrans-

4.6.1 Data structures

The structure of the core framework is illustrated with the UML class diagram shown in Fig¬

ure 4.2. The class diagram is drawn from a specification perspective as defined by Fowler

et al. [56]. The focus lies on interfaces; implementation details, such as query and modifier

methods to read and write attributes, are omitted.

We introduce a number of notational issues: the name of abstract classes and abstract meth¬

ods is shown in italics. Those abstract classes that must be extended by applications derived

from the framework (see Chapter 5) are shaded. Attributes marked with 7' are so-called de¬

rived attributes, i.e., attributes that can be calculated from other associations and attributes on

the class diagram. Arrows on association lines indicate navigability [56]. Association roles are

labelled at the target class. If there is no label, the role is named after the target class. The

following paragraphs describe the classes, their attributes and associations. The next section

sketches how these classes are put to use.

The class RequestEntry represents requested objects to be delivered by the server. Each

request entry has a type, e.g., text, image, video, etc. The different versions of an object that

are stored in the server's repository or in the version cache are summarized by the version list.

A version is characterized by its storage location and its quality. Versions can be queried for

their size. The quality captures fype-specific attributes and provides a simple quality metric

through the method utility() (Section 3.3). The utility of an entry is a function of its relevance

score and the utility of its currently assigned quality. The attributes minimum and maximum

quality (minQ, maxQ) reflect the restrictions on object quality imposed by the client. An entry's

adaptation state captures the currently assigned quality (current), a base version (original) and

a so-called algo.chain. The algo-.chain comprises a sequence of algorithm and parameter pairs
and describes how—starting from the base version—the object must be transcoded to achieve

the targeted quality (current). The algo-chain is also used to produce estimates of the prepare

costs and the size of the final version of the object.
The abstract class Type is central to the framework as it provides abstractions for many

of the specifics to be filled in by applications derived from the framework. E.g., it knows

which quality-subclass must be instantiated and helps to find version matches and to determine

which combination of algorithms can transcode an object from its original quality to the targeted

quality (see Program 4.5). Furthermore, the type determines which transformation algorithms
are applicable to the objects of this type5.

Algorithms transform objects from an input type (or encoding) to an output type. An algo¬
rithm comprises two resource models, a cost model to estimate the CPU-costs of applying the

5For the sake of simplicity, we do not show how the framework deals with different encodings of a media type.
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Figure 4.2: Class diagram of framework core (in UML notation [56]).
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algorithm to an object, and a size model that estimates the size of a transformed object. Note,

that there is a discrepancy between the notation used in previous sections (e.g., Section 4.2) and

the class diagram. The previous sections postulated a function data : Quality —^ N for the pur¬

pose of estimating the size of an object of a given quality. Note, however, that changes in quality

are either achieved by choosing an appropriate version of the object (e.g., from the cache) or by

transforming the object. Since size information for versions is readily available, associating the

size model directly with the algorithm achieving the quality changes seems a natural choice.

The class RequestHandler provides the "glue" to the classes mentioned above. It encapsu¬

lates the control loop with its threaded prepare and transmit phases, drives the adaptation strat¬

egy based on information about resource availability obtained by a monitor, and has a handle

on the server's repository and version cache (not shown in the diagram). Furthermore, the ap¬

plication registers all the supported (media) types with a prototype request handler (Chapter 5).

The application-specific request parser retrieves request messages from the client connection

and builds the request list which contains a request entry for each of the objects requested.

4.6.2 Interaction of data structures

This section briefly discusses how the data structures are put to use (i.e. interact) for the request

processing and the three phases of the control loop.

A new client connection arriving at the server is handed off to a request handler, which

retrieves the request message and parses it as mentioned above; the method parseRequest()

delegates the parsing to an application-specific request parser. The request list is built, and the

user-specified time limit is translated to a deadline (end time). The attribute t\eft can be derived

from the end time. The method handleRequest() spawns the prepare and transmit threads, which

operate (and synchronize with the main adapt thread) as depicted in Figure 4.1. The control

loop is entered and each time Padapt is activated, the performance monitor is polled for the latest

information about network and end-system resource availability and the adaptation strategy's

adapt() method is invoked (Program 4.2).

Padapt then operates as described in Section 4.5 and as outlined in Programs 4.1^1.5. The

functional notation used in the pseudo code can be translated to the object-oriented design, that

is, to the class diagram as follows, foo(obj) or bar(class) indicate that the method foo is

invoked on object obj or that the method bar is invoked from class class. Program 4.1 is im¬

plemented by the computeJdiffQ method of AdaptationStrategy. The reduce() method shown

in Program 4.3 is provided by the class Approximative. The function choose.victim() (Pro¬

gram 4.4) is implemented in the class RequestList. Finally, the class RequestEntry provides
the reduce() method shown in Program 4.5. This method heavily relies on the abstractions

provided by the classes Type and Algorithm. Subclasses of Type must provide the methods ver-

sionMatch() (namedfind.versionjnatch() in Program 4.5) and algoChain(); Algorithm must fill

in isReducible(), create4>aram.iter() and targetQualityO to make the generic reduce() function

work. The decision making algorithms and the performance model for the response time have

been thoroughly discussed in the previous sections. In addition, the only aspect worth noting
is how estimates for the transformation costs are calculated (prepare.costsQ in Program 4.1).
The method cost() of AlgoChain iterates through all the algorithm-parameter pairs and sums up

the costs incurred by all transformations. In each step it estimates the CPU costs for applying
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the algorithm on the object to be transformed (method cost() of Algorithm) and computes the

resulting quality of the object (method targetQualityO). This step is needed to compute the

costs of the next algorithm in the AlgoChain. The actual cost estimation is delegated to the cost

model supplied with the algorithm (method predict(Y). Size estimation works accordingly. The

resource models are discussed in more detail in Section 5.1.3.

Pprep and Ptrans invoke the methods prepare() and transmit() on the request entry to be

transformed or delivered. The transformation works as follows. The method apply() in the

class AlgoChain iterates through the algorithm-parameter pairs listed. In each step the method

algorithm.applyO is invoked, which produces a new quality-reduced version of the original

object. New versions are added to the cache. After each transformation step the CPU costs

incurred and the size of the resulting version are fed to the algorithm's resource models to allow

them to update their models. After the last transformation step the request entry is updated with

the location and size of the, final version. The final version is used by the transmit() method to

deliver the object.

4.7 Start-up behavior

So far, this chapter has described a framework for network-aware applications and shown how

such applications can dynamically adjust their demand of network resources to match the sup¬

ply of these resources. To avoid burdening the description of the core concepts with additional

complexity, discussion of adaptation inherent problems, such as start-up behavior, agility, etc.

has been deferred to the following sections. This section defines the "start-up problem" and

describes solutions that help alleviate it. Section 4.8 discusses concerns about adaptation gran¬

ularity, and Section 4.9 addresses miscellaneous issues barely covered in the previous sections.

4.7.1 Problem

Feedback control systems are typically faced with the problem of finding the optimal operating

point as soon as possible after start-up. Thereby, special care must be applied because both

overshooting and excessively conservative, i.e. slow, start-ups should be avoided mainly for

reasons of performance. This observation also applies to network-aware applications. Thus,

the question is: How can an adaptive application find the appropriate operating point quickly?
For network-aware applications, we distinguish the two cases of performance-based and model-

based adaptation (see Section 3.4.1).

First, the reactive nature of performance-based adaptation, which does not make use of ex¬

plicit information about network status, requires that the application must use "probing" to learn

about resource availability. The only reasonable way of doing so is to start out conservatively
and to increase the sending rate slowly, and to increase it only after learning that the network

can sustain the current sending rate. Congestion-aware transport protocols, such as TCP, are

faced with the same problem at start-up. In fact, it is by means of such a conservative probing
mechanism (called slow-start) that a TCP sender discovers the available bandwidth [79, 176].

Second, model-based adaptation could—at least in principle—zoom in quickly on the ap¬

propriate control parameters and would not require such (conservative) "probing" mechanisms

to learn about available resources (Section 3.4.1). However, the adaptation decisions depend
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on the knowledge of the available bandwidth—information which is typically not available at

the start of a connection. Thus, the start-up problem for such applications manifests itself as

follows.

On one hand, the application should start to send (useful) data right away for two purposes:

first, to get information about network status as quickly as possible, and second, to utilize

the communication channel and not to waste resources. On the other hand, the application
can decide only after getting information about network service quality how much data (in

which quality) to send. Thus, sending application data right away bears the risk of missing
the time limit. To resolve this conflict, a tradeoff between maximizing the utilization of the

communication channel and minimizing the risk of violating the time limit must be found. The

following section sketches how such a tradeoff can be achieved.

4.7.2 Mechanisms

This section discusses mechanisms that help alleviate the start-up problem of network-aware

applications. We distinguish two groups of approaches: first, solutions that allow to minimize

the start-up inherent risks (without sacrificing high resource utilization), and second, mecha¬

nisms that attempt to speed up the resource discovery process. Section 4.7.3 shows how these

approaches are integrated in our framework.

Risk minimization

The first group of mechanisms attempts to reduce the start-up inherent risks. What are these

risks? First and foremost, there is the risk of missing the user-specified time limit. This situation

can occur if the application starts sending data without knowing in which quality to send it. If

the first object to be delivered is large and bandwidth turns out to be unexpectedly low, the

application may risk to miss the deadline. Or it may at least have to deal with the fact that

the delivery of the first object consumes a disproportionate amount of the time frame allotted.

This situation leads to the second concern: by starting object delivery in an uninformed way,

the application risks to waste adaptation potential which may then be missing at the end of the

transfer.

Berger [13] devised and implemented two techniques in the context of our framework that

reduce these risks: reordering of objects within the request, and increasing agility by means

of hierarchical encoding and progressive delivery. Issues related to agility are detailed in Sec¬

tion 4.8. Reordering objects within a request allows to reduce the risk of being stuck with

a large object or with an object that wastes precious adaptation potential during start-up6. Re¬

ordering requires that the client must be able to deal with out-of-sequence delivery of the objects

requested.
How should the request list be reordered? Different criteria can be applied when picking the

object to be delivered next from the list of requested objects. First, objects that do not allow for a

quality-size tradeoff or that have a low adaptation potential are good candidates for transmission

6In addition to alleviating the start-up problem, reordering can also be useful in cases where bandwidth infor¬

mation is available (e.g., from a bandwidth cache). In such situations reordering may help to avoid the initial idle

period in the transmit phases (see Figure 4.1), e.g., by selecting and transmitting an object that does not need to be

transformed.
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during start-up, because they must be transmitted (almost) unchanged anyway. Second, small

objects are an attractive choice, because they increase the chance that the control loop can take

corrective action, if need be, and because small objects usually exhibit only small adaptation
potential. Likewise, objects should be picked that allow for progressive delivery. And finally, if

rate information is available and reordering is only employed to fill an initial gap in the transmit

phase (as shown in Figure 4.1), an object that incurs no (or only marginal) prepare costs should

be selected for prioritized delivery.

Resource discovery

There are two complementary approaches to obtain trustworthy bandwidth estimates quickly.

Bandwidth caching. Although there are many paths in the Internet that exhibit significant
fluctations of the available bandwidth, Balakrishnan et al. [10] and Paxson [141] observed that

there is also a significant fraction of Internet paths whose performance is fairly stable over

ranges up to tens of minutes. This observation suggests that caching the performance of com¬

pleted client sessions (connections) could be beneficial, as it would allow to predict the available

bandwidth for new connections from the same client or from nearby clients by extrapolating
from past measurements. The SPAND system [163] implements this idea. The main objective
of the SPAND system is to aid clients in selecting those servers from a set of mirror servers

which promise best performance. (For further references on server selection, see [126]). A

similar approach can also be applied at the server side to help a network-aware application (de¬
rived from our framework) to quickly get an estimate of available bandwidth. The toolkit for

resource prediction developed by Dinda et al. [43] can be used to choose the appropriate pre¬

diction model. Resource predictions are provided with confidence intervals that indicate their

trustworthiness of the predictions.

Bandwidth probing. If a request arrives at the server from a "first-time" client, or from a

client for which only out-dated bandwidth information is cached, the network-aware sender

may want to probe for the bandwidth available before making adaptation decisions and before

sending application data. In this context, probing means that the application transmits and

times a few (usually MTU-sized) packets and tries to infer estimates of available bandwidth

from the timings. A number of related techniques to probe for bandwidth availability have been

proposed in the literature, most of them in the context of server selection, e.g., [29, 28, 104, 92,

141]. The problem with bandwidth probing is that it incurs considerable overheads (it delays
the application in sending useful data and it stresses the network). However, there are some

situations where probing provides the best solution to minimize the risk of missing a deadline

(see below).

4.7.3 Discussion

The mechanisms presented in the previous section are complementary when it comes to defus¬

ing the start-up problem of network-aware applications and hence can all be integrated into the

framework. The flow chart depicted in Figure 4.3 illustrates how these techniques are put to
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Figure 4.3: Integration of start-up mechanisms (flow chart).

use in our framework. The reorder algorithm sequentially tries to apply the criteria listed in the

previous section to pick the object to be transmitted next. If an object matches one of the criteria

then the prepare and transmit phases are activated to deliver the object. Two issues remain to

be resolved (to understand the flow chart). How can we decide whether a bandwidth estimate is

trustworthy? When is bandwidth probing beneficial?

To answer the first question, let T he the time limit, bw be an estimate for the bandwidth

available, and let bwmin denote an estimated lower bound for the bandwidth available. (For

example, bw and bwmin may be obtained as predictions from past measurements stored in a

bandwidth cache.) Recall that the adaptation algorithms (Section 4.5) base their decisions only
on the bandwidth estimate bw. The estimate bw is termed trustworthy if the following condition

holds: the application is able to meet the time limit regardless of whether the actual bandwidth

is indeed bw or whether it is only bwmin. On the other hand, the bandwidth estimate bw is not

trustworthy if the following condition holds: the application is able to meet the time limit if the

actual bandwidth is indeed bw, but the application misses the time limit if the actual bandwidth

is bwmin (even if all objects are reduced to minimal quality). This condition can be fairly easily
evaluated using the decision-making mechanisms employed by the framework (see Section 4.5).

To address the second question, let ssmau, smin and sprobe denote the size of the smallest ob¬

ject requested, the size of the smallest object when reduced to minimal quality, and the amount

of data that must be injected into the network (by a probing mechanism) to form reliable band¬

width estimates7, respectively. Probing is clearly not advisable if ssmaii < spro],e + smin. (In this

case, the probing overhead exceeds any potential gain that could be derived from knowing the

available bandwidth.) Furthermore, the overheads incurred by probing are justified only if the

smallest object is so large that with a conservative estimate of bandwidth the time limit is likely
to be missed, that is, if ssmau > T bwmin.

How can the effectiveness of mechanisms dealing with the start-up problem be assessed?

Three metrics are important. The first metric is the time it takes until reliable information about

available bandwidth become available and the application is able to adapt. The latter point is

important because there is no use of knowing bandwidth and not being able to take corrective

action. Second, the utilization of the available bandwidth (with application data) during the

start-up phase should be high. Third, as little adaptation potential should be wasted as possible

7Here, we assume that probing is performed with "useless", i.e., non-application relevant data. If the application
is highly agile (see Section 4.8) probing can be performed with application data, in which case sprobe — 0.
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until bandwidth information is available (to not compromise the flexibility of the adaptation
process). Berger [13] evaluated the start-up techniques discussed and found that (substantial)

improvements for all three metrics can be observed compared to a system that does not address

the start-up problem.
Related work on network-aware applications (see Section 2.3) has hardly addressed the

problems related to start-up. Noble's evaluation of Odyssey [130] only considered adapta¬
tion after the system reached steady-state. The proxy-based approaches pursued by Fox et

al. [59] or Han [70] merely use a SPAND-like bandwidth cache. Video distribution by means

of RLM [113] employs performance-based adaptation and hence goes through similar steps as

TCP during its slow-start.

4.8 Agility

The model of adaptation employed by the control loop in our framework may be problem¬
atic, because adaptation decisions can only be reconsidered after Pprep and Ptrans have finished

transcoding and delivering the current object. The latency of these prepare and transmit activi¬

ties may pose a problem because Padapt must rely on either good bandwidth estimates or on the

expectation that network service does not degrade more during the next phases Pprep and Ptrans
than there is data reduction potential inherent to the remaining objects in the request list. Due

to the nature of best-effort network service, these assumptions may not always be fulfilled. As

a consequence, if the application is not agile enough to react to drastic changes in the network

environment, such situations may occur and may result in the breakdown of the service model.

Application agility can be defined as the speed with which the application can react to

changes in resource availability. Agility depends on two independent aspects: the speed with

which the adaptive application can detect changes in resource availability, and the speed with

which it can react to such changes. This distinction is often ignored because many adaptive
systems are customized for a single application, but it is important for a framework for network-

aware applications. Following the argumentation of Chapter 3, we can separate the two concerns

of agility. The speed with which changes are detected depends on the techniques employed for

resource discovery and is therefore discussed in Chapters 7-9. The detection speed imposes an

upper bound on how fast the application can react to changes. However, it is often the case that

agility is limited by the application because the granularity at which adaptation decisions can

be made is coarse. Here, granularity indicates how closely the adaptation points (PadaPt) are

spaced timewise.

4.8.1 Progressive delivery

Agility can be improved by increasing the number of adaptation points. With the current scheme

there is one adaptation point per object. Consequently, agility can only be improved by using
multiple adaptation points per object. The current scheme assumes that each object is an entity
for encoding. Thus, with this scheme, there is no use in setting adaptation points earlier than at

the end of a completed object transmission because revising adaptation decisions earlier wastes

network and CPU resources. As a consequence, multiple adaptation points per object can only
be had by using sophisticated coding schemes. Hierarchical coding schemes, such as described
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Program 4.6: Progressive object delivery (function drainScanQueue(scanJist,data, Tumu)).

ho-jend — P\imit ~~ now !

while ( ->empty'(scan.list) && ( is.active(Pprep) \\ tto_send > 0 ) ) do

scan — pop(scanJist) ;

ttosend = sendscan(connection, scan, Tnmit) ;

data = data — size(scan) ;

bw = getBW(monitor, connection, Tumit) ;

holend = min(tto_sendi data/bw) ;

end

if ( -iempty(scanJist) ) then

append the remaining scans to the request handler's scan list

end

in [77, 5] for image data or in [115] for video data, break the data into serveral layers (or scans).
The first layer encodes the most significant information, further scans add "deltas" that refine

the quality of the object. It is important to note that any number of scans delivered in sequence

are self-contained and provide an independent—albeit quality-reduced—version of the original

object. This property allows to deliver hierarchically encoded objects progressively, that is, one

scan after another and to terminate delivery of an object after each scan, if need be. Thus, the

number of adaptation points for each object is increased by the number of layers in the coding
scheme. Hierarchical encoding and progressive delivery has also been applied in other adaptive
systems, e.g., [113, 152, 66, 98].

Progressive object delivery has been implemented in our framework as follows [13]. Objects
that are hierarchically encoded have an attribute scanJist which represents the list of scans (or

layers) of the encoded object. A scan provides a method to uniquely identify itself within an

object and return the scan's data. The request handler also contains a scanJist, that is, a list

of all undelivered scans. The additional adaptation points gained by progressive, i.e. scanwise,

delivery of hierarchically encoded objects are not used to directly invoke PadaPt after each scan

(because of the decision making overhead), but are merely used to control the Ptrans phase and to

terminate delivery of an object, ifbandwidth drops drastically. The phase Ptrans computes a limit

Tumu for the delivery of the current object based on the object's size (data) and a bandwidth

estimate. It then invokes the function drainScanQueueQ shown in Program 4.6 with the object's
scan list. drainScanQueueQ serves three purposes: it allows reaction (i) if bandwidth drops, or

(ii) in case of a sudden abundance, and (iii) it tries to avoid transmission idle periods incurred by

PpreplPtrans mismatches. The function transmits scans as long as there is time left for the object
delivery or the concurrently operating prepare phase is still active. The first condition protects
the application from wasting a disproportionate amount of network resources on the currently
delivered object in case of a bandwidth drop. The second condition is to prevent transmission

lulls that can occur if tprep > ttrans. Although tto_send may be less than 0, the prepare phase
may still be active and thus, PadaPt cannot be invoked. Moreover, after each scan the monitor

is queried for an update of the bandwidth information and tt0^end is recalculated to prevent

spending too much time on transmission of the current object in case bandwidth increases. If

the loop condition is no longer satisfied then the remaining scans are appended to the request
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handler's list of unsent scans. After returning from drainScanQueueQ on the object's scan

list, the function drainScanQueueQ is invoked for the list of unsent scans. The latter call is

also made after the transmission of a non-hierarchically encoded object. Draining the request

handler's list of unsent scans, in case Pprep takes longer than anticipated, helps to maintain a

high utilization of the available bandwidth and hence to maximize the quality of the content

delivered to the client.

4.9 Discussion

This section briefly discusses adaptation-related issues that have received little attention in the

description of our framework so far.

Boundary conditions/Breakdown of service model. In addition to start-up and agility re¬

lated problems, ill-specified boundary conditions pose another threat of failure that requires

application-specific reaction. No application should set a (short) time limit T and then require a

high minimal quality such that even sending at minimal quality exceeds the time limit. However,

the appropriate settings of the boundary conditions cannot always be anticipated. Therefore, an

application must be able to deal with such situations that could lead to the breakdown of the ser¬

vice model. Possible reactions include delivery of objects at minimal quality, a user-application

dialogue to renegotiate the boundary parameters, or termination of transfers altogether. This

last option is attractive if it allows an overloaded server to catch up. The application-provided

exception handler in Program 4.2 deals with such situations.

Client processing speed. The service model implies that the response time should be re¬

spected on an end-to-end basis. So far, we have neglected that some clients may be resource

poor and that presentation conversion of the data delivered may incur significant costs and

hence latency. Thus, the question is how can we incorporate client processing speed in our

sender-based adaptation framework? There are two issues: first, presentation conversion must

be off-loaded to the network-aware sender by appropriately specifying the boundary conditions

on object quality. Thereby, the goal must be to off-load as much of the presentation conversion

as possible so as not to have the client be the bottleneck in the delivery pipeline comprising
the three stages server-side transcoding, network transmission and client-side presentation con¬

version. Second, if the client is relieved to such an extent that it is no longer a bottleneck,

then end-to-end response time can be respected by the framework if the (worst-case) client pro¬

cessing time for a single object (the last stage in the delivery pipeline) is subtracted from the

user-specified time limit before the request is sent to the server.

Prediction accuracy. The model-based adaptation process described in this chapter relies

heavily on predictions of resource availability. Predictions are rarely fully accurate and the

estimates are often accompanied with a confidence interval (as noted in Section 4.2). The

repetitive nature of the control loop provides some robustness against inaccurate estimates (see

Section 4.2), however, the robustness of the decision making algorithms presented so far could

be improved by making use of confidence intervals for resource predictions. We briefly discuss
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how confidence intervals, e.g., on the bandwidth estimates bw(t), can be used to improve the

robustness of our adaptive system. Let [bwmin(t),bwmax(t)] denote the confidence interval for

bw(t) (at an application-defined confidence level). Padaptuses tne function computeJdiffQ (Pro¬

gram 4.1) to initiate (Program 4.2) and drive (Program 4.3) the decision making process. Using

computeJdiffQ me confidence interval [bwmin(t),bwmax(t)] can be translated into an upper and

a lower bound on tdiff. There are three alternatives to change the way adaptation decisions are

made based on these bounds. First, an optimistic adaptation strategy could always use the lower

bound on tdiff. Conversely, a conservative strategy would rather use the upper bound on tdiff.
A third alternative could try to bring the interval T — [min(tdiff),max(tdiff)] in line with the

tolerance interval E = [-£,£] on tdiff, such that either T Ç E or E C T holds, depending on

which of the two intervals is wider. Assuming | T | < | E |, adaptation is initiated when T CLE
and terminates only when T Ç.E. This third alternative is a compromise between the optimistic

and the conservative approach, and it improves robustness (compared to the decision-making

algorithm presented in this chapter) by taking the prediction error into account.

Communication idle time. Gaps in the sequence of object transmissions should not only be

avoided because of the transmission opportunities lost at the application level, but also because

many congestion control mechanisms exhibit a use-it-or-lose-it property [48]. That is, commu¬

nication idle time results in loss of the fair share of the bottleneck bandwidth previously held

by the connection and consequently results in repeated start-up behavior. Such gaps can occur

if Pprep lasts longer than the concurrently executed Ptrans phase. Reordering of the objects in

the request with the goal to minimize the communication idle time and the progressive deliv¬

ery of objects outlined in the previous sections can be used to minimize the negative impact of

transmission lulls.

4.10 Summary

This chapter describes the key concepts that form the basis of our framework for network-aware

applications. Central to the model-based adaptation employed in the framework is a perfor¬
mance model for the response time that incorporates both network and end-system resource

availability. Based on the response time model, a heuristic adaptation algorithm has been de¬

veloped that is capable of producing quality-aware adaptation decisions efficiently. Emphasis is

put on the design of an adaptation process that is both flexible and reusable by network-aware

applications derived from the framework. Reusability is achieved by factoring out three aspects

of application-specific functionality: first, the object types handled by the application, second,

the algorithms applicable to transcode objects of a particular type, and third, the resource mod¬

els for the costs incurred and the size reductions achieved by these algorithms. The claims

of reusability are reviewed in Chapter 5. The claims of efficiency and quality-awareness are

treated in Chapter 6. In addition to describing the core adaptation process, the chapter discusses

a number of adaptation inherent problems, such as start-up behavior and application agility, and

sketches the solutions provided by the framework.



Chapter 5

Framework instantiation

This chapter pursues two goals. First, it illustrates how the framework described in the previous

chapters can be instantiated to construct a network-aware application. The sample application

used for this purpose is Chariot, an integrated image search and retrieval system [193]. Second,

the framework design is reviewed under the aspect of potential (code) reuse (i) for applications
from the same application domain, and (ii) for applications from (slightly) different domains.

5.1 Sample application: Chariot

We illustrate the general principles developed in the previous chapters with examples from a

specific project, the Chariot (Swiss (CH) Analysis and Retrieval of Image ObjecTs) project.
This section briefly introduces the architecture of the Chariot system before proceeding with

the description of how the framework is instantiated. In addition, the section describes the

Chariot-specific resource models.

5.1.1 System architecture

The objective of the Chariot system is to allow networked clients to search a remote image
database. The Chariot system uses query-by-example [51,40] to let a user formulate a reference

for images similar to a given query image. The core of the system (as depicted in Figure 5.1)
consists of a client (to handle user access to the image library), a search engine to identify

matching images, and one or more network-aware servers, which deliver the images in the best

possible quality, considering network performance, server load, and a client-specified delivery
time. The low-level content (e.g., color and texture) of each image in the repository is extracted

to define feature vectors, which are organized in a database index at the search engine.

Physical separation of the image library index (in the search engine) from the image repos¬

itory (in the server) facilitates distribution and mirroring of the library. The core components

are connected by a coordination layer that isolates the details of network access and gives each

component a maximum of flexibility to take advantage of future developments. Further details

about the coordination layer and the overall Chariot architecture can be found in [193]. Char¬

iot's indexing methods are described by Weber et al. [194]; the feature extraction methods for

similarity assessment are detailed by Dimai [40].

59
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Figure 5.1: (Simplified) Chariot system architecture.

It is the adaptive image server that is relevant to our discussion of network-awareness and

which serves as proof-of-concept for the ideas presented in this dissertation.

5.1.2 Instantiating the framework

The class diagram in Figure 4.2 shows that concrete implementations for the abstract classes

Type, Quality, Algorithm, and ResourceModel must be provided to construct the network-aware

image server. Furthermore, an application-specific request parser must be supplied (attribute of

the class RequestHandler). The discussion of the issues involved in extending the framework

refer to the class diagram depicted in Figure 4.2. The application-specific subclasses will not be

shown because the entire class hierarchy should become obvious by the following description.
The resource models are discussed in Section 5.1.3.

Type. Chariot deals exclusively with image data. Therefore, the abstract class Type is ex¬

tended by an ImageType class. Chariot can support different specific image encodings, that

is, image formats. The current implementation supports the two widely used GIF and JPEG

formats. The subclasses of Type provide application- and media type-specific functionality.

Types do not carry state, so that only one instance per Type-subclass is required (singleton

pattern [65]). The factory method [65] createQualityO defined by Type and overridden by Im¬

ageType returns an instance of the Quality-subclass ImageQuality described next. Because the

type "knows" how to interpret the quality attributes of its associated request entries, it lies in the

responsibility of the type class (i.e., its method versionMatch()) to decide whether two versions

of the same object (e.g., image) are of equivalent quality or not. For the same reason, and be¬

cause the Type subclass maintains a list of applicable transformation algorithms, it is also well

positioned to determine which algorithms must be employed to transform an existing version

of an image to the targeted quality (method algoChain()). The algorithm subclasses then know

which parameters must be used to produce the desired quality (see below).
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Quality. The quality of an image (subclass ImageQuality) is defined by attributes width,

height, color depth, encoding, and optional encoding-specific parameters. An example of such

an encoding-specific parameter is the so-called JPEG quality factor provided by the JPEG for¬

mat [77]. This quality factor determines the degree of lossy compression employed to encode a

particular image and can be varied from 0 (lowest quality) to 100 (highest quality). The method

utilityO provides a quality metric as a function of the attributes that define image quality as

explained in Section 3.3. Concrete implementations of the utilityO method for image quality
are discussed in Section 6.6.

Algorithms. Our Chariot prototype currently provides the following transcoding algorithms.
For JPEG images, compression (i.e., re-encoding of a JPEG image with a lower quality factor),

scaling (factors 1/2, 1/4, and 1/8), and progressive encoding are provided. For GIF images,

scaling and color depth reduction are supported. Further options that are currently not exploited
include a lossy encoding (i.e. compression) of GIF images, e.g., as achieved by gifmunch [59],
or progressive encoding of GIF images as described by Amer et al. [5]. The supported algo¬
rithms are all registered with the single instance of the class ImageType. Each of the Algorithm-
subclasses must implement the following methods. The method targetQualityO computes the

resulting quality when applying the algorithm at a given parameter level to an image of a spec¬

ified quality. transformParam() finds in the set of applicable parameters the parameter that is

best suited to transform a given image version to the targeted output quality. transformParam()
and targetQualityO are "inverse" functions and are both used in Program 4.5. The methods

isReducibleO and isExpansible() determine whether a given image quality leaves room for re¬

duction or expansion with respect to the particular algorithm and the user-specified boundary
conditions on minimal and maximal image quality, respectively. Finally, the method apply()
transcodes an image at the given parameter level and produces a new version of the image
(instance of class Version; Figure 4.2). The algorithms used in Chariot are all based on the pro¬

grams provided with the NetPBM image processing toolkit [146]. The communication between

different transcoding algorithms is file-based. (In the current implementation, intermediate ver¬

sions of images produced by Pprep are written to disk.) Although such an operation may be

wasteful in terms of time required for complex transformations (employing several algorithms
in sequence), the approach has the benefit of supporting the caching of intermediate versions

with little overhead.

RequestHandler. Because a server may have to serve multiple (network-aware) applications,
we pursue the following approach. The application developer implements a prototype request
handler to be registered with the server. Upon arrival of a new request for the particular applica¬
tion an appropriate handler can be cloned to process the request (prototype pattern [65]). Three

issues must be addressed when building the prototype handler. First, the appropriate adaptation
strategy must be chosen (Chariot uses the Approximative strategy described in Section 4.5.2).
Second, the types supported by the application must be registered with the handler. (Chariot

supports only images.) Third, an application-specific method to parse and process incoming
requests must be supplied. Chariot's coordination layer uses a custom protocol [192]. A re¬

quest message contains a list of objects to be delivered. Each requested object is characterized

by the following information provided by the search engine: a type that allows instantiation
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of the correct Type-subclass, a local name that uniquely identifies the requested image in the

image repository, its rank within the request list, and similarity information. Rank and sim¬

ilarity are measures for the relevance of the image (with respect to the user's query image)1.
Furthermore, a request message contains restrictions on the minimal quality tolerable and max¬

imal quality beneficial to the user. This information is type-specific. For images, restrictions

on image resolution and color depth can be specified. Moreover, the request message can limit

the formats/encodings that can be handled by the client and specify whether reordered object
delivery and/or progressive delivery are acceptable. Finally, the request contains the limit on

the response time to be respected by the server.

5.1.3 Resource models

The model-based adaptation implemented by our framework relies on two application-specific
resource models to characterize the work of the transcoding algorithms used by the application.
The two models must provide estimates for the size of a transformed object and the CPU costs

of a particular transformation. There are two issues to note:

Accuracy. These resource models need not be fully accurate. Unlike in the case of real-time

systems, for example, where accurate estimates on the worst-case execution time of a task

are critical to the reliability of the system, accuracy of both the cost and size models is less

of an issue in adaptive systems. Inaccurate estimates may lead to suboptimal adaptation
decisions (see Section 6.7), however, due to the repetitive nature of the adaptation process,

the application may often be able to take corrective action later.

Complexity. Models for application resource usage may exhibit considerable complexity.
Thus, it may not always be possible to find appropriate resource models for each transfor¬

mation algorithm, or it may be too time-consuming (for an application developer) to find

and validate suitable resource models before deploying the application [12]. Therefore,
the goal from a software engineering perspective must be to provide a few reusable build¬

ing blocks that can be composed and customized by the application developer to construct

more complex resource models.

In the following, we first illustrate how non-trivial resource models are constructed in the

case of Chariot and the lossy re-encoding of JPEG images (called JPEG compression). These

models are used in the evaluation of our framework (Chapter 6). Second, we briefly introduce

a few building blocks that facilitate the implementation of new resource models.

Chariot resource models

From the Chariot image repository, which contains more than 100'000 images, approximately
4'000 JPEG images of various JPEG quality factors and sizes have been chosen to experimen¬
tally derive suitable cost and size models for JPEG compression. Walther [189] finds that the

output size of an image, that is, the size of an image after JPEG compression, depends on three

1 In Chariot, the metric "rank" is a relative measure that orders the images. The metric "similarity" is an absolute

measure that reflects the distance in the feature space between an image and the query image [191].
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Figure 5.2: Sample data for a size model for JPEG compression. The figure shows how output size

depends on input size for the following transcodings: (i) JPEG images with input quality factor 100,
re-encoded with output quality factor 80 (star); (ii) input quality 100, output quality 50 (square); and (iii)

input quality 80, output quality 50 (triangle). The lines represent a least square fit through the respective
data points. R2 denotes the coefficient of determination for the fit.

> 1 ' 1 ' 1 ' 1 <

0 20 40 60 80 100

JPEG quality factor (output)

Figure 5.3: Size model for JPEG compression: median data reduction as a function of output quality
factor. Medians are taken from images clustered according to their input quality factor.
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Figure 5.4: Cost model for JPEG compression: median CPU costs per pixel as a function of output qual¬

ity factor. Medians are taken from images clustered according to their input quality factor. Transcoding
costs are measured on a 200 MHz Pentium Pro PC running NetBSD 1.3 and are reported in microseconds.

factors: the input size, the input, and the output quality factor. For a particular combination of

input and output quality factors the size of the transcoded image is a linear function of its input
size. Figure 5.2 shows an example of these relationships. Since output size depends linearly on

input size (for a particular combination of input and output quality factor), we can plot the size

reduction, given by the ratio of output size and input size, as a function of the targeted output

quality. Figure 5.3 shows the resource model for size reduction as a function of input and output
size. Similar findings are reported by Chandra et al. [33]2.

Similarly, we find that CPU costs depend on the number of pixels, input and output quality
factors (and the CPU power, of course). For a particular combination of input and output quality
factors the costs are a linear function of the number of pixels. Figure 5.4 shows the resource

model for the transcoding costs per pixel on a moderately fast PC. The CPU costs reflect the

user and system time required for the transcodings. It is interesting to note that the costs per

pixel do not seem to be effected by the input quality for quality factors smaller than 90 and

that the costs seem to decrease (linearly) with increasing compression, that is, towards smaller

output quality factors.

Other transformation algorithms employed by Chariot exhibit considerably simpler behav¬

ior in terms of size reduction and transcoding costs. E.g., the size reduction of the scaling
algorithms is a square function of the scaling factor (or a linear function of the squared scaling
factor).

2Chandra et al. [33] describe a fast method to determine the quality factor of a JPEG image by interpreting the

information provided in the quantization tables stored with the JPEG image. Their algorithm would be a useful

addition to the Chariot system.
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Figure 5.5: Class diagram for resource model building blocks (in UML-notation [56]).

Building blocks

Although the resource models for the transformation algorithms in Chariot seem fairly complex,

complexity can often be reduced by composing the models from simpler models. E.g., the linear

relationship between the input and the output size for the re-encoding of JPEG images (from a

particular set of input and output quality factors) can be captured by linear regression models

as shown in Figure 5.2. On the other hand, if all the images contained in the Chariot image

repository had the same resolution (and hence approximately the same size), an even simpler
model could be used. E.g., the size reduction could simply be looked up in a table indexed

by the input and output quality factors. Based on these observations, our framework includes

a few classes which can be used as building blocks to compose appropriate resource models.

Figure 5.5 shows excerpts from the class hierarchy. The classes LinearRegression and LookUp
provide the functionality described above. The class CompositeModel (composite pattern [65])
allows to aggregate multiple simpler (e.g., linear regression) models, e.g., for different ranges

of input quality factors.

Additional flexibility is gained by decoupling the models from the predictor variables. E.g.,
for JPEG compression, we found that input size is the appropriate predictor variable for output

size, but, transformation costs are better approximated as a function of the image resolution.

