Boundary Element Methods for Maxwell Equations in Lipschitz Domains

A. Buffa, R. Hiptmair*, T. von Petersdorff and C. Schwab

Research Report No. 2001-05
July 2001

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

* Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany
Boundary Element Methods for Maxwell Equations in Lipschitz Domains

A. Buffa, R. Hiptmaier*, T. von Petersdorff and C. Schwab

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Dedicated to Professor Wolfgang Wendland to his 65th birthday

Abstract

We consider the Maxwell equations in a domain with Lipschitz boundary and the boundary integral operator A occurring in the Calderón projector. We prove an inf-sup condition for A using a Hodge decomposition. We apply this to two types of boundary value problems: the exterior scattering problem by a perfectly conducting body, and the dielectric problem with two different materials in the interior and exterior domain. In both cases we obtain an equivalent boundary equation which has a unique solution. We then consider Galerkin discretizations with Raviart-Thomas spaces. We show that these spaces have discrete Hodge decompositions which are in some sense close to the continuous Hodge decomposition. This property allows us to prove quasioptimal convergence of the resulting boundary element methods.

* Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany
1 Introduction

Time harmonic Maxwell equations occur in many applications and often involve unbounded domains, making a boundary integral formulation desirable. However, compared with other elliptic problems such as the Helmholtz equation the Maxwell equations pose two additional difficulties: boundary conditions are formulated in terms of tangential components of electric and magnetic fields and the operators (both in the domain and on the boundary) are indefinite since the electric and magnetic field energies occur with opposite signs in the Lagrangian governing electromagnetic phenomena. Therefore, the general formalism for obtaining strongly elliptic boundary integral equations [20] is not directly applicable.

The first difficulty requires spaces so that traces and bilinear forms are continuous, leading in a natural way to variational formulations in \(H(\text{curl}, \Omega) \) and \(H^{-1/2}(\text{div}, \Gamma) \). For smooth boundaries several approaches [3], [1], [26], [19] yielded quasi-optimally convergent boundary element methods. Some of these approaches do not generalize to polyhedra or Lipschitz domains. There, the discretization must be chosen carefully. More precisely, in [17] M. Costabel proved that \(H_0(\text{div}, \Omega) \cap H(\text{curl}, \Omega) \) is a closed subspace of \(H^1(\Omega) \cap H_0(\text{div}, \Omega) \) as soon as \(\Omega \) is a bounded polyhedral domain with reentrant corners or edges (a similar result holds for exterior domains). This makes the approximation of the electric and magnetic field by standard finite elements infeasible and suggests that likewise standard, continuous boundary elements should not be used to solve the related integral equations [26].

The proper choice of spaces and trace operators for Maxwell’s equations in polyhedra and Lipschitz domains was only recently understood [8], [9], [11]. Based on this functional setting, several types of integral equation formulations are possible and attention has been devoted to the electric field integral equation (EFIE), i.e., to the exterior scattering problem by a perfectly conducting body. In this context, methods proposed for regular domains have been very recently generalized to non-smooth ones. In [1] the authors proposed the direct use of the Hodge decomposition, requiring \(C^1 \) boundary elements. In [10], the authors introduce additional variables to obtain a mixed method using standard \(H^1, H^{1/2}, H^{-1/2} \) spaces and provide quasi optimal convergence in arbitrary polyhedral domain. Besides the inconvenience of additional variables the convergence rate is limited by the index \(s^4 \) of the regularity of an auxiliary problem which is not directly related to the regularity of the Maxwell solution. Engineers have been using instead a simpler variational formulation set in \(H^{-1/2}(\text{div}, \Gamma) \) and Raviart-Thomas boundary elements. This ‘natural’ formulation has been first analyzed by Bendali [3] for \(C^\infty \) closed manifolds. Recently, Hiptmair and Schwab [24] obtained stability of the discrete problem and sub-optimal convergence rates for polyhedral domains (the sub-optimality stemming from the “artificial” regularity parameter \(s^4 \).) In [7] the same ideas are applied to Lipschitz (non orientable) screens and the method is proved to converge with optimal asymptotic rate (i.e., the convergence rate is bounded only by the regularity of the solution and the degree of the polynomials).

Beyond the electric field integral equation, to our knowledge, no theory seems to exist for integral equations related to the Maxwell equations on Lipschitz domains, neither for the continuous or discretized setting. We refer to [12] for an overview over boundary value problems of electromagnetics and boundary integral equations for the smooth case. In the present paper, we present boundary integral equation formulations for electromagnetic transmission problems. To this end, we give a systematic analysis of the operator \(A \) appearing in the Calderon projector \(P = \frac{1}{2} J + A \) associated to Maxwell equations under minimal regularity assumptions on the boundary \(\Gamma \). We proceed similarly as in [28] for the Helmholtz equation and prove a symmetry property and an inf-sup property for \(A \). For electromagnetics the operator \(A \) has
the structure $A = \begin{pmatrix} M & C \\ C & M \end{pmatrix}$ where C is the integral operator arising in the EFIE for the perfect conductor problem. Because of the symmetry, the inf-sup condition for A rests on an inf-sup condition of the compactly perturbed operator C and on a compactness property of the operator M. To establish these results is the main objective of this paper. This implies in particular the unique solvability of the boundary integral equations. At a discrete level, we use the general setting introduced in [13] and we prove quasi optimal convergence of Galerkin boundary element methods using Raviart-Thomas type boundary element spaces. Finally, applications of the developed theory are presented. Namely, the dielectric interface problem and the direct method for the perfect conductor. In both applications, the well-posedness of the continuous and discrete problems are shown to be an elementary consequence of the previous analysis.

The paper is organized as follows: In sections 2 and 3 we state the Maxwell equations and the appropriate spaces and trace mappings. We also introduce a Hodge decomposition on the boundary, define the integral operators and prove the continuous inf-sup condition for A. In section 4 we show discrete inf-sup condition and quasi-optimal convergence provided a discrete Hodge decomposition which is in some sense close to the continuous Hodge decomposition. We show that this is satisfied e.g. for Raviart-Thomas spaces. In section 5 the results are applied to the perfect conductor problem, and in section 6 we treat the dielectric problem.

2 Maxwell equations

Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain with boundary $\Gamma = \partial \Omega$. The complement of Ω will be denoted by $\Omega^c := \mathbb{R}^3 \setminus \overline{\Omega}$. The unit normal vector \mathbf{n} on the boundary Γ points from Ω to Ω^c. Let ε and μ be the dielectric permittivity and magnetic permeability respectively. We suppose that ε and μ are positive constants in \mathbb{R}^3.

By \mathbf{E} and \mathbf{H} we denote the electric and magnetic field, and suppose they satisfy the linear Maxwell equations:

$$\text{curl} \mathbf{E} - i\omega \mu \mathbf{H} = 0, \quad \text{curl} \mathbf{H} + i\omega \varepsilon \mathbf{E} = 0$$

(1)

both in Ω and Ω^c.

We define $k := \omega \sqrt{\mu \varepsilon}$. Both in Ω and Ω^c, the system (1) can be reduced to a second order equation for the electric field only which reads:

$$\text{curl} \text{curl} \mathbf{u} - k^2 \mathbf{u} = 0 \quad \text{in} \quad \Omega \cup \Omega^c,$$

(2)

where the function \mathbf{u} is the electric field \mathbf{E}, the magnetic flux density \mathbf{H} is given by $\mathbf{H} = \frac{1}{i\omega \mu} \text{curl} \mathbf{u}$. Further, we impose standard Silver Müller radiation condition at infinity for the exterior domain Ω^c (see, e.g., [26], [12]):

$$\left| \text{curl} \mathbf{u}(r) \times \frac{r}{|r|} - ik \mathbf{u} \right| = o \left(\frac{1}{|r|} \right) \quad |r| \rightarrow \infty.$$

(3)

We will say that \mathbf{u} is a Maxwell solution in Ω if \mathbf{u} satisfies (2) in Ω and that \mathbf{u} is a Maxwell solution in Ω^c if it satisfies (2) in Ω^c and (3) at infinity.

In order to obtain boundary value problems with a unique solution suitable boundary conditions have to be added. We will discuss two cases later: In section 5 we will consider a Dirichlet problem in Ω^c, and in section 6 we will consider a problem with different material constants in Ω and Ω^c with certain interface conditions on Γ.
3 Definition and main properties of boundary integral operators

3.1 Spaces and traces

We present function spaces in which variational boundary integral equations on nonsmooth domains are set. Spaces on the boundary Γ shall be defined in terms of the following spaces in the domain Ω:

$$
\begin{align*}
\mathbf{H}(\text{curl}, \Omega) & = \{ u \in L^2(\Omega)^3 : \text{curl} u \in L^2(\Omega)^3 \}; \\
\mathbf{H}_{0\text{loc}}(\text{curl}, \Omega^c) & = \{ u \in L^2_{0\text{loc}}(\Omega^c)^3 : \text{curl} u \in L^2_{0\text{loc}}(\Omega^c)^3 \}; \\
\mathbf{H}(\text{curl curl}, \Omega) & = \{ u \in \mathbf{H}(\text{curl}, \Omega) | \text{curl curl} u \in L^2(\Omega)^3 \}; \\
\mathbf{H}_{0\text{loc}}(\text{curl curl}, \Omega^c) & = \{ u \in \mathbf{H}_{0\text{loc}}(\text{curl}, \Omega^c) | \text{curl curl} u \in L^2_{0\text{loc}}(\Omega^c)^3 \}.
\end{align*}
$$

It is easy to see that the Maxwell solutions in Ω are contained in $\mathbf{H}(\text{curl curl}, \Omega)$, while Maxwell solutions in Ω^c in $\mathbf{H}_{0\text{loc}}(\text{curl curl}, \Omega^c)$.

