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Switzerland



Variable Length Markov Chains:

Methodology, Computing and Software

Martin Mächler
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Abstract

We present a tutorial and new publicly available computational tools for variable
length Markov chains (vlmc). vlmc’s are Markov chains with the additional at-
tractive structure that their memories depend on a variable number of lagged values,
depending on how the actual past (the lagged values) looks like. They build a very
flexible class of tree structured models for categorical time series. Fitting vlmc’s from
data is a non-trivial computational task. We provide an efficient implementation of
the so-called context algorithm which requires O(n log(n)) operations only. The imple-
mentation, which is publicly available, includes additional important new features and
options: diagnostics, goodness of fit, simulation and bootstrap, residuals and tuning
the context algorithm. Our tutorial is presented with a version in R which is available
from the Comprehensive R Archive Network (CRAN 1997 ff.). The exposition is self-
contained, gives rigorous and partly new mathematical descriptions and is illustrated
by analyzing a DNA sequence from the Epstein-Barr virus.

Key Words. AIC, Bootstrap, Categorical time series, Classification, Comprehensive R Archive
Network, Context algorithm, Diagnostics, DNA sequence, Simulation
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1 Introduction

We present a tutorial and new, publicly available computational tools for so-called variable
length Markov chains (vlmc). They build a very flexible class of tree structured models for
stationary categorical time series. Examples of such time series include DNA sequence data
or binary sequences, for example from information or computing technology. Throughout
this paper, we will demonstrate our new computational tools on a DNA sequence of the
BNRF1 gene from the Epstein-Barr virus (see Figure 1): the data can be downloaded from
http://www-stat.ucdavis.edu/~shumway/tsa.html#3 and is described in Shumway &
Stoffer (2000).
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Figure 1: The first 999 (out of 3954) bases of the BNRF1 gene section of the EB virus.

The origin of vlmc’s is in information theory (Rissanen 1983); related models and
methods, from information theory and machine learning, are context tree weighting (Willems,
Shtarkov & Tjalkens 1996) or probabilistic suffix trees (Ron, Singer & Tishby 1996).
vlmc’s have been recently discussed from a more statistical view (Bühlmann & Wyner
1999). The aim here is to popularize the powerful vlmc model. Since computing and fit-
ting such models is non-trivial, we provide a computational tutorial and publicly available,
open source software, covering the state of the art and new aspects of vlmc modeling. It
is designed as a platform for further (computational) advances in this field.

Why should we use vlmc’s? One of the most general models for a stationary categorical
process (Xt)t∈Z, taking values in a finite categorical space X , is a full Markov chain of
possibly high, but finite order. The only implicit assumption aside from stationarity is
the finite memory of the process. We always refer to a stationary full Markov chain of
order p, whenever the transition mechanism has no specific structure; that is the state
space is the entire X p. Probabilistically a nice model, such full Markov chains aren’t very
appropriate from the statistical point of view. Let us illustrate two main problems. To
be more specific, we momentarily take for illustrative purposes X = {A,C, G, T} for the
letters of a DNA sequence as in the example in Figure 1 (but all the problems discussed
below apply to any finite space X ).
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Problem 1: The class of all finite order X -valued full Markov chains is not structurally
rich: there aren’t many members in the class. This structural poverty particularly implies
that any kind of parsimonious representation of the state space is not possible. The table
below additionally demonstrates such structural poverty in terms of the dimension of full
Markov chain models (the number of free parameters) as a function of their orders p:
dimension = (card(X )− 1) card(X )p with cardinality card(X ) = 4. 1

order p 0 1 2 3 4 5 10
dimension 3 12 48 192 768 3072 ≈ 3.1 · 106

There are no models “in between”, e.g., it is impossible to fit a model with say 72 param-
eters.

Problem 2: As seen from the table above, the curse of dimensionality is particularly
damaging when fitting high order models, since the dimensionality increases exponentially
with the order p. This then leads to highly variable estimates.

vlmc’s address both problems and provide a natural and elegant way to avoid (some
of) the difficulties mentioned. The idea is to allow the memory of the Markov chain to
have a variable length, depending on the observed past values: hence the name variable
length Markov chain.

Fitting a vlmc from data involves estimation of the structure of the variable length
memory. As we will see in section 2, the latter is a problem about estimating a tree. The so-
called context algorithm is the key element for such tree estimation and also the algorithm
then involves a tree structure. Thus, it can be implemented very efficiently. With an
efficient implementation of the context algorithm at hand, we demonstrate and discuss
goodness of fit and diagnostics, model selection and simulation from vlmc’s, including a
powerful bootstrap technique.

Our computational tutorial is presented with the implementation in the statistical
software package R, publicly available at http://www.R-project.org/. But the basic
routines are written in C and can be imported to other statistical software.

2 Variable length Markov chains

A variable length Markov chain is a potentially high order Markov chain, taking values
in a finite categorical space X , with a natural parsimonious structure for the transition
probabilities. In the sequel, capital letters X are usually used for random variables and
small letters x for deterministic values.

Example A with DNA: Consider a time series X1, . . . , Xn from a DNA sequence with
Xt ∈ {A,C, G, T}. A model for such data could be a stationary Markov chain of order 2
with the following special structure for the time-homogeneous transition probabilities,

1The formula can be derived as follows: card(X )p possible states, and for every state card(X ) − 1 free
parameters for the transition probabilities which sum to one.
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P[Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . .]

