Polymere II : Physik

H. C. Öttinger, M. Hütter und P. Schurtenberger
Für das Erstellen der elektronischen Version des Manuskripts danken wir Santosh Ansumali.
Inhaltsverzeichnis

Kapitel	Titel	Seiten
1	Einführung in die Polymerphysik	7
1.1	Was sind Polymere?	7
1.2	Weshalb interessieren sich Physiker für Polymere?	8
1.3	Einführung in die Statik	11
2	Konformation von Einzelketten in Lösung	13
2.1	Das Irrflugs-Modell: Wiederholung	13
2.1.1	Exkurs: Zentraler Grenzwertsatz (Für Interessierte)	19
2.2	Ein klassisches Streuexperiment	20
2.2.1	Exkurs: Streuquerschnitte und Wirkungsquerschnitte in der Physik (Für Interessierte)	26
2.3	Zusammenfassung	27
3	Strukturfaktor	29
3.1	Allgemeine Bedeutung	29
3.2	Korrelationsfunktion	30
3.3	Die Deby-Funktion	35
3.4	Lichtstreuung	40
3.4.1	Exkurs: Die „Inkompressibilitäts-Hypothese“ (Für Interessierte)	50
3.5	Neutronenstreuung	54
4	Ausgeschlossenes Volumen	63
4.1	Zusammenstellung der bisherigen Ergebnisse	63
4.2	Vereinfachte Beschreibung nach Flory	64
4.3	Modell und Simulationstechniken	66
4.3.1	Monte-Carlo-Simulationen: (Pseudo-)Zufallszahlen	68
4.4	Test durch Streuexperimente	69
4.4.1	Experimenteller Test der Skalengesetze	70
4.4.2	Asymptolisches Verhalten von $S(q)$	70
4.4.3	Vollständiger Strukturfaktor $S(q)$	72
5 Persistenz

5.1 Berücksichtigung chemischer Details ... 75
5.1.1 Der Einfluss der lokalen Chemie ... 77
5.2 Kuhnsches Ersatzknäuel ... 78
5.3 „Wormlike Chain“-Modell ... 80
5.3.1 End-zu-End-Abstand ... 80
5.3.2 Trägheitsradius ... 82
5.4 Vergleich mit experimentellen Daten .. 82
5.4.1 Trägheitsradius ... 82
5.4.2 Statischer Strukturfaktor eines „Wormlike Chain“ 87
5.5 Persistenz in realen Systemen .. 89

6 Lösungsmittel- und Temperatureffekte .. 91

6.1 Ein erweitertes Modell ... 91
6.1.1 Zusammenfassung und Ausblick ... 91
6.1.2 Formulierung eines erweiterten Gittermodells 93
6.1.3 Methoden .. 93
6.1.4 Ergebnisse ... 94
6.2 Experimente ... 95

7 Polyelektrolyte ... 101

7.1 Was sind Polyelektrolyte? .. 101
7.2 Elektrostatische Wechselwirkungen .. 104
7.3 Blob-Modell für Polyelektrolyte .. 108
7.3.1 Hochgeladene Polyelektrolyte ... 108
7.3.2 Schwach geladene Polyelektrolyte ... 109
7.4 Polyelektrolyte als „Wormlike Chains“ 109
7.4.1 Persistenzlänge ... 110
7.4.2 Ausgeschlossenes Volumen .. 114

8 Wechselwirkende Ketten .. 117

8.1 Konzentrationsbereiche ... 117
8.2 Osmotischer Druck .. 119
8.2.1 Pfeffersche Zelle und osmotischer Druck 119
8.2.2 Osmotischer Druck für ein System nicht wechselwirkender Ketten .. 121
8.2.3 Virialentwicklung ... 122
8.3 Streuexperimente und osmatische Kompressibilität 127
8.4 Halbverdünnte Lösungen .. 133
8.4.1 Blob-Bild und Skalengesetze ... 133
8.4.2 Statische Korrelationslänge .. 135
8.4.3 Trägheitsradius ... 139
8.4.4 Temperaturabhängigkeit ... 140
8.5 Strukturfaktor ... 141
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.1 Markierte Ketten</td>
<td>141</td>
</tr>
<tr>
<td>8.5.2 Unmarkierte Ketten</td>
<td>142</td>
</tr>
<tr>
<td>8.6 Konzentrierte Lösungen und Schmelzen</td>
<td>145</td>
</tr>
<tr>
<td>8.7 Zusammenfassung</td>
<td>145</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS
Kapitel 1

Einführung in die Polymerphysik

1.1 Was sind Polymere?

Polyethylen (PE) \([-\ce{CH2-CH2-}]_N\)

Polystyrol (PS) \([-\ce{CH2-CH(\ce{C6H5})-}]_N\).

In den Strukturformeln ist \(N\) der Polymerisationsgrad, also die Anzahl der Monomeren pro Kette. Polyethylen und Polystyrol sind sogenannte Homopolymere, also Polymere, die aus identischen Monomeren aufgebaut sind. Wenn ein Polymer aus verschiedenen Monomeren besteht, spricht man von einem Kopolymer. Je nach Abfolge der Monomere handelt es sich dabei um ein statistisches Kopolymer, bei dem die Monomere regellos aufeinander folgen, oder um ein Block-Kopolymer, bei dem die verschiedenen Monomere in Blöcken angeordnet sind.

Die meisten Polymere sind nicht alle exakt gleich lang. Diese für Polymere charakteristische Eigenschaft heisst Polydispersität. Alle synthetischen Polymere sind polydispers, nur bei einigen Biosynthesen entstehen einheitliche (monodisperse) Po-
lymere. Bei einem Ensemble von Polymeren bezeichnet N also die mittlere Anzahl von Monomeren pro Kette. Ein Polymer hat demnach kein einheitliches Molekulargewicht, man beobachtet vielmehr eine Molekulargewichtsverteilung, die von dem Polymerisierungs- und Verarbeitungsprozess abhängt.

Das physikalische Verhalten eines Polymers und damit auch seine Werkstoffeigenschaften hängen in empfindlicher Weise vom Molekulargewicht ab. Statt der gesamten Verteilungsfunktion bestimmt man im Experiment häufig nur Mittelwerte, die sich je nach Messverfahren voneinander unterscheiden. Aus der Osmometrie erhält man beispielsweise das Zahlenmittel des Molekulargewichts, die statische Lichtstreuung liefert dagegen einen gewichtsmittelten Wert. Als Mass für die Polydispersität wird hauptsächlich das Verhältnis zwischen Gewichts- und Zahlenmittel des Molekulargewichtes M_w/M_n verwendet.

1.2 Weshalb interessieren sich Physiker für Polymere?

Was wir nicht bieten wollen (und können), ist eine umfassende Rezept- oder Formelsammlung, mit deren Hilfe sich konkrete Fragen aus den Materialwissenschaften durch den Rückgriff auf eine vermeintlich passende Formel „lösen“ lassen. Unser Zugang zur Polymerphysik ist vielmehr der Versuch, das physikalische Verhalten der Polymere zu erklären, indem wir geeignete theoretische und experimen-
1.2. WESHALB INTERESSIEREN SICH PHYSIKER FÜR POLYMERE?

Im Laufe dieser Vorlesung werden wir das Wechselspiel zwischen lokalen und globalen Größen, zwischen statischen und dynamischen Eigenschaften sowie zwischen Gleichgewichts- und Nichtgleichgewichtsphänomenen untersuchen:

\[
\begin{array}{ccc}
\text{lokal} & \downarrow & \text{global} \\
\text{statisch} & \longrightarrow & \text{dynamisch} \\
\end{array}
\]

Bei starker Vergrösserung sieht man die lokalen Eigenschaften des Polymers, also die Abfolge und die gegenseitige Anordnung der Monomere entlang der Kette. Diese Information über die chemischen Details geht immer mehr verloren, je geringer wir die Auflösung unseres “Mikroskops“ einstellen, bis wir schliesslich das Polymer als Ganzes im Blickfeld haben. Auf dieser globalen Beobachtungsebene können wir nicht mehr ohne weiteres entscheiden, ob wir ein Polyethylenknäuel oder beispielsweise ein Polystyrolknäuel vorliegen haben.

Wir erwarten daher, dass lineare Makromoleküle unabhängig von ihrem molekularen Aufbau gleiche globale Eigenschaften besitzen. Zu diesen Eigenschaften zählen beispielsweise der End-zu-End-Abstand \(R_E \), der Trägheitsradius \(R_G \) oder der hydrodynamische Radius \(R_H \).

- Der Trägheitsradius \(R_G \) wird uns eine Aussage über die Massenverteilung (um den Schwerpunkt) liefern.
- Der hydrodynamische Radius \(R_H \) wird uns einen Einblick in das dynamische Verhalten eines Polymernäuels ermöglichen.

Bei einer Betrachtung der globalen Eigenschaften von Polymeren wird man die Details der Kettenstruktur vernachlässigen können und stattdessen allgemeingültige Regeln aufzustellen versuchen. Ein auf diesem Weg gefundenes universelles Gesetz sagt beispielsweise folgende Abhängigkeit des Trägheitsradius vom Molekulargewicht voraus:

\[
R_G \approx a N^\nu .
\]

Wir werden im Verlauf der Vorlesung verschiedene solcher Skalengesetze und deren Bedeutung kennenlernen. Solche Beziehungen sind stets nur innerhalb bestimmter Gültigkeitsbereiche anwendbar - also auf Längenskalen, die gross sind gegenüber den atomaren Details.

Neben der Einteilung in lokale und globale Größen unterscheiden wir auch zwischen statischen und dynamischen Eigenschaften. Eine klassische statische Eigen-
1.3. EINFÜHRUNG IN DIE STATIK

Die Kettenkonformation, also die Anordnung der Monomere zueinander aufgrund ihrer Drehbarkeit um die Einzelbindungen entlang der Kette. Mit Hilfe des Trägheitsradius können wir eine Aussage über die vorliegende Konformation eines Polymerknäuels treffen. Zu den wichtigen dynamischen Größen zählt beispielsweise die Viskosität und der Diffusionskoeffizient, der wiederum mit dem hydrodynamischen Radius in Beziehung steht.

Wie in dem nachfolgenden Diagramm angedeutet, ist der Strukturfaktor $S(q)$ die zentrale Größe, um theoretische Vorhersagen anhand experimenteller Ergebnisse auf ihre Richtigkeit zu überprüfen.

\[
\begin{align*}
S(q) \cdot q R_G &< 1 \quad \text{global} \\
S(q) \cdot q R_G &> 1 \quad \text{lokal}
\end{align*}
\]

Traditionell werden in klassischen Physikvorlesungen Gleichgewichtssysteme und ihre Eigenschaften behandelt. Wenn man aber an die vielfältigen Prozesse bei der Polymerverarbeitung denkt, bei denen die verschiedensten Arten von Strömungsvorgängen auftreten, dann sieht man sofort ein, dass Nichtgleichgewichtszustände bei der Behandlung von Polymereigenschaften berücksichtigt werden müssen.

1.3 Einführung in die Statik

Im ersten Teil der Vorlesung beschäftigen wir uns ausschließlich mit statischen Eigenschaften, das dynamische Verhalten von Polymeren ist Gegenstand der späteren Kapitel.

Wir werden danach (Kapitel 3) ein methodenorientiertes Kapitel erarbeiten, das uns erlauben wird, die Ergebnisse des Irrflugs-Modells und weiterer verfeineter Modelle quantitativ zu überprüfen.

Kapitel 2

Konformation von Einzelketten in Lösung

2.1 Das Irrflugs-Modell: Wiederholung

Um Irrflüge auf zwei- und dreidimensionalen Gittern gleichzeitig zu beschreiben, führen wir ganz allgemein ein rechtwinkliges d-dimensionales Gitter ein mit einer Gitterkonstanten a, die in allen d Raumdimensionen identisch ist. In unserem Irrflugs-Modell werden die Nachbarn eines Gitterpunktes mit gleicher Wahrscheinlichkeit aufgesucht. Die Anzahl nächster Nachbarn hängt offensichtlich von der Dimension des Gitters ab und ist gleich $2d$. Demnach beträgt die Wahrscheinlich-

keit für die Auswahl des nächsten Schrittes $1/(2d)$. Für die weitere Betrachtung vereinbaren wir folgende Bezeichnungen: Bezogen auf den willkürlich gewählten Ursprung ist der Ortsvektor zum Gitterplatz j durch r_j mit $j = 1, ..., N$ gegeben, der Verbindungsektor zwischen aufeinander folgenden Gitterplätzen ist dann

$$Q_j := r_{j+1} - r_j, \quad \text{mit} \quad j = 1, ..., N - 1.$$ \hfill (2.1)

Wegen der Gitterstruktur gilt $Q_j = \pm a e_\alpha$ mit $\alpha = 1, 2, ..., d$, wobei e_α die Einheitsvektoren sind. Ein Linienzug, der N Gitterpunkte miteinander verbindet, wird offensichtlich durch $(N - 1)$ Verbindungsektoren beschrieben.

Wenn man ein Polymerknäuel durch einen Linienzug auf einem Gitter wiedergeben will, muss man sich zunächst fragen, wann ein solches Modell überhaupt sinnvolle Ergebnisse liefern kann. Wie man der Abbildung 2.2 entnimmt, werden die Linienzüge mit wachsender Schrittzahl immer glatter und polymerähnlicher, weil die lokalen Gittereigenschaften dann zurücktreten. Die Gitterkonstante definiert eine absolute Längenskala, so wie die Monomere eines Polymers eine absolute Längenskala der realen Kette festlegen. Geht man zu grossen Schrittzahlen (Kettenlängen) über, dann verliert man die Kenntnis über die lokalen Details - beim Gitter also das Wissen über die Gitterkonstante, bei einem realen Polymer die Kenntnis über die chemischen Bausteine.

Was kann man vorhersagen?

2.1. DAS IRRFLUGS-MODELL: WIEDERHOLUNG

Abbildung 2.2: Zufallsbewegung auf einem quadratischen Gitter in Abhängigkeit von der Schrittzahl: \(N = 10^2 \), \(N = 10^3 \), \(N = 10^4 \) und \(N = 10^5 \). Mit zunehmender Länge wird der Linienzug einem Polymer immer ähnlicher.

den End-zu-End-Abstand \(\bar{R}_E \) kennen, den wir allerdings nicht im Experiment messen können. Vor allem bei theoretischen Überlegungen wird uns der End-zu-End-Abstand wertvolle Dienste leisten.

End-zu-End-Abstand

Bevor wir den End-zu-End-Abstand definieren, führen wir den End-zu-End-Vektor ein über die Beziehung:

\[
R_E := r_N - r_1 = \sum_{j=1}^{N-1} Q_j. \tag{2.2}
\]

Der mittlere quadratische End-zu-End-Abstand folgt aus (2.2), indem wir das Skalarprodukt des End-zu-End-Vektors mit sich selbst bilden und anschließend über alle Konformationen mitteln:

\[
\langle R_E^2 \rangle = \langle (r_N - r_1) \cdot (r_N - r_1) \rangle = \left\langle \sum_{j=1}^{N-1} Q_j \cdot Q_k \right\rangle = \sum_{j,k=1}^{N-1} \langle Q_j \cdot Q_k \rangle. \tag{2.3}
\]

Den Mittelwert über alle Konformationen haben wir mit spitzen Klammern \(<>) gekennzeichnet, \(\cdot \) bezeichnet das Skalarprodukt zwischen den Vektoren. Ausgehend von (2.3) definieren wir den End-zu-End-Abstand über:
\[\bar{R}_E := \sqrt{\langle R^2_E \rangle} . \]

(2.4)

In (2.4) haben wir den mittleren quadratischen Abstand verwendet, weil der Mittelwert von (2.2) Null ergibt:

\[\langle R_E \rangle = 0 . \]

(2.5)

Der Grund hierfür liegt in der Symmetrie der Zufallsbewegung. Das Auftreten zweier Linienzüge mit vertauschten Anfangs- und Endpunkten ist gleich wahrscheinlich, daher addieren sich solche Wege zu Null. Im Fall unabhängiger Schritte gilt für \(j \neq k \):

\[\langle Q_j \cdot Q_k \rangle = \langle Q_j \rangle \cdot \langle Q_k \rangle . \]

(2.6)

Das Skalarprodukt der Verbindungsvektoren ist nur für \(j = k \) von Null verschieden. Aus der Definition von \(Q_j \) nach (2.1) folgt unmittelbar:

\[\langle R^2_E \rangle = \sum_{j,k=1}^{N-1} \langle Q_j \cdot Q_k \rangle = \sum_{j=1}^{N-1} \langle Q_j^2 \rangle = (N - 1) a^2 . \]

(2.7)

Der End-zu-End-Abstand (2.4) ist im Irrflugs-Modell bei hinreichend grossen Schrittzahlen, also im Fall \((N - 1) \approx N\), gegeben durch:

\[\bar{R}_E \approx \sqrt{N} a . \]

(2.8)

Dieses wichtige Beziehung schreibt man meist in der Form

\[\bar{R}_E \sim N^{\nu} \text{ mit } \nu = \frac{1}{2} . \]

(2.9)

Der Exponent \(\nu \) in diesem Potenzgesetz heisst Skalenexponent, sein Wert für das Irrflugs-Modell beträgt 0.5.

Innere Abstände

Bei der Berechnung des End-zu-End-Abstandes haben wir die Länge zwischen Anfangs- (\(j = 1 \)) und Endpunkt (\(j = N - 1 \)) eines Linienzuges bestimmt. Wenn wir an der Länge zwischen zwei beliebigen Gitterpunkten interessiert sind, müssen wir nur die Summationsgrenzen anpassen. Analog zum End-zu-End-Abstand ergibt sich:

\[\langle (r_j - r_k) \cdot (r_j - r_k) \rangle = \langle r_{jk} \cdot r_{jk} \rangle = |j - k| a^2 . \]

(2.10)

Man sieht unmittelbar, dass der mittlere quadratische Abstand nicht von der Kettenlänge abhängt und auch nicht von der Position innerhalb der Kette beeinflusst wird.
2.1. DAS IRRFLUGS-MODELL: WIEDERHOLUNG

Trägheitsradius

Der Trägheitsradius beschreibt die Massenverteilung um den Schwerpunkt. Er ist die wichtige Größe, mit der wir unser einfaches Irrflugs-Modell experimentell testen werden. Zunächst beginnen wir mit der Definition des mittleren quadratischen Trägheitsradius:

\[
\langle R^2_G \rangle := \frac{1}{N} \sum_{j=1}^{N} \langle (r_j - r_{CM})^2 \rangle .
\] (2.11)

Wie beim End-zu-End-Abstand bilden wir das Skalarprodukt und führen die Mittelung über alle Konformationen durch. Da jeder Gitterpunkt vereinbarungsgemäß die gleiche Masse trägt, ist der in (2.11) verwendete Schwerpunktsvektor \(r_{CM} \) einfach gegeben als Mittelwert über alle Ortsvektoren:

\[
r_{CM} := \frac{1}{N} \sum_{j=1}^{N} r_j .
\] (2.12)

Wie man durch Nachrechnen überprüfen kann, lässt sich der mittlere quadratische Trägheitsradius auch in der Form

\[
\langle R^2_G \rangle = \frac{1}{2N^2} \sum_{j,k=1}^{N} \langle (r_j - r_k)^2 \rangle .
\] (2.13)

schreiben. Unter dem Trägheitsradius verstehen wir die Wurzel aus dem mittleren quadratischen Radius:

\[
\bar{R}_G := \sqrt{\langle R^2_G \rangle} .
\] (2.14)

Wie beim End-zu-End-Abstand haben wir bei der Definition (2.11) quadratische Größen verwendet, weil der gemittelte Vektor identisch Null ist.

Mit Hilfe der Beziehung für die inneren Abstände (2.10) erhält man für den Trägheitsradius im Irrflugs-Modell:

\[
\langle R^2_G \rangle = \frac{1}{2N^2} \sum_{j,k=1}^{N} \langle (r_j - r_k)^2 \rangle = \frac{1}{2N^2} a^2 \sum_{j,k=1}^{N} |j - k|
\]

\[
= \frac{1}{N^2} a^2 \sum_{j,k=1}^{N} (j - k) = \frac{a^2}{N^2} \sum_{j=1}^{N} (j - 1) \frac{2}{2}
\]

\[
= \frac{a^2}{2N^2} N^3 - \frac{N}{3} = \frac{N^2 - 1}{6N} a^2
\]

\[
= \frac{1}{6} \frac{(N + 1)}{N} \langle R^2_E \rangle .
\] (2.15)
Wir kennen jetzt also eine einfache Beziehung zwischen dem mittleren quadratischen End-zu-End-Abstand und dem mittleren quadratischen Trägheitsradius. Bei genügend grosser Schrittzahl gilt

\[\langle R_G^2 \rangle = \frac{1}{6} \langle R_E^2 \rangle, \]

wegen \((N + 1) \approx N\). Der End-zu-End-Abstand und der Trägheitsradius genügen bis auf einen Vorfaktor demselben Skalengesetz (2.9).

Verteilung der End-zu-End-Vektoren

Im Irrflugs-Modell wird die Konformation eines Polymerknäuels durch den Linienzug eines sich zufällig bewegenden Teilchens beschrieben. Den End-zu-End-Vektor haben wir als Summe der Verbindungsvektoren zwischen besetzten Gitterpunkten eingeführt, wobei die einzelnen Schritte von einem Gitterpunkt zum nächsten unabhängig voneinander erfolgen. Wir können nun die Frage stellen: Mit welcher Wahrscheinlichkeit werden wir den End-zu-End-Vektor in einem Volumen \(d^3 R_E\) um \(R_E\) antreffen.

Mit \(p(R_E)\) haben wir den Begriff der Wahrscheinlichkeitsdichte eingeführt. Für den Erwartungswert einer Funktion \(f(R_E)\) schreiben wir

\[\langle f(R_E) \rangle = \int d^3 R_E f(R_E) p(R_E) . \]

Nach dem zentralen Grenzwertsatz (siehe Exkurs) gilt: Wenn wir viele unabhängige, gleichverteilte Zufallsvariablen addieren, dann ist ihre Summe (bei geeigneter Normierung) durch eine Gauss-Verteilung gegeben.

Unser Irrflugs-Modell erfüllt ganz offensichtlich die Voraussetzungen des zentralen Grenzwertsatzes: Die Besetzung der einzelnen Gitterpunkte erfolgt unabhängig, mit gleicher Wahrscheinlichkeit kann der Weg in jede Richtung weisen. Die Wahrscheinlichkeitsdichte ist demnach durch eine Gauss-Verteilung gegeben, sie lautet:

\[p(R_E) = \frac{1}{\sqrt{(2\pi \theta)^d}} \exp \left(-\frac{R_E^2}{2\theta} \right) , \]

mit \(\theta = (N - 1)a^2/d\). Nicht nur der End-zu-End-Abstand, sondern auch die inneren Abstände sind gaußsch verteilt, sofern die Beziehung \(|j - k| \gg 1\) erfüllt ist und man \((N - 1)\) durch \(|j - k|\) ersetzt.

Als konkretes Beispiel betrachten wir den Fall \(d = 3\). Die Wahrscheinlichkeit, einen End-zu-End-Vektor der Länge \(R_E\) innerhalb einer Kugelschale zwischen \(|R_E|\) und \(|R_E + dR_E|\) zu finden, beträgt:

\[4\pi R_E^2 p(|R_E|) = \sqrt{\frac{2}{\pi \theta^3}} R_E^2 \exp \left(-\frac{R_E^2}{2\theta} \right) . \]
2.1. Exkurs: Zentraler Grenzwertsatz (Für Interessierte)

In diesem Abschnitt wollen wir den Grenzwertsatz für einen Spezialfall herleiten. Gegeben sei eine Folge unabhängiger, gleichverteilter Zufallsvariablen \(X_j \) mit \(\langle X_j \rangle = 0 \) und \(\langle X_j X_k \rangle = \frac{\theta}{n} \). Die Matrix \(\theta \) wird Kovarianzmatrix genannt. Wir betrachten die folgende Summe von Zufallszahlen

\[
Y_n := \frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_j .
\]

(2.21)

Offensichtlich folgt für den Erwartungswert von \(Y_n \) und \(Y_n Y_n \):

\[
\langle Y_n \rangle = 0, \quad \langle Y_n Y_n \rangle = \frac{1}{n} \sum_{j,k=1}^{n} \langle X_j X_k \rangle = \theta .
\]

(2.22)

Der Erwartungswert der Fourier-Transformierten der Wahrscheinlichkeitsdichte berechnet sich zu:

\[
\langle e^{i q \cdot Y_n} \rangle = \left\langle \exp \left(i \frac{q}{\sqrt{n}} \cdot \sum_{j=1}^{n} X_j \right) \right\rangle = \prod_{j=1}^{n} \left\langle \exp \left(i \frac{q}{\sqrt{n}} \cdot X_j \right) \right\rangle
\]

\[
= \left(1 + i \frac{q}{\sqrt{n}} \cdot X_j + \frac{1}{2} i^2 q \frac{q}{\sqrt{n}} \cdot (X_j X_j) \frac{q}{\sqrt{n}} + \ldots \right)^n
\]

(2.23)

\[
= \left(1 - \frac{1}{2} \frac{q \cdot \theta \cdot q + \ldots}{n} \right)^n
\]

(2.24)

\[
\rightarrow \exp \left(- \frac{1}{2} q \cdot \theta \cdot q \right).
\]

(2.25)

für \(n \to \infty \). Der Übergang vom Erwartungswert der Summe im Argument der Exponentialfunktion in ein Produkt von Erwartungswerten ist möglich wegen der Unabhängigkeit der Zufallsvariablen \(X_j \). Die Fourier-Rücktransformation führt wiederum auf eine Gauss-Verteilung, und zwar

\[
p(y) = \frac{1}{\sqrt{(2\pi)^d \det \theta}} \exp \left(- \frac{1}{2} y \cdot \theta^{-1} \cdot y \right).
\]

(2.26)

Die allgemeinste Gauss-Verteilung ist nicht um 0, sondern um \(\alpha \) verteilt und lautet:

\[
p(y) = \frac{1}{\sqrt{(2\pi)^d \det \theta}} \exp \left(- \frac{1}{2} (y - \alpha) \cdot \theta^{-1} \cdot (y - \alpha) \right).
\]

(2.27)

Ihre Fourier-Transformierte ist:

\[
\exp \left(i q \cdot \alpha - \frac{1}{2} q \cdot \theta \cdot q \right).
\]

(2.28)
KAPITEL 2. KONFORMATION VON EINZELKETTEN IN LÖSUNG

2.2 Ein klassisches Streuexperiment

Als Untersuchungssonde kommen verschiedene Teilchen in Frage. Für Polymere besonders interessant sind Photonen (sichtbares Licht oder auch Röntgenstrahlen) und Neutronen. Der schematische Aufbau eines einfachen Streuexperimentes ist in Abbildung 2.3 gezeigt.

Wir beschränken uns in diesem Teil der Vorlesung auf zeitunabhängige (also statische) sowie elastische Streuexperimente. Uns interessieren also nur die Prozesse, bei denen der Teilchenstrahl aus seiner ursprünglichen Richtung abgelenkt wird, energetische Veränderungen zwischen einlaufendem und gestreutem Strahl aber nicht stattfinden. Im Detail soll gelten:

- Der Streuprozess erfolgt elastisch.
- Die einlaufenden Teilchen lassen sich als ebene Welle beschreiben.
- Die gestreuten Teilchen nehmen die Form einer Kugelwelle an.
- Die einzelnen Streuzentren sind klein gegenüber der Wellenlänge.
- Der Abstand des Detektors vom Streuzentrum ist hinreichend gross.

Zunächst betrachten wir die Untersuchungsprobe als fest im Raum fixiert und fragen nach der Streuamplitude, wenn wir erst ein, dann zwei und schliesslich sehr viele Streuzentren berücksichtigen. Auf diesem Weg gelangen wir zur Beschreibung der Streuamplitude eines Polymers. Durch Mittelung über alle Konformationen gehen wir dann von einem im Raum fixierten Polymer zu einem Polymerknäuel in Lösung über.

Die Amplitude der einlaufenden ebenen Welle am Ort \(\mathbf{R} \) sei:

\[
A_i(\mathbf{R}) = A_0 e^{i\mathbf{k}_i \cdot \mathbf{R}} = A_0 e^{i\varphi} .
\] \hspace{1cm} (2.29)

Der Ursprung des Koordinatensystems ist so gewählt, dass sich das Streuzentrum im Ursprung befindet. Mit \(\mathbf{k}_i \) beschreibt man den Wellenvektor, sein Betrag ist \(|\mathbf{k}_i| = 2\pi/\lambda_i \). Mit \(\lambda_i \) bezeichnet man die Wellenlänge, \(\varphi \) ist die Phase.