We shall use standard Sobolev spaces, $H^s(\Gamma)$, $s \in [-1, 1]$ (with the standard notation $H^0(\Gamma) = L^2(\Gamma)$) of complex-valued functions on the boundary Γ endowed with standard norms $\| \cdot \|_s$. Moreover, we denote by γ the standard trace operator mapping $\gamma : H^{s+1/2}(\Omega) \rightarrow H^s(\Gamma)$, $u \mapsto u|_\Gamma$, $s \in (0, 1)$, continuously.

Finally, we define spaces of complex valued tangential vector fields as:

$$V_s^\pi = (n \times H^s(\Gamma)^3) \times n \quad s \in [0, 1] \quad (4)$$

endowed with the induced operator norms $\| \cdot \|_{V_s^\pi}$. We will be mainly concerned with the space $V_s^{1/2}$ and in this case we drop the superscript, $V_s = V_s^{1/2}$ (compare with the notation adopted in [11].) Moreover, we denote by V_s its dual space with V_0 as pivot space and by $\langle \cdot, \cdot \rangle_{V_s^\pi, V_s^\pi}$ the corresponding duality pairing. Finally we shall make use of first order differential operators defined on Γ (see [11] for suitable definitions).

Definition 3.1 For $u \in C^\infty(\overline{\Omega})$ we define the traces

$$
\gamma_D u := (n \times u)|_\Gamma \quad \text{and} \quad \gamma_N u := k^{-1} (n \times \text{curl} u)|_\Gamma .
$$

Let

$$X := \{ \lambda \in V_s^\pi \mid \text{div}_\Gamma \lambda \in H^{-1/2}(\Gamma) \}$$

endowed with the graph norms

$$
\| \lambda \|_X = \| \lambda \|_{V_s^\pi} + \| \text{div}_\Gamma \lambda \|_{-1/2} .
$$

The following theorems have been proved in [11].

Theorem 3.2 The operators γ_D and γ_N are linear and continuous from $C^\infty(\overline{\Omega})$ to V_0^s and they can be extended to linear and continuous operators from $\mathbf{H}(\text{curl}, \Omega)$ and $\mathbf{H}(\text{curl curl}, \Omega)$, respectively, to X. Moreover, they admit linear and continuous right inverses.

For $u \in \mathbf{H}_{0\text{loc}}(\text{curl}, \Omega^c)$, $v \in \mathbf{H}_{0\text{loc}}(\text{curl curl}, \Omega^c)$ we define $\gamma_D^* u$ and $\gamma_N^* v$ in the same way and the same mapping properties hold true. We set then:

$$
\mathbf{H}_0(\text{curl}, \Omega) = \{ u \in \mathbf{H}(\text{curl}, \Omega) : \gamma_D u = 0 \} .
$$

Clearly, $\mathbf{H}_0(\text{curl}, \Omega)$ is a closed subspace of $\mathbf{H}(\text{curl}, \Omega)$. We further need:
Theorem 3.3 The operator $\times n : V^0_\pi \to V^0_\pi$ associated with the mapping $u \mapsto u \times n$ can be extended to a linear and continuous isomorphism between X and its dual.

In the variational formulation of boundary integral equations we shall need the mapping $b : X \times X \to \mathbb{C}$ defined by

$$b(v, w) = \int_\Gamma v \cdot (w \times n).$$

(5)

This defines a duality pairing for the space X, i.e., b is continuous and $v \mapsto b(v, \cdot)$ maps X onto its dual. Note that b is antisymmetric, i.e., $b(v, w) = -b(w, v)$.

Finally, we need the following Hodge decomposition defined on the space X. This theorem has been proved in [11] in the case of a simply connected manifold Γ, and can be extended to general topology by means of the results in [5], [6].

Theorem 3.4 Define

$$W := \{ \lambda \in X : \text{div}_\Gamma \lambda = 0 \} \quad \text{and} \quad V := \{ \lambda \in X : \int_\Gamma \lambda \cdot w = 0 \ \forall \ w \in W \cap V^0_\pi \}. $$

Then there holds the decomposition

$$X = W \oplus V$$

where \oplus denotes a direct sum which is orthogonal in the following sense:

$$\forall \lambda \in V, \ w \in W \cap V^0_\pi \ \int_\Gamma \lambda \cdot w = 0.$$

The space W can be decomposed as follows:

$$W = W_0 \oplus \mathbb{H} \quad W_0 = \text{curl}_\Gamma H^{1/2}(\Gamma) ; \quad \text{dim} \{ \mathbb{H} \} = 2N_e$$

(6)

where \oplus denotes a direct sum, N_e is the first Betti number associated with the domain Ω.

Moreover, if $u = v + w$, $v \in V$, $w \in W$, we have the following norm equivalence:

$$c_1 (\|v\|_X + \|w\|_X) \leq \|u\|_X \leq \|v\|_X + \|w\|_X$$

and

$$\|\text{div}_\Gamma u\|_{-1/2} \leq \|v\|_X \leq \alpha_2 \|\text{div}_\Gamma u\|_{-1/2} \leq \|w\|_X$$

(7)

where the constants c_1, α_2 depend only on the geometry.

Finally there holds $V \hookrightarrow V^0_\pi$ with compact injection.

Proof: We need only to prove the last statement. To this end, we note that by construction the space V can be characterized (see [11]) as the space $\nabla_\Gamma \mathcal{H}(\Gamma)$ where $\mathcal{H}(\Gamma) := \{ u \in H^1(\Gamma) : \Delta_\Gamma u \in H^{-1/2}(\Gamma) \}$. Then we have for $v \in V$ that $\|v\|_V^2 \leq C \|\text{div}_\Gamma v\|_{-1, \Gamma}$. \hfill \square

Remark 3.5 The space \mathbb{H} is composed of the direct sum of the tangential traces of the Neumann fields (see [2] for a suitable definition) associated with Ω and with Ω^c.

In Theorem 3.2, the existence of an extension operator is stated. We shall need to use a “minimal energy” (in a proper sense) extension operator for some choices of $u \in X$. The existence of such an operator is the purpose of the following lemma.
Lemma 3.6 For any \(u \in X \), there exists an extension \(U \in H(\nabla, \Omega) \cap H(\text{curl}, \Omega) \) such that \(\text{div} U = 0 \). Moreover, if \(u \in V_0 \), then \(U|_{\Gamma} \cdot \mathbf{n} \in L^2(\Gamma) \) and

\[
\| U|_{\Gamma} \cdot \mathbf{n} \|_0 \leq C\| u \|_{V_0}.
\]

(8)

Finally, for any \(u \in W_0 \) the extension \(U \) can be chosen to satisfy \(\text{curl} U = 0 \) and \(\text{div} U = 0 \).

Proof: Since \(H_0(\text{curl}, \Omega) \) is a closed subspace of \(H(\text{curl}, \Omega) \), given \(u \in X \) we construct the extension \(U \in H(\text{curl}, \Omega) \) to be \(H(\text{curl}) \)– orthogonal to \(H_0(\text{curl}, \Omega) \). This means to solve the problem:

Find \(U \in H(\text{curl}, \Omega) \) such that \(\gamma_D U = u \) and \(\int_{\Omega} (\text{curl} U \cdot \text{curl} \mathbf{v} + \mathbf{u} \cdot \nabla \mathbf{v}) = 0 \forall \mathbf{v} \in H_0(\text{curl}, \Omega) \).

Obviously, \(\text{div}(U) = 0 \) by construction. Using the regularity result [16] we deduce that if \(u \in V_0 \), then \(U|_{\Gamma} \cdot \mathbf{n} \in L^2(\Gamma) \) and (8) is straightforward.

If \(u \in W_0 \), the previous construction does not lead to the desired, curl free extension. We need to use explicitly the fact that \(u = \text{curl} \gamma p \) for some \(p \in H^{1/2}(\Gamma) \). Denote by \(P \in H^1(\Omega) \) the harmonic extension of \(p \). Then \(\nabla P \) verifies \(\text{div} \nabla P = 0 \), \(\text{curl} \nabla P = 0 \), and \(\gamma_D \nabla P = \text{curl} \gamma p \).

\[\square \]

3.2 First Green formula

From [11], we know that

\[
\int_{\Omega} \text{curl} u \cdot \mathbf{v} - u \cdot \text{curl} \mathbf{v} = b(\gamma_D \mathbf{v}, \gamma_D u) \quad \forall u, \mathbf{v} \in H(\text{curl}, \Omega). \tag{9}
\]

We define the bilinear form \(\Phi_\Omega : H(\text{curl}, \Omega) \times H(\text{curl}, \Omega) \to \mathbb{C} \) by

\[
\Phi_\Omega(u, \mathbf{v}) := \int_{\Omega} \left(k^{-1} \text{curl} u \cdot \text{curl} \mathbf{v} - ku \cdot \mathbf{v} \right). \tag{10}
\]

For \(u, \mathbf{v} \in H(\text{curl}, \Omega') \) we define correspondingly \(\Phi_\Omega'(u, \mathbf{v}) \).

Assume that \(u \in H(\text{curl}, \Omega) \) is a Maxwell solution in \(\Omega \) and \(\mathbf{v} \in H(\text{curl}, \Omega) \). Then

\[
\Phi_\Omega(u, \mathbf{v}) = b(\gamma_D \mathbf{v}, \gamma_N u). \tag{11}
\]

This relationship is a crucial tool for our analysis. Parallel to the approach in [15] and [28], it allows possible to shift parts of the investigation of the boundary integral operators to the domains \(\Omega \) and \(\Omega' \).

