
Diss. ETH No. 14219

On boundary conforming
anisotropic Delaunay meshes

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Technical Sciences

presented by
JENS KRAUSE

Dipl.-Phys.
Rheinische Friedrich-Wilhelms-Universität Bonn

born 26.11.1968

citizen of Germany

accepted on the recommendation of

Prof. Dr. Wolfgang Fichtner, examiner

Prof. Dr. Siegfried Selberherr, co-examiner

2001

Acknowledgement

First of all would like to thank Prof. Dr. Fichtner for giving me the

opportunity to work and learn at the Integrated Systems Laboratory
and Prof. Dr. Selberherr for reviewing my thesis.

Very important for my research work were my teachers Gilda Gar-

retôn, Norbert Strecker, and Luis Villabianca; without them I would

have given up long long time ago. Irreplaceable Stefan Zelenka, with

whom I could discuss the questions I dared not ask others.

I also want to thank the people I shared offices with over the years

for the good atmosphere and fruitful side discussions: Nancy Hitschfeld,
Paul Pfäffli, Andreas Pomp, Stefan Röllin, Markus Schaldach, Michael

Schenkel, and Bernhard Schmithüsen. To this inspiring atmosphere con¬

tributed the entire institute, especially sectraterial, technical, and sys¬

tem administration staff.

This thesis was partially supported by the European projects
PROMPT II (ESPRIT 24038) and MAGIC_FEAT (1ST 1999-11433)
and by the close collaboration with ISE AG in Zurich.

Contents

1 Introduction 1

2 Background and motivation 5

2.1 Triangulations and meshes 5

2.2 Process and device simulation 6

2.3 Box Method and the Voronoï-diagram 8

2.4 The Voronoï-diagram and the Delaunay triangulation . 10

2.5 Boundary layers and anisotropy 13

2.6 Methods of automatic mesh generation 14

2.7 Quality, optimisation and adaptation 20

2.8 Aspects of computational geometry 21

2.9 Modularity 23

3 2D case: Noffset2d 25

3.1 Input to the algorithm 25

3.2 A 2D string algorithm 26

3.2.1 Node creation 27

i

ii

3.2.2 Front advancement 28

3.3 Extraction of the final mesh 31

3.4 Isotropic refinement and Delaunisation 31

3.5 An intersection-test-less method 33

3.6 Boundary grid for Noffset2d 35

3.6.1 Thin layer regions 36

3.6.2 Limitations of anisotropy in 2D 39

4 3D case: Noffset3d 41

4.1 Input to the algorithm 42

4.2 A 3D string algorithm 42

4.2.1 Node creation 43

4.2.2 Data structure 44

4.2.3 Front advancement 45

4.3 Flow I 47

4.3.1 Volume triangulation 48

4.3.2 Constrained incremental Delaunay kernel
.... 48

4.3.3 Extraction of the final mesh 50

4.3.4 Delaunisation 52

4.4 Flow II 53

4.5 Comparison of both methods 54

4.6 User-defined refinement 55

4.7 Sliver elements 56

5 Surface meshing 57

5.1 Input to surface meshing 57

5.2 Methods 58

5.2.1 Direct 3D 58

5.2.2 Using a parametric map to 2D 59

5.3 Optimiser for direct surface meshes 60

5.4 Refining surface meshes 61

5.5 Surface meshes for NofFset3d 63

5.6 Limitations of anisotropy in 3D 63

5.6.1 Surface mesh criterion 63

5.6.2 A suitable refinement algorithm 65

5.7 Construction of the parametric map 67

6 Examples 73

7 Conclusion and outlook 87

A Glossary 97

B Command File Description 99

C A generic Delaunisation algorithm 107

Seite Leer /

Blank leaf

Abstract

Automatic mesh generation has become an integral part in solving par¬

tial differential equations numerically by the Finite Element Method

or the Box Method as a variant of the Finite Element Method. Many

engineering disciplines employ these methods to analyse new design con¬

cepts.

The framework of this work is the design of new semiconductor tech¬

nologies. Generally, this is done in two steps: the modelling of the fabri¬

cation (process simulation) and of the electrical behaviour of the device

(device simulation). The discretisation method of choice for the par¬

tial differential equations in this field is the Box Method, which calls

for Delaunay meshes as a minimum requirement. On the other side,
the boundary layer behaviour of the solution has to be modelled. A

fine mesh with isotropic elements at material interfaces would contain

too many points to be useful in practical applications. In order to save

points, anisotropic elements are desired at these interfaces. In addition,
the solution characteristics favours mesh lines interface parallel.

This work presents a novel method, normal offsetting, to generate
the discretisation points in such a way that the induced Delaunay trian¬

gulation is anisotropic. The method uses a modified Advancing Front ap¬

proach; in 2D layers of stretched quadrilaterals are added to the bound¬

ary and in 3D layers of flat prismatic elements are inserted into a surface

mesh. Subsequently, a final triangular mesh is constructed.

This work focuses on a practical implementation of these ideas. In

this respect, robustness of the generator to handle arbitrary geometries
is very important. Especially in 3D, this stability is hard to achieve and

v

VI

a constitutes major road block for a successful process simulation, which

needs multiple re-meshing steps.

With the continuing miniaturisation of modern semiconductor de¬

vices 3D effects become more and more pronounced in the device char¬

acteristics. Also, the simulation of 3D effects becomes more important.
This work, however, deals with 2D and 3D design and implementation
of these new ideas.

Zusammenfassung

Die automatische Erzeugung von Simulationsgitter ist zu einem integra¬
len Bestandteil bei numerischen Lösungsverfahren partieller Differenti¬

algleichungen durch die Finite-Element-Methode oder der Box-Methode

als eine Variante der Finite-Element-Methode geworden. Viele Inge¬
nieurwissenschaften nutzen diese Methoden zur Analyse neuer Desi¬

gnkonzepte.

Diese Arbeit steht im Zusammenhang mit der Entwurf neuer Halb¬

leitertechnologien. Im allgemeinen wird die Analyse in zwei Schritte

aufgeteilt: die Untersuchung der Herstellung (Prozeßsimulation) und des

elektrischen Verhaltens (Bauteilsimulation). Die Diskretisierungsmetho-
de der Wahl für die partiellen Differentialgleichungen auf diesem Gebiet

ist die Box-Methode, wodurch das Delaunaygitter als Minimalforderung
begründet ist. Auf der anderen Seite muß das Grenzschichtverhalten der

Lösung modelliert werden. Ein ausreichend feines Simulationsgitter mit

isotropen Elementen an den Materialgrenzen enthielte zu viele Punkte,
um für die Praxis brauchbar zu sein. Um Punkte einsparen zu können,
sind anisotrope Elemente an solchen Grenzen von Vorteil. Außerdem ist

wird die Lösung genauer wenn die Gitterlinien parallel zu den Grenz¬

schichten konstruiert werden.

Diese Arbeit stellt eine neuartige Methode (normal offsetting) vor,

die die Diskretisierungspunkte so anordnet, daß die Delaunay-Triangu-
lierung dieser Punktmenge anisotrop ist. Diese Methode modifiziert den

Advancing-Front Algorithmus: in 2D werden Schichten aus länglichen
Vierecken der Geometriedefinition hinzugefügt und in 3D werden fla¬

che, den Prismen ähnliche, Elemente konstruiert. Schlußendlich wird

ein Dreiecks- oder Tetraeder-Gitter erzeugt.

vii

Vlll

Die praktische Umsetzung dieser Ideen steht im Mittelpunkt der Ar¬

beit. Deswegen ist Robustheit des Gittergenerators bei der Behandlung
beliebiger Geometrien sehr wichtig. Besonders in 3D ist Stabilität ein

Problem und stellt eines der bedeutenden Hindernisse auf dem Weg
zur erfolgreichen Prozeßsimulation dar, die mehrere Gittergenerationen

benötigt.

Die fortschreitende Miniaturisierung moderner Halbleiterbauteile

bringt mehr 3D-EfFekte im Schaltverhalten zum Vorschein. Daher wird

auch die Simulation von 3D-Effekten notwendig. Diese Arbeit befaßt

sich aber mit dem Entwurf und der Implementation der Ideen in 2D

und in 3D.

Chapter 1

Introduction

This thesis deals with the development and implementation of algo¬
rithms for automatic mesh generation. Being part of a simulation envi¬

ronment the mesh generator has to conform with certain criteria that

are being motivated in the second chapter. These criteria are linked with

the main applications for which the meshes are used: in this work semi¬

conductor process and device simulation are considered. While process

simulation models the fabrication of semiconductor technology, device

simulation analyses the electrical characteristics of the device. In both

cases the so-called Box Method is used to discretise the partial differen¬

tial equations (PDEs) that model the problems. It will be pointed out

that the Delaunay triangulation is a necessary condition for the use in

the Box Method.

Another requirement follows from the solution characteristics: the

models in this field exhibit a strong boundary layer behaviour. For pre¬

cise modelling of these boundary layers an interface conforming aniso¬

tropic mesh is required.

Further requirements stem from the integration of mesh generation
into a simulation environment; it has to be reliable and not too demand¬

ing in the resources it uses.

To summarise the following criteria are demanded from the mesh

generator, in the order of their priority:

1

2 Chapter 1. Introduction

• the generator has to work reliably,

• the mesh must comply with the Box Method Conforming Delau-

nay criterion,

• the mesh is anisotropic at certain interfaces,

• the elements of the mesh are of good quality,

• the mesh density is sufficient,

• the generator should be efficient and use modest computer system
resources.

The second chapter features related work in mesh generation which

is applied in this work or has inspired it partly. Namely, these are Delau-

nay methods, the Advancing Front Technique, the Octree method, and

anisotropic meshing methods.

The main part of this dissertation discusses a method in 2D and in

3D to generate meshes that conform with the above criteria, which is

called normal offsetting. As it turns out, the anisotropy of elements at a

non-planar interface and the Box Method Conforming Delaunay crite¬

rion are partly in contradiction. It will be discussed that the achievable

anisotropy is limited, but the limitations are independent of the method

to construct the meshes.

The third chapter is entirely devoted to the 2D implementation

(Noffset2d); it uses a variant of the Advancing Front Technique to add

layers of anisotropic quadrilaterals to the boundary. Another important
feature is that the remaining polygonal void, which is not covered by
the front, is triangulated directly.

These ideas can be partly transferred to 3D, which will be discussed

in the forth chapter (NoffsetSd). An Advancing-Front-like method adds

layers of prisms to a triangular surface mesh. In order to triangulate
the final void robustly, in 3D an indirect method is needed which uses

a Delaunay technique.

The fifth chapter deals with the generation of surface meshes that

are suitable for 3D normal offsetting. Near fold lines of the geometric
model, it is important to generate a finer surface mesh with respect to

3

certain condition. With this refinement, the volume mesh created by
normal offsetting can conform with the Delaunay condition.

The final chapter shows examples of meshes generated by this imple¬
mentations. It covers 2D and 3D models and usability of these meshes

is demonstrated in simulations.

4 Chapter 1. Introduction

Seite Leer /

Blank leaf

Chapter 2

Background and

motivation

2.1 Triangulations and meshes

In the framework of this thesis, a mesh is a division of a polygonal
domain Q, into primitives. As a particular case of a mesh, the triangular
mesh is formed by triangles in 2D and tetrahedrons in 3D (as closed

sets); other authors [Gar99] use mixed element meshes and allow also

rectangles, prisms and bricks as elements. Let T = {ti} be a set of those

primitives, then they should cover the entire domain: IJt gT = ^" ^ne

mesh is conforming if the intersection ti D tj for i ^ j is either empty
or a lower dimensional entity that is part of both elements, e.g. an edge
that is shared by both elements.

The expression triangulation is used in 2D and in 3D, some authors,

however, use in the latter case the words tetrahedralisation or tetra-

hedrisation. The difference between a triangulation and a triangular
mesh is only minor. In general the term mesh is used for a triangulation
that is fit for use in a simulation.

5

6 Chapter 2. Background and motivation

2.2 Process and device simulation

This section describes a brief introduction into the physical models for

semiconductor process and device simulation A complete discussion is

beyond the scope of this work and its full understanding is for the

mesh generation problems not necessary. However, the drift-diffusion

equations are listed, in order to discuss the discretisation scheme and

to motivate the type of meshes needed.

In device simulation, a system of partial differential equations (PDEs)
that couple electrostatic potential with the electron and hole densities is

solved in the semiconductor material (e.g. references [MRS90, FRB83,

Int99a]). Firstly, these quantities obey in the stationary case the follow¬

ing conservation laws, which are the Poisson equation and the continuity

equations:

-V.(eV^) = q(Np - Nn + ND)

Vjn = qR

-V-jp = qR

Nn/P electron/hole density
•

Jn/p electron/hole current density
4> electrostatic potential
R pair generation/recombination rate

ND net doping concentration

Q elementary charge
e material dependent electric permittivity.

The concentration N& reflects the electrical activation of the semi¬

conductor by doping it with donor and acceptor impurities. The rate R

includes advanced models for electron-hole pair generation and recom¬

bination.

The current densities in the drift-diffusion model are driven by a

diffusive part (proportional to VNX) and convective part which is pro¬

portional to the electric field:

jn = Hn{-qNnV<t> + kBTVNn)

Jp = ßP{-qNpV(f) - kBTVNp)

2.2. Process and device simulation 7

ßn/p

T

electron/hole mobility
Boltzmann's constant

temperature.

The boundary conditions (in terms of variables <p,Nn,Np) that are

applied to the problem are of different type, depending on the character

of the interface. At Ohmic contacts, the values for potential and carrier

concentrations are prescribed, whereas at artificial interfaces the normal

fluxes (e.g. jn • v = 0) of these quantities are set to zero [MRS90].

Apart from device simulation, a second field of application for this

mesh generator is process simulation.

The modelled processes are [Int99b]:

Ion Implantation For ion implantation two different approaches are

used. Firstly, analytical models which use combinations of Gaus¬

sian, Pearson, and exponential functions are used to approximate
the dopant distribution after implantation. The Monte Carlo ap¬

proach computes a database of particle trajectories and averages

the final distribution. These models take the full layer system and

the orientation of the critallographic axis with respect to the ion

beam into account.

Diffusion The equations for dopant and oxidant diffusion are simi¬

lar to those used in devices simulation, i.e. they contain diffusive

and convective currents. Modern models do not only describe the

dopant concentration, but also couple them with point defects

such as interstitials, vacancies, and clusters of different species.
Also the chemical reaction rate in presence of an oxidising atmo¬

sphere is taken into account.

Oxidation In the case of oxidation the geometric changes due to vol¬

ume expansion of the oxide and material consumption are mod¬

elled, which results in a movement of the boundary. Viscoelastic

models [PZSF00] compute a stress pattern that couples with the

dopant and oxidant diffusion.

Deposition, etching, lithography These process steps can often be

modelled with purely geometric models. The rates for deposition
and etching can be localised and realistic simulations are possi¬
ble. Again the boundary movement makes the mesh generation a

challenging task.

8 Chapter 2. Background and motivation

Figure 2.1: Voronoi-cell V(P) of point P in 2D. Two cells V(P) and

V(Q) are separated by edge mid perpendicular lines (planes in 3D)

These fabrication steps introduce changes in the geometry or the

dopant distribution and the mesh becomes invalid or not well adapted
to the current state. These changes can be accounted for in some cases

by local adjustments of the mesh, but the generation of a complete new
mesh cannot always be avoided. In general several of these re-meshing
steps are necessary in order to simulate an entire process flow. In this

context, the mesh generation must be robust and automatic.

2.3 Box Method and the Voronoï-diagram

The discretisation method commonly used in this field is the Box Method

(BM, e.g [MÜ194, BRF83]). The primary idea of the discretisation is to

associate each node P with a control volume V(P). The integrals over

V(P) of the conservation laws in the form V-j = S are studied. Applying
Gauss' theorem gives:

f dF-j= f dVS.

JdV(P) JV{P)

The choice for control volumes is discussed in [Gar99]; it turns out that

the Voronoï-cells are the appropriate boxes (Fig. 2.1):

2.3. Box Method and the Voronoï-diagram 9

Definition 2.1 Given a finite set of points 5cld. For each P G S

the Voronoï-cell is defined as:

V(P) = {xRd | VÇe«S||x-P||<||a?-Q||}.

The Voronoï-diagram V(S) is the collection of all Voronoi-cells of points
in S.

In other words, the interior of V{P) contains the points in space that

are closer to P than to other points of S. In that sense the Voronoï-

diagram represents a partition of space. The outline or a Voronoï-cell is

always a convex polygon, which is not necessarily closed; the points on

the boundary can have cells that reach into infinity because the general
definition refers only to point sets that is not limited by a boundary.

In order to discretise equations some approximations have to be

applied: the source term S is assumed to be constant in V(P) (mass
lumping) and the current density through the face Fpq (see Fig. 2.1)
that joins cells V(P) and V(Q) is estimated by a constant j(P, Q):

£ Fpq 3(P> Q) = vol(V(P))S(P). (*)
Q,3edge(P,Q)

The Scharfetter-Gummel Box Method uses the Bernoulli-function

B(t) = -^rzi
to approximate the current [SG69]:

// kT

Jn(P,Q) = -^^[Nn(Q)B(APQ)-Nn(P)B(-APQ)}
eQP

q(<f>(Q) - <f>(P))
APQ =

kT

For small arguments, i.e. small differences in the electrostatic po¬

tential, the Bernoulli-function is B{t) « 1 — | and the standard finite

difference scheme is restored. Originally, the result is only valid in ID,
but it is also applied in higher dimensions. The Scharfetter-Gummel ap¬

proximation is the basis for the numerical stability of this discretisation

method [MÜ194].

