
Diss. ETH No. 14149

Divide and Conquer in Game Tree Search:

Algorithms, Software and Case Studies

Dissertation

submitted to the

Swiss Federal Institute of Technology

Zurich

for the degree of

Doctor of Technical Sciences

presented by

Fabian Maser

Dipl. Informatik-Ing. ETH

born on April 7th, 1967

citizen of Dägerlen ZH

Accepted on the recommendation of

Prof. Jiirg Nievergelt, examiner

Prof. Martin Müller, coexaminer

Prof. Peter Widmayer, coexaminer

2001

Contents

Abstract vii

Kurzfassung ix

Acknowledgments xi

1 Introduction 1

1.1 Why Study Combinatorial Games? 1

1.2 Combinatorial Game Theory 2

1.3 State of the Art 2

1.4 The Game Bench: a Framework for Combinatorial Game Pro¬

gramming 3

1.5 Contributions of this Thesis 3

1.6 Structure of this Thesis 4

2 Divide and Conquer in Game Theory 5

2.1 Playing Sums of Games 5

2.1.1 Nim - an Example of a Sum Game 5

2.2 Combinatorial Game Theory 7

2.2.1 What is a Game? 7

2.2.2 The Formal Definition of a Game 8

2.2.3 The Four Outcome Classes 9

2.2.4 Inverses and Sums of Games 9

2.2.5 Composing and Simplifying Games 10

2.2.6 Numbers 11

2.2.7 Loopy Games 12

2.3 Decomposition Search 13

2.3.1 Game Decomposition and Subgame Identification
...

13

2.3.2 Local Search and Evaluation 14

2.3.3 Sum Game Play 15

2.4 Discussion 15

l

11 CONTENTS

2.4.1 The Complexity of Playing Sums 15

2.4.2 Applications of CGT in Computer Game Playing ...
17

3 The Game Bench: Goals and Design Concepts 19

3.1 Goals and Requirements 19

3.1.1 Extensibility 19

3.1.2 Portability 20

3.1.3 Efficiency 21

3.1.4 Usability 21

3.2 Design Concepts 21

3.2.1 The Game Kernel 22

3.2.2 The Game Application 23

3.3 Related Work 25

3.3.1 The Gangsman's Toolkit 25

3.3.2 The Smart Game Board 25

3.3.3 Gamesman 26

3.3.4 What does the Game Bench provide? 27

4 The Game Bench: Architecture and Implementation 29

4.1 Conventions 29

4.2 The Search Engine 30

4.2.1 Requirements of a Game Independent Search Engine .
30

4.2.2 Local Search 31

4.2.3 Sum Play Algorithms 33

4.2.4 The CGT Kernel 34

4.2.5 Class Hierarchy and Descriptions 35

4.3 The Game Kernel 38

4.3.1 The Game Playing Interface 39

4.3.2 Support Classes 40

4.3.3 Class Hierarchy 41

4.4 The Game Application 44

4.4.1 The Tree of Moves 44

4.4.2 The User Interface 45

4.4.3 Class Hierarchy 45

5 The Game Bench: Domineering, a Programming Example 49

5.1 Introduction 49

5.1.1 The Game Domineering 49

5.1.2 Implementation Steps 50

5.2 Implementation 50

5.2.1 The Game Kernel 50

CONTENTS iii

5.2.2 The Domineering Game View 52

5.2.3 The Domineering Application 53

5.3 Class Hierarchy and Statistics 55

6 Local Games with Global Threats 57

6.1 Global Threats 57

6.2 A CGT Model based on Loopy Games 59

6.2.1 Implementation Issues 59

6.3 A Computation Model based on Cutoffs in the Game Tree
. .

60

6.3.1 An Algorithm for Evaluating Local Games with Global

Threats 61

6.3.2 Example: Application to a Chess Position 64

6.3.3 Implementation 66

7 Combinatorial Chess Endgames 69

7.1 Divide and Conquer in King and Pawn Endgames 69

7.1.1 Mutual Zugzwang 70

7.1.2 Analysis of Pawn Structures 71

7.2 Global Threats in Local Chess Games 73

7.3 Results and Discussion 75

7.3.1 Decomposition Search in Chess Endgames 75

7.3.2 Divide and Conquer vs. Full Width Search 77

7.3.3 KP Endgames involving Zugzwang in Chess Literature 78

7.3.4 Summary and Conclusions 79

7.3.5 Games Selection 80

8 Zero-Sum Games without Zugzwang 87

8.1 Introduction 87

8.2 Mapping Zero-Sum Games to Combinatorial Games 88

8.2.1 The Mapping Algorithm 88

8.2.2 Zugzwang 88

8.2.3 Improved Mapping using the Reduced Canonical Form 90

8.3 Heuristic Local Search 91

8.3.1 Heuristic Evaluation Functions 91

8.3.2 An Iterative-Deepening Local Search Algorithm
91

8.4 The Game Regio 93

8.4.1 Introduction and Rules 93

8.4.2 General Properties of Regio 94

8.4.3 Applying Combinatorial Game Theory to Regio
95

8.4.4 Heuristic Local Search in Regio 95

8.4.5 A Game Play Experiment 98

iv CONTENTS

8.5 Summary and Conclusions 100

8.5.1 Mapping Zero-Sum Games to Equivalent Combinato¬

rial Games 101

8.5.2 Heuristic Local Search 101

9 Conclusion 103

9.1 Summary and Contributions 103

9.2 Future Research 104

A Glossary 111

B Chess Notation 115

C Regio Game Play Experiment 117

D Curriculum Vitae 121

List of Figures

2.1 The game Nim 6

2.2 The four simplest combinatorial games 8

2.3 The games on and off. 12

2.4 The game dud 13

2.5 A game interpreted as a decision problem 16

3.1 The game kernel and the game application 23

3.2 The structure of a game application 24

4.1 Java class hierarchy diagrams: symbols and conventions.
...

30

4.2 The local tree data structure 31

4.3 Local hashing 32

4.4 Decomposition search: sum game play 34

4.5 The structure of the CGT kernel 36

4.6 The search engine: class hierarchy 36

4.7 The abstract game kernel: class hierarchy 42

4.8 The tree of moves 44

4.9 The basic game application: class hierarchy 46

5.1 The game Domineering 50

5.2 The Domineering board view 53

5.3 The Domineering application 54

5.4 The class hierarchy of the Domineering application 55

5.5 Statistics of the Domineering application 56

6.1 Global threats in a chess position 58

6.2 A zero game with global threats 61

6.3 A game of result type win 62

6.4 Result types of global threats evaluation 63

6.5 An example of global threats evaluation 64

6.6 A game tree of global threats evaluation 65

7.1 Chess position: Sveda - Sika, Brno 1929 70

v

LIST OF FIGURES

7.2 Opposite pawns on the same file 72

7.3 Two vs. two pawn structure 73

7.4 The breakthrough 74

7.5 The Sveda - Sika game revised 76

7.6 Mutual Zugzwang: Popov - Dankov, Albena 1978 77

7.7 Chess examples: statistics 85

8.1 Mapping a zero-sum game to a corresponding combinatorial

game 89

8.2 Mapping a sum of two mutual Zugzwang positions 90

8.3 The game Regio 93

8.4 A Regio game position 95

8.5 The Tweedldee-Tweedledum strategy 96

8.6 Regio: heuristic evaluation 96

8.7 Regio: 4x2 rectangle 97

8.8 Regio: iterated thermograph 98

8.9 Regio: game play experiment 100

8.10 Statistics: Greedy hotstrat vs. alpha-beta 101

B.l An example chess position 115

C.l Statistics 119

Abstract

The micro world of games provides an ideal testing environment for search

techniques and algorithms. Combinatorial Game Theory (CGT) is a promis¬

ing, relatively new approach to the analysis of games. By decomposing a

game into a sum of independent local games, CGT enables the application
of divide and conquer to game tree search. This fundamental paradigm of

algorithm design promises to lead to efficient search techniques. Whereas

CGT has been subject to mathematical research for more than two decades,
this thesis aims to progress in the yet little explored field of computational
CGT.

In two case studies we apply the powerful methods of CGT in the field

of algorithmic game theory. In the first application we investigate a class of

games where a local move can lead to an overall win in a sum of games. We

present a new computation model that deals with such global threats and

use it to analyze Zugzwang positions in king and pawn chess endgames. In

the second case study we analyze zero-sum games without Zugzwang. With

applications to the game Regio, we demonstrate that the use of heuristic

evaluation functions in local game search combined with algorithms for sum

game play is a promising divide and conquer approach to heuristic game

playing.
With the Game Bench we present an application framework for combina¬

torial game programming. Its main focus is an extensible search engine that

provides game independent algorithms and data structures for combinatorial

game tree search and sum game play. The choice of an object-oriented design
and of the programming language Java makes the Game Bench extensible

to the programmer's needs and portable to virtually any computer platform.
Several applications and student programming projects have demonstrated

its value as a tool for rapid prototyping of game playing programs.

vu

vin ABSTRACT

Seite Leer /

Blank leaf

Kurzfassung

Die Mini-Welt der Spiele bietet eine ideale Testumgebung für Such-Techniken

und -Algorithmen. Die Kombinatorische Spieltheorie (KST) ist ein relativ

neuer, vielversprechender Ansatz in der Analyse von Spielen. Indem sie ein

Spiel in eine Summe von unabhängigen Teilspielen zerlegt, wendet die Kom¬

binatorische Spieltheorie ein fundamentales Paradigma der Algorithmik in

der Spielbaum-Suche an, "Teile und Herrsche". Seit über zwei Jahrzehn¬

ten ist die Kombinatorische Spieltheorie Gegenstand der mathematischen

Forschung. Ziel dieser Arbeit ist es, Fortschritte zu erzielen in der algorith¬
mischen KST, einem bisher wenig erforschten Gebiet.

In zwei Fallstudien wenden wir die Methoden der KST auf dem Gebiet

der algorithmischen Spieltheorie an. Die erste untersucht eine Klasse von

Spielen, in denen ein Zug in einem Teilspiel zu einem Sieg in der ganzen

Summe führen kann. Wir stellen ein neues Berechnungsmodell vor, welches

mit solchen globalen Drohungen umgehen kann und setzen es ein in der Ana¬

lyse von Zugzwangstellungen in Bauernendspielen im Schachspiel. In der

zweiten Fallstudie analysieren wir Zugzwang-freie Nullsummenspiele. Mit

Anwendungen im Spiel Regio zeigen wir, dass der Einsatz von heuristischen

Bewertungsfunktionen in der kombinatorischen Spielbaum-Suche in Kombi¬

nation mit einem Algorithmus für das Summenspiel einen vielversprechenden

Ansatz, "Teile und Herrsche" in der Spiel-Analyse anzuwenden, liefert.

Die "Game Bench" ist ein Rahmenprogramm für die Implementierung
von kombinatorischen Spielen auf dem Computer. Das Kernstück der Game

Bench ist eine erweiterbare "Suchmaschine", welche spielunabhängige Al¬

gorithmen und Datenstrukturen für die kombinatorische Spielbaum-Suche
und das Spielen von Summen zur Verfügung stellt. Die Wahl einer objekt¬
orientierten Struktur und der Programmiersprache Java machen die Game

Bench erweiterbar für die Bedürfnisse der Spiel-Programmierer und portier¬
bar auf praktisch alle Computer-Plattformen. Den Erfolg der Game Bench

als Werkzeug für die Entwicklung von Spielprogrammen dokumentieren ver¬

schiedene Anwendungen und Studenten-Projekte.

ix

X KURZFASSUNG

s@jte Leer

Acknowledgments

I wish to sincerely thank all the people who assisted me during my work.

First of all, I would like to express my thanks to my advisor, Jiirg Niever-

gelt, who made this research possible. I am especially grateful for the time

he spent teaching me better ways of presenting my ideas. I am also indebted

to my coexaminers Martin Müller and Peter Widmayer for taking the time

to read my thesis and for their valuable suggestions and contributions.

Damlo Biella and Marcel Schneider relied on the Game Bench as a pro¬

gram basis for their diploma projects. Werner Hartmann allowed the Game

Bench to be part of the teaching materials provided by the EducETH web

server. Mathias Schulze used the Game Bench to analyze and solve his game

"Crash!". I also wish to thank the students who used the Game Bench for

their semester projects in Professor Nievergelt's game theory courses at ETH

Zürich.

I have always enjoyed working in the pleasant atmosphere of our research

group for which I would like to thank the former and present members: Silva-

nia Avelar. Adrian Brüngger, Michèle De Lorenzi, Ralph Gasser, Reto Lam¬

precht, Thomas Lmcke, Ambros Marzetta, Matthias Müller, Nora Sleumer,
Vincent Tscherter and Christoph Wirth.

Finally, I thank my friends and family for their invaluable support and

motivation.

XI

Chapter 1

Introduction

This chapter gives an overview of the contents of this thesis. After a brief

motivation for studying combinatorial games, we give an introduction to

combinatorial game theory in Section 1.2. We discuss related work and con¬

tributions in Sections 1.3 and 1.5. In Section 1.4 we introduce the main

software project, the Game Bench. Finally, we give an overview of structure

and content of this document in Section 1.6.

1.1 Why Study Combinatorial Games?

"Amusing oneself with games may sound like a frivolous occupation. But the

fact is that the bulk of interesting and natural mathematical problems that

are hardest in complexity classes beyond NP ... are two player games." (A.
Fraenkel [16])

The micro world of games provides an ideal testing environment for AI

techniques such as search, pattern recognition and knowledge representation.
Rules of games are usually simple to describe, improvements (for instance

playing strength) can be measured objectively, and human expert knowledge
is available. The combination of search and heuristic evaluation as described

by Shannon as early as in 1950 [48] leads to extremely strong game playing

programs. Most notable are the results achieved by the programs Deep Blue

[26] in chess and Chinook [46] in Checkers.

Furthermore, games provide state spaces of arbitrary sizes for developing
and testing techniques of exhaustive search. Nine Men's Morns with a state

space of approximately size 1010 is an example of a non-trivial game solved

by a combination of alpha-beta search and retrograde analysis [21]. In fact,

games are natural mathematical problems that lie in complexity classes be¬

yond NP such as P-Space or even Exptime. Problems that do not admit

1

2 CHAPTER 1. INTRODUCTION

polynomial time algorithms have long been considered intractable from an

algorithmic point of view. "But efficient algorithms can only be found for

selected, relatively simple problems, whereas the world of applications is not

simple. ...
Whereas computer scientists feel they know everything worth

knowing about sorting and binary search, we know little about how to orga¬

nize large state spaces for effective exhaustive search.
...

And for sharpening
our tools, the well defined "micro worlds" of games and puzzles ... are well

suited." [43]

1.2 Combinatorial Game Theory

Combinatorial game theory (CGT) deals with sums of games: a player to

move in a sum chooses one of its component games and plays a move in it.

One of the first results in analyzing sums of games is Bouton's solution of the

game Nim [9] published in 1902. 74 years later, Conway presents a general

theory of combinatorial games [11]. In 1982, three of the main exponents

of the theory, Berlekamp, Conway and Guy publish more results and many

examples in their classic Winning Ways [5].
As a research area of computer science, combinatorial game theory is still

in its beginnings. The reason why this elegant mathematical theory enables

promising new approaches to game tree search is that it suggests one of the

most fundamental algorithmic paradigms, divide and conquer.

An example of a divide and conquer algorithm that computes minimax

solutions of games that can be partitioned into independent subgames is

decomposition search [41]. Decomposition search analyzes a game's indepen¬
dent components separately and combines the computed local results using

techniques of combinatorial game theory. As a result, it is often possible to

solve much larger problems than with standard full-width search.

1.3 State of the Art

Combinatorial game theory has mainly been used for pencil-and-paper anal¬

ysis of the games described in Winning Ways [5] such as Domineering or

Hackenbush. The first computer tool to support such analysis is Wolfe's

Gamesman's Toolkit [52] which implements virtually all the material in fi¬

nite combinatorial game theory. As a games calculator, it allows the user to

perform algebraic manipulations on games. As a library of CGT functions,
it supports the game programmer in analyzing a particular game using the

computer. In Section 3.3 we discuss work in the field of combinatorial game

1.3. THE GAME BENCH 3

programming.
While many of the games described and analyzed in [5] were invented

by the authors to demonstrate the analytical power of combinatorial game

theory, there have been a few applications to traditional games of which we

mention:

• Go endgames decompose into independent components. With the def¬

inition and analysis of Mathematical Go [6], Berlekamp and Wolfe map

this classical game to a combinatorial game as defined by Conway [11].
In another application, Müller [39] introduces a heuristic sum game

model for Go and solves late endgame positions exactly by means of

combinatorial game theory.

• Elkies [13] shows that combinatorial game theory also applies to certain

chess endgames, mainly positions with only king and pawns on each

side. In these positions, each piece is restricted to some small area of

the board in such a way that a decomposition of the game becomes

possible.

1.4 The Game Bench: a Framework for Com¬

binatorial Game Programming

The Game Bench is an application framework for programs that implement
combinatorial games. Its main goal is to provide the game programmer

with a game independent search engine that implements algorithms and data

structures of decomposition search. Further, it provides game independent

support for the implementation of common types of games such as games

played on rectangular boards and graphs.
The Game Bench is written in Java which makes it portable to all of

today's most popular computer platforms. Its variety of game independent

support makes the Game Bench well suited for fast prototyping. On the other

hand, it also allows serious game analysis and time critical computations of

combinatorial games as the applications in Chapters 7 and 8 demonstrate.

1.5 Contributions of this Thesis

With the two case studies on chess endgames and zero-sum games, we extend

the range of CGT applications in computational game theory. With applica¬
tions to king and pawn endgames in chess we present a general computation

4 CHAPTER 1. INTRODUCTION

model that enables dealing with a class of games that contain global threats.

In a sum of such games, a local move can be globally decisive. In the second

case study we investigate the use of heuristic evaluation functions in local

combinatorial search of zero-sum games with perfect information. Based on

the same heuristic evaluation functions, decomposition search seems to be

a promising alternative to standard alpha-beta search when playing games

that can be partitioned into independent components.

With the Game Bench, we provide a general framework for the implemen¬
tation of combinatorial game programs. Its game independent algorithms and

data structures enable the game programmer to implement a specific com¬

binatorial game much faster than if she had to start from scratch. Further,
its extensible game independent search engine makes the Game Bench an

ideal testbed for various sum play algorithms. The Game Bench has proven

its usefulness in the field of education where it is successfully used in game

theory courses at ETH Zürich and as a demonstration program for game tree

search on the EducETH web server [12]. It has also served as a program basis

in the diploma projects of Biella [8] and Schneider [47].

1.6 Structure of this Thesis

Chapter 2 deals with the theoretical background of this thesis. We review

combinatorial game theory, as developed by Conway [11] and others, and

discuss algorithms for sum game play. Chapters 3 to 5 describe the Game

Bench, an application framework for combinatorial game programs. Chap¬
ter 3 discusses goals, requirements and design concepts of the Game Bench.

Chapter 4 illustrates its architecture and discusses implementation issues,
and Chapter 5 shows how to use the Game Bench on the basis of an example

application. Chapters 6 to 8 describe the case studies on chess endgames and

zero-sum games in general. Chapter 6 introduces a new computation model

for local games with global threats. Chapter 7 presents an application of this

model to king and pawn chess endgames involving Zugzwang. Chapter 8 dis¬

cusses the application of combinatorial game theory to zero-sum games and

the use of heuristic evaluation functions in local game tree search. Chapter
9 concludes this thesis with a summary and a look at directions for future

research.

Chapter 2

Divide and Conquer in Game

Theory

In this chapter we review combinatorial game theory (CGT) as a method of

applying the divide and conquer paradigm to game tree search. In Section

2.1 we give an example of a sum game that is easily solved with divide

and conquer. In Section 2.2 we present the basics of combinatorial game

theory. In Section 2.3 we introduce decomposition search, an algorithm that

computes minimax decisions with the help of CGT. Finally, in Section 2.4

we discuss the complexity of playing sums and possible applications of CGT

in computer game playing.

2.1 Playing Sums of Games

A sum or disjunctive compound [11] is a natural way to play two or more

games simultaneously. At his turn, each player chooses one of the component

games and makes a move in it. When analyzing a sum game, we can often

take advantage of its special structure. We break it into its components

(divide) and combine the results of the subgames to compute the result of

the whole sum (conquer). One of the earliest known examples of a sum game

with a mathematical solution is Nim. Bouton [9] has solved it in 1902.

2.1.1 Nim - an Example of a Sum Game

Nim is played with heaps of tokens (in the game's origins coins were used).
The two players alternately choose a heap and remove a number of tokens

from it. It is only allowed to remove tokens from one heap, but it is possible to

take a whole heap. The player who takes the last token wins, or equivalently,

5

6 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

a player unable to move loses. Figure 2.1 shows a Nim game with four heaps.