Remark 3.7 There is the following symmetry between electric and magnetic field quantities: Assume that \(u \in H(\text{curl}, \Omega) \) is a Maxwell solution in \(\Omega \) and let \(\tilde{u} := k^{-1} \text{curl} u \). Then we have

\[
\tilde{u} = k^{-1} \text{curl} u, \quad u = k^{-1} \text{curl} \tilde{u}, \quad \gamma_D \tilde{u} = \gamma_N u, \quad \gamma_D u = \gamma_N \tilde{u}.
\]

If additionally \(\mathbf{v} \in H(\text{curl}, \Omega) \) is a Maxwell solution in \(\Omega \) and \(\tilde{v} := k^{-1} \text{curl} \mathbf{v} \) we then have using the first Green formula

\[
b(\gamma_D u, \gamma_N \mathbf{v}) = b(\gamma_D \tilde{u}, \gamma_N u) = \Phi_\Omega(u, \mathbf{v}) = -\Phi_\Omega(\tilde{u}, \tilde{v}) = -b(\gamma_N u, \gamma_D \mathbf{v}) = -b(\gamma_N \mathbf{v}, \gamma_D u)
\]

which is consistent with the antisymmetry of \(b \).
3.3 Potentials

Let \(G_k \) denote the fundamental solution for the Helmholtz equation, namely

\[
G_k(x, y) = \frac{e^{ik|x-y|}}{4\pi |x-y|}
\]

(12)

In the next sections we drop the subindex \(k \) and set \(G := G_k \) as we work at a fixed wave number \(k \). We shall also use \(G_0 \), the fundamental solution of Laplace’s equation.

The single layer potential \(\Psi \) is given by

\[
(\Psi v)(x) := \int_G G(x-y)v(y)\,dy, \quad x \in \Omega \cup \Omega^c
\]

(13)

and we denote by \(\Psi_0 \) the single layer potential associated with the kernel \(G_0 \). The single layer potential is applied also to tangent vectors and, since it is never misleading, we shall use the same notation. We shall need the following mapping and coercivity properties of the potentials:

Theorem 3.8 The operators

\[
\Psi, \quad \Psi_0 : H^{\frac{3}{2}+\sigma}(\Gamma) \to H^{1+\sigma}(\Omega) \times H^{1+\sigma}_{bc}(\Omega^c)
\]

\[
\Psi, \quad \Psi_0 : V^\prime_\sigma \to H^1(\Omega)^3 \times H^1_{loc}(\Omega^c)^3
\]

are linear and continuous for any \(\sigma \in [\frac{1}{2}, \frac{3}{2}] \). Moreover, there holds:

\[
\exists \alpha > 0 : \langle \Pi, \gamma_\Psi \Psi_0 u \rangle_{1/2,1/2} \geq \alpha \|u\|^2_{1/2}, \quad \forall u \in H^{1/2}(\Gamma); \\
\exists \alpha > 0 : \ b(\lambda, \gamma_D \Psi_0 \lambda) \geq \alpha \|\lambda\|^2_{V_\sigma'}, \quad \forall \lambda \in V'_\sigma.
\]

For the proof of this theorem in the scalar case we refer to the pioneering work [27] which was adapted for Lipschitz domains in [15]. For the vector case we refer to [10] or [23].

We define a potential \(\Psi_E \) generated by an electric current \(j \in \mathbf{X} \) by

\[
\Psi_E j := k \Psi j + k^{-1} \nabla \cdot \Psi \text{div} j.
\]

(14)

This can also be written as \(\Psi_E j := k^{-1} \text{curl} \text{curl} \Psi j \) because of the Helmholtz equation and of the identity \(-\Delta = \text{curl} \text{curl} - \nabla \text{div} \). We define a “magnetic analogue” \(\Psi_M \) of \(\Psi_E \) generated by \(m \in \mathbf{X} \) as

\[
\Psi_M m := \text{curl} \Psi m.
\]

(15)

These potentials are solutions of the Maxwell equations in \(\Omega \) and \(\Omega^c \) satisfying

\[
k^{-1} \text{curl} \Psi_E = \Psi_M, \quad k^{-1} \text{curl} \Psi_M = \Psi_E.
\]

(16)

This and the mapping properties of \(\Psi \) show that \(\Psi_E, \Psi_M \) are continuous mappings from \(\mathbf{X} \) to \(H(\text{curl}, \Omega) \times H_{bc}(\text{curl}, \Omega^c) \). (Note that \(\Psi, \Psi_E, \Psi_M \) are defined as mappings to a pair of functions, one defined in \(\Omega \) and the other defined in \(\Omega^c \); hence equations (14), (15), (16) are to be understood separately on \(\Omega \) and \(\Omega^c \).)

Therefore the traces \(\gamma_D, \gamma_D', \gamma_N, \gamma_N' \) can be applied to \(\Psi_E, \Psi_M \) and yield continuous mappings from \(\mathbf{X} \) to \(\mathbf{X} \). Note that we have from (16)

\[
\gamma_N \Psi_E = \gamma_D \Psi_M, \quad \gamma_N \Psi_M = \gamma_D \Psi_E
\]

(17)
(and the same for the exterior traces).
In particular we are interested in the jumps \([\gamma_D] := \gamma_D - \gamma_D^e\) and \([\gamma_N] := \gamma_N - \gamma_N^e\). There hold the following jump relations for \(\Psi_E\) (see [10]):

\[
[\gamma_D] [\Psi_E] = 0 \quad [\gamma_N] [\Psi_E] = -I
\]

implying with (17)

\[
[\gamma_D] [\Psi_M] = -I \quad [\gamma_N] [\Psi_M] = 0
\]

where \(I\) denotes the identity mapping.

This is related to the representation formula (see [10]): Assume that \(u|\Omega \in H(\text{curl}, \Omega)\) is a Maxwell solution in \(\Omega\), and that \(u|\Omega^e \in H_{\text{loc}}(\text{curl}, \Omega^e)\) is a Maxwell solution in \(\Omega^e\). Then we have with \(j := [\gamma_N] u, \ m := [\gamma_D] u\) that on \(\Omega \cup \Omega^e\)

\[
u = -[\Psi_E] j - [\Psi_M] m
\]

We define for \(j, m \in \mathbb{X}\) the boundary integral operators by applying the symmetric parts \(\{\gamma_D\} := \frac{1}{2}(\gamma_D + \gamma_D^e), \ \{\gamma_N\} := \frac{1}{2}(\gamma_N + \gamma_N^e)\) of the traces to (18):

\[
A \begin{pmatrix} m \\ j \end{pmatrix} := \begin{pmatrix} \{\gamma_D\} \\ \{\gamma_N\} \end{pmatrix} (-[\Psi_E] j - [\Psi_M] m)
\]

(19)

With the operators

\[
C := -\{\gamma_D\}[\Psi_E] = -\{\gamma_N\}[\Psi_M], \quad M := -\{\gamma_N\}[\Psi_E] = -\{\gamma_D\}[\Psi_M]
\]

(20)

we have

\[
A = \begin{pmatrix} M & C \\ C & M \end{pmatrix}.
\]

The operator \(A : \mathbb{X}^2 \to \mathbb{X}^2\) is continuous, mapping the space of Cauchy data to itself.

The Calderón projector \(P\) giving Cauchy data of a Maxwell solution in the interior domain \(\Omega\) is given by \(P = \frac{1}{2}I + A\). The corresponding projector for the exterior domain \(\Omega^e\) is given by \(P^e = I - P = \frac{1}{2}I - A\). Note that the range of \(P\) coincides with the kernel of \(P^e\).

3.4 Strong Ellipticity

We shall now establish strong ellipticity of the boundary integral operator \(A\) in (19). To this end, we define the following antisymmetric bilinear form \(B : \mathbb{X}^2 \times \mathbb{X}^2 \to \mathbb{C}\) for two sets of Cauchy data:

\[
B(\begin{pmatrix} m \\ j \end{pmatrix}, \begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix}) := -b(m, j) + b(\tilde{m}, \tilde{j})
\]

We first need to prove the following symmetry property of the operator \(A\) with respect to the antisymmetric form \(B\).

Theorem 3.9 (Symmetry) We have for all \(m, j, \tilde{m}, \tilde{j} \in \mathbb{X}\)

\[
B(A \begin{pmatrix} m \\ j \end{pmatrix}, \begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix}) = B(A \begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix}, \begin{pmatrix} m \\ j \end{pmatrix})
\]

(21)

or equivalently

\[
b(\tilde{m}, Cm) = b(m, C\tilde{m}), \quad b(\tilde{m}, Mj) = b(j, M\tilde{m})
\]
For the proof of this theorem, we need the following lemma and a few notations. Let B_R be a ball of radius R sufficiently large such that $\overline{\Omega} \subset B_R$. We set $S_R := \partial B_R$ and denote \mathbf{n}_R the exterior unit normal vector to B_R.

