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Abstract

High-speed packet based communication systems such as HIPERLAN or

Powerline Communications (PLC) are increasingly popular. The channels

these systems operate on introduce severe Intersymbol Interference (ISI),
which has to be mitigated. The Decision Feedback Equalizer (DFE) is an

attractive method for high speed systems, as it performs well at moderate

implementation cost. The DFE is most often implemented using transversal

Finite Impluse Response (FIR) filters. The DFE consists of a Feedforward

Filter (FFF) and a Feedback Filter (FBF).
Packet based systems usually employ a preamble for synchronisation pur¬

poses and to estimate the channel impulse response (CIR). The minimum

mean square error criterion leads to a system of linear equations, the DFE

key equations, for computing the optimal DFE filter coefficients from the

CIR. While the DFE itself is easy to map onto parallel hardware, the fast

computation of the filter coefficients is more difficult. Because it is part of

the critical path of packet decoding, quick computation of the coefficients is

essential. Therefore this contribution focuses on the efficient computation of

the DFE coefficients.

A novel algorithm based on Displacement Structure Theory well suited

to VLSI implementation is developed. A hardware architecture implementing
the algorithm is proposed. It consists of a linear chain of processing elements.

The processing elements mainly consist of CORDIC blocks. The architecture

has desirable properties for VLSI technology, namely local communication

only and a highly regular and aggressively pipelineable datapath, making fast

clock frequencies possible. The proposed architecture computes the FFF co¬

efficients of a 12 tap Decision Feedback Equalizer suitable for HIPERLAN

I in 221 clock cycles using an area of 1.4mm2 on a 0.35/xm standard cell

process and consuming 1.5/xJ per computation. In contrast, the so called QR
factorization previously proposed in literature for the same problem requires

approximately 576 clock cycles, an area of 30.90mm2 and 68/xJ per compu¬

tation.

For systems that can tolerate longer packet decode latency but require
more flexibility, such as Powerline communication (PLC) systems, a Digital

Signal Processor is a suitable platform for computing the equalizer coeffi¬

cients. In order to make real-time prototyping possible, a high speed DSP

core that can be implemented on Field Programmable Gate Arrays (FPGAs)



X

has been developed. The DSP core can operate at up to 80 MHz/80 MIPS

on a Xilinx Virtex XCV400-6 device, uses approximately 100k gate equiv¬
alents and features a single cycle throughput multiplier/accumulator and a

16bit datapath. It outperforms all competing commercial designs known to

the author by more than 50%. It can compute the FFF coefficients of a 10 tap

symbol spaced single output real equalizer in 9923 clock cycles. A dedicated

hardware architecture requires 692 clock cycles and 24k gates for the same

problem.
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Kurzfassung

Paketbasierte schnelle Kommunikationssysteme wie HIPERLAN oder Po¬

werline Modems (PLC) werden immer populärer. Die Kanäle, über die die¬

se Systeme kommunizieren, verursachen starke Intersymbohnterferenz. Der

entscheidungsrückgekoppelte Entzerrer (Decision Feedback Equalizer, DFE)
ist eine attraktive Methode, die Intersymbohnterferenz zu kompensieren. Der

DFE wird meist mittels Transversalfiltern realisiert. Er besteht aus einem

Vorwärts- und einem Rückkoppelungsfilter.
Paketbasierte Systeme verwenden oft eine Präambel, welche zur Synchro¬

nisation und zur Schätzung der Kanalimpulsantwort (CIR) verwendet wird.

Die Verwendung des minimalen Fehlerquadrat-Kriteriums führt zu einem Sy¬
stem linearer Gleichungen, mit denen die optimalen DFE Filterkoeffizienten

aus der Kanalimpulsantwort berechnet werden können. Der DFE selber kann

einfach parallelisiert werden, die schnelle Berechnung der Koeffizienten je¬
doch ist schwieriger. Weil die Koeffizientenberechnung im kritischen Pfad

des Paketempfangs liegt, ist eine schnelle Berechnung dieser Koeffizienten

essenziell. Der Schwerpunkt der vorliegenden Arbeit liegt daher in der Koef¬

fizientenberechnung.
Ein neuer Algorithmus basierend auf Displacement Structure Theory

wurde entwickelt, und eine dazu passende Hardwarearchitektur wird vorge¬

schlagen. Die Architektur besteht aus einer linearen Kette von Prozessorele¬

menten. Die Prozessorelemente selber enthalten vor allem CORDIC-Blocke.

Diese Architektur hat vorteilhafte Eigenschaften für VLSI Technologieen,
insbesondere ausschliesslich lokale Kommunikation, ein sehr regelmässiger

Datenpfad, der aggressives Pipelining ermöglicht. Hohe Taktraten sind so

möglich. Zur Berechnung der Vorwärtsfilterkoeffizienten eines für HIPER¬

LAN geeigneten 12 Tap DFE (DFE der Ordnung 12) benötigt diese Architek¬

tur 221 Taktzyklen, 1.4mm2 Siliziumfläche und 1.5/xJ Energie pro Berech¬

nung auf einem 0.35/xm Standardzellenprozess. Im Gegensatz dazu benötigt
die in der Literatur vorgeschlagene sogenannte QR Faktorisierung für dassel¬

be Problem 576 Taktzyklen, 30.90mm2 Fläche und 68/xJ Energie pro Berech¬

nung.

Ein schneller DSP ist für Systeme wie zum Beispiel die Kommu¬

nikation über Stromleitungen (Powerline Communication, PLC), welche

grössere Paketempfangslatenzzeiten tolerieren können, aber grössere Fle¬

xibilität benötigen, die geeignete Plattform. Um Echtzeit-Prototypen zu
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ermöglichen, wurde ein schneller DSP-Kern entwickelt, der auf einem

feldprogrammierbaren Logikbaustein (FPGA) implementiert werden kann.

Der DSP-Kern arbeitet auf einem Xilinx Virtex XCV400-6 mit bis zu

80 MHz/80 MIPS und benötigt ungefähr 100k Gatteräquivalente. Der Da¬

tenpfad ist 16 Bit breit, und der Durchsatz beträgt eine Multiplikati¬
on/Akkumulation pro Taktzyklus. Der DSP-Kern übertrifft die Geschwin¬

digkeit aller dem Autor bekannten konkurrierender kommerzieller FPGA-

Prozessoren um mehr als 50%. Er kann die Vorwärtsfilterkoeffizienten eines

10 tap Entzerrers für reelle Werte in 9923 Taktzyklen berechnen. Eine de-

dizierte Hardwarearchitektur für dasselbe Problem benötigt 692 Taktzyklen
und 24k Gatteräquivalente.
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1

Trends in

Communication

Systems

1.1. Network Access Technologies

The recent liberalisation of the European telecommunications market has

spurred heavy competition on the long distance market, that made the long
distance communication costs plummet. In the local access market, however,

especially residential and small business users still face a defacto monopoly
of the former state monopoly telecommunication companies [2]. The main

reason for this situation is that with the currently prevalent access technology,
the wired copper local loop, incumbent telecom operators would have to face

huge investments in money and time to match the former state monopolies

existing copper plant.

Therefore, it is attractive to search for alternative "last mile" access tech¬

nologies. Three technologies are currently promising:
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1. Every home or office has a power outlet. It is therefore tempting to use

the power wiring not only for transferring electrical energy but also for

communication. This is called powerline communication (PLC).

2. Recently, huge bandwidths in the microwave bands have been auc¬

tioned off in several European countries to be used as wireless local

loop (WLL). Futhermore, recent studies [3] have shown that the mi¬

crowave outdoor channel is similar to the microwave indoor channel

when directive antennas are employed. It is therefore tempting to use

technologies introduced for indoor communications also for WLL.

3. Since most homes are already connected to the cable television (CATV)

network, it is also attractive to use the CATV infrastructure to provide
local access.

To achieve the data rate users expect from contemporary systems, termi¬

nals must employ computationally demanding algorithms in their receiving
section.

1.2. Receiver Computational Demand

Shannon asks for more than Moore can deliver

— Heinrich Meyr

(the inofficial title to his International Zurich Seminar on

Broadband Communications IZS 2000 presentation [4])

This quote illustrates that the complexity of communication systems is

growing faster than the process technology is improving. This gap needs to be

filled with algorithm simplification and innovative VLSI architectures, which

is the subject of this contribution and of [5].
The goal of this section is to underline the need for efficient algorithms to

implement the receivers tasks.

Both the powerline and the wireless channel are significantly dispersive
at the transmission rates needed for broadband access. Therefore, high com¬

putational demand is placed on the receiver to combat the Intersymbol Inter¬

ference (ISI).
Two techniques exist to combat the ISI, namely OFDM and serial tone

modulation with equalization.
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1.2.1. Orthogonal Frequency Division Multiplex

Orthogonal Frequency Division Multiplex (OFDM) divides the transmission

bandwidth into many subchannels with a small bandwidth that are ideally

orthogonal. The Fast Fourier Transform (FFT) is often used to perform the

orthogonal decomposition. The frequency response of the channel then be¬

comes approximately flat over the small bandwith of one subchannel. The

time dispersion of the channel is mitigated by inserting a guard interval be¬

tween subsequent modulation symbols.
Since the fading of the channel is flat over the bandwidth of a subchannel,

all the receiver has to do is to estimate and compensate for the amplitude and

phase variance introduced by the channel for every subchannel.

With OFDM, it is easy to exclude frequency bands because of regulatory
or interference issues.

The OFDM signal, however, has a high peak to average power ratio

(PAPR) and therefore requires a highly linear transmitter. This directly trans¬

lates into expensive transistors, especially for microwave radio transmitters,

and a low power efficiency of the transmitter. Furthermore, since noise pulses
are spread in time over the duration of one subchannel symbol and over all

subchannels by the FFT, OFDM is less desirable for channels with impulsive
noise.

1.2.2. Serial Tone Modulation

Unlike OFDM, serial tone modulation uses short symbols that occupy the full

channel bandwidth and encode only few bits. The distortion seen by these

symbols is therefore frequency selective. It is usually modelled by a linear

finite impulse response filter. The receiver now has to estimate all FIR filter

taps and compensate for the distortion introduced by this filter.

Serial tone modulation methods exist that exhibit a constant envelope.
These signals allow the use of a highly nonlinear C-class power amplifier.

In the next section, receiver strategies for coping with frequency selective

fading are reviewed.

1.3. Receiver Decision Strategies

It is the task of the receiver to decide, upon the received signal, what was the

most likely message sent by the transmitter. The signal is corrupted by the
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nonflat channel response and by additive noise.

^map := argmaxP(<i|r) (1-1)
d

gives the optimal decision rule, called Maximum Aposteriory Probability

(MAP), d is the transmitted message, d is the receivers decision about the

transmitted message, and r is the received signal. There are usually additional

unwanted parameters, unwanted in the sense that the receiver is not interested

in their values, however they must be estimated to decode the message. Exam¬

ples include the channel impulse response, carrier frequency offset, symbol

timing, etc.

^map := arg max / P{d\r,e) (1-2)
d Je

is the MAP decision rule with unwanted parameters. If all possible messages

are equally likely, the MAP rule reduces to the Maximum Likelihood (ML)
rule

^ml := argmax / P{r\d,e). (1-3)
d Je

Clearly, the ML decision rule is complicated a lot by the unwanted parame¬

ters. An often used strategy to deal with the unwanted parameters is for the

transmitter to send sequences of known training symbols, called pre-, post-

or midambles, which allow the receiver to separate the unwanted parameter

estimation problem from the message decision problem. However, even the

simplified ML decision rule

d-ML := arg max P(r |ii, ê) (1-4)
d

is still too complex for direct implementation. The direct implementation

complexity grows exponentially with the message size.

The optimal detection strategy for uncoded transmission and finite chan¬

nel impulse response length in accordance with (1.4) is called Maximum

Likelihood Sequence Detection (MLSD) [6]. The best known algorithm is

called the Viterbi Equalizer (VE) and its complexity is proportional to the

message length and exponential to the channel length. For moderate channel

lengths, the Viterbi Equalizer is expensive to implement. Reducing the VE

complexity by truncating the channel impulse response does not work well;

performance degrades rapidly. A number of suboptimal algorithms also exist

that only keep the M most likely surviving paths through the trellis instead of

all surviving paths. They are seldom used in practice, because the need to sort
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the surviving paths at every symbol to select the most likely ones outweighs
the computational gain of not having to process all of them [7].

For coded interleaved transmission, the combined coding/interleav¬

ing/channel trellis gets very large, therefore optimal detection using a Viterbi

Equalizer becomes unfeasible again. A suboptimal scheme is to use an equal¬
izer that outputs probabilities instead of final decisions. These probabilities
are then deinterleaved and fed to the decoder. The decoder also outputs prob¬

abilities, which are interleaved again and fed back to the equalizer. This cycle
is repeated several times. This scheme is called "Turbo Detection" and has

received a lot of interest recently, as it has been demonstrated that the Turbo

transmission scheme can operate near the Shannon capacity bound. Two al¬

gorithms are used to compute the probabilities. One is an enhancement to

the Viterbi Algorithm (VA), which is called Soft Output Viterbi Algorithm

(SOVA) [8]. The SOVA enhancement is based on the assumption that the most

likely error dominates all other errors. This is not always the case, therefore

SOVA often underestimates the probability of error. The optimal algorithm
is called the BCJR [9] algorithm. It requires two passes through the trellis,

one in forward direction and one in backward direction, therefore it is of¬

ten also called the Forward/Backward Algorithm. Its complexity is roughly
twice that of the SOVA algorithm. The complexity of the Turbo scheme is

still prohibitively high for high speed systems, confining the Turbo scheme to

relatively low speed deep space and HF communication systems.

The simplest decision rule is the symbol by symbol rule

4,ml := arg max P(r41c4,ê). (1.5)
d%

Because it treats the intersymbol interference (ISI) introduced by the channel

impulse response (CIR) as noise, it performs badly even on lightly spread
channels.

A popular method to improve the performance of the symbol by symbol
rule is to insert an FIR filter between the received signal and the decision

device, and to subtract the influence of the previously decided symbols. This

is called the Decision Feedback Equalizer (DFE). Its complexity is linear

with respect to the message length and only linear with respect to the length
of the channel impulse response. The DFE is an attractive trade-off between

computational complexity and performance for high speed systems.

The difficulty with the DFE is the computation of the optimal filter co¬

efficients from the channel impulse response estimate. This computation is

usually in the critical packet decoding path. Therefore, this contribution fo¬

cuses on algorithms and VLSI architectures for solving this problem at low

latency and area cost. In [10], the authors conjectured that the DFE might
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be too complex for HIPERLAN. It is a goal of this contribution to prove the

opposite by construction.

1.4. Outline of the Thesis

In chapter 2, the system model and the stochastic channel model used

throughout the thesis are presented. The Decision Feedback Equalizer key

equations are derived in the most general Multiple Input Multiple Output

(MIMO) form, and guidelines for choosing the number of feedforward and

feedback taps are given. Furthermore, the optimal Decision Feedback Equal¬
izer for a real constellation is compared to the suboptimal approach of using a

complex DFE for a real constellation, both in terms of complexity and signal
to error energy loss.

Chapter 3 reviews algorithms for solving the DFE key equations. Empha¬
sis is placed on the Cholesky factorization, Displacement Structure Factoriza¬

tion and Displacement Structure Solution. Cholesky factorization is the tradi¬

tional method for computing the DFE coefficients. Its complexity is 0(n3).
Displacement Structure Factorization employs the Displacement Structure

Theory framework to use the inherent structure in the DFE equations to re¬

duce the number of operations for computing the Cholesky factors to 0(n2 ).
Displacement Structure Solution is a novel algorithm for directly computing
the DFE feedforward coefficients without the need for back substitution. Its

virtue is the high regularity of the computation and dataflow, albeit at the

expense of an increased number of operations compared to Displacement
Structure Factorization. Furthermore, the exact number of additions, multi¬

plications and other operations are given for the different algorithms for the

practically important cases of the symbol spaced equalizers with a single out¬

put for real and complex constellations.

Chapter 4 discusses fast VLSI architectures and implementation issues

of the Displacement Structure Solution algorithm. To illustrate the power of

the proposed family of architectures, a case study concerning an equalizer
suitable for HIPERLAN compares two circuits employing the proposed ar¬

chitecture to an architecture previously proposed in literature.

