P-Stereogenic Ligands in Rhodium- and Ruthenium-Catalyzed Asymmetric Hydrogenation

A Dissertation Submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH

For the Degree of DOCTOR OF NATURAL SCIENCE

Presented by

Francesca Anna Maienza
Dottore in Chimica (Univ. degli Studi di Milano)
born on March 3rd, 1974
from Milan (Italy)

Accepted on Recommendation of
Prof. Dr. A. Togni, Examiner
Prof. Dr. G. Consiglio, Co-Examiner
PD Dr. A. Mezzetti, Co-Examiner

Zürich, 2001
Abstract

The synthesis of P-stereogenic diphosphine ligands and their application in asymmetric catalytic hydrogenation are described in the present thesis. In the last years, a few procedures for the preparation of enantiomerically pure P-chirogenic phosphines have been developed. Extending the scope of the published procedures, the effects of the variation of the diphosphine backbone and of the substituents at the P atoms were investigated in this work. The enantiomerically pure ligands (S,S)-Napf and (S,S)-Dapf, containing a 1,1'-ferrocenediyl backbone, were prepared.

A series of rhodium and ruthenium derivatives of these and other P-stereogenic ligands was prepared and applied in the asymmetric hydrogenation of olefins and ketones. The rhodium(I) derivatives of (S,S)-Dapf and (S,S)-Napf are excellent catalysts for the asymmetric hydrogenation of acetamidocinnamates with up to 97% ee, in particular N-alkylated derivatives. Thus, acetamidocinnamates were hydrogenated by the rhodium(I) derivative of (S,S)-((1-Np)(Ph)PCH2CH2P(Ph)(1-Np)) with up to 98.6% ee.

With these ligands, the ruthenium-catalyzed asymmetric hydrogenation of ketones and olefins show moderate to low enantioselectivities. The best result is the 52.6% ee observed in the hydrogenation of ethyl acetoacetate catalyzed by [RuCl2((S,S)-Napf)(PPh3)].

With the aim to introduce bulky and highly symmetric (C2 or C3) substituents at the P atom, two strategies were investigated. The enantiomerically pure ligand (S,S)-Buppe was prepared applying Jugé’s procedure. Following the
method developed by Evans and Imamoto, dimethylarylphosphines were deprotonated enantioselectively in the presence of (-)-sparteine and coupled to give 1,2-bis(mesitylmethylphosphino)ethane, (S,S)-L25, and 1,2-bis(9-anthrylmethylphosphino)ethane, (S,S)-L33, with up to 37% ee.

A rhodium(I) derivative of (S,S)-Buppe was tested in the Rh-catalyzed hydrogenation of olefins displaying poor to none enantiomeric excesses.

A new synthetic route to C₇-symmetric methylene-bridged diphosphines was developed. The reaction of an enantiomerically pure P-stereogenic chlorophosphine borane with a deprotonated dimethylarylphosphine gave C₇-MiniPhos, (R,R)-L40, with 86% ee. The latter is the first example of a class of asymmetrically substituted methylene-bridged diphosphines.

Using (-)-menthol as chiral auxiliary, diastereomerically pure 9-anthryl((O)-menthyl)methylphosphinite, (S)-L38, was isolated and tested in the Rh-catalyzed asymmetric hydrogenation of olefins.
Riassunto

In questa tesi sono descritte la sintesi di leganti difosfinici contenenti atomi di fosforo stereogenici e la loro applicazione nell’idrogenazione catalitica asimmetrica di doppi legami C=C e C=O. Negli ultimi anni sono state sviluppate varie metodologie per la preparazione di fosfine enantiomericamente pure, la cui chiralità è dovuta alla presenza di atomi di fosforo stereogenici. In questo lavoro sono stati esaminati gli effetti della variazione dello scheletro della difosfina e dei sostituenti all’atomo di fosforo.

I leganti enantiomericamente puri (S,S)-Napf e (S,S)-Dapf, che contengono come scheletro l’1,1’-ferrocenediile, sono stati preparati sviluppando i metodi di sintesi esistenti in letteratura.

Questi e altri leganti difosfinici contenenti atomi di fosforo stereogenici sono stati utilizzati per la preparazione di complessi di rodio e di rutenio, i quali sono stati testati nell’idrogenazione asimmetrica di olefine e chetoni. I complessi di rodio(I) con (S,S)-Dapf e (S,S)-Napf sono eccellenti catalizzatori per l’idrogenazione enantioselettiva di acetamidocinnammati, in particolare dei derivati N-alchilati, con eccessi enantiomerici fino a 97%. Inoltre, gli acetamidocinnammati sono stati idrogenati da un complesso di rodio(I) preparato con (S,S)-((1-Np)(Ph)CH2CH2P(Ph)(1-Np)) ottenendo un eccesso enantiomerico del 98.6%.

Con questi leganti, l’idrogenazione asimmetrica di chetoni e olefine catalizzata da rutenio avviene con moderata o bassa enantioselettività. Il miglior
risultato (52.6% ee) è stato osservato nell'idrogenazione dell'etil acetoacetato catalizzata da [RuCl₂((S,S)-Napf)(PPh₃)].

Due strategie sono state sviluppate per la sintesi di fosfine contenenti sostituenti all'atomo di fosforo ingombrati e C₂- o C₃-simmetrici. La procedura di Jugé è stata applicata alla sintesi stereoselettiva del legante (S,S)-Buppe. Accoppiando dimetilarilfosfine deprotonate enantioselettivamente in presenza di (-)-sparteina, secondo il metodo riportato da Evans e Imamoto, sono state isolate le difosfine 1,2-bis(mesitilmetilfosfino)etano, (S,S)-L₂₅, e 1,2-bis(9-antrilmetilfosfino)etano, (S,S)-L₃₃, con al massimo 37% di eccesso enantiomerico.

Un complesso di rodio(I) contenente (S,S)-Buppe è stato testato nell'idrogenazione catalitica di olefine, dove presenta scarsa o nulla enantioselettività.

Il legante difosfinico C₂-simmetrico, C₃-MiniPhos, (R,R)-L₄₀ è stato isolato con 86% ee. Questo è il primo esempio di una classe di difosfine sostituite in modo asimmetrico e con un ponte metilenico.
Utilizzando (-)-mentolo come ausiliario chirale, il 9-antril((O)-mentil)metilfosfito, (S)-L38, è stato preparato come singolo diastereoisomero e successivamente testato in idrogenazione asimmetrica di olefine catalizzata da ródio.