For a particular combination of input and output quality factors both the size and the costs are

a linear function of their predictor variable. Similar observations can be made for other trans¬

formation algorithms. Thus, decoupling the models from the predictor variables (subclasses of

class Predictor) helps avoid a proliferation of resource model classes. A corresponding hier¬

archy of builder classes (builder pattern [65]; not shown in the figure) is used to initialize the

resource models and to associate them with the appropriate predictors.
Because developing sophisticated resource models for a new network-aware application

may often be (too) time-consuming (prior to deployment), the models (and their building blocks)
should allow for on-line information collection of data about resource consumption by the var¬

ious algorithms and should allow for dynamic refinement of the models at run-time. For this

purpose, the resource model classes must implement an update() method. To illustrate the prac¬

ticality of the update concept, we describe how a linear regression model could be updated
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(without having to store all the past measurements). Let x be the predictor variable and bo
and b\ be the two parameters that define the regression line, then the response y is calculated

as y = bix + bQ. How to update the regression parameters bo and b\ becomes obvious when

considering how they can be computed (see [82]). The regression parameters that give mini¬

mum error variance are b\ — J^'^f,' ^? and bo = y — b\x, where x and y denote the means

of Xi and y, respectively. By maintaining and updating the five variables sx — E*i» sy = Xy;,

Sxy = "Lxiyi, sx2 ~^xf and the number of measurements n, the regression parameters can easily
be recomputed at any time.

Because it might not always be clear from the start which model is the most appropriate to

characterize the size reduction achieved and the costs incurred by a transformation algorithm,
it would be desirable if an application could use multiple resource models simultaneously, so

that the most appropriate model can be selected after a trial deployment of the application.
Furthermore, some models may only be applicable for certain ranges of predictor values. E.g.,
in Figure 5.4, the costs could be approximated by a linear function of the output quality for input

quality factors smaller than 85, but would have to be approximated by a quadratic function

for larger input quality factors. For these reasons, it would be useful to aggregate multiple
resource models. These requirements are accounted for by the successor association among

ResourceModel classes (see Figure 5.5), which reflects a chain of responsibility [65] among the

different resource models. The predict() method call is forwarded along the chain until a model

is found that can produce the estimate for the resource consumption sought. The update() call

is forwarded to all the models in the chain, so that all (applicable) models can be updated for

later comparison.

5.2 Potential for reuse

This section discusses the framework's reuse potential. First, we discuss how the framework can

be extended to provide new functionality for Chariot-like applications (Section 5.2.1). Second,

we illustrate how the framework could be integrated with a Web server to allow network-aware

delivery for complex Web documents (Section 5.2.2). Third, we briefly discuss how the frame¬

work could be adapted to serve (slightly) different application domains (Section 5.2.3). Finally,
limitations of the applicability of our framework are presented (Section 5.2.4).

5.2.1 Extending Chariot

During the design stages of the framework, emphasis has been put on extensibility. Options for

framework extensions are listed in increasing order of complexity.

Algorithms. The framework can easily be extended to use new transformation algorithms for

the image formats already supported (as discussed in Section 5.1). The developer must merely
implement an appropriate A/gonY/im-subclass and the corresponding resource models (e.g., by
composing some of the building blocks described) and register the class with the single instance

of the ImageType class.
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Encodings. New image encodings (or formats) can also be added at fairly small costs. We

have not discussed how different formats are treated in the framework, but basically only a new

format class with the supported transcoding algorithms must be supplied and registered with

the ImageType instance. Furthermore, the method algoChain() may have to be adapted to select

the appropriate encoding-specific algorithms. The rest of the framework is not affected.

Media types. Digital libraries may contain a variety of multimedia contents and hence re¬

trieval services need not be restricted to searching and delivering image data. Some systems

provide information retrieval capabilities on spoken documents (e.g., [195]). Other digital li¬

braries, such as the one developed in the Informedia project [188], provide integrated video and

audio retrieval techniques to search for relevant sequences in video data. For such systems, the

response to a query may include a set of relevant video and/or audio clips. If these clips can be

considered as individual entities (or objects) for delivery, then such multimedia retrieval engines
could benefit from our framework for quality-aware adaptive content delivery, i.e., from timely
delivery that respects the varying importance of the retrieved objects. Treating a video or audio

clip as an entity means that play out at the client should not start before the entire video clip has
been received, because inter-frame timings may not be preserved and hence cannot be guaran¬

teed by our adaptive delivery process (see Section 5.2.4). To support such multimedia retrieval

systems the framework must be extended by subclassing the abstract classes Type and Qual¬

ity and by providing a set of applicable transformation algorithms for each of the new media

types. The distillation dimensions are then implicitly defined by the transformation algorithms
registered with the media type. A list of possible transcoding dimensions for common media

types such as video and audio is supplied in Table 2.1. Otherwise, no changes to the framework

are necessary, in particular, the adaptation process can be reused entirely. The Chariot protocol
also allows extension of the system by new media types. Recall, that each requested object
is associated with a type used to instantiate the appropriate Type subclass, so that objects with

different types can be requested with a single request message.

5.2.2 Web object delivery

Web pages become increasingly complex. According to studies that date back three and more

years, e.g., [23, 198], 50-75% of all the Web pages contained at least one image reference,
the average number of images per page lying between 4 and 11 image references. Although
there has been no similar study recently, we suspect that Web page complexity has increased

considerably in the meantime. We use the term "Web object" to refer to complex Web pages

consisting of an HTML [74] document that contains multiple references to embedded multime¬

dia contents (images, audio, etc.). The size of such Web objects, that is, the aggregated size of

the HTML page and all the embedded multimedia objects, is likely to have increased in step
with the increasing number of image references found in Web pages. A common complaint
heard from Web users is that downloading time is often unpredictably high [190].

Can our framework be used to make Web object delivery more predictable? The answer is

yes, but before we can elaborate on how our framework can be integrated with a Web server,

we must first overcome some fundamental differences between our service model (Section 3.2)
and the way Web content is delivered (see Figure 5.6 for illustration). Web objects are delivered
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(a) Chariot transfer. (b) Web transfer (HTTP/1.1).

Figure 5.6: Differences in client-server interaction between Chariot and Web transfers.

as follows. The client requests the HTML page (p.html in Figure 5.6 (b)) from the server;

upon reception, the client parses the page to extract inline references, and then requests the

inline data separately (we use image data img\, img2, and img^ for illustration purposes). This

mode of operation can pose four problems. First, the client may choose not to request some

of the inline images. Second, the client could delay the requests for the inline images by an

arbitrary amount of time3. Third, not all images may reside on the same server. And fourth, the

idempotency of such (GET-) requests and the stateless nature of Web servers make it difficult

for the network-aware server to associate the image requests with the appropriate Web object.

The first two issues are problematic, because they can entirely defeat the use of network-aware

delivery to meet a user-specified time limit. For the remainder, we assume that all images are

requested and that requests for embedded images are pipelined [50] and do not delay response

delivery. If images must be fetched from other (not network-aware) servers, then the best the

application can do is to try to control the delivery of those images that are co-located with the

HTML page. The last aspect, associating requests with the corresponding request for a Web

object, is addressed below by means of sessions.

Additional difficulties for network-aware Web content delivery comprise how to specify a

time limit and how to specify relevance metrics (for individual parts of a Web object). Fur¬

thermore, a network-aware Web delivery mechanism should ideally have no (or only minimal)

impact on how Web content is authored; and should not incur changes to the server or the

browser.

We pursue the following approach to network-aware delivery of Web objects (see Fig¬

ure 5.7). The user requests a Web object p.html from a server and wants the delivery to be

bounded by 10 seconds, for instance. For this purpose, the browser (or the user) must rewrite

the requested URL to include the time limit, e.g., as a query string p.html?t=10. The server

3Typically, either all embedded objects are requested or none. If no inline objects are requested, network-aware

delivery may not be necessary at all. Second, no browser deliberately delays requests. Delays may occur due to dif¬

ferences in operation: A browser can choose between sequential, parallel and pipelined requests. Frystyk et al. [63]

show that pipelining requests (HTTP/1.1 [50]) outperforms both sequential operation and multiple connections in

parallel (popular with HTTP/1.0 [15]).
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Figure 5.7: Network-aware Web content delivery (using Servlets).

then rewrites URLs of this format (e.g., by means of the mod-rewrite module in the Apache
server [7]) to servlet?url=p.html&t=10 and thereby forwards the request to the servlet en¬

gine (e.g., using Apache's mod.jserv module), where it is handled by a servlet [85] dedicated

to network-aware content delivery4. The servlet creates a session for the particular request

(schematically depicted by the session id 0 in Figure 5.7) and instantiates a new request han¬

dler, which is part of the framework. The request handler reads in the request (URL and time

limit), retrieves the HTML page and parses it to extract information about the embedded objects
(the image source tags in our example). This information is used to build the request list and to

rewrite the image URLs to be sent back to the client with the HTML page. The image URLs are

rewritten for two purposes: first, to forward the ensuing image requests directly to the servlet,
and second, to be able to associate them with the requested Web object (by means of the ses¬

sion id). The control loop is entered and once the (pipelined) requests for the images arrive the

entries in the request list are validated and the control loop can start to adapt the quality of the

images, if need be, and to deliver them as described in the previous chapters. The framework

extension implemented for Chariot can almost completely be reused for network-aware Web

object delivery, because we are simply dealing with image data. Merely the request parser must

be replaced to cope with the HTML format, and a mechanism to "validate" the request list must

be provided.
Two issues concerning the service model for network-aware delivery have not been ad¬

dressed so far. First, how to specify relevance metrics for individual parts of a Web object?
There are two approaches. Either the content author specifies relevance scores, e.g., by means

of special comments in the HTML-text (recognized by the request parser); or the client can

try to guess the usefulness of the different images when parsing the HTML page. E.g., a

client could guess which images reflect advertisements (using methods similar to those used

in [87]) and assign appropriate relevance scores by extending the image URL by a query string,

4Instead of using servlets, FastCGI [46], a variant of the CGI [32] server-application interfacing, can be used.

CGI defines application programs to be started by the Web server if a request for the program is received. After

sending the response (via the server) to the client, the application terminates. This style of operation is wasteful

because of the (repeated) application start-up overheads, and because this approach complicates the design of

applications that need to conserve state between successive invocations. Servlets and FastCGI are two alternatives

that remedy these problems.
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Figure 5.8: Server-driven versus agent-driven HTTP content negotiation.

e.g., as follows servlet?id=0&url=img\&relevance=r. Second, to specify client capabilities,

that is, boundary conditions on minimal and maximal quality, accept-headers as defined in the

HTTP/1.1 specification [50] can be used.

To make Web content delivery network-aware as described in this section requires at most

the following two changes. First, the way content is authored may have to be changed if rele¬

vance metrics are to be supported. Second, some means that allow a user to specify her prefer¬

ences on response time must be provided. (This may be a static choice). An additional problem

is how a client can learn whether a particular server supports network-aware content delivery

or not—an issue that is beyond the scope of this dissertation (see [68, 185] for references on

service location).

HTTP/1.1 content negotiation

How does the network-aware delivery of Web objects sketched above compare to the opportu¬

nities offered by HTTP content negotiation defined for HTTP/1.1 [50]?

Sometimes Web objects are available in alternate representations. For example, a text file

may be available in several languages, or an image may be available in several sizes. HTTP

content negotiation is a mechanism that allows client and server to select the most appropri¬

ate variant for a particular client. Two forms of content negotiation are distinguished in [50]:

server-driven and agent-driven content negotiation. The type of content negotiation determines

whether the server or the client is responsible to select a particular representation of a resource.

Figure 5.8 illustrates the two HTTP content negotiation procedures.
It is important to note that HTTP content negotiation defines a protocol framework, but does

not stipulate how this framework is to be used. Stemm [173] shows how agent-driven HTTP

content negotiation can be used in conjunction with the SPAND network measurement architec¬

ture [163] to reduce response times of Web downloads (e.g., to a constant limit of 10 seconds).

The client obtains a list of equivalent alternate versions of a page (see Figure 5.8 (b)). The client

then retrieves a performance estimate for the server. Based on this performance prediction and

the size of the variants, the client estimates the transfer time for the different versions of the

Web page and chooses the one that most closely matches the user's requested response time.
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For the client to estimate the transfer time for a Web page, it needs to know the combined size

of the base HTML page and its embedded objects. To do this, Stemm adds a feature tag called

"full-page length" to the base HTML page. Alternate versions of the HTML document have

embedded images of different quality and hence different total page sizes. Server-driven nego¬

tiation can be used (i) to adapt to client heterogeneity, that is, to select a version of a document

which matches the client's display or processing capabilities (specified by the accept headers in

the request), or (ii) to manage the bandwidth consumption of busy Web servers [173].

How does the agent-driven approach compare to our type of network-aware content deliv¬

ery? Points in favor of adaptive Web content delivery based on HTTP content negotiation are:

first, decisions are made at the client, which implies that there is no need to know about server

capabilities and thus no need for service location. Second, server-side overheads are consider¬

ably smaller (no URL rewriting, no servlets). On the down side we note that this type of content

delivery only allows for a few static choices (the different variants available at the server) and

that content cannot be served dynamically. This limits the adaptation flexibility and may make

it difficult to match targets on time limit. Agent-driven content negotiation adds one round trip

compared to normal Web delivery. Furthermore, the need to provide multiple versions of a page

complicates the way content is authored and increases storage requirements. Most importantly,
however, because adaptation decisions are made before a Web object is downloaded, decisions

can only be made if bandwidth information from a client-side bandwidth cache (e.g., [163]) is

available; and there is no way to cope with bandwidth fluctuations or wrong bandwidth esti¬

mates. Stemm [173] reports that up to 40% of all estimates produced by the SPAND system are

off by a factor of 2 or more.

5.2.3 Other application domains

This section discusses how the framework could be adapted for other application domains.

Meet a reservation. As mentioned in Section 2.2, adaptation may even be required in reser¬

vation-capable networks. Applications may have to adapt to a confirmed reservation, which may
be less than what the application has asked for in the reservation request. If the application is

granted a given amount of bandwidth bw in the interval At, but the data it wants to send exceeds

Ar bw, data reduction is necessary to meet the granted reservation. Can our framework help
here? Of course, adaptation to meet a reservation is equivalent to adaptation to match network

heterogeneity. The adaptation process can even be simplified. No bandwidth monitoring is

required. Padapt rnay not have to be invoked repeatedly, because bandwidth fluctuations are

eliminated by the network. Dynamic adaptation may only be required if end-system resources,

i.e., CPU power fluctuates considerably.

Meet a budget. Usage of network transport services may be charged in the future on a per-

application, per-usage basis. There is an on-going debate over how charging and accounting
should be implemented in the current (or in a future) Internet infrastructure (see [177] for an

overview of research in this area). Some proposals argue that usage-based pricing is likely to be

necessary to control congestion in the Internet [118]. By introducing the concept of "congestion
pricing" these proposals try to build incentives into the network that restrain applications from
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consuming large amounts of bandwidth in times of congestion [117, 64]. That is, if there is

congestion in the network, an application is charged more for the same amount of bandwidth

than it would have to pay for the same amount of bandwidth in times with excess capacity in

the network.

Clearly, users want their spending to be bounded (that is, not to exceed a pre-defined budget)
and they want reasonable quality for their money. Again, because network congestion is at best

difficult to predict, applications are needed that can adapt their resource usage to meet their cost

budget. An obvious approach (that minimizes costs) would be to transmit during periods when

bandwidth is free, that is, in times with no contention for bandwidth. However, this may mean

that the user has to wait indefinitely for an answer (if bandwidth contention prevails). Thus,

we want the application to deliver the data both within a reasonable (user-specified) time frame

T and within a cost budget. How can our framework be adapted to serve such applications?
Because we concentrate on adaptation to a budget here, we assume for the sake of simplicity
that the time limit is sufficiently coarse to transmit the original data (in an uncongested and

therefore non-charged network), that is, we assume that the application needs not adapt to meet

the response time. The idea is to replace the performance model developed in Section 4.4,

which estimates response time as a function of resource availability, with a model that estimates

cost as a function of congestion level (e.g., as reflected by the ratio of available and bottleneck

bandwidth [143]) and pricing information. Given a model for the expected costs of a transfer,

the control loop must determine at which bandwidth data can be sent for T seconds so that

the budget is not exceeded. This means that appropriate quality reductions of the remaining

objects in the request list must be found. The procedures outlined in Chapter 4 can be reused

for this purpose. Instead of minimizing tdiff the control loop must try to minimize the difference

between the money left and the estimated amount of money needed to transmit the remaining
data. The transmit phase must be changed so that objects are "paced" into the network at the

affordable rate.

Smooth object delivery. Rather than having predictable response times a user may wish that

the various objects (e.g., images, image sequences, etc.) are delivered in a smooth fashion,

that is, at a predictable rate. E.g., a Chariot user may wish to receive one image (approximately)

every At seconds. How could our framework be adapted to allow for such delivery5? A straight¬
forward solution employs hierarchical encoding schemes and progressive delivery as discussed

in Section 4.8 and works as follows. If there are n images to be delivered, the time limit can be

set to T ~ nAt. The adaptation mechanisms described in Chapter 4 can be used to make sure

that the size of the objects is reduced so that this time limit can approximately be met. Using
hierarchical encoding for each of the objects to be delivered ensures that the (progressive) de¬

livery for each of the objects can be stopped when Ar is reached. The quality reductions by the

adaptation mechanisms ensure that the size of the objects is reduced sufficiently so that at least

the first layer of each hierarchically encoded object can be delivered within At seconds.

This simple extension of our framework can be used, e.g., to support remote volume ren¬

dering applications such as the one described by Lippert et al. [98]. Their application hierar¬

chically encodes volume data at the server and progressively transmits them to the client. If the

application were to show a film of a "flight" through n 3D-objects, each encoded similarly, the

5We merely consider fairly coarse-grained adaptation here, and thus assume that At > 1 second.



5.3. SUMMARY 73

technique outlined above could be used to enable a smooth stepping through frames, that is, the

individual scenes of the "flight".

5.2.4 Limitations

Although the framework can be extended and adapted to serve as a foundation for a number of

different network-aware applications, there are clearly limits to its applicability. The following
list of limitations is by no means complete.

Delay-sensitive traffic. The framework is not suited to support adaptive delivery of delay-
sensitive data, such as video or audio. Play-out of continuous media across a network

requires much finer-grained control of the timing structures of individual video frames

or talk spurts than the (relatively) coarse-grained adaptation mechanisms deployed in

the framework can achieve. There are many adaptive video and audio applications that

successfully adapt to bandwidth fluctuations and that are able to conserve inter-frame

spacings at the fine granularity required for these applications, e.g., vat [81], vie [112],
ivs [183], WaveVideo [45], or MTP [72].

Multicast transmission. The framework's sender-driven adaptation process described in Chap¬
ter 4 is clearly not a wise choice for multicast content delivery. Feedback implosion and

the fact that adaptation must meet the response time target for the slowest client are only
two of the problems such a scheme would be faced with. Network-aware content deliv¬

ery in multicast scenarios is preferably achieved by intermediary nodes (e.g., providing
active services [6]) in the network (see Keller et al. [90]), or in a receiver-driven fashion

as pioneered by McCanne et al. [113]. We leave it to future work to study how our frame¬

work could be integrated with active services deployed in the network to provide the type
of network-aware content delivery proposed in this dissertation to multiple receivers in a

multicast session simultaneously.

Server selection. A fairly popular form of adaptation to achieve predictable response times is

to pick (among a set of mirror servers) the server that is best suited to deliver the requested
data. A mirror server is well suited if it can deliver the data in high quality within the

desired time frame. As is, our server-side framework cannot easily be extended to support
server selection. We note, however, that dynamic server selection is an orthogonal issue

to the type of adaptation captured by our framework, and would therefore be a useful

addition of applications derived from the framework. Such a scheme would preferably
be deployed on the client side. Stemm [173], Crovella et al. [28], and Fei et al. [47]

present different techniques for server selection. The former two make entirely client-

based selection decisions. Myers et al. [126] discuss implications of Internet dynamics
on server selection mechanisms.

5.3 Summary

This chapter explains how the framework is instantiated by presenting a sample application—
Chariot, an image search and retrieval system —, that is derived from the framework. The
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models that characterize application (i.e. Chariot) performance and that are necessary for the

application-to-network quality mapping are presented and simple building blocks are discussed

that facilitate composition of resource models for new transcoding algorithms (e.g., for new

applications). The chapter discusses the potential of framework reuse in different settings.
Chariot-like applications, i.e. other multimedia retrieval systems can easily benefit from the

abstractions provided by the framework. Other applications, such as the transfer of complex
Web documents containing a number of embedded objects, can also be supported by the frame¬

work with reasonable effort. The discussion of the framework's applicability to slightly different

domains indicates that the framework should be flexible enough to allow for a rather painless
transition to other application scenarios.

The fact that in all the application scenarios discussed, the framework core, i.e., its adapta¬
tion process, did not have to be revised, permits us to conclude the following. The framework-

based approach to the development of network-aware applications is beneficial as it allows for

reuse of the core adaptation process and can therefore shield developers from many of the com¬

plexities in dealing with network dynamics.



Chapter 6

Evaluation

In this chapter we want to answer such basic questions as (i) "does adaptation work?", (ii)

"is it beneficial?", and (iii) "at what costs does such a (presumed) benefit come?". Previous

work [130, 132, 59] had provided answers to these questions (adaptation does work, can be

beneficial, and the benefits are obtainable at considerably small costs) and has thereby shown

that the concept of adaptation can be worthwhile. In addition to these previous studies, our

work goes a step further and establishes a detailed understanding of the complexities of the

adaptive systems under consideration by means of a systematic evaluation methodology. We

address questions such as, "what are the key factors effecting the performance of a network-

aware system?", "How does the presumed benefit depend on the user's notion of utility?", and

"What are the factors that primarily drive the costs of dynamic adaptation?"

When does adaptation work?

Even though network-aware delivery can provide acceptable application performance in a much

wider range of situations than static solutions, adaptation clearly cannot solve all the problems
related to variable and unpredictable network dynamics. To better understand the complex

dynamic adaptation behavior, we aim at precisely characterizing the situations in which adap¬
tation is able to fulfill its goals. Therefore, we must identify the key factors that effect our

framework's ability to adapt. For the purpose of identifying the key factors, we distinguish
between framework-extema/ and -internal factors. External factors comprise network, end-

system, application and request properties. Internal factors reflect aspects such as the accuracy

of the resource estimators or the adaptation policies employed.

Determining the effect of the various factors on system performance allows us to draw con¬

clusions with respect to when adaptation works. E.g., we want to establish for what bandwidth

and host load levels is a particular request fulfillable within a given time limit. Such findings

provide the basis to tackle the second question, whether (and when) adaptation is beneficial. If

adaptation works only for a very limited subset of bandwidth and load levels, it might not be

useful at all.

Identifying the key internal factors and their effects on performance helps to find answers

to questions such as: "How sensitive is model-based adaptation to the accuracy of the models

employed"; and in particular, "how important is the accuracy and timeliness of the bandwidth

estimates?".

75
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Is adaptation beneficial?

The answer to whether adaptation provides any benefit to a user (compared to a static policy for

content delivery) mainly depends on two issues. First, it depends on how much the user values

a predictable response time. Second, the answer is determined by the user's notion of quality.
Since these two measures are highly application- and user-dependent, there is clearly no

final answer to whether adaptation is beneficial or not. Even in the context of a particular appli¬
cation, we cannot assess a potential benefit without a well-founded user-study. Because it is not

our goal to understand all the particularities of a single application and its user community, we
do not try to tackle the general question whether adaptation is beneficial, but rather concentrate

on evaluating under which circumstances adaptation can provide a quantifiable benefit.

How much does adaptation cost?

To better gauge the benefit of adaptation, we must relate it to the costs incurred by the adaptation

process. In addition to the hardly quantifiable costs for the development of network-aware

applications (see Chapter 5), the run-time costs for dynamic adaptation must be taken into

account. There are basically two sources of overhead: the decision overhead incurred during
the adapt phases, and the CPU resources needed for the bandwidth tradeoff. Again, we are

interested in quantifying the effects of various external and internal factors on the adaptation
costs.

The remainder of this chapter is organized as follows: Section 6.1 describes the evalua¬

tion methodology used. Sections 6.2-6.4 and 6.7 address question (i), that is, whether and

when does adaptation work? Section 6.2 presents examples to illustrate that the model-based

adaptation proposed in this thesis can fulfill its objectives. Sections 6.3 and 6.4 systematically

identify and evaluate the key external factors and their effect on performance. Before study¬
ing the utility of adaptation, Section 6.5 quantifies the adaptation overhead as a function of

the performance-relevant factors identified in Section 6.3 (and thereby answers question (iii)).

Addressing question (ii), Section 6.6 illustrates that the benefit of network-awareness heavily
depends on the user's notion of quality (and hence on the choice of utility functions). Resuming

question (i), Section 6.7 finally discusses the importance of accurate resource models (and in

particular of accurate bandwidth estimation) for network-aware delivery.

6.1 Evaluation methodology

This section defines the performance metrics and factors used for the evaluations in the follow¬

ing sections. It also describes (and briefly evaluates) trace modulation [133], the technique used
to ensure the reproducibility of the experiments.

6.1.1 Performance metrics

From a user's point of view, there are basically two aspects that characterize the performance
of an adaptive application adhering to the service model defined in Section 3.2:
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Time. The application's ability to deliver the requested objects within the user-specified time

limit.

Quality. The application's ability to maximize the quality of the objects delivered.

The first aspect can be quite easily captured by the deviation from the time limit. Characterizing
the second aspect is less straightforward; the problems that arise when trying to quantify it are

twofold:

• How to quantify the quality of the response?

• How to assess the system's ability to maximize the quality of the response?

In our framework, the overall quality of a response is quantified by utility functions as intro¬

duced in Section 3.3. There are two drawbacks to the use of utility functions for the evaluation

of a framework for adaptive applications.

First, utility functions are application-specific and the results may not be of much use in

a more general setting. Second, even in the context of a particular application, e.g., Chariot,

such an approach would be at least questionable without a user study that tries to come up with

realistic, well-founded utility functions for the application. Since it is not the main focus of

our study to produce such utility functions (e.g., for Chariot), we defer discussion of the impact
of different utility functions on adaptation behavior to Section 6.6 and use a more application-

independent metric: we approximate the quality of a response with the amount of (application-

relevant) data delivered.

Second, provided that we are able to quantify the quality of a response, how do we assess

the system's ability to maximize it? That is, for a particular outcome of an experiment, how

can we know how close we are to the maximal quality theoretically achievable? To compute
the maximal quality theoretically achievable, we must know about the resources available to the

application. Unless we are in full control of the application's environment and in particular the

resources (network and CPU bandwidth) available to the application, it is at least a daunting
task to try to infer the resources available from observations of an application run. For example,
if we were to observe the transfer of images from a Chariot server to a Chariot client over

the Internet, which is clearly beyond our control, and if we found the server does not transmit

images at some point in time, e.g., because it is busy making adaptation decisions, we cannot

know how much bandwidth would have been available to a more sophisticated Chariot server

able to make decisions without incurring idle transmission periods. However, if we are in

full control of the resources available to the application, we can assess the amount of data

theoretically transmittable within the time allotted by the user and are therefore in a position
to compute the maximal quality theoretically achievable. As a consequence, we conduct our

experiments in a controlled environment.

In our experiment, we exert control over (i) the CPU resources, and (ii) the network re¬

sources available to the application by using (i) a dedicated, otherwise idle host for the network-

aware sender, and (ii) by transparently emulating the bandwidth available to the application over

a high-speed LAN using a technique called trace modulation [133]. Section 6.1.4 details how

bandwidth emulation is performed for our experiments.
Bandwidth emulation in a controlled environment accomplishes two objectives: we can re¬

produce the experiments, and it enables us to compute the data effectively transmittable within
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a specified time frame. This second property provides a simple mechanism to approximate and

quantify the second performance metric (quality) as the ratio of transmitted data and transmit¬

table data (or the utilization of the bandwidth available to the application).

6.1.2 External factors

The following two sections try to "span the factor space", that is, the sections try to quali¬

tatively identify the factors that presumably have a non-negligible effect on the performance.

This section covers framework-external factors. The factor space can roughly be divided into

three domains: network conditions, end-system conditions, and application parameters. These

domains are subdivided further as follows:

Network conditions

There are two major factors related to network conditions that may influence application per¬

formance:

Bandwidth. The higher the bandwidth is, the smaller the time frame for "prepare activities" is,

because the transmit phases finish quickly. Thus, it is more likely that we experience idle

transmit periods and hence low bandwidth utilization.

Volatility. Frequent oscillations (or a high volatility) of the available bandwidth require fre¬

quent adaptation decisions. Frequent adaptations incur high decision-making overheads

and may also increase the risk of making wrong adaptation decisions.

End-system conditions

Among the countless parameters that effect the performance of a computer system (for a given

workload), we merely consider the following two factors1:

CPU. The factor CPU expresses the CPU bandwidth in terms of instructions per second.

Load. The factor host load indicates how many processes share the particular CPU bandwidth.

Application parameters

There are several factors that could have an effect on the behavior of the adaptation process:

Request. The two factors that are used to characterize a request for our performance evalu¬

ations are: (i) the number of objects n to be delivered, and (ii) the distribution of the

object sizes within a request, e.g., constant size objects, uniformly distributed, etc. Both

factors—in addition to the adaptation policy employed—directly influence agility, i.e.,

how fast the application can react to changes in the (network) resource availability. For

1
Clearly, there are other end-system related factors, such as memory or cache size, that may effect performance.

However, we expect these two factors (CPU and load) to have the most pronounced effect on the time (tprep) used

to transform an object. These two factors are also accounted for in our adaptation models (see Section 4.4).
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a simple adaptation policy, such as described in Section 6.1.3, the following holds: the

more objects there are in a request, the more adaptation points there are and the more ag¬

ile the application behaves. Likewise, constant-sized objects can positively effect agility,
as they produce an equally spaced series of adaptation points.

Adaptation potential. The adaptation potential of the objects requested depends on the "orig¬
inal size" of the objects, that is, dieft at the start of request processing, and the size of

the objects when reduced to the lower limit on object quality. The higher the adaptation
potential is, the better the chances are that the application can react to large changes in

resource availability.

Adaptation granularity. The number of transformation algorithms and the number of param¬

eter levels per transformation applicable to each of the objects in a request define the

granularity ofadaptation possible. The more parameter levels are applicable for a trans¬

formation, the finer the adaptation granularity and the better the chance that quality reduc¬

tions can be distributed evenly among the objects in a request. Hence, a fine adaptation
granularity may facilitate attaining a high utility. On the other hand, it may adversely
effect adaptation costs, as each transformation may introduce some fixed overhead. Note,

similar arguments also apply to the factor adaptation potential.

Adaptation required. The degree of adaptation required can be described by the ratio of the

data to be transferred (dieft(0)) and the data effectively transmittable in the time frame

allotted by the user. (The degree of adaptation required should be smaller than the adapta¬
tion potential, otherwise the application is bound to miss the time limit.) We would expect
that the higher the degree of adaptation required, the harder the application must work to

meet the time limit and hence the higher the probability that the deadline is missed.

This definition of adaptation required is problematic for the design of our experiment,
because (i) not every ratio between 1 and the adaptation potential may actually be achiev¬

able, and (ii) it does not quite reflect "how hard" the application must work to meet the

time limit.

First, recall from Section 4.5 that for a request with n objects and an average adaptation
granularity of m transformation steps per object, there are nr « mn possible responses.

Each of these responses may require a different amount of data to be transmitted. Even

though nr may be fairly large, it is still finite. As a consequence, the distribution of

response sizes (and hence achievable reduction ratios) is discrete and there may be ratios

that are not achievable with the given request and adaptation granularity. The distribution

of response sizes, if non-uniform, gives rise to the second concern: We suspect that the

fewer possible responses there are for a given amount of data transferable (and hence

for a given degree of adaptation required), the less flexibility there is to make adaptation
decisions and the more likely it is that deadlines will be missed.

Therefore, the notion of adaptation required should capture both aspects: how much data

reduction must be achieved and how likely it is that a given reduction can be achieved

(see Section 6.3.2 for details).
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It may be worth noting that the user-specified time limit is not included in the list of factors.

The time limit is not a free variable, that is, an independent factor, because it can be derived

from network conditions, request properties, and the degree of adaptation required.

6.1.3 Internal factors

Accuracy of resource models

An important factor that may effect the performance of model-based adaptation is the accuracy

of the resource models employed, that is, the accuracy ofboth bandwidth and load estimation, as

well as the accuracy of the models for resource consumption. The accuracy of the various esti¬

mators is a concern that is orthogonal to the external factors listed above and is therefore treated

separately. Section 6.7 discusses how the accuracy of resource estimation affects performance.
In the context of the experiments conducted in Sections 6.2 and 6.3 we attempt to employ

simple, but "reasonably accurate" resource models. The requirement that the simple resource

models used are "reasonably accurate" is satisfied by the choice of experimental setup: The

bandwidth estimator reports instantaneous samples of the bandwidth currently available to the

sender, that is, due to the use of trace modulation (Section 6.1.4), it reports the bandwidth that is

currently being emulated. The estimator is simple as it does not consider any history to predict
the bandwidth available for tieft and just assumes that the bandwidth will stay constant for this

period. It is reasonably accurate, because it accurately reports the current bandwidth. The load

estimator used is based on the UNIX standard load measurement technique, which approximates
the end-system load by averaging the size of the scheduler run-queue over an interval of n

seconds (typically n = 60) [119]. This may not be the most accurate indicator of instantaneous

system load, however, since the experiments are conducted in an otherwise unloaded system the

end-system load induced by daemon processes etc. is fairly small (<C 1) and thus the prepare

time tPrep is dominated by the prepare costs cprep, that is, load « 1 (self-induced load). To

minimize effects of inaccurate estimates for the resource consumption of the transformation

algorithms used in the experiments, the models for CPU usage and reduction achievable by
a given transformation are precomputed for all the objects requested in the experiments (see
Section 5.1.3).

Adaptation policy

A second important internal factor that may effect the performance of model-based adaptation is

the adaptation policy employed by the control loop. The adaptation policy determines the notion

of relevance of individual objects in a request, and the order of object delivery, for example. The

adaptation policy used in the experiments in Sections 6.2 and 6.3 is kept as simple as possible
to reduce the complexity of the initial evaluation. The adaptation policy used assumes that all

the images in a request are equally relevant. This assumption implies that the control loop tries

to distribute the reductions evenly among the images in the request. The objects are delivered

in the order requested, that is, the adaptation policy does not try to be smart and reorder the

images in an attempt to optimize the alignment of prepare and transmit phases for instance.

Therefore, when interpreting the results presented in the following sections, we must keep in

mind that we basically analyze a "worst case" scenario. Any even slightly more sophisticated
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adaptation policy can be expected to improve the adaptation performance as indicated by the

results presented in Section 6.3.3. More sophisticated adaptation policies, e.g., using different

notions of relevance are studied in Section 6.6.

6.1.4 Bandwidth emulation

Since ensuring reliable and reproducible experiments on real networks is extremely difficult, we

follow the approach of other researchers and resort to a technique called trace modulation [133].

Trace modulation performs an application-transparent emulation of a slower target network,

e.g., a wide-area network such as the Internet or a wireless network, on a faster, wired local-area

network. Each application's network traffic is delayed according to the bandwidth parameters

read from a so-called replay trace, which is gathered from monitored transfers, or which can be

produced synthetically to study particularly interesting phenomena.

Since a study of the interaction of multiple network-aware flows sharing a bottleneck link is

not the primary focus of our work2, we perform the bandwidth emulation at the transport level

and not at the network level as in the case of Noble's implementation [133].

Trace modulation is implemented by means of sender-based traffic shaping. We use a vari¬

ation of a token bucket traffic shaper whose tokens (or credits) are updated at a variable rate

(according to the bandwidth replay trace modulated). This is in contrast to the the "classic"

token bucket scheme [139], where tokens are updated at a fixed rate. Our implementation em¬

ploys a use-it-or-lose-it strategy, that is, the credits C are only valid for a given time interval AT

and are reclaimed if unused. The application can use up to C credits, i.e. can send up to C bytes,
within the interval AT. If the application has D > C bytes to send, it can only send C bytes
within the first interval AT and has to wait for the bucket to be replenished, that is, it must wait

until the end of the interval Ar before sending the remaining D — C bytes. If the application
consumes D <C credits within AT, the remaining C — D credits are lost. Unused credits are

removed from the token bucket at the end of every interval and replaced by the credits available

in the next interval.

Figure 6.1 illustrates that the trace modulation technique sketched above can fairly accu¬

rately emulate a given bandwidth trace. The plot shows the bandwidth trace to be emulated

(solid line). The trace was obtained by monitoring an Internet transfer (the same trace will be

used in an experiment in Section 6.2). For each time t the curve "emulated bandwidth" reports

the bandwidth available to (and consumed by) a ftp-type application at time t, where the band¬

width is averaged over 20 runs of the application. The error bars depict the standard deviation

of the bandwidth emulated. The figure indicates that the bandwidth emulated closely matches

the replay trace and that variability is fairly low — a key to ensuring reproducibility of the

experiments to be conducted.

2Recall that we expect the network-aware sender to be well-connected to the Internet and we expect that the

bandwidth of the connections requiring adaptation is constrained downstream.
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Figure 6.1: Bandwidth emulation — average and confidence interval for mean at 95% confidence level

(20 runs).

