
ETH Library

Mapping automata
Simple abstract state machines

Report

Author(s):
Janneck, Jörn W.; Kutter, Philipp W.

Publication date:
1998-07

Permanent link:
https://doi.org/10.3929/ethz-a-004289129

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 49

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004289129
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Mapping Automata

Simple Abstract State Machines

J�orn W� Janneck

Philipp W� Kutter

TIK Report ��
June ����

Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology �ETH� Zurich

�



Contents

� Introduction �

� Static structures �

��� Abstract structure of the state � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Locations and updates � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Mapping automata �

� A rule language and its denotation �

��� Terms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Basic rules constructs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� First	order extensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


����� Do	forall rule � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

����� First	order terms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Nondeterministic rules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Creating new objects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


����� Accessibility and allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

����� The import	rule � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Comparison to traditional ASMs ��

��� State and automata � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Equivalence of MA and traditional ASM � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Mapping a GASM state into an MA state� � � � � � � � � � � � � � � � � � � � � � � � ��
Remark on reachability � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
Mapping a GASM rule into an MA rule � � � � � � � � � � � � � � � � � � � � � � � � ��

�



� Introduction

Gurevich�s Abstract State Machines �GASM� as de�ned in ��� �� are an elegant model of computation and
provide a powerful� abstract speci�cation method for a broad variety of speci�cation tasks� Since they
also have a rather straightforward operational semantics� they can serve as a prototyping or �combined
with stepwise re�nement techniques� even as an implementation base for computational systems�

The original idea of GASMs ��� was to elaborate on what Gurevich calls the implicit Turing�s thesis�
every algorithm is simulated by an appropriate Turing machine�� Unfortunately the operational semantics
of algorithms given by Turing machines is often not modeling the algorithm on a natural abstraction level�
While an algorithm executes just one step� the simulating Turing machine typically performs a long
sequence of steps� The GASM thesis ��� is that any algorithm can be modeled at its natural abstraction
level by an appropriate GASM� In short� this is achieved by combining a very �exible notion of state� i�e�
Tarski�s notion of structure �
�� with the possibility to specify freely how much is done in one step�

Aware of the problem that neither applicability to all kinds of algorithms nor appropriateness of the
reachable abstraction levels can be proven� one tried to give evidence by working out a large number
of case studies ��� ��� The variety of application areas covered by these case studies was only possible
because GASM are not endowed with a speci�c type system� For most of the single problems� a suitable
and useful type system can be thought of ���� ��� but one general solution to enhance typing of GASM
has not been found� The fact that the de�nition of GASM has not been changed over time �nally became
one of the major strengths of the existing GASM	work�

In ��� Gurevich claims that in dynamic situations� it is convenient to view a state as a kind of memory
that maps locations to values� A location is a pair of an r	ary function name and an r	tuple of elements�
Such a memory is partitioned in di�erent areas each consisting of the locations belonging to one function�
We believe it is often more appropriate to view a state as a collection of objects� each associated with a
mapping from attributes to values� Furthermore� we unify the notions of attribute� value� and object� This
allows to model a large number of commonly used data structures� e�g� records with pointer attributes�
arrays with dynamic length� stacks� or hash	tables�

For the moment we restrict our interest to completely untyped object systems� Such systems can
be modeled with a Tarski structure having only one binary function� encoding the objects and their
associated mapping� We �x the name of this function to �� Mapping Automaton�MA�� is a name for the
combination of the above explained object	view on state with GASM whose vocabulary contains only the
binary � and a set of static constants�

In this paper we de�ne and investigate MA as a mathematical object� by adopting the de�nition of
GASM over mapping	structures to the MA view� i�e� the � function is made part of the formal de�nition
of MA states� Finally we give a formal mapping from GASM to MA�

The motivation for this work is threefold� First we want to make the MA view explicit in a formal
way� Second the MA and the mapping from GASM to MA serve as implementation base for a GASM
interpreter written in Java ���� And �nally the de�nition of MA simpli�es the syntactic aspect as well as
the structure of a state by removing the concept of �signature��

Removing signature and the induced structure from the speci�cation language and the state� respec	
tively� makes state and speci�cation completely orthogonal� only connected by an interpretation of the
basic syntactic constants� These constants play the role of syntax �vocabulary�� which are independent
from the structure of the semantics �elements� and the interpretation of ���

In e�ect� any speci�cation may be interpreted in any state �that has certain basic properties� such as
being �big� enough to allow su�ciently many objects to be allocated�� which in turn means that di�erent
speci�cations may be interpreted on the same state�

We believe that this will allow us to compose speci�cations much easier than was possible in GASM�
an interesting aspect of this improved compositionality possibly being the easy integration of object	based
constructs into the concept with a view of making it a practical speci�cation and prototyping method in
such environments �
��

In the next section� the used static structures are described� then MA are de�ned formally� In section
� the de�nition of transition rules is adopted to MA� In the last section the mapping from GASM to MA

�The implicit Turing thesis is used in the informal proof of Turing�s thesis ����

�



is formalized�

� Static structures

Before we present MA as describing the dynamic transition from one state to the next� we �rst make
precise our notion of state� For MA� this notion is completely independent of any syntactical concepts
and indeed of the existence of any MA de�ned for it�

��� Abstract structure of the state

Our intuitive concept of state is that of a structure between objects of a set� This set� the set of all
admissible objects that may ever occur in the computation to be modeled� we will subsequently call our
universe U � We will not make any assumptions about its nature� except that it be big enough �cf� section
��� for details on this� and contain a special element �� We will refer to the elements of U as objects�

Given such as universe we can now de�ne our concept of state as follows� Intuitively� we may think
of a state as a mapping �� that assigns each element of U a unary function over U � Many common
data structures can be directly conceptualized in this way� records �mapping �eld names to �eld values��
arrays �indices to values�� hashtables �keys to values�� etc� Of course� higher arities may be modeled by
successive application of unary functions or with tuples��

Alternatively� and equivalently� a state may be regarded as a mapping of pairs of objects to objects�
i�e� as a two dimensional square table with objects as entries� Formally�

De�nition ���� State space� Given a universe U � we de�ne the state space of U to be

� � U � U

Note that the equation
�U � U� �� U � U �� UU

supports the alternative views of the state as either a square table populated by objects or a mapping of
objects to mappings�

Since these are two equivalent manners of speaking� we will freely alternate between these two con	
ceptions of a state� talking about a mapping associated with an object� or equivalently refer to an object
as being an index to a row in the state table �assuming here and in the following that a row corresponds
to a mapping��

��� Locations and updates

The structure of such a state is changed in one atomic action by a set of pointwise updates� which specify
a location to be set to a new value� However� MA locations are somewhat simpler than those in GASM�
since they basically specify a place in the two	dimensional position in the state table� i�e� they are a pair
of objects�

De�nition ���� Location and update� Given a universe U � a location is a pair in U � the set of all
locations is � � U � U � An update is a pair consisting of a location and an element in U � the set of all
updates is thus de�ned as U � �� U �

Applying a set of such updates results in a new state� with the entries in the square table changed to
the values given in the update set�

De�nition ���� Application of update set� Given a state � � � and an update set u � U� applying
u to � yields the successor state �� � symbolically �

u
�� �� � that is de�ned as follows�

�� a b �

�
v ��a� b�� v� � u

� a b otherwise

�See also the discussion in section ��� for more details�

�



Clearly� the above de�nition only yields a well	de�ned function if the update set contains at most one
new value for a given location� This condition is called consistency�

De�nition ���� Consistency� An update set u is called consistent� i�

����� v��� ���� v�� � u � �� � �� �� v� � v�

In the following� we assume an update set to be consistent� Since there are several possible ways
of de�ning the e�ects of the application of inconsistent update sets� each with its respective merits and
drawbacks� we will not commit ourselves to one particular version and choose to leave this point open
for further discussion�

� Mapping automata

Mapping Automata �MA� describe the evolution of a state as de�ned above� Although its structure
di�ers slightly from GASM� where it is an algebra of a given signature� the evolution is still described by
a rule� that computes an update set for a given state and the application of this update set to the state
it was computed for� resulting in the successor state�

Formally� we de�ne MA as follows�

De�nition ���� Mapping automaton� A mapping automaton is a pair �C�R�� with C � fcig a set
of constant symbols and R a rule�

The constant symbols ci are similar in function to the signature in GASM in that they serve as anchor
points for interpretation and also term evaluation� as will be seen below��

Such an MA is related to some state universe by an interpretation as follows�

De�nition ���� Interpretation� Given a universe U and a mapping automaton M � �C�R�� we call
a function I � C �� U an interpretation of M�

Without going into the details of how such a rule may be described �this will be the task of section
�� this is what it does� Given an interpretation� it computes an update set from some state� Formally�

De�nition ���� Rule� Given an MA and an interpretation of its constant symbols� its rule R maps
states to update sets�

R � � �� U

Now we can make precise the �dynamics� of an MA� by de�ning a run starting from some state ��

De�nition ���� Run� A run of an MA �C�R� starting from some initial state � is a sequence ��i�i�N
such that

	 �� � �

	 �i
R��i�
�� �i��

Of course� a run terminates i� ex k such that �i � �i�� for all i � k�

� A rule language and its denotation

In the following we will suggest a notation for MA rules� which parallels the one suggested for GASM in
���� Following ���� we will give the denotation of each construction in our notation in terms of the update
set that it represents given an interpretation and a state � according to de�nition ���� First� however� we
will develop the notion of term� which are basic constituents in most rule constructs�

�In fact	 as will become clear in section 
	 these symbols not only serve as constants	 but also as the namespace for
quanti�ed and other variables� However	 since the interpretation I is never updated during the execution of an MA	 and
since even when some variable binding shadows a constant in the scope of a rule	 this at least is not destructively modi�ed
in its scope	 we will stick to this name�

�



��� Terms

Terms are some kind of syntactic structure that we use to refer to objects of the universe� Some objects
of the universe we can refer to directly using constant symbols and an interpretation of them� For others
we form compound terms and use the state� Therefore� we will de�ne the evaluation in a given state
� � � and under some interpretation I�

MA terms are very simple structures�� They are either constant symbols� or pairs of terms� The
latter can be intuitively thought of as signifying the application of the mapping that is bound to the
value of the �rst term to the value of the second 	 which is the intuition that is responsible for the name
of mapping automata�	 Since we also need a basic predicate testing for the equality �i�e� identity� of two
objects� this is also a term�

De�nition ���� Terms� Let C be a set on constant symbols� Then the set of all terms TC of C is
de�ned to be the smallest set such that

	 C � TC

	 s� t � TC �� hs ti � TC

	 s� t � TC �� s � t � TC

They are assigned a value in a given state in a most straightforward way� constants are mapped to
their interpretation� while pairs are evaluated by applying the map associated with the �rst element to
the value of the second� or� equivalently� simply applying the state � to the pair of values of the two
terms� The identity test is � if the two terms to not yield the same object� If they do� however� this test
must produce some other element� which we will call 
 here� but which has no special signi�cance other
than being di�erent from ��

De�nition ���� Term evaluation� Given a set of constant symbols C� Then we de�ne the value

val��I �t� of a term t in a state � � � under interpretation I recursively as follows�

val��I �c� �I�c� for c � C

val��I �hs ti� �� val��I �s� val��I �t�

val��I �s � t� �

�

 val��I �s� � val��I �t�

� otherwise

��� Basic rules constructs

Now we will outline a few basic rule constructs and give their meaning by the rule they denote�
The skip construct

skip

has no e�ect on the state� Its denotation is accordingly the empty set for any state�

DenI �skip���� �def �

The most fundamental non	empty rule construct is the single atomic update� which we denote as

t� t� �� t

Given a state �� it denotes an update set consisting of one update�

DenI �t� t� �� t���� �def f��val��I �t��� val��I �t���� val��I �t��g

�However	 see� section 
���� for an extension that complicates things somewhat�
�Making application left
associative	 one can write the term hha bi ci in the more familiar for a b c�

�



The conditional rule construct decides which of two rules to �re according to the value of a term�

if t then R� else R� endif

Its denotation is therefore�

DenI �if t then R� else R� endif���� �def

�
DenI �R����� val��I �t� �� �

DenI �R����� otherwise

We also de�ne the parallel composition of two rule descriptions� written as


R� R�

Its denotation is simply the union of the update sets�

DenI � R� R����� �def DenI �R����� 
DenI �R�����

��� First�order extensions

As shown in ���� one can add �rst	order constructs to describe both rules and terms� We will start with
rule constructs and then turn to �rst	order terms�

����� Do	forall rule

The do	forall rule construction allows to compute the update set of a rule description R with some
constant symbol bound to each element of some set� Its syntax is as follows�

do forall c in s � R enddo

c is a constant symbol� R a rule description� and s speci�es the set the elements which c will be bound
to in R�

Clearly� we must somehow restrict the sets that may thus be iterated upon� not only for practical
reasons�� We choose to restrict s to constructions of the form dom t or ran t� where t is any term� These
then denote the domain and range� respectively� of the mapping associated with the value of t��

De�nition ���� Domain and range of mappings� Given an a � U � we de�ne its domain and range
�equivalently the domain and range of the mapping associated with it� as

dom� a �deffx � U j � a x �� �g

ran� a �deffx � U n f�g j �y � U � � a y � xg

With this� the denotation of the above set constructions becomes

Set��I�dom t� �def dom� val��I �t�

Set��I�ran t� �def ran� val��I �t�

Now we can de�ne the denotation of the do	forall rule construct as the union of all updates resulting
from the body for each individual element of the speci�ed set bound to the constant symbol�

DenI �do forall c in s � R enddo���� �def

�
a�Set��I 
s�

DenI
c��a��R����

�Since at this point we have no notion of blocks as in ���	 we need no do in�parallel syntax that except for inconsistencies	
this rule notation is otherwise equivalent to�

�From a theoretical point of view	 allowing	 a rule to iterate on	 say	 U would potentially make the entire universe
accessible	 and thus the reserve empty � see section 
�� for details�

�Further constructions might be useful here and harmless in the sense discussed in the previous footnote	 such as a range
of integers �if these are available� etc� However	 without making any assumptions about the structure of U 	 the above seem
to be most natural�






����� First	order terms

First	order terms extend the de�nitions of the set TC of terms for a set of constant symbols C �see
de�nition ��� by the following clauses� assuming S �def fdom t j t � TCg 
 fran t j t � TCg the set of
set	expressions�

	 c � C � s � S � t � TC �� �forall c in s � t� � TC

	 c � C � s � S � t � TC �� �exists c in s � t� � TC

The forall	term evaluates to 
 i� t evaluates to something else than � for all elements of the set
denoted by s bound to the symbol c� and to � otherwise� The exists	term is � if t is � for all elements
of that set� and 
 otherwise� Binding an object to a constant symbol c is tantamount to changing the
interpretation at point c to this new value� which we will write as I�c �� a��

val��I ��forall c in s � t�� �def

�

 �a � Set��I �s� � val��I
c��a��t� �� �

� otherwise

val��I ��exists c in s � t�� �def

�

 �a � Set��I�s� � val��I
c��a��t� �� �

� otherwise

��� Nondeterministic rules

The basic nondeterministic construction is

choose c in s � R endchoose

Intuitively� this nondeterministically selects one of the values in the set denoted by s� binds it to c

and evaluates R� In order to capture this intuition we must introduce a nondeterministic denotation
NDenI�R���� of a rule description R� which is a set of alternative update sets� For the choose	construct
above� its �nondeterministic� denotation would be as follows�

NDenI �choose c in s � R endchoose���� �def

��
�
f�g Set��I �s� � �S
a�Set��I 
s�

NDenI
c��a��R���� otherwise

Of course� we now have to give nondeterministic denotations for the other rule constructs as well�
which can be done as follows�

NDenI �skip���� �def fDenI�skip����g

NDenI ��t�� t�� �� t���� �def fDenI��t�� t�� �� t����g

NDenI�if t then R� else R� endif���� �def

�
NDenI �R����� val��I �t� �� �

NDenI �R����� otherwise

NDenI � R� R����� �def fd� 
 d� j d� � NDenI �R����� � d� � NDenI�R�����g

NDenI �do forall c in s � R enddo���� �def

��
�

�
a�Set��I 
s�

da j da � NDenI
c��a��R����

��
�

Except for the do	forall case �and the parallel composition case� which can be considered a special
case of the former�� the nondeterministic denotation is very similar to the deterministic case� except that
we talk about a set of update sets� For the do	forall construct� one has to consider all combinations of
nondeterministic choices at each instance of the rule and build the union over these�

The notion of a run is of course also a�ected by non	deterministic constructions� If a rule yields a set
of update sets instead of just one� a non	deterministic run then is de�ned like this�

�



De�nition ���� Non	deterministic run� A non	deterministic run of an MA �C�R� starting from
some initial state � is a sequence ��i�i�N such that

	 �� � �

	 �i
u
�� �i�� such that u � R��i�

��� Creating new objects

Even though the universe is a static collection of objects� in speci�cations we often wish to refer to
hitherto unused or fresh objects� Therefore� instead of creating new objects and extending the universe
itself� we make objects that have so far been unaccessible to the MA accessible by picking them from a
part of the universe that we could not refer to� This part� which we will make more precise below� is
called our reserve�

����� Accessibility and allocation

We will de�ne the set of all objects U��I �or just U� if the interpretation is understood� that a rule can
refer to and depend on in a given state � under and interpretation I� The de�nition will inductively
include all elements that can be reached by the constructions of the language� starting from the elemnts
which are the interpretation of the constant symbols�

De�nition ���� Accessibility� Given constant symbols C� we de�ne the set U��I of all accessible
elemnts of U in state � under interpretation I to be the smallest set such that�

	 �c � C � I c � U��I

	 a� b � U��I �� � a b � U��I

	 a � U��I �� dom� a � U��I

	 a � U��I �� ran� a � U��I

Clearly� the result of any rule cannot depend on any object and its surrounding structure that is not
in U��I � In this sense� the accessibility criterion is similar to the rules that govern garbage collection in
programming language implementations��

So in any state � and interpretation I� we can only talk about the accessible objects in U��I � If we
allow arbitrary �construction� of new objects �as we do in the rule language in section ��� we have to
provide a su�ciently large universe so that we can guarantee that we can recruit new objects from the
hitherto �unused� �i�e� irrelevant� portion of the universe� which we will call our reserve�

De�nition ��
� Reserve� The set R � U n U��I is called the reserve �of state ���

The requirement for a meaningful execution of an MA is therefore that its reserve be non	empty in
any reachable state� Clearly� this rules out constructions that allow iteration and updates on the entire
universe� such as

do forall x in U � c�x� �� c enddo

If c is a constant symbol interpreted as any non	� value� applying the denotation of this rule to any state
leads to a state where the entire universe becomes accessible�

Of course� the notion of accessibility is strongly connected to the constructions of the rule notation� If
some constructs do not occur in a given MA� we may adapt the accessibility de�nition accordingly� This

	However	 this de�nition of global accessibility is far too loose for many practical applications to be used as a basis for
storage allocation� Consider for example a situation where C is the set of all integer numerals	 all strings	 and all identi�ers�
A useful interpretation will supposedly map all these in�nitely many symbols to in�nitely many di�erent objects	 which
thus become globally accessible	 while any sensible implementation will only create those number objects as they are needed
during the computation process� It might make sense	 therefore	 to restrict the globally accessible objects for a given MA
to those which can be reached by terms formulated only in constant symbols actually occurring in the MA rules� We will
not further elaborate this point here�






is of particular importance when we restrict the language by imposing some kind of static structuring on
the rules � then the set of visible elements in this kind of automaton may be quite di�erent from the one
we must assume for general MA� See section ��� for an example and an application of this principle�

����� The import	rule

Constructing the reserve in the above way allows us to give meaning to the notion of importing new or
fresh elements into our visible part of the universe� The basic rule to pick an object from the reserve
looks like this�

import c R endimport

This rule actually does three things� it �rst picks an element from the reserve� binds it to the symbol
c and then executes the rule body R in the new context� i�e� in an interpretation that is identical to I
except at point c� which is mapped to the new object instead� If we call the new object chosen from the
reserve a� we can write the new interpretation as I�c �� a�� and the deterministic and non	deterministic
denotation� respectively� then become

DenI �import c R endimport���� �def DenI
c ��a��R���� a � R

NDenI�import c R endimport���� �def NDenI
c��a��R���� a � R

As in ��� we assume that di�erent imports choose di�erent reserve elements� Furthermore� we assume
that for any new element a� � a x � � for all x � U � Note also� that the new object does not automatically
become a member of U���I � although it is in U��I
c��a�� the rule body has to manipulate the state so that
it can be accessed outside the rule in the next state�

� Comparison to traditional ASMs

In this section we will �rst shed some light on what we perceive as one of the basic di�erences between
MA and GASM� and then proceed to show their fundamental equivalence �as far as computational
expressibility and level of abstraction are concerned�� This will serve to document our claim that MA
are basically a slightly di�erent way of doing very similar things�

��� State and automata

A key di�erence between traditional ASMs and MA is the relation between a state �and the set of all
states� and the automaton� A GASM state is always a state of a vocabulary� i�e� a signature containing
some function names of various arities that impose a certain structure on the state� Also� an ASM
operating meaningfully on this state must in a sense �know� about this structure� i�e� share its vocabulary�

In MA� the situation is somewhat simpler� First� the a state can be meaningfully de�ned without any
recourse to syntactical elements such as function names� or their MA	counterparts� constant symbols� A
state is a simple structure imposed on the elements of some universe� indeed� there need not even be an
MA� constant symbols� or any other syntactical conventions to be able to talk about a state�

However� when we want to refer to particular parts of such a structure� say� individual objects� we
must have a way of identifying them so we can investigate the structure �around� them� It was felt that
the most straightforward way of doing this was to simply give them names� i�e� to provide a set of names
and a mapping between these names and their denotations�

These names and their interpretation� however� to not in any way introduce a structure into the system
� unlike function names of various �xed arities��� They are basically a �at collection of distinguishable
identi�cations of elements in the universe� The structure� therefore� is completely separated from the
naming�

This separation of concerns� leaving structure to the state and naming to the automaton �and its
interpretation� that describes the evolution of such a structure� can be leveraged in various ways� For

�
Of course	 the names themselves become structured by the way they relate to the di�erent or identical elements of the
universe�

��



instance� there is no problem in applying several automata �each with its own interpretation and even
di�erent sets of constant symbols� to the same state 	 concurrently� independently� alternatively� This
can be used to promote a much higher degree of compositionality of automata�

When composing a speci�cation of a set of automata� it might make sense to require them to share the
same set of constant symbols� For GASM� sharing the same signature over a large number of automata
would seem like a somewhat unnatural requirement� and possibly even involve a good deal of renaming�
pre�xing� etc� to actually make it work� but for MA this might be a sensible choice for the standard case�
for instance� a conceivable set of constant symbols could consist of all identi�ers plus all representations
of some primitive data types� such as numbers and strings�

��� Equivalence of MA and traditional ASM

In this section we show how to map a GASM into an MA and vice versa� The translation from MA to
GASM is already given by the fact that MA are de�ned as a GASM with a special kind of structure� The
translation from GASM into MA allows to use the MA tool for GASM tool support� since the translation
does not change the abstraction level� In fact the translation deals only with some semantical details�
e�g� the adaption of the di�erent views on boolean and relations� and the modeling of n	ary functions
with tuples�

Before we start describing the translation between GASM to MA we remember the di�erent ways
booleans and partial functions are treated� In GASM booleans are modeled by two distinct elements true
and false and partial functions are modeled by mapping to a third element undef� The carrier set of each
GASM needs thus at least three distinct elements� true� false� and undef� Di�erently� in MA exist only
two distinct elements� called bottom � and top 
� � is used for partial functions� and as interpretation
of false� true is represented by 
 or any other element in the carrier set� Both GASM and MA are not
strict�

Mapping a GASM state into an MA state� In general the universe U of objects in a MA consist of
at least two elements� one denoted by � and the other by 
� Since the GASM super	universe S contains
at least three elements �true� false� and undef � we need to start with a U containing a third element� The
set of constant symbols C of an MA modeling a GASM contains at least the three constants true� false�
and undef� and each interpretation I maps undef to the element �� true to the element top� and false

to the third default element in U � We will no more make a di�erence between the symbols f undef� true�
false g and the tree objects representing them� and for our convenience�

Tuples are modeled in MA by free generated elements with a static mapping as follows�

	 the associated mapping of the �	ary tuple �� is given by�

h�� ti � �t�

where �t� is the free generated one	tuple�

	 the associated mapping of a one	tuple is given by�

h�t��t�i � �t�� t��

where �t�� t�� is a free generated two	tuple�

	 for each n � � the mapping of an n	tuple is given by�

h�t�� � � � � tn�tn��i � �t�� � � � � tn� tn���

If mapping a concrete GASM A into a MA B� all elements of S are included into U and all symbols of
the vocabulary of A are included into the constant symbols C of B� and for each of them a new element
being its interpretation is included into U � In other words� U consists of the disjoint union of f��
� falseg�
the super	universe S� the elements interpreting the GASM functions� and the above introduced tuples�

��



We need to make a case distinction between functions and relations in GASM� The interpretation of
each n	ary function f in structure A� i�e� fA� is re�ected in B�s interpretation of �� i�e� �B �

�fA�o�� � � � � on� � o��� ��B I�f� �o�� � � � � on� � o��

An n	ary relation r in a GASM is returning either true or false� To make everything �t together we
re�ect the interpretation of each r as follows�

�rA�o�� � � � � on� � false� � ��B I�r� �o�� � � � � on� � ��

�

�rA�o�� � � � � on� � true� � ��B I�r� �o�� � � � � on� � 
�

Now we need two di�erent wrappings� One is needed to get back the original true�false results of a
relational term� The second is needed to map such results back into the ��
 model in MA�

Lets thus assume two constants W� and W� such that�

hW� �i � false

hW� xi � x� where x �� �

hW� falsei � �

hW� xi � x� where x �� false

For equality� the usual MA equality can be used� the logical operations in GASM are mapped into
MA like normal binary relations�

Remark on reachability of course the mappings associated with the tuples and the wrappings W�

and W� must be excluded from the de�nition of reachability�

Mapping a GASM rule into an MA rule We de�ne now a transformation T from GASM rules to
MA rules� For notational convenience we leave away the h and i whenever the situation is clear�

Terms For all function symbols f � the subterms must be transformed�

T �f�t�� � � � � tn�� �def f�T �t��� � � � � T �tn��

For all relation symbols r� in addition the term is wrapped with W��

T �r�t�� � � � � tn�� �def hW� hr �T �t��� � � � � T �tn��ii

Updates For all function symbols f � the subterms must be transformed��

T �f�t�� � � � � tn� �� t�� �def T �f�t�� � � � � tn�� �� T �t��

For all relation symbols r� in addition the righ	hand	side is wrapped with W��

T �r�t�� � � � � tn� �� t�� �def T �r�t�� � � � � tn�� �� hW� T �t��i

Conditional

T �if c then R� else R� endif� �def if hW� ci then T �R�� else T �R�� endif

��



Do forall

T �do forall i in I Rule enddo�

�def

do forall i in dom I T �Rule� enddo

Choose

T �choose i in I Rule endchoose�

�def

choose i in dom I T �Rule� endchoose

��



References

��� E� B�orger and J�K� Huggins� Abstract state machines �
��	�

�� A commented asm bibliography�
EATCS Bulletin� �����������
� �

��

��� G� Del Castillo� Y� Gurevich� and K� Stroetmann� Typed abstract state machines� J�UCS� �

�� to
appear�

��� Y� Gurevich� Logic and the challenge of computer science� In E� B�oerger� editor� Current Trends in
Theoretical Computer Science� pages � � �
� CS Press� �
���

��� Y� Gurevich� Evolving Algebras �

�� Lipari Guide� In E� B�orger� editor� Speci�cation and Validation

Methods� Oxford University Press� �

��

��� Y� Gurevich� May �


 draft of the asm guide� Technical Report CSE	TR	���	

� EECS Dept��
University of Michigan� �


�

��� J�K� Huggins� Abstract state machines web page� http���www�eecs�umich�edu�gasm�

�
� J�W� Janneck� Object	based mapping automata 	 reference manual� Technical report� Institute TIK�
ETH Z�urich�

��� J�W� Janneck� Object	based mapping automata home page� http���www�tik�ee�ethz�ch� jan	
neck�OMA�

�
� A� Tarsky� Der wahrheitsbegri� in den formalisierten sprachen� Studia Philosophica� ������������
�
��� English translation in A� Tarsky� Logic� Semantics� Methamathematics� Oxford University
Press�

���� A�M� Turing� On computable numbers with an application to the entscheidungsproblem� Proc�

London Math� Soc�� ������������� �
�
� correction� ibid� No� ����
�
�� ��������

���� A� Zamulin� Typed Gurevich Machines Revisited� Joint CS � IIS Bulletin� Computer Science� �


�

��


