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Switzerland

1Seminar for Statistics, ETH Zentrum, Zurich, Switzerland and University of Hamburg, Germany
2Hamburg Observatory at University of Hamburg, Germany



Validating visual clusters in large datasets:

fixed point clusters of spectral features

Christian Hennig ‡ and Norbert Christlieb §

Seminar für Statistik
ETH Zentrum
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Abstract

Finding clusters in large datasets is a difficult task. Almost all computationally feasible
methods are related to k-means and need a clear partition structure of the data, while
most such datasets contain masking outliers and other deviations from the usual models
of partitioning cluster analysis. It is possible to look for clusters informally using graphic
tools like the grand tour, but the meaning and the validity of such patterns is unclear. In
this paper, a three-step-approach is suggested: In the first step data visualization methods
like the grand tour are used to find cluster candidate subsets of the data. In the second
step, reproducible clusters are generated from them by means of fixed point clustering, a
method to find a single cluster at a time based on the Mahalanobis distance. In the third
step, the validity of the clusters is assessed by use of classification plots. The approach is
applied to an astronomical dataset of spectra from the Hamburg/ESO survey.

Key words: Discriminant coordinates, outliers, contamination model, sky surveys, stellar
populations

1 Introduction

Finding clusters in large datasets is a difficult task, because such datasets typically do
not match the implicit and explicit underlying assumptions of the conventional methods
of cluster analysis. Often they contain outliers that are not easily detectable because of
masking phenomena. Moreover, only a minority of the points of such a dataset may be
described adequately as clustered, the clusters may have different shapes, which cannot
always be modeled by the same family of parametric distributions, and there are often
non-elliptical and asymmetrical parts of the data.

‡Seminar for Statistics, ETH Zentrum, Zurich, Switzerland and University of Hamburg, Germany
§Hamburg Observatory at University of Hamburg, Germany
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Figure 1: Above: Principal components of spectra data (all variables standardized to
median = 0, 1.4826 · MAD = 1) with FPC 1 (gray; consisting of 47978 points, which are
all concentrated in one tiny point near the origin). Below: Scatterplot of Calcium-break
variables. Points on the diagonal line form FPC 2, see Section ??.

To illustrate these issues, we present a dataset of 74159 points of 16 features of spectra from
the Hamburg/ESO survey. The dataset is explained in Section ??. Figure ?? makes some
of the features of the dataset visible. It shows two two-dimensional projections of these
data, namely the principal component plot and a scatterplot of two of the 16 variables.
Both plots suggest that the dataset as a whole can neither be adequately described by
some single elliptical distribution, nor by a mixture of few of them. Note that more than
half of the data are concentrated in the tiny gray point near the origin of the principal
components plot (above; the gray “area” is referred to as FPC 1, as explained further in
Section ??) so that the principal components plot is entirely dominated by fewer than 10%
of the points which appear outlying from the core of the data forming “strings” parallel
to the first two principal components. The points along the horizontal string clearly show
a skew distribution. In the scatterplot shown below it can be seen that there is a data
subset arranged on a straight line which intersects the majority of the data only slightly.
The rest of the data looks skew in both variables. Further projections of the dataset are
shown in Section ??.

Most cluster analysis methods that can be applied to datasets of this size assume more
or less implicitly that the dataset can be partitioned completely into clusters which can
all be modeled by the same parametric family. For example, k-means is a maximum
likelihood estimator for a fixed partition model of k Gaussian distributions with the same
covariance matrix, which must be a constant multiplied by the unit matrix. There are some
approaches which account explicitly for outliers, e.g. maximum likelihood mixture fitting
based on t-distributions (?, Ch. 7) as implemented in the software EMMIX, Gaussian
mixture modeling with additional noise component (?) as implemented in EMCLUST, and
trimmed k-means (?), but datasets of the given size may cause computational problems.
For example, the result of a single EM-algorithm run as used by EMMIX and EMCLUST
may depend strongly on the starting value (?, Sec. 2.12). The choice of starting values by
means of an initial hierarchical clustering, which is the default for both packages, needs
too much memory for large datasets, and a single run of the EM-algorithm takes so much
time that it becomes unfeasible to try multiple starting values, especially if the number of
clusters is treated as unknown. However, there is some research about reasonable starting
values for large datasets, see ?.