6.1.5 Limitations

Application

Since the framework for model-based network-aware applications proposed in Section 4 is a

white-box framework [86] and thus does not work "out of the box", it must be instantiated

to form a concrete application that can be used in a performance evaluation. In the following

sections, the Chariot image retrieval system, as described in Chapter 5, will serve as the platform

for the experiments. Although not validated by experimentation, we see no reason why many

of the "bottom line" results could not be carried over to other instantiations of the framework in

particular and other types of model-based network-aware applications in general.

Steady-state adaptation

We separate the intrinsics of the start-up behavior from those of the adaptation mechanisms and

draw a line between the two phases start-up and steady-state to shield the discussion of the

adaptation mechanisms present in network-aware applications from the additional complexity

incurred by approaches addressing the start-up problem (see Section 4.7).

Steady-state. The application (i.e., its control loop) enters the steady-state phase once it obtains

(reliable) bandwidth estimates from lower layers and once the two stages of the prepare-

transmit pipeline are filled. The goal of the steady-state adaptation mechanisms is to

maximize the performance as characterized by the metrics described in Section 6.1.1.

Start-up. The start-up phase is defined implicitly by the period between the end of request

analysis and the time (reliable) bandwidth estimates become available. The goals of a

start-up policy are (i) to shorten this interval as much as possible, and (ii) to minimize
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the risk that the time limit is exceeded, e.g. by an excessively long transfer of the first

object(s).

Note that the goals of the two phases are orthogonal. This observation allows us to decouple
the evaluation of the steady-state adaptation mechanisms from the evaluation of the approaches

suggested to improve start-up behavior. This chapter concentrates on the performance aspects

of steady-state adaptation behavior. The effectiveness of the various techniques addressing
the start-up problem has been evaluated by Berger [13]. The results confirm the expectations

expressed in Section 4.7 and thus will not be discussed here.

6.2 Does adaptation work?

Before turning to a systematic and detailed evaluation, we ought to get some intuition about

how the basic adaptation mechanisms work in practice. In the following sections, the Chariot

image retrieval system will serve as the platform for the experiments.
Our approach to illustrate the system's network-awareness proceeds in two steps: First, we

subject the system to synthetic reference bandwidth waveforms. The example presented here is

the Step-Down waveform shown in Figure 6.2(a) to characterize its ability to adapt in general

and in accordance with the well-established principles for measuring dynamic response from

the field of control systems [154]. Second, field tests in the Internet with its high bandwidth

dynamics enable us to assess the system's agility with respect to real-world network traffic.

6.2.1 Experiment

In our experiments the Chariot server runs on a 200 MHz Pentium Pro PC with 64 MB RAM

running NetBSD 1.3. A 134 MHz MIPS R4600 SGI Indy with 64 MB of memory serves

as the platform for the client. For both of the experiments shown below, the client requests

transmission of 25 JPEG images stored at the server in a resolution of 320 x 240 pixels and a

JPEG quality factor of 100.3 The 25 images total 1.03 MB of data to be transmitted. The images
are assumed to be equally relevant, which means that equal relevance scores are assigned to

the 25 images. The user-imposed time limit for request processing is arbitrarily chosen to be

10 seconds with a tolerance interval of [—0.2, 0.2] seconds (or 2%). The tolerance interval

limits oscillations of the adaptation process (see Section 4.5). Note that a 2% tolerance on

the time limit is a fairly aggressive performance goal. This small tolerance has been chosen

merely to challenge our implementation of the feedback loop and to see whether network-aware

delivery is (at least in principle) capable of satisfying even ambitious performance goals. Often

applications (and users) can tolerate response times that deviate more from the time limit. In

fact, we will relax the tolerance in later sections and consider deviations up to 10-15% as being

acceptable.
The bandwidth replay traces used for the two experiments conducted are depicted in Fig¬

ure 6.2. The Step-Down waveform of Figure 6.2(a) is an idealization of real network scenarios;

it approximates possible situations in an overlay network [89] for instance, where a mobile

3The query image and results are the same as in [178] (Figure 2). We use color features, enhanced with spatial
information, for the similarity search [178, 194].



84 CHAPTER 6. EVALUATION

0-1 1 > , . i 1 . -

.....

02463 10 02468 10

tin. W time [.]

(a) Step-Down waveform (b) Bandwidth of Internet image transfer

Figure 6.2: Bandwidth replay traces used.

client may seamlessly switch between different network interfaces. Figure 6.2(b) shows the

monitor layer's perception of the available bandwidth during a transfer between ETH Zürich

(Switzerland) and the University of Linz (Austria). The bandwidth curve was obtained using a

moving average with a 1-second averaging interval. A new bandwidth estimate can be obtained

from the monitor every 0.1 seconds. The periods of zero bandwidth reflect TCP timeouts. The

step-down bandwidth trace was constructed, such that the same amount of data can be transmit¬

ted within 10 seconds as for the Internet trace. Therefore, for both scenarios, a reduction from

1.03 MB to 321.4 kB is necessary to meet the time limit.

Chariot's reduction algorithms registered with the framework are image compression (with
various quality factors (99-95, 90, 85, 80, 70, 60, 50, 40, 30, 20, 10)) and resolution scaling
(with a factor 1/2). The boundary on minimal quality is set to JPEG quality factor 10 and

a resolution of 120 x 80 pixels. In an attempt to reduce the complexity for the illustrative

examples, we run the experiments on an unloaded system and precompute the CPU resource

consumption for the request and the transformations used. The server performs communication

latency hiding by means of a separate thread for Pprep- As a consequence, Ptrans for image / of

the sequentially processed request list operates concurrently to Pprep for image i + 1.

Each of the two experiments is repeated 50 times. The examples presented in the following
depict the "median outcome" of the experiments, that is, the experiments presented have a

median deviation from the time limit and a median bandwidth utilization. The medians for the

two performance metrics for all of the 50 experiments are reported in Table 6.1.

6.2.2 Results

Step-Down waveform

Figure 6.3—a data vs. time plot as introduced by Jacobson [79]—shows that Chariot is able

to both adapt the amount of data transmitted (curve named "actual") to the amount of data

transmittable ("possible") and deliver the 25 images within the 10-second time limit. The time

limit is exceeded by 1.7% (0.17 seconds), which is within the 0.2-second tolerance. The Step-
Down waveform of the available bandwidth in Figure 6.2(a) represents the derivative of the
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Figure 6.3: Data volume transmitted in Step-Down scenario.

curve named "possible". The sharp drop in bandwidth at t = 5 s is absorbed almost without loss

of transmission possibilities. Loss of transmission possibilities, which is characterized by the

vertical difference between the curve showing the data theoretically transmittable ("possible")
and the data actually transmitted ("actual"), can be caused by prepare or control loop overhead.

The difference at the end of the transfer reflects the overall utilization of the available bandwidth.

The bandwidth utilization is 97.4% (see also Table 6.1).

The curve depicting the control loop's estimate of the total amount of data transmittable

within the time limit ("estimated") shows that the adaptation at t = 5 s takes place fairly swiftly

(within half a second). The estimate is based on the amount of data already transmitted, the

monitor's estimate of the available bandwidth bw(t) and tieft. Even though new bandwidth

estimates are available each 0.1 s, the adaptation takes place only after « 0.5 s. With the simple

adaptation policy employed (Section 6.1.3), agility is limited by the number and the spacing of

adaptation points, that is, in the case of Chariot the number of images to transmit and the time

required to transmit a single image (ttrans(imgi))- As shown in Section 4.8 more sophisticated

adaptation policies, e.g., using progressive delivery, can help improve the agility of the network-

aware application4.
Figure 6.4 plots the control loop's error variable tdiff that drives Chariot's adaptation. The

two horizontal lines at tdiff = 0.2 s and tdiff = —0.2 s represent the tolerance interval speci¬
fied. The "time difference" plot shows that in fact two different adaptation events occurred

4There are two issues to note in Figure 6.3 (and similar figures that follow). First, the curves start at t m 0.15

seconds. The gap between t = 0 when the request is received by the Chariot server and t & 0.15 when the server

enters the control loop, reflects the time used to parse the request message and locate the images to be delivered.

Because non-adaptive response delivery witnesses the same overhead, we deliberately start counting the data that is

transmittable (curve "possible") after this period. This choice allows us to more accurately assess the performance
of adaptation in terms of bandwidth utilization. Second, the markers indicate the progress of response delivery.

E.g., triangles (curve "actual") denote when each of the 25 images has been delivered. Circles (curve "estimated")

reflect adaptation points.
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Figure 6.4: Time difference (tdiff) plot for Step-Down scenario.

Experiment Time limit deviation [%] Bandwidth utilization [%]

median SIQR min max median SIQR min max

Step-Down
Internet

1.7 0.0 1.7 2.6

2.9 2.0 -1.3 6.9

97.4 0.0 95.9 97.5

78.1 5.6 74.7 91.9

Table 6.1 : Summary statistics for the 50 runs of the step-down and the Internet experiment.

(adaptation is necessary when | tdiff |> 0-2 s). Adaptation events are emphasized by arrows

(arrow down reflects reduction; arrow up would reflect expansion). First, around t = 0 s initial

adaptation steps are necessary to reduce the 1.03 MB to the 430.8 kB estimated to be trans¬

ferable. Second, due to the sharp bandwidth drop at t = 5 s, tneeded and hence tdiff increase

by approximately 5 seconds; this drop is compensated in subsequent reduction steps. Note,

adaptation steps might also be necessary if the server load changes or if the estimates for re¬

source consumption are inaccurate, however, we specifically tried to minimize such effects (see

Section 6.2.1). Section 6.7 discusses the effects of inaccurate estimators.

Table 6.1 shows that the variance in both performance metrics is minimal for the 50 experi¬
ments conducted—the semi-interquartile range (SIQR) is 0 for both metrics.

Internet traffic

Figure 6.5 shows that Chariot is even capable of dealing with frequent oscillations in the avail¬

able bandwidth as present on today's wide-area network paths. The time limit is exceeded by
2.9% (just slightly more than tolerated). The results in Table 6.1 indicate that there are runs

of the Internet experiment where the time limit is respected (column "min"). Note, however,

that the penalty in terms of transmission possibilities lost is higher than in the previous case

(utilization = 78.9%). The curve depicting the data volume transmittable ("possible") relates

to the bandwidth waveform shown in Figure 6.2(b). Careful examination of the curve plot-
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ting the data effectively transmitted reveals two cases (at t « 0.5 s and after t « 8 s) where

transmission lulls had to be accepted. The reason is that in these cases Ptrans for image i fin¬

ished before the concurrently executed phase Pprep for image i + 1 and thus had to wait be¬

fore starting transmission of image i + 1. The causes for this behavior can be twofold: Either

Cprep(imgi+\) > ttrans(itngi), in which case a more sophisticated adaptation policy could try to

reorder the images in the request list to avoid communication idle time, or the server load is too

high, such that tprep(imgi+Q = load cprep(imgl+i) >ttrans(imgi). Since we run the experiments

in an unloaded system (i.e. load = 1), the second cause does not apply here.

Figure 6.6 shows the time difference plot for the Internet experiment. It indicates that

the adaptation events (depicted by arrows) closely reflect the fluctuations in bandwidth (Fig¬

ure 6.2(b). Moreover, it helps explain the transmission lulls observed: At t ~ 0.5 s, the initial

(small) reduction from 1.03 MB to the estimated 919.4 kB transferrable must be distributed

evenly among all the 25 images, because the images are assumed to be equally important. As

a consequence, every image must be reduced (by a small amount), which means that no image
can be transmitted right away and tprep(img\) has to be awaited before sending the first byte.
This observation calls for more sophisticated adaptation policies that aim at reducing the risk of

encountering transmission lulls, in particular during the start-up phase (see Section 4.7).

The performance loss in terms of bandwidth utilization experienced around t « 8 seconds

is less easily explained. The numerous adapt events after this point and the fact that tdiff stays

above the tolerance indicates that there is no adaptation potential left that could be exploited.
In other words, all the remaining images have been forced to minimal quality beforehand. As a

consequence, the images to be transmitted are small and the transformations to be applied are

relatively costly, which leads to the transmission lulls observed. The lack of adaptation potential
is also the reason why the time limit is exceeded in this case. There are various reasons that

can cause such a situation. The most prominent cause in this example is that the bandwidth is

over-estimated at t « 4 s, which results in a overly optimistic adaptation decision and a transmit

phase that lasts (3 times) longer than predicted (up to t = 6 s). After that point there is only

one alternative to keep the damage (in terms of exceeding the time limit) small: to reduce the

remaining images to minimal quality.

The presumption that adaptation performance can be quite sensitive to the accuracy of the

bandwidth estimation is reinforced by the following observations. Table 6.1 shows that there is a

non-negligible variance in the performance of the 50 Internet experiments conducted. While the

time limit is never exceeded by more than 7%, there is a much higher variance in terms of band¬

width utilization. Comparing the "median outcome" (experiment A) of the Internet experiment
as presented above (Figures 6.5 and 6.6) with the "best outcome" (experiment B, Figures 6.7

and 6.8) indicates that the adaptation process can be quite sensitive to timing aspects—at least

with the simple bandwidth estimator used here. For some reason, not relevant to the discussion

here, the last expand decision before t = 4 s is made 0.1 s earlier in experiment B than in ex¬

periment A. At that time, the bandwidth reported was slightly lower and better reflecting the

ensuing low bandwidth period (see Figure 6.2(b)). As a result, the adaptation decision made

in experiment B was more conservative5, the transmission phase did not last that much longer

5The last expand decision before t — 4 s is the second last adaptation decision before the zero-bandwidth period
around t pa 5 s. Since Pprep and Ptrans operate in a pipelined fashion, this second last adaptation event before the

zero-bandwidth period is important as it decides on the final size of the image to be transferred during that period.
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Figure 6.5: Data volume transmitted from Zürich to Linz (median utilization).
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Figure 6.6: Time difference (tdiff) plot for Internet example (median utilization).
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than predicted, and consequently there was enough adaptation potential left to deal gracefully
with the bandwidth fluctuations that ocur after t ?» 8 s.

Summary

To wrap up, we can state that the model-based adaptation proposed in this dissertation is able

to fulfill its goals, i.e., that adaptation is able to meet a user-imposed time limit while achieving
high bandwidth utilization—a prerequisite for achieving high quality responses. However, the

illustrative examples studied also reveal problems to be addressed by a more in-depth evalua¬

tion:

Adaptation can be quite sensitive to timing aspects and in particular to the accuracy of

bandwidth estimation. Significant differences in performance and in performance variability
between the two scenarios can be observed. The adaptation policy needs to be revisited to

reduce the risk of transmission lulls.

Furthermore, we note that application agility needs to be improved to react more swiftly
to changes in resource availability. Since agility is not effected by the framework, but mereley
depends on the concrete application, and since techniques to improve agility (e.g., progressive
data encoding) have been studied by other researchers (e.g., [66]) and discussed in Section 4.8,

we refrain from elaborating on the issues of agility any further6.

From these two experiments, it is unclear in which situations adaptation works well and

under what circumstances it performs less favourably or in what situations it may even fail to

provide the service requested, even though the boundary conditions on quality of the objects and
the time limit were sufficiently coarse to allow for a timely adaptation. Network conditions are

provably very diverse in today's Internet. So are most likely the requests that a network-aware

server (e.g., a Chariot server) may have to process in a real-world environment. Therefore, we
need to gain more insight into the dynamics of the adataption algorithm and develop a more

profound understanding of the factors that influence the performance of adaptive systems.

In Section 6.3 we first assess the effect of framework-external factors as sketched in Sec¬

tion 6.1.2 on the performance of our system and in particular we focus on the CPU-bandwidth

tradeoff to be made when adapting (Section 6.4). In Section 6.7 we turn to evaluating the effects

of framework-interal factors, such as the accuracy of the resource estimators and the adaptation
policy, on performance.

6.3 When does adaptation work?

This section identifies the key framework-external factors that influence adaptation behavior

and quantifies their effect on performance.

6Clearly, agility can also be limited by the rate at which new bandwidth estimates become available. However,
since aspects concerning bandwidth estimation are discussed in Chapters 7-9, the experiment setup has been

chosen to ensure that the rate at which bandwidth estimates become available is not a limiting factor for adaptation
performance.
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6.3.1 Experiment

Section 6.1.2 introduced the set of framework-external factors that are assumed to influence the

effectiveness of a network-aware system. Since we cannot simply assume that the factors are

independent, that is, that the effect of their interaction is negligible, we first must identify pri¬

mary factors, their interactions and their effects on the response variables, i.e., the performance

metrics defined in Section 6.1.1. We can then proceed to study performance as a function of

a single (primary) factor for instance. We use a full factorial design for the experiments [82].

The main problem of a full factorial design in our case is that there are too many factors and

factor levels—most factors can be varied continously over ranges covering several orders of

magnitude—to explore all of them. To simplify the search for key factors we restrict the ex¬

periment to a 2kr full factorial design, where k is the number of factors, and r is the number

of repetitions for each of the 2k experiments. This means that the number of factor levels for

each of the k factors must be reduced to 2, e.g., "high" vs. "low" bandwidth. The problem with

such a simplification is that it makes sense only if it can be assumed that the effect of a factor is

unidirectional, that is, the performance either continuously increases or continuously decreases

as the factor is increased from the low level to the high level. Based on the discussion of each

of the factors in Section 6.1.2, we expect this to be the case.

6.3.2 Factor levels

Since our primary focus is to evaluate the framework's network-awareness, we exclude the fac¬

tor host load and conduct our experiments in an unloaded system. The levels for the remaining

factors are chosen as follows (see Table 6.5 for a summary).

Network

The levels of the factor bandwidth differ by an order of magnitude. Low bandwidth reflects ap¬

proximately ISDN speed and high bandwidth reflects approximately the speed of ADSL (asy¬

métrie digital subscriber lines). The term "approximately" is appropriate because we want to

have the same average bandwidth for both levels of bandwidth volatility. The two levels of

volatility used comprise zero volatility (or constant bandwidth) and a repeated series of im¬

pulses (high volatility), which means that the bandwidth repeatedly toggles between a constant

low level and a constant high level. The bandwidth stays at each level for one second before

changing to the other level. For the low bandwidth case the bandwidth curve toggles between

64 kbit/s and 128 kbit/s. Such a choice may seem fairly artificial, however, consider that an

ISDN link has two 64 kbit/s channels and that both channels can be used in parallel, if there

is no competing traffic allocating one of the channels. Thus, it is plausible that the bandwidth

available to an application toggles between the two levels. Since the average bandwidth for

the non-volatile and the volatile case should be identical, we have 96 kbit/s for the constant

low bandwidth case. For the high bandwidth case, the bandwidth toggles between 0.64 Mbit/s

(ADSL) and 1.28 Mbit/s in the volatile scenario, and therefore a constant bandwidth of 0.96

Mbit/s is used in the non-volatile scenario.
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Low adaptation potential High adaptation potential

Request Image size distribution Tot. size Image size distribution Tot. size

ID n min max /u G O-max min max /u c "•max

Cu

v12

Cioo

Vioo

12

12

100

100

8.6 11.3 10.2 1.0

5.7 98.5 19.3 25.1

7.5 20.0 13.5 3.2

5.2 336.8 43.2 55.4

123

232

1352

4320

45.1 54.7 50.8 3.6

33.1 242.7 70.3 55.1

35.5 81.8 60.5 10.5

11.8 965.5 92.3 125.9

609

844

6048

9228

Table 6.2: Request properties. All size information in kB.

End-system

To study the effect of CPU bandwidth, we run the network-aware server on two different plat¬

forms, on a moderatly fast 200 MHz Pentium Pro workstation with 64 MB RAM running
NetBSD 1.3 and on a faster dual processor 300 MHz SPARC Ultra 4 server with 1GB RAM run¬

ning SunOS 5.6. To address the question whether network bandwidth is better traded off with

CPU or with storage, we introduce a third CPU level by means of an "infinitely fast server",

that is, a server that precomputes all the versions of all the objects in the repository and thus can

provide any version at an infinitesimally small (i.e. zero) cost. Since we cannot have three levels

for a factor in a 2k experimental design, we introduce a new factor termed "prepare required"
with the two levels yes and no.

Application

Again, we use Chariot as our vehicle for experimentation. For the sake of simplicity we deal

only with JPEG images in the requests and register only JPEG compression to be used as trans¬

formation algorithms. (We do not expect the choice of transformation algorithms to play an

important role except for the cost of transformations and the reductions in size and quality they

can achieve. The effect of different costs is discussed in Sections 6.4 and 6.5.) The boundary
condition on the minimal quality of the images to be delivered is defined by a fixed JPEG quality
factor of 10. The tolerance on the time limit is set to ±2% (of tieft).

Request. The requests used in this chapter were obtained by using query images that have

been used for the evaluation of the color and texture features integrated in Chariot [40]. For

each of the queries the search engine computed request lists of varying size (12, 25, 50 and 100

images). For each image in a request the search engine provided a similarity measure reflecting
the relevance of the image with respect to the query image. This setup enables us to discuss

aspects of utility in Section 6.6. The levels for the factor request size are 12 images for a small

request and 100 images for a large request. The factor object size distribution takes on the two

levels: constant and variable. Table 6.2 summarizes properties of the requested images for each

of the four requests for two levels of adaptation potential as explained below. The columns

min, max, u and c report the size of the smallest and largest image, as well as the average size

of the images in the request and the standard deviation of the image sizes. The ratio of G and p

partitions the requests into the constant sized requests C\2 and Cioo (with a ratio <C 1) and the



6.3. WHENDOES ADAPTATION WORK? 93

variable sized requests V\2 and Vioo (with a ratio « 1 or > 1). The indices of the request IDs

indicate the number of images in a request.

Adaptation potential. To study the effect of various levels of adaptation potential, all the ob¬

jects of the four requests are available in two versions. First, encoded with a JPEG quality factor

of 100 and second, stored in their default JPEG quality factor (average JPEG quality factor 75).

The first choice provides maximal quality images while the second choice makes a (reasonable)

quality-size tradeoff. Since the boundary condition on the minimal quality acceptable (by the

user) is set to a fixed JPEG quality factor (10) for our experiments, the quality 100 images rep¬

resent high and the quality 75 images represent low adpatation potential. The columns dmax

in Table 6.2 reflect the total size of the images requested in kB for the two levels of adaptation

potential chosen. The boundary condition on the minimal image quality implicitely determines

the minimal amount of data that must be transferred to deliver a request (columns dmm in Ta¬

bles 6.3 and 6.4) and therefore also determines the adaptation potential (CLpot = dmax/dmin, see

columns apot). For the requests used in this experiment the two levels of adaptation potential
differ by a factor of « 2^1.

Adaptation granularity. Based on the observations on size reductions achievable with JPEG

compression, which were made when constructing size models for the transformations used in

our experiments (Section 5.1.3), we identified the following two levels of granularity. For the

level with coarse adaptation granularity the JPEG quality factors 95, 90, 85, 80, 50, and 10 are

used. The quality factors applicable in the fine adaptation granularity scenario are 99, 98, 97,

96, 95, 90, 85, 80,70, 60, 50,40, 30, 25, 20,15, and 10. The extremely fine granularity for high
values of the JPEG quality factor is chosen because the reduction in size is quite considerable

at these levels (see Figure 6.15). The comparatively fine granularity for JPEG factors < 30

has been chosen based on observations made by Mcllhagga et al. [116], who claim that at

these levels the "image quality" deterioriates considerably faster with decreasing JPEG quality
than for higher JPEG quality factors. (The aspect of quality is discussed in Section 6.6.) For

these two choices of adaptation granularity each image of the n images in a request can be

delivered in at most 7 or 18 different versions respectively (including the "original" version).

The columns pv in the Tables 6.3 and 6.4 show the average number of versions per image
for each of the requests, adaptation potentials and adaptation granularities. The column "#

comb." approximates the size of the adaptation space, reflecting the (vast) number of possible
combinations of image versions for each request (« pvn). Note that pv both depends on the

adaptation granularity and the adaptation potential.

Adaptation required. To find appropriate levels for the factor adaptation required1 that re¬

flect how hard the control loop has to work to meet the time limit, we not only need to consider

the ratio of dtrans and dmax (= d[eft(0)), but must take properties of the adaptation space into

account (as discussed in Section 6.1.2). To illustrate the concern raised in Section 6.1.2 we

compute the histograms for the response size distribution for all possible responses for a par¬

ticular request, adaptation potential and adaptation granularity. The response size reflects the

total size of the images returned in response to a particular user request. The histograms in

7We must pick two levels for a (amejmm and ahlgh), where dtmm ~ dmm + (dmax - dmn) • a/100.
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Request Transformations Coarse granularity Fine granularity
ID

"max c?40 d\Q dmn Wpot # comb. /uv «40 «10 # comb. /uv «40 «10

Cu

Vu

Cioo

Vioo

123

232

1352

4320

75 52 44

134 85 69

813 544 454

2264 1236 893

2.8

3.4

3.0

4.8

5.3e+05 3.0

7.1e+05 3.1

5.2e+47 3.0

1.3e+61 4.4

10.3 0.1

2.5 0.2

0.0 0.0

9.6 0.0

2.8e+ll 9.0

3.1e+ll 9.1

2.7e+95 9.0

2.1e+104 11.8

14.7 0.0

6.3 0.2

2.5 0.0

17.2 0.0

Table 6.3: Transformation properties for requests with low adaptation potential. Size information in kB.

Req uest Transformations Coarse granularity Fine granularity
ID

"max J40 d\Q dmin apot # comb. pv «40 «10 # comb. /uv «40 «10

Cl2

Vi2

Cioo

Vioo

609

844

6048

9228

270 100 43

378 145 68

2688 1008 447

4226 1726 892

14.0

12.5

13.5

10.3

1.4e+10 7.0

1.4e+10 7.0

3.2e+84 7.0

3.2e+84 7.0

4.9 0.0

5.0 0.1

8.5 0.0

15.0 0.0

1.2e+15 18.0

1.2e+15 18.0

3.4e+125 18.0

3.4e+125 18.0

3.8 0.2

4.5 0.3

2.2 0.0

10.1 0.0

Table 6.4: Transformation properties for requests with high adaptation potential. Size information in kB.

Figure 6.9, exemplarily depict the normalized8 response size distributions for requests Cn and

Vioo (low adaptation potential, two levels of adaptation granularity). The dashed lines reflect the

maximal and the minimal possible response size (dmin < dtrans < dmax)- The figure indicates that

there can be quite significant differences in the respsonse size distributions between the different

requests. Constant-sized requests tend to have more symmetric distributions than variable-sized

requests, and fine adaptation granularities seem to produce smoother distributions. Most impor¬
tantly, however, the histograms show that there are in fact ratios of adaptation required that are

less easily achievable than others because there are substantially fewer possible responses that

could fulfill the particular time limit.

In principle, we would have to disentangle the factors "reduction ratio" and "likelihood to

achieve the ratio". Because the factors are not independent, we must choose the two levels

for the factor adaptation required so as not to violate the unidirectionality assumption of the

underlying 2k design. This means that the high level of adaptation required must achieve a high
reduction ratio (<xnigh) and there must only be a small set of responses applicable. On the other

hand, the medium level should only require a moderate amount of reduction (a/,;^ < ^medium)
and there should be a considerably larger set of responses that could fulfill the request. The

analysis of the histograms for all the requests, adaptation potentials, and adaptation granularities
considered in this experiment leads us to pick anigh = 10 and (xmedium — 40. Tables 6.3 and 6.4

list the response sizes corresponding to the choice of OLhigh (^lo) and CLmedium (^4o)- The columns

«10 and «40 report which percentage of the possible responses lie within a factor 1 ± e of d\o and

^40 respectively, where e is the tolerance on the time limit (0.02 in our experiments). Note that

a value of 0 in one of these columns does not necessarily mean that the set of possible responses
is empty, but that only -C 0.1 % of all the responses can fulfill the particular request.

Table 6.5 summarizes all the factors and factor levels used in the 2kr experiment (k = 9).
The factors RS and RD are client-specific and determine which images are requested from the

Normalized means that the area below the histogram equals 100 (%).
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data [MB] data [MB]

Figure 6.9: Normalized histograms of response sizes for requests Cu (upper figures) and Vu (lower

figures) for the two levels of adaptation granularity coarse (figures on the left) and fine (figures on the

right). Both requests reflect the scenario with low adaptation potential.

Factor Abbrev. Level — 1 Level 1

Bandwidth BW

Volatility BV

low (ISDN)

none

high(Tl)

high

Prepare required PREP

CPU CPU

yes

i686/NetBSD

no

2 uSPARC/SunOS

Request size RS

Size distribution RD

Adaptation potential AP

Adaptation granularity AG

Adaptation required AR

small (12)

constant

low (0 quality 75)

coarse (< 7)

medium (40%)

large (100)

variable

high (0 quality 100)

fine(< 18)

high (10%)

Table 6.5: Factors and factor levels for the 2kr experimental design (k = 9, r = 5).
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server. The factor CPU indicates which server to contact. The factors AP, AG and PREP are

server-specific in that they determine which version of the images requested must be delivered

(factor AP), what transformation algorithms are applied (AG) and whether all the possible ver¬

sions of the images must be precomputed or not (PREP). The factors BW and BV are used to

select the appropriate bandwidth replay trace to emulate the bandwidth available. The factor

AR implicitly determines the time limit. The time limit for each of the 2k experiments is com¬

puted as a function of the factors RS, RD, AP, BW, BV and AR. RS, RD and AP determine dmax,
AR determines dtrans9, and BW and BV determine how long it takes to transfer the dtrans bytes
across the network. The tolerance on the time limit e used in the experiments is defined as

max(0.02 t[eft,0.l) seconds, that is, the tolerance interval narrows as the transfer progresses.

Each of the 2k experiments is run 5 times (i.e., r = 5). The adaptation policy used is the same

as in the examples in Section 6.2 and as described in Section 6.1.3.

6.3.3 Results

The evaluation methodology chosen (a 2k factorial design with replications) allows us to deter¬

mine the effects of the 2k factors and their interactions on the performance metrics of interest

according to the procedures described in [82]. The two metrics of interest in this section are

the deviation from the time limit at the end of the image transfer and the utilization of the

bandwidth available. The term tdiff is (re)used to reflect the relative deviation from the time

limit (tdiff = 100 (tused — tallotted)hallotted)- The importance of a factor is measured by the pro¬

portion of the total variation in the response, i.e. in the performance metric of interest, that is

explained by the factor. Since the experiments are repeated r — 5 times, the percentage of the

total variation in the response that is due to experimental errors can be isolated. The variance of

the sample estimates a^ can be used to compute confidence intervals for the effects of each of

the factors and factor combinations (assuming that the errors are normally distributed with zero

mean and variance Gg). All the confidence intervals reported in the following are computed
at a confidence level of 95%. A factor whose confidence interval for the effect includes 0 is

statistically not significant.

How to read the results?

The following paragraphs explain how to read the results of the 2k experiment. The results are

presented in tabular form such as shown in Table 6.6. (This introduction closely follows the

methodology described by Jain [82]). The interpretation of the results and conclusions from the

results are deferred to separate sections below.

Table 6.6 lists the key factors effecting the tdiff metric in decreasing order of importance, that

is, in decreasing order of the variation explained by the factor. Factors and factor combinations

are separated and only listed if they explain more than 2% of the total variation. The row mean

reports the mean tdiff for all the 2kr = 2560 experiments conducted and the 95% confidence

interval for the mean. On average, the time limit is exceeded by 21.9%. The key factors that

effect how well (or how badly) the control loop is able to meet the time limit are bandwidth

(BW) and whether or not the images need to be transformed at run-time (PREP). Both factors

9Recall, that dmn is implicitly defined by the choice of the minimal quality acceptable.
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explain around 14% of the variation (BW explains 13.9% and PREP explains 13.6% of the total

variation). The effects are interpreted as follows: The value for the effect of a factor, e.g., the

18.7% for the factor BW, indicates that the factor effects the mean tdiff by ± 18.7%. For the level

1 of the factor BW, i.e. in case of a high bandwidth (ADSL) connection, the mean tdiff increases

by 18.7% (to 40.6%). For the level -1 of the factor BW, i.e. in case of a low bandwidth (ISDN)

connection, the mean tdiff decreases by 18.7% to 3.2%. A negative value for the effect, such

as the —18.6% for the factor PREP, indicates that the mean is affected by =p 18.6%. For the

level — 1 of the factor PREP, i.e. in case transformations must be applied at run-time, the mean

tdiff increases by 18.6%. On the other hand, in case all the versions of the images requested are

precomputed, i.e. for level 1 of PREP, the mean tdiff is reduced to 3.3%.

Because the factors are not independent, we cannot conclude that in a situation with low

bandwidth and precomputed images the mean tdiff would be —15.4% (i.e. 18.7 + 18.6 = 37.3%

lower than the average 21.9%). To draw conclusions about situations where a subset of the k fac¬

tors are kept fixed (e.g., where BW and PREP are kept fixed), the effects of all the factor combi¬

nations that include any of the fixed factors (e.g., that include BWor PREP) have to be taken into

account. For the interaction of BW and PREP, for instance, we see that level — 1, which com¬

prises the two combinations (BW(-l),PREP(l)) and (BW(l),PREP(-l)), results in a 18.8%

higher mean tdiff, whereas level 1, which comprises the other two combinations, results in a

18.8% lower mean tdiff. BW(—l) denotes level -1 of factor BW. Thus, for a particular situation,

e.g., (BW(—l),PREP(l)) reflecting a scenario with low bandwidth and precomputed images,
we would have a tdiff of 2l.9(mean) - 18.7(5W) - IS.6(PREP) + 1S.S(BW,PREP) = 3.2%

(not counting other factor combinations that include BW and PREP).

Since the analysis of the results for specific combinations of (fixed) factors is complicated
considerably by such interaction effects, we will study the scenarios of interest in isolation and

present the effects for the "reduced" factorial designs separately (instead of deriving them from

the overall results).

Overall results

Time limit. Table 6.6 shows the key factors effecting the control loop's ability to meet the

time limit. As mentioned above, the most important factors are the bandwidth available for the

transfer and whether transformations are required at run-time (prepare required) or whether all

the image versions have been precomputed. Less important, but still significant are the factors

adaptation required, CPU, and adaptation potential. To qualify the importance of the key fac¬

tors identified we must compare them to the percentage of variation explained by experimental
errors. Experimental errors explain merely 1.1% of the total variation and are thus negligible.
The effects of the key factors are fairly intuitive. The higher the bandwidth is, the less time

there is to adapt and to reduce the quality of the objects and — since the degree of adaptation
required is fixed and hence the transformation costs are constant — the more likely it is that the

adaptation and transformation costs exceed the time limit. However, if the reductions in quality
come for free, that is, if the CPU is extremely fast or if all the versions are precomputed, the

penalty in terms of deviation from the time limit is marginal (3.3%; see Table 6.8). The ef¬

fect of the factor CPU (—8.5% for the faster CPU) also supports this argumentation. Similarly
intuitive is that the higher the adaptation required is, the higher are the transformation costs
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Factor Effect Variation Conf. Interval

Mean 21.9 (21.6, 22.1)

BW

PREP

AR

CPU

AP

18.7 13.9 (18.5, 18.9)

-18.6 13.6 (-18.8,-18.3)

12.9 6.6 (12.6, 13.1)

-8.5 2.9 (-8.7, -8.3)

-7.4 2.2 (-7.6, -7.1)

BWPREP

BW PREP AR

PREP AR

BWAR

BWCPU

BWPREP CPU

PREP CPU

-18.8 14.0 (-19.0,-18.6)

-11.5 5.2 (-11.7,-11.2)

-11.3 5.1 (-11.6,-11.1)

11.1 4.9 (10.9, 11.4)

-8.6 2.9 (-8.8, -8.3)

7.9 2.4 (7.6, 8.1)

7.8 2.4 (7.5, 8.0)

Errors 1.1 (<7e = 5.9)

Table 6.6: Key factors and their interactions (listed in decreasing order of "importance") and their effects

on the tdiff metric. The upper part of the table lists the effects of individual factors; the lower part lists

the effects of factor combinations, tdiff reports the relative deviation from the time limit (in %), i.e.

100 • (tused — tallotted) 11allotted- The "importance" of a factor is reflected by the percentage of variation in

the tdiff measurements explained by the factor. Factors and interactions of factors are only listed if they

explain more than 2% of the variation. The last column lists the confidence intervals for the effects at a

confidence level of 95%.

Factor Effect Variation Conf. Interval

Mean 87.9 (87.8, 88.0)
BW

PREP

CPU

-10.9 24.4 (-11.0,-10.8)

10.5 22.8 (10.4, 10.7)

3.3 2.2 (3.2, 3.4)

BWPREP 9.9 20.3 (9.8, 10.1)

Errors 1.5 (ae = 3.0)

Table 6.7: Key factors and their interactions (in decreasing order of importance) and their effects on

bandwidth utilization (in %): 100 — (possible — actual)/possible. Factors listed if variation explained
>2%.
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bandwidth

tdiff [%] utilization [%]

low high low high

prepare required

no prepare required

2.9 77.9

3.4 3.2

98.2 56.5

99.4 97.5

Table 6.8: Summary results for 2kr experiment classified according to the key factors prepare required

and bandwidth.

and the worse is the performance "timewise". The factor AR makes a difference on the mean

tdiff of ± 12.9% (for the comparatively small difference between the two degrees of adapta¬

tion required dhigh = 10% and ctmedium = 40%). Furthermore, the fact that tdiff increases with

decreasing adaptation potential confirms the presumption made in Section 6.1.2, which stated

that the chances that the system can react to changes in resource availability should increase

with higher levels of adaptation potential.

