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Abstract

Contact-free lévitation of rotors by means of active magnetic bearings has

been a research topic for more than two decades. During this time, active

magnetic bearings have evolved into an industry product that due to its

numerous advantages over conventional bearing technology is used in many

practical applications.

For the operation of active magnetic bearing (AMB) systems, adequate
controllers are indispensable. The design of such controllers is a chal¬

lenging task since they must compensate for the instability inherent to

the magnetic bearings and at the same time avoid destabilization of any

flexible eigenmodes the rotor may exhibit. This is a particularly delicate

problem since damping is extremely weak due to the contactless lévitation

and since the poles are displaced by gyroscopic effects when the rotor is

rotating.

Traditionally, AMB controllers are designed by well-trained engineers.
The existing design techniques are either not standardized and hence de¬

pend on the designer's intuition and experience or they rely on highly
accurate system models that must be manually fine tuned.

In any case, AMB controller design is a time-consuming task that requires
considerable amounts of expertise from different fields.

The purpose of the present work is to contribute to controller design for

AMB rotor systems by improving this situation. To this end research in

two directions is presented.

The first area of investigation is that of identification of AMB rotor sys¬

tems. In this context identification algorithms for obtaining accurate sys¬

tem models directly from the AMB system under consideration are pre¬

sented. Identification is achieved by means of a step—wise procedure. First,
a rigid body model of the rotor is extracted based on measured system re-

xiii
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sponses to current steps applied to the bearings. Then a simple preliminary

stabilizing controller that avoids destabilization of any high frequency flex¬

ible modes is designed. With the rotor levitated, the complete open loop
model including the flexible rotor modes is identified based on measure¬

ments of the system's open-loop transfer function.

In addition to this, an algorithm for identifying the gyroscopic matrix G

from the rotating system is introduced.

The second research topic is automated controller design for AMB systems.
The first problem addressed in this context is the stabilization of flexible

rotors of which only the rigid body dynamics are known. The problem is

solved by means of a //-synthesis based procedure automatically adapting
the system's bias current such that maximum robustness to additive high

frequency uncertainty is achieved.

Then automated controller design for flexible rotors is addressed. Based

on an analysis of the state of the art methods in AMB controller design,
the method best suited for automation is identified. Also based on \x-

synthesis, this method is then adapted to meet the special requirements
of gyroscopic rotor systems. The analysis of the resulting controllers is

refined, and finally an automated version of the procedure is formulated.

The identification and controller design algorithms are integrated into an

automated procedure that requires only little user interaction and expert

knowledge on the part of the designer. This procedure consists of three

parts, the first two of which comprise the identification of the rotor sys¬

tem at standstill. The third part consists in a sequence of steps in which

controller design for the flexible rotor, controller performance tests on the

system, and identification of the gyroscopic matrix are iterated at increas¬

ing speeds until the system's top operating speed has been reached or no

improvements to the last controller can be made anymore.

The procedure has been tested on different configurations of a test rig with

a highly flexible rotor and showed good performance even in presence of

strong gyroscopic effects.



Kurzfassung

Die berührungsfreie Lagerung von Rotoren mit Hilfe von aktiven Magnet¬

lagern ist seit über zwanzig Jahren Gegenstand der Forschung. In dieser

Zeitspanne haben sich Magnetlager zu einem Industrieprodukt entwickelt,
das aufgrund seiner vielfältigen Vorteile gegenüber herkömmlichen Lager¬
techniken in einer Vielzahl von praktischen Anwendungen zum Einsatz

kommt.

Für den Betrieb von aktiven Magnetlagern sind geeignete Regler unver¬

zichtbar. Die Auslegung solcher Regler ist eine herausfordernde Aufgabe,
da diese die den Magnetlagern eigene Instabilität kompensieren müssen

ohne dabei etwaige elastische Eigenmoden des Rotors zu destabilisieren.

Dies ist besonders schwierig, da die Systemdämpfung aufgrund der kon¬

taktlosen Lagerung nur sehr schwach ist und sich die Pole zudem infolge
gyroskopischer Effekte verschieben sobald der Rotor rotiert.

Regler für aktive Magnetlagersysteme werden üblicherweise von erfahre¬

nen Ingenieuren ausgelegt. Die heute existierenden Entwurfsverfahren sind

entweder nicht standardisiert und bauen damit auf die Intuition und Erfah¬

rung des Benutzers oder benötigen sehr genaue Systemmodelle, die Fein¬

anpassung von Hand erfordern.

Unabhängig von der gewählten Entwurfsmethode benötigt der Reglerent¬
wurf für aktive Magnetlagersysteme viel Zeit und beachtliches Experten¬
wissen aus verschiedenen Fachgebieten.

Ziel der vorliegenden Arbeit ist es durch Verbesserung dieser Situation

einen Beitrag zur Regelung aktiver Magnetlagersysteme zu leisten. Dazu

werden Forschungsergebnisse aus zwei Bereichen präsentiert.

Das erste Forschungsgebiet ist die Identifikation von Magnetlagersystemen.
Hier werden Identifikationsalgorithmen präsentiert, mit deren Hilfe aussch¬

liesslich aus Messungen, die am realen Magnetlagersystem durchgeführt

xv
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werden, genaue Systemmodelle gewonnen werden können. Die Identifika¬

tion erfolgt dabei in mehreren Schritten. Zunächst wird die Systemantwort
auf Stromschritte, die auf die Magnetlager aufgegeben werden, gemessen

und daraus ein Starrkörpermodell des Rotors extrahiert. Dann wird ein

erster einfacher Regler entworfen, der das System zu stabilisieren vermag,

ohne etwaige hochfrequente elastische Eigenmoden zu destabilisieren. So¬

bald der Rotor schwebt, wird basierend auf Frequenzgangmessungen der

Strecke das gesamte Modell mit allen elastischen Moden identifiziert.

Darüberhinaus wird ein Algorithmus zur Identifikation der gyroskopischen
Matrix G aus dem rotierenden System vorgestellt.

Der zweite Forschungsgegenstand ist der automatisierte Reglerentwurf für

Magnetlagersysteme. Hier wird zunächst die Frage der Stabilisierung elas¬

tischer Rotoren untersucht, von denen lediglich ein Starrkörpermodell be¬

kannt ist. Dieses Problem wird mit Hilfe eines //-Synthese basierten Pro¬

zedur gelöst, die automatisch den Vormagnetisierungsstrom so einstellt,
dass maximale Robustheit gegenüber hochfrequenter additiver Unsicher¬

heit erreicht wird.

Dann wird der automatisierte Reglerentwurf für elastische Rotoren behan¬

delt. Ausgehend von einer Analyse des Stands der Technik wird die am

besten zur Automatisierung geeignete Reglerentwurfsmethode ermittelt.

Dieses ebenfalls auf/i-Synthese basierende Verfahren wird dann angepasst,

um den besonderen Anforderungen von Systemen mit gyroskopischen Ro¬

toren gerecht zu werden. Verfeinerte Analyseverfahren für die entworfenen

Regler werden vorgestellt, und schliesslich wird ein automatisierter Reg¬

lerentwurfsalgorithmus formuliert.

Die Identifications- und Reglerentwurfsalgorithmen werden in eine auto¬

matisierte Prozedur eingebettet, die dem Anwender nur wenig aktives Ein¬

greifen und geringes Expertenwissen abverlangt. Diese Prozedur ist in drei

Teile gegliedert, von denen die ersten beiden die Identifikation des Ma¬

gnetlagersystems im Stillstand umfassen. Der dritte Teil besteht aus einer

Folge von Schritten in denen Reglerentwurf für den elastischen Rotor, Re¬

gelgütetests am System und Identifikation der gyroskopischen Matrix bei

steigenden Drehzahlen wiederholt werden bis die Maximaldrehzahl erreicht

ist oder der letzte Regler nicht mehr weiter verbessert werden kann.

Die Prozedur ist an verschiedenen Konfigurationen eines Prüfstandes mit

sehr elatischem Rotor getestet worden. Auch für stark gyroskopische Ro¬

toren wurden gute Ergebnisse erzielt.



Chapter 1

Introduction

In this chapter, a short overview of the operating principle and the basic

structure of active magnetic bearing (AMB) rotor systems is given. The

necessity of controllers is elaborated, and the state of the art of AMB

controller design is outlined. Based on this analysis, the objectives of this

thesis are formulated. Finally, an overview of the thesis is given.

1.1 AMB Rotor Systems

1.1.1 Principle of Operation

The first bearing has been invented together with the first wheel. Although
no historical records describing this event are available, this can be con¬

cluded from the fact that whenever a rotating object (e.g. a wheel) is to

be held in a fixed position with respect to a certain frame of reference (e.g.
a cart), a suitable mechanism (bearing) is required.
While the invention of the wheel has in our understanding become a mile¬

stone in the history of mankind, its counterpart, the bearing, has not found

its way into the history books. Considering the fact that there is little use

to a wheel without a bearing, this is rather remarkable.

Although the ball bearing has already been conceived by Leonardo da

Vinci when he studied friction in 1485, it is only in the last two centuries

that durability and performance have become issues of interest and that

specific attention has been paid to the design of bearings.

1
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Power

Amplifier

Electromagnet

Sensor

Controller

Figure 1.1: Operating principle of a 1-dof AMB

The first ball bearing was employed in 1795 in a French military cart

[Rachline90]. While this invention and the improvements made later con¬

stitute a significant improvement over ancient technology, friction and

therefore losses and wear can never be entirely eliminated in these con¬

ventional bearing designs. As a result, the achievable rotational velocities

remain limited by the bearing temperature.

Due to the demand for higher velocities, new concepts for holding rotating
bodies in place without friction were developed. Today the most widely

spread concept for contact-less lévitation is that of magnetic lévitation.

The basic operating principle of such systems is illustrated in Figure 1.1

for a one degree of freedom system.

The core of this system is formed by an electromagnet that exerts magnetic
forces on a ferromagnetic ball that is to be supported without contact. If

a current is passed through the magnet, it exerts an attractive force on the

ball that opposes the gravitational force which pulls the ball downward.

If the current is kept constant and the ball moves downward from the

equilibrium position, the restoring magnetic force on the ball decreases as

the distance to the magnet increases. This leads to the ball falling down.

If on the other hand the ball moves upwards, the attractive magnetic force

increases, and the ball will inevitably be accelerated towards the magnet.
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Power

Amplifier

10 +„

X

Figure 1.2: Scheme of a radial Active Magnetic Bearing operated with

current control and in differential driving mode.

To avoid this unstable behavior, the electric current must be permanently

adjusted. To do this in an appropriate manner, a sensor permanently
measures the ball's deviation from its reference position. Based on this

measurement, a controller (microprocessor) computes what current should

be applied to the magnet. A power amplifier generates this current and

passes it through the electromagnet. With an appropriately designed con¬

troller the ball can be held at its reference position, and the dynamics of

the suspension can be adjusted in a wide range.

In technical applications the concept outlined above is extended as shown

in Figure 1.2. For each of the two degrees of freedom, there are two oppos¬

ing electromagnets that are operated in differential driving mode. In this

configuration, forces can be exerted on the rotor in arbitrary directions in

the plane and the gravitational force is no longer required to keep the rotor

in position.

In the above system, the magnetic flux and therefore the magnetic force

Fa exerted by the magnets depends on the coil current id and the rotor
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Radial

Bearing A
Motor

Radial Axial

Bearing B Bearing

Backup

Bearing

Radial Radial

Sensors A Sensors B

Radial

Controller

Axial

Sensor

Figure 1.3: AMB Rotor System with Axial and Radial Bearings and Motor

Drive

position d, where d represents any of the bearing axes x and y from Figure
1.2. For each axis, this relationship can be linearized with good accuracy

to:

Fd = kid+ksd, d = x,y (1.1)

In the above, the coefficient ki is denoted force-current factor, and ks is

called force-displacement factor.

The standard configuration for AMB rotor systems is shown in Figure 1.3.

It consists of a rotor supported by two radial bearings like the one shown in

Figure 1.2 and one axial bearing. Besides the AMBs, there are additional

retainer bearings — usually roller bearings or solid rings — that support

the rotor when the system is switched off and during overload conditions.

The air gap width between the rotor and the electromagnets is typically
in the range of 0.2-2mm, that between the rotor and the retainer bearings
0.05-lmm.

The above configuration allows to support of the rotor in five degrees of

freedom. The design with the motor on the shaft enables rotation of the

shaft without any contact between fixed and rotating parts. This has the

following advantages:

Higher rotational speeds. The achievable velocity is no longer limited

by the bearings. The new limit is imposed by the mechanical proper¬

ties of the rotor materials, and circumferential speeds up to 200m/s
and more can be reached at the bearing locations.
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Lower energy consumption. The absence of bearing friction greatly re¬

duces losses and permits the use of less powerful drives.

Cleanliness. As no lubricants are involved the system can be operated in

conditions where no contamination can be tolerated (e.g. vacuum,

clean-rooms, food industry).

Reliability. Due to the contact-less operation there is no mechanical

wear. Maintenance intervals and the life time of the system are

significantly prolonged.

New machinery designs. Systems can be designed in such a way that

the rotor is entirely submerged in the operating medium (canned
pumps).

Adjustable rotordynamics. By means of different controllers, the dy¬
namic properties of the system can be varied within a wide range.

In particular, rotor vibrations can be actively damped.

Unbalance compensation. By taking advantage of the air gap the rotor

can be allowed to spin about its principal axis of inertia instead of

its axis of geometric symmetry. This eliminates housing vibrations.

System monitoring and smartness. With only little additional cost a

system for observing the operating conditions and for fault compen¬

sation can be added. The system can use the sensor signals from the

AMBs as inputs and use the AMBs as actuators to counteract faults

[Schweitzer98], [IMP01].

These advantages have led to employment of AMBs in a variety of appli¬

cations, among them:

• compressors • textile spindles

• turbines • turbo molecular pumps

• tooling machines • clean room applications

• centrifuges • space applications
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1.1.2 Controller Design for AMB Systems

A suitable controller is a prerequisite for the operation of any AMB system.
In the following we will clarify what 'suitable' means in this context by

listing typical requirements for AMB controllers.

Stability. The controller must stabilize the nominal system at standstill.

Performance. The controller must satisfy certain application dependent
criteria concerning the behavior of the suspended rotor, e.g minimum

stiffness and rejection of disturbances.

Robustness. Stability must be preserved if the system changes slightly
with respect to the nominal model (modeling errors, thermal effects).

Robust performance. The performance criteria should also be met in

face of small system changes.

Gyroscopic effects. During rotation, the rotor's system dynamics change
due to gyroscopic effects, which must be dealt with by the controller.

Although a special case of robustness, this is stated separately due

to the great demands made.

Flexible rotors. Slender rotor structures typically show very weakly

damped high-frequency eigenmodes (damping factor £ « 0.001).
These modes should be actively damped by the controller. In any

case destabilization must be avoided.

Non—collocation. In typical applications, the rotor displacement is not

measured in the bearing but next to it. It is therefore desired that

controllers can deal with this situation.

Discrete control. For implementation on microprocessors, digital con¬

trollers are required. Discretization of continuous time controllers

may degrade performance and robustness.

Low computational cost. Due to restricted computing power and min¬

imum requirements on sampling time, the allowable computational

complexity is limited. This has consequences for the admissible con¬

troller order.

Besides these requirements on the controller, there are additional demands

on the design method:
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Low modeling effort. The method should require as little modeling and

model tuning effort as possible on behalf of the control engineer.

Ease of application. Little expert knowledge should be required for the

design, and manual hand tuning after the design should be mini¬

mized.

Design Time. For short development cycles, controller design times should

be short.

Design Flexibility. Performance and robustness requirements should be

includable in a flexible and clear manner.

Transparency. The design method should provide information on the

extent to which the stated goals were achieved without practical
tests.

Over the last 15 years, large efforts have been made to develop methods

for systematic AMB controller design. In the following, a brief overview of

the developed methods will be given. Then, the methods will be compared
with respect to the criteria formulated above.

In the early days of AMBs, computing power was very limited. At this

time researchers were working on the development of design procedures for

controllers with a low computational burden. Bleuler developed a method

for designing decentralized PD controllers for rigid rotors [Bleuler84]. Salm

introduced a control procedure for flexible rotors with collocation and gave

stability guarantees for the case of continuous time control [Salm88]. Her¬

zog identified this to be a special case of passive control1 and showed that

the stability guarantee does not hold for sampled systems as passivity is

lost due to the sampling operation. Furthermore, he found passive con¬

trollers to generally have poor disturbance rejection capabilities. He also

investigated the issue of theoretically achievable AMB controller perfor¬
mance in an ^oo setting [Herzog91].

With Larsonneur's SPOC-D algorithm the design of optimal, low order

digital controllers with predefined structure became possible [Larsonneur90].
This method is applicable to flexible rotors and shows better results than

PID, but does not allow explicit consideration of gyroscopic effects.

In 1994, Gähler was confronted with the problem of finding a stabilizing
controller for a highly flexible, highly gyroscopic rotor with non-collocated

1 Recall that this term is unrelated to passive magnetic bearings, whose name comes

from their operation based on permanent magnets, i.e. without control.
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sensors. He developed a computer based design tool for phase-shaping of

transfer functions by manual pole placement. By means of this tool he

designed a controller for the system, making explicit use of non-collocation

[Gähler98].

%oo //^-synthesis control was first applied to AMB systems around 1990.

While the pioneering work focused on applicability of the method [Fujita90],
[Cui92], later work aimed at disturbance attenuation [Namerikawa96],
[Yamashita96]. Performance-oriented implementations of /^-synthesis con¬

trollers for rigid tool spindles were realized by Fittro and Knospe [Fittro98].
Systematic lumped uncertainty modeling was addressed in [Lösch98]. An

uncertainty model for the bearing itself was derived in [Namerikawa98].
Recently, [SchönhoffOOb] has successfully implemented a ^-synthesis con¬

troller based on the four-block problem framework on an energy storage

flywheel supported by AMBs.

Table 1.1 gives an overview over the capabilities and shortfalls of the in¬

dividual approaches. Besides the methods listed in the table, other linear

controller design methods have been applied to AMB systems, among them

Gain Scheduling, Quantitative Feedback Theory (QFT), Linear Quadratic
Ricatti (LQR), Decoupling Control, Hoo -Loop Shaping, and others. How¬

ever, these approaches either were of experimental nature, difficult to use,

similar to other methods, or expensive to implement. None of them had

prospects of becoming a standard design method for AMB controllers.

Therefore these methods have not been considered in the table.

Additionally, a variety of non-linear and adaptive control algorithms have

been applied to magnetic bearings. However, most of these applications
were of experimental nature with extremely simplified hardware setups and

did not aim at real-world application, [Bleuler90], [CosticOO]. In particu¬

lar, these methods have not been applied to rotors, not to mention flexible

rotors. Other approaches have focused on sub-problems like unbalance

attenuation rather than stabilization of the rotor [Knospe97].
Furthermore, sliding mode control has been investigated in conjunction
with zero power operation of AMBs by several authors [Nonami96],
[Allaire98], [ArigaOO]. This research has aimed at operating AMBs with¬

out bias current, i.e. in a nonlinear mode of operation. The benefit of

this approach is a significantly reduced power consumption. This could be

a promising approach for future AMB systems, although many issues are

left to be resolved — for example, the question of how excitation of weakly

damped uncertain flexible poles can be avoided in the nonlinear setting is

still to be resolved.
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As a consequence, nonlinear methods have also not been included in the

collection of application oriented controller design methods presented in

Table 1.1.

As can be seen from this table, only two design methods, Gähler's phase

shaping method and /i-synthesis, cover the full scope of problems and ex¬

plicitly allow gyroscopic effects. A deeper analysis shows that both meth¬

ods have strong points, but also considerable shortfalls.

The phase shaping method can be used to design low-order discrete con¬

trollers based on a relatively simple system model. However, the method

fully relies on expertise of the user who has the responsibility to design the

controller by placing poles and zeroes in the complex plane based on his

own judgement. Performance requirements cannot be formulated directly,
but must be considered by the designer, which often poses considerable

problems. Furthermore, introduction of high order filters causes stability

problems in many cases [Gähler98], which imposes additional constraints

on the controllers that can be designed by this method. Despite these

drawbacks, and although yielding only SISO controllers without any cross

coupling between the channels, this method can be considered the state of

the art method for AMB controller design.

The /^-synthesis method on the other hand relies on powerful algorithms
that are commercially available [Balas95a]. It allows to explicitly include

robustness and performance requirements formulated in the frequency do¬

main, and the achievement of robust performance can be directly validated

after the design. However this method yields high order controllers in con¬

tinuous time. A further disadvantage is the need for sensible selection of

weighting functions which is not intuitive. The biggest drawback, how¬

ever, consists in the need for a very precise model of the AMB system.
This may be surprising when considering that ^-synthesis is known as a

design technique for robust controllers that can compensate for plant un¬

certainties. However, the special type of uncertainty encountered in AMB

systems — uncertain high frequency poles with very weak damping —

constitutes an exception here since small movements of poles may incur

very large changes of transfer functions in the %00-sense.
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As a consequence, it is a prerequisite for application of the method that the

control engineer creates a finite element model of the rotor, adds a model

of the bearings and the foundation, and tunes this compound model by

comparison to measurement data until it matches the real structure. In

particular the fine-tuning of the model often takes a long time, rendering
controller design by /^-synthesis just as difficult and time-consuming a task

as the phase shaping procedure.

Summarizing the above it can be stated that with the methods available

today, controller design for AMB systems with flexible rotors and non-

negligible gyroscopic effects is a difficult and time-consuming task that

requires expert knowledge from both the field of electrical and mechanical

engineering.

1.2 Motivation and Objectives of this Thesis

1.2.1 Motivation

Active Magnetic Bearings have been subject of scientific study for more

than two decades and are now increasingly used in industrial applications.
For their operation, a stabilizing controller is a prerequisite. In the past,

much research on controller design for magnetic bearings has been carried

out. However, this early research focuses mainly on application of different

control laws to specific test rotors, while only little work on systematic

design approaches has been done. To date, controller design for AMB

systems remains a complex and time-consuming task that is based on

complex modeling and/or strongly relies on expert knowledge on behalf of

the control engineer.

In industrial applications, the trend goes towards more compact systems
with higher integration and lower power consumption. This often leads

to rotors that have elastic eigenmodes within the system bandwidth. In

particular for these flexible rotor systems, a large percentage of the time

required for system development is spent on the design and tuning of a

controller for the system, rendering controller design an important cost

factor in the development of AMB systems.
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1.2.2 Objectives of this Thesis and Approach

The goal of this thesis is to alleviate the task of the control engineer by

reducing the amount of expert knowledge and manual work required in the

controller design process. To this end, research in two directions will be

presented:

1. Minimization of system modeling and model updating requirements.
This will be done by basing the design of a suitable controller on

a system model that is directly identified from the structure to be

controlled instead of a hand made FE-model that requires lengthy

fine-tuning. To this end, new identification algorithms will be de¬

veloped and existing algorithms will be applied and extended where

necessary.

2. Automation of the controller design process. An iterative self tuning

algorithm that designs a stabilizing controller for flexible rotors based

on identified models will be developed. Controller design criteria and

suitable tests to verify the designed controllers' conformity with the

specifications will be derived together with updating rules for the

design criteria, if improvements are required.

The two components mentioned above will be combined to an automated

start-up procedure for AMB systems with flexible rotors as follows. With

the unknown rotor only supported by the retainer bearings, the first step
of the procedure consists in an algorithm that identifies a rigid body model

of the rotor. In a second step, this model will be used to design a low-

gain controller for barely levitating the rotor without exciting any elastic

modes. With the rotor levitated by this controller, a new rotor model

including the flexible modes will be identified. The final controller design
will then be based on this identified model of the elastic rotor.

Throughout this work the bearing characteristics are assumed to be known,
whereas no a priori knowledge of the rotor is assumed. This perspective
accommodates both the view of the bearing manufacturer distributing the

new algorithm described above together with his bearings as well as that

of the control engineer designing a new application based on a standard

AMB.
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1.3 Structure of this Thesis

1.3.1 Outline

This thesis is structured as follows. In Chapter 2, an overview of modeling

techniques and model descriptions for AMB systems and their components

is given.

In Chapter 3, an overview of robust controller design methods and princi¬

ples is given. Being quite extensive, it contains the background information

required to justify and understand the design approaches chosen and deci¬

sions taken in Chapter 5. Together with Chapter 2, this chapter provides
a basis for the developments in the following chapters.

In Chapter 4, identification algorithms for rigid and flexible rotors are

presented and their applicability to the given problem is discussed. The

issue of gyroscopic effects receives special attention in this chapter, and an

algorithm for identification of the gyroscopic matrix is presented.

In Chapter 5, the issue of controller design for AMB systems is addressed.

In the first part of the chapter this problem is solved for rotors of which

only the rigid body dynamics are known. Restrictions imposed by the

unknown high frequency dynamics (flexible modes) are discussed, and an

algorithm for the design of stabilizing controllers for soft bearing settings
is derived. In the second part, controller design for flexible rotor AMB

systems is addressed, the goal being a controller for operating the system

under normal conditions. The state of the art methods are analyzed with

respect to their potential for automation, and the most promising method

is adapted and extended to fit the specific requirements. Special attention

is paid to the question of physical meaning of weighting functions required
for the /i-synthesis controller design and the sensible selection of these

functions.

In Chapter 6, the overall concept of the automated controller design pro¬

cedure is described. Furthermore, criteria for evaluation of the controller

are discussed and measures for iterative adaptation of weighting functions

are given. In addition, a number of useful tools for efficiently performing
the required tests is presented.

In Chapter 7, experimental results are presented. To this end the procedure
is applied to different configurations of a test rig with a reconfigurable
rotor. The thesis ends with Chapter 8, where conclusions are formulated

and an outlook on possible future work is given.
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1.3.2 Finding Your Way through this Thesis

On the way towards the goals formulated above, this thesis touches top¬
ics from a variety of fields: robust control theory, identification, AMB

controller design, AMB modeling, rotor dynamics, and signal processing.
Since readers can be expected to be more inclined towards some of these

topics than towards others, a quick overview on which parts of the present
thesis might be of specific interest to whom is given here.

Readers with interest in robust control and its applications are referred to

Chapter 5. In the first part of this chapter, //-synthesis is applied to solving
the problem of stabilizing an unstable plant with unknown, non-negligible
high frequency dynamics. The second part deals with application of fi-

synthesis to unstable structures with weakly damped, uncertain flexible

poles. In both parts, the selection of the weighting functions involved is

explicitly addressed, and the decisions taken are justified by links to the

underlying theory presented in Chapter 3. Further interest may arise from

the automation of the algorithms that is also presented in Chapter 5.

Readers with specific interest in AMB control might in addition find the

overview over the state of the art in Chapter 1.1.2 interesting.

Readers generally interested in AMBs are referred to Chapter 5.1.4, where

some amendments to the standard linear AMB model are made. Persons

with deeper interest in the modeling of AMB systems may also find the

new approach to amplifier modeling provided in Chapter 2.1.3 to be of

interest.

For the reader mainly interested in rotor dynamics, the new algorithm for

identification of the gyroscopic matrix presented in Chapter 4.3 could be

of interest. This section and the other sections of Chapter 4 contain all

information on identification, including a new algorithm for identification

of rigid body model data from AMB rotors without control.

Finally, Chapter 6.2 contains some tools for efficient transfer function ex¬

traction that may be of interest to AMB practitioners.

For all readers who first wish to get a quick survey over the approach
taken in this thesis, the overview over the developed algorithm provided in

Chapter 6.1.2 may be a good point of entry from which it is easy to follow

the provided links to the sections containing the technical details.



Chapter 2

Modeling of AMB Rotor

Systems

The systems under consideration in this thesis are rotors supported by two

radial and one axial AMB. The model of these systems is orientation inde¬

pendent (up to gravity) and consists of the combination of the models for

the bearings (including amplifiers) and the rotor. Two types of rotors are

typically distinguished. Rotors with all flexible eigenfrequencies beyond
the bandwidth of the control system and the maximum rotational speed of

the system are referred to as rigid rotors. In contrast to this, thin rotors

typically have flexible eigenfrequencies in a low frequency range where they
can be affected by control and/or are passed during run-up and run-down.

These rotors require explicit modeling of their elastic behaviour and are

referred to as flexible rotors.

In this chapter, a brief overview of the typical modeling approaches for

AMB rotor systems is given. The concepts rolled out in the following will

later be taken up in the chapters on identification and controller design.
First, the modeling of the bearings is discussed, followed by modeling tech¬

niques for other components of active magnetic bearing systems. Then,
the model description for a rigid rotor supported by AMBs is presented.

Finally, the modeling technique for flexible rotors is described and a de¬

scription of gyroscopic behavior is formally introduced into the model.

15
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2.1 Modeling of Active Magnetic Bearings

2.1.1 Single-Sided Bearings

In the introduction (Chapter 1), the basic operating principle of active

magnetic bearings has already been outlined. The simplest type of AMB

is that levitating a ferromagnetic body by means of a single magnet, see

Figure 1.1. For this setup, the force exerted on the rotor is (neglecting the

magnetization of the iron) [Schweitzer94]

where s is the air gap between rotor and magnet and k = fionc2Ac cos(ap),
where //0 is magnetic field constant of the vacuum (/io=4"7rxl0-7 Vs/Am),
nc is the number of windings in the electromagnet's coil, Ac is the cross

section of the iron and a is the angle under which the magnetic forces

affect the rotor for each of the poles (in the case of a radial bearing with

four pole pairs, a = 22.5°.

The above equation can be linearized around a nominal operating point
with air gap so and a corresponding current io that holds the ball at

position Sq. The above equation can then be rewritten with the definitions

ix = i — io and x = so — s (positive x in upward direction) as

4 (so - x)2

Linearization then yields

with

/ — KSX + rZilx (,'"•'-'/

ks = --\, and k{ = --\ (2.4)
2 sq6 2 s02

2.1.2 Two-Sided Bearings

In technical applications, single sided bearings are rarely used. Instead of

using a single magnet to position the rotor in one axis, a second magnet
identical to the first one but exerting forces exactly in the opposite di¬

rection is added. This makes the bearing independent from gravity and

improves the achievable dynamics since now forces on the rotor can be
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exerted in both directions of each axis. An example for this configuration
can be found in Figure 1.2, where a radial bearing with two axes (and
hence four magnets) is shown.

In the majority of applications, the magnets of each axis are operated in

differential driving mode, which means that a constant current io called

premagnetization current or bias current is passed through both coils, and

the control current ix is added to the coil exerting forces in the positive
direction and subtracted from the opposite coil. Based on Equation (2.2),
the non-linear relationship describing the force that is exerted on the rotor

in the two sided configuration can be written for each axis as

fto + ix)2
_

{io-ix)2\
(<2 ,x

(So - xf (s0 + xY ) y -D)

with k = fionc2Ac cos(ap).

Again, this relationship can be linearized to

/ = ksx + kiix (2.6)

with, assuming that the rotor nominally is centered between the magnets,

and

*, = £/

= fcg (2.7)

= k^ (2.8)

In the setting described above, the nominal air gap So is given by the

geometry of the system. It is the air gap present on each side if the

rotor is in the center position. The bias current z'o, however, can now be

arbitrarily chosen.

As can be seen from Equation (2.7) and Equation (2.8), the force-dis¬

placement factor ks and the force-current factor ki in the above equation

depend on the bias current io as follows

ki — kiio, and ks = /^o2, (2.9)

where k\ and k<z are constants depending on the bearing geometry (ma¬
terial, dimensions, air gap, and coil turns). This implies that the bearing
stiffness can be adjusted by means of the bias current io.
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In principle, the stiffness in each of each axis can be adjusted individu¬

ally. However, in almost all practical applications, the two axes of a radial

bearing are designed to be identical. Besides being intuitive, this also is fa¬

vorable for the system's rotor dynamics. Identical bearing stiffness imply a

symmetrical support, which entails that in operation the rotor's backward

modes cannot be excited by unbalance, see Chapter 2.3.3. Throughout
this work, the radial bearings are assumed to be symmetrical, allowing
to characterize them by a single force-displacement factor ks and a single
force-current factor ki.

One can show that magnetic bearings operated in differential driving mode

have an almost linear current-force relation even for slightly eccentric rotor

positions (up to 10% of the air gap) [Schweitzer94].

2.1.3 Other Components of the AMB Support

The AMB support does not only consist of the magnetic coils but also of

amplifiers and sensors, see Figure 1.3. The modeling of these components
will be addressed next.

Power Amplifiers

System Description

In the setting of this work, AMBs are operated with current control, i.e. at

each sampling step the controller calculates the size of the control current

that is to be applied to the coils. This current is then generated by the

power amplifiers. To this end, the coil current iis is measured and sub¬

tracted from the set current iset. An internal controller in the amplifier
then adjusts the amplifier's output voltage such that the desired coil cur¬

rent is achieved. The internal control loop often is of very simple structure,
in many cases a simple proportional gain controller is used. The overall

configuration consisting of amplifier and coil is depicted in Figure 2.1. The

transfer function from set current to coil current for such an assembly is

T = —
-^

—. (2.10)
sL + (RC + P)

y J

This first order transfer function has a corner frequency
out = (P + Rc)/L, which restricts the current output at high frequen¬
cies. The amplifier bandwidth (defined by wt) strongly depends on the

size of the internal amplifier gain P.
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'set
A

u.

out

Amplifier

is

Figure 2.1: Scheme of current amplifier with AMB

Further restrictions result from the fact that switched or pulse width mod¬

ulated amplifiers are typically employed. In these devices, the demanded

set current is created by means of very quick switching among a positive
or negative voltage that is applied to the coil. If the coil current is too

small, the positive voltage Up is applied. If it is too large, the negative

voltage —Up is used. The switching takes place at a frequency far above

the sampling rate and the band width of the AMB control, e.g. at 80kHz.

This procedure has two consequences. First, the set current value is not

exactly achieved but the true current oscillates around this value. This

causes remagnetization losses in the system. Then, due to the finite volt¬

age used in the amplifier, the current cannot be made rise or fall arbitrarily
fast.

The AMB coil can be interpreted as the series interconnection of a copper

resistance Rc and an inductance L. The coil's transfer function from volt¬

age to current is that of a first order lowpass filter with cutoff frequency
co>o = Rc/L. Inserting the maximum voltage Up (valid for all frequencies)
then yields for the maximum achievable bearing current the following up¬

per limit:

Un
1max,voltage —

sL + Rc
(2.11)

In the above, the achievable constant maximum current is solely deter¬

mined by the resistance Rc and the maximum amplifier voltage Up, i.e.

ijjR = Up/Rc. As this value is typically very large (e.g. 300A), it is only
of theoretical nature. To protect the coils and the power amplifier from

overheating, an artificial set current limit imax,hw is introduced (e.g. 8A).
As a consequence, two limits are effectively restricting the current output:
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log/
A

co0 cocj œT log CO

Figure 2.2: Transfer behaviour of AMB amplifier for different bias currents

In the low frequency range up to the intersection point Pc of the limit line

with the R-L curve, the output is limited by the artificial limit imax,hw
Beyond the crossover frequency ujc, the current output is limited by the

coil's lowpass characteristic, see Figure 2.2.

For analysis of the control relevant limitations, the bias currents must be

considered in the above analysis. Being constant, the bias currents simply
reduce the available control current from imax,hw to imax — imax,hw — *o-

Typically, the bias currents are chosen to be imax,hw/2i yielding an equally

large current amplitude available for control. It is worthwhile noting that

with decreasing current amplitude available the limitations imposed by

voltage saturation (intersection point with the R-L curve) are shifted to

higher frequencies.

These current limitations are superimposed on the amplifier transfer func¬

tion T, whose roll-off may further limit the amplifier output current. All

control-relevant limitations can be shown in one diagram if the transfer

function T is scaled by the control relevant current limit imax and included

in the picture, see Figure 2.2.

Model

A good model for the system described above should capture the men-



2.1. Modeling of Active Magnetic Bearings 21

tioned restrictions without too much conservatism and at the same time

be as simple as possible. Furthermore, it is of interest to find a linear

model description that allows inclusion of the model in the standard (lin¬
ear) framework of robust controller design presented in Chapter 3.

These requirements are best achieved with a model that is based on the

transfer characteristics of the unsaturated amplifier (Equation (2.10)) and

adequate limitations (weighting functions) that help keep the set currents

in a range that avoids saturation during closed loop operation of the plant
rather than explicitly modeling the complex behavior of the saturated ac¬

tuator.

The model resulting from this approach is rather simple, linear, and of low

order, as will be shown in the following.

How exactly the above behavior is adequately expressed in a model suitable

for controller design depends on the system parameters like the corner

frequency wt and the intersection frequency of the T • imax curve with the

R-L curve:

• In cases where the function T shows no significant decrease (in both

amplitude and phase) within the control relevant frequency range

(e.g. up to 1200Hz), the amplifier dynamics can be neglected. If in

this case the R-L curve does not intersect T • imax within the con¬

trol relevant range, the model consists of a single constant weighting
function Wi (see Figure 2.3a), and the model order is zero. In the

case where there is an intersection of the curves at relevant frequen¬

cies, the model structure is the same, but Wi~ must be chosen to

approximate the limit imax up to the intersection point, and then

the R-L curve, yielding a first order weighting function and hence a

model order of one state per control channel.

• If T decreases significantly within the control relevant frequency

range and no intersection with the R-L curve occurs before the de¬

crease is significant, the amplifier dynamics cannot be neglected. If

in this case no intersection with the R-L curve occurs within the

control relevant frequency range, the model consists of the transfer

function T and a weighting function Wi limiting the set current to

imax (Figure 2.3b). In this case, the model order is again one state

per channel.

If however such an intersection does occur, the most general case

is encountered and the amplifier should be modeled as indicated in

Figure 2.3c, where the dynamics are taken care of by the transfer
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Figure 2.3: Block diagrams of different amplifier models

function T and the saturation effects are captured by two weighting

functions, Wi limiting the set current to zmax and a second weight¬

ing function W2 equal to the inverse of the R-L curve accounting for

voltage saturation effects. The cost of this model is 2 states per con¬

trol channel, one from T (Equation (2.10)) and one from the output

weighting function W2. Being constant, Wi does not increase the

model order.

• In the special case where the function T decreases non-negligibly
within the relevant frequency range but intersection with the R-L

curve occurs before the decrease is significant, the adequate model

consists again of that from Figure 2.3a with Wi"1 chosen to approx¬

imate imax up to the intersection point, and then the R-L curve, and

the model order is one state per channel.

The above modeling procedure yields a both simple and adequate repre¬

sentation of the actuators in the controller design process.

Operation with Reduced Bias Current

In most of the standard literature and the majority of applications opera¬

tion of AMBs with a bias current half the size of the maximum amplifier

output current is considered (io = imax,hw/2)- Practical experience shows

however that in numerous cases it is attractive to operate AMB systems
with a lower bias current than imax,hw/2- This yields both a reduced power

consumption and an easier to control system due to less unstable poles,



2.1. Modeling of Active Magnetic Bearings 23

see Chapter 2.2.

In the context of this work, additional interest in operating AMBs with

reduced bias current arises from the requirement to levitate rotors with un¬

known high frequency dynamics, see Chapter 5.1, motivating the following
detailed analysis of the subject.

In context of what has been said in the last section, reduction of the bias

current forces the control system designer to choose among two operating
modes emerging from the adaptation of bias current:

• The set current can be artificially restricted not to exceed the bias

current. This guarantees linear operation. However, this approach
is conservative as a considerable part of the actuator power is given

away. This is reflected by the hatched region in Figure 2.2.

• Alternatively, the amplifiers can be exploited up to their hardware

limit, i.e. a set current limit of imax,hw ~ *o can be used. This

entails loss of linearity due to nominally negative coil currents being

approximated by zero currents for set current amplitudes larger than

z'o- The corresponding amplifier limitations are indicated by the grey

region in Figure 2.2.