An alternative approach is visual clustering based on interactive software for graphical
data analysis (?). This may reveal many interesting and nonstandard patterns in the
data, which cannot be found by the existing formal methods. However, it remains unclear
if these cluster patterns are statistically relevant in some sense, which points belong to
them exactly, and how the patterns could be reproduced by a repetition of the analysis of
the same dataset. Especially the latter issues are difficult in large datasets, because with
ten thousands of points on the screen it is not possible to demarcate clusters exactly, and
the inspection of high dimensional data needs so many two-dimensional projections that
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it becomes improbable that exactly the same projections lead again to the discovery of
clusters during a repetition of the graphical analysis.

The aim of this paper is to provide a strategy for datasets of the size of our spectra data,
which connects the more intuitive visual clustering with a formal method to generate well
defined, reproducible clusters.
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The strategy consists of three elements:

(1) Cluster candidate sets can be found and selected by interactive software for graphical
data analysis. Here the grand tour (?) as implemented in the software XGOBI (?)
is used. This step is discussed in Section ??.

(2) The candidate data subsets can be used as starting configurations for an algorithm
which finds a fixed point cluster (FPC). FPC analysis (?) is a method to find a
data subset which does not contain any outlier, and with respect to which all other
points of the dataset are outliers. Such a subset can be considered as cluster. The
definition of an outlier is based on a parametric model for a single cluster, here
a multivariate Gaussian distribution. That is, like for the other formal clustering
methods discussed above, there is an underlying parametric model for FPC analysis.
For combinatorial reasons it is not possible to find all FPCs of a high dimensional
dataset. But there are two advantages of FPC analysis: Firstly, while a cluster is
modeled as elliptical, there is no stochastic assumption on the rest of the data which
does not belong to the cluster, except of being well separated from it in some sense.
In particular, a single cluster candidate can be used as a starting configuration,
which is not possible for partition or mixture based methods. Secondly, for a given
cluster candidate subset, the algorithm is fast and easy even for large datasets. This
step is discussed in Section ??.

(3) Found fixed point clusters can be visualized by use of plots of optimal discriminating
projections (??). The projection directions may be of use for the interpretation. This
step is discussed in Section ??.

2 Finding cluster candidates

The easiest method to find cluster candidates is to inspect all scatterplots of two variables.
However, not all clusters can be discovered by considering only the interactions between
two variables. The visual inspection of complex datasets raises the problem how more than
two dimensions can be visualized on the computer screen. This can be done by inspection
of a moving sequence of two-dimensional projections. The easiest form of such a sequence
is the three dimensional rotation. Note that the idea behind the rotation is not only to
show many projections. These projections form a smooth sequence, and this is crucial
for the intuition, because we do not only observe the location of the points in the two-
dimensional subspace, but also their movement. The movement of the three dimensional
rotation is one-dimensional, and together with the two-dimensional projections we perceive
three dimensions. The grand tour (?) is a generalization of the rotation, where the local
movement is defined by a two-dimensional vector, so that we get the impression of four
dimensions quickly (?). ? defines a sequence of projections of p-dimensional data into the
R2 such, that

• the sequence of projections is asymptotically dense in the space R of all possible
projections,

• all the different possible projections are approximated roughly as fast as possible
(this requires the definition of a topology on R),
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• the distribution of projections in R is asymptotically uniform,

• the sequence should appear continuously,

• the sequence should appear as “straight” as possible (which is in conflict to the fast
approximation of all areas of the dataset).

The implementation of XGOBI is based on a smooth interpolation of a sequence of ran-
domly generated planes. The reader is referred to ? for details.

For the task of finding cluster candidates, which can be used as starting configurations
for FPC analysis, data subsets in plots must be “brushed”, i.e., interactively marked with
various colors and symbols. Files of membership vectors of the brushed groups must be
generated. This is possible with XGOBI.

Though the grand tour is designed to cross the neighborhoods of all two-dimensional
projections as fast as possible, the inspection of large datasets with lots of dimensions
is very time-consuming. So it is always advisable to reduce the dimensionality. If the
dimension is moderate, it is possible to carry out the grand tour until all significant
characteristics are repeatedly seen. Such a tour through six of the 16 variables of the
spectra dataset took about 40 minutes, including brushing of cluster candidates.

XGOBI provides a lot of methods and features that are useful for visual clustering. Selected
variables can be removed, added or held fixed manually, which can be done according to
a priori information about the meaning of the variables.

There are various possibilities to scale the data. They can be centered about the mean
or the median, and the screen can show the whole range of the data or only a central
part of adjustable size. The whole range of the data is of interest to find extreme cluster
candidates, while it is advantageous to consider only a central part about the median
to assess the majority of the data in detail, because otherwise the projections may be
dominated by gross outliers. Examples can be seen in the Figures 1 and 5. In the recent
version of XGOBI the plotted range of all variables can be chosen as k times the value
range. The constant k is the same for all variables and can be specified by the user. In
older versions it had been possible to choose the plotted range of the values in terms of
the standard deviation and the median absolute deviation (MAD), which had served our
aims better because the value range is often determined by extreme outliers, such that
k = 0.01 or even smaller would be necessary to inspect the central part of the values of
such variables, but this would exclude a majority of the values of other variables from the
plot, which are less affected by outliers. Scaling based on standard deviation and MAD is
already documented in ?. We communicated the problem to the designers of XGOBI and
hope that the option will appear again in the next version.

As will be discussed in Section ??, the cluster candidates obtained from the visual in-
spection should be as homogeneous as possible to be used as starting configurations for
FPC analysis. Therefore they should be followed through many projections. If they look
heterogeneous in some of the plots, they should be split and outliers should be excluded.
For the same reason another feature of XGOBI can be useful, namely the connection of
selected points of brushed subsets with lines to assess the shape of the subsets through
various plots.
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The cluster candidates used for FPC analysis should rather contain too few points than
too much. The FPC algorithm of Section ?? is usually able to find a whole homoge-
neous subpopulation if the starting configuration contains only a portion of it (in large
datasets, usually even 10–20% suffice), but it may be seriously affected by gross outliers
and heterogeneity in the starting configuration, see Section ??.

Furthermore, XGOBI allows the grand tour to be guided in order to optimize certain
projection pursuit indices. However, this feature did not work with the spectra data,
because the guided tour of XGOBI initially performs a sphering of the data based on
principal components. This led to an error, presumably caused by extreme outliers which
made almost all eigenvalues of the principal components appear to be approximately zero.

Further techniques for visual clustering are discussed in ? and may also be applied with
advantage for the generation of starting configurations for FPC analysis.

3 Mahalanobis fixed point clusters

3.1 Definition

The basic idea of FPC analysis is that a cluster can be formalized as a data subset, which is
homogeneous in the sense that it does not contain any outlier, and which is well separated
from the rest of the data meaning that all other points are outliers with respect to the
cluster. That is, the FPC concept is a local cluster concept: It does not assume a cluster
structure or some parametric model for the whole dataset. It is based only on the cluster
candidate itself and its relation to its surroundings.

In order to define FPCs we need a definition of an outlier with respect to a data subset.
The definition should be based only on a parametric model for the non-outliers (reference
model), but not for the outliers. That is, if we take the Gaussian family as reference
model, the whole dataset is treated as if it came from a contamination mixture

(1− ε)Np(a,Σ) + εP ∗, 0 ≤ ε < 1,

where p is the number of variables, Np(a,Σ) denotes the p-dimensional Gaussian distribu-
tion with mean vector a and covariance matrix Σ, and P ∗ is assumed to generate points
well separated from the core area of Np(a,Σ). The principle to define the outliers is taken
from ?. They define α-outliers as points which lie in a region with low density such that
the probability of the so-called outlier region is α under the reference distribution. α has to
be small in order to match the impression of outlyingness. For the Np(a,Σ)-distribution,
the α-outlier region is

{x : (x− a)tΣ−1(x− a) > χ2
p;1−α},

χ2
p;1−α denoting the 1−α-quantile of the χ2-distribution with p degrees of freedom. Because

a and Σ are not known, they have to be estimated. The easiest way to do this is to use
the sample mean and the maximum likelihood covariance matrix.