The 21.9% by which the time limit is exceeded on average represent quite a considerable

and disturbing performance penalty. A closer inspection of the results reported in Table 6.6,

which takes the interaction of factors into account, reveals that the adaptation mechanisms per¬

form very favorably both in low bandwidth scenarios and in case no transformations must be

applied at run-time, as the time limit for these three cases is merely exceeded by < 3.4% on

average (see Table 6.8). Only in the case of high bandwidth and prepare required does the

performance degrade substantially (tdiff is 77.9%). Reasons for this performance penalty and

possible remedies are discussed below.

Bandwidth utilization. Table 6.7 lists the key factors effecting the control loop's ability to

make efficient use of the bandwidth available. For this metric, the situation is much simpler as

there are basically only two factors, bandwidth (BW) and end-system conditions (CPU, PREP),

that effect performance. The mean bandwidth utilization for all the 2kr experiments is 87.9%.

The factors BW and PREP both account for about 23-24% of the total variation and effect

bandwidth utilization by =F 10.9% and ±10.5% respectively. The effects observed are analogous
to the effects on the tdiff metric, that is, low bandwidth or fast CPU result in higher utilization.

Experimental errors are again negligible as they merely account for 1.5% of the variation.

The non-optimal bandwidth utilization of 87.9% is again mainly a consequence of the two

primary factors PREP and BW, as well as their interaction. As shown in Table 6.8 scenarios

with low bandwidth or no transformation costs achieve a nearly optimal bandwidth utilization

(> 97.5%), whereas the high bandwidth situations that required prepare activity performed less

favorably (utilization 56.5%, see discussion below).

Robustness. It is interesting to note that the key factors effecting tdiff and the utilization of

the bandwidth available do not include factors such as request properties (request size and size

distribution) or transformation properties (adaptation granularity). This result means that these

factors do not seem to effect performance significantly. More astonishingly, whether bandwidth

fluctuates or not does not make a notable difference in performance either. This finding is

important because it indicates that model-based adaptation does not suffer instability problems

regardless of how many of the factors influencing adaptation decisions vary.
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The result is somewhat surprising, because the examples presented in Section 6.2 seem to

indicate that high bandwidth volatility (such as present in the Internet scenario) is problematic

for the effectiveness of adaptation. Care must be applied when drawing final conclusions here,

as these results may be simply an artefact of the choice of the bandwidth traces used in the 2kr

experiment. Note for instance that real-world bandwidth traces can exhibit considerably higher

volatility than the synthetic traces used here. Nevertheless, the result is promising, as it indicates

that the framework is robust enough to deal with medium levels of bandwidth volatility without

negative impact on adaptation performance. The aspect of volatility is investigated further in

Section 6.7.

In summary, the results in terms of tdiff and in particular bandwidth utilization are encour¬

aging, because they indicate that the adaptation mechanisms are fairly robust in delivering rea¬

sonably high quality responses regardless of most of the factors studied in this experiment. As a

consequence, performance considerations boil down to the communication-computation trade¬

off striven for by network-aware content delivery. Section 6.4 investigates this tradeoff in more

detail.

Detailed results: high bandwidth, prepare required

Experiments with the factors high bandwidth and prepare required experience considerable

performance problems, both in terms of deviations from the time limit and in terms ofbandwidth

utilization. The following paragraphs discuss causes and possible remedies.

As far as the metric tdiff is concerned, performance problems clearly arise when the costs for

the entire adaptation process exceed the difference of time limit and the time needed to transmit

a minimal quality response. Bandwidth utilization suffers mainly in case of prepare phase-
transmit phase mismatches and can therefore be adversely affected even before the adaptation
costs exceed the difference above. As will be detailed in Section 6.5, the costs for adaptation

mainly comprise transformation costs and decision making overhead. There are other sources

of overheads though, for example, the initial request processing or potential start-up latencies

(see Section 4.7).

A key to understanding the results is the fact that we chose to use two (fixed) levels for the

factor adaptation required (a) for the experimental design. A fixed a implies that the time limit

decreases with increasing bandwidth. Thus, high bandwidth means short time limits. Moreover,

a fixed a implies constant transformation costs (for varying bandwidth levels).

Thus, there are basically two factors that can adversely effect performance: (i) small time

limits, and (ii) high bandwidths. First, the shorter the time frame allotted for response delivery,
the more likely it is that the fixed costs (such as decision making overhead) cannot be amor¬

tized over the short time period and hence the more likely it becomes that the time limit is

exceeded. Second, the higher the bandwidth, the more likely are prepare-transmit phase mis¬

matches given constant transformation costs. (Such mismatches affect bandwidth utilization if

tprep > ttrans-) This reasoning is supported by the numbers on idle transmit times (Udie), ob¬

served for the experiments, where tidie = Y4L1 tnax(tprep(obji^\ ) - ttrans(obji),0). Considering

only the experiments with prepare required we find that the low bandwidth experiments suffer

only 1.4 seconds idle transmit time on average, whereas the mean t{die in the high bandwidth

experiments is 6.5 seconds. Since the average time limit for the high bandwidth experiments is
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only 7.8 seconds, it is clear why the performance is lousy.
How could this unsatisfactory situation be remedied? An obvious approach is the reduction

of costs. There are several options to reduce costs. First, optimistic start-up strategies (see Sec¬

tion 4.7) can reduce start-up latency. Second, performance tuning may allow to reduce decision

making overhead and request processing latencies. A third option would concern transforma¬

tion costs. How can the transformation costs be reduced (if the degree of adaptation required

(a) is kept fixed and the transformations used are assumed to be optimized for execution time)?

Changing the adaptation policy (Section 6.1.3) from evenly distributing the data and quality
reductions among all the transmission objects, e.g., to concentrate the reductions on as few

objects as possible (e.g., the least important ones) may be able to reduce transformation costs

to some extent (by 16% in the case of the Chariot experiments). Noting that tid\e is effected

significantly by the factor request size distribution—ttdie is significantly smaller for the requests

with constant-sized objects—we expect that a more sophisticated adaptation policy that tries to

rearrange the objects within a request would be able to minimize tidie and hence would improve

performance.

6.4 Communication-computation tradeoff

The previous sections identified bandwidth and CPU power as the dominant factors effecting

performance. Furthermore, the results of the 2kr experiment indicate that the other factors

(request properties, transformation properties, etc.) often effect adaptation performance only

marginally. This implies that the adaptation mechanisms are fairly robust in delivering reason¬

ably high quality responses regardless of most of the factors studied in the experiment. As a

consequence, performance considerations boil down to the communication-computation trade¬

off striven for by network-aware content delivery. This section discusses this tradeoff.

6.4.1 Experiment

The results of the 2kr experiment are somewhat counter-intuitive as performance dwindles with

increasing bandwidth. After all, the idea behind the type of network-aware delivery proposed
in this dissertation is to compensate low bandwidths with reductions in quality and size of the

data to be delivered to meet a user-specified time limit. For a particular time limit we would

expect that the smaller the bandwidth, the higher the "compression" ratios required and the

higher the transformation costs. Thus, we would expect low bandwidths to be problematic as

far as performance is concerned.

Therefore, instead of keeping the degree of adaptation required constant, as in the case of

the 2kr experiment, we ought to study scenarios where the time limit is kept constant and the

bandwidth varies, because this setup more closely reflects the service model provided to the user

(Section 3.2). (We did not do so in the 2kr experiment because the range in which the bandwidth

can vary is limited by the adaptation potential of the request. The adaptation potential can be

fairly low as can be learned from Table 6.3 for example.)
To study the computation-communication tradeoff in more detail we conduct the following

experiment. Using a fixed request (50 constant-sized JPEG images, high adaptation potential)
and a fixed time limit of 30 seconds (to avoid problems that result from too small a time limit,
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see Section 6.3.3) we study performance as a function of bandwidth and CPU power. With

the request used, the bandwidth can be varied from 85 kbit/s up to 1.1 Mbit/s. If we chose

bandwidths < 85 kbit/s, we could not help but missing the time limit because even a minimum

size response (dmin) would require more than 30 seconds to be delivered. If we chose band-

widths > 1.1 Mbit/s, no adaptation would be required, the images could be sent unchanged and

the transfer would end before the time limit expires. For the sake of simplicity, only constant

bandwidth traces are used for this experiment.

How can the factor CPU power be varied? Using different platforms for the server is quite
resource-intensive and may only provide a limited range of performance levels, which are hard

to quantify since numerous factors effect performance of a computer system for a given non-

trivial workload. Using different levels of background host loads is problematic because tprep

may not linearly depend on cprep and load, but may also depend on other factors, such as the

cumulative resource consumption of the background processes [119] or the specific operating

system (and the scheduling discipline) used10. These considerations lead us to emulate the effect

of a CPU n times slower than a reference CPU by using an n times more costly transformation

algorithm. Even though the transformation algorithms are easily replaceable in our framework,

it may prove difficult to find appropriate transformations that meet the requirements on CPU

resource consumption. For our experiments, we solved the problem by replacing the actual

transformations (e.g., JPEG compression) by an artificial transformation algorithm that would

consume a specified amount of CPU resources and would reduce the transmission objects by

a specified amount of bytes11. This approach is clearly limited, as it neglects many of the

complexities of real workloads. On the other hand, the approach has the nice property that it

allows to emulate the performance of (n times) faster servers by using (n times) less expensive
transformations.

The results discussed in the following are obtained by running the Chariot server on a 200

MHz Pentium Pro PC with NetBSD 1.3. The y-scale of the figures presented below reflects

CPU power. The y-scale is indexed and 1 indicates the effective transformation costs for JPEG

compression. A value of y means 1/y-times the effective costs for JPEG compression, y = °o

indicates an infinitely fast CPU, that is, reports the results for a configuration where all the

possible responses are precomputed. For each bandwidth level and each level of CPU power

the experiment has been repeated 5 times. The figures report the median performance (variance

due to experimental errors is very low).

6.4.2 Results: Constant time limit

Time limit. For a constant time limit and a fixed request we would expect the smaller the

bandwidth gets, the higher the transformation costs are and thus the more likely it is that the

time limit is exceeded. The time limit is exceeded if the transformation costs are larger than the

difference of the time limit and the time needed to transmit a minimum size response. Further-

10Section 4.4 suggests a simple linear relation between load and cprep, however, mainly for the sake of simpli¬

fying the discussion. Future work must show how the duration (wallclock time) of a task can be estimated reliably.
Accurate predictions of host load may provide a basis here [42].

11
The application-specific resource models for CPU consumption of {cprep) and the size reduction achieved by

a particular transformation provide the necessary information to emulate the resource requirements of an actual

transformation, e.g., JPEG compression.
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Figure 6.10: tdiff (in %) as a function of bandwidth and CPU power. Constant time limit.
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Figure 6.11 : Performance loss (=100-bandwidth utilization) as a function ofbandwidth and CPU power.

Constant time limit.
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more, the slower the CPU, the longer it takes to perform a given transformation and thus the

more likely it is that the time limit is exceeded. Figure 6.10 shows the r^-metric as a function

of bandwidth and CPU power in a contour plot. Note that both the x- and the y-axis are logarith¬

mically scaled (base 2). The bandwidth levels of 0.128, 0.256, 0.5 and 1 Mbit/s reflect adapta¬
tion ratios a, as defined in Section 6.3.2, of 4.5, 17.7, 43.0 and 94.8% respectively. Note further

that the z-axis is also logarithmically scaled (base 10; same number of contour lines for each

order of magnitude). The results reveal no surprises, performance gets worse with decreasing
bandwidths and with decreasing CPU power. We see that down to a CPU level of 1/2 the time

limit is not exceeded for all levels of bandwidths studied. This observation implies that if the

CPU is fast enough for low bandwidths there won't be any problems at high bandwidths either

(because the transformation costs decrease approximately with the same rate as the bandwidth

increases). This finding also implies that the fixed costs indeed seem to be negligible for such

a long time limit. This result confirms what was a speculation in Section 6.3.3. Furthermore,

the figure indicates that the region with acceptable performance (tdiff < 10%) seems sufficiently

large to allow adaptation to be useful in a wide range of situations. There is obviously a sweet

spot for CPU power (or transformation costs) below which performance dwindles rapidly. Note

that for CPU power of less than 1/2 the power of the 200MHz PC (i.e. for y < 1 /2) a reduction

of factor 2 in CPU power results in about a factor 2 increase in the time needed for the transfer

(i.e., tdiff increases from < 10% to « 100%).

Bandwidth utilization. Likewise, we would expect utilization of the available bandwidth to

decrease either with decreasing bandwidth or decreasing CPU power, because the transforma¬

tion costs go up. Figure 6.11 shows a contour plot of the performance loss (=100-bandwidth

utilization) as a function of bandwidth and CPU power. Again, both the x- and the y-axis are

logarithmically scaled (base 2). The z-axis is linearly scaled (a contour line for every 5% in¬

crease in performance loss). At first sight, the results seem to exhibit a non-intuitive behavior,

as the performance loss does not increase continually with decreasing CPU power or decreasing
bandwidth (in other words, the utilization does not decrease continually). This behavior can be

explained as follows. Recall, that time is the primary optimization criterion for the feedback

control loop, which tries to minimize | tdiff |. As a consequence, for a fixed level of bandwidth

(e.g., 256 kbit/s), there is a level of CPU power (1/4 for this bandwidth), below which the sum

of the transformation costs (to reduce the objects to minimal quality) and the transmission costs

(to send these reduced objects) exceed the transmission costs of the uncompressed objects. In

other words, it is cheaper "timewise" to deliver some objects (or all objects if the CPU is too

slow) uncompressed than to reduce their quality and size first. Therefore, if the objects are sent

uncompressed the utilization of the available bandwidth increases again (i.e. performance loss

decreases). Once the CPU is so slow that all the objects are delivered uncompressed, the avail¬

able bandwidth is completely utilized and the time limit is not exceeded further with decreasing
CPU power because the time it takes to deliver the response is completely determined by the

bandwidth, i.e. the time to transmit the objects. This behavior can be seen in Figures 6.10

and 6.11 (e.g., pick the bandwidth level of 0.5 Mbit/s and go along the axis indicating CPU

power).

The fact that bandwidth utilization (Figure 6.11) first drops and then increases again with

decreasing CPU power may seem to be at odds with the assumption of unidirectionality under-
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Figure 6.12: tdiff (in %) as a function of bandwidth and CPU power. Constant adaptation ratio.

lying the 2kr experiment. There are two comments to make here. First, in the 2kr experiment
the levels of the factor CPU are varied from the low level (200 MHz Pentium Pro), which served

as the basis for the scaling of the y-axis in the contour plots in Figures 6.10 and 6.11, towards

faster CPUs (300 MHz Ultra Sparc and an infinitely fast CPU). In this range (y > 1) the assump¬

tion of unidirectionality is not violated. Thus, the conclusions drawn from the 2kr experiment
are valid. Second, note that the most important metric is tdiff (this is the metric our adaptation
framework optimizes for) and note that the assumption of unidirectionality is not compromised
for the tdiff metric.

In summary, the results reported in this section show that network-aware delivery with the

goal to meet a time limit performs as expected, that is, it can provide predictable response times

over a wide range of bandwidths and CPU powers. This conclusion may seem rather mun¬

dane, but it has to be emphasized that the observations on bandwidth utilization also imply that

adaptation does not do anything bad, that is, does not perform worse than an appropriate static

delivery policy would. (This result will be reconsidered under different aspects in Sections 6.5

and 6.6). Furthermore, we find that a medium performance workstation suffices to perform
the communication-computation tradeoff required by applications such as Chariot for example.
Moreover, we note that—unlike in the case of fixed adaptation ratios discussed in Sections 6.3.3

and 6.4.3—high bandwidths are not problematic per se (if the time limit is sufficiently coarse).

6.4.3 Results: Constant adaptation ratio

To investigate how the choice of the time limit effects performance we conduct an experiment
similar to the one in the previous section. Instead of keeping the time limit fixed and thus

varying the degree of adaptation required (a) with varying bandwidths, we now use a constant

adaptation ratio a = 50. Therefore, the higher the bandwidth, the smaller the time limit. The
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Figure 6.13: Performance loss as a function of bandwidth and CPU power. Constant adaptation ratio.

request used for this experiment requires 647 kB of data to be transmitted with a = 50. Varying
the bandwidth from 32 kbit/s to 4 Mbit/s means that the time limit decreases from 165 to 1.3

seconds. Figures 6.12 and 6.13 present the performance (metrics tdiff and performance loss)

as a function of bandwidth and CPU power. Again, the x- and the y-axis are log-scaled (base

2) and the z-axis for the tdiff metric is also log-scaled (base 10). The y-axis is indexed and 1

indicates the effective transformation costs for JPEG compression on a 200 MHz Pentium Pro

PC. The results are not surprising as there is a main trend showing that performance degrades
either as bandwidth increases or CPU power decreases. Once the sweet spot of CPU power

and bandwidth is reached performance seems to decrease linearly (with increasing bandwidth

and decreasing CPU power). Increasing bandwidth and decreasing CPU power both imply a

shift (towards smaller values) in the ratio of time available to transmit the data and time needed

to carry out the transformations. The smaller this ratio, the more likely that the time limit is

exceeded.

The effect of small time limits becomes obvious when studying the contour lines of the tdiff

plot (Figure 6.12). Between (bw — 0.256, cpu — 1/8) and (bw — 2,cpu — 1) the contour lines

form a straight line. Consider contour line for tdiff = 40% for instance. For bw > 2 we see that

the contour lines break this linear trend (towards higher tdiff values, i.e. worse performance).
This observation implies that the CPU must be proportionally faster for high bandwidths (and

thus small time limits) than for small bandwidths to keep performance penalties small, that is,

to amortize the fixed costs over the small time frame. Similar, however, less obvious results

can also be derived from the performance loss plot in Figure 6.13. The fact that performance

degrades more rapidly at higher levels of bandwidth (and smaller time limits) is reflected by
a higher and a slightly broader "ridge" in the performance loss contour plot for bw > 1. The

findings imply that for a time limit smaller than « 3-4 seconds (reflecting a bandwidth larger
than pö 1.5 Mbit/s in our experiment) the fixed costs (see Section 6.5) start to dominate the time



6.4. COMMUNICATION-COMPUTATION TRADEOFF 107

Factor Effect Variation Conf. Interval

Mean 3.3 (3.2, 3.5)

AP

AR

-2.1 12.5 (-2.2, -1.9)

1.5 7.0 (1.4, 1.7)

BWBV -1.8 9.3 (-1.9, -1.6)

Errors 15.5 (oe = 2.6)

Table 6.9: No prepare required: Key factors, their interactions and their effects on tdiff. Factors listed if

variation explained by factor > 5%.

Factor Effect Variation Conf. Interval

Mean 98.4 (98.2, 98.6)

RS

CPU

-1.2

1.0

6.8

5.1

(-1.3, -1.0)

(0.8, 1.2)

Errors 40.9 (oe = 3.2)

Table 6.10: No prepare required: Key factors, their interactions and their effects on bandwidth utilization.

Factors listed if variation explained by factor > 5%.

available for transmission of the response. As alluded to in Section 6.3.3 there are a number

of measures that may allow to reduce the fixed costs and thus may help to increase the range

of time limits (towards smaller time limits) for which adaptation performs favorably. However,

there will always be a lower limit on the time frame below which adaptation performs poorly.
As a consequence, the type of network-aware content delivery mechanisms proposed in this

dissertation may not be suited to meet very small time limits. Since this lower limit is clearly

application-dependent, no final answer can be given as to what is the useful operation range (in

terms of time limits) for network-aware delivery.

6.4.4 Computation-storage tradeoff

The factor prepare required, that is, whether images must be reduced at run-time or whether all

the reduced versions of the images are precomputed has a significant impact on performance
as indicated by the overall results presented in Section 6.3.3. The impact is significant enough
to warrant a discussion whether the potential negative effects of on-line reduction in terms

of missing time limits and underutilizing bandwidth are worth the savings in storage space

compared to an approach which pre-computes and stores all the versions of the images.
Before drawing any conclusions we must first get a feeling for (i) the potential benefits

of and (ii) the costs incurred by a solution which precomputes the responses or — more real¬

istically — caches intermediate results. In the end, the question whether precomputation, or

caching, yields any performance benefit boils down to the classic questions related to any kind

of caching. This means that without application-domain knowledge, e.g., about user access pat¬

terns, the question cannot be answered conclusively. The following results provide some rough
numbers on potential benefits and costs in the case of the Chariot system examined here.

Tables 6.9 and 6.10 show the results for those of the 2kr experiments that rely on precom¬

puted images. As can be seen, these experiments achieve almost perfect adaptation perfor-
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Adaptation

potential

Adaptation granularity

coarse fine

low

high

2.4-2.7 6.4-6.7

2.9-3.3 7.0-7.8

Table 6.11: Ratio of storage space required for all precomputed versions of the images in a request to the

space required to store the uncompressed versions only. Range spans the ratios observed for the requests

Ci2,Vi2, Cioo and Vioo-

mance. On average, the time limit is exceeded by 3.3% and the bandwidth available is utilized

to 98.4%. The factors that influence performance have only a very limited effect on average

performance. In fact, the experimental errors explain most of the (small) variation in the mea¬

surements observed. This observation and the fact that bandwidth has no notable effect on

performance (in contrast to the overall results presented in Section 6.3.3) indicate that network-

aware delivery with precomputed images can tide networked users over a wide range of band-

widths and still meet even comparatively small time limits at satisfactory levels of quality. This

result must be put in relation to the performance penalty that might have to be witnessed, if the

images are reduced at run-time (as discussed in Section 6.4.2), and the costs incurred in terms

of CPU usage and storage as discussed below.

Table 6.11 illustrates how much (i.e. how many times) more storage space would be re¬

quired, if all the versions of images that can be requested were precomputed and stored on disk.

The data reflects the properties of the requests C12, V12, Q00 and Vioo used in the 2 r experiment
and thus give only approximative figures. The amount of additional storage space required can

be quite considerable (up to factor 8) and it increases with increasing adaptation granularity.
How to resolve the tradeoff between computation and storage remains to be evaluated in

each particular application domain. Version caching has been implemented in the Chariot pro¬

totype, that is, in the instantiation of the framework (see [127] for details). Version caching
would also be a useful addition to the general framework, however, to be implementable, an

application-independent method of identifying "cache-hits" would have to be devised.

Apart from discussing the computation-storage tradeoff, it is interesting to note in Table 6.10

that the factors request size and cpu power turn up in the evaluation of bandwidth utilization.

As noted above, the factors have an almost negligible effect. This result is good news, as the

factor request size denotes a per object overhead. The fact that CPU effects the performance of

experiments which rely on precomputed images shows that there are other sources of overhead

(in addition to those discussed in the following section). Fortunately, these overheads are very
small.

6.5 Costs of adaptation

So far, we have seen that adaptation can fulfill its objectives and may do so in a fairly wide

range of situations. Hence, to gauge the claimed benefit of adaptation, we must contrast it to the

(run-time) costs of the adaptation process. There are basically two sources of overhead to be

considered: the decision making overhead incurred during the adapt phases (Section 6.5.1), and
the CPU resources needed for the bandwidth tradeoff (Section 6.5.2). Again, we are interested
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Factor Effect Variation Conf. Interval

Mean 3.3 (3.3, 3.3)

BW

AG

PREP

RS

2.5 15.7 (2.5, 2.6)

1.7 7.3 (1.7, 1.8)

-1.5 5.6 (-1.5, -1.5)

1.5 5.5 (1.5, 1.4)

Errors 1.7 (ae = 0.9)

Table 6.12: Relative adaptation (=decision making) overhead is represented as a percentage of the time

used to deliver the response. Key factors, their interactions and their effects on the adaptation overhead

are reported if variation explained by factor > 5%.

in quantifying the effects of various external and internal factors on the adaptation costs. For

that purpose, we reuse the evaluation methodology applied in Section 6.3; instead of considering

tdiff or bandwidth utilization, we now use the decision making overhead and the transformation

costs as the response variables of interest.

6.5.1 Adaptation overhead

The adaptation overhead captures the time spent on making adaptation decisions. Because in

our design the adapt phases are not overlapped with "useful" (prepare or transmit) activity (see
Section 4.4), the decision making overhead, if considerably large, may have a serious negative
impact on adaptation performance. Table 6.12 shows the relative adaptation overhead and the

key factors that influence it. Relative means that the numbers represent the decision making
overhead as a percentage of the total time used for response delivery. On average, for all the

2kr experiments only 3.3% of the time required to answer a request and deliver the response

are consumed to make adaptation decisions. This result is rather promising because it indicates

that the adaptation overhead is indeed fairly low and therefore confirms the statement made in

Section 6.4.2, which claimed that adaptation does not incur higher overheads than a comparable
static delivery policy. Studying the factors that effect the mean overhead reveals bandwidth as

the primary factor. In principle, there may again be two reasons why bandwidth is the primary
factor. First (as noted in Sections 6.3.3 and 6.4.3), high bandwidth implies small time limits

which may be problematic as the adaptation costs cannot be amortized over the short time

frames. Second, high bandwidths may effectively incur higher absolute costs (for whatever

reason). Table 6.13, which reports the absolute adaptation costs, weakens the second argument
as bandwidth does not (significantly) effect the absolute costs. As a consequence, adaptation
costs (as are any other fixed costs) are problematic for scenarios with short time limits, and

are otherwise mainly influenced by the factors adaptation granularity, prepare required, and

request size.

High adaptation granularities and large requests negatively impact adaptation costs (both in

relative and in absolute terms), because the "solution space" increases considerably with the

adaptation granularity and the number of objects in the request. That is, there are consider¬

ably more combinations of objects and transformations possible that may achieve a particular
response size and that have to be compared to maximize utility (see Tables 6.3 and 6.4). The

negative impact of the factor prepare required can be explained as follows. If the objects are
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Factor Effect Variation Conf. Interval

Mean 0.78 (0.77, 0.79)

RS

AG

0.74 21.6 (0.73, 0.75)

0.44 7.8 (0.43, 0.46)

RS AG 0.42 7.1 (0.41, 0.44)

Errors 2.7 (oe = 0.29)

Table 6.13: Absolute adaptation (=decision making) overhead [in seconds]. Key factors, their interac¬

tions and their effects on the adaptation overhead are reported if variation explained by factor > 5%.

reduced at run-time, readjustments of the adaptation decisions may become necessary, e.g., if

the transformation costs in terms of CPU usage (cprep) or in terms of wallclock time (tprep)
are wrongly estimated. Such readjustments of the adaptation decisions obviously incur higher

adaptation costs. In case the images are precomputed the likelihood that such readjustments

become necessary is significantly lower.

6.5.2 Transformation costs

The number of CPU cycles required to reduce the quality of the objects transmitted is applica¬

tion-dependent. Therefore, we only briefly discuss (or review) three findings that may also be

valid in a broader context.

First, analyzing the key factors effecting the total transformation costs ofthe 2kr experiments

(for a particular CPU), we find that the relative transformation costs are mainly effected by
the factors bandwidth and degree of adaptation required. That is, the relative transformation

costs increase with high bandwidths and high degrees of adaptation required. Following the

argumentation of the previous sections this result appears obvious, as both factors shorten the

time limit and thus the overhead for reducing the quality of the objects transmitted becomes

large compared to the time limit.

Second, since the degrees of adaptation required are kept fixed (for varying bandwidths) in

the 2kr experiment, we would expect the absolute transformation costs to remain unchanged
for varying bandwidths. However, we find that for the "slow CPU" (Pentium Pro) the absolute

transformation costs are 14.2 seconds on average for the low bandwidth experiments and 11.3

seconds for the cases with high bandwidth. The observations on bandwidth utilization made in

Section 6.4.2 also explain this result.

Third, the absolute transformation costs are effected only marginally by the degree of adap¬
tation required—for the comparatively high degrees of adaptation required chosen in the 2kr

experiment (a = 10%, 40%). This is somewhat surprising, since we would expect the trans¬

formation costs to increase (more drastically) with increasing degrees of adaptation required

(i.e. with decreasing a). The result can be explained by the fact that the "constant" overheads

for starting the transformation algorithm (e.g., JPEG compression) and for reading the object

(image) from disk may outweigh the additional costs incurred by a higher compression ratio.

These overheads are constant in the sense that they are not effected by the degree of adaptation

required (beyond a certain value of a). The results in terms of transformation costs for the

experiment described in Section 6.4.2 support this argument: Figure 6.14 plots the total abso¬

lute transformation costs as a function of bandwidth and the costs for a single transformation.
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Figure 6.14: Total transformation costs for on-time request delivery as a function of bandwidth and the

costs of a single transformation. Time limit for request = 30 seconds. Cost for a single transformation

are scaled, 1 reflects the cost for JPEG compression on a i686/200 MHz PC.

The figure merely includes the results of experiments for which the time limit was exceeded

by less than 2%. Recall that for this experiment (with a constant time limit), small bandwidths

mean high degrees of adaptation required (i.e. low values for a). The figure shows that the

total transformation costs increase towards smaller bandwidths. Note that although the absolute

costs increase steadily, the size of the increase tends to get smaller with smaller bandwidths,
that is, the cost curve flattens out towards smaller bandwidths. This observation supports the

reasoning above as follows: For bandwidths larger than x (x & 0.7 Mbit/s in our example) the

number of objects that need to be reduced increase as bandwidth decreases. For bandwidths

smaller than x, all the objects in the request need to be reduced in quality and hence the degree
to which individual objects must be reduced increases as bandwidth decreases. For the former

cases (bandwidth > x) the increase in total costs (towards smaller bandwidths) is dominated by
the costs incurred by the additional objects that need to be reduced. For the latter case, the fixed

costs, that is, the overhead for starting the transformation algorithm and the costs for reading
the object from disk, remain constant because all objects need to be reduced, and merely the

variable costs for higher reduction ratios increase. If the fixed costs dominate the variable costs

(as is the case in the Chariot system), the total transformation costs are indeed only marginally
effected by the degree of adaptation required.

From the last finding, we can conclude that using an adaptation policy which concentrates

quality reductions on as few objects as possible may be more advisable (to reduce transforma¬

tion costs) than a policy which tries to distribute the quality reductions evenly among all the

transmission objects (as noted in Section 6.3.3).
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6.6 Utility of adaptation

As shown in the previous sections, network-aware delivery to meet a user-specified time limit is

possible at fairly small costs in terms of adaptation overhead and in terms of transmission pos¬

sibilities wasted (i.e. bandwidth utilization is high). The latter point is important when it comes

to answering the question whether adaptation provides any "benefit" in addition to meeting the

time limit, that is, whether adaptation is able to deliver results that are useful for an end-user.

This usefulness (or utility) of a response generally captures some notion of fidelity [132] of a

quality-reduced response with respect to the unchanged response. To assess whether adaptation

is beneficial we must analyze the difference infidelity of a dynamically produced response by

a network-aware server and a statically defined response (e.g., optimized for users with low-

bandwidth network access). As the notion of fidelity and hence the notion of "benefit" are

clearly user- and application-dependent, it is important to understand how such a (presumed)
benefit depends on the notion of fidelity, i.e. on the utility functions chosen.

In this section we show that network-aware delivery—in addition to being able to meet

a user-specified time limit for a wide range of bandwidths—is able to provide superior util¬

ity compared to a static, non-adaptive delivery mechanism. However, the adaptation behavior

seems to depend strongly on the utility function employed. In the context of the Chariot system,

we discuss various notions of utility (Section 6.6.1) and conduct a simple experiment to validate

our claims (Sections 6.6.2 and 6.6.3).

6.6.1 Various notions of utility

According to the service model used for the type of network-aware applications studied here

(see Sections 3.2 and 3.3) there are basically two aspects that need to be considered as far as the

utility of a particular response is concerned:

Object quality. How does the user value the quality of a single object? E.g., in the context of

the Chariot system, how does the user-perceived quality of a JPEG image change with

changing compression ratios (i.e. JPEG quality factors)? We describe the quality of an

object i in the response by qi 6 [0,1]. <j,- shall reflect the quality of object i (as perceived by
the user) relative to its full quality version, thus, qx — 1 means that the object is delivered

unchanged, i.e. not reduced in quality.

Importance of an object. How does the user value (the quality of) a particular object in com¬

parison with other objects in the request? In other words, how important is it that a

particular object is delivered in high quality, for instance? The relevance of an object i is

described by r, G [0,1].

The utility of an individual object i can be defined as «,- = qi r(-. The total utility of the

response is then u = 2^f=i ui = X^Li Ii ' ri, where N is the number of objects requested. To

simplify comparisons we normalize the utility function, such that the utility umax of a non-

reduced response is l.12 For both aspects effecting total utility there may be many highly user-

and application-dependent interpretations of utility. In the context of the Chariot system, we

12Since ql is 1 for non-reduced objects i, we merely need to normalize the relevance scores r,-, such that J^Lj r, =

1 to obtain a normalized utility function.
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Figure 6.15: Size reduction achieved by JPEG compression as a function of the JPEG quality factor

applied (sample set: images from requests Cu,Vu,C\oo and Vioo)-

discuss three alternative interpretations for each of the aspects and show how they effect the

adaptation behavior. (The quality definitions that are appropriate for a particular user may be

selected at run-time.)

Object quality. As the size of a JPEG image (of a given resolution) is largely determined by
the JPEG quality factor which was used to encode the image, it is obvious to characterize the

fidelity of a JPEG image as a function of this quality factor. Figure 6.15 shows the relative size

of a JPEG image as a function of the quality factor used to encode it. Hence, the first approach
(denoted as Q\) defines the quality of an object to be proportional to its size in bytes (convex
curve in Figure 6.16). A second interpretation (Qi), as chosen by Noble et al. [132], assigns
the fidelity levels of JPEG images proportional to their quality factor as depicted in Figure 6.16

by the straight line. In contrast to these two fairly arbitrary choices of utility functions for

image quality, a user study conducted by Mcllhagga et al. [116] suggests that the fidelity of a

JPEG image does only marginally degrade down to a quality factor of pa 30-40. Only quality
factors smaller than 30-40 result in notably lower fidelity. Their observations are reflected in

the concave utility function in Figure 6.16 (Ô3).

Importance of an object. The three interpretations taken to characterize the relevance of a

single object in comparison with other objects in the request are the following: First, the user

might consider all the N images to be equally relevant (variant denoted as R\ ), that is, ri = 1 /N.
This may be the case, for instance, if a user simply browses the image repository with no

particular goal in mind. Second, the relevance of an individual image can be described as a

function of a similarity measure13 provided by the search engine (R2: ri = f\ (similarityi)), e.g.,

f\ (similarityj) similarity,

Xjt=i similarityk
The numerator is used to normalize the utility, such that the

13Section 6.6.2 gives a brief description of the two metrics "similarity" and "rank".
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Figure 6.16: Various definitions of utility of a compressed JPEG image as a function of the JPEG quality

factor applied.

total utility of a non-reduced response is 1. Third, ranks assigned by the search engine may

serve as a means to strictly order the images in the request (Ry. r,- = /^(ra/rfc;)), e.g., an image

/ with ranki may be considered twice as relevant as an image j with rankj = ranki + 1, that

is, f2(ranki) = ^ n_tank,. Again, the numerator is used for normalization purposes only. The

decrease by a factor of 2 is quite drastic. It is deliberately chosen to emphasize the effects of

strong discrimination between the images.

6.6.2 Experiment

To study and compare the utility of non-adaptive and adaptive image delivery we conduct the

following experiment within the Chariot system. A user issues a search for images that are

similar to a given query image14. The search engine produces a ranked list of similar images
and provides a similarity score (e [0,1]) for each of the images. The similarity score for an

image represents the probability that any randomly chosen pair of images from the database

exhibits a weaker similarity than the query and result image [191]. The database contains the

meta-data (feature data, etc.) of approximately lOO'OOO images [193]. Figure 6.17 depicts the

normalized relevance scores for the sample query as a function of the rank and the interpretation
of "object importance" (i?i, R2, or R3 as described in the previous section). Within 10 seconds

the user wants to see 25 JPEG images with a minimal JPEG quality factor of 10. The images
are stored at the server in the JPEG format (JPEG quality factor 100) and have a resolution of

360 x 240 pixels. The full quality images amount to 1.1 MB of data to be transferred. The two

levels of bandwidth used for this experiment are 128 and 256 kbit/s.

We study five static (or non-adaptive) delivery policies and nine adaptive image delivery

14We use color features, enhanced with spatial information, for the similarity search. The methods used for

feature extraction are described in [178, 40]. The query image and results are the same as in [178] (Figure 2).
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Figure 6.17: Normalized relevance scores r,- for the sample request (25 images) and the three notions of

object importance (R\, R2, and Rj). Normalized means that the area below a curve is 1.

Object quality

Time [s] Utility

128 kbit/s 256 kbit/s 01 02 03

Low: JPEG(IO)

Medium: JPEG(30)

Medium: JPEG(50)

High: JPEG(75)

High: JPEG(IOO)

7.3 3.7

11.7 5.9

14.9 7.5

20.6 10.3

77.5 38.8

0.08 0.10 0.10

0.13 0.30 0.56

0.18 0.50 0.87

0.26 0.75 0.98

1.00 1.00 1.00

Table 6.14: Non-adaptive image delivery: Response time and total utility of response for various notions

of object quality (time limit: 10 seconds). The total utility is not effected by notion of object relevance

due to the normalization.

policies. The static policies deliver all images in the same quality. The images to be delivered

are reduced to the appropriate quality off-line and stored in the version cache. The policy with

lowest quality transmits the images encoded with the JPEG quality factor 10. The two policies

delivering medium quality images use factors 30 and 50. And the two high-quality scenarios use

factors 75 and 100. The adaptive image delivery policies of the network-aware server comprise
the nine combinations of how to interpret the quality of an individual object (Q\, Q2 and Q3)

and how to interpret the importance of an object (R\, R2, and R3). For each of these nine

configurations we run two types of experiments, one with a fine adaptation granularity and one

with a coarse adaptation granularity (Section 6.3.2). We would expect the utility to increase

with finer adaptation granularity as there is more flexibility to find responses with a high utility.
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Bandwidth

Adaptation

granularity

All equal (/?i) Similarity (R2) Rank (R3)

Qx Qi 03 ßl 02 03 ßl 02 ß3

128 kbit/s Coarse

Fine

0.12 0.26 0.41

0.11 0.19 0.30

0.28 0.57 0.74

0.28 0.50 0.68

0.59 0.73 0.97

0.54 0.82 0.95

256 kbit/s Coarse

Fine

0.27 0.69 0.95

0.23 0.61 0.90

0.69 0.88 0.99

0.66 0.85 0.98

0.97 0.99 1.00

0.95 0.99 1.00

Table 6.15: Adaptive image delivery: Total utility of response for various notions of object quality and

object relevance. Average response time: 10.17 s (standard deviation 0.13 s).