For both of the above approaches, amplifier model descriptions can be

directly derived based on the results from the last section and an adequate

adaptation of the notion of imax •

However, in order to choose among the two options it is necessary to ob¬

tain an understanding of the consequences entailed by the loss of linearity
encountered in the second case presented above.

In order to obtain this understanding, the set current to force trans¬

fer behavior of an amplifier/bearing combination has been simulated in

SIMULINK. The model included the full nonlinear dynamics of the switched

amplifiers as well as bearing nonlinearities1. The bearing has been oper¬

ated with a bias current of io = imax,hw/^- Sinusoidal set current signals

of different amplitudes i and frequencies have been fed into the amplifier,
and the resulting bearing forces have been analyzed.

The results of this investigation are shown in Figure 2.4. The figure shows

1The amplifier and bearing modeled are those from the test rig used in Chapter 7 for

experimental validation of the algorithms derived in this thesis. The system parameters

are given in detail in Chapter 7.1.
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0 max,hw
'

0 max,hw

Figure 2.4: Nonlinear transfer behavior of amplifier/bearing when operated
With io = imax,hw/4:

that for set current frequencies up to 600Hz, the behaviour is qualitatively

always the same:

• Perfect linearity as predicted by the model is achieved for excitation

signals with i < io-

• A larger output force than predicted by the linear model for excita¬

tion amplitudes between io and imax-hw — io- This is caused by the

fact that zero current is applied to the coil counteracting the force

due to saturation.

• For amplitudes i larger than imax,hw —

*o> the amplitude difference

decreases again and the force exerted on the rotor approaches the

value predicted by the linear model (dashed line). This is due to the

fact that saturation now occurs on both bearing coils.

For excitation frequencies of 1000Hz and more, it can be observed that the

force amplitudes achieved decrease and converge to a limit value smaller

than the maximum bearing force. This is due to the limitations imposed
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by voltage saturation (R-L curve). This effect is covered by the linear

model presented in the last section.

Summarizing the above observations, it can be stated that AMBs can be

operated beyond their linear operating range without overly strong con¬

sequences. In the present example, the deviation of linear prediction and

nonlinear simulation is in the order of 25% of force amplitude and only a

few degrees of phase.
To what extent this is possible must however be judged from case to case

— in the limit case when z'o is selected to be very small, the dotted line rep¬

resenting the linear model's prediction of the force-current factor ki will be

almost horizontal, and the nonlinear curves will be parabolic, yielding an

arbitrarily large error between model prediction and actual force output.

How large deviations can be tolerated finally depends on the system's gain

margin. In critical cases, problems can be avoided by increasing the bias

current io or by using a set current limit between io and imax,hw — io-

For high precision measurements, however, excitation amplitudes consid¬

erably larger than the bias current should be avoided.

Finally, it is important to realize that in spite of the fact that the nonlinear

force amplitude coincides rather well with the linear prediction in the range

imax,hw — io < i < imax,hwi these amplitudes must be avoided in practice
due to a large phase error (about 30 degrees in this example) that results

from the double-sided saturation and is not covered by the linear model.

Sensors

Different types of displacement sensors are used in today's AMB machin¬

ery, among them inductive sensors, eddy current sensors, capacitive sen¬

sors, magnetic sensors, and optical sensors [Schweitzer94]. Well-designed
sensors have micrometer resolution and very good linearity properties with

very small phase lag within a sufficiently large measuring range. Their

measurement frequency range is many times larger than the sampling fre¬

quency of the system. As a consequence, no special model for the sensors

is considered, merely the low-pass filters (if any) for noise reduction are

included in the model. Inclusion of a reasonable (small) amount of sensor

noise in the controller design algorithms used in this work is even favorable

for a successful design, see Chapter 3.3.1.
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2.1.4 Dynamic Model of the Bearing

Based on the bearing model from Equation (2.3) and the remarks made in

the last section, the magnetic bearing can be modeled as a linear device.

The equation of motion for a single mass m supported by a magnetic

bearing can be expressed as follows:

mx = ksx + kiix (2.12)

Based on this equation, the Laplace transform can be used to derive the

following model for the 1-dof AMB:

X(s) = ~^ü:Ix(s) (2.13)
m

This implies that a single mass supported by an AMB in one degree of

freedom is a second order system with poles at

/k~ k-
— and a static gain of kpiant = ~~j~- (2-14)

From the existence of a pole on the positive real axis it can be directly
concluded that the system is unstable.

2.2 Modeling of Rigid Rotor AMB Systems

In this section, a model description for rigid rotors in AMBs without con¬

trol will be introduced. Figure 2.5 schematically shows the system under

discussion. As is indicated in the diagram, the axial support is not con¬

sidered here. This is justified by the negligible coupling of axial and radial

dynamics and the fact that for the vast majority of cases the axial dynam¬
ics can be described by the single mass model derived in section 2.1.

Furthermore, the analysis is restricted to rigid rotors at standstill. This

conforms with the requirements of this thesis, where the rigid rotor model

will only be used for the non-rotating rotor. This restriction is convenient

since at standstill there is no coupling between the radial motion in two

perpendicular planes. As a consequence, it is sufficient to analyze the

motion in one plane.

The radial rotor motion in one plane can be completely described by a rigid
beam model, i.e. by the displacement x of the rotor's center of gravity S

and the rotation of the rotor about an axis through S.
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Bearing A Bearing B

Figure 2.5: Schematic view of AMB system (one plane, radial dynamics)

Using the notation from Figure 2.5 and the expressions for the bearing
force derived in the last chapter, Equation (2.3), the dynamics of the rigid,

non-rotating rotor supported by AMBs can be described in one plane by
the equation

m 0 X

= Ti
0 Ir a

ks,A 0 xA kijA 0 iA rhg
+ J-i —

0 kStB J [xb] [0 kitB J [iß] [ 0

(2.15)
In the above, m is the rotor's total mass, Ir is its radial moment of inertia,

kSjA and kSjB are the force-displacement factors of bearing A and bearing

B, and A^ and ki^s represent the corresponding force-current factors.

The matrix Ti describes the transformation of the forces generated by the

bearings to the center of gravity and is given by

Ti =
1 1

-a b
(2.16)

The rightmost expression from Equation (2.15) describes the influence of

gravity on the system. The term rhg stands for the force of gravity radially

acting on the rotor in the plane under consideration.

If the rotor is horizontal, for the vertical plane mg = mg, and for the

horizontal plane rhg = 0. If the two planes rotated by 45° with respect to

the vertical/horizontal are considered (the typical case), rhg — l/y/2 • mg

for both planes. For vertical rotors, rhg = 0 for both planes since no

component of gravity is acting in radial direction.
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The above system can be entirely transformed to bearing coordinates using
the transformation matrix T2 defined by

X

a

= T2
xA

_xb
_

The transformed system then is of the form

m\ ms

m3 ra2

xa

xB

=

ks,A 0

0 ks,B
_

XA

xB

+
h,A 0

0 kiiB_

iA
-T2

rhg

0

(2.18)
with

mb2 + Ir ma? + Ir mab — Ir . .

mi =
7—TTvTi m2 =

"7—TTÄ2-' and m3 =

/ , n2 > (2'19)
(a + o)2 (a + o)2 (a + by

This representation exists for any rigid beam motion in the plane.

2.2.1 Poles of the Rigid Rotor System

For the above system, the poles can be directly calculated from the homo¬

geneous system (without external forces from gravity or currents):

mi ms

m3 m2

Defining Ai and A2 as the eigenvalues of the matrix

mi ms

ms m2

the system poles are

Pi,2 = ±-\Aü' and P3,4 = ±V^2i- (2.22)

A schematic plot of typical Laplace plane pole locations for one plane of

a rigid rotor AMB system without control is shown in Figure 2.6. The

uncontrolled AMBs move the four rigid body poles of the free rotor from

the origin to symmetric positions on the real axis.

Like in the case of the lumped mass supported by an AMB investigated
in Chapter 1.1.1, the one-plane rotor is an unstable system. The model of

b a

-1 1
(2.17)

XA

xb

ks,A 0

0 ksn

xa

xb

0

0
(2.20)

ks,A 0

0 kSjB
(2.21)
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Figure 2.6: Pole distribution of a rigid rotor AMB system (one plane)

the full rotor at standstill consists of the two (in case of an axisymmetric
rotor and symmetrical support identical) models for the two perpendicular

planes. The pole distribution is identical to that from Figure 2.6, but each

pole occurs twice. The model describing the radial motion of the rigid
rotor in AMBs without control hence has eight poles, four of which are

unstable.

2.2.2 State Space Description

The model derived above is easily transformed into a first order system of

differential equations of the following form:

x(t) = Ax(t) + Bw(t) with x(0) = x0

z(t) = Cx(t) + Dw(t)

With the definitions

Mi
m\ ms

ms m2

,Kj
ks,A 0

0 kSiB
,
and TP =

(2.23)

h,A 0

0 ki>B

(2.24)
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and

Mr
MP 0

0 MP
,Kj

KP 0

0 KP
,
and Tp =

TP 0

0 TP
, (2.25)

the matrices A, B, C, and D in Equation (2.23) are

A =

C =

n4x4 r4x4

-M^Kp 04x4

Ts 0Zx4 G Rlx8

D8x8 B

n4x4

M^Tp
>8x4

D=[0] GRZx4 (2.26)

In the above, the matrix Ts G
,Zx4

represents the transformation matrix

from the rotor's displacement at the bearings to the displacement at the

locations of the / sensors. In typical configurations, one sensor is used for

each AMB axis, i.e. I — 4. In the case of pairwise coincidence of sensor

and actuator locations (collocation), Ts = I4x4.

The state space model describing the radial motion of the rigid rotor has

four inputs (the two current components on each bearing) and four out¬

puts (the sensor outputs). The poles calculated above are identical to the

eigenvalues of the matrix A.

2.3 Modeling of AMB Systems with Flexible

Rotors

In this section, the model of a flexible rotor in uncontrolled AMBs is pre¬

sented. Like in the rigid case, the axial dynamics are neglected. First,

some general assumptions are formulated. Then, a model for the flexible

free rotor (without bearings) at standstill is presented. In the next step,

rotation is included into the model. Finally, the AMBs are added to the

rotor model.

2.3.1 General Setup

The following is assumed for all rotors considered in this thesis

• The rotor is axisymmetric (up to small unbalances)
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• All displacements of points from their reference positions are small

with respect to the rotor dimensions.

• All system parameters are time-invariant.

• The rotational speed is changing slowly enough to be considered

constant.

• Rotor torsion is negligible.

• The rotor's inner damping is weak and acts like a moderate structural

damping (material damping) that can be modeled as proportional

damping.

• Sensors and actuators can be associated with discrete points on the

structure.

These boundary conditions are fulfilled in the majority of practical cases

and ensure that the problem can be treated by the linear theory presented
below. Besides admitting linear analysis of the problem, assuming small

deviations permits us to regard the rotor's axial dynamics as independent
from its radial dynamics.

2.3.2 Model Descriptions for a Free Flexible Rotor at

Standstill

In the following, the model for the flexible rotor at standstill is derived and

several model representations are presented. The derivation is based on the

finite element method. However, this is only for the sake of convenience and

formal completeness. The goal of the controller design technique presented
in this thesis is to avoid finite element modeling (and in particular the

time consuming model updating it entails). Instead, the rotor model is

to be obtained by identification. In the identification, the Finite Element

(FE) method will not play a role. Nevertheless, the FE method yields an

adequate model structure for the systems to be identified.

Finite Element Modeling

Complex flexible structures subject to small deformations can be modeled

by means of the so-called Finite Element (FE) method. The basic concept
of this method is to partition a continuous structure into discrete elements
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node i
node i+1

Figure 2.7: Finite Element representation of rotor element

of simple geometry. Between neighboring elements, connecting nodes are

introduced. Each of these nodes has six degrees of freedom about which it

can move. For each element a local description of its possible deformation

is formulated, based on which a mass, damping, gyroscopic and stiffness

matrix can be derived for the element. The deformation of each individual

element can be described by the displacement of its nodes. The fact that

nodes are shared by several elements enforces an interdependence of the

deformation of the different elements of the structure. Using the informa¬

tion on the location and orientation of the individual elements with respect

to the global coordinate system, the individual element matrices can be

transformed and assembled to global matrices that form a model of the

complete structure. A comprehensive introduction to the Finite Element

method can be found in [Gasch89].

Rotors fulfilling the conditions from Chapter 2.3.1 can be modeled using

cylindrical beam elements. For the individual elements, typically the Tim-

oshenko beam model is used. The nodes are all located on the rotor's axis

of symmetry. Since the axial motion is independent from the radial motion

and since the rotor is expected to rotate, only four degrees of freedom per

node are considered. These are the rotations a^ and ßi about the x and y

axes as well as the displacements Xi and yi in these directions, see Figure
2.7.

The local law of motion for each element is entirely described by the choice

of the beam model, the geometry, and the constants describing the material

properties of the element. Transformation of the individual elements to the

global coordinate system and connecting the elements at the nodes yields
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the following equation of motion for the free rotor (without external forces):

Mq + (D + üG)q +(K + N)q = 0 (2.27)

with

M the symmetrical, positive definite mass matrix,

D the symmetrical damping matrix,

G the skew-symmetric gyroscopic matrix,

K the symmetrical, positive semi-definite stiffness matrix,

N the skew-symmetric matrix of non conservative bearing forces,

q the displacement vector, and

Q the rotational speed.

In the above, all matrices are square and the displacement vector q consists

of the displacements and rotations of the individual nodes as follows:

—x7 —y

with q = [. ..,Xi,ai,...] and q = [... ,yi,ßi,. - -]-
—ïe —y

The dimension of the system is q — 4/?, where k is the number of nodes

in the model. Furthermore, the matrices M, D, and K have the following
structure:

T =
Tx 0

0 T,
with TV = TX,T = M,D,K (2.28)

The identity of the matrices from the x and y planes results from the

rotational symmetry of the rotor. The matrices G and N have the structure

T =
0 Tx

-Tx 0

with T = G,N (2.29)

Furthermore, due to the assumed weak internal damping, N, can be ne¬

glected (N « 0).

A comprehensive treatment of the FE modeling technique for rotors can be

found in [Bathe82]. In the following, some special model representations
of the system are presented for future reference. The derivation is not

comprehensive. For details, the reader is referred to any rotor dynamics

textbook, e.g. [Krämer93] or [Gasch75].

Assuming that external forces are acting on the rotor at n nodes in each

the x and y direction, with the appropriate degrees of freedom selected
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by matrix F G R9X2n and that the rotor position can be observed at /

nodes by displacement sensors representable by a transformation matrix

S G M2 xq, the model from Equation (2.26) can be rewritten as follows:

Mq + (D + SlG)q + Kq = Fw

z = Sq
(2.30)

where w stands for the force input and z is the sensor output of the free

rotor. With appropriate input and output ordering F and S can be de¬

composed as follows:

Fx 0

0 R,
with Fx,Fy eRq/2xn and (2.31)

S =
Sx 0

0 &,
with SX,SV eRlxq/2 (2.32)

State Space Model

The model derived above is easily transformed into a first order system of

differential equations of the following form:

x(t) = Ax(t) + Bw(i) with x(0) = x0

z(t) = Cx(t) + Dw(t)

(2.33)

In the above,

A =

C =

Qqxq jqxq

-M~lK -M~l(üG + D)

S 02lxq

eM2qx2q B^

G R2lx2q D = [0] G R2Zx2n

nqx2n

M~lF
ç-

Tra2qx2n

(2.34)

The state variable x is defined as x

nT

Q , Q
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Modal Decomposition

As has been shown above, the motion in the two planes in Equation (2.30)
is only coupled by the matrix G. At standstill (Q = 0), G has no influence

and the motion in each of the two planes does not depend on the motion

in the other plane.

At standstill, Equation (2.30) simplifies to

Mq + Dq + Kq = Fw

z = Sq
(2.35)

Application of an ansatz of exponential form to the undamped system

with no external forces (D = 0, F = 0) leads to the generalized eigenvalue

problem

(K - ujo2M)$. = 0 (2.36)

whose q solutions (u)oi2> <t>•) §iye information about the system's free vi¬

bration which is a superposition of components of the form

q.(t) — (j). cos(üü0it + ai) (2.37)

with arbitrary phase angles ai. The numbering of the eigenfrequencies can

be chosen in such a way that the they are of ascending frequency. Subse¬

quent compilation of the corresponding eigenvectors in a matrix yields:

# & t-q

Xq (2.38)

This matrix can be used to transform Equation (2.35) from physical coor¬

dinates q to modal coordinates q by substituting

q= $q. (2.39)

Subsequent multiplication of Equation (2.35) from the left by #T then

yields

M\ + Dq + Kq = Fw

z = Sq

with

F= #TFand5 = S<2\ (2.41)

(2.40)
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Due to the symmetry of M and K, the matrices M and K in Equation

(2.40) are of diagonal structure. The above transformation becomes par¬

ticularly effective when the columns of the transformation matrix $ are

scaled in such a way that the matrix M becomes the identity matrix. In

this case we obtain

M=$TM$ = I (2.42)

K = $TK$ = diag(c4). (2.43)

In the case of proportional damping, i.e. when D = aM+ßK for a,ß GM,

the damping matrix is also diagonalized, i.e.

D= #r£># = diag(2&u;oi). (2.44)

In this case, Equation (2.40) is completely decoupled into q distinct one

degree of freedom oscillators with poles

Pi

Pi

= -&ü>oi + jujQi \A - &2 and

(2.45)

= -&^oi - juoi a/1 -&

Each oscillator is associated with one eigenmode with shape <j>.. The free

vibration of the shape has frequency Ui = y/l — & uJoi and decays with

g
—ÇiUQit

Based on the poles from Equation (2.45), the state space description for

the proportionally damped one-plane system at standstill can be written

in the following very simple form:

0<7X<7 jqxq

(Pi-Pi) 0 (pi+pî) o

-(P2-P*2) (P2+PÎ)

0 -(Pq-Pq) 0 {Pq+Pq)

(2.46)

B
0

F
el2"x2n

C 50 eWL2lx2q jr,= [0]GR
2lx2n
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Model Reduction by Modal Truncation

Up to here, the size of the model was determined by the number of nodes

in the finite element model. Even simple models typically have 10 nodes,
which leads to 40 degrees of freedom for the one plane model, entailing a

state space model of order 80. The majority of the associated single mass

oscillators have very high eigenfrequencies. For technical applications how¬

ever, in particular for AMB control, one is only interested in the model

behaviour up to a certain frequency limit. Furthermore, besides the fact

that the FE method merely approximates the behaviour of the structure,

no structure can be expected to behave linearly up to arbitrarily high fre¬

quencies.
For these reasons and in order to limit the computational burden in sub¬

sequent calculations, one is interested in adapting the model such that it

describes the system in a frequency range where this is reasonable.

This can be simply achieved as follows. First, the columns (f>. of # are

ordered such that the corresponding eigenfrequencies are monotonously

increasing. In the next step, the columns of # belonging to too large

eigenfrequencies are truncated. If the first r eigenfrequencies are relevant,
the new matrix #r has q rows and r columns. Then the transformation

to modal coordinates is carried out with #r instead of #. The resulting

system then has the same properties as before, but lower dimension:

Mrq + Drq + Krq = Frw_

z = Srq

withMr,Z>r,A:r GRrxr,Fr eM.rx2n,Sr G R2lxr. (2.48)

As a result of the reduction, in Equation (2.47) a low order model with

a very similar input-output behavior to the model from Equation (2.8) is

obtained.

Furthermore, the transformation

q = $rqr (2.49)

allows to interpret general results obtained for the reduced system in the

physical coordinates of the full system.

This reduction technique also yields a low order state space description for

the system with the same structure as Equation (2.46).

2.47)
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Figure 2.8: Typical pole-zero distribution of a flexible rotor at standstill

Poles of the Flexible Rotor System

A typical pole-zero distribution for a free flexible rotor at standstill is

shown in Figure 2.8. Due to the symmetry of the system, each pole occurs

twice, once for each plane. The eight rigid body poles are located at the

origin. Additionally, the model exposes q—42 conjugate complex pole pairs

slightly to the left of the imaginary axis. These poles are associated with

the flexible eigenmodes of the rotor and usually are very weakly damped,
in some cases the damping is as low as & = 0.0005. These poles are what

makes control of flexible rotors so much more demanding than that of rigid
rotors.

For reduced systems: r — 4.
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2.3.3 Model Description for a Free Flexible Rotor when

Rotating

For the case of a rotating rotor (Q ^ 0), the motion in the two planes
in Equation (2.30) are coupled by the gyroscopic term flG. A reduced

state space model of the rotating rotor with modal damping is given by
the following equation:

B

rvrxr jrxr

-Kr -(Dr + QGr)
el2'

0
"

GE2rx2n ç, = Sr 0

Fr L -"

(2.50)

>2Zx2r D = [0] G
52Zx2n

where all matrices are defined as above and Gr — ^G$r. Gr remains

skew-symmetric under this transformation and the structure of the A ma¬

trix is that from Equation (2.46) up to the lower right block which now

is full and skew-symmetric. The coupling of the two planes causes the

system's flexible poles to move with increasing Q from the positions indi¬

cated in Figure 2.8 in opposite directions along the imaginary axis towards

increasing and decreasing frequencies. Instead of independent vibrations

in each of the two planes, the rotating system has eigenmodes affecting
both planes. In the (typical) case of an axisymmetric foundation, all or¬

bits are circular. The modes with increasing frequencies expose a rotation

in the same direction as the rotor and are therefore called forward modes

or nutations. The modes with decreasing frequencies rotate in the opposite
direction and are called backward modes or precessions. The splitting of

the flexible eigenfrequencies with increasing rotational speed is shown in

the Campbell diagram in Figure 2.9. When sped up from standstill, succes¬

sively several of the eigenfrequencies are passed (intersection points). The

associated rotational speeds are the critical speeds of the rotor. At these

speeds, the unbalance force may excite flexible modes of the rotor. If the

rotor is free or supported by homogeneous bearings, unbalance forces can

only excite nutation modes. If however the bearings are not symmetrical,
also precession modes may be excited.
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Rotational speed Q. [Hz]

Figure 2.9: Campbell diagram of a flexible rotor. The rotational speeds

^i,bw, Qi,fw, ^2,bw, and 0,2jw are the critical speeds associated with the

first and second backward and forward flexible modes.

2.3A Model Description for AMB Systems with Flex¬

ible Rotors

Flexible rotor AMB systems can be modeled by combining the model of

the flexible rotor derived above with the model of the AMBs. To this end,
the AMBs are first introduced as external forces acting on the free rotor:

Mq + (D + ÜG)q + Kq = Ksq + Kii

z — Sq
(2.51)

In the above, Ks G MqXq is a matrix that is except for four force-displacement
factors ks (ks>A and kS)B each occurring twice) on the diagonal positions
associated with those translational degrees of freedom to which the bear¬

ings are attached. Furthermore, i is a vector of length four representing
the current inputs to the bearing. The matrix Ki G Rqx4 contains at the

appropriate locations the force-current factors ki of the four AMB axes.

As before, the eigenvector matrix #r is calculated based on the matrices
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M and K and the system is transformed to modal coordinates. This yields

(2.52)
z=

Srq
—r

with

Mr\ + (Dr + ÜÖr)'q + Krq = Ksrqr + Fri

z=

Srq

Ksr = ^Ks$r and Fr = ^K{. (2.53)

Combining the stiffness terms one finally obtains

Mr| + (Dr + ÜGr)'q + (Kr - Ksr)q = Fri

z = Srq
(2.54)

The resulting compound stiffness matrix Kr — Ksr is not exactly diagonal,
but the diagonal entries are significantly larger than the other elements.

Therefore, the AMB stiffness mainly affects the rigid body modes (which
had zero stiffness before) and the standard transformation of Equation

(2.54) yields a state space description that is approximately of the form of

Equation (2.51).
In fact, a state description that is exactly of this form exists for the system,
but it cannot be derived by the modal decomposition approach since for the

rotor supported by AMBs, the matrix K loses its definiteness properties
due to the negative AMB stiffness. This leads to complex solutions of

the generalized eigenvalue problem from Equation (2.36), prohibiting the

subsequent transformation steps.

The pole-zero map of the flexible rotor in uncontrolled AMBs typically
looks like that shown in Figure 2.10. As has been shown for the rigid

rotor, the AMBs bring the poles associated to rigid body motion away from

the origin to symmetrical positions on the real axis, yielding an unstable

system. Just like in Figure 2.8, all poles occur twice.

Application of stabilizing controllers of the AMBs brings the unstable rigid

body poles to the left half plane. With increasing controller gain, the poles
first move to the left along the real axis. If the gain is further increased,

they split and follow the positive and negative imaginary axis. By adding a

damping behaviour to the controller, the poles can additionally be moved

to the left of the imaginary axis, yielding a stable oscillating system.
Under rotation, the poles of the flexible rotor in controlled bearings behave

similar to those from Figure 2.9. The rigid body modes now located in

the left half plane show a splitting behaviour similar to that of the flexible

modes.
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flexible modes

rigid body modes

Re(s)

Figure 2.10: Typical pole-zero distribution of a flexible rotor in AMBs at

In the above, stability may appear to be easily achievable. However, this

conjecture is wrong. In fact, finding a controller that stabilizes the rigid

body modes of the flexible rotor without destabilizing the weakly damped
flexible modes is a very complex task and the central problem in AMB

controller design. In particular, the fact that the eigenfrequencies change
with speed requires special care and application of adequate controller

design methods. The issue of controlling AMB systems is further pursued
in the next chapter, where an introduction to robust controller design is

given.

2.4 Summary

In this chapter, the modeling of AMB rotor systems has been addressed.

In the first section of the chapter, models for different components of AMB

systems have been presented. Based on the simple case of a single-sided

bearing, a linear model for two-sided bearings has been introduced. Then,

a new amplifier model suited to avoid actuator saturation has been pre-
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sented. The model is based on weighting functions and has been designed
for employment in the //-synthesis and //-analysis settings.

In the second section, the standard model for rigid rotors supported by
AMBs has been presented. The third section deals with the modeling of

flexible rotors. Methods for coordinate transformation and model reduc¬

tion have been introduced. In view of their important role throughout the

rest of this work, special attention has been paid to weakly damped flexible

poles and gyroscopic effects.
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Chapter 3

Robust Controller Design

In this chapter, the basics of robust control theory are outlined. The

general assumption made is that the reader is fairly familiar with the basic

terminology of general control theory. Furthermore, some knowledge of

some elementary concepts of robust control, e.g. || • ||oo, are presupposed.
For background information the reader is referred to Appendix B.

This chapter is organized as follows. First, the concept of uncertainty is

introduced. After this, the most common controller design objectives are

formulated. In this context, the concepts of nominal and robust stability
and performance are presented, and the importance of the maximum singu¬
lar value as a measure of tolerable unstructured uncertainty is elaborated.

Then, the scope is extended to structured uncertainty and the structured

singular value // is introduced as the appropriate tool to analyze systems
with structured uncertainty. In next chapter, controller synthesis is ad¬

dressed. The Hoc algorithm is presented and application issues as well as

its limitations are discussed. Then //-synthesis is introduced as a robust

controller design method that overcomes some of these limitations. The

chapter ends with an introduction to //-analysis, the state of the art tool

for analyzing controller performance, //-synthesis and //-analysis consti¬

tute the basis of the controller design method developed in Chapter 5.

45
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3.1 Model Uncertainty

Whenever a controller is to be designed for a real system, a model Gn of

this system is required. Unfortunately, no model of a physical system can

be exact, hence if a controller C works well with Gn, no conclusions can

be drawn concerning the behaviour of the real system when controlled by
C. The solution to this problem lies in the extension of Gn by explicit
models for the possible differences between Gn and the real system, which

are interpreted as uncertainties in the model Gn.

This yields a set of models, that is expected to comprise the real system.

The controller design is then performed for this set of models, i.e. in

particular for the real system. This is the key concept of robust control. In

the following, we first name some of the main sources of uncertainty. Then,

techniques to include uncertainties into system models will be presented.

3.1.1 Sources of Uncertainty

Model uncertainty may result from one or several of the following points:

Model parameter uncertainty. ,
Since perfect system identification is

impossible, uncertainties occur in all models of physical systems.

Neglected high frequency dynamics. The model behaviour at high

frequencies cannot be identified, and therefore not modeled. This

inevitably entails model uncertainty.

Non-linearities. These may have been neglected or approximated by lin¬

ear models even in the range of low frequencies.

Changing operating conditions. For example temperature changes may
lead to sensor drifts.

Neglected dynamics. Some of the system dynamics may have been de¬

liberately neglected or simplified, e.g. the vibrations of rotor blades.

Parameter changes due to wear. For example in pumps the system

dynamics may change considerably due to seal wear.

Setup variations. In some cases, the desired controller is to work with

different system setups, for example a controller for an AMB milling

spindle should function with tools of different mass.
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Change of operating point. The system behaviour may change with

the operating point, as is for example the case for gyroscopic rotors.

Due to gyroscopic effects, the pole locations change with the rota¬

tional speed. This must be considered in the controller design to

guarantee stability over the whole range of operating speeds.

In all cases, it is the responsibility of the control engineer to judge which

of the above factors are relevant for the given problem, and how large the

respective uncertainties are. In the following, the issue of quantification
and formal introduction of uncertainty is addressed.

3.1.2 Linear Fractional Transformations

An equally efficient and general way of formulating uncertainty and intro¬

ducing it into a system is by means of linear fractional transformations

(LFTs). Given a complex matrix M that is partitioned into four blocks

and relates the vectors u and v as follows,

Mu Mn

M21M22

u

; u.

Assume existence of a second matrix A relating u\ and ^i by u\ = Av\.

Graphically, this relationship can be represented as:

A

ul —*

M
VJ

u7
v'

v2

It is straightforward to show that the relation between v2 and u2 in this

configuration is given by

v2 = [M22 + M21A(I - MnA)-1Mi2]w2. (3.1)

This is abbreviated v2 = Fu(M,A)u2.
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In the above example, the upper loop has been closed with A. This config¬
uration is called upper fractional transformation. If the lower loop is closed,

this is referred to as a lower fractional transformation. The corresponding

analytic relationship is then

vi = [Mn + M12A(I - M22A)-1M2i]t/i (3.2)

and is abbreviated by v\ = Fl(M, A)wi.

This concept does not only hold for matrices and vectors but can be ex¬

tended to dynamical systems and signals without any modification. In

literature, uncertainty is traditionally represented by upper linear trans¬

formations. One of the key features of the LFT framework is that arbitrary
interconnections (series, parallel, cascades, etc.) of different LFTs always

can again be expressed by an LFT.

3.1.3 Structured and Unstructured Uncertainty

As stated above, expected differences between the nominal system model

and the real world are included in the controller design process by aug¬

menting the system model with an adequate model of the uncertainty.

The only information assumed to be known is the maximum size of the

expected uncertainty for each frequency cj. This leads to norm bounded

perturbations A(s), that are added to the system, yielding a set with an

infinite number of possible systems to be considered in the subsequent

controller design. While different ways of linking the uncertainty to the

system exist, two classes of uncertainty can be distinguished:

Unstructured uncertainty is used whenever unknown or neglected system

dynamics are to be represented. Unstructured uncertainty is typically rep¬

resented as additive or multiplicative uncertainty, see Figure 3.1. While

the norm HAH^ of the delta block is generally considered to be limited to

1, the blocks Wa and Wm represent weighting functions that express the

size of the uncertainty over frequency — typically, the uncertainty is small

at low frequencies and large at high frequencies. Often, the uncertainty's
size at high frequencies is several times larger than that of the nominal

system Gn itself. Note that for multiplicative uncertainty the uncertainty

block is always quadratic while in the MIMO case with additive uncer¬

tainty the uncertainty block may have a different number of inputs than

outputs, depending on the number of input and output channels of Gn.

Unstructured uncertainty often also is referred to as lumped uncertainty.
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V'a — L\

Cl ^i

^n

m
A

G„

Figure 3.1: Systems with unstructured uncertainty, top: additive uncer¬

tainty, bottom: multiplicative uncertainty

Structured uncertainty occurs whenever more than a single uncertainty
is encountered. A special example of structured uncertainty is that of a

nominal model with two or more specific parameters being uncertain. An

additional output path is then included into the model for each parameter,

and the parameter change is represented by a delta block that is implicitly
assumed to be norm-bounded by one and an appropriate scalar scaling
factor reflecting the size of parameter variation to be expected. The indi¬

vidual delta blocks can be assembled to a single delta block similar to that

in the unstructured case. The key difference however lies in the fact that

the delta block encountered here has only entries on its diagonal, which

makes this a structured uncertainty in contrast to the full delta block in

the unstructured uncertainty case.

As an example a single mass oscillator can be considered. The systems

motion can be described by the following differential equation:

my + dy + ky = f (3.3)

This system can be represented by the transfer function Gn shown in

Figure 3.2. Assume that the damping and stiffness parameters d and

k are only approximately known, with 30% uncertainty on d and 10%

uncertainty on k. This leads to the system with structured uncertainty

depicted in Figure 3.2.

In practical systems, unstructured and parametric uncertainty are often
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Figure 3.2: Single mass oscillator with uncertain stiffness and damping

parameters

combined, e.g. whenever a system has unmodeled high frequency dynamics
and a varying spring stiffness. These blocks can then again be unified in

one delta block which again is structured— the resulting delta block is then

block-diagonal. Any combination of two or more blocks of unstructured

uncertainty always yields a plant with structured uncertainty. Although

multiple unstructured uncertainties are not often used in the uncertainty

modeling of practical applications, it is of considerable importance in the

synthesis of controllers with robust performance. This will be elaborated

in Chapter 3.2.4. Figure 3.3 shows structured uncertainty blocks resulting
from a combination of parametric and unstructured uncertainty (left) and

repeated unstructured uncertainty (right).

By adequate algebraic manipulation, the uncertainties can always be pulled
out of the system and the uncertainty model can be written as an (upper)
linear fractional transformation with an uncertainty block of respective
structure.

01 0 0

0

0
0,0
0 A

AjO
0 A2

Figure 3.3: Examples of structured uncertainty blocks
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3.1.4 Uncertainty in State Space Descriptions

A special case of uncertainty is given if the model uncertainty can be

expressed as an uncertainty on the matrices of a state space description of

the model. In a general form, for a state space system with n states, nu

inputs and ny outputs this can be expressed as

x(t)

y(t)

A0 Bo

Co Do

m

+ £*
i=l

Ai Bi

Ci Di

x(t)

u(t)
(3.4)

In the above, the nominal system is denoted by the state space system

with suffix 0, and m independent uncertainties acting on the same or all

of the state space parameters have been considered. Again, \8i\ < 1 is

implicitly assumed.

For each of the uncertainty matrices holds

Ai Bi

Ci Di

(n+ny)x(n+nu) (3.5)

By letting r^ denote the rank of uncertainty matrix i, this uncertainty can

be expressed by means of a linear fractional transformation. To this end,
the singular value decomposition of the matrices is used to factor them as

follows:

a d 1 r JP. 1
r-

(3.6)
'Ai Bi' \Ei]

r
-l

= Gi Hi

[Ci Di\ [l'i\ L J

where the row and column dimensions of the factors are equal to r^ :

Ei

F4

(n+ny)xri Gi Hi nriX(n+nu) (3.7)

Then a new, extended system is assembled:

x Ao Ei .
E Bo x

£i Gl 0
. ..

0 Hi Wi

•

—

• •

;
• •

Zm Gm 0
. ..

0 Hm Wm

y
. .

Co Fi . J- m Do
.

u

(3.8)
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In block form, this system looks like this:

Gss
t

•

and the uncertainty from Equation (3.4) is represented as an upper LFT

around it,

y = ^(GSs,A)ti, (3.9)

where A maps w h* z and has the structure

A = {diag(<*iJPl, ...,6mIrJ --SiGR} (3.10)

It is straightforward but somewhat cumbersome to verify that this system

is indeed equivalent to the one presented above.

This method of uncertainty modeling goes back to [Morton85] and can be

used to incorporate gyroscopic effects into a rotor model. The nominal

system is then modeled like in Equation (3.4), with a rotational speed Q,

that is half of the maximum speed of operation. Only one uncertainty

matrix is needed (m = 1), and it is chosen to be zero up to a matrix

—Qmax/2 • G that adds to the lower right part of the matrix Aq of the

nominal system. The uncertainty matrix is then decomposed as above,

and a new system is formed correspondingly.

The number of new inputs and outputs is equal to the rank of the gyro¬

scopic matrix, and the uncertainty block is in this case a single identity
matrix of appropriate dimension scaled by a scalar Si .

The resulting LFT

then describes the system behaviour for rotational speeds from 0 to fimax.

3.1.5 Uncertainty in Eigenfrequencies

In some cases the technical understanding of the system yields an uncer¬

tainty that cannot be directly expressed in terms of system parameters but

in terms of uncertainty of the system poles. This is for example the case

for AMB systems, where the flexible eigenfrequencies are weakly damped
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and the pole frequency may vary by several percent due to system changes
or manufacturing tolerances.

Balas and Young have developed a method [Balas95b] to express this type
of uncertainty in an LFT setting for systems with state matrices that are

non-defective (diagonal Jordan form). The A matrix of such systems can

be brought into diagonal form by applying a similarity transformation with

the eigenvector matrix # of A. On the diagonal of the resulting matrix

A := ^~XA^ the (generally complex) eigenfrequencies pi of the system can

be found. Since the matrix A is real, a complex eigenvalue implies that

also its conjugate complex is an eigenvalue of A. By ordering the columns

of # appropriately, the diagonal entries of A can be forced to occur in pairs
of two, with the eigenvalue with positive imaginary part first.

If this matrix A is now subjected to a second similarity transformation

with a block diagonal matrix with entries

T = diag(Bi), B,
-l

1 1

Pi + ji% Pi - jLi
,

where p{ = pi ± i{ (3.11)

the resulting matrix A = T~XAT then is block diagonal with blocks A.

The individual block matrices now are the same as in the standard state

space description of a one mass oscillator:

Ai =
0 1

(PÏ + LÏ) 2Pi

0 1

(3.12)

A variation of the natural frequency of this 2x2 system can now be

expressed as follows:

Aii,öi

0 1

-(w(h(1 + ^))2 -2&o;(K(l + fc)
(3.13)

In order to fit the uncertainty description to the linear framework, one

must linearize with respect to Si, yielding

Ai,Si
0 1

— 2£iidoi
_

+
t

0

2<4

0

Si —2£iu;oiSi_

0 1

—2£jo;oi_
+

y

i
Si -2u^- -2£iCJOi

(3.14)

(3.15)
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di

U '

d0

r e

C
'

>+ G
L-

*<.

C>*-

Figure 3.4: Sample closed loop system with various disturbance inputs

By these operations, the problem has been transformed to the case of linear

state space uncertainty treated in the last chapter. Using Equation (3.15),
the methodology described there can be directly applied. This method has

been used in [SchönhoffOOb].

3.2 Controller Design Objectives

The ultimate goal of every feedback controller design effort is to achieve

a desired behaviour of the controlled plant (also referred to as the closed

loop system) by means of appropriately processing measurements y from

the physical plant G and feeding back the control signals u as indicated

in Figure 3.4.

In this section different possible objectives of controller design are intro¬

duced and discussed. Unfortunately, not all goals can be achieved to the

fullest extent at the same time. In practice, the various goals are conflict¬

ing and have to be traded off against each other. This point is elaborated

in the section on performance limitations.

3.2.1 Nominal Stability

Any linear, time-invariant system is stable if and only if it is in IZHoo,

i.e. if all its poles are contained in the open left half plane, see Appendix
B.3. A MIMO system's stability is equivalent to the stability of all its

constituent transfer functions.