We write the dataset as a matrix X = (x1, . . . , xn) ∈ (Rp)n. Data subsets (such as
cluster candidates obtained from visual clustering) are represented by an indicator vector
g ∈ {0, 1}n. Let X(g) be the matrix with only the points xi, for which gi = 1, and
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Figure 2: Four overlapping FPCs of artificial data with means M and borders of outlier
regions.

n(g) =
∑n

i=1 gi. Let m(g) = 1
n(g)

∑
gi=1 xi the mean vector and S(g) = 1

n(g)

∑
gi=1(x −

m(g))(x−m(g))′ the ML covariance matrix estimator for the points indicated by g.

The set of outliers from X = (x1, . . . , xn) with respect to a data subset X(g) is

{x : (x−m(g))′S(g)−1(x−m(g)) > χ2
p;1−α}.

That is, a point is defined as an outlier w.r.t X(g), if its Mahalanobis distance to the
points of X(g) is large.

An FPC is defined as a data subset which is exactly the set of non-outliers w.r.t. itself:

Definition 1 A data subset X(g) of X is called Mahalanobis fixed point cluster of level
α, if for i = 1, . . . , n :

g =
(
I
[
(xi −m(g))′S(g)−1(xi −m(g)) ≤ χ2

p;1−α

])
i=1,...,n

, (1)

where I denotes the indicator function.

3.2 Computation

For combinatorial reasons it is impossible to check (??) for all g. But FPCs can be found
by a fixed point algorithm defined by

gk+1 =
(
I
[
(xi −m(gk))′S(gk)−1(xi −m(gk)) ≤ χ2

p;1−α

])
i=1,...,n

, (2)

given reasonable starting configurations g0, which are to be found during the grand tour.
Experience shows that this algorithm is fast and easy enough to work with large datasets.

Theorem 2 The fixed point algorithm defined by (??) reaches an FPC vector gm (i.e.,
X(gm) is an FPC) after a finite number of steps, if χ2

p;1−α > p and unless S(gk) is singular
for some k ≤ m.

The proof is given in the appendix.

The assumption χ2
p;1−α > p is fulfilled for α ≤ 0.25 for arbitrary p. The algorithm can

cope as well with singular S(gk) in practice by use of the Moore-Penrose inverse. In this
case, all points that do not lie on the lower dimensional hyperplane spanned by X(g) have
to be defined as outliers.

3.3 Discussion

The fact that the definition of FPCs is based on a Gaussian model does not mean that the
points of an FPC always look Gaussian. For non-homogeneous data subsets, the region
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of non-outliers can be very large, and so there may be large FPCs which clearly do not
stem from a single Gaussian distribution, see Figure ??. This problem does not arise if the
starting configuration is homogeneous, because in this case the usual mean and covariance
estimators work well. Otherwise they might be affected by outliers or irregularities inside
the candidate subsets, while FPC analysis is robust against such problems outside their
non-outlier regions. It must be noted that the ML estimators are not advisable from
the viewpoint of robust outlier identification (?). FPCs may be defined where they are
replaced by more robust estimators. But it is not clear if Theorem ?? remains valid for such
estimators, and the computation may be very time consuming for large datasets, because
the estimators have to be computed for each cluster candidate and each algorithm step.
Furthermore, ? showed that resistant outlier identification is possible by application of the
usual estimators for Gaussian distributions to data subsets. Therefore we restrict ourselves
to the easiest estimators in this paper, aware of the necessity to keep the candidate subsets
as homogeneous as possible.

Note further the ability of FPCs to include and overlap each other. They do neither form a
partition nor a hierarchy. The inclusion property can be useful sometimes, see e.g. Figure
??, where it is not adequate to exclude the points of the inner left FPC from the outer
left cluster.

It is possible to define other kinds of FPCs analogously for other clustering problems from
a given outlier definition, see ?. FPCs are not adequately interpreted as estimators of
mixture components. Instead, they estimate “theoretical FPCs” (?), i.e., they are based
on an alternative definition of a cluster. Publications on consistency properties are in
preparation.