Figure 2.1: Nim, played with heaps of 7, 5, 3 and 1 tokens.

If we do not take the game's structure as a sum into account, we are

able to handle only small instances of Nim. The size of its game tree grows

exponentially in the number of tokens and heaps.1 The divide and conquer

approach on the other hand allows the solution of instances of virtually any

size.

We consider each heap separately and define its Nim value as the number

of tokens it contains (divide). To determine whether a given position is a

win or a loss for the player to move (in Nim there are no draws), we perform
a Nim addition of the Nim values of all heaps. If we get zero, the position
is a loss for the player to move, if not, it is a win (conquer). Nim addition

of two numbers is carried out as the bitwise exclusive or on their binary

representation. In the example of Figure 2.1 we get

7(111) © 5(101) © 3(011) © 1(001) = 0(000)

Thus, the given position is lost for the player to move. Bouton's method

is based on the facts that

1. in each position of value v ^ 0, it is possible to move to a position of

value v' = 0.

2. in a position of value v — 0 all moves lead to positions of value v' / 0.

3. the empty position that contains no tokens is of value v = 0.

:In the special cases of one and two heaps optimal play can also be ensured by simple
rules that avoid computing the game tree.

2.2. COMBINATORIAL GAME THEORY 7

2.2 Combinatorial Game Theory

Bouton 's solution of Nim was the first step towards a mathematical theory
of combinatorial games. In the 1930s, Sprague and Grundy [22] developed
a general theory of impartial games. Impartial games offer both players the

same options in every position. The Sprague-Grundy theorem states that

every impartial game is equivalent to a Nim heap of a certain size. Later,
the theory was extended to parhzan games in which the players usually have

different options in a given position. Some first results were published by
Milnor [36] and Hanner [25] who extended minimax calculations to sums

of games. In 1976, Conway [11] introduced combinatorial game theory (in
short CGT), a complete mathematical theory of combinatorial games and

their sums. In the following sections, we present fundamental definitions and

results of finite CGT based on Guy's article "What Is a Game?" [23] and

Conway's book [11].

2.2.1 What is a Game?

Conway defines the term game in a slightly different way than classical game

theory. According to Conway, a combinatorial game must satisfy the follow¬

ing conditions:

1. There are two players called Left and Right.

2. Left and Right move alternately in the game as a whole.

3. Under the normal play convention (or normal termination rule), the

player unable to move loses.

4. The ending condition states that there are no draws due to (infinite)
repetition of the same position. A game will always come to an end.

5. Both players have complete information about what is going on in the

game.

6. There are no chance moves (like dealing cards or rolling dice).

Many popular games do not satisfy these conditions entirely. In card

games like Poker or Bridge the players have no information about their op¬

ponents' cards. Backgammon has complete information, but contains chance

moves. In chess a player unable to move does not lose the game, and in Go

the player who controls the larger territory wins. Often, however, it is pos¬

sible to map such games to equivalent combinatorial games. For example

8 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

in Go we suspend the capturing rule in the end and keep filling the board.

The player who controls less territory will first run out of moves and lose the

game.

The ending condition (4) makes sure there are no infinite, loopy games

to which some of the concepts discussed below only apply in a restricted

form, or not at all. Below we use the term CGT for finite CGT. Exceptions

(Chapters 6 and 7) are explicitly pointed out.

2.2.2 The Formal Definition of a Game

A game is defined by its left and right options, that is the games to which

Left and Right can move.

G = {Li,..., Ln | Ri,..., Rm} (2.1)

or in short

G = {GL\ GR} (2.2)

This definition of a game is recursive. Li and R3 are again games while

GL and GR stand for sets of games. The basis of recursion is the empty

set. The game {0 | 0} = { | } has neither any left nor any right options and

is called 0 (zero). The player to move loses. On the first level of recursion

another three games are created (see Figure 2.2):

0 = { I} 1 = {01 } -1 = { 10}
*
= {010}

Figure 2.2: The four simplest games: 0 is the basis. 1,-1 and * are created on

the first level of recursion.

• The game {0 | } offers Left a move to 0 while Right has no options.

Left has one spare move, and so the game is called 1.

2.2. COMBINATORIAL GAME THEORY 9

• In { | 0} on the other hand, Right can move to 0 whereas Left has no

moves. This game is called — 1.

• In {0 | 0} = *, the game star, both players have exactly one option,
the move to 0. * is an impartial game, equivalent to a Nim heap of size

one.

2.2.3 The Four Outcome Classes

Under the normal play convention, every game belongs to one of four outcome

classes:

• {G = 0} (zero) The second player wins. Games that belong to the

equivalence class {G = 0} are also known as mutual Zugzwang2 (mZZ).

• {G > 0} (positive) Left wins.

• {G < 0} (negative) Right wins.

• {G || 0} (fuzzy) The first player wins.

Of the four games shown in Figure 2.2, each one falls into a different

outcome class. The game 0 is of course in class {G = 0}. The game 1 is won

by Left no matter who starts. Right to play loses immediately as he has no

move, and Left to play moves to 0 when again Right has no move. Thus, 1

belongs to the outcome class {G > 0} and symmetrically —1 belongs to class

{G < 0}. The game * is a fuzzy game (we also say "is confused with 0").
The player who starts wins by moving to 0 when the opponent has no move.

Note that unlike in classical game theory, we examine game positions
without defining which player has the move. Thus, we distinguish four out¬

come classes in contrast to the three (win, loss, draw) defined by Zermelo

[54] although in CGT there are no draws.

2.2.4 Inverses and Sums of Games

The inverse or negative of a game (-G) is constructed by "swapping sides".

Its definition

-G = {~GR | -GL} (2.3)

2German, meaning "a situation where one is forced to move".

10 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

where —GR stands for {—GRl, —GR2... } is recursive as well, and again
the empty set builds the basis of the recursion (0 = { | } = —0).

We have already defined the sum or disjunctive compound of two games

G and H in Section 2.1. A player moves either in G or in H and leaves the

other game unchanged. This leads to the following, again recursive, definition

of the sum G + H where the notation GL + H stands for the set of options

{GLl + H, GL2 +H...}:

G + H = {GL + H,G + HL \GR + H,G + HR} (2.4)

With the help of the inverse of a game and the sum of two games we

now define equality of two games: The games G and H are equal if the sum

G + (-H) belongs to the equivalence class {G = 0}.

G = H &G + (-H) = 0 (2.5)

Sums of games are commutative and associative. With the neutral ele¬

ment 0 (G + 0 = G, G + (—G) = 0) the set of all games has the mathematical

structure of a group.

Further, there is a partial order on games. We define G > H as G +

(—H) > 0, that is, G is greater than H if Left wins the sum G + (-H)
no matter who starts. On the other hand, if G + (-H) || 0 we say that G

and H are incomparable and write G \\ H. In this case G is neither greater,

nor equal, nor smaller than H. As one would expect G > II is defined as

(G> H)V(G = H).

2.2.5 Composing and Simplifying Games

We create a new game G by composing a set GL of left options and a set GR

of right options, G = {GL \ GR} as shown in Section 2.2.2. This is the way

all games are created.

A set of options may contain redundant games that can either be deleted

or at least replaced by simpler games. There are two ways to simplify a

game: deleting dominated optionsandreplacingreversibleoptions:1.deletingdominatedoptions:ifinagameG={A,B,C,|Z,Y,X,...},wefindthatA>B,thenAdominatesBandBcanbeomitted.Symmetrically,ifZ<Y,thenZdominatesYandYcanbeomitted.

2.2. COMBINATORIAL GAME THEORY 11

2. replacing reversible options: A player's option is reversible if it

allows the opponent to move to a game that is at least as good for her

as the original game was. If a right option R in a game G contains a

move RL with RL > G, we replace R by the list of all right options of

RL.

In the following example, we simplify the game

G = {-1,* | 0,*}

* dominates —1 as a left option which we verify by checking that * —

(—1) > 0. Of the two right options, neither dominates the other, as 0 || *.

Thus, after deleting dominated options, we get

G = {* |0,*}

Now, we find that the right option * is reversible, as its set of left options
*L contains the game 0 which is > G. (It is easy to verify that G is a win

for Right and therefore less than zero (G < 0).) Thus, we replace the right

option * by the set of all right options of 0 = { | } which is empty. Finally,
we get

G = {* |0}

It is not possible to further simplify the game G — {* | 0}. It is a very

common game and has its own name down, written 4-. Analogously, the game

up is defined as f = {0 | *}. Each finite combinatorial game G has a unique

simplest form, the canonical form [11] of G.

2.2.6 Numbers

Any positive integer n can be interpreted as the game where Left can move

n times whereas Right has no move. (We have already met the numbers 0

and 1 in Section 2.2.2.)

1 = {0|} (2.6)
n + 1 = {n\} (2.7)

There are also fractional numbers, such as \ = {0 | 1} and \ = {0 | |}.
In general, a game G in its canonical form is a number, if and only if

1. all its options GL' and GÄj are numbers.

12 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

2. no left option GLl is > any right option GRj
.

The set of all numbers is a true subset of the set of all games. Looking
at the four games of Figure 2.2), we already find that the game * = {0 | 0}
is not a number, as its left option 0 is > its right option 0.

2.2.7 Loopy Games

In this section we briefly discuss the loopy games on and off (Winning Ways

[5], chapter 11) which we use in Chapters 6 and 7. Loopy games are infinite

games that do not meet the ending condition (see Section 2.2.1), i.e. they
allow infinite sequences of moves to be played.

Two of the simplest loopy games (they consist of only one position) are

the games on = {on | } and off = {\ off} shown in Figure 2.3.

L R

on={onl} off={loff}

Figure 2.3: The loopy games on and off offer one of the players an infinite number

of moves.

The game on is greater than any finite game G, as Left wins any sum

(on + (-G)) by just playing in on until Right runs out of moves in (—G).
The game (—G) allows Right only a finite number of consecutive moves.

Analogously, any finite game G is greater than the game off.
In the sum (on + off), both players will always have a move available,

therefore no one will lose:

on + off = {on + off \ on + off} = dud

The result dud ("deathless universal draw" [5]) offers a pass move for

both players (Figure 2.4), so any sum S that contains a component of value

dud will never be brought to an end (dud + G = dud).

2.3. DECOMPOSITION SEARCH 13

dud = {dud I dud}

Figure 2.4: The loopy game dud allows both players to "pass".

2.3 Decomposition Search

Decomposition Search (Müller [41]) is an algorithm that computes minimax

solutions to games that decompose into independent subgames. It uses com¬

binatorial game theory to combine the results of locally restricted searches.

This divide and conquer approach to game tree search often allows the exact

solution of much larger problems than a full-width search as performed by

alpha-beta and similar algorithms can handle. Decomposition search consists

of four steps:

1. Game decomposition and subgame identification: decompose game G

into its components: G = Gi + G2 • • + Gn.

2. Local combinatorial game search: for each local game produce its game

graph graph(Gl).

3. Local game evaluation: starting from the leaf nodes of graph(Gl) com¬

pute the combinatorial values of all interior nodes leading to the com¬

putation of the root value val(Gl).

4. Sum game play: make a move decision in the sum game G = G\ +

G2 + Gn based on the local combinatorial values val(Gl).

In the following sections, we discuss these steps in detail and show how

they are implemented.

2.3.1 Game Decomposition and Subgame Identifica¬

tion

There are two preconditions for applying decomposition search to a game.

The game must allow a decomposition into independent components and the

14 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

subgames must meet the definition of combinatorial games given in Section

2.2.1. In some games, for example in Nim (Figure 2.1), the decomposition is

obvious and follows directly from the rules. In board games like Domineering

(see Chapter 5) or Go where the board gets filled with stones, a decomposi¬
tion arises when enough moves have been played. With the help of specific

knowledge of a game, we may also achieve a heuristic decomposition, for

instance if we assume that in a chess position a certain piece cannot leave

some area of the board (see Chapter 7).

2.3.2 Local Search and Evaluation

In contrast to minimax search, we must consider both players' moves at every

node (game position). Successive moves by the same player are possible
as the opponent might move in another local game. After evaluating all

options GL = {GL\Gl2 ... GL"} and GR = {GR\GR2... GR}, we compute
the value of the actual node as G = {GL \ GR}. The following algorithm

implements recursive depth-first game tree traversal and combinatorial game

evaluation of a local game.

function LocalSearch(): TGameValue;

/* computes the combinatorial value of a local game */
begin
GL <_ {}; GR <_ {};
forall left moves m do /* recursively evaluate all left moves... */
ExecMove(m);
GL^GLULocalSearch();
UndoLastMove();

endfor;
forall right moves m do /* recursively evaluate all right moves... */
ExecMove(m);
GR <- GR U LocalSearch();
UndoLastMove();

endfor;
return {GL \ GR};

end LocalSearch;

The algorithm uses the operation of composing and simplifying a combi¬

natorial game from two sets of left and right options. Conway [11] defines

how this is done (see also Section 2.2.5), and Wolfe's Gamesman's Toolkit

2.4. DISCUSSION 15

[52] implements this and many other CGT functions. We emphasize the

following points about the algorithm's implementation:

• Local search is game independent. The required game functionality
consists only of operations to execute and take back moves and a move

generator.

• As in standard minimax search, we can use hash tables or transposi¬
tion tables to recognize and store previously evaluated game positions.

Additionally, we can hash previously evaluated combinatorial game ex¬

pressions which again improves the performance of the search. The

Gamesman's Toolkit, for instance, does this automatically.

2.3.3 Sum Game Play

Finally, based on the evaluation of the component games, we make a move

decision. Combinatorial game theory provides different ways to do this:

• The incentive of a move is a measure for how much this move improves
the position. If there is a move whose incentive dominates all other

moves' incentives, this move is proven optimal. Incentives are computed

locally: if Left moves from G to GL\ the left incentive is defined as

GL* — G, the right incentive on the other hand is defined as G — GRl.

Unfortunately, it is not always possible to find a move whose incentive

dominates all other moves' incentives. In this case, we decide on a move

as shown below.

• The straightforward way to find an optimal move is to compute the

sum of all local games as defined in Section 2.2.4. Although we can

sometimes compute sums efficiently, this usually loses all advantages of

the divide and conquer approach.

• Finally, there are heuristic local methods of finding a good move in a

sum. Examples of algorithms for heuristic sum game play are hotstrat

(see Section 8.4.5), thermostrat [5] and sentestrat [4].

2.4 Discussion

2.4.1 The Complexity of Playing Sums

Most games are "hard" in terms of complexity. The question whether player
L has a win in a certain game position involves a sequence of alternating

16 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

quantifiers: "is there a move for player L such that on every move of player
R there is a move for player L ...

such that player L wins?" (see Figure 2.5).
In contrast to difficult (NP complete) existential problems, the solution of a

game consists of a whole subtree of the solution tree, not just of a path. Many

games, in their generalized versions to arbitrary input sizes, are P-Space hard

(see for example [17] for a result in generalized n x n chess).

3

V

3

Figure 2.5: The question whether a player has a win involves a sequence of alter¬

nating quantifiers.

Can we improve on this asymptotic complexity by applying divide and

conquer? In general, the answer is "no". In fact, Morris [37] proves that

playing sums of even simple combinatorial games is P-Space complete as

well. On the other hand, significant improvements are possible in practice.
And for some games, for instance Nim, the divide and conquer approach even

results in an efficient (polynomial time) algorithm.
The following two computation steps determine the complexity of the

divide and conquer approach.

1. Local search: compute the values of all component games.

2. Sum game play: make a move decision based on the values of the local

games.

In the case of Nim (see Section 2.1.1), we compute both steps in linear

time. Minimax evaluation of the game tree of Nim on the other hand takes

exponential time in the number of tokens.

Usually, however, local search must traverse the whole game tree of a local

game to determine its value. But the branching factor (the average number

of possible moves in a position) and the maximum search depth are smaller

2.4. DISCUSSION 17

than in the sum game. As a result, the number of nodes to be searched

decreases considerably.
In the following three cases, we perform the second step of making a

move decision efficiently, thus reducing the complexity of the sum game to

the complexity of its biggest component game.

• We can play the sum game based on local decisions only. After pruning

locally dominated moves and moves with dominated incentives, we are

left with only one possible move.

• We use a heuristic sum play algorithm that makes move decisions based

on local information only.

• We compute the sum of all local games efficiently. An example of a

whole class of games where this is possible are impartial games. The

value of a sum of impartial games is computed as its Nim sum [22].

We conclude that the divide and conquer approach often yields a consid¬

erable improvement on standard minimax evaluation.

• Although we do not improve on the asymptotic complexity in general,
we often reduce the complexity of a sum to the complexity of its biggest

component. For instance, Müller [41] states: "An application of decom¬

position search to Go has demonstrated perfect play in long endgame
problems which far exceed the capabilities of conventional game tree

search methods."

• An additional advantage of decomposition search is the re-usability of

partial results. We can store values of local games that frequently occur

in temporary hash tables or persistent databases (see also Section 4.2.2,
local hashing).

2.4.2 Applications of CGT in Computer Game Playing

Combinatorial game theory defines games in a slightly different way than

classical game theory as introduced by von Neumann and Morgenstern [50].
Many popular games do not meet the normal termination rule which states

that a player unable to move loses. One of the main goals of this thesis is

to investigate algorithms and computation models that apply the powerful
methods of combinatorial game theory to computer analysis and solution of

a wide range of games. In Chapter 7, we present a computation model that

allows to compute values of games that contain globally winning moves. In

18 CHAPTER 2. DIVIDE AND CONQUER IN GAME THEORY

the second case study (Chapter 8), we use heuristic evaluation functions to

compute approximate combinatorial game values of zero-sum games without

Zugzwang, an approach that has proven successful in minimax evaluation of

these games.

Chapter 3

The Game Bench: Goals and

Design Concepts

In this chapter we introduce the Game Bench, an application framework for

combinatorial game programs. In Section 3.1 we discuss general requirements
of a game application framework and the main goals of the Game Bench. In

Section 3.2 we introduce two main design concepts of the Game Bench, the

game kernel and the game application. In Section 3.3 we discuss related work

in the field of combinatorial game programming.

3.1 Goals and Requirements

The Game Bench is an application framework that supports implementation
and analysis of combinatorial games on the computer. Its main goal is to

provide the game programmer with a game independent search engine that

contains algorithms and data structures implementing the various steps of

decomposition search. Further, the Game Bench framework supports the

implementation of fundamental game playing functionality and the game

applications' user interfaces.

We identify the following general requirements of a combinatorial games

application framework: extensibility, portability, efficiency and usability. Be¬

low we show how these requirements are met by the Game Bench and discuss

possible conflicts among them.

3.1.1 Extensibility

Extensibility is a very important requirement for application frameworks in

general. Only an extensible framework is flexible enough to adapt to the

19

20 CHAPTER 3. GAME BENCH: GOALS

different needs of its various applications. In case of a game application

framework, this specially applies to the "search engine": it should for in¬

stance be possible to add a new, general game playing algorithm and make

it available to all game applications based on the framework.

The Game Bench guarantees extensibility by its object-oriented design
and choice of programming language (Java). The Game Bench is extensible

on two different levels:

1. By organizing the common components of search algorithms in basic

classes, the Game Bench provides an extensible search engine. The

programmer can easily add a new sum play algorithm by extending
a basic sum play algorithm that already provides the functionality to

decompose a game and compute and store local game results.

2. The Game Bench does not prescribe in detail how a final game applica¬
tion must be designed, but it provides a basic game application which

the programmer extends and tailors to her own needs. She adds the de¬

sired functionality to an application skeleton that already implements
basic operations common to all game applications.

To some extent, extensibility conflicts with the goal of efficiency. For

instance, a game specific, highly optimized search engine usually outperforms
an extensible, general-purpose search engine. We have tried to find a good
balance between the two requirements although we consider extensibility to

be of slightly greater importance.

3.1.2 Portability

Portability is a standard design requirement in software development. With¬

out being portable, software cannot survive in its rapidly changing environ¬

ment. The choice of Java as its programming environment makes the Game

Bench portable not only by source code, but also by object code. This is an

advantage, if a user wants to run a game application, but has not installed

the necessary programming tools to compile the source code on her machine.

As does extensibility, portability also conflicts with the goal of efficiency.
The Game Bench uses Wolfe's Gamesman's Toolkit [52] (see also the next

section) in form of a pre-compiled dynamic library as an engine for all basic

CGT computations. The toolkit is provided for Windows 95/98/NT, Solaris

and Linux platforms. However, it compiles on any platform that supports
the Java native interface [32], for example MacOS and other versions of Unix.

3.2. DESIGN CONCEPTS 21

3.1.3 Efficiency

Efficiency is important in game applications. The following factors make

the Game Bench reasonably fast and thus also suited to attack "big" search

problems (like for instance some of the complex pawn structures analyzed in

Chapter 7).