The term nominal stability refers to the stability of the closed loop made

up by the nominal system (without uncertainty) and the controller. This

is achieved if and only if the closed loop is stable in the sense above and

no unstable pole-zero cancellations occur in the forming of the product
CG [Zhou96].
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Historically, nominal stability was the most important goal of all controller

design efforts. Nowadays however, this property is obtained for free. As

will be pointed out later, the 'Hqo algorithm searches an optimal controller

from the set of all internally stabilizing controllers. This allows the control

engineer to focus on the more advanced design goals addressed next.

3.2.2 Nominal Performance

In control design, the term performance refers to the closed loop system's
behaviour. Performance requirements can be formulated either in the time

domain or in the frequency domain. Typical time domain requirements

are often defined in terms of the response behaviour to a step of size one.

Typical examples of such requirements are

• limited overshoot (degree to which the step value is temporarily ex¬

ceeded),

• small asymptotic tracking error (how precisely the set value is at¬

tained after all transient effects have decayed),

• short rise time (the time it takes the system to reach a certain per¬

centage of the set value), and

• short settling time (time required until the trajectory remains within

a certain band around the set value)

Frequency domain performance requirements often are expressed by de¬

mands on the sensitivity function, S, which is defined as

S = (I + GC)_1 (3.16)

and the complementary sensitivity function T, which is defined as

T = (1 + GC)-1GC = SGC (3.17)

In Figure 3.4 it can be seen that S is the closed loop transfer function

from the reference input r to the system error e as well as the transfer

function from the output disturbance d0 to the system output y and that

from the sensor noise n to the reference error e. T, on the other hand,
is the transfer function from the reference input r to the system output y
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and, in the SISO case, that from the input disturbance d^ to the controller

output u}.

Typical frequency domain performance requirements comprise

• a certain minimum bandwidth (i.e. T must be large up to a certain

frequency to achieve a short rise time and good tracking),

• limits on the sensitivity function (i.e. S must be small up to a certain

frequency for disturbance rejection),

• limits on certain transfer functions from some inputs to some outputs

in Figure 3.4 (e.g. to avoid actuator saturation),

• minimum amplitudes for certain transfer functions (e.g. for T in

order to achieve good tracking at certain frequencies), and

• a minimum damping of resonance poles (to ensure stability of the

closed loop)

Weighting Functions

In robust controller design, performance requirements are typically for¬

mulated in the frequency domain. The basic setup for the nominal per¬

formance problem consists in a system G that is to be controlled by a

controller C as shown in Figure 3.4. Additionally, some requirement on

the frequency shape of one or more transfer functions of the closed loop is

given. As an example consider the requirement on S to be smaller than

a user-defined, stable, minimal phase SISO transfer function w_1(j6c;) for

all frequencies u>. In other words, S is to fulfill the condition

ä(S(jcü)) < ä(w_1(ia;)) Va; E R. (3.18)

Since w is SISO,

â(w~1(ju;)) = w-1(juj). (3.19)

Therefore, one can rewrite the above condition as

a(w(juj)S(juj)) < 1 Vu; G R. (3.20)

1In the MIMO case, the transfer function from d{ to w is Tj = (I + CG)-1CG,
which is not exactly equal to T, but usually of similar size.
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di

u .

—-*<

d0

—K

r

—K

e

3—- C G -* W

—C -n

Figure 3.5: Sample closed loop system with performance weighting function

which by blowing up the weighting function w to a diagonal function with

identical entries W = wln yields a restated requirement on S:

||SW||oo < 1. (3.21)

This requirement can now be introduced into the system from Figure 3.4

by inserting the weighting function W in the system as indicated in Figure
3.5.

For the system in Figure 3.5, a controller C fulfills the performance re¬

quirement (3.18) if and only if the || • |loo-norm of the transfer function

from the input d0 to the output y is less than 1, i.e.

HT^olloo < 1. (3.22)

Therefore, testing if a performance criterion is fulfilled by the closed loop
amounts to a test on the || • |loo-norm of an appropriate transfer function.

The above considerations become particularly important in the context of

controller design by means of the T^algorithm that will be presented in

Chapter 3.3.1. If the design is successful, condition (3.21) is fulfilled, and

with it the original condition (3.18). The allpass property of the optimal
solution to the T^ problem2 furthermore yields that if only one constraint

is given, the shaping achieved by the function w-1^^) will be exact up

to a constant factor.

Performance Limitations

In the last sections, a number of performance criteria has been stated.

While in many cases the majority of these criteria seems attractive to

2The properties of the "Hoo algorithm are stated in Chapter 3.3.1. Allpass systems

are defined in Appendix B.3.5.
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achieve, there are unfortunately some mechanisms intrinsic to control the¬

ory that make some of the objectives contradictory to others. As a conse¬

quence, not all goals can be achieved to the fullest extent at the same time.

Instead, the control engineer is forced to trade-off these goals against each

other, aiming at a solution that is the best compromise. This decision is

often complex and requires thorough understanding of the control problem

to be solved. In the following, some of the classical conflicts and trade-offs

in controller design are presented.

Tracking vs. Sensor Noise Rejection

Consider the system shown in Figure 3.4. A typical performance require¬

ment is that the output y is to follow the reference input r. This implies
that the complementary sensitivity function T, which is the transfer func¬

tion from r to y, should be one, i.e. large. On the other hand, the system

output should not be affected by sensor noise, i.e. the transfer function

from n to y should be as small as possible. It is evident from Figure 3.4

that this transfer function is —T. Obviously, this constitutes a conflict

that cannot be fully resolved. The designer must trade-off these two goals

against each other over frequency.

S+T=I

This simple equality is easily verified by adding Equation (3.16) and Equa¬
tion (3.17). The implications are far reaching: S and T can never both

be small. This implies that good disturbance and sensor noise rejection

(S small) are contradictory to good robustness to multiplicative uncer¬

tainty (T small), as will become clear in Chapter 3.2.3. Typical systems

have a high level of uncertainty at high frequencies. This demands for

T being small at high frequencies. S however must be small at low fre¬

quencies in order to have good tracking. In the mid frequency range, a

cross over must take place, and robustness must be traded off against

performance.

The Waterbed Effect

Trade-offs are not only to be made between transfer functions, but are

already required when considering the sensitivity function S alone. For

rational open loop systems L(s) = G(s)C(s) with a pole excess of at

least two (denominator degree at least by two larger than the numera-
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tor degree)3, the following theorem states that prescriptions for S in one

frequency range have effects on S at other frequencies.

Bode Sensitivity Integral Formula

Given a rational SISO open-loop system L(s) = G(s)C(s) with denomi¬

nator degree at least two larger than its numerator degree, with N unstable

poles at locations pi, for closed loop stability the following condition must

be fulfilled:
/.oo

n

I ln\S(jüj)\dcj = Tr^2Re(pi), (3.23)

where Re(pi) denotes the real part of pi.

In the case of a stable system, the right hand side of the equation is 0, which

implies that the area where S is smaller than one must be compensated

by a region of equal (logarithmic) size where S is larger than one.

When the system is unstable, things get worse. Depending on the number

and location of the unstable poles, the area where S must be larger than

one increases, making good tracking harder to achieve for these systems.

The condition imposed by the bode sensitivity formula becomes difficult

to fulfill due to the fact that the vast space of large frequencies cannot be

used to compensate for low values of S in the low frequency range: Due

to the roll-off of the plant, T is forced to rapidly approach zero for high
frequencies, and since S+T=I, S must equally quickly approach one. This

leaves only a limited frequency range to fulfill the conditions of the bode

sensitivity integral, in which the areas with small S must be balanced by
areas with large S. This gives rise to an analogy to a waterbed: Pushing
down in one area reduces the water level there, but leads to a rise of water

level in another area.

Limitations due to Unstable Zeroes and Poles

Performance limitations can also be imposed by the system itself. If for

example the system has unstable zeros, this limits the permissible system

gain, since for increasing gain the closed loop system poles move toward

the open-loop system zeros. A limitation on the gain, however, directly
translates into a limit on the frequency up to which the sensitivity func¬

tion S can be made small. Unstable poles, on the other hand, require a

minimum bandwidth — for stabilization of the poles a minimum amount

of feedback is required at the pole frequency. This inevitably leads to a

3This condition is fulfilled for all practical cases where physical systems are involved.
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Figure 3.6: Small gain theorem

minimum value for the frequency at which the complementary sensitivity

function T can start rolling off, which imposes restrictions on the amount

of uncertainty the closed loop will be robust to.

3.2.3 Robust Stability

As has been argued in Chapter 3.1, no physical system can be described

absolutely accurately by means of a model. As a consequence, a controller

that achieves merely nominal stability cannot satisfy the control engineer,

as no knowledge is available if also the similar but slightly different physical

system will be stabilized. Therefore the nominal model is replaced by the

concept of a set of models which is obtained by augmenting the nominal

model with an appropriate uncertainty description.

Robust stability is achieved for such a set of models, if the controller sta¬

bilizes not only the nominal model, but all models in the uncertainty

set (which is always comprises the nominal model). In contrast to pure

nominal stability, the concept of robust stability is also meaningful for

physical systems — if the uncertainty set is intelligently chosen and covers

the dynamics of the physical system, this system will be stabilized by all

controllers achieving robust stability.

The key question in robust stability analysis and design is the question how

much uncertainty a nominally stable system can bear before it becomes

unstable. For unstructured uncertainty as introduced above, this question

is answered by the so-called small gain theorem:

Small Gain Theorem

Let G G VJH.OO. Then the system from Figure 3.6 is internally stable for
all A G HUoo with ||A||oo <1 if and only if UGH«, < I/7.
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The small gain theorem states that the maximum allowable size for an

unstructured uncertainty is determined by the size of the transfer func¬

tion from its inputs to its outputs. The practical relevance of the theorem

becomes evident, when G is interpreted as the closed loop system con¬

sisting of the nominal model Gn and the controller C. The amount of

unstructured uncertainty the closed loop system can handle can be di¬

rectly obtained from the || • ||oo-norm of the closed loop transfer function

from its uncertainty inputs to its uncertainty outputs.

For the case of additive uncertainty from Figure 3.1a this means that the

closed loop's robustness against this type of uncertainty is defined by the

|| • ||oo-norm of the complementary sensitivity function CS. For multiplica¬
tive uncertainty shown in Figure 3.1b, the robustness level is determined

by the norm of T.

For structured uncertainty, the above unstructured analysis is conserva¬

tive. This is due to the fact that the structured uncertainty which is

physically expected is merely a subset of the unstructured uncertainty
discussed above. In order to capture the structured uncertainty's effects

without conservatism, the following reflections are useful:

First the uncertainty is characterized. As has been seen in Chapter 3.1.3,

structured uncertainty can consist of two types of blocks on the diagonal,
full uncertainty blocks A G TfHoo and scalar blocks 8 G VJKoa that also

may be repeated (S • I G VSrioo)- Therefore, for fixed frequencies u any

structured uncertainty is a complex matrix of the form

A = {diag(tfi/Pl, ... ,SJrs, A1? ..., Af) : Si G C, A,- G Cro'xm'}

and the set of all block diagonal, stable, rational transfer functions that

have the same block structure as A can be written as

M(A) := {A(-) G llrloo : A(s) G A Vs G C}.

Then the unstructured singular value is analyzed and extended to struc¬

tured uncertainties:

For the system in Figure 3.6 one can show that the closed loop is stable if

and only if

det(J - G(s)A(s)) ^ 0 Vs G C+.

Starting with a very small value a > 0, for which the closed loop is stable

for all A G A4 (A) with ||A||oo < #, it is interesting to investigate how far

a can be increased until the above expression becomes 0 for any s G C+
for the first time. This value, amax, is referred to as the robust stability
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radius of the closed loop. For unstructured uncertainty, the small gain
theorem yields:

1

'|G||oo = sup<7(GCH) (3.24)
Otmnr.

.

,ç^UJi

For fixed values of u; and G(juj) ^ 0, this can be used to rewrite the

unstructured singular value of G^'u;) as follows:

*(G(j")) =
min{^(A) : det(J - G(juj)A) = 0, A unstruc.}

This implies that the maximum singular value of G^'u;) is a measure for

the smallest unstructured complex matrix A destabilizing the closed loop
for fixed u>. If G(jiu;) = 0, no destabilizing A exists, and as would be

suggested by the formula, ä(G(jcv)) = 0.

Then, the same system with structured uncertainty is considered, i.e. A G

A, eliminating all undesired cross coupling in the uncertainty block. For

this system, one can analogously to the above define the structured singular
value as

i

//A(G(ju;)) :=

min{^(A) : det(J - G(ju)A) = 0, A G A}

For the exceptional case when G^'u;) = 0, we define ß^(G(juj)) = 0.

Based on this, the stability radius for structured uncertainties, ßmax-, re¬

sults from

—!—= sup/zA(G(ju;)), (3.25)
Pmax w]J£

and by defining

||G||A:= sup//A(G(ju;)) (3.26)

a new measure for the size of systems is obtained, yielding information on

how robust a system is to structured uncertainty.

The following theorem constitutes the basis for the importance of || • ||A:

Structured Uncertainty Robustness Theorem

Let G G IZTioo- Then the system from Figure 3.6 is internally stable for
all A G M(A) with ||A||oo < 7 if and only if ||G||A < 1/7-

Analogously to the small gain theorem, this theorem permits analysis of

the maximum size of tolerable system uncertainty, now for structured un¬

certainty.
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This extension avoids unnecessary conservatism in the analysis. A com¬

parison of the above representation of a with the definition of //Adirectly
shows that ||G||A < ||G||oo- This is due to the smaller uncertainty set

considered in the case of structured uncertainty. As an implication of this,

analysis based on the structured singular value p (//-analysis) will be less

conservative than any analysis based on the unstructured singular value

â, as soon as the uncertainty is structured. In the unstructured case, //-

analysis yields the same results as the standard ("Hoo-) analysis based on

the maximum singular value.

It must be noted that the expression || • || A only makes sense in the context

of a predefined uncertainty structure A. This is indicated by the suffix

of the norm4. Furthermore, unstructured uncertainty can always be con¬

sidered a special case of structured uncertainty (one single full, complex

uncertainty block).

Concerning the evaluation of ||G||A, no method for efficient estimation

like in the case of ||G||oo is available5. Evaluation is based on calculation

of upper and lower bounds of ||G||A by evaluating //A(G(ju;)) on a finite

frequency grid.

Unfortunately, there is no way to directly calculate //A. However, the

following formulae for upper and lower bounds are available [Zhou96]:

max Xmax(UM) < //A(M) < inf ä(DMD~l) (3.27)

where

WA = {U G A : U*U = 1} and

£>A = {diag(Di, ... ,Ds,SiImi, ... Sf-ilmf-^lmf) '

DieCriXri,Di = D*,djeR+}

and the dimensions from the definition of DA are matching those from the

definition of A.

Doyle has shown [Doyle82] that the left inequality of Equation (3.27) al¬

ways is an equality. Unfortunately, the maximization of the left expression
is a non-convex problem with multiple local maxima. The upper bound,

however, can be calculated by means of convex optimization. For block

structures with 2s + / < 3, //A is equal to the upper bound, which covers

Strictly speaking, || • ||^ is not a norm since it does not fulfill the triangle inequality

(For a formal definition of norms, see Appendix B.l).
5An algorithm for computing || • ||oo is presented in Appendix B.3.6
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already a large number of application problems. For more complex uncer¬

tainties, the bound is not tight. However, Stein and Doyle [Stein91] have

investigated this problem experimentally and state that despite extensive

search no example has been found where the upper bound exceeded //A

by more than 15%.

3.2.4 Robust Performance

In the last chapter, the concept of robust stability has been introduced

as the extension of the stability concept from a single system (nominal
stability) to a set of systems (i.e. a system with uncertainty).

Robust performance is the analogous extension of the concept of perfor¬
mance of a single system (nominal performance) to a system with added

uncertainty. As is true for robust stability, this extension has important

consequences. While nominal performance only is a statement referring to

the model that has been used in the controller design (the nominal model),
robust performance refers to the whole set of similar systems contained in

the uncertainty set. If this set is chosen in such a way that it covers the

physical system to be controlled, the control engineer can be sure that

the performance requirements are met for the real system if robust perfor¬

mance is achieved in the controller design procedure.

The robust performance problem can be illustrated by the system from

Figure 3.7a, where the system Gn subject to an additive uncertainty is to

achieve the performance requirement HWpSHoo < 1 not just for Gn but

for all models covered by the uncertainty set. As has been pointed out

in Chapter 3.2.2, this performance requirement can be interpreted as a

requirement on the transfer function from d to y.

This problem can be tackled formally by remembering the key statement

of the structured robust stability theorem presented in the last section:

For the system G and given 7 > 0, ||G||A < 7 is equivalent to stabil¬

ity of G under feedback with all uncertainties Ap fulfilling the condition

||Ap||oo < 1/7-

For the setup above this implies that the transfer function from d to y, S,
will be smaller than one for all systems covered by the uncertainty model,
if the system is not destabilized by any additional fictitious uncertainty

block Ap with HApH^ < 1 between the performance outputs and the

performance inputs, see Figure 3.7b. This yields a reformulation of the

robust performance problem as a robust stability problem with structured
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bust stability form (d)

uncertainty. The general procedure is shown in the last row of Figure

3.7, where a general uncertain system with uncertainty Ar G Ar which is

subject to robust performance requirements (Figure 3.7c) is transformed

into the corresponding robust uncertainty description with the augmented

uncertainty structure Arp consisting of the diagonal augmentation of the

block structure describing the uncertainty, Ar, and that describing the

relation of the performance inputs and outputs, Ap (Figure 3.7d).

The principle outlined above can be generalized to the following theorem

relating the robust performance problem to a structured robust stability

problem.
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Robust Performance Theorem

Given a system with uncertainty structure Ar and performance structure

Ap, the following are equivalent for all ß > 0:

(i) For all A(s) G M(Ar) with ||A||oo < 1/ß, the system shown in

Figure 3.7c is well-posed, internally stable and H-Fb^T^, Ar.)||0o < ß

(ii) llTz^H^ < ß with

Arp = {A : A = diag(Ar, Ap), Ar G Ar, Ap G Ap}

In other words, robust performance of any system is equivalent to it being

robustly stable with respect to the uncertainty structure consisting of the

augmentation of the robustness and the performance structure, see Figures
3.7c and 3.7d.

As a consequence, the analysis of robust performance can only be per¬

formed without conservatism by means of //-analysis, i.e. by investigation
of the closed loop's norm ||T2W||^ .

As has been pointed out in the last chapter, this norm is a measure for the

robust stability of the closed loop system from Figure 3.7d. The above the¬

orem shows that analyzing the robust stability of the system from Figure
3.7d by means of ||TZW||^ is equivalent to analyzing the robust perfor¬

mance of the system from Figure 3.7c.

For the synthesis of controllers, the above theorem implies that a controller

with minimal ||TZW[|^ will have maximum stability radius on the system

from Figure 3.7d and the best possible robust performance on that from

Figure 3.7c. This is the motivation for controller design techniques min¬

imizing the structured singular value of the closed loop transfer function

as outlined in the next chapter.

3.3 Controller Design

In this chapter, the H.^ controller design technique is outlined and the

most relevant practical aspects are discussed. Towards the end of this

chapter, the limitations of 'Hoo design are addressed, and the more capable

//-synthesis design is presented.
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3.3.1 The Hoc Algorithm

The optimal Tioo synthesis problem is defined as follows:

Optimal %oo Synthesis Problem

For the system in standard control configuration6 find from the set of all

proper, real-rational controllers G(s) that achieve internal stability a con¬

troller for which the closed loop transfer function from all inputs to all

outputs, Tzw, has minimal Tioo norm.

This has the following practical implication. Since the norm || • ||oo is the

norm induced by the norm || • ||2 on £2 (see Appendix B.3), i.e.

llGHoo-supJ^fe, (3.28)
w#o IMI2

and due to the || • ^-norm's relation to signal energy, this implies that the

optimal %oo controller will lead to a closed loop with minimum worst-case

amplification of signals. For reasons of well-behavedness of the solution

and computability, the problem stated above is slightly relaxed in practical

applications and the following sub-optimal problem is solved instead:

Suboptimal Hoo Synthesis Problem

Given the setup from the optimal case and a positive scalar 7, find a proper,

real rational controller C(s) that achieves internal stability of the closed

loop system and achieves ||Tzu,||oo < 7.

In practice, this problem is solved as follows. Starting out with conserva¬

tive upper and lower bounds for 7, repeated synthesis attempts are made

with the average of the bounds. Depending on whether or not a solution

to the problem existed, the upper or the lower bound is adjusted. This

process is iterated until the difference between the bounds falls below a

predefined threshold value. This procedure is called 7-iteration. In this

way, the minimum is usually not exactly reached but it can be approx¬

imated with great precision. In each attempt to solve the suboptimal

'Hoo problem, two algebraic Riccati equations must be solved. Powerful

software tools are available to perform this task [Balas95a]. However, the

following three requirements apply as to the structure of the design system
in standard control configuration:

Al In the state space description of the system the pair (^4, B2) must be

stabilizable and the pair (C2, A) must be detectable.

6The formal definition of standard control configuration is recapitulated in Equation

(B.28) in Appendix B.3.4.
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A2 D12 must have full row rank, D21 must have full column rank.

A3 The following two matrices must have full column rank respectively

row rank for all wEft
A - Jul B2

Ci Di2
and

A-jul Bi

C2 D2i

The first requirement, Al, is indispensable for the existence of a stabiliz¬

ing controller and can be checked by means of the so-called Hautus test

[Ackermann88]. It is important to understand that any choice of unstable

weighting functions will lead to a violation of this condition. Condition

A2 is required to avoid singular problems and non-realizable controllers.

It can be enforced by penalizing the controller output u in the problem
or by including a sensor noise input n, see Figure 3.4. Relaxation of A2

is possible where required [Stoorvogel92]. Condition A3 is of technical

nature and is required for solvability of the Riccati equations involved in

the design.

The solution to the 'HOQ problem has some important properties:

• The optimal controller yields an allpass7 closed loop transfer func¬

tion. This allows precise shifting of transfer functions by means of

weighting functions as introduced in Chapter 3.2.2.

• Concerning the order of the controller, it can be said that for a plant
of order n (including weighting functions), an optimal T^ controller

of order n—1 exists. Suboptimal controllers are of order n [Glover91].

• The controller can be shown to be decomposable into two parts, an

optimal state observer estimating the system states and a constant

feedback of these states [Zhou96].

After the design has been performed, the result of the 7-iteration directly

gives information on whether or not the objectives have been reached:

A 7 value of exactly one means exact achievement of the robustness and

performance goals. If 7 is smaller than one, the robustness and perfor¬
mance radii are I/7 times larger than demanded. If 7 is greater than

one, the design failed and the robust performance objectives have only
been achieved up to I/7 times the desired values. In the latter case, the

designer has the option to accept the results as good enough, to modify

7A definition of allpass systems is given in Appendix B.3.5.
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the problem formulation by selecting different transfer functions for the

minimization or by adjusting the weighting functions, or to use the more

advanced //-synthesis techniques described at the end of this chapter.

A complete derivation of the Tioo solution method is beyond the scope of

this thesis. The above statements are sufficient to understand the concepts

applied in the present work. The reader interested in the details of the

theory is referred to [Zhou96].

3.3.2 The rioo Controller Design Procedure

After the explanation of the background of %oo controller design in the

last chapter, this chapter deals with the practical issues of the design. In

the following, a step by step procedure for the design of %oo controllers is

given.

The first step in the 'Hoc controller design procedure is the choice of an

adequate system model. To this end, a suitable nominal model must be

determined e.g. by means of identification. The model and the physical

system must then be analyzed for possible deviations and other sources of

uncertainty. This uncertainty is to be adequately quantified and added to

the nominal system model in the form of a upper fractional transformation

(see Chapter 3.1.2), yielding a set of systems that is large enough to cover

the physical plant and small enough to avoid unnecessary conservatism in

the design.

Once this has been achieved, performance issues are to be addressed. Based

on physical considerations and the guidelines from Chapter 3.2.2, those

transfer functions leading to a desired system behaviour when adequately

shaped must be identified. Additional inputs and outputs may be added

to the system and equipped with weighting functions to achieve a suitable

shaping in the subsequent design. This step is further elaborated in the

next chapter.

In the next step, the plant is to be transformed to standard form (standard
control configuration, see Appendix B.3.4), and the feasibility requirements
from the last chapter are to be checked. If they are fulfilled, the %oo algo¬
rithm can be used to derive an adequate controller, otherwise the choice

of transfer functions to be included in the design must be altered.
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Figure 3.8: Signal based design scheme

3.3.3 Discussion of Controller Design Schemes

While the choice of transfer functions to be minimized is up to the control

designer within the limits of the requirements imposed by the T-too algo¬

rithm, there are some schemes that correspond to classical design problems.
These will receive special attention in this chapter. The multitude of de¬

sign schemes can be split into two categories, that of signal based schemes

and that of loop-shaping based schemes.

Signal Based Controller Design Schemes

Signal based schemes rely on information of the physical size of signals
that are to be expected / can be accepted. From all possible transfer func¬

tions (many of which are indicated in Figure 3.8) those that seem the most

important for the present design problem are selected, and the correspond¬

ing weighting functions are defined to reflect the size of the inputs and the

inverse of the maximum acceptable size of the output signals. The advan¬

tage of this approach lies in the direct mapping of the physical reality to

the design problem. However, this approach often leads to rather complex

problems since typically a larger number of transfer function constraints

is considered. Also, the approach may be conservative — in the design

always the worst case of all signals is used as a reference. In reality, how¬

ever, it may be unlikely that all signals attain their worst case values at

the same time. An example of successful implementation of a signal-based
scheme can be found in [Lösch98].
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Loop Shaping Based Controller Design Schemes

Loop-shaping based schemes are somewhat more abstract than signal-
based schemes. Here, the choice of the transfer functions to be considered

and the size of the weighting functions is not mainly based on consid¬

erations concerning the size of the physical signals encountered. Instead

the scheme is set up in such a way, that certain meaningful closed loop
transfer functions show a desired behaviour in a more qualitative way. A

well known example of this type of schemes consists in the weighted mixed

sensitivity scheme introduced next.

Weighted Mixed Sensitivity Scheme

As an example of a loop-shaping based scheme, consider the so-called

weighted mixed-sensitivity design approach. As the name suggests, this

approach aims at minimizing the infinity norm of the sensitivity function

S and the complementary sensitivity function T at the same time. In the

section on nominal performance, Chapter 3.2.2, it has been pointed out

that minimization of S leads to good tracking of reference signals and good
disturbance rejection, while minimizing T leads to good robustness against

multiplicative uncertainty. A look at Figure 3.4 shows that besides S and

T there are two other transfer functions in the framework that might be

interesting to minimize, CS and SG. CS is the transfer function from the

set signal r to the control signal u, and as such its size determines how large
the controller output will be in response to specific set commands. Hence,
if avoidance of actuator saturation is critical, ||CS||oo must be limited.

Furthermore, CS is the transfer function from the output disturbance d0
to u, which implies (via the small gain theorem) that ||CS||oo determines

the system's robustness to additive uncertainty. SG on the other hand is

the transfer function from the input disturbance d^ to the output y. As

a consequence, ||SG||oo determines the worst case effect of input distur¬

bances on the system output. Since CS and SG are small whenever S is

small, commonly only S and T are explicitly considered in the controller

design. These considerations lead to the controller design scheme from

Figure 3.9.

Unfortunately, the smallness requirements on S and T cannot be met at

the same time. As has been pointed out in the section on performance
limitations in Chapter 3.2.2, S and T are not unrelated and certain re¬

strictions concerning their size apply, like for example S+T=I. As a con¬

sequence, the smallness of S has to be traded off versus that of T and vice
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Figure 3.9: Weighted mixed sensitivity problem setup

versa. This trade-off typically is frequency dependent. In the range of low

frequencies requirements on tracking and disturbance rejection are usually

high and the system is comparably well known. This is in favor of S being
small at the cost of a larger T. In the range of high frequencies, the sit¬

uation is different. Here, the situation is dominated by the large system

uncertainty, such that T should be small at the cost of poor performance

(large S).

The desired shape of S and T is achieved by introducing weighting func¬

tions Wi and W2 to shape S and T over frequency as indicated in Figure
3.9.

Performance limitations and the use of weighting functions to shape trans¬

fer functions are discussed in Chapter 3.2.2. The typical setup for this

problem is [Chiang92] that of Figure 3.9 and the suboptimal Hoo problem
from Chapter 3.3.1 is solved with

w = r and z=~

Minimization of [[T^Hpp will include minimization of WiS and W2T.

Due to the allpass property of the solution to the %oo problem, the function

S will be small at those frequencies where Wi is large, and analogously
T will be small where W2 is large. Due to these considerations, Wi is to

be chosen large in the low frequency range and small at high frequencies
while W2 is to be chosen small for low frequencies and large for high

frequencies. The freedom and responsibility of the control designer lies

in deciding how large 'large' and 'small' are to be in each case, where

the low frequency range ends and the high frequency range starts, and

how steep the transition between these areas should be. There are no
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generic answers to these questions, they depend on the physical system

to be controlled and the external signals to be expected during operation.
After application of the %oo algorithm, the 7 value gives clear information

about whether or not the goals have been reached or not (see last chapter).
In case adjustments are necessary, these can be carried out on either one

or both of the weighting functions Wi and W2. Often certain minimum

robustness limits are intrinsic to the problem — relaxing the requirements
on T too much would make the implicit uncertainty set too small, such

that the true physical system can no longer be guaranteed to be covered.

In this situation, the control engineer typically holds the weight W2 fixed

and relaxes the restrictions on S by suitably adapting Wi.

Problems with Mixed Sensitivity Scheme,
More Complex Schemes

As has been pointed out above, one of the aspects making the weighted
mixed sensitivity scheme attractive is that it allows to cover almost all

requirements on any of these closed loop transfer functions in a simple
scheme. However, a closer analysis exposes that there are some drawbacks

to this approach. These consist in pole-zero cancellations in the closed

loop.

Since no explicit weight is used to limit the controller output u, typically

high-gain controllers result from the design. This leads to the closed loop

poles moving towards the open-loop zeros of the plant.

Considering the SISO case and with the notation G = jf2- and C = jf1,
the closed loop denominator is Dql = DqDq + NqNg- If the open

loop zeros are part of the closed loop poles this implies that the closed

loop denominator can be rewritten with the open-loop zeros factored out:

Dcl = Ng(D~cDg + Nc)- This again implies that Nq is a factor of Dq
since Dq = NqDc. This however shows that the controller poles cancel

the open-loop plant zeroes.

In the mixed sensitivity design described above, the resulting S and T are

smooth (following the shape prescribed by their respective weighting func¬

tions) .
The consequence of this together with the zero cancelling mentioned

above is that CS has peaks at the zeros of the open-loop plant G. This

is undesired as this may cause actuator saturation and limit robustness.

Besides the above, no input disturbances have been assumed in the weighted

sensitivity design. As a consequence, the poles of the observer contained

in the T^ controller move towards the stable images of the system poles
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[Skogestad96]. Since these poles are part of the closed loop one can with

the same argument as used above show that the controller's numerator can

be written as Nc = DqNc-, which implies that the controller zeros cancel

the poles of the open-loop plant. This is particularly undesired for weakly

damped flexible modes.

Furthermore, the relative smoothness of S resulting from the design im¬

plies that the function SG will expose large peaks at the poles of G, en¬

tailing large effects of input disturbances on the system output for these

frequencies.

The undesired phenomena mentioned above can be avoided by modifying
the S/T design scheme. As has been shown above a limit on CS will

prevent plant zero cancellations by controller poles. Limiting SG on the

other hand will avoid plant poles from being cancelled by controller ze¬

ros. These considerations suggest the application of more complex loop-

shaping schemes than the classical weighted-sensitivity scheme, for exam¬

ple a S/T/CS or S/CS/SG scheme or even a S/CS/SG/T scheme, as

proposed by [Braembussche98]. The latter has been successfully applied
to magnetic bearing control by [SchönhoffOOb]. A drawback of this scheme

lies in the large number of transfer functions to be minimized simulta¬

neously. This imposes restrictions on the choice of weighting functions,
which constitutes an artificial obstacle in the design and limits the free¬

dom of the control engineer. This causes problems particularly when both

the robustness and performance requirements are demanding in a certain

task.

3.3.4 \i—Synthesis Controller Design

In the above, the Hqo algorithm has been introduced as a powerful tool for

designing controllers with guaranteed properties for user-specified transfer

functions. However, there is an important drawback to this method. In

every %oo controller design, the || • Hoo-norm of the transfer function from

all closed loop inputs to all closed loop outputs is minimized. This usually
is conservative for several reasons: The maximum size of the combined

transfer function matrix from all inputs to all outputs usually is a conser¬

vative estimate for the size the individual transfer matrices. Even worse,

this approach may bring into play transfer functions that have no physical

meaning. This may lead to the design minimization problem being domi¬

nated by transfer functions without physical relevance, which may produce

very conservative solutions.
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Consider for example the system from Chapter 3.2.4, where robust perfor¬
mance has been shown to be equivalent to a requirement on the structured

singular value associated with a specific uncertainty structure, see Figure
3.7d. The Tioo algorithm, however, does not minimize the structured sin¬

gular value //a as would be desired, but the unstructured singular value

â of the transfer function Tzw, which includes functions without physical

meaning like that from u^ to z2 and that from w2 to zx.

Obviously, the situation would be significantly improved if the rloo algo¬
rithm could be modified to minimize the structured singular value of the

closed loop transfer function, i.e. if it would solve the following optimiza¬
tion problem:

min sup//A (T^(C, ju)) (3.29)
c

w

—
rp

stabilizing

This is referred to as //-synthesis. Unfortunately, currently no algorithm
is available that can achieve this goal directly and guarantee to find the

global optimum of the above problem. However, a procedure called D-

K iteration yields local optima and constitutes a significant improvement
over the classical T^oo approach for most practical control problems. In

the following D-K iteration is briefly outlined.

Since // cannot be calculated directly (see Chapter 3.2.3), the synthesis

approach consists in minimizing the upper bound of // instead of // itself,
i.e. the above optimization problem is relaxed to

min sup inf â^T^CJ^D-1). (3.30)
stabilizing

Then the matrices Dw which in the above formulation are chosen individ¬

ually for each u, are restricted to be parts of functions from 7?/Hoowith the

same structure. This simplifies the problem to

min inf ||DTzu;(C)D-1||00. (3.31)
stabilizing y

The D-K iteration now finds locally optimal solutions to this problem by
the following two-step procedure:

K-Step: Given scaling functions D G VJKoo (initially identity) and hold¬

ing these fixed, an optimal controller C for the problem (3.31) is

calculated by means of the I-Loq algorithm.
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D-Step: Given the controller C, matrices Du minimizing the expression

inf â^T^C,ju)D^)

are computed for each frequency in the grid. Then the optimal matri¬

ces Du are approximated by a stable, minimal phase transfer function

D«.

This procedure is iterated until the performance requirements are reached

or no further improvement of the minimum of Equation (3.31) in can be

achieved.

Although fairly complex, well-developed software tools for performing D-

K iteration are available [Balas95a]. The order of the controllers resulting
from the procedure is that of the plant (including the weighting functions)
plus that of all D-scales (twice that of D(s)). Since high order D-scales

may be required for efficient minimization of the objective function, this

implies a trade-off between closed loop performance and controller size.

Both the choice of maximum scaling function order and of the frequency

grid are up to the user. While no guidelines for these issues are available in

literature, practical experience shows that the frequency grid should com¬

prise all weakly damped eigenfrequencies of the plant. Furthermore, with

the development of powerful controller reduction algorithms [Wortelboer99],
the trend can be expected to go towards increasing D-scale orders.

3.3.5 //-Synthesis: Limitationsof Available Algorithms

The //-synthesis controller design framework described above is a versatile

and effective method for designing robustly performant controllers. Com¬

mercially available implementations of the algorithms (e.g. the //-Analysis
and Synthesis Toolbox for MATLAB, [Balas95a]) have been successfully

applied in numerous practical applications from a variety of fields.

Nevertheless, the currently available algorithms are subject to some signif¬
icant restrictions that will be discussed in the following.

A first restriction to be mentioned consists in the iterative nature of the

procedure, where controllers and scalings are successively improved in sep¬

arate steps. This entails relatively long controller design times (typically
3-5 iterations). Furthermore, the algorithm cannot be guaranteed to find

a global minimum of the optimization problem which typically has many

local minima.
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Another significant restriction results from the fact that the // values can¬

not be calculated directly, but can only be assessed via bounds that are

tight only for simple block structures, see Chapter 3.2.3. This results in

(moderate) conservatism of the estimates.

Finally, it must be stated that the currently available algorithms have con¬

siderable problems in dealing with real valued uncertainty. This constitutes

a severe drawback since this type of uncertainty is often encountered in

practical applications. For example uncertain mass values or uncertain

rotational speeds will always be real valued. While unstructured real un¬

certainty cannot be dealt with at all, parametric real uncertainties can be

nominally treated. However, the computation of the // bounds for real-

valued uncertainty is not very reliable. As a consequence, convergence

problems are often encountered.

However, replacing real uncertainty by complex uncertainty often is not

a viable alternative since this introduces considerable amounts of conser¬

vatism (in the complex plane, the parameter then lies in a circular disc

rather than on a line). This makes the problem not tractable in some

cases as the physically meaningless complex parameter values may lead to

awkward, equally meaningless systems being considered in the uncertainty
model. It is then possible that these systems are particularly difficult to

stabilize and/or control. This results in controllers that have poor perfor¬
mance on the physically relevant systems.

A workaround for this difficulty has been presented in [Balas95a]. It con¬

sists in duplicating the inputs and outputs associated with the real uncer¬

tainties, and adding a small, complex uncertainty to these new channels.

This 'mixed' (real and complex) setup results in a less conservative uncer¬

tainty model (the parameter now lies in a narrow, oval-shaped area around

the line) and yields much better convergence of the // computation.

Unfortunately, additional input and output channels also imply a higher

plant order and more scaling matrices to be computed in the D-K itera¬

tion, resulting in higher order controllers, as well as longer controller design
times. Therefore, the benefits of this approach for controller design may
be restricted, depending on the number of real uncertain parameters.
For analysis purposes however, this constitutes a considerable improvement
over analyzing systems with complex uncertainty.
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3.3.6 //—Synthesis: Advanced Algorithms

Besides the standard D-K iteration described above, there are some refined

algorithms that aim at obtaining controllers with // values closer to the

global optimum. Among these is the D-G-K iteration which, based on an

alternative characterization of //, tries to perform a mixed real/complex
synthesis with an additional set of scalings (G scalings) [Zhou98].

Unfortunately, these algorithms require considerably more time to design

controllers, which limits their benefits. Furthermore, numerical problems
are very often encountered in their application [SchönhoffOOb],
[SchönhoffOOa]. Overall, these methods must be considered experimental
methods at their current stage of development.

3.4 //—Analysis

After a controller has been designed for a system, it is natural to ask how

'good' this controller is. This question is answered by //-analysis.

3.4.1 Interpretation of the /ll Value from //-Synthesis

A first analysis result already comes for free with the controller design:
as has been mentioned before the achieved // value conveys information as

to if all design specifications (robust performance) has been fulfilled. A

// value below or equal to one indicates a successful design, while a value

above one indicates that this is not the case.

This statement can be further refined. In fact, if a final // value of 7 is

achieved, this implies that for uncertainties up to I/7 times the size of those

used in the design framework, the performance transfer functions will be at

most 7 times larger than desired. For 7 = 2 this implies that with the given

controller, there is an uncertainty of norm 1/2 for which the closed loop
transfer function from the performance inputs to the performance outputs
of the design setup has norm 2. (This coupled statement on performance
and robustness led to development of an iterative design procedure in which

the performance channels are successively weighted by scalars in order to

trade-off performance vs. stability in problems where such a trade-off is

possible and desired [Balas95a].)