The tuning constant α has to be chosen by the statistician. The interpretation of α is that
the smaller α is, the more separated a data subset must be from the rest of the dataset
to form an FPC. A large value of α, say, α = 0.1 or α = 0.05, classifies lots of points
from a Gaussian population as outliers. On the other hand, if there is a Gaussian cluster
among others, points from neighboring clusters do not affect its FPC property, if they lie
in the corresponding outlier region. If α is smaller, the outlier region is more distant from
the center, and therefore the other clusters need to be better separated. Illustrations are
given in ? and Section ??.

4 Discriminant projections

Discriminant projections are useful to get a clear impression on the separateness of the
found clusters, and they may sometimes be of use for their interpretation. Two kinds of
discriminant projections are used in this work.

4.1 Discriminant coordinates

The method of discriminant coordinates is the most common approach for the projection
of high-dimensional data with a given grouping to a lower-dimensional subspace. The term
“discriminant coordinates” is used according to ?, they are also known under the name
“canonical variates”. The approach goes back at least to ?, who developed discriminant
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coordinates as a generalization of Fisher’s linear discriminant function to more than two
groups.

The definition is as follows: Let xi1, . . . , xini the p-dimensional points of group i =
1, . . . , s, n =

∑s
i=1 ni, i.e., it is assumed that the data is partitioned. Let

mi = i
ni

∑ni
j=1 xij , m = 1

n

∑s
i=1

∑ni
j=1 xij , Ci =

∑ni
j=1(xij −mi)(xij −mi)′,

W = 1
n−s

∑s
i=1 Ci, B = 1

s−1

∑s
i=1 ni(mi −m)(mi −m)′,

where W denotes the pooled within clusters-covariance matrix and B denotes the between
clusters-covariance matrix. The first discriminant coordinate is the linear combination of
the original variables, along which the ratio between projected between-clusters-variance
and within-clusters-variance of the data is maximized, i.e. a vector c1 maximizing

Fc =
c′Bc

c′Wc
.

The second discriminant coordinate maximizes Fc subject to orthogonality with respect
to W, i.e., c′2Wc1 = 0. Further projection directions are defined by analogy. The discrim-
inant coordinates turn out to be the orthonormal eigenvectors of W−1B, c1 corresponding
to the largest eigenvalue and so on, see ?. s−1 coordinates suffice to show all the separation
information of s groups contained in B, because the principle of discriminant coordinates
is to show the differences between the mean vectors of the groups with respect to a metric
defined by W, which is an estimator of the covariance matrix of a single group under
the assumption that it is the same for all groups, and s means can be embedded in an
s− 1-dimensional subspace.

FPC analysis does not result in a partition of the data, but in single clusters, which may
overlap and are not necessarily exhaustive. There are two ways to apply discriminant
coordinates in our setup. They may be computed between disjoint FPCs, and the rest of
the data may be projected into the resulting image, or a single FPC can be treated as one
class and the rest of the data as a second. However, the complement of an FPC can by no
means expected to be homogeneous and in particular it is not plausible that it should have
the same covariance matrix. While projection on the first discriminant coordinate may
show valuable information about the difference in means, we suggest to choose a second
projection direction in order to show the difference in the covariance matrices.

4.2 Bhattacharyya coordinates

The separation between two distributions with means µ1, µ2 and covariance matrices
Σ1,Σ2 can be measured by the following expression:

D(µ1, µ2,Σ1,Σ2) = D1

(
µ1, µ2,

Σ1 + Σ2

2

)
+ D2(Σ1,Σ2),

D1(µ1, µ2,Σ) =
1
8
(µ1 − µ2)′Σ−1(µ1 − µ2),

D2(Σ1,Σ2) =
1
2

log
det

(
Σ1+Σ2

2

)
√

det(Σ1) det(Σ2)
.

D is called “Bhattacharyya distance” according to ?, p. 99, where it is derived as an
upper bound for the Bayes misclassification probability between two Gaussian distributions
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with the given parameters. In the case of two groups in the data, it is appealing to
choose projection directions d in order to maximize D(d′m1, d

′m2, d
′W1d, d′W2d), Wi =

1
ni

Ci, i = 1, 2. However, such directions are hard to compute. ?, p. 455ff. suggests to
consider the special cases Σ1 = Σ2 and µ1 = µ2. In the first case, the projected D1 is
to be maximized, which is almost equivalent to the computation of the first discriminant
coordinate with the only difference that for calculating D1 the covariance matrices of the
two groups have to be pooled as WD = 1

2(W1 + W2), which corresponds to Fc only if
n1 = n2. In the second case, D2(d′W1d, d′W2d) must be maximized, which is done by
the eigenvector d1 of W−1

1 W2 where the corresponding eigenvalue λ1 maximizes λ + 1
λ

among the eigenvalues of W−1
1 W2. We call d1 the first Bhattacharyya coordinate, the

further eigenvectors correspond again to further optimal projection directions under an
orthogonality constraint, see ? for details. Now it can be proceeded as follows:

(1) Compute the discriminant coordinate c1, where W is replaced by WD
1.