The standard finite difference scheme leads to oscillations in the solu¬

tion if the drift current dominates the diffusion current [MÜ194]. Because

10 Chapter 2. Background and motivation

Figure 2.2: At a material interface, the BM does not allow Voro-

no'i-cells of point volume points P not cross material boundaries like

RQ, because material dependent properties cannot be modelled properly.

of its stability the Scharfetter-Gummel scheme cannot be replaced in the

field of device simulation.

The equations (*) together with the current and source approxima¬
tions and the appropriate boundary values form the system of discre-

tised equations for the carrier concentrations and the potential. The sys¬

tem is non-linear if the current and source terms depend non-linearly
on the concentrations and the potential. In such a case an iterative

Newton-solver is employed.

If material interfaces are taken into account, a stronger condition

has to be imposed. In order to model material dependent properties

correctly, the Voronoï-cells of volume nodes must be closed, i.e. they do

not cross interfaces like shown in Fig. 2.2.

2.4 The Voronoï-diagram and the Delaunay

triangulation

For the following it is important to note that the Voronoï-diagram is

the (graph-theoretical) dual [For92] of the Delaunay triangulation (DT),
which is defined later. This duality means that two nodes are connected

by an edge in the DT if the mid-perpendicular line of this edge appears

2.4. The Voronoï-diagram and the Delaunay triangulation 11

in the Voronoï-diagram. Therefore, the DT is a necessary condition on

the meshes for the BM. In general the dual of the Voronoï-diagram is

not composed solely of triangles or tetrahedrons. But the higher order

elements are convex and an arbitrary triangulation of these elements

forms a DT.

In the following the Delaunay triangulation is defined and some other

expressions that go with it.

Definition 2.2 Given a point set S cRd, a simplex (triangle or tetra¬

hedron) composed of points from S is a Delaunay-simplex iff the inte¬

rior^.) of the circumsphere1 does not contain any points of S.

Definition 2.3 A triangulation T of a point set S cRd is a Delaunay-
triangulation (DT) iff all simplexes of T are Delaunay-simplexes.

From the duality with the Voronoï-diagram the theorem follows di¬

rectly:

Theorem 2.1 Given a set of points then there exists a DT.

The DT is not unique, however. The non-uniqueness is always re¬

lated to cospherical points. These points form polyhedrons that can

be triangulated in different ways into Delaunay-simplexes. For the Box

Method all these triangulations are equivalent because they induce the

same Voronoï-diagram.

In what has been discussed so far, the triangulation does not match

with a specific geometry description. In fact, boundary faces and edges
are not necessarily part of the DT. A DT that matches a given geometry
is a called a conforming-DT.

Another important term in this respect is the Delaunay-face (Delaunay-
edge). It opens the way to local algorithms:

Definition 2.4 Given a triangulation 7'. A face (an edge) f with neigh¬
bours ti and t2 is called a Delaunay-face fDelaunay-edgej iff the fol¬
lowing condition is met. The point pi of t\ which is opposite to f is not

inside the circumsphere of t^, and vice versa.

1Here, and in the following 'sphere' is used a generic term, it means circle in 2D.

12 Chapter 2. Background and motivation

By virtue of the following theorem [For92], a local test is sufficient

to prove whether a triangulation is Delaunay.

Theorem 2.2 Given a triangulation T. The statements are equivalent:

• T is a DT.

• All faces (edges) in T are Delaunay-faces fDelaunay-edges/

The requirement of closed Voronoi'-cells is translated in the formu¬

lation of triangulations, by a stronger condition on boundary edges and

faces. This leads to the definition of the Box Method Conforming Delau¬

nay Triangulation (BMCDT):

Definition 2.5 A Triangulation is called a Box Method Conforming
Delaunay Triangulation (BMCDT) if it matches a given input geometry
and the interior of (minimal) circumspheres of the following items are

point-free:

• tetrahedra (3D), triangles (2D),

• triangles (3D), edges (2D) at material interfaces or surfaces, and

• edges at material interface that join non-planar interface or sur¬

face triangles (3D only).

In some cases a constraint DT is a useful temporary structure. It

uses the definition 2.4 and the notion of a constraint; constrained edges
and faces are desired in the triangulation, e.g. material boundaries can

be considered as constraints.

Definition 2.6 Given a triangulation T and a set of constraint C, the

triangulation is a constraint DT with respect to C, iff

• all edges or faces of C are present in T and

• all edges or faces ofT\C are Delaunay faces or Delaunay edges.

To be useful, the set of constraints should be conforming, e.g. if edges
intersect each other, they do it at a common end point. In that case,

the constraint DT exists in 2D but unfortunately not in 3D.

2.5. Boundary layers and anisotropy 13

Figure 2.3: Current confinement at the Si/SiC>2 interface in an IGBT

(Insulated Gate Bipolar Transistor). The lines of constant current den¬

sity are shown.

2.5 Boundary layers and anisotropy

Another important mesh requirement stems from the solution charac¬

teristics of diffusion-convection-type equations, which exhibit boundary
layers (e.g. in Fig. 2.3). Those layers have to be resolved by the mesh.

A striking example for a boundary layer is the current confinement

in a thin channel in MOSFET2 devices [KSVFOOa]. Here, the discre-

tised current density on interface edges parallel to the current is very

large compared to the current densities on other edges. Due to the fact

that the edge current densities are not projections of the current density
on the elements the other edges do not carry the same current. If the

current-parallel edges now have vanishing Voronoï surfaces the domi¬

nant current density terms do not contribute to the total current. Only
for very fine meshes of this type the other edges carry sufficiently large
current densities to approximate the interface current density.

Consequently, a desirable mesh contains edges parallel and orthog¬
onal to the local current densities, which cannot be fulfilled for both

carrier types simultaneously but approximately for the sum of both

contributions or the dominant part.

2Metal Oxide Silicon - Field Effect Transistor

14 Chapter 2. Background and motivation

In a priori mesh generation the current density is generally not

known to the mesh generator. In the situation described above, however,
it is known that the current flows underneath the Si/SiC>2 interface, i.e.

a geometric feature known in advance. The normal offsetting addresses

this part of the mesh generation problem.

Other areas where anisotropy is advantageous are

• p-n-junctions,

• diffusion fronts in process simulation,

• material interfaces in process simulation to model segregation ef¬

fects, and

• moving interface in mechanical models of process simulation.

2.6 Methods of automatic mesh generation

In the following, a few algorithms for mesh generation are cited from lit¬

erature. These methods are either utilised directly or with modifications

or are otherwise important to this work.

Delaunay connector

As stated before, a DT exists for a given point set; there are several

methods to construct this DT:

• The incremental insertion methods [Bow81, Wat81] start with a

triangulated box enclosing all points. The points are inserted one

by one (Alg. 2.1), by removing a star-shaped cavity, which is re¬

filled using the new point as the tip of a series of tetrahedra. The

cavity is chosen in such a way that the resulting triangulation is

Delaunay.

• Sweep, divide-and-conquer [PS85], and modified advancing front

[Fle99] methods try to sort points spatially, so that only elements

2.6. Methods of automatic mesh generation 15

Algorihm 2.1: Incremental Delaunay construction

Input: % = DT{S) in Rd, and a point P

Find simplices t T with P inside circumsphere of t; t —> C(P).
Remove t G C(P) from T (forms a void).
Let dC(P) the outline of C(P), i.e. a list of edges/triangles
Triangulate the void with triangles/tets with face r dC(P)
as base and P as tip

Output: %+i = DT(S U {P})
~~ ~~~~~~~

are constructed that are part of the final DT. This can be advan¬

tageous in terms of time complexity, but all points must be known

in advance.

• In 2D an arbitrary triangulations can be transformed into a DT

by successive edge-flips [Law72].

• The generalisation of a transformation-based approach into 3D

can get stuck in local minima. Villablanca [VilOO] introduces an

algorithm to continue in those situations and conjectures that this

procedure terminates for convex domains.

To be robust these methods have to make sure that the geometric
tests (e.g. the in-sphere-test) work reliably. In the incremental approach,
for instance, the cavity must be star-shaped.

These methods do not create a suitable mesh, because they only
connect a given point set to form a 'balanced' triangulation. The point
locations are found by separate algorithms.

Boundary enforcement

The boundary of the geometric model is not necessarily respected by
the DT. The missing edges and faces have to be recovered by local

transformations (edge and face swaps) or point insertions.

In 3D point insertions are inevitable. The methods use heuristic

methods without proof of termination [She97b], if they try to minimise

16 Chapter 2. Background and motivation

the number of points needed to recover triangles.

Different methods are known to place points to recover boundary
faces:

• internal points [GHS91]

• boundary points [She97b]

• a priori point creation on the boundary [Péb98].

Delaunay refinement

The term Delaunay refinement is used for techniques to find locations

of refinement points and how to insert them into the mesh. In such

generators a triangulation of the boundary points is created first and

new points are inserted iteratively into the volume. After each point
insertion, the mesh is optimised locally with respect to the Delaunay
criterion, e.g. by using the incremental Delaunay construction.

The refinement points are usually inserted at the following locations:

• centres of circumspheres (i.e. Voronoï-centre) [HS88]

• edge-mid point [BG97].

The elements that violate some shape or size quality criteria are candi¬

dates for refinement. For some methods, mathematical proofs [She97b,
Rup95, HROO] exist that certain quality bounds are met, often with im¬

practical assumptions on input geometry like lower bounds on angles.

Advancing Front Technique (AFT)

The Advancing Front Technique [LP88, Löh96, MH95] creates points
and their connectivity at the same time. In 3D, starting from a surface

mesh tetrahedra are added to fill the void of the region to be meshed. A

list of triangles is maintained as the current front. At each step one tri¬

angle from this list is designated as a base of a new element. In search of

2.6. Methods of automatic mesh generation 17

an additional point to form the element the following candidates are con¬

sidered: new points at different locations, existing points at connected

elements, and existing points at opposite parts of the front. The deci¬

sion is drawn using quality criteria; this is the strength of this method,
because element quality and size can be controlled locally. Also, the

validity of a new element must be checked, in particular that the new

element does not intersect other parts of the front. This cannot be done

by local tests, so data structures for spatial search are employed.

The AFT finishes when the front is empty. In 2D this is always
possible, but in 3D situations are possible where no tetrahedron can be

added to a base triangle. In that cases deletion of elements can open

the necessary space to continue the construction. However, there is no

prove of convergence and implementations suffer from closure problems

[Sev97, Sch97].

The methods by Marcum and Weatherill [MW95] and by Frey et

al. [FBG96] are of interest to this work. These references combine the

AFT with Delaunay methods. The mesh vertices are created in the

manner of AFT but they are inserted into a triangulation by a Delau¬

nay algorithm. In that way the closure problem in 3D vanishes. The

validity test which is a global search in the classical AFT becomes a

neighbourhood search in the reconnection method.

Quadtree/Octree

The Octree method is very popular in the field of device simulation

[Gar99, Fle99, Int99c]3. It starts with the bounding box of the model as

root cell and successively splits cells in 4 (quadtree in 2D) or 8 (octree
in 3D) children. Cells are refined to resolve geometry or data function

or, to comply with mesh refinement criteria given by the user. Also,
to achieve a smooth transition between a coarse and a fine mesh the

difference in tree levels between adjacent leaves is limited to one of two.

In the final step the mesh is extracted from the tree structure and

the material associations are reestablished. Herein lies the difficulty of

3This implementation shares the input languages for geometry descriptions and

simulation fields with a commercial mesh generator (Mesh-ISE), which uses the Oc¬

tree method. Throughout this text links to this generator are indicated in footnotes.

The methodology, however, is not influenced by this link.

18 Chapter 2. Background and motivation

the method, because templates are used to match the configuration in

one cell. Since only a limited number of templates can be implemented,
further refinement splits may become necessary to find a simpler con¬

figuration. This increases not only the number of points but it is not

even guaranteed to terminate. Especially, situations where two material

interfaces cross one cell are hard to handle.

This method can easily create anisotropic elements by splitting cells

in one coordinate axis only, but therefore anisotropy is restricted to

coordinate axis. The Octree method is very fast and stable if the model

contain only axis aligned faces. But for arbitrarily oriented faces it needs

many points and is unstable in recovering material associations.

In 2D the quadtree method is the only approach that is able to

generate obtuse angle free meshes [BE92].

Anisotropic methods

The anisotropy of an element measures how much an equilateral element
needs to be deformed to attain this shape:

Definition 2.7 Let I be the longest edge of a triangle or a tetrahedron

and p the radius of its inscribed circle or sphere. The anisotropy or

aspect ratio is the ratio: A = -.

According to this definition an equilateral triangle has the anisotropy
of ^, which is the minimum.

The scalar value for the anisotropy by itself is not very helpful: the

orientation of its longest edge needs to be considered.

The literature, e.g. in the review article by George and Hecht [GH99],
usually expresses the desired edge length for anisotropic meshes by a

metric field g. This function is defined on the domain O C Rd (which is

assumed to be closed and simply connected):

g:n^Rdxd

where the matrix is symmetric and positive definite in fi. Given a differ¬

entiate path 7 : [0,1] —» Q connecting to points P = 7(0) and Q = 7(1)

2.6. Methods of automatic mesh generation 19

the length of this path with respect to the metric field is defined as:

dg(l) = f dty/y(t)-g(y(t)hr(t).
Jo

In a Riemannian space, the distance between P and Q is the length of

the geodesic, i.e. the infimum of dg for all 7 connecting P and Q. This

is computationally too expensive for practical mesh generators, and in

many cases the (Euclidean) straight line is sufficient:

dg{P, Q)=dg(t-*P + t(Q ~ P)).

A mesh conforms with this metric if for all its edges holds dg(P, Q) « 1.

In practise, algorithms try to achieve dg(P,Q) < 1, i.e. edges much

shorter than unity are tolerated, but longer ones are not.

An implementation of an anisotropic Delaunay kernel has to deter¬

mine the circumsphere of an element, e.g. by finding its circumcentre,
which is the point that has the same distance to all points in the element.

It is tedious to solve this problem with the straight line approximation,
which contains an integration if g varies. George et al. [GB98] propose

to evaluate the metric only in one point and measure the distance by

dg(x)(P,Q) = ^{Q-P)-g{X){Q-P).

They show if the insertion point is taken as the sampling point that the

cavity in the Delaunay kernel is star-shaped.

The usual isotropic mesh generation scheme is a special case of this

procedure by setting

g = ±id,

with the identity matrix id and the desired edge length h.

Such a method using an anisotropic Delaunay connector creates from

a given point set a mesh with an anisotropic connectivity. This is prob¬
lematic with the Box Method, because it relies on a Delaunay mesh in

the Euclidean sense, which is in contradiction. Therefore it is important
to create an anisotropic point set but to use a Euclidean Delaunay-
connector.

The objective of this work is to create an interface conforming mesh;
so the interface can be used as support to create an anisotropic point

20 Chapter 2. Background and motivation

Figure 2.4: Only points A and B can be used to form a mesh that is

at the same time Delaunay and anisotropic, C intrudes the diametral

sphere of an interface edge.

set. The locations of the points must be chosen in such a way that the

edges form an anisotropic mesh, if a Euclidean Delaunay-connector is

applied. Figure 2.4 illustrates this: points that are images of interface

points in local normal direction can be close to the interface without

intruding the spheres of interface triangles.

Other references use similar approaches. In 2D Johnston and Sulli¬

van [JS92] add quadrilaterals to the interfaces. In 3D references [PK96,
KKM95] add layers of prismatic elements to interfaces. All references do

not cope with the problem to create strictly Delaunay meshes, because

their application do not use the Box Method.

2.7 Quality, optimisation and adaptation

The numerical correctness of a simulation depends on certain quality
criteria on the grid. These criteria come in two flavours, as shape con¬

ditions and as size conditions.

The shape conditions try to measure the quality of an element irre¬

spective of its size. The properties that are compared are the in-radii,

circumradii, edge lengths, areas, angles and dihedral angles [Fle99].

A very popular measure is the ratio of the longest edge and the in-

radius of a triangle of a tetrahedron: Ql = l-^^-. A quality mesh would

minimise Q* for each element or the sum over all elements for a mesh.

For some types of equations that are discretised using a Finite El¬

ement method (FEM) there exist proofs that this is the appropriate

2.8. Aspects of computational geometry 21

measure. Unfortunately such proofs are not known for the Box Method.

However, experience shows that large angles and highly connected node

must be avoided [HROO].

Some mesh generators focus on avoiding small angles to create qual¬

ity meshes. However, when anisotropic meshes are to be created, then

small angles are part of desired elements: e.g. in the 2D normal offsetting
stretched quadrilaterals are cut into two triangle having small angles.
Therefore in this work more focus is laid on avoiding large angles.

On the other hand, the size quality measures the density of mesh

nodes, like the edge length. The desired mesh density is, for a first

simulation, defined by the user, or - in an adaptive approach - derived

from error estimates on a previous simulation [KSVFOOa].

2.8 Aspects of computational geometry

Complexity

The choice of algorithm is often guided by optimising its complexity in

space (use of memory resources) and time (number of operations). The

(9-notation is used to express the complexity: ü(f(n)) means that for

large problems of size n the algorithm needs a constant times f(n) units

of resources.

In general, the complexity of a mesh generator cannot be expressed
in such a way, because it contains a collection of algorithms with dif¬

ferent complexities. Deterministic algorithms like the Octree are an ex¬

ceptions here, because the running time mainly depends on the number

of cells in the tree. But for iterative refinement algorithms, where point
insertions are governed by local quality criteria, predictions for the run¬

ning time are not possible. Also, the construction of a coarse mesh can

be more difficult than that of a fine mesh, and thus take longer.

Other than complexity, practical consideration are also taken into

account for an optimal implementation: robustness, easy implementa¬

tion, and expected characteristic of the input (e.g. sophisticated search

algorithms are not needed for only a few items).