Streuung an einem ruhenden punktförmigen Teilchen

Nach den oben getroffenen Annahmen ist der Abstand \(|\mathbf{R}'| \) zwischen Detektor und Streuzentrum gross gegenüber der Wellenlänge \(\lambda \), und die Wellenlänge ist wiederum gross gegenüber den Abmessungen des Streuzentrums. Da die Streustrahlung die Form einer Kugelwelle annimmt, können wir ihre Amplitude \(A_s \) angeben in der Form:
2.2. EIN KLASsisches Streuexperiment

\[A_s(R') = A_0 \frac{e^{ik_s \cdot R'}}{|R'|} . \]

(2.30)

Streuung an zwei ruhenden punktförmigen Teilchen

Trifft die einlaufende Welle auf zwei punktförmige Streuzentren, dann wird man Interferenzeffekte zwischen den beiden auslaufenden Kugelwellen erwarten. Die Amplitude der Streuwelle setzt sich zusammen aus:

\[A_s(R') = \sum_{j=1}^{2} A^j_s \simeq \frac{A_0}{R'} e^{ik_s \cdot R'} \sum_{j=1}^{2} b_j e^{i\Delta \varphi_j} . \]

(2.31)

Der Übergang von der linken zur rechten Seite in (2.31) ist dann gerechtfertigt, wenn der Abstand zwischen Streuzentrum und Detektor R' gross ist gegenüber dem Abstand r zwischen den beiden Streuzentren. In diesem Fall wird R' für beide
Streuzentren annähernd übereinstimmen, und wir dürfen R' als Konstante vorziehen. Übrig bleibt die Summe aus den beiden Exponentialfunktionen, deren Argumente Phasenverschiebungen $\Delta \varphi_j$ gegenüber der einlaufenden Welle enthalten. Setzen wir das erste der beiden Streuzentren (wie gehabt) in den Ursprung unseres Koordinatensystems, gilt stets $\Delta \varphi_1 = 0$. Der Phasenunterschied $\Delta \varphi_2$ ist dann bestimmt durch die Weglängendifferenz Δs zwischen den gestreuten Wellen. Als wichtige neue Größe führen wir den Streuvektor q ein. Er ist definiert als Differenz zwischen dem Wellenvektor der einlaufenden und der gestreuten Welle

$$ q := k_i - k_s. \quad (2.32) $$

Für den Phasenunterschied ergibt sich dann:

$$ \Delta \varphi_2 = \frac{2\pi}{\lambda} \Delta s = q \cdot r. \quad (2.33) $$

Da wir uns hier nur für elastische Streuprozesse interessieren, können wir wegen

$$ |k_i| = |k_s| \quad (2.34) $$

den Betrag des Wellenvektors auch schreiben als:

$$ |q| = \frac{4\pi}{\lambda} \sin \left(\frac{\theta}{2} \right). \quad (2.35) $$

Abschließend erhalten wir für die Amplitude der Streuwelle

$$ A_s(R') = \frac{A_0}{R'} e^{ik_s \cdot R'} \sum_{j=1}^{2} b_j e^{iq \cdot r_j}. \quad (2.36) $$

Streuung an einem fest orientierten Polymerknäuel

Berücksichtigt man bei der Streuung nicht zwei, sondern N punktförmige Streuzentren, dann erhält man für die Streuamplitude:

$$ A_s(R') = \frac{A_0}{R'} e^{ik_s \cdot R'} \sum_{j=1}^{N} b_j e^{iq \cdot r_j}. \quad (2.37) $$

EIN KLASsisches Streuexperiment

Streuintensität eines Polymerknäuels in Lösung

Ein Polymerknäuel wird in Lösung niemals ruhen, sondern durch Brownsche und hydrodynamische Kräfte stets eine Vielzahl von Kraftstößen erfahren. In einem Streuexperiment werden wir daher immer das Streubild einer gemittelten Polymerkonformation sehen. Da die Detektoren, mit denen wir die Streustrahlung aufzeichnen, nicht die Streuamplituden, sondern die Streuintensitäten registrieren, gilt

\[
\langle I_s(q) \rangle = \langle A_s A_s^* \rangle = \frac{A_0^2}{R'^2} \sum_{j,k=1}^N \langle b_j b_k e^{i q \cdot r_{jk}} \rangle
\]

(2.38)

mit \(r_{jk} := r_j - r_k \).

Normierte Streuintensität

Als Experimentator wird man versuchen, die gemessenen Daten so aufzubereiten, dass man die Ergebnisse aus verschiedenen Experimenten leicht miteinander vergleichen kann.

Offensichtlich hängt der Detektorabstand \(R' \) vom speziellen experimentellen Aufbau ab, genauso wie die Streuintensität von der gewählten Strahlungsquelle. Ausgehend von (2.38) führt man daher eine normierte Streuintensität ein, die man auch als differentiellen Wirkungsquerschnitt bezeichnet:

\[
\frac{d\sigma}{d\Omega}(q) = \frac{\langle I_s(q) \rangle}{I_0} R'^2 = b^2 \sum_{j,k=1}^N \langle e^{i q \cdot r_{jk}} \rangle .
\]

(2.39)

Beim Übergang zur rechten Seite haben wir der Einfachheit halber angenommen, dass wir es mit einem homogenen Polymer (Homopolymer) zu tun haben, bei dem alle Streuzentren identisch sind (\(b_j = b_k = b \)). Da in einem Streuexperiment die Polymer in einem Lösungsmittel eingebettet sind, wird man die Streuintensität zudem noch um den Beitrag des Lösungsmittels korrigieren müssen:

\[
\frac{d\sigma}{d\Omega}(q) = \frac{\langle I_s(q) \rangle - \langle I_s, \text{Lsm} \rangle}{I_0} R'^2 \simeq \Delta b^2 \sum_{j,k=1}^N \langle e^{i q \cdot r_{jk}} \rangle .
\]

(2.40)

Diese Art der Subtraktion ist gerechtfertigt, wenn man die Polymerlösung als inkompressible Flüssigkeit auffasst.

Guinier-Bereich der Streuintensität

Die normierte Streuintensität enthält die gesamte experimentell zugängliche Information über das Polymerknäuel. Die Auswertung der Summe ist im allgemeinen recht schwierig, allerdings können wir die Exponentialfunktion als Potenzreihe schreiben

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]

(2.41)
und die Entwicklung im Fall kleiner Werte von $q \cdot r_{jk}$ nach der zweiten Ordnung abbrechen. Dann erhalten wir:

$$\frac{d\sigma}{d\Omega}(q) \simeq b^2 \left[N^2 - \frac{1}{2} \sum_{j,k=1}^{N} q \cdot \langle r_{jk} r_{jk} \rangle \cdot q \right].$$ \hspace{1cm} (2.42)

Der Term erster Ordnung verschwindet unter der plausiblen Annahme, dass die Streuzentren isotrop - also in allen Richtungen gleichmäßig - verteilt sind. In diesem Fall gilt auch $\langle r_{jk} r_{jk} \rangle \sim \delta$, d.h. den Tensor $\langle r_{jk} r_{jk} \rangle$ in (2.42) dürfen wir wegen der Summation durch seine Spur ersetzen - (daher auch ein Faktor 1/3):

$$\frac{d\sigma}{d\Omega}(q) \simeq b^2 N^2 \left[1 - \frac{q^2}{3} \frac{1}{2N^2} \sum_{j,k=1}^{N} \langle r_{jk}^2 \rangle \right].$$ \hspace{1cm} (2.43)

Mit Hilfe der Beziehung (2.13) für den mittleren quadratischen Trägheitsradius erhält man für die normierte Streuintensität:

$$\frac{d\sigma}{d\Omega} \simeq b^2 N^2 \left[1 - \frac{q^2}{3} \frac{1}{2N^2} \sum_{j,k=1}^{N} \langle r_{jk}^2 \rangle \right].$$ \hspace{1cm} (2.44)

Diese Näherung heisst oft auch Guinier-Approximation. Als wichtiges Ergebnis halten wir fest:

- Wenn wir die normierte Streuintensität als Funktion des Streuvektors q messen, dann können wir über (2.44) direkt den Trägheitsradius bestimmen. Dieses Verfahren ist modellunabhängig. Die Wahl von q legt die charakteristische Längenskala fest, die man im Streuexperiment beobachten kann. Das „Auflösungsvermögen“ ist durch $1/q$ gegeben.

- Mit Hilfe der Lichtstreuung können wir durch Extrapolation der normierten Streuintensität $|q| \rightarrow 0$ direkt das Molekulargewicht bestimmen. Aus (2.44) folgt unmittelbar: $\frac{d\sigma}{d\Omega} \sim N^2$.

Erster Test des Irrflugs-Modells

Damit haben wir nun alles, was wir für einen ersten Test unseres einfachen Modells brauchen:

2.2. EIN KLASSISCHES STREUEXPERIMENT

Der mehrfach angekündigte experimentelle Test unseres Irrflugs-Modells ist in den Abbildungen 2.4 und 2.5 gezeigt. Als Test-Polymer haben wir Polystyrol (PS) in zwei verschiedenen Lösungsmitteln ausgewählt:

- PS bei \(T = 34.5°C \) in Cyclohexan (sogenanntes Theta-Lösungsmittel) und
- PS bei \(T = 25°C \) in Toluol (sogenanntes gutes Lösungsmittel).

Nähere Einzelheiten zum guten Lösungsmittel und zum Theta-Lösungsmittel folgen in einem späteren Kapitel. Als Ergebnis erhalten wir:

- Für PS in Cyclohexan ergibt sich eine gute Übereinstimmung zwischen dem vom Irrflugs-Modell vorhergesagten Skalenexponenten \(\nu = 0.5 \) und den experimentellen Daten für \(M_w > 2 \times 10^4 \).
- Für PS in Toluol ergibt sich eine signifikante Abweichung für \(M_w > 3 \times 10^5 \).
- In beiden Fällen (Cyclohexan, Toluol) zeigt sich eine signifikante Abweichung für \(M_w < 10^4 \).

2.2.1 Exkurs: Streuquerschnitte und Wirkungsquerschnitte in der Physik (Für Interessierte)

$$\sigma := \frac{\text{Totale gestreute Energie}}{\text{Einfallende Energie pro Fläche}}. \quad (2.45)$$

Fundamental noch als der integrale Wirkungsquerschnitt ist der differentielle Wirkungsquerschnitt, weil er mehr Informationen über den Stossprozess enthält. Der differentielle Wirkungsquerschnitt stellt einen Zusammenhang her zwischen der Anzahl der Teilchen, die in ein Raumwinkelelement gestreut werden, und der Anzahl der Teilchen, die pro Fläche auf das Streuzentrum zulaufen:
2.3 Zusammenfassung

Im Irrflugs-Modell (Random Walk) wird die Konformation eines Polymerknäuels durch den Linienzug eines sich zufällig bewegenden Teilchens beschrieben.

Als wichtige Größen haben wir den End-zu-End-Abstand \bar{R}_E und den Trägheitsradius \bar{R}_G kennengelernt. Das Irrflugs-Modell liefert bei genügend großer Schrittzahl die einfache Beziehung:

$$\langle \bar{R}_G^2 \rangle = \frac{1}{6} \langle \bar{R}_E^2 \rangle .$$

(2.47)

End-zu-End-Abstand und Trägheitsradius genügen demselben Skalengesetz:

$$\bar{R}_E \sim N^\nu \quad \text{mit} \quad \nu = \frac{1}{2} .$$

(2.48)

Wegen des zentralen Grenzwertsatz sind im Irrflugs-Modell der End-zu-End-Vektor und der Trägheitsvektor gaußsch verteilt. Für die Wahrscheinlichkeitsdichte gilt:

$$p(\bar{R}_E) = \frac{1}{\sqrt{(2\pi\theta)^d}} \exp \left(-\frac{\bar{R}_E^2}{2\theta} \right) \quad \text{mit} \quad \theta = \frac{(N-1)a^2}{d} .$$

(2.49)

Mit Hilfe von Streuexperimenten können wir aus der normierten Streuintensität die Molekulargewichtsabhängigkeit des Trägheitsradius bestimmen:

1. Die Extrapolation $|q| \to 0$ liefert das Molekulargewicht:

$$\frac{d\sigma}{d\Omega} \sim N^2 .$$

(2.50)

2. Die Bestimmung des Trägheitsradius ist im Guinier-Bereich $|q|\bar{R}_G \ll 1$ modellunabhängig möglich:

$$\frac{d\sigma}{d\Omega} \simeq b^2 N^2 \left[1 - \frac{q^2}{3} \langle \bar{R}_G^2 \rangle \right] .$$

(2.51)

3. Die Wahl von q legt die im Experiment zugängliche Längenskala fest, $1/q$ kann man daher als “Auflösungsvermögen” interpretieren.

Für Polystyrol in einem Theta-Lösungsmittel gilt: Der vom Irrflugs-Modell vorhergesagte Skalenexponent $\nu = 0.5$ stimmt gut mit den experimentellen Daten überein, wenn man lange Ketten betrachtet.
Kapitel 3

Strukturfaktor

3.1 Allgemeine Bedeutung

Wir haben im letzten Kapitel gesehen, dass die Streuintensität für eine Einzelkette geschrieben werden kann als

\[\frac{d\sigma}{d\Omega}(q) = b^2 \left\langle \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i q \cdot r_{jk}} \right\rangle. \] (3.1)

An dieser Stelle definieren wir nun den Begriff des statischen Strukturfaktors über

\[S(q) := \frac{1}{N} \left\langle \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i q \cdot r_{jk}} \right\rangle. \] (3.2)

Wenn wir berücksichtigen, dass die Streuintensität eines idealen Gases von \(N \) Teilchen

\[\frac{d\sigma}{d\Omega}_{\text{IG}} = N b^2. \] (3.3)

ist, dann erhalten wir unmittelbar

\[\frac{d\sigma}{d\Omega}_{\text{IG}} = S(q). \] (3.4)

Wir sehen also sofort, dass \(S(q) \) wesentliche Informationen über die Struktur (relative Positionen, Korrelation zwischen Positionen, „Nichtidealität“) des Systems enthält. Der Strukturfaktor kann sowohl bei Einzelketten (→ Konformation) als auch bei Vielkettensystemen verwendet werden. Seine wesentliche Bedeutung liegt darin, dass er eine direkt messbare Größe ist, die eine Verbindung zwischen Experiment und Theorie erlaubt. Der Strukturfaktor ist daher eine Testgröße für die Übereinstimmung von Theorie und Experiment auf allen Größenskalen, die man durch die Wahl von \(|q| \) festlegen kann. Wie sieht nun der Bezug zwischen dem
KAPITEL 3. STRUKTURFAKTOR

Strukturfaktor als direkt messbarer Größ im reziproken Raum (Impulsraum) und den uns interessierenden Kettenkonformationen im direkten Raum (Ortsraum) aus?

3.2 Korrelationsfunktion

Bei der Analyse von Streuexperimenten stößt man schnell auf ein grundsätzliches Problem. Wir interessieren uns beispielsweise für die Konformation eines Polymerknäuels. Wir wollen also wissen, wie die Monomere im Raum verteilt sind (beschrieben durch die mikroskopische Größ $n(r)$); tatsächlich ist uns aber nur die makroskopische mittlere Teilchenzahlichte $\langle n \rangle$ bekannt. Korrelationsfunktionen (Dichtekorrelationsfunktionen, Paarverteilungsfunktionen, Paarkorrelationsfunktionen) sind eine Art Kompromiss zwischen unserer vollen Unkenntnis von $n(r)$ und dem für unseren Zweck wertlosen Wissen über die Teilchenzahlichte $\langle n \rangle$. Die Zweiteilchen-Korrelationsfunktion der Form

$$g(r) = \frac{1}{N} \left(\sum_{j=1}^{N} \sum_{k=1}^{N} \delta(r - r_{jk}) \right)$$

(3.5)

beschreibt die Wahrscheinlichkeit dafür, dass sich zwei Teilchen im gerichteten Abstand r voneinander befinden. (Mit $g(r)d^3r$ bezeichnen wir die bedingte Wahrscheinlichkeit dafür, dass sich ein Teilchen im Volumenelement dV um den Ort r aufhält, falls sich ein Teilchen im Ursprung befindet.) $g(r)$ ist die mittlere Teilchenzahlichte, gemittelt über alle Teilchen mit der Normierungsbedingung

$$\int g(r)d^3r = N.$$ \hspace{1cm} (3.6)

Exkurs: Delta-Funktion

Die Delta-Funktion ist definiert durch:

$$\delta(x) = 0, \quad x \neq 0; \quad \int_{-a}^{b} \delta(x) \, dx = 1, \quad a, b > 0$$

$$\int_{-a}^{b} f(y)\delta(x-y)dy = \begin{cases} f(x) \quad \text{falls} \quad x \in]-a,b[\\ 0 \quad \text{sonst} \end{cases}$$ \hspace{1cm} (3.8)

In drei Dimensionen lautet die Definition entsprechend:

$$\int_{V} \delta^3(x)d^3x = 1,$$ \hspace{1cm} (3.9)

$$\int_{V} f(y)\delta^3(x-y)d^3y = \begin{cases} f(x) \quad \text{falls} \quad x \in V \\ 0 \quad \text{sonst} \end{cases}.$$

Wir sehen, dass die Deltafunktion gerade die Fourier-Transformierte der Eins ist.
3.2. KORRELATIONSFUNKTION

Korrelationsfunktion und Strukturfaktor

Wie sieht der Zusammenhang zwischen der Zweiteilchen-Korrelationsfunktion und der Dichte aus? Mit

\[n(r) = \sum_{j=1}^{N} \delta(r - r_j) \]

(3.11)

und der mittleren Dichte von Teilchen im gerichteten Abstand \(r \) vom Teilchen \(j \)

\[g_j(r) = \sum_{k=1}^{N} \langle \delta(r - (r_k - r_j)) \rangle \]

(3.12)

ergibt sich

\[g(r) = \frac{1}{N} \sum_{j=1}^{N} g_j(r) \]

(3.13)

bzw. beim Übergang zur Integraldarstellung mit der entsprechenden Teilchenzahl-Dichteverteilung

\[g(r) = \frac{1}{N} \int \langle n(r' + r)n(r') \rangle \, dr' . \]

(3.14)

Wie sieht der Zusammenhang zwischen dem Strukturfaktor \(S(q) \) und der Korrelationsfunktion \(g(r) \) aus? Aus der Definition des Strukturfaktors (3.2) ergibt sich nach der Verwendung der Beziehung für die \(\delta \)-Funktion und der Korrelationsfunktion:

\[S(q) = \frac{1}{N} \sum_{j, k=1}^{N} \langle e^{i q \cdot r_{jk}} \rangle \]

(3.15)

\[= \frac{1}{N} \int d^3 r \sum_{j, k=1}^{N} \langle e^{i q \cdot r} \delta(r - r_{jk}) \rangle \]

(3.16)

\[= \frac{1}{N} \int d^3 r e^{i q \cdot r} \sum_{j, k=1}^{N} \langle \delta(r - r_{jk}) \rangle \]

(3.17)

\[= \int d^3 r e^{i q \cdot r} g(r) . \]

(3.18)

Der statische Strukturfaktor \(S(q) \) ist also die Fourier-Transformierte der Zweiteilchen-Korrelationsfunktion \(g(r) \).
Abbildung 3.1: Das Lennard-Jones-Potential besteht aus zwei Anteilen: einem repulsiven Kern \(r^{-12} \) und einem langreichweitigen anziehenden Teil \(r^{-6} \). Das Potential schneidet die \(x \)-Achse bei \(r/\sigma = 1 \) und hat ein Minimum bei \(r/\sigma \approx 1.12 \).

Einfaches Beispiel

Zur Illustration betrachten wir ein einfaches System wie flüssiges Argon, das wir als Fluid aus harten Kugeln ansehen wollen. Tatsächlich lässt sich das Wechselwirkungspotential für einfache Flüssigkeiten häufig durch ein sogenanntes Lennard-Jones-Potential

\[
U(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]
\]

(3.19)

beschreiben, wobei \(\sigma \) der Teilchendurchmesser und \(\epsilon \) die Potentialtopftiefe ist. Der Verlauf des Potentials ist in der Abbildung 3.1 gezeigt. Wenn die abstossenden Wechselwirkungen dominieren, können wir im Grenzfall schreiben

\[
\frac{r}{\sigma} > 1 : U(r) = 0
\]

(3.20)

\[
\frac{r}{\sigma} \leq 1 : U(r) = \infty.
\]

(3.21)

Wie sieht nun in einer solchen Flüssigkeit die Zweiteilchen-Korrelationsfunktion \(g(r) \) aus? Zur Veranschaulichung nehmen wir einen Sack voller Kugellager-Kugeln, deren Verteilung wir durch simples Auszählen bestimmen. Bevor wir damit beginnen, berücksichtigen wir, dass keine Richtung ausgezeichnet ist. Durch die Isotropie des Systems können wir von \(g(r) \) direkt zu \(g(|r|) \) übergehen (\(g(|r|) = g(r) \) heisst auch radiale Verteilungsfunktion.)

In unserem Kugellager-Sack wählen wir jetzt eine beliebige Kugel aus; anschliessend definieren wir das Koordinatensystem so, dass sich die ausgewählte Kugel im Ursprung befindet. Das Integral von \(g(r) \) über das Volumenelement \(dV \) liefert
3.2. KORRELATIONSFUNKTION

Abbildung 3.2: Typische Teilchen-Anordnung in einer Flüssigkeit aus harten Kugeln. Die Zweiteilchen-Korrelationsfunktion erhält man, indem man ein Teilchen willkürlich herausgreift und dann die Anzahl der Nachbarn innerhalb der Kugelschale im Abstand zwischen \(r \) und \(r + dr \) vom Ausgangsteilchen bestimmt.

die Anzahl der Kugeln im Volumenelement, gemittelt über alle Kugeln (siehe auch Abbildung 3.2).

Der Vergleich zwischen dem Kugellager-System und flüssigem Argon ist in der Abbildung 3.3 gezeigt. Wegen des ausgeschlossenen Volumen gibt es ein erstes Maximum bei \(r/\sigma = 1 \). Das nächste Maximum folgt dann, wenn die erste Schale nächster Nachbarn erreicht wird (6 Kugeln in zwei Dimensionen, 12 Kugeln in drei Dimensionen). Die Minima ergeben sich aufgrund der Dichteerhaltung. Die Maxima höherer Ordnung verschwinden rasch, da eine Flüssigkeit nur eine Nahordnung aufweist. Schließlich erreicht die radiale Verteilungsfunktion den asymptotischen Wert, der durch die Dichte gegeben ist (\(g(r) \rightarrow \langle n \rangle \)).

Der Zusammenhang zwischen \(S(q) \) und \(g(r) \) ist in den Abbildungen 3.4 sowie 3.5 gezeigt. Durch Fourier-Transformation ergibt sich ein Peak bei \(2\pi/\sigma \).

Was bedeutet \(g(r) \) nun für unser Polymerknäuel? Ein erste Abschätzung für das Irrflugs-Modell erhalten wir, indem wir um ein beliebiges Segment der Polymerkette eine Kugel vom Radius \(r \) schlagen und nach der Anzahl \(N \) der in dem Kugelvolumen enthaltenen Segmente (Monomere) fragen. Für das Irrflugs-Modell hatten wir bei hinreichend grosser Schrittzahl die folgende Beziehung hergeleitet:

\[
\langle r^2 \rangle \sim Na^2.
\] (3.22)

Da \(g(r) \) gleich der Monomerdichte in einem Abstand \(r \) ist, können wir mit Hilfe von Gleichung (3.22) folgende Abschätzung direkt angeben:

3.3. DIE DEBYE-FUNKTION

In diesem Unterkapitel werden wir den statischen Strukturfaktor (3.2) für das Irrflugs-Modell berechnen. Bei der Herleitung werden wir explizit die Gauß-Verteilung der inneren Abstände berücksichtigen.

Bereits im Exkurs über den zentralen Grenzwertsatz haben wir gesehen, dass der Erwartungswert \(\langle e^{i \mathbf{q} \cdot \mathbf{r}_{jk}} \rangle \) für grosse \(|j-k| \) geschrieben werden kann als eine einfache Exponentialfunktion der Form \(\exp \left(-\frac{1}{2} \mathbf{q} \cdot \Theta \cdot \mathbf{q} \right) \). Im Irrflugs-Modell auf einem kubischen Gitter (\(d = 3 \)) berechnet sich die Kovarianz zu \(\Theta = \frac{1}{3} (N-1)a^2 \), und die inneren Abstände genügen der Beziehung \(\Theta = \frac{1}{3} |j-k|a^2 \), sofern mit

\[
g(r) \sim \frac{N}{r^3} \sim \frac{1}{a^3 r}.
\]

(3.23)

Mit \(4\pi/q^2 \) als Fourier-Transformierte von \(1/r \) erhalten wir für die normierte Streuintensität:

\[
\frac{d\sigma}{d\Omega} \sim \frac{1}{q^2}.
\]

(3.24)

Offensichtlich beschreibt Gleichung (3.24) nur das asymptotische Verhalten der Streuintensität im Bereich von \(R_G \gg 1/q \gg a \). Wir werden im nächsten Unterkapitel sehen, dass das Irrflugs-Modell tatsächlich eine \(q^{-2} \)-Abhängigkeit der Streuintensität liefert.

|j − k| ≫ 1 die Voraussetzungen des zentralen Grenzwertsatzes erfüllt sind. Der statische Strukturfaktor schreibt sich:

\[
S(q) = \frac{1}{N} \sum_{j,k=1}^{N} \langle \exp(iq \cdot r_{jk}) \rangle = \frac{1}{N} \sum_{j,k=1}^{N} e^{-\frac{1}{2}q^{2}a^{2}|j-k|} \, .
\] (3.25)

Als Hilfsgrösse definieren wir

\[
\mu := e^{-\frac{1}{2}q^{2}a^{2}}
\] (3.27)

und erhalten durch Ausführen der Summation

\[
\frac{1}{N} \sum_{j,k=1}^{N} \mu^{1-|j-k|} = \frac{1 + \mu}{1 - \mu} - \frac{2\mu}{(1 - \mu)^{2}} - \frac{1 - \mu^{N}}{N} \, .
\] (3.28)

Da für kleine Werte von \(q \) die Beziehung 1 − \(\mu \) ≈ \(\frac{1}{2}q^{2}a^{2} \) gilt, können wir den Strukturfaktor im Fall kleiner \(q \)-Werte umschreiben zu

\[
S(q) = N \left\{ 1 - \frac{N^{2} - 1}{3N} (1 - \mu) + O \left((1 - \mu)^{2} \right) \right\} \, .
\] (3.29)

Aus dem Vergleich mit Gleichung (2.44) erhalten wir somit für den Trägheitsradius

\[
\overline{R}_{G}^{2} = \frac{N^{2} - 1}{6N} a^{2} \, .
\] (3.31)

Diese Gleichung entspricht dem Ergebnis (2.15), was auf den ersten Blick erstaunlich sein mag, da wir in Gleichung (3.25) die Gaussische Näherung verwendet haben. Aus der Darstellung (2.13) wissen wir jedoch, dass für die Berechnung des Trägheitsradius nur zweite Momente benötigt werden, so dass die Verwendung einer Gaussischen Verteilungsfunktion zum exakten Resultat führen muss.

Ausgehend von (3.28) wollen wir nun für den Strukturfaktor ein Skalengesetz herleiten. Bei der Verwendung des Irrflugs-Modells interessieren wir uns für sehr lange Polymerketten: \(N \rightarrow \infty \). Halten wir nun dabei die Größe \(x = q^{2} \langle \overline{R}_{G}^{2} \rangle \) fest, so gilt

\[
q^{2}a^{2} \rightarrow 0, \quad \mu \rightarrow 1, \quad (1 - \mu) \rightarrow \frac{x}{N}, \quad \mu^{N} = e^{-x} \, .
\] (3.32)

Aus (3.28) ergibt sich damit für den Strukturfaktor
3.3. DIE DEBYE-FUNKTION

\[S(q) = N \frac{2}{q^2} \left(e^{-x} - 1 + x \right) . \]
(3.33)

Das hierzu verwendete Irrflugs-Modell liefert für \(N \to \infty \) universelle Aussagen über statische Eigenschaften von Polymeren. Deshalb darf die Gleichung (3.33) auch nicht bei zu grossen Werte von \(q \) verwendet werden, da wir dort in den Auflösungs bereich von chemischen Details kommen.

Mit dem Ausdruck (3.33) haben wir ein Skalengesetz von der Form

\[S(q) = N \tilde{f} \left(q^2 \langle R^2 \rangle \right) \]
(3.34)

mit

\[\tilde{f}_{\text{Debye}}(x) = \frac{2}{x^2} \left(e^{-x} - 1 + x \right) \]
(3.35)

gefunden. Dieses Skalengesetz ist unabhängig vom verwendeten Polymermodell, nur in die Form von \(f \) gehen die Modell eigenschaften ein. Mit Hilfe von (3.34) können wir Streu experimente an verdünnten Polymerlösungen auswerten, indem wir für die (geeignet normierte) Streuintensität einen Verlauf gemäß der Debye-Funktion annehmen und die Messdaten als Funktion der Größe \(x \) anfitten. Das Skalengesetz ist nicht mehr eine Funktion der drei dimensionsbehafteten Variablen \(a, N, q \), sondern nur noch von einer dimensionslosen Größe abhängig. Das Auftreten dieser neuen Größe zeigt deutlich die durch die Debye-Funktion beschriebene Selbstähnlichkeit.

Bisweilen wird für \(\tilde{f}_{\text{Debye}} \) die Approximation (Ornstein-Zernike)

\[\tilde{f}_{\text{approx}}(x) = \frac{1}{1 + \frac{x}{2}} . \]
(3.36)

verwendet. Diese Funktion liefert für grosse Werte von \(x \) das richtige asymptotische Verhalten \(\tilde{f}_{\text{Debye}} \approx \tilde{f}_{\text{approx}} \approx \frac{2}{x} \), für kleine \(x \) den Wert 1 und sonst höchstens 15 Prozent Abweichung von \(\tilde{f}_{\text{Debye}} \). Allerdings liefert die Entwicklung dieser Funktion einen falschen Trägheitsradius.

Ein Beispiel für die Auswertung eines Streuexperimentes mit der Debye-Funktion ist in der Abbildung 3.6 gezeigt. Den Einfluss von Wechselwirkungen und die Berücksichtigung des ausgeschlossenen Volumens behandeln wir in späteren Kapiteln.

Die Debye-Funktion im Orts- und Impulsraum ist in den Abbildungen 3.7 und 3.8 gezeigt.

Zweiteilchen-Korrelationsfunktion

Im Anschluss an den letzten Abschnitt wollen wir durch Fourier-Rücktransformation die Korrelationsfunktion \(g(r) \) berechnen

\[g(r) = \frac{1}{(2\pi)^3} \int e^{-iq^\cdot r} S(q) d^3q . \]
(3.37)
Abbildung 3.6: Hochmolekulares Polystyrol ($M = 55 \times 10^6 \text{g/mol}$) in Cyclohexan bei $T = 34.5^\circ\text{C}$ (sogenanntes Theta-Lösungsmittel). Die Daten stammen aus: Y. Miyaki et al.: *Macromolecules* 11, 1180 (1978).
3.3. DIE DEBYE-FUNKTION

Abbildung 3.7: Die Debye-Funktion $\tilde{f}_{\text{Debye}}(x)$ und ihre Approximation im Impulsraum.