Chapter 5 discusses the design and the implementation of a high perfor¬
mance Digital Signal Processor (DSP) implemented on a Field Programmable
Gate Array (FPGA). The design outperforms all commercial FPGA DSP and

RISC processors known to the author. The three aforementioned DFE coef¬

ficient computation algorithms have been implemented on this FPGA DSP

core, and the results are discussed. Finally, the FPGA DSP core is compared
to dedicated hardware for computing the DFE coefficients.
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Chapter 6 suggests possible extension of this work.
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Part II

Algorithm





2

Decision Feedback

Equalization

Section 2.1 introduces the stochastic system model that will be used through¬
out this work. Section 2.2 describes the channel model that is used in the

simulations, along with the parameters for the Power Line Communications

channel and the 5 GHz HIPERLAN indoor channel.

Section 2.3 introduces the Decision Feedback Equalizer. Equations for the

optimum DFE filter coefficients are derived using the Minimum Mean Square
Error criterion.

Sections 2.3.3 and 2.3.4 provide guidelines for choosing the number of

feedforward and feedback taps.

Section 2.3.5 compares the optimal Decision Feedback Equalizer for a

real constellation to the suboptimal approach of using a complex DFE for a

real constellation, both in terms of complexity and signal to error energy loss.

Notation The following notational conventions are used throughout this

dissertation, i denotes the discrete time index. Lowercase (uppercase) bold

symbols denote column vectors (matrices). (•)* denotes elementwise com-
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plex conjugation, ()T transposition, and (-)H hermitian transposition. E[]
denotes the expectation operator. (•)SR and ()9 denote the real part and the

imaginary part of a complex number, respectively. := denotes definition. x\
'

(1 k)
denotes the j-th element of the column vector x4. JQ denotes the j, k-th

element of the matrix X4. Indices (j and k) start at zero. Most of the time, j

runs from 0 to N0 — 1 and k runs from 0 to ND — 1. ND denotes the num¬

ber of symbols the transmitter generates per time step and N0 denotes the

number of channel outputs per time step.

2.1. The System Model

Figure 2.1 shows the system model. For the sake of generality, multiple input

multiple output channels are considered. Fractionally spaced (^^) equaliz¬
ers as well as equalizers for one dimensional constellations may be expressed
in this framework. The multiple input multiple output DFE may also be use¬

ful for asynchronous CDMA systems, where the signature waveforms of the

different users are not orthogonal, or for OFDM systems which use a guard

period that is shorter than the channel spread, and therefore intersymbol inter¬

ference and interchannel interference occurs. The transmitter generates ND

symbols dt at every time step 1. The symbol is transmitted through the chan¬

nel Cj. For notational convenience, the i-tk taps of all subchannels are col¬

lected into the N0 x ND matrix Cj. C;J' ' denotes the «-thtap of subchannel

3,k.
The complex baseband representation of the channel is used. The channel

considered here is the convolution of the transmitter filter and the radio wave

propagation environment as seen by the receiver.

The channel is modelled as a linear time invariant system. This assump¬

tion only holds over a relatively short period of time, i.e. one single packet.

Therefore, the channel impulse response has to be estimated for every packet.

Stationary Gaussian noise is added to the output of the channel. Most of

the time the noise is assumed to be white, but the algorithms described in this

thesis also work for coloured noise.

00 00

r-j := ^ Cjdj_j+iij= ^ CVjdj + rij (2.1)

j=—00 j=—00

gives the channel output. rt are the channel outputs, dt the transmitted sym¬

bols, Cj the channel impulse response (CIR) and rij the noise samples.
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Figure 2 1 System model

The block labelled "receiver" contains the decision feedback

equalizer (figure 2 2)
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2.2. The Stochastic Channel Model

Whereever simulation results are presented, the channel model of this section

is used for the individual subchannels ([11, Section 1.3] and the references

therein).

(0 i <0

Cl'-={(c?+jc?)^2(l-e-i)e-^ *>0
(2'2)

shows the channel model, cf and cf are independent gaussian random vari¬

ables with zero mean and unit variance, t is the delay spread normalized to

the symbol rate, and the square root term normalizes the CIR to unit energy

on average.

Channel models with an exponentially decaying delay profile have been

proposed by Jakes [12], COST 207, ETSI and IEEE 802, among others.

2.2.1. Truncating the Channel Impulse Response

It is computationally advantageous to truncate the channel impulse response

for i > Nf. To justify the truncation, the average CIR energy lost is given by

°°
, Nf 1 Nf

Ecl := V E[4ct\ = (1 - e~)e-— — = e~—. (2.3)
l~e T

Therefore if Nf > It, the energy lost by the truncation is less than

—30dB. The 99.9% energy rule is applied widely, for example in [13] or

COST 207.

2.2.2. Channel Model Parameters for Power Line Communications

Power cables were not made for transmitting high frequency signals. The

attenuation of the cables limit the frequency range usable for outdoor com¬

munication to about 10 MHz [14]. Furthermore, the shielding of the cables

is imperfect. In order to protect colocated services like Shortwave Broadcast

and Amateur Radio from mutual interference with Powerline Communica¬

tions (PLC), PLC may not use the frequency bands allocated to the former

services [15, 16]. This limits the contiguous bandwidth to « 1.5MHz, which

in turn limits the maximum symbol rate to « 2MSymbols/s.
From the measurements in [14], a delay spread normalized to the symbol

rate of about t = 0.6 can be expected.
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2.2.3. Channel Model Parameters for the Indoor Radio Chan-

nel/HIPERLAN

Various propagation measurements for the indoor radio channel have been

performed [17, 18]. If the base station is in an aisle and the terminals are in

the same aisle or adjacent rooms, then the delay spread is virtually always
below 50ns [17]. Normalized to the HIPERLAN bitrate of 20MBit/s, this

results in a delay spread of t = 1. For multiple-aisle coverage, the delay

spread increases. It is < 150ns for 90% of the time.

[18] showed that there is little difference in delay spread for different UHF

frequency bands.

In the subsequent Equalizer discussion, two HIPERLAN receivers will be

discussed, the "simple" one for Tsimpie = 1 and the "robust" one for TrobUst =

3.

The delay spread values are used subsequently to determine the filter

lengths of a decision feedback equalizer (DFE), which is introduced in the

next section.

2.3. The Decision Feedback Equalizer

The Decision Feedback Equalizer (DFE) [19] (see Figure 2.2) consists of

Feedforward Filters, Feedback Filters, and Decision Devices. Both the Feed¬

forward and the Feedback Filters are usually realized as transversal finite im¬

pulse response (FIR) filters. The Feedforward and the Feedback filters as well

as the Decision Devices operate once per received symbol vector.

The early literature [20, 21, 22] operated the DFE in Decision-Directed

(DD) mode and adjusted the filter coefficients iteratively from the error signal

dj - dj. This method is unsuited to packet transmission systems, due to the

large number of training symbols required for the equalizer to reach its steady
state solution (around 1000 symbols).

Fechtel and Meyr [23] and Tidestav [24] made a case for directly comput¬

ing the optimal filter coefficients from the channel impulse response.

In order to compute the optimal filter coefficients, the Channel Impulse

Response (CIR) first needs to be estimated. Packet communication systems

usually utilize pre-, post- or midambles consisting of known symbols to aid

synchronisation and CIR estimation. The exact procedure to obtain the CIR

estimate is outside the scope of this work, the reader is referred to eg. [25,26].
The block labelled Coefficient Calculator computes the optimal filter co¬

efficients from the estimated CIR by solving a system of equations. These

equations will be derived in section 2.3.1. Efficient algorithms for computing
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7(0 0) Soft Output ~(o)

«d l)

(ND 1)

soft output

CIR
..

Coefficient —Feedforward Filter Coefficients

Estimator Calculator " Feedback Filter Coefficients

Figure 2 2 Decision feedback equalizer
The decision devices operate on the symbol estimate dt The feedback filters

remove the postcursor of the intersymbol interference, l e the influence of

the past already decided symbols, while the feedforward filters minimize the

effect of the precursor of the ISI, î e the future symbols
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the filter coefficients and architectures for implementing them are developed
in this work.

Two optimality criteria have been used, the Zero Forcing (ZF) criterion

and the Minimum Mean Square Error (MMSE) criterion. The ZF equalizer
tries to invert the channel impulse response without taking noise into account.

Notches will therefore be compensated by high gain, which leads to untol-

erable noise enhancement. The ZF equalizer can therefore be used only on

relatively flat channels with high Signal to Noise Ratios (SNR)._The MMSE
criterion minimizes the energy of the error at the decision point dt.

Al-Dhahir and Cioffi [27] derived equations for the filter coefficients by

writing the equalization problem of a whole block in matrix form. They used a

finite CIR put into a fully windowed Toeplitz matrix. Their factorization pro¬

cedure effectively computes the optimal feedback filter coefficients for every

possible decision delay A. They then choose the A that results in the least

decision point mean squared error (MSE) by back substituting the chosen

feedback coefficients into a triangular system.

It is however advantageous to first compute the feedforward coefficients,

as the feedback coefficients can then be computed using the feedforward filter,
which shall be shown later. Therefore, the derivation will follow the one of

Proakis [28, 29].
The derivation below assumes that there are no decision errors, i.e.

dj = dj. At high symbol error rates, error propagation in the feedback fil¬

ter becomes a problem. The often-suggested solution of moving the feedback

filter into the transmitter (Tomlinson-Harashima precoding, [30]) is imprac¬

tical, as the channel and therefore the optimal feedback filter coefficients are

only known after the packet is transmitted. A more practical approach is to

move the feedback filter into the decoder for an error correcting code. If a

convolutional code is used, the feedback filter can be moved into the branch

processing unit. This is called Per-Survivor Processing [31].
Sections 2.3.1 to 2.3.2 derive equations for the optimal feedforward and

feedback filter coefficients and a few additional parameters. Similar deriva¬

tions can be found in the literature, for example [28, 29, 23, 24]. Sections

2.3.3 to 2.3.5.1 present new results derived from monte carlo computer simu¬

lations.



20 Chapter 2: Decision Feedback Equalization

2.3.1. DFE Key Equations

The decision point signal dj is

Nf-l Nb

d,-A := E FJr*-i -J2B^-A-j- (2.4)

3=0 3=1

Tj are the received signal samples, Ft the feedforward filter coefficients, Nf
the number of feedforward coefficients, B4 the feedback filter coefficients,

Nb the number of feedback coefficients, dt are the decided symbols and A is

the decision delay. The error signal et

Nf-l Nb

et := dj - dj = E FJr»+A-j - EB^*-j ~ d* (2-5)

3=0 3=1

at the decision point shall be minimized. Invoking the orthogonality principle

[32]:

E[etrf+A_k] = 0 0<k<Nf (2.6a)

E[etdf_k] = 0 1 < k < Nb (2.6b)

For the following derivation, it is assumed that the data symbols are indepen¬
dent and have unit energy on average

E[dtdf] = \l %y., (2.7a)
[0 it]

and that noise and data are independent

£[d,nf] = 0. (2.7b)

The two covariances

E[dkrf} = Cf__k (2.8a)
oo oo

E[r3r?] = ^[ E E Co-kàkdf C?_t] + E[n3nf]
k=—oo l= — c

(2.8b)

= E C3-kC?_k + E[n3n?]
k=—oo

are needed later on.
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Equations for the feedback filter coefficients Now (2.6b) is used to com¬

pute the feedback filter coefficients Bfc

E[etdf-k] = E E[Fjr*+A-3]d?_k -^B]Ê[d,-AH-*] " E[^df-k]
3= 0 3= 1

(2.9)

Moving Bj of (2.9) to the lefthand side leads to equations for the feedback

filter coefficients

Nf-l Nf-1

Bk = E FjEid^r^f = E FjCfc+A-,. (2.10)

3=0 3= 0
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Inserting (2.10) into (2.6a) and simplifying yields the equations for the DFE

feedforward coefficients

Nf-1

E[etrf+A_k] = E FjE[rt+A_3r?+A_k]-
3= 0

Nb Nf-1

E E FfCJ+A_JE[d,_Jr,%_fc] - E[dtrf+A_k]
3=1 1=0

Nf-1 oo

= E FJ ( E C»+A-J-ICt+A-H + £[n!+A-3ni+A-fc])-
3= 0 l= — oo

Nb Nf-1

E E ^' cJ+A-iCJ+A_fc - cA_fc
3=1 1=0

Nf-1 oo

= E E F3Cl+A-3Cl+A-k+
3= 0 l =— oo

Nf-1

E FjE[nl+A-3nf+A_k}-
3=0

Nf-1 Nb

E E^j (-;«+A-jC|+A_fc - cA_fc
J=0 (= 1

Nf-1

= E E FJ C'+A-JCi+A-fc+
j=o ;ez\{i jvt}

JV/-1

/ ;
Fj £[nî+A_.,nî+A_fc] - CA_fc

3=0

= 0.

(2.11)

Equations for the feedforward filter coefficients Rearranging (2.11) and

assuming that the noise is stationary leads to a system of Nf x N0 linear

equations with ND different right hand sides

Nf-1

E( E Ct+A-tCl+A-3 + E[n*_tr£3])F3 = C%_t. (2.12)

3=0 fcez\{i Nb}
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Writing these linear systems in block matrix form is more convenient

(C + N)F = C. (2.13)

N is the noise covariance block matrix. Its i,j-th element is

N(*,j)
= Mn>;'"J] (2.14a)

Since the noise is stationary, N is a hermitian symmetric block Toeplitz ma¬

trix. A Toeplitz matrix is a matrix whose elements satisfy N(4^ = N(j-j)
[33]. If the noise is white and the noise contributions to different channel

outputs independent and of equal energy, N = N0I reduces to a scaled

NfN0 x NfN0 identity matrix, where N0 = E[nf'nf' ] is the noise en¬

ergy. C is a hermitian block matrix that depends only on the channel impulse

response. C is an Nf x Nf matrix whose «, j-th element is the N0 x N0

matrix

C
(hj) E

fcez\{i Nb}

Ck+r+A-(Nf-l)Ck+3+A-(Nf-l)- (2.14b)

C is also hermitian symmetric, but not Toeplitz, due to the postcursor ISI can¬

cellation done by the feedback filter. This results in the "hole" from I... Nb

in the CIR covariance sum of (2.14b). For convenience with further deriva¬

tions, the row and column indices have been reversed. They run from 0 to

Nf - I. The right hand side of the equation system is

/CA_
c*A_

c =

Nf + 1

Nf+2

\

(2.14c)

and the vector of unknowns is

V CA /

fFNf-l\

\ Fo J

(2.14d)

In order to simplify the above expressions, the decision delay is set to

A := Nf - 1 and the CIR Ct is truncated outside the interval 0 < 1 < Nf.
The justification for truncating the CIR can be found in section 2.2.1. The
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same equation for the decision delay A has also been found by Al-Dhahir

and Cioffi [34]. In practice, the synchronisation circuitry would search for the

CIR window of length Nf containing the most energy.

To gain more insight into the structure of the matrix A := C + N, it is

written down explicitly

A =

/ coco

C*C^+N(1>0) C'C'f+CjC^'+Nd,!) C*Cl' +C*C'i+-N

C*C^+N(2>0) C*Cf+C*C^+N(2>1) C'C^+C'Cf+CSC^+N

-N (0,0) CjCf+N(0,1) Cn C9 -N (0,2)

(1,2)

(2,2)

V 7
(2.15)

It is a remarkable fact that each element of this matrix is the sum of its north

west element plus an additional term.

C can now be represented as the product oftwo lower antitriangular block

Hankel matrices

/ °

n

c

o o

0 0

0 c0*

V co* C*

0

c*

C0*
c* \

^ JV

^ JV

f °

0

rNf-lJ

0 C»1
c7

0 ct

V

\

J

(2.16)

This structure can be used to simplify the computation of the matrix C.