Lemma 3.10 Let $\mathbf{u}, \mathbf{v} \in H_{\text{loc}}(\text{curl}, \Omega')$ be two solutions of the exterior Maxwell problems. Then

$$\int_{S_R} \left(\gamma_D \mathbf{u} \cdot (\gamma_N \mathbf{v} \times \mathbf{n}_R) - \gamma_D \mathbf{v} \cdot (\gamma_N \mathbf{u} \times \mathbf{n}_R) \right) \rightarrow 0 \quad R \rightarrow \infty. \quad (22)$$

Proof: By abuse of notation, for any $\mathbf{u} \in H_{\text{loc}}(\text{curl}, \Omega')$ we will denote again by γ_D and by γ_N the Neumann and Dirichlet trace on S_R. Thanks to the Silver-Müller radiation condition, we have on S_R:

$$ik\mathbf{u} + \gamma_N \mathbf{u} = o \left(\frac{1}{R} \right) \quad R \rightarrow \infty,$$

which implies

$$ik\gamma_D(\mathbf{u}) - \gamma_N \mathbf{u} \times \mathbf{n}_R = o \left(\frac{1}{R} \right) \quad R \rightarrow \infty.$$

Then, we have:

$$\int_{S_R} \left(\gamma_D \mathbf{u} \cdot (\gamma_N \mathbf{v} \times \mathbf{n}_R) - \gamma_D \mathbf{v} \cdot (\gamma_N \mathbf{u} \times \mathbf{n}_R) \right) = \int_{S_R} \gamma_D \mathbf{u} \cdot \frac{\gamma_D \mathbf{v}}{ik} - \gamma_D \mathbf{v} \cdot \frac{\gamma_D \mathbf{u}}{ik} + o(1) = o(1).$$

\[\square\]

Proof of Theorem 3.9. Using (11), for any \mathbf{v} such that $\mathbf{v}|_{\partial \Omega} \in H(\text{curl}, \Omega')$ and $\mathbf{v}|_{\Omega} \in H(\text{curl}, \Omega)$, and for any \mathbf{u} solution of the Maxwell equations (2) in Ω and Ω', we have

$$\Phi_\Omega(\mathbf{u}, \mathbf{v}) + \Phi_{\Omega'}(\mathbf{u}, \mathbf{v}) = b(\gamma_D \mathbf{v}, \gamma_N \mathbf{u}) - b(\gamma_D \mathbf{u}, \gamma_N \mathbf{v}) \quad (23)$$

and rearranging terms

$$\Phi_\Omega(\mathbf{u}, \mathbf{v}) + \Phi_{\Omega'}(\mathbf{u}, \mathbf{v}) = b([\gamma_D] \mathbf{v}, [\gamma_N] \mathbf{u}) + b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v}) \quad (24)$$

Let B_R be the ball defined above and $\Phi_{\Omega \cap B_R}$ be defined as in (10). Let now $\mathbf{m}, \mathbf{j}, (\mathbf{m}, \mathbf{j}) \in X^2$ and let \mathbf{u}, \mathbf{v} respectively be the vector fields given by (18). Note that $\mathbf{v} \notin H(\text{curl}, \Omega')$; nevertheless, exploiting the symmetry of the bilinear forms Φ_{Ω} and $\Phi_{\Omega \cap B_R}$, we have:

$$0 = \Phi_{\Omega}(\mathbf{u}, \mathbf{v}) + \Phi_{\Omega \cap B_R}(\mathbf{u}, \mathbf{v}) - \Phi_{\Omega}(\mathbf{v}, \mathbf{u}) - \Phi_{\Omega \cap B_R}(\mathbf{v}, \mathbf{u})$$

$$= b([\gamma_D] \mathbf{v}, [\gamma_N] \mathbf{u}) + b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v}) - b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v}) - b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v})$$

$$+ \int_{S_R} (\gamma_D \mathbf{u} \cdot (\gamma_N \mathbf{v} \times \mathbf{n}) - \gamma_D \mathbf{v} \cdot (\gamma_N \mathbf{u} \times \mathbf{n})).$$

Now, we apply Lemma 3.10 to deduce that

$$b([\gamma_D] \mathbf{v}, [\gamma_N] \mathbf{u}) - b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v}) = b([\gamma_D] \mathbf{u}, [\gamma_N] \mathbf{v}) - b([\gamma_D] \mathbf{v}, [\gamma_N] \mathbf{u})$$

which coincides with (21) recalling the definition (19) of the operator A. \[\square\]
We can now state the main theorem of this section and to this end, we need the following definition:

Definition 3.11 Let \(u \in X \) be decomposed as \(u = v + w, \ v \in V \) and \(w \in W \). We denote by \(\Theta : X \to X \) the isomorphism associated with the mapping \(u = v + w \mapsto \nabla v - \nabla w \).

Theorem 3.12 (Inf-sup condition) There exists a compact operator \(T : X^2 \to X^2 \) and \(\alpha > 0 \) such that for all \(m, j \in X \)

\[
\text{Re} \ B \left((A + T) \left(\begin{array}{c} m \\ j \end{array} \right), \left(\frac{(\Theta m \cdot j)}{\epsilon} \right) \right) \geq \alpha \left\| \left(\begin{array}{c} m \\ j \end{array} \right) \right\|^2_{X^2}.
\] (26)

In order to prove this theorem, we need the following compactness argument:

Proposition 3.13 (Compactness) Let \(b(\cdot, \cdot) \) be the bilinear form defined in (5) and \(V, W \) the spaces defined in Theorem 3.4, then

\[
b(\cdot, M \cdot) : V \times V \to \mathbb{C}, \ b(\cdot, M \cdot) : W \times W \to \mathbb{C} \text{ are compact bilinear forms.}
\] (27)

Proof: Let \(\mathbf{v}_1, \mathbf{v}_2 \in V \). We know that \(\mathbf{v}_i = \nabla \varphi_{i} p_i \in H(\Gamma), i = 1, 2 \) and then

\[
b(\mathbf{v}_1, \mathbf{v}_2) = \int_{\Gamma} \nabla \varphi_{i} \cdot (\nabla \varphi_{i} \times n) \equiv 0.
\]

Then we have:

\[
b(\mathbf{v}_1, M \mathbf{v}_2) = b(\mathbf{v}_1, (-\gamma_D \Psi_M - I/2) \mathbf{v}_2) = b(\mathbf{v}_1, -\gamma_D \Psi_M \mathbf{v}_2).
\]

Let \(V_1 \) be the lifting of \(\mathbf{v}_1 \) in \(\Omega \) provided by Lemma 3.6. Then,

\[
b(\gamma_D \Psi_M \mathbf{v}_2, \mathbf{v}_1) = \int_{\Omega} k^{-1} \text{curl} \Psi \mathbf{v}_2 \cdot \text{curl} \mathbf{V}_1 - \int_{\Omega} k^{-1} \text{curl} \text{curl} \Psi \mathbf{v}_2 \cdot \mathbf{V}_1.
\]

Using the Maxwell equations, we have:

\[
k^{-1} \text{curl} \text{curl} \Psi \mathbf{v}_2 = k \Psi \mathbf{v}_2 + k^{-1} \nabla \Psi \text{ div} \mathbf{v}_2.
\]

Integrating by parts and recalling that \(\text{div} \mathbf{V}_1 = 0 \), we have:

\[
\int_{\Omega} k^{-1} \text{curl} \text{curl} \Psi \mathbf{v}_2 \cdot \mathbf{V}_1 = k \int_{\Omega} \Psi \mathbf{v}_2 \cdot \mathbf{V}_1 - k^{-1} \int_{\Gamma} \mathbf{V}_1 \cdot n \Psi \text{ div} \mathbf{v}_2.
\]

(28)

Since \(\mathbf{v}_1 \in V_\pi^0 \), Lemma 3.6 ensures that \(\| \mathbf{V}_1 \cdot n \|_0 \leq C \| \mathbf{v}_1 \|_{V_\pi^0} \). Collecting terms and using the mapping properties of the single layer potential Theorem 3.8, we obtain:

\[
b(\mathbf{v}_1, M \mathbf{v}_2) \leq C \left((k^{-1} + k) \| \mathbf{v}_1 \|_X \| \mathbf{v}_2 \|_{V_\pi^0} + k^{-1} \| \mathbf{v}_1 \|_{V_\pi^0} \| \text{div} \mathbf{v}_2 \|_{-1} \right).
\]

(29)

We deduce the first statement using that \(V \hookrightarrow V_\pi^0 \hookrightarrow V' \) are compact injections. Let now \(\mathbf{w}_1, \mathbf{w}_2 \in W \). We use the splitting furnished by Theorem 3.4

\[
\mathbf{w}_1 = \mathbf{w}_1^0 + \mathbf{h}_1 \quad \mathbf{w}_2 = \mathbf{w}_2^0 + \mathbf{h}_2 \quad \mathbf{h}_1, \mathbf{h}_2 \in H, \ \mathbf{w}_1^0, \mathbf{w}_2^0 \in W_0.
\]

Since \(H \) is finite dimensional, the mappings \(\mathbf{w}_i \mapsto \mathbf{h}_i, \ i = 1, 2 \) are compact. Consequently, the bilinear form \(b : W \times H \to \mathbb{C} \) is also compact. As a consequence, it remains to study the bilinear form \(b : W_0 \times W_0 \to \mathbb{C} \). We observe that again \(b(\mathbf{w}_1^0, \mathbf{w}_2^0) = 0 \). Using again Lemma
3.6, we know that there exists $W^0_2 \in \mathbf{H}(\text{curl}, \Omega)$ such that $\text{curl} W^0_2 = 0$, $\gamma_D W^0_2 = w^0_2$. Using the Maxwell equations as above, we deduce the identity:

$$k^{-1} \text{curl} \text{curl} \Psi w^0_2 = k \Psi w^0_2,$$

since $\text{div}_T w^0_2 = 0$. We then deduce further:

$$b(w^0_1, Mw^0_2) = k \int \Omega \Psi w^0_1 \cdot w^0_2 \leq k \| \Psi \|^2 \| w^0_1 \| \| w^0_2 \|.$$

We finish using the mapping properties of Ψ, Theorem 3.8, and the compactness of the injection $H^1(\Omega) \hookrightarrow L^2(\Omega)^3$.