Aus einigen allgemeinen Überlegungen können wir die entsprechende Form des Skalengesetzes für die Zweiteilchen-Korrelationsfunktion $g(r)$ "erraten"

$$g(r) = \frac{N}{\langle R_2^2 \rangle} f\left(\frac{|r|}{\langle R_2^2 \rangle}^{\frac{3}{2}}\right). \quad (3.38)$$

Die Zweiteilchen-Korrelationsfunktion $g(r)$ ist eine Anzahldichte, die auf N normiert ist. Da die typische Abmessung eines Polymerknäuels durch den Trägheitsradius gegeben ist, folgt deshalb daraus der Vorfaktor in (3.38). Weiter muss die Skalenfunktion f dimensionslos sein und wird wegen der Isotropieeigenschaften des Irrflugs-Modells nur von $|r|$ abhängen. Man kann zeigen, dass die Skalenfunktionen durch eindimensionale Fourier-Transformationen

$$f(x) = \frac{1}{4\pi^2} \left(\frac{\partial}{\partial x}\right) \int_{-\infty}^{\infty} e^{iqx} \tilde{f}(q^2) dq. \quad (3.39)$$

miteinander zusammenhängen. Für die Debye-Funktion \tilde{f}_{Debye} und ihre Approximation f_{approx} erhält man

$$f_{\text{approx}}(x) = \frac{1}{2\pi x} e^{-\sqrt{2}x}. \quad (3.40)$$

$$\tilde{f}_{\text{Debye}}(x) = \frac{1}{4\pi} \left\{ \left(x + \frac{2}{x} \right) \left[1 - \text{erf}\left(\frac{x}{2} \right) \right] - \frac{2}{\sqrt{\pi}} \exp\left(-\frac{x^2}{4} \right) \right\} \quad (3.41)$$

$$\rightarrow \left\{ \begin{array}{ll}
\frac{1}{2\pi x} & \text{für kleine } x \\
\frac{4}{\sqrt{\pi}x^3} & \text{für grosse } x
\end{array} \right\} \quad (3.42)$$
Abbildung 3.8: Die Debye-Funktion $f_{\text{Debye}}(x)$ und ihre Approximation im Ortsraum.

Die Skalenfunktion für kleine x bedeutet $g(r) = 3/(\pi a^2 r)$ für die Zweiteilchen-Korrelationsfunktion bei kleinen r. Diesem Ergebnis entnehmen wir, dass die Zweiteilchen-Korrelationsfunktion $g(r)$ mit $1/r$ abnimmt. Der Einfluss der „Chemie“ ist im Vorfaktor durch die Gitterkonstante a enthalten.

Ausblick

Zum Schluss noch eine wichtige Anmerkung. Im Experiment messen wir den *differentialen Wirkungsquerschnitt*

$$\frac{d\sigma}{d\Omega}(q) = b^2 N S(q). \quad (3.43)$$

Der Strukturfaktor $S(q)$ liefert uns eine Aussage über die Struktur der Probe, die Größe b^2 hängt dagegen von der „Untersuchungssonde“ (Lichtstreuung, Kleinwinkel-Neutronenstreuung) ab.

3.4 Lichtstreuung

Klassischer experimenteller Aufbau

Der schematische Aufbau eines Lichtstreuexperimentes ist in Abbildung 3.9 skizziert. Als Lichtquellen verwendet man heute hauptsächlich Laser, weil sie monochromatisches Licht hoher Leistung mit sehr guten Kohärenzeigenschaften liefern. Folgende kontinuierlich betriebene Laser werden bevorzugt eingesetzt:

- Argon-Ionen-Laser ($\lambda_0 = 488 \text{ nm}, I_0 \sim 1 - 2 \text{ W}$),
- Helium-Neon-Laser ($\lambda_0 = 632.8 \text{ nm}, I_0 \sim 2 - 30 \text{ mW}$),
- Dioden-Yag-Laser ($\lambda_0 = 532 \text{ nm}, I_0 \sim 150 \text{ mW}$).

Auflösungsvermögen

Der in Experiment erfasste Winkelbereich liegt bei herkömmlichen Apparaturen zwischen $10^\circ \leq \theta \leq 150^\circ$. (Wir sprechen hier nur über Standardgeräte, die man zur Polymercharakterisierung verwendet. In der Kolloidforschung werden oft spezialisierte Kleinwinkel-Lichtstreugeräte eingesetzt, die die untere Winkelgrenze um bis zu zwei Größenordnungen unterschreiten.) Über die Beziehung

$$q = \frac{4\pi}{\lambda} \sin \left(\frac{\theta}{2} \right)$$

können wir den q-Bereich abschätzen, wenn wir den Streuwinkel θ und die Wellenlänge λ kennen. Zwischen der Wellenlänge in Materie (λ) und der im Vakuum (λ_0) besteht der Zusammenhang: $\lambda = \lambda_0 / n$, wobei n der Brechungsindex ist.

Wie gross ist nun das Auflösungsvermögen in einem typischen Lichtstreuexperiment? Betrachten wir dazu einen Argon-Ionen-Laser mit Wellenlänge $\lambda_0 = 488 \text{ nm}$, der auf eine Probe mit Brechungsindex $n = 1.4$ trifft. Wenn wir das Streulicht unter einem Winkel θ zwischen $10^\circ \leq \theta \leq 150^\circ$ aufzeichnen, erhalten wir:

$$3.14 \cdot 10^{-4} \text{ Å}^{-1} \leq q \leq 3.48 \cdot 10^{-3} \text{ Å}^{-1}. \quad (3.45)$$

Das Auflösungsvermögen $1/q$ beträgt demnach:

$$290 \text{ Å} \leq \frac{1}{q} \leq 3200 \text{ Å}. \quad (3.46)$$

Mit der für Standardapparaturen typischen Genauigkeit lassen sich dann Trägheitsradien bis hinunter zu $R_G \sim 120 \text{ Å}$ messen.

Wechselwirkung von Licht mit Materie

Wir denken uns ein Polymerknäuel aus vielen kleinen punktförmigen Streuzentren zusammengesetzt. Diese sind von einem vollkommen homogenen Lösungsmittel umgeben. Wie in Abbildung 3.10 skizziert, trifft ein in z-Richtung linear polarisierter Laserstrahl auf ein solches punktförmiges Streuzentrum. Durch das elektrische Feld der einlaufenden Primärwelle $E(t, x) = E_0 \cos(\omega t - kx)$ wird das Streuzentrum zu
KAPITEL 3. STRUKTURFAKTOR

3.4. LICHTSTREUUNG

einer periodischen Schwingung angeregt. Dieser induzierte Dipol folgt dem elektrischen Feld $E(t, x)$ mit gleicher Frequenz und wird zum Ausgangspunkt einer kugelförmigen Streuwelle. Ein solcher Strahler verhält sich wie ein Hertzscher Dipol. Sein Dipolmoment ist gegeben durch:

$$ p(t, x) = \alpha E(t, x) = \alpha E_0 \cos(\omega t - kx) , $$

wobei α die Polarisierbarkeit (allgemein α der Polarisierbarkeitstensor) ist. Bei einem isotropen Strahler ist die Polarisierbarkeit ein Skalar (α), bei einem anisotropen Strahler dagegen ein Tensor (α).

Aus der Elektrodynamik wissen wir, wie die Strahlungscharakteristik eines Hertzschen Dips ausgesieht. Für die abgestrahlte Feldstärke E_s gilt in einem Abstand R' bei einer Beobachtungsrichtung, die gegen die Polarisationsrichtung der einfallenden Welle um den Winkel ϕ geneigt ist:

$$ E_s(R') = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \frac{\sin \phi}{R'} . $$

Mit

$$ \frac{\partial^2 p}{\partial t^2} = \alpha \omega^2 E_0 \cos(\omega t - kx) $$

erhält man für die abgestrahlte Feldstärke

$$ E_s(R') = \alpha \omega^2 E_0 \frac{\sin \phi}{R'} \cdot $$

Da wir im Experiment Intensitäten messen, müssen wir den Zusammenhang zwischen Feldstärke E und Intensität I kennen. Es gilt:

$$ I = \varepsilon_0 c \langle E^2 \rangle . $$

Das Verhältnis der Intensität von Streu- zu Primärstrahlung ist

$$ \frac{I_s}{I_0} = \frac{E_s^2}{E_0^2} = \frac{\omega^4}{c^4} \alpha^2 \frac{\sin^2 \phi}{R'^2} . $$

Mit $\omega = 2 \pi / \nu$ und $c = \lambda \nu$ erhält man

$$ \frac{I}{I_0} = \frac{16 \pi^4}{\lambda^4} \alpha^2 \frac{\sin^2 \phi}{R'^2} . $$

Für den differentiellen Wirkungsquerschnitt gilt wegen

$$ \frac{d\sigma}{d\Omega} = \frac{I}{I_0} R'^2 = \frac{16 \pi^4}{\lambda^4} \alpha^2 \sin^2 \phi . $$

Gleichung (3.54) ist auch unter dem Begriff Rayleigh-Formel bekannt. Als wichtige Folgerung halten wir fest: Die Streustrahlung ist proportional zur vierten Potenz der reziproken Wellenlänge:
Abbildung 3.10: Die einfallende Lichtwelle erzeugt ein oszillierendes Dipolmoment in polarisierbarer Materie; ϕ ist der Winkel zwischen der Polarisationsrichtung und der Beobachtungsrichtung.
Die charakteristische λ^{-4}-Abhängigkeit ermöglicht einfache Erklärungen von verschiedenen (alltäglichen) Phänomenen, wie:

- **Himmelsblau und Abendrot.** Kurzwelliges (d.h. blaues) Licht wird nach der Rayleigh-Formel stärker gestreut als langwelliges (d.h. rotes) Licht. Die blaue Himmelsfarbe kommt dadurch zustande, dass die Moleküle der Erdatmosphäre wie kleine Punktstreuer wirken und den Blauanteil des weissen Sonnenlichtes deutlich stärker streuen als den Rotanteil. (Wir haben es den Dichteschwankungen in der Atmosphäre zu verdanken, dass nicht überall destruktive Interferenz vorkommt. Nähere Einzelheiten zur Fluktuationstheorie werden Sie noch in Kapitel 8 kennenlernen.) Bei Sonnenauf- und -untergang legt das Licht einen vergleichweise langen Weg durch die Erdatmosphäre zurück, so dass der Anteil kurzwelliger (blauer) Strahlung besonders effizient aus der Strahlrichtung gestreut wird und dem Betrachter die Sonne daher als rot erscheint.

- **Tyndall-Effekt.** Bestrahlt man eine konzentrierte Lösung kolloider Teilchen mit weissem Licht, dann erkennt man einen deutlich rötlichen Farbton des durchgehenden Strahls und eine blaue Farbtonung des Streulichtes.

Streulänge

Zu Beginn dieses Kapitels haben wir die *Streulänge b* eingeführt. Für ein punktförmiges Teilchen gilt:

$$\frac{d\sigma}{d\Omega} := b^2.$$ \hspace{1cm} (3.56)

Mit Hilfe der Rayleigh-Gleichung (3.54) können wir jetzt versuchen, die Streulänge b zu berechnen, und sie wenn möglich auf makroskopische Grössen zurückführen. Wenn wir uns (3.54) genauer anschauen, stellen wir fest, dass die Streuintensität nicht nur von der Wellenlänge abhängt, sondern auch von der Polarisierbarkeit α:

$$\frac{d\sigma}{d\Omega} \sim \alpha^2.$$ \hspace{1cm} (3.57)

Wir wissen jetzt, wie (sichtbares) Licht an einem punktförmigen Teilchen gestreut wird. Um die Streuintensität tatsächlich berechnen zu können, müssen wir aber noch klären, was wir unter der Polarisierbarkeit α zu verstehen haben und wie wir sie messen können.

Eine verdünnte Polymerlösung stellen wir uns im einfachsten Fall als ideale Lösung vor, in der sich die einzelnen Monomere völlig zufällig durch das Kontinuum des Lösungsmittels bewegen. Dieser kontinuierlich vorhandene Hintergrund von Lösungsmittelmolekülen führt dazu, dass wir Gleichung (3.57) umschreiben dürfen zu
KAPITEL 3. STRUKTURFAKTOR

\[\frac{d\sigma}{d\Omega} \sim (\Delta\alpha)^2. \] (3.58)

Weitere Erläuterungen, unter welchen Bedingungen diese Beziehung gültig ist, finden sich im Anhang zu diesem Kapitel.

Polarisierbarkeit und Brechungsindex

Wie die Polarisierbarkeit \(\alpha \) ist auch die Differenz der Polarisierbarkeit zwischen Monomer und Lösungsmittelteilchen \(\Delta\alpha \) keine direkt messbare Größe. Gesucht ist also eine möglichst einfache Beziehung zwischen \(\Delta\alpha \) und einer Größe, die man im Experiment leicht bestimmen kann. Wir werden sehen, dass es sich dabei um den Brechungsindex \(n \) handelt.

Für ein ideales Gas kennen wir bereits den Zusammenhang zwischen Polarisierbarkeit \(\alpha \) und Brechungsindex \(n \). Nach Clausius-Mosotti gilt:

\[\alpha = \frac{1}{4\pi} \frac{V}{N} (n^2 - 1). \] (3.59)

Im Fall einer verdünnten, idealen Polymerlösung können wir die Beziehung zwischen \(\Delta\alpha \) und der Differenz der Brechungsindices \((n^2 - n_{Lsm}^2) \) ganz analog schreiben als:

\[\Delta\alpha = \frac{1}{4\pi} \frac{V}{N} (n^2 - n_{Lsm}^2). \] (3.60)

Bei verdünnten Lösungen werden sich die Brechungsindices \(n \) und \(n_{Lsm} \) nur geringfügig unterscheiden, so dass gilt:

\[n^2 - n_{Lsm}^2 \approx \left(n_{Lsm} + \frac{dn}{dc} c \right)^2 - n_{Lsm}^2 \approx 2 n_{Lsm} \left(\frac{dn}{dc} \right) c. \] (3.61)

Einsetzen in Gleichung (3.60) führt auf

\[\Delta\alpha = \frac{1}{2\pi} \frac{V}{N} n_{Lsm} \left(\frac{dn}{dc} \right) c = \frac{1}{2\pi} \frac{M_1}{N_A} n_{Lsm} \left(\frac{dn}{dc} \right). \] (3.62)

wegen \(c = N M_1 / (V N_A) \), wobei \(M_1 \) die Masse eines Monomers ist. Für den differentiellen Wirkungsquerschnitt eines punktförmigen Teilchens erhält man somit:

\[
\begin{align*}
\frac{d\sigma}{d\Omega} &= b^2 \\
&= \frac{16\pi^4}{\lambda^4} (\Delta\alpha)^2 \sin^2 \phi \\
&= \frac{4\pi^2}{\lambda^4} n_{Lsm}^2 \left(\frac{dn}{dc} \right)^2 \sin^2 \phi. \quad (3.63)
\end{align*}
\]
3.4. LICHTSTREUUNG

Bei den von uns betrachteten Apparaturen soll stets gelten, dass wir das Streulicht senkrecht zur Polarisationsrichtung des einfallenden Strahls betrachten. Es gilt also: \(\phi = 90^\circ \). Für die Streulänge \(b \) erhalten wir dann

\[
b = \frac{2\pi M_1}{\lambda^2 N_A} n_{\text{Lsm}} \left(\frac{dn}{dc} \right).
\]

(3.64)

Stark verdünnte Polymerlösungen

Nachdem wir die Streulänge \(b \) kennen, wollen wir nun berechnen, wie das Streulicht einer stark verdünnten Polymerlösung aussieht. Für den differentiellen Wirkungsquerschnitt einer solchen Polymerlösung können wir schreiben:

\[
\frac{d\sigma}{d\Omega}(q) = N_p \left(\frac{d\sigma}{d\Omega} \right)_{\text{Polymer}}(q) = N_p N b^2 S(q).
\]

(3.65)

Einsetzen von (3.64) führt auf:

\[
\frac{d\sigma}{d\Omega}(q) = N_p N \frac{4\pi^2 M_1^2}{\lambda^2 N_A^2} n_{\text{Lsm}}^2 \left(\frac{dn}{dc} \right)^2 S(q).
\]

(3.66)

Nach Einführen des Kontrastterms für die statische Lichtstreuung \(K_{\text{LS}} \) über

\[
K_{\text{LS}} := \frac{4\pi^2 n_{\text{Lsm}}^2}{\lambda^2 N_A^2} \left(\frac{dn}{dc} \right)^2
\]

erhält man für den differentiellen Wirkungsquerschnitt

\[
\frac{d\sigma}{d\Omega}(q) = K_{\text{LS}} N_p N \frac{M_1^2}{N_A} S(q).
\]

(3.67)

(3.68)

Die Masse eines Monomers haben wir mit \(M_1 \) bezeichnet, für das Molekulargewicht eines Polymerknäuels aus \(N \) Monomeren gilt demnach: \(M = N M_1 \). Der differentielle Wirkungsquerschnitt (3.68) hängt von der Anzahl \(N_p \) der Polymere im Streuvolumen ab. Am bequemsten sind solche Messgrössen zu handhaben, die vom Streuvolumen unabhängig sind. Also dividieren wir den differentiellen Wirkungsquerschnitt durch \(V \). Diese neue Größe heisst in der Lichtstreu-Literatur Rayleigh-Verhältnis \(\Delta R(q) \). Wir erhalten somit:

\[
\Delta R(q) := \frac{1}{V} \frac{d\sigma}{d\Omega}(q)
\]

= \[\frac{\langle I_s(q) \rangle - \langle I_s, \text{Lsm}(q) \rangle}{I_0} \]

\[
= \frac{K_{\text{LS}} N_p M_1}{N_A V} N M_1 S(q)
\]

\[
= K_{\text{LS}} c M_1 S(q)
\]

(3.69)

(3.70)

(3.71)

mit der Gewichtskonzentration
KAPITEL 3. STRUKTURFAKTOR

\[c = \frac{N_p M_1}{N_A V} N \]
(3.72)

in Einheiten von gcm\(^{-3}\). Als nächstes wollen wir uns das Rayleigh-Verhältnis für die stark verdünnte Polymerlösung im Guinier-Bereich \(q^2 \left\langle R^2_G \right\rangle \ll 1 \) anschauen.

Dazu setzen wir die Näherung für den Strukturfaktor

\[S(q) \approx N \left[1 - \frac{1}{3} q^2 \left\langle R^2_G \right\rangle \right] \]
(3.73)

in Gleichung (3.71) ein und erhalten

\[\Delta R(q) \approx K_{LS} c M \left[1 - \frac{1}{3} q^2 \left\langle R^2_G \right\rangle \right] \]
(3.74)

Mit Hilfe von (3.74) können wir jetzt Molekulargewichte und Trägheitsradien experimentell bestimmen. Bei der Auswertung von Lichtstreumessungen nach Gleichung (3.70) müssen wir noch einen Blick auf die Polarisationsverhältnisse werfen. Bei unserer Herleitung sind wir davon ausgegangen, dass sowohl die einlaufende als auch die gestreute Strahlung senkrecht zur Streuebene polarisiert ist. (Zur Erinnerung: Die Streuebene wird aufgespannt durch den Wellenvektor der einfallenden Welle und den Wellenvektor der gestreuten Welle.) Diese Wahl der Polarisationsrichtungen ist typisch für die meisten Experimente, aber nicht zwingend. Konsequenterweise sollte man daher bei dem Rayleigh-Verhältnis die Polarisationsverhältnisse mit angeben. Aus \(\Delta R(q) \) in (3.70) wird daher \(\Delta R_{vv}(q) \).

Nach Gleichung (3.74) erhält man das Molekulargewicht einer verdünnten Polymerlösung durch Extrapolation der Streuintensität

\[\lim_{q \to 0} \frac{\Delta R(q)}{K_{LS} c} = M \]
(3.75)

Wenn wir Gleichung (3.70) zur Auswertung von Lichtstreunexperimenten heranziehen, stossen wir schnell auf zwei Probleme: Woher wissen wir, wie groß das Streuvolumen \(V \) ist, das unser Detektor sieht? Und wie groß ist der Abstand \(R' \) zwischen Streuvolumen und Detektor? Diese beiden experimentellen Schwierigkeiten lassen sich umgehen, wenn man die Lichtstreuapparatur mit Hilfe von isotrop streuenden Referenzlösungenmit kalibriert, deren Rayleigh-Verhältnis genau bekannt ist. Statt (3.70) verwenden wir daher in der Praxis

\[\Delta R(q) = \frac{\langle I_s(q) \rangle - \langle I_{s, \text{Lam}}(q) \rangle}{\langle I_{s, \text{Ref}}(q) \rangle} \Delta R_{\text{Ref}} \left(\frac{n}{n_{\text{Ref}}} \right)^2 \]
(3.76)

Typische Referenzlösungenmittel sind Toluol oder Benzol. Beispielsweise gilt für Toluol: \(\Delta R_{\text{Toluol}} = 39.6 \cdot 10^{-6} \text{ cm}^{-1} \) bei einer Wellenlänge von \(\lambda_0 = 4880 \text{ Å} \) (Argon-Ionen-Laser) und einer Temperatur von \(T = 25 \text{°C} \).

Zur Auswertung von Lichtstreunexperimenten fehlt uns jetzt nur noch der Wert für das Brechungsindexinkrement \(dn/dc \). Bei Polymerlösungen liegt dieser typischerweise im Bereich von etwa \(0.1 \text{ cm}^3\text{g}^{-1} \). Experimentell findet man beispielsweise \((\lambda_0 = 4880 \text{ Å}, T = 25 \text{°C}) \) für:
3.4. LICHTSTREUUNG

Polystyrol in Toluol: \(\frac{dn}{dc} = 0.11 \text{cm}^3 \frac{g}{g} \) \hspace{1cm} (3.77)

Polystyrol in Cyclohexan: \(\frac{dn}{dc} = 0.175 \text{cm}^3 \frac{g}{g} \) \hspace{1cm} (3.78)

Generell beobachtet man eine empfindliche Abhängigkeit des Brechungsindexinkrements von der Temperatur, aber nur eine schwach ausgeprägte Abhängigkeit von der Wellenlänge.

Einfluss der Polydispersität

Bis jetzt sind wir von dem Idealfall ausgegangen, dass die Polymere alle aus gleichen Bausteinen bestehen und die gleiche Kettenlänge besitzen. Tatsächlich besitzen reale Polymere kein einheitliches Molekulargewicht; man beobachtet vielmehr eine Molekulargewichtsverteilung, die von den Polymerisierungsbedingungen abhängt. Diese Polydispersität müssen wir natürlich bei der Auswertung von Lichtstreuexperimenten berücksichtigen. Im Fall einer stark verdünnten Polymerlösung ist die gesamte Streuintensität des Polymers gleich der Summe der Streuintensitäten, die von den Einzelketten herrühren. Wenn wir den Beitrag \(cM \) zur Streuintensität als \(\sum_j c_j M_j \) schreiben und in der Summe den mittleren quadratischen Trägheitsradius \(\langle R^2_G \rangle \) durch \(\langle R^2_{G,j} \rangle \) ersetzen, erhalten wir für das Rayleigh-Verhältnis (in der Guinier-Näherung)

\[
\Delta R(q) \simeq K_{LS} \sum_j c_j M_j \left[1 - \frac{1}{3} q^2 \langle R^2_{G,j} \rangle \right].
\]

(3.79)

Molekulargewicht. Durch Extrapolation von Gleichung (3.79) nach \(q \rightarrow 0 \) erhalten wir das gewichtsgemittelte Molekulargewicht

\[
\lim_{q \to 0} \frac{\Delta R(q)}{K_{LS} c_{tot}} = \frac{\sum_j c_j M_j}{\sum_j c_j} = M_w.
\]

(3.80)

Die Gesamtkonzentration ist mit \(c_{tot} = \sum_j c_j \) bezeichnet.

Trägheitsradius. Wenn man nach Gleichung (3.79) das Rayleigh-Verhältnis \(R(q) \) gegen \(q^2/3 \) aufträgt, erhält man aus der Steigung den Trägheitsradius. Speziell gilt für eine verdünnte Lösung polydisperser Polymere:

\[
\frac{\Delta R(q)}{K_{LS} c_{tot}} = \frac{\sum_j c_j M_j}{\sum_j c_j} \left[1 - \frac{q^2}{3} \frac{\sum_j c_j M_j \langle R^2_{G,j} \rangle}{\sum_j c_j M_j} \right].
\]

(3.81)

Der experimentell bestimmte Wert von \(\bar{R}^2_{G,exp} \) entspricht einem \(z \)-Mittelwert

\[
\bar{R}^2_{G,exp} = \langle R^2_G \rangle_z = \frac{\sum_j c_j M_j \langle R^2_{G,j} \rangle}{\sum_j c_j M_j}.
\]

(3.82)

Die Lichtstreuexperimente sind also sehr empfindlich auf eine Polydispersität der Proben.
Experimentelle Tests des Irrflugs-Modells

Zum Abschluss dieses Unterkapitels werden wir die aus dem Irrflugs-Modell gewonnenen Vorhersagen für den Strukturfaktor (Debye-Funktion) mit Hilfe der statistischen Lichtstreuung überprüfen. Anhand der beiden uns bekannten Verfahren zur Bestimmung des Trägheitsradius (Debye-Funktion, Guinier-Approximation) wollen wir die unterschiedlichen Gültigkeitsbereiche der Auswerteverfahren deutlich machen.

Bei der untersuchten Polymerlösung handelt es sich um Polystyrol \((M_w/M_n = 1.2)\), das in Cyclohexan bei einer Temperatur von 34.5°C gelöst ist. Das Molekulargewicht beträgt \(M_w = 8.5 \times 10^6\) g/mol. Der untersuchte Winkelbereich erstreckt sich über \(15° \leq \theta \leq 150°\), als Lichtquelle wurde ein Argon-Ionen-Laser verwendet mit einer Wellenlänge von \(\lambda_0 = 4880\) Å.

Das obere Teilbild von Abbildung 3.11 zeigt eine Approximation der gemessenen Streuintensität (Rayleigh-Verhältnis) mit Hilfe der Debye-Funktion, im unteren Teilbild ist eine Auswertung der Messdaten im Rahmen der Guinier-Approximation zu sehen. Offensichtlich liefern beide Verfahren deutlich verschiedene Werte für den Trägheitsradius (Debye-Approximation: 729 Å, Guinier-Approximation: 814 Å). Verblüffend an diesem Ergebnis ist die nahezu perfekte Übereinstimmung zwischen den experimentellen Daten und den angefitteten Kurven. Bei genauerem Hinsehen stellt man fest, dass die Fehlerquelle in der Verwendung der Guinier-Approximation liegt. Der verwendete \(q\)-Bereich wurde so gross gewählt, dass die Voraussetzung \(q^2 \langle R_G^2 \rangle \ll 1\) nicht mehr erfüllt ist. Um Fehler dieser Art zu vermeiden, sollte man daher bei der Auswertung stets einen Blick auf die Gültigkeitsgrenzen werfen, innerhalb der zuverlässige Ergebnisse zu erwarten sind. Das Streuverhalten von Polystyrol in Cyclohexan bei \(T = 34.5°C\) lässt sich sehr gut mit der Debye-Funktion beschreiben, d.h. das Polymer verhält sich in diesem Lösungsmittel (bei der angegebenen Temperatur) wie eine ideale flexible Kette.

3.4.1 Exkurs: Die „Inkompressibilitäts-Hypothese“
(Für Interessierte)

Wir betrachten ein Zwei-Komponenten-System, bei dem für das molekulare Volumen der beiden Komponenten gelten soll:

\[v_1 = v_2 = v \]
3.4. LICHTSTREUUNG

Abbildung 3.11: Bestimmung des Trägheitsradius über die Debye-Funktion (oben) und die Guinier-Approximation (unten). Abhängig von dem Auswerteverfahren ergeben sich unterschiedliche Werte für den Trägheitsradius. Die Auswertung mit der Debye-Funktion liefert einen Trägheitsradius von $\bar{R}_G = 729\,\text{Å}$, bei der Auswertung mit der Guinier-Approximation erhält man $\bar{R}_G = 814\,\text{Å}$. Bei der Polymerlösung handelt es sich um Polystyrol in Cyclohexan bei $T = 34.5^\circ\text{C}$. Das Molekulargewicht beträgt $M = 8.6 \cdot 10^6\,\text{g/mol}$, die Polydispersität ist $M_w/M_n = 1.2$.
Abbildung 3.12: Einfluss des Lösungsmittels auf den Trägheitsradius. Bei den Polymerlösungen handelt es sich um Polystyrol in Cyclohexan bei $T = 34.5 \, ^\circ \text{C}$ und Toluol bei $T = 25 \, ^\circ \text{C}$. Das Molekulargewicht beträgt $M = 8.6 \cdot 10^6 \, \text{g/mol}$, die Polydispersität ist $M_w/M_n = 1.2$. Die Auswertung mit Hilfe der Debye-Funktion liefert signifikant unterschiedliche Trägheitsradien: $R_G = 715 \, \text{Å}$ für Polystyrol in Cyclohexan und $R_G = 1183 \, \text{Å}$ für Polystyrol in Toluol. Bei Polystyrol in Toluol beobachtet man ausserdem eine systematische Abweichung zwischen den experimentellen Daten und der Debye-Funktion im Bereich hoher q-Werte. Mit dieser Abweichung werden wir uns noch eingehend in den Kapiteln 4 (Ausgeschlossenes Volumen) und 6 (Lösungsmittel- und Temperatureffekte) beschäftigen.
Das gesamte Volumen ist dann $V = (N_1 + N_2)v$. Da wir das System als inkompressibel annehmen, erhalten wir

$$n_1(r) + n_2(r) = n = \frac{N_1 + N_2}{V} = \text{const.}$$

und somit

$$\Delta n_1(r) + \Delta n_2(r) = 0.$$

Der differentielle Wirkungsquerschnitt für dieses System ist

$$\frac{d\sigma}{d\Omega} = b_1^2 \int \int d^3r d^3r' \langle n_1(r)n_1(r') \rangle e^{-i\mathbf{q} \cdot (r' - r)} +$$

$$b_2^2 \int \int d^3r d^3r' \langle n_2(r)n_2(r') \rangle e^{-i\mathbf{q} \cdot (r' - r)} +$$

$$2b_1b_2 \int \int d^3r d^3r' \langle n_1(r)n_2(r') \rangle e^{-i\mathbf{q} \cdot (r' - r)}.$$

Unter dem partiellen Strukturfaktor verstehen wir

$$S_{jk}(\mathbf{q}) := \frac{1}{N} \int \int d^3r d^3r' \langle n_j(r)n_k(r') \rangle e^{-i\mathbf{q} \cdot (r' - r)}.$$ (3.83)

Wir können daher anstelle von $\langle n(r)n(r') \rangle$ auch $\langle \Delta n(r)n(r') \rangle$ schreiben, da für die Streuintensität nur Fluktuationen der Dichte beitragen (das perfekt homogene Medium streut nicht). Aus $\Delta n_1(r) + \Delta n_2(r) = 0$ folgt nach Multiplikation mit $\Delta n_1(r') e^{-i\mathbf{q} \cdot (r' - r)}$

$$\langle [\Delta n_1(r) + \Delta n_2(r)] \Delta n_1(r') \rangle e^{-i\mathbf{q} \cdot (r' - r)} = 0.$$

Nach zweifacher Integration ergibt sich dann:

$$S_{11}(q) + S_{12}(q) = 0.$$

Ganz analog erhält man $S_{12}(q) + S_{22}(q) = 0$. Es gilt also

$$S_{11}(q) = S_{22}(q) = -S_{12}(q)$$

und somit

$$\frac{d\sigma}{d\Omega} = N(b_1 - b_2)^2 S_{11}(q) = N(\Delta b)^2 S_{11}(q).$$ (3.84)

3.5 Neutronenstreuung

Eigenschaften

Neutronen sind zu einem wichtigen Hilfsmittel bei der Untersuchung der kondensierten Materie geworden. Enge wichtige Eigenschaften von Neutronen sind in der Tabelle 3.1 zusammengefasst. Von fundamentaler Bedeutung ist die Beziehung zwischen Wellenlänge und kinetischer Energie der Neutronen:

\[\lambda(\text{Å}) = \frac{0.286}{\sqrt{E(\text{eV})}}. \] (3.85)
Neutronen gehören zu den Elementarteilchen, gemeinsam mit den Protonen sind sie die Bausteine der Atomkerne. Wegen ihrer mikroskopischen Struktur besitzen Neutronen - wie bereits in Gleichung (3.85) sichtbar - sowohl Wellen- als auch Teilcheneigenschaften, die man je nach Fragestellung im Experiment beobachten kann.