=



P[Xt = xt | Xt−1 = A], if xt−1 = A
P[Xt = xt | Xt−1 = C], if xt−1 = C
P[Xt = xt | Xt−1 = G], if xt−1 = G
P[Xt = xt | Xt−1 = T,Xt−2 ∈ {A,C, G}], if xt−1 = T, xt−2 ∈ {A,C, G}
P[Xt = xt | Xt−1 = T,Xt−2 = T ], if xt−1 = T, xt−2 = T

It means that the transition probabilities are determined by looking back a variable number
of lagged values, depending how such a lagged-value history looks like. As mentioned,
this model is a Markov chain of order 2 but with a special structure for the transition
mechanism, described by the probabilities P[Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2]:

xt−1
t−2 A∗ C∗ G∗ T [ACG] TT

P[Xt | · ] π1 π2 π3 π4 π5
(1)

where πj are 4× 1 vectors of transition probabilities (whose components sum up to one),
and letter combinations denote the states: for example TT for xt−1 = T, xt−2 = T ,
T [ACG] for xt−1 = T, xt−2 ∈ {A,C, G} where ‘[· · ·]’ is the regular expression notation for
sets, and A∗ denotes any pair starting with the letter A such as AC. Note that an ordinary
full Markov chain of order 2 would have 16 different transition probability vectors, whereas
here we have only 5 which shows the sparseness of the model.

This example is a special case of a variable length Markov chain model. Denote by
xj

i = xj , xj−1, . . . , xi (i < j) a vector whose components are written in reverse order.

Definition 2.1 (Variable length memory) Let (Xt)t∈Z be a stationary process with
values Xt ∈ X . Denote by cpre : X∞ →

⋃∞
j=0X j ∪ X∞ (X 0 = ∅) a preliminary function

which maps an infinite sequence (the infinite past) to a possibly shorter string (the relevant
past):

cpre : x0
−∞ 7→ x0

−`+1, where ` is defined by
` = `(x0

−∞) = min{k; P[X1 = x1 | X0
−∞ = x0

−∞] = P[X1 = x1 | X0
−k+1 = x0

−k+1] ∀x1 ∈ X},
and ` ≡ 0 corresponds to independence.

Thus, the function cpre(·) carries the information on which vectors are relevant from
the infinite past of the process: cpre(·) is called the preliminary context function and for
any t ∈ Z, cpre(xt−1

−∞) is called the context (the relevant past) of the process at time t. Let
0 ≤ p ≤ ∞ be the smallest integer such that

card(cpre(x0
−∞)) = `(x0

−∞) ≤ p for all x0
−∞ ∈ X∞.

The number p is called the order of the preliminary context function cpre(·), and if p < ∞,
(Xt)t∈Z is called a stationary variable length Markov chain (vlmc) of order p.

Due to stationarity of (Xt)t∈Z, transition probabilities are homogeneous in time and the
restriction to indices 0,−1, . . . in the definitions above is without loss of generality. Clearly,
a vlmc of order p is a Markov chain of order p, with the additional structure of having
a memory of variable length `. Such a structure implies that some of the transition

4



probabilities are the same for various states of (the embedding) Markov chain. If the
preliminary context function cpre(·) of order p is the full projection x0

−∞ 7→ x0
−p+1 for all

x0
−∞, the vlmc is a full Markov chain of order p.

Example A (continued). The preliminary context function of the Markov chain of
order 2 with transition probabilities in equation (1) is

cpre(x0
−∞) =



A, if x0 = A, x−1
−∞ arbitrary

C, if x0 = C, x−1
−∞ arbitrary

G, if x0 = G, x−1
−∞ arbitrary

TA, if x0 = T, x−1 = A, x−2
−∞ arbitrary

TC, if x0 = T, x−1 = C, x−2
−∞ arbitrary

TG, if x0 = T, x−1 = G, x−2
−∞ arbitrary

TT, if x0 = T, x−1 = T, x−2
−∞ arbitrary.

The transition probabilities in equation (1) for Example A suggest the final form of a
context function c(·) which allows to lump some of the values of cpre(·) whose second last
symbols are the same.

Example A (continued). The (final form) context function of the Markov chain of
order 2 with transition probabilities in equation (1) is

c(x0
−∞) =



A, if x0 = A, x−1
−∞ arbitrary

C, if x0 = C, x−1
−∞ arbitrary

G, if x0 = G, x−1
−∞ arbitrary

T [ACG], if x0 = T, x−1 ∈ {A,C, G}, x−2
−∞ arbitrary

TT, if x0 = T, x−1 = T, x−2
−∞ arbitrary.

The context function c(·) adds additional structure to the model and from now on we are
exclusively interested in such final form context functions c(·) and their associated vlmc’s.
A vlmc has an important representation as a graphical tree model, see Figure 2.

Definition 2.2 (Context tree) Let c(·) be a context function of a stationary vlmc. The
context tree τ is defined as

τ = τc = {w;w = c(x0
−∞), x0

−∞ ∈ X∞}.

The context function c(·) can be reconstructed from the context tree τc which is nothing
else than the minimal state space of the underlying vlmc. Note that the context tree
does not need to be complete, e.g. it can have less than card(X ) terminal offsprings from
a parental node, whenever c(·) lumps together some values of cpre(·).

Example A (continued). The context function c(·) above can be represented by
the tree τc on the left hand side in Figure 2. It describes the minimal state space
{A,C, G, T [ACG], TT} (read top down).

Example B. X = {0, 1}, order p = 3. The function

c(x0
−∞) =


0, if x0 = 0, x−1

−∞ arbitrary
1, 0, 0, if x0 = 1, x−1 = 0, x−2 = 0, x−3

−∞ arbitrary
1, 0, 1, if x0 = 1, x−1 = 0, x−2 = 1, x−3

−∞ arbitrary
1, 1, if x0 = 1, x−1 = 1, x−2

−∞ arbitrary
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Figure 2: Tree representations of the variable length memories in Examples A (continued)
and B.

can be represented by the tree τc on the right in Figure 2. The state space is given by the
terminal nodes {0, 100, 101, 11} of the tree (read top down).