Proof of Theorem 3.12. Let Ψ_0 be the single layer potential associated with the kernel G_0 defined in (12) with $k = 0$. Correspondingly we define

$$\Psi_{E,0} \mathbf{j} := k \Psi_0 \mathbf{j} + k^{-1} \nabla \Psi_0 \text{div}_T \mathbf{j} \quad \Psi_{M,0} \mathbf{m} := \text{curl} \Psi_0 \mathbf{m},$$

and also (compare with (20))

$$C_0 := -\{ \gamma_D \} \Psi_{E,0}, \quad M_0 := -\{ \gamma_D \} \Psi_{M,0}, \quad A_0 = \begin{pmatrix} M_0 & C_0 \\ C_0 & M_0 \end{pmatrix}.$$

Note that now $\{ \gamma_D \} \Psi_{E,0} \neq \{ \gamma_N \} \Psi_{M,0}$ and $\{ \gamma_N \} \Psi_{E,0} \neq \{ \gamma_D \} \Psi_{M,0}$, but the alternate choice (namely $C_0 := -\{ \gamma_N \} \Psi_{M,0}$ and $M_0 := -\{ \gamma_N \} \Psi_{E,0}$) would be completely equivalent for our purposes. First of all we need to prove that $C - C_0$ and $M - M_0$ are compact operators. To this end let B_R be a ball such that $\overline{\Omega} \subset B_R$. Because of the regularity of $G - G_0$, we obtain that $\Psi - \Psi_0$ is an operator of order +4 and is continuous from $H^1(B_R)^3$ to $H^3(B_R)$. Let $u \in \mathbf{X}$ and $V \in H^1(B_R)^3$. Then there exists $U \in \mathbf{H}(\text{curl}, \Omega)$ with $\gamma_D U = u$ and we have

$$\int \Gamma \mathbf{u} \cdot \mathbf{V} = \int \Omega \text{curl} V \cdot U = \int \Omega \text{curl} \mathbf{u} \cdot \mathbf{V}.$$

Therefore we can consider $u \in \mathbf{X}$ as a distribution in $[H^1(B_R)]^3$ and we obtain that $u \mapsto \gamma_D(\Psi - \Psi_0)u$ is a compact mapping from \mathbf{X} to \mathbf{X} using

$$\mathbf{X} \hookrightarrow \left[H^1(B_R)^3 \right]^{3 \times 3} \xrightarrow{\Psi - \Psi_0} H^3(B_R)^3 \hookrightarrow H^1(B_R)^3 \xrightarrow{\gamma_D} \mathbf{X}.$$

In the same way we obtain that the mappings $\gamma_D \nabla (\Psi - \Psi_0) \text{div}_T$ and $\gamma_D \text{curl} (\Psi - \Psi_0)$ are compact mappings from \mathbf{X} to \mathbf{X} using

$$\mathbf{X} \xrightarrow{\text{div}_T} H^{-1/2}(\Gamma) \hookrightarrow H^1(B_R)^3 \xrightarrow{\nabla(\Psi - \Psi_0)} H^2(B_R)^3 \hookrightarrow H^1(B_R)^3 \xrightarrow{\gamma_D} \mathbf{X}.$$

Thus $C - C_0$ and $M - M_0$ are compact mappings from \mathbf{X} to \mathbf{X}. Hence the operator $A - A_0$ is compact and it is sufficient to prove (26) with A replaced by A_0.

The symmetry of A (Theorem 3.9) implies that the bilinear form $B(A_0 \xi, \xi) - B(A_0 \xi, \xi) : \mathbf{X}^2 \rightarrow \mathbb{C}$ is compact.
Let $\xi := \begin{pmatrix} m \\ j \end{pmatrix}$. We decompose both m and j by means of Theorem 3.4. We set:

$$m = m^V + m^W, \quad j = j^V + j^W \quad m^V, j^V \in V \quad \text{and} \quad m^W, j^W \in W.$$ \hfill (31)

Let then $\xi^V = \begin{pmatrix} m^V \\ j^V \end{pmatrix}$, $\xi^W = \begin{pmatrix} m^W \\ j^W \end{pmatrix}$ and $\Theta\xi := \xi^V - \xi^W$. Then

$$\text{Re } B(A_0\xi, \Theta\xi) = \text{Re } B(A_0\xi^V, \xi^V) - \text{Re } B(A_0\xi^W, \xi^W) + \text{Re } B(A_0\xi^W, \xi^V) - \text{Re } B(A_0\xi^V, \xi^W).$$ \hfill (32)

Due to the symmetry of A and the fact that G_0 is real, we have:

$$B(A_0\xi^W, \xi^V) = B(A_0\xi^V, \xi^W) + \text{ compact},$$

then the sum of the last two terms in (32) is a compact operator in X^2. We consider now the first term in (32).

$$B(A_0\xi^V, \xi^V) = -b(C_0j^V, j^V) + b(m^V, C_0m^V) +$$

$$-b(m^j, j^V) + b(m^V, m^V).$$ \hfill (33)

Proposition 3.13 and the fact that $M - M_0$ is a compact operator ensure that the last two terms in (33) are compact. Using the antisymmetry of the form b, we are then left with:

$$B(A_0\xi^V, \xi^V) = b(j^V, C_0j^V) + b(m^V, C_0m^V) + \text{ compact.}$$ \hfill (34)

Let us consider for example the first term. Using the definition of C_0 and integration by parts:

$$-b(C_0j^V, j^V) = -k b(j^V, \gamma D\Psi_0j^V) + k^{-1}\langle \text{div } j^V, \gamma(\Psi_0\text{div } j^V) \rangle_{-1/2,1/2}$$ \hfill (35)

where γ denotes the standard trace operator. Using the mapping properties of Ψ_0, we have that (see [10] for more details):

$$b(j^V, \gamma D\Psi_0j^V) \geq c \|j^V\|^2_{V^2},$$

$$\langle \text{div } j^V, \gamma(\Psi_0\text{div } j^V) \rangle_{-1/2,1/2} \geq C \|\text{div } j^V\|^2_{-1/2}.$$

By the norm equivalence (7) and the compactness of the injection $V^V \hookrightarrow V$, we finally deduce that there exists $\alpha > 0$ such that:

$$\text{Re } b(j^V, C_0j^V) \geq \alpha \|j^V\|^2_X - \|T_0j^V\|^2_X$$ \hfill (37)

where $T_0 : X \to X$ is a compact operator. The same holds true for the second term in (34).

We consider now the second term in (32). Using again Proposition 3.13,

$$-B(A_0\xi^W, \xi^V) = -b(j^W, \Psi_0j^V) + b(m^W, \Psi_0m^V) + \text{ compact.}$$

Since $\text{div } w = 0$ for all $w \in W$, using the definition of C_0 and integrating by parts, we have:

$$-B(A_0\xi^W, \xi^V) = b(j^W, \Psi_0j^V) + b(m^W, \Psi_0m^V) + \text{ compact.}$$ \hfill (38)

Now, collecting (34) and (38), and using (37) together with the ellipticity of Ψ_0, we obtain:

$$\text{Re } B(A_0\xi, \Theta\xi) \geq \alpha \|\xi^W\|_{X^2} + \|\xi^V\|_{X^2} - \|T_1\xi\|_{X^2}$$

where $T_1 : X^2 \to X^2$ is again compact operator. The statement follows now from the norm equivalence (7). \hfill \square
4 Discrete decompositions and convergence

We saw that we obtained an inf-sup condition for the operator A by using the Hodge decomposition $X = V \oplus W$. The statement of this inf-sup condition involves the isomorphism from definition 3.11. For a discretized method we use a sequence of finite dimensional subspaces $X_h \subset X$. But the Hodge decomposition of a function in X_h gives functions which are no longer contained in X_h. This prevents us from immediately applying Theorem 3.12 and standard results about conforming Galerkin discretizations on coercive variational problems. We therefore need to consider discrete decompositions $X_h = V_h \oplus W_h$. If these discrete decompositions are in some sense close to the continuous decomposition we will be able to prove a discrete inf-sup condition and quasioptimal convergence.

We will first give an abstract formulation of this idea. Then we will show that the assumptions are satisfied for our Hodge decomposition $X = V \oplus W$ and boundary elements of Raviart-Thomas and Brezzi-Douglas-Marini type.

4.1 Abstract convergence theorem

Consider a Hilbert space X with $X = V \oplus W$ so that we have for $u \in X$ a unique decomposition $u = v + w$ with $\|v\|_X + \|w\|_X \leq C \|u\|_X$. Then we can define the continuous mapping

$$\Theta : X \to X \text{ with } u = v + w \mapsto \overline{v - w}.$$

Consider a sequence of closed subspaces $X_h \subset X$ with decompositions $X_h = V_h \oplus W_h$ which satisfy the following assumptions:

(A1) The family $\{X_h\}_h$ is dense in the space X, namely

$$\bigcup_h X_h = X.$$

(A2) We have $W_h \subset W$ and

For all $v_h \in V_h$:

$$\inf_{v \in V} \|v_h - v\|_X \leq \delta_h \|v_h\|_X$$ \hspace{1cm} (39)

with $\delta_h \to 0$ for $h \to 0$.

These assumptions turn out to be natural in our framework and were first used in [13], see [7]

Theorem 4.1 Assume that $A : X \to X'$ is continuous and that there exist a compact operator $T : X \to X'$ and a constant $\alpha > 0$ such that for all $u \in X$

$$\text{Re} \langle (A + T)u, \Theta u \rangle \geq \alpha \|u\|_X^2$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between X' and X. Assume further that A is one-to-one. Let $\{X_h\}_h$ denote a sequence of subspaces of X satisfying (A1) and (A2).

Then there exists $h_0 > 0$ such that for all $f \in X'$ and $h \leq h_0$ the Galerkin equation

$$\langle Au_h, \tilde{u}_h \rangle = \langle f, \tilde{u}_h \rangle$$

for all $\tilde{u}_h \in X_h$

has a unique solution u_h in X_h which converges quasioptimally, i.e.,

$$\|u - u_h\|_X \leq C \inf_{\tilde{u}_h \in X_h} \|u - \tilde{u}_h\|_X$$

where $u \in X$ satisfies $Au = f$.