It is important to realize that no statement beyond the above is made. In

particular, this statement cannot be scaled. For the example of 7 = 2, no
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statement can be made on the size of the performance transfer functions for

disturbances of norm 1, in particular it is wrong to conclude that these be 4

(double uncertainty does not mean half as good performance, performance

may in some cases be twenty times worse, in others be hardly affected).

3.4.2 Advanced Analysis

From the above, it becomes obvious that the // value resulting from con¬

troller design only gives rather limited information on closed loop per¬

formance. In many cases, this information is not detailed enough. For¬

tunately, additional information on arbitrary performance criteria can be

easily obtained.

A standard step in advanced analysis of closed loop performance consists in

eliminating the conservatism entailed by the often 'lumped' design problem

(e.g. in case of mixed sensitivity or other design schemes). This can be

easily done by considering only a subset of the closed loop's performance

inputs and outputs, which allows analysis of individual closed loop transfer

functions.

Additional insight can be gained from a special feature offered by MAT-

LAB's //-Analysis and Synthesis Toolbox, which allows explicit computa¬

tion of a disturbance of norm I/7 for which the transfer function from the

performance inputs to the performance outputs has norm 7. This worst

case disturbance can be used to identify critical uncertainty parameters

[Balas95a].

3.5 Summary

In this chapter, an overview over the key concepts and methods in ro¬

bust controller design has been given. Although a considerable effort has

been made to roll out the basic theory required to understand the meth¬

ods used and decisions taken in the chapter on controller design for AMB

systems, Chapter 5, the extent of the subject does not permit a com¬

prehensive treatment within this thesis. For more detailed information

on general control theory, the reader is therefore referred to [Franklin94]
and [Geering90]. For theoretical aspects of robust control [Green95] and

[Zhou96] are recommended. Furthermore, [Zhou98] and [Skogestad96] are

textbooks that cover the basic theory and contain valuable information

concerning application aspects.
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Chapter 4

Identification of AMB

Rotor Systems

In this chapter, the identification of AMB rotor systems is addressed. In

the first part, a new identification procedure for rigid rotors is presented.
The method is designed to identify rigid rotors with unknown properties

(mass, moment of inertia, dimensions) that are part of an AMB system of

which the bearing properties are known.

The second part of this chapter deals with identification of flexible rotors.

The method presented has been developed in [Gähler97] and is based on

measurements of the multiple-input multiple-output (MIMO) open-loop

frequency response function of the levitated rotor.

In the last part of this chapter, a new method for identification of the ro¬

tation dependent part of the model, the gyroscopic matrix G, is presented.

4.1 Identification of Rigid Rotors in AMBs

This chapter is concerned with the identification of unknown rigid ro¬

tors that are part of an AMB system with known bearing characteristics.

No knowledge about the rotor's size, mass, moment of inertia or location

of center of gravity is assumed. The bearings are assumed to operate
in differential driving mode and are considered linear1. Their character-

1This is a strong assumption since the experiments performed are not restricted to

rotor positions near the bearing center. The justification for this procedure will be given

81
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istics for one specific operating point must be known, i.e. one triplet

(io,ref,ks,ref,ki,ref) must be given.
The identification procedure presented here is based on step experiments
that are performed on the two radial bearings and the axial bearing.

This chapter is organized as follows: First, the identification problem is

formulated in its general form. Then, the core of the method, identification

by step experiments, is described. To this end, the identification problem
is formulated for a single, one-dimensional bearing, and the analytical
solution is presented. In the next two sections, this approach is extended

to the case of complete rotors with five degrees of freedom that are to be

controlled. With gravity playing an important role in the method, the

orientation of the rotor determines how exactly the algorithm is to be

applied. Therefore, configurations with horizontal and vertical rotors are

addressed separately.

4.1.1 The Identification Problem

The model to be identified in this context is the rigid body model intro¬

duced in Chapter 2.2. As has been shown there, any rigid rotor supported

by AMBs has the one plane model description (assuming standstill)

mi 777,3

m3 m2

xa

xb
_

—

ks,A 0

0 kSyB
_

xA

_xB
_

+
ki,A 0

0 ki,B
_

iA
-T2

mg

0

(4.1)
with

mb2 + Ir mo? + Ir mob — Ir

(a + b)z (a + b)z (a + by

and

1

T2~^Tb

As has been mentioned above all bearing parameters (and therefore kSjA,
ks,Bi kitA and A;^^) are assumed to be known. The identification problem
consists in determining the unknown mass coefficients mi, m2 and 777,3.

b a

-1 1
(4.3)

by experimental investigations in Chapter 7.
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4.1.2 1-D Identification by Means of Step Experiments

Identification

In this section, the identification problem is solved for a single mass that

is to be levitated in one degree of freedom. This analysis goes back to

[Fritsche95].

Consider a one-dimensional bearing as schematically depicted in Figure

4.1, where the rotor is a ball, xs denotes the radial distance between the

rotor and the retainer bearing when the rotor is in the center position,
and x represents the displacement of the rotor from the center position.
Let further 777 denote the mass of the rotor, and ks,ref and ki,ref the

force-displacement and force-current factors of the bearing for a given
bias current io,refi respectively.

With the above notation and i being the bearing current's deviation from

the bias current, the linearized equation describing the rotor's motion

around the bearing center can be written as follows:

mx = ksx + kii — m • g. (4-4)

In the above setting, full identification of the system is equivalent to iden¬

tification of the unknown mass m of the rotor. To this end, the following

experiment is performed. First, the current is switched off such that the

rotor rests at the position x — —xs. Then, a current step of size Is is

applied to the upper magnet and the rotor is accelerated upwards until it

hits the upper part of the retainer bearing at x — xs.

By applying the Laplace transform considering the initial condition x =

—xs, the rotor's response to the current step can be expressed in the fre¬

quency domain as:

m(s2X(s) + sxs) = ksX(s) + k{— -

—. (4.5)
s s

Rearranging terms yields

-x • s
^ I £

x(s) = -^-4- + —^ • - - tV. (4-6)
mm m

where the first factor of the second term describes the plant's transfer

function from current to displacement and the first and third terms stem

from the initial conditions and the influence of gravity, respectively.
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Backup Bearing

m

1/

/ x

r\ -*^ 11-

Rotor /\

(Ball)

Figure 4.1: 1-dof Active Magnetic Bearing

Investigation of the second term reveals the dynamical system known from

Chapter 2.1.4, Equation (2.13). This system is of second order with poles
at

p = ± \ / — and a static gain of kpiant — ~~r~-
V 777 Ks

(4.7)

Transformation of Equation (4.6) to the time domain and scaling by l/xt
then yields for the step response of the rotor:

x(t)= -1 +
Is s0 gm

Xs lQ Xs "'s

cosh
h so gm

Xs Iq Xs Kt
(4.8)

As can be seen from Equation (4.8), the function describing the rotor's

path contains the unknown system pole p as an argument to the hyperbolic
cosine term. This parameter can be identified by means of the following

procedure.

1. Perform a step experiment as described above with on-line measure¬

ment of the rotor's position.

2. From the time data obtained, extract the moments of take-off and

contact with the upper part of the retainer bearing.
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3. Fit a function of type x(t) = a • cosh(£>; • t) — c to the position mea¬

surements made during the flight-phase of the rotor.

The parameter pi resulting from this procedure then directly yields an

estimate for the system's poles at ±p.

It is important to understand that in the experiment described above the

size of the current step implicitly defines the operating point of the (linear)
bearing. A current step of size Is implies that a linear bearing with bias

current io — Is/2 is subjected to a current step from i = —Is/2 toi = Is/2.
As mentioned in Chapter 2.1.2, the force-displacement factor ks and the

force-current factor ki both depend on the bearing's bias current zo, i.e.

ks oc io2 and ki oc io- (4-9)

Based on this relationship and the known operating point (io,ref, ks,ref,
ki,ref), the force-displacement factor and the force-current factor that

have been valid during the experiment can be calculated as follows:

ks,eff = kSjref • ( -^^- )
,
and ki>eff = kijref • -^^-, (4.10)

\lO,ref J H,ref

with Z0,e// = Is/2.

Based on the effective value of ks from the above formula and the estimated

pole pi the rotor mass m can be determined using Equation (4.7). Once

this has been done the system is fully identified. Its transfer function is

k±

This equation is valid not only for the nominal operating point

(io,refi ks^ref, ki^ref) but also for arbitrary other values of io- For any

choice of z'o the corresponding values for the force-displacement factor ks

and the force-current factor ki can be determined using Equation (4.10).

It is important to appreciate the significance of Equation (4.10). This

equation can be used to transform the identified model (4.11) from the

operating point at which the experiment has been carried out to any other

operating point. In particular, it allows formulation of low-bias current

models that could not have been identified with the above method since

the required current step would have been too small to lift the rotor.

(4.11)
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Controller Design

A controller for this system can be derived as follows. Since this system

has a constant phase of —180 degrees, the controller must provide positive

phase and sufficient gain in order to stabilize the unstable system pole. A

straightforward solution to achieve stabilization for this type of plant is by
means of a lead compensator [MuntwylerOO]. The structure of this element

is as follows:

R^ = feSriwithT=^0<a<1- (412)

The parameters kid, Cf, and a must be chosen such that the system is

robustly stabilized.

One can show that kid corresponds directly to the gain margin of the

closed loop system. To achieve stabilization, the product of kid and the

static plant gain kpiant must be less than -1. A value of -1.5 for this

product yields a gain margin of 3dB, which can be considered a minimum

requirement.

An additional requirement on the controller is that its gain must be large

enough to actually lift the rotor (sufficient disturbance rejection at s — 0).
This condition is not fulfilled by all stabilizing controllers.

From the equation

ks • x + ki • i = m • g (4-13)

which describes the balance of forces if the rotor is at rest at position x

in the air gap and from the static force current relation defined by the

controller i — —kid-x (negative feedback), it follows that the gain required
to hold the rotor statically at a position x = —xstat in the air gap a

controller gain kid of

ks m • q ,,,,,

h,d = i + k^~ (414)

is required. When no integrator is employed, a reasonable minimum choice

for the static position error is one quarter of the air gap from the bearing

center, yielding
ks

A

777 • q ,, .,
.

k,d = i+Ak^- (415)
"a "'i ^s

The controller gain can then be chosen as the maximum of this gain and

the minimum stabilizing gain described above.
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Figure 4.2: Bode plot of lead compensator
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When an integrator is added to the controller, the stiffness can be set to

a lower value. It is then only to be chosen large enough for stabilizing
the rotor while lévitation is achieved by the (very slow) integrator. In this

situation, it is enough to set the gain kid to several (e.g. 5) times the

the inverse of the plant gain. This low gain approach is favorable when

excitation of unmodeled high frequency modes is to be avoided as is the

case in application of the method to AMB systems with flexible rotors.

The parameter a determines the maximum phase lift ^max of the com¬

pensator [Franklin94], i.e.

sin((/jmaa;)
a

1-r-a
(4.16)

Small values of a result in a large phase lift. This is good for stabilization,
but entails a large high frequency gain kid/a of the controller. A good

compromise is a = 0.15. This yields a phase lift of nearly 50 degrees at

frequency Cf p and an increase in high frequency gain of 15dB.

Finally, the coefficient Cf can be used to select the frequency umax for

which the maximum phase lift is achieved. The relationship between T
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and umax is

Umax = ~ J= =Cf-p. (4.17)

Experiments have shown that the choice umax=l.b • p yields good results,

[MuntwylerOO], suggesting a choice of Cf = 1.5. Figure 4.2 shows a bode

plot of the controller for a = 0.15, kid = 15 P = 500, and Cf = 1.5.

4.1.3 Identification Procedure for Vertical Rotors

The procedure described above can be applied directly to the controller

design for axial bearings of AMB systems with vertical rotor. Once this

has been done, the identification of the radial dynamics can be addressed.

Determination of mi and 7722. The diagonal entries of the mass matrix

can be determined as follows: First, the rotor is pulled to the retainer

bearings in both bearings by means of constant currents. While the current

is held constant in one AMB, a step experiment as described in the previous
section is applied to the other bearing. In terms of Equation (4.1) (without
the gravity term), this means for the case that the step experiment is

performed on bearing A

mxA — ks,AxA + kijAiA (4.18)

This equation is identical to the one derived in the section describing the

one dimensional case. Therefore, the identification approach developed in

the last section can be directly applied, yielding the mass coefficient mi.

The coefficient 7772 can be identified from application of the same procedure
to bearing B.

Determination of ms. In order to determine the remaining coefficient,

777,3, it is important to notice that the sum of the entries of the mass matrix

is equal to the total rotor mass m:

mi + 777,2 + 27773 = 772 (4-19)

The total mass can be calculated from the force of gravity acting on the

rotor, which in turn can be determined from the position and currents in

the axial bearing and the known characteristics of this bearing. Together
with the known values of mi and 7722, Equation (4.19) can be used to

determine the remaining coefficient 7723. The system is then fully identified.
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4.1.4 Identification Procedure for Horizontal Rotors

For the axial movement of horizontal rotors, the equations of motion are

similar to those given in Chapter 4.1.2. Merely the gravity disturbance

force is now replaced by a term describing the friction of the rotor in the

retainer bearings. However, this constitutes merely a disturbance force

and has no influence on the system's transfer function. Therefore, the

procedure described above can be applied 'as is' for the design of axial

controllers for horizontal rotors. Due to the horizontal orientation of the

system, a current must be applied to one side of the axial bearing before

the experiment to bring the rotor into contact with the retainer bearing.

Once an axial controller has been designed, the issue of radial control can

be addressed. In typical AMB systems the radial bearings are rotated by
45 degrees with respect to the vertical axis, see Figure 4.3. Therefore it is

necessary to extend the 1-D procedure described above to two dimensions.

2—D Case: Identification

Compared to the one-dimensional case described above, the main differ¬

ence in the system model is the existence of two independent axes. In order

to achieve the desired vertical upward acceleration of the rotor, a current

step must be applied to both axes at the same time. The movement along
each of two axes can then be analyzed separately. The model description
is analogous to that of the one-dimensional case, with the difference that

both the air gap relevant during the vertical lift experiment, xs, and the

gravitation constant g are reduced by a factor of y/2. As a result, the

equation of motion becomes

m (s2X(s) + 8^\ = ksX(s) + kil(s) - ^L (4.20)

The Laplace transform yields for a step current input

x(s) = ^Är + ^Ar-7-Ä (4'21)
mm m

which in time domain is

x(t) = | _! +
V5 J^°

_ un) C05h (JEt) -

(^2I> s" am

Xs 2o 3Cs s J \ V 772 J \ Xs Zo ^s ^s

(4.22)
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Figure 4.3: 2-dof radial Active Magnetic Bearing

As a consequence, the pole for each of the system's axes can again be

estimated from a fit of a function of type x(t) = a • cosh(p^ • t) — c and

the transfer function from current to displacement for each of the two

axes again is that given in Equation (4.11) with the same comments valid

concerning the adaptation of the bearing's operating point.

2—D Case: Controller Design

The two dimensional system can be controlled by designing an individual

controller for each of the two axes. Since the transfer function from current

to displacement along each of the axes is identical to the one dimensional

case and the factor a/2 cancels out in the calculation of the minimum gain

required for lifting the rotor to a certain position, the design procedure
remains identical.
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Horizontal Rotor: Identification

As has been shown in Chapter 4.1.1, the identification problem consists in

determining he three unknown masses mi, 7722 and 7723 .
How this can be

achieved will be described in the following:

Determination of mi and 7722. The diagonal entries of the mass matrix

can be determined as follows: While one bearing remains switched off, the

step experiment described in the previous section is applied to the other

bearing. During the experiment, the rotor is held at rest by gravity on

one side, while at the other side it is moved upward. In terms of Equation

(4.1), this means for the case that the step experiment is performed on

bearing A,

b
mixa = ks,AXA + ki^A —7 -m- g (4.23)

ex I 1/

Up to the gravity term, this equation is identical to the one derived in the

section describing the two dimensional case. The difference in the last term

merely is a difference in the disturbing gravity force. It has no influence

on the transfer function to be identified, see Equation (4.22). Therefore,
the identification approach developed in the last section can be directly

applied, yielding the mass coefficient mi. The coefficient 7722 can be iden¬

tified from application of the same procedure to bearing B. Based on this

information and the controller design method described in the last section,
controllers capable of lifting each side of the rotor individually (with the

other bearing switched off) can be designed. It must be understood, how¬

ever, that these controllers in general do not stabilize the rotor when both

bearings are active. While the two individual systems each have two real

axis poles per plane, the completely levitated rotor has four such poles

poles per plane, see Chapter 2.6. These poles are associated to the rigid

body motions of the rotor (tilt mode and translational mode) and cannot

be derived from the poles observed with one of the bearings switched off.

Determination of ms- In order to determine the remaining parameter,

7723, it is important to notice that the gravity term in Equation (4.23) can

easily be expressed in terms of the mass coefficients to be identified:

b
• m = mi + m3 (4.24)

a + 0

This can be seen from the following thought experiment: let the rotor fall

freely, with both bearings switched off. Then kSjA and kSjs are zero, and
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the first line of Equation (4.1) becomes

mi -g + ms -g = ——- -m-g (4.25)

from which the above statement follows immediately.

After having determined stabilizing controllers for each of the individual

bearings with the other bearing switched off, we are able to bring the

rotor to the bearing center by means of a (very slow) integrator. Then the

gravity term in Equation (4.23) can be determined from measurements

of the control currents. Based on this measurement and the known mass

772i, the remaining parameter 7723 can be determined from Equation (4.24),
which concludes the identification of the system.

4.2 Identification of Flexible Rotor AMB Sys¬
tems

This chapter deals with the problem of obtaining an analytical model of

a given AMB rotor system with flexible shaft. The implicit assumption is

that the rotor has been levitated by some primitive controller that allows

execution of the required experiments. Such a controller can be obtained

based on the identification procedure for the rotor's rigid body dynamics
described in Chapter 4.1 and a subsequent controller design for the sys¬

tem with unknown high frequency dynamics as described in Chapter 5.1.

Integration of the identification algorithm in the overall controller design

procedure will be discussed in Chapter 6.

The analysis in this chapter is based on the model description from Chapter
2.3. First, the issue of measuring open-loop frequency response functions

is addressed. Then, an algorithm that allows the identification of the

open-loop MIMO system model from the measured transfer functions is

presented.

4.2.1 Closed Loop Measurement of open—loop Trans¬

fer Functions

In the context of this work, we are interested in obtaining models for

controller design, i.e. open-loop models of the system. To identify such

models, open loop measurement data of the system's frequency response
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function from the current inputs to the sensor outputs is indispensable.
At first sight, this data appears to be difficult to obtain since employment
of the stabilizing controller for lévitation of the rotor always makes the

system a closed loop system. However, this does not pose any substantial

problems. By exciting and measuring adequate system variables, the sys¬

tem's open-loop frequency response function can be measured while the

system is operated in closed loop [Gähler98].

To clarify this statement, consider the system setup in Figure 4.4. The

MIMO frequency response function to be measured is that from the sys¬

tem's input u to its output y. Several sources of disturbance are present,

di represents disturbances in the amplifiers and actuators, dsys indicates

disturbance forces acting on the system, and dmeas accounts for measure¬

ment and sensor noise. No additional noise needs to be taken into account

for the input u (the sum of the controller set current and the excitation

signal fed to the system) since the values are not measured but directly
obtained from the processor board, [Gähler98].

The system is excited from variable e. From the above diagram the follow¬

ing closed loop frequency response functions can be derived (for simplicity,
the complex argument is omitted):

y = (I - CGJ^Gfe + &) + (I- CG)"1 (dsys + dmeas) (4.26)

u = (/-CG)-1e + (/-CG)-1C(^meas+4J/s) + (/-CG)-1CGdi

(4.27)
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For the case of negligible noise (adequate signal to noise ratio) it follows

that

y (I-CG^Ge
G

u
(4.28)

(I-CG)~le

i.e. the open-loop frequency response function G of the system can be

obtained from closed loop measurements of y and u with excitation at e.

In practice, the symbolic division in the above formula is a matrix division.

Given a system with n inputs and I outputs, for each frequency point Ui, n

measurements are made. During each measurement, all input and output

signals are recorded. This yields complex measurement matrices

U(jw) Mi un el'
nxn

(4.29)

Y(jw) = y, v
>/xn

(4.30)

To actually compute the frequency response function value G(ju), the

matrix U^'u;) must be invertible. Therefore, the excitation patterns must

be chosen in such a way that the n columns of \J(ju) are linearly indepen¬
dent. The frequency response function value is then calculated for each

frequency point as

Gm(ju)=Y(ju)V(ju)-1 (4.31)

Successive application of this procedure allows to measure the system's
MIMO open-loop frequency response function on an arbitrary frequency

grid.

4.2.2 The Identification Problem

As has been shown in Chapter 2.3, proportionally damped flexible rotors

in uncontrolled AMBs can be represented for Q, — 0 by a dynamical system
G defined by a system of second order differential equations

Mq + Dq + Kq = Fw

z = Sq

(4.32)
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Transformation of this system to the Laplace domain and application of

the modal decomposition from Chapter 2.3.2 yields the following decom¬

position of the system:

G(s) = S(s2M + sD + K)~1F

= S[V~T(s2M + sD + fyV-^F

= SV(s2M + sD + K)~1VTF

= ê[(s2M + sD + K)]-l$T

^i=l s2+26iUJ0iS+0Joi2

^i=l s2+2ôiUj0is+u;Oi2

where the matrices Ri — 4>.ipi are dyadic vector products of rank one.

The order q of the system is to be chosen based on the measured FRF of

the open-loop system. Due to the weak damping of the hovering rotor, all

flexible poles are clearly visible in the open-loop FRF. As a consequence,

the issue of determining an adequate order for the model, often a critical

point in system identification, does not pose a problem here. The identi¬

fication problem consists in determining the numerator and denominator

entries of the addends in the last row of Equation (4.33).

4.2.3 Identification Algorithm for Flexible Rotors at

Standstill

Several algorithms are available to derive state space models from mea¬

sured frequency response functions (FRFs). However, the special charac¬

teristics of AMB systems, in particular the real-axis poles (see Figure 2.6),
require application of a special procedure to achieve robust identification.

An algorithm to perform this task based on the closed loop measurement of

open loop transfer functions presented in Chapter 4.2.1 has been presented
in [Gähler97]. In the following, this algorithm is briefly described.

Based on measured FRF data Gm(ju) obtained from the rig by applying
the measurement procedure from the last chapter, the following steps are

performed:

(4.33)
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1. Introduction of Feedback Term. A constant proportional feed¬

back term Fk is numerically introduced into the open-loop measure¬

ment data:

Gm(jUi) = (I + GrnUu^FK^G^jUi) (4.34)

This is equivalent to introduction of a proportional feedback con¬

troller on the open loop system, which moves the real-axis poles to¬

wards the origin and then further up and down the imaginary axis,

making them clearly visible in the transfer functions of the system

GmO'^).

2. Determination of Denominator Polynomial. From the modi¬

fied FRF, the determinant det(Gm(jia;i)) is calculated for each fre¬

quency point ju{. A least squares procedure is used to estimate the

polynomial describing the determinant det(Gm(ju)). The denomi¬

nator polynomials of all SISO transfer functions contained in G(ju)
are identical to the identified polynomial [Gähler97]. The system

poles can therefore be extracted by determining the roots of this

polynomial.

3. Determination of Residual Matrices. The residual matrices Ri

from Equation (4.33) are estimated by means of another least squares

problem. In the next step, the rank one condition is enforced by

calculating optimal rank 1 approximations to the estimated matrices

based on their singular value decomposition.

4. Assembly of Model. Based on the identified parameters, a mini¬

mal state space description of the model is constructed.

5. Elimination of Feedback Term. Finally, the proportional feed¬

back term is again removed from the identified model by introduction

of an identical feedback term with opposite sign analogous to step 1.

This yields, using Equation (4.34)

/ + G(S)(-FX)]_1G(S)
[I + (/ + G(s)FK)-1G(s)(-FK)] ''(I + G(s)FK)-1G(s) =

[(I + G(s)FK)(I + (/ + G(s)FK)-1G(s)(-FK))] G(s) = G(s)

(4.35)
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The result of the procedure consists in a MIMO state space model of the

open-loop AMB system of a form similar to that from Equation (2.46):

A =

QQXQ

-(Pi-Pi) o

~(P2-P2)

jqXq

(Pl+Pl) o

(P2+P2)

0 -üvp;) 0 (Pq+P*o)

(4.36)

B =

0
R2q x2n C *r0 eR:2lx2q n —

D
= [0]e R

2lx2n

where n and I denote the number of AMBs and sensors in the system,

respectively.

The method has been shown to work efficiently and robustly. From the

identified single-plane model, a two plane model can be derived by simple

duplication of this model, yielding a system with twice as many states,

inputs, and outputs. By simply reordering of the states in the state vector

such that they are

• planewise alternating, with the modes from the x-plane first,

• with identical modes of different planes next to each other,

• beginning with the rigid body modes, and

• with increasing frequencies,

i.e. in the form

%d,2p
= V^l.Pcc' Vr\,Pyl Vr2,px1 Vr2,Py-> Vfl,Px1 VS\,Pyl "1 Vfq-2,PX1 Vîq-2,Py) 5

(4.37)
with &vl)Pj denotes the state associated with the 2-th rigid body mode of

plane j and ^/X)P denotes the state associated with the z-th flexible mode

of plane j (je {x,y}).

The resulting two-plane model can be brought into a form very similar

to that from the above equation with the sub-matrices in the lower right
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and left of the matrix A having 2q diagonal entries. A two plane model

of this structure will be used in the following for the identification of the

gyroscopic matrix G.

4.3 Identification of the Gyroscopic Matrix

The above identification of the rotor system is not yet complete. It only
covers the rotor at standstill. The gyroscopic matrix G describing the

dynamical changes to the system due to rotation cannot be determined

from the system at rest.

In the past, several attempts have been made to identify the matrix G

[Mohler96], [Senn97]. To this end, frequency response functions have been

measured on a rotating AMB system. Based on these measurements, it

has been attempted to find a skew-symmetric matrix G expressing the

gyroscopic effects by means of different least squares approaches. However,
these attempts were not successful. The optimization problem turned out

to have many local minima and too many variables. As a consequence,

the algorithms yielded solutions that were by no means similar to the

reference solution obtained from Finite Element programs. Even in the

case of strongly relaxed demands, where the attempt was made to find G

starting with an only slightly disturbed G, no convergence was achieved

[Senn97].

4.3.1 Problem Definition

Due to the experiences made in the prior research, the above concept of

identifying G by brute force methods has not been pursued any further

in this work. Instead, it has been decided to step back and address the

following issues in order to arrive at a problem solution:

Simplification: The maximum amount of structural information on the

gyroscopic matrix should be gathered and used to reduce the number

of unknowns in order to simplify the problem.

Approximation: Instead of searching for 'the true' gyroscopic matrix,
could the problem be simplified by finding a matrix that affects the

system's transfer function in a very similar way but has much simpler
structure?
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Modularity: If possible, the new identification procedure should consist

of several smaller problems that can be solved more reliably than a

single large problem with many variables.

In order to achieve any of the above, a deeper understanding of the nature

of gyroscopic effects and how they affect the system was required. To this

end, following analysis has been carried out.

4.3.2 Problem Analysis

In Chapter 2.3.2 the matrix G has been introduced as a skew-symmetric
matrix that has the same size as the other system matrices. This informa¬

tion alone yields a number of r(r — l)/2 coefficients to be determined by

identification, with r denoting the size of the square matrix G.

However, by performing a state transformation to modal form with the

states ordered with increasing frequency and alternating planewise as de¬

fined in Equation (4.37) G can be forced to have a special structure. It

then consists of skew-symmetric 2 by 2 blocks with zero diagonal, see Fig¬
ure 4.5. This structure results from the fact that G only contains coupling
terms between modes of different planes and the rotational symmetry of

the rotor.

This reduces the number of unknown coefficients to r(r + 2)/8, which

amounts to a reduction of about 50-70% for typical systems (with r = 4

to r = 16 modes in the control relevant frequency range). Therefore it

is favorable to base both the analysis and identification of the gyroscopic
matrix on the system description in modal coordinates.

When analyzing the entries of the G matrix it shows that unfortunately,
all entries of the different 2 by 2 blocks typically are approximately of

the same size with irregular variation of about two orders of magnitude.
No specific structure (like for example dominance of the diagonal blocks)
can be made out. This observation suggests that all blocks contained in

the matrix are equally significant and that hence all coefficients must be

identified in order to arrive at a useful description of the gyroscopic effects.

This conjecture however is not correct as will be shown in the following.

At standstill, the two planes of the system are decoupled. In the modal

description, this is obvious in the structure of the A matrix of the system,

see Equation (2.46), which shows the structure of the one plane system

and also of the two plane system if the state ordering of Equation (4.37)
is applied. Additionally, in this description the modes of each individual
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Figure 4.5: Structure of gyroscopic matrix with state ordering from Equa¬
tion (4-37). The matrix is skew symmetric and composed of two-by-two
blocks G that themselves are also skew-symmetric and have zeros as di¬

agonal values. Only a few block entries of the (full) matrix are explicitly
shown for better readability.

plane are completely decoupled, i.e. no vibration of any mode of any plane
has any influence on any other mode of the system.
This situation is changed as soon as the rotor starts rotating. A scalar

multiple of the matrix G is then added to the lower right part of the

state space matrix A. Due to the structure of G, this will introduce a

cross coupling between the modes of different planes. This effect can be

analyzed on the example of a simplified system featuring only one flexible,

undamped mode per plane. In this situation, the gyroscopic coupling
consists in a single coefficient g.

For a given undamped flexible mode pair from the x and ^/-planes with

eigenfrequencies / and c • f (c being a constant factor) that is coupled

by a gyroscopic matrix entry g the following equation for the two coupled
modes is obtained:

Ji iPX 72 0
JiiPX

"

0 -üg VU ,Px

_

J j iPy
.

0 c2/2J
.

Jj>Py
.

ßg 0
.

Jj iPy

(4.38)



4.3. Identification of the Gyroscopic Matrix 101

In order to investigate the relevance of the different blocks in more general

systems (see Figure 4.5), it is instructive to investigate the effect of the

gyroscopic coupling term g as the eigenfrequency ratio c is altered.

In Figure 4.6 the change in eigenfrequencies of the coupled system with

respect to the eigenfrequencies of the uncoupled system is depicted for a

variety of eigenfrequency ratios c for a fixed value of g = 0.1.

As can be seen from the figure, the effect the gyroscopic coupling üg
has on the eigenfrequencies of the coupled modes is the larger the closer

the two uncoupled eigenfrequencies are. For all rotational speeds, by far

the maximum eigenfrequency shift resulting from the gyroscopic matrix

coefficient g is obtained for c — l.2

An important implication of this observation is that the seemingly similar

entries of the typical gyroscopic matrix are similar in size, but not similar

in effect. While already small coefficients coupling two modes with identi¬

cal frequency have a considerable impact on the dynamics of the system,

significantly larger entries linking modes with very different frequencies
have virtually no effect.

This constitutes a de facto block diagonal dominance of the gyroscopic
matrix G, attributing special relevance to the (r — 4)/2 coefficients de¬

scribing the mutual coupling between identical modes of the two planes.

Figure 4.7 shows that these few coefficients alone yield a good description
of the gyroscopic effects acting on the system for small rotational speeds.
It shows a transfer function of a system obtained from a Finite Element

model at a rotational speed of 7'500rpm. The first graph (dotted) is made

with the full G matrix with 50 nonzero entries. For the second graph, a

matrix G with only the 6 nonzero entries describing the coupling of the

three flexible modes of identical frequency has been employed.

Figure 4.8 shows the same systems at a higher rotational speed (60'000rpm).
Close inspection of the plots shows that the eigenfrequencies match fairly

well, but exposes large differences in the amplitudes of the flexible modes,
in particular for the critical forward modes. Furthermore, for the second

mode an interesting effect can be observed: While the forward mode is

underestimated by about lOdB, the backward mode is overestimated by

Concerning the asymmetry of the plots, it must be noted that due to the normaliza¬

tion of the rotational speed with the mode eigenfrequency /, the right half of the plot is

more relevant to practical application than the left half - at the very left of the plot the

dashed line for 0=3.4/ represents a rotational speed 34 times higher than the lower one

of the flexible modes under consideration. Even for highly flexible rotors with a first

flexible mode at 100Hz this amounts to a rotational speed of more than 200000rpm.
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Figure 4.6: Eigenfrequency shift due to a gyroscopic term Ü g coupling
two otherwise decoupled, undamped flexible modes of the x-plane and the

y-plane. One of the modes has eigenfrequency f, the other one an eigen¬

frequency from O.lf to 10f. The slower mode is always decelerated by the

gyroscopic coupling (lower half of plot), the faster one is accelerated (upper
half). For all rotational speeds Ü, the coupling effect is strongest when -

before introduction of the coupling term - the two modes have equal eigen¬

frequencies. This plot is valid for all f. The situation for a typical value of

g=0.1 is shown here. The situation for different g can be directly assessed

from the plot as scaling of g is equivalent to scaling of Ü, see Equation

(138).

about the same order of magnitude. Physically this can be explained by

changing mode shapes that the coarse 6-entry-G model does not repro¬

duce properly.

Following the argument from above, one of the reasons for these errors is

that due to the shift in eigenfrequencies, the difference of eigenfrequen¬
cies of adjacent modes becomes so small that their cross coupling can no

longer be neglected. The third (dotted) plot in Figure 4.8 shows that the



4.3. Identification of the Gyroscopic Matrix 103

-60

-70

-80

^*v -90
0Û
T3 -100
***—'

CD -110
U
3 -120

-130
CO

^ -140

^

CD
0

T3
^—-'

CD

-50

CO

CO

i i i i i r\
A

-50

-
-

100 -
-

150 _
-

J *
1 1

200

p=in i

1

10
Frequency (rad/sec)

10

Figure 4.7: System with full gyroscopic matrix (solid) and model with re¬

duced gyroscopic matrix (6 entries coupling identical modes, dash-dotted)
at medium speed (7'500rpm). Hardly any difference can be made out be¬

tween the systems.

discrepancies can be significantly reduced when these coupling terms are

introduced in the matrix G (the enlargements have only been scaled in

horizontal direction, no vertical scaling has been applied). This improve¬

ment can be achieved by determining only k = (r — 4)/2 (in the example
r = 10, i.e. k = 3) additional coefficients.

The above analysis is based on a transfer function within one single plane
of the two-plane model. While the system as assembled up to now matches

the reference system well for these transfer functions, the situation is dif¬

ferent for transfer functions between planes. In Figure 4.9 it can be seen

that the match of these transfer functions is still very bad. In particular
the 180 degree phase error in the low frequency range is not tolerable.

This discrepancy is due to the fact that up to now only gyroscopic effects

of flexible modes have been considered while nothing has been said about

the gyroscopic coefficients associated to the rigid body modes.

In the modal problem formulation, the rigid body coupling of the two
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adjacent modes is shown (dotted).

planes for each mode and the coupling of the two modes among each other

are described by totally 3 coefficients of the gyroscopic matrix G. Intro¬

duction of these three coefficients mentioned in G above fixes this problem
and yields a good match also of the transfer functions between planes, see

Figure 4.9. It turns out that the introduction of the rigid body elements

has virtually no effect on the flexible modes of the system.

4.3.3 Identification Algorithm

Based on the above observations, the following identification algorithm
can be formulated. Figure 4.10 shows the coefficients to be identified for

the case r=12, i.e. for a system with four pairs of two flexible modes in

addition to the rigid body modes.
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Input:

• Model of AMB system at standstill in modal form, e.g. from the

identification procedure for flexible rotor AMB systems presented in

Chapter 4.2.

• Measured flexible poles (peak frequencies) of the rotating system,
measured at one particular rotational speed.

• Vibration amplitudes at the peak frequencies in one plane.

• Rotational speed of the system during the measurements.

• Amplitude of the cross coupling transfer functions (i.e. from the

a?-plane to the y-plane) at a few frequencies below the first flexible

mode.
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Figure 4.10: Coefficients being identified by the identification algorithm.
The different shades of grey indicate represent different steps of the al-

gorihm. Dark grey/fi: coefficients directly related to flexible mode pairs

(one per pair). Medium grey/r^: the three coefficients related to the rigid

body modes. Light grey/ci: off-diagonal block entries coupling (mainly the

forward and backward) modes of adjacent mode pairs. The other matrix

entries have no significant effect on the transfer functions of the rotating
rotor and are set to zero. (The case r=12 is shown here.)

Procedure:

1. Based on the measured pole locations, adjust the coefficients associ¬

ated with the (r-4)/2 flexible mode pairs such that the pole locations

of the model match the measured ones as well as possible. Because

there is no cross coupling at this stage, this can be done sequentially,

yielding (r-4)/2 optimization problems in one single variable.

2. Using the amplitude information of the flexible poles, determine the

(r-4)/2 coupling terms C{ between adjacent modes such that the

model amplitudes of each pair of adjacent backward and forward

modes match the measured ones as well as possible. This yields
another (r-4)/2 one dimensional optimization problems.

3. Based on the transfer function measurements of the cross coupling
transfer function, determine the 3 matrix coefficients ri,r2 and 7*3
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associated to the rigid body modes that achieve an optimal fit of the

measurements and the model for the cross coupling functions. This

is done at once (one single optimization problem with 3 unknowns).

4.3.4 Simulation Results

To test its feasibility, the above procedure has been applied to a system

obtained from an FE model. In a first step, input data for the algorithm
has been obtained from simulations based on this model at a rotational

speed of 5'000rpm. Then, the algorithm has been applied to the FE model

with a zero gyroscopic matrix, generating an estimated gyroscopic matrix.

The transfer functions of the systems based on the true and estimated

gyroscopic matrices are depicted in Figure 4.11. The comparison shows

that the two curves can hardly be distinguished.

For the purposes pursued in this work, it is not enough to obtain a gy¬

roscopic matrix that describes the system behaviour at the measurement

speed. In order to design controllers for higher rotational speeds, it is of

great importance that the identified gyroscopic matrix can be used for pre¬

diction of the system behaviour at different (typically higher) rotational

speeds. To verify this, the rotational speed has been set to 60'000rpm on

the above two models. The resulting transfer functions are again depicted
in Figure 4.11. As can be seen, the match of the transfer functions is still

very good although the rotational speed has been increased by a factor of

12. The peak locations are accurate within 1.5% and the amplitudes at the

peaks within 0.5dB - merely the second backward mode has an amplitude
error of 2dB.

These results are even considerably better than those from the analysis
based on the system with a gyroscopic matrix that contained elements

from the full gyroscopic matrix. This can be explained by the optimiza¬
tion actually compensating for the missing matrix elements and finding
a better gyroscopic matrix than given by the original matrix with some

elements deleted.

Based on these excellent results, the new identification procedure can be

stated to capture the relevant aspects of the system's gyroscopic behaviour.

The identified model can be used for precise analysis and prediction of the

model behaviour at higher rotational speeds.

The above results have been based on noise-free data. To assess the

algorithm's potential for application to real problems, the analysis has

been repeated with noisy data on the system rotating with 5'OOOrpm and
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than one percent in pole location, less than 2dB in amplitude at the flexible

poles) up to a clearly visible deviation in the cross-plane function at the

zeros of the second mode.



4.3. Identification of the Gyroscopic Matrix 109

30'000rpm. To assume realistic conditions, the peak frequencies have been

disturbed by 0.5%. For the amplitude at the peaks that is difficult to mea¬

sure accurately [Gähler98], an error of 20% has been introduced. For the

amplitudes in the low frequency range, an error of 10% has been consid¬

ered.

The cross-plane frequency response function of the system identified based

on this data is shown in the top part of Figure 4.12 (The in-plane trans¬

fer function is not shown because for this function the results have been

found to be considerably better than those displayed here). As was to be

expected, the results no longer match the true system accurately. How¬

ever, the fit is still good, with the peak frequencies accurate to 1% and the

amplitudes accurate to ldB.