• On most platforms, just in time compilation enables Java byte code to

be executed in a compiled form. Although not quite as fast as object
code generated by a C compiler or assembly code, the gap is very small

in contrast to interpreted Java code.

• The Game Bench uses the Gamesman's Toolkit [52] as its basic com¬

binatorial game calculator. The toolkit is provided as a pre-compiled
library and dynamically linked to the game application by using the

Java native interface [32]. If portability by object code is not the user's

primary goal, other time critical routines, for example a game's move

generator, may be implemented as native methods and pre-compiled
for a local machine as well.

3.1.4 Usability

"Software which is difficult to use wastes the time of its users, makes them

angry, leads to high support expenses, or is not used at all." (A. Marzetta

[33]). We have tried to make the Game Bench as simple as possible while

still providing a useful set of combinatorial game features. By extending
a few basic classes which implement the rules of a game, an application is

developed step by step. A first quickly developed version enables the user to

play moves on a game board. Later, other functionality, for example the use

of hash tables by the search engine can be added.

A measure for usability is the time which users must invest to obtain a

productive result [42]. The use of the Game Bench as a programming base

in student projects (for example [8], [47]) has shown that within a week, it

is possible to create a simple application that plays a combinatorial game.

3.2 Design Concepts

The goal of separating game independent from game specific algorithms and

data structures is reflected in the design of a game application framework.

All game specific functionality, for example executing and taking back moves

on a game board, should be encapsulated in abstract data types in order to

22 CHAPTER 3. GAME BENCH: GOALS

hide game specific details and reduce the game specific functions to a set of

operations common to all games handled by the framework. This approach
has proven successful in the Smart Game Board [29] which is based on a

modular design.

However, we feel that the separation of game independent and game spe¬

cific components is ideally modeled with an object-oriented design. The

framework specifies game specific functionality in a set of abstract classes

visible to all its components. The game programmer extends these classes

and implements the prescribed function prototypes (see Figure 3.1). The

advantages of an object-oriented design are:

• Abstract classes serve two purposes simultaneously: they specify the

required game specific functionality (in the form of function prototypes

without implementation), and they can provide fully implemented sup¬

port functions.

• The design naturally reflects the logical separation of game indepen¬
dent and game specific functionality. The abstract classes specify the

operations common to all games whereas their extensions implement
the game specific details.

• The game independent components (for example a game tree search

algorithm) only need to "know" and work with the abstract classes

that define game specific functionality. As a consequence, there is no

need to recompile such a component when adding a new game, and the

components can even work with different games at the same time.

• Last but not least, an object-oriented design is elegant and transparent
which has a positive effect on the time needed to get acquainted with

and use the framework.

The Game Bench provides two main levels of abstraction. The game

kernel implements basic functionality required for playing a game. The game

application connects the game kernel to other components such as the search

engine and the user interface (see Figure 3.1).

3.2.1 The Game Kernel

The game kernel is the core of a game application. It implements the game

state, the application's central data structure. The game state represents the

actual position of a game. Operations on the game state include executing
and taking back moves and detecting whether a game is finished.

3.2. DESIGN CONCEPTS 23

game specific

game state

move

abstract /

game independent

game kernel

User Interface

Search Engine

game application

Figure 3.1: The design concepts of game kernel and game application: The ab¬

stract game kernel defines all game specific functionality and serves as an interface

to the search engine and the user interface.

We distinguish the abstract game kernel provided by the Game Bench

and its extension, the specific game kernel of a game application (see Figure

3.1). The abstract game kernel serves two purposes:

1. It specifies the game playing interface that defines the game kernel's

game specific functionality. This interface connects the game kernel to

other components of the Game Bench such as the search engine and

the user interface.

2. It provides game independent support for the implementation of the

functionality defined by the game playing interface.

The design of the game kernel leads to a clear and logical separation of

game independent and game specific functionality. All game specific opera¬

tions are defined in abstract classes as abstract methods. The programmer

adds the functionality of a certain game by extending these abstract classes

and implementing the prescribed abstract methods.

3.2.2 The Game Application

The task of the game application is to connect and control its main compo¬

nents (see Figure 3.2):

• the game kernel that implements the game state and its operations as

discussed in the previous section.

24 CHAPTER 3. GAME BENCH: GOALS

• the search engine that provides the tools for the implementation of

decomposition search: the basic CGT calculator, algorithms and data

structures for local game tree search, and an extensible set of sum play
algorithms.

• the user interface that displays the game state and enables the user to

control the application, for example by entering a move or starting the

search engine.

1 0 0

0 1 1

1 0 1

game
kernel

h«

1 1

© o o

o © o

o ©

user

interface

/r-^\
controller

search

engine

Figure 3.2: The main components of a game application: the game kernel holds

the game state, the central data model of a game. The search engine implements
decomposition search. The user interface enables interaction with the application.

By providing a basic game application the Game Bench directs the pro¬

grammer in creating his own game application. The basic game application
serves as a base for all game applications. Its design is based on the model-

view-controller paradigm [31], a concept widely used in object oriented pro¬

gramming. The central data model, the game state, is represented by one or

more views. The game state notifies its views of any changes in order to make

them update their contents. The controller commands the model and/or the

views to change as appropriate, for example when the search engine wants

to execute a move on the game state.

The basic game application provides a simple user interface that consists

of a main application window and the following components (see Figure 5.3):

• one or more game views that display the game state and enable the

user to interact with it, for example by clicking on a square where a

3.3. RELATED WORK 25

stone should be placed.

• an extensible set of menus and menu commands that enable the user

to control the application.

• a tree of moves data structure that stores lines of play entered by the

user and a tree navigator panel that enables the user to move in this

data structure.

3.3 Related Work

3.3.1 The Gamesman's Toolkit

David Wolfe's Gamesman's Toolkit [52] implements most of finite combina¬

torial game theory presented in Winning Ways [5]. The toolkit provides
abstract data types for games and lists of games, and all the operations (and
more) we have discussed in Section 2.2

.

The toolkit is used in two different ways:

1. A textual interface enables the toolkit to be used interactively as a

games calculator. For instance the user may type "G = {0 | 1}" in order

to assign the game {0 | 1} to the variable G. The toolkit evaluates the

game to {0 | 1} = 1/2 and stores it in G. Used as a games calculator

the toolkit is enormously valuable when analyzing combinatorial games

"by hand".

2. The second way to use the toolkit is as a library of CGT functions.

The toolkit is written in the C programming language under Unix, but

compiles on every platform that provides an ANSI-C compiler. The

Gamesman's Toolkit does not play games itself, but many game playing

programs use it as a basic games calculator.

3.3.2 The Smart Game Board

Anders Kierulf's Smart Game Board [29] is a workbench for game playing

programs, developed on the Apple Macintosh under Modula-2. Its main focus

is a game tree data structure that enables the user to edit and store game

documents in a similar way a word processor edits and stores text documents.

The Smart Game Board is based on a modular design that specifies game
specific functions in definition modules and hides their implementation from

its game independent components. It provides a game independent search

26 CHAPTER 3. GAME BENCH: GOALS

engine that implements minimax evaluation using techniques such as iterative

deepening, transposition tables, alpha-beta and scout tree search etc.

On the Smart Game Board, many popular games have been implemented
such as Go and Othello which originally came with the Game Board, and

later Nine Men's Morris (Gasser [20]) and chess (Wirth [51]). Some of these

games, for instance Go (see below) and chess, have been further developed
as specific game applications.

Explorer

Explorer is a Go program running on the Smart Game Board. It was origi¬
nally written by Kierulf and Chen [30], and further developed by Müller [39]
who designed and implemented a sum game model for computer Go. The

Explorer program applies a divide and conquer approach to the game of Go

in two different areas:

1. It uses a heuristic sum game model for the entire game of Go.

2. It computes exact solutions to late endgame positions with the help of

combinatorial game theory.

Both applications are based on algorithms and techniques of combinato¬

rial game theory. Explorer uses a port of the Gamesman's Toolkit [15] to

perform basic CGT operations, and extends the toolkit's functionality with

a thermograph data structure and thermostrat sum game play.

The Simple Game Board

The Simple Game Board [28] is a "mini version" of the Smart Game Board

designed as an educational program that introduces computer science stu¬

dents to minimax evaluation and game tree search. Like the Smart Game

Board it is based on a modular design and provides a game independent
search engine that implements alpha-beta search.

3.3.3 Gamesman

Dan Garcia's Gamesman [18] is a system for generating graphical parame-

terizable game applications. Based on a description of the rules of a game,

it automatically generates a stand-alone application that plays this game.

Small games can be solved using exhaustive search, bigger games are played
using minimax evaluation. Gamesman is written in the Tcl/TK script lan¬

guage under Unix and generates X- Window applications. It supports finite,

3.3. RELATED WORK 27

2-person games with perfect information and comes with the games 1210,

TicTacToe, TacTix and Dodgem.

Xdom

Dan Garcia's Xdom [19] is an X-Window based front-end for playing Domi¬

neering (see Section 5.1.1 for the rules of this game). It is written in Tcl/TK
and uses the Gamesman's Toolkit to compute a game's value. Xdom allows

the user to read game positions from files and to play against human or com¬

puter opponents. Further, it can display a game's value and give hints about

good moves.

3.3.4 What does the Game Bench provide?

In contrast to the above described game application frameworks, the main

focus of the Game Bench is its extensible search engine. The Game Bench

provides an ideal environment for designing and testing divide and conquer

algorithms based on combinatorial game theory. Its extensible design enables

the Game Bench to adapt to the needs of specific game applications and

yet provide general functionality common to all combinatorial games. Its

portability makes the Game Bench available on all popular platforms and

decreases its chances of dying together with its programming environment

or operating system which unfortunately happened to the (old) Smart Game

Board1 and the Simple Game Board.

1Kierulf is developing a new commercial version for Windows under C++ with Go as

its main focus.

28 CHAPTER 3. GAME BENCH: GOALS

Seite Leer /

Blank leaf

Chapter 4

The Game Bench: Architecture

and Implementation

In this chapter we describe the architecture of the Game Bench in detail. We

distinguish three main components (see also Figure 3.2): the search engine

(Section 4.2), the game kernel (Section 4.3) and the game application (Sec¬
tion 4.4). Each component consists of several Java classes, some also contain

abstract classes and interfaces. We describe the most important classes, data

structures and functions of each component. A complete description of all

classes is available at the Game Bench web-site [34].

4.1 Conventions

For discussing the Game Bench's architecture and implementation we use

the following conventions:

• Class hierarchy diagrams (see Figure 4.1) show the connections and

dependencies of the Java classes within a component or an application.

• Java source code is typeset with a mono-spaced font. Names of con¬

stants start with a 'k', for example the player kLeft. Names of class

variables and instance variables start with a 'f '

(field), for example the

flag fUseHashing. Names of classes always start with capital letters,

names of methods with lower-case letters.

For an explanation of Java specific and object-oriented terms see the

glossary in appendix A. A detailed description of all the Game Bench classes

and their hierarchy can be found on the Game Bench web-site [34].

29

30 CHAPTER 4. GAME BENCH: ARCHITECTURE

Component

c, c2,>

Class

c,
fe

c2w

r i

Abstract

COClass 1
C1 >

\ Interface)

C, extends C,

Cj imports C2

Figure 4.1: Symbols and conventions used to describe hierarchies of Java classes.

4.2 The Search Engine

The search engine is the core of the Game Bench. It implements decompo¬
sition search of general combinatorial games that meet the specifications of

the game playing interface (see Section 4.3.1).

4.2.1 Requirements of a Game Independent Search En¬

gine

Providing a universal, game independent search engine that meets the de¬

mands of every specific game is a very difficult, if not impossible task. Es¬

pecially heuristics, even generally applicable ones, do not produce the same

results with different games. What works fine in one game, might be unsuc¬

cessful in another. Thus, a general, game independent search engine must

be flexible and extensible, otherwise it will be abandoned in favor of a game

specific solution.

On the other hand, even highly specialized, game specific search algo¬
rithms share the same base. Also different game independent algorithms

may have much in common. For instance, the sum play algorithms hotstrat

and thermostrat both start by decomposing a game, then compute local val¬

ues, and only differ in the way they evaluate the local results to make a move

decision.

The search engine's main goal is extensibility. It provides game indepen¬
dent algorithms and data structures that implement decomposition search in

4.2. THE SEARCH ENGINE 31

a general way, but yet allow the game programmer to adapt it to her special
needs. In the following sections we discuss the design and implementation of

the search engine's main components: local search, sum game play and the

CGT kernel.

4.2.2 Local Search

Local combinatorial search produces a local game's tree up to its terminal

positions (or up to an artificially defined search horizon) and backs up the

leaf values in order to compute the value of the root. The basic local search

algorithm is described in Section 2.3.2.

Local Game Data

Local search gathers the necessary data used by sum play algorithms to

make move decisions. Depending on the various sum play algorithms the

data collected for a node (position) in the game tree includes:

• the node's value.

• the node's temperature.

• the node's leftscore and rightscore.

• the node's incentive, that is the incentive of the move from the parent
node to this node.

max. tree

depth

<^>

value

move

successors

Figure 4.2: The Local Tree Data Structure stores the game tree up to a certain

depth. A node (game position) stores a game value, the move that leads to this

node, and links to its successors. Optionally additional data, for example the

position's temperature, is stored.

In order to adapt to the different requirements of various sum play al¬

gorithms, the Search Engine provides a local tree data structure that stores

32 CHAPTER 4. GAME BENCH: ARCHITECTURE

the results of local search (see Figure 4.2). A parameter passed to the local

search algorithm determines up to which depth the local game tree is stored.

For instance a "simple" sum play algorithm only needs to access the first

level of the local game trees.

Hashing

In order to prevent evaluating the same game position more than once, for

instance due to a transposition of moves, search algorithms use hash tables

to store previously evaluated game positions and their values. The search

engine supports hashing on a game specific as well as on a game independent
level:

• On the game specific level, the search engine supports global hashing
and local hashing. Games that implement the interface Hashable (see
also Section 4.3) supply a hash function that maps the overall position
of the sum game to a 64-bit integer value. Games that implement the

interface LHashable provide a hash function that maps independent
local games to 64-bit integer values. Local hashing is important in

decomposition search as it allows to identify previously evaluated local

games independent of their sum game context (see Figure 4.3).

• On the game independent level, the Gamesman's Toolkit [52] which

serves as the search engine's CGT kernel (see Section 4.2.4) manages a

hash table of evaluated combinatorial game expressions.

G, G2

T*h hashfunction -^K

10011101 10011101

Figure 4.3: Local Hashing: The hash function maps the (identical, mirrored) local

Domineering (see Section 5.1.1 for the rules of this game) games G\ and G2 to the

same hash code. The computed game value G\ = {0 | 0} = * is stored in the hash

table and looked up when the search arrives at the game position Gi-

4.2. THE SEARCH ENGINE 33

Heuristics

The technique of using heuristic evaluation functions that estimate game

values of non-terminal positions in order to create an artificial search horizon

is well known from minimax evaluation. It allows to compute approximate
values of games too big to be searched entirely.

There are also combinatorial games that permit heuristic evaluation func¬

tions (see Chapter 8). The interface CombHEval specifies a function that

yields heuristic values for game positions. Games that implement this in¬

terface are searched with an iterative deepening algorithm that successively
increases the search depth until it is stopped or it has computed the exact

value of the game.

Multi-Threading

Divide and conquer algorithms suggest computing their sub-tasks (the divide

phase) in parallel. An implementation of decomposition search should there¬

fore support running several independent local searches at the same time.

The search engine is designed for parallel local search:

• Each instance of the local search algorithm is automatically run in its

own thread. Running on a multi-processor machine, the Java runtime

system can evenly distribute the search tasks on the available proces¬

sors.

• Global data structures used by several search threads at the same time,
for instance a hash table, can be protected by semaphores. As a result,
simultaneous read and write access to these data structures is possible.

• Local game trees of games that admit heuristic evaluation functions are

searched depth-first using iterative deepening. As a result, parallel de¬

composition search can yield approximate results at virtually any time

of its computation, not only when all local search tasks are terminated.

4.2.3 Sum Play Algorithms

The implementation of decomposition search consists of three main steps (see
Figure 4.4):

1. Game decomposition: The game is divided into independent compo¬

nents, the local games G%.

34 CHAPTER 4. GAME BENCH: ARCHITECTURE

1. decomposition

Gi G2 G3

3. move decision

Figure 4.4: The sum play controller organizes the steps of decomposition search: 1.

the game is divided into independent subgames. 2. the local games are evaluated.

3. a move decision is made based on the local results.

2. Local search: The local game trees are evaluated and the results stored,

(see also Section 4.2.2.)

3. Sum game evaluation: Based on the local results, a move decision in

the sum game G = G\ + G^ + Gn is made. This may or may not

involve actually computing the sum.

Steps one and two are common to all decomposition search algorithms

except for differences in what local data is required in order to evaluate the

sum game. The search engine provides a basic sum play algorithm (class
SumPlayController) that performs steps one and two, and an extensible set

of algorithms that are built on this basic algorithm. This structure allows

the programmer to easily add algorithms constructed for a specific game,

as well as game independent algorithms that expand the search engine's
functionality. An extension of the search engine's set of algorithms does not

require any of the existing classes to be changed.

4.2.4 The CGT Kernel

The CGT kernel performs the basic combinatorial game operations such as

composing a new game from two lists of left and right. The most important

2.local search

<k

4.2. THE SEARCH ENGINE 35

requirement for the CGT kernel is efficiency. Every time the search engine
evaluates a node in a game tree, one or more basic operations are performed.

The search engine includes and uses Wolfe's Gamesman's Toolkit [52]
as its CGT kernel. The following points are important to note about this

approach:

• The Gamesman's Toolkit has been developed and improved over a pe¬

riod of several years. It implements virtually almost the entire scope of

finite combinatorial game theory presented in Winning Ways [5]. The

task to implement a kernel of the same quality and scope would be

extremely difficult and time consuming.

• The Gamesman's Toolkit attaches great importance to efficiency, for

example by using a hash table in order to avoid evaluating the same

expression more than once. Further, the toolkit is written in the C

programming language which for the time being produces more efficient

object code than Java compilation.

• The cost of including an efficient native library in the search engine
is a loss of portability on the object-code level. However, the toolkit

library compiles on any platform that supports the Java native interface

including most Unix versions, Windows 95/98/NT, and MacOS, thus

the most popular operating systems.

The implementation, that is the inclusion of the Gamesman's Toolkit

in the search engine is based on the Java native interface [32]. The class

CGTCalc provides the whole set of functions implemented by the Toolkit in

the form of Java methods.

An interface written in G (TKInterface.c) communicates with the Java

side and calls the required toolkit functions (see Figure 4.5). This interface

and the original toolkit sources are compiled and linked into a dynamic li¬

brary which is loaded by the Java runtime system. The Game Bench provides

pre-compiled versions of the toolkit library for Solaris, Linux and Windows

95/98/NT platforms.

4.2.5 Class Hierarchy and Descriptions

Figure 4.6 shows the hierarchy of the search engine's main classes. Below we

briefly discuss their functionality.

36 CHAPTER 4. GAME BENCH: ARCHITECTURE

Java i C

CGT

Calc
^

TK

Interface

w

i
i

i
w w

i

Gamesman

Toolkit

's

Toolkit Library

Figure 4.5: The CGT Kernel consists of the Java class CGTCalc, the native inter¬

face TKInterface and the Gamesman's Toolkit object files.

(LHashable >4-

^;:ic;^
C Hashable ">*-

C Comb. Game J<-

C CombHEval

Game Kernel

CGTCalc

HashTable

LocalData

LocalSearch

Hotstrat

Controller

iz

OptimalDS
Controller

SZ

SumPlay
Controller

java.Thread

Search Engine

Figure 4.6: The class hierarchy of the search engine and its interface to the game

kernel.

4.2. THE SEARCH ENGINE 37

class HashTable

The class HashTable implements a hash table that stores information (class
HashEntry) on game positions identified by 64-bit hash codes. Games that

provide a function which maps game positions to hash codes implement the

interface Hashable (global hashing) or LHashable (local hashing). These two

interfaces are part of the game kernel and are discussed in Section 4.3.

class CGTCalc

The class CGTCalc implements the Java interface to the Gamesman's Toolkit

[52] that is used to perform all basic CGT operations. The toolkit itself is

linked to the Game Bench in the form of a dynamic library.

class LocalData

The class LocalData stores local game information gathered by the local

search algorithm. This data includes the game value, temperature, leftscore

and rightscore of the actual position, the incentives of both players' options,
and the whole tree of possible moves up to a specified depth.

class LocalSearch

The class LocalSearch implements local combinatorial game tree search (see
Section 2.3.2) and computes values of partizan and impartial combinatorial

games. Games to be searched must implement the interface Combinatorial-

Game (move generation and termination detection). Optionally, the search

uses a heuristic evaluation function (interface CombHEval) that estimates

values of non-terminal nodes in order to create an artificial search horizon.