12
Proof: This proof is mainly inspired by [13], [10] and follows [7].

Since $A + T$ is invertible and A is one-to-one, A and its adjoint A' are invertible. As

\[\langle (A + T)u, \Theta u \rangle = \langle Au, (I + (A')^{-1}T')\Theta u \rangle \]

we have with $\hat{\Theta} := (I + (A')^{-1}T')\Theta$ that

\[\forall u \in X : \quad \text{Re} \left\langle Au, \hat{\Theta} u \right\rangle \geq \alpha \|u\|^2_X. \]

Note that $\hat{\Theta} - \Theta = (A')^{-1}T'\Theta$ is compact. Let $P_h : X \to X_h$ denote a uniformly bounded family of projection operators, i.e. $\|P_h\|_{X \to X} \leq C$ with C independent of h. Then

\[\left\| (I - P_h)\hat{\Theta} u_h \right\|_X \leq \left\| (I - P_h)(\hat{\Theta} - \Theta) u_h \right\|_X + \left\| (I - P_h)\Theta u_h \right\|_X \]

By assumption (A1) we have for all $U \in X$ that $\left\| (I - P_h)U \right\|_X \to 0$ as $h \to 0$. Since $\hat{\Theta} - \Theta$ is compact we obtain that

\[\varepsilon_h := \left\| (I - P_h)(\hat{\Theta} - \Theta) \right\|_{X \to X} \to 0 \quad \text{as} \quad h \to 0. \]

Let now $u_h \in X_h$ be arbitrary. Then u_h has the decomposition $u_h = v + w$ with $v \in V$, $w \in W$, and we have $\Theta u_h = \frac{v - w}{\|v - w\|}$. There is also the decomposition $u_h = v_h + w_h$ with $v_h \in V_h$, $w_h \in W_h$. We have for $\Theta u_h = \frac{v - w}{\|v - w\|}$

\[\left\| (I - P_h)\Theta u_h \right\|_X = \left\| (I - P_h)\left(\Theta u_h - \frac{(v_h - w_h)}{\|v_h - w_h\|} \right) \right\|_X \]

\[\leq (1 + C) \left\| (v - w) - (v_h - w_h) \right\|_X \]

\[\leq (1 + C) \left(\|v - v_h\|_X + \|w - w_h\|_X \right). \]

Let $\Pi_V : X \to V$ denote the projection operator corresponding to the decomposition $X = V \oplus W$. Then $v = \Pi_V u_h = \Pi_V v_h$ (since $w_h \in W_h \subseteq W$). According to assumption (A2) there exists $\tilde{v} \in V$ such that $\|v_h - \tilde{v}\|_X \leq 2 \delta_h \|v_h\|_X$ and we have

\[\left\| v_h - v \right\|_X = \left\| (I - \Pi_V)v_h \right\|_X = \left\| (I - \Pi_V)(v_h - \tilde{v}) \right\|_X \]

\[\leq C \delta_h \|v_h\|_X \leq C \delta_h (\|v - v\|_X + \|v\|_X) \]

\[\left\| v_h - v \right\|_X \leq \frac{C \delta_h}{1 - C \delta_h} \left\| v \right\|_X \leq 2C \delta_h \|u_h\|_X \]

where we used $v = \Pi_V u_h$ and assume that h is sufficiently small so that $C \delta_h \leq \frac{1}{2}$. As $w - w_h = -(v - v_h)$ we obtain

\[\left\| v - v_h \right\|_X + \|w - w_h\|_X \leq C \delta_h \|u_h\|_X \]

and we obtain for all $u_h \in X_h$

\[\left\| (I - P_h)\hat{\Theta} u_h \right\|_X \leq (\varepsilon_h + C \delta_h) \|u_h\|_X. \]

which implies that for sufficiently small h and for all $u_h \in X_h$

\[\text{Re} \left\langle Au_h, P_h \hat{\Theta} u_h \right\rangle \geq \text{Re} \left\langle Au_h, \hat{\Theta} u_h \right\rangle - C(\varepsilon_h + C \delta_h) \|u_h\|^2_X \geq \alpha/2 \|u_h\|^2_X. \]

Since $P_h \hat{\Theta} : X_h \to X_h$ is bounded independently of h, we have proved that there exists $\alpha > 0$ and $h_0 > 0$ such that for all $h < h_0$

\[\inf_{\Theta \neq \Theta_h \in X_h} \sup_{0 \neq u_h \in X_h} \frac{|\langle Au_h, u_h \rangle|}{\|u_h\|_X} \geq \frac{\alpha}{2} \quad (40) \]

It is well known that this discrete inf-sup condition implies that the Galerkin equations have a unique solution and that the error is quasi-optimal. \[\square\]
4.2 Application to standard finite element families

Let \(\{X_h\}_h \) be a family of finite dimensional subspaces of \(X \). We set:

\[
W_h := \{ w_h \in X_h : \text{div}_\Gamma w_h = 0 \} \\
V_h := \{ v_h \in X_h : \int_{\Gamma} v_h \cdot w_h = 0 \ \forall w_h \in W_h \}.
\]

Note that by construction, \(W_h \subset W \), but in general \(V_h \not\subset V \). We now make the additional assumption that \(\Omega \) is a polyhedron, possibly curvilinear.

Let now \(\mathcal{T}_h \) be a family of regular triangulations decomposing \(\Gamma \). \(\mathcal{T}_h \) can be composed of triangles or quadrilaterals (or both), and no quasi-uniformity is required.

Both Raviart-Thomas (RT) and the Brezzi-Douglas-Marini (BDM) finite elements (see e.g., [22] and [4] respectively, for definitions and properties) can be defined on \(\mathcal{T}_h \) and are conforming approximations of the space \(X^0 := \{ u \in V^0 : \text{div}_\Gamma u \in L^2(\Gamma) \} \) endowed with the graph norm

\[
\| u \|_{X^0} := \| u \|_{1,2} + \| \text{div}_\Gamma u \|_{-1/2}.
\]

Note that the injection \(X^0 \subset X \) is dense. We say that a family of finite elements is of order \(k \) when locally at each triangle or quadrilateral the polynomials of degree \(k \) are contained in the family. In particular, the lowest order RT element has order \(k = 0 \) and the lowest order BDM element has order \(k = 1 \).

In this section we denote by \(X_h \) the approximation of \(X \) generated either by RT or by BDM finite elements of order \(k \geq 0 \) (\(k \geq 1 \) respectively)

Let \(\Pi_h \) be the standard interpolation operator [4] from regular vectors on \(\Gamma \) onto \(X_h \). We recall that this interpolation operator is obtained defining the degrees of freedom on the reference triangle (or square) \(\bar{T} \) and then transforming vectors by the standard Piola transform [4, Section III.1.3]. Moreover the moments up to order \(k \) of the normal component to the edges are among the degrees of freedom. We refer to [21] (see also [13] or [24]) for a suitable definition on curved surfaces. The properties of this operator have been intensively studied, and we report here the ones we need:

(P1) For any \(s > 0 \), \(\Pi_h : X^0 \cap V^s \rightarrow X_h \) is linear and continuous (uniformly in \(h \)) [4, formula (3.40)] and there exists a function (depending on \(s \)) \(\delta_s : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), such that \(\delta_s(h) \rightarrow 0 \) when \(h \rightarrow 0 \) and:

\[
\| u - \Pi_h u \|_{X^0} \leq C \delta_s(h) (\| u \|_{X^0} + \| u \|_{V^s}).
\]

Moreover, let \(\bar{V}_h = \{ v \in X : \text{div}_\Gamma v \in \text{div}_\Gamma X_h \} \), and \(s > 0 \), then:

\[
u \in \bar{V}_h \cap V^s, \quad \| u - \Pi_h u \|_{1,2} \leq C \delta_s(h) \| u \|_{V^s}.
\]

This statement comes from an argument due to V. Girault which was first used in [14, Proof of Lemma 4.1].

(P2) Let \(P_h \) denote the \(L^2 \)-orthogonal projection from \(L^2(\Gamma) \) onto the space \(\text{div}_\Gamma(X_h) \). Note that for RT of order \(k \) and BDM of order \(k-1 \) the space \(\text{div}_\Gamma(X_h) \) consists of piecewise polynomials of degree \(k \), [4]. Then, for any \(s > 0 \) [4, Proposition 3.7]:

\[
u \in X^0 \cap V^s, \quad \text{div}_\Gamma(\Pi_h u) = P_h(\text{div}_\Gamma u).
\]

14
The following statement has been proved in [7], see also [24] for partial results:

Theorem 4.2 The RT and the BDM finite elements of any order k verify assumptions (A1) and (A2).

Proof: As far as (A1) is concerned, we refer again to [22] or [4]. Concerning (A2) we sketch the proof following verbatim [7] (see also [24]). Let $\mathbf{v}_h \in \mathbf{V}_h$ and $p \in H^1(\Gamma)/\mathbb{C}$ be the solution of the problem:

$$\text{div}_\Gamma \nabla_{\Gamma} p = \text{div}_\Gamma \mathbf{v}_h. \quad (42)$$

From [10, Theorem 5.3], we know that there exists a $s^* > 0$ depending on the geometry such that $\nabla_{\Gamma} p \in V_\Gamma^t$, $t < s^*$. Of course, $\nabla_{\Gamma} p \in \mathbf{X}^0 \cap V_\Gamma^e$, for any fixed ε with $0 < \varepsilon < \min\{s^*, 1/2\}$.