22 Chapter 2. Background and motivation

Exactness of predicates and algorithms

Mesh generation has to fight with a common problem in computational

geometry: the imprecision of computations due to round-off errors. This

can lead to incorrect solutions of algorithms; wrong results in predicates
can cause infinite loops or exceptional situations when the algorithm
cannot continue. The problem is related to the fact that only a limited

number of digits (bits) can be stored on a computer but an unlimited or

an infinite number of digits is needed to express the final and temporary
results.

The situation is slightly different for predicates, i.e. a function lRm —»

{true, false}, if they use only additions, subtractions, and multipli¬
cations. In such a case, algorithms can internally use higher preci¬
sion to store temporary results with exact values. The procedure then

can return the exact answer, often by a simple sign check. This intro¬

duces some overhead, but fast algorithms are available that are output-
sensitive and only extend the representation if it is necessary [She97a].

In algorithms which compute new locations of points divisions, square
roots, and transcendental functions cannot be avoided, and rounding
of the results becomes necessary. This can lead to conflicting situa¬

tions, e.g. an algorithm that computes the intersection point of two

lines rounds its output so it fits into the number representation. An

exact predicate finds in the general case that the computed point does

not lie on the lines!

The use of tolerances can help in these situations: the predicates
then return an undecidable boolean value, if a certain floating point
number falls within a tolerance interval around zero. These intervals

can be calculated a priori [KW98] or dynamically depending on the

input to the predicate [VilOO]. The calling algorithm would decide on the

strategy to follow. In the above example the predicates testing whether

the intersection point lies left-of and right-of the lines evaluate both

undecidable which can be interpreted that the point lies on the line.

A particular algorithm can sometimes find alternative ways to han¬

dle degenerate cases. For example an AFT generator has to check, on

which side of the base face a candidate point lies. In a critical case

the tetrahedron that is formed has such a bad quality that it must be

rejected also from these considerations.

2.9. Modularity 23

2.9 Modularity

The different tasks needed to complete the generation of a mesh can be

implemented in modules. This makes it possible to replace individual

algorithms by other modules. In this work however, they are grouped
around the normal offsetting, and the proposed implementations in this

work are tuned for this purpose. Table 2.2 displays the various modules

in the sequence of their invocation. The 2D and 3D implementations dif¬

fer in some respect so they are shown separately. Also, a 2.5D generator
is mentioned which handles the surfaces meshes for the 3D generator.
In some cases two possible paths have been studied: one method using
a standard AFT with intersection test and an alternative method using
point insertion with local reconnection. The latter method has some

advantages especially in 3D, as it is discussed in Sec. 4.4.

24 Chapter 2. Background and motivation

2D

2D-Isoline(25)
2D-Thin(36)

2D-Refine-Curvature(39)
2D-Boundary(35)

2D-Noffset(26)
2D-Triangulation(31)

2D-Delaunay(32)
2D-Triangulation(3 1)

2D-Delaunay(32)
2D-Reconnect(33)

2D-Refine(31)

3D

3D-Isosurface(70)(25D-Parametric-Map(67))
"3D-BOUNDARY" => 2.5D

3D-Noffset(42)
3D-Incremental(48)
3D-Extraction(50)

3D-Incremental(48)

3D-Reconnect(53)
3D-Refine(55)
3D-BMCDT(52)

2.5D

25D-Triangulation(60)
25D-Reconnect(67)

25D-Refine(61)

Table 2.2: Modules for 2D, 3D and, 2.5D generator. The numbers in

parenthesis refer to the page in this thesis.

Chapter 3

2D case: Noffset2d

The 2D version of normal offsetting is discussed as a

modified Advancing Front Technique. The node

creation, the global intersection test, and local

operators are introduced as well as boundary meshing
algorithms that are adapted to normal offsetting are

described. Finally, an alternative approach that works

without a global intersection test is proposed.

3.1 Input to the algorithm

Normal offsetting in 2D takes as input a polygonal boundary description
where each material region is described by one or many simple single-
connected polygons. A polygon is said to be simple if there is no pair
of non-consecutive edges sharing a point. This boundary description is

known as planar straight line graph (PSLG[BE92]). For multi-domain

models this means in particular that at the interface between two re¬

gions, the polygons for both regions must use the same points.

In the framework of adaptive meshing it can be useful to include

isolines of certain data functions defined on the domain [2D-Isoline].

25

26 Chapter 3. 2D case; Noffset2d

P' R

h

Figure 3.1: The building block of normal offsetting: a quadrilateral.

Examples are diffusion fronts in process simulation and p-n-junctions in

device simulation. In this chapter it is assumed that these lines have been

computed by some means and have been inserted into the boundary

description. In that manner isolines are treated like material interfaces.

Apart from this geometric input, the algorithm also needs refinement

information, which are:

• the height h and the length I of the anisotropic elements at the

boundary (Fig. 3.1),

• a coarsening factor / by which the anisotropy decreases for ele¬

ments further away from the interface,

• maximum number of layers, and

• a maximum edge length that is allowed for any edge in a particular
material region.

A detail description on how to specify these data is postponed to ap¬

pendix B; in particular these parameters can be localised.

3.2 A 2D string algorithm [2D-NOFFSET]

The normal offsetting approach aims at creating interface parallel and

orthogonal mesh lines. This is done by creating layers of quadrilaterals

(Fig. 3.1) with thickness h, which is done for each material region sepa¬

rately and only one layer at a time. The starting front of this process is

3.2. A 2D string algorithm 27

h2

P

Figure 3.2: Construction of an image point

created from the input by segmenting the edges. When a quadrilateral
is created the base edge is removed from the front and the parallel edge
is inserted into this list. The lateral edges (like PP' in Fig. 3.1) are not

part of the front, but they separate the meshed area from the unmeshed

void. When a neighbouring quadrilateral is added, the lateral edges lose

their role as separator; but this is not always the case.

This procedure has similarities with Advancing Front Technique

(AFT) type mesh generators. In contrast, quadrilaterals are created

instead of triangles and not all edges are a candidates as base for a new

element.

3.2.1 Node creation

Each node P of the current front generates one image point P' (Fig. /ref-
fig:pointlocation2d). The main goal is that the edges of the new front

are parallel to those of the old front edge. Given the normal vectors

at the two front edges attached to P: ni, n2 ; the parallel lines can be

expressed by

(x — P) - ni = h\

(x-P)-n2 = h2.

The shift vector S|| to the image is then:

k = det(ni,n2) = nii290(n2) = -n2Ä9o(ni)

S|| = -(/iiÄ9o(n2) - /i2#9o(ni)),

where Rgo is the rotation matrix (by 7r/2):

28 Chapter 3. 2D case; Noffset2d

Figure 3.3: Multiple images at interior angles larger than 37r/2.

If the normals are (almost) parallel this computation is not numeri¬

cally stable, and there is no solution if h\ and h2 differ. In those cases

the following average is the best compromise:

sav = ^{hi^i + h2n2)

In order to achieve a continuous transition between the two methods a

weighted average is used with the weights:

w

w
av

= K2{h1+h2)2ls\
= (l-K*)(hl-h2)2/s

S =

W\\S\\ +wavSav

W\\
+W,

av

As the front advances it happens that frontal nodes have only one

front edge attached; the image point is then found in the direction of

the normal of this edge.

There is one exception to the one image rule: if the interior angle
exceeds Sn/2 two images are created in the first layer in the direction

of their normals (Fig. 3.3).

3.2.2 Front advancement

As the front advances into the unmeshed area several algorithms are

employed to ensure validity and quality of the mesh.

3.2. A 2D string algorithm 29

P"

1 ->

XR'

\| R'

P'

P R

Figure 3.4: Local quality tests; left: long edge, middle: twisted element,

right: twisted element that would happen in the consecutive layer.

Local tests After the image points of the node of one layer are cre¬

ated, the quadrilaterals that would be created are checked for quality.
These algorithms are local in nature (Fig. 3.4):

• long edges (compared with the maximum edge length in this ma¬

terial region),

• twisted elements, and

• some twisted elements can be detected before they occur and can

be avoided.

The pictures in Fig. 3.4 also show the amendments to the front: the

quadrilaterals are replaced by triangles or pentagons, that are divided

into three triangles. If these repair algorithms fail the front is stopped
locally at this edge and the quadrilateral is removed.

Global tests Besides these local tests a global intersection test is

necessary. Collisions of the front with other parts of the front must be

detected because the front is stopped where such intersections occur.

The search must be thorough, because an over-looked intersection lets

the front run over other elements; in that case the mesh is invalid and

the generator runs into an infinite loop. On the other hand, such a global
intersection test is time consuming. To speedup this operation, a can¬

didate edge for creation is checked with the exact intersection test only

against those edges that have an overlapping bounding box. The search

for overlapping bounding boxes is performed in an Alternating Digital
Tree [BP91]. This binary tree splits axis aligned cells in two halves and

30 Chapter 3. 2D case: Noffset2d

alternates at each level the coordinate axis of subdivision. Since bound¬

ing boxes in 2D are defined by four values the four dimensional version

of the tree is used.

The time complexity for this search is

0(n\ogn).

with these considerations

Coarsening The mesh is already
coarsened because the thickness of

each layer increases as the front ad¬

vances. Another algorithm tries to

increase the length of the front edges
as the front progresses, so that a

smooth transition to a coarse and

isotropic volume mesh is possible. As

shown in Fig. 3.5 the line at node P

is not continued and the two quadri¬
laterals are merged to one pentagon.
The criteria to this are:

V

Figure 3.5: Front coarsening: a

mesh line is terminated at P

• The angle L'PR' has to be smaller than |.

• The angle LPR has to be larger than |7r.

• The edge L'R' has to be shorter than the maximum edge length
for this region.

The idea here is that the merged situation is locally Delaunay so that

P' is not reintroduced later.

Figure 3.6: Lefl: bad quality elements are generated in the transition

where the normal offsetting thickness jumps drastically; right: a better

quality can be achieved by subdividing quadrilaterals

3.3. Extraction of the final mesh 31

Anisotropy enhancement As mentioned before the marching dis¬

tance h can vary along the front, but at flat parts of the front an abrupt
variation leads to elements of bad quality which are generated to fill the

gap (Fig. 3.6 left). A better way to achieve higher and lower anisotropic
elements close to each other is to, to create layers with smaller aniso¬

tropic quadrilaterals and in a second to step cut some elements parallel
to the front (Fig. 3.6 right). By this subdivision the anisotropy can be

enhanced by powers or two. In the transition region neighbouring ele¬

ments are only subdivided with a difference of one level, thus avoiding

highly connected nodes.

3.3 Extraction of the final mesh

[2D-TRIANGULATION]

Normal offsetting finishes if no space is left to add further elements

or if the maximum allowed number of layers is reached. Since normal

offsetting does not fill the void a polygon remains, which is triangulated
by a divide-and-conquer approach: the polygon is cut at reflex points
until convex polygons or triangles are created [PS85].

At a reflex point the polygon has an obtuse interior angle. A poly¬

gon having no reflex points is convex and can be easily triangulated
(by connecting an arbitrary point with all others). Thus, the number

of reflex points measures the difficulty to triangulate the polygon. By

cutting at reflex points the two child polygons have fewer reflex points
and the problem becomes successively simpler. This simple algorithm
has proven sufficient for the applications of this mesh generator.

3.4 Isotropic refinement and Delaunisation

[2D-REFINE]

Normal offsetting does not in all cases create a sufficiently refined vol¬

ume mesh, so further refinement is necessary. Also the quality (wrt.
large angle and high connectivity, which are considered harmful for the

Box Method [HROO, VilOO]) is improved by the following refinement

32 Chapter 3. 2D case: Noffset2d

Figure 3.7: In order to destroy an edge, more than one refinement

point at neighbouring triangles might be necessary.

algorithm.

The isotropic refinement algorithm relies on a BMCDT, which is con¬

structed form the triangulation by successive edge flips [2D-Delaunay]
(see Ref. [Law72, VilOO]). Non-Delaunay interface and boundary edges
are refined by perpendicular inter-sectors, if these points are not to close

to endpoints of the edge (in which case the edge is refined at the per¬

pendicular inter-sector or at the midpoint). The front edges of normal

offsetting are locked as constraints in this procedure, i.e. these edges are

not flipped but refined if they are non-Delaunay.

The algorithm iteratively destroys edges for which one of the follow¬

ing criteria is met:

• the edge is longer than the maximum edge length supplied by the

user,

• the opposite angle in a neighbouring triangle is larger than the

maximum angle,

• the edge is the longest edge incident at a node that is highly
connected, or

• other criteria can be easily added.1.

These edges are destroyed by refining at the Voronoï centres of the

neighbouring triangle with the larger circumradius. After the point in-

1In this implementation, the refinement criteria of the generator Mesh-ISE

[Int99c] are accessible to this algorithm.

3.5. An intersection-test-less method 33

sertion the BMCD is reestablished immediately. This reason for the use

of the BMCDT at this point is that it guarantees that Voronoï cen¬

tres lie in the same material region as the triangle they belong to. In

some cases multiple points are needed to effectively destroy the edge

(Fig. 3.7).

This technique is used because Voronoï centres are places relatively
far away from other mesh points. Thus, the result is a graded mesh of

good quality [She97b, Rup95]. If the insertion point is too close to an

interface or locked edge, this edge is refined first. By observing the con¬

straints the anisotropy of the mesh can be maintained, if the demanded

isotropic mesh density is not too small. The method of inserting Voronoï

centres cannot, however, create or enhance any anisotropy.

The termination of the refinement algorithm is important. For the

edge-length criterion the algorithm stops because, in each step, the edges
become shorter.

When suppressing large angles, convergence can be proved for a

limit of 120° [HR00]. In practical examples the maximum angles can

be pushed below 100°. The goal of obtuse-angle-free meshes, however,
cannot be obtained with unstructured meshes. As the only method the

quad-tree can achieve this goal [BE92], but only at the expense of many

mesh points (with the exemption of some special - axis aligned - cases).

Concerning the suppression of high connectivity, this refinement can

destroy the normal offsetting structure if it tries to lower connectivity
to under eight edges per node. For a maximum of ten edges per node

the algorithm terminates.

3.5 An intersection-test-less method

[2D-RECONNECT]

The weakness of normal offsetting, as it is described so far, lies in its

intersection test. In this section we describe a alternative method that

exchanges the global search by a local search. The running time of this

method then grows linearly with the number of edges in the front.

At first, a constraint DT of the boundary mesh is constructed; there

34 Chapter 3. 2D case: Noffset2d

Figure 3.8: Point insertion with local reconnection

are multiple methods for doing this, e.g. in Sec. 3.4. Note that this is

a much simpler task than triangulating the remaining polygon because

this polygon contains more reflex points, which increases the complexity.
The front is again initialised by the interface edges and the image points
are computed in the same manner as before.

The points of the new layer are inserted into the DT of the boundary

mesh, and are locally reconnected in a constrained Delaunay manner.

The local intersection test now works by checking new points against

boundary edges and existing front edges. A point is rejected if it in¬

trudes the diametral circle of a boundary edge (see left of Fig. 3.9).
Additionally, if the insertion of this point lets a front edge become non-

Delaunay, the point is not inserted. By exploiting the neighbourhood
relations these conflicts can be found in a local search.

If the images of the two endpoints of a front ends have been inserted

and the connecting edge exists it is locked and cannot be removed any¬

more by are future reconnection step (see [MW95] and Fig. 3.8). In

many cases the new front edge is recovered automatically.

In concave parts of the geometry, where the front is expanding, it

may happen that an edge is not recovered automatically, although the

end points can be inserted (see right of Fig. 3.9). In that case three

methods can be pursued:

• Recover the edge actively by swapping, in which case the Delaunis-

ation will regard this edge as a constraint and insert points. The

front continues at the recovered edge.

3.6. Boundary grid for Noffset2d 35

Figure 3.9: A point that is not be inserted (left), and an edge that is

not recovered automatically (right)

• Recover the edge actively by point insertions, which involves more

work to find a good location for these points. In this case the front

continues at multiple edges.

• Do nothing. If the edge is blocked by some interface or constraint,
the front cannot be continued here.

The implementation of the first approach gives already satisfactory

results, in particular as it automatically detects the third case, by simply
not being able to recover the edge.

For practical examples the alternative algorithm is not necessarily
faster than the intersection test, because the neighbourhood search itself

is expensive.

This method has another advantage of being able to produce ele¬

ments of better quality because it detects proximity easier. If the last

layer is very close to an opposing front its edges pass the intersection

test, but they form bad quality elements. The alternative method rejects
these points.

3.6 Boundary grid for Noffset2d

[2D-BOUNDARY]

The discussion has so far considered only the volume mesh and the ID-

boundary grid was taken for granted. But the quality of the volume

36 Chapter 3. 2D case: Noffset2d

mesh naturally depends on the boundary mesh it started from. The

main algorithms to discretise the polygonal boundary description are:

• edge length criterion: this algorithms refines a boundary according
to a (local) edge length.

• balancing: neighbouring edges should not differ in length by more

than a factor of two.

3.6.1 Thin layer regions [2D-Thin]

Figure 3.10: Point propagation
at non-matching stacks of aniso¬

tropic elements: the dashed lines

are introduced by the Delaunis-

ation

At thin layers a special treatment is

necessary. A layer is regarded as thin

if the fronts starting from opposite
sides of the layer are not yet isotropic

(due to the coarsening) when the

fronts collide. The problem is illus¬

trated in Fig. 3.10: the points in the

last layer are so close to the edge
of the opposing front that the front

edges are not Delaunay. In conse¬

quence the Delaunisation inserts a

series of points, with the result of a

lowered anisotropy and an unbalanced mesh. If the last layers were al¬

most isotropic this propagation could be terminated after a single point.