Decision Point MSE and Bias The Decision Feedback Equalizer is a bi¬

ased receiver, i.e. there is self-interference. To compute the bias,

Nf-1 oo

d4-A = E FJ( E C*-j-fcdfc +n»-j)~
,7=0 k= —oo

Nb Nf-1

E E FjCfc+A-jd.-A-fc (2.17)
fc = l 3 = 0

Nf-1

= E FH E Cfc+A-jd^-A-fc+n^)
3=0 fceZ\{l Nb}

is needed. The bias a can be computed as

Nf-1

£[d,_A|d,_A] = ( E FjCA-j)d,_A =: ad,_A, (2.18)

3=0
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therefore
Nf-1

a= E FJCa-j. (2.19)

3= 0

Even though a is an A^d x Nd matrix, the lowercase greek letter a has

been used, mainly because previous DFE literature used this symbol and the

uppercase a has the same shape as the latin letter A. The decision point error

signal is

&t-A = dj_A — dj_A

N^'
T. ^ ^ A

. ,
(2.20)

— 2_^ *j( 2-^i ^fc+A-jdj_A_fc + rij_jj - dj_A,

3=0 fcez\{i Wj,}

and the decision point error energy is

Nf-1 Nf-1

E[e^Aef_A] = E E FJEtt E Cfc+A-Â-A-fc+n-j)
j=o ;=o fcez\{i w6}

( E df-A-mCm+A-l + nf-l)]F*
m£Z\{l Wj,}

N/-1 JV/-1

= E E FJ( E^+A-^A-fc+Mn^nf^F;;
j=o fc=o iez\{i Nb}

- a - aH + I

Nf-1

= E Cf_fcF*-a-aff+I
fc=0

= aH-a-aH+I = I-a.

(2.21)

The SNR of the biased decision feedback equalizer is therefore

SNRbtased = {l-a)-\ (2.22)

assuming I - a is invertible.

Cioffi, Dudevoir, Eyuboglu and Forney have shown [35, 36] that the op¬

timal unbiased MMSE DFE is the optimal biased MMSE DFE with the bias
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removed. While the unbiased MMSE DFE has a lower decision point SNR,

it has a smaller decision error probability. Therefore, the simulation results of

the decision point error energy printed in this work will always be those of

the unbiased DFE.

The bias can be removed by multiplying the decision point signal with

a
~x

(assuming a is invertible) or equivalently by scaling the decision regions
with a. For the popular binary antipodal signal constellation, the decision

threshold is zero and therefore bias scaling invariant.

The decision point error signal of the unbiased DFE is

Nf-1

e"_A=a~1 E Fj( E Cfc+A_jdj_A_fc+rij_j)-dj_A
3=0 fc£Z\{l Nb}

(2.23)
and the decision point error energy is

E[eut_AeutHA]
= oc-HocHoc-1 - oc loc - a11'oTH + I

=î-Acî-AJ

= a 1-l = a-\l-
(2.24)

This result is only meaningful for the single output (ND = 1) case, be¬

cause in the multiple output case, the decision point error signals would be

scaled by the inverse of the diagonal elements of a only.
The SNR of the unbiased DFE is

SNRunblased = a(I - ay1, (2.25)

and the difference of the SNR of the biased and the unbiased DFE is

SNRbmsed-SNRunbiased = (I-a)~ - a(I - a)~
V, (2.26)

= (I-a)(I-a)-1=I.

This result has been found by Cioffi, Dudevoir, Eyuboglu and Forney [35].

2.3.2. Computing the Feedback Filter Coefficients and the Bias

Both the bias a (2.19) and the feedback filter coefficients Bfc (2.10) are just
different time offsets of the convolution of the CIR Ct and the feedforward

filter coefficients F3. Thus the feedforward filter section of the DFE may be

used to compute the bias and the feedback filter coefficients. This is illus¬

trated in Figure 2.3. First, the Nf CIR coefficients are clocked in. The bias a

appears at the output. After the next clock, Bi appears at the output and so

forth. If the CIR is truncated (Q = 0 for i > Nf), then Bfc = 0 for k > Nf.
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When using the truncated CIR, the number of feedback filter coefficients is

best set to A^ = Nf - 1 When the untruncated CIR is used, the number of

feedback coefficients may be enlarged, but the gain is negligible

0 o CNf 1 Cl

B-, Bi Bq cc

Figure 2 3 Computation of the feedback filter coefficients and the bias

2.3.3. Choosing Nf

It is clear that the optimal choice of the Equalizer feedforward filter length

Nf depends on the channel model and its parameters

Computer simulations with the channel model of section 2 2 have been

performed and the results are plotted in Figures 2 4 to 2 9 Both the channel

delay spread parameter t and the white noise energy A^ for the computation
of the feedforward filter coefficients have been varied Every simulation point

is the average of lOO'OOO channel realizations Both the residual ISI energy

part of the decision point error signal and the noise energy proportionality
factor have been plotted separately versus the number of feedforward taps

Nf The number of feedback taps A^ has been set to 64 to make sure that

postcursor ISI is fully cancelled

The Figures 2 4 to 2 6 for the 2-dimensional Equalizer plot the energies

per real dimension to make the results comparable to the Figures 2 7 to 2 9

for the 1-dimensional Equalizer
Several conclusions can be drawn from these plots

• When the number offeedforward taps is chosen according to the 99 9%

channel energy criterion (section 2 2 1) Nf « It, the performance is

very near to the infinite length DFE performance It is however of¬

ten possible to achieve satisfactory performance with a significantly
smaller Nf



28 Chapter 2: Decision Feedback Equalization
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Figure 2.4: Decision point error energy vs. Nf for A^ = —5dB and 2-dim.

eq. (ND = l,N0 = 1, dd e C)

Figure 2.5: Decision point error energy vs. Nf for A^0 = — lOdB and 2-

dim. eq. (ND = 1, NQ = 1, <k C)
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Figure 2.6: Decision point error energy vs. Nf for A^ = —20dB and 2-

dim. eq. (ND = 1, NQ = 1, <k C)
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Figure 2.7: Decision point error energy vs. Nf for A^0 = —5dB and 1-dim.

eq. (ND = 1,N0 = 2, dd e R)
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Figure 2.8: Decision point error energy vs. Nf for A^ = — lOdB and 1-

dim. eq. (ND = 1, NQ = 2, <k R)
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Figure 2.9: Decision point error energy vs. Nf for A^0 = —20dB and 1-

dim. eq. (ND = 1, NQ = 2, <k R)
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• The noise proportionality constant depends little on Nf. The residual

ISI has a distinct knee. Nf should be chosen near the residual ISI knee.

• The noise proportionality constant depends little on the assumed noise

energy A^0 during the calculation of the feedforward filter coefficients,

while the residual ISI depends significantly on A^. In a well designed

system, bit errors induced by noise dominate. Therefore A^ does not

need to be estimated for the computation of the feedforward filter co¬

efficients. It is sufficient to choose an A^ which results in a tolerable

residual ISI.

• The noise proportionality constant is nearly the same for the 2-

dimensional and the 1-dimensional equalizer. There is a significant dif¬

ference in the residual ISI energy for the two equalizers.

2.3.4. Choosing Nb

The feedback filter multiplies the decisions dj with the feedback filter co¬

efficients Bj. Since dt can only take a few distinct values, the multiplica¬
tions in the feedback filter section are significantly cheaper than general vari¬

able x variable multiplications. For the practically important binary antipodal
constellation case (d4, dj g {+1, -l}N°xl), these multiplications reduce to

add/subtracts. Computation of the feedback filter coefficients is only linearly

dependent on Nb, therefore it is much less important to choose the minimum

possible Nb. On the other hand, the feedback loop limits the possibilities for

pipelining the feedback filter.

As can be seen in (2.10) and section 2.3.2, when working with the trun¬

cated channel impulse response, the feedback filter coefficients Bfc are zero

for k > Nf. It does not make sense to choose Nb larger than Nf - 1. If,

however, Nf was chosen significanly smaller than It, then residual ISI per¬

formance may be improved significantly by working with the untruncated

channel impulse response and choosing Nb larger than Nf. This is illustrated

in Figures 2.10 and 2.11.

2.3.5. The Optimal Equalizer for 1-Dimensional Signal Constellations

All signals of the Equalizer in Figure 2.2 are complex. The case where the

signal constellation is real dt e RNd x x is of great practical interest however,

especially the binary antipodal signal constellation dt e {+1, -l}N°xl.
Binary Phase Shift Keying (BPSK) and Minimum Shift Keying (MSK) fall

into this category. Here it js desirable to minimize only the real part of the

error at the decision point dt [37].
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11: Decision point error energy vs. Nb for A^0 = —20dB and 1-

dim. eq. (ND = 1, NQ = 2, dd e R)
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It is clear that the general 2-dimensional (complex) Equalizer can also be

used for a 1-dimensional signal constellation. This setup will be suboptimal,

however, because the equalizer minimizes both the real and the imaginary
error energy at the decision point dt, while the decision device only takes the

real part of the decision point signal into account.

Optimizing only the real part of the error energy fits well into the pre¬

sented framework.

K(FjC) = »{(Ff+zFfXCf + zC?)} = Ffcf-FfC? (2.27)

illustrates that optimizing the real part of a complex DFE can be treated, apart

from the minus sign, as optimizing a real DFE with twice the number of chan¬

nel outputs, the "real" channel output and the "imaginary" channel output. In¬

deed, Figure 2.13 illustrating the 1-dimensional equalizer looks very similar

to Figure 2.12.

F» = (Zh) (2.28a)

and

C* = ( _C9 ) <2-28b)

show the feedforward filter coefficient vectors and the channel tap vectors for

the 1-dimensional equalizer. These equations look similar to those ofthe com¬

plex fractionally T/(2N0 ) spaced equalizer, except that the formers elements

are real, while the latters elements are complex.

2.3.5.1. Benefit versus Cost of the 1-Dimensional Equalizer

The 1-dimensional Equalizer requires the solution of a system of 2NfN0
real linear equations while the 2-dimensional Equalizer requires the solution

of NfN0 complex linear equations. Inversion algorithms for matrices such as

cholesky factorization are 0(n3). The 1-dimensional equalizer therefore re¬

quires 8 times the number of operations of the 2-dimensional equalizer. Since

a complex multiplication requires four real multiplications and two real addi¬

tions, the 1-dimensional equalizer requires approximately twice the number

of real multiplications and four times the number of real additions than the

2-dimensional equalizer to compute the optimal filter coefficients.

The feedforward and the feedback filter have the same number of taps and

the same structure for both the 2-dimensional and the 1-dimensional equaliz¬
ers.
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As has been observed in section 2.3.3, in a well designed system noise

dominates the decision point error energy. Also, the noise proportionality con¬

stant is only slightly smaller for the 1-dimensional equalizer than for the 2-

dimensional equalizer. The difference is approximately OAdB for the symbol

spaced equalizer.
To conclude this section, a gain of OAdB has to be traded versus a dou¬

bling in computational complexity.



36 Chapter 2: Decision Feedback Equalization



3

DFE Matrix

Factorization

In this chapter, conventional direct and iterative methods for solving the DFE

equations are discussed. The direct methods either factor the matrix into a

product of two easy to invert triangular or unitary matrices, and then compute

the result by solving two easier systems, or use matrix bordering techniques
to directly compute the result. The iterative methods start with an initial es¬

timate of the solution and improve the estimate at each iteration. Emphasis
is put onto the Cholesky Factorization, as an intuitive comprehension of the

Cholesky Factorization is required to understand Section 3.2.4.
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3.1. Problem Statement

In this chapter, methods for solving the system of linear equations

fFNf-l\
*Ns-2

\ Fo J \C*Nf_J
the DFE key equations, are discussed. The matrix

(3.1)

A =

/ coco ~

C1 C0 -

(0,0)

(1,0)

CjCf+N

Cvq C_vn hN (2,0) C9 c.

~C0C0

(0,1)

-N

Cn C9 -N (0,2)

(1,1)

-C1 C1 +C0C0

(1,2)

(2,2)

V
(3.2)

is highly structured; each element is the sum of its north west neighbor plus
a channel dependent term and a noise dependent term. This structure can be

exploited either to simplify the computation of A or the solution of (3.1), as

shall be shown in Section 3.2.4.

3.2. Direct Methods

The direct methods for solving systems of linear equations discussed here are

order recursive. They transform a problem of size N into a problem of size

N — l. Complexity is given in terms of the problem size (number ofvariables)
N -which is NfN0.

3.2.1. Generic LU Factorization

The general method for solving linear systems is Gaussian Elimination, also

called LU-Factorization. In order to ensure stability, Pivoting (row permu¬

tations) has to be used. Pivoting introduces data dependent decisions and is

therefore undesirable. 0(N3) arithmetic operations are required.

3.2.2. QR Factorization

Any matrix A = : QR can be factored into the product of a unitary matrix Q
and an upper triangular matrix R. Since R is upper triangular and the inverse
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of Q is easy to compute (since Q is unitary, QQH = I —> Q_1 = QH),
the system QRF = C can be solved easily by back substitution and matrix-

vector multiplication.

Q is often decomposed into N(N - l)/2 Givens rotation matrices. The

decomposition of Q is beneficial for numeric stability and also for VLSI in¬

tegration.

Complexity of the QR factorization is 0(N3).

3.2.3. Cholesky Factorization

The matrix to be inverted is hermitian symmetric. Furthermore, since it is the

result of a least squares problem, the matrix is also positive definite. Therefore

the matrix can be factored into a product of A = LLH or A = LDLH. L

is a lower triangular matrix and D a diagonal matrix. The LLH factorization

requires the computation of N inverse square roots, while the LDLH factor¬

ization requires the computation of N divisions. For fixed point computation,
the inverse square root -4= is preferable over the division, since its output has

a smaller dynamic range. Precise results at a low number of iterations have

been achieved with a Newton Raphson Iteration for the inverse square root

with an initial seed table [38, Chapter 21.5].

AN =
«21 a22 • • • I

LnL*n + An_x (3 3)

illustrates the Cholesky recursion step of the LLH factorization.

0

0 • •• " (3.4)

denotes the partial Cholesky factor computed at recursion step N. The first

column or row of A is scaled by -4= and stored into the first column of LN.

The rest of LN is set to zero. Now AN - LWL^ results in a matrix whose

first row and first column is identically zero. The problem has therefore been

reduced to a problem of size N - 1.

After A has been factored into the product LLH, F can be found by back

substitution. This involves solving the systems Ly = C and LHx = y. These

systems are "easy" because L and therefore LH are triangular.
The complexity of the cholesky factorization is 0(N3), while the com¬

plexity of the back substitution is 0(N2).
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Implementation remarks Since A is hermitian symmetric, the cholesky
factorization can be performed in place. L is stored into one triangular part of

the memory while A is taken out of the other triangular part.
Instead of storing

"

into the diagonal elements of L, may

be stored, turning the divisions in the back substitution into multiplications.
-== has to be computed anyway for the row scaling.

Both the Cholesky factorization as well as the back substitution can not

easily be parallelized to achieve low latency result computation. The order

recursion steps cannot be overlapped, there is inherent serialization at each

recursion step. Furthermore, the work to be done at each recursion step varies

widely.

3.2.4. Displacement Structure Theory

(3.2) clearly shows that there is more structure to the problem thanjust hermi¬

tian symmetry and positive definiteness. It should be possible to exploit this

structure to simplify the problem.
It turns out that the recently developed Displacement Structure Theory

[39, 40] is a powerful tool to simplify structured matrix inversion problems.

V{z,z}A ZAZ
H

(3.5)

is called the displacement representation of A. Z is called the displacement

operator. Z is an arbitrary strictly lower triangular (i.e. with identically zero

diagonal) matrix. Since Z is strictly lower triangular, the first row and the first

column of ZAZH are identically zero. Therefore, the first row and the first

column of A and V{Z Z}
A are identical.

Z :=

/0 0 0 0

10 0 0

0 10 0

0 0 10
(3.6)

is called the lower shift matrix. I denotes the N0 x N0 identity matrix, and

0 denotes the N0 x N0 all zero matrix. Premultiplying a matrix with Z„

deletes the bottom N0 rows of the matrix and inserts N0 all zero rows at the

top. Postmultiplying with ZH or ZT deletes the rightmost NQ columns and
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inserts A^0 all zero column at the left edge. It is easy to see that

V{z,z}A =

/CJC^ + N(o,o)
C*C0 + N(10)
C^C^ + N(2j0)

CJC1 +N(0ji)
CfCf

CJC2 +N(0j2)
CÎCJ

...\

V

(3.7)

7

can be represented as a product GJGH. J = diag{±l, ±1, • • •

, ±1} is

called the signature matrix. G is called a generator of V{Z,z}A, and its

columns are denoted with g0 • • • gr-i- r, the number of columns of G, is

called the displacement rank of A.