In the next step, the rotational speed was again increased on the models,
this time by a factor of two (to 10'OOOrpm, and 60'000rpm, respectively)
in order to analyze the suitability of the identified model for prediction of

the system behaviour at higher speeds. The results are shown in the lower

part of Figure 4.12. Again, the deviations became larger. Nevertheless

the accuracy achieved is in the range of 2% / 2dB for the critical flexible

modes.

As deviations of this size can easily be covered with the uncertainty

modeling techniques that have been presented in Chapter 3.1, these re¬

sults justify an optimistic prognosis for applicability of the algorithm to

real world problems.

Finally, it is worth noting that recursive application of the algorithm does

virtually not at all change the resulting gyroscopic matrix. This legitimates
the identification being carried out in three isolated steps and further in¬

creases the confidence in the results.

4.3.5 Practical Aspects of Identification

The model obtained from identification is a state space representation of

the physical open-loop AMB system. This representation is not unique. In

fact, for a given state space system Si =(A,B,C,D) all state space systems
of the form ST =(T~XAT,T~lB,CT,D) with an invertible real matrix T

have the same input-output behavior as the original system. This implies
that any physical system that has a state space representation Si can

be equivalently described by means of any other state space system St

given above. Due to this input-output equivalence, identification, being
based on measurements of the system's input-output behavior, can not be
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10 Frequency (rad/sec)

Figure 4.12: Cross-plane transfer function of one bearing, with noisy
data. Top: identified systems (dotted) and models (solid) at 5'000 and

30'OOOrpm. Bottom: The same models with doubled rotational speed. The

poles for the prediction are accurate within 2% and the peaks match within

2dB.
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expected to yield 'the' state space description, but merely one description
out of many, unless a priori information on the matrices' structure is used

in the identification procedure.

In the algorithm used for identification of the flexible rotor, such informa¬

tion is used, ensuring that the resulting state space system's A matrix is of

the form from Equation (4.36). This condition on the matrix structure re¬

duces the number of state space systems that can result from identification.

However, the identification result is still not rendered unique:

For any state space system (A,B,C,D) with an A matrix as given in Equa¬
tion (4.36), the transformed system (T~xAT,T~XB,CT,D) is of identical

form if the matrix T fulfills the following condition:

T = diag(Ti,Ti) with Tx = diag(h,t2, ..tq),U G R\0. (4.39)

This statement can be slightly refined. If one considers that the full system

has two identical planes and that its states are ordered in pairs of two such

that identical states from different planes are adjacent to each other (see
Equation (4.37)), the set of possible similarity transformations for the two

plane system is restricted to matrices T of the form

f = diag(fi,fi) with fi = diag(ti,ti,t3,t3,..,t2q-i,t2q-1),ti ER\0.
(4.40)

However, this still does not yield a unique model description3. This has

important consequences for the adaptation of model stiffness and identifi¬

cation of the gyroscopic matrix G, as will be described in the following.

Consequences for Identification of G

In Equation (4.40) transformation matrices T have been characterized for

which the A matrix of the state space representation of the identified two-

plane flexible rotor model (without gyroscopic effects) remains invariant.

However, the system with gyroscopic effects (the gyroscopic matrix —GÜ

being added to the lower right block of the A matrix), is affected by

3In a simpler form, this problem is already encountered when considering the 1-dof

system x+ —x = 0. Identification yields the fraction —, but neither k nor m. Although
this makes no difference in terms of finding solutions to the equation, identification does

not allow to fully restore the original technical problem — the physical system parameters

may be lN/m and lg or 1000N/m and 1kg.
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similarity transformation with T - its columns are multiplied by ti and its

rows by 1/U.
This implies that for almost all state space descriptions of the system, the

gyroscopic matrix G to be identified is not skew-symmetric but of the more

general structure

f^GTi =

Gi,i
£G

£^1.2
t

^G2,l G2,2 uG2,3

P-G
*5 3,2

G
<7,<7

(4.41)

where the Gij are 2x2 blocks with Gjti = —Gfj as shown in Figure 4.5

and the U are the scalar diagonal entries of the matrix T\ given in Equation

(4.40).

Unlike in the case of system transformation discussed above, there is no

simple workaround for this situation. The only remedy lies in introducing
an additional optimization parameter for each pair of two columns that

tries to identify the scalar values fy.

It should be noted however, that the problem described above only occurs

in connection with identified flexible rotor models. Models computed by
a Finite Element software package are not subject to unknown similarity
transformations. As a consequence, the identification algorithm can be

applied in its original form in case such a model is provided.
The problem also disappears for identified systems with collocation. For

these systems, it is known that the B and C matrices are equal in the

physical representation, which allows to extract the scaling parameters U

from the identified model.

4.4 Summary

In this chapter, identification of AMB systems with known bearing prop¬

erties and unknown rotors has been discussed.

In the first section identification of the rotor's rigid body dynamics in the

absence of any stabilizing controller has been addressed. The identification

problem has been formalized as a problem to identify three unknown mass

coefficients.
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A method for successively determining these coefficients has been devel¬

oped. The approach chosen is based on current step experiments during
which the rotor's motion is measured. Assuming linear model behavior,
two of the mass coefficients are determined from pole values obtained from

fitting a hyperbolic cosine function to the step response. The remaining co¬

efficient is computed based on the first two coefficients and a measurement

of the rotor mass. For vertical rotor configurations the mass is obtained

from current measurements performed on the axial bearing. For horizontal

rotors current measurements obtained during single-sided static lévitation

of the rotor in the two radial bearings are used.

The second section of the chapter deals with identification of flexible rotor

models at standstill. An existing method fulfilling this task based on open-

loop frequency response measurements has been presented.

In the third section, a new algorithm for identification of the gyroscopic
matrix G has been developed. Based on an analysis of the interaction of

the modes of the two perpendicular planes, the matrix elements near the

diagonal have been identified as those that are mainly responsible for the

system changes associated to gyroscopic effects. The influence of the indi¬

vidual coefficients on the system's transfer function has been elaborated.

A modular, optimization based procedure for extraction of a matrix hav¬

ing virtually the same effect on the model as the gyroscopic matrix G

has been presented. Simulations have been carried out to prove the effec¬

tiveness of the algorithm. In particular, the identified gyroscopic model

has been shown to be suited for predicting the rotor's gyroscopic behavior

at significantly higher speeds than the identification speed. Finally, some

practical aspects relevant when applying the algorithm in conjunction with

identified rotor models have been discussed.
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Chapter 5

Controller Design for

AMB Rotor Systems

In the context of this work, controller design for AMB systems consists of

two steps. First, a controller to stabilize the 'rigid' rotor (in fact a flexible

rotor with unknown flexible modes) must be found based on the identified

rigid body model. The only requirement on this controller is to stabilize

the rotor at standstill robustly enough to perform the identification of the

full model as described in Chapter 4.2. After identification of the flexible

model, the second controller design step considering the flexible modes is

performed. It is this second controller that is to meet all requirements
from practical application of the system.

The present chapter is organized along the lines of this procedure. First,
the controller design for rotors with unknown high frequency dynamics is

discussed. Like in the chapter on identification of rigid rotor systems, the

vertical and horizontal cases will be addressed separately, and again the

vertical case will turn out to be easier to handle than that of horizontal

rotors.

In the second section, the flexible case is addressed. Based on the robust

control concepts from Chapter 3, the uncertainty model and the design

setup used are described. An automated procedure being the goal of this

thesis, special attention is paid to automation of the controller design al¬

gorithms developed in both sections.

115
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5.1 Rotors with Unknown High Frequency

Dynamics

The problem addressed in this section is that of lifting a flexible rotor of

which only the rigid body dynamics are known. In the following, we will

first state requirements that controllers must meet in order to stabilize

such systems.

Then, we will develop a robust design framework that is suited for the de¬

sign of controllers robustly achieving the performance requirements. Spe¬
cial attention is paid to sensible uncertainty modeling and the avoidance

of operating the system outside of its linear range of operation. Based on

this framework, the characteristics of the resulting closed loop systems are

analyzed, and an algorithm automating the design procedure is presented.

Finally, practical issues are addressed. While no special adaptations are

necessary for vertical rotors, it is shown that due to effects caused by grav¬

ity, for horizontal rotors the bearings cannot be made arbitrarily soft. The

consequences of this phenomenon are discussed.

The last section of this chapter deals with the issue of how low frequency
flexible modes that cannot be stabilized a priori can be handled.

5.1.1 Requirements on Stabilizing Controllers

In this section, conditions for the stability of the plant are formulated. In

the context of MIMO systems, the standard tool for stability analysis is the

MIMO Nyquist stability criterion. It is based on the determinant of the

MIMO open-loop system. However, the determinant makes the argument

clumsy and little intuitive. Thus, for sake of clarity, the concept will be

explained in a SISO setting. This is justified by the fact that in the vast

majority of control applications the AMB system is - due to relatively weak

cross coupling of the channels - interpreted as a parallel interconnection of

several SISO plants ([Gähler98], [Bleuler84], and many others).

In order to reach the objective of stabilizing the rotor, the controller must

not destabilize any of the weakly damped high frequency poles (see Figure

2.8).
To avoid this, the controller must satisfy one of two criteria [Franklin94].
The first one is to actively damp the eigenfrequencies. In the SISO setting,
this can be directly translated in requirements on the controller's phase -

in the collocated case, positive phase is required in the vicinity of the

eigenfrequencies to achieve a damping behaviour of the controller. This
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approach is referred to as phase stabilization.

Unfortunately, positive controller phase results in increasing controller

gain, and holding the controller phase positive over a wide range of fre¬

quencies leads to controllers that fail to comply with actuator limitations

and exhibit poor stability and noise rejection behaviours. As the location

and number of the flexible eigenfrequencies is unknown, it is not possible
to design a controller that can be guaranteed to have adequate phase to

damp all flexible modes. Therefore this approach is not suited to solve the

stabilization problem encountered here.

The second approach to avoid destabilization is called amplitude stabiliza¬

tion. Here, the idea is to have the controller amplitude decrease early and

steeply enough to bring the open-loop gain below one even at the flex¬

ible eigenfrequencies and hence to avoid destabilization. This approach

is generally feasible for AMB systems, with the only restriction that the

controller gain must be large enough near the rigid body poles to stabi¬

lize the system. Furthermore, the decrease of amplitude (roll-off) can not

be made arbitrarily steep. However, the rigid body poles can be shifted

towards low frequencies by decreasing the bearing stiffness, increasing the

gap between the rigid body modes and the area where flexible modes can

be expected to occur.

Besides the issue of dealing with the unknown high frequency dynamics, it

is also of interest that the controller be robust with respect to variations

in the rigid body dynamics. Like any experiment based procedure, the

identification algorithm for the rigid body model described in Chapter 4.1

is prone to yield approximations of the mass coefficients rather than their

exact values, and the controller should be robust with respect to reasonable

differences between the nominal system obtained from the identification

procedure and the true plant.

In the following, we will describe an approach to the design of controllers

with steep roll-off and robustness to variations in rigid body dynamics.

5.1.2 Algorithm for Automated Robust Controller De¬

sign

This chapter deals with the design of stabilizing controllers for magnetic

bearing systems with unknown high frequency dynamics and uncertainty in

the rigid body modes. The objective is to obtain controllers that stabilize

the rotor at standstill robustly enough to perform the identification of the
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flexible system as described in Chapter 4.2.

As has been already mentioned, a soft support of the rotor is favorable for

the intended amplitude stabilization of the plant. Equation (2.9) shows

that the key parameter for adjusting the bearing stiffness is the bias cur¬

rent io- For the design of a soft controller, the bias current is set to a low

value that still allows linear operation of the bearings, e.g. 5 percent of

the maximum amplifier current imax •
The system with modified force dis¬

placement and force-current factors is then transformed to a state space

description.
In the next step, the system is normalized by means of scalar scaling factors

such that an input amplitude of one represents the maximum amplifier cur¬

rent and an output amplitude of one corresponds to a rotor displacement
of the system's air gap (rotor touching the retainer bearings).

Uncertainty Structure

For each plane, the system to be stabilized is that identified in Chapter

4.1, namely

mi ms

ra3 m2

Due to possible errors in the identification, the mass coefficients mi, m,2,

and 7T&3 may be imprecise. Typically, the step experiments yield mass esti¬

mates for mi and m2 that lie within 20% of the true values. The measure¬

ment of the rotor weight, however, can be performed more accurately and

it is reasonable to assume a precision of 5% for the weight measurements.

Considering that the symmetric structure of the mass matrix should be

preserved, this can be appropriately formulated by means of an uncertain

mass matrix of the following form:

"l o" "n o"
+ 02 + àa

0 0 0 1

with |^i| < 0.2max(mi,7712), |^| < 0.05(mi + 777,2) \ôs\ < 0.05(m2 + 777,3).

In order to simplify the controller design it is sensible to choose an uncer¬

tainty model that keeps the number of uncertain parameters to a minimum

without making the uncertainty model too coarse.

xA

xb

ks,A 0

0 kS)B

xA

xb

+
h,A 0

0 kiB

IA

iß
(5.1)

M =

mi 777,3

m3 m2

+ *i
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In the above situation, the model behaviour is dominated by the first part

of the uncertainty. The uncertainties associated with Ö2 and 6s have only
a relatively small effect, but require two additional uncertainty channels.

Furthermore, the restrictions on the complementary sensitivity function

T and the function CS imposed in the design will guarantee robustness

to additional multiplicative uncertainties. Therefore it has been decided to

omit these terms. This simplification reduces controller size and increases

the design speed without considerably altering the problem. The resulting

simplified uncertainty structure is

M =

with \öi\ < 0.2max(mi,7772)•

Preservation of Model Structure

Furthermore, it must be ensured that the structure of model is not inad¬

vertently changed by the uncertainty. This may happen if several param¬

eters vary at the same time. Concerning the structure of the uncertain

mass matrix of Equation (5.1), it is important to preserve its symmetry.

However, this is not enough. An analysis of the explicit parameter val¬

ues furthermore shows that the parameters mi and 7772 must always be

positive and that the parameter 7773 never can be larger than both mi

and 7772, see Equation (2.19). These boundary conditions must also be

considered in the uncertainty formulation. Otherwise models with very

different behaviour (unstable with sharp peaks in the transfer function)
and no physical relevance are included in the set of plants the controller

has to stabilize. This strongly impairs the performance of the resulting

controllers, if stabilizing controllers can be found at all.

This additional restriction imposes a limit on the size of the scalar un¬

certainty öi. Whether or not this limit actually reduces the size of the

permissible uncertainty set from Equation (5.3) depends on the param¬

eters mi, 7772, and 7773. Preservation of structure can easily be checked

by analyzing the matrix M for £1 = 1, which constitutes the worst case

disturbance with respect to the above structural constraint.

If the structure condition imposed by Equation (2.19) is violated, this can

easily be compensated for by restricting |<5"i| to a lower maximum permis¬
sible value. However, this clipping procedure may strongly restrict the

uncertainty set in both directions of positive and negative £1 while the

777i m3
+ *1

-1 1

m3 m2 1 -1
(5.3)
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structure constraint always only restricts Si from becoming too positive.
This holds the risk of eliminating a large and important part of the uncer¬

tainty set that may include the real system. To avoid this, the following
procedure is proposed for cases where the uncertainty set from Equation

(5.3) contains undesired models:

Let the original bound on <3*i, 0.2 • max(7771,7772), be represented by b and

assume that the structure problem occurs for the first time at öi = w

(w < b). Assume for simplicity of notation that it is 7771 which causes the

problem. One can then calculate new mass coefficients mi, 7772, and 7773

and a new uncertainty limit b such that the uncertainty is unrestricted

in direction of negative Si and the structure problem mentioned above is

avoided.

The condition that the same uncertainty is to be covered in direction of

negative ô can be expressed by the equation

mi + b = mi + b. (5.4)

The fact that the limit of structural defectiveness is just barely to be

touched is expressed by

mi +7773
ml — b = mi — bi = »713 + b = (5.5)

From these two equations and the additional constraint that the row sum

of the mass matrix (i.e. the weight distribution on the bearings) is to

remain constant, a new nominal mass matrix with coefficients

777i

3 1 1
=

4i +
2 +4m3'

7772

1 !L
= 7772- -777i + -6 +

7773

1 1, 3
=

^rni--b+-m3

1

4' (5.6)

can be derived. This mass matrix then has the same row sum (i.e. weight
distribution on the bearings) as the original one. With the new uncertainty
limit

7
_

mi-\-m3
(

,

b — mi (5.7)

on Si, a new model for the uncertain mass matrix

M
777i >3

+ Si
"-1 1

"

ms m2 1 -1
(5.8)
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with | (3*11 < 6 is obtained. The left matrix replaces the mass matrix from

Equation (5.1).

This new uncertainty set fully covers the original uncertainty in the feasible

direction while ending just at the barrier where the structure constraints

are violated.

Model with Uncertainty

In this section, the uncertainty defined above is added to the nominal sys¬

tem as follows. With M from above and Ks, and Ki denoting the stiffness

matrices of Equation (5.1) from left to right, the system from Equation

(5.1) without uncertainty has the following state space description:

"a B
'

C D

0 I 0

-M~lKs 0 M-xKi

70 [0]

:G. (5.9)

Additive uncertainty on the nominal mass matrix M can be added to the

model by adding inputs and outputs to the system as follows

'a B
'

—

C D

0 I

M~lKs 0

M~XKS 0

I 0

0 0

-M"1 M~lKi

-M-1 M-XK{

0 0

=: G, (5.10)

and by closing the loop with the uncertainty between the first input and

output as follows:

This system has the same inputs and outputs as the nominal system from

Equation (5.9), but a modified mass matrix M + M/s. (the uncertainty is



122 Chapter 5. Controller Design for AMB Rotor Systems

parametric here since Ma is a matrix, not a dynamical system).
In our example, Ma is equal to the uncertainty model derived above, i.e.

MA = Si
1 -1

-1 1
(5.11)

By means of singular value decomposition, the above uncertainty can be

decomposed into
r

1
MA

-1
Si 1 -1 (5.12)

By pulling the outer matrices from the uncertainty into the matrices B

and C of the system from Equation (5.10), the size of the uncertainty can

be reduced to one, yielding an uncertain system

6,

—>

G
n

with Si G R. This system is the basis for all following considerations.

Design Framework

The next step after having defined the uncertainty model consists in defin¬

ing an appropriate design framework that forces the controller to achieve

the desired performance goals. In the present case, the performance goals
are the following:

The most important goal is to achieve a steep roll-off of the con¬

troller. This is enforced by adding a suitable additive uncertainty to

the system, yielding minimization of CS.

Since the objective of levitating the rotor is to identify its flexible

dynamics by the method described in Chapter 4.2, it is important
to ensure that a reasonable signal/displacement ratio is maintained

during the measurement of the frequency response functions. As has
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Figure 5.1: Framework for 'rigid' rotor controller design

been shown in Chapter 4.2, the AMB system's open-loop FRF will

be determined by excitation at the system input and displacement
measurement at the system output.

During the experiment, the displacements occurring at the system

output must remain limited. Theoretically, this could be simply
achieved by making the excitation signals arbitrarily small. How¬

ever, this is technically not feasible. For the amplifiers to produce
accurate excitation signals, the excitation must have a certain min¬

imum amplitude. Furthermore the signal amplitude must be suffi¬

ciently much larger than the noise level. Therefore it is necessary

to limit the transfer function from the disturbance input d to the

system output y, SG.

• A third restriction is imposed by the fact that we are intending to

identify a linear rotor model without explicit consideration of the

nonlinear actuator characteristics, see Chapter 2.1.3. Therefore it is

indispensable to avoid critically large set currents that would drive

the amplifiers into saturation. To this end, the transfer function Tj

from the disturbance input d to the control signal u must be limited.

The design framework resulting from these considerations is shown in Fig¬
ure 5.1.
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Overall, this is a CS/SG/T design framework. From the figure, the cor¬

responding standard control configuration can be directly shown to be

1 o o o"

0 0 7 0

0 7 0 0

0 0 0 1

0 7 0 0

wa 0

wy

o wu

and the corresponding delta structure for the design is

Gn
70

07 00

00 07_

1 0 o o"

0 0 7 7

0 7 0 0

0 0 0 7_

1 0

7

Wd

0 7

(5.13)

. .

*1 0 0

0 Ai0
0 0 *2

with uncertainty related delta blocks Si G R and Ai G C
,
and a per¬

formance block A2 G C2x4.

Weighting Function Selection

The weighting functions in the above framework are chosen as follows:

1. The input disturbance is to represent the excitation of the system

for FRF measurement. Typical excitation amplitudes are about 2%

of the maximum current. Therefore, the input weight Wd is chosen

as a constant 0.02.

2. To remain within the linear operating range of the sensors and actu¬

ators, the rotor displacement should not exceed 10% of the air gap.

This yields a constant value of 10 for the output weight Wy.

3. For the additive uncertainty, the weight Wa is chosen such that

the uncertainty is small up to a corner frequency ujc and then rises

sharply up to a second corner frequency, uja, from which on it is

constant and covers any flexible modes, see Figure 5.2.
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Figure 5.2: Additive uncertainties of different sizes yielding stabilization of

one, two, and three flexible modes of the true system (dotted). Weighting

functions are drawn dash-dotted, the rigid system model without uncer¬

tainty solid.

4. The output weighting function Wu is selected depending on the bias

currents along the guidelines that have been developed in Chapter
2.1.3. The case when the amplifier transfer function is to be included

requires only minor adaptations of the scheme. In cases when the

amplifier model consists of two weighting functions, these are stacked

and then treated as one weighting function in the design. For the

sake of simple notation, the (typical) case where the amplifier be¬

havior can be described by a single weighting function is described

throughout this chapter. Figure 5.3 shows the case where the band¬

width of the amplifier's internal transfer function is large and only
the limitations imposed by the R-L curve must be considered.

Being parametric, the uncertainty on the rigid body model does not require

any weighting functions.

Control System Analysis

The above framework has two free parameters. These are the bias cur¬

rent z'o and the exact choice of the weighting function Wa. Independent
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Figure 5.3: R-L curve of amplifier (solid), set current limit io (dash-
dotted), and (dashed) first order approximation Wu_ (schematically, for
one channel)

from how these parameters are chosen, application of D-K iteration to the

system above always yields closed loop systems with a sensitivity function

that qualitatively looks like the one shown in Figure 5.4. This function

is characterized by three frequency ranges, that result from the design
framework chosen above:

At low frequencies (up to oui), the sensitivity function is small. This is

due to the output weight Wy which imposes a limit on the transfer

function SG. Since G is fixed and particularly large at low frequen¬
cies (due to the small pole values caused by the low bias current),
the objective is achieved by adequate adaptation of S.

At high frequencies (above u;2), the sensitivity function is one. This

is generally the case, but is enforced to happen early in the above

framework due to the additive uncertainty which imposes a limit on

the transfer function CS in the area of high frequencies.

Between these two areas, a transition area in which the relevant re¬

striction changes from SG to CS can be found. In this area, the

sensitivity function must be larger than one due to the waterbed ef¬

fect described by the bode sensitivity integral presented in Chapter
3.2.2
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Figure 5.4: Typical sensitivity function of rigid rotor closed loop system

In this situation, adaptation of the two free parameters, z'o and Wa now

has the following effects.

• Large corner frequencies of Wa imply a restriction to high frequency
additive uncertainties. This leads to large values of u2 and a wide

transition area with a wide, low peak (e.g. 3dB) of the sensitivity

function. With increasing corner frequency ujc of Wa, smaller /i

values can be achieved.

• Small values of the corner frequency will bring down a>2 and lead to

a narrow transition area with a rather high peak of the sensitivity
function. As the corner frequency is lowered, the ß value successively
increases. This complies with engineering intuition — no system can

handle arbitrary amounts of uncertainty.

• Large values of z'o will bring large unstable pole values, which due

to the waterbed effect increases the height and/or width of the sen¬

sitivity function's peak. Furthermore, the starting frequency of the

transition area will be increased, since the controller gain must re-
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main large up to higher frequencies in order to stabilize the system.

As a result, large (i values are obtained when io is increased too far.

• Very small values of io will bring two types of restrictions: The small

pole values lead to a very large steady-state gain of the plant, which

due to the limit on SG imposes hard restrictions on the allowable

size of the sensitivity function S at low frequencies. Furthermore,

with decreasing io, the set currents up to which the system can be

considered linear is decreased, see Chapter 2.1.3. In the limit case

where io = 0, the rigid body poles of the system are at the origin,

yielding a limit stable system with infinite static gain and 0 set cur¬

rent available to stabilize it. This shows that if io is made too small,

the system becomes more and more difficult to control, which finds

its expression in increasing \i values.

In short, the above results can be summarized as follows. While the /i

values resulting from the design increase with increasing uncertainty (de¬
creasing (jüc), the curve describing the dependence of ß on the bias current

io looks like a bathtub: large values are attained for both small and large

bias currents, and a minimum can be found somewhere in the middle. The

above discussion strongly suggests that this function is convex. Convexity

implies uniqueness of the minimum.

Automated Controller Design Procedure

Based on the above, the following algorithm can be formulated for solving
the rigid rotor controller design problem:

1. Starting with a low value for z'o and a large value for the corner

frequency uja of Wa, calculate the achievable ß. Increase io until a

reasonable value for ß (e.g. 0.9) is achieved.

2. Decrease cua until ß reaches 1.

3. Find the bias current io that minimizes the ß value. If the minimum

is sufficiently low, go to step 2, otherwise end the iteration

The condition in step 1 can be fulfilled for any reasonable rotor-bearing

configuration for sufficiently large z'o.

The above algorithm has been implemented in MATLAB. Each of the steps

involves iterative application of D-K iteration (see Chapter 3.3.4). Due to
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the restrictions of this method, it makes no sense to directly compare ß

values. Therefore, a threshold up to which similar ß values are considered

equal has been introduced. Furthermore, a minimum current step has

been defined. The uncertainty weight Wa is scaled such that it exceeds

the rigid body model by about 25dB at the corner frequency uja, allowing
for flexible modes from about this frequency on (see Figure 5.2). Whenever

the value of io is changed, a new weighting function Wu reflecting the new

actuator limitations is automatically computed. The algorithm typically
finds a solution to the above problem close to the optimal one within one

to three iterations, taking about 5 to 10 minutes of computation time on

a PIII-500 PC.

5.1.3 Controller Design for AMB Systems with Ver¬

tical Rotor

In the case of vertical suspension of the rotor, the weight of the rotor is fully

supported by the axial bearing. The radial bearings are in this case solely

required to avoid contact between rotor and stator during the subsequent
identification of the flexible system. This can be obtained from application
of the above algorithm. The achievable low rigid body modes allow to

create a wide gap between the (low) frequency area where large gain is

required for stabilization and those frequencies where the flexible modes

are expected and low gain is required to achieve amplitude stabilization.

This situation is optimal for amplitude stabilization of flexible modes.

5.1.4 Controller Design for AMB Systems with Hori¬

zontal Rotor

In the case of a horizontal rotor, the radial bearings do not only have to

achieve stable support of the rotor, but in particular must compensate for

the rotor weight. This has important consequences that will be elaborated

in the following.

Dynamics of the Horizontally Supported Rotor

In the literature on AMB systems, usually no difference is made between

horizontal and vertical rotor systems. In the following we will point out

that such differences generally exist and that they are significant for soft

rotor supports, i.e. in case of low bias current z'o-
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In the literature, the standard linear description for all AMB supports,

regardless of rotor orientation is that from Chapter 2.1, where the nonlinear

equation

f = lk((Jo±i^.(^i) (5.14)
4 \(so- x)2 (so + x)2 )

with k = ßon^.Accos(ap) is linearized to

f = ksx + kiix. (5.15)

In the last equation

and

Ox

&
i^x —"

k^ (5.16)

= k% (5.17)
*** )'x —*-*

In the horizontal case, any static displacement of the controlled rotor is

then compensated by means of an integrator which brings the rotor to the

bearing center. This integrator is typically designed to be slow, which is

used as a justification to neglect its effects on the dynamics of the support

[Gahler98].

However, the integrator causes a constant control current in order to lift

the rotor to the bearing center. The size of this current can be calculated

from the nonlinear bearing force relation, Equation (5.14), for x = 0 and

the bearing force Fg required to lift the rotor to the bearing center. This

yields

Fg = k ^ (5.18)
so2

and as a direct consequence one obtains for the constant control current

ïa = ix= :
.

• (5.19)
k %o

It is now instructive to consider this constant bias current explicitly in the

linearization of Equation (5.14). This yields:

=

1 po+»A+p _ ft»-«*-'*-)") (5.20)
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where ix = ix — «a- Linearizing again as above we obtain for the force-

current factor as before

Ki

d

d:
f = k-

*C )*x —U
so2

(5.21)

but for the force-displacement factor surprisingly,

fc = k
(io2 + iA2)

X )Vx *J
V

Ks ~T~ K
l_A_
so2

(5.22)

is obtained. The above equation shows that the constant current that

is required to lift the rotor to the bearing center has an influence on the

stiffness of the bearing. By substituting Equation (5.19) in Equation (5.22)
one can express ks exclusively by bearing parameters. This yields

F
ks — ks i

•s0

k-io'
(5.23)

In addition to the above, the integrator imposes a minimum value on the

current passed through the upper bearing half - even if the bias current is

set to be very small, a minimum current imin is needed to bring the rotor to

the center position. Obviously the current required to support the rotor is

minimal if no downward force is exerted by the coils on the lower part of the

bearing. As a consequence, the value of imin can be explicitly calculated

for a given mass supported by the bearing based on the nonlinear equation
for the single sided bearing, see Chapter 2.1.1. Inserting the gravitational
force f = Fg for the external force, one obtains

Imin — "\l "

g
k

(5.24)

Furthermore, linearization of the current force relationship of the single
sided bearing, Equation (2.2), directly yields

h,s =
_d_
oh

f
K %j V^F,

x=0

tx=lmin ~l0

so'

ks,S
d_
oh

f
ft vm.i

x=0

lx=%min ~l0

mm

so'

so

21r
so

(5.25)

(5.26)

Whenever the rotor is held in the bearing center, at least the minimum

current imin is constantly applied to the upper half of the bearing.
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Figure 5.5: Force-displacement factor over bias current with (solid) and

without (dashed) consideration of integrator effects

Switching between single sided and double sided operation occurs at z'o =

imin/2- For bias currents lower than this value, the control current ix

will be larger than imin/2, since the total current through the upper coil

must compensate exactly for the rotor weight, ix = imin — io- In this

case however, the lower coil current is zero, since io — ix is negative. This

amounts to single sided operation of the bearing with ki = kits and ks =

ks,s-
If however the bias current z'o is larger than zmin/2, the lower coil current

will be positive in this static analysis, yielding two sided operation of the

bearing with ki = ki and ks = ks. At the corner point itself, i.e. for

*o = imm/2, both the double sided and single sided equations yield

_

tm d ,
_

Vk-mg

s0
y

So

The above considerations can be summarized as follows:

(5.27)

For bearing axes affected by gravity, the magnetic bearing cannot

be made arbitrarily soft. Due to gravity compensation, the constant

current that is passed through the upper coil cannot fall below a cer¬

tain limit value, imin- If the bias current io is selected to be smaller
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than half of this value, the bearing is operated in single sided mode

(with the upper coil active only). Any attempt to decrease the bias

current below imin/2 is ineffective since the integrators will compen¬

sate for this reduction.

As a result, the force-current factor ki and force displacement factor

ks are choices of bias currents with io < imin/2 equal to the values

attained for z'o — zm;n/2. These values,given by Equation (5.27),
constitute the achievable minimum values for both k{ and ks.

The size of these minimum values depends on the rotor mass to be

supported by the bearing, the orientation of the system with respect

to gravity, the bearing geometry (air gap so), and the bearing con¬

stant k, i.e. the number of windings nc, the manet cross section Ac

and the angle a (half the pole angle of the electromagnets).

• There exists a corner value for the bias current from which on the

bearing stiffness exceeds the minimal single sided stiffness. This cor¬

ner value, imin/2, also depends on the rotor mass m, the air gap

So, and the bearing constant k. At the switching point, the force-

current factor and the force-displacement factor are given by Equa¬
tion (5.27).

• For values of z'o larger than imin/2, the relation between the bias

current and the force-current factor ki and the force displacement
factor ks are expressed by Equation (5.21) and Equation (5.22), re¬

spectively.
While the value of ki for this selection of bias current is identi¬

cal to the values predicted by the classical AMB model, the force-

displacement factor ks never is the same as in the gravity free case

(see Equation (5.22)) due to the integrator compensating for gravity.

However, for large bias current values the relative difference becomes

small. This is indicated by Equation (5.23). Nevertheless, this effect

may explain difficulties encountered in the stabilization of horizontal

rotors when this effect is not considered in the underlying models.

At the corner point (z'o = z'rmn/2), this effect exactly doubles the

force-displacement factor ks with respect to the conventional anal¬

ysis that does not take into account the effect of gravity compen¬

sating integrators. This can be seen from Equation (5.22), when

ZA — *0 — *rmn/2.

Figures 5.5 and 5.6 show the situation in dimensionless variables. Based on

the above, new formulae for determining control relevant ki and ks values
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Figure 5.6: Force-current factor over bias current with (solid) and without

(dashed) consideration of integrator effects

can be given as follows.
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The insights gained above can be used to formulate an improved modeling

technique for AMB rotor systems affected by gravity. This is presented in

Appendix C.

Controller Design for Horizontal Rotors

As the reflections from the last section imply, the bearings cannot be made

arbitrarily soft in the case of horizontal rotors. Instead, lower stiffness lim¬

its determined by the bearing characteristics and the rotor mass apply.
As a consequence, instead of performing a controller design with extremely
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soft bearings, the minimum values ks,s and kiys imposed by the rotor sup¬

port must be considered. The design procedure is then analogous to the

vertical case.

However, the minimum bearing stiffness directly translates into minimum

values for the unstable rigid body poles. This again implies a minimum

bandwidth of the controller. As a consequence, the controller's roll-off is

forced to start at higher frequencies, increasing the frequency from which

on amplitude stabilization occurs. This may lead to problems when try¬

ing to stabilize rotors with low frequency flexible modes. This issue is

addressed next.

5.1.5 Dealing with Highly Flexible Rotors

In the last sections a method for controller design for flexible rotors with

unknown high frequency dynamics has been presented. Therein, stability
is achieved by a sufficiently steep roll-off. However, it has been shown that

this roll-off cannot start at arbitrarily low frequencies. Although flexible

modes not explicitly covered by the uncertainty model are not necessarily

destabilized, this bears the risk of instability.

While in vertical setups this problem occurs only for highly flexible rotors,

it is likely to be encountered in horizontal machines due to restrictions

resulting from gravity compensation. In the following, methods to deal

with this problem will be discussed.

Damping and Controlled Instability

The following truly 'hands on' method has proven to be equally pragmatic
and effective: The idea of the approach is to avoid destabilization of any

flexible modes not comprised in the additive uncertainty model from the

design. This can be effectively achieved by touching the rotor when taking
the system into operation, thus adding some manual damping. Since the

rigid body modes are stabilized by the controller, the rotor can be lifted

to the bearing center by means of a slow integrator. Once this has been

achieved, data acquisition is started, and the rotor is released. Should

the system become unstable, this leads to an oscillation of increasing am¬

plitude and finally to rotor-stator contact which causes the system to be

automatically switched off.

Typically, the period of time during which the vibration builds up is rather

long (often several seconds). From the sensor signals recorded during this
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process, the frequency of the unstable pole can be detected very precisely.
In the next step, a narrow banded notch filter can be added to the con¬

troller, eliminating the unstable vibration from the closed loop.

This method also has proven effective for many systems when applied in

conjunction with adequately designed lead-controllers [LöschOO]. These

are quick to derive based on a given rigid body model, and although ro¬

bustness issues are not explicitly addressed in their design, they often

achieve robust stabilization of the rotor even in face of modeling errors.

This is due to their phase, which is positive for all frequencies and hence

has a stabilizing effect on all modes that do not have nodes between sensor

and actuator (up to dead-time effects).

Alternative Approaches

In the introduction of this chapter, it has been pointed out that besides

the amplitude stabilization approach described here, the rotor can also be

stabilized by phase stabilization. With the possibilities offered by ampli¬
tude stabilization fully exploited, it is of some interest to investigate the

potential of phase based stabilization approaches.

Two concepts are conceivable:

• Based on the rigid body model, iterative (phase) shaping of a con¬

troller transfer function that stabilizes the flexible modes occurring

during the sequence of tests.

• Based on a sufficiently large set of precomputed controllers with

known frequency characteristics, find a stabilizing controller by nar¬

rowing down the feasible set of controllers based on the information

gained from the successively emerging flexible modes.

The first of these methods has been carefully investigated in

[HaugstetterOO] by means of different interpolation techniques. The re¬

sult of these efforts was rather humbling. Problems were encountered with

high controller gains, low damping, and unpleasantly steep phase transi¬

tions (although derivatives were also considered in the interpolation) that

even led to instability.

The second approach avoids these problems by resorting to precomputed
controllers. This appears to be feasible, particularly when assuming that

by appropriately adjusting the bias current the rigid body modes can al¬

ways be brought into the same frequency range. However, precomputing
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the controllers and deriving an adequate selection rule may be a cumber¬

some task.

Furthermore, the fact that instability is not only likely but even expected

to occur makes this concept appear inelegant and little suited for auto¬

mated stabilization of rotors with unknown flexible modes.

In summary, it must be stated that instability is a risk that cannot be

entirely eliminated a priori, necessitating in some cases pragmatic solutions

as outlined in the last section.

5.2 Flexible Rotors

In this section, the topic of controller design for flexible rotors supported

by AMBs is addressed. The goal of this section is to derive algorithms
for automatically designing controllers suitable for operation of the system

under real-world conditions. Availability of a sufficiently precise model

describing the open-loop dynamics of the AMB system is assumed —

such models can be obtained by applying the design algorithm presented
in Chapter 5.1 in conjunction with the identification algorithm presented
in Chapter 4.2.

This chapter begins with a discussion of the state of the art methods

for controller design for flexible rotors and an analysis of their potential
for automation. Then, the best suited method is presented in greater

detail, followed by an analysis with respect to points that show potential
for improvement. Finally, ways to work around these weak points are

elaborated, and a procedure for automated controller design for flexible

rotors is presented.

5.2.1 State of the Art

The requirements on controllers for flexible rotors have been broadly ad¬

dressed in the introduction, Chapter 1.1.2. As has already been argued

there, out of the large number of controller design methods, only two ap¬

pear to be well suited for systematic controller design for flexible rotors.

These are:

The phase shaping method systematically introduced by C. Gähler

[Gähler98]. Based merely on information on the location of the

plant's flexible and rigid body eigenfrequencies and the information
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whether or not the individual modes have nodes between sensor and

actuator, this method consists in the design of SISO controllers by

adequate placement of poles and zeros in the complex plane. The

goal of the procedure is to obtain controllers with sufficient gain for

stabilization of the rigid body modes and with adequate phase to

avoid destabilization of any flexible modes. The tuning knobs are

besides the location of the poles and zeroes to be placed also the

controller gain and the number of poles and zeros in the controller.

A drawback of the method is that robustness and performance cri¬

teria cannot be explicitly considered in the design process, but must

be included implicitly by adequately choosing the above parameters.

In all cases, these controllers are subject to thorough testing. When

successful, this method delivers low order controllers that can be di¬

rectly implemented. Furthermore, the robustness properties of these

controllers tend to be rather good since due to the low controller

order phase transitions are relatively slow.