Wie in der Abbildung 3.14 skizziert, erzeugt man die zur Strukturanalyse benötigten freien Neutronen entweder in einem Kernreaktor durch Kernspaltung oder in einer sogenannten Spallationsquelle, bei der hochenergetische Teilchen auf ein Ziel (Target) gelenkt werden und dort Neutronen freisetzen. Entsprechend ihrer kinetischen Energie unterscheidet man zwischen

- „kalten“ Neutronen: \(0.5 \text{ meV} \leq E \leq 2 \text{ meV} \) (\(\rightarrow 6 \text{ Å} \leq \lambda \leq 13 \text{ Å}\)) und
- „thermischen“ Neutronen \(2 \text{ meV} \leq E \leq 100 \text{ meV}\), typischerweise etwa 25 meV, d.h. \(\lambda \sim 1.8 \text{ Å}\).

Auflösungsvermögen

Bei der Bestimmung des experimentell zugänglichen q-Bereiches wollen wir uns an einem bekannten SANS-Instrument orientieren, und zwar an dem bereits er-

wähnten Instrument D11 des Instituts Laue Langevin (ILL) in Grenoble (siehe Abbildung 3.13). Aus den Vorüberlegungen in Kapitel 2 wissen wir bereits, dass der Streuvektor \mathbf{q} von zwei experimentell zugänglichen Größen abhängt: der Wellenlänge λ und dem Streuwinkel θ. Das Instrument D11 ermöglicht Experimente im Wellenlängenbereich von:

$$4\text{Å} \leq \lambda \leq 15\text{Å}, \quad \frac{\Delta \lambda}{\lambda} \sim 0.1.$$ (3.86)

In einem Kleinwinkel-Neutronenexperiment hängt der Streuwinkel - wie in Abbildung 3.13 skizziert - sowohl vom Abstand zwischen Probe und Detektor als auch von der Detektogrösse ab. Die entsprechenden Werte für das D11-Instrument lauten: Der Abstand zwischen Probe und Detektor beträgt maximal etwa 40 m. Der zweidimensionale Detektor besitzt einen Durchmesser von 64 cm. Damit ergibt sich folgender Winkel- und q-Bereich bei vorgewählter Wellenlänge von $\lambda = 10\text{Å}$:
3.5. NEUTRONENSTREUUNG

\[0.09^\circ \leq \theta \leq 0.5^\circ \rightarrow 1.5 \cdot 10^{-3}\text{Å}^{-1} \leq q \leq 6 \cdot 10^{-3}\text{Å}^{-1}. \]
(3.87)

Der kleinste Abstand zwischen Detektor und Probe beträgt etwa 2 m. Damit ergibt sich folgender Winkel- und \(q\)-Bereich bei vorgewählter Minimalwellenlänge von \(\lambda = 4\text{Å}:\)

\[0.6^\circ \leq \theta \leq 9^\circ \rightarrow 6 \cdot 10^{-2}\text{Å}^{-1} \leq q \leq 0.25\text{Å}^{-1}. \]
(3.88)

Für den gesamten experimentell zugänglichen \(q\)-Bereich erhält man daher:

\[1.5 \cdot 10^{-3}\text{Å}^{-1} \leq q \leq 0.25\text{Å}^{-1}. \]
(3.89)

Aus dem oben festgelegten \(q\)-Bereich ergibt sich unmittelbar die Existenz eines Überlappbereichs von Lichtstreu- und SANS-Experimenten. Allerdings sind solche Messungen im Überlappbereich extrem zeitaufwendig (und damit auch kostspielig), da die Streuintensität umgekehrt proportional zum Abstandsquadrat abnimmt und der Detektorabstand bis zu dem maximal möglichen Wert verschoben werden muss. Hinzu kommt, dass für sehr kleine \(q\)-Werte Wellenlängen grösser als 10 Å gewählt werden müssen, für die der zur Verfügung stehende Neutronenfluss bereits recht klein ist. (Ausserdem: Kolimationsstrecke maximal → viel kleinerer Neutronenzahl auf der Probe). In typischen SANS-Experimenten variiert man den \(q\)-Bereich zwischen:

\[3 \cdot 10^{-3}\text{Å}^{-1} \leq q \leq 0.3\text{Å}^{-1}. \]
(3.90)

Wechselwirkungen von Neutronen mit Materie

Neutronen werden am Atomkern gestreut, sie treten nicht mit den Elektronen in Wechselwirkung, wie dies bei Licht der Fall ist. Damit wir ein Gefühl für die Neutronenstreuung gewinnen, wollen wir abschätzen, wie gross die von uns verwendeten Wellenlängen im Vergleich zu einem typischen Kerndurchmesser sind. Offensichtlich gilt: \(R_{\text{Kern}} (\sim 10^{-4}\text{Å}) \ll \lambda (\sim 1 - 10\text{Å}).\) Da die Streuzentren klein gegenüber der Wellenlänge sind, erfolgt die Neutronenstreuung isotrop; in der Sprache der Quantenmechanik spricht man von reiner \(s\)-Wellenstreuung (\(l = 0\)). Für den differentiellen Wirkungsquerschnitt gilt dann:

\[\frac{d\sigma}{d\Omega} = b^2. \]
(3.91)

Kohärente und incohärente Streuung

Für das Verständnis der Neutronenstreuung sind die Begriffe kohärente und incohärente Streuung von zentraler Bedeutung. Wir schreiben den differentiellen Wirkungsquerschnitt in der Form:

\[
\frac{d\sigma}{d\Omega}(q) = \sum_{j,k=1}^{N} \langle b_j b_k e^{i\mathbf{q} \cdot \mathbf{r}_{jk}} \rangle.
\] (3.92)

Die Werte für \(b_j, b_k \) hängen vom jeweiligen Isotop und von der Spinrichtung ab. Da die einzelnen Streulängen unabhängig voneinander sind, gilt:

\[
j \neq k: \quad \langle b_j b_k \rangle = \langle b_j \rangle \langle b_k \rangle = \langle b \rangle^2
\] (3.93)

\[
j = k: \quad \langle b_j b_k \rangle = \langle b_j^2 \rangle = \langle b^2 \rangle
\] (3.94)

und damit folgt

\[
\langle b_j b_k \rangle = \langle b \rangle^2 + \delta_{jk} \left(\langle b^2 \rangle - \langle b \rangle^2 \right).
\] (3.95)

Setzt man voraus, dass die Spinnstellung unabhängig vom Ort ist, erhält man für den differentiellen Wirkungsquerschnitt:

\[
\frac{d\sigma}{d\Omega}(q) = \langle b \rangle^2 \sum_{j,k=1}^{N} \langle e^{i\mathbf{q} \cdot \mathbf{r}_{jk}} \rangle + N \left(\langle b^2 \rangle - \langle b \rangle^2 \right).
\] (3.96)

Der erste Term beschreibt den kohärenten Streuanteil: Darunter ist die Streuung an Kernen zu verstehen, die alle die gleiche (mittlere) Streulänge \(\langle b \rangle \) haben. In dem kohärenten Streuanteil sind alle Interferenzterme enthalten und damit auch die gesamte strukturelle Information.

Der zweite Term bezeichnet die incohärente Streuung: Er enthält keine Interferenzterme (nur \(j = k \)) und entsteht durch die „Unordnung“ der Isotope. \(b_{\text{inkoh}}^2 = \langle b^2 \rangle - \langle b \rangle^2 \) ist die mittlere quadratische Abweichung der Streulänge. Dieser Ausdruck enthält keine Information über die Struktur des Systems.

Der Wirkungsquerschnitt bei kohärenter Streuung ist

\[
\sigma_{\text{koh}} = 4\pi \langle b \rangle^2
\] (3.97)

und bei incohärenter Streuung

\[
\sigma_{\text{inkoh}} = 4\pi \left(\langle b^2 \rangle - \langle b \rangle^2 \right).
\] (3.98)
3.5. NEUTRONENSTREUUNG

Tabelle 3.2: Beispiele für kohärente und inkohärente Wirkungsquerschnitte bei Neutronen-Kleinwinkelstreuxperimenten.

<table>
<thead>
<tr>
<th>Isotop</th>
<th>Kernspin I</th>
<th>(\sigma_{\text{koh}}) in (10^{-28}\text{m}^2)</th>
<th>(\sigma_{\text{inkoh}}) in (10^{-28}\text{m}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H})</td>
<td>1/2</td>
<td>1.8</td>
<td>79.7</td>
</tr>
<tr>
<td>(^2\text{H})</td>
<td>1</td>
<td>5.6</td>
<td>2.0</td>
</tr>
<tr>
<td>(^{12}\text{C})</td>
<td>0</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td>(^{14}\text{N})</td>
<td>1</td>
<td>11.6</td>
<td>0.3</td>
</tr>
<tr>
<td>(^{16}\text{O})</td>
<td>0</td>
<td>4.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 3.3: Beispiele für kohärente Streulängen bei Neutronen-Kleinwinkelstreueperimenten.

<table>
<thead>
<tr>
<th>Streulänge</th>
<th>(^1\text{H})</th>
<th>(^2\text{H})</th>
<th>(^{12}\text{C})</th>
<th>(^{16}\text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) in (10^{-14}\text{m})</td>
<td>-0.38</td>
<td>0.66</td>
<td>0.66</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Noch interessanter als die Vergleiche zwischen kohärenten und inkohärenten Wirkungsquerschnitten sind die reinen Streulängen, die für verschiedene Isotope auch negativ sein können. Dies führt zu einem Verfahren, das man Kontrastvariation nennt.

Kontrast

Der limitierte \(q\)-Bereich im SANS-Experiment löst interatomare Streubeiträge nicht auf, folglich können wir eine mittlere spezifische Streulängendichte einführen über:

\[
\rho = \frac{1}{V_1} \sum_j b_j ,
\]

wobei \(b_j\) die kohärenten Streulängen der Atome in einem Volumen \(V_1\) mit linearer Dimension \(\geq \frac{\lambda}{\pi}\) bezeichnet und die Summation über alle Atome eines Monomers läuft. Also folgt für die Streuintensität von \(N_p\) Polymerknäueln im Streuvolumen \(V\) (im Grenzfall niedriger Konzentration):

\[
\frac{1}{V} \frac{d\sigma}{d\Omega}(q) = \frac{N_p}{V} \left(\sum_j b_j \right)^2 N S(q) .
\]

Damit können wir für den differentiellen Wirkungsquerschnitt schreiben

\[
\frac{1}{V} \frac{d\sigma}{d\Omega}(q) = c \rho^2 \frac{V^2 N_A}{M_1} S(q) .
\]

Das Volumen eines Monomers \(V_1\) muss nun noch durch eine einfach messbare Größe ausgedrückt werden (z.B. die Dichte \(\rho_M\) oder das partielle Volumen \(\bar{\nu} = 1/\rho_M\)), d.h.
Tabelle 3.4: Einige Beispiele für die Streulängendichte ρ in Neutronenstreuexperimenten.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>M_1 / g/mol</th>
<th>ρ / 10^{10} cm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrol</td>
<td>C$_8$H$_8$</td>
<td>104.15</td>
<td>1.413</td>
</tr>
<tr>
<td>d-Styrol</td>
<td>C$_8$D$_8$</td>
<td>112.19</td>
<td>6.50</td>
</tr>
<tr>
<td>Cyclohexan</td>
<td>C6H${12}$</td>
<td>84.16</td>
<td>-0.24</td>
</tr>
<tr>
<td>d-Cyclohexan</td>
<td>C6D${12}$</td>
<td>96.23</td>
<td>6.01</td>
</tr>
<tr>
<td>Benzol</td>
<td>C$_6$H$_6$</td>
<td>78.12</td>
<td>1.19</td>
</tr>
<tr>
<td>d-Benzol</td>
<td>C$_6$D$_6$</td>
<td>84.15</td>
<td>5.44</td>
</tr>
</tbody>
</table>

\[V_1 \approx \frac{M_1}{\rho M N_A} \approx \frac{v M_1}{N_A} \]
(3.102)

Wir sind jetzt in der Lage, den differentiellen Wirkungsquerschnitt für SANS-Experimente analog zu dem in der Lichtstreuung aufzuschreiben:

\[\frac{1}{V} \frac{d\sigma}{d\Omega}(q) = c K_{\text{SANS}} M_1 S(q), \]
(3.103)

wobei der Kontrastterm K_{SANS} für die Neutronenstreuung gegeben ist durch

\[K_{\text{SANS}} := \bar{v}^2 \rho^2 \frac{1}{N_A}. \]
(3.104)

Damit wir im Experiment grosse Wirkungsquerschnitte erreichen, müssen wir also versuchen, den Kontrastterm $\Delta \rho$ möglichst gross zu wählen.

Wenn wir in einem Streuexperiment Polymerlösungen untersuchen, messen wir nicht nur die reine Streustrahlung des Polymers. Vielmehr muss der Beitrag des Lösungsmittels berücksichtigt werden. In der Realität ist daher die Streulängendichte ρ durch die Differenz der Streulängendichte

\[\Delta \rho = \rho - \rho_{\text{Lsm}} = \frac{1}{V_1} \left(\sum_j b_j - \rho_{\text{Lsm}} V_1 \right) \]

zu ersetzen. Wir erhalten dann für den Kontrastterm

\[K_{\text{SANS}} = \bar{v}^2 (\Delta \rho)^2 \frac{1}{N_A}. \]
(3.106)

Die Tabelle 3.4 enthält einige Beispiele für Streulängendichten. Je nach Wahl des Lösungsmittels (deuteriert oder nicht-deuteriert) ergeben sich deutlich unterschiedliche Werte für die Differenz der Streulängendichte.

derselben Abbildung ist in den unteren Bildern ein Vergleich zwischen verdünnten Lösungen und Schmelzen aufgezeigt. Während die Schmelze ein ideales Verhalten zeigt, weicht dasjenige der verdünnten Lösung aufgrund des ausgeschlossenen Volumens vom idealen Verhalten ab ($q^{-1.5}$ statt q^{-2}). Näheres dazu findet sich in den Kapitel 4 und 8.
Zwar liefert die Neutronenstreuung wegen $K_{\text{SANS}}/K_{\text{LS}} \sim 5 \cdot 10^3$ einen höheren Streukontrast, allerdings sind die zur Verfügung stehenden Intensitäten bei einem Lichtstreuexperiment wesentlich höher.
Abbildung 3.15: Polystyrol gelöst in deuteriertem Benzol ($M_W \approx 95\,000, \bar{\nu} \approx 0.91\,\text{cm}^3/\text{g}$) in 3 verschiedenen Konzentrationen ($\Delta: 0.0023$, $\circ: 0.0057$, $\bullet: 0.0113$). ϕ bezeichnet den Volumenbruch der Polymere in Lösung. Der Einfluss der Konzentration ist im oberen Bild sichtbar. Das untere Bild zeigt einen Vergleich von Polymeren in Lösung und in Schmelze.
Kapitel 4
 Ausgeschlossenes Volumen

4.1 Zusammenstellung der bisherigen Ergebnisse

Das einfachste Modell zur Beschreibung der Konformation eines Polymerknäuels ist das Irrflugs-Modell. Wie wir in Kapitel 2 gesehen haben, gelten folgende Skalenbeziehungen für den End-zu-End-Abstand \bar{R}_E und für den Trägheitsradius \bar{R}_G:

$$\bar{R}_E \sim \bar{R}_G \sim N^{\nu} \quad (4.1)$$

mit $\nu = 1/2$. Aus Kapitel 3 wissen wir, dass wir für den Strukturfaktor $S(q)$ schreiben können

$$S(q) = N f_{\text{Debye}} \left(q^2 \bar{R}_G^2 \right) \sim \frac{1}{q^2} \quad (4.2)$$

für grosse q. Im Experiment beobachten wir, dass die Beziehung

$$\bar{R}_G \sim N^{0.5} \quad (4.3)$$

für hochmolekulare Polymere in Theta-Lösungsmitteln erfüllt ist (wie beispielsweise Polystyrol in Cyclohexan bei einer Temperatur von 34.5°C). In diesem Fall ist auch der Verlauf der Streukurve $S(q)$ durch die Debye-Funktion gegeben. Abweichungen von den Vorhersagen des Irrflugs-Modells ergeben sich, wenn wir zu einem guten Lösungsmittel übergehen. Im Fall hoher Molekulargewichte gilt dann

$$\bar{R}_G \sim N^{0.6} \quad (4.4)$$

und

$$S(q) \neq N f_{\text{Debye}} \left(q^2 \bar{R}_G^2 \right) \quad (4.5)$$

Der grössere Exponent $\nu = 0.6$ statt 0.5 für die Skalierung des Trägheitsradius lässt sich anschaulich als „Anschwellen“ des Polymerknäuels in einem guten Lösungsmittel interpretieren. Es ändert sich aber nicht nur die Knäueldimension (\rightarrow Trägheitsradius), sondern auch gleich die gesamte Verteilungsfunktion (\rightarrow Strukturfaktor).
4.2 Vereinfachte Beschreibung nach Flory

In diesem Kapitel wollen wir versuchen, die gerade genannten Abweichungen zwischen theoretischer Vorhersage aus dem Irrflugs-Modell und experimentellen Ergebnissen zu verstehen. Unsere bisherigen Beobachtungen lassen sich durch den Effekt des ausgeschlossenen Volumens erklären: Jedes Monomer besitzt ein Eigenvolumen; also kann der Platz, der bereits von einem Monomer beansprucht wird, nicht von einem weiteren Monomer belegt werden.

Intuitiv erwarten wir also wegen der abstossenden Wechselwirkungen zwischen den Monomeren ein Anschwellen des Polymers. Durch das Eigenvolumen der Monomere wird das gesamte Polymerknäuel also ein grösseres Volumen einnehmen. Diesem Effekt steht die grössere Entropie für kompaktere Konformationen entgegen. Die Kombination dieser zwei gegenläufigen Effekte wurde von Flory im Rahmen eines sogenannten Molekularfeld(„mean field”)-Modells verwendet, um vorherzusagen, wie der Trägheitsradius vom Molekulgewicht abhängt.

Entropie

\[
S(R_E) = k_B \ln p(R_E) + \text{const} = -k_B \frac{3}{2} \frac{R_E^3}{N \alpha^3} + \text{const}.
\] (4.6)

Vorsicht: Hier haben wir das Ergebnis für die Wahrscheinlichkeitsverteilung aus dem Irrflugs-Modell verwendet (\(p(R_E)\) ist die Wahrscheinlichkeitsdichte, siehe Kapitel 2). Wechselwirkungen bleiben bei der Berechnung der Entropie unberücksichtigt.

Wechselwirkungsenergie

Die mittlere Besetzungsdichte durch \(N\) Monomere der Größe \(\alpha\) in einem Volumen \(R_E^3\) ist

\[
\phi_{\text{int}} = \frac{N \alpha^3}{R_E^3}.
\] (4.7)

Der Zähler beschreibt das gefüllte Volumen und der Nenner das typische Volumen des Knäuels. Um die typische Anzahl der Wechselwirkungen zu ermitteln, muss die mittlere Besetzungszahl mit \(N\) multipliziert werden. Bezeichnen wir mit \(\beta_0\) die Energie pro Wechselwirkung, so ergibt sich für die gesamte Wechselwirkungsenergie

\[
E = \beta_0 N \phi_{\text{int}} = \beta_0 \frac{N^2 \alpha^3}{R_E^3}.
\] (4.8)

4.2. VEREINFachte beschreibung nach flory

Flory-Näherung

Aus dem Beitrag der Entropie S und der Wechselwirkungsentnergie E berechnen wir die freie Energie F bei gegebener Temperatur T zu

$$F = E - TS = \beta_0 \frac{N^2 a^3}{\bar{R}_E^3} + \frac{3}{2} k_B T \bar{R}_E^2. \quad (4.9)$$

Minimieren der freien Energie nach \bar{R}_E führt auf:

$$\bar{R}_E = a \left(\frac{\beta_0}{k_B T} \right)^{1/5} N^{3/5} \sim N^{\nu}. \quad (4.10)$$

mit $\nu = 3/5$. Eine Verallgemeinerung dieser Berechnung auf d Dimensionen ergibt

$$\bar{R}_E = a \left(\frac{\beta_0}{k_B T} \right)^{1/(d+2)} N^{3/(d+2)} \sim N^{\nu} \quad (4.11)$$

mit einem Skalenexponenten ν von

$$\nu = \frac{3}{d+2}, \quad \nu \begin{array}{r|cccc} d & 1 & 2 & 3 & 4 \\ \hline \nu & 1 & \frac{3}{2} & \frac{5}{2} & \frac{7}{2} \end{array}$$

Vergleichen wir den Wert in $d = 3$ Dimensionen mit dem entsprechenden Wert für das Irrflugs-Modell ($\nu = 0.5$), so sehen wir, dass die Moleküle stärker anwachsen, wenn man das ausgeschlossene Volumen mitberücksichtigt.

- $d = 1$: Den Wert für den Exponenten in einer Dimension kann man leicht verstehen: Überschneidungen lassen sich nur vermeiden, wenn man immer in die einmal eingeschlagene Richtung weitergeht, $\nu = 1$ ist also sogar ein exaktes Ergebnis.

Tabelle 4.1: Zusammenstellung der Exponenten ν, δ, g und κ im einfachen Irrflugsmodell („random walk“, RW) und im Irrflugsmodell ohne Selbstüberschneidungen („self avoiding walk“, SAW).

<table>
<thead>
<tr>
<th></th>
<th>ν</th>
<th>δ</th>
<th>g</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrflug</td>
<td>1/2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SAW</td>
<td>0.588(1)</td>
<td>2.427(6)</td>
<td>0.275(2)</td>
<td>0.249(11)</td>
</tr>
</tbody>
</table>

4.3 Modell und Simulationstechniken

Der Effekt des ausgeschlossenen Volumens kann direkt und relativ einfach mit Hilfe von Computer-Simulationen untersucht werden. Dabei gehen wir von einem reinen Irrflug („random walk“, RW) zu einem Irrflug ohne Selbstüberschneidungen („self avoiding walk“, SAW) über. Dabei wählen wir folgendes Modell:

- Betrachte alle Irrflüge mit $N - 1$ Schritten.
- Verwerfe alle Irrflüge, bei denen ein Gitterplatz mehrfach besucht wird.
- Weise allen verbleibenden Irrflügen die gleiche Wahrscheinlichkeit zu.

Im Prinzip ist dieses Modell einfach auf dem Computer zu implementieren. Dabei findet man folgende Ergebnisse:

Knäueldimensionen

Für große N gilt

$$\bar{R}_E^2 = c_E a^2 N^{2\nu}, \quad \bar{R}_G^2 = c_G a^2 N^{2\nu},$$

mit einem Skalenexponenten von $\nu = 0.588(1)$ in $d = 3$ Dimensionen.

Verteilung der End-zu-End-Abstände

$$p(R_E) = \frac{1}{\theta^{3/2}} f \left(\frac{|R_E|}{\theta^{0.5}} \right), \quad \theta = \frac{\bar{R}_E^2}{3},$$

wobei die Verteilungsfunction die folgende Form hat

$$f(x) \sim \begin{cases} \quad x^\kappa \exp(-c x^\delta), & x \gg 1 \\ \quad x^g, & x \ll 1 \end{cases}.$$

Einen Vergleich der Vorhersagen für das einfache Irrflugs-Modell und für den Irrflug ohne Selbstüberschneidungen findet man in der Tabelle 4.1.

Wenn man sich die Wahrscheinlichkeitsdichte anschaut, sieht man, dass beim reinen Irrflug das Maximum bei $R = 0$ ist. Beim Irrflug ohne Selbstüberschneidungen fällt dagegen die Wahrscheinlichkeitsdichte für kleine R steil ab, d.h. die Wahrscheinlichkeit, dass ein Irrflug ohne Selbstüberschneidungen an den Ausgangspunkt zurückkehrt, ist verschwindend klein.
Wichtig ist auch noch der Unterschied, dass die Verteilungsfunktion f für die inneren Abstände von der Position innerhalb der Kette abhängt, was beim einfachen Irrflugs-Modell nicht der Fall war.

Asymptotisches Verhalten der Korrelationsfunktion und des Strukturfaktors

Bereits in Kapitel 3.2 haben wir uns anhand einer einfachen geometrischen Abschätzung Klarheit über das Verhalten der Korrelationsfunktion im Irrflugs-Modell verschafft. Wir werden diesen Gedanken aufgreifen und verallgemeinern. Dazu schreiben wir die Korrelationsfunktion in der Form

$$g(r) \sim \frac{N}{r^{3-1/\nu}} \quad (4.16)$$

und den Strukturfaktor

$$S(q) \sim q^{-\frac{1}{2}} \quad (4.17)$$

für $a \ll 1/q \ll \bar{R}_G$. Mit $\nu = 3/5$ ergibt sich dann

$$g(r) \sim r^{-\frac{4}{3}} \quad (4.18)$$

und

$$S(q) \sim q^{-\frac{2}{3}} \quad (4.19)$$

Anmerkung: Der Exponent ν ist im Experiment nur dann klar sichtbar, wenn man zu genügend grossen Molekulargewichten und einem geeigneten q-Bereich übergreift. Das Lösungsmittel muss ausserdem hinreichend gut sein (nähere Einzelheiten folgen in einem späteren Kapitel).

Technisches Problem: Anzahl der Konformationen ohne Selbstüber- schneidungen

Für grosse Kettenlängen N haben wir das Problem, das von der Gesamtanzahl der erzeugten Irrflüge nur sehr wenige übrig bleiben, die keine Selbstüberschneidung zeigen. Die Gesamtzahl der Konformationen mit N Schritten ohne Selbstüberschneidung können wir abschätzen durch

$$\mathcal{N}_N = c \bar{z}^N N^\gamma^{-1} \quad (4.20)$$

Der Vorfaktor c und die effektive Koordinationszahl \bar{z} hängen von der Wahl des Gitters ab, während der Exponent γ durch die Dimension d des Gitters bestimmt ist. Im Fall eines dreidimensionalen kubischen Gitters gilt $\bar{z} = 4.6839$ (2), ohne ausgeschlossenem Volumen ist die Koordinationszahl offensichtlich $\bar{z} = 6$. Für den Exponenten gilt $\gamma = 1.161$. Anzumerken bleibt, dass der Faktor N^γ^{-1} in der Gleichung (4.20) für das Potenzverhalten verantwortlich ist. Ohne diesen Faktor
würde sich an der Gesamtzahl der Konformationen zweier einzelner Polymerketten nichts ändern, wenn man beide zu einer einzelnen Kette zusammensetzt. Dies kann offensichtlich nicht stimmen in Anbetracht der Möglichkeit weiterer Selbstüberschneidungen, wenn man Ketten zusammensetzt.

Von den angegebenen Parameter ν, γ, δ, g und κ sind tatsächlich nur zwei unabhängig, also beispielsweise ν und γ. Die anderen Exponenten lassen sich aus den Skalenfunktionen berechnen:

$$
\delta = \frac{1}{1 - \nu} , \quad \kappa = \frac{1 - \gamma + d(\nu - \frac{1}{2})}{1 - \nu} , \quad g = \frac{\gamma - 1}{\nu} \quad (4.21)
$$

Wir wollen festhalten, dass der Exponent γ prinzipiell messbar ist. Solche Messungen sind bis heute jedoch noch nicht durchgeführt worden. In der Tabelle 4.1 sind die heute aktuellen Werte aufgezeigt.

4.3.1 Monte-Carlo-Simulationen: (Pseudo-)Zufallszahlen

Abschließend wollen wir ein wichtiges numerisches Verfahren vorstellen: die Monte-Carlo-Simulation. Mit der Entwicklung immer leistungsfähigerer Computer wurde die Computer-Simulation in den letzten Jahrzehnten immer bedeutungsvoller, insbesondere im Bereich der Gittermodelle. Im folgenden sind die gängigsten Verfahren kurz genannt, nähere Einzelheiten finden sich in den angegebenen Referenzen:

- ** Direkte Simulation** Auf Diamantgitter - raffinierte Methoden um auf „Loops“ zu prüfen.

