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Abstract

ML-estimation based on mixtures of Normal distributions is a widely used tool for cluster
analysis. However, a single outlier can break down the parameter estimation of at least one
of the mixture components. Among others, the estimation of mixtures of t-distributions
(McLachlan and Peel, 2000) and the addition of a further mixture component accounting
for “noise” (Fraley and Raftery 1998) were suggested as more robust alternatives. In this
paper, the definition of an adequate robustness measure for cluster analysis is discussed and
bounds on the breakdown points of the mentioned methods are given. It turns out that
the two alternatives, while adding stability in the presence of outliers of moderate size, do
not possess a substantially better breakdown behavior than estimation based on Normal
mixtures. If the number of clusters s is treated as fixed, r additional points suffice for all
three methods to let the parameters of r clusters explode, unless r = s, where this is not
possible for t-mixtures. The ability to estimate the number of mixture components, e.g.,
by use of the Bayesian Information Criterion (Schwarz 1978), and to isolate gross outliers
as clusters of one point, is crucial for a better breakdown behavior of all three techniques.
Furthermore, a sensible restriction of the parameter space to prevent singularities is dis-
cussed and a mixture of Normals with an improper uniform distribution is proposed for
more robustness in the case of a fixed number of components.
Keywords: Model-based cluster analysis, robust statistics, mixtures of t-distributions,
Normal mixtures, noise component, classification breakdown point

1 Introduction

ML-estimation based on mixtures of Normal distributions (NMML) is a flexible and widely
used technique for cluster analysis (e.g., Fraley and Raftery 1998, Wang and Zhang 2002).
Moreover, it is applied in density estimation and discrimination (Roeder and Wasserman 1997,
Hastie and Tibshirani 1996). Banfield and Raftery (1993) introduced the term “model based
cluster analysis” for such methods.

Observations x1, . . . , xn are modeled as i.i.d. according to the density

fη(x) =
s∑

j=1

πjϕaj ,σ2
j
(x), (1.1)

where η = (s, a1, . . . , as, σ1, . . . , σs, π1, . . . , πs) is the parameter vector, the number of compo-
nents s ∈ IN may be known or unknown, (aj , σj) pairwise distinct, aj ∈ IR, σj > 0, πj ≥

1
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0, j = 1, . . . , s,
∑s

j=1 πj = 1, and ϕa,σ2 denotes the density of a Normal distribution with mean
a and variance σ2, ϕ = ϕ0,1. Often mixtures of multivariate Normals are used, but for the
sake of simplicity, I restrict considerations to the case of one-dimensional data in this paper.
The qualitative results should carry over to the multivariate case.

As many other ML-techniques based on the Normal distribution, NMML is not robust against
gross outliers, at least if the number of components s is treated as fixed: The estimators of
the parameters a1, . . . , as are weighted means of the observations where the weights for each
observation sum up to one, see (2.13), (2.19), which means that at least one of these parameters
can get arbitrarily large if a single extreme point is added to a dataset.

There are some ideas to overcome the robustness problems of Normal mixture. The software
MCLUST (Fraley and Raftery 1998) allows the addition of a mixture component accounting for
“noise”, modeled as a uniform distribution on the convex hull (the range in one dimension,
respectively) of the data, and the software EMMIX (Peel and McLachlan 2000) can be used to fit
a mixture of t-distributions instead of Normals. Further, it has been proposed to estimate the
component parameters by more robust estimators (Campbell 1984, McLachlan and Basford
1988, Kharin 1996, p. 275), in particular by Huber’s (1964, 1981) M-estimators corresponding
to ML-estimation for a mixture of Huber’s least favorable distributions (Huber 1964).

While a clear gain of stability can be demonstrated for these methods in various examples
(see e.g. Banfield and Raftery 1993, McLachlan and Peel 2000, p. 231 ff.), there is a lack
of theoretical justification of their robustness. Only Kharin (1996, p. 272 ff.) obtained some
results for fixed s, showing that under certain assumptions on the speed of convergence of
the proportion of contamination to 0 with n → ∞, Huber’s M-estimation is asymptotically
superior to NMML. In this paper, mixtures of a class of location-scale models are considered,
which includes the aforementioned distributions. The addition of a “noise”-component is also
investigated.

In Section 2, the techniques treated in this paper and their underlying models are introduced.
Some attention is paid to the restriction of the parameter space, which becomes necessary to
define the ML-estimators properly, because the log-likelihood function of (1.1) and the other
models can converge to ∞ if one of the σ2

j converges to 0. The restriction will usually have
the form minj σj ≥ σ0 > 0. The choice of σ0 has an impact to the stability properties of the
methods. The alternative minj,k σj/σk ≥ c > 0 (Hathaway 1985) is also discussed.

One of the problems is the difficulty to define an adequate measure of robustness for cluster
analysis. In model based cluster analysis, the clusters are characterized by the parameters of
their mixture components. For fixed s, an influence function (Hampel 1974) and a breakdown
point (Hampel 1971, Donoho and Huber 1983) for these parameters can be defined straight
forward. For the case of partitioning methods like k-means, k-medoids and trimmed k-means,
where no variance is estimated, this has been done by Garcia-Escudero and Gordaliza (1999).
They observed that a bounded influence function for these techniques does not necessarily
imply a breakdown point larger than 1/(n + 1), i.e., that it is not possible to let at least one
of the parameters converge to ∞ by addition of a single point to the dataset. Note that an
“addition” or “contamination” breakdown point is considered in this paper, which is computed
by adding points to the original sample, while Garcia-Escudero and Gordaliza (1999) study
“replacement breakdown”. See Zhang and Li (1998), Zuo (2001) for relations between these
two concepts. Zuo (2001) shows that under some assumptions (in particular dependence of
the breakdown point on the data only through n) addition and replacement breakdown points
are equivalent, but this does not hold in the setup considered here, as shown in Remark 4.17.
It can further be distinguished between breakdown of a single cluster and breakdown of all
clusters (Gallegos 2001).
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Furthermore the breakdown point, for techniques where it does not always equal 1/(n + 1),
depends on the constellation of the data points, which lead to more or less stable clusterings.
If the number of components s is estimated, the essentially unstable nature of cluster analysis
becomes even clearer, because s is discrete and there must be data constellations “on the bor-
der” between two different numbers of components, leading to different numbers of parameters
to estimate.

If the mixture model is applied for the aim of clustering, robustness could be defined in terms
of the classification of the data points to the clusters as well. In this case it must be defined
what change of a classification should be regarded as breakdown. Kharin (1996, p. 49) derives
a decision rule for new points from estimators of mixture model parameters, and he defines
breakdown as the degeneration of this rule to equiprobable coin-tossing. This, however, does
not generalize straight forward to the case of estimated s.

In Section 3 I discuss robustness measures and breakdown points in terms of parameters as
well as of classification, which are applicable for an estimated number of clusters. The defi-
nitions will be flexible enough to account for the breakdown of a single mixture component,
for the breakdown of all mixture components and for intermediate situations. It is shown that
breakdown of parameters and breakdown of classification do not always occur together.

In Section 4, some results about the parameter breakdown of the mixture based clustering
techniques are derived. It is shown that all discussed techniques have a breakdown point of
r/(n+ r) for r < s of the mixture components in the case of fixed s. Only the breakdown of all
s clusters by adding s points can be prevented for t-mixtures, as opposed to Normal mixtures.
A better breakdown behavior can be attained by maximizing a kind of “improper likelihood”
where “noise” is modeled by an improper uniform distribution on the real line. For the case
of estimated s by use of an information criterion (Akaike 1974, Schwarz 1978), a breakdown
point larger than 1/(n+1) can be reached for all treated methods. They all are able to isolate
gross outliers as new mixture components on their own and are therefore very stable against
extreme outliers. However, breakdown can happen because additional points inside the area of
the estimated mixture components of the original data can lead to the estimation of a smaller
number of components. The breakdown point depends on the constellation of the data in
all cases. Some constellations are so stable that they have a breakdown point of larger than
1/2 to the price of a huge increase of the estimated number of clusters. The results can be
interpreted as a characterization of the stability of the clustering of the concrete data. The
paper is completed by some concluding discussions.

2 Models and methods

The Normal mixture (1.1) belongs to the class of mixtures of location-scale families which can
be defined as follows:

fη(x) =
s∑

j=1

πjfaj ,σj (x),where fa,σ(x) =
1
σ

f

(
x− a

σ

)
. (2.1)

η is defined as in (1.1). I assume that

f is symmetrical about 0, (2.2)
f decreases monotonously on [0,∞], (2.3)

f > 0 on IR, (2.4)
f continuous. (2.5)
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These assumptions are fulfilled, e.g., for the tν-distribution with ν degrees of freedom and for
Huber’s least favorable distribution, used as a basis for mixture modeling in Peel and McLachlan
(2000), McLachlan and Basford (1988), respectively, besides the N (0, 1)-distribution.