(2) Project the data on the subspace orthogonal to c1 with respect to WD, i.e. compute
y = (c′2, . . . , c

′
p)

′x for a data point x. Note that the whole difference in means
between the two groups is projected on c1. Thus, the group means are equal on the
orthogonal subspace.

(3) Compute the Bhattacharyya coordinate d1 for the projected data.

The resulting two-dimensional projection maximizes the difference in means along the first
axis and the remaining difference of the projected covariance matrices along the second
axis. Examples are shown in Section ??. As an alternative, ?, p. 458 suggests to take the
two orthonormal eigenvectors of W−1

1 W2 maximizing the projected D in the case that
the difference in means is negligible compared to a more than one-dimensional difference
in the covariance matrices.

Note that because of their internal scaling, Mahalanobis FPCs and the discriminant plots
discussed here are invariant w.r.t. linear transformations of the whole dataset as opposed
to principal components, k-means clustering and related methods.

5 Clusters of spectral features

The Hamburg/ESO survey (HES; ??) was carried out with a special wide-angle telescope,
a so-called Schmidt telescope. The 1m Schmidt telescope of the European Southern Ob-
servatory (ESO) in Chile allows to image an area of 5 by 5 degrees of the sky, corresponding
to 10× by 10× the diameter of the full moon. The main aim of the HES, which covers
half of the sky visible from southern hemisphere, is to find new quasars. For the work
discussed here, we used the database in a more exploratory spirit to look for unknown
clusters and patterns in the collected spectra.

By mounting a prism in front of the telescope, the images of celestial objects are converted
into spectra (see left panel in Fig. ??). On one photographic plate, typically the spectra

1W could be used as well. But if FPCs are to be projected, then only one of the two groups is considered
as homogeneous, namely the FPC, as opposed to the rest of the data. If the FPC does not contain the
majority of the points, it gets more weight in the computation of WD than in the computation of W.
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Figure 3: Left: A small part of a Schmidt plate taken without prism (upper image), and
the corresponding part of the HES plate, taken with prism (lower image). The wing-
shaped object in middle height and slightly to the left in the upper image is a pair of
interacting galaxies. Below this object, and slightly to the left, a spiral galaxy can be
seen. Point-like objects are stars, or quasars. Right: HES example spectrum of an A-type
star, exhibiting strong hydrogen absorption lines (“troughs” in the spectrum).

Figure 4: Left side: First two discriminant coordinates of 5-means solution (applied to
standardized data). Right side: Discriminant projection plot of FPC 1 (gray) against rest
of the data (black). About 200 gross outliers lie outside the range of the plot.

of 10000 objects are present. These objective-prism plates were digitized at Hamburger
Sternwarte with a scanning machine. A reduction procedure yields spectra like shown in
the right panel of Fig. ??. The total HES data base consists of about 4 million digital
spectra. As illustrated in Fig. ??, their spectral resolution (typically 15 Å at Hγ) allows
to detect numerous stellar absorption lines.

For each HES spectrum, consisting of 300 data points, a set of 16 spectral features (vari-
ables) is computed. The features 1–10 are strengths of stellar absorption lines. Feature
11 is the signal-to-noise ratio of the Calcium break. Feature 12 is its contrast to the con-
tinuum (smoothed spectrum). The features 13–16 contain color information: Features 13
and 14 are the first two principal components of the smoothed spectrum, and features 15
and 16 are two “half power-points” of the spectra computed in different spectral regions.
For details we refer to ?. The total feature set contains most, if not all, of the information
present in the spectra. They allow e.g. for a rough spectral classification, and rough
determination of stellar parameters.