(P2) implies that $\Pi_h \nabla_{\Gamma} p - \mathbf{v}_h \in \mathbf{W}_h$; then, since $\mathbf{V}_h \perp \mathbf{W}_h$, we have

$$\|\mathbf{v}_h - \nabla_{\Gamma} p\|_{V_\Gamma^0} \leq \|\nabla_{\Gamma} p - \Pi_h \nabla_{\Gamma} p\|_{V_\Gamma^0}.$$

Now, using (P1), recalling that p solves (42), and $\nabla_{\Gamma} p \in \mathbf{V}_h \cap V_\Gamma^e$, we have:

$$\|\mathbf{v}_h - \nabla_{\Gamma} p\|_{V_\Gamma^0} \leq C\delta_\varepsilon(h) \|\nabla_{\Gamma} p\|_{V_\Gamma^e} \leq C\delta_\varepsilon(h) \|\text{div}_\Gamma \mathbf{v}_h\|_{-1+\varepsilon, \Gamma}.$$

Since $\text{div}_\Gamma (\mathbf{v}_h - \nabla_{\Gamma} p) = 0$, this implies (A2). \hfill \Box

5 Electromagnetic scattering at a perfect conductor

As a first application of the results of the previous sections we consider the perfect conductor problem which is the Dirichlet problem for the Maxwell equations. The analogous Neumann problem can be solved with exactly the same boundary integral equation because of the symmetry of electric and magnetic quantities. However, the Neumann problem seems to be less relevant in practical applications.

The perfect conductor problem for non-smooth boundaries was already considered in [10], [24] and [7] where an indirect method was used. Here we use the so-called direct method where the unknown is the Neumann trace of the solution. Both approaches have the same operator C on the left hand side of the equation. The inf-sup condition for this operator follows as a special case from Theorem 3.12. For this case we actually do not need the compactness of the operator M in Proposition 3.13.

5.1 Definition of the problem

We assume that we have in the exterior domain Ω^e a material with constants $\mu, \varepsilon > 0$ and $k := \omega \sqrt{\mu\varepsilon}$. We assume that we have a perfect conductor in the bounded domain Ω. The normal vector \mathbf{n} on the boundary points from Ω to Ω^c.

We consider an incident field $\mathbf{u}^{\text{inc}} \in \mathbf{H}^1(\text{curl}, \Omega^e)$ with $\text{curl} \mathbf{u}^{\text{inc}} - k^2 \mathbf{u}^{\text{inc}} = 0$. We want to find a scattered field \mathbf{u} in Ω^e such that

$$\mathbf{u} \in \mathbf{H}_\text{loc}^1(\text{curl}, \Omega^e), \quad (43a)$$

$$\text{curl} \text{curl} \mathbf{u} - k^2 \mathbf{u} = 0 \quad (43b)$$

$$\left| \text{curl} \mathbf{u}(\mathbf{r}) \times \frac{\mathbf{r}}{|\mathbf{r}|} - i k \mathbf{u} \right| = o \left(\frac{1}{|\mathbf{r}|} \right) \quad |\mathbf{r}| \to \infty \quad (43c)$$

15
Because of the properties of the perfect conductor the total field $u^{tot} := u^{inc} + u$ in Ω^c should satisfy $\gamma_D^c u^{tot} = 0$, i.e., we have with $m_0 := -\gamma_D^c u^{inc}$

$$\gamma_D^c u = m_0. \quad (43d)$$

We will assume that we are given data $m_0 \in X$ and want to find u satisfying (43).

The uniqueness for the exterior problem is a direct consequence of Rellich's theorem (see [25] for a proof):

Theorem 5.1 The perfect conductor problem (43) has at most one solution.

The corresponding homogeneous interior problem can have nontrivial solutions.

Theorem 5.2 Assume that $u \in H(\text{curl}, \Omega)$ is a Maxwell solution in Ω with $\gamma_D u = 0$. Then $u = 0$ unless $k^2 \in S_\Omega$ where the set S_Ω of eigenvalues is countable and has no finite accumulation point.

Proof: It is enough to observe that the injection $H_0(\text{curl}, \Omega) \cap H(\text{div}, \Omega) \hookrightarrow L^2(\Omega)^3$ is compact. This result has been proved for Lipschitz domains in [2]. \qed

5.2 Boundary integral formulation

We consider the unknown Neumann data

$$j = \gamma_N^c u. \quad (44)$$

Because of the properties of the Calderón projector we have that

$$(\frac{1}{2} I + A) \begin{pmatrix} m_0 \\ j \end{pmatrix} = 0 \quad (45)$$

if and only if there exists u satisfying (43) and (44).

By just using the first row of (45) we get

$$C j = - (\frac{1}{2} I + M) m_0. \quad (46)$$

Theorem 5.3 Assume $k^2 \notin S_\Omega$. Then the boundary integral equation (46) holds if and only if there exists u satisfying (43) and (44).

Proof: Obviously (45) implies (46). To prove the other direction assume that (43) holds and let $\begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix} := (\frac{1}{2} I + A) \begin{pmatrix} m_0 \\ j \end{pmatrix}$. Equation (46) states that $\tilde{m} = 0$. Now $\begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix}$ is in the range of the Calderón projector for Ω, i.e., $\begin{pmatrix} \tilde{m} \\ \tilde{j} \end{pmatrix}$ are Cauchy data $\begin{pmatrix} \gamma_D \\ \gamma_N \end{pmatrix}$ of a Maxwell solution \tilde{u} in Ω with $\gamma_D \tilde{u} = 0$. Since we assume $k^2 \notin S_\Omega$ Theorem 5.2 implies that $\tilde{j} = 0$, hence (45) holds. \qed

Recall the mapping $\Theta: X \rightarrow X$ (Definition 3.11) which maps $u \in X$ with Hodge decomposition $u = v + w$ to $\nabla v - \nabla w$. Then we have the following coercivity property for C:

Theorem 5.4 There is a compact operator $T: X \rightarrow X$ and $\alpha > 0$ such that for all $j \in X$

$$\text{Re } b(\Theta j, (C + T) j) \geq \alpha \| j \|^2_X.$$
Proof: We use Theorem 3.12 with $m = 0$ and obtain
\[\text{Re} \ b(\Theta_j, Cj) = \text{Re} \ B(A \ \left(\begin{array}{c} 0 \\ j \end{array} \right), \ \left(\begin{array}{c} 0 \\ j \end{array} \right)) \geq \alpha \|j\|_X^2 - \|T_0 j\|_X^2 \]
where $T_0: X \to X$ is compact.

\[\square \]

Corollary 5.5 Assume $k^2 \notin S_{\Omega}$. Then the boundary integral equation (46) has for every $m_0 \in X$ a unique solution $j \in X$.

Proof: By the previous theorem C plus a compact operator is invertible, hence C has index zero. By Theorem 5.3 a solution of (46) with $m_0 = 0$ corresponds to a solution of problem (43) with zero data. Then Theorem 5.1 gives $j = 0$. Hence $C: X \to X$ is invertible.

\[\square \]

If $k^2 \in S_{\Omega}$ we still have that $j = \gamma_N u$ is a solution of (46). However, the general solution of (46) has the form $j = \gamma_N u + \gamma_D \hat{u}$ where \hat{u} is a Maxwell solution in Ω with $\gamma_D \hat{u} = 0$. Using this j and m_0 in the representation formula then gives
\[\Psi_E j + \Psi_M m_0 = \begin{cases} u & \text{in } \Omega^c \\ -\hat{u} & \text{in } \Omega \end{cases} \]
so we still obtain the correct result in Ω^c.

5.3 The discretized problem

We choose a family $\{X_h\}_h$ of finite dimensional subspaces of X satisfying Assumptions (A1) and (A2) of section 4.1 and use the Galerkin method: Find $j_h \in X_h$ such that
\[b(j_h, Cj_h) = -b(j_h, (T + A)m_0) \quad \text{for all } j_h \in X_h \quad (47) \]

We now apply Theorem 5.4 together with Theorem 4.1 and obtain

Theorem 5.6 Assume $k^2 \notin S_{\Omega}$ and let j denote the solution of (46). There exists $h_0 > 0$ and C_0 such that for all $h \leq h_0$ the discretized problem (47) has a unique solution $j_h \in X_h$. The Galerkin solution is quasioptimal:
\[\|j_h - j\|_X \leq C_0 \inf_{j_h \in X_h} \|j_h - j\|_X. \]

6 Electromagnetic scattering at a dielectric interface

We now consider the transmission problem between two dielectric media with different magnetic properties in the two domains Ω and Ω' and derive a boundary integral formulation. The coercivity property of the operator in this formulation follows from the coercivity property of the operator $A = \begin{pmatrix} M & C \\ C & M \end{pmatrix}$ in Theorem 3.12. Here (unlike the case of the perfect conductor problem) we need the general case of this theorem which requires the compactness property of M in Proposition 3.13.
6.1 Definition of the problem

In the bounded domain \(\Omega \) we have material constants \(\mu_1, \varepsilon_1 > 0 \), in the exterior domain \(\Omega^c \) we have material constants \(\mu_2, \varepsilon_2 > 0 \). The circular frequency \(\omega \) is the same in both domains, but we have \(k_1 := \omega \sqrt{\mu_1 \varepsilon_1}, \ k_2 := \omega \sqrt{\mu_2 \varepsilon_2} \). The normal vector \(\mathbf{n} \) on the boundary points from \(\Omega \) to \(\Omega^c \). Let \(\hat{\gamma}_N \mathbf{u} := \mathbf{n} \times \mathbf{curl} \mathbf{u}_1 \) denote the Neumann trace without the factor \(k^{-1} \).