By extending the system class Java. Thread, the class LocalSearch implements
the interface Java.Runnable and therefore may be run in parallel to the game

application and to other search threads.

class SumPlayController

The class SumPlayController implements the basic sum play algorithm. It

provides operations common to all sum play algorithms such as decomposing
the game into its independent components and gathering local information.

Further, the sum play controller also manages the possible parallel execution

of the local search threads. The subclasses of class SumPlayController build

the Game Bench's library of sum play algorithms.

38 CHAPTER 4. GAME BENCH: ARCHITECTURE

class OptimalDSController

The class OptimalDSController extends the class SumPlayController and

implements optimal sum play. If after deleting all moves with dominated

incentives, more than one option is left, the sum of all local games is computed
in order to determine the best move.

class HotstratController

The class HotstratController extends the class SumPlayController and imple¬
ments hotstrat, a heuristic sum play algorithm based on local game informa¬

tion. Hotstrat always plays in the local game with the highest temperature.

This simple version of the algorithm chooses randomly among all possible
non-dominated move options. Extensions of class HotstratController might
use more sophisticated local criteria to select a move, for example by consid¬

ering game specific properties.

4.3 The Game Kernel

We have introduced the game kernel as a main design concept of the Game

Bench in Section 3.2.1. The game kernel provides the essential game playing

functionality: it implements the game state, the data structure on which a

game is played, and the rules of a game.

A game playing kernel is a central component of any game application

framework, and it should meet the following requirements:

• Structure: The game kernel must separate game independent and game

specific operations. It gives an exact specification of the required game

specific functionality to other components of a game application.

• Extensibility: The design of the game kernel should enable the pro¬

grammer to extend its game independent, as well as its game specific

functionality.

In the Game Bench, the separation of game independent and game spe¬

cific functionality is performed by the abstract game kernel which serves two

purposes:

1. It specifies the game playing interface, i.e. the functions that a the final

game kernel must implement.

2. It provides game independent support for the implementation of the

game playing interface's functionality.

4.3. THE GAME KERNEL 39

4.3.1 The Game Playing Interface

The game playing interface specifies the game kernel's functionality and

makes it available to the other components of a game application. We dis¬

tinguish basic functionality and optional features a game kernel may addi¬

tionally provide. The basic functionality is specified by the abstract class

GameState, the base class of any game specific kernel. Additional features

are specified in several interfaces that the game specific kernel may optionally

implement.
It is important to separate the specification of game independent and

game specific operations. For instance, the geometric decomposition of a

"game board" may be performed independent of any specific game and pro¬

vided by the abstract game kernel. Generating all moves in a local game, on

the other hand, is a game specific operation that must be implemented by
the abstract kernel's extension.

Basic Functionality

The basic functionality of the game kernel is defined in the abstract classes

GameState and Move which any game kernel must use as its base classes.

Basic operations include:

• executing and taking back moves.

• resetting the game to an initial default state (the operation "new game").

• determining whether play has arrived at a terminal position.

Game Play

If a game application is to use the Game Bench's search engine, its game

kernel must implement the functionality specified in the interface Combina-

torialGame which includes:

• generating both players' possible moves in any game position.

• determining the values of terminal positions. Strictly speaking, there

is only one terminal value 0 = { | }, but in practice any value is

possible. We might for instance consider a game terminated as soon as

it simplifies to a number as "playing out" numbers is trivial.

An extension of CombinatorialGame is the interface ImpartialGame which

does not specify additional functionality, but serves to identify a game as an

impartial game. In this case, the search engine can optimize searching the

game's tree.

40 CHAPTER 4. GAME BENCH: ARCHITECTURE

Hashing

The interface Hashable specifies a hash function that maps game positions
to 64-bit integer values. An extension of Hashable is the interface LHashable

which defines hash functions for local games.

Heuristics

The interface CombHEval specifies a heuristic evaluation function that yields

game values for non-terminal positions. This function is used to create an

artificial search horizon when searching local games that are too big to be

searched exhaustively.

Game Decomposition

In order to apply decomposition search, we must partition a game, i.e. iden¬

tify its independent components, the local games. The interface Partitionable

defines the required operations for partitioning a game. This includes:

• partitioning the whole game and enumerating its local components.

• re-partitioning a certain local game, identified by its part number.

It is important to note that for certain classes of games this function¬

ality can be implemented independent of the actual game. For instance

the process of identifying local components in Domineering (see also Section

5.1.1) can be generalized to similar games played on rectangular boards (class
PartRectBoard).

Further, we need a move generator that generates moves for local games.

This function is game specific and is specified by the interface PartitionGame,
an extension of Partitionable.

4.3.2 Support Classes

The second function of the abstract game kernel is to offer game independent

support for the implementation of the functions specified by the game playing
interface. Many games are played on rectangular boards or on graphs. The

Game Bench provides base classes that offer general functionality for such

games. In the case of rectangular boards, it is also possible to provide base

classes that implement further interfaces of the game playing interface:

• Hashing: Hash codes for games played on sets of points or squares are

best generated by an algorithm described by Zobrist [55]. The main

4.3. THE GAME KERNEL 41

advantage of Zobrist's method is the possibility to update the hash

code of a game position incrementally whenever moves are executed or

taken back. The class HashCoder implements Zobrist's algorithm and

enables the abstract class RectBoard, an extension of the abstract class

GameState, to automatically generate hash codes (interface Hashable)
for rectangular boards.

• Game Decomposition: Games whose moves consist of placing immo¬

bile stones on a board all decompose in more or less the same way.

The abstract class PartRectBoard represents such games and automat¬

ically identifies independent local games, thus implements the interface

Partitionable.

4.3.3 Class Hierarchy

Figure 4.7 gives an overview of the abstract game kernel's most important
classes. The game programmer creates the game kernel of a specific game by

extending the abstract classes Move and GameState (or one of its subclasses,

e.g. RectBoard), and by optionally implementing the interfaces for game

playing, hashing and game decomposition.

abstract class GameState

The abstract class GameState specifies the basic game playing functionality
that every game must implement: executing and taking back moves, and

detecting game termination.

abstract class Move

The abstract class Move is the base class of any game specific implementation
of a move in a game. It stores the player who made the move and specifies
abstract methods for copying and textual output. Game specific extensions

add their required move data, for instance a "Domineering move" (see also

Section 5.2) might store the coordinates of the squares on which a domino

stone is placed.

interface CombinatorialGame

The interface CombinatorialGame specifies the minimal functionality re¬

quired for a game to use the search engine. This includes a move generator
and a function that maps terminal positions to combinatorial game values.

42 CHAPTER 4. GAME BENCH: ARCHITECTURE

(^ Comb. Game ^>

(^ ImpartialGame^ A

J Move J Graph

I "!
! GameState

< CombHEval ;

HashCoder

, _

\
C Hashable JX =j RectBoard

^Z'JTSSS ""TV
C LHashable ;

i

,-"'
_v. . r*~^^i ! PartRect

<L Partitionable ^K. I
-~

„

-^ i Board

^___TL___
L '

(^ PartitionGame ^)

game-playing interface support

Figure 4.7: The class hierarchy of the abstract game kernel.

interface ImpartialGame

The interface ImpartialGame extends CombinatorialGame and defines an

impartial game. It does not specify additional functionality, but is used to

identify impartial games in order to allow search optimizations.

interface CombHEval

The interface CombHEval specifies a heuristic evaluation function that esti¬

mates the combinatorial game values of non-terminal positions.

interface Hashable

The interface Hashable specifies a hash function that maps game positions
to 64-bit hash codes. Games that implement this interface enable the search

engine to use transposition tables that store the values of previously evaluated

game positions.

4.3. THE GAME KERNEL 43

interface LHashable

The interface LHashable extends Hashable and specifies a hash function that

maps local games (game partitions) to 64-bit hash codes (see also Figure

4.3).

interface Partitionable

The interface Partitionable specifies games that implement decomposition
into independent subgames (local games). The basic functionality defined

in this interface can be extended by the operations defined in the interfaces

PartitionGame and LHashable.

interface PartitionGame

The interface PartitionGame extends Partitionable and specifies a move gen¬

erator for local games.

abstract class RectBoard

The abstract class RectBoard extends GameState and implements the basic

functionality common to rectangular grid-boards. Further, RectBoard pro¬

vides an automatic hash code generator (class HashCoder) and support for

bit-boards (a data structure that represents each square of the rectangular
board by one bit).

abstract class PartRectBoard

The abstract class PartRectBoard extends RectBoard and implements rect¬

angular boards that allow a geometrical decomposition. An example of such

a game is Domineering (see Section 5.1.1). The abstract class PartRectBoard

implements the interface Partitionable.

component Graph

The class Graph stores and manages a graph data structure that may be

used to play a game on. The class GraphNode implements the basic node

in the graph data structure. The node is identified by a unique (within a

graph) number, and it keeps a list of edges to other nodes.

44 CHAPTER 4. GAME BENCH: ARCHITECTURE

4.4 The Game Application

We have introduced the design concept of the game application in Section

3.2.2. Its task is to combine and control the main components game kernel,
search engine and user interface. An application framework should not only

provide the necessary components that build an application, but also direct

the programmer at organizing these components. In order to facilitate the

implementation of a final application, the basic game application provides
basic functionality common to all game applications:

• a simple user interface that specifies the basic view component and im¬

plements the control mechanism as defined by the model-view-controller

paradigm.

• a tree of moves data structure that stores lines of play entered by the

user or generated by the search engine.

4.4.1 The Tree of Moves

The tree of moves is organized as a tree of property lists, a concept intro¬

duced in Kierulf's Smart Game Board [29]: Each node of the tree stores a

move property and optionally some further properties such as comments on

moves or information on the time used by the players (see Figure 4.8). Some

properties are executable, they alter the game state when a node is executed

or undone. An example of an executable property is the move property, the

stored move is executed when moving forward and taken back when moving
back in the tree.

Figure 4.8: The tree of moves consists of the main line (grey) plus some sidelines

which represent alternate variations of play. Each node stores a move property

plus optionally some other properties that describe the node.

The tree controller manages the tree of moves. It stores the tree and

keeps track of the current node which is displayed at a given moment. It

4.4. THE GAME APPLICATION 45

provides commands to move in the tree (i.e. to change the current node) like

forward, left or back, and it allows new moves to be added to the tree.

4.4.2 The User Interface

The user interface of the basic game application performs two main tasks:

1. It specifies the basic view object, a graphic component representing
a certain data model, and it implements the view controller which

stores and manages an application's view objects. The programmer

adds a game specific view (for instance a graphic representation of the

game board) to the application by extending the basic view object and

registering the new view with the view controller.

2. It provides the class application which is the base class of any game

application implemented on the Game Bench framework. The class

application implements functionality common to all game applications:

• It creates and opens the main application window and allocates

and initializes the required controller objects such as the tree con¬

troller and the view controller.

• It manages an extensible set of menus and menu commands that

enables the programmer to add his own commands to the provided
default commands.

• It implements a graphic control panel that enables the user to nav¬

igate in the tree of moves by sending the tree controller commands

like forward, or back and to switch the right to move between the

players.

The user interface components of the basic game application are shown

in Figure 5.3 with Domineering as an example.

4.4.3 Class Hierarchy

Figure 4.9 shows the class hierarchy of the basic game application.

class Application

The class Application extends Java. awt.Frame (the standard Java class for a

"window") and is the main class of the basic game application. It controls

the game kernel and the search engine and provides a simple, extensible

user interface. The class Application is the superclass of all Game Bench

applications.

46 CHAPTER 4. GAME BENCH: ARCHITECTURE

java.awt.Frame

7T

Application

java.awt.Panel

u
View

E
ToplaySwitch

TreeNavigator

ViewController

TreeController

Tree

Figure 4.9: The class hierarchy of the basic game application.

abstract class View

The abstract class View specifies the basic view object. In the MVC Model,
a view represents a certain data model and handles update-messages that

provide information on changes of this data model.

class ViewController

The class ViewController stores and manages an application's view objects.
The application's view controller is automatically allocated and initialized

by the Application object.

class Tree

The class Tree implements the dynamic data structure that stores the tree of
moves. The tree of moves saves lines of play entered by the user or generated

by the search engine.

class TreeController

The class TreeController holds an application's tree of moves and keeps track

of the current node that holds the actual game position. An application's

4.4. THE GAME APPLICATION 47

tree controller is automatically allocated and initialized by the Application
object.

class TreeNavigator

The class TreeNavigator is a graphic component that implements an interface

to the tree controller. It enables the user to click her way through the stored

tree of moves.

class ToplaySwitch

The class ToplaySwitch is a graphic component that displays and enables the

user to switch the right to move between the players.

48 CHAPTER 4. GAME BENCH: ARCHITECTURE

Seite Leer /

Blank leaf

Chapter 5

The Game Bench:

Domineering, a Programming

Example

In this chapter we show how the programmer creates her own game applica¬
tion using the Game Bench framework. As a simple programming example
we implement the game Domineering. In Section 5.1 we introduce the rules

of Domineering and discuss the necessary implementation steps. In Section

5.2 we show implementation details of the game kernel, the game view, and

the main application. In Section 5.3 we summarize the class hierarchy of the

Domineering application and present statistics on the size of its components'
source code.

5.1 Introduction

5.1.1 The Game Domineering

The game Domineering [5] is played with standard domino stones on a (usu¬
ally rectangular) board. At his turn, each player places a stone in such a

way that it covers exactly two adjacent squares. Left must place his stones

vertically, Right horizontally. The first player unable to move, loses. Figure
5.1 shows a game of Domineering played on a 6 x 7 board.

Domineering is a partizan combinatorial game. The game is likely to de¬

compose into independent components during play as the example in Figure
5.1 shows. Thus, it suggests the application of decomposition search.

49

CHAPTER 5. GAME BENCH: DOMINEERING

Figure 5.1: Domineering on a 6 x 7 board.

5.1.2 Implementation Steps

The implementation of a Domineering program on the Game Bench frame¬

work requires the following programming steps:

1. Create the Domineering game kernel by extending the abstract game

kernel provided by the Game Bench. This step involves defining a move

format, designing a data structure for the Domineering game board,
and implementing functions for executing moves, taking back moves,

and detecting game termination. Further, we also want to implement

hashing and board partitioning.

2. Implement the Domineering game view, a graphic component that dis¬

plays the board and reacts to user input (mouse, keyboard ...).

3. Create the main program, the Domineering application, by extending
the basic game application. This step consists of designing a layout for

the graphic components of the user interface on the one hand, and of

organizing the application's main components on the other hand.

5.2 Implementation

5.2.1 The Game Kernel

First, we define data structures that represent the Domineering board and a

Domineering move. Then, we implement the functionality specified by the

5.2. IMPLEMENTATION 51

game playing interface (see Section 4.3.1). Finally, we add functionality for

hashing and board decomposition.

Move and Board Data Structures

Domineering is played on a rectangular board. Each square is either empty or

covered by a domino stone of one of the players. With the class RectBoard, the

Game Bench provides a data structure tailored for such boards. As the game

can decompose into subgames, we choose to extend the class PartRectBoard

that automatically handles board partitioning (see Section 4.3).
A Domineering move consists of placing a domino on two adjacent squares

of the board. The class DominoMove extends the base class Move and ad¬

ditionally stores these two squares:

public class DominoMove extends Move

i

public int fSquarel;

public int fSquare2;

/* methods for

- comparing moves

- copying moves

- textual output of a move

*/

}

Game Playing Routines

The class PartRectBoard provides the data structure for the rectangular game
board. Now, we must implement functions to execute and undo moves, to

generate all possible moves (interface Combinatorialame), and to detect

whether the game is finished. In order to be able to take back moves, we

need a stack that stores the played moves. A simple way to implement this

stack is to use an array (of moves) and an index that points to the top entry.
The function execMove places a domino on the board, updates the hash

code of the actual position (see also next section), and pushes the move onto

the stack. The function undoMove works analogously. The game is finished

when neither player has any moves left. In this case, the resulting game value

is G = { | } = 0 and the player to move loses. (It is of course also possible
to detect more complex "terminal positions" such as certain numbers, for

instance represented by corridors that only allow one of the players to move.)

52 CHAPTER 5. GAME BENCH: DOMINEERING

The method endOfGame tests whether there are any adjacent empty squares

left on the board. The move generator works exactly in the same way as

termination detection. We look at all squares and their neighbors, and each

time we find two empty adjacent squares, we add a new move to the list of

generated moves.

Hashing

In order to implement the Hashable interface, we need a function actualHash

that returns a 64-bit hash code for the actual position. The Game Bench

provides the class HashCoder that automatically generates hash codes for

games played on rectangular boards. All we have to do is to allocate a

hash-coder object and update it when the board is changed (in the methods

execMove and undoMove). The return value of the method actualHash is

the hash code generated by the HashCoder object.

public long actualHash()

C

return fHashCoder.fHashCode;

}/*actualHash*/

Board Decomposition

The class PartRectBoard already provides the functionality to decompose
the board into independent subgames (partitions). In order to use the search

engine, we must implement the interface PartitionGame that specifies a move

generator for local games.

public java.util.Vector pGenerate(int player, int partNr);

This move generator is easily realized by altering the original (global)
move generator in such a way that it only generates moves to squares that

belong to the partition specified by partNr.

5.2.2 The Domineering Game View

In order to display the actual game state we need a graphic representation,
a view of the Domineering board. The class DominoBoardView displays the

board and enables the user to enter new moves by clicking the squares where

a domino should be placed.
The board representation consists of a grid, the background, and of the

squares which can be empty or occupied by one of the players. Figure 5.2

shows how the Domineering board view is organized.

5.2. IMPLEMENTATION 53

square width

<—

square

height I

6
...

0 1 2 3 4 5

SP
'S

S3

CT*
</>

X

O

#columns x square width

Figure 5.2: The Domineering board view.

One way to implement move input is to register mouse clicks on the

boundaries of adjacent squares. If the clicked squares produce a legal move,

this move is generated, added to the tree of moves, and executed on the

board.

5.2.3 The Domineering Application

The Game Bench provides the basic game application, an application skeleton

that connects the game kernel and the search engine with a simple user

interface. The implementation tasks of a specific game application are:

• allocate the main data structures: the game state and at least one view

of the game state.

• design the layout of the main application window and add the game

view to its graphic components.

• choose one of the search controllers provided by the Game Bench or

write a new game specific search controller and enable its execution in

the menu commands startSearch and stopSearch.

Figure 5.3 shows the final Domineering application "in action".

54 CHAPTER 5 GAME BENCH. DOMINEERING

m.

- time used: O.C
- nodes visited
- hash hits:

JgbCombinatorialSej
- (exact) value '!"*\
- time used: O.C
- nodes visited*
- hash hits:

JgbCombinatorialSe
- no value compu
- time used: O.Ol
- nodes visited
- hash hits:

JgbCombinatorialSe
- no value compL
- time used: O.C
- nodes visited;j
- hash hits:

JgbCombinatonalSearch: starting search of depth 3
- (exact) value = 11-1

i - time used: 0.01 seconds

4 - nodes visited: 11
> - hash hits: 3

»candidate moves = 2

(pruned 0 moves with dominated incentives,

(pruned 1 moves with dominated incentives.
» best move = (9,13):
>**„ Hotstrat Controller quit...

_J

Figure 5.3. The final Domineering application consists of a game window and a

text window used for output

The Search Engine

The basic game application provides "menu hooks" that enable the pro¬

grammer to install functions that start and stop the search engine. All the

extension must do, is allocate a search controller and start respectively stop
it in the methods startSearch and stopSearch. The Domineering application
uses the standard HotstratController provided by the Game Bench.

private HotstratController fHSController;

private void startSearch()

C

fHSController = new HotstratController(fBoard);
fHSController.start 0 ;

}/*startSearch*/

5.3. CLASS HIERARCHY AND STATISTICS 55

The hotstrat controller automatically decomposes the game board, exe¬

cutes the local searches, and makes a move decision based on the computed
local results.

5.3 Class Hierarchy and Statistics

The Domineering application consists of four classes added to the Game

Bench framework (see Figure 5.4):

i 1 i "! r-
1

at
' Part

I Move i i i

i j i RectBoard
L L

Domino

Move

Domino

Board

-3£-

/ Hashable, \<-
l Partition able,)
\ Comb. Game /
v^ ^y

Game-Playing Interface

| View |

31
Domino

BoardView

Domino

Application

$>z.

Application

Search Engine

HotstratController

LocalSearch

HashTable

CGTCalc

Tree

Controller

View

Controller

Figure 5.4: The class hierarchy of the Domineering application.

• class DominoMove: The data structure for a Domineering move.

• class DominoBoard: The game state that provides operations for exe¬

cuting and taking back moves, termination detection, move generation,
hashing, and board decomposition.

• class DominoBoardView. The graphic representation of the board that

enables the user to enter new moves.

• class DominoMain: The main application that controls the user inter¬

face, the game state, and the search engine.