6.6.3 Results

Table 6.14 summarizes the experiments with non-adaptive image delivery. For each of the band-

widths there is at most one policy (JPEG(30) for the 128 kbit/s and JPEG(75) for the 256 kbit/s

case) which matches the goal on response time considerably well (tdiff ~ 10 - 15%). The high

quality policy exceeds the time limit quite considerably and the low quality policy fails to ex¬

ploit the time frame allotted. The last three columns report the utility of each of the responses

according to three notions of object quality Q\, Q2, and 6)3 described in Section 6.6.1. Obvi¬

ously, the total utility of a response is independent of the bandwidth available. Furthermore, the

total utility of a response does not depend on the interpretation of the object importance because

all the images are delivered in the same quality. Therefore the utility values listed in the table

simply reflect the properties of all the utility functions shown in Figure 6.16.

Table 6.15 reports the results for the experiments with adaptive image delivery. On average,

the 10-second time limit is exceeded by only 1.7%. To compare the utility of the delivered

responses (e.g., with the result of a static policy) one must be cautious to only compare values

of the same notion of object quality. E.g., comparing a value for Q\ with a value for Ô2 is

meaningless. There are three observations to make from these results.

First, we find that except for the R\ experiments, the adaptive policies perform at least as

well as the static policies and often outperform the static policies considerably in terms of utility.
In scenarios where all the objects are of equal importance (i.e. the R\ experiments) the adaptive

policies achieve (slightly) lower utility as the two static policies whose response times approxi¬

mately match the time allotted. The results for the R\ experiments can be explained as follows:

compared to a static delivery policy, adaptive image delivery incurs decision-making overheads.

Even though these overheads are small in general (see Section 6.5), they still negatively affect

bandwidth utilization. With the R\ metric for relevance there are only limited opportunities
for "smartness", that is, there are no opportunities for the adaptive policies to compensate the

bandwidth loss experienced in terms of utility.

Second, we find that the utility seems to depend on the adaptation granularity. In particular,
the utility seems to decrease with increasing granularity (except for the low bandwidth, R3/Q2
case). The reason why a finer granularity and hence a higher flexibility in decision making may
not yield the expected improvement in terms of utility and may even result in lower utility is

that the costs for adaptation increase with the adaptation granularity (see Section 6.5.1) and that

these additional decision making overheads can outweigh the gains in utility. Furthermore, we

note that the performance penalty witnessed by the experiments with fine adaptation granularity
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Figure 6.18: Utility progress curves for low bandwidth experiments with coarse adaptation granularity
and the Qj utility function for object quality. The curves for the three relevance metrics R\, R2 and R3
indicate that adaptation behavior depends strongly on the type of utility function used.

varies with the notion of utility employed. This observation can be explained by the varying
costs to evaluate the utility functions and by the degree to which the use of a particular utility
function allows the control loop to prune some parts of the solution space.

Third, the more the relevance scores discriminate between the objects in a request the better

the adaptive policies perform compared to the static policies. If the relevance scores discrimi¬

nate only weakly (or not at all, as in the R\ case) between the objects in a request, the reductions

in object quality are spread out fairly evenly among the images and thereby the network-aware

image delivery operates similarly to a static policy that matches the time limit. On the other

hand, if the relevance scores discriminate more sharply between the objects (as is the case

for the /?3 experiments and less pronounced for the R2 experiments) the quality reductions are

passed onto the objects of least importance. Thus, compared to a static delivery policy which

transfers all images in the same (e.g., medium) quality, a network-aware sender transmits the

most important objects in full quality. The difference between the utility of the full quality and

medium quality object is "amplified" most if the relevance scores are high for the important
objects.

These observations are supported by the utility progress curves shown in Figures 6.18

and 6.19. The x-axis denotes time and the y-axis denotes the utility of the response. The

utility function on object quality used for the figure is Q3. The three curves of Figure 6.18 show

how the total utility progresses for the relevance metrics R\, R2 and R3 as the transfer of the

objects in the response progresses. The length of a horizontal part in the curves represents the

time required to transfer a particular image, and hence, since the bandwidth traces are constant,

reflects the size and implicitly the quality of the image transferred. Vertical lines in the curves

depict the utility gain achieved by the image transferred. The utility at the end of the transfer re¬

flects the values for low-bandwidth, coarse adaptation granularity and utility function Q3 listed
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A A—A—A—A—AAA A—A-A A-A—A-A—A—A-A—A

R1 All equal

0
R2 Similarity

A R3 Rank

Adaptive

Static JPEG(30)

Time [s]

Figure 6.19: Utility progress curves for the adaptive low bandwidth experiments with coarse adaptation

granularity and the Qj utility function. The comparison with the respective utility progress curves for

non-adaptive (JPEG(30)) image delivery reveals that the more discriminative the relevance score is (Rj, >

Ri > R\), the better the adaptive delivery mechanisms perform.

in Table 6.15.

Figure 6.19 repeats the results from Figure 6.18 for the adaptive image delivery and adds

three utility progress curves for the non-adaptive experiments for JPEG(30). The non-adaptive
image transfers all achieve the same utility (as reported in Table 6.14). As can be seen from the

figures, the Ri curves progress steadily. The adaptive and non-adaptive delivery attain compa¬

rable utility after 10 seconds15. Due to the stronger discrimination between the objects, both the

7?2 and Rt, experiments start transmitting higher quality objects than the respective experiments
with non-adaptive image transfer policies and are therefore able to achieve higher utility.

In summary, we find that adaptation can be beneficial because it is able to deliver the re¬

sponse within a user-specified time limit, and because adaptation can be smart about which of

the objects delivered must be reduced in quality to attain the goal on time and to maximize the

utility of the response. Furthermore, we find that the adaptation behavior varies considerably
with differing notions of utility. We also note that our framework and in particular the heuris¬

tic approach taken to arrive at adaptation decisions, has proven to be flexible enough to deal

with a variety of utility functions for both object quality and the importance of objects (and
can therefore also be reused by different applications). As far as the efficacy of the various

utility functions is concerned, we emphasize that this dissertation merely presents a framework

for experimentation but takes no position on what utility functions should be used. More work

is needed to define appropriate utility functions, i.e., utility functions that are meaningful to

users in a particular application domain. To pursue this goal, e.g., in the context of Chariot, we
need to (better) understand user concerns: What is relevant to a user when searching for similar

15The knee in the 7?i curve for the adaptive experiment is a direct consequence of the coarse adaptation granu¬

larity used, which provides only the two JPEG quality factors 50 and 10 at low image quality (Section 6.3.2).
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images? How do reductions in image quality (achieved by the various compression schemes)
relate to reductions in utility? As far as the second issue is concerned, the user study performed

by Mcllhagga et al. [116] may serve as a start. Our framework provides a flexible platform for

further experimentation on these issues.

6.7 Accuracy of resource models

As shown in the previous sections, the type of network-aware delivery presented in this dis¬

sertation achieves encouraging results. Recall that the adaptation depends on several models

for (network and end-system) resource availability and resource consumption (cost and size

models for transformations). To reduce complexity, the experiments evaluated so far have been

conducted using simple resource models that provide timely and reasonably accurate informa¬

tion (see Section 6.1.3).

The question that remained unanswered so far is: How sensitive is model-based adaptation
to the accuracy of the resource models? The effectiveness of adaptation will depend on two

factors. A first factor is the delay of the feedback loop: the shorter the delay, the better the

application will be able to track changes in the network for instance. The second factor is

the accuracy of the feedback information. We suspect that inaccurate information can degrade
performance by having the application adapt needlessly, or by having the application select an

incorrect operating point.
This section discusses the questions of timeliness and accuracy of the feedback signals in

the context of the models for network resource availability. We use bandwidth estimation as the

example to illustrate the concerns raised by inaccurate resource models. We concentrate on the

problem of bandwidth estimation because it seems to be the most elusive. Models for resource

consumption, that is, cost and size models for the transformations, are application-specific and

may be quite easily obtainable (see [189] in the case of Chariot). Accurate host load estimation

is certainly non-trivial [41, 42], however, it is easily avoidable if using a dedicated server. As

far as bandwidth estimation is concerned, there is currently no mechanism in place to query the

performance (bandwidth) of an end-to-end Internet connection, and as can be judged from the

wealth of literature tackling the problem of dynamic bandwidth estimation (e.g., [29, 104, 141,

94, 18, 3, 44]) such estimations do not seem to be all that easily achievable.

Even though we study only the effects of inaccurate bandwidth estimation, we see no reason

why the conclusion drawn in this section should not carry over to the other resource models used

in our framework.

6.7.1 Experiments

We suspect that performance, that is, the framework's ability to meet the time limit and to

achieve high bandwidth utilization, degrades considerably with increasing untimeliness and

inaccuracy of the bandwidth estimates.

We conduct a first simple experiment to study the effects of untimely, that is, delayed, feed¬

back (Section 6.7.2). We run an experiment similar to the experiment described in Section 6.2

and introduce varying degrees of delay into the feedback loop. The details of the experimental

setup are given in [17] ("Internet experiment").
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Figure 6.20: Box-plot of performance loss as function of delay in obtaining bandwidth information.

To study the effects of inaccurate bandwidth estimates we conduct two additional exper¬

iments. In a first step (Section 6.7.3), we repeat the experiment described in Section 6.4.3

(at a CPU level of 1). We study the adaptation performance as a function of bandwidth and

the factor by which the available bandwidth is under- or over-estimated. Again, we use con¬

stant bandwidth traces in these experiments and keep the adaptation ratio constant with varying
bandwidths. In a second step, we study the effects of under- and over-estimating bandwidth in

real-world situations exhibiting highly fluctuating bandwidths (Section 6.7.4).

6.7.2 Timeliness

To study the effect of untimely bandwidth information, we run the "Internet" experiment de¬

scribed in [17] varying the amount of delay introduced in the bandwidth estimates. A delay of

n round-trip times (RTT) means that the application learns about the currently available band¬

width only after n RTTs16. We investigate different levels of delay: 0 (which is the reference

behavior as reported in [17]), 1, 2, 4, 6, 8, and 10 round-trip times; the average RTT for the

transfer was approximately 100 ms. For each level, we conduct 40 experiments under the same

conditions as the example above and summarize the performance penalty introduced by the de¬

layed bandwidth information in the box plot in Figure 6.20. The x-axis shows the level of delay,
the y-axis represents the relative performance loss (= 100—bandwidth utilization) experienced
by the adaptation process. The top and bottom line, and the line through the middle of the box

correspond to the 3rd quartile, 1st quartile, and median respectively; the whiskers on the bottom

and top extend from the 10th percentile to the 90th percentile; the dot indicates the mean.

16Delayed bandwidth information may be inaccurate (e.g., if bandwidth changed within the n RTTs), but need

not be inaccurate (e.g., if bandwidth remained unchanged).
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Figure 6.21: Constant adaptation ratio: tdiff (in %) as a function of bandwidth and inaccuracy of band¬

width estimation. The inaccuracy of the bandwidth estimation is characterized by the ratio of estimated

and actually emulated bandwidth.

The figure shows that out-dated information on the bandwidth available does not necessarily
result in lower performance; the 10th percentiles of the experiments with 0-6 and 10 RTTs delay
are all in the range of 6-9 %. However, untimely and hence potentially incorrect estimates on the

bandwidth available can increase the number of situations that require adaptation, and therefore

can increase the overhead of the decision making. Furthermore, the more often adaptation is

required, the higher the risk that we encounter limited adaptation potential or problems with

the scheduling of the prepare and transmit phases. A high number of situations that call for

adaptation may eventually result in a higher penalty in terms of lost opportunities to transmit.

Untimely information therefore can increase the risk of performance loss, as is illustrated by
the data for both the 3rd quartile and the 90th percentile. These values increase considerably
with delayed bandwidth information.

The results indicate that the model-based adaptation is not very sensitive to (small) delays in

the feedback loop. On the other hand, the results show that considerable performance penalties

may have to be witnessed as the bandwidth estimates become less timely.

6.7.3 Accuracy: Constant bandwidth

There is no standard way to quantify the accuracy of a model, and common metrics, such as

the sum of the square errors (SSE) [82], are not particularly intuitive and may even disguise
some effects. E.g., with the SSE-metric, situations where the bandwidth available is under¬

estimated by a constant amount cannot be distinguished from situations where the bandwidth

is over-estimated by the same amount. Therefore, we use a simple metric for the inaccuracy
of the bandwidth estimates, that is, the factor by which the bandwidth actually available is



122 CHAPTER 6. EVALUATION

0.032 0.064 0.128 0.256 0.5

Bandwidth [Mbit/s]

Figure 6.22: Constant adaptation ratio: Performance loss (= 100—bandwidth utilization) as a function

of bandwidth and inaccuracy of bandwidth estimation.

(consistently) over- or under-estimated.

The contour plots in Figures 6.21 and 6.22 show the metrics tdiff and performance loss

(= 100—bandwidth utilization) for the experiment described in Section 6.4.3 as a function ofthe

bandwidth available (x-axis) and the factor by which this bandwidth is under- or over-estimated

(y-axis). y < 1 reflects under-estimation, y > 1 denotes over-estimation of the bandwidth avail¬

able. The results for y = 1 are identical to the results in Figures 6.12 and 6.13 for the CPU level

of 1.

Under-estimation of the bandwidth available results in the transfer finishing considerably

ahead of time. The percentage by which the time limit is under-utilized levels off at a certain de¬

gree of under-estimation. Under-estimation of bandwidth results in tneeded being over-estimated

and hence results in unnecessarily high reduction/compression ratios being applied. Only after

having transmitted the reduced objects can the control loop learn that the adaptation was too

conservative. Since the bandwidth is consistently under-estimated the process repeats. Even

if the control loop would recognize the consistent under-estimation, it may be too late to react

because there may no longer be enough potential to "re-expand" the objects, and even if the

time limit could be met, only the less relevant objects may benefit from such "re-expansion".
The under-utilization of the time frame allotted levels off because there is a limit on how much

the control loop is allowed to reduce the objects in quality. At high bandwidths (and hence

short time limits), the negative impact of under-estimating the bandwidth seems to be compen¬

sated and outweighed by the effects described in Section 6.4.3. However, bandwidth utilization

suffers, because the conservative adaptation decisions that are provoked by the far too low band¬

width estimates aggravate the problems discussed in Section 6.4.3.

Over-estimation of the bandwidth available seems to have no negative impact on bandwidth

utilization and may even lead to improvements as Figure 6.22 suggests. Over-estimating the
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eth — linz (high volatility)

linz — mit (medium volatility)
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Figure 6.23: Bandwidth traces of three Internet transfers exhibiting considerable volatility.

bandwidth results in under-estimation of tneeded and thus leads to over-optimistic adaptation
decisions that have to be readjusted later on. Therefore, consistent over-estimation results in the

time limit being exceeded. The smaller the flexibility for readjustments, e.g., the smaller the

time limit, or the smaller the reduction potential, the more likely it becomes that the time limit

is exceeded. This effect can be observed in Figure 6.21. The same effect is to be expected if the

number of objects requested is considerably smaller.

In summary, we find that model-based network-aware applications are not highly sensitive to

small degrees of inaccuracies in the bandwidth estimates. However, we also find that inaccurate

bandwidth estimation (if considerably inaccurate) may be problematic for the performance of

network-aware delivery—even for scenarios with constant bandwidths. Over-estimation of the

bandwidth available must be quite dramatic before performance implications can be observed.

6.7.4 Accuracy: Volatile bandwidth

To study the sensitivity of network-aware delivery to the accuracy of the bandwidth estimation

in more realistic scenarios, we conduct a similar experiment as in the previous section. Instead

of using constant bandwidth traces we use three traces picked out of a set of loss-afflicted

TCP connections obtained from a large-scale Internet experiment [19, 18] (see also Chapter 8).
To choose the bandwidth traces, we cluster all the (4148 TCP Reno) connections into three

different groups according to the volatility of the bandwidth trace. We characterize volatility
by the ratio of standard deviation and mean bandwidth. From each of the three groups we

select one trace at random. Figure 6.23 shows the three traces used for the experiment. The

trace "ETH-Linz" represents the high, "Linz-MIT" the medium and "ETH-Palo Alto" the

low volatility scenario. Although the bandwidth traces exhibit a wide range of volatility, the

respective connections achieved approximately the same average bandwidth. Apart from the

bandwidth traces the request and the experimental setup are the same as used in the experiments
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Figure 6.25: Bandwidth utilization as a function of inaccuracy of bandwidth estimation.
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described in Section 6.2. The time limit to deliver the 25 JPEG images is set to 15 seconds. The

experiments are repeated 5 times.

Figures 6.24 and 6.25 plot the average performance (tdiff and performance loss) as a function

of the error e introduced in the bandwidth estimates; e = 100 • (estimated — actual)/actual.
The error bars depict the confidence interval for the mean at a 95% confidence level. Note,

e = -100% means that the bandwidth is estimated to be 0. Likewise, e
— 100% reflects the

fact that the bandwidth is consistently over-estimated by a factor 2. The figures support the

general trend noted in the constant bandwidth experiments. In particular in the cases with

low and medium bandwidth volatility, we find that under-estimation of the bandwidth available

results in the transfers finishing considerably ahead of time and bandwidth utilization suffering
badly due to the overly conservative adaptation decisions. On the other hand, over-estimation

does not seem to have much of a negative impact, neither timewise nor in terms of bandwidth

utilization. To the contrary, it may even lead to improved performance compared to experiments
conducted with e = 0%. However, caution must be applied when interpreting these results

(that is, it may be unwise to conclude from these results that bandwidth over-estimation is not

problematic). If the time limit is shorter and/or the number of objects requested is smaller, then

the flexibility to react to the effects of consistent over-estimation will decrease rapidly and so

will the performance.

Considering the experiments with high bandwidth volatility we see quite different effects,

in particular as far as bandwidth utilization is concerned. The curve named "ETH-Linz" in

Figure 6.25 indicates that inaccurate bandwidth estimates are fairly problematic in situations

with highly fluctuating bandwidths. Bandwidth utilization seems to be quite sensitive to even

small changes in the accuracy of the estimates. The error bars are wider than for the less volatile

bandwidth traces. Although no clear trend is discernible how utilization develops with increas¬

ing inaccuracy of the bandwidth estimates, it is important to note that performance problems
are likely to arise if the bandwidth estimator performs badly.

In summary, we find that the effects of inaccurate bandwidth estimates depend on the volatil¬

ity of the bandwidth available. Model-based network-aware delivery is not very sensitive to

the accuracy of bandwidth estimates for low and medium levels of bandwidth volatility. This

observation confirms the results from the 2kr experiment in Section 6.3.3, which showed that

performance is not effected for the degrees of bandwidth volatility present in those experiments.

However, significant performance penalties may have to be witnessed if bandwidth esti¬

mates are inaccurate. This problem seems to be exacerbated in situations with highly fluc¬

tuating bandwidths. As a consequence, network-aware applications can benefit considerably
from timely and accurate bandwidth estimators. How accurate would such an estimator have

to be? The results from the experiments using Internet traces seem to suggest that an accu¬

racy of ±10 — 20% should suffice to stay within ±10% of the time limit. Clearly, more work

is needed to understand the impact of inaccurate bandwidth estimates on the performance of

network-aware applications and to draw final conclusions on how accurate an estimator should

be.



126 CHAPTER 6. EVALUATION

6.8 Summary

This chapter takes a systematic approach at addressing the three basic concerns in the evaluation

of network-aware applications.

When does adaptation work? We find that the model-based adaptation proposed in this dis¬

sertation is able to fulfill its goals, i.e. adaptation is able to meet a user-imposed time limit

while achieving high bandwidth utilization, which is a prerequisite for achieving high quality

responses. The detailed evaluation of the key factors effecting adaptation performance reveals

that the adaptation mechanisms are fairly robust in delivering high quality responses regard¬
less of most of the factors studied in the experiments and that performance considerations boil

down to the communication-computation tradeoff striven for by network-aware content deliv¬

ery. In particular, we observe that adaptation performance is fairly robust and hardly affected

by bandwidth volatility (for low and medium levels of bandwidth volatility). Furthermore, we

find that network-aware delivery can provide predictable response times over a wide range of

bandwidths and CPU powers.

Two issues can hamper the effectiveness of network-aware delivery. First, the performance
of dynamic adaptation is mainly limited by CPU bandwidth. As a result, we find that (i)
network-aware content delivery may not be suited to meet very small time limits and (ii) that

the caching of intermediate results, i.e. quality-reduced objects, can provide substantial bene¬

fits. Note, however, even in scenarios where adaptation fails to provide the service expected
because of CPU limitations, adaptation does not perform worse than an appropriate static deliv¬

ery policy would. Second, although the control loop is not overly sensitive to the accuracy of the

resource models, and in particular to the accuracy of the bandwidth estimates, inaccurate infor¬

mation can have a significant negative impact on performance. The performance problems that

inaccurate bandwidth estimates can cause are aggravated if bandwidth fluctuates heavily. As a

result, we conclude that timely and accurate bandwidth estimation is important to the efficacy
of network-aware applications.

How much does adaptation cost? Decision-making overheads turn out to be fairly small

(< 5%). They mainly depend on the adaptation granularity and the number of requested objects.
Transformation overheads can be reduced by appropriate adaptation policies.

Is adaptation beneficial? Compared to a static delivery policy adaptation can provide a ben¬

efit to the user because it is able to deliver the response within a user-specified time limit and

because it can be smart about which of the objects delivered must be reduced in quality to attain

the goal on time and to maximize the utility of the response. We note that adaptation behavior

varies considerably with differing notions of utility and although our work takes no position on

what utility functions should be used and simply provides a framework for experimentation, we
find that the framework has proven to be flexible enough to deal with a wide range of utility
functions for both the object quality and the importance of objects.



Chapter 7

Dynamic bandwidth estimation

7.1 Introduction

Network-aware applications must address the following two questions (Section 3.4): first, how

can we find out about (dynamic changes in) the bandwidth available on the path from the sender

to the receiver, and second, how can an application adapt its delivery process (to such dynamic
changes) to meet the time limit. The treatment of these two issues has been separated. Chap¬
ters 4-6 detailed the framework that answers the second question. One of the main conclusions

drawn from the evaluation of the framework in Chapter 6 is that timely and accurate band¬

width estimation is important to the efficacy of network-aware applications. Ideally, to make

sound adaptation decisions network-aware applications require accurate predictions about the

availability of bandwidth in the near future (see Chapter 4).
The following chapters address the first question and discuss solutions for the problems

how to find out about available bandwidth, and how to detect dynamic bandwidth changes.
This chapter is organized as follows. Section 7.1 defines the term available bandwidth and

provides a rough classification of the different approaches for dynamic bandwidth estimation.

Section 7.2 reviews related work according to the classification presented. Section 7.3 gives a

qualitative comparison of the various approaches and identifies open issues to be addressed in

the subsequent chapters.

7.1.1 Available bandwidth

We can distinguish two different application-relevant characteristics as far as bandwidth infor¬

mation is concerned: bottleneck and available bandwidth [143,141]. The bottleneck bandwidth

gives an upper bound on how fast an application can possibly transmit (given the characteristics

of the links traversed on the path from sender to receiver). In contrast, the term available band¬

width is less well-defined. It gives an estimate on how fast the connection should transmit to

preserve network stability. (Network stability is a primary issue for congestion control mecha¬

nisms.) Thus, available bandwidth never exceeds bottleneck bandwidth and in fact can be much

smaller (if there is considerable contention for bandwidth).
While knowledge about the bottleneck bandwidth is useful in bounding the approxima¬

tions for the bandwidth estimates, information about the dynamics of the bandwidth available

to an individual connection is the metric of importance to network-aware applications. In the

127
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best-effort Internet, the bandwidth available to an individual flow (connection) can be approxi¬
mated as a function of the bottleneck bandwidth and the aggregate bandwidth consumed by all

competing flows at the bottleneck element (router or link) of the network path from sender to

receiver1. In addition, since different (congestion-aware) protocols use the available bandwidth

differently, the bandwidth experienced by the application also depends on the transport protocol
used.

The IPPM (IP Performance Metrics) working group of the IETF refers to available band¬

width as follows [102] (and this is the definition we adopt): Bulk transport capacity (BTC) is a

measure of a network's ability to transfer significant quantities of data with a single congestion-
aware transport connection (e.g., TCP). The intuitive definition ofBTC is the expected long term

average data rate of a single TCP connection over the path in question. Central to the notion

of bulk transport capacity is the idea that all transport protocols should have similar responses

to congestion in the Internet (cf. Section 2.1). Because there are many congestion control algo¬
rithms (and hence transport protocol implementations) permitted by IETF standards, the notion

of available bandwidth will be dependent on the transport protocol in use [102].

While there is agreement over the definition of a metric for available bandwidth that is useful

to bulk-transfer applications [28, 102, 174] such as the network-aware applications considered

here, different approaches to measuring and estimating available bandwidth exist. This chapter
classifies and discusses the numerous different approaches proposed in the literature.

7.1.2 Discovering and monitoring bandwidth

Network-aware applications that adapt to both network heterogeneity and bandwidth fluctua¬

tions are confronted with two problems as far as dynamic bandwidth estimation is concerned.

Bandwidth discovery. As discussed in Section 4.7 network-aware applications are faced with

the start-up problem. The problem is that the application must find out about the avail¬

able bandwidth quickly, first, to be able to adapt to network heterogeneity, and second,
to neither waste bandwidth nor risk missing the deadline. Ideally, applications would

like to know about available bandwidth in advance, that is, before the application starts

delivering data. We use the term bandwidth discovery to refer to the activities related to

bandwidth estimation prior to data transmission.

Bandwidth monitoring. To learn about bandwidth fluctuations during a data transfer, the band¬

width available to a network-aware application must continually be monitored. The esti¬

mation of future bandwidth availability must take place at run-time. Here, an important
concern is that monitoring should be timely enough so as not to hamper application agility
(see Section 4.8). That is, a bandwidth monitor should be able to produce new bandwidth

estimates at least at the rate at which the applications make new adaptation decisions.

Our main focus lies on bandwidth monitoring and on-line bandwidth estimation (and not

on bandwidth discovery) for two reasons. First, such a focus is consistent with our work on

1This statement is only valid under the simplifying assumption that the flow is not bottlenecked by the sender

or the receiver. That is, the sender has always data to send, and the connection is not limited by a slow receiver.
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the framework for network-aware applications, which mainly concentrated on steady-state be¬

havior, and which treated start-up related problems as a secondary issue. Second, compared to

the related work in bandwidth discovery, bandwidth monitoring has received considerably less

attention in the literature.

7.1.3 Bandwidth modelling and prediction

In contrast to other performance metrics such as the round-trip time, available bandwidth is

not a simple metric that can be assessed with an instantaneous measurement. There exist many

techniques to estimate available bandwidth. We distinguish the following two orthogonal issues:

Bandwidth modelling. There are a number of different mechanisms for estimating the band¬

width available to a single connection (as will be described in Section 7.2). The tech¬

niques differ in their measurement methodology [ 144] : some employ direct measurement,

others use projections (or mappings) from lower-level measurements, etc. Common to all

the techniques is that they must first collect measurement samples (that are useful for the

particular technique) and then apply a process we call bandwidth modelling to produce (a

sequence of) bandwidth samples that characterize the bandwidth currently available to an

application.

Bandwidth prediction. Bandwidth modelling unifies the various measurement techniques as

it requires the techniques to produce a sequence of bandwidth samples. This sequence

may then be resampled to form a periodic time series that can be analyzed by standard

methodology [21, 43]. Based on a history of such a time series, a bandwidth predictor

may be able to estimate the bandwidth available in the (near) future. Predictability of

future resource availability depends on the stability and persistence of the network traffic

(as defined in [10]), that is, on statistical properties of the aggregate network traffic.

Our focus lies on the first aspect, bandwidth modelling, as it forms the basis for prediction.

7.1.4 Information collection

There exist three basic approaches to collect information that can be used to model the band¬

width that is currently available to an application. These approaches can be distinguished ac¬

cording to the layer in the ISO/OSI protocol stack that they use to acquire information:

Application-level. Obviously, the application is in a good position to monitor the bandwidth

it gets. Monitoring can be done either at the sender or at the receiver: e.g., a sender can

monitor how fast it can pump data into the network2, and a receiver can monitor at which

rate the data is delivered by the network.

Transport-level. Since congestion-aware transport protocols gather a number of performance
metrics to adapt the transmission rate of a connection such that it matches the current

congestion state in the network, they have most of the information needed by a network-

aware application readily available. E.g., in the case of TCP [176] parameters such as

2With a congestion-aware transport protocol, this rate is constrained by flow and congestion control.
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the congestion window (cwnd), and round-trip time (rtt) are readily available. Other

metrics such as loss rate, number and duration of timeouts, etc. can easily be determined.

A number of models have been proposed that use such transport-level information to

characterize the bandwidth of a single TCP connection, e.g., [108, 136, 27].

Network-level. While application-level and transport-level mechanisms can quite naturally

monitor the performance of a single connection, their knowledge about network status,

that is, about the aggregate traffic of competing flows, is rather limited. In contrast, if

traffic is monitored at the network level, information about aggregate network traffic can

be obtained. Knowledge about the behavior of aggregate network traffic can be useful in

predicting the application-level sharing of bandwidth. Network-level performance met¬

rics can be gathered, by querying routers [121] for instance.

7.2 Related work

The previous sections roughly classified the issues related to dynamic bandwidth estimation

along several dimensions: discovery vs. monitoring, modelling vs. prediction, and the methods

for information collection. This section reviews related work according to this classification.

Section 7.2.1 summarizes the multitude of probing mechanisms developed for bandwidth dis¬

covery. Section 7.2.2 discusses the somewhat contradicting results as far as predictability of

network traffic is concerned. The section also describes systems built for bandwidth prediction.
Section 7.2.3 reviews the network-aware applications cited in Section 2.3 with regard to band¬

width monitoring. Sections 7.2.4-7.2.6 then cover related research on bandwidth monitoring

according to the method used for information collection.

Although bandwidth discovery and prediction are not the focus of our work on dynamic
bandwidth estimation, we give a brief account of related work in these fields. The issues of

bandwidth discovery and prediction are orthogonal to the monitoring (bandwidth modelling)

techniques investigated in this dissertation and would therefore be a useful addition to our mon¬

itoring system that will be described in Chapter 9.

7.2.1 Bandwidth discovery

We review probing techniques proposed in the literature that can be used to discover two impor¬
tant properties of a network path: bottleneck bandwidth and available bandwidth. Considering
the vast body of research and the large number of probing tools [25], our account of related

work is by no means complete—we only try to cover the major conceptual contributions to this

field.

Bottleneck bandwidth. The packet pair technique described by Keshav [92] has been adopted
in the bprobe tool by Carter et al. [29]. The fundamental idea behind the packet-pair approach

(and the techniques sketched here, which are all derived from packet-pair) is that two packets,

injected into the network back-to-back, will be spread out in time when they arrive at the bottle¬

neck by the transmission delay of the first packet across the bottleneck. From this spacing (and
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the size of the first packet) one can infer the bottleneck bandwidth3. Paxson [143, 141] iden¬

tifies a number of limitations of packet-pair-based approaches (out-of-order delivery, limited

clock resolution, bottleneck bandwidth changes, and multipathing), and devises a more accu¬

rate and more robust bottleneck estimation technique called packet bunch modes. Lai et al. [94]
extend Paxson's work and implement the nettimer tool that allows receiver-based bandwidth

estimation. In contrast to the end-to-end techniques mentioned so far, pathchar developed by
Jacobson [80] tries to estimate peak-bandwidth on a hop-by-hop basis. Although pathchar can

reveal valuable information about the characteristics of a particular network path, it can intro¬

duce quite significant network overheads that exceed those introduced by the other bottleneck

bandwidth probing tools [44].

Available bandwidth. A straightforward method to measure available bandwidth (by means

of probing) is to transfer considerable amounts of data across the network and measure the

transfer time. There are at least three concerns with such a straightforward method: first, it

must be ensured that the packets are injected fast enough into the network, that is, at a rate

that exceeds the bottleneck bandwidth. The cprobe tool developed by Carter et al. [29] uses an

estimate for the bottleneck bandwidth (obtained from bprobe) to set the transmission rate of the

probing packets.

Second, probing must not be unfair to other competing traffic, that is, the data stream pro¬

duced by probing tools must obey the Internet traffic rules defined by the well-established con¬

gestion control principles [79]. TReno [104, 101] is such a tool that mimics TCP's congestion
control procedures while probing a particular network path for the bandwidth available. Care

must be applied to send enough data so that the TCP connection reaches equilibrium, that is,
the congestion avoidance phase [79]4. Otherwise, slow-start may dominate the transfer, and the

throughput experienced would not reflect the bulk transfer capacity actually available.

Third, it would be desirable if available bandwidth could be assessed without fully stressing
the network path. Paxson [141, 143] sketches a technique that infers the available bandwidth

from fine-grained measurements of the one-way transit times of data packets. More precisely,
Paxson uses the variability in the one-way transit times to infer how much of the transit time

of a particular packet can be attributed to queuing at the bottleneck router. Knowledge of the

bottleneck bandwidth then allows to infer how much of the queuing delay experienced by a

packet is due to the network load of its own connection, and how much of the queuing delay can
be attributed to the network load of other connections. The ratio of these two constituents of the

queuing delay experienced by a packet is proportional to the bandwidth available to this packet's
connection. This technique has the advantage of getting estimates about available bandwidth

without fully stressing the network. The major drawback is the difficulty of accurately inferring
one-way transit times of packets [141, 142].

3
Originally, Keshav [92] was interested in estimating available rather than bottleneck bandwidth by means of

packet-pair probing. However, he had to assume that routers obey the "fair queuing" scheduling discipline, which
is not presently the case in the Internet.

4For a connection with a bandwidth-delay product of cwndeqwubnwn — bwrtt and zero losses, approximately
3 cwndequiiüruun bytes must be sent in slow-start before the connection reaches equilibrium [27].
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7.2.2 Bandwidth prediction

We can distinguish two areas of work in the context of bandwidth prediction. First, there are

studies that analyze network traffic to gain insight about the predictability of properties of in¬

dividual network paths. These studies address the question whether the network is "stable"

enough to allow for network properties such as the bandwidth available to a connection to be

predicted (e.g., by standard methodology [21]). A second group of research focuses on actu¬

ally building such prediction services that can be asked to predict the properties of a particular
network path.

Predictability. Analyzing the predictability of network-path properties (as seen by individual

connections) has been the subject of two measurement studies [141,10]. The first study by Pax¬

son [141] investigates the evolution of loss rates. This aspect is important as it indirectly effects

the throughput of congestion-aware protocols (see Section 7.2.5). The study discovers that the

probability of seeing a zero-loss connection after having witnessed a zero-loss connection is

approximately 0.75; this probability is fairly stable over time-scales of 102 — 104 seconds. The

same applies for connections that experience loss: such connections are again a good predic¬

tor for seeing a successive connection with non-zero loss. Furthermore, Paxson shows that the

available bandwidth is also a good predictor for similar time scales.

The second study by Balakrishnan et al. [10] identifies two kinds of temporal evolution paths
of the bandwidth for a particular sender-receiver pair: stable and unstable. (The authors do not

report the fractions of all the connections they observed that fall into each of the two classes.)

For the class of host-pairs with stable bandwidth, the authors note that bandwidth is within a

factor of 2, even for time intervals of up to tens of minutes (103 — 104 seconds).

The time-scales investigated by these studies may be too large for some network-aware

applications. In fact, a recent study by Veres et al. [186] seems to suggest quite the contrary

to the observations above. Veres et al. state that TCP congestion control can exhibit chaotic

behavior. The authors show that, contrary to common belief, TCP itself as a deterministic

process can create chaos which generates self-similarity. (Self-similarity is a phenomenon that

has been attributed mainly to aggregate TCP/IP traffic [96, 197] so far.) Veres et al. demonstrate

the major features of chaotic systems in TCP/IP networks: unpredictability, extreme sensitivity
to initial conditions, and odd periodicity.

In summary, these studies allow the following two contradicting conclusions to be drawn.

On one hand, the findings by Balakrishnan et al. and Paxson seem to indicate that available

bandwidth is fairly stable, thus, encouraging the use of bandwidth caches (or bandwidth pre¬

diction systems, see below) that may help clients select an appropriate mirror server, or may

help alleviate start-up problems of network-aware applications (see Section 4.7). On the other

hand, the empirical evidence presented by Veres et al. and also Balakrishnan et al. suggests that

available bandwidth can fluctuate considerably enough to be termed unstable and unpredictable.
Because it is currently not known which fraction of today's Internet traffic shows unpredictable

behavior, the fact that unstable bandwidth can be observed implies that bandwidth must contin¬

ually be monitored so that applications can adapt to bandwidth fluctuations to ensure predictable

application behavior.
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Prediction service. Based on the observations made by Balakrishnan et al. [10], Stemm et

al. [163, 173, 174] developed SPAND (Shared PAssive Network performance Discovery), a

system that collects bandwidth samples by passive monitoring on a shared network at a client

site, caches the samples and predicts available bandwidth to a remote site based on the cached

information. SPAND is used to aid clients in server selection [174].