- **Enrichment-Methode**
 Abspeichern eines Kettenanfangs - später fortsetzen.
 Genauer: jeder Irrflug, der s Schritte ohne Überschneidungen beinhaltet, wird p-fach fortgesetzt, entsprechend bei $2s$, Typische Werte sind: 20, 40 für s; 2, ..., 5 für p (nicht zu gross - zu viele gleiche Anteile).

- **Dimer-Methode**
 Vorrat an Irrflügen der Länge n_0 kombinieren zu $2n_0$, $4n_0$, etc. (n_0 z.B. 50).

- **“Slithering snake”-Technik**
 Ende \rightarrow Anfang.
 Veränderung einer Anfangskonfiguration.
 Abhängige Daten $\Rightarrow N$ begrenzt (Gedächtnis der Ordnung N^2).
4.4. **TEST DURCH STREUEXPERIMENTE**

- **“Scanning”-Methode**

Vorausschauen. Verzerrte Gewichte, als entsprechende Faktoren berücksichtigen.

4.4 Test durch Streuexperimente

Bis jetzt haben wir zwei Modelle zur Beschreibung von Konformationen von Einzelketten in Lösungen kennengelernt, nämlich das Modell für den einfachen Irrflug (random walk) und für den Irrflug ohne Selbstüberschneidungen (self avoiding walk). Nun wollen wir die Vorhersagen dieser beiden Modelle mit dem Experiment vergleichen. Dazu bieten sich folgende Testgrößen an:

1. **Skalengesetz** $R_G \sim N^\nu$, wobei die Modelle

 $\nu = \begin{cases} \frac{1}{2} & \text{(Irrflug)} \\ 0.588(3/5) & \text{(Irrflug mit ausgeschlossenem Volumen)} \end{cases}$

 vorhersagen.

2. **Asymptotisches Verhalten von $S(q)$ für grosse q:**

 $S(q) \sim q^{-\frac{\nu}{2}} = \begin{cases} q^{-2} & \text{(Irrflug)} \\ q^{-1.7} & \text{(Irrflug mit ausgeschlossenem Volumen)} \end{cases}$

3. **Vollständiger Strukturfaktor $S(q)$**. Hierzu wäre es wünschenswert, aus den Modellen die Verteilungsfunktion $p_{jk}(r)$ für die inneren Abstände oder die Korrelationsfunktion $g(r)$ zu kennen. Analytisch haben wir diese Funktionen aber nur für das Irrflugs-Modell zur Verfügung. Deshalb werden wir versuchen, unter Berücksichtigung des ausgeschlossenen Volumens geeignete Näherungen zu finden.
4.4.1 Experimenteller Test der Skalengesetze

Polystyrol in einem Theta-Lösungsmittel

Cyclohexan bei $T = 34.5\, ^\circ C$ ist beispielsweise ein solches Theta-Lösungsmittel. Der Trägheitsradius ist in Abbildung 2.4 als Funktion des Molekulargewichtes M_W gezeigt. Für $R_G \geq 40\, \text{Å}$ ergibt sich eine sehr gute Übereinstimmung von $R_G \sim N^{5/2}$ mit den experimentellen Daten.

Polystyrol in einem guten Lösungsmittel

Als gutes Lösungsmittel wählen wir Toluol bei $T = 25\, ^\circ C$, als Polymer nehmen wir wieder Polystyrol.

Betrachten wir dazu Abbildung 2.5, so erkennen wir drei typische Bereiche:

- Bei hohen Molekulargewichten ($M_W > 10^5$) gilt $R_G \sim M_W^{0.59}$. Insbesondere weist hier R_G deutlich höhere Werte als im Θ-Lösungsmittel auf, was auf ein „Anschwellen“ des Polymerknäuels durch den Effekt des ausgeschlossenen Volumens zurückzuführen ist.

- In einem mittleren Bereich ($10^4 < M_W < 10^5$) finden wir wiederum das Irrflugs-Verhalten $R_G \sim M_W^{0.5}$. Die Ketten sind hier so kurz, dass Selbstüberschneidungen nicht auftreten und der Effekt des ausgeschlossenen Volumens vernachlässigbar wird kann.

- Bei niedrigen Molekulargewichten ($M_W < 10^4$) sehen wir Details der lokalen Chemie, insbesondere macht sich die Steifigkeit der Ketten bemerkbar.

4.4.2 Asymptotisches Verhalten von $S(q)$

Das untere Teilbild von Abbildung 3.15 zeigt den asymptotischen Bereich von $S(q)$.

Der Strukturfaktor von Polystyrol ($M_W \simeq 95000$) in deuteriertem Benzol zeigt ein Skalenverhalten von $S(q) \sim q^{-1.5}$. Im Gegensatz dazu wird für Schmelzen im Rahmen der experimentellen Genauigkeit die Irrflugstatistik erfüllt.

Bei Polymeren gilt das asymptotische Verhalten nur bei genügend hohem Molekulargewicht und nur in einem eng begrenzten Bereich mit $1/R_G \ll q \ll 1/a$. Dies wird deutlich bei den in der Abbildung 4.1 gezeigten Daten für Polystyrol in CS$_2$. Durch selektive Deuterierung erreicht man, dass entweder nur das Rückgrat der Kette, nur die Ringe oder das vollständige Polymer sichtbar wird. Eine vollständige Diskussion dieser Ergebnisse ist Gegenstand des nächsten Kapitels. Dort werden wir versuchen, die lokale Chemie in unserem Modell aufzunehmen.
4.4.3 Vollständiger Strukturfaktor $S(q)$

Im Irrflugs-Modell ist der Strukturfaktor durch die Debye-Funktion gegeben. Rechnungen unter Einschluss von ausgeschlossenem Volumen existieren (Ohta et al., 1981; Duplantier, 1986), sind für den Rahmen dieser Vorlesung aber zu kompliziert.

Es existieren jedoch phänomenologische Approximationen, die - obwohl auf sehr vereinfachenden Annahmen beruhend - oft zu brauchbaren Resultaten führen. So soll die Verteilungsfunktion für die Abstände $p_{j,k}(r)$ innerhalb der Kette positions-unabhängig sein (also nur von $|j-k| = n$ abhängen) und dieselbe Form wie die Verteilungsfunktion $p(r)$ für R_g haben.

Mit Hilfe der asymptotischen Form (4.15) für das Irrflugs-Modell ohne Selbstüberschneidung erhalten wir

\[P_n(r) \sim x_n^\kappa \exp(-cx_n^\delta), \quad x_n = \frac{r_{jk}}{\Theta_{0.5}^{j,k}}, \quad \Theta_{j,k} = \frac{\langle r_{jk}^2 \rangle}{d}, \quad |j-k| = n \]

für grosse innere Abstände und daraus

\[
S(q) = \frac{1}{N} \sum_{j,k=1}^{N} \left\langle \frac{\sin(qr_{jk})}{qr_{jk}} \right\rangle \\
S(q) \simeq 1 + \frac{2}{N} \sum_{n=1}^{N-1} (N - n) \int_0^\infty 4\pi r^2 P_n(r) \frac{\sin(qr)}{qr} dr \]

Der Ausdruck (4.25) ist brauchbar für nicht zu hohe Werte von $q^2 R_g^2$, also in einem Bereich, in dem keine strukturellen Details aufgelöst werden und in dem sich die Abweichungen von der Debye-Funktion bemerkbar machen.

Abbildung 4.2 zeigt, dass bereits bei mittleren Molekulargewichten von $M_W \sim 50000$ g/mol und einem grösseren q-Bereich signifikante Abweichungen von der Debye-Funktion auftreten, da der Effekt des ausgeschlossenen Volumes berücksichtigt werden muss. Die phänomenologische Approximation stimmt gut mit den experimentellen Ergebnissen überein.
4.4. TEST DURCH STREUEXPERIMENTE

Abbildung 4.2: Deuteriertes Polystyrol mit einem Molekulargewicht von $M_W \sim 50000\, \text{g/mol}$ in CS$_2$. Im Bereich hoher q-Werte sieht man, dass die Daten nicht durch die Debye-Funktion beschrieben werden können (Teilbild A). Besonders deutlich zeigt sich dies in der Auftragung von $q^2I(q)$ gegen q (Teilbild B). Die Daten sind entnommen aus Rawiso, M.; Duplessix, R., Picot, C.: *Macromolecules* 13, 1518 (1980).
KAPITEL 4. AUSGESCHLOSSENES VOLUMEN
Kapitel 5
Persistenz

5.1 Ein erster Schritt zur Berücksichtigung chemischer Details

Bisher haben wir zwei Modelle zur Beschreibung der statischen Eigenschaften von Polymeren kennengelernt: den einfachen Irrflug (Kapitel 2) und den Irrflug mit ausgeschlossenem Volumen (Kapitel 4). Zu den wichtigen Vorhersagen gehörte

- das Skalengesetz für den Trägheitsradius \bar{R}_G mit $\bar{R}_G \sim N^\nu \sim M^\nu$, wobei für den Skalenexponenten ν beim
 1. Irrflug $\nu = 1/2$ und beim
 2. Irrflug mit ausgeschlossenem Volumen $\nu = 3/5$ (genauer 0.588) gilt;

- der vollständige Strukturfaktor $S(q)$ mit

\[
S(q) = \frac{1}{N} \sum_{j,k=1}^{N} \left\langle \frac{\sin(qr_{jk})}{qr_{jk}} \right\rangle \\
\simeq 1 + \frac{2}{N} \sum_{n=1}^{N-1} (N-n) \int_0^{\infty} 4\pi r^2 P_n(r) \frac{\sin(qr)}{qr} dr ,
\]

wobei die Verteilungsfunktion $P_n(r)$ beim

1. Irrflug durch die Gauss-Funktion gegeben ist und beim
2. Irrflug mit ausgeschlossenem Volumen durch $P_n(r) \sim x_n^\kappa \exp(-cx_n^\delta)$ mit $x_n = r_{jk}/\sqrt{\Theta_{j,k}}$ beschrieben wird.

75
Abbildung 5.1: Trägheitsradius als Funktion des Molekulargewichts für Polystyrol in Toluol (gutes Lösungsmittel, Skalenexponent $\nu = 0.588$; obere Kurve) sowie in Cyclohexan bei 34.5°C (Theta-Lösungsmittel, Skalenexponent $\nu = 0.5$; untere Kurve). Die Daten sind identisch mit denen aus den Abbildungen 2.4 und 2.5.

5.1. BERÜCKSICHTIGUNG CHEMISCHER DETAILS

Wie in der Abbildung 5.1 gezeigt, sind die Skalengesetze für den Trägheitsradius erst oberhalb eines bestimmten Molekulargewichts erfüllt.

Noch deutlich sichtbarer wird die Abweichung zwischen experimentellen Daten und theoretischer Vorhersage, wenn man sich den Verlauf der Streukurve im Bereich hoher q-Werte anschaut, wie am Beispiel von partiell oder vollständig deuteriertem Polystyrol in Schwefelkohlenstoff in der Abbildung 5.2 gezeigt.

Wir werden in diesem Kapitel sehen, dass diese deutlichen Abweichungen vom erwarteten Strukturfaktor $S(q)$ eines Irrflugs mit ausgeschlossenem Volumen ergeben, weil die endliche Querschnittsdimension der Polymerkette und ihre Flexibilität (lokale Steifigkeit) berücksichtigt werden muss.

5.1.1 Der Einfluss der lokalen Chemie

Im Irrflugs-Modell mit und ohne ausgeschlossenem Volumen haben wir stets angenommen, dass zwischen den einzelnen Schritten keine Korrelationen bestehen. Es ist klar, dass diese Aussage dann nicht mehr gerechtfertigt ist, wenn wir die Schrittlänge hinreichend klein wählen (vergleichbar mit der Länge eines Monomers).

Die Korrelationen zwischen den Verbindungsvektoren Q_j, Q_k schreiben wir als

$$\langle Q_j \cdot Q_k \rangle = \gamma_{jk}. \quad (5.1)$$

Im Fall einer flexiblen Kette erhalten wir $\gamma_{jk} = 0$ für $j \neq k$. Bei einer realen Kette gilt dagegen $\gamma_{jk} \neq 0$ für nahe beieinander liegende Kettensegmente. Ein Beispiel für den Verlauf einer solchen Kette ist in der Abbildung 5.3 gezeigt.

Den Grund für das Auftreten von Korrelationen sehen wir uns am Beispiel von Polyethylen ($[-\text{CH}_2 - \text{CH}_2 -]_n$) genauer an. Das Rückgrat dieses Polymers besteht aus Kohlenstoffatomen, die mit je zwei Wasserstoffatomen verbunden sind.

Der Valenzwinkel Θ zwischen zwei aufeinanderfolgenden Kohlenstoffbindungen ist fest und beträgt etwa $\Theta \approx 71^\circ$. Im idealisierten Modell ist der Winkel φ frei, d.h. die Rotation um die Bindung ist frei (keine Einschränkung von φ).
Ein realistischeres Modell zeigt die Abbildung 5.4. Dort sind die Positionen von insgesamt vier aufeinanderfolgenden Kohlenstoffatomen in Polyethylen eingezeichnet (Teilbild a). Bei Vorgabe von $C_{n-3}, C_{n-2}, C_{n-1}$ ist die Position von C_n bis auf einen Winkel φ_n bestimmt. Aufgrund der Rotationsenergien der H-Seitengruppen ist der Winkel φ_n nicht mehr frei wählbar, wie in Teilbild b) von Abbildung 5.4 skizziert. Das energetische Minimum liegt bei $\varphi = 0^\circ$ (trans-Zustand), zwei weitere lokale Minima befinden sich bei $\varphi = \pm 120^\circ$ (gauche-Zustände). Da der energetisch tiefste Zustand bevorzugt besetzt wird, ist die Polyethylenkette lokal steif. Kurzreichweitige Korrelationen entstehen also durch Einschränkungen der Bindungswinkel, d.h. es gilt

$$\gamma_{jk} = f(|j - k|).$$ (5.2)

5.2 Kuhnsches Ersatzknäuel

Im Jahr 1934 hat Werner Kuhn eine bedeutende Arbeit veröffentlicht mit dem Titel „Über die Gestalt fadenförmiger Moleküle in Lösung“. Er ging davon aus, dass eine Polymerkette (also ein Fadenmolekül, wie er es nannte) wegen der freien Drehbarkeit um die Bindungen eine Vielzahl energiegleicher Konformationen einnehmen kann. Um zu einer sinnvollen Beschreibung dieser Formenvielfalt zu gelangen, verglich Kuhn die zufällige Form einer Polymerkette mit einem Irrflug, indem er sich die Polymerkette durch N_K (geradlinige) Segmente der Länge b zusammengesetzt dachte, so dass für grosse N/K die Konturlänge L gleich

$$L = N_K b$$ (5.3)

ist und die End-zu-End-Abstände der Ersatzkette $\bar{R}_{E,K}$ und der realen Kette \bar{R}_E gemäss

$$\langle R_{E,K}^2 \rangle = \langle R_E^2 \rangle = N_K b^2$$ (5.4)

übereinstimmen. Die Polymerkette fasst man als Irrflug auf mit einer neuen effektiven Schrittänge b. Diese Länge b ist ein Mass für die Flexibilität des Polymers, sie wird auch Kuhn-Länge genannt.

Eine Skizze von einem flexiblen und einem steifen Polymer ist in der Abbildung 5.5 zu sehen. Anschaulich ist also klar, dass ein flexibles Polymer eine kleine Kuhn-Länge besitzt und ein steifes Polymer eine grosse Kuhn-Länge. Auf Längenskalen, die gross gegenüber der Kuhn-Länge sind, werden wir eine Polymerkette als Irrflug ansprechen können, auf Längenskalen unterhalb der Kuhn-Länge dagegen als steifes Stäbchen. Eine quantitative Beschreibung dieses Verhaltens (steif, flexibel) ermöglicht das sogenannte „Wormlike Chain“-Modell.
5.2. KUHNSCHES ERSATZKNÄUEL

Abbildung 5.4: Anordnung der Kohlenstoffatome entlang der Hauptkette in Polyethylen (Teilbild a). Der Valenzwinkel Θ zwischen zwei Kohlenstoffatomen beträgt etwa $\Theta \approx 71^\circ$. Aus energetischen Gründen ist der Winkel φ nicht mehr frei wählbar, sondern weist bestimmte Vorzugsstellungen auf (Teilbild b). Das energetische Minimum liegt bei $\varphi = 0^\circ$ (trans-Zustand), zwei weitere lokale Minima befinden sich bei $\varphi = 120^\circ$ (gauche-Zustand g^+) und $\varphi = -120^\circ$ (gauche-Zustand g^-).
Abbildung 5.5: Veranschaulichung der Kuhn-Länge \(b \) einer flexiblen (Teilbild a) und einer steifen Polymerkette (Teilbild b). Bei einer flexiblen Kette beobachtet man eine grosse Verknäuelung: die Kuhn-Länge ist klein. Bei einer steifen Polymerkette ist dagegen der Verknäuelungsgrad gering: die Kuhn-Länge \(b \) ist gross.

5.3 „Wormlike Chain”-Modell

Ein häufig verwendetes Modell zur Beschreibung von realen Kettenmolekülen ist das sogenannte „Wormlike Chain“-Modell, das auf Kratky und Porod zurückgeht. Die Korrelationen zwischen den Kettensegmenten \(Q_j \) und \(Q_k \) schreiben wir als

\[
\langle Q_j \cdot Q_k \rangle = a^2 \lambda^{|j-k|}.
\] (5.5)

Der Zusammenhang mit dem Valenzwinkel \(\Theta \) bei der frei rotierenden Kette ist \(\lambda = \langle \cos \Theta \rangle = \cos \Theta \). Für die beiden Grenzfälle einer ideal flexiblen und einer vollkommen steifen Kette können wir den Wert von \(\lambda \) direkt angeben. Für eine flexible Kette (einfaches Irrflugs-Modell) gilt: \(\lambda = 0 \) und für ein steifes Stäbchen: \(\lambda = 1 \).

5.3.1 End-zu-End-Abstand

Wie sieht nun der End-Zu-End-Abstand bei fest vorgebener Schrittzahl \(N \) aus? Nach Ausführen der Summation (ganz analog wie bei der Auswertung der Debye-Funktion) erhalten wir
5.3. „WORMLIKE CHAIN“-MODELL

\[
\langle R_E^2 \rangle_N = \sum_{j,k=1}^{N} \langle Q_j \cdot Q_k \rangle
\]

\[
= a^2 \sum_{j,k=1}^{N} \lambda^{|j-k|}
\]

\[
= a^2 N \left[\frac{1 + \lambda}{1 - \lambda} - \frac{2\lambda}{(1 - \lambda)^2} \right] N^{1/2} - \frac{1}{N} \right] .
\] (5.6)

Welchen Wert erhalten wir für den End-zu-End-Abstand, wenn wir zum Grenzfall einer kontinuierlich gebogenen Kette übergehen? Wir führen also den Grenzübergang \(N \rightarrow \infty, a \rightarrow 0 \) und \(\lambda \rightarrow 1 \) aus, wobei wir die Konturlänge

\[L := Na \] (5.7)

und die sogenannte Persistenzlänge

\[L_p := \frac{a}{1 - \lambda} \] (5.8)

festhalten. Nach Ausführen des Grenzübergangs ergibt sich

\[
\langle R_E^2 \rangle = 2L_p \left[L - L_p + L_p e^{-\frac{L}{L_p}} \right] \] (5.9)

mit den beiden Grenzfällen:

1. \(\langle R_E^2 \rangle \approx L^2 \) für \(L \ll L_p \)
2. \(\langle R_E^2 \rangle \approx 2LL_p \) für \(L \gg L_p \).

Im ersten Fall ist die Polymerkette steif, es gilt \(\tilde{R}_E = L \). Im zweiten Fall folgt aus \(\langle R_E^2 \rangle = N_K b^2 = Lb \) mit \(b = 2L_p \) und \(N_K = L/b \): Das „Wormlike Chain“-Modell beschreibt die Konformation eines Polymers als Irrflug mit Schrittlänge \(b \) (siehe → Kuhnsches Ersatzknäuel).

Vergleich mit frei rotierender Kette

Wenn man die kontinuierliche „Wormlike Chain“ mit der frei rotierenden Kette mit Valenzwinkel \(\Theta \) vergleicht, erhält man für den End-zu-End-Abstand

\[
\langle R_E^2 \rangle = \sum_{j=1}^{N} \langle Q_j^2 \rangle + 2 \sum_{1 \leq j < k \leq N} \langle Q_j \cdot Q_k \rangle
\]

\[= Na^2 + 2a^2 \sum_{j=1}^{N} \sum_{k=1}^{N-j} (\cos \Theta)^{|j-k|} \] (5.10)

\[= Na^2 + 2a^2 \sum_{j=1}^{N} \sum_{k=1}^{N-j} \cos \Theta^{|j-k|} \] (5.11)
Im Grenzübergang $N \to \infty$ ergibt sich dann

$$\langle R^2_N \rangle \simeq Na^2 \frac{1 + \cos \Theta}{1 - \cos \Theta} = Lb$$ (5.12)

mit

$$b := \frac{1 + \cos \Theta}{1 - \cos \Theta}.$$ (5.13)

5.3.2 Trägheitsradius

Den Trägheitsradius können wir in ähnlicher Weise wie den End-zu-End-Abstand berechnen. Als Ergebnis erhält man (Einzelheiten findet man in Benoit und Doty):

$$\langle R^2_G \rangle = \frac{2L_p L}{6} \left\{ 1 - \frac{3}{2N_K} + \frac{3}{2N_K^2} - \frac{3}{4N_K^3} \left(1 - \exp \left(-2N_K \right) \right) \right\}.$$ (5.14)

Im Grenzfall $N_K \to \infty$ folgt aus (5.14) die Beziehung:

$$\langle R^2_G \rangle \sim \frac{2L_p L}{6}.$$ (5.15)

Aus dem Vergleich von (5.15) mit der im Rahmen des einfachen Irrflugs-Modell hergeleiteten Beziehung

$$\langle R^2_G \rangle \sim \frac{bL}{6}$$ (5.16)

ergibt sich wiederum, dass man bei einer Schrittweite von $2L_p$ das „Wormlike Chain“-Modell als Irrflugs-Modell interpretieren kann.

5.4 Vergleich mit experimentellen Daten

5.4.1 Trägheitsradius

Polystyrol in einem Theta-Lösungsmittel

Als Test für die Gleichung (5.14) nehmen wir die Abhängigkeit des Trägheitsradius vom Molekulargewicht. Dazu verwenden wir die gleichen Daten wie in der Abbildung 2.4, also Polystyrol in einem Theta-Lösungsmittel. Für diesen Test benötigen wir sowohl die Kuhn-Länge b als auch eine Beziehung zwischen dem Molekulargewicht M, und der Konturlänge L. Aus der Literatur entnehmen wir für $b = 24.8 \, \text{Å}$, die sogenannte Masse pro Länge ist $M_L = M / L = 41.2 \, \text{Å}$.

Damit können wir mit Hilfe der obigen Gleichung (5.14) den theoretischen Verlauf der Molekulargewichtsabhängigkeit des Trägheitsradius berechnen. Wie in der Abbildung 5.6 gezeigt, stimmen die experimentellen Ergebnisse mit den theoretischen Vorhersagen über dem gesamten Molekulargewichtsbereich sehr gut überein.
5.4. VERGLEICH MIT EXPERIMENTELLEN DATEN

Abbildung 5.6: Trägheitsradius als Funktion des Molekulargewichts für Polystyrol in Cyclohexan bei 34.5°C (Theta-Lösungsmittel). Die Auswertung der Molekulargewichtsabhängigkeit auf der Basis von Gleichung (5.14) zeigt eine sehr gute Übereinstimmung zwischen den experimentellen Daten und der theoretischen Vorhersage. Die Daten sind identisch mit denen aus der Abbildung 2.4.

Abbildung 5.7: Modell zur Berechnung des Strukturfaktors einer Irrflugskette unter Berücksichtigung des ausgeschlossenen Volumens.
Abbildung 5.8: Übergang zur quasi-kontinuierlichen Kette durch die Verkleinerung der „Verbindungslänge“ a zwischen den Kugeln bei gleichbleibender Kuhn-Länge b und Kugelradius R.

Ausgeschlossenes Volumen

Der Grenzfall der quasi-kontinuierlichen Kette wird dann durch die Verkleinerung der „Verbindungslänge“ a zwischen den Kugeln bei gleichbleibender Kuhn-Länge b und Kugelradius R erreicht, wie in der Abbildung 5.8 zu sehen ist.
Abbildung 5.9: Abschätzung, ab wann bei dem im Text beschriebenen Computer-Simulationen der Einfluss des ausgeschlossenen Volumens „abgefragt“ werden kann.

Problematisch an diesem Modell ist, dass sich benachbarte Kugel überlappen. Die Suche nach Konformationen, bei denen wir den Effekt des ausgeschlossenen Volumens beobachten, kann daher nicht direkt bei den nächsten Nachbarn beginnen, sondern erst später. So darf beispielsweise die Suche nach dem Einfluss des ausgeschlossenen Volumens erst nach einem Abstand $\Delta L \approx \frac{b}{3}$ beginnen, wenn wir $\frac{R}{b} = 0.1$ wählen (d.h. wenn wir für den Querschnittsradius R der Polymerkette in der Simulation gleich $1/10$ der Kuhn-Länge b ansetzen). Die Abschätzung ergibt sich aus

$$\Delta L = \pi R = \pi \frac{b}{10} \approx \frac{b}{3},$$

siehe auch Abbildung 5.9. Der Einfluss des ausgeschlossenen Volumens auf die Molekulargewichtsabhängigkeit der Trägheitsradius \bar{R}_G ist in der Abbildung 5.10 dargestellt.

Um die bereits früher gezeigten Daten für Polystyrol in gutem Lösungsmittel zu verwenden, benötigen wir den Wert der Kuhn-Länge $b = 24.8$ Å und die Beziehung $M_w = N_k b M_L$ mit $M_L = 41.2$ g/mol Å. Wir sehen also, dass die Berücksichtigung der Korrelationen zwischen benachbarten Segmenten eine korrekte Beschreibung von $\bar{R}_G(M_w)$ über dem gesamten Molekulargewichtsbereich erlaubt.

Abbildung 5.10: Teilbild A: Trägheitsradius in Einheiten der Kuhn-Länge \(b \) als Funktion der Anzahl der Kuhn-Längen \(N_K \) (gutes Lösungsmittel: obere Kurve; Theta-Lösungsmittel: untere Kurve). Die Daten sind identisch mit denen aus den Abbildungen 2.4 und 2.5. Teilbild B: Trägheitsradius als Funktion des Molekulargewichts für Polystyrol in Toluol (gutes Lösungsmittel; obere Kurve) sowie in Cyclohexan bei 34.5°C (Theta-Lösungsmittel, untere Kurve).
5.4. VERGLEICH MIT EXPERIMENTELLEN DATEN

Abbildung 5.11: Die verschiedenen asymptotischen Bereiche der Streufunktion. Nähere Einzelheiten siehe Text.

5.4.2 Statischer Strukturfaktor eines „Wormlike Chain“

Wie in der Abbildung 5.11 gezeigt, sind wir nun in der Lage, wenigstens qualitativ den Strukturfaktor einer halbflexiblen Kette zu beschreiben.

Bei kleinen Werten von \(q R_G \) befinden wir uns im Guinier-Regime, in der \(S(q) \) modell-unabhängig durch die Beziehung \(S(q) \approx N \left[1 - \frac{1}{3} q^2 R_G^2 \right] \) gegeben ist. Bei genügend hohem Molekulargewicht des Polymers und grossen Werten von \(q R_G \) sehen wir dann einen Übergang zum asymptotischen Verhalten eines Irrflugs-Polymer. Bei einem einfachen Irrflug erhält man ein Skalengesetz von \(q^{-2} \); wenn der Effekt des ausgeschlossenen Volumens berücksichtigt werden muss, dann gilt die Skalenbeziehung \(q^{-5/3} \). Der Übergang beim Theta-Lösungsmittel wird durch die Debye-Funktion beschrieben, für gute Lösungsmittel können wir die Approximation aus Kapitel 4 verwenden. Wenn wir zu noch höheren Werten von \(q R_G (q b > 1) \) übergehen, beobachten wir die Polymerstruktur auf einer der Kuhn-Längen entsprechenden Skala, auf der sich das Polymer nicht mehr wie eine flexible Kette, sondern eher wie ein steifes Stäbchen verhält. Dies zeigt sich am \(q^{-1} \)-Verhalten im asymptotischen Bereich. Auch hier finden wir in der Literatur Approximationen für den Übergangsbereich. Der vollständige Strukturfaktor kann somit beschrieben werden als:

\[
S(q) \simeq [(1 - \chi(q,L,b)) S_{\text{Knaeul}}(q,L,b) + \chi(q,L,b) S_{\text{Stab}}(q,L)] \Gamma(q,L,b)
\]

Dabei ist \(S_{\text{Knaeul}} \) die entsprechende Streufunktion für ein flexibles Knäuel (mit oder ohne ausgeschlossenes Volumen) und \(S_{\text{Stab}} \) die Streufunktion für ein steifes Stäbchen. \(\chi \) ist eine Mischfunktion, die den Übergang zwischen diesen beiden asymptotischen Bereichen beschreibt, und \(\Gamma \) eine zusätzliche Korrekturfunktion. Beide stammen aus einer Parametrisierung der durch Computer-Simulationen berechneten Strukturfaktoren (siehe Pedersen, J.S.; Schurtenberger. P.: Macromolecules 29, 7602 (1996)).

Reale Polymere sind jedoch nicht idealisierte Linienzüge, sondern besitzen ein endliches Querschnittsvolumen, das je nach Seitenketten relativ gross sein kann. Die Querschnittsdimension zeigt sich in einem zusätzlichen Term \(S_{\text{Querschnitt}}(q,R) \) (\(R \) bezeichnet den Querschnittsradius). Im Extremfall kann \(R \) von der gleichen Größenordnung sein wie die Kuhn-Länge \(b \), d.h. \(S_{\text{Querschnitt}} \) ist dem Übergang von \(q^{-1/\nu} \) zu \(q^{-1} \) überlagert. Dies erklärt dann auch den völlig unterschiedlichen Verlauf der Streuintensität für vollständig und partiell deuteriertes Polystyrol, das in der Abbildung 5.12 gezeigt ist. Für Polystyrol, bei dem nur das Rückgrat deuteriert
5.5. PERSISTENZ IN REALEN SYSTEMEN

wurde, sehen wir in der Neutronenstreuung tatsächlich den Übergang vom Irrflug mit ausgeschlossenem Volumen (SAW) zum steifen Stäbchen. Für vollständig deuteriertes Polystyrol hingegen ist der Querschnittsradius zu gross, und wir sehen vor allem den Übergang vom Irrflug mit ausgeschlossenem Volumen (SAW) zum Querschnittsverhalten.