The data set used in the work presented here consists of 74159 spectra, each represented by
16 data values. It includes 344 spectra of quasars selected by “classical” criteria (i.e., UV
excess, and/or presence of emission lines and/or spectral brakes), and confirmed by follow-
up observations; a learning sample of 2856 spectra of known class, and 70959 unclassified
spectra from 10 HES plates.

We tried first to apply some conventional clustering algorithms. The only methods that
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Figure 5: Discriminant projection plot of FPCs 3 and 4 (gray-scales). The rest of the data
(black) is projected onto the same coordinates. Left side: All points. Right side: Area of
the FPCs.

worked on our Sun UltraSparcIIi 333MHz were k-means and k-medoids (?). Both resulted
in artificial partitions with approximately the same discriminant coordinates independent
of k. The left side of Figure ?? shows the 5-means solution.

After some inspection with the grand tour we decided that the first ten variables of the
data do not show interesting patterns and we excluded them from the cluster search. An
exhaustive grand tour through 6 dimensions was carried out, and we ended up with ten
cluster candidate subsets. These subsets were used to start the fixed point algorithm from
Section ?? with α = 0.01 and α = 0.05. Discriminant projection plots were inspected to
assess the clusters. Here are the main results with α = 0.05. Four different patterns of
the data manifested themselves as FPCs:

• The largest FPC 1 consists of 47978 points. Its discriminant projection (the rest of
the data was treated as the second class) is shown on the right side of Figure ??.
There is no clear separation. As illustrated in Fig. ??, the FPC can be interpreted as
the core of the dataset, with respect to which (interpreted as Gaussian distributed)
the other stars are more or less outlying.

• FPC 2 consists of 83 points, which can be seen on the right side of Figure ??. They
lie exactly on a straight line in the scatterplot of the two Calcium break variables
(the line contains more than 83 points, but the others were classified as outlying
with respect to FPC 2).

• FPC 3 contains 17362 points, and FPC 4 contains 14461 points. Both are subsets
of FPC 1, i.e., usual stars from the core of the data. Because they are disjoint,
a discriminant projection plot can be produced to separate them from each other.
The rest of the data was projected into the plot, see Fig. ??. The right side shows
that the two clusters clearly form a significant pattern. The difficulty to find such
clusters is illustrated on the left side of Fig. ??: If all points are shown, the plot is
dominated by gross outliers, so that the FPCs are concentrated in a tiny area in the
core area of the dataset.

The results with α = 0.01 were less interesting. The separation between FPCs 3 and 4
and the rest of the data is too weak for such a small α, and they disappeared. Because of
the less strict definition of outliers, the FPCs corresponding to FPC 1 and 2 with α = 0.05
contained more points, namely 60593 and 149 respectively.

The analysis with α = 0.05 was repeated seven times to investigate if the FPCs can be
reproduced from different subjectively marked cluster candidates from the grand tour. In
fact, FPCs corresponding to all four clusters were found in all seven repetitions. Sometimes
variants of the FPCs 1–3, differing in up to 40 points, were found. The original FPCs 1,
2 and 4 were found in all seven analyses, FPC 3 was found six times, while once only a
variant appeared. No further clusters were found. The patterns corresponding to FPCs
1–4 were also reproduced by an analysis of stars of ten other objective-prism plates.
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Unfortunately, the clusters do not seem to have an astronomical meaning. FPC 2 stems
from an error in the replacement of missing values. FPCs 3 and 4 are clearly connected
to different objective-prism plates. We suspect that they are caused by variations of plate
properties. Insofar the analysis has provided valuable information not about the celestial
objects, but about the data processing of the survey.

6 Conclusion

We have shown that interesting cluster patterns in large datasets can be found by a three-
step approach consisting of the visual inspection by means of the grand tour, iteration
of Mahalanobis FPCs, and validation by discriminant projection plots. The approach
combines intuitive and formal techniques. Patterns in complex data situations, which
do not fulfill the assumptions of usual formal cluster analysis or mixture methods, can
be found by use of the grand tour. FPC analysis serves to decide about the cluster
candidates and to make them reproducible. Note that other cluster algorithms such as k-
means, EMMIX and EMCLUST cannot be started from single cluster candidates, because
they need the whole dataset to be partitioned. The discussed plots help to assess the
homogeneity, separateness and meaning of the clusters. XGOBI can be obtained from

http://lib.stat.cmu.edu/general/XGobi

The FPC analysis was performed with the software FIXMAHAL written by the first
author. It is available under

http://www.math.uni-hamburg.de/home/hennig

as well as the code to compute discriminant and Bhattacharyya coordinates with the sta-
tistical software R. All used software is freeware.