56 CHAPTER 5. GAME BENCH: DOMINEERING

The table shown in Figure 5.5 displays the "size" of the various Game

Bench components, measured in numbers of lines of the source code.1 The

game specific part of the Domineering application amounts to only 11% of

the total size of the source code. A strong argument in favor of the separation
and generalization of game independent functionality.

Game Bench Domineering Percentage

game kernel 1356 321 19%

search engine 3665 0

user interface 1487 455 23%

total 6508 776 11%

Figure 5.5: The number of lines used by the source code of the various compo¬

nents, divided into a game independent Game Bench section and a game specific

Domineering section. The third column displays the portion of the game specific
code in relation to the total (game specific + game independent).

1The C source code of the Gamesman's Toolkit [52] is not taken into consideration in

the total displayed for the search engine.

Chapter 6

Local Games with Global

Threats

In this chapter we introduce a computation model for games that contain

global threats. In sums of such games, a move in a local game can lead to

an overall win in the sum of all games. This new approach allows us to

deal with entailing moves (see [5], [13]) in the game tree of local games. In

Section 6.1 we define global wins and global threats. In Section 6.2 we model

global wins with the help of infinite loopy games. Loopy games, however,
are difficult to calculate with. In Section 6.3 we present an algorithm for

game tree search that avoids computing with loopy game values. Instead, it

cuts off branches of the game tree that lead to global wins. In Chapter 7

we present an application of this computation model in king and pawn chess

endgames.

6.1 Global Threats

The end of play in a sum of combinatorial games is determined by the normal

termination rule: A player unable to move loses. Thus, in a sum of games,

no single move or game can be decisive by itself. In this chapter, we extend

this model by investigating a class of games where a move in a local game

may lead to an overall win in the sum of all local games. We call such a move

a global threat [35].

Definition 6.1 A global threat is a move in a local game Gi which has a

decisive effect on the sum of which Gi is a part. Both players will prevent
the opponent from playing such a move if possible.

57

58 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

Examples of possible global threats are moves that capture a vital oppo¬

nent piece, such as checkmate1; moves that promote a piece to a much more

powerful one (e.g promoting a checker to a king in a checkers variation ana¬

lyzed by Berlekamp [2], or promoting a pawn to a queen in chess); or moves

that "escape" in games where one side has to try to catch the other side's

pieces like in the game Fox and Geese ("Winning Ways" [5], Chapter 20).
Note that we do not define what happens if both players can execute a global
threat in different local games. We focus on dealing with global threats in

the analysis of local games independent of their context.

We are mainly interested in games where none of the players can win by
executing a global threat if the opponent defends optimally. Such games are

finally decided by the normal termination rule, and have finite combinatorial

values.

Figure 6.1: Global threats in a chess position: Both players have to prevent the

opponent from promoting a pawn to a queen. Play will end when the pawns are

blocked and neither player has any moves left.

In the chess example shown in Figure 6.1 we consider promoting a pawn

to a queen a global threat. With best play from both sides, however, this

position is decided by the normal termination rule. Either the pawns get
completely blocked as for instance in the line I.e3-e4 d5-d4 2.e4-e5 or we

although checkmate does not actually capture the enemy king, it creates the unstop¬
pable threat to do so.

6.1. CGT MODEL 59

arrive at a position of mutual Zugzwang as after I.d3-d4 when any move

would allow the opponent to finally promote a queen.

With respect to chess endgames, Elkies [13] writes: "The analysis of

such positions is complicated by the possibility of pawn trades which involve

entailing moves: an attacked pawn must in general be immediately defended,
and a pawn capture parried at once with a recapture. Still we can assign
standard CGT values to many positions ...

in which each entailing line is

dominated by a non-entailing one." In this chapter, we introduce algorithms
that solve this problem in general.

6.2 A CGT Model based on Loopy Games

A natural way to model global threats in combinatorial game theory is to

use the loopy games on and off which are greater, respectively smaller than

any finite game G (see Section 2.2.7). A global threat executed by Left is

represented by the value on, a global threat executed by Right by the value

off

yG £ {finite games} : off < G < on (6.1)

Now we can analyze the chess position given in Figure 6.1. For instance,
White's move e3-e4 leads to a symmetrical position where both players have

the choice either to capture or to push the more advanced pawn. We compute
this position's value as {*, {on \ *} | *, {* | off}}. White's move d3-d4 and

Black's move e6-e5 both lead to zero positions. It turns out that both other

moves (White's e3-e4 and Black's d5-d4) are reversible (see Section 2.2.5),
and the resulting game value is G = {0 | 0} = *, a finite value.

6.2.1 Implementation Issues

Modeling global wins with loopy games works fine in theory, but there are

practical problems. We map finite combinatorial games "one to one" to

data structures by their inductive definition G = {GL \ GR} with the basis

0 = { | }. When following a path of left and right options, we are sure that

finally the zero game will be reached. Many algorithms that work on combi¬

natorial games are based on their inductive nature. Obviously, loopy games

do not fit into this computation model. Either we must extend it in order to

handle loopy games, or we must avoid loopy games in our computations.
In the next section, we pursue the second way. We present a computation

model for local games with global threats based on cutoffs in the game tree:

60 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

rather than modeling the situation that arises after a global threat is played,
we exclude these situations from the game tree.

6.3 A Computation Model based on Cutoffs

in the Game Tree

In this section, we present a computation model that cuts off the branches

of the game tree that lead to the execution of global threats. The model is

based on the following two lemmas:

1. If a player has the chance to execute a global threat, he will always do

so.

2. Any move to a position in which the opponent can play a global threat is

"bad". Such a move need not be considered when evaluating a player's
options.

Both lemmas follow from the rules for simplifying games (see Section

2.2.5). The first one is easily deduced. For any game G, the equation off <

G < on implies that a global threat always dominates any other move. The

second lemma is deduced from the rule of replacing reversible moves. If in

the game G = {GL \ GR}, Left plays a move to GL' which contains a right
move to off, then Left's move to GLl is reversible (as G > off) and is replaced

by all left options of off. As off has no left options, Left's move to GL% is

simply omitted. The same holds of course for a right move to a game GRj

that contains a move to on.

The chess position in Figure 6.2 illustrates this. Both players have exactly
one move which leads to a position where the two pawns attack each other.

The player who captures his opponent's pawn will go on to promote his own

pawn. In the context of king and pawn endgames, we consider promoting
a pawn to be globally winning2. The value of this position is computed as

G = {{on | off} | {on | off}} which simplifies to { | } = 0.

The normal approach to compute the value of game G is to produce its

game tree up to the terminal positions on and off, and then back up these

values to the root. Instead, based on lemma 2, we can immediately cut off

both players' moves as they allow the opponent to execute a global threat

and we already know that they are reversible (see the left side of Figure 6.2).
This directly leads to the same value G = { | } = 0. There are two evident

advantages of this approach. First, we avoid most calculations with loopy

2This is true for a vast majority of pawn endgames, and we limit our attention to these.

6.3. COMPUTATION MODEL 61

Figure 6.2: A game of value zero. Both players' moves lead to im¬

mediate opponent wins. This is equivalent to having no moves at all.

G = {{on\off}\{on\off}} = {\}=0

games. In this simple example, we do not have to deal with loopy games at

all. And second, thanks to the cutoffs, we minimize the number of nodes to

be searched in the game tree.

6.3.1 An Algorithm for Evaluating Local Games with

Global Threats

Now we are ready to formulate an algorithm for evaluating local games with

global threats. Similar to local search (see Section 2.3.2), we consider both

players' options in each position. Additionally, however, we make use of the

information who made the last move. This enables to perform the above

described cutoffs of global threats. It might seem unusual to make use of

to-play information in combinatorial game tree search, but this also occurs

implicitly in conventional CGT search. The same rule of replacing reversible

options that allows to cutoff the game tree is based on "good replies to an

opponent's move", thus also makes use of to-play information.

Result Types

In contrast to finite combinatorial games, the value of a game that contains

global threats might be on or off i.e. a forced global win for one of the

players. This is the case if a player cannot prevent his opponent from finally
playing a global threat no matter how he defends (see Figure 6.3). We define

the following result types of local games:

62 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

• Type win: If the players move alternately including the right to pass,

Left will win by executing a global threat no matter how Right defends

and no matter who starts.

• Type loss: If the players move alternately including the right to pass,

Right will win by executing a global threat no matter how Left defends

and no matter who starts. A game of result type loss is smaller than

any finite combinatorial game G.

• Type CGT: None of the players can force a win by global threat. In

this case, we can compute a finite combinatorial value G = {GL \ GR}
for the actual game position. These are the games that we are most

interested in.

Figure 6.3: A game of result type win. White will always promote a pawn no

matter who starts. The possibility to pass (i.e. play in another local game) does

not help Black either.

Game Tree Search

In every position, we recursively evaluate both players' options. As the pos¬

sible result types are ordered (win > CGT > loss from Left's point of view

and loss > CGT > win from Right's point of view), we can determine the

best result types both players can get if they have the move. If a player's
best result type is CGT, we also compute his combinatorial game options

(GL respectively GR). Combined with the information on who is to play, we

compute the result type of the actual position as shown in Figure 6.4. In

6.3. COMPUTATION MODEL 63

R to play

L to play

ÄI i- %.
pp*--

io^i
CGT,
{IGR}

m, -trnvrm

Ail
A

CGT2
{1}

Figure 6.4: Result types of global threats evaluation: the table indicates the result

type of a local game depending on the best result types of Left's (rows) and Right's

(columns) options The split entries show the result types for Left to play (lower
left) and Right to play (upper right).

case the actual result type is CGT, we also compute the combinatorial game

value of the position.
In the four highlighted cases, we compute a finite combinatorial value for

the actual game position.

• CGT!
All left options lead to games of type loss while Right has at least one

move that leads to a finite combinatorial game. As Left has no good
moves (i.e. moves that do not allow the opponent to force the execution

of a global threat), the value of the actual position is G = { | GR}.

• CGT2

Neither player has any good moves. The actual position is a mutual

Zugzwang. G = { | } = 0. We
havealreadyseenanexampleofsuchasituationinFigure6.2.•CGT3Bothplayers'bestoptionsallleadtofinitevalues.TheactualgamevalueisG={GL\GR}.•CGT4Incontrasttothefirstcase,RighthasnogoodmovewhileLefthasatleastonegoodoption.G={GL|

}.

64 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

If both players' best result types are win (resp. loss), the result type of

the actual game position is of course also win (resp. loss). In the remaining
three cases, the result type of the actual position depends on who has the

right to move. If the player to move can move to a winning position, he will

of course do so and the result type is determined as a win in his favor.

Of special interest are the positions where the player to move has one or

more moves that lead to games of type CGT while his opponent would be

winning if he was to play. These are the only cases where the loopy games on

and off occur in our combinatorial game values which are either {on | GR}
or {GL | off}). Fortunately, on and off only appear as threats. For example,
if Left plays a move to a position of value {on \ GR}, then Right immediately
has to move to one of the options in GR as Left threatens to move to on.

We conclude that if a game with global threats has a finite value, the

algorithm computes it without evaluating loopy games. These are the games

that interest us the most. If a game does not have a finite value, the algo¬
rithm computes the values of its finite options and the information who wins

depending on who moves first.

6.3.2 Example: Application to a Chess Position

Figure 6.5: An example of global threats evaluation: the value of this position is

G = {{on | *} | } = 1.

The example shown in Figure 6.5 illustrates how the algorithm works.

6.3. COMPUTATION MODEL 65

Either one of the players manages to promote a pawn (result type win or

loss), or the pawns get blocked (result type CGT). We start by analyzing
both players' options in the current position. The resulting game tree is

shown in Figure 6.6.

• White {Left) to play has one move, d4-d5. If he had the move again,
he would play d5xe6 winning immediately (result type win). If, on the

other hand, Black was to play in the position after d4-d5, he would

play e6xd5 leading to a position of result type CGT and of value

{0 | 0} = *. As we know that Black is to play, the result type of the

position after d4-d5 is CGT, and its value is {on \ *}• This is White's

only option, thus GL = {{on | *}}.

• Black to play also has only one move, e6-e5. In the resulting position,
White to play has the move d4xe5 leading to result type win. Black

to move again, on the other hand, plays e5xd4 leading to result type
CGT and value { | } = 0. We know that after e6-e5 White has the

move, thus Black's best result type is win, a loss for him.

CGT

d4-d5

d5xe6 e5xd4

win CGT

CGT CGT

Figure 6.6: Game tree of the example shown in Figure 6.5: the result types at the

leaves are backed up in order to compute the result types of the inner nodes.

According to Figure 6.4 (the entry labeled 4), the value of the current

position is computed as G = {{on | *} | } which simplifies to G = {0 | } = 1

as Left's option is reversible.

66 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

6.3.3 Implementation

The function GTSearch searches the game tree depth first and computes
result types and combinatorial game values of local games that contain global
threats. Its specification is

• in:

— toplay: the player (constants kWhite, kBlack, kNoPlayer) who

has the move. In the starting position, the root of the game tree,

kNoPlayer is passed. At all other nodes of the tree, the right to

move is determined.

• out:

— return value: the result type (constants kWin, kLoss or kCGT) of

the current position.

— value: the combinatorial game value of the current position. This

value is "valid" only in case kCGT is returned.

The algorithm performs the following steps (numbers refer to comments

in the code):

1. Check termination:

determine if the actual position is a global win for one of the players.
If so, we are finished and return kWin resp. kLoss.

2. Recursively evaluate Left's options:
We store the best result type (kWin > kCGT > kLoss) achieved so

far in the variable bestL. For every option of type kCGT, we include its

combinatorial value in the set GL. If we find an option leading to result

type kWin, we can skip the remaining options (cutoff!). (The forsome
statement has the same functionality as forall, but it allows to exit the

loop with a break statement.)

3. Recursively evaluate Right's options:

Analogously to step 2 we compute the values bestR and GR.

4. Compose the result:

According to the table of Figure 6.4, we compute the result type of the

actual position. In case the result type is kCGT, we also compute the

combinatorial game value {GL | GR} and return it in the out-parameter
value.

6.3. COMPUTATION MODEL 67

function GTSearch(toplay: TPlayer; var value: TGameValue): TResultType;

begin
if GlobalWin(kLeft) then return kWin; endif; /* 1 */
if GlobalWin(kRight) then return kLoss; endif;
GL «- { }; bestL <- kLoss;
forsome left moves m do /* 2 */
ExecMove(m);
res <— GTSearch(kRight, val);
UndoLastMove();
if res = kWin then bestL <— kWin; break endif; /* cutoff! */
if res = kCGT then bestL <- kCGT; GL <- GLU val endif;

endfor;
GR <- { }; bestR <- kWin;
forsome right moves m do /* 3 */
ExecMove(m);
res <— GTSearch(kLeft, val);
UndoLastMove();
if res = kLoss then bestR «— kLoss; break endif; /* cutoff! */
if res = kCGT then bestR <- kCGT; GR <- GRÜ val endif;

endfor;
return ComposeResult(bestL, bestR, value, GL, GR, toplay); /* 4 */

end GTSearch;

68 CHAPTER 6. LOCAL GAMES WITH GLOBAL THREATS

Seite Leer /

Blank leaf

Chapter 7

Combinatorial Chess Endgames

In this chapter, we present king and pawn chess endgames as an applica¬
tion of the global threats model introduced in Chapter 6. Elkies [13] shows

that in situations of mutual Zugzwang, these endgames often admit CGT

solutions. Section 7.1 gives an overview of his work. As an open problem,
Elkies mentions the entailing nature of captures and threats to capture. In

Section 7.2, we show how, using the global threats model, we can compute
values of complex pawn structures whose analysis contains entailing moves

such as captures and promotions. In Section 7.3, we discuss the application
of decomposition search [41] to king and pawn endgames. We compare the

divide and conquer approach to standard minimax search and to the methods

of classical chess theory. Finally, we present a selection of endgames from

tournament practice with CGT solutions in Section 7.3.5.

7.1 Divide and Conquer in King and Pawn

Endgames

In general, Combinatorial Game Theory does not apply to chess, mainly
because the 8x8 chess board is too small (or too crowded) to decompose
into independent subgames. Moreover, the long range pieces queen, rook

and bishop can traverse the whole board in one move, again preventing a

decomposition. In some endgames, however, with the long range pieces gone,

we can identify independent subgames on different sides of the board. In this

chapter, we focus on KP endgames where each side only has his king and a

number of pawns. The king has the ability to go from one end of the board

to the other, although slowly. In situations of Zugzwang, however, a king
move leads to a disadvantage big enough to lose the game.

69

70 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

7.1.1 Mutual Zugzwang

In a situation of mutual Zugzwang (mZZ), both players would rather pass

than make a move. In the position shown in Figure 7.1, a king move by
either side results in the loss of a pawn and consequently in the loss of the

game. mZZ is modeled by the combinatorial game 0 = { | } where none of

the players can move. Thus, both players will make pawn moves on the a, b,
and h-file until the pawns are blocked and the side to move loses.

Positions of mutual Zugzwang, although rare1, have always interested

chess analysts and are found in many books on endgame theory. Elkies [13]
shows that combinatorial game values also occur in chess, and that it is

possible to solve positions of mutual Zugzwang with the help of CGT. We

give a summary of his analysis of the position shown in Figure 7.1 (Sveda -

Sika, Brno 1929).

Figure 7.1: Mutual Zugzwang: Sveda - Sika, Brno 1929. The player who first

moves his king loses. Both players move their queenside and kingside pawns until

one of them must give way. The value of this position is G = 4- *, a first player
win.

• The center with the two kings and a pawn each is a mutual Zugzwang.
The player to move has to give up the defense of his pawn and loses.

Its value is Gi = { | } = 0.

xrare in tournament play that is, but very popular in the world of chess problems and

endgame studies.

7.1. DIVIDE AND CONQUER IN KING AND PAWN ENDGAMES 71

• The kingside (h-file) favors Black who still has the choice of moving his

pawn by one or by two squares. The value of the kingside is G2 = {4-1
0} = 44- *• (in a^l chess examples, we define White playing Left and

Black playing Right.)

• The queenside (a and b-files) is the most complicated of the three sub-

games. White who has both pawns on their original squares is slightly
favored. The queenside's value is G3 = {0 | *} = f.

The whole game is of value G = G\ + G2 + G3 = I *, a first player win.

White to move wins by playing I.h3-h4! moving in G2 to G2L = I- The

resulting sum is G\ + G2L + G3 = 0 + 4, + t = 0, thus Black to play now is in

Zugzwang. Black to play first, on the other hand, plays 1.
...

a6-a5! moving
in G3 to G3R = *. The resulting sum Gi + G2 + G3R = 0 + U * + * = U is

negative, therefore won for Black now matter who is to play.

7.1.2 Analysis of Pawn Structures

In the Sveda-Sika game, we have seen that it is decisive to make the last pawn

move when all other pieces are bound by Zugzwang. This subgame of chess

where both players only have pawns and try to blockade the opponent can be

mapped to a combinatorial game as defined by Conway [11]. Furthermore,
as pawns, except for capturing moves, cannot change their files (columns),
chunks of pawns on different locations of the chess board do not interfere and

can therefore be considered independent games.

Elkies has constructed pawn structures that represent all kinds of com¬

binatorial values (infinitesimals, integers, fractions, switches
. ..) and has

systematically analyzed some simple structures by hand such as the one

against one situations shown in Figure 7.2.

When two pawns move towards each other on the same file, the value of

the position is either Geven = {* | *} = 0 with an even number of squares

between the pawns or G0dd = {0 | 0}=*withanoddnumberofsquaresbetweenthepawns(Figure7.2,positions1and2),unlessatleastoneoftheplayersstillhastherighttomakeadoublestepwithhispawn.Thischoiceisofcourseanadvantagefortheplayerwhostillhasit:Thevalueofposition3is{0,*I*}=f,apositivevalue,whileposition4{\.|0,*}=*isanegativegame.Ifbothpawnscanmakeadoublestep,thevalueofthepositionis0,exceptforverysmallboards.Ifthepawnsareseparatedbyonerowonly,theresultingvalueis{0|0}=*.Ifthepawnsareseparatedbytworows,weget{0,*|0,*}—*2,agameequivalenttoaNimheapofsize2.

72 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

Figure 7.2: Opposite pawns on the same file, position 1 = *, position 2 = 0,

position 3 = t> position 4 = 44- *•

Given a white pawn on its starting square and a black pawn that no longer
has the option of making a double step separated from the white pawn by
5 squares on an "arbitrarily large'1 chess board, the game value G of the

position is

(0 5 = 0,

G=U 8 = 1,

(s — 1) • t s > 1, s is even,

k(s-l)-t + * s > 1, s is odd.

More complex to analyze, however, are positions with more than one

pawn on each side when captures and promotions are possible. Addressing
open problems, Elkies [13] writes: "In other directions, one might also hope
for a more systematic CGT-style treatment of en passant captures and en¬

tailing chess moves such as checks, captures entailing recapture, and threats

to capture ...
".