In order to quantify the problem, consider the following estimation:

let d be the layer thickness, h the thickness of the first layer and / the

coarsening factor. After n layers the two fronts meet approximately at

•-<?

Figure 3.11: At thin layers boundary points must be arranged that

growth lines of normal offsetting meet.

3.6. Boundary grid for Noffset2d 37

Algorihm 3.2; Thin Layer Algorithm
Input: boundary grid, regions A,B,C that sandwich a thin layer
in region B, tolerance for geometric changes

find nodes at interface AB —> UstAB

find nodes at interface BC -> UstBC

that constitute the thin layer

map points of UstAB to interface BC

(mirror at medial axis)
remove points of UstBC from the mesh

if the geometry change is smaller than tolerance

OUTPUT: matching boundary grid

the middle of the layer:

2 h f-1

If the final layer is isotropic then for the boundary edge length I the

approximate relation holds

I > hfn.

From this it follows that for thin layers the approximate inequality is

valid:

l>±(f-l) + h.

As a remedy, two methods are possible. Firstly, one could refine the

boundary according to this inequality in such away that the final layer is

isotropic and the propagations do not take place. But too many points
are needed for this solution

An alternative is to relocate the boundary points such that they
match, i.e. the nodes in the final layers lie close to each other like it is

shown in Fig. 3.11. The algorithm is sketched as Alg. 3.2. The main idea

is that points from one side are mapped to the other side by means of the

medial axis and the old points of the target interface are removed, if the

geometry does not change to much. With this matching boundary mesh,
the points of the final normal offsetting layer do not propagate because

38 Chapter 3. 2D case: Noffset2d

Figure 3.12: A thin oxide layer in process simulation: the growth lines

of normal offsetting seem to go through the oxide. The anisotropy of the

elements is conserved and the ID grid remains balanced

they do not intrude any circumspheres of triangles of the opposing side.

Clearly, such an algorithm changes the geometry if the interfaces are not

linear. This has to be done with care, in order not to alter the physics
of the problem too much.

A realistic case study is a thin oxide layer in a process simulation:

Fig. 3.12 shows the effect of this algorithm.

3.6. Boundary grid for Noffset2d 39

3.6.2 Limitations of anisotropy in 2D [2D-REFINE-
Curvature]

The objective of the point placing strategy of normal offsetting is that

the anisotropic mesh is Delaunay. At corners this is not necessarily the

case if the boundary grid is too coarse. Figure 3.13 depicts a conflicting

(left) and the limiting (right) case: if R is far away from P, then P' lies

inside the diametral circle of the boundary edge PR. The limiting edge

length is

2h
PR= ^T7-

sin 20

This local length is taken as an additional criterion to generate the

boundary grid, which results in some kind of curvature dependent re¬

finement. From another point of view this result can be seen as a lim¬

itation to anisotropy. Since anisotropy is defined as A = PR/h, the

maximum anisotropy at such a corner is

A --*-
sin 20

For straight line segments this formula evaluates to infinity, which means
that - locally - there is in this case no restriction to anisotropy due to

the BMCD criterion.

P RPR

Figure 3.13: left: the edge PR is so long that the image point P' in¬

trudes its diametral circle; right: the limiting case

40 Chapter 3. 2D case: Noffset2d

Seite Leer /
Blank leaf I

Chapter 4

3D case: Noffset3d

The idea of normal offsetting is carried over to 3D.

The node creation and front advancement are

discussed. Two approaches are presented for robust

extraction of the final mesh. The creation of a volume

triangulation is crucial in both methods.

In this chapter the normal offsetting idea is extended to 3D. In the

layering prismatic elements replace the quadrilaterals. Some algorithms
like local repairs of the front or the intersection test find their equivalents
in 3D. Exceptions are, that the parallel character of front faces cannot

be preserved, and that the triangulation of the remaining polyhedron
cannot be done by a direct method. In fact, the extraction of the final

mesh turns out to be a major obstacle towards a robust implementation.
Therefore indirect methods are used for this task, two of which are

described and compared.

The first method keeps the global intersection test which is typical
for a classical Advancing Front mesh generator. An alternative method

replaces it by a local search.

41

42 Chapter 4. 3D case: Noffset3d

4.1 Input to the algorithm

Similar to the two dimensional case the input to this algorithm is a

geometric model description and refinement information, but only a

triangular surface mesh is needed for this chapter. The construction of

such a surface mesh is subject of a later chapter.

The parameters for the 3D generator are defined using the same

language as for the 2D version (App. B). Again the main parameters

are thickness of the first layer, coarsening factor, maximum edge length,
and number of layers. These parameters can be defined locally with some

flexibility, e.g. the front need not start from all boundaries.

4.2 A 3D string algorithm [3D-NOFFSET]

Figure 4.1: Building
block of normal offset¬

ting in 3D: a prismatic
element attached to a

surface triangle.

The analogue to 2D quadrilaterals in 3D nor¬

mal offsetting are prismatic elements (Fig. 4.1)
that are added to the triangular surface mesh.

In many cases, these elements are not exactly

prisms because in general, the triangles they
contain cannot be created parallel and of same

size; also the lateral faces of prisms are not nec¬

essarily rectangles, but quadrilaterals, so they
need to be triangulated.

For further understanding, it is important
to see that the prismatic elements are only

temporary in nature: the mesh extraction al¬

gorithm replaces them by tetrahedra. In that

triangulation the diagonal introduced into the

quadrilaterals can be changed, so that untriangulatable configurations
are resolved automatically.

As the front advances local operators are applied to improve quality.
Additionally, collisions with boundaries and other parts of the front

must be detected: two different methods are discussed.

4.2. A 3D string algorithm 43

Figure 4.2: Construction of image layer; left: at folds; right: the image

point should not intrude the equatorial sphere of a surface triangle.

4.2.1 Node creation

The goal of the normal offsetting method is the construction of an image

layer of the surface mesh with a given thickness. Additionally, because

of the BMCD requirement, the nodes of the image layer should not lie

in the equatorial sphere of surface triangles (see right in Fig. 4.2). As

a compromise between these contradicting demands the following local

construction is chosen.

Let P denote a vertex of the surface mesh and P' its image point.
The surface node is attached to surface triangles with k distinct surface

unit normals n^; the marching distance at normal i is hi. Depending on

the number of normals, different computations are chosen.

k = 1 In the simplest case P' = P + nh.

k = 2 The two planes (i = 1,2) defined by (x — P) • n^ = hi intersect in

one line. P' is chosen on this line that is the closest to P, which

gives a third equation: (ni x 112) • (x — P) = 0 (see left in Fig. 4.2).

k = 3 In this case, there are three equations (x — P) • n^ = hi that need

to be solved.

k > 3 The system in this case has too many equations to satisfy all

conditions. A point is chosen that is as close as possible to all

planes by a least-square-fit, i.e. P' minimises the function

L(x) = £[(x-P).n,-^]2.

44 Chapter 4. 3D case: Noffset3d

The matrix equation to be solved for x is

^2m[(x-P).ni-hi] = Q.

i

There are cases where there exists no point that is visible from all

faces attached to P. The described procedure does not consider this

problem: the only solution would be to create multiple images for this

point. Since this problem does not arise often, the implementation does

not treat this special case.

The second two cases involve the solution of a three-dimensional

problem Mx = y. The matrix M may be singular or almost singular;
in that case the solution can either not be obtained or it is not reliable

as an answer to the geometrical question due to floating point roundoff.

In these cases the following procedure is applied.

The fact that the matrix is singular or almost singular is equivalent
to one eigenvalue of M being zero or almost zero compared with the

other eigenvalues. Let vq be the eigenvector of this eigenvalue, and V the

(two dimensional) orthogonal space of vo spanned by two unit vectors

vi and V2:

V := {v0}x = R vi + R v2.

Furthermore, A defines the projection R3 —>• V (i.e. Aa/3 = vfuf+^^2)•
A reduced problem is solved in two dimensions:

AM\vx = Ay for an x e V.

Of course, the 2D problem can still be singular or almost singular. In

that case only one eigenvalue of M differs (substantially) from zero. Let

V2 be that eigenvector, then

v2 y
x= m—V2

V2 • MV2

is chosen, i.e. x lies in the subspace defined by v2.

4.2.2 Data structure

The data structure (Fig. 4.3) consists of the hierarchy of the items node,

edge, and face and represents the layer structure. The structure in one

4.2. A 3D string algorithm 45

level-1

01

level

0,1
r..

level+1

NodeNode. :. Node ;

n > 0

locus

lateral faces -

thickness

factor

n >!

2

n > 0

0,1
r__

Edge
0*~1

..

Node ;

n >!

3

Face

Figure 4.3: The hierarchical data structure for normal offsetting in

3D.

layer is such that faces are made of three edges and an edge connects

two nodes. Back-links are inserted for fast neighbourhood searches. The

connecting links between layers are pointers from nodes to its (unique)
child and its (maybe multiple) parents. The nodes in the first layer are

characterised by having no parents.

4.2.3 Front advancement

When the front advances, the validity
of the generated prismatic elements is

checked locally and globally.

Intersection test The global inter- Figure 4.4: A 2D example
section test ensures that the front does for proximity: if the proximity
not cross itself or the surface of the do- is detected the dashed element

main. Like in other advancing-front im- should not be created

plementations this is the most expensive
module in terms of computational complexity. An octree is employed to

speed up the search for possible intersection partners.

Like in 2D, the intersection test is also critical in terms of robustness,
as a single intersection that has been overlooked, generates crossing

46 Chapter 4. 3D case: Noffset3d

elements and the entire mesh is invalid. The policy here is to reject a

face in case of doubt, because badly shaped elements would be created if

elements were allowed that are close but not intersecting (Fig. 4.4). The
front is stopped locally if such nearly-intersections are found, but this

is not always possible since proximity cannot be measured with such an

intersection test.

This global test is inevitable in classical advancing-front approach.
Section 4.4 proposes an alternative algorithm that replaces the global
search by a local test. It also offers a way to measure proximity.

Quality check Some invalid elements or elements of bad quality can

be found by local algorithms. Tests for poor elements detect if

• the edge length in the child level is too short,

• the area of triangle in the child level is too small, and

• the element is twisted, i.e. the direction of the normals differ by
more than 90 degree.

These problems can be mended by two operators Merge and Re¬

fine as shown in Fig. 4.5, that work on the edges of the front. Merge

collapses an edge and creates tetrahedra (instead of prismatic polyhe-

dra) on top of the attached triangles (e.g. for a twisted element in right
of Fig. 4.5). The Refine operator splits an edge and in consequence

splits the attached triangles. Polyhedra of higher order are created in

this case. The operators are applied on the edge that cause the defect in

order to continue the front. In this process, the nodes can be relocated;

Figure 4.5: The operators Merge (left) and Refine (middle) work on

edges of the front; the dashed lines show new edges.Right: one edge of a

twisted element is Mergeed to a point.

4.3. Flow I 47

surface mesh

" "

Noffset3d with

intersection test

volume

triangulation

'r

mesh extraction

i

Delaunisation

Figure 4.6: Flowchart of algorithms for a classical advancing-front
approach

so the parallel character is sacrificed to be able to continue the front. If

the attempt to repair the new front fails the front is stopped locally.

4.3 Flow I

Two strategies are possible to handle mesh extraction: one method uses

a classical advancing-front approach with a global intersection test. The

method which is described in Sec. 4.4 uses a Delaunay reconnection

algorithm with localised intersection tests.

The flow chart of the first method is depicted in Fig. 4.6. Normal

offsetting is applied to the surface mesh as it has been described in

Sec. 4.2. For the following a volume triangulation is needed, which may

be constructed be any algorithm. Here, a method is presented that does

not created any volume points. Using the volume triangulation as a base,
the final mesh for the normal offsetting can be extracted and delaunised,
as it will be discussed.

48 Chapter 4. 3D case; Noffset3d

4.3.1 Volume triangulation [3D-Triangulation]

The volume triangulation method of this implementation follows the

references [She97b] and [KSVFOOb]; it uses a randomised incremental

Delaunay method. Starting with a cube of three times the size of the

bounding box, which is triangulated by five tetrahedra, the vertices of

the surface mesh are inserted using an incremental Delaunay technique

(Sec. 2.6).

Since the Delaunay kernel does not respect material boundaries not

all boundary faces are present in the triangulation and the recovery of

interface edges and triangles becomes the crucial part. If an interface

triangle is missing the material associations are lost and the geometric
model destroyed.

To recover boundary faces point insertions cannot be avoided for

which different strategies are known. George et al. [GHS88] place the

refinement points off the edges and triangles and are therefore able to

recover faces in the volume mesh exactly as they are in the surface mesh.

However, since those faces violate the Delaunay criterion, they cannot

be accepted in the final mesh and are refined in the final Delaunisation

step. Therefore, those refinement points are added at an earlier stage,
and edges and faces are recovered as their refined entities. The algorithm
follows Shewchuk's work [She97b] with the modifications that it does

not fail on small inputs.

At thin layers the algorithm terminates - in the worst case -, when

an isotropic triangulation is reached; then, the equatorial spheres of tri¬

angles on one interface do not contain points of the other interface. This

is not the desired goal of this mesh generator, but if the surface meshes

of the two interfaces are not compatible, an isotropic triangulation is

the only way to terminate given the requirement of a BMCDT.

4.3.2 Constrained incremental Delaunay kernel [3D-
Incremental]

The mesh extraction algorithm needs a helper algorithm, the constraint

Delaunay kernel (CDK), which is an extension of the standard Delaunay
kernel (Sec. 2.6). The constrained kernel leaves the material boundaries

4.3. Flow I 49

Algorihm 4.3: A constrained star-shaped Delaunay kernel (CDK)
Input: T in M3, a point P, and (maybe multiple) ti eT

with P eü

initialise cavity:

C(P) with ti and dC(P) as the faces bounding C(P)
build maximal cavity:
for all / 6 dC{P) and not boundary or constraint

n = neighbouring tetrahedron of / with n $ C(P)
if P inside circumsphere of n

then add n to C(P) and update dC(P)
(do not remove constrained faces from dC(P))

until all / £ dC(P) are boundary, constrained or no

circumsphere intruded

correct cavity:
for all / G dC(P)

for all neighbours n C(P) of /
find normal direction v of / in n

if P is not visible from / wrt. v remove n from C(P)
and update dC(P)

end-loop

Output: star-shaped cavity C(P) that respects constraints

50 Chapter 4. 3D case: Noffset3d

and constraints intact that the full Delaunay kernel destroys. A con¬

straint is a locked face, e.g. a front face of normal offsetting, in the

sense of a constraint-DT, which was introduced in Sec. 2.4.

Algorithm 4.3 sketches the CDK algorithm. Given the insertion point
and the seed tetrahedron that contains the point, it expands the cavity
like in the standard Delaunay kernel, but without crossing material

boundaries. In order not to loose the constraints those faces are kept in

the data structure that describes the outline of the cavity, even if the

two neighbouring tetrahedra are both inside the cavity. At this point
the cavity with the constraint is not star-shaped anymore.

To reestablish star-shapedness, the correction algorithm by George
and Borouchaki [GB98] is used, which was originally intended to over¬

come numerical problems of the in-sphere-test. It shrinks the cavity by

removing tetrahedra from the cavity that are neighbours of faces invis¬

ible from the inserted point, although their circumsphere was intruded

by this point. For constraint faces, both sides are tested for visibility, so

in any case one of the neighbouring tetrahedra is removed for the cav¬

ity. The constraints are therefore on the outline of the cavity or outside,
when the correction algorithm finishes. In an extreme case the cavity
can shrink so far that it contains only the seed tetrahedron.

The CDK-algorithm leaves the triangulation in a state that is not

Delaunay, which can be accepted temporarily. Its advantage is that ma¬

terial interfaces can be handled easier.

4.3.3 Extraction of the final mesh [3D-Extraction]

With the two previous algorithms at hand, the volume triangulation
and constraint Delaunay kernel, the mesh extraction works a follows.

The points created by the normal offsetting are inserted into the volume

triangulation with the help of the CDK. For each point in the first layer
the seed tetrahedron can be found in the neighbourhood of the surface

point of which it is the image. The seeds for points in the subsequent

layers can be found by following the growth lines of normal offsetting.
The CDK takes care to generate a mesh that is locally optimised, com¬

pared with the mesh that would be created by simply splitting the seed

tetrahedron. Additionally, the CDK does not remove interfaces like the

standard Delaunay kernel.

4.3. Flow I 51

Figure 4.7: The basic (mutually inverse) transformations for mesh

connectivity in 3D: 23-flip and 32-flip.

In addition to the points, also the front faces of normal offsetting are

enforced in the extracted mesh in order to preserve the layer structure.

The recovery of the front faces consists of simply identifying these faces

if they are present in the Delaunay triangulation. It is the aim of the

mesh generator to create as many of these triangles as possible. Other

edges and faces are recovered by swapping faces or edges. The basic

transformations that are applied are the 23- and the 32-ûip (Fig. 4.7).
The first destroys a triangle and the second an edge that is shared

by exactly three faces. Both transformation can only be applied if the

outline is convex, and are inverse to each other. A face that has been

identified or recovered is locked and the CDK treats it as a constraint for

subsequent point insertions. Not all faces can be recovered this way, but

to avoid over-refinement, the requirement to recover all parallel faces is

not maintained.

Concerning the mesh extraction, the 3D algorithm differs largely
from the 2D case. In 2D a direct triangulation is always possible without

additional points. The 3D task of extracting a mesh for the void that is

not touched by normal offsetting could be formulated as triangulating a

remaining polyhedron. This problem cannot be solved without adding
points to the polyhedron and algorithms that try to terminate with

a small number of additional point tend to be not robust. Ruppert
and Seidel [RS92] discuss the problems regarding the triangulation of

polyhedra. In the case of 3D normal offsetting it is not necessary to

triangulate the remainder in a strict sense. The indirect method that

has been developed here is robust and sufficient for this purpose.