In the white noise case, N^) vanishes for i ^ j. Therefore, the

only noise contribution is to the top left corner of V{Z,z} A. Furthermore,

N(o,o) = NqI is a scaled identity matrix. A suitable G is

G

/cj

C*2

0

0

' J

(3.8)

and the corresponding J is simply the (A^o + ND) x (A^o + ND) identity
matrix. The displacement rank is r = A^ + A^.

In the case where the noise is coloured, but the noise contributions to

different channel outputs are uncorrected and have the same energy, the ele¬

ments of N are also scaled identity matrices, i.e. N(4^ = Nt-3I. A suitable

Gis

G =

/cs
ci

c*2

\ '

jN~ol
Ni=l
VlVo
N2 T

TWO

0

Wi T

Vn;
N2 T ==(i '>r-l> (3.9a)

/

and the first N0 + ND elements of J are +1, while the last N0 elements of

J are -1;

(3.9b)

The displacement rank is r = 2N(
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Generators are not unique. In fact, if G is a generator, then G0 is

also a generator, provided that 0 is J-unitary, i.e. @J@H = J, since

G0J0HGH = GJGH

The freedom of choosing a generator shall now be used to develop an

order recursion that transforms the displacement representation of a problem
of size N into the displacement representation of a problem of size N - 1.

From now on, A shall no longer be treated as an Nf x Nf block matrix of

A^o x A^o elements, but as an NfN0 x NfN0 matrix of scalar elements.

First, 0 shall be chosen suchthat G = G0 has only one nonzero element

in the first row. Any popular zeroing tool such as Givens rotation, fast Givens

or Householder reflections [41] may be used to find 0. The column with the

nonzero element in its first row is called the pivoting column gpvt.

Since only gpvt has a nonzero first element, gpvt determines the first row

and the first column of V{Z,z}A and thus also of A. gpvt is therefore the first

row of the cholesky factorization of A. Subtracting gPvtgpvt from A zeros

the first column and the first row

Ai = A - gp„tg£t = L AJ- (31°)

Ai - FÂiF^ = A - gpvtg^ - F(A - g^g^F11
= GJG -

gPvtgpvt + FSpvtgpvtF
= (go • • • Fgpvt • • • gr_i) J

(go • • • Fg^t • • • gr_i)

0\
,
( o^H

(3.11)

shows the algorithm for transforming the displacement representation of A

(order N) into the displacement representation of Ai (order N - 1). This

recursion step can be carried out until the problem is of size 1. (3.11) assumes

that the signature matrix entry corresponding to the pivoting column is +1.

To summarize the algorithm:

1. Find 0 such that the first row of G multiplied by 0 results in a vector

with only one nonzero element

2. Postmultiply G = G0. The column with the nonzero first element is

called gpvt.

3. Store gpvt into the appripriate column of the Cholesky Factor
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4. Premultiply the pivoting column with Z.

5. Delete the first row of the generator.

This algorithm factors the DFE matrix into its Cholesky factors. Just as

for the Cholesky factorization, back substitution has to be performed to find

the actual solution. Since 0 is an r x r matrix and r is independent of the

problem size N, the complexity of this algorithm is 0(N2). Although Z can

be any strictly lower triangular matrix, it is advantageous if Z only consists

of 0 and 1 elements and furthermore only contains one 1 per row. In that case,

premultiplying the pivoting column with Z can be realized with a temporary

storage and appropriate read and write addresses. For the particular Z chosen

in (3.6), this reduces to a simple downward shift by A^0 elements, i.e. a A^0

word FIFO.

3.2.5. Avoiding the Back Substitution

As has been mentioned in section 3.2.3, the back substitution, which is also

required for the displacement structure factorization algorithm, is difficult to

parallelize.
The goal of this section is to develop an algorithm, based on Displace¬

ment Structure Theory, that directly outputs the desired feedforward filter co¬

efficients.

Displacement Structure Theory can be generalized to non hermitian sym¬

metric matrices:

V{Fiif2}A:= A-FiAFf = : GJBH (3.12)

There are now two displacement operators Fi and F2. Also, G =é B in

general. While G and B must have the same number r of columns, their

number of rows differ for nonsquare matrices.

For hermitian symmetric matrices, the recursion step of the displacement
structure algorithm (3.11) required the computation of an r x r matrix 0 that

cleared all but one entry of the first row of G0. In the general case, two rxr

matrices 0 and T have to be found that clear all but one entry of the first row

ofboth G0 and Br, and for which 0JTH = J. This problem is much more

involved than the corresponding problem in the hermitian symmetric case.

A back substitution free algorithm shall be derived. The block matrix

R=(Ai o) ^
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of size 2^/A^o x (NfN0 + ND) consists of the NfN0 x NfN0 matrix A,

the NfN0 x ND right hand side ofthat section, an NfN0 x NfN0 negative

identity matrix I, and an NfN0 x ND zero matrix.

Now the 1,1-Schur complement [42, 43] of R,

S = 0 + IA-1C, (3.14)

is exactly the desired solution. The generators for the displacement structure

representation of the 1,1-Schur complement V{Fi,f2} S can be found by run¬

ning the recursion NfN0 times.

In the single output (ND = 1) case, S is an NfN0 x 1 vector, FiSF2 =

0, and therefore the generators directly represent the desired solution S.

In the multiple output case, extra additions are required to convert from

the displacement representation of S to S itself.

Suitable displacement operators

and

lead to low rank generators.

'2 =

z 0

0 z

z 0

0 0

(3.15a)

(3.15b)

V{Fi,f2}R-
CJC0 +N(0j0) coci +N(o,i) CjC2 +N(0j2) C0* CJV/-1+N(0,JV/-1) C0*

C*C0 +N(lj0) c*cf Cj Cj p*fT
^l^Nf-l

C*

C2C0 +N(2,0) CjCj ^2 C2 ^2^'Nf-l c2*

CNf-lC0 +N(iV/-l,0) ^Nf-1^1 '^'Nf-l'^'2 ^Nf-l^Nf-1 CjVj:-
I 0 0 0 0 0

0 0 0 0 0 0

V ; ; ; ; ; : /

(3

shows the displacement structure representation using the chosen operators.
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A suitable choice of G, J and B is

/ c*0

ci
c%

GJB
H

c
Nf-
0

0

Vn^
0

I 0

0 I

/ c*0

ci
CS

c
Nf-1

I

0

o /

(3.17)

for the white noise case and

/ c*0

ci

CS

GJB
H

c
Nf-1

0

Nn£-1i
/No

TWO
0

0

Wl T

Vn;
N2_i
/JVÖ

Nni-1i
/No
-4=1
TWO

/ C*0

ci

CS

V 0

0

Wl T

W2 T

if

„* NNf-i- NNf-i
^Nf-1 y]vô

L
VN,

L

(3.18)

0 /

for the coloured noise case.

Again there is some flexibility in choosing the generators. A remarkable

fact about the generators in (3.17) and (3.18) is however that the first NfN0
rows of G and B are equal. There are two implications of this:

• The general problem of finding 0 and T that zeros r — 1 elements in

the first row of G and B and that satisfies 0Jr = J reduces to the

much simpler problem of finding a J unitary matrix that zeros r — 1

elements in the first row of G
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• The number of rows that need to be stored and multiplied by an r x r

matrix is reduced

To summarize the algorithm:

1. Perform the recursion of section 3.2.4, the order reduction step, NfN0
times. Additionally, at each step, the last ND rows of B have to be

multiplied by 0 as well.

2. Multiply the remaining No rows of B with the remainder of G to

obtain the displacement representation of the feedforward filter coeffi¬

cients, or, in the single output (ND = 1) case, the feedforward filter

coefficients itself.

Clearly, the possibility to find generators where the first NfN0 lines of

G and B are the same is caused by the special right hand side (i.e. the matrix

C). For general right hand sides, two possibilities exist to fit the problem into

the framework of this section.

Two block columns both containing the right hand side of the equation

system and having I and -I as corresponding block diagonal entries of the

signature matrix J can be added to the generator. Because the right hand side

now equals a generator (block) column, the methods of this section can be

applied. The downside is an increase of the displacement rank by two times

the number of right hand side columns.

Another solution is the computation of the inverse of A by computing the

Schur complement of

R=(t I)- (3-19)

The matrix R in (3.19) is now hermitian symmetric again, and the 1,1-Schur

complement is S = 0 — IA_1I the negative inverse of A. The final solution

may then be obtained by computing a matrix-matrix product, which exhibits

more parallelism than the back substitution step.

3.2.6. Bounds for the Diagonal of the Cholesky Factor L

In this section, upper and lower bounds for the diagonal elements of the

cholesky factor L = [ll3\ are derived.
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The trace of A

NfNo-lNfNo-l

Tr{A} = Tr{LLff} = ]T ]T 1^1*^
j=0 3=0

NfNo-1 NfNo-1

= Y \l(h*)\2 + Y Y \l(h3)\* (3.20)
î=0 î=0 0<3<NfNo

3^

NfNo-1

- Y \1m\2 - i^(»,»)i2

upper bounds the square of the diagonal elements of the cholesky factor. The

trace of A can be upper bounded by

No-l ( Nf-1 \

Tr{A} < Nf ]T N^ + Y (C;CJ)M , (3.21)
i=0 \ 3=0 J

in other words, Nf times the energy of the noise and the channel. The bound

is exact for an ideal channel

CrC^j1 l = °. (3.22)1 l

[0 ly/0

A lower bound for the diagonal elements can be derived from the dis¬

placement structure factorization algorithm for the white noise case. !v is the

first element ofthe pivoting column at the «-th iteration. The first A^0 diagonal
elements can be computed with

/(,i0 = y/N0 + 0<i<No, (3.23)

and subsequent diagonal elements with

lM = y/li-Nos-No) + --- No<KN0Nf, (3.24)

where "...
"

denotes additional nonnegative terms. Therefore, !(,it) > y/Nö.
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3.3. Iterative Methods

Iterative solution methods [43] first "guess" the solution vectors F. They sub¬

sequently successively reduce the distance between the true solution and the

estimate.

MF(fc+1) = NF(fc) + C (3.25)

shows the equation for the k-th iteration. F(fc) represents the k-th estimate of

the desired solution F, and A := M - N is called the splitting of the matrix

A. Obviously the splitting should be chosen such that systems of the form

Mx = y can be computed easily. The spectral radius, that is the magnitude
of the largest eigenvalue, of M_1N determines the convergence rate.

The most basic iterative solution methods are the Jacobi and the Gauss-

Seidel iteration. The Jacobi iteration uses an M that contains the diagonal

part of A, and the Gauss-Seidel iteration uses an M that contains the lower

triangular part including the diagonal of A. Both require the same number of

computations, but the Gauss-Seidel method convergences more quickly. Ja¬

cobi or mixed Gauss-Seidel/Jacobi may however be advantageous for highly

parallel implementations. It can be proved that the Gauss-Seidel iteration con¬

verges for hermitian symmetric positive definite matrices.

Methods with faster convergence such as the Successive Overrelaxation

method (SOR) exist - but these methods require many more computations

per iteration. As will be seen in the next section satisfactory results can be

achieved with only a few Gauss-Seidel iterations, therefore these more com¬

plex methods have not been investigated.

3.3.1. Gauss-Seidel

When using iterative methods, one needs to know how many iterations need

to be performed to achieve a satisfactory solution. Figures 3.1 and 3.2 show

computer simulations of the Gauss-Seidel solution method. The optimal

equalizer tap vector for the ideal nondispersive channel is used as the start¬

ing vector. From these graphs it can be concluded that after 3-4 iterations the

results are close enough to the steady state solution.

3.4. DFE Solution Algorithm Comparison

In order to compare the different algorithms for solving the DFE equations,
the exact number and type of operation that needs to be performed and the

number ofmemory words needed for each algorithm is derived in this section.
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Note however that the number of operations alone is not the only criterion to

select an algorithm for parallel hardware implementation - issues such as

inherent parallelism and locality of communication are important too. In this

section, two specific equalizers are considered, namely ND = 1, A^ = 1 and

dt G C termed the 2-d Equalizer, and ND = 1, A^0 = 2 and dt e R termed

the 1-d Equalizer. The 2-d Equalizer represents the simplest case, namely
the transmitter generating one symbol per time step, the receiver performing
one measurement per time step and the equalizer optimized for a complex
constellation. The 1-d Equalizer represents the same case but optimized for a

real constellation.

3.4.1. Cholesky Factorization

Three tasks need to be performed, namely the computation of the matrix to be

factored from the CIR estimate, the factorization, and the back substitution.

As mentioned before, the matrix and the factor can be stored into the same

matrix memory. Furthermore, a temporary vector is needed during the back

substitution.

Table 3.1 lists the number of arithmetic operations and the memory words

required for solving the DFE feedforward equation with the Cholesky factor¬

ization.

3.4.2. Displacement Structure Algorithm with Back Substitution

The main computations that need to be performed are the computation of 0

and then the postmultiplication G0.

The matrix A does not need to be computed explicitly. At the end, how¬

ever, back substitution is required to compute the final solution.

Instead of computing an r x r matrix, 0 is split into several smaller

tasks. First, all columns of G are multiplied with suitable complex values

such that the imaginary parts of the elements in the first row disappear. Then,

two columns are treated pairwise at a time. A real 2x2 angular rotation

(or hyperbolic rotation, if the corresponding entries in the signature matrix

have different signs) matrix is then computed such that the first element of

one column becomes zero. This makes the multiplication G0 somewhat less

regular, but the number of arithmetic operations to be performed is smaller.

Table 3.2 lists the number of operations needed to perform these actions.

Multiplying the pivoting column with the displacement operator matrix

does not require any arithmetic operations. It is a memory move operation.
Table 3.3 lists the total number of operations for computing the final so¬

lution.
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Operation

2-dimensional Equalizer
Mult Add

Matrix computation

Cholesky Factorization

Back Substitution

47V|
lN3f-

3iV/

AN}
|JV>

2N'j - 37V/ + 2

§7V| + §7V/

Total

Operation

Wf+8Nf-

1/yfi

-ÏNf |JV; + 6J^-|JV/+2

Mem

Matrix computation

Cholesky Factorization

Back Substitution

0

Nf
0

2JV/
0

27V/
Total

Operation

Nt 27Vj~+ 2Nf

1-dimensional Equalizer
Mult Add

In]
§7V| + 2N] - §7V/ |JV| + 27V| + f TV/

47V; + 27V/

Matrix computation

Cholesky Factorization

Back Substitution

47V; - 67V/ + 4

47V; + 27V/

fNf + 4Total

Operation

3JV/ + 107VJTF>

l/Vi Mem

iTVj-
0

27V/

Matrix computation 0

Cholesky Factorization 27V/
Back Substitution 0

Total 27V/ 47V; + 27V/

Table 3.1: Real operations required for cholesky factorization
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2-dimensional Equalizer

Operation computing 0 Mult Add 1/V^ Mem

Rotate to real

Rotate columns

4r

4(r-l)

r

r — 1 1

2r

2(r- 1)
Total 8r-4 2r- 1 2r-l Ar- 2

Operation row mult by 0 Mult Add 1/yfi Mem

Rotate to real

Rotate columns

4r

8(r-l)

2r

4(r - 1)

0

0

0

0

Total 12r-8 6r-4 0 0

1-dimensional

Operation computing 0 Mult

Equalizer
Add 1/yfi Mem

Rotate columns 4(r-l) r — 1 r — 1 2(r- 1)
Total 4r - 4 r — 1 r — 1 2r-2

Operation row mult by 0 Mult Add 1/yfi Mem

Rotate columns 4(r-l) 2(r- 1) 0 0

Total Ar - 4 2r - 2 0 0

Table 3.2: Real operations required for © computation
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2-dimensional Equalizer

