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Abstract

This paper addresses the problem of trading�o
 between the minimization of pro�
gram and data memory requirements of single�processor implementations of data�ow
programs� Based on the formal model of synchronous data �ow �SDF� graphs
�LM	��� so called single appearance schedules are known to be program�memory
optimal� Among these schedules� bu
er memory schedules are investigated and
explored based on a two�step approach� ��� An Evolutionary Algorithm �EA� is
applied to e�ciently explore the �in general� exponential search space of actor �ring
orders� ��� For each order� the bu
er costs are evaluated by applying a dynamic pro�
gramming post�optimization step �GDPPO�� This iterative approach is compared
to existing heuristics for bu
er memory optimization�



Chapter �

Introduction

Data�ow speci�cations are widespread in areas of digital signal and image process�
ing� In data�ow� a speci�cation consists of a directed graph in which the nodes
represent computations and the arcs specify the �ow of data� A node is allowed to
execute ��re� in case a certain �ring rule is satis�ed� If a node �res� it consumes a
certain amount of data from the inputs and produces a certain amount of data on
the outputs�

Synchronous data�ow �LM	�� is a restricted form of data�ow in which the nodes�
called actors have a simple �ring rule� The number of data values �tokens� samples�
produced and consumed by each actor is �xed and known at compile�time�

Example �	� Figure ��� shows a simple SDF graph with four actors� A node is
enabled for �ring in case at least a �xed number of input tokens �as indicated by the
arc annotation� has accumulated on each input arc� When the actor executes� a �xed
number of output tokens are produced at its outgoing arcs which is also a constant
speci�ed at compile�time and annotated at the tail of each outgoing arc�

The major reason why the SDF model is widely used as the underlying speci�ca�
tion model are the abilities to express multirate systems� parallelism� and that many
important aspects such as deadlock detection and scheduling can be determined at
compile�time�

As a matter of fact� the SDF model is used in industrial DSP design tools�
e�g�� SPW by Cadence� COSSAP by Synopsys� and Advanced Design System from
Hewlett�Packard� as well as in research�oriented environments� e�g�� �BHLM���
LEP���� RPM���� Those systems include code generation tools with code �usually
optimized assembly code� stored for each actor in a target�speci�c library� Typi�
cally� code is generated from a given schedule by instantiating actor code in the �nal
program� Subroutine calls may have unacceptable overhead� especially if there are

A B C D
4 3 11 2 3

Figure ���� A simple SDF graph�
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many small tasks� Hence� a code generation method that generates inline code is
generally assumed�

With this model� it is evident that the size of the required program memory
strongly depends on the number of times an actor appears in a schedule� So called
single appearance schedules� where each actor appears only once �however possibly
embedded in a nested loop� in a schedule� are evidently program memory optimal
under this model of inline code generation� Results on the existence of such schedules
have already been published for general SDF graphs �Bha���� For acylic graphs�
there always exists at least one single appearance schedule�

In this paper� we treat the problem of generating single appearance schedules
that minimize the amount of required bu
er memory for the class of acyclic SDF
graphs� Such a methodology may be considered as part of a general framework that
considers general SDF graphs and generates schedules for acyclic subgraphs using
our approach� In particular� necessary and su�cient conditions for the existence
of single appearance schedules for general SDF graphs and e�cient algorithms for
computing them have been given in �BBHL��� BL���� These techniques require de�
composing each strongly connnected component into an acyclic graph that consists
of clusters of smaller strongly connected components� constructing a single appear�
ance schedule for this acyclic graph� and then recursively applying this procedure
to each clustered strongly connected component to obtain the subschedule for the
corresponding cluster�

��� Motivation

Given is an acyclic SDF graph in the following� The number of single appearance
schedules that must be investigated is at least equal to �and often much greater
than� the number of topological sorts of actors in the graph� Note that this number
may be exponential in the size of the graph� e�g�� a complete bipartite graph with
�n nodes has �n��� possible topological sorts� This complexity prevents techniques
based on enumeration from being applied sucessfully�

In �BML���� a heuristic called APGAN �for algorithm for pairwise grouping of
adjacent nodes �acyclic version�� has been developed that constructs a schedule with
the objective to minimize bu
er memory� This procedure of low polynomial time
complexity has been shown to give optimal results for a certain class of graphs having
a regular structure� Also� a complementary procedure called RPMC �for recursive
partitioning by minimum cuts� has been proposed that works well on more irregular
�e�g�� randomly generated� graph structures�

Experiments show that� although being computationally e�cient� these heuris�
tics turn out not always to provide the best solutions� Even simple testcases may be
constructed where the performance �bu
er cost� obtained by applying these heuris�
tics di
er from the global minimum by more than ������ see graph no� � in Exam�
ple ����

Example �	� We consider two testgraphs and compare di�erent bu�er optimization
algorithms �see Table ��	�� The �rst graph with �
 nodes in shown also in Fig� ��	�
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Figure ���� A simple SDF graph�

For this rather small and simple graph� already ��	 


 di�erent topological sorts
�actor �ring orders� may be constructed� The minimal bu�er memory requirement
has been evaluated to �

� whereas for the worst topological sort� the minimal costs
were computed as �� �
� memory units�

The second graph is a randomly generated graph with �
 nodes� In the table� �
di�erent methods are compared with respect to the best cost found and the amount
of required CPU�time� The �rst method uses an Evolutionary Algorithm �EA� that
performs �


 �tness calculations� the second is the APGAN heuristic� the third is
the RPMC heuristic� the fourth is a Monte Carlo simulation ��


 random tries�
and the �fth an exhaustive search procedure which did not terminate in the second
case�

Graph � method best cost �units� runtime �s�
� EA ���� ����
� APGAN ���� ����
� RPMC ���� ����
� Monte Carlo ���� ���
� Exhaust� Search ���� ���
� EA 

� �	� ����	�
� APGAN �� �
� ��
 ��		
� RPMC � ��	 ��� ����
� Monte Carlo � 
�� ��� ����


� Exhaust� Search � �

Table ���� Analysis of existing heuristics on simple testgraphs� The run�times were
measured on a SUN SPARC ���

The motivation of the following work was to develop a methodology that has the
following features�

� Cost�competitiveness� the optimization procedure should provide solutions
which provide the same or lower bu
ering costs as the heuristics APGAN
and RPMC in most investigated test cases�
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Figure ���� Overview of the scheduling framework using Evolutionary Algorithms
and Dynamic Programming �GDPPO� generalized dynamic programming post op�
timization for optimally parenthesizing actor orderings �MBL���� discussed further
in Section ������ for constructing bu
er memory optimal schedules�

� Run�time tolerability� in embedded DSP applications� compilers are allowed
to spend more time for optimization of code as in general�purpose compilers�
because code�optimality is critical �Me���� Hence� compilation times in the
range from �s to ���s� sometimes even in the order of minutes� still seem to
be tolerable�

Therefore� it does not seem reasonable to compare di
erent algorithms in terms
of the quality �bu
er memory cost� obtained during the run�time limit of the fastest
heuristic� Instead� we compare the quality obtained during a tolerable run�time
limit� say� e�g�� one minute of CPU�time�

��� Proposed Approach

Here� we use a unique two�step approach to �nd bu
er�minimal schedules�

� An Evolutionary Algorithm �EA� is used to e�ciently explore the space of
topological sorts of actors given an SDF graph using a population of N indi�
viduals where each individual of a population encodes a topological sort�
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� For each topological sort� a bu
er optimal schedule is constructed based on a
well�known dynamic programming post optimization step �MBL��� that deter�
mines a loop nest by parenthesization �see Fig� ���� that is bu
er cost optimal
�for the given topological order of actors�� The run�time of this optimization
step is O�N���

Example �	� The overall picture of the scheduling framework is depicted in
Fig� ���� The approach is called GASAS �for Genetic Algorithm exploration of
Single Appearance Schedules�� The EA iteratively transforms a population of indi�
viduals� each of which is coding a topological sort of the actors of a given SDF graph�
The bu�er cost of each individual is evaluated by calling a Dynamic Programming
post�optimizer that performs a parenthesization of the proposed actor �ring order
to obtain a bu�er�optimal schedule �for the given order of actors�� The evaluated
optimal costs are returned to the EA that applies transformations to the individuals
in order to �nd better topological sorts� Details on the optimization procedure and
the cost function will be explained in the following chapter� The total run�time of the
algorithm is O�Z N�� where Z is the number of evocations of the dynamic program
post�optimizer�

��� Related Work

The interaction between instruction scheduling and register allocation in procedural
language compilers has been studied extensively �Hsu	�� ASU	
�� and optimal man�
agement of this interaction has been shown to be intractable �GJ���� More recently�
the issue of optimal storage allocation has been examined in the context of high�level
synthesis for iterative DSP programs �DP�
�� and code generation for embedded
processors that have highly irregular instruction formats and register sets �Me���
KNDK�
�� However� because of their focus on �ne�grain scheduling� the above ef�
forts apply to a homogeneous data �ow model � that is� a model in which each
computation �data�ow vertex� produces and consumes a single value to�from each
incident edge� In particular these e
orts do not address the challenges of keeping
code size costs manageable in general SDF graphs� in which actor production and
consumption parameters may be arbitrary�

Similarly� Fabri �Fab	�� and others have examined the problem of managing pools
of logical bu
ers that have varying sizes� given a set of bu
er lifetimes� but such
e
orts are also in isolation of the scheduling problems that we face in the context of
general SDF graphs�

��� Overview

We conclude this chapter with a summary of what follows�
In Chapter �� the required notation is introduced and the overall methodology is

explained in more detail including an explanation of why an Evolutionary Algorithm
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is favorable for design space exploration� Also� the cost model for bu
er cost and
the role of the dynamic program post�optimizer are outlined�

Chapter � explains the Evolutionary Algorithm approach� In particular� we
describe how topological sorts for SDF graphs may be e�ciently generated and
explored� Details on the chosen genetic operators and the coding mechanism are
provided�

Finally� a quantitative comparison of this new approach with existing algorithms
like APGAN and RPMC �BML��� as well as with other probabilistic optimization
methods like Monte Carlo and Hill Climbing are described in Chapter �� In case a
run�time limit of ��� seconds for the exploration of the search space is allowed� the
Evolutionary Algorithm approach beats existing heuristics in almost ���� of the
test cases which have been chosen from a library of existing problems and a set of
randomly generated test graphs�
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An Evolutionary Approach for

Memory Optimization

��� The SDF�scheduling framework

����� Background and Notation

Synchronous data�ow �LM	�� is a restricted form of data �ow in which nodes of a
directed graph represent actors� consume a �xed amount of data items �tokens� sam�
ples� per invocation and produce a �xed amount of output samples per invocation�

De
nition �	� �SDF graph� An SDF graph G denotes a ��tuple G �
�V�A� produced� consumed� delay� where

� V is the set of nodes �actors� �V � fv�� v�� � � � � vKg��

� A is the set of directed arcs� With source��� �sink����� we denote the source
node �target node� of an arc � � A�

� produced � A� N denotes a function that assigns to each directed arc � � A

the number of produced tokens produced��� per invocation of actor source����

� consumed � A� N denotes a function that assigns to each directed arc � � A

the number of consumed tokens per invocation of actor sink����

� delay � A � N� denotes the function that assigns to each arc � � A the
number of initial tokens delay����

A schedule is a sequence of actor �rings� A properly�constructed SDF graph is
compiled by �rst constructing a �nite schedule S that �res each actor at least once�
does not deadlock� and produces no net change in the number of tokens queues
associated with each arc� When such a schedule is repeated in�nitely� we call the
resulting in�nite sequence of actor �rings a valid periodic schedule� or simply valid
schedule�

�
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SDF graphs for which valid schedules exist are called consistent graphs� System�
atic techniques exist to e�ciently determine whether or not a given SDF graph is
consistent and to compute the minimum number of times that each actor must exe�
cute in the body of a valid schedule �LM	��� We represent these minimum numbers
of �rings by a function qG or simply q in case G is known from the context with
q � V � N�

Example �	� Figure ��� shows an example of an SDF graph with four nodes and
two edges� The four nodes �actors� are labeled A�B�C�D� respectively� The graph is
consistent� because there exists a �non�zero� �nite actor �ring sequence such that the
initial token con�guration is obtained again� The minimal number of actor �rings
is obtained as q�A� � �� q�B� � q�C� � ��� q�D� � 	� The schedule

����ABC�DABCDBC��ABCD�A��BC���ABC�A��BCD��

represents a valid schedule for the SDF graph shown in Fig� ���� Here� a paren�
thesized term �n S� S� � � � � Sk� speci�es n sucessive �rings of the �subschedule�
S� S� � � � Sk�

Each parenthesized term �n S� S� � � � Sk� is referred to as schedule loop having
iteration count n and iterands S�� S�� � � � � Sk� We say that a schedule for an SDF
graph is a looped schedule if it contains zero or more schedule loops�

A schedule is called single appearance schedule if it contains only one appearance
of each actor�

Example �	� The schedule ����A����B����C��	D�� is a valid single appearance
schedule for the graph shown in Fig� ����

In general� a schedule of the form

�� �q�N��N�� �q�N��N�� � � � �q�NK�NK��

where Ni denotes the �label of the� ith node of a given SDF graph� and K denotes
the number of nodes of the given graph� is called �at single appearance schedule�

����� Code generation model

We consider the problem of code generation by code inlining given a SDF graph
speci�cation while considering single processor implementations� Corresponding to
each actor in a valid schedule S� we insert a code block that is obtained from a library
of prede�ned actors� and the resulting sequence of code blocks is encapsulated within
an in�nite loop to generate a software implementation� Each schedule loop thereby
is translated into a loop in the target code�

Implied by this model of code generation� any valid single appearance schedule
gives the minimum code space �program memory� cost� This approximation� how�
ever� neglects loop overhead� In practical SDF models of applications� actors are
usually DSP subsystems of medium to large granularity� and the code size overhead
of a loop is typically small compared to the size of individual code blocks� Thus�
neglecting loop overhead does not lead to misleading results in our context�
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����� Bu�er cost model

The simplest model for bu
ering �data memory� is to assume that a distinct area of
memory is allocated for each arc of a given graph� In order to determine the amount
of data needed to store the tokens that accumulate on each arc during the evolution
of a schedule S� we de�ne the cost function

buffer memory�S� �
X
��A

max tokens��� S�� �����

Here� max tokens��� S� denotes the maximum number of tokens that accumulate
on arc � during the execution of schedule S�

Example �	� Consider the schedule ����A����B����C��	D�� for the SDF graph
shown in Fig� ���� This schedule has a bu�er memory requirement of �
������ �
��� Similarly� the bu�er memory requirement of the schedule ������A���B������C�
��D��� is �� � �� � 
 � ���

Another model for bu
ering is to use a shared bu
er of size

maxK��i�� �q�Ni� produced�Ni��� �����

which gives the maximum amount of data transferred on any arc in one period
�one iteration of the outermost loop� of the �at single appearance schedule� In case
of nested loops� however� the use of shared bu
ers may be awkward� Also� the
management of pointers and the handling of initial delays on arcs require special
attention� In the latter case� there is often no logical place in the bu
er to place the
delays since the entire bu
er might be written over by the time we reach the actor
that consumes the delays� Therefore� we will use the non�shared bu
er model for
all arcs with non�zero initial delays� and decide on the usefulness of bu
er sharing
for arcs without delays�

����� Bu�er Memory Optimization

The following lower bounds on the bu
er memory requirements have been published
in �BML����

De
nition �	� �Bu
er memory lower bound� The bu
er memory lower
bound �BMLB� of an SDF arc � � A� denoted BMLB���� is given by

BMLB��� �

�
����� � delay���� if �delay��� � �����

delay��� if �delay��� � �����
�����

where

���� �
produced��� consumed���

gcd�fproduced���� consumed���g�
�

If G is an SDF graph� then �X
��A

BMLB���

�
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is called the BMLB of G� and a valid single appearance schedule S for G that satis�es
max tokens��� S� � BMLB��� �� � A is called BMLB schedule for G�

It should be noted that not all SDF graphs have valid BMLB schedules� but
many practical graphs do�

��� Why Using an Evolutionary Algorithm

From Example ���� it became clear that there exist simple graphs for which there is
a big gap between the quality of solution obtained using di
erent heuristics such as
APGAN and an Evolutionary Algorithm �EA��

Also� the example has shown that an Evolutionary Algorithm for e�ciently ex�
ploring the vast search space of topological sorts has provided much better solutions
than just performing a random search �Monte�Carlo simulation�� If the run�time of
such an iterative approach is still a
ordable� a performance gap of several orders of
magnitude may be avoided�

Moreover� an Evolutionary Algorithm to e�ciently explore the search space
seems to be the choice at hand because of the following reasons�

� Topological sorts may be easily coded using an Evolutionary Algorithm� De�
tails on the coding scheme will be given in the following chapter�

� Evolutionary algorithms perform a parallel sampling of the search space by
working on populations of individuals�

� The optimization function is allowed to be non�linear and arbitrary complex�

��� Coupling the Evolutionary Algorithm to the

Existing Framework

In this section� we describe the sharing of work for exploring the search space of
bu
er memory optimal single appearance schedule solutions�

The separation of work has already been �gured out in Fig� ����

����� Exploration of topological sorts using the EA

Here� given an acyclic SDF graph� the main di�culties consist in �nding a coding
of feasible topological sorts� One could use a coding scheme which represents a
permutation of the actor set� However� by genetic mutation and crossover� the
permutations in general would not represent topological sorts� Penalty functions
that punish infeasible permutations would not prevent the needle�in�the�haystack
search in some cases� Hence� a simple repair mechanism must be used in order to
guarantee each individual in the actual population to represent a topological sort�

Also� the simple extension to allow also permutations where each actor may �re
enough times without being in topological order are possible� This may happen
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in case enough delays are accumulated on corresponding input arcs of an actor in
question�

Details on the coding scheme are given in the following chapter that deals with
all implementation issues of the evolutionary search procedure� Instead� we conclude
the chapter by summarizing the way� a provably bu
er�memory optimal schedule
may be found for a given actor ordering by dynamic programming�

����� Dynamic Programming Post Optimization

Given a consistent acyclic SDF graph G and� for simplicity� assume that each arc
� � A satis�es delay��� � � �delayless arcs��

In �MBL���� it has been shown that given a topological sort of actors of a con�
sistent� delayless and acyclic SDF graph� a minimum bu
er memory schedule over
all single�appearance schedules for this graph with the same lexical ordering as the
topological sort may be determined as the solution of a dynamic programming prob�
lem �DPPO���

Example �	� Consider again the SDF graph in Fig� ���� With q�A� � �� q�B� �
q�C� � ��� and q�D� � 	� an optimal schedule is ������A���B������C� ��D��� with
a bu�er cost of �
� Given the topological order of nodes A�B�C�D as imposed by
the arcs of G� this schedule is obtained by parenthesization of the string� Note that
this optimal schedule contains a break in the chain at some actor k� � � k � K	 ��
Because the parenthesization is optimal� the chains to the left of k and to the right of
k must also be parenthesized optimally� This structure of the optimization problem
is essential for dynamic programming�

Let b�i� j�� � � i � j � K denote the minimum bu
er cost �over all valid single
appearance schedules with the same actor ordering� for scheduling the subgraph
induced by the actors vi� vi��� � � � � vj�

�

For � � i � j � K� b�i� j� may be calculated as

b�i� j� � min
i�k�j

fb�i� k� � b�k � �� j� � ci�j�k�g� �����

where b�i� k� is the minimum bu
er cost for the subgraph induced by fvi� � � � � vkg and
b�k � �� j� is the minimum bu
er cost for the subgraph induced by fvk��� � � � � vjg�
b�i� i� � �� and ci�j�k� denotes the memory cost at the split if we split the graph
at actor vk into a parenthesized left subgraph induced by fvi� � � � � vkg and a paren�

�The extension GDPPO in �BML��� guarantees that given any �not necessarily delayless� con�
sistent SDF graph and a lexical ordering �not necessarily a topological sort�� a single appearance
schedule is computed that minimizes the bu	er memory over all single appearance schedules that
have the given lexical ordering �assuming that at least one valid single appearance schedule exists
that has the given lexical ordering�


�This graph has the node set V � � fvi� vi��� � � � � vjg and the arc set A� � f� � Ajsource��� �
V � and sink��� � V �g
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thesized right subgraph induced by fvk��� � � � � vjg� The minimal bu
er cost of the
complete graph is then obtained as b���K���

The split cost ci�j�k� is obtained as

ci�j�k� �

P
��A�Acut

�produced��� q�source����

gcd�fq�vi�� q�vi���� � � � � q�vj�g�
�����

where Acut denotes the arc set

Acut � f� � Aj�source��� � fvi� vi��� � � � � vkg and sink��� � fvk��� vk��� � � � � vjg�g
���
�

An easy extension to include also shared bu
ering is to assume that there is one
shared bu
er of size

csi�j �
maxi�k�j�

P
��A�Acut

�produced��� q�source�����

gcd�fq�vi�� q�vi���� � � � � q�vj�g�
�����

for the subgraph with nodes fvi� vi��� � � � � vjg� Finally� the cost b�i� j� is replaced by
b��i� j� with

b��i� j� � min�fb�i� j�� csi�jg�

In this case� the optimization procedure also determines which arcs to be imple�
mented in shared bu
er and which arcs should be implemented separately�

An extension to include also initial delay on arcs is also possible�

�In the case of general acyclic graphs with multiple source and�or multiple sink nodes� a dummy
node v� that becomes the unique source of all former source nodes may be introduced
 For multiple
sinks� a dummy node nK�� may be similarly introduced that becomes target of all former sink
nodes
 Finally compute the minimum bu	er cost as b�
�K� ��
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Parametrization of the

Evolutionary Algorithm

As described in the foregoing chapter� we use an Evolutionary Algorithm to sam�
ple the search space of all possible topological sorts of a given SDF graph� Each
topological sort is assigned a �tness value� re�ecting bu
er memory requirements�
which is computed by the SDF framework� The aim is to �nd the graph node or�
der which yields a single appearence schedule with minimal bu
er cost among all
possible orders�

The �owchart of the Evolutionary Algorithm is depicted in Figure ���� The left
hand side shows the single steps of the algorithm� the right hand side visualizes the
e
ect of each step on the population� The contents of the population are exemplary
and refer to the simple SDF graph presented in Figure ����

In the �rst step an initial population is created� It contains randomly generated
individuals� the phenotype of which represents a topological sort� The evolution of
new generations is done in the main loop� After the �tness evaluation� the popu�
lation is modi�ed by applying the three genetic operators selection� recombination�
and mutation� While the selection operator increases the average quality of the
population� the two variation methods recombination and mutation serve the ex�
ploration of new topological sorts� In contrast to other descriptions of Evolutionary
Algorithms �Gol	���Koz���� here we view selection� recombination� and mutation as
independent processes subsequently working on the whole population�

In the following� we deal with the details of the Evolutionary Algorithm� The
problem of encoding node orders and transforming arbitrary orders into valid topo�
logical sorts is addressed in Section ���� Section ��� treats the kind of genetic
operators we have implemented� while section ��� examines the in�uence of di
er�
ent crossover and mutation probabilities on the performance of the Evolutionary
Algorithm�

��
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EVOLUTIONARY ALGORITHM

Stop?