(7.1)

7.2. GLOBAL THREATS IN LOCAL CHESS GAMES 73

7.2 Global Threats in Local Chess Games

Let's have a look at more complex pawn structures. Positions like the one

shown in Figure 7.3 contain entailing moves such as attacks and captures

which usually force an immediate reaction from the opponent.

Figure 7.3: A two vs. two pawn structure of value 0.

This position is a mutual Zugzwang, G = { \ } = 0. The player who

starts gets blocked if his opponent does not capture but pushes his attacked

pawn forward, for example I.b2-b3 c4-c3. The analysis of such positions is

complicated by attacks and captures which involve entailing moves. In our

example, Black might answer I.b2-b3 with c4xb3 forcing White to imme¬

diately recapture with 2.c2xb3. The key to the analysis of these structures

is that not the capturing move itself is an "entailing factor", but the global
threat to bring a pawn to the last rank where it is promoted to a queen. As

already stated in Chapter 6, we consider the promotion of a pawn a global
win in king and pawn endgames.

Using the computation model presented in Chapter 6 we compute the

value of the position shown in Figure 7.3 as:

G = {{on | 0, {0 | off}} | {0, {on | 0} | off}} = 0

Any move by one of the players gives the opponent the choice either to

move to 0 by pushing his attacked pawn, or to set up a global threat by

capturing. Note that neither option dominates the other. The original game
G however simplifies to G = 0 as the second player always has a move to

0. The capturing option turns out to be reversible. Although some lines of

play lead to global wins, the value of this pawn structure is finite. Neither

74 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

player can force a win. In this simple example, the rule that a capture must

be answered with an immediate recapture applies. In the next one (Figure
7.4) it does not.

Figure 7.4: The breakthrough: White to play sacrifices two pawns in order to

promote the third one.

The kingside structure with king and pawn each is "the same" mutual

Zugzwang that we have already seen in the Sveda-Sika game. On the queen-

side, however, thanks to his far advanced pawns, White to move forces a

global win by sacrificing two pawns in order to promote the third one. After

I.b5-b6! a7xb6 (c7xb6 2.a5-a6! etc.) 2.c5-c6! b7xc6 3.a5-a6! the a-pawn

is unstoppable. In chess literature, this maneuver is known as a breakthrough.
Black to play, on the other hand, cannot do the same, as White would be

much faster promoting one of his pawns. Black's only move that does not

allow White to win by global threat is 1.
...

b7-b6 leading to the value

GLl = {0, {on | 0} | off}. After 1.
...

b7-b6 White has a choice of two sym¬

metrical lines, for instance 2.a5xb6! a7xb6! and now 3.c5-c6 leaves Black

in Zugzwang. The value of the whole game is G — {on | {0, {on | 0} | off}}.
We conclude that the reason why captures and attacks often are entailing

moves is that they usually lead to a global threat in form of a promotion. In

many cases, however, especially if both sides have an equal number of pawns,

none of the players can force the promotion of a pawn. In this case, we can

compute a finite combinatorial game value for the given pawn structure.

7.3. RESULTS AND DISCUSSION 75

7.3 Results and Discussion

7.3.1 Decomposition Search in Chess Endgames

In Section 2.3, we introduced decomposition search as a method of apply¬

ing combinatorial game theory to games that decompose into independent

subgames. It includes the following steps:

1. Decomposition: divide the game into independent components (local
games).

2. Local Search: compute the combinatorial values of the local games.

3. Evaluation: compute a result (sum game value, move decision
...)

based on local game information.

The process of identifying the local games in a chess position involves two

main steps, dividing the pawn structure and detecting situations of mutual

Zugzwang.

Dividing the Pawn Structure

Dividing the pawn structure into independent chunks is the easier of the two

steps. It does not involve any search, just geometry:

• Two pawns of opposite color interact if they have not passed each other,
that is, if the rank2 of the white pawn is smaller than the rank of the

black pawn.

• Two pawns of any color interact if they are on the same or on neigh¬
boring files.

For pawns of opposite color to interact, both rules must apply, for pawns

of the same color only the second one. Interaction between pawns is tran¬

sitive. The independent pawn chunks on the chess board correspond to the

equivalence classes of the relation of interaction.

2In chess terminology we use rank for rows and file for columns of the chess board.

76 CHAPTER 7 COMBINATORIAL CHESS ENDGAMES

Detection of Mutual Zugzwang

We must analyze the kings' positions3 in order to find out whether there is a

situation of mutual Zugzwang If both kings are bound to a pawn chunk, we

can apply CGT Usually such a situation is similar to the one in the Sveda-

Sika game (Figure 7 1), but Elkies has shown many different positions where

the kings or other pieces are bound

The game examples piesented in Section 7 3 5 were computed using an

"oracle" m the form of a human expert to detect the Zugzwang positions
As we have seen in Elkies' work, this approach is successful in analyzing KP

endgames, as well as in composing endgame studies and problems By means

of CGT, chess positions that do not seem to fit in any strategic scheme can

be mathematically solved and explained
In order to automatically detect Zugzwang situations, we propose a locally

restricted minimax search If no player can move his king without worsening

his position (for example losing a pawn), we have detected a mZZ The local

search can be exhaustive or limited by time or search depth For example,
in the Sveda-Sika game (Figure 7 1), even a two-ply search combined with

material evaluation will show that it is bad for either player to move his king

Figure 7 5 Sveda - Sika revised Black to play tries to break out of the mZZ

position with Ke5-f6

3 and the positions of all other pieces if we want to extend this method to general chess

endgames

7.3. RESULTS AND DISCUSSION 77

However, it is important to note that no matter how a Zugzwang is de¬

tected, the conclusion that it will be constant is of a heuristic nature. In fact,
the decomposition of a chess position is always a heuristic decomposition.

Let's again have a look at the Sveda-Sika game: If White starts, we reach

the position shown in Figure 7.5 after the moves I.h3-h4! a6-a5 2.h4-h5!

a5-a4 3.h5-h6! Black could now consider abandoning his f4-pawn and instead

attacking the white pawn on h6. After the moves 3...<&e5-f6 4.<i>f3xf4

4>f6-g6 5.^4-65 «igoxho, material is balanced, but White easily wins with

6.<4>e5-f6 when his e-pawn is unstoppable. Thus, our initial assumption was

correct: the side to move its king first loses. But in other cases, breaking out

of the Zugzwang might upset the decomposition and thus the combinatorial

evaluation of the position.

7.3.2 Divide and Conquer vs. Full Width Search

In the following game example, we compare decomposition search with min-

imax evaluation as used by chess playing programs.

Figure 7.6: A first player win: Popov - Dankov, Albena 1978. The queenside and

center are both of value 0. On the kingside, the first player to move forces his

opponent into a Zugzwang position. The kingside and therefore the game is of

value G = {0 | -1}.

Figure 7.6 shows a position from the game Popov vs. Dankov, Albena

1978. The relative position of the two kings is the same as in the Sveda-Sika

78 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

game. The player who moves his king first loses his central pawn which in

this case is always decisive. The game is decided by the local games on the

queenside and kingside.

• The queenside is a game of value GqS = 0. With the white pawns

advanced to the fourth rank, Black gets no advantage from the double

step option. The player to move is immediately blocked, for example
I.a4-a5 a7-a6!.

• The kingside is more complex. Black to play gains a considerable ad¬

vantage with 1.
...

h6-h5. In fact, due to White's option to sacrifice a

pawn for a move with g3-g4, it "only" leads to a value of —1. White

to play has only one move. Thanks to the possibility of sacrificing
one of the doubled pawns for a move, it leads to a position of value 0.

The main line runs I.g3-g4 g7-g6 2.g4-g5 h6xg5 3.g2-g4 and a zero

position is reached. The value of the kingside is Gks = {0 | —1}.

The sum Gqs + Gks = {0 | — 1} is a first player win. The following
results are computed on a PC (466 MHz Intel Celeron, 128 MByte Ram)
running Linux.

• Decomposition search requires a total of less than 1000 evaluated nodes

to compute the values of the kingside and the queenside.

• Combinatorial evaluation of the combined (kingside and queenside with¬

out divide and conquer) pawn structure yields the same result, but

takes much longer. Almost 200, 000 nodes need to be evaluated.

• In order to illustrate the complexity of a full-width alpha-beta search,
we ran Crafty [27] on the game position with White to move. Only
after evaluating more than 2-109 nodes, the program indicated I.g3-g4

leading to a white advantage.

Note that both computed results are heuristic: the result of decomposi¬
tion search due to the heuristic decomposition of the chess board, the result

of alpha-beta search due to the heuristic evaluation of non-terminal positions.

7.3.3 KP Endgames involving Zugzwang in Chess Lit¬

erature

Positions of mutual Zugzwang where pawns try to block each other are pop¬

ular, but only vaguely described in chess literature. The units of calculation

7.3. RESULTS AND DISCUSSION 79

used by the authors are spare tempi which correspond to extra moves or

integers in CGT. But as we have seen, the game values are often ratio-

nals, infinitesimals and sums of those. It is therefore not surprising that

the authors cannot give useful instructions on how to compute spare tempi.
Statements like "with pawns on one or two files, computing spare tempi is

not too difficult ..." (Awerbach [l]4) or "by accurate play White makes sure

it is Black who first runs out of moves ..." (Müller [38]) illustrate this.

On the other hand, the authors recognize the possible application of divide

and conquer. Speelman [49], for instance, discusses certain pawn structures

separately from any actual game position. The analysis of sums of such

games is quite obscure though. Speelman, on the Sveda-Sika game (Figure
7.1) writes: "In fact, whoever is to move wins by first forcing the kings and

centre pawns into zugzwang and then 'correcting' the situation on the side of

the board on which he is at a disadvantage." Although he correctly assesses

the position as a first player win, he does not define the terms "correct the

situation" and "

disadvantage". Nevertheless, strong human chess players
handle Zugzwang positions well as the examples in Section 7.3.5 show.

7.3.4 Summary and Conclusions

As Elkies [13] has shown, in chess endgames, especially in king and pawn

endgames, the presence of mutual Zugzwang can lead to positions where

CGT applies. The fight of opposite pawns trying to block each other can be

mapped to a combinatorial game as defined by Conway [11]. In a sum game,

the local promotion of a pawn to a queen leads to an immediate overall win.

With the help of the global threats model presented in Chapter 6, however, we

can compute game values of complex pawn structures that contain entailing
moves such as captures and promotions.

In combination with an algorithm to detect Zugzwang positions, such

as a local minimax search, a calculator that computes combinatorial val¬

ues of pawn structures implements decomposition search of king and pawn

endgames. The range of chess positions where divide and conquer applies is

certainly too small for a stand-alone chess playing program based on decom¬

position search. On the other hand, we see useful applications of a decom¬

position search component as a part of a chess playing program.

Further, a program that computes combinatorial game values of pawn

structures and Zugzwang positions is a useful tool for the chess analyst as

combinatorial game theory can provide mathematical solutions to chess po¬

sitions that classical chess theory fails to explain in detail (see Section 7.3.3).

translated from German

80 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

7.3.5 Games Selection

In this section, we present a selection of twelve endgames, some of them

played by strong grandmasters, that can be solved by CGT. The level of

difficulty ascends from "fairly easy" (positions 1 and 2) to "rather difficult"

(positions 10-12). Chess players may find the examples a good test for their

endgame abilities.

The solutions were computed with a program based on the Game Bench

framework. The table presented in Figure 7.7 shows how many nodes in the

game tree had to be evaluated to compute the results.

1. Velimirovic - Smejkal 2. Turov - Jagupov
Rio de Janeiro 1979 Rostov 1993

White to play White to play

3. Spraggett - Eslon 4. Paoli - Michel

Zaragoza 1996 Vienna 1950

White to play. White to play

RESULTS AND DISCUSSION

5. Bronstein - Rajna

Budapest 1977

Black to play

a b c d e

7. Pire - Kolski

Lodz 1938

Black to play

9. Nehlert - Precour

Baden 1992

White to play

6. Thomas - Maroczy
Nice 1930

Black to play

8. Ranits - Wirius

Austria 1998

White to play

10. Jacek - Miler

Czech Rep 1996

Black to play

82 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

Solutions

1. Velimirovic - Smejkal, Rio de Janeiro 1979

The position looks more complex than it actually is. The kings are in

the same mutual Zugzwang that we already know from previous exam¬

ples. The h-file has value 0, the player who moves first gets blocked.

On the queenside only the white pawn on b3 and the black pawn on b5

can move. All other pawn moves result in immediate losses e.g. 1.
...

c7-c6? 2.d5xc6! b7xc6 3.a5 a6 and the a-pawn promotes in another

two moves. The value of the queenside and also of the whole game is

G = *. The game concluded I.b3-b4! h7-h5 2.h2-h4! ^f5-g4
Black attacks the white h-pawn, but this comes too late. 3.<4>e3xe4

<ig4xh4 4.<4>e4-f3! and Black resigned

2. Turov - Jagupov, Rostov 1993

The queenside with the two kings is a mutual Zugzwang. On the king-
side, the extra pawn, although doubled, gives White the advantage. Its

value is Gks = G = 2. In the game, Black resigned after I.h2-h3. A

possible continuation is 1.
... g6-g5 2.h3-h4 and each move by Black

allows White to create a passed pawn.

3. Spraggett - Eslon, Zaragoza 1996

The pawns on the a-file and the configuration of the two kings are both

of value 0. The outcome of the game is decided on the kingside. Black

to play has the winning move 1.
... h5-h4, a global threat] White to

play, on the other hand, moves to 0 with I.h3-h4. The value of the

kingside and of the whole game is GKS — G = {0 | off}. Spraggett
forced his opponent to resign after l.h3—h4! a7-a6 2.a2-a3!.

7.3. RESULTS AND DISCUSSION 83

4. Paoli - Michel, Vienna 1950

With two configurations of 2 against 2 pawns, this position is more

complex than the previous ones. Again, the kings are bound in a mutual

Zugzwang. The queenside structure has already occurred in the Sveda-

Sika game with colors reversed. Its value is Gqs = i- On the kingside,
due to the double-step option, White has the advantage: he can move

to 0 (h2-h4) while Black can't. The value of the kingside is Gks —

{0 | {t, {on |t} | -2}}. The sum game G = {0 | {0, {on | 0} | -2 |}}
is greater than zero, a win for White no matter who starts. Paoli found

the correct moves over the board: I.a3-a4! b7-b6 2.b2-b4 a7-a6

3.h2-h4 a6-a5 4.b4-b5! h6-h5 5.g4-g5 and Black resigned.

5. Bronstein - Rajna, Budapest 1977

In this position, the configuration of the kings is different. White wins

if he can get his king to f5. If he has to go back, on the other hand,
he only has a draw. Thus, we also have a mutual Zugzwang, but with

only half a point at stake. On the kingside, White has two extra moves,

Gks = 2. On the queenside, thanks to his extra pawn, Black has the

advantage, although it is not big enough to force a passed pawn. White,

however, must by all means prevent the black a-pawn from reaching a3.

The queenside value is Gqs —

— 1 + {0 | tiny}.5 Overall, the position is

a win for White. The game concluded 1.
...

a6—a5 2.a2—a4 h7-h6

h2-h3 f6-f5 Desperation, but 3.
...

c4-c3 4.b2xc3 c5-c4 5.h3-h4

also wins for White. 4.g4xf5+ *»e6-d6 5.f5-f6 <^d6-e6 6.e4-e5

<Ä>e6-d5 7.^f4-f5 h6-h5 8.h3-h4 and Black resigned.

6. Thomas - Maroczy, Nice 1930

Here, White wins if his king gets to b5, whereas Black draws if White

does not succeed in doing so. To achieve his goal, White needs two

extra moves. The value of the kingside is Gks = 1, thus with Black to

move, White can just make it. In fact, in this position, Black resigned.
A possible line of play would be 1.

... ^d6-d5 2.b2-b3! <4>d5-d6

3.<èd3-c4! çt?d6-c6 4.g2-g3! h7-h6 5.g3-g4! and White wins.

7. Pire - Kolski, Lodz 1938

The situation on the queenside has occurred in the Sveda-Sika game.

Its value is Gqs = \.\. *. On the kingside, White has a
bigadvantagebecauseofBlack'scrippledpawns,GKS={2+3.||{1+3.tI0}}6Here,havingthemoveisfavorableasthetemperatureofthekingsideis5Thevaluetinyisthesmallestpositivevaluethereis:tiny={0|{0|off}})6Theexpression3.îstandsforf+f+t>anotationusedin"WinningWays"[5].

84 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

positive: tKS — 3/4. However, the right to move does not save Black as

his disadvantage is too big. 1.
...

f6-f5 2.f2-f4 The move 2.g2-g3 was

even stronger (f2-f4 leads to a kingside value of 1, g2-g3 to 1 + 3
. t),

but the move played is good enough to win the game. 2.
...

f7—f6

3.a3-a4 h6-h5 4.g2-g3 and Black resigned.

8. Ranits - Wirius, Austria 1998

The queenside has the value Gqs = {0 | 0} = *. The 3 against
3 structure on the kingside looks complex, but has a simple value,

Gks = 0. In the game, White found the winning moves. I.a4-a5!

h7-h5 A tougher defense was 1.
...

f6-f5 2.h3-h4! g7-g6 3.g2-g3!
h7-h6 4.f2-f3! and Black is in Zugzwang. 2.f2-f4 This leads to a

kingside value of 0 which is good enough in this sum game. The move

2. g2-g3 was stronger and would have led to a kingside value of 1/4.
2.

... g7-g6 3.g2-g3 g6-g5 4.f4-f5 and Black resigned.

9. Nehlert - Precour, Baden 1992

In this game, the constellation of the two kings is different. If White

moves his king, he loses the g4-pawn and the game. Black, however,
can capture the white pawn on f6 and keeps the material balance.

Thus, White must bring Black into Zugzwang on the queenside to avoid

losing. As in position 7, the 3 against 3 structure on the queenside is

a hot game. Its value is Gqs = {{1/2 | {0 | {0, {on |4-} | off}}} |
{ — 1 | —2}} and its temperature is tçs = 7/8. In the game, White

correctly played l.b3—b4! a6-a5 Another line is 1.
...

b7-b6 2.c4-c5!

b6xc5 3.b4xc5 a6-a5 4.c5-c6 and Black is blocked. 2.b4xa5! c7-c5

3.a5-a6! b7xa6 4.a4-a5 çfc>g5xf6 5.<*f3xf4 and although White

had the advantage, the game ended in a draw after a further 38 moves.

10. Jacek - Miler, Czech Rep. 1996

As the a-file and the structure with the kings both have value 0, this

game is decided on the kingside. Its value of GKS = 2 | {2, {on | 0} |
off}, {on | 2, {2 | off} || 0,{on | 0} | off}, {{on | 0},f I -2}, {0 || {on j
0},t| —2}||0,*isverycomplex.Gksisafirst-playerwin.White'sonlywinningmoveisI.g3-g4,andBlack'sonlywinningmoveis1....h7-h5.Inthegame,Blacktoplayfoundthecorrectmovesandwon.1....h7-h5!1....h7-h6?2.g3-g4!2.a3-a4a6-a5!3.f4-f5g6xf5!4.h2-h3f7-f65.h3-h4f5-f46.g3xf4f6-f57.^d4-e5^c6xc5andWhitehadtoresign12moveslater.11.Schüssler-King,Gausdal1990Blackhastheadvantageonbothsidesoftheboard.Thequeensidehas

7.3. RESULTS AND DISCUSSION 85

a value of Gqs = H *. The kingside has the very complex value Gqs =

* II {0,{{on || 0},{on || *,{on | *} | *, {* | off}} | {* | off},{*,{on \
*} I *, {* I off}}} | *, {* | off}}, {0, {{on | 0}, {on || *, {on | *} | *, {* |
»#}} I {* I off}, {*, {on | *} | *, {* | off}}} | *, {* | off} || 0} | -2 HI 0

which is less than zero, thus a black win. In the game, Black won

after I.f3-f4 h6-h5 2.g2-g3 f7-f6 Now, the kingside has a value

of 0. 3.a3-a4 a7-a5! 4.g3-g4 h5-h4! 5.f4-f5 g6-g5! and White

resigned.

12. Scheske - Kiefer, Bingen 1998

This position is an "exception to the rule". At first sight, everything
seems clear, the kings cannot move, thus the player who gets blocked

on the kingside loses. The kingside structure has a value of Gks — 0

which means Black to play is lost. Here, however, Black has one big

advantage, his king is closer to the pawns than White's. In the game,

Black manages to produce a position where White's otherwise winning

passed pawn on the e-file is stopped by Black's king while his own

passed pawn decides the game. 1.
...

f7-f5! 2.f2-f3 The only move.