Here are some consequences, which are needed later: It follows from (2.2)-(2.4) that for given
points x1, . . . , xn and a compact set C = [a, b]× [µ, ξ] ⊂ IR× IR+ (this notation implies µ > 0
here)

inf{fa,σ(x) : x ∈ {x1, . . . , xn}, (a, σ) ∈ C} = fmin > 0. (2.6)

Further, observe that for fixed x, limm→∞ am = ∞ and arbitrary sequences (σm)m∈IN , as long
as σm ≥ σ0 > 0,

lim
m→∞

fam,σm(x) ≤ lim
m→∞

min
(

1
σm

f(0),
1
σ0

f

(
x− am

σm

))
= 0. (2.7)

The addition of a uniform mixture component on the range of the data is also treated, which
is the one-dimensional case of a suggestion of Banfield and Raftery (1993), that is, for given
xmin, xmax ∈ IR,

fζ(x) =
s∑

j=1

πjfaj ,σj (x) + π0
1(x ∈ [xmin, xmax])

xmax − xmin
, (2.8)

where ζ = (s, a1, . . . , as, σ1, . . . , σs, π0, π1, . . . , πs), π0, . . . , πs ≥ 0,
∑s

j=0 πj = 1 and 1(A) is the
indicator function for the statement A.

I consider finite sample breakdown points as discussed in Donoho and Huber (1983). These are
calculated from datasets xn = (x1, . . . , xn) and do not rest on a model assumption for the data.
The presented mixture models are introduced to define the estimation procedures. For fixed s,
parameters should be estimated by maximum likelihood (ML), where the data are treated as
i.i.d. according to one of the models specified above (but ML estimation for different models
may be applied to the same data). The log-likelihood functions for the models (2.1) and (2.8)
at given data xn with minimum xmin,n and maximum xmax,n (this notation is also used later)
are

Ln,s(η,xn) =
n∑

i=1

log

 s∑
j=1

πjfaj ,σj (xi)

 , (2.9)

Ln,s(ζ,xn) =
n∑

i=1

log

 s∑
j=1

πjfaj ,σj (xi) +
π0

xmax,n − xmin,n

 . (2.10)

xn will be omitted if no confusion is possible. As can be seen easily by setting a1 = x1, σ1 → 0,
Ln,s is unbounded for s > 1. That is, to define a proper ML estimator, the parameter space
must be restricted somehow. The easiest restriction is to specify σ0 > 0 and to demand

σj ≥ σ0, j = 1, . . . , s. (2.11)

This is used, e.g., in DeSarbo and Cron (1988) and may easily be implemented in the EM-
algorithm (Dempster, Laird and Rubin 1977, Redner and Walker 1984, see Lemma 2.1), the
most frequently used routine to compute mixture ML estimators. The problem of this restric-
tion is that the resulting ML estimators are no longer scale equivariant, because the scale of
the data can be made arbitrarily small by multiplication with a constant. The alternative
restriction

min
j,k=1,...,s

σj/σk ≥ c (2.12)
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for fixed c ∈ (0, 1] leads to properly defined, scale equivariant, consistent ML estimators for the
Normal case f = ϕ0,1 without noise (Hathaway 1985). This includes the popular simplification
σ1 = . . . = σs, which corresponds to k-means clustering and is the one-dimensional case of
some of the covariance parameterizations implemented in MCLUST (Fraley and Raftery 1999).
However, unless c = 1, the computation is not straightforward (Hathaway 1986). Furthermore,
the restriction (2.12) cannot be applied to the model (2.8), because the log-likelihood function is
not prevented from being unbounded, see Lemma 6.1. For the case of fixed s, Corollary 4.5 says
that estimation using (2.12) does not own better breakdown properties than its counterpart
using (2.11). Therefore, the restriction (2.11) is used unless indicated explicitly. Guidelines
for the choice of σ0 and c are given in Appendix 6.1. For results about consistency of local
maximizers of the log-likelihood function see Redner and Walker (1984).

The following lemmas are used to establish certain properties and especially the existence
of global maximizers of Ln,s for both of the models (2.1) and (2.8). Notation: Let θj =
(aj , σj), j = 1, . . . , s, θ = (θ1, . . . , θs) denote the location and scale parameters of η, ζ, re-
spectively, θ∗, η∗, ζ∗ by analogy (later the corresponding single parameters will be denoted by
s∗, a∗1, π

∗
1 and so on, and by analogy for η̂, ζ̂ . . .).

Lemma 2.1 Let for given η

pij =
πjfaj ,σj (xi)∑s

k=1 πkfak,σk
(xi)

, i = 1, . . . , n. (2.13)

A maximizer η̂ of
s∑

j=1

[
n∑

i=1

pij log π∗j

]
+

s∑
j=1

n∑
i=1

pij log fa∗j ,σ∗j
(xi) (2.14)

over η∗ leads to an improvement of Ln,s unless η itself attains the maximum of (2.14).

For given ζ in (2.10) the same statements hold with

pij =
πjfaj,σj (xi)∑s

k=1
πkfak,σk

(xi)+π0/(xmax,n−xmin,n)
, j = 1, . . . , s,

pi0 = π0/(xmax,n−xmin,n)∑s

k=1
πkfak,σk

(xi)+π0/(xmax,n−xmin,n)
. (2.15)

In (2.14), the first sum must start at j = 0.

This is derived in Redner and Walker (1984); for the results concerning ζ see DasGupta and
Raftery (1998). (2.13) defines the so-called E-step and maximization of (2.14) defines the
so-called M-step of the EM-algorithm, where the two steps are carried out alternately.

Lemma 2.2 For any global maximizer η, ζ, respectively, of Ln,s for given xn under (2.11) the
following conditions hold for j = 1, . . . , s with pij , i = 1, . . . , n, j = 1, . . . , s as in (2.15):

πj = 1
n

n∑
i=1

pij , (2.16)

(aj , σj) = arg maxSj(a∗j , σ
∗
j ) = arg max

n∑
i=1

pij log

(
1
σ∗j

f

(
xi − a∗j

σ∗j

))
. (2.17)

In the case of (2.10), (2.16) holds as well for j = 0.

With C = [xmin,n, xmax,n]×

σ0,
σ0f(0)

f

(
xmax,n−xmin,n

σ0

) and π1, . . . , πs > 0,

∀θ∗ 6∈ Cs ∃θ ∈ Cs : Ln,s(η) > Ln,s(η∗). (2.18)
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All proofs are given in the Appendix 6.2.

For Normal f , the solutions of (2.17) for j = 1, . . . , s are

aj =
∑n

i=1 pijxi∑n
i=1 pij

, σ2
j =

∑n
i=1 pij(xi − aj)2∑n

i=1 pij
, (2.19)

as long as this does not lead to σj < σ0, see Redner and Walker (1984).

Ln,s is continuous because of (2.5) and a global maximizer must lie in Cs × [0, 1]s because of
(2.18). Therefore

Corollary 2.3 Under the restriction (2.11) there exists a (not necessarily unique) global max-
imum of Ln,s with arguments in Cs × [0, 1]s.

For NMML and (2.12), this is shown by Hathaway (1985). Define ηn,s = arg max Ln,s, anal-
ogously ζn,s. In the case of non-uniqueness, ηn,s can be defined as an arbitrary maximizer,
e.g., the lexicographically smallest one. The pij-values from (2.13), (2.15), respectively, can be
interpreted as the a posteriori probabilities that a point xi had been generated by component
j under the a priori probability πj for component j with parameters aj , σj . These values can
be used to classify the points and to generate a clustering by

l(xi) = arg max
j

pij , i = 1, . . . , n, (2.20)

where the ML-estimator is plugged into the definition of pij .

For the breakdown considerations in Section 4 it is necessary to investigate if ηn+g,s stays inside
some compact set or leaves it under the addition of g points. All theorems will hold for any
of the maximizers. For ease of notation, ηn,s and ζn,s will be treated as well defined in the
following. Note that for s > 1 non-uniqueness occurs at least because of “label switching” of
the mixture components. Further, for the ease of notation, it is not assumed that πj > 0 ∀j or
all (aj , σj) being pairwise distinct.

Consider now the number of mixture components s ∈ IN as unknown. The most popular
method to estimate s is the use of information based criteria such as AIC (Akaike 1974) and
BIC (Schwarz 1978). The latter is implemented in MCLUST. EMMIX computes them both. The
estimator sn for the correct order of the model is defined as sn = arg max

s
C(s), where

C(s) = AIC(s) = 2Ln,s(ηn,s)− 2k,

C(s) = BIC(s) = 2Ln,s(ηn,s)− k log n, (2.21)

respectively, where k denotes the number of free parameters, i.e., k = 3s − 1 for (2.1) and
k = 3s for (2.8). Under assumptions which hold for the models discussed here under (2.11)
but not under (2.12) (compare Lemma 6.1), Lindsay (1995, p.22) shows that the number of
distinct points in the dataset is an upper bound for the maximization of Ln,s(ηn,s) over s, and
therefore as well for the maximization of C(s). Therefore only finitely many values for s have
to be checked to maximize C(s) and this means that (again non-unique) maximizers exist.