Figure ���� Flowchart of the Evolutionary Algorithm�

��� Coding and Repair Mechanism

Our problem is a combinatorial optimization problem rather than a numerical opti�
mization problem� It naturally suggests to use an order�based representation� But
we do not consider arbitrary orderings of the nodes in the graph because we are
only interested in topological sorts� Instead� each individual encodes a permutation
over the set of nodes� Hence� the initial population consists of randomly created
permutations�

Beyond it� a simple repair mechanism� transforming permutations into topolog�
ical sorts� guarantees that every genotype can be mapped to a valid topological
sort� So� there are no infeasible individuals in the population� On the other hand�
since each topological sort is simultaneously a permutation� the whole search space
is covered by this representation�

The skeleton of the repair algorithm is formed by a common algorithm for sorting
graphs topologically �see Figure ����� In each step� a node with an indegree equal
to zero is chosen and removed from the graph �together with the incident edges��
The order in which the nodes appear determines the topological sort� With it� the
tie between several nodes with no ingoing edges is normally broken by random�
Our algorithm� however� always selects the node at the leftmost position within the
permutation� This ensures on the one hand� that each individual is mapped unam�
biguously to one topological sort� and� on the other hand� that every topological
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PROCEDURE Repair
IN� permutation � node list�

graph � sdf graph�
OUT� topsort � node list�

BEGIN
Clear�topsort��
WHILE NOT Empty�permutation� DO

node �� First�permutation��
WHILE node �� NIL AND Indegree�node� graph� � � DO

node �� Next�node� permutation��
OD
IF node � NIL THEN

Error��cyclic graph���
Stop�

FI
Remove�node� permutation��
Append�node� topsort��
FOR edge IN OutgoingEdges�node� graph� DO

DeleteEdge�edge� graph��
OD

OD
END

Figure ���� Repair algorithm for mapping permutations to topological sorts�

sort has at least one encoding�

Example �	� Recall the SDF graph depicted in Figure ��	� and suppose� the repair
algorithm is working on the permutation BCDEFAGHIJ� Since the node A has no
ingoing edges but is predecessor of all other nodes� it has to be placed �rst in any
topological sort� The order of the remaining nodes is unchanged� Therefore� the
resulting topological sort after the repair procedure in Figure ��	 is ABCDEFGHIJ�

Note that in the real system an optimized algorithm has been implemented which
avoids delete operations on the SDF graph�

��� Genetic Operators

Many selection schemes exist as well as crossover and mutation methods specialized
for order�based representations� In the following� we outline the operators we have
chosen�
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Selection The selection scheme chosen is tournament selection� In tournament
selection a �xed number of individuals is picked out randomly� and the individual
having the best �tness value �lowest bu
er cost� within this group is copied to the
new population� This process is repeated until the new population has been �lled
up�

The advantage of this algorithm is its linear time complexity O�N�� where N

denotes the population size� Fitness proportionate selection has linear time com�
plexity too� but in contrast to tournament selection it is not translation invariant
�dlMT���� That means increasing the �tness values by adding a constant causes a
change in the result of the selection process�� On the other hand� e�g�� rank selection�
which is translation invariant� needs al least O�N logN� run�time due to sorting the
population�

The issue of run�time is important for our concerns� Although in Section ����
run�time tolerability was claimed as an essential feature of our methodology� we paid
special attention to a fast implementation of the Evolutionary Algorithm in order
to be competitive to the existing� deterministic heuristics�

Independent of this selection scheme� an elitist strategy has been implemented�
the best individual per generation is preserved by simply copying it to the population
of the next generation�

Crossover Since individuals encode permutations� it is crucial that the variation
operators do not destroy the permutation property� Each node has to appear exactly
one time in a sequence coded by a chromosome� To accomplish this task� the uniform
order�based crossover operator �Dav����FM��� is applied� We give a short description
of it below�

C E

A

B - I- J- HE

JHGFDBA I

C - - -J - G E D - -

CDE

11

GIJ BF

-

E IG B F D A H J

H

1100010 1

C B C HJ A G E D F I

A D F G

G F D A

I H F C B A

A B C F H I

1) select parents

2) generate random bit string

3) fill in selected positions

4) collect missing elements in list

6) fill up children

5) re-order list

parent 2

parent 1

child 2child 1

Figure ���� Uniform oder�based crossover�

�Since the bu	er costs may vary extremely for di	erent applications� translation invariance is
an important aspect
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First� a bit string is randomly generated that is the same length as the parents�
The bit positions correspond to the positions within the permutations de�ned by
the parents� Then the �rst child is partly �lled up� The node annotations of the �rst
parent are copied to this child at the positions where the bit string contains a  � �
Analogously� the second child inherits the node annotations of the second parent
wherever a  � occurs� Now� both children have gaps at complementary positions�
In a third step� for each child a list is built up which contains all nodes not yet
speci�ed in the child� Afterwards� the list of the �rst child is sorted according to the
node order in the second parent� Again� the same is done to the list of the second
child� The relative order of the nodes in the list is identical to their relative order
in the �rst parent� Finally� step by step and from left to right� the list elements are
inserted at the gaps of the corresponding child�

Example �	� Let the �rst parent be the sequence ABCDEFGHI and the second
parent the same sequence in reverse order� The intermediate results of the crossover
phase are shown in Figure ���� At the end� two children� GBCFEDAHIJ and
JABGCEDFHI� have been created�

Mutation Mutation is done by permuting the elements between two selected po�
sitions� whereas both the positions and the subpermutation are chosen by random�
That is what Davis calls scramble sublist mutation �Dav����

Example �	� Figure shows an example for this operator� The chromosome
ABCDEFGHIJ mutates to the sequence ABCFDGEHIJ�

C D

C IA B H JD F G

JHGF IBA E

E

C IA B H JEGDF

1) select individual

2) choose two random positions

3) permutate sublist randomly

Figure ���� Scramble sublist mutation�

��� Crossover Probability and Mutation Proba�

bility

To the recombination operator as well as to the mutation operator� probabilities
for their application are associated� namely the crossover probability pc and the
mutation probability pm� The setting of these two parameters might have great
in�uence on the outcome and the convergence speed of the Evolutionary Algorithm�
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Therefore we tried several di
erent pc�pm�combinations on a few random graphs
containing �� nodes��

Based on experimental results �not to go further into detail�� we have chosen a
population size of �� individuals� The crossover rates we tested are �� ���� ���� ��
�
and ��	� while the mutation rates cover the range from � to ��� by a step size of ����
Altogether� the Evolutionary Algorithm ran with �� various pc�pm�settings on every
test graph� It stopped after ���� �tness evaluations� For each combination we took
the average �tness �bu
er cost� over ten independent runs�

Exemplary� the results for a particular graph are visualized by the �D plot in
Figure ���� the results for the other random test graphs look similar�

0.0
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0.4
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0.1