//—Synthesis based methods, with the most advanced representative

presented by U. Schönhoff in [SchönhoffOOb]. These methods rely on

a precise model of the plant and adequate choice of a design scheme

as well as suitable weighting functions that sensibly represent robust¬

ness and performance criteria to be achieved in the design. These

parameters also serve as tuning knobs in the method. The design pro¬

cess itself is encapsulated in the D-K iteration, guaranteeing closed

loop stability as well as achievement of the desired performance ob¬

jectives in case of successful design, see Chapter 3.2.4. Disadvantages
are the method's high level of complexity, entailing comparably long

computation times (several minutes on a modern PC), and the high
controller order resulting from the design.

Both of the above methods have been shown suitable for designing con¬

trollers for flexible rotor AMB systems. However, all reported designs are

manual designs, i.e. they have been performed by engineers who brought
considerable amounts of knowledge, experience, and also patience into the

design process.

The goal of this thesis however is to develop methods for automated con¬

troller design. Therefore, the above mentioned methods have been inves¬

tigated with respect to possibilities to automate them.

For the phase shaping approach, this has been studied in

[HaugstetterOO]. In this work, based on papers focusing on the design
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of electronic filters, [Henk81],[Fahmy79], and [Jarry83], it has been at¬

tempted to design transfer functions that fulfill certain predefined condi¬

tions concerning their phase. Although some fundamental difficulties not

addressed in the literature have been overcome, even with great effort it

was not possible to derive a generally applicable design procedure. Prob¬

lems encountered comprise poor robustness properties due to very steep

phase transitions, high controller orders, overly large gains, and problems
in predicting stability of the closed loop due to controller poles crossing
the imaginary axis even for small gains. The size and number of problems
encountered finally led to the conclusion that the phase shaping method,

although of considerable use when applied by an experienced engineer, is

not suited for automation.

For the //-synthesis approach, things are different. Already in its standard

form, the design procedure is clearly structured into different modules and

several steps. Furthermore, the majority of difficulties encountered during
automation of the phase shaping approach is ruled out by the procedure

itself, as closed loop stability is guaranteed and overly large gains as well as

robustness issues can be addressed with adequately chosen weighting func¬

tions. Although computationally far more complex than the phase shaping

procedure, this approach shows to be much better suited for automation.

5.2.2 /i—Synthesis: State of the Art Procedure

In [SchönhoffOOb], U. Schönhoff extended a //-synthesis based controller de¬

sign method developed by Braembussche [Braembussche98] and adapted
it to the specific needs of active magnetic bearing systems.
The method is based on rig models obtained from carefully (hand-) tuned

finite element models. Two types of uncertainty are considered: A small

uncertainty on the location of the flexible eigenfrequencies is taken into
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account by means of the method described in Chapter 3.1.5. Furthermore,

gyroscopic effects are treated as an uncertainty to the state space descrip¬

tion of the nominal model that rotates at half the maximum speed. This

is covered by uncertainty modeling techniques described in Chapter 3.1.4.

For the design, the S/CS/SG/T scheme depicted in Figure 5.7 has been

used, with weighting functions chosen based on a loop shaping philosophy,
i.e. with the aim to achieve specific shapes for the transfer function under

consideration rather than directly relating to the size of the physical signals

occurring in the closed loop plant, see Chapter 3.3.3.

In the above, the structure of the plant G is as follows:

The resulting standard control configuration is of the form

I
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The corresponding uncertainty block structure for the design is

. .

<UgO 0

0 AjO
0 OAj

where Ai is a matrix consisting of real diagonal entries (one entry for each

uncertain pole) and Sr is a real parameter reflecting the change in rota¬

tional speed. The matrix A2 referring to the performance block is a 12 by
8 complex matrix. With P denoting the open-loop system with weighting
functions in standard configuration, the performance requirement mini¬

mized in the design is

Ft/(P,C)

WyTWr WySGWd

WeSWr -WeSGWd

WuCSWr -WuT,Wd

(5.32)

In the following, this approach is analyzed more closely, and suitable

adaptations are made where this seems advisable. This has been signifi¬

cantly simplified by Ulrich Schönhoff, who made the algorithms he used in

[SchönhoffOOb] available for this purpose.

5.2.3 Drawbacks of the Method

With the approach described above, Schönhoff managed to design a con¬

troller suitable to speed up the moderately gyroscopic system under con¬

sideration in [SchönhoffOOb] to a speed of 12000rpm, showing the feasibility
of the approach.

In spite of this success, there are several points calling for improvement:

The lumped design scheme makes tuning of individual transfer func¬

tions difficult, each time a weighting function is modified, this affects

at least two transfer functions.
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• The entirely loop shaping oriented design prohibits inclusion of hard

limits on signals, like for example actuator limitations.

• Due to numerical problems encountered, the design must be based on

complex uncertainties rather than the real uncertainties encountered

in practice. For the weakly damped flexible poles, this means that

uncertainty in frequency entails uncertainty in damping of identical

size (the uncertainty region being a disc rather than a line paral¬
lel to the imaginary axis). This has been handled in [SchönhoffOOb]
by means of creating an enlarged uncertainty circle and moving the

poles to the left in such a way that the line on which the poles are

expected to be located in reality is covered by the uncertainty circle,
but the uncertainty circle does not intersect the imaginary axis.

The same problem, however, is encountered for the gyroscopic ef¬

fects. They, too, are modeled by means of real uncertainties, and

in a complex design, the gyroscopic effects also become disc-shaped

uncertainty regions rather than lines reflecting the linear movements

parallel to the imaginary axis. This effect went unnoticed in the

prior studies. However, with pole movements due to gyroscopic ef¬

fects typically exceeding by far pole movements caused by simple

pole uncertainty, this effect plays a larger role in the design than the

one mentioned above. Failure to consider this effect renders designs
for gyroscopic rotors and/or high speeds ineffective due to very large
controller gains stemming from the attempt to stabilize the poles
mistaken to be potentially unstable.

• Using the overall ß value achieved as a criterion to assess the success

or failure of the design typically is conservative in the present setup.

Due to its lumped fashion, it can be observed in many cases when

the compound ß value is considerably larger than one, that the size

of all individual transfer functions to be minimized is smaller than

one. This point is worth while investigating as good controllers may

be wrongly rejected.

5.2.4 Adaptation of the Procedure

Investigation of Alternative Design Schemes

Any sensible weighting scheme for the presented controller design problem
should explicitly limit S, SG, and CS, as limiting one of these functions

indirectly via the other two leaves room for weakly damped poles or zeros
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of the controller or plant deteriorating robustness and performance, see the

last section of Chapter 3.3.3. In addition to the above, minimization of

T also is attractive for increased robustness with respect to multiplicative

uncertainty and sensor noise.

These considerations show that the scheme used by Schönhoff cannot be

significantly simplified. Therefore, the same scheme as in [SchönhoffOOb]
has been used.

Weighting Function Selection

Choosing weighting functions based only on loop shaping aspects only
makes consideration of hardware constraints like actuator limitations dif¬

ficult. This approach can only be recommended for systems having suffi¬

ciently (i.e. over-) dimensioned actuators. In order to incorporate more

information of the true system's behaviour in the design process, it has

been decided to use a mainly signal based approach, choosing weighting
functions based on the the physical quantities of the signals occurring in

the system (see first section of Chapter 3.3.3).
The advantage of this procedure is that the nature of the system (hard¬
ware setup and constraints) is explicitly considered in the design. As a

result, the controllers are tailored for the actual hardware rather than for

a general system, and it can be noticed already in the design phase when

physical constraints become relevant.

The smoothness criteria behind the loop shaping philosophy may of course

not be neglected (see last section of Chapter 3.3.3), however, the range in

which these rather loose criteria are fulfilled is considerable, such that for

reasonably designed systems the closed loop does usually not strongly vio¬

late these constraints even if the weighting functions are based on a signal
based philosophy.

The choice of weighting functions is done as follows:

1. The plant is scaled such that an input of size one is equivalent to the

maximum current output of the amplifiers. The outputs are scaled

such that contact to the stator (retainer bearings) yields an output

of one.

2. The weighting function Wu (control current limit) directly follows

from the knowledge of the amplifier behaviour. Depending on the

type of amplifier chosen, Wu either is a first order weight, constant

or an augmentation of two weights, see Chapter 2.1.3.
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3. The weight Wd is to represent the size of the disturbances to be ex¬

pected. A sensible choice of this weight reflects the balancing qual¬

ity of the rotor, the corresponding speed, and the approximate rotor

mass, based on which the maximum unbalance forces can be calcu¬

lated for a frequency larger than the rigid body critical speeds, e.g.

100Hz. Division by the force-current factor ki then yields the current

amplitude generating forces at least as large as those expected from

unbalance up to the considered speed (this estimate is conservative

since the unbalance usually is shared among two bearings). Choosing
Wd to be equal to the above value (constant), will then reflect large

enough disturbance forces to pass the rigid body critical speeds.

4. The output weight Wy limiting the rotor's deviation from the center

position is to be set to a sensible value reflecting tolerable and ex¬

pected rotor deviations in operation. For short rotors a value around

10 (limiting deviations to 10% of the air gap under the considered

loads) is sensible here, in cases of particularly small air gap, long

rotors, or large loads, values may range down to 3 or 2.

5. Limiting the sensitivity function S to a reasonable value is of great

importance in AMB controller design. Experience shows that in

the SISO case peak values of about 2.5 are reasonable, while 4 is

already critically large. (For comments on the size of S, see Chapter

3.2.2). In the MIMO setting encountered here, these limits can be

directly adopted and even slightly relaxed, since the MIMO transfer

function's size is a conservative estimate of the size of the individual

SISO functions.

Furthermore, it is sensible to limit the complementary sensitivity
function T by a value similar to the limit on S. Since both functions

are related to the same input (r), it is therefore reasonable to choose

the output weight We equal to Wy.

6. A reasonable size for the input weight Wr is obtained, when consid¬

ering that it is to ensure sensible sizes for S and T. Based on the sizes

of We and Wy, Wr can then be directly calculated. The resulting
disturbance size usually exceeds the size of the expected set position
variations (usually none) and the other possible interpretations of r,

sensor noise and plant output disturbance.



5.2. Flexible Rotors 145

In the present setting, all weighting functions (except for maybe Wu) are

chosen to be constant, yielding low order plants and reduced controller

design times. Compensation for gravity is done by means of separate inte¬

grators that are not part of the controller designed here. These integrators
are slow and do not affect the system dynamics beyond a low frequency of

a few hertz. (However, the effect on bearing stiffness pointed out in Chap¬
ter 5.1.4 is considered by using the corrected force displacement factors

from Equation (5.29) throughout the entire design.)

Dealing with Gyroscopic Effects

The problems arising from combining the model of gyroscopic effects with

the required complex uncertainty model in an appropriate way has been

addressed as follows. In the design procedure, the flexible poles are moved

to the left by a certain distance. The design is then performed based on

complex uncertainties.

The subsequent analysis of the resulting controller however is then per¬

formed based on the original system (with all poles at their nominal posi¬

tion) under the influence of real worst case disturbances, see Chapter 3.4.2.

The analysis is performed in a 'mixed' setup, see Chapter 3.3.5. This pro¬

cedure considerably reduces the controller gain at high frequencies and

yields controllers with guaranteed performance in conjunction with the

following analysis approach.

Controller Design Based on Closed Loop Analysis of Individual

Transfer Functions and Pole Shifting

Due to the block structure of the present //-synthesis design problem, the

7 value resulting from the design merely is an upper bound of the 7 value

of the individual transfer functions to be minimized in the design.
Practical experience shows that in virtually all cases it pays off to analyze
the size of the individual transfer functions rather than the compound

7. In contrast to the lumped analysis, performing this analysis on a sys¬

tem with real, full size, worst case uncertainty yields detailed information

on the controller's robustness and performance properties. Overly large
transfer functions and critical frequency ranges can be easily identified (by
comparison of all transfer function sizes to the value one).

This analysis typically shows the following results, see also the bottom

part of Figure 5.8:
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Mu Plot Resulting from Mu-Synthesis
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Figure 5.8: Design result on model with original (weakly) damped pole
locations. Top: ß-plot from design, Bottom: Individual weighted transfer

functions
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At low frequencies (up to the rigid body poles of the rotor), the weighted

sensitivity function S is small. Like in the rigid rotor case, this is

due to the limit on the function SG, which, due to G being fixed

and large in this area, leads to a minimization of S.

The weighted function CS is also small compared to the weighted

SG, which dominates this frequency range.

At high frequencies, the sensitivity function S gradually approaches one,

with more or less significant peaks at the rotor's flexible poles. The

weighted function CS is large in this area, exposing sharp dents near

the flexible poles. The other functions are small with insignificant

peaks near the rotors's flexible poles.

Between these areas, there is a range of transition where the weighted
S dominates the scenery due to the waterbed effect, see Chapter
3.2.2. The weighted function SG decreases sharply in in this range,

caused by the decrease of G. The weighted T, relatively small in the

low frequency range and small at high frequencies due to S+T=I,
also reaches its maximum here.

In all cases investigated, the method has arrived at large ß values when

applied without modifications, and the individual transfer functions often

significantly exceeded the limit one. A typical plot of closed loop ß values

is shown in the top part of Figure 5.8. The corresponding individual trans¬

fer functions can be seen in the bottom part of the same figure.

The observed behavior can be explained by the weakly damped rotor poles
that dominate the //-plot and cause the D-K iteration to focus particularly
on the peaks caused by them while neglecting other frequency areas. In

particular, the large values of SG in the range of low frequencies are not

a necessity, but result from a lack of relevant limitation of this transfer

function due to the large effort made to minimize CS at high frequencies,
as will be shown in the following.

This behavior can be significantly improved if the weakly damped poles
are manually shifted in direction of the stable half plane before the de¬

sign. The resulting system transfer functions have lower peak values for

the poles. As a consequence, the /i-synthesis algorithm focuses more on

the overall optimization. In the top part of Figure 5.9, the /t-plot resulting
from D-K iteration is shown for the same system as before, but with the

dominant flexible pole moved to the left half plane by about 200. The
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lower ß values are not very surprising.

However, as remarkable side effect this modification has considerable im¬

pact on the individual transfer functions investigated before. This is due

to the fact that in absence of the dominating peak in the /i-plot the D-K

iteration makes a greater effort to achieve the objectives on minimizing
the ß value in other frequency regions.
The bottom half of Figure 5.9 shows the new controller tested on exactly
the same system as has been used for the test in Figure 5.8, bottom. While

the figures look similar at first sight, closer inspection of the scaling re¬

veals that the controller performance improved by a factor of about four,
and that robust performance is achieved by this controller. The changed
behavior of the D-K iteration becomes obvious when inspecting the size

of the weighted transfer function SG for low frequencies — although no

changes have been made in this frequency range, SG has been reduced by
a factor of two.

This phenomenon can be generally observed, and it occurs gradually as the

flexible poles are shifted further and further to the left. The limit of this

procedure can be seen in in the bottom half of Figure 5.9; as the controller

gain decreases, the sensitivity function around the pole under discussion

increases. This is due to the increasing mismatch between the models used

for design (with relocated poles) and for analysis (with original pole loca¬

tions) .
The optimal amount of pole shifting is achieved at the point when

the peaks of the weighted function CS and that of the weighted function

SG are equal.
Due to its local impact, this procedure can for systems with multiple flex¬

ible modes be carried out in parallel and independently for the individual

poles.

This gives rise to an iterative design procedure in which the system's flex¬

ible poles are individually shifted to the left until both the weighted sen¬

sitivity function and the weighted function CS have a maximum singular
value below one, yielding a controller with robust performance.
In cases where this cannot be achieved (this can be stated as soon as the

two peaks for one pole are both larger than one), the design has failed.

This approach constitutes the basis of the automated robust controller

design algorithm formulated in the following.
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5.2.5 Algorithm for Automated Robust Controller De¬

sign

Based on the above considerations, the following algorithm for automated

controller design can be formulated. Required inputs to the algorithm are

a system model in form of Equation (2.46), the various bearing parameters,

and the amplifier characteristics. The system model could stem from mod¬

eling or identification, bearings and amplifiers are assumed to be known

throughout this thesis. Furthermore, a gyroscopic matrix (obtained from

FE programs or identification) can be supplied if available together with

a desired maximum operating speed.
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Algorithm

1. Weighting function selection as described in the last section.

2. Creation of two systems in standard control configuration based on

the design setup from Figure 5.7, one with complex uncertainty and

poles manually moved further into the stable half plane for con¬

troller design, the other one without modification and with mixed

real/complex uncertainty for controller analysis (see Chapter 3.3.5).

3. Controller Design by D-K iteration using a frequency grid containing
the flexible poles' frequencies and a densely spaced grid covering the

adjacent frequency range affected by gyroscopic effects.

4. Computation of the worst case uncertainty (see Chapter 3.4.2). In¬

dividual analysis of all closed loop transfer functions with respect to

the limit one using the system with mixed uncertainty in its nominal

form as well as with worst case uncertainty scaled to full size (±1).
If all functions are smaller than one, the design has been successful

and the iteration is aborted.

5. For all flexible modes the following steps are performed:
Verification if the transfer function from r to w is larger than one

in the vicinity of the mode's eigenfrequency. If this is the case and

the transfer function from rtoe (related to the sensitivity function

limit) is smaller than one in the corresponding frequency range, mod¬

ify the design model in such a way that the pole under consideration

is moved further to the left in the complex plane. This merely re¬

quires adjustment of two values in Equation (2.46).
Verification if the inverse case of the above occurred (transfer func¬

tion from r to e larger than one and transfer function from r to u

smaller than one) — this indicates that the pole has been moved too

far to the left. In this case, the pole is to be moved back to the right

by a reasonable distance.

If both transfer functions are larger than one, the amount of un¬

certainty (i.e. the demanded rotational speed) is too large and no

adequate controller can be found, and the procedure is aborted.

6. Go to Step 3.

The above algorithm has been used to design controllers for several test rig

configurations, and good controllers have been found within few iterations.
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In fact, practical experience shows that even for systems with three or more

flexible modes in the control relevant frequency range, typically only one or

two poles in the mid-frequency range require several iteration steps since

at low frequencies weakly damped poles typically entail comparably small

controller action while at high frequencies the weighted sensitivity function

is small (near one) due to plant roll-off (see Chapter 3.2.2), and remains

small even when the pole is moved to decrease the control effort. Example
results from application of the algorithm will be shown in Chapter 7.

5.3 Summary

In the first part of this chapter, the problem of controller design for rigid
rotors with unknown high frequency dynamics has been addressed. The

bias current io and the uncertainty weight Wa have been determined as the

most relevant design factors, and limitations concerning the size of these

parameters have been identified. Based on this analysis, an automated it¬

erative, //-synthesis based controller design algorithm has been developed
for lévitation of flexible rotors of which only the rigid body model is known.

It has been shown that as a direct consequence of the above, the flexible

modes must exceed a certain minimum frequency depending on the rotor

mass, the system's orientation with respect to gravity, the bearing charac¬

teristics, as well as the modes' damping, observability, and controllability
in order for the controller to achieve guaranteed stability.
In this process, the standard linear model of current controlled active mag¬

netic bearings had to be revised in oder to account for effects caused by
the constant currents imposed by gravity compensating integrators. It has

been shown that under the influence of gravity the bearing stiffness cannot

be made arbitrarily small, hence limiting the size of the bias current from

below.

As a result of the observations made in Chapter 5.1, it must be stated

that the controller design for rotors with unknown flexible dynamics is

considerably more difficult in the case of horizontal rotors than in the case

of vertical rotors. This is due to the fact that in the horizontal case the

bearings cannot be made as soft, limiting plant roll-off and hence increas¬

ing the risk of destabilization of flexible modes in the medium frequency

range. To deal with this situation, a pragmatic workaround for stability

problems possibly occurring in the horizontal case has been presented.

In the second part of this chapter, robust controller design for flexible ro¬

tors has been addressed. Based on an analysis of the state of the art,
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the approach used in [SchönhoffOOb] has been extended to be compatible
with the restrictions imposed by non-negligible gyroscopic effects and the

requirements of complex uncertainty modeling. The selection of weighting
functions has been discussed in detail.

Particular attention has been paid to the issue of effective assessment of

controller performance. Individual analysis of the weighted closed loop
transfer functions involved in the design has been introduced as a tool to

perform this task both efficiently and intuitively.
Based on this analysis tool, a deeper understanding of the minimization

performed by D-K iteration has been obtained. The insights gained have

been developed to a new controller design approach that involves adapta¬
tion of the model the controller design is performed on in order to achieve

better optimization results in the D-K iteration. This procedure is justi¬
fied by an a posteriori robust performance analysis that is based on the

original model without modification. The superiority of the new method

over the conventional approach has been shown on an example.

Furthermore, rules for systematic adaptation of the design system have

been derived, including a condition that clearly states when the design
method is unable to fulfill the performance requirements.
Based on these components, a new method for automated controller design
for flexible rotor AMB systems has been formulated.
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Chapter 6

Identification and

Automated Controller

Design

In this chapter, the results from the preceding chapters are recapitulated,

collected, and assembled to form the procedure for identification and auto¬

mated controller design for flexible rotor AMB systems. In the first part of

the chapter, the overall procedure is presented and the individual modules

are described. The second part of this chapter deals with newly invented

tools, i.e. methods, procedures, and algorithms that have been developed
to enable efficient execution of the design procedure. Also, a few auxiliary
modules that are part of the procedure and have not been introduced in

any of the other chapters are presented in this chapter.

6.1 Synthesis of Preceding Chapters

In this chapter, the developed automated controller design procedure for

flexible rotor AMB systems is presented. The overall procedure is out¬

lined graphically in Figure 6.1. The procedure is organized in three parts

(phases) each of which comprises different modules. In the first subchapter
of this section, the phases and the overall operation of the procedure are

described. In the second one, the individual modules are explained.

155
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Figure 6.1: Overview of Procedure for Identification and Automated Con¬

troller Design
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6.1.1 Procedure Description

The automated controller design procedure consists of three phases. In

the first phase, a model of the rigid rotor is obtained. The second phase is

concerned with arriving at a model of the flexible rotor open-loop system.
The third phase finally is dedicated to designing a controller for operating
the plant. These phases, also indicated in Figure 6.1, are described in the

following.

Phase I: Identification of Rigid Body Model

The identification of a rigid body model of the rotor can be performed by
the corresponding module, Identification of Rigid Body Model. Alterna¬

tively, the mass matrix can be directly taken from values obtained during
the design phase of the rotor (CAD or Finite Element (FE) program).

Phase II: Identification of Flexible Rotor Model

Based on the rigid rotor model, a controller for levitating the rotor with

unknown high frequency dynamics is designed (Design of Controller for
Low Stiffness Bearings module). Then, this controller is used to identify
the open loop model of the plant with low stiffness bearings (Identification
of Flexible Rotor module). This model is then transformed to describe the

rotor with stiff bearing settings. This is done by the Model Transformation
module. Finally, uncertainties in the flexible poles are set to about 5 per¬

cent, and the gyroscopic matrix as well as the design speed are initialized

to be zero.

This phase can be skipped if a sufficiently accurate finite element model

of the rotor is provided. In this case, this model is used in the place of the

transformed identified model.

Phase III: Controller Design

In this phase the final controller is designed. To this end, the following
iterative procedure is executed:

1. Based on the current model, the available gyroscopic information,
and the uncertainty limits on the poles, a controller is designed for
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the current design speed ( Controller Design for Flexible Rotor mod¬

ule). If the design has been successful, the procedure is continued,
otherwise the attempt is repeated with a smaller design speed. If

this speed gets too close to the prior controller's design speed, the

iteration is aborted, and the prior controller is the best achievable

controller.

2. The controller is reduced and discretized by the corresponding mod¬

ule.

3. The Performance Testing module is used to verify the controller's

feasibility and to determine the maximum speed the plant can be

safely operated at. If this speed is larger than the maximum speed
achieved with the prior controller, the procedure is continued. Oth¬

erwise, the prior controller emerges from the procedure as the best

achievable controller.

4. The gyroscopic matrix is identified at the maximum safe speed, and

the model is updated with this matrix. The design speed is set to

several times the maximum safe speed, the pole uncertainty is set to

3 percent, and the iteration is then continued at step 1.

The output of this last phase is the best achievable controller for the sys¬

tem. 'Achievable' in this context is a relative term — since already D-K

iteration does not necessarily yield optimal controllers, this can of course

also not be guaranteed by the above algorithm which is based on this

technique.

It should be noted that in case of a design based on a Finite Element

model, an identification of the flexible rotor model is performed as soon

as the first controller is available. This is done since FE models usually
do not match the true rig accurately enough to design reliable controllers.

After the identification, the iteration process is restarted. The gyroscopic
matrix from the FE model is preserved, and the design speed is now set

to the desired maximum speed, i.e. it is attempted to directly design a

controller for the maximum speed.

6.1.2 Modules

In this chapter, the constituent modules of the automated controller de¬

sign procedure shown in Figure 6.1 are described with their corresponding

inputs, the task performed, and the output.
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Identification of Rigid Body Model (1.)

This module contains the identification routine for the rigid body informa¬

tion of the rotor. Basic information on the bearings being the only input,
it performs step- and lift experiments to identify the rotor's mass matrix,
which is the output of the module. The algorithms used are presented in

Chapter 4.1.

Design of Controller for Low Stiffness Bearings (2.)

This module takes as input a rigid body model (4-element mass matrix

and bearing information) of the rotor. Based on this information, a robust

controller to stabilize the rotor with unknown high frequency dynamics is

designed. To this end, the bias current is adjusted to a low value, yielding
low stiffness bearings. The design procedure is presented in Chapter 5.1.

Identification of Flexible Rotor (3.)

This identification module requires a controller that is capable of stabilizing
the rotor robustly enough to perform transfer function measurements. The

procedure determines the most relevant frequency ranges and measures the

MIMO transfer function on an optimized frequency grid. In the next step,
the identification algorithm described in Chapter 4.2 is used to arrive at a

model of the open-loop rotor.

Model Transformation (4.)

This module adapts bearing stiffness (bias currents) of a specific model.

Given the old and the desired bias currents as well as the system model, it

is used to compute a rotor model with bearing settings equal to those to

be used during normal operation of the system. Details of the procedure
are described in Chapter 6.2.1.

Controller Design for Flexible Rotor (5.)

Based on a model of the flexible open-loop rotor system with or without

gyroscopic matrix, uncertainty limits on the flexible poles, and - in case

a gyroscopic matrix is present - a maximum speed the controller is to be

able to operate at, this module designs a controller to robustly stabilize
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the rotor in normal operation from throughout the specified speed range

(from standstill to the given maximum design speed). The algorithm is

described in Chapter 5.2.

Controller Reduction and Discretization (6.)

The controllers resulting from the design procedure are in continuous time

state space form. In order to be implemented on a digital signal processor,

they must be discretized. Furthermore, the controllers are typically too

large for direct implementation. Therefore, adequate controller reduction

techniques must be applied. The algorithms used are briefly described in

Chapter 6.2.2.

Performance Testing (7.)

Even with high quality models and careful uncertainty modeling, closed

loop behaviour can only be accurately assessed from measurements on the

plant. Different experiments are carried out and repeated as the speed is

slowly increased until the maximum design speed is reached or indications

are found that the limit of the range of safe operating speeds has been

reached.

Output of this module is the maximum safe operating speed of the sys¬

tem with the given controller. The test algorithms used are presented in

Chapter 6.2.3.

Identification of Gyroscopic Matrix (8.)

This module performs measurements to identify the gyroscopic matrix

from the system operating at a given speed. Given a rotor model, this

model is updated with a new gyroscopic matrix based on measurements

from the system. The module is based on the algorithm presented in

Chapter 4.3.
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6.2 Tools

In this chapter, some newly developed tools supporting the efficiency and

reliability of the above procedure are presented. Furthermore, those (few)
modules of the procedure that did not fit into the context of any of the

other chapters are described.

6.2.1 Model Transformation

In the procedure described above, the open-loop flexible rotor model is

identified from a configuration with particularly soft bearing settings (low
bias currents). The plant however is typically to be operated with signifi¬

cantly stiffer bearings.

A prerequisite for designing useful controllers is adaptation of the identified

model such that it reflects the behaviour of the open-loop system with stiff

bearings. How this can be done is presented in the following.

Model Transformation Based for Physical Models

The identified system model is of the form (2.46), which can be interpreted
as a state space representation of a finite element model that has been

transformed to modal coordinates with the mass matrix M being equal to

the identity matrix.

| + Dq + K~q = Fw

z = Sq

with

K= <?Tir# = diag(u4)

and

D = $TD$ = diagp&ww) (6.3)

To understand which adaptations are necessary to adjust the bias current

io it is instructive to go one step further back and to look at the underlying
Finite Element model in physical coordinates (see Chapter 2.3.2):

Mq + Dq + (K- FKsFT)q = FKâ. (6.4)

(6.1)

(6.2)
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In the above, the notation is that from Chapter 2.3.4, with F represent¬

ing the matrix distributing the external forces to the correct nodes of the

structure. Since the analysis performed in this chapter is rotation indepen¬

dent, the rotational speed fl has been set to zero for the sake of simplicity.
The 4 by 4 matrix Ki contains on its diagonal the force current factors of

the bearings, and i represents the vector of input currents.

Ks at the same time is the diagonal 4 by 4 matrix of force displacement
factors. This matrix is embraced by the matrices F and FT, blowing it up

to match the physical coordinates.

Adjusting the bias currents of this model amounts to calculating the new

force-displacement and force-current factors from equations (5.28) and

(5.29), respectively and adding the difference of the old and new values to

the diagonal entries of the matrices Ki and Ks. For reasons of convenience,
it is advantageous to interpret the operation performed on the matrix Ki

as a multiplication by a suitable diagonal matrix KiA from the right rather

than an addition.

The adapted model with physical coordinates looks as follows:

Mq + Dq+(K- F(KS + KsA)FT)q = FKiKiAi. (6.5)

Re-applying the modal transformation from above and adopting the no¬

tation from Equation (6.1) yields:

~q+$TD$~q+$T(K-F(Ks + KsA)FT)$~q = $TFKiKiAi (6.6)

~q + D~q+(K- $TFKsAFT<P)~q = <PTFKiKiAi (6.7)

With the definition KA — $TFKsAFT $, the first row of the correspond¬

ing state space representation looks as follows:

Q QqXq JqXq Q
r\qx2n

= +

£ -(K-KA) -D g $TFKiKiA
i (6-8)

In the above, it becomes obvious what adjustments must be done to the

state space representation of the original model in order to adapt it to a

change in bias current on the system:

• The matrix KA = $TFKsAFT $ must be added to the lower left

block of the matrix A. This can be easily done when realizing that
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this matrix is simply equal to ZKsAZT, where Z = $rF can be ex¬

tracted from the lower half of the matrix B from the original system's
state space description.

• In a second step, the matrix B is multiplied by the matrix KiA from

the right, which can be done without any further computation.

Practical Aspects of Model Transformation

The algorithm presented above has been shown to work well for models

based on a Finite Element description of the rotor. These models have

the nice property that they explicitly contain the system's physical quan¬

tities. In the context of identification of the gyroscopic matrix G it has

been shown that this is not the case for general rotor models in state space

form like those obtained from identification.

As has been elaborated in Chapter 4.3.5, the state space models obtained

from input-output identification of physical systems are only known up

to a transformation matrix T defined in Equation (4.39). This has the

following implication.
In the algorithm for adaptation of ks presented in the last section, similar¬

ity transformation of the system with a matrix T — diag(Ti,Ti) as defined

in Equation (4.39) affects the computation of the correction matrix KA

defined directly after Equation (6.8) as follows:

KA = fiT4>TFKsAFT$fi~T (6.9)

For stiffness adaptation, this matrix is added to the lower left part of the

system's A matrix. It is obvious from Equation (6.9) that KA depends on

the choice of Ti while, by definition of Ti, A does not. Since dependence
of the stiffness adaptation matrix on an arbitrary parameter clearly is

unacceptable1, the algorithm for stiffness adaptation developed in Chapter
6.2.1 is not applicable to identified models.

Fortunately, there is a simple and effective workaround for this problem.
Based on the matrix of stiffnesses to be added to the system, KsA, the

1Only the special matrix Ti>phys transforming the identified state space system back

to the 'natural' description resulting from FE modeling would yield the correct matrix

K& for the presented procedure. Due to the input-output equivalence of the systems
under similarity transformations, Ti)P/jys can unfortunately not be determined by ex¬

periments.
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known input and output scaling factors Cin = imax and cout = l/xs, and

the diagonal matrix of force-current factors Ki, the constant matrix

KsA,FB = 1—Ki-1KsA (6.10)

is computed and fed back from the system's outputs to its inputs.

This approach is equivalent to adding a proportional feedback with stiffness

KsA to the system between sensor and actuator locations.

Instead of using the (in the above sense uncertain) system matrices, it relies

on modification on the (known) input-output behavior of the identified

system for stiffness adaptation.

In contrast to the procedure that was originally proposed, this method

is accurate only in the case of sensor-actuator collocation. However, for

systems where sensors and actuators are close together, the deviations were

found to be very small in numerical simulations.

6.2.2 Controller Reduction and Discretization

Reduction of Controller Order

Many different techniques for controller order reduction have been devel¬

oped over the last decades, the best known of which may well be the

balanced truncation approach (e.g. [Green95]). This classical technique
aims at replacing the original high order linear controller C by a transfer

function of lower order C and minimal maximum deviation ||C — C||oo of

the frequency responses of the two systems.

The considerable degree of controller reduction achieved with this approach
can even be increased if attention is focused on what the goal of controller

reduction really is: A reduced controller with as similar as possible closed

loop robust performance.

This problem is very different from the classical controller reduction prob¬
lem since open-loop irrelevant dynamics of the controller may play an

important role in the closed loop and vice versa [Wortelboer99].

This amounts to solving the problem

minsup(MA(FL(P,C)) -/zA(FL(P,C))) (6.11)
C "
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As is the case in K step of D-K iteration, /j, is approximated by its upper

bound, and rational D-scalings Di and Dr (those obtained from the D-

K iteration) are used for approximation. This yields a rational problem
formulation

min ||DiFL(P, C)DI.-1 - D^P, C)DI.-1||00 (6.12)
C

that is solved by means of the algorithm for frequency weighted balanced

reduction in closed loop configuration developed and implemented by P.

Wortelboer in the WOR-Toolbox [Wortelboer94]. This toolbox used to be

publicly available via ftp and has been made available by U. Schönhoff,
who also used this algorithm in [SchönhoffOOb] and [SchönhoffOOb].

Like the standard balanced truncation, this reduction technique aims at

transforming the system to be reduced to a state space representation that

has equal controllability and observability gramians (which makes it 'bal¬

anced') and then eliminating the least observable (and hence controllable)
modes from it.

The difference however is, that instead of the controller gramians, the

gramians of the entire closed loop configuration are used as a basis for

reduction: First the gramians of the closed loop system are calculated.

By adequate state ordering, portions of the gramians belonging to the

controller can be separated from the portion belonging to the plant and

extracted. In the next step the similarity transformation to balance the

extracted gramians can be computed. Using this similarity transformation

to transform the controller yields a description of the controller from which

the least observable and controllable (with respect to the extracted closed

loop controller gramians) can be truncated, yielding the desired reduced

controller C.

This reduction technique has been shown to be superior to the classical

techniques in a number of practical applications ([Wortelboer99],
[SchönhoffOOa], and [SchönhoffOOb]), and has proven very effective in all

test cases encountered in the context of this thesis.

Controller Discretization

Controller Discretization is a prerequisite for implementation of continuous

time controllers as obtained from D-K iteration on DSP systems. Different

discretization techniques are available, descriptions can be found in almost

any book on control theory, like for example [Franklin94].
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In the context of this work, the MATLAB function c2d has been used

to perform the discretization task. Since only standard techniques have

been applied and since the match of time discrete and time continuous

controllers has been very good in all cases, this topic is not treated in any

further detail here.

6.2.3 Performance Testing

In order to verify the validity of the designed controllers, systematic tests

are carried out. Starting at standstill and at different constant speeds, the

following are analyzed:

• Sensitivity function: The sensitivity function is measured over fre¬

quency, peaks are extracted and their size is compared to allowable

threshold values.

• The system's flexible open-loop poles are extracted, their dislocation

due to gyroscopic effects is analyzed and compared to the dislocation

predicted by the model at the current rotational speed as well as the

maximum dislocation permitted by the uncertainty considered in the

design.

The above measurements are used for extrapolation of the measured quan¬

tities. Based on this extrapolation it is decided if the speed can be safely
increased to the next higher test speed. This procedure is iterated until the

maximum design speed is reached or the tests indicate that the iteration

should be aborted.

During this iteration, the speeds at which the open-loop transfer function

and the closed loop performance are tested and at which the gyroscopic
matrix is identified are selected by the automated speed scheduler. This

function defines the next design speed based on the following:

• Predictions of the systems' critical speeds (see Figure 2.9) are com¬

puted based on the current model. These critical speeds are always
avoided by at least 2000rpm.

• Before a critical speed is passed, the system behavior is analyzed at

the highest safe operating speed below this speed.
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• At each test frequency, the pole's displacement due to gyroscopic ef¬

fects is analyzed by measuring the system's open-loop transfer func¬

tion. This displacement is compared to the displacement predicted

by the model. In case the measured displacement exceeds that from

the prediction, the maximum operating speed is decreased such that

based on a linear extrapolation the poles' dislocation will not exceed

the allowable maximum considered in the controller design for speeds

up to the new speed limit.

• At each test frequency, the system's sensitivity function is measured

based on the methods described in Chapter 6.2.4. The peak val¬

ues are compared to predefined threshold values that indicate safe,

noncritical, critical, and dangerous situations. Indication of a dan¬

gerous situation leads to direct abortion of the test with the last

(lower) testing frequency being the maximum speed achieved. If the

analysis indicates a critically large sensitivity function, the iteration

is also aborted, but the current speed is accepted as the maximum

speed achieved. In the noncritical (but not safe) case, the maximum

allowable speed step is temporarily decreased. The iteration is then

continued at a only slightly increased speed, which can be expected
to expose an improved (safe) or worse (critical) situation.

• Generally, the maximum speed the controller has been designed for

is considered an upper limit for the test speeds.

Furthermore, it is attempted to increase the speed by a certain minimum

step size in each iteration. On the other hand, a maximum step size

helps to avoid unexpected instability when the poles' movement due to

gyroscopic effects is not linear with respect to the rotational speed as

implicitly assumed.

In cases where a larger step size is required (e.g. whenever several critical

modes must be passed in one step because no safe operating speed can be

found in the (narrow) gap between them), the operator is prompted and

can choose to proceed or abort the procedure.

6.2.4 Extraction of Transfer Function Peaks

Both the Identification of Flexible Rotor Model and the Performance Test¬

ing modules critically depend on reliable and time-efficient extraction of

peaks from measured transfer functions.
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In the present setting, this task is particularly challenging since nothing
is assumed to be known a priori concerning the number or location of fre¬

quencies of interest (weakly damped eigenfrequencies, potential sensitivity

peaks).
The classical approach to this problem is to define a 'sufficiently dense'

frequency grid and to measure the corresponding transfer functions at the

discrete frequencies. However, this approach is very time consuming, and

once the peaks are determined only a small portion of the obtained data

is actually required for model identification or assessing the plant's sensi¬

tivity function.

This lack of efficiency, the difficulties in defining what is 'sufficiently dense',
and the knowledge that missing a peak may be fatal motivated the in¬

vention of a quicker and more reliable transfer function peak extraction

procedure based on concepts known as sweep sine excitation.

The key feature of the new procedure is the abolition of the concept of dis¬

crete frequencies. While in the classical procedure the closed loop system is

briefly excited in each of the four excitation channels with a sinusoidal sig¬
nal of fixed frequency, the new measurement technique relies on four longer
measurements during which the excitation frequency is swept through the

frequency range of interest. Based on these measurements, the frequency

response can be evaluated at arbitrary frequencies within the measurement

range. The MIMO transfer function for a specific frequency point is calcu¬

lated by cutting out the small piece of the measurements made when the

excitation frequency was passing the evaluation frequency and subsequent

application of the methods introduced in Chapter 4.2.1.