Other research [145, 62, 182, 84] recognizes the increasing need for networked applica¬
tions to be able to quickly and efficiently learn the distance, in terms of metrics such as la¬

tency or bandwidth, between Internet hosts (e.g., for server selection, network-aware delivery,
etc.). If probing techniques were ubiquitously used by applications, the Internet could suffer

severe scalability problems. To solve this problem of scale, Paxson et al. [145] and Francis et

al. [62] propose an architecture, called IDMaps, for a global Internet host distance estimation

service. (This proposal is in contrast to SPAND, which provides a local distance estimation

service.) The architecture of IDMaps consists of a network of instrumentation boxes, called

tracers, distributed across the Internet. These tracers periodically measure distances (e.g., in

terms of bandwidth) among themselves to generate a distance map of the Internet. This ser¬

vice can then be queried by applications to obtain bandwidth estimates for an end-to-end path
of interest. Obviously, not all possible paths on the Internet can be probed. However, if the

tracers are reasonably placed [84, 182], metrics for other paths can be extrapolated from the

measurements [62, 159].

Yet other work contributes more fundamentally to the construction of on-line prediction
systems that could be used in systems such as SPAND and IDMaps, or in on-line monitors

(see below). Dinda et al. [43] present RPS, an extensible toolkit for building flexible on-line

and off-line Resource Prediction Systems in which resources are represented by independent,

periodically sampled, scalar-valued measurements streams. RPS can be used to evaluate pre¬

dictive models (that is, to perform predictability analyses) as well as to build on-line prediction

systems, e.g, for host load or network bandwidth.

7.2.3 Bandwidth monitoring

Reviewing the related work on adaptive applications cited in Section 2.3 we note that only a

few systems adapt to bandwidth fluctuations and therefore need information from a monitor.

Furthermore, we note that most of these applications employ performance- or feature-based

adaptation [171] and monitor loss rates (e.g., the video tools based on RLM [113], MTP [72],
or RAP [153]) or buffer occupancy (e.g., HIPPARCH [93]) instead of available bandwidth.

TOMTEN [39] relies on the user to detect changes in quality and employs bandwidth discovery
techniques upon user intervention to learn about network status.

Of the related work cited in Section 2.3 only Odyssey [130] and Prayer [16] dynamically
track bandwidth. These systems perform bandwidth monitoring at the application-level. Han et

al. [70] performed some limited application-level monitoring at their transcoding proxy to col¬

lect measurement data that helped them to infer their static adaptation policies (Section 7.2.4).

Although there is limited work in bandwidth monitoring in the context of adaptive applica¬
tions, a significant amount of research has been under-taken by the network community to better

understand the dynamics of today's network traffic. Some of the insights gained have been ap¬

plied to build an infrastructure for network performance monitoring, other results still await
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"integration into applications". The following three sections review related work on bandwidth

monitoring and on related problems with potential contributions to bandwidth monitoring.

7.2.4 Application-level monitoring

Many multimedia applications (e.g., vie [112], vat [81], or ivs [183]) use the two application

protocols RTP and RTCP [162] to transfer their data and to advertise performance reports. RTP

provides end-to-end network transport functions suitable for the transmission of real-time data

over multicast or unicast network services. The control protocol (RTCP) enables monitoring of

the data delivery in a manner scalable to large (multicast) networks. An application can infer

metrics such as bandwidth, packet loss rates, round-trip times, etc. from the performance re¬

ports exchanged by means of RTCP. Bandwidth can be determined from the timestamps and the

cumulative byte counts reported in subsequent performance advertisements. A key feature of

RTCP is that it controls the frequency of these performance reports so that the amount of band¬

width consumed by the reports does not exceed a pre-defined fraction of the session bandwidth.

(This feature is especially important for multicast sessions.) RTP and RTCP are independent of

the underlying transport and network layers.

The Odyssey system [130] takes a slightly different approach: the central component of

Odyssey is the so-called viceroy, which acts as the single point of control, and which is re¬

sponsible for bandwidth estimation. For each application connection the viceroy maintains two

observation logs: one for remote procedure calls (to estimate round-trip time) and one for bulk

transfers (to estimate throughput)5. The viceroy periodically examines the recent transmission

logs of all active connections and determines the instantaneous bandwidth available to the entire

machine. It then estimates how much of that bandwidth is likely to be available to each connec¬

tion in the coming period and notifies (i.e., up-calls) the application if the bandwidth strays out

of the tolerance interval specified by the application. Odyssey's approach allows for a sharing
of bandwidth information between different applications. However, this sharing is limited to

the scope of the local area network.

Han et al. [70] take a similar approach for the evaluation of their transcoding proxy. They
use an application-level connection monitor, which is implemented as a transparent shim layer
(a winsock style dll on a windows platform) between the application and the socket layer. The

connection monitor records every send and receive event at the proxy. Whenever an application
(e.g., the proxy server) makes a socket layer call, a stub routine inside the shim layer is executed,

which, after creating a log entry, passes control to the requested function inside the socket

layer. The connection traces produced by the stub routines are then analyzed (off-line) by a

statistical analyzer. With their approach, Han et al. are able to monitor both the server-proxy

connection (with a receiver-based approach) and the proxy-client connection (with a sender-

based approach). The differences of a sender- and a receiver-based approach to application-level
monitoring are detailed in Section 7.3.2.

5These logs are produced by RPC2 [157], a user-level remote procedure call package that supports bulk trans¬

fers. RPC2 is used by all Odyssey applications [130].
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7.2.5 Transport-level monitoring

Recently, considerable research efforts have been devoted to develop models that characterize

the throughput of a single TCP connection. Two lines of research in TCP modelling can be

identified.

First, a number of researchers devised and refined models for TCP's steady-state through¬

put. The term steady-state characterizes the behavior of long-running TCP connections in equi¬
librium. Thus, steady-state throughput is (by definition) a good measure for the bulk transfer

capacity—the metric of interest to a network-aware application. Floyd [52] heuristically de¬

rives a simple analytical model for the throughput of a single TCP connection and finds that

TCP throughput is proportional to l/(rtt y/p), where rtt is the round-trip time and p is the

probability of packet loss. Floyd's work is extended by Ott et al. [134] and Mathis et al. [108].
These two studies model the stationary (i.e., steady-state) behavior of ideal TCP congestion
avoidance. The congestion avoidance mechanisms modelled are idealized in the sense that loss

(of multiple) packets does not lead to timeouts. Mathis et al. empirically validate their models

with Internet measurements. Independent work by Lakshman et al. [95] confirms these models.

Padhye et al. [136] address the limitations of the previous models and incorporate the effects

of TCP's timeout mechanisms on throughput. Their model also accounts for receiver-window

limitations, that is, the model distinguishes between connections that are constrained by the

network (congestion control) and connections that are constrained by a slow receiver (flow con¬

trol).

Second, two studies propose models for the behavior of short TCP connections which are

dominated by effects of the initial slow-start: to study the interaction of HTTP with different

transport protocols Heidemann et al. [71] develop a performance model for TCP throughput in

slow-start under the assumption of zero packet loss. Cardwell et al. [27] extend the work of

Heidemann et al. and Padhye et al. [136] and present a unified model for TCP performance for

both short and long TCP connections and a wide range of loss rates.

There are several usage scenarios for TCP throughput models: First, these models have been

developed for conformance testing of other congestion-aware transport protocols (e.g., reliable

multicast protocols [187], or multimedia streaming protocols [153]). A protocol is termed con¬

formant if it exhibits the behavior of TCP-friendly traffic flows [103]. The TCP models are used

to accurately characterize what is meant by TCP friendliness. Second, these models can be used

for network provisioning and bandwidth allocation in the Internet [108]. Third, the throughput
models can be used for the simulation of large-scale TCP/IP networks [75]. Fourth, and most

importantly for our concerns, these models can be used for transport-level monitoring to esti¬

mate available bandwidth for network-aware applications [18]. The main feature that makes

these models attractive from an application's point of view is that they focus on the important
factors (loss rate, round-trip time, etc.) that effect the long-term behavior of a TCP connection

and are therefore well suited to predict future performance. However, to date, no bandwidth

monitor exists that uses such models.

7.2.6 Network-level monitoring

One of the drawbacks of bandwidth estimation based on application-level and transport-level
monitoring is that these approaches have only limited knowledge about competing traffic. In
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contrast, querying the network itself allows an exact picture of the status of the entire network to

be obtained [100]. The network topology revealed this way allows to predict application-level

sharing. Furthermore, the cost (in terms of network load) of network-based queries is linear in

the size of the network. (This property is in contrast to benchmark-based or application-level
measurements whose costs are often quadratic in the number of network nodes.) The Remos

system [99, 121] developed at CMU queries routers by means of SNMP [170] to obtain net¬

work status information. The status information revealed by such queries can be represented

by an annotated graph whose edges are the links traversed by a connection [99]. The anno¬

tations reflect the performance metrics of interest, e.g., the link bandwidth and the fraction of

the link bandwidth used by the aggregate traffic at that router. The key challenge with such an

approach is the development of a mapping function which maps network status, that is, the list

of link bandwidths, to the bandwidth available to an application on an end-to-end basis [100].

The Remos implementation is a two-tier approach consisting of collectors and modellers [121].

Collectors are responsible for network-oriented functionality and collect static and dynamic
network information that is relevant to applications. Remos implements three types of collec¬

tors [121]: SNMP-collectors, benchmark-collectors (for parts of the network whose routers do

not respond to SNMP queries; benchmark collectors use probing techniques such as described

in Section 7.2.1), and master collectors (to organize collectors in a hierarchy). A modeller

is responsible for application-oriented functionality, e.g., to map the network-level metrics to

performance information that is meaningful to the application.

7.3 Qualitative comparison

This section gives a qualitative comparison of the related work on bandwidth monitoring pre¬

sented in the previous sections. As our focus lies on bandwidth monitoring (and bandwidth

modelling), we do not treat issues related to bandwidth discovery and prediction here. One of

the questions we want to address in the remainder of this dissertation is: "which of these ap¬

proaches to bandwidth monitoring is best suited to fulfill the information needs of the network-

aware applications studied?" To address this question, the following section lists the require¬
ments for a bandwidth estimator and identifies the criteria for the comparison.

7.3.1 Criteria

With our sender-initiated approach to network-aware delivery (cf. Chapter 3), bandwidth in¬

formation must be made available to the sender. This is in contrast to other systems, where

bandwidth information is made available to the receiver, e.g., for the purpose of client-initiated

adaptation [130] or server selection [28, 174]. In addition, there are two types of quantitative

requirements for dynamic bandwidth estimation: the quality of the bandwidth estimates and the

efficiency with which the estimates can be obtained by an interested application. Furthermore,

there is the (recurring) requirement that solutions should be reasonably easy to deploy.

Quality. Based on the observations made in Section 6.7 there are two dimensions that define the

quality of bandwidth estimates: first, the bandwidth estimates provided to the application
must accurately reflect the bandwidth (that will be) available to an application. Second,
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these estimates must be provided in a timely fashion, that is, a bandwidth monitor must

detect and report changes in available bandwidth quickly.

As far as accuracy is concerned we distinguish three subcriteria: first, how well can the

performance measures collected be mapped to the bandwidth available to a particular

application? In other words, how well does this mapped (or modelled) bandwidth match

the application behavior? Second, how well can the factors that effect available bandwidth

be differentiated (e.g., is a particular monitoring approach suited to distinguish between

host- and network-related effects on performance)? And third, can the effects of multiple

applications sharing the network on the bandwidth available to applications be predicted?

Efficiency. Bandwidth estimates should be obtainable at small costs. There are two efficiency

concerns: first, monitoring should impose as little overheads on the network as possible.

Ideally, monitoring should not incur any network overheads at all. Second, the process¬

ing overheads should not impact the performance of the end-systems. In other words,

monitoring should be scalable so that a large number of simultaneous connections can

be handled without incurring significant overheads that distort network and application

performance.

Deployment. Two aspects of interest can be subsumed under the term "deployment": First,

does the monitoring approach require cooperation with other entities (end-systems, or

routers) in the network? And second, which parts of a networked application have to be

changed to implement a particular monitoring approach? Ideally, a monitoring approach

requires as little cooperation with other entities as possible (both to ease deployment and

to reduce network overhead). Furthermore, changes to existing systems or applications
should be kept to a minimum.

7.3.2 Alternatives

Instead of comparing all the individual systems or approaches proposed in the literature, we

categorize and discuss the monitoring approaches on a more abstract level. We compare four

alternatives:

Application-level/Sender-based. The sending application monitors how fast it can pump data

into the network. Because the data is typically buffered (by the socket layer), the application

actually monitors the rate with which it can place data in the socket buffer. Once the send

buffer is full, the rate with which the application can place new data in the buffer is constrained

by how fast the network and/or the receiver can process data, that is, the rate is constrained

by congestion and/or flow control. (Such a sender-based approach has been taken by Han et

al. [70] to track the bandwidth of proxy-client connections.)

Application-level/Receiver-based. The receiving application monitors how fast the data is

delivered by the network. The receiver periodically informs the sender about its status by report¬

ing the number of bytes received since the last performance report. (Many of the applications

using RTP/RTCP [162] pursue this approach. Similarly, Han et al. [70] monitor the server-proxy
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connection at the proxy (for off-line analysis). Odyssey [130] also uses this approach, however,

no performance reports have to be sent to the peer, as adaptation is receiver-initiated.)

Transport-level. A transport-level monitor consists of a model that characterizes application

throughput (e.g., one of the models described in Section 7.2.5) and a method to collect the

parameters (loss rate, round-trip time, etc.) that are relevant to this model. There are two options
for information collection (e.g., for TCP): first, a packet sniffer such as tcpdump [111] can trace

network traffic of individual protocol connections. The packet traces can then by analyzed by a

tool such as tcpanaly [140, 141] that "reverse-engineers" the connection state (i.e., congestion

window, round-trip time, loss rate etc.). Second, the data can be obtained directly from the

sender's TCP stack (see Chapter 9). Because the relevant parameters are used by the transport

protocol's congestion control procedures and because these procedures are typically employed

by the sender to control the transmission rate, a transport-level monitor must be deployed at the

sender.

Network-level. Network-level monitoring repeatedly queries the status of all the routers on

the network path(s) taken by the connection(s) of interest. The router status includes informa¬

tion about link bandwidths and bandwidth consumed by the aggregate traffic at the router. The

status (or performance reports) of all the routers of a network path are then combined to model

the bandwidth available to an individual application. (This is the approach taken by the Remos

system [99, 100].)

7.3.3 Comparison

Table 7.1 summarizes the qualitative comparison of the four approaches given in this section.

We cannot comment on the issue of timeliness of the bandwidth estimates as timeliness mainly
depends on the sampling frequency and the averaging interval used. Both parameters must be

set by an application using a bandwidth monitor. Note, however, that the costs of collecting
bandwidth samples may place an upper bound on the sampling frequency, and that these upper

bounds may differ for the various monitoring techniques.

Application-level. The main advantage of an application-level approach is that it monitors the

bandwidth the application actually experiences. Second, application-level monitoring is simple
to implement (as demonstrated by previous work), and the end-system overheads incurred by

monitoring a single connection are small. Furthermore, only the application must be changed to

implement application-level monitoring (e.g., send and receive operations must be dispatched
to a stub layer [70, 130]).

On the down side we note that it may be difficult for the application to differentiate between

the various factors that effect performance. For instance, an application-level monitor cannot

find out whether the bandwidth of a connection is limited by the sender, the receiver (flow
control), or the network (congestion control). Distinguishing the effects of the various factors is

useful because it allows to estimate available bandwidth in a more robust manner. E.g., transient

behavior (slow-start, timeouts, etc.) can be identified and correctly be taken into account for

the estimation. Moreover, an application-level approach cannot predict the effects of sharing
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Application-level
Sender Receiver

Transport-level

(Sender)

Network-level

Quality Match application ± good + excellent ± good - difficult

Differentiate factors - difficult + simple ± possible

Predict sharing — limited to local network + possible

Timeliness depends on sampling frequency and averaging interval

Efficiency Network overhead + none - feedback + none ± queries

End-system overhead + small ± small + small0 - medium

Deployment Cooperation + none — receiver + none — router

Changes -f sender ± both peers - kernel0 + sender

aTradeoff between efficiency (in terms of end-system resource usage) and ease of deployment (see Sec¬

tion 7.3.3).

Table 7.1: Qualitative comparison of monitoring approaches. (The symbol ± indicates that the particular

factor is considered to be a positive feature of the particular approach, but, there are other approaches

that compare (slightly) more favorably with respect to this factor.)

the bandwidth with competing traffic. This effect on application performance is impossible to

predict by application-level monitoring beyond the limited scope of the local network.

Furthermore, we expect that bandwidth estimates obtained by a receiver-based approach
more accurately match the bandwidth experienced by the application than those obtained by a

sender-based approach. Sender-based monitoring only monitors the rate with which the new

data can be placed in the send buffers. Even though this rate is often dictated by congestion
control (and hence the network), we expect that bandwidth estimates derived from sender-based

measurements exhibit significant transients (see Chapter 9). On the other hand, receiver-based

monitoring has the disadvantage that it incurs network overhead for the transmission of the

performance reports and that it requires cooperation of both peers. The network overhead may

not be dramatic for a single application, but it may lead to scalability problems on a larger scale.

Consider a network-aware server that maintains a large number of client connections that must

be monitored. The feedback messages from these clients may lead to a phenomenon known

from reliable multicast as feedback-implosion, which has a negative impact both on network

and end-system performance. A consequence of this scalability problem is that the timeliness

of receiver-feedback may suffer.

Transport-level. The advantage of the transport-level approach is that bandwidth available to

an application can be matched quite accurately (if the appropriate models are chosen [18]; Chap¬
ter 8), even though the monitor must model (and hence approximate) application throughput. In

addition, network and end-system related performance limitations can easily be differentiated.

Furthermore, no network overheads are incurred, the end-system overheads are small and scale

better with large numbers of connections compared to receiver-based, application-level moni¬

toring (see Chapter 9). Note, however, that there is a price (in terms of deployability) to pay

for efficiency: an efficient approach requires (small) modifications to the protocol stack (see

Chapter 9). Otherwise, that is, if transport-level monitoring is done at the user-level (by means
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of tcpdump [111] and tcpanaly [140]), considerable end-system overheads must be witnessed6.

Another drawback is the inability to predict sharing effects beyond a limited scope.

Network-level. The biggest benefits of network-level monitoring (e.g., when compared to an

application-level, receiver-based solution) are the wealth of valuable performance information

revealed, and the scalability to large numbers of network-aware applications (that is, monitored

connections). The second benefit stems from the fact that a large number of connections may

have a significant portion of traversed network nodes in common. Such a situation allows

to share status information between the monitored connections. As a consequence, available

bandwidth may be predicted more accurately, because bandwidth sharing effects can be taken

into account. Furthermore, the network as a whole can benefit from considerable savings in

network overhead.

The flip side of a network-level approach from the perspective of an individual application
is that it may be difficult to accurately map network-level performance information to the band¬

width available to the application. (In fact, for their experiments with network-level bandwidth

prediction, Lowekamp et al. [100] had to calibrate their network-to-application mapping with

measurements from an application-level monitor.) Although a network-level solution may allow

for a sharing of information (and thus reduce the overhead for the network as a whole), probing
each router on a particular network path incurs overheads that can be significant from the point
of an individual application (e.g., the end-system must process the responses to these queries).

Moreover, not all routers along a network path of interest may be cooperative and respond to

queries. Such a situation may compromise the usefulness of the network-level approach as it

calls for application-level benchmarking to learn about network performance in those networks

(this is the reason for the existence of benchmark collectors in Remos [121]).

7.3.4 Discussion

Network-level resource monitoring can provide a wealth of detailed information about network

status (topology, link bandwidths, bandwidth utilization of links, etc.). However, it is ill-suited

for the type of network-aware applications studied in this dissertation for two reasons: first, we

expect the costs of obtaining such detailed status information to be fairly high (compared to

the costs incurred by other approaches). Second, the network-aware applications studied here

are mainly interested in end-to-end performance. However, such information is non-trivial to

obtain by means of network-to-application mapping. Thus, the costs of topology discovery and

querying routers are not justified for this type of application (except for potential benefits due

to "sharing effects" among multiple applications). Other applications, e.g., parallel applications
that involve multiple hosts to carry out a complex computation [67,171], or multi-party applica¬
tions that use intermediary nodes in the network to perform bandwidth adaptation for different

receivers [72, 90], may be better served by a Remos-type network monitor.

The comparison of the remaining three approaches does not yield a conclusive answer to

the question "which of the approaches to bandwidth monitoring is best suited to fulfill the

information needs of the network-aware applications studied?". Whether application-level or

6Paxson [140] notes that the development of tcpanaly was not fully satisfying because of the inability to write

the tool in terms of a one-pass analysis for generic TCP actions.
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transport-level monitoring is the better solution for a network-aware application such as Chariot

depends on a number of issues. E.g., how do the two approaches compare (quantitatively) with

respect to accuracy and overheads? How important is the ability to differentiate between the

various factors effecting the bandwidth available to an application? How accurately can the

available bandwidth be characterized by the transport-level models described in Section 7.2.5?

How big are the changes to the protocol stack to enable transport-level monitoring? We address

these questions as follows:

First, in Chapter 8 we present an in-depth evaluation of different models that can be used for

transport-level monitoring as a result of an in-vivo experiment in the Internet. The experiment

allows us to draw conclusions with respect to the accuracy of TCP models. In addition, the

experiment allows us to gain some insight on the following two questions7: how does available

bandwidth (defined as the bulk data transfer capacity [102]) depend on the transport protocol
used to transfer the data? Is there empirical evidence that would support or refute any of the con¬

tradicting reports on the predictability of available bandwidth as experienced by an individual

connection?

Second, to quantitatively assess and compare the efficiency and accuracy of different moni¬

toring approaches, we must build a flexible infrastructure for bandwidth monitoring that allows

to collect bandwidth information by means of different techniques simultaneously. Chapter 9

presents the architecture and implementation of our monitoring toolkit and provides a compar¬

ative evaluation of application-level and transport-level monitoring.

7.4 Summary

Since the performance of network-aware applications by and large depends on the timeliness

and accuracy of the bandwidth estimates, the second part of the dissertation (Chapters 7-9)
discusses different approaches to obtain information about network status. This chapter recapit¬
ulates the requirements for dynamic network resource estimators: bandwidth monitoring (and

this includes modeling of available bandwidth) and prediction of bandwidth availability.
The two issues are orthogonal. Our focus lies on the first aspect: bandwidth monitoring.

The chapter classifies and discusses different approaches to obtaining bandwidth estimates

(application-level monitoring, transport-protocol cooperation, and direct queries of routers).

The review and qualitative comparison of related work on bandwidth monitoring allows us to

draw the conclusion that network-level monitoring is ill-suited to support the type of network-

aware applications considered in this dissertation. Furthermore, the chapter identifies that more

work is needed to understand the implications and potential benefits of transport-level moni¬

toring, and it identifies the need for a flexible architecture of a monitoring toolkit that enables

a quantitative comparison (in terms of efficiency and accuracy) between application-level and

transport-level approaches to bandwidth monitoring.

7These questions have been identified to have been left unanswered by previous research (see Section 7.1.1

and 7.2.2 respectively).
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Chapter 8

Transport-level bandwidth modelling

The comparison of different monitoring approaches in Chapter 7 indicates that transport-level

monitoring may be an attractive approach to dynamic bandwidth estimation (for reasons of ef¬

ficiency and accuracy). By means of an in-vivo Internet experiment we want to address the

following three questions identified in the previous chapter: First, how accurately can the band¬

width available to an application be modelled by transport-level (i.e., TCP-level) throughput
models? Second, how does the choice of the transport protocol (i.e., TCP variant) effect the

available bandwidth? Third, is there empirical evidence that would help to support (or refute)

conjectures about the stability and predictability of available bandwidth put forth by related

work.

Section 8.1 presents the TCP throughput models to be evaluated. Section 8.2 introduces the

evaluation methodology. Sections 8.3 and 8.4 compare the accuracy of the TCP models studied

and try to explain the differences between the models observed. Section 8.5 assesses the effect

of different TCP variants on the accuracy of the models. Section 8.6 addresses the question
related to the predictability of available bandwidth.

TCP terminology

The following sections assume that the reader is familiar with the basic concepts of TCP's

congestion control mechanisms (see [79, 176, 4] for references). Here we briefly introduce a

few terms and abbreviations that are frequently used in this chapter.

TCP treats packet loss as a signal for congestion. When a TCP sender notices the loss of

a data packet it reduces the congestion window (denoted as cwnd). The congestion window

constrains the amount of data that can be sent within one round-trip time (rtt). There are two

alternatives how packet loss can be indicated to a TCP sender. The sender can assume that

a packet has been lost either if it receives three duplicate acknowledgments, or if it does not

receive any acknowledgments (acks) for a significant period of time (the so-called timeout pe¬

riod). In the first case, TCP reacts to the congestion indication by halving cwnd. In the second

case, that is, when the retransmission timer expires, the cwnd is reduced to 1 packet. The two

types of loss indications are termed triple duplicate ack (TD) and timeout (TO) loss indication,

respectively.

143
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8.1 Throughput models

We consider four simple models: one (Mi) is directly derived from the TCP specification, the

other three (Mi, Mj,, and Ma) have recently been described in the literature [108, 136, 27]. Let

bwi denote the bandwidth predicted by model Mi.

M\ (TCP specification [4]). At any instant during a data transfer, TCP's measure of the avail¬

able bandwidth is given by the size of the congestion window (cwnd) and the measured round-

trip time (rtt) [79, 4]. Thus, a straightforward approach is to simply use the averages of cwnd

and rtt to characterize the average application-level throughput.

For Mi we compute the weighted average of the number of packets the connection kept in

flight, that is, we compute cwnd as the weighted average of the cwnd size over the duration of

the whole connection, where the weights are given by the time cwnd stays constant1. Then,

(cwnd)
bw\ Pà -,

rtt

where rtt is the mean of the round-trip time samples produced by the protocol.
This model is simple to compute. Exposing the parameters to an application would require

only small interface changes. On the other hand, the model is applicable only to TCP and may

be too simple to be accurate.

M2 (Mathis et al. [108]). The throughput model for ideal TCP congestion avoidance devel¬

oped by Mathis et al. computes bandwidth as a function of the loss indication probability p, the

round-trip time rtt, and the packet size mss:

mss C
bW2

rtt ^fp

The constant C depends on the receiver's acknowledgment strategy and on assumptions about

the occurrence of packet loss2. The congestion avoidance behavior modelled by M2 is idealized

in the sense that packet loss does not lead to timeout phenomena. This statement implies that

the transport protocol is assumed to recover from multiple packet loss (in a single congestion

window) purely with fast retransmit/fast recovery (which is triggered by the reception of three

duplicate acknowledgments [4]). Thus, the loss indication probability p is defined as
dataSent >

where TD is the number of triple duplicate acknowledgment events experienced. dataSent is

the total number of packets sent (i.e., including retransmissions).

The advantage of this model is that it is mainly dependent on network-layer metrics, and

hence also applicable for purposes other than modelling TCP throughput (see Section 7.2.5).

Second, the model is simple to compute as it is based on a minimum of information. On the

1We account for the artificial inflation of cwnd in fast recovery [176, 4] by only using the constant number of

packets in flight during recovery instead of the actual value of cwnd.

2For delayed acknowledgments [4], Mathis et al. [108] use C = \/3/4 w 0.87 under the assumption of periodic
loss. Ott et al. [134] compute a value of C w 0.93 under the assumption of random loss. Padhye et al. [136] show

that the constant C depends on the strategy with which the receiver acknowledges data packets. If the receiver

acknowledges every b-th data packet then C(b) = J^. Current TCP implementations typically use b = 2.
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other hand, the model only captures asymptotic, that is, steady-state TCP congestion avoidance

behavior (and thus assumes that packet loss must occur). Therefore, the model is not suited for

short connections, and it is undefined for connections without loss. Furthermore, accuracy may

be low because the model does not consider timeouts.

M3 (Padhye et al. [136]). The model M3 extends M2 by taking into account the effects of

retransmission timeouts (RTOs) and receiver-window limitations (i.e., flow control).

To model timeout effects, the expected number of timeouts in a connection and the average

duration of a timeout period must be computed. For the first task, Padhye et al. express the

probability that a particular packet loss event happens to be a timeout as a function Q(p, b, w)
of the loss indication probability p, the frequency b with which the receiver acks data packets,

and the size of the congestion window w. Intuitively, the higher the packet loss probability the

higher the probability that not enough acks arrive at the sender to trigger fast retransmit/fast re¬

covery, and thus, the more likely it is that a timeout occurs. Similarly, the smaller the congestion

window, the smaller the number of packets a connection can keep in flight, and the more likely
it is that not enough duplicate acks arrive. For the second task, the estimation of the average

duration of a timeout, Padhye et al. rely on the users (of their model) to specify the parameter

tRTO, the average duration of the first timeout in a sequence of one or more successive time¬

outs. Because timeouts are subject to exponential back-off (if a timeout retransmission is lost),

the average duration of a timeout can be expressed as a function of tRjo and the packet loss

probability p.

The bandwidth of a TCP connection in steady-state can either be limited by congestion

control, which is modelled as sketched above, or by flow control. A connection that is limited by
flow control is called receiver-window constrained. The throughput of a connection constrained

by a receiver window Wmax can be approximated by ^£.
More specifically, Padhye et al. [136] develop M3 as follows: they approximate the ex¬

pected congestion window size E[w] as A/gf-- The loss indication probability p is defined

as dataient' wnere TO is the number of timeouts experienced by a connection. From E[w]
the throughput of TCP connections without timeouts is shown to be inversely proportional to

B(p, rtt, b) = rtt\J-^-.3 The probability that a packet loss results in a timeout is given by the

function Q(p,b,w). Using E[w], the expected number of timeouts can then be computed as

Q(p,b) « min(l, -gr^r). Taking into account that timeouts are subject to exponential back-off,

the average duration of a timeout can be approximated as tRrop( 1 + 32p2). The model proposed

by Padhye et al. approximates bw3 as a function of p, b, rtt, mss, tRjo, and Wmax:

,x mss \

rtt 'B(p,rtt,b) + tRTOQ{p,b)p(l + 32p2)

Since the model is based on a more comprehensive set of parameters, the accuracy should be

high. On the other hand, although the model is still fairly simple, it needs more information

(which is harder to get) than Mi- Like M2, M3 models asymptotic behavior of congestion
avoidance. Therefore, it is not suited for short connections and is undefined for connections

with zero loss.

3Note that B^t h~,
is equivalent to bwz, the throughput as modelled by M%.
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M\ (Cardwell et al. [27]). The work by Cardwell et al. extends M3 by taking slow-start be¬

havior into account. The authors model TCP latency for a transfer of dataSent wm-sized data

segments by decomposing the data transfer latency into three major aspects: the initial slow-

start phase, the resulting packet loss (if any), and the transfer of the remaining data. Cardwell

et al. first calculate the expected amount of data E[dss] that can be transferred in the initial

slow-start phase before encountering a packet loss or finishing the data transfer. Using E[dss],
the time spent in slow-start E[TiS], the final congestion window at the end of slow-start 2?[Ww],
and thus the expected cost of loss recovery E[Tioss], if any, can be deduced. Then, the steady-

state throughput model developed by Padhye et al. [136] is used to approximate the cost E[Tca]
of sending the remaining data. M4 then models the expected throughput of a connection that

transfers dataSent packet as:

dataSent mss

W4~

E[Tss}+E[Tl0SS]+E[Tca}

To model E[TSS] two scenarios must be distinguished. First, if a connection experiences

no packet loss (p = 0), then all packets can be sent in slow-start. However, due to limitations

imposed by the receiver window or the default slow-start threshold [4], the exponential growth
of the congestion window may not be unbounded. To reach a congestion window size of w,

E[dss] = T^~^1 data packets must be sent, where w\ is the initial congestion window size4, and

y is the rate with which the sender opens the congestion window in each round-trip time, y is a

function of b, the receiver acking-strategy (j— 1 4- i/b). Second, if a connection experiences

packet loss (p > 0), the expected number of data packets that can be sent in slow-start before a

loss occurs (E[dss\), can be expressed as a function of p. (The basic idea is that the number of

packets that a sender can transmit without experiencing a loss follows a binomial distribution.)

For both cases, E [Tss], the time required to transmit E [dss] data packets in slow-start, depends
on y and the initial size of the congestion window w\. The number of round-trips r required to

send E[dss] is given as logy( *• ss^~ '
+ 1). Then, we have E[TSS] = r rtt.

E[Ti0SS], the expected time needed to recover from the first loss, can be computed as fol¬

lows. With the probability Q(p, w,b), where w = £[WS5], the packet loss results in a timeout,

in which case E[Tioss] = tRjo', otherwise, the loss can be recovered within one rtt by using fast

retransmit/fast recovery. Finally, the time E[Tca] required to transfer dataSent — E[dss\ packets
in congestion avoidance is computed using the throughput approximation given by M3.

We note that M4 uses the same parameters as M3, thus, similar arguments apply. In contrast

to M3, M4 is applicable to all types of connections, including short connections and connections

with zero loss.

8.2 An Internet experiment

To generate a collection of traces that we can use to validate (or refute) our conjectures about

the different TCP throughput models, we performed an in-vivo experiment in the Internet. Here

we briefly summarize the setup of the experiment, see [19] for details.

We produced a family of user-level protocol implementations to study the effectiveness of

standard TCP Reno congestion control as well as to evaluate various enhancements to recover

4Typically, TCP implementations use wi = 1. Recently, the use of w\ — 2 has been permitted [4].
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from or to avoid congestion [19]: Vegas, SACK/FACK, Rate-Halving (RH), and Rate-Halving

with Lost Retransmission Detection (LRD)5. We then installed a daemon that is based on Pax¬

son's network probe daemon [141] at a number of Internet hosts in North America (CMU,

MIT, UC Irvine, DEC SRC Palo Alto6, U Waterloo Canada) and Europe (universities in Zurich,

Berne, Linz, Munich, Madrid, and Turku). From time to time, the daemons at randomly se¬

lected source and sink hosts were contacted and instructed to carry out transfers of 1MB of

data using a randomly chosen protocol variant. (To ensure that the receiver window does not

limit the bandwidth available to a connection, we chose large windows of 256kB.) The intervals

between successive transfers between a given pair of hosts are taken from an exponential dis¬

tribution with a mean of 10 hours. We recorded detailed measurements of the micro-dynamics

of each connection. These daemons were active over a 6-month period (from November 1997

till May 1998). The experiment includes the records of 24943 connections: 4148 Reno, 4100

Vegas, 5415 FACK, 5569 Rate-Halving (RH), and 5711 LRD connections.

8.3 Evaluation of models

The usefulness of throughput models for the needs of network-aware applications rests on the

accuracy of the information: How well does a model capture the bandwidth currently available?

To assess the accuracy of a TCP throughput model M;, we compute the throughput bwi as

predicted by the model for each of the connections of our experiment (for which the model

is applicable) and compare bwi with the throughput bwmeaSured actually experienced by the

application. We compute bwmeasured as
dataSent-mss

where ttransfer is the duration of the 1MB
hransfer J

data transfer measured. To compute bw2, bw$ and bw<\ we use the following (measured) loss

indication probability p = talent- ^D is me number of triple duplicate ack events, and TO is

the number of timeouts experienced by the connection.

With these definitions, we can use a scatter plot of the pairs < bwi,bwmeasUred > to verify

the accuracy of the model Mi by checking whether a clear linear relation is discernible or not.

Furthermore, we attempt to statistically characterize the "goodness" of a model by computing
the coefficient of determination R2 for a simple least-squares fit of the data. (R2 is the square of

the sample correlation and denotes the fraction of the variation that is explained by the regres¬

sion [82]).

Figure 8.1 (a) depicts these pairs < bwi,bwmeasured > for Mi. Clearly, Mi is far from being
close to an accurate model. In many cases, it grossly overestimates the bandwidth achieved.

This deviation is not surprising since the cwnd also includes the idle periods before retransmis¬

sion timeouts. We clustered the samples according to the number of timeouts experienced by

a connection (TO = 0,1,2, and TO > 3). We tried to fit the clusters with quadratic functions

simply to visualize the tendency of the overestimation to increase with TO. A similar tendency
can be observed when looking at the data for M2 (not shown); again this result is not surprising

5The protocol termed Vegas implements the novel congestion avoidance mechanisms proposed by Brakmo et

al. [22]. The protocol variant termed FACK (forward acknowledgment) is based on ideas presented by Mathis et

al. [105] that take advantage of the information conveyed by selective acknowledgments (SACKs) [107] to help

improve TCP's congestion control. Rate-Halving [106] extends the mechanisms present in FACK. LRD [106]

allows TCP to recover from lost (fast) retransmissions. These protocols are described and compared in [19].
6Now Compaq SRC Palo Alto.
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Figure 8.1: Scatter plot for all Reno connections; clustered according to the number of timeouts per

connection.



8.3. EVALUATION OFMODELS 149

R2 M\ M2 M3 Ma,

all connections

no loss (p = 0)

lossy (p > 0)

lossy, no timeouts (p > 0 A TO — 0)

lossy, timeouts (TO > 0)

0.74 - - 0.96

0.99 - - 0.97

0.62 0.83 0.92 0.91

0.99 0.85 0.85 0.86

0.63 0.86 0.93 0.93

Table 8.1: Summary of models (Reno connections).

either since the model does not take retransmission timeouts into account [108]. In contrast to

Mi and M2, which both overestimate the measured throughput considerably (in the presence

of timeouts), M3 and M4 seem to model the measured data well, independent of the number of

timeouts experienced. The data for M4 is shown in Figure 8.1 (b), the results for M3 (not shown)
are almost identical. These findings are consistent with the results reported in [136] and [27].