While the AIC is known to overestimate s asymptotically (see, e.g., Bozdogan 1994), the BIC is
shown at least in some restricted situations to be consistent in the mixture setup (Keribin 2000).
I mainly consider the BIC here. Further suggestions to estimate s, which are more difficult
to analyze with respect to the breakdown properties, are given, e.g., by Bozdogan (1994)
and Celeux and Soromenho (1996). EMMIX also allows the estimation of s via a bootstrapped
likelihood ratio test (McLachlan 1987).
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3 Breakdown measures for cluster analysis

The classical meaning of breakdown for finite samples is that an estimator can be driven as far
away from its original value as possible by addition of arbitrarily unfortunate points, usually by
gross outliers. This holds for the here considered “addition breakdown points” as opposed to
“replacement breakdown points”, where points from the original sample are replaced (Donoho
and Huber 1983, Zhang and Li 1998). Breakdown means that estimators, which can take values
on the whole range of IRp, can leave every compact set. If the value range of a parameter is
bounded, breakdown means that addition of points can take the parameter arbitrarily close
to the bound, e.g., a scale parameter to 0. Such a definition can be applied relatively easily
to the estimation of mixture components, but it cannot be used to compare the robustness of
mixture estimators with other methods of cluster analysis.

Therefore I will propose a breakdown definition in terms of the classification of points to clusters
after the definition of the more familiar parameter breakdown point.

A “parameter breakdown” can be understood in two ways: A situation where at least one of
the mixture components explodes is defined as breakdown in Garcia-Escudero and Gordaliza
(1999). That is, breakdown occurs if the whole parameter vector leaves all compact sets (not
including scales of 0 under (2.12)). In contrast to that, Gallegos (2001) defines breakdown in
cluster analysis as a situation where all clusters explode simultaneously. Intermediate situations
may be of interest in practice, especially if a researcher is interested in preventing breakdown of
a single cluster by specifying the number of clusters larger than expected to catch the outliers.
This is discussed (but not recommended - in agreement with the results given here) by Peel
and McLachlan (2000). The definition given here is flexible enough to account for all these
situations.

Definition 3.1 Let (En)n∈IN be a sequence of estimators of η in model (2.1), of ζ in model
(2.8), respectively, on IRn for fixed s ∈ IN . Let r ≤ s, xn = (x1, . . . , xn) be a dataset, where

∀η̂ = arg max
η

Ln,s(η,xn) : π̂j > 0, j = 1, . . . , s. (3.1)

The r-components parameter breakdown point of En is defined as

Br,n(En,xn) = ming{ g
n+g : ∃j1 < . . . < jr

∀ D = [πmin, 1]× C, πmin > 0, C ⊂ IR× IR+ compact
∃ xn+g = (x1, . . . , xn+g), η̂ = En+g(xn+g) : (π̂j , âj , σ̂j) 6∈ D, j = j1, . . . , jr}.

The proportions πj are defined not to break down if they are bounded away from 0, which
implies that they are bounded away from 1 if s > 1. Assumption (3.1) is necessary for the
definition to make sense; π̂j = 0 would imply that the corresponding location and scale pa-
rameters could be chosen arbitrarily far out without adding any point. (3.1) may be violated
in situations where s is large compared to n, but these situations are usually not of interest in
cluster analysis. In particular, (3.1) does not hold if s exceeds the number of distinct xi, see
Lindsay (1995, p. 23).

π̂0 → 0 in model (2.8) is not defined as breakdown, because the noise component is not
considered as an object of interest in itself in this setup.

In the situation for unknown s, I restrict considerations to the case of 1-components breakdown,
because this enables already a satisfying breakdown behavior of the usual mixture methods.
Breakdown means that neither of the s mixture components estimated for xn vanishes, nor
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that any of their scale and location parameters explodes to ∞ under addition of points. It is
however allowed that the new dataset yields more than s mixture components, and that the
additional mixture components have arbitrary parameters. This means that if the outliers form
a cluster for themselves, their component can simply be added without breakdown. Further,
breakdown of the proportions πj to 0 is no longer of interest for estimated s according to the
AIC or BIC, because if some πj is small enough, component j can be simply left out, and
the other proportions can be updated to sum up to 1. This solution with s − 1 clusters leads
approximately to the same log-likelihood and will be preferred because of the penalty on the
number of components:

Definition 3.2 Let (En)n∈IN be a sequence of estimators of η in model (2.1) or of ζ in
model (2.8), respectively, on IRn, where s ∈ IN is unknown and estimated as well. Let
xn = (x1, . . . , xn) be a dataset. Let s be the estimated number of components of En(xn).
The parameter breakdown point of En is defined as

Bn(En,xn) = ming{ g
n+g : ∀C ⊂ IRs × (R+)s compact

∃ xn+g = (x1, . . . , xn+g), η̂ = En+g(xn+g) :
pairwise distinct j1, . . . , js do not exist, such that (âj1 , . . . , âjs , σ̂j1 , . . . , σ̂js) ∈ C}.

This implies especially that breakdown occurs whenever ŝ < s.

Now I turn to the definition of classification breakdown. A mapping En is called a general
clustering method (GCM), if it maps a set of entities xn = {x1, . . . , xn} to a collection of its
subsets {C1, . . . , Cs}. A special case are partitioning methods where Ci ∩Cj = ∅ for i 6= j ≤ s,

s⋃
j=1

Cs = xn. An ML-mixture estimator induces a partition by (2.20) and Cj = {xi : l(xi) = j},

given a rule to break ties in the pij .

If En is a GCM and xn+g is generated by adding g points to xn, En+g(xn+g) induces a clustering
on xn, which is denoted by E∗

n(xn+g). Its clusters are denoted by C∗
1 , . . . , C∗

s∗ . If En is a
partitioning method, E∗

n(xn+g) is a partition as well. s∗ may be smaller than s when En

produces s clusters for all n.

As will be illustrated in Section 4, different clusters of the same data may have a different
stability for GCMs. Thus, I define robustness with respect to the single clusters. Therefore, a
measure is needed for the similarity between some cluster of E∗

n(xn+g) and a cluster of En(xn),
i.e., between two subsets C and D of some finite set of entities. From lots of possibilities, I
have chosen the following, which gives 0 only for disjoint sets and 1 only for equal sets:

γ(C,D) =
2|C ∩D|
|C|+ |D|

.

The definition of breakdown bases on the similarity of a cluster from En(xn) to its most similar
cluster in E∗

n(xn+g). For C ∈ En(xn) and an arbitrary GCM Ên:

γ∗(C, Ên(xn)) = min
D∈Ên(xn)

γ(C,D).

How small should γ∗ be to say that breakdown of C has occurred? The proposed answer is
“≤ 2

3”. The reason is as follows: Suppose that a dataset of (even) n points is partitioned into 2
clusters C1, C2 of n

2 points. Suppose further, that by addition of g points, all n original points
fall into the same cluster D. This means, for j = 1, 2,

γ∗(Cj , E
∗
n(xn+g)) =

n

n/2 + n
=

2
3
.
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Further, as long as En is a partitioning method, observe

∃C ∈ En(xn) : γ∗(Cj , E
∗
n(xn+g)) ≤

2
3

whenever |En(xn)| = s and |E∗
n(xn+g)| = s − 1, because in this case there must be D ∈

E∗
n(xn+g) such that there are at least two members of En(xn), C1 and C2, say, for which D

minimizes γ(Cj , D) over E∗
n(xn+g). W.l.o.g., |C1 ∩ D| ≤ |C2 ∩ D|. Because of C1 ∩ C2 = ∅,

get γ(C1, D) ≤ |D|
|D|/2+|D| . This means that at least one of the original clusters is said to break

down if a cluster is lost in the induced partition, and 2
3 is the smallest cutoff value for this to

hold. Note further that at least r > 1 clusters must break down if |E∗
n(xn+g)| = s− r, because

the same arguments show that γ(Cj , D) ≤ 2
3 for at least q − 1 clusters Cj , if D ∈ E∗

n(xn+g) is
the most similar cluster for q clusters Cj ∈ En(xn).

Definition 3.3 Let (En)n∈IN be a sequence of GCMs. The classification breakdown point
of a cluster C ∈ En(xn) is defined as

Bc
n(En,xn, C) = min

g

{
g

n + g
: ∃xn+g = (x1, . . . , xn+g) : γ∗(C,E∗

n(xn+g)) ≤
2
3

}
.