0.0

  pm
968077

1054935

buffer cost

.0
0.2

0.4

0.6

0 8

pc

Figure ���� In�uence of the crossover probability pc and the mutation probability
pm on the average �tness for a particular test graph ����� �tness evaluations��

Obviously� mutation is essential to this problem� Setting pm to � leads to the
worst results of all probabilty combinations� If pm is greater than �� the obtained
average bu
er costs are signi�cantly smaller!almost independently of the choice
of pc� As can be seen in Figure ��
 this is due to premature convergence� The
curve representing the performance for pc � ��� and pm � � goes horizontally after
about ��� �tness evaluations� No new points in the search space are explored�
As a consequence� the Monte Carlo optimization method� that simply generates
random points in the search space and memorizes the best solution� might be a
better approach to this problem� We investigate this issue in Chapter ��

On the other hand� the impact of the crossover operator on the overall per�
formance is not as great as that of the mutation operator� With no mutation at
all� increasing pc yields decreased average bu
er cost� But this is not the same to
cases where pm � �� The curve for pc � ��
 and pm � ��� in Figure ��
 bears out
this observation� Beyond it� for this particular test graph a mutation probability of
pm � ��� and a crossover probability of pc � � leads to best performance� This might

�Graphs consisting of less nodes are not very well suited to obtain reliable values for pc and pm�
because the optimum is yet reached after a few generations� in most cases
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be interpreted as hint that Hill Climbing is also suitable in this domain� The Hill
Climbing approach generates new points in the search space by applying a neigh�
borhood function to the best point found so far� A comparison of the Evolutionary
Algorithm to Hill Climbing is presented in chapter ��
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975000
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1. 10
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Buffer Cost

pc=0.0 pm=0.2

pc=0.2 pm=0.4

pc=0.2 pm=0.0

pc=0.6 pm=0.2

Figure ��
� Performance of the Evolutionary Algorithm according to four di
erent
pc�pm�combinations� each graph represents the average of ten runs�

Nevertheless� with respect to the results on other test graphs� we found a
crossover rate of pc � ��� and a mutation rate of pm � ��� to be most appropriate
for this problem�
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Experiments

To evaluate the performance of the Evolutionary Algorithm we tested it on several
practical examples of acyclic� multirate SDF graphs as well as on ��� acyclic random
graphs� each containing �� nodes and having ��� edges in average� The obtained
results were compaired against the outcomes produced by APGAN� RPMC� Monte
Carlo �MC�� and Hill Climbing �HC�� We also tried a slightly modi�ed version of
the Evolutionary Algorithm which �rst runs APGAN and then inserts the computed
topological sort into the initial population�

Table ��� shows the results of applying GDPPO to the schedules generated by
the various heuristics on several practical SDF graphs� the satellite receiver example
is taken from �RWM���� whereas the other examples are the same as considered in
�BML�
�� The probabilistic algorithms ran once on each graph and were aborted
after ���� �tness evaluations� Additionally� an exhaustive search with a maximum
run�time of � hour was carried out� as it only completed in two cases�� the search
spaces of these problems seem to be rather complex�

In all of the practical benchmark examples that make up Table ��� the results
achieved by the Evolutionary Algorithm equal or surpass the ones generated by
RPMC� Compared to APGAN on these practical examples� the Evolutionary Algo�
rithm is neither inferior nor superior� it shows both better and worse performance
in two cases each� Furthermore� the performance of the Hill Climbing approach is
almost identical to performance of the Evolutionary Algorithm� The Monte Carlo
simulation� however� performs slightly worse than the other probabilistic approaches�

Although the results are nearly the same when considering only ���� �tness
evaluations� the Evolutionary Algorithm �as well as Monte Carlo and Hill Climbing�
cannot compete with APGAN or RPMC concerning run�time performance� E�g��
APGAN needs less than ��� second for all graphs on a SUN SPARC ��� while the
run�time of the Evolutionary Algorithm varies from ��� seconds up to � minutes
����� �tness evaluations��

�Laplacian pyramid �minimal bu	er cost� ���� QMF �lterbank� one�sided tree �minimal bu	er
cost� �
��


��
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System BMLB APGAN RPMC MC HC EA EA �
APGAN

Fractional
decimation

�� �� �� �� �� �� ��

Laplacian
pyramid

�� �� �� �� �� �� ��

Nonuniform
�lterbank
����� ��� splits�
�� channels�

�� ��� ��� ��� ��� ��� ���

Nonuniform
�lterbank
����� ��� splits�
�� channels�

��� ��� ��� �
� ��
 ��
 ��


QMF
nonuniform�
tree �lterbank

��� ��
 ��� ��� ��
 ��
 ���

QMF �lterbank
�one�sided tree�

�
� �
� ��
 ��
 �
� �
� �
�

QMF analysis
only

�� �� �� �� �� �� ��

QMF tree
�lterbank
�� channels�

�� �� �� �� �� �� ��

QMF tree
�lterbank
�� channels�

�� �� �� �� �
 �
 ��

QMF tree
�lterbank
��� channels�

��� ��� �

 ��� ��
 ��� ���

satellite receiver ���
 ���� ���
 ���� ���� ���� ����

Table ���� Comparison of performance on practical examples� the probabilistic al�
gorithms stopped after ���� �tness evaluations�

The results concerning the random graphs are summarized in Table ���� again�
the stochastic approaches were aborted after ���� �tness evaluations�� Interestingly�
for these graphs APGAN only in ��� of all cases is better than Monte Carlo and
only on in two cases better than the Evolutionary Algorithm� On the other hand�
it is outperformed by the Evolutionary Algorithm ��� of the time�� This is almost
identical to the comparison between Hill Climbing and APGAN� As RPMC is known
to be better suited for irregular graphs than APGAN �BML�
�� its better perfor�
mance �
����� is not surprising when directly compared to APGAN� Although� it is
beaten by the Evolutionary Algorithm as well as Hill Climbing in ����� and �
���
of the time� respectively� These results are very promising� but have to be considered
in association with their quality� i�e�� the magnitude of the bu
er costs achieved�

Thus� we investigate the issue of deviation in the results on the random graphs

�The Evolutionary Algorithm ran about � minutes on each graph� the time for running APGAN
was constantly less than � seconds