Otherwise, either White gets blocked, or Black creates a winning passed

pawn. For example 1.
...

2.e4xf5 g6xf5 3.h2-h3 e5-e4 4.h3-h4 h7-h5!

and White is in Zugzwang. 2.
...

f5-f4! A locally bad move that

allows White to create a passed pawn, but here it ensures Black's win.

3.g3xf4 After 3.g3-g4 g6-g5 White ends up being in Zugzwang again.
3.

...
e5xf4 4.h2-h3 g6-g5 5.e4-e5 h7-h5 and White resigned.

The black king easily stops the white e-pawn while Black will create a

decisive passed pawn on the f-file.

Statistics

pos. nodes depth pos. nodes depth
1 715 11 2 342 10

3 65 6 4 1,736 13

5 724 11 6 1,021 12

7 10,845 21 8 57, 042 19

9 4,011 13 10 17,511 15

11 15,542 15 12 231,195 20

Figure 7.7: Statistics of the computations: number of nodes evaluated and maxi¬

mum search depth per position.

86 CHAPTER 7. COMBINATORIAL CHESS ENDGAMES

The table shown in Figure 7.7 displays for each position the number of

nodes evaluated and the maximum search depth required by the combina¬

torial game tree search. In order to improve the performance of the search,
we use an evaluation function that detects global wins before a pawn actu¬

ally gets promoted. Without these cutoffs the numbers of evaluated nodes

would be considerably larger, and computing the values of the more complex

positions would take several hours if not days.

Chapter 8

Zero-Sum Games without

Zugzwang

In this chapter we discuss the application of combinatorial game theory to

two-person zero-sum games with perfect information, a class of games ana¬

lyzed in classical game theory. In Section 8.2 we show how zero-sum games

are mapped to corresponding combinatorial games. In Section 8.3 we dis¬

cuss the use of heuristic evaluation functions in local combinatorial search

of zero-sum games. Section 8.4 demonstrates an application to the game

Regio. With the help of a heuristic evaluation function we compute approxi¬
mate game values of Regio positions (Sections 8.4.3 and 8.4.4) and perform a

game playing experiment decomposition search against standard alpha-beta
search (Section 8.4.5). In Section 8.5 we summarize results and conclusions.

8.1 Introduction

Two-player zero-sum games are a well known class of games analyzed in

classical game theory [50]. The values of a game's terminal positions are

determined by a payoff function that returns number values. Player Max

(or Left to use the CGT naming conventions) is interested in the highest
possible scores while player Min (Right) wants the opposite. A final score of

0 is considered a drawn game.

One of the most fundamental results in game theory, the minimax theorem

states that any non-terminal position1 in a two-player zero-sum game with

perfect information has a determined value. If both players play optimally,

1Note that here the term position includes the information which player has the move.

Later we shall talk about the minimax values of a certain position depending on which

player moves first.

87

88 CHAPTER 8. ZERO-SUM GAMES

the final score will be this value, the minimax value of a position. Minimax

evaluation is a well known technique used to compute minimax values of

zero-sum games: it produces a game's tree up to its terminal positions and

backs up their values in order to compute the value of the root.

Many popular two-player games are zero-sum games of perfect informa¬

tion, for example the whole class of board games that end in (win, loss, draw)
results like checkers or chess.

8.2 Mapping Zero-Sum Games to Combina¬

torial Games

Zero-sum games and combinatorial games differ in the way they define termi¬

nation. In zero-sum games a payoff function determines the values (or scores)
of terminal positions while in combinatorial games the player unable to move

loses. All the same, it is possible to map zero-sum games to combinatorial

games and analyze them with the help of combinatorial game theory, thus

taking advantage of divide and conquer.

8.2.1 The Mapping Algorithm

The mapping algorithm, as for example used in Berlekamp's analysis of the

game Blockbusting [3], is straightforward: First, we produce all possible lines

of play of the original zero-sum game and replace each terminal position with

score x by the corresponding CGT number x (see Section 2.2.6). Then, we

back up these leaf values to obtain the values of the interior nodes of the

game tree and finally of the root. The composing step consists of collecting
the sets of left (GL) and right (GR) options and constructing the value of the

actual node as G = {GL \ GR}. Figure 8.1 illustrates this mapping algorithm
with a simple example:

Left options are represented by arrows to the left, right options by arrows

to the right. We compute the values of non-terminal nodes by backing up

the leaf values, GLl = {3 | 1}, GRl = {-2 | -4}, and finally G = {{3 | 1},3 |
-3, {-2 | -4}}.

8.2.2 Zugzwang

In order to analyze a zero-sum game with the methods of combinatorial game

theory, the game mapping must have the following two properties:

8.2. MAPPING ZERO-SUM GAMES TO CGT 89

{{3 II}, 3 I-3, {-2 I-4}}

Figure 8.1: Mapping a zero-sum game to a corresponding combinatorial game.

1. Leftscore and rightscore of the combinatorial game are equal to the

minimax values L0 (player Left plays first) and R0 (player Right plays

first) of the original zero-sum game.

2. Disjunctive sums of zero-sum games can be translated subgame by

subgame or as a whole, the result is the same.

As pointed out by Bewersdorff [7], these properties are guaranteed only if

the original zero-sum game contains no positions of mutual Zugzwang (mZZ).
In this case, the rule "never move in a number unless there is nothing else

to do", Conway's Number Avoidance Theorem [11], makes sure the players
never move in a terminal position of the original zero-sum game. When,
in a sum of games, the only moves left are numbers, the free moves in the

combinatorial sum reflect exactly the score of the original zero-sum game.

In positions of mutual Zugzwang, on the other hand, it is to both players'

disadvantage to make a move. In combinatorial game theory, such positions

are modeled by the game 0 = { | } which offers no options to either player.

Mapping mZZ positions to combinatorial games will not only result in the

loss of their original minimax values (for instance the games { — 1 | 1} and

{—3 | 3} are both mapped to 0), but even worse, leads to completely wrong

results when a player prefers to move in a number rather than in a Zugzwang

position (see Figure 8.2). The mapping algorithm maps both G\ and G2 to

0, leading to a sum of 0 + 0 = 0, a second player win. In the original zero-

sum game, however, the first player wins by moving in G\ forcing the second

player to move in the even more disadvantageous game G2- In the mapped
combinatorial game this won't work: if the first player moves in Gi, she offers

her opponent a free move in G\ with the result that she has to play first in

G2 as well.

90 CHAPTER 8. ZERO-SUM GAMES

Gl G2

-11 -3 3

Figure 8.2: Mapping a sum of two mutual Zugzwang positions.

We conclude that we can map zero-sum games to combinatorial games

provided they do not contain positions of mutual Zugzwang. A prominent

example of a zero-sum game without Zugzwang is Go where the players have

the right to pass if any move would worsen their situation.

8.2.3 Improved Mapping using the Reduced Canonical

Form

When analyzing zero-sum games we are interested in positive and negative
scores. In contrast to CGT, here a value of 0 stands for a drawn game, no

matter who has made the last move. As a consequence we can significantly

simplify the combinatorial games that result from the game mapping by

omitting options that fight for the last move, but do not change the final

score.

An infinitesimal or small game G (Conway [11]) is a game for which

—x < G < x holds for every possible positive number x. Leftscore and

rightscore of infinitesimals are both 0, thus in terms of zero-sum games they
are "draws". Provided there are no Zugzwang positions, infinitesimals are

a neutral element in sums of zero-sum games: adding any infinitesimal to a

sum will not change its final score.

Calistrate [10] defines the the reduced canonical form G of a game G as the

simplest game infinitesimally close to G. In this context, "simplest" means

the game with the smallest edge-set of the game tree. Algebraically, the

reduced canonical forms build a subgroup Rcf and the group of games is the

sum Rcf © / where / is the subgroup of infinitesimals. In particular, G and

G have the same leftscore and rightscore (L0(G) = L0(G); Ro(G) = R0(G)).
By using the reduced canonical form we can improve the mapping al¬

gorithm discussed in Section 8.2.1 in order to produce the simplest possi¬
ble games that correspond to the original zero-sum games. When backing

up the terminal values, instead of composing an interior node's value as

8.3. HEURISTIC LOCAL SEARCH 91

G = {GL | GR} we compute the node's value as G = {GL | GR}. This often

leads to considerably simpler values for the local games which again result

in more efficient local search and more efficient sum game play.
In the example of Figure 8.1 applying the reduced canonical form allows to

delete Left's first move option leading to the simpler value G = {3 | —3, { — 2 |
—4}}. Note that under conventional CGT rules, the games GLl — {3 | 1}
and Gh2 = 3 are not comparable: GLl \\ GLi, and therefore the tree could

not be pruned.

8.3 Heuristic Local Search

In order to compute the exact value of a combinatorial game, we must pro¬

duce its entire game tree. However, the number of nodes in a game tree grows

exponentially with its depth. Further, in the worst case, the combinatorial

game value of the root requires an amount of memory exponential in the

size of the game, as well. For this reason, only relatively small instances of

combinatorial games admit exhaustive search, big instances often exceed the

limits of running time and memory capacity.

8.3.1 Heuristic Evaluation Functions

A successful technique for computing approximate minimax values of zero-

sum games that exceed the limits of exhaustive search is the use of heuristic

evaluation functions. Instead of producing a game tree up to its terminal

positions, we compute estimates of the values of non-terminal positions and

back them up as if they were exact values. In zero-sum games it is often

possible to find good heuristic evaluation functions that provide rather accu¬

rate scores. Combinatorial game values, on the other hand, are much harder

to estimate as they are much more complex than "just" numbers. When

mapping zero-sum games to combinatorial games, however, we can make use

of the very same evaluation functions. If a zero-sum game admits a heuristic

evaluation function that estimates the values of non-terminal positions, we

can use it in order to map the original zero-sum game to a corresponding

approximate combinatorial game.

8.3.2 An Iterative-Deepening Local Search Algorithm

The following algorithm LocalHSearch computes approximate combinatorial

values of zero-sum games without Zugzwang:

92 CHAPTER 8. ZERO-SUM GAMES

function LocalHSearch(int depth, max_depth, gameNum): TGameValue;

/* computes an approximate combinatorial value of a local game */
begin

if TerminalPosition() return Score();
if depth = max_depth return Evaluate();
GL <_ {}. GR ^ {}.
forall left moves m do /* recursively evaluate all left moves... */
ExecMove(m);
GL <— GL U LocalHSearch(depth+l, max_depth, gameNum);
UndoLastMove();

endfor;
forall right moves m do /* recursively evaluate all right moves... */
ExecMove(m);
GR -f- GRU LocalHSearch(depth+l, max.depth, gameNum);
UndoLastMove();

endfor;

return {GL \ GR}; /* reduced canonical form */
end LocalHSearch;

The recursion ends if either a terminal position or the specified maximum
search depth is reached. The functions Score and Evaluate both return com¬

binatorial numbers. After computing the values of all left (GL) and right

(GR) options, we compute the actual game value as the reduced canonical

form of the composed game {GL | GR}.
Ideally the heuristic local search algorithm is embedded in an iterative

deepening loop:

for actuaLdepth := 1 to max_search_depth do

forall local games Gl do

Vt <— LocalHSearch(l, actuaLdepth, i);
endfor;

endfor;

We start with a search depth of 1 which we increase until a specified depth

(or time) limit is reached. The main advantage of the iterative deepening ap¬

proach becomes obvious when we compute local values of several local games:

At any time of the computation, the results computed at the previous depth
level are available and allow a sum play algorithm to make a move decision.

8.4. THE GAME REGIO 93

Further when computing local game values in parallel, each local search pro¬

cess can iterate its search depth independently and thus automatically adapt
to a local game's size.

8.4 The Game Regio

In this section, we analyze the game Regio, a zero-sum game without Zug¬

zwang, with the help of combinatorial game theory. We use the mapping

algorithm presented in Section 8.2 to transform Regio positions into corre¬

sponding combinatorial games. In Section 8.4.5 we discuss a game play ex¬

periment between a heuristic decomposition search algorithm and standard

heuristic alpha-beta search.

8.4.1 Introduction and Rules

Regio (Müller [40]), a game of territorial control similar to the game Snort

(Winning Ways [5]), models the initial phase of establishing local service

for an enterprise. The immediate goal of Regio is to control as many local

regions as possible.

The game is played by n players on an undirected graph G = (V, E). Each

player has his own color. At the start of the game, all nodes are uncolored.

At his turn, a player selects an uncolored node and colors it and all its yet

uncolored neighbors with his color. The game is finished when all the nodes

are colored, and the player who has colored the most nodes wins.

Figure 8.3: Regio, played on an undirected graph. After the moves to nodes 2 and

10 the game decomposes into four independent subgames.

During play, Regio decomposes into independent subgames whose sum

determines the value of the game. (In the example of Figure 8.3, we already
have four subgames after two moves.) Thus, in Regio, divide and conquer is

a most logical and promising approach. In the following sections we analyze

Regio in its two-player version.

94 CHAPTER 8. ZERO-SUM GAMES

8.4.2 General Properties of Regio

Proposition 8.1 Regio is a zero sum game.

This becomes obvious if we define the final score of a game G as the

difference of the players' number of colored nodes: S(G) — Lnodes(G) —

Rnodes(G). The gain of player Left equals the loss of player Right. Left
tries to maximize S(G) while Right wants to minimize it. A final score of

S(G) = 0 stands for a drawn game.

Proposition 8.2 Regio is a symmetric game.

In any position both players have exactly the same move options. If player

Left to move can gain a score of x, then player Right can gain (—x) if he was

to move first. We define L0(G) and Ro(G) as the resulting mmimax values of

a game G if Left respectively Right plays first. Proposition 8.2 then results

in the equation:

L0(G) = -Ro(G) (8.1)

Proposition 8.3 In Regio there are no Zugzwang positions.

The proof for this proposition is furnished by the following simple strategy
that guarantees the first player a score of at least zero in any Regio position:

• "Always play the move that colors the maximum number of nodes. If

there is more than one such move, choose any of them."

On every turn, the second player can at most equal the first player's
number of colored nodes. Therefore, the best score the second player can

reach is zero. Expressed with the mmimax values L0(G) and Rq(G) we get:

L0(G) > R0(G) (8.2)

We might conclude that Regio is a very simple game and the best move

is always one of the biggest moves that color the maximum number of nodes.

But this is wrong! Figure 8.4 shows a counter-example:
The biggest moves are the moves to nodes 1 and 3 that color four nodes

each. A move to node 1 is answered with a move to node 3 (and vice versa).
This leaves one extra node for the first player. The move to node 2 on the

other hand only colors three nodes, but results in three extra nodes for the

first player.

8.4. THE GAME REGIO 95

O O

<>0-0-K>-0

Ô Ô

Figure 8.4: In this game, provided it is played by itself and not as a part of a sum,

the best move (the move to node 2) is not the move that colors the most nodes.

8.4.3 Applying Combinatorial Game Theory to Regio

We map Regio positions to combinatorial games as described in Section 8.2.

The properties of Regio positions discussed in Section 8.4.2 are reflected in

their corresponding combinatorial games:

• All games G G Regio are their own inverses: G + G = 0, G = (—G).
This is easily proven with the help of the Tweedledee- Tweedledum strat¬

egy [5]: In a sum of two identical Regio games, the second player reaches

a final score of zero by answering the first player's moves with anal¬

ogous moves in the other game (see Figure 8.5). On the other hand,
as shown in Section 8.4.2, the first player always has a strategy that

guarantees him at least a value of zero (proposition 8.3). Thus, the

value of the sum G + G must be 0.

• VC e Regio : leftscore(G) = —rightscore(G) > 0. This is the same

result that we have already seen in Section 8.4.2, equation 8.1. As a

consequence, mean values of Regio positions are always zero, and ther¬

mographs of Regio positions are symmetric with respect to the vertical

zero-axis.

• Incentives are always equal for both players.

8.4.4 Heuristic Local Search in Regio

In Regio a good estimate for the value of a non-terminal position is the actual

score, the number of nodes colored by Left minus the number of nodes colored

by Right at this point in the game (see Figure 8.6). This score represents

96 CHAPTER 8. ZERO-SUM GAMES

Figure 8.5: The Tweedldee-Tweedledum strategy: If the first player moves to node

x in game G, the second player answers with the move to node x' in game G' and

vice versa. The final score will be 0 no matter whatever the first player tries.

Figure 8.6: Heuristic evaluation in Regio: The actual score is 5 - 4 = 1 in Left's
favor. As the game consisting of the remaining uncolored nodes has a mean value

of 0, the score is equal to the mean value of the position, thus a good estimate for

the exact game value.

8.4. THE GAME REGIO 97

the mean value of the actual position as the mean value of the remaining
uncolored nodes is zero.

A good heuristic evaluation function leads to more accurate game values,
the deeper we search before applying it. This holds for heuristic local search

as well as for minimax evaluation of zero-sum games.

The example shown in Figure 8.7) illustrates heuristic local search at

increasing search depths:

Figure 8.7: Regio: a 4 x 2 rectangle.

• search depth 1: Each player has the possibility to color at most four

nodes with his first move which results in a heuristic game value of

Gdi = {4 | —4}. Its leftscore, rightscore and temperature are L0(Gdi) =

4,R0(Gdl) = -4,t0{Gd,)=4.

• search depth 2: The second player is allowed to answer the first

player's move. The computed values are Gd2 = 7 | 1 || — 1 | —7.

L0(Gd2) = l,R0(Gd2) = -l,t0(Gd2) = 4.

• search depth 3: At search depth 3 the computed values are Gd3 = 8 |
6 || 2 | 0 HI 0 | -2 || -6 | -8. L0(Gd3) = 27R0(Gd3) = -2,t0(Gd3) = 4.

• search depth 4: At search depth 4 all possible lines of play end in

terminal positions. The exact value of the game, its temperature, left-

and rightscore are the same as already computed at depth 3: G = 8 |
6 |i 2 | 0 HI 0 | -2 || -6 | -8. L0(G) = 2:R0(G) = -2,tQ(G) = 4. Note

that the value of game G is equal to the sum {4 | —4} 4- {3 | —3}+
{1 I -1}-

These game values are computed using the reduced canonical form as dis¬

cussed in Section 8.2.3. The exact game value as computed by conventional

rules of CGT is much more complex: G = 6, {8 | 6}, {8, {8 | 6} | 2, {4 | 2}} |

98 CHAPTER 8. ZERO-SUM GAMES

2, {2 | 0},{6,{6 | 4} | 0, {2 | 0}} || -2, {0 | -2},{0,{0 | -2} | -6, {-4 |
-6}} | -6, {-6 | -8}, {-2, {-2 | -4} | -8, {-6 | -8}}.

A game's leftscore L0, rightscore R0 and temperature t0 are illustrated

by its thermograph. The thermograph [11] displays leftscore and rightscore
of a game depending on the amount t by which it is cooled. At t = to, the

game's temperature, left and rightscore become identical, the mean value of

the game. Figure 8.8 shows the thermographs of G computed at increasing
search depths from 1 to 4. Step by step they approximate the thermograph
of the exact game value.

depth = 1 depth = 2

score 4

^ 1 1 r-

score 2 0

depth = 3 T

, ,
/

,
N

depth = 4 T

score 4

^ r—i 1 1—r-

score 2 0-2

- 2

Figure 8.8: The thermograph of the Regio position shown in Figure 8.7 at search

depths ranging from 1 to 4.

8.4.5 A Game Play Experiment

In the following game play experiment, we let greedy hotstrat, a simple de¬

composition search algorithm play against standard alpha-beta search. Both

algorithms use the heuristic evaluation function discussed in the previous

Section, use hash tables of equal size, and are allowed to search up to the

same maximum depth of 4. (The depth limit for full-width alpha- beta search

is low in games with up to 200 possible moves at each turn.)

8.4. THE GAME REGIO 99

The Algorithms

Greedy hotstrat is a very simple heuristic divide and conquer algorithm for

playing Regio based on decomposition search (see section 2.3 for a general
description of decomposition search):

• Local Search: We use the heuristic evaluation function discussed in

the previous section in combination with iterative deepening depth-
first search. The search starts with a maximum depth of 1 which is

increased until the specified depth limit is reached.

• Local Game Selection and Move Decision: If after removing dominated

options and moves with dominated incentives more than one candidate

move remains, we must make a move decision based on local informa¬

tion. A simple strategy for choosing a local game to play in is hotstrat

which selects the game with the highest temperature. If there is more

than one non-dominated move in this game (or these games), we greed¬

ily choose the move that colors the most nodes. If we still have a choice

of more than one move, we select the move that leaves a game whose

temperature is closest to the maximum temperature of all other local

games.

The alpha-beta algorithm uses the same game specific operations as greedy
hotstrat. It does not use heuristics to restrict the number of move options.

However, iterative deepening in combination with a hash table yields a very

good move ordering, as the best move at depth d — 1 is most likely also one

of the best moves at depth d.