This procedure is efficient in two ways:

• When applied to a large range of frequencies (e.g. 100 to 1500Hz),
the measurement data can be post processed with a relatively wide

frequency grid (5 or 10Hz). Due to the fact that all frequencies
are excited during the measurement and due to the quick variation

of frequencies, a 'smearing' effect can be observed, making peaks
visible even if they are not exactly at one of the grid points. Together
with adequate normalization and extraction techniques the peaks of

a transfer function can be reliably detected within little more than

one minute.

• When applying the procedure to a small range of frequencies as iden¬

tified by the above rough detection (e.g. 40Hz wide), results of re¬

markable precision are achieved in pinpointing the exact peak loca-
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tions. Within about 30 seconds, a pole pair can be extracted with

a precision of about 0.5% of the frequency window considered. The

phase is typically accurate to 5 degrees even at the pole locations,
where large jumps occur. This precision is enough to use the ac¬

quired data directly for system identification. Merely exactly at the

extracted peak frequencies and at a few points in the low frequency

range, the conventional method is used to extract the peak height
as precisely as possible (see last chapter) respectively to avoid overly

long measurement times.

6.2.5 Improvements to Flexible Rotor Identification

The identification algorithm for flexible rotors presented in Chapter 4.2

fulfills it task very well. The only weak point is that the height of the

transfer function peaks caused by weakly damped flexible poles in many

cases does not match the measurements very well.

However, avoiding underestimation of transfer function peaks in the iden¬

tification procedure is a prerequisite for guaranteed stabilization of the

respective mode by the designed controller.

Therefore, the identification algorithm has been extended with a model

post processing module. This module is based on numerical optimization
and fine-tunes the frequency and damping of the identified poles such that

the measurements are perfectly matched.

6.2.6 Summary

In this chapter, the various identification and controller design methods

presented in the previous chapters have been assembled to a procedure
for identification and automated controller design for flexible rotor AMB

systems. The procedure is organized in a modular way. Its constituent

modules have been presented, and their interaction in the overall three

phase procedure has been described.

Furthermore, new software tools for quick transfer function extraction and

evaluation have been introduced. The software is documented in [LöschOl].
For further automated features, the reader is referred to Appendix A.
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Chapter 7

Experimental
Investigations

This thesis would be incomplete, had the algorithms designed not been

implemented and tested in practice. Such tests have been carried out, and

in this chapter the test rig and the experiments performed are presented,
followed by the experimental results and a discussion.

7.1 Test Rig

For testing of control, identification, and fault detection related algorithms,
an AMB test rig has been designed and built. The main requirements on

this rig were the following:

Flexibility. The test rig was to allow implementation and testing of as

wide a range of AMB related algorithms as possible.

Versatility. Testing of algorithms was to be possible in a general set¬

ting, allowing to draw conclusions concerning the quality of the al¬

gorithms. Restriction to special cases was to be avoided, ruling out

lucky guesses and similar effects in algorithm design.

Short implementation cycles. Implementation and adaptation of algo¬
rithms were to be as easy as possible. Debugging was to be facilitated

by adequate tools and short compilation times.

171
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Availability. Since the focus of work was on the design of algorithms for

AMBs rather than on design of a test rig, the building of the rig was

to consume as little resources (in particular: time) as possible.

Based on the last of the above criteria, it has been decided to modify an

existing system rather than developing a new AMB test rig from scratch.

The system of choice was a commercially available system, a MECOS Mini

VS, that had been used in an earlier project. In its original form, this sys¬

tem consisted of two radial bearings, an axial bearing, and an asynchronous
drive with a maximum speed of 30000rpm. Available in different configu¬

rations, the present version was equipped with a flexible rotor with a mass

of 2.10kg and a length of 310mm. Its first and second bending frequencies

were located at 233 and 722Hz, and the radial and polar moments of iner¬

tia amounted to 1.87 x IO-2 kgm2 and 6.43 x 10-4 kgm2, respectively.
The five control axes were driven by ten power amplifiers with a maxi¬

mum voltage of 50V and a current limited to 6A. The system was con¬

trolled by decentralized SISO controllers encoded in MECOS proprietary

software running on a Texas Instruments TMS320C25 processor. The con¬

trol unit and the power amplifiers were built into a cabinet with buttons

for performing basic operations such as lifting and dropping the rotor and

a potentiometer for adjusting the drive speed. The system was designed
to be self-contained, however interaction with the system was possible by

means of a link to a PC and a MATLAB interface that provided extended

functionality such as uploading and downloading controllers, monitoring

of signals, and measuring of transfer functions. The test rig in its original
form is shown in Figure 7.1.

The above system has been modified in various ways:

• The position measurement signals and the set current signals have

been made available to the outside via BNC connectors, allowing for

external control of the system.

• The radial controllers of the system have been disabled, and a new,

powerful controller board (a DSPACE 1103 with a 300MHz Power

PC processor) has been connected to the system. With its high com¬

puting power and the possibility to use SIMULINK as a graphical

programming interface, it permits short development and test cy¬

cles for algorithms as well as implementation of centralized (MIMO)
controllers.
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Figure 7.1: Rig before modification. From left to right: Radial bearing A,
axial bearing, asynchronous motor, radial bearing B. The components are

mounted on a hollow aluminum profile through which the cables are passed
to the connectors of the power amplifiers and the sensors in the lower right.

• A new rotor has been designed for the system. Being equipped with

conical ends and a movable clamping element, this rotor can be con¬

figured in many different ways by attaching discs of different sizes

and diameters. These adaptations allow variation of the rotordy-
namic properties of the test rig in a wide range.

• Four additional position sensors have been added to the system for

investigation and compensation of sensor faults and for implementa¬
tion of other 'smart machinery' algorithms [IMP01].

• An extra input has been added to the system for controlling the

drive's speed from the new controller board. This enables automated

investigation of the rig's behavior at different test speeds without

operator interaction.

Although the chosen solution based on an existing rig was considerably

quicker than designing a complete new system, the redesign of the MECOS

test rig required a considerable amount of time. In particular the entire

control and system analysis software had to be rewritten from scratch,
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including interrupt handling routines for measuring the rotor's speed (re¬
quired for unbalance compensation and drive control).
The result, however, was rewarding; the new system met the expectations
of providing a flexible, efficiently programmable basis for testing control

algorithms not only on a specific system but, by reconfiguring the rotor,

on a whole class of systems with very different rotordynamic properties.

The test rig is depicted in Figure 7.2, and its basic technical data is given
in the following table:

Rotor

length: 491mm

mass: 3.38 - 6.91kg
moment of inertia, polar: 1.13xl0-3 - 5.2xl0~3kgm2
moment of inertia, radial: 5.31xl0~~2 - 1.88xl0_1kgm2
first flexible mode: 101 - 216Hz

second flexible mode: 364 - 616Hz

third flexible mode: 705 - 1296Hz

higher modes: from 1017Hz

Active Radial Magnetic Bearings
maximum bearing force:

ki at io =2/3/4 A:

ks at i0=2/3/4 A
nominal air gap (so):
air gap to retainer bearings (xs):
maximum voltage (Up):
maximum coil current (imax)'-
nominal coil inductivity (L):
coil resistance (Rc)-
coil windings (nc):
cross section (Ac):
Sensor Filters:

dead time:

104N

27/40/54 N/A
123/279/497 N/mm
0.4mm

0.25mm

50V

6A

3.0mH

0.2ft

48x2

9 x 20mm2

3kHz second order lowpass
0.18xl0"3s

Control System
Controller Board:

Host Computer:

dSPACE 1103 board

700MHz Intel P-III PC
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Figure 7.2: Top: Rig after redesign. From left to right: Radial bearing A,

asynchronous motor, axial bearing, radial bearing B. To the right of the

axial bearing, the movable clamping element can be seen. At the left end

of the rotor, one of its conical ends is visible. Attached to bearing B, the

circular ring containing the new secondary sensors can be seen. Bottom:

Selected add-on devices of different diameter and mass to modify the rig 's

rotordynamic properties. The four rings at the right can be attached to the

clamping element at the rotor's midspan. The steel discs fit on the rotor's

conical ends and are held in place by tightening nuts attached to the threads

at the very end of the rotor (top picture).
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7.2 Experiments Performed

The algorithm for identification and automated controller design has been

tested on three different configurations of the rig described above. These

setups are depicted in Figure 7.3. For transferability of the results, all

tests were carried out at a sampling frequency of 5kHz, which is a typical

sampling frequency in industrial applications. The bias currents used in

the cases presented here were 1.7A, 2.0A, and 2.3A for the three rig config¬

urations, respectively. These values are slightly above the minimum values

required for linear operation under the influence of gravity. In experiments

performed with a bias current of io=imax/2=3A, very similar results were

obtained.

7.3 Results

7.3.1 Identification of Rigid Body Model

The rotor's rigid body model was identified using the procedure in Chapter
4.1. The steps of this procedure are the following:

1. A current step of size imax is applied to the radial bearing A. Po¬

sition data from the bearing's two sensors is recorded during the

experiment.

2. From the sensor data, the flight phase is extracted and a function of

cosh-type (see Equation (4.8)) is fit to the data, yielding an estimate

for the pole of the system under consideration. This is done for each

of the two bearing axes. The estimate for the pole is obtained by

averaging the two values.

3. Based on the estimated pole and the known bearing stiffness, the

mass coefficient mi is computed using Equation (4.7).

4. A simple controller for levitating the rotor on one side is designed

following the guidelines presented in Chapter 4.1.2.

5. With the rotor levitated in one bearing, the force required to hold

the rotor in the bearing center is computed based on measurements

of the control currents. The force for each of the axes is calculated

based on Equation (2.1). The total gravitational force F9ia is then

obtained from F9jA = -^(F9jA>x + Fg^y).
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Figure 7.3: Rig configurations used for testing the algorithms. The flexible
mode shapes and frequencies as well as the masses and moments of inertia

stem from an untuned Finite Element model. Bearing locations are indi¬

cated by a lB\ sensor locations by an 'S'. Only the main sensors (closer
to the ends of the rotor) have been used for control in this work.
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Figure 7.4: Rotor's motion in the bearing during step experiment. The

lift-off point, the location of impact, and the final position are indicated by

circles. The angle of flight has been determined based on the lift-off and

impact locations.

6. Equation (4.23) is used to calculate an estimate of the mass coeffi¬

cient ms.

These steps are repeated for bearing B, yielding an estimate of the mass

coefficient mi and a second estimate of m^. The final estimate of 7713 is

computed from the average of the two individual estimates.

Typical intermediate results from this procedure are shown in Figures 7.4

and 7.5. In the first of these figures, the rotor's flight path in the bearing
is shown. The flight path is not always vertical, the angle of flight varies

in a range of about ±7°.

In the top half of the second figure, the currents and sensor signals mea¬

sured during the experiment are depicted, and in the bottom half, the

extracted flight path with the fitted cosh-function can be seen.

The above identification procedure makes relatively strong assumptions on

the linearity of the bearing. It implicitly assumes that the linear current-

force relation derived in Chapter 2.1 holds not only when the rotor is
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Figure 7.5: Top: Time data acquired from position and current measure¬

ment during the step experiment (in direction of the x-axis). The moments

of lift-off and impact are indicated by circles. Bottom: Enlarged view of
the flight phase. The sampled position data is indicated by points. Further¬

more, the cosh-function whose argument yields the estimate for the pole is

shown.

located at the bearing center but during the entire step experiment, i.e.

everywhere in the air gap. Furthermore, all nonlinear effects like the vary¬

ing stray fluxes affecting the force on the rotor during the different phases
of flight are neglected. In view of these approximations, it is of interest to

analyze how precisely the procedure works, and how large the systematic
error is, i.e. what pole values the method tries to extract when statistical

noise is removed.

To this end, the rotors were modeled in a Finite Element program from

which their rigid body data was extracted, see Figure 7.3. By application
of the transformation from Equation (2.17), this model was transformed to

bearing coordinates, yielding reference values for mi,m2, and m^. Based



180 Chapter 7. Experimental Investigations

on the these and the known bearing stiffnesses, reference values for the

locations of the poles to be extracted, Pa and ps (in the following denoted

P{A,B))i were computed.

If one assumes that

• for each rotor configuration the procedure measures certain pole val¬

ues PA,meth and PB,meth (not necessarily identical to the respective

reference values pa and pb due to systematic errors not accounted

for in the model), and that

• the disturbances on the procedure are of stochastic nature such that

the resulting pole values can be regarded to be of Gaussian dis¬

tribution with standard deviations crv,.
_, ,.

and expected values
tJ(A,B),meth

^

P(A,B),meth,expi

one can compute estimates for the parameters P(A,B),meth the procedure

tries to estimate. This can be done based on the fact that for any Gaussian

distribution every sample lies within a certain interval about the expected

value with a probability P. The size of the interval and the probability P

are coupled, for example for a probability of 95% the interval is ±1.96 • cr

about the expected value.

In addition to the above, it is known that given a random variable V with

Gaussian distribution with an expected value vexp and standard deviation

o, the average of n values of this random variable
, Vmeanj also is a random

variable with Gaussian distribution and the same expected value but with

a reduced standard deviation of an = a/y/n [Bronstein96].

In the present case, this means the following. Being Gauss distributed, the

pole measurements P(A,B),meth,i lie within the interval

P(A,B),meth,exp ± a • cr, a > 0 with probability P. Assuming that n is large

enough to replace a by s, the standard deviation of the samples1, the av¬

erage of n samples of this parameter then lies with the same probability
P within the interval P(A,B),meth,exP ± (a • s)/y/n.

This argument can be reversed to determine the parameter

P(A,B),meth,exp the method is trying to identify. By computing the mean

values P(A,B),meth,mean = £ YJÏ=iP(A,B),meth,i and the standard deviation

s from s2 = ^ É?=i(P(A,B),metM -P(A,B),meth,mean)2 for the n samples,
the standard deviation of the mean value of the samples can be computed

*As the number of samples n goes to infinity, s approaches a asymptotically. For

n > 10, the error is less than 5%.



7.3. Results 181

from sn = s/y/n.
Due to the above, one can then state with a certainty level of 95% that

the expected value P(A,B),meth,exp (i-e- the parameter the identification

procedure tries to estimate) lies in the interval P(A,B)tmeth,mean ± 1-96 • crn.

The results of this procedure for the three different rig configurations are

presented in Table 7.1. In addition to the information on the poles, the

reference and mean values for the mass coefficients mi and iri2 are also

given. Furthermore, the interval bounds resulting for these parameters

from the 95% intervals of the poles have been computed2. Finally, the

total rotor mass as determined from the Finite Element program is given
and contrasted with the average of the values obtained from the n = 25

experiments. While the values for mi and m<i show a certain scatter over

several experiments due to their dependence on the identified poles, the

(static) measurement of the rotor's mass proved to be very repeatable with

deviations in the order of one or two percent.

When comparing the pole values yielded by the experiments to a reference

model, a good accordance is found. In the case of the first rotor configura¬

tion, the deviation is likely to be below 10%. For the second configuration
the corresponding value is 15%, and for the third configuration with the

two large discs it is below 20%.

This indicates that for the configurations under consideration, identifica¬

tion of the rigid body dynamics based on a linear bearing model is accept¬

able, as these values correspond to mass uncertainty in the range of 20%,
which can be covered by uncertainty modeling (see Chapter 5.1.2).
The increase of the model error with the rotor mass can be explained by
the resulting increase in the disturbing force of gravity. In the extreme

case where the rotor's mass is so large that it can no longer be lifted by
the bearing at all, the linear model clearly is no longer applicable to the

pole identification problem. As this situation is gradually reached, heavier

rotors can be expected to entail identification results of lower quality. In

particular for the third rig configuration this effect is likely to play a role.

Here, gravity amounts to about of 63% of the maximum load the bearing
can lift from the bottom position, indicating that the border case described

above is not very far away3.

The mass values depend in a deterministic way on the pole values. Since this relation

is quadratic, the mass values are, given Gauss distributed pole values, themselves not

Gauss distributed. This renders the averaging procedure applied for the pole values

infeasible for the mass values.

3With a maximum load bearing capability of 104N per axis, the maximum load that

can be held at the bearing center is 104-^/2=147. IN. At the bottom of the bearing, the
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Configuration 1

Parameter FE-Model Mean s s/^/n 95% interval

PA [1/S]

Pb[1/s]

467.5

444.5

465.5

424.8

11.01

43.76

2.204

8.753

[461.3,469.9]

[407.6,442.0]

mi [kg]

m2[kg]

1.331

1.473

1.344

1.665

[1.318,1.368]

[1.490,1.752]

Mrot[kg] 3.410 3.359

Configuration 2

Parameter FE-Model Mean s s/y/n 95% interval

Pa[1/s]

Pb[1/s]

353.8

344.3

367.9

305.9

24.41

39.48

4.883

7.896

[363.1,372.9]

[298.0,313.8]

mi[kg]

m2[kg]

2.324

2.455

2.185

3.248

[2.093,2.207]

[2.955,3.277]

Mrot[kg] 4.760 4.588

Configuration 3

Parameter FE-Model Mean s s/y/n 95% interval

Pa[1/s]

Pb[1/s]

337.2

284.8

376.9

280.6

20.47

14.17

4.095

2.835

[372.8,381.0]

[242.7,248.4]

mi[kg]

m2[kg]

2.560

3.589

2.073

4.875

[2.005,2.094]

[4.716,4.940]

Mrot[kg] 5.650 5.267

Table 7.1: Results from n = 25 repeated rigid body model identification
runs for the three rig configurations. The mean values of the pole mea¬

surements indicate the pole values the method is trying to estimate. Con¬

fidence intervals containing the 'true '

parameter with a probability of 95%

are given. The mass values result directly from the measured pole values.

Their confidence interval has been computed from those of the pole values.

air gap is increased by a factor of 13/8 (from 0.4mm to 0.65mm). This yields a force

decrease by a factor of 64/169 for the (in this situation single sided) bearing, which

results in a maximum load of 55.7N or 5.7kg that can be lifted by one bearing. The

mass effective in bearing B is 3.589kg for the third rig configuration, amounting to 63%
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7.3.2 Controller Design for Rigid Rotor Model

The new automated procedure for designing robust controllers for AMB

systems with unknown high frequency dynamics has been applied to all

three rotor configurations, and convergence has been achieved in all cases.

However, due to the horizontal orientation of the test rig rotor, the corner

frequency ujc of the additive uncertainty weight was in all cases larger than

400Hz, which is well beyond the first flexible mode of the systems. There¬

fore, the algorithm had to be applied in conjunction with the pragmatic
'controlled instability' approach presented in Chapter 5.1.5.

Very good results were achieved with the lead compensator approach men¬

tioned in that chapter. With this approach, stabilization of all test rotors

was possible without user interaction. Instability of modes developed very

slowly and could be identified and eliminated by an automated procedure
that analyzes the sensor signals and introduces notch filters at noisy fre¬

quencies.

Taking into consideration the considerably shorter controller design time

(five seconds versus five minutes), this second approach clearly outper¬

formed the first one for the horizontal rotors under consideration. With

this design method, the entire identification and controller design for the

rigid rotor took in the order of 30 seconds for all rotors, automatic removal

of noisy modes included.

7.3.3 Identification of Flexible Rotor Model

After lévitation had been achieved, the full (flexible) models were identified

by means of the procedure presented in Chapter 4.2 in conjunction with

the algorithm for peak extraction presented in Chapter 6.2.4. Although
the amount of measurements had been reduced to a minimum, flexible

models matching the measured transfer functions with good accuracy have

been extracted without difficulty. A sample of a transfer function and the

corresponding model match for one channel of rotor configuration one is

shown in Figure 7.6.

7.3.4 Model Transformation

Since identification of the the flexible rotor model is performed on the

system with soft bearing settings (low bias current), the identified model
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Frequency [Hz]

100

Frequency [Hz]

Figure 7.6: Result from flexible rotor identification. Dashed: Measurement

data. Solid: Identified model with 8 states per plane. Only modes up to

800Hz have been considered in the identification. The third mode at about

1300Hz has been ignored and is stabilized by amplitude stabilization.

must be transformed to reflect the open-loop system with the bearings

settings to be used during operation.

An algorithm to perform this task analytically for a state space system

systems obtained from modeling of physical systems has been presented
in the first part of Chapter 6.2.1. In the second part, application aspects

have been discussed, and a procedure for adapting the bearing stiffness of

models obtained from identification has been derived.

This method has been applied to increase the bearing stiffness for the mod¬

els identified from the three configurations. For all systems, no significant
difference could be made out between Finite Element models with stiff

bearings and the identified models with soft bearings to which the above

procedure had been applied. In particular for the critical flexible modes

the error was below one percent in all cases.
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7.3.5 Initial Controller Design for Flexible Rotor Model

Design of the initial controller is based on the same method as developed
in Chapter 5.2. However, since at this point nothing is known about the

gyroscopic matrix G, the gyroscopic effects can not be explicitly considered

in the design. Therefore, the initial controller design for the flexible rotor

model was carried out for the rotor at standstill with an increased (5%)
uncertainty on the location of the flexible poles, which aimed at allowing
for slow rotation in order to perform a first identification of the gyroscopic
matrix G.

The design system was automatically assembled and augmented with sec¬

ond order time delays, the second order sensor filters and with weighting
functions designed based on the system parameters and the guidelines
from Chapter 5.2.4. The original system order was 16 and the order of the

augmented system was 44.

For none of the three configurations were any problems encountered in

the design of the initial controllers. Subsequent stability checks and per¬

formance analysis on the rig showed the sensitivity function to closely

resemble the function predicted by the closed loop analysis based on sim¬

ulations.

All three rig configurations have been successfully stabilized and acceler¬

ated to a low speed of 3000rpm when controlled by their initial controllers.

Detailed information on the controllers' order and performance is given in

the Kinitiai rows in Tables 7.2-7.4.

7.3.6 Iterative Identification and Controller Design

With the preliminary steps mentioned above completed, the procedure

enters its final stage, in which identification of the gyroscopic matrix G,

controller design, and controller testing are iterated at increasing rotational

speeds until the top speed of the rig is reached or no controller stabilizing
the system up to the desired design speed can be found.

Controller Testing

The testing of the controllers is carried out by the module described in

Chapter 6.1.2. This module automatically performs measurements and

analysis of the system's open loop and closed loop (sensitivity) transfer
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functions and identifies critical situations. The test speeds are chosen by
an automated speed scheduler that uses model based predictions of the

system's gyroscopic pole movements in order to avoid critical speeds, see

Chapter 6.2.3. Both the speed scheduler and the analysis routines behaved

robustly during the tests.

Identification of Gyroscopic Matrix

Identification of the gyroscopic matrix is performed by the module de¬

scribed in Chapter 6.1.2 based on the algorithm presented in Chapter 4.3

which showed very good performance in simulations. In Chapter 4.3.5 it

has been argued that for identified systems with non-collocated actuators

and sensors the identification algorithm must be extended with one pa¬

rameter ti per pole pair in order to account for the parametric flexibility
in state space models obtained from identification.

In the three test rig configurations investigated, identification of these pa¬

rameters was successful in some cases, however there were always param¬

eters for which the optimization did not converge. This is due to the large

range the values ti may lie in, trading off observability versus controllability
for each mode pair.

This however did not significantly hamper the successful operation of the

procedure. As has been shown in the simulations in Chapter 4.3.4
,
the

influence of the off-diagonal parameters on the gyroscopic behavior of the

system is rather small. The main part of the effect is covered by the

elements in the 2x2 blocks on the diagonal that are unaffected by the

scaling parameters t{. In combination with the uncertainty assumed on

the poles in addition to the gyroscopic effects, robust operation of the

controllers based on the identified gyroscopic matrix was achieved in all

test cases.

Controller Design

Like the design of the initial controller, the controller design method for

the gyroscopic rotor model is based on the algorithm developed in Chapter
5.2.

The nominal model is defined to have half of the (maximum) design speed
such that the uncertainty in the gyroscopic terms covers the whole operat¬

ing range from standstill to the anticipated maximum speed. The model
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in standard configuration and the weighting functions are automatically

computed and assembled to form the design system. The design is au¬

tomatically initiated. After its completion, the analysis tool described in

Chapter 5.2.5 is started and the user is prompted to inspect the result and

decide if he agrees that the controller be downloaded and tested on the rig
in the next iteration cycle.
At this point, the user has full access to the system which allows him to

perform further tests or to repeat the design with different parameters, if

necessary.

The rules for weighting function selection from Chapter 5.2.4 were ex¬

tended in two ways:

A second order high pass filter with a corner frequency of 600Hz was mul¬

tiplied to the output weighting function Wu, enforcing a roll-off of the

controller at high frequencies. This led to a more quiet operation of the

system. The price however, was an increase of the controller orders by

4x2=8 states.

Additional improvements have been achieved by adding a first order weight

to each channel, penalizing the rotor displacement y at very low frequen¬
cies (below 1Hz) via the weighting function Wy. Rather unspectacularly,
this causes the controller to contain an integrator to compensate for static

disturbance forces. However, as a side effect, this modification causes the

resulting controllers to have a significantly reduced gain around the flexible

modes that are located in the medium and high frequency ranges already
before the relocation of poles described in Chapter 5.2.4 is started. This

is in contradiction to the paradigm in robust control that local changes to

weighting functions only have local effect on the closed loop behavior. A

possible explanation for this behavior which was consistently observed is

that the changes in the low frequency range affect the algorithms comput¬

ing the D-scalings in the D-K iteration, which then directs the optimization
towards a different local minimum.

The gain reduction achieved with this approach considerably accelerated

the search for controllers that fulfill the performance requirements. With

this modification, the number of iterations required in the design proce¬

dure has been significantly reduced — in the majority of cases investigated,

robustly performant controllers were obtained in the first step, see Tables

7.2-7.4 in the next section.
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Iteration Results

This section contains the results from application of the iterative identifi¬

cation and controller design algorithm to the three test rig configurations
shown in Figure 7.3.

For each of the configurations, the information on the individual controllers

and their performance has been summarized in a table. Besides the max¬

imum design speed, the number of iteration runs that were required to

arrive at the controller and the controller size (before and after reduc¬

tion), the most important results from the testing of the controllers are

presented. These comprise the speeds at which tests were carried out as

well as a comparison of the measured pole locations with those predicted

by the model based on which the controllers had been designed. Further¬

more, the height of the highest sensitivity function peak is given for each

rotor at its maximum test speed.

Table 7.2 contains the results for the first rig configuration. Besides the

initial controller, three controllers were required to accelerate the rotor to

its final speed. All of the controllers were designed in one step, i.e. without

iteration. After reduction, the controller order was 24 in all cases. The

test speeds for the initial controller were 0 and 3000rpm (the latter being

predefined).

Based on the gyroscopic matrix identified at 3000rpm, a controller Ki

with maximum speed 9000rpm was designed. This controller was tested

at 7312rpm, which indicates that a weakly damped closed loop pole was

found at 9312rpm (2000rpm being the predefined security distance from

potentially hazardous speeds4). No tests at higher speeds were made by the

algorithm due to the controller's maximum design speed being (9000rpm)
being less than 2000rpm away from the last test speed.
The gyroscopic matrix was again identified at 7312rpm, and based on

the resulting model the controller K2 with a maximum design speed of

3x7312=21936rpm was designed. This controller was tested at 10062rpm

(2000rpm below the predicted critical speed at which the first flexible back¬

ward was going to be passed), at 15327rpm (The smallest acceptable speed

beyond the first backward mode which in fact is 2000rpm after passing the

4It is important to understand that it is in general not sufficient to consider the

flexible eigenfrequencies of the open-loop rotor as critical speeds. During operation, all

closed loop poles must be taken into account. Since the location of the open-loop flexible

poles is only marginally affected by the controller, these will always be among the weakly

damped closed loop poles. However, they may be joined by weakly damped controller

poles that also may not be destabilized, constituting addition critical frequencies.
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Configuration 1

Ctrlr.

Design

Speed

[rpm]

#
Des.

Iter.

Order

Test

Speeds

[rpm]

at Maximum Test Speed

Predicted Measured Sens.

Poles [Hz] Poles [Hz] Peak

-limitai 0 1 44/24
0

3000°
212.21

625.01

209.2/214.0
621.8/628.0

2.45

Kx 9000 1 54/24 73122
205.1/217.8
616.9/633.4

206.0/217.4
616.0/634.0

3.15

K2 21936 1 62/24

100624

152374

204783

196.5/229.2
600.1/651.2

196.4/227.8
599.0/650.5

<2

K3 30000 1 66/24

100624

152374

212375

266986

193.8/233.9
593.2/658.6

191.8/232.6
591.0/657.0

2.1

Predefined low set speed

No explicit prediction, but ±5% uncertainty margin on frequencies

Limited by critical speeds leaving no room for higher test speeds

Limited by stronger than predicted pole displacement found in prior test

Enforced by adjacent critical speeds

Limited by predefined max. speed step size of 6000rpm

Tests were aborted at this speed due to drive limitations

Table 7.2: Experimental results for the first rig configuration.

first forward mode), and at 20478rpm. This final speed resulted from a

comparison the peak locations measured at 15327rpm with those predicted

by the model underlying the controller design, which indicated that beyond

20478rpm the modes would leave the region considered in the design (not
considering the 3 percent uncertainty margin, which justifies experiments

being carried out at this speed).
Again, the gyroscopic matrix was extracted, and the controller Ks aiming
at stabilizing the rig up to its maximum speed (30000rpm) was designed.

l

2

3

4

5

6
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The test speeds for this controller were the same as for the last one up to

15237rpm. The test performed at this speed indicated no nearby limita¬

tion, which allowed the automated speed scheduler to apply the maximum

speed step size of 6000rpm, yielding the next set speed at 21237rpm. There,
the acceptable maximum speed was identified to be 26698rpm. This speed
was only barely reached due to limited drive power5. The tests performed
at this speed indicated that no further speed increase should be made due

to larger than predicted pole displacement.
The test rig being at its limit, the tests have been aborted at this point.
The pole displacement controller Ks successfully dealt with was 9.6% (for
the first flexible mode, 5.4% for the second mode.)

The experimental results for the second rig configuration are shown in

Table 7.3. Like in the case of the first rig configuration, three controllers

were designed after the initial controller. Except for controller K2, all

controllers were obtained in one step. K2 was derived after adjusting the

pole damping as described in Chapter 5.2.5 in the third attempt. The order

of the reduced controllers was between 18 and 22. The initial controller

was again tested at 0 and 3000rpm. The gyroscopic matrix identified at

3000rpm was used to design controller Ki that was tested at 5812rpm

(limited by the first backward mode and the maximum design speed of

9000rpm).
At this speed, the gyroscopic matrix was again identified, and controller

K2 was designed with a maximum speed of 3x5812=17436rpm. In the

first design attempts, the closed loop analysis indicated problems with the

sensitivity function in the vicinity of the flexible modes. This was corrected

by 'pulling back' the flexible poles into the stable half-plane as described

in Chapter 5.2.5. In spite of an analysis result inferior to those typically

achieved, the controller from the third iteration proved to levitate the rotor.

It was used to accelerate the system up to 15709rpm, well beyond the first

flexible mode. Intermediate stops were made at 5787rpm and 10812rpm,
below and above critical frequencies caused by the first flexible mode pair.
At the latter speed, the measured pole dislocation was found to be larger
than expected, which led to the test at 15709rpm. This test indicated that

the speed could be increased to 16176rpm. However, this was not done

by the automated speed scheduler since the speed step would have been

Due to the rotor's larger moment of inertia and increased air friction caused by the

clamping element, the set speed could only be increased very slowly for speeds beyond

23000rpm. The speed of 26698rpm was reached after several unsuccessful attempts in

which the drive's inverter shut down. Towards the end, the set speed steps employed
were as small as 50rpm.
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Configuration 2

Ctrlr.

Design

Speed

[rpm]

#
Des.

Iter.

Order

Test

Speeds

[rpm]

at Maximum Test Speed

Predicted Measured Sens.

Poles [Hz] Poles [Hz] Peak

J^-inital 0 1 44/18
0

3000°

142.I1

457.61

139.8/143.8
453.4/462.0

2.84

Kx 9000 1 60/18 58122
137.9/146
449.4/467.2

138.0/145.8
450.2/466.6

3.48

K2 17436 37 64/22

57874

108124

157093

132.5/154.2
436.9/482.3

133.0/152.6
435.5/479.0

3.81

Ks 30000 1 70/22

57874

108954

168955

228956

133.0/154.7
435.0/483.1

131.8/153.8
433.5/481.5

3.35

Predefined low set speed

No explicit prediction, but ±5% uncertainty margin on frequencies

Limited by critical speeds leaving no room for higher test speeds

Limited by stronger than predicted pole displacement found in prior test

Enforced by adjacent critical speeds

Limited by predefined max. speed step size of 6000rpm

Speed not reached. Drive failed to pass 21350rpm. Results are from 16895rpm

In the analysis, this controller still appeared to be a borderline candidate

Table 7.3: Experimental results for the second rig configuration.

smaller than the predefined minimum speed step size of 2000rpm.
As a consequence, the gyroscopic matrix was identified at 15709rpm, and

a new controller, Ks, with a nominal maximum speed of 30000rpm was

designed. This design was successful in the first step with the settings used

in designing K2, and the closed loop analysis for the resulting controller

indicated slightly better closed loop characteristics than in case of K2. This

1

2

3

4

5:

6:

7:
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controller brought the rotor via test speeds at 5787rpm and 10895rpm to

16895rpm. In the last step, the maximum speed step size of 6000rpm was

applied. The test at 16895rpm again indicated that application of the

maximum step size should be possible, defining the next test speed to be

at 22895rpm. This speed, however, could not be reached since the drive

failed to pass the limit of 21350rpm due to the increased axial moment of

inertia.

Extrapolation of the values gathered at 16895rpm indicates that at this

speed the pole displacement successfully handled by the controller was in

the order of 10.4% percent (for the first mode, for the second mode the

pole displacement was in the range of 6.6%).

For the third rig configuration, the experiments yielded the results from

Table 7.4. Like in the two other cases, four controllers stabilizing the

system over increasing speed ranges were successively designed. All con¬

trollers except Ki were found in only one iteration step. For Ki, two such

steps were required. After reduction, the controller orders were in the

range from 22 to 24.

The gyroscopic matrix identified at the initial controller's maximum

speed, 3000rpm, was used to design controller Ki, with which the ro¬

tor was accelerated to 5012rpm, limited by the first flexible mode pair and

the maximum design speed of 9000rpm. At this speed, a new gyroscopic
matrix was extracted, based on which controller K2 was designed. Its max¬

imum design speed was 15036rpm, and after critical speed related stops

scheduled at 4962rpm and 10112rpm, a speed of 12766rpm was reached.

At this speed, the test module indicated that no further speed increase

should be made, and the gyroscopic matrix was again identified. In the

next step, it was attempted to design a controller with a nominal maxi¬

mum speed of 30000rpm. This however was not possible after 5 attempts.

Therefore the maximum design speed was reduced to 20000rpm, at which

the controller Ks could be obtained. Using this controller, the rotor was

spun up to the final speed of 16062rpm. The pole displacements at this

speed were as large as 16.7% for the first mode and 18.7% for the second

mode. Test results at this speed showed that with controller Ks, the speed
should not be further increased. No attempts to design a new controller

were made since speeding up the rotor to 16062rpm was already difficult

with the underdimensioned drive. Furthermore, the test module indicated

the second backward critical speed to be located near 20000rpm, which

might have been difficult to pass at such low speed increments. In addi¬

tion to this, the unsuccessful attempt to design a controller for 30000rpm
indicated that the method would have difficulties to determine a controller
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Configuration 3

Ctrlr.

Design

Speed

[rpm]

#
Des.

Iter.

Order

Test

Speeds

[rpm]

at Maximum Test Speed

Predicted Measured Sens.

Poles [Hz] Poles [Hz] Peak

J^-inital 0 1 44/22
0

3000°

125.21

402.01

121.6/129.0
390.4/413.6

3.16

Kx 9000 2 62/22 50122
119.4/131.6
383.3/421.6

118.6/132.0
382.5/421.5

3.02

K2 15036 1 62/24

49624

101124

127663

110.1/143.5
365.5/453.6

108.6/142.2
343.6/445.5

3.01

K3 20000 1 54/22

47874

100624

160625

107.5/147.3
340.7/459.6

104.5/146.0
327.0/453.0

3.60

Predefined low set speed

No explicit prediction, but ±5% uncertainty margin on frequencies

Limited by critical speeds leaving no room for higher test speeds

Limited by stronger than predicted pole displacement found in prior test

Enforced by adjacent critical speeds

Limited by predefined max. speed step size of 6000rpm

Table 7.4: Experimental results for the third rig configuration.

capable of reaching speeds beyond the second critical speed.

With increasing design speed being the second goal of the algorithm besides

automation, it is important to report the time required for performing each

of the steps taken in the algorithm. This is done in Table 7.5. The total

time from the starting point of the procedure with no information on the

rotor (beginning of algorithm phase one) to the end of the test of the final

controller was in all cases below two hours (up to rig-specific problems with

the drive that required manual acceleration of the rotor by very small set

speed steps).

1

2

3

4

5:



194 Chapter 7. Experimental Investigations

Task Time required

Controller design, one iteration:

Controller testing, one test speed:

Identification of gyroscopic matrix:

3-5 minutes

4-5 minutes

2-3 minutes

Table 7.5: Time requirements of individual steps of the design procedure.

Run—Up Experiments

In order to further assess the controllers' performance on the different

rig configurations, the vibration amplitudes occurring during run-up have

been recorded. The results of this investigation are shown in Figures 7.7

and 7.8.

For rig configurations 2 and 3, the vibration amplitudes measured were

found to be surprisingly large, in the order of 25% of the air gap instead

of the anticipated 10%. This is due to convergence problems in identifying
the off-diagonal blocks of the gyroscopic matrix G. As has been fully elab¬

orated in Chapter 4.3.5, identification of G is particularly difficult in the

context of identified rotor models. This is due to unknown scaling param¬

eters that do not affect the model of the system at standstill (which makes

them impossible to determine a priori). These parameters do however have

significant impact on the off-diagonal blocks of the matrix G. In the al¬

gorithm for identification of the gyroscopic matrix G, it is attempted to

determine these parameters. However, convergence is not always achieved

due to the large search range.

Failure to correctly determine the off-diagonal block entries of G entails

amplitude errors at the locations of the shifted poles for the rotating model,
see Chapter 4.3.2. This effect caused the large vibration amplitudes en¬

countered for rig the second configuration with controllers K2 and Ks as

well as for the third rig configuration with controller K2 For the last con¬

troller of this configuration, Ks, the identification converged, resulting in

the considerably lower vibration amplitude during run-up, see Figure 7.8.

To confirm this statement controller design has been repeated for the most

critical case, the second rig configuration, with a gyroscopic matrix ob¬

tained from a Finite Element model. The design has been performed with

the identical settings as before. The model was (up to the gyroscopic ma¬

trix) the same as in the case analyzed above.
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Figure 7.7: Vibration amplitudes caused by unbalance forces during run¬

up with different controllers. The deviations have been measured at the

sensor locations. Top: Rig configuration 1. Bottom: Rig configuration 2.

The unexpectedly large amplitude when passing the first forward mode of
the second rig configuration results from problems in identifying the off-

diagonal block entries of the gyroscopic matrix G.
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Figure 7.8: Vibration amplitudes caused by unbalance forces during run¬

up with rig configuration 3. Controller K2 exhibits increased amplitudes
due to problems in identification of the gyroscopic matrix G. Controller

Ks shows good performance due to successful identification of G. The

deviations have been measured at the sensor locations.

Only one controller was designed (directly for the maximum speed). The

vibration amplitudes resulting from operation of the rig with this con¬

troller are depicted in Figure 7.9. A much lower level of vibration has

been reached (below the desired 10%).