5.5 Persistenz in realen Systemen

Tabelle 5.1: Typische Werte für die Persistenzlängen von einigen ausgewählten Polymeren.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Persistenzlänge L_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrol (PS)</td>
<td>11 Å</td>
</tr>
<tr>
<td>Kevlar (PPTA)</td>
<td>150 – 600 Å</td>
</tr>
<tr>
<td>Xanthan</td>
<td>\sim 2500 Å</td>
</tr>
<tr>
<td>fd-Virus</td>
<td>\sim 19500 Å</td>
</tr>
</tbody>
</table>

In der Tabelle 5.1 sind die Persistenzlängen von einigen klassischen Polymeren aufgelistet. Anzumerken bleibt, dass experimentelle Werte immer mit etwas Vorsicht aufzufassen sind, besonders dann, wenn sie aus Überallesgrössen wie dem Trägheitsradius bestimmt werden. Eine elegante Bestimmung der Persistenzlänge erlauben beispielsweise biologische Systeme mit entsprechend grossen Kontur- und Persistenzlängen wie DNA durch eine direkte Auswertung von Videobildern und Erstellen von Segment-Segment-Winkelkorrelationsfunktionen (d.h. Bestimmung von $\langle \cos \Theta \rangle$).

Kapitel 6

Lösungsmittel- und Temperatureffekte

6.1 Ein erweitertes Modell

6.1.1 Zusammenfassung und Ausblick

Wir haben bisher drei Typen von Modellen kennengelernt: Irrflüge („Random Walks“, RWs), Irrflüge mit ausgeschlossenem Volumen („Self-avoiding Walks“, SAWs) und Modelle mit Persistenz.

<table>
<thead>
<tr>
<th>Irrflug (Theta-Lösungsmittel)</th>
<th>?</th>
<th>SAW (gutes Lösungsmittel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>$\bar{R}_G \sim M^{1/2} \sim N^{1/2}$</td>
<td>$\bar{R}_G \sim M^{3/5} \sim N^{3/5}$</td>
</tr>
<tr>
<td>lokal</td>
<td>steif $\nu = 1$</td>
<td>steif $\nu = 1$</td>
</tr>
</tbody>
</table>

Wir haben die Selbstähnlichkeit von Irrflügen beobachtet und das Skalengesetz $\bar{R}_G \sim N^\nu \sim M^\nu$ mit $\nu = \frac{1}{2}$ abgeleitet. Irrflüge mit ausgeschlossenem Volumen sind auf verschiedenen Skalen ebenfalls selbstähnlich, aber sie sind bei gleicher Schrittzahl N gröszer als einfache Irrflüge und somit „lockerer“ und „luftiger“, was sich in dem Exponenten $\nu = \frac{3}{5}$ (genauer $\nu = 0.588$) zeigt. Bei vollständiger Persistenz erhält man starre Stäbchen, die natürlich auch auf jeder Längenskala gleich aussehen und dessen Skalenexponent $\nu = 1$ ist. In allen Fällen finden wir Selbstähnlichkeit, die einem Potenzgesetz der Form $\bar{R}_G \sim N^\nu \sim M^\nu$ genügt, wobei ν

Einige wichtige Fragen

Wie kann man all die genannten Effekte vereinheitlichen? Unter welchen Voraussetzungen wird man welches Verhaltensmuster beobachten? Welche Rolle spielen Temperatur- und Lösungsmittelqualität? (Als Stichwort sei hier der Begriff Theta-
6.1. EIN ERWEITERTES MODELL

Wie lassen sich Übergänge mathematisch beschreiben? Welche Methoden und Ergebnisse stehen zur Verfügung?

6.1.2 Formulierung eines erweiterten Gittermodells

Ausgehend von Irrflügen auf einem Gitter führen wir folgende Wechselwirkungen zwischen den Monomerbausteinen ein:

- \(E_1 = \infty \) für doppelt besetzte Gitterplätze. (Damit wird das ausgeschlossene Volumen berücksichtigt.)
- \(E_2 < 0 \) für jedes Paar benachbarter besetzter Gitterplätze. Zwischen benachbarten Gitterplätzen besteht eine anziehende Wechselwirkung, deren Stärke von der Lösungsmittelqualität bestimmt wird.
- \(E_3 \geq 0 \) für jeden rechten Winkel zwischen aufeinanderfolgenden Schritten (Berücksichtigung der Persistenz). Schritte, die von der einmal gewählten Richtung abweichen, sind energetisch benachteiligt.

Durch von 0 und \(\infty \) verschiedene Wechselwirkungenergien \(E_2 \) und \(E_3 \) werden die Modellvorhersagen temperaturabhängig. Wir erwarten von diesem wohldefinierten Modell, dass es alle obengenannten Effekte in einheitlicher Weise beschreibt.

6.1.3 Methoden

Irrflüge mit ausgeschlossenem Volumen waren schon sehr kompliziert, daher besteht keine Hoffnung, dass wir unser erweitertes Modell exakt behandeln können. Die wichtigsten theoretischen Methoden sind Renormierungsgruppe und Simulationen - wie bereits im Fall der in Kapitel 4 behandelten Irrflüge mit ausgeschlossenem Volumen.

6.1.4 Ergebnisse

Wir beschränken uns auf den Fall \(E_3 = 0 \) und geben die mathematische Beschreibung an für den vorher durch das „Blob“-Bild erfassten Übergang vom einfachen Irrflugs-Verhalten zum Irrflugs-Verhalten mit ausgeschlossenem Volumen. Zunächst führen wir folgende Bezeichnungen ein: \(E_2/(k_B T) \) bestimmt die Stärke der anziehenden Wechselwirkung, \(\theta \) bezeichnet die Theta-Temperatur, bei der Effekte aufgrund des ausgeschlossenen Volumens „abgeschaltet“ sind, \(\tau = (T - \theta)/\theta \) ist die relative Abweichung von der Theta-Temperatur.

Simulationen zeigen, dass die Ergebnisse für \(\bar{R}_G \) von der folgenden Form sind, die durch die Idee der Renormierung nahegelegt wird:

\[
\bar{R}_G \left(a, N, \frac{E_2}{k_B T} \right) = \bar{R}_G^0 f \left(c \tau N^\phi \right) \quad (6.1)
\]

mit

\[
\bar{R}_G^0 = \tilde{c} a N^{\nu_0} \quad (6.2)
\]

Damit ist es gelungen, eine Funktion von drei Unbekannten auf eine Funktion von einer Unbekannten und auf die Parameter \(\nu_0, \phi, c, \tilde{c} \) sowie \(k_B \theta / E_2 \) zurückzuführen. \(f(\tau N^\phi) \) ist eine universelle dimensionslose Skalenfunktion und \(\phi \) der „Crossover“-Exponent. \(\bar{R}_G^0 \) bezeichnet den Trägheitsradius am Theta-Punkt. Für \(d = 3 \) erhält man am Theta-Punkt Irrflugs-Verhalten, d.h. \(\nu_0 = 1/2 \).

Allerdings gibt es für \(d = 3 \) auch logarithmische Korrekturen, beispielsweise gilt:

\[
\bar{R}_E^2 = N a^2 \left(1 + \frac{37}{363 \ln N} \right) \quad (6.3)
\]

Die Funktion \(f \) hat folgende Eigenschaften: (i) \(f(0) = 1 \); (ii) für grosse \(x \) muss \(f(x) \) eine Potenzfunktion von \(x \) sein, damit der Trägheitsradius \(\bar{R}_G \) eine Potenzfunktion von \(N \) ist. Wir wählen die Konstanten so, dass \(f(x) \to x^z \) gilt. Dann ist der Exponent \(\nu \) für \(T > \theta \) gegeben durch \(\nu = \nu_0 + z \phi \). Als weitere Ergebnis erhält man in \(d = 3 \) Dimensionen

\[
-\frac{E_2}{k_B \theta} = 0.274 \pm 0.006 \quad \text{sowie} \quad \phi = \frac{1}{2} \quad (6.4)
\]
6.2 Experimente

Wir haben bereits früher gesehen, dass der Trägheitsradius \bar{R}_G in charakteristischer Weise von der Temperatur und dem verwendeten Lösungsmittel abhängt.

Bevor wir uns den Übergang („Crossover“) vom Theta- zum guten Lösungsmittel anschauen, wollen wir uns die bisherigen Resultate noch einmal vor Augen führen. Abbildung 5.1 zeigt die Abhängigkeit des Trägheitsradius \bar{R}_G vom Molekulargewicht für Polystyrol in einem Theta- und einem guten Lösungsmittel.

Wie wir bereits wissen, lässt sich die Konformation eines Polymerknäuels in einem Theta-Lösungsmittel im Rahmen des Irrflugs-Modells verstehen. Der Struktur faktor $S(q)$ wird durch die Debye-Funktion beschrieben. Im Gegensatz dazu beobachtet man in einem guten Lösungsmittel eine deutliche Abweichung zwischen dem gemessenen Struktur faktor $S(q)$ und der Debye-Funktion, vorausgesetzt, dass wir Experimente in einem Bereich von $q\bar{R}_G$ durchführen können, der hinreichend weit ausserhalb des Guinier-Bereichs liegt, so dass wir Details der Polymerkonformation auflösen können.

Übergang vom Theta- zum guten Lösungsmittel

Als nächstes werden wir den Übergang vom Theta-Lösungsmittel zum guten Lösungsmittel betrachten. Wir haben im Verlauf dieses Kapitels gesehen, dass $\frac{\bar{R}_G}{\bar{R}_G^0} = f(\tau c M^\phi)$ sein sollte. Wir können uns das Verhalten des Trägheitsradius etwas genauer am Beispiel von Poly-α-Methylstyrol in Trans-Dekalin und von Polystyrol in Cyclohexan anschauen. Die Daten sind in der Abbildungen 6.2 gezeigt.

Wir sehen an diesem Beispiel sehr schön das „Anschwellen“ des Knäuels bei $T > \theta$, und wir erkennen auch, dass die Daten für verschiedene Molekulargewichte und Lösungsmittel in dieser Darstellung auf der gleiche Kurve zu liegen kommen, ganz im Sinne der Modellvorhersage.

Übergang im Struktur faktor $S(q)$

Wir haben gesehen, dass das sogenannte „Blob“-Modell einen typischen Übergang beschreibt vom einfachen Irrflugs-Verhalten auf kleiner Längenskala (also $S(q) \sim q^{-2}$ bei grossen q-Werten) zum Irrflugs-Verhalten mit ausgeschlossenem Volumen auf grösserer Längenskala (also $S(q) \sim q^{-5/3}$ bei kleinen q-Werten). Dieser Übergang oder „Crossover“ findet bei einem charakteristischen Wert von q statt, den wir mit q^* bezeichnen. Wie sich q^* in Abhängigkeit von τ verschiebt, lässt sich quantitativ vorhersagen und mit experimentellen Ergebnissen vergleichen. Abbildung 6.3 zeigt eine Serie von SANS-Datensätzen für verschiedene Werte der reduzierten Temperatur τ. Die Messungen wurden durchgeführt an Polystyrol in deuteriertem Cyclohexan. Die Pfeile zeigen den durch das „Blob“-Modell vorhergesagten Übergang zwischen einfachem Irrflugs-Verhalten und dem Irrflugs-Verhalten mit ausgeschlossenem Volumen. Die ausgezogenen Linien sind Strukturfaktoren $S(q)$, die im Rahmen dieses Modells berechnet wurden.
KAPITEL 6. LÖSUNGSMITTEL- UND TEMPERATUREFFEKTE

Ein interessantes, aber experimentell sehr schwierig zu erfassendes Phänomen ist das Kollabieren des Knäuels bei Temperaturen unterhalb der Theta-Temperatur $T \ll \theta$. Zwischen den Monomeren besteht dann eine starke anziehende Wechselwirkung, die den Effekt des ausgeschlossenen Volumens übertrifft, so dass die energetisch günstigste Konformation durch das kollabierte kompakte Knäuel gegeben ist.

Ein Überblick über das uns bislang bekannte Phasendiagramm liefert die Abbildung 6.5.
Kapitel 7

Polyelektrolyte

7.1 Was sind Polyelektrolyte?

Wenn wir als Hersteller oder Anwender wählen könnten, würden wir gerne auf organische Lösungsmittel verzichten, und zwar aus Gründen der Umwelt- und Gesundheitsverträglichkeit. Einen Ausweg aus diesem Dilemma weisen wässrige Lösungsmittel. Die Hauptfrage ist nur: Wie können wir Polymere in Wasser lösen?

Der Einfachheit halber betrachten wir ausschliesslich hochgeladene Ketten, bei denen jeder Monomerbaustein eine Ladung e tragen soll, also: $Z \sim N$. Solche Polymersysteme bestehen aus einem „Makroion“, also einem Makromolekül mit kovalent gebundenen anionischen oder kationischen Gruppen, und aus niedermolekularen „Gegenionen“ in der Lösung, die für die Ladungsneutralität sorgen. Beispiele für Polyelektrolyte sind:

- Natrium-Polystyrol-Sulfonat (NaPSS):

$$\sim \text{CH}_2 - \text{CH} \sim$$

$$\text{SO}_{3}^\text{Na}^+$$

- Polyacrylsäure: Dissoziation erfolgt nur in einem begrenzten pH-Bereich.

\[
\sim \text{CH}_2 - \text{CH} \sim \quad \text{COOH} \\
\quad \text{CH} \sim \quad \text{CH} \sim + \text{H}^+ \\
\text{COO}^- \\
\sim \text{CH}_2 - \text{CH} \sim \quad \text{COO}^- \\
\sim \text{CH}_2 - \text{CH} \sim + \text{H}^+ \\
\text{COO}^-
\]

- Biopolymere wie Proteine, Nukleinsäuren, Gelatine, Polysaccharide (anionisch und kationisch). Typische ionische Gruppen sind $-\text{COO}^-$, $-\text{CSS}^-$, $-\text{SO}_3^-$, $-\text{PO}_4^{3-}$ sowie $-\text{NH}_3^+$, $=\text{NH}_2^+$, $\equiv \text{NH}^+$.

Abbildung 7.2 zeigt die sogenannte „Kratky“-Darstellung (Iq^2 gegen q) von Natrium-Poly(acrylat) in $\text{H}_2\text{O} + \text{NaCl}$ für den Fall hoher und niedriger Salzkonzentration. In Abbildung 7.3 ist zu sehen, dass auch bei dynamischen Größen ganz dramatische Effekte auftreten, wenn man beispielsweise die reduzierte Viskosität η_{sp}/c von Natrium-Carboxymethylcellulose in $\text{H}_2\text{O} + \text{NaCl}$ als Funktion der Salzkonzentration aufträgt.
7.1. WAS SIND POLYELEKTROLYTE?

Abbildung 7.2: „Kratky“-Darstellung von Natrium-Polyacrylat in H\textsubscript{2}O + NaCl für den Fall hoher (Teilbild A, \(c = 0.1\text{M}\)) und niedriger (Teilbild B, \(c = 0.01\text{M}\)) Salzkonzentration. Bei hoher Salzkonzentration erkennt man deutlich das stäbchenförmige Verhalten von Natrium-Polyacrylat. Der \(q\)-Bereich liegt etwa zwischen 0.11 < \(q\) < 0.22. Die Daten sind entnommen aus: Y. Muroga, J. Noda und M. Nagasawa: Macromolecules 18 (1985) 1576.

In den nachfolgenden Unterkapiteln wollen wir versuchen, eine Erklärung für dieses abweichende Verhalten zu finden. Wir werden sehen, dass sich der Einfluss der abstossenden Coulomb-Wechselwirkung auf lokaler Ebene als zusätzlicher Beitrag zur Persistenzlänge bemerkbar macht.

Im Rahmen des “Wormlike Chain”-Modells berücksichtigt man diesen Effekt durch Einführung einer zusätzlichen elektrostatischen Persistenzlänge \(L_{p,\text{el}}\). Die gesamte Persistenzlänge setzt sich demnach aus zwei Anteilen zusammen: \(L_p = L_{p,\text{i}} + L_{p,\text{el}}\). Auf globaler Ebene macht sich die abstossende Coulomb-Wechselwirkung in einem zusätzlichen Beitrag zum ausgeschlossenen Volumen bemerkbar. Doch bevor wir in eine detaillierte Betrachtung einsteigen, stellen wir einige grundlegende Eigenschaften von einfachen Elektrolyt-Lösungen zusammen.

7.2 Elektrostatische Wechselwirkungen in Elektrolyt-Lösungen

In der Elektrostatik ist der Zusammenhang zwischen der Ladungsichte \(\rho(\mathbf{r})\) und dem elektrostatischen Potential \(\phi(\mathbf{r})\) am Ort \(\mathbf{r}\) durch die Poisson-Gleichung

\[
\Delta \phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\epsilon_0 \epsilon_r} .
\]

gegeben. Betrachten wir zunächst als einfaches Beispiel eine Punktladung \(Q_j = Z_j e\) am Ort \(\mathbf{r}_j\). Das elektrostatische Potential am Ort \(\mathbf{r}_j\) lautet:

\[
\phi(\mathbf{r}) = \frac{1}{4\pi \epsilon_0 \epsilon_r} \frac{Q_j}{|\mathbf{r} - \mathbf{r}_j|} .
\]
Für eine Anzahl von M Punktladungen erhält man:

$$
\phi(r) = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \sum_{j=1}^{M} \frac{Q_j}{|r - r_j|} .
$$

(7.3)

Die Wechselwirkungsenergie einer Ladung Q_1 mit dem elektrostatischen Potential $\phi(r)$ berechnet sich zu:

$$
U = Q_1 \phi(r) ,
$$

(7.4)

entsprechend ergibt sich für eine Ladungsverteilung $\rho_1(r)$:

$$
U = \int d^3r \rho_1(r) \phi(r) .
$$

(7.5)

Wenden wir uns nun einem System von verschiedenen (kleinen) Ionen mit lokaler Ionenkonzentration n_j zu. Für die Ladungsichte erhalten wir die einfache Beziehung:

$$
\rho(r) = e \sum_j z_j n_j(r) .
$$

(7.6)

j bezeichnet die Ionenspezies, z_j steht für die Valenz der j-ten Ionenspezies. Ladungsneutralität ist gleichbedeutend mit:

$$
\sum_j z_j n_j^\infty = 0 ,
$$

(7.7)

wobei n_j^∞ die Bulk-Konzentration bezeichnet. Wenn wir Fluktuationen des lokalen Potentials vernachlässigen, also ein zeitlich gemitteltes Feld einführen, können wir die lokale Ionenverteilung durch eine Boltzmann-Verteilung beschreiben:

$$
n_j(r) = n_j^\infty \exp \left(- \frac{z_j e \phi(r)}{k_B T} \right) .
$$

(7.8)

Einsetzen der Ladungsichte in die Poisson-Gleichung führt zur sogenannten Poisson-Boltzmann-Gleichung:

$$
\Delta \phi(r) = -\frac{e}{\varepsilon_0 \varepsilon_r} \sum_j z_j n_j^\infty \exp \left(- \frac{z_j e \phi(r)}{k_B T} \right) .
$$

(7.9)

Diese Gleichung ist von fundamentaler Bedeutung für eine theoretische Behandlung sowohl von niedermolekularen Elektrolyt-Lösungen als auch von Polyelektrolyten. Wir haben es hier mit einer nichtlinearen Differentialgleichung zu tun, die nur für wenige hochsymmetrische Geometrien analytisch lösbar ist. Im Fall schwacher Potentiale - also für $\phi(r) \ll k_B T/(z_j e)$ - dürfen wir die Exponentialfunktion entwickeln und erhalten in dieser sogenannten Debye-Hückel-Approximation die Beziehung:
7.2. ELEKTROSTATISCHE WECHSELWIRKUNGEN

\[\Delta \phi(r) = \frac{e^2 \sum_j z_j^2 n_j^\infty}{\epsilon_0 \epsilon_r k_B T} \phi(r), \]
\((7.10) \)

wobei wir explizit die Ladungsneutralität berücksichtigt haben. Um die Gleichung etwas einfacher handhaben zu können, führen wir noch eine charakteristische Längenskala ein, die Debye-Länge

\[\lambda_D = \sqrt{\frac{\epsilon_0 \epsilon_r k_B T}{e^2 \sum_j z_j^2 n_j^\infty}}, \]
\((7.11) \)

genannt wird. Wir erhalten also in der Debye-Hückel-Approximation:

\[\Delta \phi(r) = \frac{\phi(r)}{\lambda_D^2}. \]
\((7.12) \)

Als Lösung dieser Gleichung erhalten wir:

\[\phi(r) = \frac{z_j e}{4 \pi \epsilon_0 \epsilon_r} \frac{\exp \left(-\frac{r}{\lambda_D} \right)}{r}. \]
\((7.13) \)

Das Potential einer reinen Punktladung verläuft wie \(\phi(r) \sim 1/r \). In Gegenwart zusätzlicher Ionen fällt das Potential wie \(\phi(r) \sim 1/r \exp \left(-r/\lambda_D \right) \) ab. Die elektrische Ladung wird also durch die zusätzlichen Ionen abgeschirmt. Die hierbei auftretende Längenskala ist durch die Debye-Länge gegeben: Sie ist ein Mass für die Reichweite der elektrostatischen Wechselwirkung in Gegenwart von anderen Elektrolyt-Ionen. Die Längenskala \(\lambda_D \) hängt von der sogenannten Ionenstärke

\[I := \frac{1}{2} \sum_j z_j^2 n_j^\infty \]
\((7.14) \)

in folgender Weise ab:

\[\lambda_D = \sqrt{\frac{\epsilon_0 \epsilon_r k_B T}{2e^2 I}}. \]
\((7.15) \)

(Beispiel: Bei \(10^{-4} M \) NaCl ist \(\lambda_D = 304 \, \text{Å} \), bei \(0.1 M \) noch 9.6 Å und bei \(1 M \) nur noch 3 Å). Die Debye-Hückel-Approximation eignet sich zur Beschreibung einfacher Salzlösungen und kolloidaler Systeme mit relativ niedriger Oberflächenladungsdichte und hoher zusätzlicher Salzkonzentration. Wir können jedoch nicht erwarten, dass sie auch das Verhalten linearer Makromoleküle mit vielen stark gebündelten Ladungen richtig beschreibt. Dennoch liefert uns das entsprechende Debye-Hückel-Potential eine vernünftige erste Abschätzung über den Einfluss von Ladungsabschirmung und Salzeffekt. Wir werden im folgenden einige einfache Modelle genauer betrachten, mit denen wir zumindest einen Überblick über die Phänomene gewinnen, die in vielen Polyelektrolyt-Lösungen auftreten.
7.3 Blob-Modell für Polyelektrolyte ohne zusätzliches Salz

7.3.1 Hochgeladene Polyelektrolyte

In einer Polyelektrolytkette, die sich in salzfreier Lösung befindet, gibt es nahezu keine Abschirmung der abstossenden Coulomb-Wechselwirkung zwischen den Monomerbausteinen. Die Coulomb-Energie eines vollständig deionisierten Knäuels der Größe R ist:

$$E_C \simeq \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{(N\epsilon)^2}{R}. \quad (7.16)$$

Für die elastische Energie des Knäuels gilt:

$$E_{el} \simeq k_B T \frac{R^2}{Na^2}. \quad (7.17)$$

Das Minimum der Gesamtenergie $E = E_C + E_{el}$ berechnet sich demnach zu:

$$R \simeq Na^2 \lambda_B^{1/3}, \quad (7.18)$$

wobei:

$$\lambda_B = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{e^2}{k_B T} \quad (7.19)$$

die sogenannte Bjerrum-Länge ist. Sie ist eine weitere charakteristische Längenskala in Polyelektrolyten und bezeichnet den Abstand, bei dem die Coulomb-Energie zweier nicht abgeschirmter Ladungen gleich der thermischen Energie $k_B T$ ist (Beispiel: H$_2$O, bei $T = 25^\circ$C gilt: $\lambda_B \simeq 7.2\,\text{Å}$).

In einem Polyelektrolyten ohne zusätzliches Salz erhalten wir die Skalenbeziehung:

$$R \simeq N\tilde{a}. \quad (7.20)$$

Die Größe

$$\tilde{a} = \left(a^2\lambda_B\right)^{1/3} \quad (7.21)$$

entspricht einer effektiven Bindungslänge. Wir erhalten also $\nu = 1$ für stark geladene, schwach abgeschirmte Polyelektrolyte. Nach diesem einfachen Modell dürfen wir erwarten, dass die Kette stark gestreckt vorliegt. Wir sehen also bereits grosse Unterschiede zwischen den statistischen Eigenschaften von Polyelektrolyten und von ungeladenen Ketten.
7.3.2 Schwach geladene Polyelektrolyte

Mit Hilfe des Blob-Modells wollen wir eine Skalenbeziehung zwischen Polymerabmessung und Kettenlänge ableiten. Für schwach geladene Polyelektrolyte gilt offensichtlich $Z \ll N$. Für $\lambda_c := L/Z \gg \lambda_B$ erhalten wir $E_C \ll k_B T$. Wir erwarten also nur eine schwache Koppelung durch die Coulomb-Wechselwirkung. In einem guten Lösungsmittel tendieren die Teile der Polymerkette zwischen den Ladungen zu einer starken Verknäuelung.

$$\frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{g^2 e^2}{R_B^3} \sim k_B T,$$

wobei R_B die Blob-Größe bezeichnet. Für ein Theta-Lösungsmittel gilt

$$R_B \sim a N_B^{\frac{1}{2}} \sim a \left(\frac{g}{f} \right)^{-\frac{1}{2}},$$

somit erhält man die Beziehung

$$g \sim \lambda_B^{-\frac{1}{2}} a^{\frac{1}{2}} f^{-\frac{1}{2}}.$$

Wegen der abstossenden elektrostatischen Wechselwirkung zwischen einzelnen Blobs erwarten wir eine gestreckte Kette von Blobs mit

$$R_{||} \sim \frac{N}{N_B} R_B \sim \frac{N f}{g} R_B \sim N a^{\frac{1}{2}} \lambda_B^{\frac{1}{2}} f^{-\frac{1}{2}} \sim N$$

Mit $f \ll 1$ erhält man $R_{||} \ll N a$.

7.4 Polyelektrolyte als “Wormlike Chains”:
Elektrostatische Beiträge zur Persistenz und ausgeschlossenem Volumen

Die entscheidende Idee, die zu einem tieferen Verständnis von Polyelektrolyten führte, wurde Ende der 70er Jahre von Odijk, Skolnick und Fixman entwickelt. Sie haben vorgeschlagen, die elektrostatischen Wechselwirkungen nur bis zu einer gewissen Distanz zu berücksichtigen und damit Parameter zu berechnen, die Polyelektrolyte als „Wormlike Chains“ mit einer größeren Persistenz und größerem ausgeschlossenem Volumen beschreiben. In dieser Betrachtungsweise geht man also von einer neutralen Kette aus und führt elektrostatische Wechselwirkungen quasi als Störung (oder additiven Beitrag zur Wechselwirkungsenergie) ein. Dieser Ansatz führt vor allem bei relativ steifen Polymeren wie DNA zu sehr guten Übereinstimmungen mit den experimentellen Daten.
Abbildung 7.4: Veranschaulichung des Drahtmodells: Eine halbflexible Polymerkette wird als gebogenes Drahtstück aufgefasst. Die Krümmung ist gegeben durch Θ/s, wobei Θ als Valenzwinkel interpretiert werden kann (siehe Kapitel 5).

7.4.1 Persistenzlänge

Unser Ausgangspunkt zur Berücksichtigung der elektrostatischen Wechselwirkung ist das sogenannte Drahtmodell, eine alternative Beschreibung zum „Wormlike Chain“-Modell der halbflexiblen Kette. Wir betrachten dazu - wie in Abbildung 7.4 skizziert - ein kurzes gebogenes Drahtstück der Länge s. Seine elastische Krümmungenergie E_0 ist proportional zum Quadrat der Deformation, d.h. $\Delta E_0 \sim (\Theta/s)^2$. Es gilt

$$\Delta E_0 = \frac{1}{2} s \kappa \left(\frac{\Theta}{s} \right)^2 = \frac{\kappa \Theta^2}{2s},$$

wobei κ der Krümmungsmodul ist. Das mittlere Quadrat des Krümmungswinkels berechnet sich zu

$$\langle \Theta^2(s) \rangle = 2 \int e^{\Delta E_0/k_B T} \Theta^2 d\Theta = 2s k_B T \kappa.$$

Der Faktor 2 berücksichtigt die unabhängige Krümmung in 2 Ebenen. Der Vergleich mit dem „Wormlike Chain“-Modell liefert

$$L_{p,0} = \frac{\kappa}{k_B T}$$

als Wert für die Persistenzlänge der ungeladenen Kette (siehe Übung). Der elektrostatische Beitrag zur Persistenz entsteht durch das Aufladen des gekrümmten Drahtes

$$\Delta E = \Delta E_0 + \Delta E_{el}$$

$$= \frac{1}{2} k_B T L_{p,0} \frac{\Theta^2}{s} + \frac{1}{2} k_B T L_{p,el} \frac{\Theta^2}{s}.$$
Wir nehmen an, dass der elektrostatische Beitrag quadratisch zur Krümmung und proportional zur Länge des Abschnitts ist. Die elektrostatische Persistenzlänge ist so definiert, dass man den energetischen Beitrag ganz analog zur Krümmungenergie der ungeladenen Kette schreiben kann.