�Considering ��

 �tness calculations� this percentage decreases only minimally to ��
��
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� APGAN RPMC MC HC EA EA �

APGAN

APGAN �� ����� ��� �� �� ��
RPMC 
���� �� ����� ���� ���� ����
MC 	�� ����� �� ���� ���� ��
HC ���� �
��� ����� �� ��� ���
EA ��� ����� ����� ��� �� ���
EA � APGAN ���� ����� ��� ����� ����� ��

Table ���� Comparison of performance on ��� ���actor SDF graphs ����� �tness
evaluations�� for each row the numbers represent the fraction of random graphs on
which the correspondig heuristic outperforms the other approaches�

in the following sections� Section ��� compares the Evolutionary Algorithm to AP�
GAN and examines� whether a combination of both approaches improves the overall
performance� In Section ��� we analyze the outcomes produced by the Evolutionary
Algorithm regarding RPMC� Finally� the remaining two sections compare the Evo�
lutionary Algorithm to the other probabilistic optimization methods� Monte Carlo
and Hill Climbing� respectively�

��� Comparing the Evolutionary Algorithm to

APGAN

Figure ��� gives an impression of the quality of the results �magnitude of the bu
er
costs� computed by the Evolutionary Algorithm relative to APGAN� The left hand
side shows the deviations when aborting the Evolutionary Algorithm after ����
�tness evaluations� the right hand side shows the same for ���� �tness evaluations�
for both cases a complete plot as well as a reduced plot focusing on relevant details
is given� The x axis ranges from � to ��� representing the various random graphs�
while the y axis denotes the factor by which the Evolutionary Algorithm is superior
�positive range� or inferior �negative range�� respectively� to APGAN� E�g�� the y

value ���� means that the bu
er cost yielded by the Evolutionary Algorithm is half
the APGAN result on the same random graph� on the other hand� the y value	����
indicates that APGAN performs twice as good as the Evolutionary Algorithm on a
particular graph�

Together with the results presented in Table ���� the superiority of the Evolu�
tionary Algorithm� regarding highly irregular graphs� becomes evident� The bu
er
costs are half the costs computed by APGAN in average� A deviation up to the
factor �	 is achieved on a particular graph� in six cases an improvement by a factor
greater than � can be observed� As stated in �BML���� APGAN performs well on
graphs that have relatively regular topological structures and rate changes� Since
large random graphs are rather expected to be irregular� this may explain the bad
performance of APGAN relative to the Evolutionary Algorithm on our collection of



CHAPTER �� EXPERIMENTS ��

1500 Fitness Evaluations

50 100 150 200

100%

200%

300%

400%

500%

600%

50 100 150 200
100%

500%

1000%

1500%

2000%

2500%

3000%

3000 Fitness Evaluations

50 100 150 200

100%

200%

300%

400%

500%

600%

50 100 150 200
100%

500%

1000%

1500%

2000%

2500%

3000%

Figure ���� Quality of the results produced by the Evolutionary Algorithm relative
to APGAN� The two upper graphics show all points in one plot� while the lower two
zoom into interesting regions�

random graphs�
Inserting the APGAN solution into the initial population seems to have only

slight in�uence on the quality of results �cf� Figure ����� After ���� �tness calcula�
tions the average bu
er cost are smaller by a factor of ������ which is rather caused
by random e
ects than due to better performance� On the other hand� regarding
the case of ���� �tness evaluations� the extension of the Evolutionary Algorithm
leads to an improvement of a factor ������ This might indicate that this extension
converges slightly faster towards the end result� We examined that issue on three
random graphs� comparing the performance of both approaches in dependence on
the number of �tness evaluations �see Figure ��
 on page �	�� With respect to one
particular graph� this hypothesis could be con�rmed� while on the other two graphs
we found no signi�cant di
erences in the behavior�

Nevertheless� the Evolutionary Algorithm and APGAN complement one another
when regarding both regular and irregular graphs� On the one hand� APGAN ex�
ploits regularity that arises commonly in practical applications� and is provably op�
timal for an interesting class of graphs ��BML�
��� On the other hand� the run�time
needed by APGAN can be neglected in comparison to the Evolutionary Algorithm�
Hence� it is a good idea to combine the two approaches in the presented manner�
Table ��� shows that ����� of the time smaller bu
er costs can be achieved� while
the Evolutionary Algorithm without APGAN outperforms the combined approach
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Figure ���� In�uence of inserting the APGAN solution into the initial population
on the quality of results�

in only ��� of all cases�

��� Comparing the Evolutionary Algorithm to

RPMC

Relative to APGAN� RPMC is expected to perform well on graphs that have rather
irregular rate changes and irregular topologies �BML�
�� although� it has no known
optimality property relevant to practical graphs� Therefore� the question is whether
RPMC or the Evolutionary Algorithm is the more appropriate complement to AP�
GAN�

Table ��� shows that RPMC is outperformed by the Evolutionary Algorithm in
����� of the time ����� �tness calculations��� Moreover� the bu
er costs achieved
by RPMC are signi�cantly greater than the ones computed by the Evolutionary
Algorithm �cf� Figure ����� In average the results are worse by a factor of ���	 and
��
 in the case of ���� and ���� �tness evaluations respectively� In one case the
Evolutionary Algorithm performs better by a factor of ��� on twelve random graphs
this factor is greater than ��

These results indicate that the Evolutionary Algorithm is superior to RPMC on
highly irregular graphs� Additionally� it performs also better on the practical graphs

���� in the case of ��

 �tness calculations
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Figure ���� Quality of the results produced by the Evolutionary Algorithm relative
to the ones achieved by RPMC�

listed in Table ���� Therefore� the Evolutionary Algorithm is the better choice when
extra execution time is tolerable�

We also thought of incorporating RPMC into the Evolutionary Algorithm �sim�
ilar to APGAN�� However� since RPMC does not have any optimality property and
surpasses the combination of Evolutionary Algorithm and APGAN in only ���� of
the time �cf� Table ����� we did no further investigations in this direction� Nev�
ertheless� one might combine APGAN� RPMC and Evolutionary Algorithm as the
run�time of APGAN and RPMC can be neglected in comparison to the evolutionary
approach�

��� Evolutionary Algorithm versus Monte Carlo

The Monte Caro implementation is very simple� Based an a uniform probability
distribution� a certain number of topological sorts �bounded by the maximum num�
ber of �tness calculations� is generated randomly and to each of them GDPPO is
applied� Finally� the topological sort with minimal bu
er cost among all considered
is the outcome of the algorithm� Since no mutation and crossover are necessary� this
algorithm runs slightly faster than the Evolutionary Algorithm�
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Figure ���� Quality of the results produced by the Evolutionary Algorithm relative
to the Monte Carlo method�

Disregarding the quality of results� the Evolutionary Algorithm clearly outper�
forms Monte Carlo ���� of the time� cf� Table ����� while there is only one case
where Monte Carlo yields a better result� This is also true when considering the de�
viation of results� as can be seen in Figure ���� In average� the bu
er costs computed
by the Evolutionary Algorithm are only a fraction of ��	� of the costs produced by
the Monte Carlo heuristic� The case of ���� �tness evaluations looks identical�

These results are substantiated by the curves shown in Figure ��
 on page �	�
With it� we considered three random graphs and took the mean �tness value of
ten independent runs at each point in time� Monte Carlo performs worse than the
Evolutionary Algorithm as well as Hill Climbing�

In summary it may be said that the Evolutionary Algorithm is far better suited
for this application domain than the Monte Carlo approach!in contrast to the
presumption we made in Section ��� that the opposite may be true�

��� Evolutionary Algorithm versus Hill Climbing

We implemented Hill Climbing similarly to the Evolutionary Algorithm� First a
starting point p� representing a permutation over the graph nodes� is chosen at
random� Then the following loop is executed n 	 � times� where n denotes the
maximum number of �tness evaluations�
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Figure ���� Quality of the results produced by the Evolutionary Algorithm relative
to the Hill Climbing method�

�� A new point p� is created by appling the scramble list mutation operator to p
�cf� Section �����

�� Both p and p� are transformed into a topological sort by means of the repair
mechanism described in Section ����

�� The resulting topological sorts are evaluated by the SDF framework� if the
phenotype of p� requires less bu
er memory than the phenotype of p� p is set
to p��

Compared to the Evolutionary Algorithm� the results listed in Table ��� seem
to indicate a superiority of the Hill Climbing method� its results are better ��� of
the time and worse only ��� of the time� But when we examined the variations of
the bu
er costs computed by the two algorithms� we found no reliable indication for
this hypothesis�

Figure ��� shows the quality of the results calculated by the Evolutionary Algo�
rithm relative to the ones achieved by Hill Climbing� In average� the performance
of Hill Climbing is better by a factor of ������!a non�sign�cant margin�

Also the curves plotted in Figure ��
 do not provide evidence of the superiority
or the inferiority of one approach� Further investigations are necessary to answer
this question�
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Figure ��
� Performance of the probabilistic methods on three di
erent random
graphs� For both each graph and each method we took the average bu
er cost over
ten independent runs�
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Summary and Conclusions

We have proposed a new approach for �nding bu
er�optimal schedules among the
set of program�memory schedules for uni�processor implementations of SDF graphs
using a two�step approach� An Evolutionary Algorithm �EA� is used to explore the
search space of legal actor �ring orders� During the �tness computation� a O�N��
dynamic programming post�optimizer calculates a loop nest with minimum bu
er
cost for the given actor �ring order�

The results obtained have shown that this approach� though being more compu�
tationally expensive than existing algorithms such as PGAN and RPMC� promise to
�nd better solutions in a reasonable amount of run�time� The di
erences in quality
seem to become even more severe for larger graphs with irregular structures� Here�
we tested the performance only for graphs with up to �� nodes�

The experiments have also shown that Hill Climbing could be a good alternative
to the EA approach� However� in this paper� we did not investigate this further�

The ease to de�ne and change the �tness function when using an Evolutionary
Algorithm makes us think of the following extensions as part of the continuation of
this preliminary investigation�

� Exploitation of di�erent bu�er allocation schemes�
The bu
er cost model used in our experiments so far considered only statically
allocated contigous memory segments that were not shared between di
erent
arc bu
ers� However� it should be possible to consider also memory�bu
er
sharing and more complex types of memory allocation� This should be pos�
sible be considering slightly more complex �tness functions� In this case� the
optimization procedure does not only determine the optimum bu
er costs but
also makes decisions of what bu
er organization to choose for each arc of a
given graph�

� Exploitation of optimal �at single appearance schedules�
The generated topological sorts could be considered directly as �at single ap�
pearance schedules� For these� the dynamic programming post�optimizer could
be replaced by a memory allocation algorithm that exploits sharing between
di
erent arcs� Because this problem is NP�hard� too �for non�unit bu
er�sizes��

��
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we are currently developing e�cient bu
er allocation heuristics based on the
life�time of memory blocks�

� Consideration of general �non�acyclic� SDF graphs�
Here� we considered only acyclic SDF graphs� This had the advantage that
the coding of actors had a linear space�complexity in terms of the number of
nodes in the graph� This low complexity� however� was obtained at the cost
of only exploiting bu
er�memory schedules at the front of constant program�
memory �single appearance schedules�� Questions such as what is a minimal
program�memory for designs at the front of bu
er�memory optimal schedules
could not be answered� Note� however� that in case of multiple�appearance
schedules� the consideration of an amount of actor �rings that is given by the
number of entries in the minimal repetition vector seems to be unavoidable�
Whether this approach is not prohibitive for typical DSP algorithms� however�
will �rst have to be shown�

Finally� not only these two criterion are of importance in the generation of
DSP implementations of SDF graphs� but also other criterion such as execu�
tion time� and throughput� respectively� It would be interesting to investi�
gate trade�o
s between code�inlining and subprogram generation so to trade
between program memory and execution time� In particular� code�inlining
might still not be favorable in case of SOS �system on a chip� implementations
of DSP algorithms� There� subprogram generation may lead to a dramatic
decrease of required program memory in case multiple�appearance schedules
are investigated� Whether EAs will help to answer these questions will be a
project of longer terms�
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