52 Chapter 4. 3D case; Noffset3d

^^^-^ s?:-
^

""""•

S "S.

y -s.

Figure 4.8: Propagation of a refinement point through anisotropic lay¬
ers in 2D. Many additional points are inserted (empty circles) and the

anisotropy is lowered but it is not completely destroyed.

4.3.4 Delaunisation [3D-BMCDT]

Since the point insertion (using the CDK) and the recovery of the paral¬
lel faces does not follow the Delaunay criterion the extracted mesh has

to be converted into a BMCDT. Two different methods can be applied.

Firstly, local transformations (like Fig. 4.7) can be used to succes¬

sively improve the mesh until it complies with all criteria; this approach
has been described extensively in [VilOO]. The front faces generated in

normal offsetting are locked in this process, i.e. they cannot be destroyed
in a #3-nip; in cases when this face is not Delaunay it is refined.

Alternatively, the volume triangulation algorithm in Sec. 4.3.1 can

be employed with additional input: the points and the front faces cre¬

ated by the normal offsetting method. The front faces are treated as

constraints, i.e. like region interfaces, and are recovered by point inser¬

tions, if necessary. A weaker condition is applied on constrained faces,
since only for interface triangles the equatorial sphere must be point-
free in the BMCD condition. In the practical implementation the latter

method often terminates with fewer points.

In both cases the front faces are restored in non-Delaunay cases by
additional points, which lowers anisotropy to some extent but does not

destroy it completely. If one face in an anisotropic stack of faces has to

be refined in this way, it is very likely that a neighbouring layer also

needs refinement. In consequence a series of points is inserted; this be¬

haviour in anisotropic meshing is called point propagation. The analogue
situation in 2D is displayed in Fig. 4.8.

4.4. Flow II 53

The alternative strategy for the mesh

generator extends the idea of an

intersection-test-less normal offsetting

(Sec. 3.9) into three dimensions. It re¬

places the global intersection test by a

local search and combines the extrac¬

tion method closely with the point cre¬

ation [3D-Reconnect].

The flowchart is slightly different in

this case (Fig. 4.9): a volume trian¬

gulation for the surface mesh is again
needed. But normal offsetting works, in

this method, directly with the triangu-
Figure 4.9: Flowchart for lation. The front is initialised by the in-

reconnectton-based algorithm terface triangles of each material region

separately. The algorithms for node lo¬

cation (Sec. 4.2.1) and local improvement (Sec. 4.2.3) are applied in the

same manner as for the classical method. The final mesh is delaunised

in the same way.

After each layer is finished, its points are inserted into the volume

triangulation with the help of the CDK-algorithm (Sec. 4.3.2). The seed

tetrahedron can be quickly found by a neighbourhood search starting
from the parent node. The edges and faces that form the new front

face are recovered using the 23- and ^-transformation in Fig. 4.7.

Front faces are not forced by many refinement points in order to avoid

over-refinement. Once the face is recovered it is constrained for further

actions of the CDK-algorithm and initialised as a front face for the

consecutive layer.

Before inserting the image point P' of a node P into the volume

triangulation the following conditions are checked. They replace the

global intersection test. If any of these conditions is not met, the node

is rejected from insertion and the front is stopped locally.

Condition 4.1 P' is visible from P if the search path (via neighbour¬
hood relations in the volume triangulation) from P to P' does not cross

interface triangles or locked faces.

4.4 Flow II

surface mesh

volume

triangulation

i

Noffset3d with

reconnection

Delaunisation

54 Chapter 4. 3D case; Noffset3d

Condition 4.2 The point P' is reconnectable as child of P if it does

not fulfil one of the following conditions:

• P' is inside the equatorial circumsphere of an interface triangle,

• for a constrained face that has not P as a vertex, P' is inside the

circumsphere of the neighbouring tetrahedron that is not part of
the cavity generated by the CDK.

In other words, P' is reconnectable if the insertion into the triangu¬

lation, via the CDK, does not let any of the mentioned faces become

non-Delaunay. The condition 4.2 fails if the insertion is close to an inter¬

face or an opposite front face. Hence, the proximity of P' to an opposite
front can be determined by local algorithms.

Whereas the condition 4.1 is checked during the search for the seed

tetrahedron that contains P', the fact the P' is reconnectable is verified

after the cavity has been built.

Another important test is closeness to an already existing point.
The points of the seed tetrahedron are candidates: if one is closer than

a = 0.1 times the local marching distance away from P', then P' is

moved to this point.

A final remark on the expected running time of the reconnection

algorithm: the time complexity depends largely on the number of ele¬

ments in the cavity, which can be high in the beginning when no volume

points have yet been inserted. Since the points are inserted starting from

the surface the size of the cavity does not decrease very fast. Actually,
the size of the cavity depends on the geometry: for a cube the cavity
contains more element than for an elongated brick.

The final mesh is delaunised by one of the methods described in

Sec. 4.3.4.

4.5 Comparison of both methods

The two approaches are referred to as intersection-test method and

reconnection method and are compared in the following fields:

4.6. User-defined refinement 55

Running time The local search in the reconnection method is linear

in the number of faces in the current front, whereas the search in a

tree as the time complexity of ö(n logn). However, the neighbour¬
hood search itself is more expensive than the intersection test. In

practical examples the reconnection method proves to be faster.

Memory The intersection-test method needs a tree as an auxiliary
data structure. For the reconnection method neighbourhood infor¬

mation must be stored on the faces. Many mesh data structures

provide this information already.

Quality The quality of the elements can be bad in the intersection-test

method because proximity cannot be detected if the faces do not

intersect. The reconnection method finds closeness to the opposite
front easily in the neighbourhood search.

Recovery of faces In the reconnection method the front stops if faces

cannot be recovered. In consequence some faces are lost in subse¬

quent layers. The intersection-test method starts the recovery in

the extraction method, that means the front continues regardless
of failure in recovery.

Robustness For both methods the programmer must be careful that

no intersection or no point rejection is overlooked. If a Delaunay
method is used in the reconnection method, however, conflicts can

be found simply be inspecting the the cavity. The consequences of

failure are different: the intersection-test method can enter infinite

loops, whereas in the reconnection method invalid elements are

created, that intersect each other.

4.6 User-defined refinement [3D-REFINE]

Normal offsetting does not fill the void with a fine enough mesh. This

can be due to early termination of the front because of intersections,
or front faces that cannot be recovered in the mesh extraction, or be¬

cause the user simply demanded only a limited number of layers. Then,
the mesh is further refined isotropically before the final Delaunisation.

The criterion is that edges judged too long are bisected; the refinement

point is inserted into the mesh with the CDK algorithm described in

56 Chapter 4. 3D case: Noffset3d

Section 4.3.2. In a simple implementation a maximum edges length can

be defined on each material region1.

4.7 Sliver elements

Slivers are tetrahedra of almost zero volume, but having reasonably

long edges. They can be part of a DT if four points are almost planar
and almost cocircular and if the radius of their circumsphere is limited.

Candidates for slivers are created systematically by normal offsetting:
at flat parts of the front the quadrilaterals of the prismatic elements can

induce slivers, e.g. the four points P, P', Q, Q' in Fig. 4.1.

In an incremental Delaunay method slivers can be suppressed by

shrinking the cavity as it was described in the CDK-algorithm. In con¬

sequence the mesh is not exactly Delaunay, but the deviation in the

Voronoi'-diagram is of the order of the thickness of the sliver element.

Experience shows that such a small error does not affect the Box Method

too much, because the error in the volume of the Voronoï-cells is only
small. On the other hand, computation of some properties becomes er¬

ror prone on sliver elements, e.g. the computation of the circumcentre

involves a division by the volume of the element, which can be close to

zero.

1 Other more local criteria are also possible, like defining refinement areas in the

manner of Mesh-ISE.

Chapter 5

Surface meshing

The generation of surface meshes for normal offsetting
is discussed using direct and parametric methods. A

mesh optimising algorithm is explained to handle

iterative refinement of the surface. A refinement that

is adapted to volume normal offsetting is introduced.

In addition, a method to construct parametric

mapping for triangulated surface patches is discussed.

5.1 Input to surface meshing

For surface meshing, the input description is that of a boundary rep¬

resentation (BRep) that is composed of planar polygons as faces. The

geometry must be defined as a topological model, so that the connecting

edges between two faces are common to both faces. In that respect the

input follows the definition of a piecewise linear complex (PLC), as in¬

troduced by Miller et al. [MTT+96]. In addition to the PLC, the model

must form closed volumes for material regions.

Since the surface mesh is the support for the volume meshing, it

must be adapted to the volume normal offsetting, which is the goal of

57

58 Chapter 5. Surface meshing

this chapter. In consequence, the same values for the parameters are

used for surface meshing.

5.2 Methods

The methods that can be used for surface meshing are limited because

the PLC is employed as input description. The reason for using linear

input is that often the real surface is not known in device simulation

or that the geometry itself is topic of the simulation. In other fields, an

analytical form, such as Bézier patches, is available to the surface mesh

generator and created points can be pushed to the real surface.

In applications such as device and process simulation, where the sur¬

faces are defined by triangulations, some authors suggest to reconstruct

a real surface from a given triangulation (e.g. [BF97]). These patches
are designed in such a way that they are smooth, close to the original
surface, and connect G1-continuous across edges ,

i.e. the tangential
planes are identical at lines where two patches meet. Walton and Meek

[WM96] describe a way to define such patches locally. In consequence,

the geometry differs from the polygonal description and the changes can

be considerably for thin layer regions; or the layer maybe completely de¬

stroyed. For this reason this approach is not followed in this work.

Two different approaches can be used for meshing boundary repre¬

sentations: the direct method refines and derefines the model directly in

3D space. On the other hand a parametric method maps independent

patches to 2D and uses 2D algorithms. The difficulty of this approach is

the construction of a mapping for patches that defined by triangulations,
which is subject of Sec. 5.7.

5.2.1 Direct 3D

One way (see Ref. [BF97] for more detailed description) to generate a

surface mesh is to apply transformations iteratively to a given triangu¬
lation until the given size and quality criteria are met. The operators
used are:

5.2. Methods 59

refine edges/faces adds points to the surface,

swap edges optimises connectivity of nodes,

move points optimises element quality, and

suppress edges removes nodes.

These operators, in general, change the geometry of the model. The

deviation has to be controlled, so that the final surface mesh differs

as little as possible from the input description. In particular controlling
deviations only for individual steps is not sufficient because changes can

sum up and destroy physical correctness of the description.

This approach can also be used to preprocess a noisy input triangula¬
tion to generate a geometric triangulation. To be efficient the algorithms
must distinguish geometric features from numerical noise.

5.2.2 Using a parametric map to 2D

For parametric methods the surface is defined by a known bijective
function f : Î1 C K2 —>• K3. Then a triangulation T of the domain in

2D can be lifted to 3D via f. In order to make the triangulation f(T)
match certain size and quality criteria in 3D, these criteria have to be

translated into 2D-space. This is done by defining a metric in 2D and

using an anisotropic method for meshing (see Sec. 2.6). The metric field

for 2D can be found by the transformation rules for tensors of differential

geometry

„aß — V^ „ij of* dfj

A/3D0«aOV

or, in the case when an isotropic mesh in 3D with size h is desired:

°ß-LEL ÊL
ß2D ~

h? dua
'

duß
'

This metric induces a distance measure in 2D space. Another approach
is to interface calls to f, when computing distances between to points

d2D(P,Q) = dSD(f(P),f(Q)) = \\f(Q) - f(P)||sD.

60 Chapter 5. Surface meshing

With this method 2D algorithms can be employed. In general the surface

of a model has to be decomposed into patches and for each a mapping is

found. An implementation has to make sure that the re-meshed pieces
fit together when the components are put together again.

5.3 Optimiser for direct surface meshes [25D-
Triangulation]

A meshing algorithm using a direct method is explained in this chap¬
ter. It uses only operators refine edges, refine faces, and swap edges in

planar configurations, so that the geometry model is not altered. For a

given triangulation of the surface an optimised triangulation is found

by applying these operator for certain edges in a similar way as in the

2D algorithm [Law72].

The conditions that are checked in order to decide whether an edge
needs to be flipped or refined are derived from the BMCD criterion:

Condition 5.1 Let e be an edge with two neighbouring triangles /i and

J2', the points in these faces opposite to e are referred to by pi and p2.

The edge e is surface-optimal iff pi is not inside the open equatorial

sphere around $2, and vice versa.

Condition 5.2 Let e be an edge with multiple neighbouring triangles fi;
the points in these faces opposite to e are referred to by pi. e is surface-

optimal iff for all faces pi is not inside the open diametral sphere of e.

Condition 5.2 is tested for non-manifold edges and folds, i.e. where

two non-planar faces meet. Condition 5.1 is only applied for edges with

two planar triangles as neighbours. These conditions reflect the BMCD

criterion in 3D: an edge that is not surface-optimal cannot be part of a

BMCDT. On the other hand, a surface-optimal edge may not be present
in the 3D BMCDT because the conditions are only checked for neigh¬
bouring faces and not globally.

The edges are swapped if they fail to be surface-optimal and are

swappable:

5.4. Refining surface meshes 61

Condition 5.3 An edge is swappable iff it is not locked, it has only
two neighbouring triangles, and these triangles are planar (i.e. not a

fold edge).

Some edges may carry a lock to protect them from being flipped,

e.g. in anisotropic meshing. Folds and locked edges are refined at the

perpendicular inter-sector of the disturbing point. In order to avoid

spiralling chains of refinement points around corners, these points are

protected. A corner in this respect is called an acute-node (see also:

[Péb98]):

Condition 5.4 Let P be a node and ei the fold edges incident to P

in sub-domain r. The fold edges are assumed to be cyclically ordered

around P. The point P is said to be an r-acute-node if for all i holds

Z(ei,ei+i) < ^. A node is an acute-node iff there is one region r for
which it is an r-acute-node.

In an initialisation step, these points are identified (once for the

rest of the algorithm, because new corners cannot appear), and a local

length is evaluated to be a third of the shortest fold edge incident to

this corner. Any possible refinement point on such an edge cannot be

closer than this distance and - in that instance - it is pushed away.

The conditions are checked for all edges in the surface mesh and

action is taken accordingly, until all edges are surface-optimal.

5.4 Refining surface meshes

The algorithm in the previous chapter can be localised: it operates only
on a limited list of edges. Other edges must be considered as the opti¬
miser changes the mesh but not all edges in the mesh have to be checked

in all cases.

Therefore Alg. 5.4 can be used to locally optimise the mesh after

refinement. The list of edges is initialised according to the type of prob¬
lem:

• All edges of the mesh (this is the case a global optimisation).

62 Chapter 5. Surface meshing

Algorihm 5.4: Local optimiser for surface meshes

Input: surface triangulation, stack S of non-surface-optimal edges

while S not empty

pop top of S —>• e

if e is surface-optimal continue

if e is swappable
then swap e and push edges on S

else refine e and push edges on S

end-loop

Output: all edges are surface-optimal

• After refinement of a triangle: the edges on the outline of the

original triangle are pushed on the stack (Fig. 5.1 left).

• After refinement of an edge: the edges belonging to the outline

of the two triangles and the partitions of the original edge are

examined (Fig. 5.1 right).

This optimiser can be used not only for surfaces in 3D, but also

in plain 2D and in parametric space that models a 3D surface. The

implementation can be unified in the language C++ by using templates.
Appendix C discusses the details.

^ A>
Figure 5.1: Operators to refine a face or an edge; the solid edges are

pushed on the stack and are reexamined.

5.5. Surface meshes for Noffset3d 63

5.5 Surface meshes for Noffset3d

With the use of a direct method some refinement conditions can be easily

implemented by using the refinement-optimisation algorithm previously
introduced. This implementation uses the following criteria to decide

which edges to refine:

• A user-defined edge length parameter defined per region or inter¬

face 1.

• If an opposing angle is larger than a given value.

This follows the principles of isotropic refinement in 2D (Sec. 3.4). The
Voronoï-centres of one neighbouring triangle is inserted if the edge is

not a fold or locked. In that case the edge is refined at the edge mid.

5.6 Limitations of anisotropy in 3D

The goal of normal offsetting is to consolidate anisotropy with the

BMCD criterion. There are limitations to this, if the surface mesh is

too coarse at non-planar patches and the first layer image of a surface

node intrudes the equatorial sphere of an attached triangle. A crite¬

rion for this is introduced in this section and a refinement strategy that

generates surface meshes that conform with this criterion.

The 2D problem was discussed in Sec. 3.6.2; there, further refinement

of the boundary was necessary. In a similar way, resolving the conflicts

in 3D leads to a special surface meshing technique.

5.6.1 Surface mesh criterion

The following symbols are used in the discussion (see Fig. 5.2)

• P: the surface node,

1The refinement criteria defined for the generator Mesh-ISE can be used in this

implementation.

64 Chapter 5. Surface meshing

Figure 5.2: In the shaded area lie the allowed places for centres of
equatorial spheres around surface triangles attached to P on this sur¬

face patch. The solid lines PR and PR' are folds that bound this patch.
The line RR' is the intersection line of the surface patch and the

mid-perpendicular plane of the segment PP'. Note that the volume im¬

age P' is assumed outside the plane of the paper. Q is the perpendicular
inter-sector of P on the line RR'.

• P': the image of P computed by the method in Sec. 4.2.1,

• fa: a surface triangle attached to P,

• nil the normal vector of fi, and

• Mi,rf. the centre and the radius of the equatorial sphere of fi.