An alternative representation of Example A’s context tree (left side of Figure 2) is given
by the incomplete tree without the round-edged terminal node [ACG]. In this incomplete
tree, the internal node T then represents the state T [ACG] of the underlying VLMC. This
more economical representation will also be used in our algorithm for estimating a context
tree.

A C G T

T

Figure 3: Alternative tree representation for Example A, where the filled circle ‘T ’ repre-
sents the state T [ACG].

Particularly when thinking in terms of context trees, it becomes clear that vlmc’s
build a very flexible class ranging from full Markov chains (full tree) to parsimoniously
parameterized transition models (sparse tree). With vlmc’s, Problem 1 from section 1
does not exist, and the models provide a way to deal intelligently with the curse of dimen-
sionality (see Problem 2 in section 1). The non-trivial issue of fitting a right-sized context
tree from data is described in the next section.

3 Fitting VLMC’s

Fitting a vlmc can be done with a version of the tree structured context algorithm
(Rissanen 1983) which is detailed in section 6.1. The variable length memory is usually
represented with an estimated context tree. Thus, we are fitting tree-structured models
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where every terminal (and some internal) node represents a state in the Markov chain and
is equipped with corresponding transition probabilities. Our context algorithm grows a
large tree and prunes it back subsequently. The pruning part requires specification of a
tuning parameter, the so-called cutoff. The cutoff K is a threshold value when comparing
a tree with its subtree by pruning away one terminal node; the comparison is made with
respect to the difference of deviance from the two trees. A large cutoff has a stronger
tendency for pruning and yields smaller estimated context trees, i.e. a smaller dimension
of the model.

The value of the cutoff K has a heuristic meaning on the scale of χ2-quantiles. As a
threshold for differences of deviances, an asymptotic 1

2χ2
ν distribution with ν = card(X )−1

is associated to every individual decision about pruning a terminal node (under the null-
hypothesis of equal models, i.e. pruning). Therefore, we often specify the cutoff K on the
scale of percentages (quantiles),

K = K(α) =
1
2
χ2

ν,α =
1
2

qchisq(1− α, ν), ν = card(X )− 1. (2)

For the DNA case, ν = 3, and hence K(α) = 3.91 and 5.67 for α = 5% or 1% respectively.
Note that we use the notation τ̂ ≡ τĉ for the fitted context tree.

3.1 Implementation in R

We provide an R package VLMC, also available from the Comprehensive R Archive Network
(CRAN 1997 ff.). After starting R, we load the package into the running R session, load
the BNRF1 gene data (which comes with the VLMC package as well), and look at its first
50 values:

> library(VLMC)
> data(bnrf1)
> bnrf1EB [1:50]
[1] a t g g a a g a g a g g g g c a g g g a a a c g c a a a t g
[31] c c g g t t g c c c g g t a t g g g g g
Levels: a c g t

Now, fit a vlmc with cutoff K = 5 which gives a smaller than optimal tree with the
advantage of using less space on paper. The resulting object, vc5 gives basic information
when printed:

> vc5 <- vlmc(bnrf1EB, cutoff = 5)
> vc5
‘vlmc’, a Variable Length Markov Chain;

alphabet ’acgt’, |alphabet| = 4, n = 3954.
Call: vlmc(dts = bnrf1EB, cutoff.prune = 5)
-> extensions (= $size ) :

ord.MC context nr.leaves total
4 18 9 154

AIC = 10580
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> draw(vc5, cumul = FALSE)
[x]-( 0 0 0 0| 0)-F

+--[a]-( 62 109 130 74| 375)

| +--[c]-( 43 47 70 37| 197)

| | ‘--[c]-( 9 15 31 13| 68)

| | ‘--[c]-( 2 12 4 0| 18)-T

| ‘--[t]-( 14 36 12 24| 86)-T

+--[c]-( 144 186 127 152| 609)

| +--[a]-( 49 65 67 38| 219)-T

| ‘--[g]-( 23 59 29 39| 150)

| +--[a]-( 30 8 13 15| 66)-T

| ‘--[g]-( 35 43 17 22| 117)

| ‘--[c]-( 2 19 9 4| 34)-T

+--[g]-( 244 367 417 203| 1231)-T

‘--[t]-( 32 97 120 61| 310)

+--[c]-( 23 71 102 36| 232)

| ‘--[a]-( 13 7 6 12| 38)-T

‘--[g]-( 6 18 40 25| 89)

+--[g]-( 8 21 29 6| 64)-T

‘--[t]-( 4 15 9 22| 50)-T

The context function is

c(x0
−∞) =



a[ag] if x0 = a, x−1 ∈ {a, g}, x−2
−∞ arbitrary

ac[agt] if x0 = a, x−1 = c, x−2 6= c, x−3
−∞ arbitrary

acc[agt] if x0 = a, x−1 = c, x−2 = c, x−3 6= c, . . .
accc if x0 = a, x−1 = c, x−2 = c, x−3 = c, . . .
at if x0 = a, x−1 = t, x−2

−∞ arbitrary
c[ct] if x0 = c, x−1 ∈ {c, t}, x−2

−∞ arbitrary
ca if x0 = c, x−1 = a, x−2

−∞ arbitrary
cg[ct] if x0 = c, x−1 = g, x−2 ∈ {c, t}, x−3

−∞ arbitr.
cga if x0 = c, x−1 = g, x−2 = a, x−3

−∞ arbitr.
cgg[agt] if x0 = c, x−1 = g, x−2 = g, x−3 6= c, . . .
cggc if x0 = c, x−1 = g, x−2 = g, x−3 = c, . . .
g if x0 = g, x−1