Because the cutoff value 2
3 has been justified only for partitioning methods, it may be doubted

that this definition should also be used for other GCMs.

Note that neither does parameter breakdown imply classification breakdown, nor the other way
round, see the Remarks 4.12 and 4.20. Note further that the classification breakdown point
differs from the classical definitions of breakdown points, because 2

3 is not the worst possible
value for γ∗(C,E∗

n(xn+g)). However, the worst possible value depends on the clustering of the
original data and is therefore not suitable for a breakdown definition.

The classification breakdown point is more difficult to handle mathematically than the param-
eter breakdown point, but it is shown in Section 4 that it can be worked out sometimes.

4 Breakdown results

4.1 Breakdown points for fixed s

The section starts with three lemmas, which characterize the behavior of the estimators under
addition of some points xn+1, . . . , xn+g in large enough distance to data xn = (x1, . . . , xn). In
this case, the s > 1 mixture components estimated by ML can be separated into components
corresponding to xn and components corresponding to (xn+1, . . . , xn+g). There exists at least
one component corresponding to each of these two classes, and the maximum of the log-
likelihood can be obtained from the maxima considering xn and the outliers alone. This means
in particular, that at least one of the s components of the original dataset xn must break
down under addition of a large enough gross outlier, and this does not depend on the basic
distribution f used for the definition of the ML estimator. Further, if the (xn+1, . . . , xn+g)
can be divided into groups, the distances between which converge to ∞ as well, a mixture
component can eventually be assigned to each of the groups as long as enough components
exist (note that n + g corresponds to n in the notation of the lemmas, and n corresponds to
n1). This is different from the case s = 1, where the parameters break down because of a single
gross error under ML estimation for the Normal, but not for tν-distributions (Tyler 1994).
A similar phenomenon occurs for k-medoids clustering, which is based on the robust median
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for one-dimensional data, but breaks down for k > 1 clusters (Garcia-Escudero and Gordaliza
1999). The lemmas are shown for h ≥ 2 groups of points between which the distance converges
to infinity. This means that at last all groups have to be fitted separately.

Lemma 4.1 Let xnm = (x1m, . . . , xnm) ∈ IRn, m ∈ IN, where 0 = n0 < n1 < . . . < nh =
n, h ≥ 1, be a sequence of datasets. Let D1 = {1, . . . , n1}, D2 = {n1 + 1, . . . , n2}, . . . , Dh =
{nh−1 + 1, . . . , nh}. Assume further that

∃ b < ∞ : max
k

max
i,j∈Dk

|xim − xjm| ≤ b ∀m,

lim
m→∞

min
k 6=l,i∈Dk,j∈Dl

|xim − xjm| = ∞.

Let s ≥ h be fixed, ηm = arg max
η

Ln,s(η,xnm) (parameters called π1m, . . . , πsm, a1m and so on;

all results hold for ζm from maximization of (2.10) as well). W.l.o.g., x1m ≤ x2m ≤ . . . ≤ xnm.
Then, for large enough m0 ∈ IN ,

∃0 ≤ d < ∞ : ∀m > m0, k = 1, . . . , h ∃jk ∈ {1, . . . , s}, πmin > 0, σ0 ≤ σmax < ∞ :
ajkm ∈ [x(nk−1+1)m − d, xnkm + d], πjkm ≥ πmin, σjkm ∈ [σ0, σmax]. (4.1)

Lemma 4.2 In the situation of Lemma 4.1, assume further

∃πmin > 0 : ∀j = 1, . . . , s, m ∈ IN : πjm ≥ πmin. (4.2)

Then,

∀m > m0, j = 1, . . . , s ∃k ∈ {1, . . . , h} : ajm ∈ [x(nk−1+1)m − d, xnkm + d]. (4.3)
∃0 ≤ σmax < ∞ : ∀m > m0, j = 1, . . . , s : σjm ∈ [σ0, σmax]. (4.4)

Lemma 4.3 Under the assumptions of Lemma 4.1,

∀k ∈ {1, . . . , h} : lim
m→∞

∑
ajm∈[x(nk−1+1)m−d,xnkm+d]

πjm =
|Dk|
n

, (4.5)

lim
m→∞

∣∣∣∣∣∣Ln,s(ηm,xnm)− max∑h

k=1
qk=s

(
h∑

k=1

[
max

η
L|Dk|,qk

(η,ykm) + |Dk| log
|Dk|
n

])∣∣∣∣∣∣ = 0, (4.6)

where ykm = (x(nk−1+1)m, . . . , xnkm), k = 1, . . . , h.

This means in particular, that r < s added outliers, the difference between which goes to ∞,
let r mixture components break down.

Theorem 4.4 Let xn ∈ IRn, s > 1. Let ηn,s be a global maximizer of (2.9). Assume (2.2)-
(2.5). For r = 1, . . . , s− 1,

Br,n(ηn,s,xn) ≤ r

n + r
. (4.7)

“=” in (4.7) could be proven for datasets where πj → 0 can be prevented for j = 1, . . . , s and
any sequence of sets of r added points, but conditions for this are hard to derive.

Under the restriction (2.12), convergence of σj-parameters to 0 means breakdown according
to Definition 3.1. Thus, to prevent breakdown, an effective lower bound for the σj of the
non-breaking components must exist, and this means that all σj must be bounded from be-
low, independently of xn+1, . . . , xn+r, because (2.12) forces all σj to 0, if only one implodes.
Therefore the result carries over:
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Corollary 4.5 Theorem 4.4 holds as well under the restriction (2.12) instead of (2.11).

From now on, only (2.11) will be used.

The situation for r = s is a bit more complicated. The choice of the basic distribution f does
not matter until here. s − 1 outliers can break down s − 1 mixture components, but the sth
mixture component must be a compromise between the original dataset xn and the sth outlier.
If such a compromise is estimated by a non-robust ML-estimator such as the Normal one, the
sth component will break down as well.

Theorem 4.6 Let xn ∈ IRn, f = ϕ. Then,

Bs,n(ηn,s,xn) ≤ s

n + s
.

The breakdown point for the joint ML-estimator of location and scale for a single location-scale
model based on the tν-distribution was derived by Tyler (1994). Ignoring the possible case that
the scale breaks down to 0, which is treated by Tyler but which is not of interest in the setup
here because of (2.11), the breakdown point is shown to be ≥ 1

ν+1 (equality is only distorted
because of rounding to ratios of integers appearing in the definition of the breakdown point).
This carries over to the mixture ML-estimator only for the breakdown of the last mixture
component.

Theorem 4.7 Let xn ∈ IRn, f(x) = b
(
1 + x2

ν

)(−ν+1)/2
, ν ≥ 1, b > 0 being the appropriate

norming constant. Then,

Bs,n(ηn,s,xn) ≥ 1
ν + 1

.

However, the tν-approach must be judged as essentially not breakdown-robust as long as s is
fixed because of Theorem 4.4, even if it has an advantage over the Normal estimator.

Unfortunately, the approach via adding a noise component does not lead to better breakdown
results, because a single outlier can make the density value of the noise component arbitrarily
small, so that again solutions with one-point mixture components for the outliers are better in
terms of the log-likelihood than it would be to classify them as noise.

Theorem 4.8 Theorem 4.4 and Theorem 4.6 hold as well for global maximizers of (2.10).

Example 4.9 While the breakdown point for all treated approaches is the same for r < s,
it may be of interest, how large an outlier must be to cause breakdown of the methods. The
following definition is used to generate reproducible example datasets:

Definition 4.10 Φ−1
a,σ2( 1

n+1), . . . ,Φ−1
a,σ2( n

n+1) is called a (a, σ2)-Normal standard dataset
(NSD) with n points, where Φa,σ2 denotes the cdf of the Normal distribution with parameters
a, σ2.

Consider a dataset of 50 points, namely a (0,1)-NSD with 25 points combined with a (5,1)-
NSD with 25 points, see Figure 1, and s = 2. For Normal mixtures, tµ-mixtures with µ > 1
and Normal mixtures with noise component, always components corresponding almost exactly
to the two NSDs are optimal under σ0 = 0.025 (see Example 4.14 for the rationale behind
this choice). How large must an additional outlier be chosen so that the 50 original points
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−2 0 2 4 6

Figure 1: “Standard” example dataset: 25 points (0,1)-NSD combined with 25 points (5,1)-
NSD.

fall into only one cluster and the second mixture component fits only the outlier? This makes
a strong distinction between the estimators. For Normal mixtures, breakdown begins with an
additional point at about 15.2. For a mixture of t3-distributions, the outlier must lie at about
800, t1-mixtures need the outlier at about 3.8∗107, and a Normal mixture with additional noise
component breaks down with an additional point at 3.5 ∗ 107. These values, however, depend
strongly upon σ0.