P must fulfil the equation of the sphere (x — Mi)2 = r2. To comply with

BMCD criterion, P' lies outside the sphere:

(P'-Mi)2 > r2

=> (P' - P)2 + 2(P' -P)-(P- Mi) > 0.

The last inequality can be interpreted as the condition that Mi lies in

the half-space defined by the mid-perpendicular plane of the segment
PP' on the same side as P. Naturally, Mi lies in the plane of fi, so

another condition has to be fulfilled: (Mi — P) • rij = 0.

The condition for a well-refined triangle attached at this corner can

be expressed in terms of its circumcentre M: it must be in the shaded

region in Fig. 5.2. In other words:

5.6. Limitations of anisotropy in 3D 65

Figure 5.3: At folds the allowed area for circumcentres is a stripe paral¬
lel to the fold. The refinement to generate triangles that are well-refined

is similar to 2D normal offsetting.

Condition 5.5 A triangle fa attached to a surface point P with image
P' is well-refined (with respect to a 3D normal offsetting) iff the circum-

centre of fi lies on the same side as P of the mid-perpendicular plane

of the segment PP'. The point P itself is well-refined iff all its attached

triangles are.

For points on planar patches this is always fulfilled, but not for points
at folds or corners.

5.6.2 A suitable refinement algorithm [25D-Noffset]

To understand the refinement strategy, the case of a point P on a geome¬

try fold (Fig. 5.3) is examined closer. In that case the mid-perpendicular

plane is parallel to the fold, and the allowed region for circumcentres of

triangles is a stripe parallel to the fold. The proposed refinement then

introduces a mesh line parallel to the fold and at a distance twice the

thickness of the stripe. The refinement point is placed at the perpendic¬
ular inter-sector of P on this line. In that manner, a fold-sensitive mesh
is created that looks like a 2D normal offsetting on the surface, which is

driven by the 3D volume normal offsetting. There can be other refine¬

ment strategies that generate well-refined triangles, but the discussed

solution fits seamlessly into the concept of normal offsetting.

66 Chapter 5. Surface meshing

Figure 5.4: Refinement at a corner, so that attached triangles are

well-refined.

In more general cases, like the one shown in Fig. 5.4, where the mid-

perperdicular plane passes through the line RR', the refinement point
is chosen on the line that is parallel to RR' that is twice as far away

from P. Again the perpendicular inter-sector is taken. In addition the

points twice as far away from P as R and R' are inserted on the fold

itself. This is necessary, because the image of P in the volume must not

intrude diametral sphere of fold edges in the BMCD criterion.

The computation of the refinement points in terms of P, P', and n

is as follows. The point Q on the intersection line and closest to P lies

at

Q-P = An x [n x (P' - P)]

[n x (P1 - P)f
'

The intersection line cuts the fold edge PS at the point R, which can

be found at

R-P = X'(S-P)

(P' - P)2

(P'-P)-(S-P)'

The refinement points are placed, as mentioned before, at twice2 the

distance. The refinement points are inserted into the existing triangu¬
lation using the algorithm in section 5.3. Before inserting, closeness to

2To avoid problems with roundoff errors, the implementation uses a factor a < 2.

5.7. Construction of the parametric map 67

existing points or folds is checked and, in that instance, a refinement

point closer to P is chosen or the refinement point is rejected.

So far, only one layer of a surface normal

offsetting is created. The following layers are

found by further continuing the growth lines

and increasing the step size by the coarsening
factor.

^<^4X^^\/^
f^/^-A-^T^-^=r <S-. y^\

I^S^CCS

The implementation of the advancement

follows the principles of the 2D intersection-

test-less method, that was described in Sec-

Figure 5.5: Surface tion3.5for 2D [25D-Reconnect]. In practice

mesh for NoffsetSd at only a few layers are needed.

the corner of a cube.
Figure 5.5 shows the effect of surface nor¬

mal offsetting for the corner of a cube: the surface mesh lines are parallel
to the folds and the transition to an isotropic mesh inside the patches
is smooth. In the vicinity of the corner itself the mesh is finer than at

the folds away from the corner.

5.7 Construction of the parametric map [25D-
Parametric-Map]

This section describes a method to solve the problem of constructing a

parametric map for a surface patch that is defined by a triangulation
T. The limitation is that the surface patch has a boundary that is one

closed line, i.e. patches with holes and close surfaces are excluded. To

treat surfaces like spheres or tori, these patches have to be divided into

parts.

To summarise the method, it takes a mapping of the boundary of the

patch to a convex polygon in M2 as input and solves a linear system to

compute an extension of this mapping for interior nodes. In that manner

an image of the 3D triangulation is constructed in 2D space, which is

a triangulation with the same topology. The parametric map is then

defined by linear interpolation on the 2D triangulation. For non-convex

polygons the resulting triangulation may have inverted elements, which

explains the restriction to convex polygons.

68 Chapter 5. Surface meshing

The described method is similar to [Suz90], but offers more general

ways to define the matrix.

Input The points in the defining triangulation of the patch are clas¬

sified into three groups: interior nodes Q = {qi}, corners C = {ci}, and

other boundary points B' = {bi}. The distinction between C and B'

is defined by the caller of this algorithm. For instance, feature points
should be chosen, i.e. where the interior angle is small; then distortion

of the 2D map can be avoided best. The set of all boundary nodes is

called B = B' U C and the union of all points in T is M = B U Q. On

C is defined g|c : C -> M2, which represents the convex polygon that is

mentioned in the introduction.

Goal The goal can be now formulated to find an extension g : M —»•

M2, that results in a parametric map with minimal distortions.

Boundary On B' the values of g can be computed using the arc

length measure. Let ci — 6jQ,... ,biß = Cj+i be the ordered list of bound¬

ary points between two corners, starting with r(bia) = 0 the other r(bi)
are calculated by

r(bi+i) = r(bi) + \\bi - bi+1\\.

Finally, the function g takes interpolated values on these boundary
nodes:

/, x g(c*)(r(ci+i) - r(bi)) + g(ci+i)r(6i)

Inner points A matrix A : IRlMl -> RlQ' is needed that will be ex¬

plained in more detail later. It is assumed that a linear system

9a{m1)

9a(m\M\)

is solved for a = 1,2. The domain is split into B (where g is known)
and Q (where g is to be determined). The equation decomposes in the

0 = A

5.7. Construction of the parametric map 69

9a(h) \ / ga{qi)

9a(b\B\) J \ 9a(q\Q\)

(9a(bi) \

9a(q\Q\)) \ 9a(b\B\))
with a quadratic matrix A\q. The restricted matrices A\q and A\b oper¬

ate on the respective subspaces. In this implementation an simple direct

linear solver is used to solve for two 'right hand sides' simultaneously.

Matrix In fact several methods can be used to construct A. For the

different approaches, the element matrices A\j are given for a triangle t

with vertices xo,xi,X2 G M3 and area \t\. The global matrix is then

assembled in a loop over all triangles t : A = Y^teT^ •

• One possible matrix is inspired by the Finite Element Method

(FEM) solution of Laplace's equation (A</> = 0) in 2D. The coef¬

ficients are

At _

At
_

(x2-xi)-(xo-x2)
A)l

— ^10 —

iTj
I

lt
_

(x2-xi)2
A1

i*i

plus cyclic permutations.

• A second idea simulates springs between connected nodes where

the strength of the springs is determined by the distance in 3D

space. This leads to a Lagrangian function that is minimised:

(Ui - Uj)2
l= E

X« X-i'

i,j,3edge{i,j)
%

3

The coefficients are

70 Chapter 5. Surface meshing

plus cyclic permutations.

• Another possibility, which is interesting for its simplicity, uses no

geometry information, only the connectivity of the nodes:

plus cyclic permutations. This approach is similar to the second

if the springs are assumed to have equal strength.

The danger of this method is that it may generate inverted elements.

The reason to exclude non-convex polygons is that inverted elements

can be created in the vicinity of reflex corners. A new reference [SdSOO]
removes the problem by computing the angles of the 2D-triangulation
instead of the node positions. The cost is that a non-linear problem has

to be solved. Also, as the 2D boundary polygon is a by-product it is not

guaranteed that this polygon does not overlap globally.

Re-meshing of surface patches

The parametric mapping is applied in the module [3D-ISOSURFACE],
which incorporates isosurfaces of certain data functions (like the p-n-

junction) into the boundary model. In this way the these surfaces are

available to the mesh generator like material interfaces. This module

takes as input the data defined on vertices of a triangulation. This can

be the mesh of a previous simulation or time step, but it can also be

generated for this purpose; in such a case the data has to be resolved

fine enough but the mesh needs not to be fit for a simulation. The isosu-

face is then found by interpolation on this auxiliary triangulation. Since

this mesh still carries the footprints of the auxiliary triangulation, and

since it does not necessarily meet the required mesh density, it has to

be re-meshed before incorporating it into the model description. The

parametric method is employed in this implementation. For each con¬

nectivity component of the isosurface, a mapping g is computed using
the method in Sec. 5.7. An unstructured method generates a mesh for

the planar polygon in 2D. To compute the correct distances between

5.7. Construction of the parametric map 71

points the function g-1 is used. This function is found be linear inter¬

polation on the 2D mapping of the surface patch. A quadtree structure

for searching is used to find the triangle in which a query point lies.

In order to capture all geometric features is is important to measure

distances between a re-meshed structure and the patch definition. As

an estimate edge mid points and centroids of triangles are computed.
Let Xi be the points of the edge or the triangle, and <.> the averaging

operator, then an estimate of the deviation for an entity is calculated

by:
ô = l|g"1(<^>)-<g"1(^)>l|.

The points for the re-meshed surface are created and inserted into

the triangulation of the polygon with the reconnection-optimisation ap¬

proach of 5.3 but in planar 2D with a 3D in-sphere-test (via g_1). Points

are created at edge-mids or centroids of triangles; the following criteria

are applied:

• Edges that are too long or deviate too much according to the

^-measure are refined.

• Triangles that deviate too much according to the ^-measure are

refined.

• Edges that are too short are suppressed.

In the final step the re-meshed surface patch is inserted in the boundary
model. Here, care has to be taken that connected faces are cut at exactly
the same points so that a the compound model is conforming.

72 Chapter 5. Surface meshing

Seite Leer /

Blank leaf

Chapter 6

Examples

The implementation of the software developed in this work was done

in the language C++ and compiled for various Unix platforms. The

examples were run for timing measurements on a SUN Sparc-Ultra-30
workstation with one 250 MHz CPU and 1152 MB of memory.

JiK

2D: Trench IGBT

The trench Insulated Gate Bipolar Tran¬

sistor (IGBT) considered here is a power

device with a curved Si/Si02 interface

and a long substrate body (See Fig. 6.1).
The height of the device is 100 /mi and

the simulation domain is 5 /mi wide.

tfj \ gat' source

drain
The current flow in this device is such

that the current is confined in a small Figure 6.1: Model for an In-

channel beneath the Si/Si02 interface, sulated Gate Bipolar Transistor

In order to resolve this boundary layer (IGBT).
behaviour, a mesh resolution < 0.01 /mi

orthogonal to the current flow is necessary. In longitudinal direction a

coarser mesh can be accepted. The normal offsetting is able to generate

73

74 Chapter 6. Examples

Figure 6.2: Current density (left) and meshes for an IGBT structure.

Normal offsetting mesh(centre) and the coarse quadtree mesh (right)
have roughly the same number of nodes.

such a mesh.

The displayed mesh has in total 3587 nodes in 6104 elements (tri¬
angles and rectangles) and was generated in 9.4 s. This time includes

computing a temporary mesh, on which the data functions are evalu¬

ated. The p-n-junction of this device is computed on this mesh, and

incorporated into the boundary.

This example shows not only the layering at interfaces, but also at

the p-n-junctions. The coarsening factor has the effect of allowing a

graded transition from the boundary layers to an isotropic and coarse

volume mesh. The mesh in the gate oxide is a simple unstructured mesh.

The device simulation was performed using the simulator Dessis-

ISE. The resulting total current density is displayed to the left of Fig 6.2:

the dark areas have a high current density, the current confinement is

obvious. In parallel, the device was simulated with two quadtree-based
meshes (generated by Mesh-ISE); one of these having roughly the same

mesh type # of points # of elements

normal offsetting
quadtree-coarse

quadtree-fine

3587

4341

22507

6105

4959

24192

Table 6.1: Mesh sizes for the three compared meshes.

75

4->

Ö
Q)
U
U

I

Ö
•H

cd
u
Q

Comparison of IV-curves

le-05<

5e-06 -

•normal offsetting

-0- quadtree-fine

•- quadtree-coarse

i t i t i t i t i

Gate-Voltage(V)

Figure 6.3: Comparison of IV-characteristic for three different meshes.

A much finer mesh is needed in the quadtree-method than with normal

offsetting

number of nodes as the normal offsetting mesh. For this mesh the simu¬

lated drain current turns out to be too small. The second quadtree-based
mesh is chosen such that the channel is refined enough to resolve the

current refinement in the channel correctly. The limitations of quadtree
methods are that anisotropic elements are always axis-aligned and that

the users can specify refinement criteria only in axis-aligned rectangles.
In consequence more mesh points are needed for a correct simulation.

In this example six times more points are needed with the quadtree-
method than with normal offsetting.

The IV-characteristic is shown for all three meshes in Fig. 6.3. Ta¬

ble 6.1 details the number of points and elements for these meshes.

76 Chapter 6. Examples

—-~^ y

•-^

\

y ~A"

nMOS Transistor

2 3

Gate Voltage (V)

Figure 6.5: Current density (left) and mesh (centre) for an NMOS

transistor structure with junction refinement. The simulated IV-curve

is shown to the right.

2D: nMOS with junction refinement

This example shows how this gener¬

ator behaves for axis-aligned struc¬

tures, like this simple model of an

nMOS transistor (Fig. 6.2). The sim¬

ulated area is a 3 /im x 3 (ira. silicon

square. The gate oxide is 0.025 //m

thick. Including the computation of

the p-n-junction the mesh generation
takes 16.9 s for 6239 nodes in 12251

elements (triangles and rectangles).
Again, the simulated current density
is displayed in the figure (left) and the terminal drain current is plotted
as a function of the applied gate voltage (right).

Figure 6.4: nMOS model

In the region between the p-n-junction and the source contact the

collision a the two fronts is resolved properly and the transition is han¬

dled smoothly.

77

Figure 6.6: left: normal offsetting started from an isoline that was in¬

corporated into the geometry definition; right: Refining the p-n-junction
as a post-processing step, the layers are valid outside the refinement

region.

2D: User refinement

The figures in this section show, for the same model, the various al¬

gorithms that control the refinement. Firstly, it is necessary for some

simulations to resolve the p-n-junction with a fine mesh. The junction

is, by definition, the line where the donor and acceptor concentrations

balance each other; in this area the recombination rate of carriers in a

forward biased-device is high.

In the framework of normal offsetting two approaches are possible
to resolve the junction. On the one hand (Fig. 6.6 left) the junction is

computed as a geometric line and added into the boundary represen¬

tation. Thus, a front is started from the junction like from a material

interface. Since the data is in general not defined analytically in such

a way that the junction can be found easily, the data is evaluated on

an auxiliary triangulation. The junction is then calculated by interpola¬
tion. This procedure can be generalised to find and incorporate isoline

of any data function (module 2D-Isoline).

A refinement approach takes advantage of the fact that the doping
gradient at the junction is high. It can be applied to any triangulation
because it simply refines edges that exhibit a large gradient. It uses the

module 2D-REFINE for refinement, i.e. Voronoï centres are chosen as

refinement points. Therefore this refinement is always isotropic. It does

78 Chapter 6. Examples

Figure 6.7: Transition between fine and coarse parallel layers by sub¬

dividing elements.

not, however, destroy any existing anisotropy if this refinement does not

require a much finer mesh (Fig. 6.6 right).

The latter method is more general than isoline computation, and

it is faster, because no auxiliary triangulation is needed. But, for the

stated reason, it cannot produce anisotropic meshes and the transition

to the coarse volume mesh can be abrupt.

The main parameters for normal offsetting are the thickness of the

first layer and the coarsening factor, which can be defined locally. If

the areas in which fine mesh and coarse mesh meet are close to each

other, the transition elements have a bad quality. Using the subdivision

algorithm (Sec. 3.2.2) it is possible to have areas of different fineness

close to each other, if their marching distances differs by powers of 2.

Figure 6.7 shows this algorithm in action. In the left part the layers are

subdivided twice (giving four layers). A transition area is observed in

which the layer is only subdivided once.

79

2D: Oxidation

For the use in a process simulator

the mesh generator must robust, au¬

tomatic, and fast because many re-

meshing steps are needed. The 2D

version of normal offsetting has been

integrated into the process simula¬

tor Dios-ISE. The fabrication of a

LOCOS (LOCal Oxidation of Sili¬

con) structure was taken as a bench¬

mark. The growth was simulated with

a state-of-the-art visco-elastic model

[PZSFOO]. Since no moving grid is

available a re-meshing is necessary

after each time step. This is a test

Figure 6.8: LOCOS simulated for robustness of this generator. Fig-
with normal offsetting meshes at ure 6.8 shows the final result and the

interfaces. last mesh of the simulation

-—-" 1.——"— 1 —--J —-—J/

N/L-"" * *wéÊ$Ê(^7F^zL

^7\ /

^

\

The entire simulation takes 9 min, of which 5 min are spent on the

generation of 36 meshes. For each mesh, the generation takes between

6.0 s and 14.0 s, on average 8.8 s. The mesh sizes varies between 3689

and 6582 points.