−∞ arbitrary
t[at] if x0 = t, x−1 ∈ {a, t}, x−2

−∞ arbitrary
tc[cgt] if x0 = t, x−1 = c, x−2 6= a, x−3

−∞ arbitrary
tca if x0 = t, x−1 = c, x−2 = a, x−3

−∞ arbitrary
tg[ac] if x0 = t, x−1 = g, x−2 ∈ {a, c}, x−3

−∞ arbitr.
tgg if x0 = t, x−1 = g, x−2 = g, x−3

−∞ arbitrary
tgt if x0 = t, x−1 = g, x−2 = t, x−3

−∞ arbitrary

Figure 4: Fitted context tree τ̂ for vc5. Note that “leaves” are marked with T
(“T”erminal), whereas intermediate nodes which do not belong to the context are marked
F (“F”ull) because they have the full number (card(X ) = 4) of offsprings. The estimated
transition probabilities P̂ (xt | ĉ(xt−1, xt−2, . . .)) can also directly be read from the above
output of draw(*): For each context, it is a probability vector of length 4, the fractions
given between the ‘(. . . )’, e.g. P̂ (Xt = u | ĉ(Xt−1 = a,Xt−2 ∈ {a, g}, . . .)) is 62

375 , 109
375 , 130

375 ,
or 74

375 , for u = a, c, g or t, respectively.

We see that the embedding Markov chain is of order p = 4, the context size card(τĉ) = 18
with 9 leaves (terminal nodes). Figure 4 draws a “lying” context tree, one line per node,
using the draw() method for vlmc objects.

The conditional probabilities P̂ (xt | ĉ(xt−1, xt−2, . . .)) (see Fig. 4) can also be extracted
from the fitted vlmc object using the predict() method. On one hand, the “in-sample”
values for t = 2, 3, . . . , n,

> p5 <- predict(vc5)
> dim(p5) # n × 4 where p5[1,] === NA

[1] 3954 4
> p5[1:5,]

a c g t
a NA NA NA NA
t 0.1653333 0.2906667 0.3466667 0.1973333
g 0.1032258 0.3129032 0.3870968 0.1967742
g 0.1982128 0.2981316 0.3387490 0.1649066
a 0.1982128 0.2981316 0.3387490 0.1649066

or for a “new” observation (x7, x6, . . . , x1) = (a, c, g, g, c, g, c) which in R is written in the
usual forward time-order (x1, x2, . . .),
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> predict(vc5, c("c","g","c","g","g","c","a"))[7,]
a c g t

0.05882353 0.55882353 0.26470588 0.11764706

gives the probabilities 2/34, 19/34, 9/34, and 4/34 corresponding to the (c g g c) context.
These probabilities (or predict directly) can also be used for predicting future observa-
tions or, put differently, as a classifier, given the past context by predicting arg maxx P (x|.),
e.g.

> predict(vc5, c("c","g","c","g","g","c","a"), type="class")
[1] NA c g c g g c
Levels: a c g t

gives the one step ahead predictions for each but the first position, where e.g, the last "c"
is the most probable value with probability 19/34. Finally, predict(*, type = ..) can
be used to give the above plus more detailed information, including the context “at xt”,
using type = "ALL",

> predict(vc5, c("c","g","c","g","g","c","a"), type="ALL")
fit Pr[X= a ] Pr[X= c ] Pr[X= g ] Pr[X= t ] id flags ctxt

c NA NA NA NA NA NA 0 NA
g c 48/203 62/203 127/609 152/609 5 55 c
c g 244/1231 367/1231 417/1231 203/1231 6 0 g
g c 23/150 59/150 29/150 13/50 22 0 cg
g g 244/1231 367/1231 417/1231 203/1231 6 0 g
c g 244/1231 367/1231 417/1231 203/1231 6 0 g
a c 1/17 19/34 9/34 2/17 361 0 cggc

or the context depth “at xt” from predict(*, type = "depth").

3.2 Tuning I: choosing the cutoff parameter with information criteria

The only tuning parameter for our fitting of a vlmc is the cutoff K, mentioned in the
previous section. Since this is a one-dimensional parameter, optimization with respect to
the cutoff is relatively easy (optimizing among all subtrees from a large tree is prohibitive).

One of the most popular methods for model selection are the AIC and BIC criterion:
here, they become

− 2log-likelihoodK + γ (card(X )− 1) card(τĉK
), (3)

where γ = 2 or log(n) for AIC and BIC, respectively. We emphasize here the dependence
on the cutoff K used in the context algorithm. Optimizing AIC or BIC is fast. An
AIC estimated cutoff aims to minimize the Kullback-Leibler divergence between the true
underlying process and the fitted vlmc model, cf. Shibata (1997).

Our VLMC package provides logLik() and AIC() methods for "vlmc" objects, e.g.,

> logLik(vc5)
‘log Lik.’ -5236.205 (df=54)
> AIC(vc5)
[1] 10580.41
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Figure 5: AIC(vlmc(bnrf1EB, cutoff = K)) as function of K. Note the local minima
and the fact that K(α = 5%) is close to optimal.

Figure 5 shows the result of using AIC(model, cutoff = K) for the set K ∈ {2.8, 2.82, . . . , 6}
(“for(K in seq(2.8, 6, by = .02))” in R).

If the aim is not minimizing the Kullback Leibler divergence, such simple criteria are
not at hand. Estimation of the cutoff parameter can then be pursued with bootstrapping
as described in section 4.1.