An initial classification of some points as noise is needed to fit NMML with noise component in
MCLUST. This can be done for example by use of the nearest neighbor clutter removal of Byers
and Raftery (1998). Theorem 4.8 holds for the global optimum of (2.10) and one may wonder
whether the MCLUST-fit might be more robust when extreme outliers are initially classified as
noise (which happens under nearest neighbor clutter removal). But this allows at most one
point more before breakdown occurs.

Lemma 4.11 Let xn be a fixed dataset. Let ηEM be defined as an arbitrary limit point of
the EM algorithm locally optimizing (2.10) in the case f = ϕ such that the initial values for
datasets consisting of xn and some further points xn+1, . . . , xn+g satisfy

i > n ⇒ pi0 = 1, ∀j ∈ {1, . . . , s} ∃i ∈ {1, . . . , n} : pij > 0. (4.8)

Assume that for all steps of the EM-algorithm the scale parameters of the maximizers of (2.17)
are ≥ σ0 for unrestricted σ. Then

B1,n(ηEM ,xn) ≤ 2
n + 2

. (4.9)

Assume further that some πmin > 0 exists such that πj ≥ πmin for fixed j and all steps of the
EM-algorithm. If g = 1 and |xn+1| large enough, ε > 0 arbitrary,

(aEM,j , σEM,j) ∈ Cε, j = 1, . . . , s, (4.10)

where Cε = [xmin,n − ε, xmax,n + ε]× [σ0,
√

(xmax,n − xmin,n)2 + ε].

This means that breakdown with only one additional point is only possible because of some πj

converging to 0, which can only happen under very unstable data constellations xn.

Note further that xn+2 must be extremely huge to cause a moderately large xn+1 to be merged
with one of the Normal mixture components. The exponentially decreasing density value
of xn+1 under one of the Normal components arising from x1, . . . , xn must get larger than

1
xn+2−xmin,n

. For example, xn+2 must be chosen between 10110 and 10120 to merge xn+1 = 20
with an (0,1)-NSD of size 20 when s = 1 component plus noise is to be fitted (σ0 chosen large
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enough that the non-noise component corresponds to the whole NSD). This behavior does
not change when the number of outliers is enlarged. Only the most extreme point matters.
Therefore MCLUST together with a good initial noise detector can be expected to be relatively
stable in practice as long as disastrous outliers are removed beforehand.

Remark 4.12 Theorems 4.4 and 4.8 carry over to the classification breakdown point in the
sense that under the given circumstances at least r of the original clusters must break down.
This follows because if r outliers are added, converging to ∞ and with the distance between them
converging to ∞ as well, Lemma 4.2 yields that pij → 0 for the original points i = 1, . . . , n and
j fulfilling ajm ∈ [xn+g − d, xn+g + d] for some g ∈ {1, . . . , r}. That is, at most s− r clusters
remain for the classification of the original points. On the other hand, the arguments leading
to Theorem 4.6 do not carry over, because the addition of r = s outliers as above certainly
explodes all mean parameters, but one cluster usually remains that contains all the original
points. Therefore, an original cluster containing more than half of the points does not break
down in the sense of classification.

4.2 Alternatives for fixed s

The results given previously indicate that the treated mixture methods are generally not ro-
bust against breakdown for fixed s. There are two principles which may lead to a better
breakdown behavior. The first principle is to optimize a target function for only a part of the
data, say, optimally selected 50% or 80% of the points. The methods of trimmed k-means
(Garcia-Escudero and Gordaliza 1999) and clustering based on minimum covariance determi-
nant estimators (Rocke and Woodruff 2000, Gallegos 2001) use this principle. Both methods,
however, rest on a partition model as opposed to the mixture model. This may be useful for
clustering, but leads to biased parameter estimators (Bryant and Williamson 1986).

Another alternative can be constructed as a modification of the uniform noise approach. The
problem of this approach is that the noise component could be affected by outliers as well, as
was shown in the previous section. This can be prevented when the density constant for the
noise component is chosen as fixed beforehand, which leads to ML estimation for a mixture
where some improper distribution component is added to catch the noise. That is, an estimator
ξn,s is defined as the maximizer of

Ln,s(ξ,xn) =
n∑

i=1

log

 s∑
j=1

πjfaj ,σj (xi) + π0b

 , (4.11)

where b > 0. This requires the choice of b. If the objective is cluster analysis and there is
a maximum scale σmax, above which a mixture component is no longer accepted as a cluster
(compare Appendix 6.1), b could be chosen as the density value at the 0.025-quantile of f0,σmax ,
so that 95% of the points generated from such a distribution have a larger density value for
it than for the noise component. For this estimator the breakdown point depends on the
stability of the dataset xn. Breakdown can only occur if additional observations allow that the
non-outliers can be fitted with advantage by fewer than s components, and this means that a
relatively good solution for r < s components must exist already for xn. This is formalized in
(4.12). Let Ln,s = Ln,s(ξn,s,xn). I consider only the breakdown of a single mixture component
B1,n(ξn,s,xn). Breakdown points for more than one component must be larger.
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Theorem 4.13 Let xn ∈ IRn. Let ξ = ξn,s and fmax = f(0)/σ0 > b. If

max
r<s

Ln,r <
n∑

i=1

log

 s∑
j=1

πjfθj
(xi) + (π0 +

g

n
)b


+g log(π0 +

g

n
)b + (n + g) log

n

n + g
− g log fmax, (4.12)

then
B1,n(ξn,s,xn) ≥ g

n + g
. (4.13)

Example 4.14 Here are three examples to illustrate the meaning of (4.12) in case of f = ϕ.

Consider first the dataset of 50 points which is shown in Figure 1. I have chosen σmax = 5
which leads to b = 0.0117 and σ0 = 0.025, compare Appendix 6.1. This leads to Ln,1 = −119.7.
Neither the optimal solution for s = 1 nor the one for s = 2 classifies any point as noise. The
right hand side of (4.12) equals −111.7 for q = 1 and −122.4 for g = 2. Thus, the breakdown
point is ≥ 2

52 . Note that the proof of Theorem 4.13 assumes for a possible breakdown of one of
the component proportions to 0, that the additional points can be optimally fitted (namely with
density value fmax, therefore the term g log fmax in (4.12)) by all components of the optimal
solution with r < s, which is extremely unlikely. Therefore, the values from (4.13) are rather
conservative. Better bounds would involve the parameters not only of the optimal solutions for
r ≤ s, but also of suboptimal solutions which may fit the additional points better. This may
lead to rather complex expressions.

In this concrete example, the addition of 11 extreme outliers at value 50, say, leads to a break-
down, namely to the classification of one of the two original components as noise, and to
the interpretation of the outliers as the second normal component. 10 outliers do not suffice.
It is not able to cause a breakdown of one of the normal proportions to 0 by addition of 11
points between the two original components. While important for the proof, the breakdown of a
proportion to 0 does not seem to play an important role in practice.

The constellation with a (0,1)-NSD of 45 points combined with a (5,1)-NSD of 5 points leads
to the same lower breakdown bound of 2

52 , but in this case the bound is sharper: 3 outliers at
50 lead to a breakdown of the smaller of the original components; 2 outliers do not suffice.
Proportion breakdown again is impossible by addition of so few points, perhaps not even by the
addition of arbitrarily many points.

A more stable data constellation with two clusters is obtained, when a (50,1)-NSD of size 25
is added to the (0,1)-NSD of the same size. In this case (4.12) leads to a minimal breakdown
point of 8

58 . 11 outliers at 500 are needed for “empirical” breakdown. The optimal solution for
one cluster classifies one of the two NSDs as noise and the other one as the only cluster, while
the optimal solution for two cluster again does not classify any point as noise. The same will
happen for a larger difference of means, and both sides of (4.12) will stay approximately the
same, so that the lower bound for the breakdown point does not increase further. The empirical
breakdown behavior does not deviate from the first example.

4.3 Unknown s

The treatment of s as unknown is favorable for robustness against outliers, because outliers can
be fitted by additional mixture components. Generally, for large enough outliers the addition
of a new mixture component for each outlier yields a better log-likelihood than any essential
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change of the original mixture components. That is, gross outliers are almost harmless from
the theoretical point of view, except that they let the estimated number of components grow.

Breakdown can occur, however, because added points, usually not outlying, but inside the
range of the original data, may lead to a preference of a solution with r < s clusters. (4.14)
of Theorem 4.15 gives a necessary condition for the impossibility of breakdown and may serve
as a formalization of the “stability” of an s-components solution for a data set in terms of the
differences between the optimal log-likelihoods for s and fewer components. However, as in
Theorem 4.13, this leads usually to a highly conservative lower bound on the breakdown point.