These observations are also supported by the simple statistical analysis summarized in Ta¬

ble 8.1. This table shows a statistical comparison of the models for Reno connections based

on different clustering criteria of the data. Note that M2 and M3 are not applicable to loss-free

connections. The table allows us to comment on four aspects.

First, a comparison of the quality of the models for loss-afflicted connections shows that

M3 and M4 best model the effective throughput, followed by M2 and Mi. To gain further

insight about the behavior of the models for different loss rates, we plot the relative model

error, that is, the ratio of predicted and measured bandwidth (bw w'—), for the range of loss

indication probabilities p encountered. Figures 8.2 (a)-(d) show the graphs for Mi, M2, M3
and M4 respectively. The x-axis represents the frequency of loss indications p on a log-scale.
The y-axis shows the median and the 10 and 90 percentiles of the relative model error. Note

that y values of 2 and 0.5 represent both an error of a factor 2. (The figures may therefore

not be immediately intuitive, but we want to depict that these models rather overestimate than

underestimate the true bandwidth, i.e., that the relative model error is rather above than below

the dashed line.) As can be clearly seen when comparing these graphs, M3 and M4 outperform
the other two models for connections with a high loss frequency.

Second, Table 8.1 confirms that timeouts are problematic from a modelling perspective.
M2, which does not model timeouts, matches effective throughput worse than M3 and M4. Mi
achieves high values for R2 merely for connections that do not suffer from timeouts. There is a

simple way to improve Mi : we can adjust the computation to take the number of timeouts (TO)
and the average duration of a timeout (tRjo) into account. More precisely, the average cwnd size

is reduced by
cwn '

t(~tRT0~rtt>. por this variation ofMi we obtain R2 = 0.94 for all connections.

(R2 then is 0.86 for all lossy connections, 0.77 for lossy connections with timeouts; the other

values remain unchanged.) However, even with this adjustment, M3 and M4 are clearly more
attractive than the other two models.

Third, Table 8.1 also illustrates that we should exercise caution when summarizing the

"goodness" of a model by a single number such as R2. As we learn from the numbers for

M2 for instance, the clusters for "lossy, no timeouts" and "lossy, timeouts" connections each

seem to be better described with a linear regression model than the union of the two disjunct
sets ("lossy"). In fact, if we cluster and plot the data again according to timeouts, we see effects

such as those depicted in Figure 8.1, however, the variation is smaller.
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Figure 8.2: Model error as a function of loss indication frequency (p) for lossy Reno connections.
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Figure 8.2: Model error as a function of loss indication frequency (p) for lossy Reno connections.
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Fourth, we note that according to the R2 values reported in Table 8.1 M3 and M4 seem to

model the "lossy, timeouts" cases better than the "lossy, no timeouts" cases. These results are

counter-intuitive. Although they are similar for both models, two different lines of arguments

are needed to explain the results.

For M3, we note that loss-afflicted connections that do not experience timeouts generally
have smaller loss rates than connections that suffer from timeouts. (We observe a correlation of

+0.93 between the number of loss indications p and the number of timeouts TO experienced by
Reno connections). Furthermore, the higher the loss rate, the shorter the connection stays in the

initial slow-start phase, and thus, the more the connection is governed by congestion avoidance.

Since M3 only models congestion avoidance behavior, it is not surprising to see that M3 better

matches the throughput of connections that suffer high loss rates (and timeouts), and are thus

more likely to be dominated by congestion avoidance.

For M4, different arguments apply. Recall, M4 is supposed to accurately model the through¬

put of a TCP connection regardless of how much time the connection spends in slow-start or

congestion avoidance phase, respectively. Cardwell et al. [27] note that using a model for

steady-state throughput to characterize the time required to transfer the remaining data after

slow-start introduces the following error. When the sender detects a loss in the initial slow-start

phase, its cwnd will often be much larger than the steady-state average cwnd. The size of cwnd

after slow-start can be roughly approximated by j- (see [27]). The steady-state value for cwnd

is -. /2gz (see [108, 136]). Thus, for high loss rates (i.e., for timeout-afflicted connections), the

sender exits slow-start at nearly the steady-state cwnd value, so the model error should be small.

For small loss rates it can take three or more loss indications—corresponding to megabytes of

data—to reach steady-state, so M4 will often underestimate the effective throughput of medium-

sized connections, such as those studied in our experiment. (This conclusion is supported by the

scatter plot in Figure 8.1 (b), which shows fhatMi often underestimates the bandwidth slightly.)
In summary, we find that M3 and M4 perform about the same. For the 1MB transfers we

observed, both models have their limitations. Despite these limitations, it is surprising to see

how well M3 and M4 model the throughput experienced by a TCP connection. For shorter

connections, which are more likely to be dominated by the initial slow-start phase, M4 is likely
to win over M3. However, such connections are less of interest to network-aware applications.
For longer connections, the effect of the initial slow-start is negligible, congestion avoidance

dominates, and thus both models match the throughput of such connections equally well.

Knowing about modelling errors at the end of a connection is only of limited usefulness to

network-aware applications. Such applications need accurate and timely information as early
as possible. Figures 8.3 (a) and (b) show how the model errors of M3 and M4 decrease as

a transfer progresses. For each data point x on the (logarithmically scaled *-axis), we apply
M3 and M4 to model the throughput experienced by the connection during the first x kB of

data sent. The figures report the median, as well as the 10 and 90 percentiles of the relative

model errors. By virtue of M3, only those connections were considered which experienced loss

in the first x kB of data sent. Figure 8.3 (a) indicates that M3 models the throughput fairly
accurately even early on in "lossy" connections—which are the most difficult to model—as

for 80% of the connections the model differs by less than a factor of 2 (i.e., lies between 0.5

and 2). Figure 8.3 (b) shows how the model error of M4 for "lossy" connections evolves as a

transfer progresses. We find that M4 is more accurate than M3 early on in a connection, because
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Figure 8.3: Model error as function of data transferred (lossy connections).
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Figure 8.4: M4 model error as function of data transferred (lossless connections).

M4 models slow-start behavior. However, the differences are rather modest. Figure 8.4 depicts

the model error of M4 for loss-free connections as they progress. M4 very accurately models

the throughput for such connections, regardless of their progress. This result indicates that M4

accurately captures TCP behavior even in the early stages of a data transfer.

The results for M3 and M4 reported in this section encourage the use of transport-layer

information in modelling network performance. These results provide a big incentive to pass the

appropriate information to the application (or a framework upon which the application is built)

and to widen the operating system's application programming interface minimally to allow an

application to take advantage of the fact that such valuable information is readily available in

the transport protocol stack. Chapter 9 shows that such an application-protocol cooperation can

be implemented with rather small efforts.

8.4 Timeouts

It is widely agreed that retransmission timeouts (RTOs) are problematic for various reasons. Be¬

sides causing modelling headaches and therefore unpredictable protocol behavior for network-

aware applications, they may waste network resources due to unnecessary retransmissions dur¬

ing slow-start after the timeout. Unfair sharing of the bottleneck and burstiness [125, 97], as

well as performance losses experienced by the application [9], are other sources of concern.

Thus, it would be highly desirable if timeouts could be avoided as often as possible. To do

so, we must understand the circumstances in which timeouts in TCP Reno happen. Following

an earlier classification [97], we distinguish 3 scenarios:

Multiple losses: Multiple packets in a single congestion window are lost, and multiple fast

retransmission/fast recovery cycles occur until the flow of duplicate acknowledgments
ebbs off, leading to a RTO.
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Non-trigger: The sender retransmits a packet without previous attempts because the fast re¬

transmission algorithm has not been triggered.

Lost retransmission: The sender retransmits a packet that has already been sent in a preceding
RTO or a fast retransmission.

Over the last few years, numerous TCP enhancements have been proposed that try to avoid

timeouts and address the problems mentioned above. Selective acknowledgments (SACK) [107]

and FACK (forward acknowledgment) [105, 106] aim at solving the problems caused by multi¬

ple packet loss in a single congestion window. The SACK enhancements also allow the repair
of lost fast retransmissions [106]. Studies of packet traces [97] have led to the conclusion that

multiple packet losses are the source of only a very small fraction of the RTOs encountered by
TCP connections and that over 85% of RTOs are due to non-trigger of fast retransmission.

The data presented in the studies cited above were collected in 1995 and 1996. Although
our data is not new in the sense that it points out new aspects of TCP behavior, the rapid evolu¬

tion of the Internet (towards higher bandwidths for many links) introduces enough changes to

warrant new experiments. Using a 3-month period of traces, we inspected the retransmission

timeouts and their causes for all the Reno connections. We find that the 2486 Reno connections

(from this subset) suffered 23279 timeouts, of which 39.5% are due to non-trigger, 40.1% are

due to multiple packet loss, and 20.4% are due to lost retransmissions (10.6% lost fast retrans¬

missions, 9.8% lost timeout retransmissions). To get a handle on the benefits of SACKs, we

installed receivers generating SACKs for Reno senders (which do not handle SACKs) and then

traced the SACKs at the sender. This setup allows us to assess how many of the non-trigger
timeouts could have been avoided by exploiting the SACK information (see extended recovery

trigger condition [105]). It turns out that in our experiment, 32.9% of the non-trigger time¬

outs would have been avoidable with SACKs. For the other 67.1% of the non-trigger timeouts,

optimizations such as NetReno [97] might have been effective.

To summarize, out of all the Reno timeouts observed, 63.7% might have been avoided with

SACK-enhanced protocols7. Note that this is an upper bound on the number what might be

curable with SACKs. In Section 8.5 we report on how effective the SACK enhancements are

in avoiding retransmission timeouts. In the other 36.3% of the cases SACKs would not have

been helpful. For the remaining 26.5% non-trigger timeouts (not avoidable with SACKs), ap¬

proaches such as NetReno would be applicable8. The numbers captured by our experiment
largely differ from numbers reported in previous studies: 85% of the timeouts are reported non-

trigger situations in [97], and only 4% of the timeouts have been classified as being avoidable

by SACKs [9]. These differences can be attributed to the fact that the connections we traced

observed bandwidths that are (at least) an order of magnitude higher as those reported in [10]
and [141] (which are based on the same data as the studies cited above)9. The bandwidth change
observed may reflect the general trend towards higher bandwidths but may also be due to the

fact that the sites participating in our study are generally well connected to the Internet.

763.7% = 40.1 (multiple loss) + 10.6 (lost fast retransmissions) + 0.329 * 39.5 (avoidable non-trigger)%.
826.5% = 0.671 • 39.5 (unavoidable non-trigger)%
9Higher bandwidths imply larger congestion windows. Timeouts are less likely to occur if the congestion

window is large. The formula Q(p, b, w) introduced by Padhye et al. [136] to compute the probability that a packet
loss leads to a timeout exactly reflects this correspondence between timeouts and the congestion window size w

(see Section 8.1).
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Figure 8.5: Breakdown of timeout causes for each protocol.

8.5 Evaluation of protocols

After assessing the potential benefits of various TCP enhancements with regard to timeout

avoidance, we now compare the implementations of these protocol enhancements based on

the actual measurements. We first report on the effectiveness of SACK-enhanced protocols in

avoiding timeouts and then resume our analysis of throughput models to see the effect of using

different protocol implementations.

8.5.1 Effectiveness in avoiding timeouts

Figure 8.5 shows how the different protocols are effected by timeouts. The heights of the bars

depict the mean number of timeouts per connection, where the average is based on all connec¬

tions using a given protocol. Additionally, the figure shows a detailed breakdown of the causes

for these timeouts (according to the classification given in Section 8.4). While a detailed com¬

parison of the different protocols is beyond the scope of this dissertation (see [19] for details),

we note that the SACK-enhanced protocols are significantly more effective in avoiding timeouts

than Reno. On the other hand, Vegas underperforms Reno as far as timeouts are concerned.

To simplify the presentation, and because the three SACK-enhanced protocols are similarly
effective m avoiding timeouts, we use FACK as a placeholder for other SACK-enhanced proto¬

cols. For similar reasons we do not further discuss Vegas. Thus, we focus on the comparison of

Reno and FACK connections. Overall, we find that FACK reduces the number of timeouts ex¬

perienced considerably. 67.9% of the Reno connections suffer at least one timeout. The mean

number of timeouts for Reno connections is 6.8. Only 34.1% of the FACK connections are

timeout-afflicted. The mean number of timeouts for FACK connections is 3.5, which is a 48.3%

improvement over Reno. Corresponding to the three classes of timeouts, there are three mecha¬

nisms present in SACK-enhanced protocols to avoid timeouts. We look at their effectiveness in

turn (see [19] for details):
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Figure 8.6: Comparison of throughputs for Reno and FACK connections.

Multiple loss: When looking at timeouts due to multiple packet loss, we find that compared to

65.4% Reno connections only 18.3% FACK connections suffer from such timeouts, and

the mean number of such timeouts per connection drops from 2.5 (Reno) to 0.4 (FACK).
We conclude that FACK can drastically cut down the number of timeouts due to multiple
loss. By and large, this reduction is achieved by the use of SACKs; the contribution of

the other optimizations in the FACK algorithm is only minor in this respect.

Non-trigger: The FACK algorithm extends Reno's recovery trigger condition beyond the du¬

plicate acknowledgment threshold logic to better cope with multiple packet loss and loss

of duplicate acknowledgments, which are particularly problematic for connections with

small cwnd [105]. We find that 38.3% of the Reno connections suffer from at least one

non-trigger timeout. The mean number of non-trigger timeouts for Reno connections is

2.8. Only 19.2% of the FACK connections suffer from at least one non-trigger timeout.

The mean number of non-trigger timeouts for FACK connections is 1.8. The difference

in means closely matches the reported fraction (approximately one third) of non-trigger
timeouts that were termed "avoidable by SACKs" in Section 8.4 (the difference is due to

the fact that only a subset of the traces is used to assess the potential benefits of SACKs).

Lost retransmissions: Both Reno and FACK can recover from a lost retransmission only by a

timeout. Lost retransmission detection [106] extends the FACK algorithm to avoid such

timeouts; it achieves a 40% improvement over FACK.

8.5.2 Effect on throughput

Figure 8.6 provides insight into how FACK's ability to avoid timeouts relates to performance
seen at the application level. FACK performs consistently better than Reno as can be seen from

the clear "right shift" of the bandwidth distribution curve. (See Figure 2 in [ 19] for a comparison
that includes the other TCP variants evaluated.)
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R2

Reno FACK

Mi M2 Ms M\ M\ M2 M?, M4

all connections

no loss (p — 0)

lossy (p > 0)

lossy, no timeouts (p > 0 A TO = 0)

lossy, timeouts (TO > 0)

0.74 - - 0.96

0.99 - - 0.97

0.62 0.83 0.92 0.91

0.99 0.85 0.85 0.86

0.63 0.86 0.93 0.93

0.98 - - 0.95

0.99 - - 0.96

0.97 0.91 0.93 0.93

0.99 0.91 0.91 0.90

0.97 0.93 0.93 0.94

Table 8.2: Summary of models (Reno and FACK connections).

R2 Reno Vegas FACK RH LRD

M\, all connections

Mj„ lossy connections

M4, all connections

0.74

0.92

0.96

0.67

0.70

0.84

0.98

0.93

0.95

0.99

0.92

0.93

1.00

0.92

0.93

Table 8.3: Comparison of models and protocols.

8.5.3 Effect on throughput models

Following the methodology used in Section 8.3, we try to assess the quality of the four models

Mi, M2, M3 and M4 for FACK connections by fitting the data with a least-squares fit and by
computing the coefficient of determination R2. Table 8.2 repeats the results for Reno from

Table 8.1 and contrasts them with the results obtained for FACK connections. Again, p denotes

frequency of loss indications, and TO refers to the number of timeouts per connection. There

are two noteworthy aspects: First, the simplistic model Mi "performs" much better for FACK

than for Reno connections. Second, the differences in the "quality" of the models are much less

pronounced for FACK than they are for Reno. This improvement can mainly be attributed to

FACK's success in avoiding retransmission timeouts. The differences in terms of timeouts noted

between the protocols (see Figure 8.5) are closely reflected by the accuracy of the TCP models

for these protocols (see Table 8.3). The models perform worse for Vegas than for Reno. One

of the reasons is that Vegas connections generally suffer more timeouts than Reno connections

(see Figure 8.5). Furthermore, the models perform about the same for all SACK-enhanced

protocols. These protocols experience about the same number of timeouts.

This reasoning is further supported by the model error plots for lossy FACK connections

shown in Figures 8.7 (a)-(d). Comparing these to the Figures 8.2 (a)-(d) allows us to see the

effect of using SACK-enhanced protocols. Again M3 and M4 perform best over the entire range

of loss rates witnessed. In general, the clusters of the model errors appear to be tighter with

fewer outliers (particularly for Mi). This improvement is reflected in the increase in R2 as

reported in Table 8.2. However, the models also exhibit basically the same behavior for high
loss probabilities (which occur mainly in connections suffering from timeouts). The reasons

why (i) R2 for FACK connections is higher than for Reno connections, and why (ii) R2 differs

only slightly for Mi and M3/M4 in the case of FACK (as opposed to Reno) can be found in the

distributions of the loss indication probability for the two protocols, plotted in Figure 8.8. The

log-scaled x-axis represents the range of loss indication rates encountered (to be consistent with

the data in Figures 8.7 (a)-(d), we only consider lossy connections). Reno connections have a

consistently higher loss indication probability than FACK connections. This property explains
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(i). The increase in modelling error for Mi around p ?a 0.1 is less pronounced in the case of

FACK connections (and therefore the difference between Mi and M3/M4 is smaller), because

fewer FACK connections experience such loss rates than Reno connections.

The loss indication probability for FACK connections is lower than the one for Reno for

two reasons: (i) the marked decrease in the number of timeouts and (ii) the fact that FACK

(like other SACK-enhanced protocols) treats the loss of multiple packets within one congestion
window as one event (compared to standard Reno, where multiple-packet congestion signals
lead to multiple recoveries and hence multiple reductions of the congestion window).

In summary, the results presented in this section add another dimension to the conclusions

of earlier studies [108, 136], which show how accurately the different throughput models match

the bandwidth experienced by a connection. We find that the TCP variant used by a connection

has a non-negligible impact on the accuracy of the models used for bandwidth estimation.

8.6 Stability

Since M3 and M4 yield reasonable results, it is interesting to turn to an investigation of the

temporal stability of available bandwidth. Furthermore, it is interesting to note whether and how

our empirical data compares to those presented in earlier studies [141, 10] (see Section 7.2.2).
A preliminary analysis of our experimental data seems to support the findings of these pre¬

vious studies (however, for smaller time-scales: 10° — 102 seconds): We first look at how well

the model for the first 50% of the data transferred predicts the performance observed for the

second half of the connection. Figure 8.9 shows the cumulative distribution function of the

factor of bandwidth change observed (which in our simple prediction scenario is equivalent to

the relative error of the prediction). We find that 84% of the Reno connections experienced a

change of less than a factor of 2 (to the better or the worse). Note that the figure does not show

the complete distribution, as approximately 1% of the connections experienced a throughput

fack 1
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Figure 8.9: Throughput change between first half to second half of connection.

change of more than a factor of 4 (up to a factor of 100!).

Clearly, this simplistic view on bandwidth stability is limited and does not parallel the more

rigorous and well-founded analyses of other researchers [141, 10, 186]. Nevertheless, it allows

us to confirm that a significant fraction of the connections (in our experiment) experience fairly
stable bandwidths. However, the heavy-tailed distributions of bandwidth change shown in Fig¬
ure 8.9 also indicate that there is a non-negligible fraction of connections which experience
widely fluctuating bandwidths. Thus, if we keep in mind that our experiment included only
well-connected hosts, we can conclude that bandwidth monitoring is (and will continue to be)

important for network-aware applications that want to achieve predictable application behavior.

Figure 8.9 allows to draw a second conclusion: FACK connections experience smaller

changes in bandwidth between the first and the second half of a connection than Reno connec¬

tions as can be seen from the "left shift" in the cumulative distribution for the ratio of throughput
change. This finding implies that not only the ability to model available bandwidth may be posi¬
tively influenced by the transport protocol used, but that the TCP variant also can have a notable

effect on the ability to predict bandwidth availability in the future.

Network-aware applications need predictions about the bandwidth available in the future.

Such predictions must be based on a varying amount of past observations, and may well be re¬

quired to predict the performance for varying time-scales into the future. Thus we are interested

in assessing how the accuracy of a prediction depends on the amount of "history" data observed

and the "future" to be predicted. Figure 8.10 shows (on the y-axis) the ratio of bandwidth

change (or relative prediction error) as a function of the "history" observed and (on the x-axis)
the "future" extrapolated. We show the median, 80 and 90 percentiles of the prediction error for

each combination of the "history" and "future" values chosen10. The figure reflects two obvious

10For each point in the trace and each combination of the parameters "history" and "future" applicable, we

determine the relative prediction error and aggregate all the values for a "history"/"future" pair. Note that we

exclude the slow-start from the "history" data. Slow-start's transient behavior dilutes findings about TCP steady-
state behavior significantly and requires separate treatment [27].
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facts: first, the more history data is used for the prediction the smaller the prediction error, and

second, the further into the future we want to predict the less accurate the prediction is. What is

more surprising to see, however, is that for most connections (i.e., 80%) the dependence on the

"history" and "future" parameters seems to be fairly small. This result indicates that even with

medium level of past information, reasonable predictions about future performance seem to be

possible (at least for the connections we observed).

Furthermore, it is interesting to note that the prediction errors (stability of the throughput)
observed seem to depend on the position within a connection. Figure 8.11 plots the same data

for the prediction error for a fixed parameter "history" (lOOkB) and different levels of "future"

as a function of the position within a connection. Again, we excluded slow-start from the "his¬

tory" data. We find that the prediction error decreases as the connection progresses (towards

steady-state). In principle, this result indicates that more work is required to understand the dy¬
namics and performance implications of slow-start with respect to network-aware applications.
However, as shown by Cardwell et al. [27], the slow-start performance depends mainly on the

probability of packet loss. Hence, as far as bandwidth monitoring is concerned, we are caught
in a catch-22 situation, since the ability to predict throughput (at the beginning of a connection)

depends on the ability to predict packet loss rates, and the occurrence of packet loss depends on

the application demands (in terms of bandwidth) placed on the network.

8.7 Summary

Adaptive applications need accurate and timely information about the currently available band¬

width. Our evaluation of four simple models to compute the bandwidth, based on a collection of

detailed traces collected in the course of a 6-month Internet experiment, allows us to comment

on three aspects. First, these simple throughput models are able to characterize the bandwidth

available to a single TCP connection fairly accurately. Although the original design goal was

to obtain the asymptotic bandwidth, the estimators M3 and M4 perform well enough to be con¬

sidered for network-aware applications. The effectiveness of M3 and M4, which are based on

transport-level parameters, provides an incentive to allow an adaptive application (or the frame¬

work that is extended by the application) access to these values in lower protocol layers. Such

access must be without overhead so that M3 and M4 remain cheap to compute and so that the

information is available in a timely fashion. Second, our data also add another dimension to

the results of earlier studies that reported the benefits obtained from various enhancements to

TCP. We find that the transport protocol (i.e., the TCP variant) used has a noticeable impact on

the accuracy of models used for bandwidth estimation. These TCP enhancements reduce the

number of timeouts and thereby improve, as a side effect, the accuracy of the simple models

that we investigated. Third, our limited analysis of issues related to bandwidth stability showed
that—even though bandwidth seems to be fairly stable for a large fraction of the connections

observed—significant bandwidth fluctuations can be observed. From these observations we

can draw two conclusions. First bandwidth monitoring is (still) important for network-aware

applications. Second, a significant fraction of the Internet traffic is sufficiently stable so that

bandwidth prediction seems possible. Moreover, we note a positive effect of SACK-enhanced

protocols on the predictability of available bandwidth.



Chapter 9

Comparison of monitoring approaches

Chapter 7 describes different approaches to bandwidth monitoring and classified them accord¬

ing to their method of information collection. The qualitative comparison could not conclu¬

sively answer which of the two approaches, application-level or transport-level monitoring,
is better suited to the needs of network-aware applications. The evaluation of different TCP

models in Chapter 8 shows that transport-level monitoring is a promising approach (because

the models are fairly accurate) and indicates that a simple widening of the transport protocol
API may suffice to provide a network-aware application with the required information. How¬

ever, some questions are still unanswered. How do the two approaches of application-level and

transport-level monitoring compare quantitatively in terms of the metrics identified in Chapter 7

(efficiency and quality of the bandwidth information)? Moreover, it is unclear how difficult it

is to actually implement a transport-level monitor. How many changes to the protocol stack are

necessary?

To answer these questions, the different approaches must be implemented. This chapter

presents the architecture of our bandwidth monitoring prototype (Section 9.1), describes the

implementation of the two approaches to information collection (Section 9.2), and finally gives
a quantitative evaluation and comparison of the two approaches (Section 9.3).

9.1 Monitor design

This section discusses the design of our prototype monitoring toolkit. Section 9.1.1 briefly lists

the requirements for the software architecture. Section 9.1.2 gives a high-level overview of

the system. Section 9.1.3 sketches the interface to the monitoring system, and Section 9.1.4

presents the processing steps involved in producing bandwidth estimates.

9.1.1 Requirements

In addition to the requirements stated in Chapter 7, the software architecture of our monitoring
toolkit should ideally have the following properties:

Integrated. There are three aspects to note. First, to allow for an unbiased comparison of

the overheads incurred by the different approaches to information collection, these ap¬

proaches should be integrated in a single monitoring architecture. By integrating and

165
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Application

(Receiver)

Update

Figure 9.1: Simple monitor architecture that integrates different approaches to information collection.

unifying the process of information collection and bandwidth modelling in a single archi¬

tecture, we ensure that our conclusions about the efficiency of the different monitoring

techniques are not disturbed by differences in the implementation. Second, to be able to

compare the different approaches with respect to the quality of the bandwidth information

provided to the application, the system must allow a connection to be monitored with mul¬

tiple approaches simultaneously. And third, independent of the approach used to collect

bandwidth information, the application should be presented with a unified programming
interface (so that only minimal changes are necessary to the application to experiment
with different approaches).

Extensible. It should be easy to add new techniques of information collection to the monitoring

system. In addition, the system should be extensible so that new bandwidth models (e.g.,
new TCP throughput models) for existing information collection techniques can be added.

Furthermore, it should be easy to augment the monitoring toolkit with prediction services,

such as those provided by the RPS toolkit developed by Dinda et al. [43].

Relocatable. It should be possible to place the (resource-intensive parts of the) monitoring sys¬

tem on other machines on the network. Bandwidth modelling and on-line prediction [43]

can incur significant computational load (in particular, if numerous connections must

be monitored simultaneously). Therefore, it should be possible to relieve, e.g., a busy
network-aware server, from this load.

9.1.2 Architecture

Inspired by the distinction between collectors and modellers made by the designers of the Re¬

mos system [99, 121], we pursue a two-tier approach in our monitor architecture. We refer to

components that are responsible for network-oriented functionality, that is, for the collection

of raw network status and performance samples as "sensors" (collectors in Remos). The "ob¬

server" component (modeller in Remos) is responsible for application-oriented functionality,

e.g., aggregating performance information of connections sharing a network path, or forming
bandwidth estimates from the raw performance samples. Figure 9.1 depicts an overview of the

components involved in our monitor architecture.
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Observer. In our prototype, an observer component is realized as a daemon (observd) that

can be run on any host in the network. E.g., an observer can (but need not) be co-located with

the (sending) network-aware application that requests bandwidth information. Co-locating the

observer with the application has the advantage of small communication overheads. The ob¬

server daemon manages and caches the state and performance information of multiple active

connections simultaneously. The daemon accepts and processes various types of messages,

e.g., messages that indicate the "arrival" or the "departure" of a connection (register and unreg-

ister), deliver performance updates (from the sensors), etc. These messages can originate from

different sources (applications and sensors). The observer can be queried both for bandwidth

estimates for specific connections that are currently active, or for estimates on the aggregate
bandwidth of multiple connections between two hosts. The daemon is started by inetd (Inter¬
net super-server) when any message arrives, and it terminates after having been inactive for

some amount of time. Multiple applications can (but need not) share an observer component.
The interaction with and the operation of observer components is described in more detail in

Sections 9.1.3 and 9.1.4.

Sensors. Sensors are conceptually simple components that must collect raw performance data,

encapsulate the data in update messages, and send the messages to the observer that processes

the performance updates. There are different types of sensors that collect raw, network-oriented

performance data. There is one type of sensor for each alternative for information collection.

In Figure 9.1, the different types of sensors are highlighted with different degrees of shading.

Application-level, sender-based information collection is performed by the component denoted

as app-snd (dark grey). Application-level, receiver-based information collection is done by the

app-rcv component (medium grey). Transport-level information collection is accomplished by
the tcpmon component(s) (light grey). Transport-level monitoring must be co-located with the

sending application. Section 9.2 describes the design of these sensors in more detail.

This separation of observer and sensor components achieves the desired integration of and

extensibility with respect to different information collection mechanisms. A sensor must merely
implement the protocol for performance updates. Moreover, relocating the functionality of

bandwidth modelling and prediction (implemented by the observer components) is straightfor¬
ward.

Soft state-based communication

Not being critical for the correct operation of network-aware applications, control informa¬

tion (performance reports, status messages, or connection advertisements) can be transmitted

between sensors, applications, and observer(s) using an unreliable datagram transport service

such as provided by UDP [176]. With such a transport service, a message (datagram) may either

be delivered correctly to the recipient (i.e., complete and ungarbled), or it may not arrive at all.

Unreliable delivery is the appropriate mode of transport for performance reports (update
messages). It makes little sense to retransmit performance reports that are dropped by the net¬

work because they may have been superseded by new reports in the meantime. In the interest

of accuracy, the performance reports should nonetheless be communicated in a loss-resilient

fashion, such that each update message is self-contained, that is, allows the observer to model
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the available bandwidth accurately. The loss of messages that advertise "arrivals" and "depar¬
tures" of connections to be monitored is slightly more problematic, because these messages are

responsible for the initialization and deletion of connection state in the observer, respectively.
Loss of these messages can compromise consistency.

We rely on the concept of soft state-based communication that has been successfully applied
in other protocols (see [36, 150] for an overview). State is called "soft" if it is maintained by
some entity in the network that expires the state after a certain time interval unless it is refreshed

by some update message received across the network from another entity in the system. That is,

a source of soft state (e.g., a sensor in our architecture) transmits periodic "refresh messages"
over a (lossy) communication channel to one or more receivers that maintain a copy ofthat state

(observer). Associated with this state is a pending timer, which is reset upon receipt of each

refresh message. If the timer expires (because the refresh messages cease), the state is deleted.

In our system state is associated with each monitored connection. The state captures whether

the connection is active as well as the connection's history of performance/status reports.

The main advantages of soft state-based communication (in comparison to a hard state-based

approach) are its simplicity and robustness. Failure treatment and other exception conditions

(that often lead to complex, error-prone interactions among many different distributed compo¬

nents in a hard state environment) need not be explicitly engineered, but are implicitly defined

by the design of the protocols. In a soft state framework, the designer is forced to presume in¬

consistency from the start. The following section details the application protocol and describes

how the soft state-based communication is realized.

9.1.3 Protocol

The observer protocol specifies how the other components (sensors and applications) commu¬
nicate with the observer (and thus unifies the different approaches to information collection).
The observer daemon accepts and acts upon four types of messages (see Figure 9.1):

Register. A register message specifies a new connection to be monitored, as well as the meth¬

ods of information collection, bandwidth modelling, and prediction to be used to form band¬

width estimates. A connection is identified by a 4-tuple containing IP addresses and port num¬

bers of both source and destination. The IP addresses describe a host pair, and the two port
numbers characterize an individual connection between a pair of hosts. As indicated in Fig¬
ure 9.1, three alternatives of information collection can be currently used (app-snd, app-rcv, or

tcpmon). Any subset of these techniques can be employed simultaneously. For each of these

alternatives, the preferred technique for bandwidth modelling and bandwidth prediction can be

specified. Several bandwidth models (see Chapter 8) and predictors (see Dinda et al. [43]) may
be applicable. It is important to note that information collection and bandwidth modelling are

coupled, however, bandwidth prediction is orthogonal to collection and modelling.

Update. Sensors periodically transmit new performance reports for a monitored connection

by means of update messages. An update message identifies the connection monitored (by the

4-tuple) as well as the method of information collection employed by the sensor (app-rcv, app-

snd, or tcpmon). Furthermore, it carries the raw, uninterpreted performance data produced by
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the sensor. The bandwidth model associated with the particular information collection method

is responsible to interpret the raw data (see Section 9.1.4). As stated above, this performance
data must be provided in a loss-resilient fashion, so that the loss of performance reports does

not distort the conclusions about the bandwidth available to the connection. For this purpose,

we use cumulative performance metrics that capture what happened since the start of the con¬

nection instead of metrics that only report what happened since the last performance report

was sent. Examples of such cumulative performance metrics include the total number of bytes

sent/received, the total number of timeouts, etc. Cumulative metrics are associated with a times-

tamp (to allow metrics such as bandwidth or loss rates to be inferred).

Getlnfo. An application that requires estimates for the bandwidth available (or for other met¬

rics) can query the observer by means of a getlnfo message. The message contains the con¬

nection or the host pair as well as the performance metric the requester is interested in. If port
numbers are not specified the aggregate performance (bandwidth) for all monitored connections

for this host pair are reported. Optionally, the requester can specify which modelling and pre¬

diction techniques should be used to produce the estimates. The observer replies with an info

message containing the information asked for.

Unregister. By means of an unregister message, an application can inform the observer that a

connection has terminated or that it is no longer interested in performance data for the connec¬

tion.

What happens if any of these messages is lost? If a register message is lost, the initialization

of the corresponding data structures at the observer cannot take place. This is not problematic,
because as soon as update messages for this connection arrive, the lookup of the connection

fails and the observer can invoke a (late) initialization of the data structures. (Recall, each up¬

date message conveys information about the connection to monitor and about the method used

for information collection). Once update messages from each of the sensors employed for a

particular connection have been received, the soft state carried by the lost register message is

restored. The only information lost with a register message are the application's preferences
about the modelling and prediction techniques to use for a particular method of information

collection. (This situation may not be dramatic, if meaningful default behavior has been spec¬

ified.) Each update message "refreshes" the state of the corresponding connection. Thus, the

loss of update messages is not problematic as it only results in connection states that reflect un¬

timely (but potentially still accurate) performance information. The loss of unregister messages
is compensated by a timer mechanism that detects whether a connection has been inactive for

some time. A connection is inactive if no update messages have been received for the particular
time frame. Thus, a lost unregister messages only implies that the memory consumed by the

connection state cannot be freed (and written to disk) as early as otherwise possible. If getlnfo
or info messages are lost, the application can either resubmit the request or use old information.

In accordance with the messages exchanged between applications and the observer, the mon¬

itor's programming interface exposed to applications that want to make use of the bandwidth

monitor provides methods to register and unregister a connection to be monitored, specify the

mechanisms for information collection, bandwidth modelling, etc., and to query the observer



170 CHAPTER 9. COMPARISON OFMONITORING APPROACHES

Update Modelling Resampling Prediction

\
Q

\Raw \ Bandwidth\ Time \ Predicted \
i sensor /samples /Samples / Series /Bandwidth/

<t,ovmd,rtt> -d^bw^^bw^ <tm^2,..>, 5t <bw*1,bw*2,..>, 5t

Model,
„ ,. „ ,. ,

Sampling . Resampling Predictor,

frequency f ^^"f, frequency 5t Parameter(s)

Figure 9.2: Data flow through the processing pipeline.

for bandwidth estimates. This functionality can easily be encapsulated in wrapper functions for

the standard socket API calls.

9.1.4 Processing steps

Figure 9.2 depicts the steps involved in producing estimates for the bandwidth available to a

particular application. As explained above, sensors collect performance data that is reported to

the observer by means of update messages. The sensors typically (to be detailed in Section 9.2)

produce measurements periodically with some sampling frequency /. The raw measurements

(raw samples) are stored at the observer and serve as the input for the process termed band¬

width modelling (see Chapters 7 and 8). Bandwidth modelling transforms a stream of raw

measurement samples into a stream of bandwidth samples. The bandwidth samples depend on

the model used and the averaging window At used to compute the bandwidth. Because the

bandwidth samples may not arrive at the observer with a constant rate, the stream of bandwidth

samples may have to be resampled to form a time series (with a fixed interval Ôr; typically
or « l/f). Standard methodology for statistical prediction [21, 43] often requires a time series

(of bandwidth samples) as input and produce a series of bandwidth predictions as output that

can then be reported to an application that queries the observer.

It is important to note that the processing pipeline presented in Figure 9.2 provides a "frame¬

work" that integrates and unifies different approaches to each of the individual steps. The frame¬

work is extensible in three dimensions. First, new sensors can be added; they must merely con¬

form to the update protocol specified in the previous section. Second, even though a bandwidth

model is coupled to a particular method of information collection (it must be able to interpret
the raw measurement data), there may be different approaches to interpret the measurement data

(cf. TCP throughput models). Third, there exist many different techniques for prediction. E.g.,
the RPS toolkit implemented by Dinda et al. [43] provides three simple predictors (mean, last,

and windowed mean), four predictors that follow the approach proposed by Box-Ienkins [21]

(autoregressive (AR), moving average (MA), ARMA, and AR integrated MA (ARIMA)), and

one predictor for time series that exhibit long-range dependence (AR fractionally integrated
MA (ARFIMA)). Which of these (and possibly other) predictors is best suited for the task of

bandwidth prediction for network-aware applications depends on the predictability of network

traffic (see Section 7.2.2) and remains to be investigated in future work.