Appendix

PROOF. (Theorem 2) Define c = χ2
p;1−α. Define

T (gk) = f(n(gk)) detS(gk), f(m) =
m∏

i=1

fi, fi = exp

(
p− c

i− 1
2

)
.

Below it is shown that T strictly decreases from step k to step k +1 unless gk+1 = gk, i.e.,
gk is an FPC vector. Find gk+1 = gk after a finite number of steps, because T > 0 and
there are only finitely many indicator vectors in {0, 1}n.

Define mk = m(gk), analogously Sk, Xk and nk for all k. Now consider a fixed k and
show

detSk+1 ≤ exp
(

(nk+1 − nk)(c− p)
nk+1

)
detSk (3)

and
f(nk+1) < exp

(
(nk − nk+1)(c− p)

nk+1

)
f(nk) (4)
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unless nk = nk+1, in which case either gk = gk+1 or “<” in (??) as proven below. T
decreases by combination of (??) and (??).

Proof of (??) It is needed that

n∑
i=1

(xi −m)′S−1(xi −m) = pn, (5)

where m and S are the Gaussian ML-estimators of the mean and (non-singular) covariance
matrix of p-dimensional data x1, . . . , xn. To show that, use the decomposition S = O′DO,
where the rows of O are orthonormal eigenvectors o1, . . . , op of S and D is the diagonal
matrix of the corresponding strictly positive eigenvalues λ1, . . . , λp. With that,

n∑
i=1

(xi −m)′S−1(xi −m) =
p∑

j=1

n∑
i=1

((xi −m)′oj)
2

λj

and λj = 1
n

∑n
i=1(x

′
ioj −m′oj)2 because of D = OSO′, therefore (??).

Sk+1 is an ML-estimator and minimizes L(Xk+1,m,S), where

L(Xk+1,m,S) = (detS)nk+1 exp

 ∑
gk+1

i =1

(xi −m)′S−1(xi −m)

 .

Because of (??),

(detSk+1)nk+1 exp(pnk+1) (6)
= L(Xk+1,mk+1,Sk+1)

≤ (detSk)nk+1 exp
(∑

gk+1
i =1(xi −mk)′S−1

k (xi −mk)
)

≤ (detSk)nk+1 exp
(∑

gk
i =1(xi −mk)′S−1

k (xi −mk) + (nk+1 − nk)c
)

(7)

= (detSk)nk+1 exp (pnk + (nk+1 − nk)c) ,

proving (??). It may happen that the same number of points is included and excluded in
a step of the algorithm, therefore nk+1 = nk while gk+1 6= gk. In this case the inequality
becomes strict because of “<” in (??). Therefore detSk+1 < det Sk, and T decreases.

Proof of (??) Remember that p− c < 0 is assumed. Case 1: nk+1 > nk. Then,

f(nk+1)
f(nk) exp

(
(nk+1−nk)(c−p)

nk+1

)
=

∏nk+1

i=nk+1 exp
(

p−c
i− 1

2

)
exp

(
(nk+1−nk)(c−p)

nk+1

)
< exp

(
(nk+1−nk)(p−c)

nk+1

)
exp

(
(nk+1−nk)(c−p)

nk+1

)
= 1.

Case 2: nk > nk+1. Then, analogously,

f(nk)
f(nk+1) exp

(
(nk−nk+1)(c−p)

nk+1

)
=

∏nk
i=nk+1+1 exp

(
p−c
i− 1

2

)
exp

(
(nk−nk+1)(c−p)

nk+1

)
> 1.
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L. Wisotzki, T. Köhler, D. Groote and D. Reimers, The Hamburg/ESO survey for bright
QSOs I. Survey design and candidate selection procedure, Astronomy and Astrophysics
115 (1996),227–233.

16