4 Bootstrapping and simulating from a VLMC

Simulating a vlmc of order p is done via its transition probabilities {P (x1 | c(x0
−p+1); x1

−p+1 ∈
X p+1}: start with an initial p-vector X0

−p+1 ∈ X p, where p is the order of the vlmc and
simulate

Xt ∼ P (· | c(Xt−1
t−p )), t = 1, 2, . . . (4)

Under regularity conditions, the effect of the initialization gets forgotten exponentially
fast as the simulated path gets longer, and the simulated values are becoming close to a
sample from the stationary distribution of the vlmc. Thus, to simulate an n-dimensional
sample from the stationary distribution of the vlmc (assuming it exists), we proceed as
follows:

simulate X1, X2, . . . , Xm+n as in (4),
choose Xm+1, . . . , Xm+n as an approximately stationary sample of size n. (5)

Here m is a large number such as 103 or 104 and the initial vector in (4) may be chosen as
a p-vector whose elements are all equal to some x ∈ X . Our R function simulate.vlmc()
has an argument n.start for m taking m = 64 × (context size) = 64 card(τc) as default
value, e.g.,

> simulate.vlmc(vc5, n = 17)
[1] "a" "g" "t" "g" "a" "g" "c" "a" "c" "g" "a" "g" "g" "t" "c" "c" "c"

> simulate.vlmc(vc5, n = 17)
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[1] "g" "a" "g" "c" "g" "a" "t" "g" "c" "g" "g" "t" "c" "g" "t" "g" "t"
> simvc5 <- simulate.vlmc(vc5, n = 100000)
> table(simvc5)

a c g t
18822 30249 31010 19919

where the last simulation (of length 100000) still takes only between 1 or 2 tenths of a
second on a 900 MHz Pentium III Computer.

The vlmc bootstrap is nothing else than simulating from a fitted vlmc. The bootstrap
sample of size n is constructed as in (5), using in (4) the estimated transition probabilities
from the context algorithm P̂ (· | ĉ(Xt−1

t−p )) with p the order of the estimated vlmc. The
usual notation for such a bootstrap sample is then

X∗
1 , . . . , X∗

n. (6)

We could (but have not done so in the VLMC package) define

> bootstrap.vlmc <- function(x, B)
sapply(1:B, function(i) simulate.vlmc(x, n = x$n, integer.ret = TRUE))

where the integer.return = TRUE argument results in series with values in {0, 1, . . . , card(X )−
1} instead of characters, e.g., "a", "c", "g", "t". This is faster and needs less memory
for the result. vlmc-bootstrapping of an estimator Tn = hn(X1, . . . , Xn), a function hn(·)
of the data, is constructed with the plug-in rule:

T ∗
n = hn(X∗

1 , . . . , X∗
n),

with the same function hn(·). As an example, we take hn(xn
1 ) = #{i | xi = a, xi−1 = t}/(n− 1),

i.e. the occurence frequency of “TA” in the DNA sequence. To this end we simulate from
a relative large model,

> vc3 <- vlmc(bnrf1EB, cutoff= 3) # smaller K overfits

The above bootstrap.vlmc function allows things like

> bb <- bootstrap.vlmc(vc3, B=200) # needs around 1 sec

> dim(bb) # n x B

[1] 3954 200
> object.size(bb)
[1] 3163412

which produces relatively large results bb. Using a loop instead, for(i in 1:B) { ri <-
simulate.vlmc(x, ...); ......} makes often more sense to avoid memory problems.
Continuing our example, we now compute and plot the bootstrap distribution of hn()
(which is at.freq() in the following):

> at.freq <- function(x) {
# Frequency of "A T" (backwards) in 0:3 coded x: "a" ^= 0, "t" ^= 3

n <- length(x)
sum(x[-1] == 0 & x[-n] == 3)/(n-1)

}
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> (at.f <- at.freq(alpha2int(bnrf1EB,"acgt")))
[1] 0.02175563
> at.f == 86 / 3953
[1] TRUE
> at.st <- apply(bb,2, at.freq)
> summary(at.st)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01594 0.02049 0.02201 0.02194 0.02353 0.02732

> plot(density(at.st, bw = 5e-4), ylim = c(0, 190),
main="VLMC-Bootstrap Distribution of ‘T-A’ Frequency in ‘bnrf1EB’")

> boxplot(at.st, add = TRUE, horizontal = TRUE, at = -3.6, boxwex= 7)
> abline(v=at.f, col = "red", lty = 3)
> hst <- hist(at.st, nc = 12, plot = FALSE)
> lines(hst, freq = FALSE)

which produces Figure 6.
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Figure 6: vlmc-Bootstrap distribution (B = 200) of the number of occurencies of ‘T-A’ (or
“A T” backwards) where the vlmc bootstrap is simulating from vlmc(bnrf1EB, cutoff
= 3). The sample value 86/3953 = 0.0218 is marked by a short vertical dashed line.

4.1 Tuning II: choosing the cutoff parameter with the bootstrap

We have discussed in section 3.2 how information criteria can be used to estimate the
cutoff parameter from the context algorithm. When using AIC, this amounts to tuning
with respect to Kullback-Leibler divergence.

In many applications, other loss functions are of interest. For example, the classifica-
tion error, or zero-one loss, is often of interest in practice. When restricting to one-step
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ahead predictions, the goal is to minimize

P[X̂n+1;K 6= Xn+1], (7)

for the classifier
X̂n+1;K = arg max

xn+1∈X
P̂ (xn+1 | ĉK(xn

1 ))

whose implementation has been demonstrated in section 3.1. Optimality with respect to
Kullback-Leibler divergence and misclassification in (7) do not coincide.