Operation Mult 1/V^
Nf © computations

Nf(Nf + l)/2 row mult

Back Substitution

8Nfr - ANf

6NJr -4NJ +6Nsr -

4Nf

-ANf
2Nfr - Nf
0

0

Total

Total white n r = 2

Total coloured n r = 3

Operation

6NfT + 14Nfr -8Nf
12Nj + 20Nf

18NJ + 34Nf

Add

2Nfr - Nf

3Nf

5Nf

Mem

Nf © computations

Nf(Nf + l)/2 row mult

Back Substitution

2Nfr - Nf

3W|r -2N2S +3Nfr -

4Nf

-2NS

4r -2

N2 + 2Nsr

2NS
Total

Total white n r = 2

Total coloured n r = 3

Operation

3N'ir + 2Nf + ZNsr - 3Nf

8N] + 7Nf

11NJ + 12Nf

1-dimensional Equalizer
Mult

Nj + 2Nfr + 2Nf + 4r -

N] + 6Nf + 6

Nj + 8Nf + 10

1/V^

2

2Nf © computations

Nf(2Nf + 1) row mult

Back Substitution

8Nfr - 8Nf

8W|r -8N^ +4Nfr-

4Nf + 2Nf

-ANf
2Nfr - 2Nf
0

0

Total

Total white n r = 3

Total coloured n r = 4

Operation

8NfT -4Nf + 12Nfr

20W| + 26Nf

28Nf + 38NS

Add

- lONf 2Nfr - 2Nf

4Nf

6Nf

Mem

2Nf © computations

Nf(2Nf + 1) row mult

Back Substitution

2Nfr - 2Nf
4N2,r -4N2 + 2Nfr -

4Nf + 2Nf

-2NS

4r — 4

2NJ + 2Nsr

2NS
Total

Total white n r = 3

Total coloured n r = 4

4N)r + 4Nsr - 2NS
12Nj + lONf

16NJ + 14Nf

2NJ + 2Nfr + 2Nf + 4r

2Nj + 8Nf + 8

2NJ + lONf + 12

-4

Table 3.3: Real operations required for displacement structure factorization
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3.4.3. Displacement Structure Algorithm without Back Substitution

Computations necessary for this algorithm is similar to the Displacement
Structure Factorization algorithm, except that:

Operation

2-dimensional Equalizer
Mult 1/V^

Nf © computations

3Nf(Nf + l)/2 row mult

Generator multiplication

8Nfr - 4Nf

18NJr - 12NJ + 18Nfr - 12NS

4Nsr

2Nfr - Nf
0

0

Total

Total white n r = 2

Total coloured n r = 3

Operation

18NJr - 12N'j + 30Nsr - 16Nf

24NJ + 44Nf
42Nf + 74Nf

Add

2Nfr - Nf

3Nf

5Nf

Mem

Nf © computations

3Nf(Nf + l)/2 row mult

Generator multiplication

2Nsr - Nf

9NJr - 6NJ + 9Nfr - 6Nf
4Nsr - 2NS

4r -2

4Nsr + 2r

0

Total

Total white n r = 2

Total coloured n r = 3

Operation

9Njr - 6Nj + 15Nfr - 9Nf

12NJ + 21Nf

21Nf +36N/

1 -dimensional Equalizer
Mult

4Nfr + 6r -2

8Nf + 10

12Nf + 16

1/V^

2Nf © computations

3Nf(2Nf + 1) row mult

Generator multiplication

8Nfr - 8Nf

24NJr - 24NJ + 12Nsr - 12NS

2Nsr

2Nfr - 2Nf
0

0

Total

Total white n r = 3

Total coloured n r = 4

Operation

24NJr - 24NJ + 22Nsr - 20NS

48NJ + 46Nf
72Nf + 68Nf

Add

2Nfr - 2Nf

4Nf

SN,

Mem

2Nf © computations

3Nf(2Nf + 1) row mult

Generator multiplication

2Nsr - 2N;

12NJr - 12NJ + 6Nfr - 6Nf

2Nsr - 2NS

4r — 4

4NfT + r

0

Total

Total white n r = 3

Total coloured n r = 4

12NJr - 12N'j + lONfr - lONf

24NJ + 20Nf

36Nf + 30Nf

4Nsr + 5r - 4

12Nf + 11

16Nf + 16

Table 3.4: Real operations required for displacement structure solution

• at each recursion step, TV/ + 1 or 2TV/ + 1 additional rows have to be

multiplied by 0 for the 2-d and the 1-d equalizer, respectively.

• there is no back substitution

• the last row of B needs to be multiplied with the remainder of G.

Table 3.4 lists the total number of operations.
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3.4.4. Gauss-Seidel Iteration

As has been shown in the last section, four iterations are normally enough
to obtain a satisfactory solution. Table 3.5 lists the number of operations re¬

quired for four iterations.

2-dimensional Equalizer

Operation Mult Add Div Mem

Matrix computation AN] 27V) - 37V/ + 2 Ö 27V)
Gauss-Seidel Iteration 47V) - 47V/ 47V) - 47V/ 27V/ 0

Total (4 Iter) 207V) - 167V/ 187V) - 197V/ + 2 87V/ 27V)

1-dimensional Equalizer

Operation Mult Add Div Mem

Matrix computation AN] 47V/ - 67V/ + 4 Ö 47V/
Gauss-Seidel Iteration AN] - 27V/ AN] - 27V/ 27V/ 0

Total (4 Iter) 207V) - 87V/ 207V) - 147V/ + 4 87V/ 47V)

Table 3.5: Real operations required for Gauss-Seidel iteration

3.4.5. Discussion

Figures 3.3 through 3.6 plot the number of multiplications and the number

of memory words required for the different equalizer algorithms versus the

number offeedforward taps TV/. The number of multiplications has been cho¬

sen because most adds can be fused with multiplications to obtain multiply-

accumulate (MAC) operations, and together these operations outweigh any

other arithmetic operations.

Looking at the number of multiplications, Cholesky factorization is still

an attractive solution for typical problem sizes even though it is 0(N3) and

the alternatives all are 0(N2) because of its low proportionality factor. For

single MAC DSPs and RISC processors, the number of multiplications is

indeed an important parameter. For VLSI hardware implementation and even

multiple ALU/SIMD processors, the regularity of the data flow is at least as

important as the raw number of operations [44]. Here, all other alternatives

are better.

The Gauss-Seidel algorithm is not very attractive. It computes an approxi¬
mate solution with almost the same number of multiplications as the displace¬
ment structure based algorithms.
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Figure 3.3: Number of multiplications of 2-d equalizer algorithms

Memory words 2-d Equalizer

Memory words, 2-d Equalizer

Cholesky Fact

Displacement Fact white noise

Displacement Fact coloured noise

Displacement Sol white noise

Displacement Sol coloured noise

Gauss-Seidel

£ 400

E

Figure 3.4: Storage requirements of 2-d equalizer algorithms
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Multiplications 1-d Equalizer
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Figure 3.5: Number of multiplications of 1-d equalizer algorithms
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Figure 3.6: Storage requirements of 1-d equalizer algorithms
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The Displacement Structure Solution algorithm has very desirable prop¬

erties for VLSI implementation, so it will be considered in the next chapter.



Part III

Implementation





4

Fast VLSI

Architectures for the

Displacement
Structure Algorithms

In section 4.1, previous publications are reviewed. In section 4.2, a family
of architectures for implementing the displacement structure algorithms are

presented. These architectures consist of a chain of processing elements that

compute the result in O(N) time. Section 4.3 presents the detailed architec¬

ture of the processing elements. To illustrate the capabilities of the proposed

architectures, section 4.4 compares different architectures for computing the

DFE coefficients of an equalizer suitable for HIPERLAN I.
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4.1. State of the Art

Many publications suggest the use of the cholesky factorization for solving
the DFE equations, eg. [29, 23].

4.1.1. Systolic Arrays for Cholesky Factorization

[45] proposed a systolic array for computing the LDLT factorization. The

anay consists of ^N(N + 1) processing elements. Each processing element

consists of one or two real multipliers, depending whether the data is real or

complex, except one processing element, which consists of a divider. Because

full multiplications and divisions need to be performed per array clock cycle,
the array needs to be clocked much slower than the CORDIC based arrays.

The latency is « 3N array cycles. [46] proposed another systolic array for

cholesky factorization.

[47] also describes a systolic array for cholesky decomposition using

7jN(N + 1) processing elements. The processing elements contain hyper¬
bolic CORDIC hardware.

4.1.2. Systolic Arrays for QR Factorization

Instead of the cholesky factorization, the so called QR factorization may be

used as well. The QR factorization decomposes A into a product of a uni¬

tary matrix Q and an upper triangular matrix R. Systolic anays have been

proposed for the QR factorization [48, 49, 50, 51]. The array consists of

7}N(N + 1) processing elements and has a triangular shape. The process¬

ing elements compute multiplies, adds, and possibly divisions or reciprocal

square roots.

[52, 53, 54, 55] suggest the use of angular CORDIC based processing
elements. The CORDIC (Coordinate Rotation on Digital Computers) tech¬

nique [56, 57] computes angular or hyperbolic rotations in the cartesian plane

by decomposing the rotation into multiple microrotations. The microrotations

are chosen such that the total rotation angle converges to the desired angle and

that the individual microrotations are easy to implement. In the simplest case,

only two shifts and two adds/subtracts need to be computed per microrota-

tion. In rotation mode, CORDIC rotates a given point in the cartesian plane

by a given angle. In vectoring mode, CORDIC rotates a given point in the

cartesian plane onto the horizontal axis and records the total rotation angle.
CORDIC based processing elements are advantageous for VLSI implemen¬
tation compared to the multiply-accumulate type processing elements.
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Figure 4.1: CORDIC based systolic array for QR factorization

Figure 4.1 depicts the systolic array and the contents of the processing
elements. The N diagonal cells operate in vectoring mode, while the off di¬

agonal cells operate in rotation mode. The anay requires N array clock cy¬

cles to compute the result, but due to the feedback loop involving r inside

the cells, the cells themselves cannot be fully pipelined, and an anay clock

requires NROt cycles, where NROt denotes the number of microrotations

of the CORDIC blocks.

Haykin [50] suggested to follow the triangular systolic array with a linear

one for performing the back substitution.

4.1.3. Linear Equalizers

Linear Equalizers resemble Decision Feedback Equalizers. The difference is

the missing feedback filter. The equations for the optimal linear equalizer
coefficients have Toeplitz form. Several publications, such as [58, 59], present

efficient architectures for solving Toeplitz systems. Since the DFE equations
do not have the Toeplitz property, these architectures cannot be adapted to

solve the DFE equations.
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4.1.4. Computing the Feedback Coefficients using QR Decomposition

Al-Dhahir and Sayed [60, 61] proposed the use of the QR factorization

specifically for computing the feedback taps of a DFE. Their derivation how¬

ever leads to matrices of size N + NCir, where NCir is the length of the

channel impulse response. For typical systems, N « NCir, which leads to

twice the latency and four times the hardware resources.

4.1.5. Summary

Algorithm # PE Latency PE contents

QR |7V(7V+1) (3N-1)Nrot 3 CORDIC

Al-Dhahir/Sayed |(JV + Ncir)- (3(7V + Ncir) - 1)- 3 CORDIC

(N + Ncir + 1) NROT

LDLT |7V(7V+1) 3N 2 real Mul

Disp Struct Fact < N 2NNrot + 1 4 CORDIC

Table 4.1 : Hardware architecture comparison for 2-d equalizer coefficient

computation

Table 4.1 compares the different algorithms. The displacement structure

factorization hardware architecture to be introduced in sections 4.2 and 4.3

has been included as well. While all algorithms have a latency of approxi¬

mately N clocks, all but the displacement structure algorithm have a hard¬

ware complexity of N2. When directly mapping the displacement structure

algorithm onto a linear chain of processing elements, it requires N processing
elements. However, due to the regular data flow, processing elements may be

reused without destroying the local communication property, leading to even

lower hardware complexity while sacrificing the possibility to start comput¬

ing a new problem while the previous one is still being processed.

4.2. General Architecture

The natural way to implement the Displacement Structure family of algo¬
rithms is to process the generator matrix (or matrices) row wise. This directly
leads to the architecture in Figure 4.2 for the Displacement Structure Factor¬

ization algorithm.
The generator rows enter one row at a time at the left and are fed through

a chain of N = NfNQ processing elements. One processing element is re-
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Figure 4.2: Architecture for displacement structure factorization

sponsible for one recursion step of the algorithm. The following tasks need to

be performed by the processing elements:

1. Upon receiving the first row (as indicated by the signal FIRST.ROW,

compute 0 and multiply the row with 0.

2. Multiply all subsequent rows with 0.

3. Output the pivoting column to the top for storing it into the Cholesky
Factor L.

4. Multiply the pivoting column with F. With the given displacement op¬

erators this amounts to shifting and selectively zeroing elements in the

column.

5. Delete the first row and pass the remaining rows to the right, including

generation of the FIRST.ROW signal for the new first row.

A detailed discussion of the implementation of the individual processing
elements is given in section 4.3, It is assumed that the processing elements are

pipelined and that they accept a new row at every pipeline clock. A pipeline
clock may however consist of a (constant) multiple of hardware clocks.

Due to the order recursive nature of the algorithm, not all processing el¬

ements are fully utilized. The first one (PE #0) is fully utilized, the second
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one (PE #1) has an utilization ratio of (N - l)/N, and the last one has an

utilization ratio of l/N.
Under the assumption that each PE takes at least one pipeline clock cycle

to process each row, there is no benefit in processing multiple rows at the

same time. Since the last PE only has to process one row, the latency for the

full result to be available is NLPE, where LPE is the number of pipeline
clock cycles each PE needs to process one row. Under the assumption that

Lpe > 1, at the time when the single element last column of the cholesky
factor L is available, the first PE will already have processed all N elements

of the first column of L.

With the architecture given in Figure 4.2, it is possible to start a new

computation every N pipeline clock cycles, while the previous one is still

being processed.

2 *
<D O

o —

o
St

Figure 4.3: Architecture for displacement structure solution

Figure 4.3 shows the corresponding architecture for the displacement
structure solution algorithm. For this algorithm, 2N + ND rows need to be

processed, so a new computation can be started every 2N+ND pipeline clock

cycles. Instead of storing the columns of the cholesky factor, the desired out¬

put is the generator output of the last processing element.

It is beneficial to feed the rows of both generator matrices G and B in the

order given by
'Gi=BiN

B2 I (4.1)

G2 /
from top to bottom. Gi and Bi are the rows of G and B that are equal,

B2 denotes the remaining ND rows of B and G2 consists of the remaining
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N rows of G. That way, the remaining rows of B, which must be multi¬

plied/accumulated with the remainig rows of G, leave the last processing
element first. They can then be latched and fed to NDr possibly complex

multipliers, together with the remaining rows of G. The output of the adders

that follow the multipliers is the displacement representation of the desired

feedforward filter coefficients, or in the single output (ND = 1) case, the

desired feedforward filter coefficients itself.

Figure 4.4: Modified architecture for displacement structure solution

A slight modification of the architecture in Figure 4.3 suitable for the

single output (ND = 1) case is depicted in Figure 4.4. Here, another slightly
modified processing element is appended at the end of the chain of PE's. This

last processing element only performs the © related operations. It does not

apply the displacement operator F nor does it delete the first row.

This last processing element zeros r - 1 elements of the remaining row

of B, leaving only one nonzero element whose imaginary part is also zeroed.

Thus, the r complex multiplications required in Figure 4.3 are now reduced

to a single multiplication by a real value per feedforward coefficient. This

multiplication does not even need to be performed; it only scales the feedfor¬

ward coefficients and thus also the feedback coefficients and the bias a by
a constant. For the binary antipodal constellation, whose decision device is

scaling invariant, only the sign of a has to be retained and xor'ed with the

output of the decision device. In order to avoid increasing the dynamic range

of the DFE filter sections, it is desirable however to do some normalization of

the feedforward coefficients, eg. by using a banel shifter.

4.2.1. Reduced Hardware Complexity

As mentioned before, a new computation can be started while the cunent one

is still being processed. This capability is often not necessary. But since all

processing elements perform the same computation, the number ofprocessing
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Figure 4.5: Recycling processing elements

elements may be reduced and the data may be cycled multiple times through
a (shorter) chain of PE's. Figure 4.5 illustrates this idea.

The FIFO is only necessary if NpELpE < N for the Displacement Struc¬

ture Factorization or NpELpE < 2N + ND for the Displacement Structure

Solution. On the other hand, if NPELPE > N for the Displacement Struc¬

ture Factorization or NPELPE > 2N + ND for the Displacement Structure

Solution, then the utilization of the processing elements may be increased at

the expense of an increased latency.

4.3. The Processing Elements

The main purpose of each processing element is to find a suitable J unitary
matrix 0 that zeros all but one element in the first generator row and then

multiply the whole generator with 0.

The case where G g Rnxr will be discussed first, with the necessary

extensions for G g Cnxr presented afterwards.

4.3.1. Working with Real Numbers

Instead of solving the whole problem at the same time, a divide and conquer

approach shall be chosen. The matrix 0 is split into a number of simpler

matrices, i.e. 0 := ©i©2 • • • @3. Each of these simpler submatrices only
deals with two columns of the generator, while leaving all other columns

unaffected.
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The purpose ofthese smaller matrices 04 is to zero the first element of one

of the two columns it processes. The condition is that @t must be Jt unitary,
i.e. ©jJj©^ = Jj, where Jt is the diagonal signature matrix consisting of

the two entries from the signature matrix J corresponding to the two columns

selected.

and

^cosöj — siné>j\ (\ 0\ / cosöj siné>j\

ysinöj cosöj J \0 \J \ — sinöj cos6lJ
/cos2 6t + sin2 6t 0 \

_

(\ 0^

V 0 cos2 6. + sin2 9J ~

V0 \,

/coshöj sinhöA (\ 0 \ /coshöj sinhö.

ysinhöj coshöjy yO —\J \svcA\ßl coshö.

/cosh2 ^ - sinh2 6t 0 \_ (\ 0

I 0 sinh2 9t - cosh2 öj
~ 10 -1

(4.2a)

(4.2b)

show Jj unitary matrices for the two possible cases, namely the signature
matrix entries having the same sign (4.2a) or a different sign (4.2b).

Looking at these two matrices, multiplying a row vector of two numbers

with the matrix of (4.2a) is exactly what the CORDIC technique [56, 57]

computes in angular rotation mode (apart from a constant factor), and multi¬

plying by the matrix in (4.2b) performs the same computation as the CORDIC

technique in hyperbolic rotation mode (again apart from a constant factor).
The problem offinding a suitable 6t that zeros one element ofthe first row

has to be solved. But this is exactly what the CORDIC technique computes
in vectoring mode. This is an elegant result because the same hardware can

be used for both tasks, namely finding 0 and multiplying the generator rows

with 0. The CORDIC block just needs to be switched into vectoring mode

for the first generator row and then back into rotation mode for subsequent
rows. Note that the angle 6t does not need to be computed explicitly. It is

sufficient to store the direction of each CORDIC microrotation.

4.3.2. Working with Complex Numbers

Processing elements for complex numbers are similar to those for real num¬

bers. There are two modifications:

1. r angular CORDIC blocks are used to make all r elements of the first

row real (i.e. make their imaginary part vanishing).
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2. for each CORDIC block for the 04 matrices, there is a second CORDIC

block working always in rotation mode and processing the imaginary

parts slaved to the CORDIC block for the real part.

4.3.3. The CORDIC Blocks

Figure 4.6 depicts two CORDIC blocks. Each CORDIC block consists

of multiple microrotations. The microrotations may be implemented in a

pipelined way, as shown, or executed serially on the same microrotation hard¬

ware. The signal FIRST_ROW is active when the first generator row is fed

into the CORDIC block. It switches the upper or master CORDIC block into

vectoring mode. If inactive, the master CORDIC block operates in rotation

mode. In vectoring mode, the master CORDIC block zeros its lower output.

Hyperbolic CORDIC blocks need to swap their inputs if the magnitude
of the upper input of the first row is smaller than the magnitude of the lower

input to ensure convergence.

The complex Equalizers employ "stacked" CORDIC blocks, depicted
with an anow from the upper to the lower one. The lower or slave CORDIC

block always operates in rotating mode with the rotation directions supplied

by the master CORDIC block.

Figure 4.7 depicts the proposed CORDIC microrotation circuit. The cir¬

cuit computes one microrotation per clock. The microrotations of a CORDIC

block can either be computed sequentially on a single microrotation circuit,

or they can be computed using a chain of as many microrotation circuits as

there are microrotations, possibly with pipeline registers in between. In the

former case, the shifter can be realized with a banel shifter and the microro¬

tation direction storage with an anay of latches or a small RAM block. In the

latter case, the shifters can be realized with wiring, because the shift count is

constant.

Domain of Convergence The domain of convergence is limited, though.

Angular CORDIC converges if the angle of the input vector in the cartesian

plane lies within « ±1.74 radians. There are, however, two possible choices

of 6t, one that results in the first element of the pivoting column to be pos¬

itive and another one that results in a negative element. Instead of using a

prerotation stage which rotates the input into the domain of convergence, it is

possible to choose the 6t that lies in the domain of convergence. That is the

purpose of the XOR gate in Figure 4.7.

For hyperbolic rotations, there are additional problems. If the magnitude
ofboth input operands are approximately the same \a\ « |6|, then 6t —> ± oo,
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The following truth table indicates whether the Adder/Subtractors add or sub¬

tract the shifter output to or from the input, depending on the rotation direction

signal DIR.

DIR

Upper ADD/SUB

Lower ADD/SUB

angular CORDIC

0 1

hyperbolic CORDIC

0 1
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and sinh 9t and cosh 9t get very large. The generator columns whose sig¬
nature matrix entry has the same sign can be grouped together. Angular
CORDIC rotations may be used within both groups to zero all but one el¬

ement of the first row in each group. Only one hyperbolic CORDIC rotator

is then required to zero the single nonzero element in the first row of the

column group having a -1 signature matrix entry. If both first row inputs to

this single CORDIC rotator have approximately the same magnitude, then

the corresponding diagonal element of the cholesky factor L is close to zero,

resulting in at least one very large feedforward filter coefficient. For well be¬

haved problems, this does not happen.

Furthermore, in hyperbolic mode, the magnitude of the input operands de¬

termine which one gets zeroed, namely the operand with the smaller magni¬
tude

.
This can be circumvented by a stage in front of the hyperbolic CORDIC

circuitry that swaps the columns if the magnitude of the first element of the

column to be zeroed is bigger than the magnitude of the first element of the

pivoting column.

4.3.4. Processing Element Examples

Figures 4.8 through 4.11 illustrate the processing element structure for ND =

1 Equalizers for white and coloured noise using real and complex numbers.
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Figure 4.8: Processing element for ND = 1, N0 = 2, real numbers, white

noise

The constant coefficient multipliers cancel the gain of the CORDIC blocks.

The registers and the multiplexer perform the premultiplication of the pivot¬

ing column with the displacement operators, gi, 92 and #3 denote the genera¬

tor columns.
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Figure 4.9: Processing element for ND = 1, N0 = 2, real numbers, coloured

noise

The constant coefficient multipliers cancel the gain of the CORDIC blocks.

The registers and the multiplexer perform the premultiplication of the piv¬

oting column with the displacement operators. gi...gs denote the generator

columns.

The constant multipliers cancel the gain introduced by the CORDIC

blocks. The constants given are approximate; they depend on the number of

microrotations performed by the CORDIC blocks. For the hyperbolic proces¬

sors, the first stage (shift = 1) is assumed to be executed twice to improve pre¬

cision when the magnitude of both input signals is approximately the same.

The multiplexers) and register(s) implement the multiplication ofthe piv¬

oting column with the displacement operator.

gt denotes the «-th column of the generator, g\ is the pivoting column. gfe
and g{m denote the real and imaginary part of the *-th column, respectively.

Figure 4.12 shows a detailed diagram of a processing element for the

ND = 1 Equalizer for complex numbers and white noise using pipelined
CORDIC blocks.

4.3.5. Reducing Hardware Complexity further

The hardware complexity can be reduced further at the expense of the num¬

ber of clock cycles required for the computation. Instead of using a process¬

ing element that operates on all columns simultaneously, it is possible to use

a processing element that operates only on a lower number of columns per

pass, thus requiring multiple passes per iteration. Figure 4.13 illustrates this

idea. Multiplying the pivoting column with the displacement operator must
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Figure 4.10: Processing element for Np = 1, A^o = 1, complex numbers,

white noise

The constant coefficient multipliers cancel the gain of the CORDIC blocks.

The registers and the multiplexer perform the premultiplication of the pivot¬

ing column with the displacement operators, gfe, g[m, g2e and #2m denote

the real and imaginary parts of the generator columns.

Circular

CORDIC

Block

gfe-

&2m-

Circular

CORDIC

Block

Figure 4.11: Processing element for A^ = 1, A^o = 1, complex numbers.

coloured noise

The constant coefficient multipliers cancel the gain of the CORDIC blocks

The registers and the multiplexer perform the premultiplication of the pivot

ing column with the displacement operators, t

the real and imaginary parts of the generator columns

g[m gt, gl.m denote
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Figure 4.12: Detailed diagram of the processing element for Np

N0 = 1, complex numbers, white noise

= 1,
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be performed only during the last pass; the two registers may therefore be

bypassed.
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Figure 4.13: Simplified processing element for Np = 1, A^0 = 2, real

numbers, white noise, two passes per iteration

4.3.6. Speeding up the Computation

Each pass through a CORDIC cell zeros one of the two input elements. A

CORDIC technique exists that can zero multiple elements per pass at the

expense of hardware complexity. It is called Householder CORDIC [62].
Its usefulness depends heavily on the target technology being able to im¬

plement multi-input adder/subtractors that are faster than a tree of two-input
adder/subtractors.

4.4. Architecture for HIPERLAN

To illustrate the feasibility of the proposed architecture, several Equalizer

configurations for the HIPERLAN I [63] system are discussed.

According to the HIPERLAN I specification [63], a terminal must be able

to start transmitting a response packet 512 bit periods or 25.6/xs after the ar¬

rival of a packet at its antenna. Clearly, only a fraction of this time can be allo¬

cated to the computation of the DFE coefficients. In [10] it was hypothesized
that a DFE might be too complex to implement. The filtering operation itself

is no problem. The feedforward filter can be implemented for example by four

multipliers operating at 60 MHz, three times the HIPERLAN I bit rate. The

feedback filter consists of only Nb = Nf - I = 11 Adder/Subtractors, since

dt G {±1}. The difficulty lies in the computation of the DFE coefficients.
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In this section, we assume a single output symbol spaced DFE with twelve

feedforward taps, i.e. Np = 1, A^0 = 1 and Nf = 12. This equalizer per¬

forms well for typical indoor channels (50ns delay spread), and experiences

only minor degradation forbad channels (150ns delay spread).

Number of CORDIC microrotations vs Residual ISI
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Number of CORDIC microrotations

Figure 4.14: Computer simulation of residual ISI vs. number of microrota¬

tions

Furthermore, fully pipelined CORDIC elements are assumed, each

CORDIC block executes eight microrotations and a data path width of twelve

bits is assumed. The computer simulations of Figure 4.14 show that no fur¬

ther reduction in residual ISI energy at the decision point can be achieved

by increasing the number of microrotations. Figure 4.15 contains a computer

simulation plot of the residual ISI energy versus wordlength, assuming a per¬

fect receiver automatic gain control (AGC). The infinite wordlength perfor¬
mance is reached at a datapath width of 8 Bits, and choosing 12 Bits results

in approximately 20dB margin for imperfect AGC.

Since the processing elements have two CORDIC blocks and the dele¬

tion of a row in series, the total processing element latency is 17 clocks. The

generator rows pass through NfN0 + 1 = 13 processing elements. Table

4.2 summarizes the processing elements. In determining the implementation

complexity the overall control circuitry, the microrotation direction register
and XOR gate, the zeroing gates, and the constant coefficient multipliers
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Wordlength vs Residual ISI
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Figure 4.15: Computer simulation of residual ISI vs. wordlength

have been neglected, because their size is small compared to the CORDIC

datapath. The constant coefficient multipliers from several or all PE's can be

combined and can be implemented with few shift/adds. Shifts can be inserted

to prevent excessive growth of the signal magnitude.

# of CORDIC blocks 4

# of Microrotations 8

Total PE Latency 17 clocks

Number of Adder/Subtractors 64

Number of wordlength sized Registers 66

Table 4.2: Summary of processing elements

Let us now consider two specific points in the design space. The minimum

latency solution (Figure 4.16) uses a chain oftwo PE's and 6^ passes through
the chain. No FIFO is necessary.

The implementation complexity can be halved by using only one PE (Fig¬
ure 4.17). Now a FIFO is necessary. It is assumed that the FIFO latency can

be varied from 1 to 9.

The implementation numbers (area and power/energy consumption) in¬

clude the CORDIC datapath only. The controller, the FIFO, and the mul-
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Figure 4.16: Minimum Latency Architecture for DFE coefficient computa¬

tion

Figure 4.17: Single PE Architecture for DFE coefficient computation
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tipliers are neglected. The constant coefficient multipliers that cancel the

gain of the CORDIC blocks have been rearranged so that only one nontriv-

ial constant coefficient multiplier remains in the output circuitry. The two

variable xvariable multipliers in the output circuitry do not need to be ex¬

act with respect to the common argument. It is sufficient to use an exponent

detector and two shifters instead.

For reference, we also consider the architecture proposed by Al-Dhahir

and Sayed [61]. The computationally most intensive task is the computation
of the QR factorization of a band diagonal channel matrix.

The implementation numbers (area and power/energy consumption) in¬

clude the CORDIC datapath only. The constant coefficient multipliers that

cancel the CORDIC gain are not counted, although at least two would be

necessary in the r loop. The controller, the maximum search and the back-

substitution needed to compute the feedforward coefficients are neglected as

well. Furthermore, we assume the same number of microrotations and the

same data path width, which is justified by the computer simulation plots in

[61].

Unfortunately, due to the feedback loop around the register r, the QR fac¬

torization circuit cannot be fully pipelined. Therefore, the CORDIC blocks

are implemented with only one microrotation slice that computes all micro-

rotations sequentially.
Each CORDIC microrotation counts as one clock. No additional clock

cycles are added for communicating the rotation directions in the horizontal

direction.

Gate Description Area Power

/im2 fj,W/MHz
~Ëm 2-input XOR (lx) 146 0.883

FA1 Full-Adder (lx) 364 1.632

MU8 8:1 Multiplexer (lx) 619 1.318

DFS8 ScanD-TypeFlip-Flop(lx) 382 1.933

Table 4.3: AMS 0.35/xm standard cell library data

Table 4.3 lists area and power consumption data of some cells from the

AMS 0.35/xm standard cell library [64]. 1 x drive strength gates are used be¬

cause the datapath cell have a fan out of only one or two and the distances are

small, leading to small capacitive loading. The power consumption numbers

include a cell load capacity of 30fF. A ripple carry adder/subtractor may be

built from a 2-input XOR gate and a full adder cell per bit. The shifter uses
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Component Area Power Prop. Delay

fim? fiW/MHz ns

Adder/Subtractor 6Î20 30.180 6T~

Shifter 7428 15.816 1

Register 4584 23.196 1.2

Table 4.4: Area and power consumption of datapath components using the

AMS 0.35/xm standard cell process

a 8:1 multiplexer per bit. Table 4.4 lists the area and power consumption of

wordlength sized components needed in the DFE computation datapath.

Minimum Al-Dhahir

Latency Single PE etal [61] Unit

Figure 4 16 4 17 4 1

PE 2 1 —

CORDIC blocks 8 4 1740

Latency 221 270 568 clocks

Adder/Subtractors 128 64 3480 Wordlength sized

Shifter — — 3480 Wordlength sized

Registers 132 66 3480 Wordlength sized

Maximum FIFO depth — 9 —

Silicon cell area 139 0 69 63 10 mm2

Power consumption 69 35 240 8 mW/MHz

Energy consumption 1 5 09 136 8 /LtJ/computation

Table 4.5: Summary of three HIPERLAN architectures

The silicon area and power/energy consumption numbers are approximate
and derived from the AMS 0.35/xm 3.3V standard cell process data book

[64]. An activity factor of 100% and a load of 30fF is assumed.

The results from table 4.5 indicate that the DFE is indeed feasible for

HIPERLAN. The proposed architectures are more than twice as fast and re¬

quire more than ten times less silicon area and energy than [61]. They are

therefore well suited to cost and power constrained terminals.