As can be seen from the plots, the rigid body modes could in all cases

considered virtually not be noticed when the corresponding critical speeds
were passed. This shows that good damping was achieved which is con¬

firmed by the fact that typically no stops are made by the speed scheduler

due to rigid body modes.
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Figure 7.9: Vibration amplitudes caused by unbalance forces during run-up

of rig configuration 2 with controller designed using the gyroscopic matrix

from the Finite Element model. All other design settings are identical to

the case shown in Figure 7.8, bottom. Since no identification of G was

required, the controller has been designed in one single step.

7.4 Discussion

The experimental results presented above show the working of the iden¬

tification and controller design algorithm developed in this thesis. The

fact that three rig configurations with very different rotor dynamics were

successfully identified and stabilized up to speeds well beyond the first

flexible backward and forward modes justifies confidence in the general

applicability of the method.

On the example of the third rig configuration which was equipped with a

very heavy and highly gyroscopic rotor, the algorithm has been shown to

be applicable also for demanding control tasks6.

Although difficulties in identifying some entries of the gyroscopic matrix

6The rotor used in this configuration had a mass 2.7 times higher than the rotor

originally commissioned with the system by the manufacturer, with gravity amounting
to 30% of the maximum bearing force.
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caused in some cases an increase in vibration amplitudes during run-up,

the strong gyroscopic effects successfully dealt with in the experiments

prove the effectiveness of the identification algorithms.

However, in cases where strongly gyroscopic flexible modes are to be passed
at higher speeds than encountered in the above examples, it seems advis¬

able to resort to a gyroscopic matrix or a rotor model (without gyroscopic

matrix) from a Finite Element program in order to circumvent these prob¬
lems.

The goal of accelerating the design process has been achieved. With con¬

troller design times of about 30 seconds for a first lévitation and less than

two hours for the final controller, the presented method sets new standards

in controller design speed.

Furthermore, it was possible to reduce the user interaction and in partic¬
ular the expertise required to a minimum. In contrast to the conventional

methods, controllers can be designed by persons with only basic knowl¬

edge. Furthermore, the system runs independently during most of the

design time, which leaves it up to the operator to use this time for other

tasks.

In the traditional controller design methods, each of the steps modeling,
model updating, controller design, and controller testing would have typi¬

cally taken significantly longer and required substantially more know-how

than the new procedure in its entirety.

It is tempting to move the judgement whether or not a controller is good

away from the numerical analysis (based on comparison of the individual

transfer functions' size to the limit one as described in Chapter 5.2.5) to

the tests performed on the rig.
This approach is supported by the reliable test algorithm that automat¬

ically schedules the test speeds such that no critical speeds are passed
without analyzing the system behavior at a speed closely below the crit¬

ical speeds. Furthermore, the fact that the controllers are designed at

a nominal speed of half the maximum speed implies that the system at

standstill actually is a system with maximum disturbance, lying at the

very border of the uncertainty set considered in the design, just opposite
of the system with maximum speed. Therefore, lévitation of the rotor at

Orpm in fact is a difficult test for a controller to pass. If this is accom¬

plished, this gives confidence — but no guarantee — that the controller

should be able to stabilize the system well beyond the nominal speed7.

'No statement is made about performance here, instability may well occur due to

actuator saturation or too large orbits entailed by unbalance forces!
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In the cases where this strategy has been applied, it was always successful

— a large portion of the controllers that did not pass the formal ß analysis
test after the controller design failed to stabilize the system at standstill.

All of those controllers, however, that passed this test were indeed suited

to accelerate the rotor to speeds near the their maximum design speeds.
In none of the cases were any problems observed. However, this cannot

be formulated as a general rule. For different systems, things may look

different. Generally, safe ground is left when a critical analysis result is

ignored, and any further steps are at the user's risk.

As becomes apparent in the case of test rig configuration three, where no

controller could be designed for 30000rpm, controller design for gyroscopic
rotors becomes more and more difficult with increasing design speed. This

results from the gyroscopic pole displacements that increase with the rota¬

tional speed, requiring the controller to be robust with respect to greater
and greater uncertainty sets.

This is a general problem that holds independent of the design method

chosen. With more than 18% the level of gyroscopic pole displacement that

could be handled for flexible poles was not far below the value of 22.3%

dealt with in [Gähler98] for the rotor with rigid disk, which could only
be stabilized with large efforts by means of the phase shaping controller

design method.

This is a significant increase compared to the 3% achieved in [SchönhoffOOb]
which has been the state of the art in //-synthesis based AMB controller

design to date.

Nevertheless, for sufficiently high design speeds it will always be possible
to arrive at a system that cannot be stabilized directly by the method

presented. For such systems, it is recommended to apply a controller

scheduling technique. With minimal adaptations, the presented method

can be modified such that when no controller has been found for operation
of the plant from Orpm to a certain maximum design speed, controllers for

a limited range of high speeds are designed.
One of the existing controllers is then used in the range of low speeds up

to its maximum operating speed determined in earlier tests, where the sys¬

tem switches to the new controller designed for the range of high speeds.
This concept can be fully embedded in the presented iterative test, iden¬

tification and design loop. Furthermore, switching is not limited to two

controllers since the first controller can be replaced by a third one after

having been relieved of its duty by the second controller. This technique
allows to operate systems with strong gyroscopic effects at high speeds.
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Furthermore, smooth switching between controllers is possible [LiOl].
While testing of high speed controllers in any scheduling framework must

be considered a risky activity when conventional design methods are ap¬

plied8, the analysis tools available in the presented method are suited to

give a priori a maximum of reassurance that a given high speed controller

will actually stabilize the system.

°In case of instability, the rotating rotor will touch the retainer bearings. At

high speeds, rotor-stator contact in rotating machinery may have disastrous effects

[BarthaOO]. This even holds in the presence of backup bearings [Larsonneur90].



Chapter 8

Conclusions and Outlook

8.1 Summary and Conclusions

Starting point of the present thesis was an analysis of the state of the

art in AMB controller design for flexible rotors which revealed a situation

governed by a number of difficulties and no adequate solution at hand.

Among the biggest problems that have been identified was the need for

large amounts of both expertise and time in order to arrive at a suitable

controller. Further difficulties arose from the interdisciplinary nature of

the sub-problems encountered in controller design, among them model

updating for rotor structures which falls into the domain of mechanical

engineering and transfer function shaping by placement of poles and zeros,

a field of expertise of control engineers.

This thesis aimed at improving this situation by eliminating the above

weak points: A new controller design procedure was to be developed, with

special focus on ease of use and reduced design time. In particular, the

amount of special know-how required by the control engineer was to be

reduced as far as possible.

One of the main challenges on the way to reaching these goals was to find

a way to overcome the initial deadlock situation, in which neither a model

nor a controller are present, and a controller is required to identify a model

that in turn is a prerequisite for controller design in the first place.
This has been achieved by application of a step-wise procedure involving
several identification and controller design steps.

201



202 Chapter 8. Conclusions and Outlook

First, a coarse rotor model containing only the rigid body information is

identified by means of experiments that do not require lévitation of the

rotor. In a second step, this preliminary model is used for designing a

controller that merely achieves lévitation of the rotor in AMBs with low

stiffness, allowing for identification of the entire rotor model including the

flexible modes. After making adjustments for stiffer bearings, the resulting
flexible rotor model is used to design a controller stabilizing the flexible

rotor in AMBs with nominal settings.
For the identification of the rigid body model, a new method based on cur¬

rent step experiments and single sided lévitation has been developed. The

initial controller design is based on a //-synthesis design with a framework

focusing on robustness against uncertain high frequency dynamics. Model

uncertainties from identification errors are also explicitly considered. For

the identification of the flexible rotor, the algorithm from [Gähler97] has

been employed with minor adaptations to improve model precision at the

critical flexible peaks' amplitudes.
The subsequent flexible controller design is again performed by an algo¬
rithm based on //-synthesis. The basic approach is that from [SchönhoffOOb],
however fundamental modifications in the uncertainty modeling, design

system setup, and analysis have been made in order to better exploit the

potential of the method.

When levitated by the new controller, the rotor is accelerated to a low

speed at which the gyroscopic matrix is identified by means of a new iden¬

tification algorithm. The resulting improved model is then used to design
a controller that achieves robust performance up to a higher rotational

speed. Identification of gyroscopic terms, controller design, and controller

performance tests are iterated, and the rotational speed is successively
increased until the desired maximum speed is reached or no further im¬

provements can be made.

Both the controller design and the identification steps involved in the above

procedure have been largely automated and integrated in a closed proce¬

dure that does not require any modeling. Nevertheless, when external

models are supplied, the procedure can be started at any intermediate

point, giving considerable flexibility to the advanced user.

The effectiveness of the designed algorithms has been proven in experi¬
ments on a test rig with reconfigurable rotor. The rotor configurations
considered in the tests differed considerably with respect to their mass,

eigenfrequencies, and gyroscopic behavior, proving the applicability of the

algorithm to a wide range of AMB systems.
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In the cases investigated, the model order of the AMB systems was 16,
two flexible modes per plane have been considered while modes with a

frequency higher than 800Hz have been cut off by means of a lowpass
filter. The order of the augmented plant including weighting functions,
time delays, and sensor filters was 44. The resulting controllers had orders

up to 70, but were in all cases without difficulty reduced to 24 states or less.

After the reduction, the controllers have been discretized and implemented
on the rig with a sampling rate of 5kHz. In the subsequent experiments,
the system was accelerated to speeds up to more than 26000rpm, limited

by low drive power. In the analysis of the algorithm's performance, the

limited speed was made up for by considering systems with particularly

gyroscopic flexible modes.

The experimental results show that the goals defined at the outset of the

work have been achieved. The new method is considerably faster than any

existing controller design and identification approach. Less than two hours

were required to design controllers even for highly gyroscopic rotors (18.7%
mode displacement), and no initial rotor model was required for controller

design. The majority of this time was actually spent on the testing of the

controllers, which also has been automated and is an integral part of the

design procedure.

Furthermore, the expertise required to perform controller design has been

reduced to a minimum, the algorithm runs automatically and requires only
minimal user interaction.

Due to its open structure, it is not necessary to run the algorithm from the

very beginning. Available rigid body data of the rotor can be imported
into the algorithm, skipping the rigid body identification phase.
In case a levitating controller exists already (for example from prior design

attempts with different controller design methods or from studies carried

out in the design phase of the rotor), this controller can serve as a starting

point for the algorithm.
When the user-supplied controller only barely achieves lévitation, the fa¬

cilities for noise elimination (automated addition of notch filters) can be

used, and the algorithm starts with the identification of the flexible rotor

model, skipping the controller design based on rigid body rotor models.

If the controller supplied by the user is more advanced and has been shown

to work on the hardware up to a certain speed, this speed can be handed

to the algorithm together with the controller. After performing an identi¬

fication of the system, the algorithm will then start with the user-supplied
controller and the corresponding speed as a first test speed, which can fur-
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ther reduce the amount of time required for arriving at a final controller.

In this context, the algorithm developed in this thesis can be considered a

tool for improving of existing controllers.

On the way towards the algorithm, several side-topics have been touched.

The need for a sufficiently accurate and not too complex amplifier model

has been met by a new amplifier modeling technique. In the context of

investigations related to soft AMB supports, some interesting aspects of

AMB behavior when operated with low bias current have been revealed.

The results lead to a new, improved model for AMBs operated in differ¬

ential driving mode and subject to constant disturbance forces. These

results, as well as the identification algorithm for the gyroscopic matrix,

may be of general interest to the research community.

8.2 Outlook

In the following, some areas for possible future research based on this work

are outlined.

Although the presented algorithm for identification and automated con¬

troller design has been shown to work well in practice, its performance
could still be further improved.

A point for improvement is the algorithm for identification of the gyro¬

scopic matrix G. Although the algorithm shows very good performance on

models based on Finite-Element or other physical modeling, convergence

problems occur when identified rotor models are used due to additional

parameters that must be determined in this case. Currently, this is not

achieved in all cases, leading to model errors that may entail unexpectedly

large transient amplitudes when critical speeds are passed. At present, this

can be avoided by using parts of Finite Element models in the procedure
in critical cases. Resolution of the parameter identification problem would

eliminate the last remains of dependence on manual modeling from the

procedure.

Furthermore, the experimental results showed that for very heavy hori¬

zontal rotors the identification of the rigid body poles by means of step

experiments is impaired by the large disturbing forces. To improve this

situation, the nonlinear effects occurring in the bearing during the step ex¬

periments could be analyzed more closely. This analysis could for example
be based on a magnetic resistor network model as has been presented in

[Gähler98]. It should be possible to derive an improved model of the ro-



8.2. Outlook 205

tor's behavior during the step experiment and/or easy to apply correction

factors that depend only on the bearing and yield improved pole estimates

in the step experiments.

The automated controller design algorithm presented in this thesis has

been developed based on //-synthesis theory that marks the current state

of the art. Although the algorithm has been shown to work well in prac¬

tice, it is currently limited by some restrictions imposed by the state of

development of this theory.

Today's //-synthesis algorithms are not capable of handling systems of the

given complexity in a setting with real uncertainties. This problem is

currently circumvented by approximating real uncertainties by complex

ones, incurring a considerable amount of conservatism. Being a field of

ongoing research, new, improved //-synthesis-based controller design algo¬
rithms are under development. Furthermore, with increasing computing

power becoming available, new methods like //-synthesis based on linear

matrix inequalities (LMIs) become interesting topics also for systems of

higher order.

In the future, more advanced //-synthesis algorithms capable of directly

dealing with real parametric uncertainties should be developed. This would

allow employment of less conservative uncertainty models and hence result

in controllers with even higher performance. Furthermore, the controller

design time would be shortened as the requirement for additional design
iterations to compensate for problems with modeling real uncertain pa¬

rameters could be eliminated.

Due to its modular structure, it should require little effort to integrate new

//-synthesis algorithms into the controller design procedure developed in

this thesis.

The algorithm for identification and automated controller design has been

designed to work with general rotor systems with generic performance

requirements. With some adaptations, it could be employed to reconfig¬
urable systems like tool spindles and AMB turbomachinery with changing

operating conditions (e.g. pumps). In these systems, it could be used to

design controllers for the various ranges of application (various tool types,
different modes of operation) encountered.

For systems like tool spindles this would require extensions in the con¬

troller design part, where special criteria (in particular stiffness require¬

ments) would have to be introduced into the automated controller design
procedure. This would require modification of the rules for weighting func¬

tion selection.
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For pumps, adaptations and research would mainly be necessary in the

area of system identification for flexible rotors. Currently, the identifica¬

tion algorithms are tailored to systems with free rotors. Research would

have to aim at algorithm extensions for extracting the relevant model in¬

formation in face of disturbances coming from the machine's operation

(interaction with the medium, change of operating point). Furthermore,
the new identification algorithms should be able to adequately handle al¬

tered dynamics due to the medium being processed, which might include

a change of model structure and/or model order.

Finally, an interesting field for future research consists in the area of sys¬

tem design. It has been postulated that the control engineer must choose

between two design philosophies for weighting function selection; he can

either design weighting functions based on loop shaping criteria or apply
a signal based scheme.

The loop shaping approach in its pure form aims at obtaining well behaved

closed loop transfer functions, while ignoring any limitations imposed by
hardware restrictions, e.g. actuator saturation. On the other hand, when a

signal based scheme is used, hardware constraints are by definition taken

into account while the closed loop transfer functions are not necessarily

optimal.
In this thesis these deficiencies have been tried to overcome by application
of a signal based scheme with a loop shaping flavor. However, from a prac¬

tical point of view, it would be desirable to achieve both compliance with

hardware limits and optimal closed loop behavior at the same time.

This however is not a problem of control but of adequate machinery de¬

sign. In fact, this problem calls for a new concept of machinery design, in

which controller design and analysis of the resulting closed loop behavior

form an integral part of the design process from the very beginning when

the decisions on the basic design parameters are made.

With this design for closed loop performance approach it will be possible
to design machinery for which the above criteria coincide, i.e. for which

the closed loop transfer functions have optimal shape and at the same time

the hardware is made use of in an optimal way. This will yield systems
with higher performance and lower cost.

A procedure achieving this and making use of the analysis and controller

design tools developed in this thesis could work as follows: Starting with

an initial sensible rotor design, a controller is designed for this model us¬

ing the methods presented in this thesis (based on a signal based scheme).
Then, the individual transfer functions are analyzed. If adjustments seem

necessary, the weighting functions are adapted in order to achieve bet-
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ter transfer functions. Since the weighting functions directly relate to the

hardware due to the signal based scheme, this implies new design param¬

eters for the non-rotating hardware (actuator dimensioning, air gap, etc.).
Should the new hardware parameters appear insensible, this incurs ad¬

justments to the rotor design. Iteration of this process will finally yield a

system with both optimal closed loop performance and appropriate hard¬

ware parameters.
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Appendix A

Additional Automated

Features

A.l Parameter Computation for Unbalance

Compensation

Unbalance compensation, or autobalancing, is a topic of considerable in¬

terest in AMB control. By allowing the rotor to spin around its principle
axis of inertia rather than its axis of symmetry, unbalance compensation

helps to minimize housing vibrations and enables the operation of AMB

systems at very high speeds by avoiding actuator saturation. Furthermore,

displacement orbits are reduced when rigid body critical speeds are passed.

Many publications have been published on the subject of unbalance com¬

pensation, the most evolved and most systematic appearing to be that by

[Herzog96].

The approach taken in this paper is that of a generalized notch filter con¬

sisting of a bank of integrators and a parameter matrix T(Q) that must

be adequately chosen in order to ensure the stability of the closed loop

system.

Which values for T are a good choice depends not only on the bearings,
but on the closed loop configuration of bearings, controller, and rotor. As

a consequence, the matrix T can only be determined after the rotor has

been identified and a controller has been designed. This makes automatic
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computation of stabilizing parameters for the unbalance compensation an

interesting issue.

As has been elaborated in [Herzog96], a stable system configuration re¬

quires for all rotational speeds Q, that T(Q) be chosen such that all eigen¬
values of rS(jO) are located in the right half plane. A straightforward
choice for T(Q) is the inverse of the sensitivity function at the same fre¬

quency, S(jfTi). However, the inverse being a dense matrix, this entails

considerable computational effort during operation of the system.

A more attractive solution would consist in a diagonal matrix T fulfilling
the above requirement, leading to the problem of - given n desired eigen¬
value locations (in the right half plane) Ai,..., An - determining a complex

diagonal matrix T = diag(Ti, ...,Tn) such that

eig(diag(Ti,..., Tn)S) = \k, k = 1,..., n, (A.l)

where S is an abbreviation for S(jTi). This problem has been left open in

[Herzog96]. A less implicit problem formulation and a solution is given in

the following.

Equivalently to the above, one can consider the problem of finding solutions

Ti,..,Tn to the n matrix equations

(T-S- XkI)x = 0. (A.2)

Considering the single plane case with n = 2, the problem of determining
the Tjfc can be formulated by considering one of the above matrix equations

together with the additional constraint imposed by the determinant's re¬

lation to the eigenvalues,

fe

det(TS) = JjAfc. (A.3)
k=l

The result is a nonlinear system of equations with three scalar equations
and three unknowns (the two parameters Ti and T2 as well as xx (x_2 can

be arbitrarily chosen)). The results for T\ and T2 in this case are

where

^q and Ti =

<->2,2

q

~T2'

A1A2

(A.4)

P = -^q " and q = "^—^-r. (A.5)
>->2,2 (^1,1^2,2 — *->2,l<Jl,2j



A.l. Parameter Computation for Unbalance Compensation 211

This result can be used in the automated computation of unbalance com¬

pensation parameters. The computation can either be based on the iden¬

tified model or on a test run during which the sensitivity function for fre¬

quency points not too far above the current rotational speed is extracted

and T is computed for increasing rotation frequencies. As values for T be¬

come available, the rotational speed is successively increased, and the next

values for T are computed until the maximum operating speed is reached.

It is worth noting that the case with n = 4 can in principle be solved in

the same manner. To this end, either three matrix equations from (A.2)
and the condition (A.3) can be used to obtain a nonlinear system of equa¬

tions with 13 equations and unknowns, or all four matrix equations from

(A.2), yielding a system of size 16. Finding solutions to these problems
however is a nontrivial task that with the methods available today cannot

be efficiently solved on a grid of frequencies, as would be required by the

application.

However, the case with n = 4 is for the majority of cases satisfactorily
solved by applying the solution from the single plane case (n = 2) to both

planes. Typically this yields eigenvalues for the matrix TS that are not

exactly equal to Ai and A2, but lie well within the right half plane, fulfilling
the stability requirements from [Herzog96].
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Appendix B

Signals, Norms, and

Systems

Providing the theoretical background to Chapter 3, this appendix is in¬

tended for reference. It starts out with the basic definitions of norms,

signals, and systems, and it contains the formal definitions of the signal

spaces and system spaces encountered in robust control theory as well as

information on their connection.

Towards the end of this appendix, state space systems, the term 'stan¬

dard control configuration', and allpass systems are formally introduced

(all of which are relevant to understanding Chapter 3), and the algorithm
to compute the norm || H^ is presented.

Obviously, completeness had to be traded off against brevity, therefore

calculations and proofs have been omitted wherever this was possible. For

a more complete treatment of the subject, the interested reader is referred

to [Green95] and [Zhou96].

B.l Norms

Given any vector space V defined over some algebra K (typically K=R or

K=C), a function : 11.11 : V X R+ is called norm if it satisfies the following
conditions:
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1. Positive definiteness: \\x\\ = 0 44> x = 0

2. Linearity: \\rx-\\ = lrl ll^ll Vr G K, # G V

3. Triangle inequality: \\x + y\\ < \\x\\ + ||y|| Vre, y G V

A common example of a norm is the p-norm on Cn defined by

£lli>:= /J^M . l<P<oo. (B.l)

As a special example, any scalar product < -,
• > defined on a vector space

V can be used to define a norm on that space by the definition

\\x\\ := y <x,x> (B.2)

This norm is referred to as the norm induced by the scalar product. Con¬

sider for example the standard scalar product on Rn defined by

< x,y>~^2xiVi (B.3)
i=l

Quite obviously, the norm induced by this scalar product is the p-norm

from Equation (B.l) with p = 2. Any vector space equipped with a scalar

product and its induced norm is called Hubert space (provided it is com¬

plete with respect to the norm).

As a special type of vector space, consider now the space of complex ma¬

trices Cnxm mapping Cm to Cn. Then a norm on CnXm can be derived

based on the norms defined on Cm and Cn as follows: For all A G CnXrn,
define

P||:=sup^lfc (b.4)

This norm is referred to as the induced matrix norm.

For the special case when the norm on Cm and Cn is the norm || • ||2, the

induced matrix norm of any A G Cn x m
can be shown to be

A||2 := \/Xmax(A*A) = *(A). (B.5)

where Amax(yl A) is the maximum eigenvalue of the matrix A A and ä(A)
denotes the maximum singular value of A. From the last equality it can be

seen that ä(Ä) is a measure of the maximum amplification of any vector

from Cm by the matrix A.
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B.2 Signals

The set of all signals can be formally defined as

S = {/ : R X Rn, / Lebesgue measurable}.

This set in particular comprises all conceivable functions that can occur at

the input or output of any technical system. With the pointwise addition

and multiplication by real scalars, S can be considered an R-vector space.

Important subspaces of S are

S+ = {/ G S:f(t) =0 Vi < 0} and

S- = {f e S:f(t) = 0 Vt > 0},

the signals of the future and those of the past.

A special class of signals is constituted by all signals of finite energy. These

signals form the following function space:

v£j^
£2(-oo,oo) := {/ G<S:||/||2<oo}, with ||/||2 = J / ||/«||2dt

With the scalar product

/oo fT(t)g(t)dt (B.6)
-oo

and the norm induced by it, C,2(—oo,oo) is a Hilbert space. By applica¬
tion of the projection operators P+ and P_ to £2(—oo,oo), one obtains

£2(0,00) := C2(—00, 00) fi S+ and C,2(—00, 0] := C<2.(—00,00) fl S-, two

orthogonal subspaces of C,2(—00,00).

B.2.1 Fourier Transform

Signals with finite energy can be analyzed either in the time or in the fre¬

quency domain. In the time domain these signals are elements of £2(~00,00)
defined above. Signals in the frequency domain are elements of the space

£2 := {/ : jR X Cn, ±- (°° f*(ju)f(jüü) düü < 00} (B.7)
27T 7_oo
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With the scalar product

< f'9 > := h rr{juj)g{juj) du} (b-8)

and the induced norm

jhiy \2du (B.9)

£2 also is a Hilbert space.

The Fourier transform is defined as the following map from £2(—00,00)
to C2:

rp

f(joj)= lim f f(t)e-*utdt (B.10)

One can show that the Fourier transform is linear and bijective (one-to
one), i.e. an isomorphism, which with the special choice of scalar product
from above for £2 fulfills

<f,9> = <f,9> V/,p G r2(-oo,oo) (B.ll)

This means that the scalar product (and hence the norm which is induced

by it) is preserved under Fourier transform. Any isomorphism between

two Hilbert spaces that preserves the scalar product is called an isometry.
The Fourier transform hence is an isometry from £2(—00,00) to £2-

B.2.2 Laplace Transform

The subspaces £2(—oo,0] and £2[0,oo) of C2(—00,00) can also be trans¬

formed to the frequency domain. This is done by means of the so-called

Laplace transform which is defined as

/oo f(t)e~stdt. (B.12)
-00

The region of convergence of this integral depends on the function /. For

/ G £2 [0,oo), it converges on the entire open right half plane (complex
plane without the imaginary axis, Re(s) > 0). As a consequence, the

image f(s) of any / G £2[0, 00) lies in the space %2- %2 is a so-called
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Hardy space. It consists of all functions of one complex variable that are

analytic in the open right half plane and for which the expression

Vi/-«supa>0\ — f*(a + juj)f(a + ju)duj (B.13)

is finite. One can show [Green95] that (i) for each / in %2 there exists a

continuous continuation fi(ju>) = lim^o f(a+juj) G £2, (ii) the mapping

/ X fi is injective (invertible). This allows us to identify each function in

I-L2 uniquely with one in £2. As a consequence, I-L2 can be interpreted as

a subspace of £2. Based on these considerations, one can show that the

Laplace transform is an isomorphic (one to one) mapping from £2(0,00)
to U2.

In addition to H2, the space ri^ is analogously introduced by replacing
the right half plane by the left half plane in the above definition. In short,
one can write

y-2 = {/ : f(s) e n2}- (B.14)

Just like H2, %2 can t>e interpreted as a subspace of £2. The Laplace
transform can be shown to be an isomorphism from £2(—00,0] to £2- Due

to the orthogonality of £2(—00,0] and £2(0, 00), I-L2 and Ti^ are orthogonal
as well. Figure B.l graphically summarizes the results of this chapter

[Zhou96].

B.3 Systems

Mathematically, systems are operators mapping elements of one signal

space, the input space «Si, to a second signal space, the output space «S2-

G : «Si x S2 (B.15)

: w ^ z = Gw (B.16)

With the addition defined by parallel interconnection and the multiplica¬
tion by scalars, the set of all systems becomes a vector space. From the

multitude of systems, those with some specific properties are of particular
interest in control theory:

Causal systems are those systems for which the output up to an arbi¬

trary time r only depends on inputs up to this time (and not from

future inputs).
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£ [0, oo) ^

£ (-00, 0]

Laplace Transform

Inverse Transform

£ (-00,00) -*-

Fourier Transform
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Laplace Transform

Inverse Transform
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Figure B.l: Relation of signal spaces

Time-invariant systems always react, if the input to the system is shifted

in time by an offset r, with an output signal that is also shifted by
r.

Stable systems react to future finite energy inputs with future finite

energy outputs, i.e. z = Gw G £2(0,00) Mw G £2[0,00).

Linear systems are all systems fulfilling

G(rwi + SW2) = rGwi + sGw2 \/w\,W2 G «Si, Vr, s G R.

In the context of this work all problems are solved in the framework of

linear, time-invariant systems. For Laplace transformable input signals

w(t), these systems can be represented by a convolution integral of the

form

/oo G(t - r)w(r)dn
-00

(B.17)

and the Laplace transform z(s) of the image z(t) also exists and this equa¬

tion can be transformed to the frequency domain:

z(s) = G(s)w(s) (B.18)

with

w /oo G(t)e~stdt
-00
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/oo z(t)e~stdt. (B.19)
-oo

and
J —oo

In the above, G(t) is a real matrix valued function and G(s) is a complex
matrix valued function. G(s) is called transfer function matrix of the

system. Any linear time invariant system can be represented by a transfer

function matrix, and any system for which a representation as a transfer

function matrix exists is linear and time invariant.

B.3.1 The Space C
oo

In the analysis of systems, those linear time invariant systems mapping the

space £2 (—00, 00) of finite energy signals to itself are of particular interest.

It is straightforward to find a sufficient condition for a transfer function

matrix to fulfill this requirement:

1 f°°
IIGHli =

^J_ \\G(jcj)w(jcü)\\2 dco

- 2^] J?(G{ju)))2\\w{ju)\\2du
1 r°°

< swp(ä(G(ju;)))2— \\w(juj)\\2 dco (B.20)
w ^7T J — 00

In the first step, the properties of the induced matrix norm || • H2 from

Equation (B.5) has been used. Obviously ||;z||2 = ||Gu;||2 is finite for all

w G £2(—00,00) if supCJ(ä(G(jcü))) < 00 holds.

This motivates the definitions

llGJIoo := supö^G^'a;)) and £oo := {G : HGH^ < 00}

|| • ||oo can be shown to be a norm on jß^. Furthermore, a direct conse¬

quence from Equation (B.20) is that

IIGwHa < HGHoolHIa Vw G £2 VG G £00 (B.21)

and one can easily show that this bound is tight, i.e.

1161100 = sup 11^*, (B.22)
^0 IMI2
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which allows interpretation of || • Hoc as a norm induced by the signal norm

|| • H2. This implies that the norm HGHoo of a system is a measure for the

worst case energy amplification of any input signal w G £2 (—00,00).

B.3.2 The Hardy Space ri
00

Due to £2 [0,oo) being isomorphic to %2 and the definition of stability in

the last chapter, any transfer function matrix G of a linear, time invariant

system is stable if and only if

z = Gw£ H2VW G H2.

Since any function must be analytic in the open right half plane in order

to lie in H.2, any stable system G must necessarily be analytic in the open

right half plane. Checking the above stability condition

1 r°°

||Giu||2 = sup— / \\G(a + juj)w(ol-\-juj)\\2 dw
a>0 2-K J_00

1 f°°

< sup-— / cr(G(a + jüj))2\\w(a + jui)\\2 dw
a>0 27T J_00

(B.20) 1 r°°

< supsupcr(G(a + jui))2 sup
— / ||w;(a; + ju>)\\ dw

a>0 w a>0 27T J_00

Def. 1 e~+r ,
• \\2ii ii2

= supsup0-(G(û! + i7a;)) ||w;||2.
a>0 ijj

implies that a sufficient condition for stability of G is given by

supsup<j(G(û! + joj)) < 00 (B.23)
a>0 uj

This motivates the definition of the space Ti^ as the class of all systems

G that are analytic in the open right half plane and for which the above

supremum is finite.

As was the case with the embedding of ^2 in £2, a linear injective mapping
can be shown to exist, identifying every element G of Hex with its limit

function for a \ 0, G&. Additionally,

supsupir(G(u! + joj)) = supä(Gi}(juj)) (B.24)
a>0 w u
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which implies that for any G G %oo the limit function G& is an element of

£oo. This allows us to regard "Hoc as a closed subspace of C^ and to write

^oo = {G : G is analytic in Re(s) > 0 and ||G||oo < 00} (B.25)

'Hoo is the space of all stable transfer function matrices G. The special

significance of this space in robust control theory results from the fact

that it contains all desirable closed loop transfer functions. The optimal

'Hoc-algorithm introduced in chapter 3.3.1 performs a search for controllers

that achieve a closed loop transfer function from Hqq with minimal || • Hoc,
i.e. with minimum worst case amplification of input signals.

B.3.3 State Space Systems, Uri^, l^Hoo

As already mentioned, the systems in this work are linear, time-invariant

and causal. For any such system G a representation in the form

x(t) = Ax(t) + Bw(t) with x(0) = xQ (B.26)

z(t) = Cx(i) + Dw(t)

with constant, real-valued matrices A, B, C, D is available. This is called

a state space representation of G and often abbreviated as

A B
'

C D

Conversely, any system with the above representation is linear, time in¬

variant and causal. Laplace transform of Equation (B.26) yields G(s) =

C(sl — Ä)~lB + D, and all interconnections of state space systems can be

transformed into a new state space system by simple algebraic manipula¬
tion.

Given a state space system (A,B,C,D), the state space system

(T~1AT,T~1B,CT,D) has the same input-output behavior for all invert-

ible, real matrices T. The operation applied is called similarity transfor¬
mation.

This implies that state space representations are not unique. Similar¬

ity transformation with a nonsingular matrix will yield an input-output

equivalent but generally (in terms of matrices A, B, C, D) different state

space representation. In other words, the input-output behavior of a lin¬

ear, time invariant, causal system G can be expressed by a whole class of
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w z

u —*

p
y

C

Figure B.2: Standard control configuration

state space systems whose matrices look very different (but are similar in

the above mathematical sense).

Also, any system G can be represented by state space realizations of dif¬

ferent order (size of A). However, for each G there exists a value m such

that no state space representation with order less than m can be found, m

is referred to as the McMillan degree of G. Any state space representation
of G with order m is called a minimal realization of G. Any realization of

a system is both observable and controllable if and only if it is minimal.

For state space systems as presented here the transfer function matrix

G is a rational function of the complex variable s. The rational transfer

functions of Tloo and C^ form subspaces of these spaces and are denoted

VJHoo and 7££oo respectively.

G G IZ'Hoo if and only if G has no poles in the closed right half plane.
This is the basis for the standard stability check in the complex plane.

Furthermore, a system G G VJHoo is called proper if the denominator

degree of G is larger than or equal to its numerator degree. G is called

strictly proper if the denominator degree of G is larger than its numerator

degree.

B.3.4 Standard Control Configuration

For a physical system there is no natural order of its inputs and outputs.

However, for purposes of a structured theory and systematic controller

design, it is convenient to agree on a default system setup. This setup
consists of the feedback configuration from Figure B.2 where P represents

the system resulting from the interconnection of the nominal system and

all weighting functions and C represents the controller to be designed.

The system inputs and outputs can be differentiated and ordered based on

their logical function in the system as follows [Boyd91]:
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• the control input vector u consists of inputs (control signals) the

controller gives to the nominal system.

• the exogenous signal vector w consists of all other input signals
to the system (e.g. reference inputs, disturbances).

• the measurement signal vector y consists of the system's output

signals that serve as inputs to the controller

• the control objectives vector z consists of all other output signals.

The convention in control theory is to order the inputs and outputs of P

such that on the input side the exogenous signal vector w precedes the

control input vector u and on the output side the control objectives vector

z precedes the measurement vector y, see Figure B.2.

The resulting system P can then be partitioned according to the size of

the vectors defined above and written as

(B.28)

Furthermore, in cases when certain pairs of channels of the exogenous

signal vector w and the control objectives vector z can be attributed to

uncertainty modeling, the convention is to order w and z such that these

channels appear first.

Another convention exists for the naming of transfer functions: Transfer

function matrices are commonly named after the inputs and outputs they
are associated with, which is indicated by a suffix in which the correspond¬

ing output is followed by the input. For example the name Tzwtypically

represents the transfer function from the inputs summarized in the vector

w to the outputs summarized in z.

B.3.5 Allpass Systems

Allpass systems are systems G with the special property

\\Gw\\S2 = \\w\\SiVw e Si (B.29)

x(t)

y(t)

A

~C~i

C2

Bi B2

Du D12

D21 D22

x(t)

w(t)

u(t)
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i.e. the norm of the input is equal to the norm of the output. These systems

are mentioned here, because the optimal solution to the 'Hqo controller

design problem presented later can be shown to yield closed loop systems
with a similar property for the closed loop transfer function Tzw,

^(T^jüj)) = c Va; G R (B.30)

which implies that the closed loop transfer function is flat in the amplitude

sense, and that 1/c • Tzw is allpass. This has important consequences

for the introduction of robustness and performance requirements into the

controller design problem, see Chapter 3.2.2.

B.3.6 Calculation of the Norm
oo

In the above, the norm || • Hoc on Coo has been introduced as UGH^ :=

sup ^«^(G^'u;)), and its relevance for technical problems has been out¬

lined. In order to make use of this powerful tool, the above supremum

must be evaluated. Intuitively, the solution to this problem may look sim¬

ple; by defining a dense frequency grid with a finite number of frequency

points Lui and by evaluating maxWi ä(G(juüi)) an estimate for UGHoo can be

calculated. However, this method will only yield lower bounds for ||G||oo
and no information concerning the quality of this bound. For systems with

a state space description, a better method is available [Zhou96]:

Calculation of || • ||oo

Let 7 > 0 and G(s) = C(sl - A)~lB + D G UC^. Then the following

holds:

A + BR^D+C BR~lB*

-C*(I + DR~lD*)C -(A + BR~1D*C)*

with R = -y2I - D*D

\G\\oo < 7 ^ has no imaginary axis eigenvalues

and

â(D) < 7
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Based on this theorem, an iteration can be carried out. Starting with plau¬
sible upper and lower bounds ju and 7/ for the norm, the above condition

is evaluated for the average of these two bounds. Depending on the result,
this yields a new upper or lower bound. This bisection technique brings the

two bounds closer and closer together. As soon as the difference between

the bounds is smaller than a predefined tolerance value, the average value

of the two bounds can be used as an approximation of || G Hoc. In contrast

to the grid-based approach this method gives a reliable upper bound for

the maximum difference between the calculated value and the true value

of ||G||oo.
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Appendix C

Modeling of AMB

Systems Affected by

Gravity

In this chapter, the insights gained in Chapter 5.1.4 on how gravity affects

the stiffness of current controlled active magnetic bearings are used to for¬

mulate a new modeling procedure for AMB systems affected by gravity.
The method presented is generally valid, and the resulting models are al¬

ways better1 than models from the classical design method, while being of

identical complexity.
For both the classical and the new method, the basic bearing parameter

k = ßon2Accos(ap) and the air gap so are assumed to be known. Further¬

more, the desired bias current io is supplied by the user as an input to the

algorithms.

Classical Design Method

The classical design method consists in the following two steps:

1. Calculate the force displacement and force-current factors based on

1This is a mathematical statement. For large bias currents, the classical model

approaches the new model presented here asymptotically, and little is gained by using
the new model. For small bias currents, however, the difference becomes very large, see

Chapter 5.1.4.

227
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the standard linearized formulae, i.e.

*=£/
and

*. = £/
Ox

= k^ (C.l)

= *g. (C.2)

2. Add these values to the rotor model by methods described in Chapter
2.2 and Chapter 2.3.4.

New Design Method

The new design method yields improved force-current and force-displacement
factors by considering the constant set currents stemming from gravity

compensating controllers. It comprises the following steps:

1. Determine the gravitational force Fg to be compensated for in the

control axis under consideration. This can be done based on rigid

body data and information on the orientation of the rotor.

2. Calculate the values of imin and «a defined by

F F • so2
imin = \ ~r

• so and iA = -^—.—
• (C.3)

V « k • iq

3. Define the force-current and force-displacement factors as follows:

ki =1 *°.
• %0

- [min (CA)

and
2F,

^0 _: 1"m%n
ks = { ,n2+-°2 ; --;""» (c.5)

•t '

s
3 • *0 -^ Imin

4. Add ks and ki to the rotor model as before in the classical method.

The method presented above yields control relevant force current and

force-displacement factors, i.e. an improved model of identical complexity.
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