The vlmc bootstrap (depending on an “initial” cutoff K0) has been proposed for esti-
mating an optimal cutoff K for general loss functions, see Bühlmann (2000). Estimation
of K aiming to minimize (7) can be done as follows:

Step 1 Choose an initial cutoff K0 and simulate X∗
1 , . . . , X∗

n+1 as in (6) from the estimated
transition probabilities P̂ (· | ĉK0(X

t−1
t−p0

)), where p0 is the order of the vlmc, fitted
with cutoff K0.

Step 2 For a given cutoff K, estimate the one-step ahead predictor X̂∗
n+1;K from the

context algorithm, based on X∗
1 , . . . , X∗

n. Evaluate the zero-one loss

1[X̂∗n+1;K 6=X∗n+1].

Repeat this B times (e.g. B = 1000) and average the zero-one losses to obtain

ave
B

[1[X̂∗n+1;K 6=X∗n+1]] = B−1
B∑

b=1

1[X̂∗bn+1;K 6=X∗bn+1]

which is a Monte-Carlo approximation for P∗[X̂∗
n+1;K 6= X∗

n+1].

Step 3 Searching over candidate cutoffs K yields the estimate

K̂ = arg min
K

ave
B

[1[X̂∗n+1;K 6=X∗n+1]].

Note that K̂ depends on the initial cutoff K0 in Step 1. Its choice has a minor effect (but
see figure 7). We advise to take the initial K0 such that the estimated context tree is
“large”. For example, we could take K0 from minimizing the criterion in (3) with γ = 1.
For the gene data example, this gives K0 = 1.33. The following R code2 for estimating K̂
by bootstrapping B = 1000 on a grid of K values of size 89

> K0 <- 1.33 # 1.33 is the IC[gamma=1] optimum

> n <- length(x <- bnrf1EB)
> B <- 1000
> (nK <- length(Kset <- seq(1.6, 6, by = 0.05)))
[1] 89

2our real code additionally measured and saved the computing time used, and for monitoring purposes
prints out status information for each sample
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Figure 7: Four series of VLMC-bootstraps (in the BNRF1 gene data set) of decreasing
complexity determined by K0 for determining an optimal “0-1 loss” cutoff K where op-
timality (to be maximized) is measured as number of correct 1-step ahead predictions.
We used B = 1000 bootstrap samples for each K ∈ {1.6, 1.65, . . . , 6}. Note that random
guessing would give 250 matches on average. Additionally, 95% pointwise confidence in-
tervals (for binomial proportions) are drawn. In all cases, an optimal K is about 2–2.2,
substantially smaller (corresponding to much larger models) than the AIC optimal K ≈ 4,
see section 3.2 and figure 5 above.

> (vK0 <- vlmc(x, cut = K0))

‘vlmc’, a Variable Length Markov Chain;
alphabet ’acgt’, |alphabet| = 4, n = 3954.

Call: vlmc(dts = x, cutoff.prune = K0)
-> extensions (= $size ) :

ord.MC context nr.leaves total
8 1041 605 9074

AIC = 12398
> set.seed(1521) # Random seed for reproducibility

> n.matches <- integer(nK)

> for(b in 1:B) { # for each bootstrap sample do

cat(b,"")
x0 <- simulate.vlmc(vK0, n = n + 1, n.start = 10000)
for(iK in 1:nK) { # for each K

K <- Kset[iK]
v0 <- vlmc(x0[1:n], cut = K)
p <- v0$size["ord.MC"]
n.matches[iK] <- n.matches[iK] +

(x0[n+1] == predict(v0, x0[(n-p+1):(n+1)], type = "class")[p+1])
}

}
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needs about about 73 minutes on a Pentium iii 933 (≈ 4.7′′ per sample for all Ks).
Repeating these 89 bootstrap simulations (of B = 1000 replications each) for three other
values K0 = 1.1, 2, and 2.5 and plotting n.matches versus Kset for each produces figure 7.

Generalizations to other classifiers respecting non-equal misclassification costs, to multi-
step ahead predictions and to other loss functions can be pursued analogously.

Alternatively, an out-of-sample estimate of a loss function could be minimized to obtain
an estimate of a optimal cutoff K. Or instead, subsampling techniques for time series may
be used, cf. Fukuchi (1999).

5 Diagnostics

Here, we describe graphical and numerical diagnostics about the quality and appropri-
ateness of a fitted vlmc model. In addition to the log-likelihood or AIC value given in
section 3.2, the (in)famous R2 diagnostic of regression would correspond to the inherent
in-sample prediction quality of the model for the data. The first, a (often biased) estimator
of P (Xt = xt | c(xt−1, xt−2, . . .)), is simply

n
ave
t=p

1X̂t=xt
where X̂t is using the fitted model

and the data context (xt−1, xt−2, . . .). More generally, when m = card(X ), we want to see
the m×m confusion matrix c = (cij) where ci,j = #{xt = i, X̂t = j} =

∑n
t=2 1xt=i1X̂t=j

for i, j ∈ {1, 2, . . . m}. For the gene data example and the cutoff K = 2 (see Fig. 7), we
get

> vc2 <- vlmc(bnrf1EB, cutoff= 2)
> summary(vc2) # summary() is print() + more :

‘vlmc’, a Variable Length Markov Chain;
alphabet ’acgt’, |alphabet| = 4, n = 3954.

Call: vlmc(dts = bnrf1EB, cutoff.prune = 2)
-> extensions (= $size ) :

ord.MC context nr.leaves total
7 481 251 4106

AIC = 11032.37
R^2 = %correctly predicted = 50.78%
Confusion matrix:

predicted
data a c g t

a 337 197 157 52
c 144 701 268 82
g 136 285 736 75
t 116 209 224 234

Markov chain depths along the data:
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 4 4 4.126 5 7

More interesting than these numbers are time-dependent features of the fit. Apart
from the fitted values (the most probable class by predict(*, type = "class")), we have
already seen the (instantaneous) depth of the Markov chain or length of context, i.e.,
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predict(*, type = "depth"). Both of these might be used in plots, but have not been too
much revealing in our example.