Breakdown can happen as well because of gross outliers alone, simply because the number of
outliers gets so large that the BIC penalty, which depends on n, is increased so much that the
whole original data set implodes into fewer than s clusters. The conditions for this are given
in (4.16). This cannot happen for the AIC because its penalty does not depend on n.

Again it would be too complex to derive the conditions for the exact breakdown point. An
upper and a lower bound for the breakdown point are given here, but they are not very precise.

Theorem 4.15 Let the assumptions and notations of Theorem 4.13 hold. Let τn = (s, ηn,s) be
a maximizer of the BIC. If

min
r<s

[
Ln,s − Ln,r −

1
2
(5g + 3s− 3r + 2n) log(n + g) + n log n

]
> 0, (4.14)

then
Bn(τn,xn) ≥ g

n + g
. (4.15)

If

min
r<s

[
Ln,s − Ln,r −

3
2
(s− r) log(n + g)

]
< 0, (4.16)

then
Bn(τn,xn) ≤ g

n + g
. (4.17)

Note that Ln,s−Ln,r > 3
2(s−r) log n always holds by definition of the BIC. Sufficient conditions

for breakdown because of “inliers” depend again on the parameters of certain suboptimal
solutions for r ≤ s mixture components for xn and are presumably too complicated to be of
practical use.

Example 4.16 Consider again the combination of a (0,1)-NSD with 25 points and a (5,1)-
NSD with 25 points, f = ϕ and σ0 chosen as in Example 4.14. The difference in (4.14) is
3.37 for g = 1 and −7.56 for g = 2, i.e., the lower breakdown bound is again 2

52 . Again,
many more points are needed empirically. 13 additional points, equally spaced between 1.8 and
3.2, lead to a final estimation of only one mixture component. It may be possible to find a
constellation with fewer points where one component fits better than 2 or more components, but
I did not find any. Note that if a breakdown is to be achieved, the additional points between the
original clusters are neither allowed to be too widespread, because in this case two components
remain optimal, nor too concentrated, because in this case they would generate a third mixture
component. Breakdown because of gross outliers according to (4.16) needs more than 650000
additional points!

The combination of a (0,1)-NSD of 45 points and a (5,1)-NSD of 5 points again leads to the
same lower breakdown bound of 2

52 , and even the empirical robustness of this constellation is
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almost equal to the first: 12 equally spaced points between 1.55 and 3.55 are needed to break
down the solution to only one component.

A mixture of the (0,1)-NSD with 25 points with an (50,1)-NSD of size 25 leads to a lower
breakdown bound of 12

62 . For estimated s, even a breakdown point larger than 1
2 is possible,

because new mixture components can be opened for additional points. This may happen empir-
ically already for a mixture of (0,1)-NSD and (50,1)-NSD, because breakdown by addition of
gross outliers is impossible unless their number is huge, and breakdown by addition of “inliers”
is difficult. For a (0,0.001)-NSD of 25 points and a (100000,0.001)-NSD of 25 points, even the
conservative lower breakdown bound is 58

108 > 1
2 .

The choice of the t1-distribution instead of the Normal leads to a somewhat better breakdown
behavior, but the difference is not large: The mixture of a 25 points-(0,1)-NSD and a 25 points-
(5,1)-NSD yields a lower breakdown bound of 3

53 , and empirically the addition of the 13 inliers
mentioned above does not lead to breakdown of one of the two components, but surprisingly
to the choice of three mixture components by the BIC. Replacement of the (5,1)-NSD by a
(50,1)-NSD again gives a small improvement of the lower bound to 13

63 .

Remark 4.17 The possible breakdown point larger than 1
2 here is a consequence of using the

addition breakdown definition. A properly defined replacement breakdown point can never be
larger than the portion of points in the smallest cluster, because this cluster must be driven to
break down if all of its points are suitably replaced. This illustrates that the correspondence
between addition and replacement breakdown as established by Zuo (2001) may fail in more
complicated setups.

The addition of a noise component again does not change the breakdown behavior:

Theorem 4.18 Under fmax ≥ 1
xmax,n−xmin,n

, Theorem 4.15 holds as well for global maximizers
of the BIC, defined so that (2.10) is maximized for every fixed s.

Example 4.19 The discussed data examples of two components with 25 points each do not
lead to different empirical breakdown behavior with and without estimated noise component,
because no point of the original mixture components is classified as noise by the solutions for
two Normal components. In the case of the (0,1)-NSD of 45 points and the (5,1)-NSD of 5
points, the solution with one Normal component, classifying the points from the smaller NSD as
noise, is better than any solution with two components. That is, no second mixture component
exists which could break down.

Remark 4.20 While parameter breakdown because of the loss of a mixture component implies
classification breakdown of at least one cluster, classification breakdown may occur somewhat
earlier than parameter breakdown. Consider again the (0,1)-NSD of 45 points plus the (5,1)-
NSD of 5 points. Originally, using simple Normal mixtures, there are two estimated clusters
with 45 and 5 points, as expected. The smaller cluster can be broken down by the addition of
6 points, namely 2 points each exactly at the smallest and the two largest points of the (5,1)-
NSD. This leads to the estimation of 5 clusters, namely the original (0,1)-NSD, 3 clusters of
3 identical points each, and the remaining 2 points of the (5,1)-NSD. The fifth cluster is most
similar to the original one with γ = 2∗2

2+5 < 2
3 , while no parameter breakdown occurs. For such

reasons, an arbitrarily large classification breakdown point is not possible even for very well
separated clusters, because not only their separation, but also their size matters. As in Section
4.2, it depends on σ0 how many additional points are needed.
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5 Discussion

It has been shown that none of the discussed mixture model estimators is breakdown robust
when the number of components s is assumed as known and fixed. In practice, estimation
based on the t-distribution and the addition of a noise component have advantages over the
estimation of a simple Normal mixture, because the outliers have to be much larger to break
down the estimation. But the number of outliers needed for breakdown stays almost always
the same. An alternative is to add an improper uniform distribution with data-independent
density as an additional mixture component accounting for noise. Its empirical breakdown
characteristics is that the smallest mixture component can be broken down by the addition
of outliers of about half of its size. This may be somewhat weaker than trimmed k-means
(Garcia-Escudero and Gordaliza 1999), where the breakdown point is related to the size of the
smallest component as well, but not worked out exactly up to now.

The more robust way to estimate mixture parameters is the simultaneous estimation of the num-
ber of mixture components s by, e.g., the BIC or the AIC. This is almost perfectly breakdown
robust against the addition of gross outliers, no matter if mixtures of Normals, t-distributions
or Normals with additional noise component are fitted. The only robustness problems arise
from the addition of points between the originally estimated mixture components, which may
lead to breakdown by estimating a lower number of mixture components. This possibility is
extremely data dependent. This kind of breakdown should not be treated as a problem of
the methods, but as an internal instability of the dataset with respect to mixture modeling,
clustering, respectively. The number of points needed for breakdown according to Theorem
4.15 can be interpreted as a stability characteristics of the dataset. While their precise number
is difficult to find, the lower bound (4.15) can be evaluated easily and may serve to compare
datasets. However, this has to be interpreted with care because of the conservativeness of the
bound.

While including the estimation of s leads to a theoretically satisfactory breakdown behaviour,
robustness problems remain in practice, because the global optimum of the loglikelihood must
be found. Consider for example a dataset of 1000 points, consisting of 3 well separated clusters
of 300 points each, and 100 extremely scattered outliers. The best solution needs 103 clusters.
But even for one-dimensional data, the EM-algorithm is very slow for a large number of clusters,
and there will be lots of local optima. Therefore, the maximum number of fitted components
will often be much smaller than the maximum possible number of outliers, and the use of a
proper or improper noise component or t1-mixtures will be clearly superior to simple Normal
mixtures even with estimated s.

I think that it would be a promising area of research to work out classification breakdown
points for more general methods of cluster analysis, because such a classification breakdown
could provide detailed information about the stability of the clusters, and it would be useful
to compare clustering by mixtures with hierarchical methods, say, because they are often used
for similar tasks in practice.

I conclude with some comments on the discussed software. Neither MCLUST nor EMMIX are able
to reproduce exactly the results given here. The recent version of MCLUST is not able to fit
one-dimensional data. Neither MCLUST nor EMMIX allow the specification of one of a lower scale
bound. MCLUST produces an error if the EM-iteration leads to a sequence of scale parameters
(eigenvalues of the covariance matrix, respectively, in the more than one-dimensional case)
converging to 0. This means in particular that no single point can be isolated as its own mixture
component, which is crucial for the good breakdown behavior of the methods with estimated
s. EMMIX terminates the iteration when the loglikelihood seems to converge to infinity. The
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preliminary iteration results, including one-point-components, are reported, but solutions with
variances properly away from 0 are favored. Thus, the current implementations of the Normal
mixture estimation with estimated s are essentially non-robust. Addition of a noise component
and t-mixtures do better under outliers of moderate size, but they are also not robust against
very extreme outliers. The results given here do not favor one of these two approaches over
the other, and I think that the implementation of a lower bound for the smallest covariance
eigenvalue is the more important issue than the decision between the present implementations.