Der Anteil ΔE_{el} ergibt sich aus dem Wechselwirkungspotential der Form $\phi \sim \frac{e^{-r_{jk}/\lambda_D}}{r_{jk}}$ zwischen Ladungen j und k entlang des Drahtstückes der Länge s

\[
\Delta E_{el} = \frac{e^2}{4 \pi \varepsilon_0 \varepsilon_r} \sum_{|j-k| < s/\lambda_c} \left[\frac{e^{-r_{jk}/\lambda_D}}{r_{jk}} - \frac{e^{-|j-k|/\lambda_D}}{|j-k|/\lambda_c} \right],
\]

wobei λ_c der Abstand zwischen Ladungen entlang der Kette ist (siehe Abbildung 7.5). Der erste Summand enthält das abgeschirmte Coulomb-Potential für ein gebogenes Drahtsegment der Länge s, der zweite Summand enthält das abgeschirmte Potential für ein gestrecktes Drahtsegment. Für $s \gg \lambda_D$ führt eine Abschätzung der obigen Gleichung zu

\[
\Delta E \approx \frac{1}{8} \frac{e^2}{4 \pi \varepsilon_0 \varepsilon_r} \left(\frac{\lambda_D}{\lambda_c} \right)^2 \frac{\Theta^2}{s}
\]

(7.32)

Der elektrostatische Beitrag der Persistenzlänge ist dann

\[
L_{p,el} \approx \frac{\lambda_B}{4} \left(\frac{\lambda_D}{\lambda_c} \right)^2.
\]

Als wichtige Folgerungen halten wir fest:
7.4. POLYELEKTROLYTE ALS “WORMLIKE CHAINS”

„Gegenionen“-Kondensation

Die „Gegenionen“ bewegen sich so, als wenn sie an dem Zylinder gebunden wären (siehe Abbildung 7.6). Stattdessen führen wir daher eine effektive Ladung ein. Der Abstand zwischen geladenen Stellen des Polymersegments ist gegeben durch \(\frac{\lambda_B}{\lambda_c} \).

Linearisiertes Modell

Wie in Abbildung 7.7 gezeigt, berechnet sich der elektrostatische Anteil der Persistenzlänge im linearisierten Modell zu:

\[
L_{p,el} = \frac{\lambda_B}{4} \left(\frac{\lambda_D}{\lambda_c} \right)^2 \left[\left(\frac{\lambda_B}{\lambda_c} \right)_{\text{eff}} \left(\frac{\lambda_c}{\lambda_B} \right)^2 \right] F \left(\frac{L}{\lambda_D} \right).
\] (7.34)

Für \(L/\lambda_D > 25 \) gilt \(F \left(L/\lambda_D \right) = 1 \). Man erhält für \(\lambda_c > \lambda_B \):

\[
L_{p,el} \approx \frac{\lambda_B}{4} \left(\frac{\lambda_D}{\lambda_c} \right)^2.
\] (7.35)

„Gegenionen“-Kondensation tritt nicht auf. Für \(\lambda_c < \lambda_B \) ergibt sich:
KAPITEL 7. POLYELEKTROLYTE

Abbildung 7.8: Trägheitsradius als Funktion der Ionenstärke für DNA. Das Molekulargewicht beträgt $M_W = 3 \cdot 10^5$ g/mol.

\[
L_{p,\text{el}} \simeq \frac{1}{4} \frac{\lambda_B^3}{\lambda_D}. \tag{7.36}
\]

Elektrostatische Beiträge werden unabhängig von der Ladungsichte.

7.4.2 Ausgeschlossenes Volumen

Langreichweitige Beiträge der Coulomb-Wechselwirkung fasst man als elektrostatischen Beitrag zum ausgeschlossenen Volumen auf. (Langreichweitig bezieht sich auf die Kette und nicht auf die tatsächliche Ausdehnung im Raum.)

Das zusätzliche ausgeschlossene Volumen v_c der Kettensegmente ist dabei von der Größenordnung $v_c \sim L_p^2 \lambda_D$. Da die Coulomb-Wechselwirkung in diesem Modell als ausgeschlossenes Volumen behandelt wird, erhalten wir als Skalenexponenten $\nu = 0.588$, also den gleichen Wert wie bei neutralen Polymeren in einem guten Lösungsmittel:

\[
\bar{R}_G \sim N^\nu \tag{7.37}
\]

mit $\nu = 0.588$. Nur der Vorfaktor wird entsprechend größer und hängt vom Salzgehalt ab. Zwei experimentelle Beispiele sind in den Abbildungen 7.8 und 7.9 zu sehen.
7.4. POLYELEKTROLYTE ALS “WORMLIKE CHAINS”

Kapitel 8

Wechselwirkende Ketten

8.1 Einteilung der Polymerlösungen in verschiedene Konzentrationsbereiche

In den vorangegangenen Kapiteln haben wir uns mit idealen Lösungen nicht wechselwirkender Einzelketten beschäftigt und uns einen Überblick über die statischen Eigenschaften von solchen hochverdünnten Polymerlösungen verschafft. Beim Vergleich experimenteller Daten mit theoretischen Vorhersagen sind wir stets zum Grenzfall verschwindender Polymerkonzentration $c \to 0$ übergegangen. Solche Systeme liessen sich mit einfachen Modellen beschreiben. In diesem Abschnitt werden wir unsere bisherige Betrachtungsweise aufgeben und uns ansehen, wie sich das Verhalten von Polymerlösungen ändert, wenn wir Schritt für Schritt die Konzentration erhöhen, bis wir schliesslich bei einer Polymerschmelze angelangt sind.

Als Einstieg wollen wir uns die in Abbildung 8.1 gezeigten experimentellen Daten genauer anschauen. Auf den ersten Blick sehen wir bereits, dass eine Erhöhung der Polymerkonzentration zu einem deutlich unterschiedlichen Verhalten führt. Wie wir die experimentellen Daten zu interpretieren haben, wissen wir zum Teil aus den Abschnitten 3.4 und 3.5. Durch Extrapolation des differentiellen Wirkungsquerschnittes:

$$\lim_{q \to 0} \lim_{c \to 0} \frac{d\sigma}{d\Omega} (q) \frac{1}{c K_{SANS}} = M$$

Abbildung 8.1: Normierte Streuintensität $I(q)/c$ als Funktion des Streuvektors q für verschiedene Polymerkonzentrationen c für ein Molekulargewicht $M = 120'000$ von Polystyrol in deuteriertem Toluol.
8.2 Osmotischer Druck

8.2.1 Pfeffersche Zelle und osmotischer Druck

Der osmotische Druck lässt sich mit Hilfe eines Osmometers bestimmen. Sein Prinzip wollen wir am einfachen Beispiel der sogenannten Pfefferschen Zelle verdeutlichen, die in Abbildung 8.3 skizziert ist.
Abbildung 8.3: Schematischer Aufbau eines Osmometers. Eine verdünnte Polymerlösung (Teilvolumen A) und das dazugehörige Lösungsmittel (Teilvolumen B) sind durch eine semipermeable Wand getrennt, die nur für das Lösungsmittel durchlässig ist.

In einer solchen Zelle befindet sich eine verdünnte Polymerlösung im Teilvolumen A, die durch eine semipermeable Wand vom dazugehörigen Lösungsmittel im Teilvolumen B getrennt ist. Die Wand ist so beschaffen, dass sie für das Lösungsmittel durchlässig ist, nicht aber für das Polymer. Wenn wir dieses System selbst überlassen, werden solange Lösungsmittelteilchen aus dem Teilvolumen B in das Teilvolumen A strömen, bis sich ein Gleichgewichtszustand eingestellt hat. Die entscheidende Frage ist, wie sieht dieser Gleichgewichtszustand aus und auf welche Weise können wir ihn berechnen.

8.2. OSMOTISCHER DRUCK

Wir betrachten dazu ein System im Wärmebad, bei dem also die Temperatur T konstant gehalten wird. In diesem Fall ist das geeignete thermodynamische Potential die freie Energie F. Die freie Energie besteht aus zwei Beiträgen, einem Energie- und einem Entropieterm. Es gilt:

$$ F = E - TS. \quad (8.2) $$

Beim Hinüberfliessen des Lösungsmittels wird das Teilvolumen A um einen Betrag dV vergrößert. Die dabei freigesetzte Energie beträgt $-(\partial F(T, V, N_p)/\partial V)dV$. Andererseits wird beim Hochsteigen der Lösung Arbeit gegen den äußeren Druck geleistet, und zwar pdV. Gleichsetzen führt auf:

$$ -\frac{\partial F(T, V, N_p)}{\partial V}dV = p dV. \quad (8.3) $$

Im Gleichgewicht stellt sich ein Druck Π ein, für den gilt:

$$ \Pi = -\frac{\partial F}{\partial V}. \quad (8.4) $$

Dieser Druck Π wird als osmotischer Druck bezeichnet.

8.2.2 Osmotischer Druck für ein System nicht wechselwirkender Ketten

$$ F = -k_B T \ln Z. \quad (8.5) $$

Für ein kanonisches Ensemble, bei dem kein Teilchenaustausch mit der Umgebung erlaubt ist, berechnet sich die Zustandssumme zu:

$$ Z = \sum_{\text{Zust.} i} \exp \left(-\frac{E_i}{k_B T} \right). \quad (8.6) $$

Summiert wird über alle möglichen Zustände des Systems. Wenn das System nur einen einzigen Zustand einnehmen könnte, so ergäbe sich für die freie Energie F gerade die Energie E. Die nichttriviale Summe in (8.6) beinhaltet aber auch Entropieeffekte.

In Analogie zum idealen Gas betrachten wir zunächst ein System nicht wechselwirkender Polymerketten. Wir beginnen mit einer einzelnen Polymerkette und behaupten, ihre Zustandssumme sei proportional zu ihrem Volumen: $Z_1 \sim V$. Als
KAPITEL 8. WECHSELWIRKENDE KETTEN

Proportionalitätsfaktor führen wir ein temperaturabhängiges Volumen $V_0(T)$ ein, so dass gilt: $Z_1 = V/V_0(T)$.

Da die Polymerketten nach Voraussetzung nicht miteinander wechselwirken, erhalten wir für ein System aus N_p Ketten die Zustandsumme:

$$Z = Z_1^{N_p} = \left(\frac{V}{V_0(T)} \right)^{N_p} \frac{1}{N_p!}.$$

(8.7)

Mit dem Faktor $1/N_p!$ berücksichtigt man die Ununterscheidbarkeit der Polymerketten; eine strenge Begründung für das Auftreten dieses Faktors liefert erst die Quantenmechanik. Aus der Zustandsumme berechnen wir die freie Energie:

$$F = -k_B T \ln Z = -k_B T \left[N_p \ln \left(\frac{V}{V_0} \right) + N_p! \right]$$

(8.8)

$$\approx -k_B T N_p \left[\ln \left(\frac{V}{V_0 N_p} \right) + 1 \right].$$

(8.9)

Beim Übergang von der ersten zur zweiten Zeile haben wir die Stirlingsche Formel verwendet. Aus der freien Energie erhalten wir die gesuchte Beziehung zwischen dem osmotischen Druck und dem Molekulargewicht:

$$\frac{\Pi}{k_B T} = -\frac{1}{k_B T \partial V} = \frac{N_p}{V} = n_p = \frac{N_A}{M} c.$$

(8.10)

N_A bezeichnet die Avogadro-Konstante, n_p die Teilchenzahlkonzentration, M das Molekulargewicht und c die Massenkonzentration. Man sieht deutlich die Analogie zur idealen Gaskonstante, was nicht sonderlich erstaunlich ist, da wir die Polymerlösung als System nicht wechselwirkender Ketten aufgefasst haben. Die einfache Beziehung (8.10) bildet die Grundlage für die Molekulargewichtsbestimmung mit Hilfe der Osmometrie. Ein Vergleich mit den in Abbildung 8.4 dargestellten experimentellen Ergebnissen zeigt, dass die erwartete Abhängigkeit der experimentellen Daten vom Molekulargewicht für niedrige Konzentrationen zwar tatsächlich sichtbar ist, diese jedoch mit zunehmenden Werten von c abnimmt und oberhalb einer kritischen Konzentration c^* verschwindet. Diese Konzentration c^* nimmt ganz offensichtlich mit zunehmendem Molekulargewicht deutlich ab, und der Konzentrationsbereich, in dem man das Molekulargewicht des Polymers bestimmen kann, wird entsprechend immer kleiner.

8.2.3 Virialentwicklung

Wir wollen nun die Virialentwicklung des osmotischen Druckes näher betrachten, um Wechselwirkungen zwischen den Ketten zu berücksichtigen. Die Idee besteht im wesentlichen darin, die einfache Beziehung $\Pi \sim c$ so zu verallgemeinern, dass die Wechselwirkungen von j Teilchen durch Terme mit den entsprechenden j-ten Potenzen in der Konzentration c beschrieben werden. Wenn wir die universelle Gaskonstante über $R := N_A k_B$ einführen, lässt sich die Reihenentwicklung in der folgenden Form schreiben:
8.2. OSMOTISCHER DRUCK

Abbildung 8.4: Osmotischer Druck als Funktion der Polymerkonzentration c für unterschiedliche Molekulargewichte von Poly-α-Methylstyrol in Toluol. Im Bereich niedriger Polymerkonzentrationen zeigt sich eine ausgeprägte Abhängigkeit der experimentellen Daten vom Molekulargewicht. Mit zunehmender Konzentration wird die Auffächerung immer kleiner. Oberhalb einer kritischen Konzentration lassen sich schließlich die experimentellen Daten durch eine einzige Kurve beschreiben. Nähere Einzelheiten siehe Text.
\[\Pi = RT \left(A_1 c + A_2 c^2 + A_3 c^3 + \ldots \right) . \]
(8.11)

Die Koeffizienten \(A_j \) enthalten die Informationen über die Wechselwirkung von jeweils \(j \) Polymerteilchen. Im Falle von nicht wechselwirkenden Ketten erhalten wir wieder die einfache Beziehung (8.10), da gilt \(A_1 = 1/M \) und \(A_j = 0 \) für \(j \geq 2 \). Mit Hilfe der Osmometrie können wir also das Molekulargewicht \(M \) von Polymeren in verdünnter Lösung messen.

Der osmatische Druck \(\Pi \) ist im Fall eines festen Polymer-Lösungsmittel-Systems eine Funktion der Temperatur \(T \), des Molekulargewichtes \(M \) und der Konzentration \(c \), also: \(\Pi = \Pi(T, M, c) \). Die Virialkoeffizienten \(A_j \) sind Funktionen der Temperatur und des Molekulargewichtes, also \(A_j = A_j(T, M) \).

Die \(j \)-te Teilchenwechselwirkung ist von der Größenordnung \(n_p (n_p/n_p^*)^{j-1} \), wobei wir mit \(n_p^* \) die Überlappkonzentration bezeichnen. Dabei definieren wir mit \(n_p^* \) diejenige Teilchenzahlkonzentration, bei der jedes Polymerknäuel genau sein Eigenvolumen besitzt, das es bei Abwesenheit aller anderen Ketten einnehmen würde:

\[n_p^* = \frac{1}{R_G} . \]
(8.12)

Um dies einzusehen, betrachten wir die Störung des ersten Virialkoeffizienten \(A_1 \) durch Hinzufügen eines zweiten Teilchens. Die Änderung von \(A_1 \) durch Hinzunahme von Zwei-Teilchen-Wechselwirkungen lässt sich einfach berechnen. Sie ist gleich dem Produkt aus der Anzahl der Wechselwirkungen - also der Zahl der Polymere \((N_p) \) - und der Wahrscheinlichkeit für das Auftreten einer solchen Wechselwirkung \((R_G^d/V) \), d.h.:

\[N_p \frac{R_G^d}{V} = \frac{n_p}{n_p^*} = \frac{c}{c^*} . \]
(8.13)

Hier gilt für \(c^* = n_p^*(M/N_p) \) Jede zusätzlich berücksichtigte Teilchenwechselwirkung trägt noch einmal mit diesem Faktor bei. Nach diesen Überlegungen sollte der osmotische Druck von der Form

\[\Pi = \frac{RT c}{M} F \left(\frac{c}{c^*} \right) \]
(8.14)

sein, wobei \(F \) eine Skalenfunktion ist. Auf der Basis von Gleichung (8.14) würden wir also erwarten, dass der Effekt der Wechselwirkungen zwischen den Polymerknäueln durch eine universelle Skalenfunktion einer reduzierten Variablen \(c/c^* \) beschrieben werden kann. Dies lässt sich zum Beispiel mit Hilfe der in Figur (8.4) dargestellten Ergebnisse für die Konzentrationsabhängigkeit des osmotischen Drucks bei verschiedenen Molekulargewichten verdeutlichen. In einer Auftragung \(\Pi M/(RT c) \) als Funktion der reduzierten Konzentration \(c/c^* \) sollten die experimentellen Werte des osmotischen Drucks der entsprechenden universellen Skalenfunktion \(F \) (8.14) folgen. Figur (8.5) zeigt eindeutig, dass sich in dieser Auftragung tatsächlich alle experimentellen Daten unabhängig von ihrem Molekulargewicht durch eine einzige Kurve beschreiben lassen.
8.2. OSMOTISCHER DRUCK

Abbildung 8.5: Reduzierter osmotischer Druck \(\Pi M / (RTc) \) als Funktion der reduzierten Konzentration \(c / c^* \) für Poly-\(\alpha \)-Methylstyrol in Toluol. Das Molekulargewicht erstreckt sich über einen grossen Bereich, und zwar \(M = 7.08 \cdot 10^4 \) g/mol bis \(119 \cdot 10^4 \) g/mol und \(M_W = 1.82 \cdot 10^6 \) g/mol bis \(747 \cdot 10^6 \) g/mol. Die Daten sind entnommen aus: I. Noda et al., *Macromolecules* 14 (1981) 668.

Für die Molekulargewichtsabhängigkeit der Virialkoeffizienten \(A_n \) ergibt sich aus gleichen Gründen

\[
A_n \sim \frac{1}{M_n} (\hat{R}_G)^{d(n-1)}
\]

(8.15)

also

\[
A_n \sim M^{(\nu d-1)n-\nu d}
\]

(8.16)

Im stark überlappenden Bereich sollte der osmatische Druck \(\Pi \) nur noch von der Monomerkonzentration \(n_m = Nn_p \), nicht aber vom Molekulargewicht \(M \) abhängen. Da für grosse \(x \) die Beziehung \(F(x) \sim x^{1/(\nu d-1)} \) gilt, erhält man:

\[
\Pi \sim n_m^{\nu d/(\nu d-1)} = c^{\nu/4}
\]

(8.17)

mit \(\nu = 3/5 \) und \(d = 3 \).

Für eine Beschreibung des Einflusses der Temperatur benützen wir die Erkenntnisse aus Kapitel 6. Entsprechend der Diskussion in diesem Kapitel führen wir bei den Virialkoeffizienten \(A_n \) zusätzliche Faktoren \(F_n(\tau N^\phi) \) ein mit \(\tau = (T - \theta)/\theta \) und erhalten:

\[
A_n = \frac{1}{M_n} (\hat{R}_G)^{d(n-1)} F_n(\tau N^\phi)
\]

(8.18)
Abbildung 8.6: Zweiter Virialkoeffizient als Funktion der Temperatur für Polystyrol in Cyclohexan. Das Molekulargewicht beträgt \(M_W = 1.28 \cdot 10^5 \text{ g/mol} \). Bei einer Temperatur von \(T = 35.2^\circ \text{C} \) ist die Theta-Bedingung erfüllt, da der zweite Virialkoeffizient \(A_2 \) verschwindet. Die Daten sind entnommen aus: C. Strazielle, H. Benoit, *Macromolecules* 8 (1975) 203.

Die entsprechende Temperaturabhängigkeit des zweiten Virialkoeffizienten \(A_2 \) ist in Figur (8.6) für Polystyrol in Cyclohexan in der Nähe der Thetatemperatur dargestellt.

Für \(\tau N^\phi \to \infty \) ergeben sich Konstanten \(F_n(\infty) \), die den Grenzübergang zum ausgeschlossenen Volumen beschreiben. Für \(\tau N^\phi = 0 \) erhalten wir andere Konstanten, die die Theta-Lösung beschreiben. Insbesondere gilt dann \(F_2(0) = 0 \). Am Theta-Punkt sind die Zwei-Teilchen-Wechselwirkungen zwischen den Monomeren abgeschaltet. Daher ergibt sich am Theta-Punkt auch \(A_2 = 0 \). Dies ersieht man auch aus Figur (8.7), wo die Konzentrationsabhängigkeit des reduzierten osmotischen Druckes \(\Pi M/(RTc) \) als Funktion der Massenkonzentration \(c \) für Polystyrol in Cyclohexan für drei verschiedene Temperaturen oberhalb, gleich und unterhalb der Theta-Temperatur aufgetragen ist. Bei \(T = 40^\circ \text{C} \) befindet man sich oberhalb der Theta-Temperatur. Der reduzierte osmotische Druck nimmt zunächst linear mit der Konzentration zu \((A_2 > 0) \) und zeigt bei höheren Konzentrationen dann eine quadratische Abhängigkeit. Bei der Theta-Temperatur \(T = 35^\circ \text{C} \) fehlt der lineare Anstieg \((A_2 = 0) \), erst bei höheren Konzentrationen beobachtet man eine quadratische Zunahme des reduzierten osmotischen Druckes mit der Konzentration. Unterhalb der Theta-Temperatur, bei \(T = 30^\circ \text{C} \), ist der zweite Virialkoeffizient negativ \((A_2 < 0) \). Bei höheren Konzentrationen zeigt sich wiederum ein quadratischer Anstieg mit der Konzentration.
8.3 Streuexperimente und osmotische Kompressibilität

Da wir mit Hilfe von Streuexperimenten auch Polymerlösungen höherer Konzentration untersuchen wollen, werden wir uns in diesem Abschnitt noch einmal genauer mit den Grundlagen der Streuexperimente in Polymerlösungen beschäftigen. Wir werden sehen, dass zwischen dem Rayleigh-Verhältnis $\Delta R(q)$ und der osmotischen Kompressibilität $\partial \Pi / \partial c$ ein einfacher Zusammenhang besteht.

Zunächst wollen wir uns am Beispiel einiger einfacher Vielteilchensysteme die zu erwartende Streustrahlung anschauen. Der Einfachheit halber beginnen wir mit den Grenzfällen ideales Gas und idealer Kristall, bevor wir uns dann den Flüssigkeiten und schließlich den Lösungen zuwenden.

Die Streuintensität eines idealen Gases ist durch die gesamte Teilchenzahl N_t und die Streuintensität $d\sigma / d\Omega (q)$ der Einzelteilchen gegeben; es gilt:

$$\left(\frac{d\sigma}{d\Omega} \right)_t (q) = N_t \left(\frac{d\sigma}{d\Omega} \right)_1 (q).$$

\hspace{1cm} (8.19)
Abbildung 8.8: Schematische Darstellung der Streustrahlung eines idealen Kristalls. Zu jeder Streuwelle gibt es stets eine zweite um $\pi/2$ phasenverschobene Welle, so dass deren Summe verschwindet. Diese destruktive Interferenz beobachtet man für alle Streuwinkel mit Ausnahme von $\theta = 0$.

Im nächsten Schritt fragen wir nach der Streuintensität, die wir von einem idealen Kristall erwarten. Wie in der Abbildung 8.8 angedeutet, gibt es zu jeder Streuwelle mit Streuwinkel $\theta \neq 0$ (bzw. $q \neq 0$) eine zweite Streuwelle, so dass deren Summe verschwindet. Aufgrund dieser destruktiven Interferenz erhält man also:

$$I_s(q) = 0 \quad \text{für} \quad q \neq 0.$$ \hspace{1cm} (8.20)

Nachdem wir die beiden Grenzfälle ideales Gas und idealer Kristall betrachtet haben, wollen wir uns die Streuintensität einer Flüssigkeit aus N_t Teilchen anschauen. Dazu teilen wir das Flüssigkeitsvolumen in gleich große Volumenelemente ein, wie in Abbildung 8.9 geschehen. Die Abmessungen der Volumenelemente seien klein gegenüber der Wellenlänge des eingestrahlten Lichtes. Das einzelne Volumenelement (die Zelle) wirkt demnach wie ein punktförmi ger Streuer. Für identische Zellen j und k erhält man wie im Fall des idealen Kristalls destruktive Interferenz. Aufgrund der thermischen Bewegung fluktuiert allerdings die Teilchenzahl in den Zellen, so dass eine vollständige Aufhebung der Streustrahlung aus verschiedenen Zellen unterbleibt. Bei gleicher Dichte gilt für die Streuintensität ($q \neq 0$):

$I_{\text{Kristall}} < I_{\text{Fluid}} < I_{\text{Gas}}$.

Aus Kapitel 3 wissen wir bereits, dass sich der differentielle Wirkungsquerschnitt schreiben lässt als

$$\frac{d\sigma}{d\Omega}(q) = N b^2 S(q)$$

$$= N b^2 \int g(r) e^{i q \cdot r} \, d^3 r$$

$$= b^2 \int \langle n(r' + r) \, n(r') \rangle \, e^{i q \cdot r} \, d^3 r \, d^3 r' .$$ \hspace{1cm} (8.21)
8.3. STREUEXPERIMENTE UND OSMOTISCHE KOMPRESSIBILITÄT

Abbildung 8.9: Schematische Darstellung der Streustrahlung einer einfachen Flüssigkeit. Das Streuvolumen denkt man sich in gleich grosse Volumenelemente eingeteilt, deren Abmessungen klein gegenüber der Wellenlänge des eingestrahlten Lichtes sind. Das einzelne Volumenelement wirkt wie ein punktförmiger Streuer. Wenn die Zellen (beispielsweise \(j \) und \(k \)) identisch wären, erhielte man wie im Fall des idealen Kristalls destruktive Interferenz. Da die Flüssigkeitsteilchen in ständiger Bewegung sind, kommt es in jedem Volumenelement aber zu Dichteschwankungen, die zu einer nicht verschwindenden Streustrahlung führt.

Eine vollkommen homogene Flüssigkeit wird kein Streulicht bei \(q \neq 0 \) aussenden. Berücksichtigen wir allerdings Dichteschwankungen, dann können wir Gleichung (8.21) umformen zu

\[
\frac{d\sigma}{d\Omega}(q) = b^2 \int \int (\Delta n(r) \Delta n(r')) e^{iqr} d^3r d^3r'.
\]

Statt der Teilchenzahlichte \(n(r) \) haben wir als relevante Größe die Abweichung \(\Delta n(r) := n(r) - \bar{n} \) von der mittleren Teilchenzahlichte \(\bar{n} := N_t/V \) eingeführt. Im Grenzfall \(q = 0 \) erhalten wir:

\[
\lim_{q \to 0} \frac{d\sigma}{d\Omega}(q) = b^2 \int \int (\Delta n(r) \Delta n(r')) d^3r d^3r'.
\]

Nach Einführen des Schwankungssquares \(\Delta \bar{N}^2 \) über

\[
\Delta \bar{N}^2 := \int \int (\Delta n(r) \Delta n(r')) d^3r d^3r'
\]

schreibt sich der differentielle Wirkungsquerschnitt als

\[
\lim_{q \to 0} \frac{d\sigma}{d\Omega}(q) = b^2 \Delta \bar{N}^2.
\]
Die Streustrahlung, extrapoliert gegen \(q = 0 \), ist proportional zum Quadrat der Teilchenzahlfluktuation im Streuvolumen.

\[W = \frac{1}{2} k_B T \]

ist die Ursache für die Teilchenzahlfluktuation \(\Delta \bar{N}^2 \) (bzw. \(\Delta \bar{V}^2 N_t^2 / V^2 \)). Es gilt:

\[W = \int_{V_0}^{V_0 - \Delta V} (p - p_0) \, dV = - \frac{d}{dV} \frac{1}{2} \Delta \bar{V}^2 \]

Gleichsetzen der Ausdrücke für die Energie führt auf

\[\Delta \bar{V}^2 = - k_B T \left(\frac{\partial V}{\partial p} \right)_T \]

Unter Verwendung der Definition für die isotherme Kompressibilität

\[\kappa := - \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \]

sowie \(\Delta \bar{N}^2 = \Delta \bar{V}^2 N_t^2 / V^2 \) ergibt sich

\[\Delta \bar{N}^2 = - \left(\frac{N_t}{V} \right)^2 k_B T \left(\frac{\partial V}{\partial p} \right)_T = \frac{N_t^2}{V} k_B T \kappa . \]

Während in einer einfachen Flüssigkeit nur Dichtefluktuationen auftreten, gibt es in Lösungen noch eine weitere Möglichkeit für Schwankungen: die Konzentrationsfluktuationen.