Results

The experiment consists of 10 different starting positions played on a 15 x

15 grid. The grid is randomly divided into a number of independent local

games. (Figure 8.9 shows the first starting position, the others are described

in appendix C.) From each position, the algorithms play both sides, first and

second player.
The results of the experiment are compiled in Figure 8.10. For every

position, the table lists its number of independent local games and the score

obtained as first player and the number of nodes searched by either algo¬
rithm. Although not statistically conclusive, this experiment indicates that

the divide and conquer approach for heuristic game tree search is promising:
the simple greedy hotstrat algorithm does not score worse than alpha-beta
and searches a much smaller number of nodes in the average. Small local

100 CHAPTER 8. ZERO-SUM GAMES

Figure 8.9: Position 1 of the game play experiment: a sum of 12 local games.

games favor the divide and conquer algorithm, as they offer the players less

move options. When the local games grow bigger, on the other hand, alpha-
beta performs comparably better. The relatively low number of nodes in

alpha-beta search (considering the many move options of the players in the

sum game) is due to the many cutoffs it can make in Regio. Local combi¬

natorial search, on the other hand, does not make cutoffs but searches the

whole local tree up to the specified maximum depth.

8.5 Summary and Conclusions

Two-person zero-sum games are an important class of games analyzed in

classical game theory. In these games, terminal positions are assigned a

score that determines the outcome of the game. Player Left (Max) wants

to maximize, player Right (Min) wants to minimize this score. A final score

of 0 stands for a drawn game. The minimax theorem states that every non¬

terminal position in a zero-sum game has a determined value which results

from optimal play by both players.

8.5. SUMMARY AND CONCLUSIONS 101

greedy hotstrat alpha-beta

pos. games score nodes score nodes

1 12 1 414,914 1 1,116,646
2 20 4 65,714 4 644, 677

3 22 5 31,300 3 785,328
4 12 0 5,532 0 3, 469, 245

5 12 4 197,450 4 1,335,039
6 9 2 839,328 2 1,975,996
7 16 0 51,360 0 1,315,216
8 11 3 413,338 3 1,319,922
9 24 2 34,082 2 628,525

10 11 3 619,136 3 1,876,232

Figure 8.10: Statistics of the game play experiment greedy hotstrat vs. alpha-beta
search.

8.5.1 Mapping Zero-Sum Games to Equivalent Com¬

binatorial Games

Zero-sum games without Zugzwang positions can be mapped to equivalent
combinatorial games in such a way that the minimax values of the original
zero-sum game correspond to leftscore and rightscore of the combinatorial

game. The straightforward mapping algorithm translates the scores of ter¬

minal positions of the zero-sum game into combinatorial numbers which are

backed up using the operation of game composition. This algorithm can be

improved in terms of efficiency with the help of the reduced canonical form
[10] which yields the simplest combinatorial game (the game with the small¬

est game tree) infinitesimally close to the game computed by the original
algorithm.

8.5.2 Heuristic Local Search

The use of heuristic evaluation is essential in game tree search as it allows

to compute approximate values of games too big to be searched entirely. In

general, it is difficult to find good estimates for combinatorial game values

as they can have a very complex structure. In the class of zero-sum games

without Zugzwang, however, the same heuristic evaluation functions that are

successfully used in minimax evaluation yield good approximate game values

in local combinatorial search. Decomposition search based on heuristic local

game evaluation is a promising game playing algorithm and performs well

102 CHAPTER 8. ZERO-SUM GAMES

against standard alpha-beta search as the application to Regio demonstrates.

Chapter 9

Conclusion

In this chapter, we summarize the contents and the main contributions of

this thesis and give directions for future research.

9.1 Summary and Contributions

Combinatorial game theory is a powerful instrument for the analysis and

solution of games. It applies the divide and conquer approach, a fundamental

paradigm of computer science, to game tree search. This thesis consists two

parts: the two case studies on king and pawn endgames in chess and on zero-

sum games that apply the methods of combinatorial game theory in the field

of algorithmic, computational game theory and the Game Bench application
framework.

• We present a general computation model for local games that contain

global threats. In sums of such games, a local move can have a globally
decisive effect. The computation model handles entailing moves [5]
[13] that force an immediate reaction in the local game where they are

played. In an application to king and pawn endgames in chess we com¬

pute game values of Zugzwang positions and apply divide and conquer

to game positions that are too complex to be searched exhaustively with

standard full-width search as used by conventional chess programs. In

these positions, combinatorial game theory provides clear mathemati¬

cal solutions to a class of endgames that chess literature fails to describe

accurately.

• In the second case study we analyze zero-sum games without Zugzwang.
Using the reduced canonical form [10] we improve the standard algo¬
rithm that maps such games to combinatorial games resulting in more

103

104 CHAPTER 9. CONCLUSION

efficient local search and sum game play. Zero-sum games often ad¬

mit heuristic evaluation functions that estimate values of non-terminal

positions. In analogy to minimax search, we use such evaluation func¬

tions to create an artificial search horizon and compute approximate

combinatorial values of local games. The combination of heuristic local

search and sum play algorithms is a promising application of decom¬

position search to heuristic game playing.

The Game Bench is an application framework for combinatorial game

programs. It combines the basic CGT calculus implemented in Wolfe's

Gamesman's Toolkit [52] with game independent algorithms for combi¬

natorial game tree search and sum game play. Further, it provides algo¬
rithms and data structures that support the implementation of games

played on rectangular grid-boards and graphs and their user interfaces.

The Game Bench is successfully used as an educational program for

game tree search on the EducETH [12] web server and has served as a

program basis in several game programming projects at ETH Zürich.

9.2 Future Research

Further research is possible in many areas addressed by this thesis. While

combinatorial game theory has been subject to mathematical research for

many years, there seem to be few applications of the theory in computer

science. Directions for further research in computational game theory include:

• Computing exact values of combinatorial games involves searching their

entire game tree which takes time and space exponential in the depth
of this tree. In zero-sum games, heuristics often allow good approxima¬
tions of game values. Are there other classes of combinatorial games

that admit heuristic evaluation functions as well? We are interested in

guessing the value or at least the outcome class (> 0, < 0, = 0, || 0) of

a game.

• In Section 8.3.1, in analogy to minimax evaluation, we use a heuristic

evaluation function to estimate game values of non-terminal positions of

zero-sum games. Are there classes of combinatorial games that admit

cutoffs in their game trees similar to alpha-beta cutoffs in minimax

evaluation? Such cutoffs of branches in the game tree that lead to

dominated options would of course significantly improve the efficiency
of local combinatorial game tree search.

9.2. FUTURE RESEARCH 105

• A promising test-field for the application of divide and conquer in com¬

puter game playing is the game Amazons [53]. In Amazons endgames
the overall result is determined by the players' free moves in differ¬

ent local games, but also in certain middlegame positions, a heuristic

decomposition seems possible.

The following two issues belong to the field of mathematical and compu¬

tational chess.

• In Chapter 7, we compute finite combinatorial values of pawn structures

in king and pawn endgames. Elkies [13] shows that loopy game values

occur in more complex chess positions which include other pieces as

well. Find algorithms to identify such positions and compute their

values.

• An interesting application of another mathematical approach to chess

endgames is the theory of corresponding squares as described by Awer-

bach [1].

Finally, there are all kinds of possible extensions to the Game Bench

framework, for example:

• Run and test decomposition search on a parallel computer. The Game

Bench's search engine supports running several local searches in paral¬

lel, thus no major changes in the software are required.

• Extend the library of game independent algorithms for game tree search

and sum game play.

106 CHAPTER 9. CONCLUSION

Seite Leer /

Blank leaf

Bibliography

[1] J. Awerbach. Bauernendspiele. Sportverlag, Berlin, 1983.

[2] E. Berlekamp. Four Games for Gardner. Presented at the Gathering for

Gardner IV, Atlanta, GA, Feb. 2000.

[3] E. Berlekamp. Blockbusting and Domineering. Journal of Combinatorial

Theory, A 49:67-116, 1988.

[4] E. Berlekamp. The Economist's View of Combinatorial Games. In

Nowakowski [44], pages 365-408.

[5] E. Berlekamp, J.H. Conway, and R. Guy. Winning Ways for Your Math¬

ematical Plays. Academic Press, New York, NY, USA, 1982.

[6] E. Berlekamp and D. Wolfe. Mathematical Go: Chilling Gets the Last

Point. A K Peters Ltd, 1994.

[7] J. Bewersdorff. Glück, Logik und Bluff. F. Vieweg und Sohn, Braun¬

schweig/Wiesbaden, 1998.

[8] D. Biella. GAG - eine Mehrpersonen-Spielumgebung. Diploma thesis,
ETH Zürich, 1999.

[9] C. Bouton. Nim, a Game with Complete Mathematical Theory. Annals

of Mathematics, pages 35-39, 1901/02.

[10] D. Calistrate. The Reduced Canonical Form of a Game. In Nowakowski

[44], pages 409-416.

[11] J.H. Conway. On Numbers and Games. Academic Press, London, 1976.

[12] EducETH. http://educeth.ethz.ch
a platform for the exchange of teaching materials on the internet.

[13] N.D. Elkies. On Numbers and Endgames: Combinatorial Game Theory
in Chess Endgames. In Nowakowski [44], pages 135-150.

107

108 BIBLIOGRAPHY

[14] Arpad Elo. The Rating of Chessplayers: Past and Present. Arco, 1986.

[15] W. Fierz. Go Endgames. Semesterarbeit, ETH Zürich, 1992.

[16] A. Fraenkel. Combinatorial Games: Selected Bibliography with a Suc¬

cinct Gourmet Introduction. In Nowakowski [44], pages 493-537.

[17] A. Fraenkel and D. Lichtenstein. Computing a Perfect Strategy for n x n

Chess Requires Time Exponential in n. In ICALP: Annual International

Colloquium on Automata, Languages and Programming, 1981.

[18] D. Garcia. Gamesman: A finite, two-person, perfect-information game

generator. Master of Science thesis, UC Berkeley, 1995.

[19] D. Garcia. Xdom: A Graphical, X-Based Front-End for Domineering.
In Nowakowski [44], pages 311-314.

[20] R. Gasser. Heuristic Search and Retrograde Analysis: their application
to Nine Men's Morris. Diploma thesis, ETH Zürich, 1990.

[21] R. Gasser. Harnessing Computational Resources for Efficient Exhaustive

Search. PhD thesis, ETH Zürich, 1995.

[22] P.M. Grundy. Mathematics and Games. Eureka, 2:6-8, 1939.

[23] R. Guy. What Is a Game? In Nowakowski [44], pages 43-60.

[24] R.K. Guy, editor. Combinatorial Games. American Mathematical Soci¬

ety, Rhode Island, 1990.

[25] O. Hanner. Mean play of sums of positional games. Pacific Journal of

Mathematics, 9:81-89, 1959.

[26] F.-H. Hsu, M.S. Campbell, and A.J. Hoane. Deep Blue system overview.

In ACM, editor, Conference proceedings of the 1995 International Con¬

ference on Supercomputing, Barcelona, Spam, July 3-7, 1995, pages

240-244, New York, NY 10036, USA, 1995. ACM Press.

[27] R. Hyatt. Crafty vll.9, a very strong freeware chess program, rated

2499 on the Elo [14] scale by the Swedish Chess Computer Association

in August 2000.

http://www.cis.uab.edu/info/faculty/hyatt/hyatt.html.

[28] A. Kierulf. A simple game-playing program. ETH Zürich, 1989.

BIBLIOGRAPHY 109

[29

[30

[31

[32

[33

[34

[35

[36

[37;

[38;

[39

[40

[41

A. Kierulf. Smart Game Board: a Workbench for Game-Playing Pro¬

grams, with Go and Othello as Case Studies. PhD thesis, ETH Zürich,
1990.

A. Kierulf, K. Chen, and J. Nievergelt. Smart Game Board and Go

Explorer: A Case Study in Software and Knowledge Engineering. Com¬

munications of the ACM, February 1990.

G. Krasner and S. Pope. A Description of the Model-View-Controller

User Interface Paradigm in the Smalltalk-80 system. Journal of Object
Oriented Programming, l(3):26-49, 1988.

S. Liang. The Java Native Interface. Addison Wesley, 1999.

A. Marzetta. ZRAM: A Library of Parallel Search Algorithms and Its

Use in Enumeration and Combinatorial Optimization. PhD thesis, ETH

Zürich, 1998.

F. Maser. The Game Bench Website:

http://'www.mf.ethz.ch/~maeser/game-bench.

F. Maser. Global Threats in Combinatorial Games: a Computation
Model with Applications to Chess Endgames, 2000. to appear in the

proceedings of the Combinatorial Games Workshop, MSRI, UC Berke¬

ley, 2000.

J. Milnor. Sums of positional games. Annals of Mathematics Studies,
28:291-301, 1953.

F.L. Morris. Playing Disjunctive Sums is Polynomial Space Complete.
Int. Journal of Game Theory, 10(3/4):195-205, 1981.

K. Müller. Secrets of Pawn Endings. Everyman Chess, 2000.

M. Müller. Computer Go as a Sum of Local Games: An Application of
Combinatorial Game Theory. PhD thesis, ETH Zürich, 1995.

M. Müller. SimCargo: A Simple Model of Air Cargo. SPP-ICS project
presentation, 1997.

M. Müller. Decomposition Search: A Combinatorial Games Approach to

Game Tree Search, with Applications to Solving Go Endgames. IJCAI,
1-578-583, 1999.

110 BIBLIOGRAPHY

[42] J. Nielsen. The Usability Engineering Life Cycle. Computer, pages 12-

22, March 1992.

[43] J. Nievergelt, R. Gasser, F. Maser, and C. Wirth. All the Needles in

a Haystack: Can Exhaustive Search Overcome Combinatorial Chaos?

Lecture Notes in Computer Science, 1000:254-265, 1995.

[44] R.J. Nowakowski, editor. Games of No Chance. Cambridge University

Press, New York, 1996.

[45] J. Nunn. Secrets of Rook Endings. B.T. Batsford Ltd., 1992.

[46] J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in

Checkers. Springer-Verlag New York, Inc., New York, 1997.

[47] M. Schneider. Games as Simple Models for Traffic Problems. Diploma

thesis, ETH Zürich, 1999.

[48] CE. Shannon. Programming a Computer for Playing Chess. Philosoph¬
ical Magazine, 41(4):256-275, 1950.

[49] J. Speelman. Endgame Preparation. B.T. Badsford Ltd., London, 1981.

[50] J. von Neumann and O. Morgenstern. Theory of Games and Economic

Behaviour. Princeton University Press, Princeton, 1944.

[51] C. Wirth. The Smart Chess Board. ETH Zürich, 1990.

[52] D. Wolfe. The Gamesman's Toolkit. In Nowakowski [44], pages 93-98.

[53] W. Zamkauskas. The Game Amazons, first published in El Acertijo,
issue 4, Dec. 1992.

[54] E. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie

des Schachspiels. Proceedings of the Fifth Congress of Mathematics,

Cambridge, 2:501-504, 1913.

[55] A.L. Zobrist. A New Hashing Method with Application for Game Play¬
ing. Technical Report 88, Univ. of Wisconsin, April 1970.

Appendix A

Glossary

Many terms in the glossary are assigned to one or more of the following
categories:

• CGT: Combinatorial game theory.

• GT: Classical game theory.

• Java: Java, object-oriented programming.

Abstract Class (Java) A class that contains abstract methods.

Abstract Method (Java) A prototype of a method, declared with argu¬

ments and a return type. The implementation of an abstract method

is provided by a subclass of the abstract class or interface in which it

is specified.

Alpha-Beta Search (GT) An (exact) algorithm for minimax evaluation

that cuts off certain branches of the game tree that have no influence

on the game value of the root.

Cooling (CGT) A game G is cooled by adding a tax t on every move.

Gt = {GLt-t\GRt + t}.

Decomposition Search A CGT-based divide and conquer algorithm that

computes minimax values of games that can be partitioned into inde¬

pendent components.

Final Class (Java) A class that may not be subclassed.

Global Threat The threat to execute a move in a local game G that wins

the whole sum of which G is a component.

Ill

112 APPENDIX A. GLOSSARY

Hot Game (CGT) A game with a high temperature.

Hotstrat A simple strategy for playing a sum of combinatorial games that

always moves in the local game with the highest temperature.

Incentive (CGT) The gain made by moving in a certain game. Left incen¬

tive: GL - G; right incentive: G - GR.

Interface (Java) A set of abstract methods that must be implemented by a

class in order to implement the interface as a whole.

Leftscore (CGT) The minimax value of a game with Left to play first.

Local Game An independent component of a sum-game.

Local Search An algorithm that produces the tree of a (local) combinato¬

rial game and computes its value. In contrast to minimax evaluation

both players' options are considered in every position.

Loopy Game (CGT) A game that does not meet the ending condition

which states that play will always come to an end because some player
is unable to move.

Mean (CGT) The number of points a game is worth on average.

Minimax Evaluation (GT) A technique used for computing the minimax

value of a two-person zero-sum game with perfect information.

Minimax Theorem (GT) A fundamental theorem of classical game theory
which states that any non-terminal position of a two-person zero-sum

game with perfect information has a determined value, the minimax

value.

Normal Termination Rule (CGT) The rule which states that a player
unable to move loses.

Rightscore (CGT) The minimax value of a game with Right to play first.

Temperature (CGT) A measure how urgent it is to move in a game.

Terminal Position (GT, CGT) A game-position that can be evaluated

statically.

Thermograph (CGT) A graphical representation of leftscore and rightscore
of a cooled game.

113

Thread (Java) A single independent stream of execution within a program.

The Java runtime environment enables parallel execution of threads.

Zero-Sum Game (GT) A two-player game whose terminal values are de¬

termined by a payoff-function. The gain of player Max equals the loss

of player Min.

Zugzwang A situation in which all possible moves worsen a player's posi¬
tion. (German, meaning "being forced to move".)

114 APPENDIX A. GLOSSARY

Seite Leer /

Blank leaf

Appendix B

Chess Notation

We use standard long algebraic notation to display chess moves. The board's

columns (files in chess-jargon) are labeled a to h, the rows (ranks) 1 to 8.

For instance, in the diagram of Figure B.l <4>f3-f2 stands for a white king
move from square f3 to square f2.

Figure B.l: A position from the game Sveda vs. Sika, Brno 1929. (see also chapter
7)

In order to annotate single moves we follow the conventions introduced

by Nunn [45]:

• An exclamation mark ! stands for the only move that does not change
the game's result (win, loss, draw). For example in our diagram (Figure

115

APPENDIX B. CHESS NOTATION

B.l) I.h3-h4! is White's only winning move. In fact, all other moves

lose.

A question mark ? stands for a move that does change the game's
result. If Black was to play first, the move 1.

...
h7-h5? would be a

losing move in a won position whereas 1.
...

a6-a5! wins.

Appendix C

Regio Game Play Experiment

This game play experiment (see also Section 8.4.5) consists of 10 different

starting positions played on a 15 x 15 grid which is divided into a number

of independent local games. From each position, greedy hotstrat and alpha-
beta play both sides, first and second player. Both algorithms use the same

heuristic evaluation function (see Section 8.4.4), use hash-tables of equal size,
and are allowed to search up to the same maximum depth of 4. The results

of the experiment are compiled in Figure C.l.

Position 1 Position 2

12 local games. 20 local games.

117

118 APPENDIX C. REGIO GAME PLAY EXPERIMENT

o o-o-o

o-o-o-o o

Position 3

22 local games.

Position 4

12 local games.

Position 5

12 local games.

Position 6

9 local games.

Position 7

16 local games.

Position 8

11 local games.

119

Position 9 Position 10

24 local games. 11 local games.

greedy hotstrat alpha-beta

pos. games score nodes score nodes

1 12 1 414,914 1 1,116,646
2 20 4 65,714 4 644, 677

3 22 5 31,300 3 785,328
4 12 0 5,532 0 3,469,245

5 12 4 197,450 4 1,335,039
6 9 2 839,328 2 1,975,996

7 16 0 51,360 0 1,315,216
8 11 3 413,338 3 1,319,922

9 24 2 34,082 2 628,525
10 11 3 619,136 3 1,876,232

Figure C.l: Statistics of the game play experiment greedy hotstrat vs. alpha-beta
search.

120 APPENDIX C. REGIO GAME PLAY EXPERIMENT

Seite Leer
Slank

Appendix D

Curriculum Vitae

1987 Matura Typ B, Gymnasium Oberwil BL.

1987-1993 Major in computer science and minor in photography at ETH

Zürich, resulting in the degree of Dipl. Informatik-Ing. ETH.

1989 Software development at ABB research lab. Baden-Dättwil.

1989-1991 Software development at Ciba-Geigy Basel.

1993-2001 Assistant and Ph.D. student (1998) in the research group of

Prof. Nievergelt, Institute of Theoretical Computer Science,
ETH Zürich.

121