Note that both packages enable the use of stronger scale restrictions (equivalent to equal
variances for all mixture components in the one-dimensional case), which should have roughly
the same robustness characteristics for estimated s as the methods treated here. However, such
restrictions are often not justified in practice.

6 Appendix

6.1 Choice of the scale restrictions

In most applications, sufficient prior information to specify the scale restriction constants σ0

of (2.11) and c of (2.12) is not available. A common strategy to avoid a sensible specification
of these constants in practice is to compute local maximizers of the log-likelihood from initial
values which avoid very small values for the sigmas. This, however, avoids the isolation of
single points as clusters, which is crucial for good breakdown behavior for estimated s. The
strategy suggested here avoids the necessity of prior information for the specification of c. For
the case of σ0 it will lead to a specification which is clearly interpretable in terms of the subject
matter.

Consider s as unknown. A sensible choice of the restriction constants should fulfill two objec-
tives:

1. The constant should be so large that a data subset that looks like a homogeneous cluster
is estimated as one component and no single point of it forms a “one-point-component”
with a very small scale.

2. The constant should be so small that a gross outlier generates a new component instead
of being merged with an otherwise homogeneous data subset.

α-outliers (with α > 0 but very small) are defined by Davies and Gather (1993) with respect
to an underlying model as points from a region of low density, chosen so that the probability
of the occurrence of an outlier is ≤ α. For a standard Normal distribution, for example the
points outside [Φ−1(α

2 ),Φ−1(1− α
2 )] are the α-outliers. For αn = 1− (1− p)1/n, the probability

of the occurrence of at least one αn-outlier among n i.i.d. points from N (0, 1) is equal to p.

The strategy is as follows: Choose p = 0.05, say, and consider the choice of σ0 for NMML
with (2.11) and unknown s. Assume for the moment that at least n − 1 points come from a
N (0, 1) distribution. (Denote c0 = σ0 in this particular setup.) c0 should be chosen so that
it is advantageous to isolate an αn-outlier as its own cluster, but not a non-outlier. This, of
course, depends on the non-outlying data. As “calibration benchmark”, form a dataset with n
points by adding an αn-outlier to a (0,1)-NSD (recall Definition 4.10) with n−1 points. Choose
c0 so that C(1) = C(2) according to (2.21). This is uniquely possible because Ln,1(ηn,1) does
not depend on c0 (as long as c0 is smaller than the sample variance) and Ln,2(ηn,2) increases
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n 20 50 100 200 1000
c0 2.10e-2 4.99e-3 1.66e-3 5.51e-4 4.34e-5

n1 = n/2− 1 9 24 49 99 499
c0 2.15e-2 5.25e-3 1.76e-3 5.87e-4 4.57e-5

n1 = n/5− 1 3 9 19 39 199
c0 2.25e-2 5.44e-3 1.88e-3 6.35e-4 4.93e-5

Table 1: Minimum scale restriction factor c0 for NMML with (2.11) and BIC

with decreasing c0 (because this enlarges the parameter space). For c0 small enough, the 2-
components solution will consist of one component matching approximately the ML-estimator
for the NSD, a2 will approximately equal the outlier and σ2 = c0, so that the decrease of
Ln,2(ηn,2) gets strict. Resulting values are given in Table 6.1.

The interpretation is as follows: Based on σ0 = c0, a dataset consisting of an n− 1 point NSD
and an αn-non-outlier will be estimated as homogeneous, while there will be more then one
cluster if the nth point is an outlier. It is easily seen that the same will hold for an n − 1-
point (α, σ2)-NSD and σ0 = c0σ. I suggest the use of σ0 = c0σmax, where σ2

max is the largest
variance such that a data subset with this variance can be considered as “cluster” with respect
to the given application. This may not look like an advantage, because the need to specify a
lower bound σ0 is only replaced by the need to specify an upper bound σmax. But the upper
bound has a clear interpretation which does not refer to an unknown underlying truth. At least
if the mixture model is used as a tool for cluster analysis, points of a cluster should belong
together in some sense, and with respect to a particular application, it can usually be said
that points above a certain variation can no longer be considered as “belonging together”. The
estimation of mixture components with larger variance could not be interpreted in this case,
even if justified from a purely theoretical point of view.

If c = c0 is chosen with the same strategy applied to NMML with restriction (2.12), c leads
to the same behavior for arbitrary (α, σ2) because of scale equivariance. The resulting values
approximately equal the ones given in Table 6.1. (As shown in Lemma 6.1, in this case AIC
and BIC will be unbounded for unknown s ∈ IN , but this problem can be avoided by specifying
an upper bound for s which is smaller than the number of distinct data points.)

A dataset to analyze will usually not have the form “NSD plus outlier”, of course. The clusters
in the data will usually be smaller than n−1 points, and they will have a variance smaller than
σ2

max. Assume now that there is a homogeneous data subset of n1 < n points with variance
σ2 ≤ σ2

max. The question arises if an αn1-outlier, non-outlier, respectively, will be isolated from
the cluster in the presence of other clusters elsewhere. c0 is calculated on the base of the BIC
penalty for 1 vs. 2 clusters with n points. That is, the difference in penalty is 3 log n. Table
6.1 also gives the c0-values computed with an NSD of size n1 = n/2− 1 plus αn/2-outlier and
of size n1 = n/5− 1 plus αn/5-outlier, but again with penalty difference 3 log n to show which
restriction constant would be needed to isolate at least αn/2-outliers, αn/5-outliers, respectively,
from the homogeneous subset of size n1 under the assumption that the parameters for the rest
of the data remain unaffected. The values coincide satisfactorily with the values computed for
n, so that these values look reasonable as well for small homogeneous subsets.

With a variance smaller than σmax, an α-outlier with α > αn is needed to be isolated from a
cluster with a variance smaller than σmax, i.e., the broad tendency is that larger components
with larger variances are preferred over σ2

0.

The situation is more complicated for fixed number of components s, because a component can
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only be added at a particular area of the data if another component vanishes elsewhere. This
depends strongly on the constellation of the data. However, the suggestion given here worked
reasonable for fixed s as well in some examples.

Note that the theory in Section 4 assumes σ0, c, respectively, as constant over n, so that it does
not apply directly to my suggestion here. However, the differences in log-likelihood caused by
the change of σ0 from n to n+g are expected to be negligible for moderate g and the qualitative
breakdown results do not change.

The restriction (2.12) looks more favorable from the point of view of this Section, because
the specification of σmax can be avoided by scale equivariance. However, Lemma 6.1 shows
that (2.12) does not generalize properly to noise component fitting. To estimate an unknown
number of components, an upper bound for s is needed, which is smaller than the number of
distinct data points. While such an upper bound is no serious restriction in practice, I expect
that (2.12) with unknown s often will prefer badly interpretable solutions with large s and
small minimal σ so that s has to be bounded more rigidly.

Lemma 6.1 The following objective functions are unbounded from above under the restriction
(2.12):

1. The log-likelihood function (2.10) with fixed s,

2. the AIC and BIC of model (2.1) with unknown s ∈ IN .

Proof: Given an arbitrary dataset x1, . . . , xn. For (2.10) choose a1 = x1, π1 > 0, σ1 → 0, π0 >
0. This means that the summand for x1 converges to ∞ while all others are bounded from
below by log π0

xmax,n−xmin,n
. This proves part 1. For part 2 choose s = n, a1 = x1, . . . , as =

xn, σ1 = . . . = σs → 0. Thus, Ln,s →∞, and the same holds for AIC and BIC.

6.2 Proofs

Proof of Lemma 2.2:
(2.16) holds because the first sum of (2.14) leads to

π̂j =
1
n

n∑
i=1

pij , j = 1, . . . , s

(Redner and Walker 1984). (2.17) is simply the separate maximization of the terms of the
second sum of (2.14).

For any fixed σ∗j , the maximizer aj of (2.17) lies between xmax,n and xmin,n because of (2.2)

and (2.3). Now show that σj ≤ σ0f(0)

f

(
xmax,n−xmin,n

σ0

) . By σ∗j = σ0,

Sj(aj , σj) ≥
n∑

i=1

pij log
1
σ0

f

(
xi − aj

σ0

)
≥ nπj log

1
σ0

f

(
xmax,n − xmin,n

σ0

)
.

For arbitrary σ∗j ,
Sj(aj , σ

∗
j ) ≤ nπj(log f(0)− log σ∗j ).

Therefore,

log f(0)− log σj ≥ log
1
σ0

f

(
xmax,n − xmin,n

σ0

)
⇒ σj ≤

σ0f(0)

f
(

xmax,n−xmin,n

σ0

)
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as long as nπj > 0, proving (2.18).