We have defined several kinds of residuals for vlmc models; the first kind (and default
in our implementation of residuals.vlmc()), is multivariate, returning an n×m matrix
(of the same dimension as predict()) of ‘classwise’ residuals rt,j = 1xt=j− P̂ (j | ĉ(xt−1

1 ))
where for notational convenience, we assume the alphabet X = {1, 2, . . . ,m}, i.e., for
each t, the only positive residual is the one corresponding to the observed value, and∑card(X )

j=1 rt,j = 0 for all t.
The other generally useful kind of residuals are the deviance residuals rt, defined such

that
∑

t r2
t = Deviance = −2 Log-likelihood, i.e. r2

t = −2 log P̂ (xt | ĉ(xt−1
1 )) and the sign

of the deviance residuals is set to the sign of the response or working residuals. These
are defined as the difference xt − x̂t something which makes sense in the binary case and
whenever X can be interpreted as ordered.

We propose a novel useful graphic, RCplot(), plotting the squared deviance residuals,
r2
t against the context ĉ(xt−1

1 ), i.e. summarizing the r2
t by a boxplot for each context, in

Figure 8, where we also show the number of observations per context state, both literally
as text, and by boxplot width proportional to the square root of the number. Designing
and interpreting diagnostic plots in the present context of discrete time series fitting is
still very much a subject of research and experimentation. We have provided the relevant
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Figure 8: RCplot(vc41), a plot of squared deviance residuals vs. context, for a vlmc(with
AIC tuned cutoff K = 4.1) fitted to the Epstein-Barr virus data (n = 3954). Note that
out of 60 different context states, "a" is not a proper one (but corresponds to X2), and
there are four other contexts (of only 3 or 6 observations) where all residuals are 0; in
particular, a tctg past seems well predictable.

quantities with the above variants of predict() and residuals() for fitted vlmc models.
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6 Algorithms and supporting theory

6.1 The context algorithm

Fitting a vlmc is done with a version of the tree structured context algorithm. It uses
the notion of terminal node context trees

τT = τT
c = {w;w ∈ τc and wu /∈ τc for all u ∈ X}.

Here and in the sequel wu = (wcard(w), . . . , w2, w1, ucard(u), . . . , u2, u1) denotes the concate-
nation of the vectors w and u (components always written in reverse order). In Example A,
τT = {A,C, G, TT} is the set of terminal nodes in the tree in Figures 2 and 3, whereas
τ = τT ∪ {T [ACG]}. In Example B, τT and τ from Figure 2 coincide. The information
of τT is equivalent to the information in τ . Thus, the terminal node tree yields a more
compact representation.

In the sequel, we often write for a probability distribution P on X Z (for stochastic
process), P (x) = PP [Xm

1 = x] (x ∈ Xm) and P (x | w) = P (xw)/P (w) (x,w ∈
⋃∞

j=1X j).
Denote by

N(w) =
n−card(w)+1∑

t=1

1
[X

t+card(w)−1
t =w]

, w ∈
⋃∞

m=1
Xm, (8)

the number of occurrences of the string w in the sequence Xn
1 , and let N−1(w) be the

same as N(w) but summing up to t = n− card(w), dropping the last term. Moreover, let

P̂ (w) = N(w)/n, P̂ (x | w) =
N(xw)
N−1(w)

, 3 x,w ∈
⋃∞

m=1
Xm. (9)

The algorithm below constructs the estimated context tree τ̂ as the biggest context tree
(with respect to the order ‘�’ defined in Step 1 below) such that

∆wu =
∑
x∈X

P̂ (x | wu) log(
P̂ (x | wu)
P̂ (x | w)

)N(wu) ≥ K for all wu ∈ τ̂T (u ∈ X ) (10)

where K is the user specified cutoff, see sections 3.2 and 4.1 above.

Step 1 Given X -valued data X1, . . . , Xn, fit a maximal context tree, i.e., search for the
context function cmax(·) with terminal node context tree representation τT

max, where
τT
max is the biggest tree such that every element (terminal node) in τT

max has been
observed at least twice in the data. This can be formalized as follows:
τT
max is such that w ∈ τT

max implies N(w) ≥ 2, and such that for every τT , where
w ∈ τT implies N(w) ≥ 2, it holds that τT � τT

max. Here, τ1 � τ2 means: w ∈ τ1 ⇒
wu ∈ τ2 for some u ∈

⋃∞
m=0Xm (X 0 = ∅).

Set τT
(0) = τT

max.

Step 2 Examine every element (terminal node) of τT
(0) as follows (the order of examining

is irrelevant). Let c(·) be the corresponding context function of τT
(0) and let

wu = x0
−`+1 = c(x0

−∞), u = x−`+1, w = x0
−`+2,

3correcting a small error in Bühlmann & Wyner (1999) which had N(w) instead of N−1(w).
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where wu is an element (terminal node) of τT
(0), which we compare with its pruned

version w = x0
−`+2 (if ` = 1, the pruned version is the empty branch ∅, i.e., the root

node).
Prune wu = x0

−`+1 to w = x0
−`+2 if

∆wu =
∑
x∈X

P̂ (x | wu) log
( P̂ (x | wu)

P̂ (x | w)

)
N(wu) < K,

with K a cutoff parameter and P̂ (· | ·) as defined in (9). Decision about pruning
for every terminal node in τT

(0) yields a (possibly) smaller tree τ(1) � τT
(0). From τ(1),

construct the terminal node context tree τT
(1).