Figure 6.9: complicated process simulation

80 Chapter 6. Examples

For moving parts of the boundary the process simulator computes

the displacement for the time step for each interface node
.
The simula¬

tor needs an interface-adapted mesh to calculate a smooth variation of

the displacements. Especially, the mesh size should be balanced along
the interface. The normal offsetting meshes perform well in this respect.

Figure 6.9 shows the mesh from an entire process flow that was sim¬

ulated with normal offsetting meshes. It includes several implantations,

diffusion, deposition, and oxidation steps.

3D: An ECL bipolar device

This 3D example is an ECL (Emitter
Coupled Logic) transistor. It contains

of a silicon brick (8.2 fim x 4.0 /im x base eif
* er

oxide

3.5 (im) with an L-shaped trench,
which is filled with oxide (Fig. 6.10).
The contacts are on the top of the de¬

vice; the collector is separated from

the base and emitter contacts by the

trench. The bottom face carries the

substrate contact. The normal off¬

setting parameters are such that the

front is started from the top and from

the bottom, but not from artificial
Figure 6.10: Emitter Coupled

vertical boundaries and not inside the £0oZC transistor
oxide region. The initial thickness is

set to 0.02 fim. The final mesh contains 16255 nodes in 91051 elements,
and the mesh generation takes 700 s.

The right of Fig. 6.11 shows the interior of the mesh and how far

the extend into the volume. The remaining volume nodes were generated
by the isotropic refinement module (3D-Refine). The mesh lines follow

nicely the interfaces; it also shows problems of this method to recover

faces in non-convex corners.

The device characteristic was simulated with the device simulator

DESSIS-ISE; the collector voltage was set to 2.0 V and the emitter

and substrate contacts were grounded. Ramping the base voltage from

81

Figure 6.11: Emitter Coupled Logic transistor; left; surface mesh of
final mesh; right: inside view.

0 V to 1.0 V gives the base and emitter currents shown in Fig. 6.12 in

logarithmic scale. A second simulation of this transistor was performed

using a mesh generated with an octree approach (using Mesh-ISE).
The second mesh contains 14197 vertices and 76667 tetrahedra. The

simulated collector current for the two meshes are in accordance, but

the base currents differ largely for lower base voltages.

ECL Transistor - Mesh Comparison

C = 0.2 V

B = 0. ..IV V^

E = 0 V

0 D.2 0.4 0.6 0.8 1

Base-Voltage (V)

Figure 6.12: Left: Comparison of simulations of the ECL bipolar tran¬

sistor, with a normal offsetting mesh and a octree mesh (generated by

Mesh-ISE,); right: circuit diagram of the simulation

82 Chapter 6. Examples

polygate

3D: Trench isolation

This example demonstrates the ex¬

traction of an isosurface and its in¬

corporation into the boundary rep¬

resentation (Module 3D-ÏSOSURFACE source

in Sec. 5.7) for a p-n-junction in the

shallow trench structure in Fig. 6.13.

The data function (i.e. the doping

concentration) is defined by analyti¬
cal functions, which are evaluated on

a triangulation. The auxiliary trian¬

gulation is computed using Mesh-

ISE and contains 12730 vertices. By
itself this mesh is not fit for a simula¬

tion, but it resolves the p-n-junction
well. The interpolated patch contains 7164 triangles (Fig. 6.15)

oxide

drain

silicon

substrate

Figure 6.13: Model

The re-meshing is done in parametric space and the coarse patches
are included into the boundary representation (Fig. 6.15). For the sub¬

sequent meshing step the p-n-junction is available like a material in¬

terface. The final mesh is displayed in Fig. 6.14 (right) looking from

the outside. The mesh contains 15848 points in 93225 tetrahedra. The

mesh lines follow the Si/Si02 interface and the p-n-junction that was

constructed in the previous step.

Figure 6.14: final mesh of this structure

83

Figure 6.15: Left: isosurface patches for the junction as extracted from
the background mesh and the new boundary representation with junction.

84 Chapter 6. Examples

3D: A surface mesh

source gate

dra:

drain

source

To investigate the influence of the surface

mesh, a transistor with a curved field ox¬

ide is considered in Fig. 6.16. The sim¬

ulated silicon region has the form of a

brick of size 8 //m x 8 ^m x 16/mi. At

the interfaces to the top layers an initial

distance of 0.02 /im was chosen for the

normal offsetting. Figure 6.17 demon¬

strate the evolution of the surface mesh.

The top view repeats the geometry defi¬

nition as a close-up at the Si/SiC>2 inter¬

face. In the middle, one sees the surface

mesh as constructed with the algorithm
Figure 6.16: Model of a [25D-NOFFSET]. This surface mesh is

transistor with a rounded field adapted to the volume normal offsetting
in such a way that the volume mesh can

substrate

oxide

comply with the BMCD criterion. The bottom picture shows the in¬

terface of the final mesh after the volume points have been generated
and the final Delaunisation has been applied. The main structure of the

surface mesh is preserved, but more points have been created, especially
around folds and corner points. These points are due to non-Delaunay
faces in the volume, i.e. front faces that can be recovered but points in a

consecutive layer made these faces non-Delaunay. This example demon¬

strates that the surface meshing to a large extend creates a suitable

surface mesh, but that some non-Delaunay cases are unpredictable.

This effect is due to the conflict of the BMCD criterion and aniso¬

tropy for non-planar geometries. In some cases only a lower anisotropy
than prescribed can be attained, as the interface mesh becomes finer.

The algorithm [25D-Noffset] accounts only for conflicts that would

arise with any algorithm that creates an anisotropic volume mesh. This

examples shows that, in this implementation, an even finer mesh is gen¬

erated by the Delaunisation.

85

Figure 6.17: Top: close-up to interface description of the Si/SiC>2
interface; middle: surface mesh generated for 3D normal offsetting;
bottom: interface mesh of final mesh (with volume points and final

Delaunisation).

86 Chapter 6. Examples

Se/te Leer
Blank

Chapter 7

Conclusion and outlook

This chapter looks back at the requirements for the mesh generator and

discusses how they are met by the normal offsetting technique. The 3D

part, as the most crucial part, is put in the foreground here.

Firstly, the strategy of the reconnection-based normal offsetting is

reviewed with the help of the simple 2D example in Fig. 7.1. The input
is a simple rectangle and two layers that shall be constructed by the

normal offsetting. At first, projections of these layers on the surface are

added and in the second step further refinement points are added to the

surface. For this surface mesh a volume triangulation is constructed. In

the fourth step the points for the normal offsetting are constructed and

inserted into the triangulation by a Delaunay technique. Further points
are added to the unmeshed void in the fifth phase. The last picture
shows that further points can be added in the Delaunisation.

Robustness The critical algorithm for robustness is to generate the

empty volume triangulation; after that is constructed a valid triangu¬
lation is maintained. Some points may be rejected from insertion, but

rejecting a point does not let the entire generator fail. Such a local

failure, however, means that some refinement criteria are not met.

Problems to construct a volume triangulation always reduce to an

incorrect boundary description, e.g. a volume that is not closed or a

87

88 Chapter 7. Conclusion and outlook

-o o o •

L. 1

WÊSÈ
Figure 7.1: Mesh generation with a reconnection-based normal offset¬
ting with a simple 2D example. The points added at each step are filled
white.

non-conformal description.

Delaunay condition The BMCD triangulation using an incremen¬

tal Delaunay construction can create strictly Delaunay meshes if ex¬

act predicates are used. It may create sliver elements, especially with

points created by the normal offsetting algorithm, but these can be

suppressed by the discussed method with the cost of (slightly) non-

Delaunay meshes.

Anisotropic layers Normal offsetting together with its surface mesh¬

ing algorithm can create layers with anisotropic elements along inter¬

faces. The limits to anisotropy at non-planar regions of the model are

mainly due to the BMCD criterion and therefore method independent.
A different approach would have the same limits. Normal offsetting sur¬

face meshing tries to find an optimal input mesh for the volume layering.
The anisotropy can, however, be further lowered by conflicts in the vol¬

ume meshing. If faces and edges have to be recovered by transformations

89

(because they are not Delaunay) they induce further point insertions in

Delaunisation module. In the case when several anisotropic layers are

affected one single forced face can lead to a series of inserted points.

User requirements Apart from the normal offsetting construction,
the volume mesh needs further refinement. These points are created by
a simple bisection algorithm. Other approaches, even external sources,

can be easily plugged into the modular structure of the software design.

Application Since mesh generation is part of a simulation environ¬

ment its result must be applied there. The 2D version is part of commer¬

cial products: it is one of the algorithms in the mesh generator Mesh-

ISE for device simulation and as an alternative meshing engine in the

process simulation Dios-ISE. In 3D, first tests for device simulation

have been performed.

For the use in the 3D process simulator further algorithms need to

added:

• As the geometry by itself is part of the simulation, a new model

description has to be computed several times during the simu¬

lation. The research for such a moving boundary algorithm for

process simulation has not yet reached the necessary robustness

[KSVFOOa].

• After the mesh for a new time step is generated the data function

must be interpolated on the new mesh. In order to minimise the

interpolation error it is preferable to keep as many points as possi¬
ble at the same location (shifted by the computed displacement).
A concept would be to start normal offsetting from the new in¬

terface and use the points from the old mesh as an external point
source for the field points. The transition between the layers and

the volume points may need further refinement.

• The treatment of thin layer regions is not yet satisfactory; the

2D method certainly cannot be lifted to 3D. The difficulty is the

simultaneous control of the refinement points in several layers.

90 Chapter 7. Conclusion and outlook

Seite Leer /I
Blank leaf

Bibliography

[BE92] M. Bern and D. Eppstein. Mesh generation and optimal

triangulation. In D.-Z. Du and F. Hwang, editors, Comput¬

ing in Euclidean Geometry, volume 1, pages 23-90. World

Scientific, 1992.

[BF97] H. Borouchaki and P. Frey. Maillage géométrique de sur¬

face I: enrichissement, II: apauvirissement. Rapport de

Recherche RR-3236, INRIA, 1997.

[BG97] H. Borouchaki and P.-L. George. Aspects of 2D mesh gen¬

eration. International Journal for Numerical Methods in

Engineering, 40(11):1957-1975, 1997.

[Bow81] A. Bowyer. Computing Dirichlet tesselations. The Com¬

puter Journal, 24(2):162-166, 1981.

[BP91] J. Bonet and J. Peraie. An alteranting digital tree (ADT)
for 3D geometric and intersection problems. International

Journal for Numerical Methods in Engineering, 31:1-17,
1991.

[BRF83] R. E. Banks, D. J. Rose, and W. Fichtner. Numerical meth¬

ods for semiconductor device simulations. IEEE Transac¬

tions on Electron Devices, 30(9):1031-1041, 1983.

[FBG96] P. J. Frey, H. Borouchaki, and P.-L. George. Delaunay
tetrahedralization using an advancing-front approach. Pro¬

ceedings of 5th International Meshing Roundtable, pages

31-46, 1996.

91

92 Bibliography

[Fle99] P. Fleischmann. Mesh Generation for Technology CAD in

Three Dimensions. Ph.D. thesis, TU Vienna, Austria, De¬

cember 1999.

[For92] S. Fortune. Voronoi diagrams and Delaunay triangulation.
In D.-Z. Du and F. Hwang, editors, Computing in Euclidean

Geometry, volume 1, pages 193-233. World Scientific, 1992.

[FRB83] W. Fichtner, D. J. Rose, and R. E. Bank. Semiconductor

device simulation. IEEE Transactions on Electron Devices,

30(9):1018-1030, 1983.

[Gar99] G. Garretôn. A Hybrid Approach to 2D and 3D Mesh Gen¬

eration for Semiconductor Device Generation. Ph.D. thesis,
ETH Zurich, Integrated Systems Laboratory, Switzerland,
1999.

[GB98] P.-L. George and H. Borouchaki. Delaunay Triangulation
and Meshing, Application to Finite Elements. Editions Her¬

mes, Paris, 1998.

[GH99] P.-L. George and F. Hecht. Nonisotropic grids. In J. F.

Thompson, B. Soni, and N. Wheatherhill, editors, Handbook

of Grid Generation, chapter 20. CRC Press, 1999.

[GHS88] P.-L. George, F. Hecht, and E. Saltel. Tétraédrisation au¬

tomatique et respect de la frontière. Rapport de Recherche

RR-835, INRIA, 1988.

[GHS91] P.-L. George, F. Hecht, and E. Saltel. Automatic mesh

generator with specified boundary. Computer Methods in

Applid Mechanics and Engineering, 92:269-288, 1991.

[HR00] N. Hitschfeld and M.-C. Rivara. Quality nonobtuse bound¬

ary an/or interface Delaunay triangulations. In B. Soni

et al, editor, Proceegings of 7th International Conference
on Numerical Grid Generation in Computational Field Si-

multions, pages 285-294. ISGG, 2000.

[HS88] D. G. Holmes and D. D. Snyder. The generation of un¬

structured triangular meshes using Delaunay triangulation.
Numerical Grid Generation in Computational Fluid Me¬

chanics 1988, pages 643-652, 1988.

93

[Int99a] Integrated Systems Engineering AG, Zurich, Switzerland.

Dessis-ISE, 6.0 edition, 1999.

[Int99b] Integrated Systems Engineering AG, Zurich, Switzerland.

Dios-ISE, 6.0 edition, 1999.

[Int99c] Integrated Systems Engineering AG, Zurich, Switzerland.

Mesh-ISE, 6.0 edition, 1999.

[JS92] B. P. Johnston and J. M. Sullivan. Fully automatic two di¬

mensional mesh generation using Normal Offsetting. Pro¬

ceedings of International Journal for Numerical Methods in

Engineering, 33:425 - 442, 1992.

[KKM95] Y. Kallinderis, A. Khawaja, and H. McMorris. Hybrid pris-

matic/tetrahedral grid generation for complex geometries.
Technical Report 95-0211, AIAA, 1995.

[KSF00] J. Krause, N. Strecker, and W. Fichtner. Boundary-
sensitive mesh generation using an offsetting technique. In¬

ternational Journal for Numerical Methods in Engineering,
49:51 - 59, 2000.

[KSVFOOa] J. Krause, B. Schmithüsen, L. Villablanca, and W. Fichtner.

New developments and old problems in grid generation and

adaptation for TCAD applications. IEICE Transactions,

E83-C(8):1331-1337, 2000.

[KSVFOOb] J. Krause, N. Strecker, L. Villablanca, and W. Fichtner.

Robust anisotropic 3D grid generation using a normal off¬

setting approach. In B. Soni et al., editor, 7th Interna¬

tional Conference on Numerical Grid Generation in Com¬

putational Field Simulations, pages 305-314. ISGG, 2000.

L. Kettner and E. Welzl. One-sided error predicates in

geometric computing. Proceedings of the XV. IFIP World

Computer Congress, pages 13 -25, 1998.

C. L. Lawson. Transforming triangulations. Discrete Math¬

ematics, 3:365-372, 1972.

R. Löhner. Extensions and improvements of the AFT

grid generation techniques. Communications in Numerical

Methods in Engineering, 12:683 - 702, 1996.

[KW98]

[Law72]

[Löh96]

94 Bibliography

[LP88] R. Löhner and P. Parikh. Generation of 3D unstructred

grids by the advaning front method. International Journal

for Numerical Methods in Engineering, 8:1135-1149, 1988.

[MH95] P. Möller and P. Hansbo. On advancing front mesh gener¬

ation in 3d. International Journal for Numerical Methods

in Engineering, 38:3551 - 3569, 1995.

[MRS90] P. S. Markowich, C. A. Ringhofer, and C. Schmeiser. Semi¬

conductor Equations. Springer-Verlag, Wien, New York,
1990.

[MTT+96] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and

H. Wang. Control volume meshes using sphere packing:
Generation, refinement, and coarsening. In Proceedings of
5th International Meshing Roundtable, pages 47-61, 1996.

[MÜ194] S. Müller. An object-oriented approach to multidimen¬

sional semiconductor device simulation. Ph.D. thesis, ETH

Zurich, Integrated Systems Laboratory, Switzerland, 1994.

[MW95] D. L. Marcum and N. P. Weatherill. Unstructured grid

gerneration using iterative point insertion an local recon-

nection. AIAA Journal, 33:1619-1625, 1995.

[Péb98] P. P. Pébay. Construction d'une triangulation surfacique

Delaunay-admissible. Rapport de Recherche RR-3369, In¬

da, 1998.

[PK96] V. Parthasarathy and Y. Kallinderis. Adaptive prismatic-
tetrahedral grid refinement and redistribution for viscous

flows. AIAA Journal, 34(4):707-716, 1996.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geome¬

try: An Introduction. Springer-Verlag, New York, 1985.

[PZSF00] A. Pomp, S. Zelenka, N. Strecker, and W. Fichtner. Vis-

coelastic material behavior: Models and discretization in

process simulator DIOS. IEEE Transactions on Electron

Devices, 47(10):1999-2007, 2000.

[RS92] J. Ruppert and R. Seidel. On the difficulty of triangulat¬
ing 3D nonconvex polyhedra. Discrete and Computational

Geometry, 7:227-253, 1992.

95

[Rup95] J. Ruppert. A Delaunay refinement algorithm for quality
2D mesh generation. Journal of Algorithms, 18:548-585,
1995.

[Sch97] J. Schöberl. NETGEN: An advancing front 2D/3D-mesh
generator based on abstract rules. Computing and Visual¬

ization in Science, 1:41-52, 1997.

[SdSOO] A. Sheffer and E. de Sturler. Surface parameterization for

meshing by triangulation flattening. In Proceedings of 9th

International Mesching Roundtable, pages 161-171. Sandia

National Laboratories, 2000.

[Sev97] E. Seveno. Towards an adaptive advancing front method.

Proceedings 6th International Meshing Roundtable, pages

349-360, 1997.