As a consequence, our current implementation does not include this last step of bandwidth

prediction, and we leave it to future work to incorporate a prediction system such as Dinda's

RPS [43] into the observer component.
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9.2 Information collection

This section describes the implementation of the different methods for information collection.

9.2.1 Application-level monitoring

Application stubs

Information collection for application-level monitoring is achieved by wrapping the functions

of the socket API. So-called application stubs provide the appropriate wrapper functionality.
Sender-based monitoring relies on a sender stub that wraps the send socket calls (app-snd in

Figure 9.1). Receiver-based monitoring uses a stub that wraps the receive socket calls (app-

rcv). These wrapper functions update the total count of bytes sent or received and record a

timestamp. If the time passed since the last performance report (update message) has been sent

to the observer exceeds l/f, where / is the sampling frequency, then a new performance report

is generated containing the timestamp, the cumulative number of bytes sent or received, and the

sequence number of the performance report.

Bandwidth modelling

The update messages sent by application-level sensors basically provide the observer with a

sequence number plot of the monitored connection (see Figure 6.5 for an example of such a

plot). Bandwidth samples are obtained from these sequence number plots by moving an aver¬

aging window of size Ar over the raw samples and by assessing the number of bytes transferred

during this interval. The number of bytes transferred Ad is given as the difference of the highest

sequence number reported at the end of the window and the lowest sequence number reported
at the beginning of the time frame. The bandwidth for the interval is then Ad/At. The stream of

bandwidth samples is resampled with frequency 1/67. The resampling is achieved by advancing
the averaging window Ar stepwise by Bt.

9.2.2 Transport-level monitoring

Information collection for transport-level monitoring is implemented by a layered architecture.

The three layers of the approach (see Figure 9.1) include a few hooks in the TCP stack, a

loadable kernel module (LKM) termed tcpmon, and a user-level daemon process (tcpmond).
The rationale behind this layered construction is that we want to introduce as little changes
to the TCP stack as possible and still get access to all the information needed to model the

bandwidth available to a TCP connection.

We implemented our prototype in the NetBSD 1.3 operating system [119]. Other operating

systems provide similar support for code that can be dynamically loaded into and unloaded from

the operating system kernel. The advantage of using NetBSD is that it has a standard and well-

documented TCP stack. (The source code is derived from the original BSD implementation.

Wright et al. [199] explain and discuss the entire source code of the popular 4.4 BSD-Lite

implementation of TCP.)
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TCP stack

For reasons of code maintenance, we keep the changes to the TCP stack to a minimum. In

particular, changes to kernel data structures (e.g., TCP control blocks1) are completely avoided,

since such changes would require to recompile the kernel and all applications that rely on these

data structures.

We installed a few hooks (call-backs) at appropriate places in the TCP stack, so that asyn¬

chronous events such as timeouts etc. can be recorded. When the loadable kernel module is

loaded, the hooks are installed and TCP calls back the kernel module to update state informa¬

tion held there (see below). Otherwise, that is, if the LKM is not loaded, TCP operates as if

unchanged.
The discussion in Chapter 8 shows that the following information is required to model the

throughput of a TCP connection: round-trip time (rtt), loss indication probability (p), the aver¬

age duration of a timeout period (îrto), the receiver's strategy to generate acks (b), the receiver

window size (Wmax), and possibly the size of the congestion window (cwnd). rtt is obtained by
measurements that are carried out once per round-trip time (in analogy to the rtt measurements

performed by TCP [199]). Instead of using TCP's coarse-grained measurements, which typ¬

ically have a granularity of 500 ms, we sample the system clock to obtain accurate estimates

with a granularity on the order of ps. For this purpose we install two hooks, one to start/reset a

rfr-timer and a second to finalize the measurement. To compute p, the number of triple duplicate
ack indications (TD), the number of timeouts (TO), and the number of packets sent (dataSent)
must be tracked. We install a hook to record when recovery is entered (after receiving the third

duplicate ack), and a call-back that is invoked when a retransmission timer fires. The latter

hook can also be used to update îrto- No hooks are required to assess Wmax and cwnd, as this

information can be obtained by polling from the LKM (whenever tcpmond requests informa¬

tion). The receiver acking policy is difficult to infer dynamically. Most currently used TCP

implementations have b = 2.

In addition to the four hooks described, we install a call-back to be invoked when a con¬

nection's TCP control block is deallocated by the kernel (after the connection terminates). This

call-back allows to clean up data structures held in the LKM that are associated with the TCP

control block.

tcpmon (loadable kernel module)

The loadable kernel module fulfills three tasks:

System-call API. The module exports the following system calls. Sending applications that

want their TCP connections to be monitored must register the socket associated with the

connection (register(J). The application should also unregister the socket after the con¬

nection is terminated (unregister(J). If an application fails to do so, e.g., because it crashes

unexpectedly, the call-back installed in the TCP stack ensures that the corresponding data

structures are freed eventually.

^ach TCP connection is associated with a data structure called "TCP control block". The TCP control block

maintains the connection's state. A TCP connection's state includes state variables for data transmission and error

recovery, as well as information used by flow and congestion control procedures.
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Moreover, the LKM exports two functions that allow tcpmond (or any other application)
to query the number of connections that are monitored (getnoftcpmon(J) and the status

of all the monitored connections (getinfaO). getinfo() traverses all TCP control blocks,

checks whether the corresponding TCP connection has been registered by the application
and returns a list of4-tuples (IP addresses and port numbers) which identify the monitored

connections and a list of performance samples (one per connection). A performance

sample for a connection contains the following data: rtt, TD, TO, dataSent, îrjo, cwnd

and Wmax- All metrics (except for rtt and Wmax) are reported cumulatively to increase

resilience against loss of update messages.

Connection management. Since the TCP control block contains no unused data fields that

could be used as a pointer to the performance data/connection state that is associated with

the connection and held by the LKM, and because we want to avoid changes to kernel

data structures, a different type of mapping between a connection's TCP control block

and its performance data must be established. We use a simple hashing mechanism where

collisions are resolved by chaining. The register function allocates and initializes the

necessary data structures and establishes this mapping. The unregister function and the

clean-up call-back deallocate the data structures and delete the association with the TCP

control block.

Information collection. The information required by TCP throughput models is stored in the

LKM. The call-backs installed in the TCP stack invoke functions provided by the LKM

that update the connection state held by the LKM. Two call-backs are used for rtt mea¬

surement. A first function records the system clock when TCP starts or resets the rtt

measurement for a data segment. A reset can occur if data is retransmitted [88]. A second

function is used when TCP terminates the rtt measurement. The function again samples
the system clock and computes the rtt (in ps resolution) as the difference between the two

timestamps.

The function called when recovery is entered simply increments the TD counter.

The function called when a retransmission timer expires increments the TO counter, and

checks if the timeout is the first for a particular data segment (i.e., checks that the timer

has not been subject to exponential back-off). If timer has not been back-offed, the du¬

ration of the timeout period must be computed. There are two options that provide a

reasonable tradeoff between accuracy and efficiency. First, the connection's TCP control

block contains a variable that reflects the duration of the timeout period in 500ms ticks.

The tick-based measurement can deviate from the effective duration of the timeout period
by up to 500ms. (Retransmission timers are checked only twice per second). Second,
since the fine-grained rtt measurement is performed once per round-trip time, a more

accurate approximation can be obtained as the period between the last rtt measurement

and the timeout. This approximation for tRro is more accurate only if rtt < 500ms. The

approximation based on fine-grained measurements deviates from the effective timeout

period by at most one rtt. We currently use the second alternative.
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Source file Original Changes

netinet/tcp-input.c

netinet/tcp_output.c

netinet/tcp_timer.c

netinet/tcp-subr.c

2172

330

659

750

33

4

9

4

Total 3911 50

Table 9.1: Size of changes to NetBSD 1.3 TCP stack (reported in # lines changed/added). The complete

TCP stack comprises 13 files and 5565 lines of code.

Source file Code Comment Total

tcpmon_syscall.h

tcpmon_syscall.c

tcpmon_error.h

tcpmon.h

tcpmon.c

55 71

32 31

28 0

31 14

692 213

126

63

28

45

905

Total 838 329 1167

Table 9.2: Size of loadable kernel module (in # lines).

Bandwidth modelling

tcpmond periodically checks whether any TCP connections exist that are registered to be mon¬

itored. If so, it uses the getinfo() system call to obtain a list of all monitored connections and

their associated performance data. The performance data are encapsulated in update messages

that are dispatched to the observer component, tcpmond's task is simple and can therefore be

easily integrated with the observer if the observer is co-located with the sending application.
The TCP throughput models registered with the observer are then used to model the bandwidth

available to each of these connections. Since the throughput models describe asymptotic TCP

behavior, the cumulative metrics for the various parameters are used directly (instead of moving
some averaging window across the data).

Discussion

One of the questions we want to answer by implementing the different approaches to informa¬

tion collection is how difficult it is to actually implement a transport-level monitor. How many

changes to the protocol stack are necessary?
Table 9.1 lists the source files affected by and the size of our changes to the TCP stack. In

total, the NetBSD 1.3 TCP stack comprises 13 files and a total of 5565 lines of code. The table

shows that only 50 lines of code in 4 files had to be changed or added to install the call-backs

mentioned above. In other words, the changes affect less than 1% of the total TCP stack.

Table 9.2 lists the files that comprise the loadable kernel module. The first two files define

the programming interface to be used by (and linked to) applications such as tcpmond. The core

of the LKM is the file tcpmon.c, which implements the functionality described above. The table

illustrates that the LKM is a fairly small piece of software with less than 900 lines of code. A

more detailed breakdown of the 692 lines of code for tcpmon.c shows that about one third each

is used to implement the following three tasks: LKM administration/system call dispatching,
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connection management, and the implementation of the system calls. The implementation of

the call-back functions is lean and uses only about 60 lines of code.

From these observations, we conclude that the kernel changes required to make transport-

level monitoring work and to achieve the proposed widening of the transport API are indeed

very small. This finding and the results of Chapter 8 indicate that an instrumentation of the

TCP stack to allow for transport-level monitoring may be a worthwhile addition to any TCP

stack as it can be easily accomplished. The clean distinction between the hooks in the TCP

stack and the implementation of the call-back functions in the LKM turned out to facilitate

experimentation with and maintenance of the code.

9.3 Evaluation

9.3.1 Methodology

In this section we quantitatively compare the monitoring approaches with respect to the applica¬
tion-relevant criteria identified in Section 7.3: efficiency of the information collection process,

and the quality of the bandwidth information.

We distinguish two issues for efficiency. First, bandwidth monitoring should impose as little

overhead on the network and on the end-system(s) as possible. Second, monitoring should be

scalable so that a large number of simultaneous connections can be handled without incurring

significant overheads that distort network and application performance. We expect monitoring
overhead to be dependent on the method of information collection, the (targeted) sampling

frequency, and the number of connections that must simultaneously be monitored.

There are two aspects that determine the quality of bandwidth estimates. First, the band¬

width estimates provided to the application must accurately reflect the available bandwidth.

Second, these estimates must be provided in a timely fashion, that is, a bandwidth monitor must

detect and report changes in available bandwidth quickly. Timeliness depends on the sampling

frequency with which performance information is obtained and the averaging window used to

compute the estimates. The (effective) sampling frequency is limited by the overheads incurred

by monitoring. The issue of accuracy has been addressed in Chapter 8 and is not further dis¬

cussed here. Chapter 8 showed that transport-level monitoring is able to accurately model the

bandwidth available to an application. Furthermore, the bandwidth models capture the behavior

of long-running connections, and we expect that these models may therefore be better suited for

prediction of bandwidth availability in the future than application-level bandwidth estimates.

We conduct a simple experiment to study how the different approaches to information col¬

lection behave under load, since both issues, efficiency and timeliness, seem to depend on how

well the monitoring system can cope with load.

Experimental setup

A 200 MHz Pentium Pro PC with 128 MB RAM running NetBSD 1.3 (with our TCP modifi¬

cations) acts as the server machine. A dual-processor 300 MHz SPARC Ultra 4 system with 1

GB RAM running SunOS 5.6 serves as the client machine. The two hosts are connected with a

100 Mbit/s switched Ethernet, observa is co-located with the server, that is, runs on the PC.
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As discussed above, we expect the load on the monitoring system to be determined by the

number of connections n that must be monitored simultaneously and the frequency / with which

performance reports should be generated. We run the following experiment. The client machine

starts n client processes simultaneously. Each client process connects to the server and requests
transmission of 100/« MB. The client requests specify the method for monitoring (app-rcv,

app-snd, or tcpmon) and the sampling frequency /. The appropriate monitoring components

are instantiated after connection establishment. For tcpmond we explore two variants. In the

first alternative, tcpmond is an independent component on the server host that communicates

with observa by means ofUDP messages (we refer to tcpmond's situation as "separated"). With

the second variant, tcpmond is "integrated" with observd, which implies that update messages

from tcpmond are passed to observd by means of procedure calls. In contrast, the app-rcv and

app-snd stubs are part of the client and server application, respectively, and communicate with

observd by means of UDP messages.

The sampling frequency / determines how often the monitoring component of choice must

generate performance reports. For application-level monitoring we compare two alternatives

for the generation of performance reports. First, a performance report is generated (by the

application stub) whenever application data is sent/received (i.e., whenever the respective socket

function returns) and ht = \/f seconds have passed since the last report has been sent. Note

that this mode of operation adapts to the transmission rate of application data. If no application
data is sent/received, no performance updates are produced. We term this alternative "adaptive".
Second, the application stub can generate performance reports at the rate /, regardless of the

progress of application data transfer. We refer to this mode of operation as "strict" feedback

generation.
We vary the sampling interval ht = 1/'/ between 0.05 and 2.0 seconds, and choose the

number of parallel connections n from the set {5,10,20,40}. We run 10 experiments for each

combination of n, ht, and the method for information collection: app-rcv (strict and adaptive),
app-snd (strict and adaptive), and tcpmon (separated and integrated). Unless otherwise noted,

the results reported in the following sections are specified in terms of mean and a confidence

interval for the mean that is computed at a confidence level of 95%.

9.3.2 Efficiency

The end-system overhead incurred, that is, the CPU bandwidth consumed, by monitoring de¬

pends on two issues: the overhead incurred to obtain and process a single performance sample,
and the number of samples that must be processed by the observer per second. In principle,
the number of samples that must be collected and processed each second is equal for all the

monitoring techniques and is given by n f. Thus, we expect the end-system overheads to be

mainly effected by the costs incurred by a single performance sample.

Cost per sample

Figures 9.3 (a)-(d) show the overhead incurred by a sample as a function of the monitoring
technique, the sampling interval ht, and the number of connections n. Two types of costs are

reported. The total per-sample costs of information collection (solid line) and the processing
costs for a sample (dotted line). The processing costs are included in the total costs. The costs
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reflect the user and system CPU time consumed2. The total per-sample costs are computed

by dividing the CPU consumption of observd for the whole experiment by the number of all

the performance samples that are processed. The per-sample processing costs are measured

for each performance sample individually and cover the time needed to store and process the

information conveyed in the update message. Hence, the processing costs do not cover the time

required to receive and identify a performance sample.

There are three aspects to note in Figures 9.3 (a)-(d). First, tcpmon (Figures (c) and (d))

incurs considerably lower total costs per sample than the application-level approaches (Fig¬

ures (a) and (b)). In addition, tcpmon's processing costs per sample are also smaller than those

of the other approaches. The discrepancy in terms of total costs between tcpmon and the other

approaches can mainly be attributed to the fact that tcpmon incurs considerably smaller com¬

munication overheads: the performance samples of all n connections are "batched" in tcpmon.

That is, the performance samples of all n connections are aggregated and communicated to

observd in a single update message. This is in contrast to app-snd and app-rcv where each

performance report must be processed individually (because they are generated by different ap¬

plications). The effect of this "batching" is reflected by the fact that the total per sample costs

decrease as the number of connections increases (Figures (c) and (d)). This observation implies

that the constant cost of generating and communicating such a batched performance sample is

amortized over larger numbers of connections.

Second, the total per-sample costs seem to depend on the sampling frequency. This tendency
is most pronounced for the application-level approaches (Figures (a) and (b)). The higher the

sampling frequency (i.e., the smaller the sampling interval of), the smaller are the per-sample
costs. This correlation can be explained by constant observd overheads, e.g., start-up overheads,

that are amortized over larger numbers of samples. The correlation may also be effected by

caching. The higher the number of samples to be processed per second, the more likely it is that

instruction and data caches are valid.

Third, the difference between total costs and processing costs per sample for the application-
level approaches (Figures (a) and (b)) is quite significant. The difference may in part be at¬

tributed to constant overheads that are included in the total costs, but are not included in the

processing costs. This conclusion is supported by the observation that the difference becomes

smaller as the sampling interval increases. In addition, the difference is explained by the costs

for receiving and identifying a message as a performance report. A further source of overhead

not included in the processing costs are format conversions (from an end-system independent

representation) of the performance data. Even though we tried to minimize such sources of

overhead there may be still room for optimizations.

Furthermore, note that the small difference between total costs and processing costs for the

scenario with integrated tcpmon (Figure (d)) indicates that information collection in the TCP

stack and the loadable kernel module is very efficient and incurs only very small overheads.

These results are summarized in the first two rows of Table 9.3. The averages reported are

taken over all the experiments conducted, i.e., over all combinations of« and ht.

2NetBSD's accounting of the CPU resources consumed by a process is trustworthy—even for small time

scales—since NetBSD accurately measures the time a process is running. This accurate accounting method stands

in contrast to other accounting schemes that rely on statistical sampling [114].
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Figure 9.3: Cost per sample as a function of sampling interval (Of = 1//) and number of connections n.
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Figure 9.3: Cost per sample as a function of sampling interval (ôf = Iff) and number of connections n.
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Total overhead

As a consequence of the observations on the per-sample costs we would expect tcpmon to

incur significantly smaller monitoring overheads than the application-level solutions. We ex¬

press monitoring overhead as the average CPU time consumed by observd each second. Fig¬

ures 9.4 (a)-(f) plot the monitoring overhead per second as a function of ht and n. The figures

report both the measured overhead (solid line) and the expected overhead (dotted line). The

expected overhead is based on the measured per-sample costs and the number of samples that

are expected to arrive at the observer per second (n- f).

Surprisingly, the measured overheads per second seem to be comparable for all monitor¬

ing approaches (all approaches consume less than 10% of the CPU bandwidth). Furthermore,

application-level, receiver-based monitoring with adaptive feedback generation (Figure (a))

seems to incur the smallest overheads when compared with transport-level monitoring and the

other variants of application-level monitoring. This observation is counter-intuitive when taking
into account the findings of the previous section, which reported the highest per-sample costs

for the configuration app-rcv, adaptive. The average monitoring overheads for the different

approaches are summarized in the third row of Table 9.3.

We note that the measured overhead for application-level monitoring (Figures (a)-(d)) de¬

viates quite considerably from the expected overhead. In contrast, transport-level monitoring

(Figures (e) and (f)) matches the expectations quite well (except for n
— 40 and ht < 0.3).

Among the application-level approaches, adaptive feedback generation exhibits larger devia¬

tions than strict feedback generation. Likewise, we note that sender-based monitoring better

matches the expected overheads than receiver-based monitoring.

Aggregate sampling rate

These discrepancies between measured and expected overheads indicate that—contrary to our

initial belief—the total number of samples received per second (by observd), that is, the aggre¬

gate sampling rate, varies significantly between the different approaches to information collec¬

tion.

There are mainly two reasons for these deviations. First, fewer samples than expected are

generated by the sensors each second. Second, some of the generated samples are dropped by
the network or the end-systems.

The row termed "generated" in Table 9.3 reports the fraction of the n f samples that are ac¬

tually generated. On average, only about one third of the expected sampling rate is achieved by
the approaches with adaptive feedback generation. Strict feedback generation achieves approx¬

imately 60% of the expected rate, whereas transport-level monitoring achieves around 94%.

In addition, we find that for application-level monitoring, the fraction of samples generated is

primarily effected by n, the number of simultaneously active connections.

The row termed "lost" in Table 9.3 reports the fraction of the generated samples that are

dropped by the network or the end-systems. Only the application-level, receiver-based mecha¬

nisms are affected by lost samples (as these are the only mechanisms that incur network over¬

head). Thus, we conclude that samples are primarily dropped by the network. The loss rate is

24% for adaptive and 34% for strict feedback generation. Furthermore, we note that the loss

rate is largely unaffected by / and n.
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Figure 9.4: Monitoring overhead (CPU time in ms consumed) per second.
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Figure 9.4: Monitoring overhead (CPU time in ms consumed) per second.
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The observations on the number of performance samples that are actually generated im¬

ply that application-level monitoring is highly dependent on the network and end-system load

incurred by applications (and thus may be effected by the choice of experimental setup).

Discussion

The fact that many of the performance samples are not generated or lost with application-level

monitoring has two consequences. First, the quality of the bandwidth information, in partic¬

ular, the timeliness of the information is negatively affected (as is shown in Section 9.3.3).

Second, the conclusion that application-level monitoring is more efficient than transport-level

monitoring—a conclusion that could be drawn from the measured overheads reported in Fig¬
ures 9.4 (a)-(f)—must be qualified. With a different and more realistic experimental setup, the

application load on the server and client machines would be smaller and thus the number of

performance samples that are generated in scenarios with application-level monitoring would

be considerably higher. As a consequence, the overheads incurred for these approaches would

be higher and would more closely match the expected overheads (and thus exceed the overheads

of transport-level monitoring).

A more realistic scenario would have n different client machines connect to the server. In

such a configuration, the client hosts are less loaded, and thus, the app-rcv sensors can produce
the samples at the targeted sampling frequency /. (For strict feedback generation this setup

ensures that 100% of the samples can be generated; instead of only 60% as in our experiments.)
For sender-based monitoring the application load on the server host is the decisive aspect. In a

more realistic scenario the server distributes its load to other (back-end) servers [137]. Such a

configuration reduces the application load on the server(s)—with the effect that the number of

samples generated each second more closely matches the targeted aggregate sampling rate. As a

result, the overheads incurred by application-level would be considerably higher than measured

in our simplistic experiments.

Impact on application performance

So far, we only discussed the monitoring overheads incurred by observd. The second efficiency
concern listed in Section 9.3 states that monitoring should be able to handle a large number

of simultaneous connections without incurring overheads that distort network and application

performance. We briefly comment on the impact of the monitoring methods on application

performance. The row termed "duration" in Table 9.3 reports the average duration of all the

experiments conducted with a particular monitoring technique. Duration is a valid metric for

comparison, because in each experiment a constant amount of application data (100 MB) is

transferred from server to clients (each client requests 100/n MB). If no monitoring is per¬

formed the average duration of the experiments is 28.6 seconds. The confidence interval for

the mean is [27.7,29.5]. We find that experiments with application-level, receiver-based or with

transport-level monitoring take at most 10% longer to complete. However, application-level,
sender-based monitoring affects application performance significantly. Compared to the other

monitoring approaches, the experiment duration is approximately 50% higher for sender-based,

adaptive and about 100% higher for sender-based, strict feedback generation.
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Metrie

app-rcv app-snd tcpmon

adaptive strict adaptive strict separated integrated

P 695 P e95 P <?95 P e95 P e95 P ^95

Processing cost [ps]

Total cost [ps]

Overhead [ms]

Generated [%]

Lost [%]

Duration [s]

330 7

759 16

8.5 0.7

39.8 1.7

23.6 0.5

30.5 0.9

315 8

725 19

9.9 1.1

58.8 1.7

34.2 0.8

29.4 0.9

286 5

639 13

9.0 1.2

33.4 1.7

0.0 0.0

43.3 1.3

262 6

570 15

17.3 2.6

59.1 1.8

1.9 1.2

69.5 2.6

128 2

284 7

12.7 1.4

94.2 1.2

0.0 0.0

31.1 0.8

135 3

174 4

9.4 1.3

94.4 1.3

0.0 0.0

31.2 0.8

Timeliness0

Variability*

1.4 —

0.9 5.1

1.3 —

0.9 3.6

1.4 —

0.9 4.4

1.0 —

0.9 1.7

1.0 —

1.0 1.1

1.0 —

1.0 1.0

ap is the median deviation from the sampling frequency defined as sample interarrivai time/sampling interval.

bp and £95 reflect the 10- and 90-percentile of the deviation from the sampling frequency, respectively.

Table 9.3: Summary of comparison. Averages (p) are computed over all experiments conducted, that is,

over all combinations of n and ht. The columns e^$ report the size of the two-sided confidence interval for

the mean at a confidence level of 95%. The confidence interval for the mean p is given as [p — e^s, p+695].

9.3.3 Timeliness

Bandwidth estimates must be provided in a timely fashion, that is, a bandwidth monitor must

detect and report changes in available bandwidth quickly. Timeliness primarily depends on the

sampling frequency with which performance information is obtained3. As shown in the previ¬
ous section, the (effective) sampling frequency is limited by the monitoring overheads (and the

application load). Up to now we have only studied the average number of performance samples
that arrive at and are processed by observd each second. An important aspect of timeliness that

has not been addressed so far is when the samples arrive, that is, whether they are regularly

spaced or not. If k performance samples arrive per second and all the k performance samples
arrive in a time frame Or <C 1 second, then all samples except for the most recent sample are

useless for the application and simply waste end-system and network resources. We use the

interarrivai time between successive performance samples for a connection to describe the reg¬

ularity of sample arrivals at the observer. We compute the distribution of interarrivai times for

an experiment and store the median, as well as the 10- and the 90-percentiles of the distribu¬

tion. The values reported are the 10-, 50-, and 90-percentile divided by the (targeted) sampling
interval ht. A ratio of 1 means that the samples are spaced exactly with the targeted sampling
interval 67.

Figures 9.5 (a)-(f) plot these ratios as a function of monitoring approach, sampling interval,

and number of connections. We find that application-level monitoring with adaptive feedback

generation (Figures (a) and (c)) witnesses considerable deviations from the targeted sampling
intervals. The median interarrivai time is up to a factor three larger than intended for large
numbers of connections and high sampling frequencies. The other approaches have median

interarrivai times that match or quite accurately. The application-level approaches experience
considerable variation in the interarrival times as can be seen from the 10- and 90-percentiles.

3The timeliness also depends on the averaging window used to compute the estimates. Since the averaging
window can be chosen (almost arbitrarily) by the application, we exclude this factor for the comparison.
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Of all application-level approaches, only sender-based monitoring with strict feedback gener¬

ation matches the targeted sampling intervals quite closely. In contrast, transport-level moni¬

toring very accurately matches the targeted sampling intervals for all combinations of n and /.

Furthermore, the variability is negligibly small. The timeliness of the bandwidth information

increases steadily from Figure (a) through Figure (f). These findings are summarized in the last

two rows of Table 9.3.

9.4 Summary

This chapter presents an architecture for on-line bandwidth monitoring that integrates and uni¬

fies different techniques of information collection about network status. The monitoring system

allows multiple monitoring approaches to be used simultaneously. The architecture is extensible

with respect to new techniques for information collection, bandwidth modelling, and bandwidth

prediction. Furthermore, we demonstrate that transport-level monitoring can be implemented

easily, requiring only minimal changes to the TCP stack.

The comparative evaluation of different monitoring approaches shows that transport-level

monitoring incurs small costs (per performance sample). The costs are significantly smaller than

the per-sample costs incurred by application-level approaches. In terms of overall overhead the

approaches seem to perform comparably. However, we argued in Section 9.3.2 that this result is

a consequence of our simplistic (and not very realistic) experimental setup. We claimed that in

more realistic scenarios the overheads witnessed by application-level approaches exceed those

of transport-level monitoring. Moreover, we find that transport-level monitoring does not distort

application performance. (The same applies to application-level, receiver-based monitoring.) In

addition, transport-level monitoring is capable of producing a regularly spaced stream of per¬

formance samples. In contrast, application-level approaches exhibit highly fluctuating sample
interarrivai times that often exceed the targeted sampling intervals considerably.

To conclude, Chapters 7-9 show that information about network resource availability can be

provided both accurately and efficiently by light-weight monitoring at the transport-level. Our

experience with a prototype monitoring system demonstrates that such a monitoring scheme

requires only minimal changes to existing protocol stacks and should be simple to incorporate
in the design of new transport protocols. Our findings also imply that a simple widening of the

application programming interface should suffice to provide network-aware applications with

the information about network status sought.
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Chapter 10

Conclusions

Besides providing the "right" services and information, a key factor to the success of an Internet

content provider is whether the provider is able to serve its users at predictable and satisfactory
levels of quality and performance. An important criterion for quality is that the content is

delivered to the user in a timely manner. Ideally, the user should be able to specify how long
she is willing to wait for the data and how she values the quality of the data delivered. Thus,

content providers must be "smart" about how they satisfy individual user requests: they must

be able to deliver as much high-quality data that is relevant to the user's information needs as

possible within the time frame allotted.

There are two problems that hamper the provision of such a service model for networked

applications in today's Internet: heterogeneity (in client capabilities and bandwidth) and fluc¬

tuations in available bandwidth. The fact that bandwidth supply can differ and fluctuate signif¬

icantly results in highly unpredictable application behavior, which is often intolerable from a

user's point of view. Network-aware applications provide a solution to these problems: they
dynamically adapt their resource demands to match the varying supply of bandwidth with the

goal to achieve predictable response times. Such network-aware applications must often trade

network resources for some measure of quality of the data delivered.

Although a considerable body of related research exists in the field of network-aware ap¬

plications, a number of challenges remained largely unaddressed by these previous studies (see

Chapter 1). For instance, many adaptive applications make only static adaptation decisions with

the goal to accelerate content delivery for clients with low-speed network access, but do not take

user preferences on response time or quality into account. Furthermore, although adaptive ap¬

plications are quite complex software systems, the process of building adaptive applications has

barely received attention and many current network-aware applications are built in a rather ad-

hoc manner and are often tailored to the application's specific needs. In addition, network-aware

applications exhibit fairly complex dynamic behavior which is difficult to evaluate thoroughly.

10.1 Contributions

This dissertation addresses the challenges mentioned and makes the following contributions:
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Framework. The dissertation presents a reusable framework for network-aware applications.
In contrast to other work, the issues of quality- and system-awareness are an integral part of the

framework and the applications built thereon. Quality-awareness means that applications try to

be smart about how to reduce the quality of the data delivered, so that the user-specified time

limit can be met, and so that the negative impact on the overall service quality is minimized. The

framework is flexible and can deal with a wide range of definitions of quality. The adaptation
framework accounts for other resources (e.g., CPU) that are employed to make the response

time-quality tradeoff (system-awareness).
The framework's sender-initiated, model-based adaptation supports such an integral ap¬

proach to service quality and lends itself well to fast deployment. The dissertation shows that

the framework-based approach to the development of such network-aware applications allows

for reuse of the core adaptation (i.e., decision making) process and can therefore shield devel¬

opers from many of the complexities in dealing with network dynamics.

Application dynamics. The dissertation presents a systematic approach to the evaluation of

the complex dynamic behavior of adaptive applications which goes beyond many of the ad-hoc

evaluations carried out in previous work. The evaluation establishes that model-based adap¬
tation is robust with respect to many of the parameters that influence adaptation decisions.

Adaptation performance, defined as the application's ability to meet a user-specified time limit,

is not affected regardless of how many of the factors influencing adaptation decisions vary.

Performance considerations boil down to the communication-computation tradeoff striven for

by network-aware applications. We find that network-aware content delivery can provide pre¬

dictable response times over a wide range of bandwidths and CPU powers.

Compared to a static delivery policy, adaptation can provide a benefit to the user because

it is able to deliver the response within a user-specified time limit and because it can be smart

about which of the objects delivered must be reduced in quality to attain the goal on time and

to maximize the utility of the response. Furthermore, we note that adaptation incurs only small

overheads.

Application-network coupling. To the best of our knowledge, this dissertation is the first

study that quantifies the impact of the quality of information (about bandwidth availability) on
the performance of network-aware applications. The dissertation shows that the performance of

network-aware applications, that is, the ability to meet a user-specified time limit and to achieve

high bandwidth utilization, depends strongly on the accuracy and timeliness of information

about network resource availability.

Furthermore, the dissertation demonstrates that the need for accurate and timely informa¬

tion about network resource availability can both effectively and efficiently be satisfied with

transport-level monitoring. Transport-level monitoring compares favorably with application-
level monitoring as far as the timeliness of the bandwidth estimates and the overhead incurred

by monitoring are concerned. In addition, our evaluation indicates that the ability to predict
bandwidth depends considerably on the transport protocol used. Our prototype monitoring sys¬

tem demonstrates that the implementation of such a monitoring scheme requires only minimal

changes to existing protocol stacks and a simple widening of the application programming in¬

terface.
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10.2 Future work

There are three major directions for future research based on our work. The adaptation mech¬

anisms and the abstractions provided by the framework can be refined, resource prediction can
be improved, and a more integral solution to the start-up problem can be adopted.

Reusable software structures. The framework for network-aware applications can be im¬

proved in three ways. First, the adaptation mechanisms can be refined, e.g., to incorporate
client processing speed, to minimize the impact of communication idle times, or to deal with

the varying accuracy of resource predictions (see Section 4.9). Furthermore, an evaluation of

the mechanisms proposed and implemented to improve the start-up behavior (Section 4.7) and

application agility (Section 4.8) would yield interesting feedback that could help to refine the

framework's adaptation mechanisms.

Second, the framework can be extended in several dimensions (see Section 5.2). The frame¬

work can be extended for other Chariot-like applications with respect to the transformation

algorithms used, as well as the encodings and media types supported. The framework can be

adapted for use in network-aware Web object delivery, or it can be retargeted with minor adjust¬
ments to serve other, slightly different, application domains, e.g., to meet a reservation or a cost

budget. We expect that the implementation of such framework extensions provides valuable

feedback to the design of the framework. Such feedback would allow to refine the abstractions

provided by the framework and hence improve framework reusability for prospective developers
of network-aware applications.

Third, one could study whether and how the framework could be adapted to different appli¬
cation domains that have been explicitly excluded from the discussion so far (see Sections 3.1

and 5.2.4). For example, future work could investigate how the framework could be integrated
with nodes providing active services within the network [6], e.g., to support network-aware

content delivery in a multicast scenario.

Resource prediction. Although application performance is not overly sensitive to the accu¬

racy of the resource models the dissertation has provided empirical evidence demonstrating
that inaccurate information about resource availability can have a significant negative impact
on performance. While we have shown how information about network status can be gathered

efficiently, more work is needed to understand whether and how the bandwidth available to

an individual application can be predicted. How far into the future can we predict bandwidth

availability? Which prediction models are best suited to capture the bandwidth fluctuations ex¬

perienced in today's networks? The investigation by Sang et al. [156] may provide a starting
point for these issues.

In addition, our framework would also benefit from more sophisticated prediction mech¬

anisms that can estimate the CPU resources available to a network-aware application. The

analysis of host load prediction models conducted by Dinda et al. [41, 42] may serve as a start.

Start-up. An important issue for the type of network-aware applications considered in this

dissertation is the behavior at application start. Start-up behavior is a recurring problem on at

least three different (but related) levels. First, how does a user know in advance how to set a
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realistic time limit (Section 4.9)? Second, how should a network-aware application operate if

no bandwidth estimates are available (Section 4.7)? And third, how to get reliable bandwidth

estimates in the early stages of a TCP connection (Section 8.6)? The three questions are related

because they can all be mitigated by resource discovery mechanisms such as those described

in Section 7.2.1. Thus, future research in the area of network-aware applications should take

resource discovery techniques (bandwidth probing and caching) into account, and should try to

integrate network-aware applications with systems that provide or make use of such discovery

techniques (e.g., [174, 145, 62]).

10.3 Concluding remarks

Due to their complex dynamic behavior, network-aware applications are both notoriously diffi¬

cult to construct and to evaluate. Our experience with a framework-based approach to the de¬

velopment of network-aware applications suggests that the complex adaptation decision making

process employed by modern adaptive applications can well be encapsulated by an application-
level framework. Capturing the essentials of the control flow of such software feedback sys¬

tems, a framework can shield developers from the run-time complexity of adaptive applications
and allow the developers of new applications to focus on their application domain, that is, the

data/media types, transformation algorithms, etc. to be supported by the application.
As our work has shown, adaptive applications are dependent on accurate and timely feed¬

back about resource availability (both in terms of network and end-system resources). Our

experience with a transport-level monitor allows us to draw conclusions that tie in closely with

those purported by Noble [130]. We find that a collaboration between the system and the ap¬

plications is well suited to support network-aware applications: applications must have a say

on how to adapt; on the other hand, the system can more accurately and efficiently measure

resource availability.
The second major theme of our work is the importance of a careful evaluation. Identifying

the factors that effect application performance and subjecting the network-aware application to

varying levels of these factors in a controlled, simple and repeatable fashion enables a thorough
performance analysis. Without such an analysis, only few convincing quantitative conclusions

could be reached as far as performance and robustness of adaptive applications are concerned.

Network-aware content delivery is a promising technique to provide predictable service

quality to the user in today's heterogeneous and volatile network environments. Although this

dissertation makes a number of contributions towards a better understanding of network-aware

applications, a few problems remain open. Our framework for network-aware applications can

serve well as a base from which new applications can be built and new directions in network-

aware content delivery and network-aware computing can be explored with reasonable efforts.
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