We consider an incident field \(\mathbf{u}_2^{\text{inc}} \in \mathbf{H}(\mathbf{curl}, \Omega^c) \) with \(\mathbf{curl} \mathbf{curl} \mathbf{u}_2^{\text{inc}} - k_2^2 \mathbf{u}_2^{\text{inc}} = 0 \). We want to find scattered fields \(\mathbf{u}_1 \) in \(\Omega \) and \(\mathbf{u}_2 \) in \(\Omega^c \) such that

\[
\begin{align*}
\mathbf{u}_1 & \in \mathbf{H}(\mathbf{curl}, \Omega), & \mathbf{u}_2 & \in \mathbf{H}_0^\infty(\mathbf{curl}, \Omega^c), \\
\mathbf{curl} \mathbf{curl} \mathbf{u}_1 - k_1^2 \mathbf{u}_1 &= 0, & \mathbf{curl} \mathbf{curl} \mathbf{u}_2 - k_2^2 \mathbf{u}_2 &= 0 \\
|\mathbf{curl} \mathbf{u}_2(r) \times \dfrac{r}{|r|} - i \kappa \mathbf{u}_2| &= o \left(\dfrac{1}{|r|} \right) & |\mathbf{r}| \to \infty \\
\end{align*}
\]

(48a)

(48b)

(48c)

For \(\mathbf{u}_1 \) in \(\Omega \) and the total field \(\mathbf{u}_2^{\text{inc}} + \mathbf{u}_2 \) in \(\Omega^c \) the tangential component of the electric field and the magnetic flux densities should be continuous across \(\Gamma \), i.e., we have with \(\mathbf{m}_0 := \gamma_D \mathbf{u}_2^{\text{inc}} \) and \(\mathbf{j}_0 := \mu_2^{-1} \hat{\gamma}_N \mathbf{u}_2^{\text{inc}} \)

\[
\gamma_D \mathbf{u}_1 = \gamma_D \mathbf{u}_2 + \mathbf{m}_0, \quad \mu_2^{-1} \hat{\gamma}_N \mathbf{u}_1 = \mu_2^{-1} \hat{\gamma}_N \mathbf{u}_2 + \mathbf{j}_0.
\]

(48d)

We will assume that we are given data \(\mathbf{m}_0, \mathbf{j}_0 \in \mathbf{X} \) and want to find \(\mathbf{u}_1, \mathbf{u}_2 \) satisfying (48). We have a uniqueness result:

Theorem 6.1 The dielectric problem (48) has at most one solution.

Proof: This proof is actually quite standard; we just sketch it here and we refer to [12] or [26] for details. Set \(\mathbf{m}_0 = \mathbf{j}_0 = 0 \) and suppose there exists a nontrivial solution \(\mathbf{u}_1, \mathbf{u}_2 \) of (48). Then, let \(B_R \) be a ball of radius \(R \) sufficiently large to ensure \(\Omega \subset B_R \). Using the equations (48b), multiplying the first one by \(\mathbf{u}_1 \), the second one by \(\mathbf{u}_2 \), and using (48d) and the integration by parts formula (9), we obtain:

\[
\int_{\partial B_R} (\mathbf{curl} \mathbf{u}_2 \times \mathbf{n}_R) \cdot \mathbf{u}_2 = \int_{B_R \setminus \Omega} |\mathbf{curl} \mathbf{u}_2|^2 - k_2 |\mathbf{u}_2|^2 + \int_{\Omega} |\mathbf{curl} \mathbf{u}_1|^2 - k_1 |\mathbf{u}_1|^2.
\]

Thus, \(\text{Im} \left(\int_{\partial B_R} (\mathbf{curl} \mathbf{u}_2 \times \mathbf{n}_R) \cdot \mathbf{u}_2 \right) = 0 \). Using the radiation condition (48c) and Rellich theorem, we can easily deduce \(\mathbf{u}_2 = 0 \). Now, \(\mathbf{u}_1 \) solves (48a) and verifies: \(\gamma_D \mathbf{u}_1 = \gamma_N \mathbf{u}_1 = 0 \). Thus, \(\mathbf{u}_1 = 0 \). \(\square \)

6.2 Boundary integral formulation

We define the operators \(A_j, C_j, M_j \) for \(j = 1, 2 \) as in the previous section using \(k = k_j \). We define

\[
\hat{A}_j := \begin{pmatrix} 1 & 0 \\ k_j \mu_j^{-1} \\ \end{pmatrix} A_j \begin{pmatrix} 1 & 0 \\ k_j^{-1} \mu_j \\ \end{pmatrix} = \begin{pmatrix} M_j & k_j^{-1} \mu_j C_j \\ \end{pmatrix}.
\]

Note that Theorem 3.9 and Theorem 3.12 (with constants depending on \(\mu_j \)) also hold for \(\hat{A}_j \).

We now consider the Cauchy data defined by

\[
\xi_1 = \begin{pmatrix} \gamma_D \\ \mu_1 \hat{\gamma}_N \\ \end{pmatrix} \mathbf{u}_1, \quad \xi_2 = \begin{pmatrix} \gamma_D^2 \\ \mu_2 \hat{\gamma}_N \\ \end{pmatrix} \mathbf{u}_2.
\]

(49)
and let $\xi_0 := \begin{pmatrix} m_0 \\ j_0 \end{pmatrix}$. Because of the properties of the Calderón projector we have that
\[
\left(\frac{1}{2}I - \hat{A}_1\right)\xi_1 = 0, \quad \left(\frac{1}{2}I + \hat{A}_2\right)\xi_2 = 0, \quad \xi_1 - \xi_2 = \xi_0.
\] (50)
if and only if there exist u_1, u_2 satisfying (48) and (49). We can now obtain the boundary integral formulation in the same way as in [18]. Writing $\xi_1 = \xi_2 + \xi_0$ and subtracting the first equation from the second equation gives
\[
(\hat{A}_1 + \hat{A}_2)\xi_2 = \left(\frac{1}{2}I - \hat{A}_1\right)\xi_0.
\] (51)

Theorem 6.2 The boundary integral equation (51) holds if and only if there exist u_1, u_2 satisfying (48) and (49).

Proof: Obviously (50) implies (51). To prove the other direction assume that (51) holds and let $\xi_1 := \xi_2 + \xi_0$. Consider now $\xi_1 := \left(\frac{1}{2}I - \hat{A}_1\right)\xi_1, \xi_2 := \left(\frac{1}{2}I + \hat{A}_2\right)\xi_2$. Equation (51) states that ξ_1 is in the range of the Calderón projector for Ω^c with $k = k_1$, i.e., ξ_1 are Cauchy data $\left(\gamma_\Omega \mu^{-1} \gamma_{\Omega^c}\right) \hat{u}_1$ of a Maxwell solution \hat{u}_1 in Ω^c with $k = k_1$. Similarly, ξ_2 is in the range of the Calderón projector for Ω with $k = k_2$, i.e., ξ_2 are Cauchy data $\left(\gamma_\Omega \mu^{-1} \gamma_{\Omega^c}\right) \hat{u}_2$ of a Maxwell solution \hat{u}_2 in Ω with $k = k_2$. Therefore \hat{u}_2 in Ω and \hat{u}_1 in Ω^c is the solution of a homogeneous dielectric problem with material constants ε_2, μ_2 in Ω and ε_1, μ_1 in Ω. By Theorem 6.1 (which holds for any material constants in Ω and Ω^c) we must have $\xi_1 = \xi_2 = 0$, hence (50) holds. \qed

Again we have a coercivity property with the operator $\Theta : X \to X$ (Definition 3.11) which maps $u \in X$ with Hodge decomposition $u = v + w$ to $\overrightarrow{v} - \overrightarrow{w}$:

Theorem 6.3 There is a compact operator $T : X^2 \to X^2$ and $\alpha > 0$ such that for all $m, j \in X$
\[
\Re B\left((\hat{A}_1 + \hat{A}_2 + T)\begin{pmatrix} m \\ j \end{pmatrix}, \begin{pmatrix} \Theta m \\ \Theta j \end{pmatrix}\right) \geq \alpha \left\| \begin{pmatrix} m \\ j \end{pmatrix} \right\|^2_{X^2}
\] (52)

Proof: We use that for \hat{A}_1 and \hat{A}_2 Theorem 3.12 holds. Therefore we have with $\xi := \begin{pmatrix} \Theta m \\ \Theta j \end{pmatrix}$ that
\[
\Re B((\hat{A}_1 + T_1 + \hat{A}_2 + T_2)\xi, \tilde{\xi}) \geq \alpha_1 \|\xi\|^2_X + \alpha_2 \|\xi\|^2_X
\]
yielding (52) with $T = T_1 + T_2$ and $\alpha = \alpha_1 + \alpha_2$. \qed

Corollary 6.4 The boundary integral equation (51) has a unique solution $\xi_2 \in X^2$ for every $\xi_0 \in X^2$.

Proof: By the previous theorem $Q := \hat{A}_1 + \hat{A}_2$ plus a compact operator is invertible, so Q has index zero. By Theorem 6.2 a solution of (51) with $\xi_0 = 0$ corresponds to a solution of problem (48) with zero data. Then Theorem 6.1 gives $\xi_2 = 0$. Hence $Q : X^2 \to X^2$ is invertible. \qed
6.3 The discretized problem

We choose a family \(\{X_h\}_h \) of finite dimensional subspaces of \(X \) satisfying Assumptions (A1) and (A2) of section 4.1 and use the Galerkin method: Find \(\xi_{2,h} \in X_h^2 \) such that

\[
B((\hat{A}_1 + \hat{A}_2)\xi_{2,h}, \xi_{h}) = B((\hat{A}_2 - \hat{A}_1)\xi_0, \xi_{h}) \quad \text{for all} \quad \xi_h \in X_h^2
\]

(53)

We use Theorem 6.3 together with Theorem 4.1 and obtain

Theorem 6.5 Let \(\xi_2 \) denote the solution of (51). There exists \(h_0 > 0 \) and \(C_0 \) such that for all \(h \leq h_0 \) the discretized problem (53) has a unique solution \(\xi_{2,h} \in X_h^2 \). The Galerkin solution is quasi-optimal:

\[
\|\xi_{2,h} - \xi_2\|_{X^2} \leq C_0 \inf_{\xi_h \in X_h^2} \|\xi_{2,h} - \xi_2\|_{X^2}
\]

References