Die nötige Arbeit, um eine Änderung in der Konzentration \(\Delta c^2 \) herbeizuführen, vergleichen wir wieder mit der thermischen Energie. In Analogie zur einfachen Flüssigkeit ersetzen wir den Druck \(p \) durch den osmotischen Druck \(\Pi \). Den Beitrag der Lösungsmittelteilchen zur Streuintensität können wir bei einer inkompressiblen Flüssigkeit durch Einführen einer effektiven Streulänge \(\Delta b \) berücksichtigen, in der wir die Streulänge des Lösungsmittels entsprechend des eingenommenen Volumens subtrahieren:

\[\Delta b = b_1 - b_{Lsm} V_1 / V_{Lsm} . \]

Der differentielle Wirkungsquerschnitt für die Streustrahlung einer Lösung lautet im Grenzfall \(q = 0 \):

\[\lim_{q \to 0} \frac{d\sigma}{d\Omega}(q) = \Delta b^2 \Delta \bar{N}_1^2 \]

mit
8.3 STREU Experimente und Osmotische Kompressibilität

\[\Delta N_1^2 = - \left(\frac{N_1}{V} \right)^2 k_B T \left(\frac{\partial \Pi}{\partial V} \right)^{-1}_{T,N}. \]
(8.33)

Nach Einführen des Volumenbruchs \(\phi = N_1 V_1 / V \) erhalten wir dann:

\[\lim_{q \to 0} \frac{1}{V} \frac{d \sigma}{d \Omega}(q) = \frac{\Delta b^2}{V_1^2} \phi k_B T \left(\frac{\partial \Pi}{\partial \phi} \right)^{-1}_{T,N}. \]
(8.34)

Bzw.

\[\lim_{q \to 0} \frac{1}{V} \frac{d \sigma}{d \Omega}(q) = \frac{\Delta b^2}{M_1^2} N_A c k_B T \left(\frac{\partial \Pi}{\partial c} \right)^{-1}_{T,N}. \]
(8.35)

Aus Kapitel 3.4 wissen wir, dass in der Lichtstreuung die effektive Streulänge durch

\[\Delta b = \frac{2\pi}{\lambda^2} \frac{M_1}{N_A} n_{Lsm} \left(\frac{dn}{dc} \right) \]
(8.36)
gegeben ist. Für den Kontrastterm haben wir

\[K_{LS} = \frac{4\pi^2}{\lambda^4} \frac{1}{N_A} n_{Lsm}^2 \left(\frac{dn}{dc} \right)^2. \]
(8.37)
gefunden. Damit erhalten wir

\[\lim_{q \to 0} \frac{1}{V} \frac{d \sigma}{d \Omega}(q) = K c N_A k_B T \left(\frac{\partial \Pi}{\partial c} \right)^{-1}_{T,N}. \]
(8.38)

Mit der Virialentwicklung für den osmotischen Druck

\[\Pi = N_A k_B T \left(\frac{c}{M} + A_2 c^2 + A_3 c^3 + \ldots \right) \]
(8.39)
folgt für die osmotische Kompressibilität:

\[\frac{\partial \Pi}{\partial c} = N_A k_B T \left(\frac{1}{M} + 2A_2 c + 3A_3 c^2 + \ldots \right). \]
(8.40)

und damit

\[\lim_{q \to 0} \frac{1}{V} \frac{d \sigma}{d \Omega}(q) = K c \left[\frac{1}{M} + 2A_2 c + \ldots \right]^{-1}. \]
(8.41)

Die Gleichung (8.41) liefert uns die vollständigen Grundlage für die experimentelle Bestimmung des Molekulargewichtes eines Polymers in Lösung mit Hilfe von Licht- oder Neutronenstreuung. Insbesondere sehen wir, dass wir bei nicht zu hohen Konzentrationen den korrekten Wert des Molekulargewichtes durch eine lineare Extrapolation der Konzentrationsabhängigkeit der osmotischen Kompressibilität bestimmen können, das heißt aus einer Darstellung \(1/I(q) \) vs. \(c \).
KAPITEL 8. WECHSELWIRKENDE KETTEN

Abbildung 8.10: Molekularmassenabhängigkeit des zweiten Virialkoeffizienten A_2.

Mit Hilfe von Gleichung (8.41) lässt sich auch die Vorhersage von Gleichung (8.16) für die Molekulargewichtsabhängigkeit der Virialkoeffizienten A_n überprüfen. Die entsprechenden Werte für A_2 aus Lichtstreunmessungen mit Polystyrol unterschiedlichem Molekulargewicht sind in Figur (8.10) dargestellt.

In Analogie zu Gleichung (8.14) können wir einen ähnlichen Ausdruck für die aus einem Streuexperiment ermittelte osmotische Kompressibilität hinschreiben, der die Konzentrationsabhängigkeit beschreibt

$$\frac{\partial \Pi}{\partial c} = \frac{RT}{M} \tilde{F} \left(\frac{c}{c^*} \right)$$

(8.42)

Dabei ist $\tilde{F}(x) = F(x) + x F'(x)$ eine Skalenfunktion. Die Abbildung 8.11 zeigt einen Vergleich von Messergebnissen und Berechnungen auf der Basis von Gleichung (8.42). Aufwendig ist die Bestimmung der Skalenfunktion $F(c/c^*)$. Wenn man die Skalenfunktion kennt, kann man Theorie und Vorhersage nicht nur im asymptotischen Bereich vergleichen. Im wesentlichen existieren zwei Möglichkeiten zur Berechnung der Skalenfunktionen:

- **Monte-Carlo-Simulationen** von Vielkettensystemen. Man erzeugt typische Konformationen, die über die Berechnung des Strukturfaktors zu $S(0)$ führen. Abbildung 8.12 zeigt Ergebnisse für Ketten unterschiedlicher Konturlänge.

- **Störungstheorie und Renormierung**. Mit Hilfe der Störungstheorie kann man nur wenige Wechselwirkungen berücksichtigen (typischerweise ein bis
8.4 HALBVERDÜNNTEN LÖSUNGEN

8.4.1 Blob-Bild und Skalengesetze

Halbverdünnnte Lösungen sind durch zwei Bedingungen festgelegt: Zum einen liegt die Polymerkonzentration \(c \) oberhalb der Überlapp-Konzentration \(c^* = M/(N_A R_G^4) \), andererseits ist der Volumenbruch der Polymere klein gegenüber dem des Lösungsmittels. Bei der Überlapp-Konzentration füllt jede Kette gerade ihr
Abbildung 8.12: Monte-Carlo-Simulation eines Vielkettensystems von halbflexiblen Ketten mit ausgeschlossenem Volumen. Aufgetragen ist die Skalenfunktion $F(c/c^*_{\text{c}})$ gegen die reduzierte Konzentration c/c^*. Die verschiedenen Kurven bezeichnen Ketten mit unterschiedlichen Längen ($L/b = 3.2, 10.88, 30, 90, 270$).

Zum Verständnis der statischen Eigenschaften einer halbverdünnten Polymer-
8.4. HALBVERDÜNNTTE LÖSUNGEN

Abbildung 8.13: Eine halbverdünnte Polymerlösung lässt sich als Netz verhakter Ketten auffassen. Der Abstand zwischen den Verhakungspunkten, die sogenannte Maschenweite oder statische Korrelationslänge ξ_s, ist gross gegenüber der typischen Monomerabmessung. Auf Längenskalen unterhalb der Maschenweite wird sich ein solches System wie eine verdünnte Polymerlösung verhalten, oberhalb der Maschenweite dagegen wie eine Polymerschmelze.

Eine halbverdünnte Polymerlösung kann wir auf die Ergebnisse aus den vorangegangenen Kapiteln zurückgreifen. In der Nähe der θ-Temperatur wird man auf einer Längenskala unterhalb der Maschenweite ideales Verhalten beobachten, sofern die Maschenweite ξ_s nicht zu gross ist. Bei einer sehr grossen Maschenweite ξ_s wird sich dann der Einfluss des ausgeschlossenen Volumens bemerkbar machen. Auf Längenskalen oberhalb der Maschenweite wird sich wieder ideales Verhalten zeigen, wie wir es von Polymerschmelzen erwarten. Ein komplexes System wie eine halbverdünnte Polymerlösung können wir im Rahmen des Blob-Bildes anschaulich verstehen. Entscheidend ist die klare Trennung der Eigenschaften auf verschiedenen Längenskalen. Was kann man nun mit dem Blob-Bild konkret vorhersagen? Welche Grössen können wir im Experiment messen? Es handelt sich um die

- statische Korrelationslänge $\xi_s(c)$, den
- Trägheitsradius $R_G(c)$ einer Einzelkette und den kompletten
- Strukturfaktor $S(q,c)$ für das Vielkettenystem

Bevor wir uns an eine komplette Behandlung des Strukturfaktors wagen, versuchen wir, einfache Skalengesetze für $\xi_s(c)$ und $R_G(c)$ zu finden.

8.4.2 Statische Korrelationslänge

Als erstes wenden wir uns der Korrelationslänge ξ zu. Eine geschickte Möglichkeit zur Messung der Maschenweite besteht darin, die Beweglichkeit von Kugeln mit
einem Durchmesser \(D = 50 - 100 \ \text{Å} \) in einer halbverdünnten Lösung zu untersuchen. Beim Übergang von \(D < \xi_s \) nach \(D > \xi_s \) nimmt die Mobilität drastisch ab. Sehr oft wird \(\xi_s \) mit Hilfe von Streuexperimenten bestimmt. Ausgangspunkt ist dabei der Zusammenhang zwischen der Korrelationsfunktion \(g(r) \) und dem Strukturfaktor \(S(q) \). Im Kapitel 3 haben wir als Abschätzung für die Korrelationsfunktion einer idealen Kette

\[
g(r) \sim \frac{1}{a^2 r}, \tag{8.43}
\]

gefunden. Dieser Ansatz ist sicher gerechtfertigt in einem Bereich, in dem \(r \) klein ist. Bei halbverdünnten Lösungen sind wir allerdings an Längenskalen \(r > a \) und \(r < \bar{R}_G \) interessiert. Wir korrigieren das Potenzgesetz, damit es auch auf den Längenskalen \(r > \xi \) gültig ist, indem wir schreiben:

\[
g(r) = n_m \frac{\xi}{r} e^{-r/\xi}, \tag{8.44}
\]

wobei \(n_m \) die Monomerdichte bezeichnet. Wie im Fall der Polyelektrolyte beschreibt die Exponentialfunktion einen Abschirmeffekt, der in diesem Fall durch die Überlappungen der Ketten auf einer Längenskala \(> \xi \) entsteht. Durch Fourier-Transformation der Korrelationsfunktion \(g(r) \) erhält man den Strukturfaktor

\[
S(q) = \frac{n_m \xi}{q^2 + 1/\xi^2} = \frac{n_m \xi^3}{1 + \xi^2 q^2}. \tag{8.45}
\]

Der Strukturfaktor kann also für \(q \xi_s < 1 \) durch ein sogenanntes Ornstein-Zernicke Streugesetz der Form

\[
\frac{1}{S(q)} = \frac{1}{S(0)} \left(1 + \frac{1}{3} q^2 \bar{R}_G^2 \right). \tag{8.46}
\]

dargestellt werden. Für \(q \to 0 \) misst man offenbar die Gesamtanzahl Streuteilchen in einem Blob, \(n_m \xi^3 \), falls man für die typische Länge \(\xi \) die Maschenweite \(\xi_s \) wählt. Bei kleinen \(q \)-Werten können \(\xi_s \) analog zur Bestimmung des Trägheitsradius \(\bar{R}_G^2 \) aus der Guinier-Approximation für verdünnte Lösungen bestimmen. Die Guinier-Approximation in Kapitel 2.2 hat für ein Einzelknäuel zu Gleichung (2.2.16) geführt, welche auch in der folgenden Form geschrieben werden kann:

\[
\frac{1}{S(q)} \approx \frac{1}{S(0)} \left[1 + \frac{1}{3} q^2 \bar{R}_G^2 \right]. \tag{8.47}
\]

Offensichtlich muss man nun in halbverdünnten Lösungen \(\frac{1}{2} \bar{R}_G^2 \) durch \(\xi_s^2 \) ersetzen. Wie im Fall einer verdünnten Polymerlösung, so kann man auch aus dem gemessenen Strukturfaktor einer halbverdünnten Polymerlösung die charakteristische Längenskala \((\xi_s^2) \) ermitteln.
8.4. HALBVERDÜNNTE LÖSUNGEN

Abbildung 8.14: Korrelationslänge in Abhängigkeit von der Polymerkonzentration \(c \) für unterschiedliche Molekulargewichte \(M_w \) (Teilbild a) und statische Korrelationslänge in Einheiten des Trägheitsradius als Funktion der reduzierten Konzentration \(c/c^* \) (Teilbild b). In Teilbild a zeigen sich bei geringen Polymerkonzentrationen deutliche Unterschiede: Je höher das Molekulargewicht ist, um so größer ist die Korrelationslänge. Beim Übergang zu höheren Polymerkonzentrationen folgen die Korrelationslängen derselben Kurve. Nähere Einzelheiten siehe Text. In Teilbild b zeigt die obere gestrichelte Linie das experimentell gefundene Skalengesetz, die untere das entsprechende theoretische Ergebnis.
Die in Figur (8.14) gezeigten Daten für Polystyrol zeigen ein Verhalten, das ganz analog zu dem des osmotischen Drucks oder der osmotischen Kompressibilität verläuft. Bei niederer Konzentrationen widerspiegelt die Korrelationslänge die Knäuelgröße der Einzelkette und damit die unterschiedlichen verwendeten Molekulargewichte, während bei hohen Konzentrationen oberhalb \(c^* \) nur noch die Struktur des Vielketten systems (Maschenweite) aufgelöst wird, die auf dieser Längenskala unabhängig von \(M \) ist. Wir können nun versuchen, ein allgemeingültiges Skalengesetz für die Konzentrationsabhängigkeit von \(\xi_s(c) \) aufzustellen. Mit \(N_\xi \) bezeichnen wir die Anzahl Monomere pro Blob. Wie wir in den vorangegangenen Kapiteln gesehen haben, gilt für eine einzelne Kette die Beziehung

\[
\bar{R}_G(0) = aN^\nu, \tag{8.48}
\]

\(N \) entspricht der Anzahl Monomere. Für eine ideale Kette (Irrflug) haben wir \(\nu = 1/2 \) gefunden, bei ausgeschlossenem Volumen galt für den Skalenexponenten \(\nu = 3/5 \). Da innerhalb eines Blobs die Bedingungen für eine verdünnte Polymerlösung vorliegen, erhalten wir für die Maschenweite analog zu Gleichung (8.48) den Ausdruck

\[
\xi_s(c) = aN_\xi^\nu. \tag{8.49}
\]

Da die Blobs dicht gepackt sind, können wir für die Monomerdichte \(n_m \) schreiben

\[
n_m = \frac{N_\xi}{\xi_s^d(c)} \tag{8.50}
\]

und erhalten für die Maschenweite

\[
\xi_s(c) = a\left(n_m^\nu\xi_s^d(c)\right)^\nu \tag{8.51}
\]

bzw.

\[
\xi_s(c) = \left(an_m^\nu \right)^{1/(1-\nu_d)}. \tag{8.52}
\]

Die Polymerteilchendichte ist gegeben durch \(n_p = n_m/N \). Einsetzen in Gleichung (8.48) führt auf

\[
a n_m^\nu = \bar{R}_G(0)n_p^\nu \tag{8.53}
\]

Daraus folgt für die Maschenweite

\[
\xi_s(c) = \left(a n_m^\nu \right)^{1/\nu_d} = \left(\bar{R}_G(0) n_p^\nu \right)^{1/\nu_d} = \left[\bar{R}_G(0)^{1-\nu_d} (n_p \bar{R}_G(0)^d)^\nu \right]^{1/\nu_d} = \bar{R}_G(0) \left(\frac{c}{c^*} \right)^{-\nu_d}. \tag{8.54}
\]
8.4. HALBVERDÜNNTE LÖSUNGEN

Beim Übergang zur letzten Zeile haben wir die Beziehung

\[\frac{c}{c^*} = n_p \bar{R}_G(0)^d \] \hspace{1cm} (8.55)

aus dem Kapitel “Wechselwirkende Ketten” verwendet. In \(d = 3 \) Dimensionen und mit \(\nu = 3/5 \) (ausgeschlossenes Volumen) erhält man für den Exponenten \(\nu/(\nu d - 1) = 0.75 \). Das in Gleichung (8.55) vorhergesagte Skalengesetz mit einem Exponenten von 0.75 stimmt tatsächlich gut mit dem experimentell beobachteten Verhalten von halbverdünnnten Polymerlösungen (Abbildung 8.14) überein.

8.4.3 Trägheitsradius

Ganz analog können wir die Beziehung für den Trägheitsradius herleiten. Auf Längenskalen oberhalb der Maschenweite haben wir eine ideale Schmelze von Blobs vorliegen. Für den Trägheitsradius gilt

\[\bar{R}_G(c) = \xi_s \left(\frac{N}{N_\xi} \right)^{1/2}. \] \hspace{1cm} (8.56)

Umformen führt auf

\[
\bar{R}_G(c) = \xi_s \left(\frac{N}{N_\xi} \right)^{\frac{\nu}{2}}
= \xi_s \left(\frac{\bar{R}_G(0)}{\xi_s} \right)^{\frac{\nu}{2}}
= \bar{R}_G(0)^{\frac{1}{2\nu}} \xi_s^2 \left[\bar{R}_G(0) \left(\frac{c}{c^*} \right)^{\frac{\nu}{2\nu - 1}} \right]^{\frac{2\nu - 1}{2\nu}}
= \bar{R}_G(0) \left(\frac{c}{c^*} \right)^{-\frac{1}{2} \frac{2\nu - 1}{2\nu - 1}}.
\] \hspace{1cm} (8.57)

Beim Übergang von der ersten zur zweiten Zeile haben wir die Beziehung

\[\bar{R}_G(0) = \xi_s \left(\frac{N}{N_\xi} \right)^\nu \] \hspace{1cm} (8.58)

verwendet. Bei der letzten Umformung haben wir von Gleichung (8.54) Gebrauch gemacht. In \(d = 3 \) Dimensionen und mit \(\nu = 3/5 \) (ausgeschlossenes Volumen) erhält man für den Exponenten \(-\frac{1}{2} \frac{2\nu - 1}{2\nu - 1} = \frac{1}{8} \). Damit ergibt sich folgende Abhängigkeit des Trägheitsradius von der Konzentration:

\[\bar{R}_G(c) = \bar{R}_G(0) \left(\frac{c}{c^*} \right)^{-1/8}. \] \hspace{1cm} (8.59)

Der Trägheitsradius der Einzelkette lässt sich experimentell mit SANS Experimenten in halbverdünten Lösungen bestimmen. Dabei können wir das Verfahren der
Abbildung 8.15: Trägheitsradius als Funktion der Konzentration (Teilbild a) und in normierter Form und logarithmischer Darstellung (Teilbild b) für Polystyrol in CS₂. In Teilbild b beträgt die Steigung $-1/8$, wie von der Theorie vorhergesagt.

8.4.4 Temperaturabhängigkeit

Nachdem wir die Abhängigkeit des Trägheitsradius und der statischen Korrelationslänge von der Konzentration kennen, wollen wir nun untersuchen, welchen Einfluss die Temperatur hat. Wenn wir uns die Gleichung (8.54) für die statische Korrelationslänge genauer anschauen, stellen wir wegen $c^* = M/(N_A \bar{R}_d G (N_A M c))$ fest, dass sich die Abhängigkeit von der Temperatur ausschließlich im Trägheitsradius \bar{R}_G zeigt:

$$\xi_s = \bar{R}_G \frac{1}{1-\nu} \left(\frac{N_A M}{c} \right)^{-\frac{\nu}{1-\nu}}. \quad (8.60)$$

Im Kapitel 6 über Lösungsmittel- und Temperatureffekte haben wir gesehen, dass in $d = 3$ Dimensionen

$$\bar{R}_G = \bar{R}_G^0 f \left(c \tau N^{1/2} \right) \quad (8.61)$$

gilt mit $\tau = (T - \theta)/\theta$ und $\bar{R}_G^0 = \bar{c}_0 \bar{a} N^{1/2}$. Für $\tau N^{1/2} \gg 1$ muss sich $f \left(c \tau N^{1/2} \right)$ wie $\left(c \tau N^{1/2} \right)^{2\nu-1}$ verhalten, damit für den Trägheitsradius die Proportionalität $\bar{R}_G \simeq N^\nu$ (Irrflug mit ausgeschlossenem Volumen) erfüllt ist, d.h.

$$\bar{R}_G = \bar{R}_G^0 \left(\frac{T - \theta}{\theta} \right)^{N^{1/2}} \quad (8.62)$$
8.5 Strukturfaktor

8.5.1 Markierte Ketten

Den Strukturfaktor einer einzelnen Kette können wir auf einfache Weise mit Hilfe der Neutronenstreuung untersuchen. Dazu verwenden wir wiederum das Verfahren der Kontrastvariation.

Die q-Abhängigkeit des Strukturfaktors einer so markierten Kette ist in Abbildung 8.17 skizziert. Auf einer Längenskala unterhalb der Maschenweite - also im Bereich $q > 1/\xi_s$ - zeigt sich Einzelkettenverhalten. Wenn q nicht zu groß gewählt ist und die Temperatur von der Theta-Temperatur abweicht, macht sich der Effekt des ausgeschlossenen Volumens bemerkbar. Für den Skalenexponenten gilt dann

\[
\xi_c \frac{v_d}{2v_f} \sim \frac{T - \theta}{\theta} \approx 1 - \frac{\theta}{T}.
\]

(8.63)
KAPITEL 8. WECHSELWIRKENDE KETTEN

Abbildung 8.17: Die drei charakteristischen Bereiche des Strukturfaktors \(S(q) \) für markierte Einzelketten in halbverdünnnten Lösungen.

\[\nu = 3/5, \text{ und wir erhalten } S(q) \sim q^{-5/3}. \]

Auf größeren Skalen, \(1/R_G < q < 1/\xi_s \), befindet man sich im Bereich einer Schmelze von Blobs. Für den Skalenexponenten folgt nun \(\nu = 1/2 \), und wir finden \(S(q) \sim q^{-2} \). Bei sehr viel kleineren Werten von \(q \) erfolgt schließlich der Übergang zum Guinier-Bereich. Bei einer Erhöhung der Konzentration nimmt - wie wir gesehen haben - die statische Korrelationslänge ab. Damit verkleinert sich auch der Bereich, innerhalb der sich die markierte Polymerkette wie eine Einzelkette verhält. Mit der so kürzer werdenden Segmentlänge verschiebt sich auch der \(q \)-Bereich zu höheren Werten, bei dem ausgeschlossenes Volumen sichtbar wird. Dies ist in Abbildung 8.18 gezeigt.

8.5.2 Unmarkierte Ketten

Wir haben bereits zu Beginn dieses Kapitels gesehen, dass wir den Strukturfaktor \(S(q,c) \) im Limes \(q \to 0 \) entweder mit Hilfe einer einfachen Virialentwicklung (Gleichung 8.41) oder durch eine Skalenfunktion der Form \(S(0,c) \sim \tilde{F}(c/c^*) \) darstellen können. Für die \(q \)-Abhängigkeit von \(S(q,c) \) haben wir ausserdem in sogenannten Guinier-Bereich ein einfaches Ornstein-Zernicke Streuverhalten vorhergesagt, das durch eine konzentrationsabhängige Korrelationslänge \(\xi_s(c) \) bestimmt wird. Für \(\xi_s(c) \) haben wir ein einfaches Skalengesetz gefunden, das gut mit den experimentellen Daten übereinstimmt. Während wir somit in der Lage sind, den Einfluss der Wechselwirkungseffekte auf \(S(q) \) für kleine Werte von \(q \) in zufriedenstellender Weise zu interpretieren, hat sich eine entsprechende Behandlung des Strukturfaktors auf allen Längenskalen im halbverdünnnten Bereich, wie er in Abbildung (8.1) dargestellt wurde, als außerordentlich schwierig erwiesen. Zwar gibt es eine Reihe von Versuchen, mit Hilfe einer sogenannten 'Random Field Approximation' oder Inte-
Abbildung 8.18: Streuintensität $c/I(q)$ als Funktion des Streuvektors $q^{1/\nu}$ für eine Mischung von deuteriertem und undeuteriertem Polystyrol in CS$_2$, aufgetragen für verschiedene Konzentrationen. Im experimentell zugänglichen q-Bereich sieht man eine Abweichung vom Einzelkettenverhalten mit ausgeschlossenem Volumen erst bei Konzentrationen, bei denen die Maschenweite klein genug ist. Die q-Werte, an denen der Übergang erfolgt, sind mit einem Pfeil markiert.

Die daraus resultierenden Strukturfaktoren als Funktion der Konzentration sind in Figur (8.20) dargestellt. Wir beobachten ein Verhalten von $S(q, c)$, das sehr stark demjenigen des experimentell für Polystyrol in deuteriertem Toluol gemessenen entspricht (Abbildung 8.1).
Abbildung 8.19: Beispiel für eine in einer Monte Carlo Simulation erhaltene ’Momentaufnahme’ der Kettenkonformationen. Verwendet wurde das ’worm-like chain’ Modell mit ausgeschlossenem Volumen für die Einzelketten mit $L/b = 10.88$, und eine Volumensfraktion von $\phi = 0.03$. Die Abbildung verdeutlicht den Effekt der periodischen Randbedingungen, bei der Ketten die Box auf der einen Seite verlassen und auf der gegenüberliegenden wieder eintreten.
8.6 Konzentrierte Lösungen und Schmelzen

Verdünnte Polymerketten in einem guten Lösungsmittel sind aufgrund ihres Eigenvolumens größer als ideale Ketten unter Theta-Bedingungen. Für die Abhängigkeit des Trägheitsradius vom Molekulargewicht haben wir die Beziehung \(\bar{R}_G \approx M^\nu \) gefunden. Der Skalenexponent war \(\nu = 3/5 \). Bei einer Konzentrationszunahme erwarten wir intuitiv, dass die Ketten wieder komprimiert werden. In der Tat verhält sich ein Polymer in der Schmelze wie ein ideales Knäuel. Dieses überraschend einfache Verhalten lässt sich durch eine einfache Überlegung verstehen, die auf Flory zurückgeht.

Wir betrachten dazu ein hochkonzentriertes System identischer Ketten. Dichtheftsktionen spielen in solchen Systemen nur noch eine untergeordnete Rolle. Wir greifen uns eine Polymerkette heraus (beispielsweise den doppelten Linienzug in Abbildung 8.21) und fragen nach dem abstossenden Potential \(U \), das ein einzelnes Monomer in dieser Kette von den übrigen Monomeren (der eigenen und aller anderen Ketten) spürt. Wegen der hohen Dichte heben sich die abstossenden Wechselwirkungen zwischen den einzelnen Monomerbausteinen auf, so dass im Mittel die Kette keine Kraft erfährt. Das abstossende Potential ist proportional zur Monomerkonzentration \(n \), also \(U \sim n \). Im Detail muss man unterscheiden zwischen den Beiträgen der Monomere der eigenen und aller fremden Ketten.

Die Konzentration der Monomere der markierten Kette ist offensichtlich maximal im Schwerpunkt dieser Kette. Demnach wirkt eine abstossende Kraft \(-\partial U_e/\partial x \), die im Fall einer verdünnten Polymerlösung zu einem Anschwellen der Kette führt.

Die Monomerkonzentration aller anderen Ketten ist dort minimal, wo die markierte Kette ihre größte Monomerkonzentration besitzt. Daher wirkt dort eine nach innen gerichtete Kraft \(-\partial U_e/\partial x \).

Beide Effekte kompensieren sich, so dass \(\partial U_e/\partial x = 0 \) gilt. Die markierte Kette verhält sich also wie ein ideales Knäuel und genügt der Irrflugs-Statistik. In Schmelzen erwarten wir daher

\[
\bar{R}_G = aN^\nu \quad (8.64)
\]

mit \(\nu = 0.5 \). Das asymptotische Verhalten des Strukturfaktors ist gegeben durch

\[
S(q) \sim q^{-2} \quad (8.65)
\]

Im Experiment kann man die Vorhersagen über das asymptotische Verhalten des Strukturfaktors mit Hilfe der Kleinwinkel-Neutronenstreuung (SANS) überprüfen, indem man das Verfahren der Kontrastvariation anwendet. Dadurch wird die Beobachtung des Einzelkettenverhaltens in der Schmelze möglich. Wie in Abbildung 8.22 gezeigt, verhält sich eine deuterierte Polystyrolkette in einer Polystyrolschmelze wie ein idealer Irrflug.

8.7 Zusammenfassung

Wir haben in diesem Kapitel gesehen, dass wir Polymerlösungen - wie in Abbildung 8.2 skizziert - entsprechend ihrer Konzentration in drei verschiedene Bereiche, und
zwar in verdünnte und halbverdünnte Lösungen sowie in hochkonzentrierte Lösungen bzw. Schmelzen einteilen können. Der Übergang von einer verdünnten zu einer halbverdünnten Lösung erfolgt bei der sogenannten Überlappkonzentration, die mit c^* bezeichnet wird. Bei dieser Konzentration beginnen sich die Polymere gerade zu überlappen. Im einzelnen gilt:

- **Halbverdünnte Lösung:** $c > c^*$ und $\phi \ll 1$. Die Polymerkonzentration c liegt oberhalb der Überlappkonzentration. Die Polymerketten durchdringen einander, dennoch ist der Volumenbruch der Polymere ϕ klein gegenüber dem des Lösungsmittels. Die Wechselwirkungen zwischen den Monomeraustauschübergänge können noch relativ einfach beschrieben werden, allerdings ist die Korrelationsfunktion kompliziert, da Wechselwirkungen auf verschiedenen Längenskalen zu berücksichtigen sind. Als charakteristische Größe hat sich die sogenannte Maschenweite oder statische Korrelationslänge ξ_s erwiesen. Bei Abständen unterhalb der Korrelationslänge ξ, also im Bereich $r \ll \xi$, liefert das Einzelkettenverhalten den dominanten Beitrag, da dort der Einfluss der benachbarten Polymerketten nicht sichtbar ist. Eine halbverdünnte Polymerlösung auf Längenskalen unterhalb der Maschenweite verhält sich somit wie eine verdünnte Polymerlösung. Bei Abständen $r > \xi$ macht sich der Einfluss der übrigen Ketten bemerkbar. Auf dieser Längenskala treffen wir auf ein Verhalten, das für eine Polymerschmelze charakteristisch ist. Auf dieser Skala ist der gesamte Raum mit Polymersegmenten dicht ausgefüllt, und wir haben eine Schmelze von Polymersegmenten (kurz Blobs) vorliegen. Wir haben verschiedene universelle Skalenfunktionen gefunden, die die Konzentrationsabhängigkeit von experimentellen Größen wie dem osmotischen Druck oder der osmotischen Kompressibilität als Funktion einer reduzierten Konzentration c/c^* beschreiben.

- **Konzentrierte Lösungen und Schmelzen:** $c \gg c^*$ und $\phi \sim 1$. Die Polymerlösung ist so hoch konzentriert, dass der Volumenbruch der Polymere in etwa dem der Lösung entspricht. Erstaunlicherweise lassen sich solche Systeme relativ einfach beschreiben. Die Polymere in einem solchen System genügen der Irrflug-Statistik, sie können daher als Gausssche Ketten beschrieben werden.
Abbildung 8.20: Normierte Streuintensität $I(q)/c$ als Funktion des Streuvektors q aus MC-Simulationen für $L/b = 10.88$ und für verschiedenen Volumensfraktionen (Teilbild a) und für Polystyrol ($M = 120'000$) in deuteriertem Toluol für verschiedene Polymerkonzentrationen c (Teilbild b, Daten aus Abbildung (8.1)). Die ausgezogenen Kurven in Teilbild b entsprechend den parametrisierten Strukturfaktoren aus den Computer-Simulationen.
KAPITEL 8. WECHSELWIRKENDE KETTEN

Abbildung 8.21: Veranschaulichung der lokalen Konzentrationsunterschiede an Monomeren einer markierten Kette (doppelter Linienzug) und aller anderen Ketten.