[SG69] D. L. Scharfetter and H. K. Gummel. Large-signal analysis
of a silicon Read diode oscillator. IEEE Transaction on

Electron Devices, ED-16(l):64-77, 1969.

[She97a] J. R. Shewchuk. Adaptive precision floating-point arith¬

metic and fast robust geometric predicates. Discrete and

Computational Geometry, 18:305-363, 1997.

[She97b] J. R. Shewchuk. Delaunay Refinement Mesh Generation.

Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1997.

[Str97] B. Stroustrup. C++ Programming Language. Addison-

Wesley, 3rd edition, 1997.

[Suz90] Masahiro Suzuki. Surface grid generation on unstructured

grids. AIAA Journal, 12:2263-2264, 1990.

[VilOO] L. Villablanca. Mesh Generation Algorithms for 3D Semi-

condctor Process Simulation. Ph.D. thesis, ETH Zurich,

Integrated Systems Laboratory, Switzerland, 2000.

[Wat81] D.F. Watson. Computing the n-dimensional Delaunay tes¬

sellation with application to Voronoi polytops. The Com¬

puter Journal, 24(2):167-172, 1981.

[WM96] D. J. Walton and D. S. Meek. A triangular G1 patch from

boundary curves. Computer Aided Design, 28(2):113-123,
1996.

96 Bibliography

Seite Leer /
Blank leaf i

Appendix A

Glossary

AFT Advancing Front Technique

BMCDT Box Method Conforming Delaunay Triangulation

circumsphere the sphere that passes through all points of a tetrahe¬

dron.

diametral sphere The smallest sphere that contains the two points of

an edge; the centre is identical with the midpoint of the edge.

DT Delaunay Triangulation

equatorial sphere The smallest sphere that contains the three points
of a triangle or rectangle; the centre of the sphere is identical with

the centre of the circumcircle of the triangle/rectangle in the plane
defined by the face.

FEM Finite Element Method

grid An structured covering of the domain with axis aligned elements

like rectangles and bricks.

mesh An unstructured covering of the domain with certain types of el¬

ements, suitable for numerical calculations. Allowed elements de¬

pend on the application; in 2D e.g. triangles, rectangles, or quadri¬

laterals, whereas 3D has tetrahedrons, bricks, prisms, hexahedra,
and others.

97

98 Appendix A. Glossary

medial axis set of points, that have the same distance to two different

points of a polygon.

Steiner Point Volume refinement point in Delaunay methods, usually
at Voronoï centres.

Appendix B

Command File Description

The practical implementation of this work is driven by a command file.

The grammar of this language is defined and the connection to the

particular algorithms is pointed out. In that way this appendix serves

as a reference manual.

How to read this

Words in these grammar tables have three different meanings, and are

typed accordingly:

typewriter: terminal keywords

italics: nonterminal symbols, that are resolved later

times roman: nonterminal symbols, that are not explained, but are self-

explanatory, like 'float', 'int', 'double-quoted-string' etc.

Some characters act as word separators (\t, \n, " ") and are not

included in the description.

99

100 Appendix B. Command File Description

File

file:
title double-quoted-string blocks

blocks:

blocks block

block

block:

ignore-block-keyword {anything-containing-balanced-braces }

Offsetting {.offsetting-block }

ignore-block-keyword:
Control

Definitions

Placements

The structure of the command file for Mesh-ISE is enriched by a by
one block. The other blocks are ignored; except for versions linked with

Dlib-ISE: those versions can use data functions defined in the command

file for the generator Mesh-ISE (see [Int99c]).

Offsetting block

offsetting-block:

offsetting-block-lines

offsetting- block-lines:

offsetting-block-lines offsetting-block-line

offsetting-block-line

offsetting-block-line:

usebox = bool

maxangle = float

background = double-quoted-string

backgrounddata = double-quoted-string

options = double-quoted-string

noffset-block
boundary-block

thinlayer-block

From the top-level block global algorithmic switches can be used, and

101

several subsections can be accessed.

name meaning default

usebox with link to Dlib-ISE:

use refinement boxes

0

maxangle 2D: suppress large angles 180.0

background auxiliary grid
un

backgrounddata and data defined on it m»

options discussed below

The value for maxangle is used in 2D/2.5D-REFINE to suppress large

angles. Note that a value of smaller than 120° can result in infinite loops.

Versions linked with Dlib-ISE refine (in 2D/2.5D/3D-Refine) the

mesh using the information for 'Refinement' in the language for Mesh-

ISE [Int99c] if usebox is set.

The mesh and data files in background and backgrounddata are loaded

in the Module 3D-ISOSURFACE as data source for the isosurface compu¬

tations. The options (see below) select the series of algorithms applied
in the 3D generator.

Noffset

noffset-block:
noffset {.noffset-lines }

noffset region-or-material double-quoted-string \
double-quoted-string {.noß"set-interface-lines }

noffset region-or-material double-quoted-string \
{.noffset-region-lines }

noffset-lines:

noffset-lines noffset-line

noffset-line

noffset-line:

noffset-interface-line

noffset-region-line

102 Appendix B. Command File Description

noffset-interface-lines:

noffset-interface-lines noffset-interface-line

noffset-interface-line

noffset-region-lines:

noffset-region-lines noffset-region-line

noffset-region-line

noffset-interface-line:
hloc = float

factor = float

subdivide = int

noffset-region-line:

maxedgelength = float

maxlevel = int

terminâteline = int

There are three types of blocks; firstly for defining the global default,

secondly specifying interface parameters, and specifying region parame¬
ters. The latter two can be defined using region or material names, with

the appropriate keyword. All parameters have global defaults, some can

be specified per region other per interface.

name meaning default

hloc thickness of first layer 0.1

factor coarsening factor 1.3

subdivide number of subdivisions 0

maxedgelength maximum edge length
allowed in volume

max-float

terminate1ine number of rigid layers 3

maxlevel maximum number of layers 200

The main parameters for normal offsetting (2D/3D-NOFFSET) are hloc,

factor, and maxlevel. They decide on the thickness of the first layer,
the coarsening and the number of layers created.

The number terminâteline controls for how many layers the algorithm
2D-TERMINATELINE (p.30) is not called, so that, locally, a warped ten¬

sor grid is created.

The parameter maxedgelength is observed by all refining algorithms.

103

Surface mesh

boundary-block:

boundary {.boundary-lines }

boundary region-or-material double-quoted-string \
double-quoted-string {.boundary-interface-line }

boundary-lines:

boundary-lines boundary-line

boundary-line

boundary-line:

boundary-interface-line
balance = 600/

refine = 600/

boundary-interface-line:

hglob = float

isoline-block:

isoline double-quoted-string {isoline-lines }

The command file features two types of blocks for boundary grid; firstly
for defining the global default, secondly specifying interface parame¬

ters. The latter can be defined using region or material names, with the

appropriate keyword. All parameters have defaults, some can be speci¬
fied per interface. The algorithm switches have only a global defaults. A

second block defined in the same or overlapping scope takes precedence.

name meaning default

balance

refine

hglob

balancing of ID grid
refine corners more

discretisation length

1

1

1.0

The value hglob (if it is smaller than maxedgelength for the neighbour¬
ing regions) is applied in the boundary meshing algorithms 2D/3D-
Boundary. Balance gives the possibility to switch on mesh balancing
for 2D-BOUNDARY (p. 35).

The parameter refine controls the 2D/3D-Refine-Curvature algo¬
rithms.

104 Appendix B. Command File Description

isoline-iines:

isoline-lines isoline-line

isoline-line

isoline-line:

species = double-quoted-string
value = float

region-or-material = double-quoted-string
submesh = double-quoted-string

For version that a linked together with Dlib-ISE the isoline statement

has effect, also the ignored sections are read by that library and can

be referenced. The isoline (isosurface in 3D) computation takes a given
name as identity specification. Note that the default values define the p-

n-junction in silicon. In the 2D implementation, the submesh statement

defines as data source the submesh statement in the placement section

of this command file. If is equal to the empty string, a triangulation is

computed on the fly and function definitions of this command file are

evaluated on this trinangulation.

name meaning default

species dataset to evaluate "DopingConcentration"
value level of isoline 0.0

region-or-material region or material

where to insert line

material "Silicon"

submesh data source
ien

thinlayer-block:

thinlayer double-quoted-string {thinlayer-lines }

thinlayer-lines:

thinlayer-lines thinlayer-line

thinlayer-line

thinlayer-line:

region = {double-quoted-string double-quoted-string \
double-quoted-string}

thickness = float

deviationdist = float

deviationportion = float

angle = float

105

The region keyword specifies the three layers, that define a thin layer
if it is thinner than thickness. The parameters deviationdist and

deviationportion control, how much the geometry is allowed to change

(in absolute and in relative lengths) The parameters have no reasonable

default:

name meaning

region three region name defining the sandwich

thickness only thinner portion are treated

deviationdist distance an interface may change
in absolute value

deviationportion relative of layer thickness

angle angle tolerance

Other terminal symbols

region-or-material:

region
material

bool:

0

1

Phases

The options keyword can control the series of algorithms for the 3D

generator. The keywords correspond to the algorithms in the following
table.

isosurface 3D-ISOSURFACE

surface 3D-BOUNDARY

noffset3d 3D-NOFFSET

deltri 3D-TRIANGULATION, 3D-BMCDT

refine 3D-REFINE

For the complete mesh generation the default is a good choice: "-p
surface -p deltri -p noffset3d -p refine -p deltri". If only sin-

106 Appendix B. Command File Description

gle algorithms or the isosurface capability are studied different settings
can be used.

Appendix C

A generic implementation
of a Delaunisation

algorithm

Modern programming languages give multiple possibilities to reuse code

or to use the same code in different contexts. This work offers an oppor¬

tunity to employ these features. The local mesh optimisation algorithm
described in Sec. 5.3 can be applied on different mesh data structures:

in the 2D plane, for surfaces in 3D space, and when 3D surface patches
are treated in a parametric space. It would be tedious to write the same

code three times for three different mesh data structures! The language
C++ [Str97] offers the template construct to implement generic algo¬
rithms, in this case the code needs to be written once. Also maintenance

becomes simpler.

A template is parameterised variable type (or class) in the definition

of a function or a class. The compiler replaces the template name by
the type name for which an instance is called. Only types are allowed

for which the operations and function are defined that are used in the

template code. Failure to do so results in a compiler errors, hence there

is no runtime penalty in using templates because the code for different

instances is entirely generated by the compiler and can be optimised.

107

108 Appendix C. A generic Delaunisation algorithm

In general the mesh data structures do not offer the same interface to al¬

gorithms in such a strict sense that the template mechanism can find the

equivalences: the compiler needs exactly the same names for overloaded

functions. Therefore, an interface class is used as template parameter

(Meshlnterface) in the optimiser algorithm, which is implemented in

a class Optimiser. The data structure handling is, by virtue of these

two classes, split into an algorithm specific part and in a data structure

dependent part. The functions in the interface class Meshlnterface are

in most cases wrappers for functions already existing in the underlying
data structure. These wrappers can be implemented as one-liners with

the inline qualifier, which instructs the compiler not create a function

but to replace the invocation by this code segment. This optimisation

removes the overhead by an additional function call.

Only the basic functionality of the class layout for Optimiser is listed

below, for example the protection sphere mechanism is not mentioned.

The geometric operators (SwapEdge, Ref ineEdge) and the queries Re¬

finementPoint and IsSurfaceDelaunay are shown here.

template<class Meshlnterface>

class Optimiser-f
//structure for mesh data

Meshlnterface ::Mesh * mesh;

//stack with edges to be checked

Stack<Edge> stack;

//find best refinement point (inter-sector/edge mid)

void RefinementPoint(const Edge &e,

Meshlnterface:: Vector &refinevec);

//in-sphere-test
bool IsSurfaceDelaunay(const Edge &e);

//geometric operators

bool SwapEdge(Edge &e);

void RefineEdge(Edge &e, const Meshlnterface:: Vector &v);

public :

//constructor and destructor

Optimiser(Meshlnterface::Mesh *) ;

"Optimiser();

//improves mesh locally, starting with edges in stack

void OptimiserLocallyO ;

//improves mesh globally

109

void OptimiserGloballyO;
//add edge to the stack

void PushEdge(Edge &e);

>;

The interface class Meshlnterf ace has to be defined for each mesh data

structure that uses the Optimiser algorithm. This listing only names

the type and functions needed, it does not implement a specific interface.

Firstly it forwards the class names for the entities that constitute the

mesh and the vector class type. These types can be primitive type,
like in this implementation the entities are referred to as indexes in

an array. The wrapper function queries the topological and geometrical
information of the underlying data structure. Also creation and removal

of those entities is included. Again, only a simplified layout is shown,

e.g. the handling of material regions is neglected.

class MeshlnterfaceXD-C

public:

//types

typedef XDMesh Mesh; //structure for mesh data

typedef XDPoint Point; //point class

typedef XDEdge Edge ; //edge class

typedef XDFace Face; //face class

typedef XDVector Vector; //vector class

//is geometric feature, or constraint ?

static bool IsFold(Mesh * m, const Edge &e);

static bool IsConstraint(Mesh * m, const Edge &e);

//set constraint

static bool Constrain(Mesh * m, const Edge &e);

//how many faces are attached to this edge
static INTEGER GetNumFaces(Mesh * m, const Edge &e);

//get icth face at edge e

static Face GetFace(Mesh * m, const Edge &e, int i);

//get points in edge
static Point GetEdgePoint(Mesh * m, const Edge fee, int i);

//is edge existing
static bool IsValidEdge(Mesh * m, const Edge &e);

//find point in f opposite to e

static Point GetOtherPointFace(Mesh * m, const Face &f,

110 Appendix C. A generic Delaunisation algorithm

const Edge &e);

//find egde in hash table or neighbourhood search

Edge FindEdge(Mesh * m, const Point &p, const Point &q);
//remove

static void RemoveEdge(Mesh * m, Edge &e);

static void RemoveFace(Mesh * m, Face &f);

//create

static Edge CreateEdge(Mesh * m, Point ftp, Point &q);
static Face CreateTriangle(Mesh * m, Point * p);
static Point CreatePoint(Mesh * m, const Vector &v);

//get vector

static Vector GetVector(Mesh * m,const Point &p);
>;

The code for the main loop of the optimisation retrieves an edge from

the stack and tests, by visiting adjacent triangles, if it is optimal (Is-
SurfaceDelaunay). If not, the edge is either swapped (SwapEdge) or

refined (Ref ineEdge). The code only uses functions from the Optimiser
class and the abstract interface, i.e. direct calls to the underlying data

structure are avoided.

template<class Meshlnterface>

void Optimiser<MeshInterface>::OptimiserLocally()-[

Edge e;

while(stack.Pop(e))
//if edge already removed

if (Meshlnterface : : IsValidEdge (mesh, e)) {.

bool swapable = !Meshlnterface ::IsFold(mesh,e)

&& !Meshlnterface::IsConstraint(mesh,e);

if(!swapable) continue ;

//BMCD in-sphere-test
bool isdel = IsSurfaceDelaunay(e);
if(isdel) continue;

if(swapable)

SwapEdge(e);
else{

Meshlnterface:: Vector refine_point;

RefinementPoint(e,refine_point);

RefineEdge(e,refine_point);

Ill

}

}

}

As an example of the generic implementation of the operators the Re¬

if ineEdge function is listed. Here the underlying data structure is ac¬

cessed via the abstract interface. The possible multidimensionality of

the mesh is accounted for in the fact that an edge may have more than

two neighbouring faces.

template<class Meshlnterface>

void Optimiser<MeshInterface>: :Ref ineEdge (Edge See,

const Meshlnterface : : Vector &v){

Point p[] = {Meshlnterface ::GetEdgePoint(mesh,e,0),
Meshlnterface : :GetEdgePoint(mesh,e,1)};

Point point = CreatePoint(v);

Edge x;

bool isconstraint = Meshlnterface:rlsConstraint(mesh,e);

//remove faces and recreate children

while(Meshlnterface ::GetNumFaces(mesh,e) != 0){

Face f = Meshlnterface::GetFace(mesh,e,0);

Point op = Meshlnterface::GetOtherPointFace(mesh,f,e);

Meshlnterface::RemoveFace(mesh,f);

Point pp[]={p[0] ,point,op,p[l]};

Meshlnterface::CreateTriangle(mesh,pp);
Meshlnterface::CreateTriangle(mesh,pp+l);

//update stack

x = Meshlnterface::FindEdge(mesh,op,p[0]);
stack.Push(x);

x = Meshlnterface::FindEdge(mesh,op,p[l]);
stack.Push(x);

}//for faces at 'e'

//update stack, inherit constraint

x = Meshlnterface::FindEdge(mesh,p[0],point);
stack.Push(x);

if(isconstraint)

Meshlnterface:: Constrain(mesh,x);

x = Meshlnterface::FindEdge(mesh,p[l],point);
stack.Push(x);

112 Appendix C. A generic Delaunisation algorithm

if(isconstraint)

Meshinterface ::Constrain(mesh,x);

Meshlnterface::RemoveEdge(mesh,e);
}

Curriculum Vitae

Jens Krause was born in Rheinbach/Germany on November 26th, 1968.

After visiting grammar school in Euskirchen, he fulfilled the commu¬

nity service in the hospital of Mechernich. He studied physics at the

Rheinische-Friedrich-Wilhelms Universität in Bonn/Germany and at

the University of New South Wales in Sydney, Australia. He received

the degree of "Diplomphysiker" in 1996 of Bonn University. Prom 1996

to 1997 he work as a software engineer in Hennef/Sieg in Germany. In

1997 he joined the Integrated Systems Laboratory of the Swiss Federal

Institute for Technology (ETHZ). His main research interest is mesh

generation for semiconductor process and device simulation.

113