Step 3 Repeat Step 2 with, starting with τT
(i) yielding τ(i+1), τ

T
(i+1) (i = 1, 2, . . .) until no

more pruning is possible. Denote this maximal pruned context tree (not necessarily
of terminal node type) by τ̂ = τĉ and its corresponding context function by ĉ(·).

Step 4 If interested in probability distributions, estimate the underlying transition prob-
abilities P (x1 | c(x0

−∞)) by P̂ (x1 | ĉ(x0
−∞)), where P̂ (· | ·) is defined as in (9).

More details and motivation can be found in Bühlmann & Wyner (1999).

6.1.1 Supporting theory

Under regularity conditions for the data generating vlmc, the context algorithm consis-
tently estimates the underlying context tree τc,

P[τĉ = τc] → 1 (n →∞),

see Bühlmann & Wyner (1999). Having a consistent estimate of the structure of the
memory of a vlmc, a consistent estimate of the true transition probabilities

P (x1|c(x0
−∞)) for all x1

−∞ ∈ X∞, (11)

and hence of all finite-dimensional distribution

P[(X1, . . . , Xm) = x] for all x ∈ Xm and all m (12)

follows. Even more, the context algorithm yields efficient estimates of the transition
probabilities in (11). It implies, in the sense of statistical efficiency, maximal estimation
accuracy for parameters being smooth functions of the transition probabilities (Bühlmann
1999).

Moreover, the context algorithm has good approximation properties for categorical
processes which are not necessarily a vlmc. For a general stationary X -valued process,
the corresponding context tree has infinite depth. Under suitable regularity conditions,
the context algorithm still yields a consistent estimate in the sense that the finite-length
contexts are consistently estimated and the algorithm grows longer contexts where the
underlying context tree has infinite depth, see Ferrari (1999). The result can be interpreted
as follows: the context algorithm consistently estimates the finite memory parts and grows

18



longer memory whenever the underlying true contexts are infinitely long. Also, all finite-
dimensional distributions in (12), even for a (suitably regular) stationary process not being
a vlmc, are consistently estimated. The accuracy of the vlmc approximation with nearly
optimal rates has been established for the asymptotic variance and distribution of smooth
function of means, see also section 6.2.

Asymptotic theory tells that the cutoff K should depend on the sample size: a sufficient
condition is K = Kn = C log(n) with C > 2 card(X ) + 4. Since the condition seems far
from necessary, we view a strict choice on the log(n) scale as dangerous for finite samples.
The condition was often found to produce too large cutoffs yielding underfitted models
when sample size was in the range of 1000. But the theoretical fact that long time series
require larger cutoffs is certainly relevant for real applications.

6.2 Supporting theory for the VLMC bootstrap

The resampling scheme has also been called the vlmc-sieve bootstrap: because the fitted
vlmc can be viewed as a sieve estimator (estimate in the approximating class of vlmc
models) for the underlying data generating process. In some or even many cases, it is more
accurate than the block bootstrap (Künsch 1989) which is a general bootstrap technique
for stationary time series. In Bühlmann (2002), the following result about bootstrap
variance estimation is given. Consider estimators Tn which are smooth transformations of
means. Examples include counts or relative frequencies of tuples of labels (i.e. words) from
the categorical time series. If the underlying process is geometrically mixing (geometric
decay of dependence of events as their separation distance grows) and satisfies additional
regularity conditions, then

n Var∗(T ∗
n)− n Var(Tn) = OP

(
n−1/2+ε) for any ε > 0,

where n Var(Tn) converges to a non-degenerate limit. This rate should be compared to
OP (n−1/3) for the block bootstrap.

Estimation of the cutoff tuning parameter with the vlmc bootstrap, as described in
section 4.1, has been shown to have some reasonable asymptotic properties for general loss
functions (not only the zero-one loss in section 4.1), see Bühlmann (2000).

7 Conclusions

We have provided methodology and a tutorial based on new software for fitting vlmc’s.
Our tutorial is self-contained, gives rigorous and partially new mathematical descriptions
of important concepts and emphasizes interesting aspects by examples, including an ap-
plication with a DNA sequence from the Epstein-Barr virus. vlmc’s are based on the
idea of having a memory whose length is allowed to vary depending on how the immediate
past (lagged values) looks like. Such a variable length memory structure adds enormous
additional flexibility for modeling and fitting Markov chains for categorical time series. In
particular, they allow for many possible models between a classical Markov chain of order
p and p+1, they have interesting interpretation as a tree-structured model and they open
an avenue to deal intelligently with the curse of dimensionality. While versions of vlmc’s
are mainly used in information theory, mostly in appearing in the form of algorithms and
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not so much as a model, the statistics community is still largely unaware of the attractive
vlmc model.

Estimating a vlmc is a non-trivial computational task. Our approach and implementa-
tion is based on an efficient, tree-structured context algorithm which requires O(n log(n))
operations only. A number of additional options and tools complement the core algo-
rithm, some of them being essential for statistically sound use of vlmc’s: goodness of
fit measures, residuals, diagnostics, tuning for the context algorithm and simulating and
bootstrapping with vlmc’s. Our tutorial, together with the publicly available software
with many new options and features, aims to substantially support the use and future
development of vlmc. Our routines are written in C and are directly available in R;
the former makes it possible to import our computing methodology to other, individually
favored software environments.
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Bühlmann, P. (2000), ‘Model selection for variable length Markov chains and tuning the
context algorithm’, Ann. Inst. Statist. Math. 52, 287–315.
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