Assuming a clock frequency of 100 MHz, which is possible with the

0.35/xm standard cell process, the computation of the DFE FFF coefficients

requires only 2.7/xs forthe single PE architecture, which clearly demonstrates

the feasibility of the proposed architecture.
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FPGA DSP Core

The dedicated hardware architectures presented in chapter 4 can compute the

DFE coefficients very quickly. They are however inflexible. If more time is

available for the DFE coefficient computation, a general purpose DSP core

offers a more flexible solution. Besides computing the DFE coefficients, it

can be used to perform other modem functions as well.

This chapter discusses the motivation and the methodology of designing
a high performance DSP core to be implemented on an FPGA.

Clock cycle counts are given for computing the feedforward coefficients.

These results are representative for the class of single-MAC DSPs. The FPGA

DSP core is also compared to dedicated hardware for computing DFE feed¬

forward filter coefficients.

5.1. Motivation

For Powerline communications, the moderate channel dispersiveness leads to

a moderate number of feedforward taps Nf and thus to moderate complexity.

Furthermore, since no standard protocols exist so far, one may design a chan¬

nel access protocol that can tolerate some decoding latency. In this case, a

standard DSP core is sufficient for implementing the computation of the DFE
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coefficients.

A DSP core puts most complexity into the software. But software can

easily be changed late in the design cycle or even in the final product. Fur¬

thermore, it allows some flexibility to accomodate unforseen problems.
A DSP core can also perform other tasks than just computing the DFE

coefficients, such as computing the CIR estimates, a frequency error estimate,

AGC control signals, etc.

Commercial DSP cores and high performance RISC cores [65, 66] have

been synthesized for an FPGA target. However, since the target architecture

was an afterthought, performance has been disappointing.

High speed FPGA synthesizable DSP cores allow real-time testing of the

modem on an FPGA prototype. Subsequent integration of the complete mo¬

dem into an ASIC becomes much less risky, making first time right realistic.

Furthermore, a DSP core with the VHDL source code available allows a

much higher degree of customizability than commercial cores.

The presented DSP core was developed for the Virtex family of FPGAs

from the market leader Xilinx. Virtex is the current high performance FPGA

family of Xilinx. The widely used synthesis tool from Synopsys Inc. has been

used.

5.2. Designing a DSP Core for FPGA

Figure 5.1 shows a simplified diagram of the Xilinx Virtex configurable logic
block (CLB) slice. The FPGA consists of a two dimensional grid of CLB

slices, connected by a programmable interconnect structure. Other FPGA

families have a different structure.

The programmable lookup tables (LUT) and the flip flops (FF) can be

used to implement arbitrary logic functions. Additional special gates may be

used to speed up common functions. MUXCY and XORCY speed up adder and

subtracters by providing a special purpose fast carry chain. MULT_A.ND gates

speed up multipliers, and F 5MUX and F 6MUX gates can be used to implement
4 input and 8 input multiplexers. To achieve a high clock frequency, these

special gates must be used whenever possible. Contemporary synthesis tools

however often cannot automatically synthesize these gates, so they must be

instantiated manually.
The most important part of a DSP core is the execution unit. A fast clock

frequency would be useless if even elementary operations took multiple clock

cycles. On the other hand, additional pipeline stages in the instruction decoder

only result in additional delay slots for control flow instructions, and since

the DSP core supports zero overhead looping hardware, do not affect loop
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MULT AND

Figure 5.1: Simplified Xilinx Virtex CLB slice

performance. The zero overhead looping hardware automatically maintains

the loop count and the loop begin and end addresses to obviate the need for

explicit conditional jumps within counted loops. Therefore, the design should

begin at the execution stage.

Figure 5.2 shows the block diagram of the DSP core. A modified harvard

architecture is used. In order to sustain a single cycle throughput multiply
accumulate (MAC, inner product), two busses to the 16 bit wide data memory

are used. The program memory is 32 bit wide and a single port is used.

5.2.1. Execution Unit

Figure 5.3 shows the architecture of the execution unit.

Multiplier The central component of each DSP core is the parallel multi¬

plier. Conventional DSP cores feature a single cycle MAC. Xilinx specifies
the latency of a 16 x 16 —> 32 combinatorial multiplier on an XCV300-4

and XCV300-6 with 17ns and 7ns, respectively [67]. Realizing the multiplier

together with input multiplexers and the final accumulator in a single cycle
would result in an inacceptably high cycle time. Furthermore, most signal
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Figure 5 2 DSP core block diagram
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processing tasks can hide some multiplier latency. Thus, the multiplier has

been allocated three pipeline stages, and together with the final accumulate

cycle the architecture features a four cycle latency MAC with one MAC per

cycle throughput.
One would expect that designing a good multiplier for an FPGA is an

easy routine task, especially since FPGA vendors advertise their products as

being a suitable platform for digital signal processing. It turned out not to be

the case.

First, the Synopsys FPGA Design Compiler (DC) was used to generate a

combinatorial multiplier. Synopsys however did neither take advantage of the

multiplier support gates ofthe FPGA, nor ofthe fast carry chain. The resulting

multipliers were twice as big and twice as slow as necessary. Furthermore,

automatic register balancing (moving registers around in combinatorial logic)
did not work as expected.

Second, the Xilinx Coregen tool was used to generate a multiplier netlist.

Coregen knows all FPGA specialities, but offers only an all or nothing ap¬

proach to pipelining. The only options are a fully combinatorial multiplier ar¬

ray or pipeline registers after every stage in the adder tree. For al6xl6^32

multiplier this would take five clock cycles. Also, Coregen uses relative lo¬

cation constraints for the logic elements. Experiments have shown that the

overall execution unit performance is better without location constraints.

The final solution was to write a Perl script that generated a VHDL

netlist of a Petzaris 17x17^ 32 multiplier [38]. The netlist instantiated

MULT.AND gates and carry chain multiplexers and had registers inserted at

suitable places in the adder tree. The 17 bit input width supports a 16 bit data

word width and signed/unsigned operation.
Commercial 16bit fixed point DSP cores allow their multiplier to be op¬

erated in integer mode or fixed point mode with 15 fractional bits. For the

computation of the DFE coefficients, 11 fractional bits are better suited. This

can easily be obtained by adjusting the wiring of the multiplier output multi¬

plexer. This is an advantage of a VHDL DSP core.

Logic Unit The logic unit performs AND, OR and XOR operations and con¬

tains a seed table for reciprocal square root computations.

Address Generator Unit Since two operands are needed to sustain a single

cycle throughput MAC operation, two addresses are needed as well. There¬

fore two address generators are provided. Each address generator comprises
of two adder/subtractors to allow pre- and postmodify accesses.
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DSPs usually provide special addressing modes for FIR filters and FFT

computation, but since neither FIR filters nor FFTs are required for DFE co¬

efficient computation, these addressing modes are not supported.

Many DSPs lack the addressing modes needed for efficient compiler sup¬

port, especially the stack pointer offset addressing mode required to move

data in and out of stack slots.

Registers Processors employ multiported static RAMs for the register file.

Since the FPGA architecture only features RAMs with two ports, the registers
have to be implemented with Flip-Flops.

A key aspect of high performance microprocessors is that data can be

moved freely between registers and between registers and memory. This re¬

quires heavy multiplexing. On-chip tristate busses do exist on FPGAs, but are

slow and should therefore not be used.

The FPGA architecture provides some support for efficient multiplexers.
Two input, four input (using one F 5MUX gate) and eight input (using two

F 5MUX gates and one F 6MUX gate) multiplexers are supported. Since Synop¬

sys DC was unable to automatically instantiate F5MUX and F6MUX elements,

multiplexers were constructed manually. An implementation of the F 5MUX

and F 6MUX using standard logic is available for functional simulation and

ASIC synthesis.
The limited multiplexing capabilities limit the number of registers possi¬

ble. There are five address registers AR0-AR4, where ARO is used as stack

pointer by convention. LB, LE and LC are used by the zero overhead looping

support. These registers are all 12 bits wide.

Y0-Y3 are the data input registers, and Z0-Z1 are the MAC result regis¬
ters. Four input and two result registers have been provided to support com¬

plex inner products or double precision arithmetic. Z2 is the result register
for logic operations. All data registers are 16 bits wide. Z0-Z2 are the only

registers that cannot be loaded from memory or general registers, but only
from a data input register. All other registers can be loaded from memory,

immediate constants or other registers.

5.2.2. Instruction Decoder

Four data source registers for the multiplier are not enough to keep the four

cycle latency multiplier busy with an interlocked pipeline. Experiments with

out of order execution and register renaming according to the Tomasulo's

approach [68, chapter 4.2] stressed the FPGA multiplexing and routing ca¬

pability too much and lead to an explosion of the cycle time. Thus, a non
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Figure 5.3: DSP execution unit architecture
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interlocked in order pipeline is used. Therefore, it is the responsibility of the

programmer to use values only when they are ready. Since all instructions

have a fixed latency, these semantics are called non uniform access latency

(NUAL) with equal semantics (EQ) [69].
It is tempting to use a Very Long Instruction Word (VLIW) [69, 70, 71]

instruction encoding to get as much as possible out of the execution stage and

to avoid instruction set design. VLIW instruction sets however lead to sparse

instruction encoding with many NOPs und thus wasted program memory.

Since FPGAs contain only relatively little on-chip RAM blocks (80kBits for

the XCV400) VLIW instruction sets are unsuitable. Some ideas from VLIW

research such as positional encoding have been utilized nevertheless.

The instruction word is split into two halves. The lower half encodes a

data ALU operation, while the upper half specifies a store, a load, two loads

with restricted addressing modes and target registers, or a register to register

copy. Both halves may be used to encode an immediate value for the other

half.
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Figure 5.4: DSP core pipeline

Figure 5.4 shows the pipeline of the DSP core. One full pipeline stage had

to be used just to broadcast the program address from the program counter

register to the distributed program memory. Distributing the address takes

more than 8ns.

A design goal of the DSP core was that as many instructions as possible
execute in a single cycle. The exceptions are as follows:

• Load instructions have two cycle latency. This is due to the pipelined
architecture of the Xilinx Block RAMs.
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• MAC operations have four cycle latency. Note that the add operand is

only read at the start of the last cycle, so MAC operations can be issued

back-to-back (consecutively).

• Control flow instructions such as jumps and block repeats have two

delay slots. The delay slots are executed unconditionally.

5.2.3. Development Tools

An assembler and a linker have been written. A cycle true simulator allows

the DSP core to be embedded into the simulation environment ofthe complete

modem, and allows the verification of the output of a VHDL simulator. Tools

to convert an object file into the format required by VHDL simulation and

implementation tools also exist.

The DSP core has been designed make efficient compiled code possi¬
ble. A GNU Compiler Collection (GCC) backend [72] has been written. The

GNU compilers have been chosen because their source code is available and

they are the most complete and widely supported compiler. Since the GNU

compilers already support a wide range of different target architectures, in¬

cluding DSPs, no modifications to the compiler proper had to be made. It was

sufficient to add a backend for the DSP core.

The compiler supports reordering code to take advantage of delay slots

and latency slots. If it does not find independent operations to fill latency or

delay slots, it fills them with NOPs to ensure correctness.

An iterative development methodology has proven to be valuable. First,

the core architecture was sketched and verified that it could roughly meet the

cycle time goal. Then, the compiler backend was developed to find the prob¬
lem spots of the architecture. Then the architecture was modified to avoid

these problem spots and refined. Then the modifications to the compiler back-

end have been made, and so forth. This ensures that the resulting architecture

balances the needs of the hardware and the compiler.

5.2.4. Reciprocal Square Root

The Cholesky LLH factorization requires the computation of reciprocal

square roots (1/a/z). Hardware support to accelerate the computation of the

reciprocal square root is therefore advantageous. Newton-Raphson iteration

[38, Chapter 21.5] has been chosen; accurate results can be obtained after

only a few iterations, and very little additional hardware, namely the seed ta¬

ble, is required. The reciprocal square root seed table lookup instruction is an

example for an application specific instruction, [73].
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Inverse Square Root Calculation
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Figure 5.7: Reciprocal square root, below 0.2

It is advantageous to directly compute the reciprocal square root instead

of splitting it into a square root operation and a division. A fast-converging

Newton-Raphson recurrence does exist for the reciprocal square root, and

both the square root and the reciprocal can easily be computed from the re¬

ciprocal square root; the converse is not true.

The root of the function f(x) = 1/x2 — z shall be found, where z is the

value of which the reciprocal square root shall be computed. A root of f(x)
Jt+i)

=
„(»)

_

/(*w)
is at x = 1

f'(x) = -2/x;

z. The recurrence equation is x1-

3
one obtains

f'(xM)

r{i+l) M
1
M-

and with

(5.1)

Unlike for floating point number representation, the order of the multiplica¬
tions in (5.1) is important for fixed point computations to avoid overflows at

internal nodes. The domain and range of the reciprocal square root computa¬

tion are then limited only by the representabuity of the values with the chosen

fixed point format.

Seed lookup table The seed table provides an x^ from z that is close to

1/a/z to ensure fast convergence. The idea is to first transform the fixed point
number into a floating point number, feed the mantissa into the seed table,
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and then scale the seed table output back into a fixed point number. This can

be achieved by replicating the scaled seed table with different input shifts,

and then selecting which table to use according to the exponent. This imple¬
mentation fits the Xilinx Virtex architecture very well, see Figure 5.5. The

multiplexer support circuitry is used for selecting the LUTs, thus achieving
fast lookup speed.

Figures 5.6 through 5.7 illustrate the accuracy of the complete reciprocal

square root computation. Apart from a spike below 0.02, the curve tightly
matches the exact curve after only two iterations. The cholesky factorization

uses the reciprocal square root operation for the computation of the diagonal
elements of L (section 3.2.3). According to section 3.2.6, lht > y/No and

therefore the argument of the reciprocal square root > N0. So for an SNR

of 17dB or less, no distortions result due to the inaccuracy of the reciprocal

square root below 0.02. For a larger SNR, distortions may occur, depending
on the channel coefficients.

5.3. Results

In this section, the FPGA DSP core is compared to competing high perfor-
mace processor cores for FPGAs and to dedicated DFE coefficient computa¬
tion hardware.

5.3.1. Comparison to other FPGA Processors

Table 5.1 lists the main implementation results. The performance goal was

reached; the DSP core exceeds 60 MIPS on the slowest Xilinx Virtex device.

The large area of 933 slices (approximately 100k gates) is due to the lack of

memory blocks with a large number of ports that could be used to implement
the register file. Therefore, the register file had to be implemented with flip

flops and multiplexers, which is the single largest contributor to core size.

The implementation time includes the creation of the synthesizable VHDL

code, the toolchain including C-Compiler, and the firmware for computing
the 1-dimensional DFE coefficients.

Table 5.2 compares the design with commercially available FPGA micro¬

processor cores. There is a growing interest to provide microprocessor cores

for FPGAs by the FPGA vendors, like Altera, and microprocessor core ven¬

dors, like Lexra, for prototyping. The table only lists cores potentially suitable

for signal processing; simple 8bit cores have been omitted.

Table 5.2 indicates that this FPGA DSP core has a significantly higher op¬

erating frequency than the competing microprocessors. Nios has a selectable
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Operating Frequency XCV400-4

Operating Frequency XCV400-6

Number of CLB Slices

Number of Block RAM's

Implementation time

62 MHz

80 MHz

910(18%ofXCV400)

ll(55%ofXCV400)
«2 Manmonth

Table 5.1: FPGA DSP core implementation results

This Altera Lexra ARC core

Property work Nios 16b LX4080P w/ DSP ext

Datapath width 16 16 32 32

FPGA Xilinx Altera Altera Xilinx

XCV400-6 EP20K100E-1 10K200E XCV400E-8

Utilization 18% 26% 50% 100%

Clock Frequency 80 MHz 50 MHz 33 MHz 23 MHz

Instruction Set proprietary proprietary MIPS-I ARC

Source [74] [65] [75]

Table 5.2: FPGA RISC/DSP cores

datapath width of 16 or 32bits. The numbers in the table are for the 16bit

version. The detailed architecture and instruction set of Nios has unfortu¬

nately not been publicly disclosed. Therefore, the suitability for DSP tasks

is unknown. The low area (approximately 25k gates) however suggests that

the register file is indeed implemented as a RAM block. The limited number

of ports of FPGA RAM blocks means however the Nios will likely require

multiple clock cycles for many instructions.

The ARC core is a 32 bit RISC processor with DSP extensions, mainly a

24 x 24 bit multiplier. This processor is especially interesting, as the imple¬
mentation numbers given in [75] are for a very similar device to the one used

for the FPGA DSP. The implementation numbers may therefore be compared

directly. These data underscore that a core not designed with FPGA idiosyn¬
crasies in mind performs poorly on FPGAs.

5.3.2. Comparison of Different DFE Coefficient Computation Algo¬
rithms

In this section, the implementation results of three different algorithms for

computing the Decision Feedback Equalizer Feedforward coefficients on the

FPGA DSP core are discussed. The equalizer parameters are Np = 1, N0 =

2, real numbers and white noise. These parameters are chosen because they
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represent a common case in practice, namely the symbol spaced equalizer for

BPSK and MSK.

Program Words

Task Choi DSFact DSSol

Matrix G setup — 41 42

Displacement recursions — 231 196

Generator (GBH) multiplication — — 68

Matrix A Computation 110 — —

Cholesky Factorization 113 — —

Back Substitution 92 93 —

Total 315 365 306

Table 5.3: Code size

Matrix Cholesky Back

Size Comp Fact Subst Total

Nf == 4 387 1473 633 2493

Nf-= 6 739 3013 956 4708

Nf-= 8 1203 5177 1333 7713

Nf-= 10 1779 8029 1740 11548

Table 5.4: Execution time (number of cycles) of cholesky factorization

Matrix Displacement Back

Size Setup Recursions Subst Total

Nf = 4 no

Nf = 6 156

Nf = 8 202

Nf = 10 248

Table 5.5: Execution time (number of cycles) of displacement structure fac¬

torization

2456 655 3221

4020 1023 5199

5808 1423 7433

7817 1858 9923

"Cholesky" and "Choi" denotes the factorization of the DFE matrix us¬

ing the Cholesky algorithm (section 3.2.3) followed by back substitution.
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Size

Matrix Displacement Generator

Setup Recursions Multiplication Total

Nf = 4 139 2739 55 2933

Nf = 6 193 4823 75 5091

Nf = 8 247 7387 95 7729

Nf = 10 301 10431 115 10847

Table 5.6: Execution time (nuinber of cycles) of displacement structu

lution

Execution time (clocks) on FPGA DSP core

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000 >

2000

Execution clocks

/-
—i— Cholesky
x— DSFact

—*— DSSol

- y\^^

Figure 5.8: Execution time (number of cycles) for different algorithms on

FPGA DSP core
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"Displacement Structure Factorization" and "DSFact" denotes computing the

cholesky factors using the Displacement Structure Theory based algorithm
of section 3.2.4, followed by back substitution. "Displacement Structure So¬

lution" and "DSSol" denotes the back substitution free algorithm of section

3.2.5.

All algorithms have been implemented in C with handoptimized inner¬

most loops in assembler. DSFact and DSSol use two passes per iteration over

the generators, each operating on two columns, instead of one pass with a

3x30 matrix. The 3x3 matrix would not fit into the register file, while

the 2 x 2 matrix does. All important innermost loops operate at the maximum

throughput of one multiplication per clock cycle.
As table 5.3 shows, there are no significant differences in code size of the

three algorithms.

Cholesky DSFact DSSol

Nf Muls Clocks % Muls Clocks % Muls Clocks %

A 248 2493 9 424 3221 13 952 2933 32

6 652 4708 14 876 5199 17 2004 5091 39

8 1328 7713 17 1488 7433 20 3440 7729 45

10 2340 11548 20 2260 9923 23 5260 10847 48

Table 5.7: Number of datapath multiplications versus number of clocks

Tables 5.4 to 5.6 and Figure 5.8 list the number of clock cycles required
for the different subtasks of the three algorithms and the total clock count for

different Nf. Cholesky wins over the 0(N2) algorithms DSFact and DSSol

for Nf < 8 (DFE matrices smaller than 16 x 16 elements) even though it is

0(N3). Furthermore, data memory requirements of Cholesky grow with Nf
squared, while DSFact and DSSol data memory size grows only linearly with

Nf.
DSSol wins over DSFact for Nf < 7 even though it requires the com¬

putation of more than twice the number of multiplications and additions than

DSFact. The reason for this is the higher innermost loop iteration counts of

DSSol over DSFact and Cholesky. While the iteration count lies in the range

0
... 2Nf in Cholesky and DSFact, it lies in the range 2Nf + 1... 4Nf in

DSSol. DSSol can therefore amortize loop setup and address computation
costs over a larger number of loop iterations.

Table 5.7 compares the number of datapath multiplications with the total

number of clocks required to execute the different algorithms. Multiplication
has been chosen as the reference because the number of additions is almost
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the same, in fact most additions can be fused together with a multiplication
into a multiply accumulate (MAC) instruction. Again, multiplier utilization of

DSSol is much higher compared to DSFact and Cholesky.
The results of this section are representative for the class of single mul¬

tiplier DSPs, because the FPGA DSP has an architecture similar to many

commercial DSPs, such as the Texas Instruments TMS320C3x [76] and the

Analog Devices ADSP-21xx [77] families. The main difference to commer¬

cial DSPs is the higher multiplier latency required to achieve a low cycle time.

Most of the time, the multiplier latency can be hidden. The most notable ex¬

ception is the Newton-Raphson iteration that computes the reciprocal square

root. Even on the FPGA DSP, however, where 40 clock cycles are required
to compute the 10 multiplications needed for 2 iterations, reciprocal square

roots account for less than 10% of the total execution time.

5.3.3. Comparison to Dedicated DFE Coefficient Computation FPGA

Hardware

In this section, the FPGA DSP core implementing the DFE coefficient com¬

putation (Np = 1, N0 = 2, real numbers, white noise) is compared to a

dedicated hardware architecture. The hardware architecture uses a single pro¬

cessing element containing two CORDIC blocks as in Figure 5.9. The data¬

path width is 16bits, and the number of microrotations per CORDIC block is

8. A FIFO may be necessary; it is assumed to have at least one cycle latency.
Two additional cycles of latency are introduced by the constant multipliers
that remove the gain of the CORDIC blocks; they are implemented using
four shift/add terms each. The first generator row leaving the processing ele¬

ment is furthermore discarded. The total number of clock cycles per iteration

is therefore 2 * (8 + 2) + 1 + 1 = 22 clocks.

Dedicated FPGA

Property FPGA DSP Hardware

Clock Rate XCV400-4 62.7 MHz 73.7 MHz

Number of CLB Slices 910 498

% of CLB slices of XCV400 18 10

Approx. Gate Equivalents 100k 24k

Table 5.8: FPGA DSP core versus dedicated FPGA hardware

Table 5.8 lists the features of the two architectures. The simple structure

of the dedicated hardware architecture results in a higher clock frequency
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FIFO

Figure 5.9: Dedicated DFE computation hardware

compared to the FPGA DSP core. The gate count of the FPGA DSP does not

include the program and data RAMs, only the core logic. The gate count for

the dedicated hardware includes everything except the controller, whose area

contribution is negligible.

FPGA DSP dedicated hardware

Nf Clocks Time Clocks Time

4 2493 39.8/xs 226 3.1yits
6 4708 75.1/xs 324 4.4/xs
8 7433 118.5/xs 476 6.5/xs

10 9923 158.3/xs 692 9.4/xs

Table 5.9: FPGA DSP clock cycles and time versus dedicated hardware ar¬

chitecture

Table 5.9 compares the number of clocks and the execution time of both

architectures. The number of clock cycles required for the dedicated hardware

architecture can be computed with

ANf+ l

Ncpk= Y m^,LATpE)+LATLAsTPE+2Nf, (5.2)

i=2Nf + l

Circular

CORDIC

Block

f\

Tr
<hv:

O

o

O

o
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where LATPE = 22 denotes the processing element latency, and

LATpastpe = 20 denotes the latency of the last processing element, that

does not need to remove the first line (Figure 5.9) and whose output does not

go through the FIFO.

Figure 5.10: FPGA die plot of DSP core

The tiny rectangles depict the 40x60 Configurable Logic Block (CLB) array

oftheXCV400 device.

Figures 5.10 and 5.11 show FPGA die plots of both architectures. The

plots have been made with Xilinx' fpga.editor version 3.1i. For the

FPGA DSP, the XCV400 device size is inconvenient. The XCV400 has 10

block RAMs on the eastern and western edge each. Since the DSP uses 11

block RAMs, RAMs on both edges are needed. If a larger device is selected,

the RAMs of only one edge can be used, leading to smaller distances and a

faster design. If a smaller device is chosen, the distance between the edges
becomes smaller, the design therefore faster.

To conclude, the dedicated hardware solution is more than 10 times faster

and requires about \ the number of CLB's the FPGA DSP requires in the

Nf range suitable for most communication systems. The main disadvantage
of the dedicated hardware solution is its inflexibility - the DSP may perform
other tasks such as receiver parameter estimation when not busy with the DFE

coefficient computation.
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Figure 5.11: FPGA die plot of dedicated hardware

The tiny rectangles depict the 40x60 Configurable Logic Block (CLB) array

oftheXCV400 device.
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Outlook

In the past couple of years, the main focus of transmission system designers
has been to avoid frequency selective fading. The trend toward higher speed
transmission systems will force designers to reconsider selective fading.

6.1. OFDM Systems over Higly Dispersive Channels

Instead of occupying a large bandwidth with a single high rate carrier, orthog¬
onal frequency division multiplex (OFDM) has been used to divide the avail¬

able bandwidth into a large number of small bandwidth subchannels. Within

a single subchannel, fading could be treated as nonselective fading and there¬

fore making equalization trivial. Systems such as Digital Audio Broadcast

(DAB) and Digital Video Broadcast (DVB) use more than 1500 subchannels

which are about 1kHz wide. A large number of subchannels is unfortunately

problematic, as it leads to a high peak to average power ratio and increased

phase noise susceptibility. Some systems therefore have to use a smaller num¬

ber of subchannels, resulting in shorter OFDM symbols.
In order to keep successive OFDM symbols orthogonal, each OFDM sym¬

bol is cyclically extended. This extension is termed guard interval and its du¬

ration must be at least as long as the channel length for the OFDM symbols
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to be orthogonal. For OFDM systems over highly dispersive channels, this

results in a large fraction of the total time being "wasted" for the transmission

of the guard intervals, lowering the user bitrate. Some OFDM systems there¬

fore chose a guard interval shorter than the channel duration, leading to in¬

tersymbol (ISI) as well as interchannel (ICI) interference. High performance
receivers for such OFDM systems will have to cope with the ISI and the ICI.

One possibility is the use of Decision Feedback Equalizers in the frequency
domain (i.e. after the FFT). Treating all subchannels as a single multiple in¬

put multiple output (MTMO) DFE will likely be too complex. Since the ICI

is limited only to close subchannels, multiple DFEs, each dealing only with

a small number of adjacent subchannels may be used. Since multiple DFE

coefficient computations need to be performed, the architecture of Figure 4.4

should be well suited, because a new computation may be started after only a

few clock cycles, while the previous one is still being processed.

6.2. Multiuser Detection for Wideband CDMA

In Code Division Multiple Access (CDMA) systems, all users transmit in the

same frequency band, but the transmission of every user is scrambled with

a different signature sequence so that the receiver can separate the different

transmissions. The transmit waveforms of different users are not exactly or¬

thogonal, however, for example because of nonideal synchronisation or even

nonorthogonal signature sequences. First generation cellular CDMA systems

decode each user separately, treating the effects of all other users as unwanted

noise.

Ever higher bitrates expected by the users and the limited channel band-

widths lead to wideband CDMA proposals with a very low coding gain, lead¬

ing to large nonorthogonal components. In order to achieve satisfactory chan¬

nel capacities, receivers may no longer decode each user separately. Multiuser

Detectors (MUDs) are needed. One proposed multiuser detector is the Deci¬

sion Feedback Detector (DFD) [24].

6.3. Continuous Systems

In systems operating continuously, the channel will not change arbitrarily
between two packets or frames, there will be significant correlation between

subsequent channel impulse responses. In such a setup, iterative inversion

methods such as Gauss-Seidel or Jacobi iteration may still be attractive. The

solution of the previous timeframe may be used as the starting vector of the

next timeframe.
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Utilized Parameters

and their Symbols

0 All zero Matrix/Vector

A DFE Key Equations Matrix, A = C + N

A! Order-reduced version of A

Ai Zero padded version Ai

6j Feedback filter taps (single output transmitter)

Bj Feedback filter taps (multiple output transmitter)
B Displacement Structure generator
B ! Displacement Structure generator, common part with G

Cj Channel taps (single output channel)

Cj Channel taps (multiple output channel, single output transmitter)

Cj Channel taps (multiple output channel, multiple output transmit¬

ter)
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c Channel taps stacked above each other (single output transmitter)
C Channel taps stacked above each other (multiple output transmit¬

ter)

C Channel dependent part of A

C(j,j) i, j-th block element of C

dt Transmitted symbol (single output transmitter)

dj Transmitted symbols (multiple output transmitter)

dt Decision point signal (single output transmitter)

dj Decision point signal (multiple output transmitter)

dt Receiver decision of dt (single output transmitter)

dj Receiver decision of dj (multiple output transmitter)
D Diagonal part of Cholesky factorization

et Decision point error signal (single output transmitter)

et Decision point error signal (multiple output transmitter)
e" Decision point error signal of unbiased DFE (single output trans¬

mitter)
e" Decision point error signal of unbiased DFE (multiple output

transmitter)

fj Feedforward filter taps (single output transmitter)

Fj Feedforward filter taps (multiple output transmitter)
f Feedforward filter taps stacked above each other (single output

transmitter)
F Feedforward filter taps stacked above each other (multiple output

transmitter)

Fi Left Displacement Structure operator

F2 Right Displacement Structure operator
G Displacement Structure generator
G Zero padded version of G i

Gi Displacement Structure generator, common part with B or order

reduced version of G

g Row of G

g Zero padded version of g

gpvt Pivoting Row of G

gpv t Zero padded version of gpv t

i Time index

I Identity Matrix
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J Signature Matrix

L Cholesky Factor

n4 Channel noise

N Noise dependent part of A

N(j,j) *, jthblock element of N

Nt_3 Noise Power N^) = Nt_31
Nb Number of Feedback coefficients

Np Number of Decision Feedback Detector outputs

Nf Number of Feedforward coefficients

N0 Number of Channel outputs

r
j

Received signal vector (channel outputs)

Q Unitary factor of QR factorization

R Bordered version of A; Triangular factor of QR factorization

5 Schur Complement
Z Displacement Structure operator (Hermitian symmetric case),

lower shift matrix

a DFE Bias

r Multiplier of B

A Decision delay
6 Multiplier of G

t Channel delay spread normalized to symbol rate
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Abbreviations

ASIC Application Specific Integrated Circuit

BPSK Binary Phase Shift Keying
CATV Cable Television

CDMA Code Division Multiple Access

CIR Channel Impulse Response
CLB Configurable Logic Block

CORDIC Coordinate Rotation on Digital Computers
DC Design Compiler, a VHDL synthesis tool from Synopsys, Inc.

DFD Decision Feedback Detector

DFE Decision Feedback Equalizer
DS-CDMA Direct Sequence Code Division Multiple Access

DSP Digital Signal Processor

ETSI European Telecommunication Standards Institute

FIR Finite Impulse Response Filter

FPGA Field Programmable Gate Array
HIPERLAN High PERformance Radio Local Area Network

ICI Interchannel Interference
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ISI Intersymbol Interference

LUT Lookup Table

MAC Multiply Accumulate

MAC Medium ACess layer/protocol
MIMO Multiple Input Multiple Output
MIPS Million Instructions Per Second; also a microprocessor intellec¬

tual property company

MLSD Maximum Likelihood Sequence Detection

MMSE Minimum Mean Square Error

MSE Mean Square Error

MSK Minimum Shift Keying
MUD Mufti User Detection

MUX Multiplexer
NUAL Nonuniform Access Latency
OFDM Orthogonal Frequency Division Multiplex
PERL Practical Extraction and Report Language
PLC Powerline Communications

PSP Per Survivor Processing
RAM Random Access Memory
RISC Reduced Instruction Set Computer
SIMD Single Instruction Multiple Data

SNR Signal to Noise Ratio

TDMA Time Division Multiple Access

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

VLIW Very Long Instruction Word

WLL Wireless Local Loop
ZF Zero Forcing
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