Proof of Lemma 4.1:
Note first that in case of maximization of (2.10) the density of the noise component 1

xmax,n+g−xmin,n+g

converges to 0, so that all arguments, including those used in the proofs of Lemmas 4.2 and
4.3, hold for this case as well.

Assume w.l.o.g. that all ajm, j = 1, . . . , s, lie outside [x1− d, xn1 + d] for arbitrary d < ∞ and
large enough m unless πjm ↘ 0 or σjm ↗∞ at least for a subsequence. Consider

Ln,s(ηm,xnm) =
n1∑
i=1

log

 s∑
j=1

πjmfajm,σjm(xi)

+
n∑

i=n1+1

log

 s∑
j=1

πjmfajm,σjm(xi)

 .

The first sum converges to −∞ for m → ∞ because of (2.7), and the second sum is bounded
from above by (n − n1) log f(0)

σ0
, i.e., Ln,s(ηµ,xnm) → −∞. On the other hand, for η̂m with

âkm = xnk
, σ̂km = σ0, π̂km = 1

h , k = 1, . . . , h,,

Ln,s(η̂m,xnm) ≥
h∑

k=1

nk log
f

(
xnkm−x(nk−1+1)m

σ0

)
hσ0

≥ n log
f
(

b
σ0

)
hσ0

> −∞.

Hence, for large enough m, ηm cannot be ML. Because it should be ML, d must exist so that
(4.1) holds for m above some m0.

Proof of Lemma 4.2:
Proof of (4.3): Suppose that (4.3) does not hold. W.l.o.g. (the order of the aj does not matter
and a suitable subsequence of (ηm)m∈IN can be chosen) assume

lim
m→∞

min{|x− a1m| : x ∈ {x1m, . . . , xnm}} = ∞.

Because of (2.7), 1
σ1m

f
(

xim−a1m
σ1m

)
→ 0 ∀i. Because of (2.6) and (4.1),

s∑
j=2

πjmfajm,σjm(xi) ≥ dmin = πmin
1

σmax
f

(
b + 2d

σ0

)
> 0, i = 1, . . . , n.

Thus, for arbitrary small ε > 0 and m large enough,

Ln,s(ηm,xnm) ≤
n∑

i=1

log

 s∑
j=2

πjmfajm,σjm(xi)

+ n(log(dmin + ε)− log dmin),

and log(dmin + ε)− log dmin ↘ 0 for ε ↘ 0. Thus, Ln,s can be enlarged for small enough ε by
replacement of (π1m, a1m, σ1m) by (π1m, x1, σ0) in contradiction to ηm being ML.
Proof of (4.4) by analogy to (4.3): Suppose that w.l.o.g. σ1m →∞. Then, 1

σ1m
f
(

xim−a1m
σ1m

)
→

0 ∀i, and replacement of (π1m, a1m, σ1m) by (π1m, x1, σ0) enlarges the log-likelihood.

Proof of Lemma 4.3:
Proof of (4.5): Consider k ∈ {1, . . . , h}. Let Sk = [x(nk−1+1)m−d, xnkm+d]. Because of Lemma
2.2, ∑

ajm∈Sk

πjm =
∑

ajm∈Sk

1
n

n∑
i=1

πjmfajm,σjm(xi)∑s
l=1 πlmfalm,σlm

(xi)
.
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For ajm ∈ Sk and m →∞,
πjmfajm,σjm (xi)∑s

l=1
πlmfalm,σlm

(xi)
→ 0 for i 6∈ Dk, while for i ∈ Dk:∣∣∣∣∣ πjmfajm,σjm(xi)∑s

l=1 πlmfalm,σlm
(xi)

−
πjmfajm,σjm(xi)∑

ajm∈Sk
πlmfalm,σlm

(xi)

∣∣∣∣∣→ 0.

This yields
∑

ajm∈Sk
πjm → |Dk|

n , (at least one of the πjm in this sum is bounded away from 0
by (4.1)).
Proof of (4.6): Let ηkmq = arg max

η
L|Dk|,q(η,ykm), q ∈ IN,

Lq1···qhm =
h∑

k=1

(
L|Dk|,qk

(ηkmqk
) + |Dk| log

|Dk|
n

)
.

Ln,s(ηm) ≥ max∑h

k=1
qk=s

Lq1···qhm can be proven by choice of η according to πj = |Dj |
n πjmqj , aj =

ajmqj , σj = σjmqj , j = 1, . . . , h. Further, for m large enough and arbitrarily small ε > 0,

Ln,s(ηm) ≤
h∑

k=1

∑
i∈Dk

log

 ∑
ajm∈Sk

πjmfajm,σjm(xi)

+ ε, (6.1)

because for xi, i ∈ Dk, the sum over ajm ∈ Sk is bounded away from 0 as shown in the proof
of Lemma 4.1, while the sum over ajm ∈ [x(nl−1+1)m−d, xnlm +d], l 6= k, vanishes for m →∞.
But ∑

i∈Dk

log

 ∑
ajm∈Sk

πjmfajm,σjm(xi)

− |Dk| log

 ∑
ajm∈Sk

πjm

 ≤ L|Dk|,q(ηkmq),

where q = |{ajm ∈ Sk}|. Now (4.6) follows from (4.5).

Proof of Theorem 4.4:
Let x(n+r)m = (x1, . . . , xn, x(n+1)m, . . . , x(n+r)m), m ∈ IN , w.l.o.g. x1 ≤ . . . ≤ xn, x(n+k)m =
xn + km, k = 1, . . . , r. This fulfills the assumptions of Lemma 4.1 for h = r + 1, so that the
location parameters for r components must converge to ∞ with x(n+1)m, . . . , x(n+r)m.

Proof of Theorem 4.6:
For a given compact C(xn) ⊂ IR × IR+, choose xn+1 > xmax,n such that θ̂ 6∈ C(xn) for the
ML-estimator η̂ = ηn+1,1, and that for some ε > 0 : θ ∈ C(xn) ⇒ Ln+1,1(η̂) > Ln+1,1(η) + ε.
This is possible because of the well-known non-robustness of ηn+1,1. Add further outliers
xn+1+i = xn+1 + im, i = 1, . . . , s − 1. Because of Lemma 4.1, this drives s − 1 mixture
components arbitrarily far away from xn+1, and because of the Lemmas 4.2 and 4.3, the sth
mixture component must not fit xn+1 worse by more than ε as η̂ for large enough m, which
means that (asm, σsm) 6∈ C.

Proof of Theorem 4.7: As can be seen from (2.17) and Lemma 2.1, the parameter estimators
of aj , σj , j = 1, . . . , s can be written as maximizers of a weighted log-likelihood where the
weights are given by (2.13). Suppose that there are n original data points x1, . . . , xn and r < n

ν
additional points xn+1, . . . , xn+r. Thus,

ν

ν + 1
(n + r) < n. (6.2)

Let η = ηn+r,s. Prove by contradiction that there exists d > 0, dependent on r but not on
xn+1, . . . , xn+r, such that

∃j ∈ {1, . . . , s} : πj ≥ d,

∑n+r
i=n+1 pij∑n+r
i=1 pij

<
1

ν + 1
:
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Suppose that such d does not exist. Then for all d > 0 :
∑n

i=1 pij < ν
ν+1

∑n+r
i=1 pij . Thus,

n =
s∑

i=1

n∑
i=1

pij =
∑

πj<d

n∑
i=1

pij +
∑

πj≥d

n∑
i=1

pij <

< |{j : πj < d}|nd + ν
ν+1

∑
πj≥d

n+r∑
i=1

pij = |{j : πj < d}|nd +
ν

ν + 1
(n + r)

∑
πj≥d

πj <

< snd + ν
ν+1(n + r) < n

for small enough d because of (6.2).

Therefore, there exists at least one mixture component with non-vanishing proportion πj such
that the parameters (aj , σj) are obtained by maximization of a weighted log-likelihood where
the weights of the additional points have a proportion smaller than 1

ν+1 . Get from the proof of
Theorem 4.1 of Tyler (1994) that the replacement breakdown point of the ML-estimator for the
tν-location-scale model is ≥ 1

ν+1 , apart from scale breakdown to 0. The proof holds as well for
the maximization of the weighted log-likelihood, where the ratio between the sum of weights
of new and original points replaces the ratio between their numbers. According to Zhang
and Li (1998, p. 1174), the addition breakdown point is larger or equal than the replacement
breakdown point for some suitable dataset with larger n (Zuo 2001 gives an equality result, but
the assumptions are not exactly fulfilled here). Therefore, (aj , σj) of the mixture component
introduced above must lie in a compact set depending on r and the original data, but not on
the added points.

Proof of Theorem 4.8:
The arguments given in the proofs of Theorem 4.4 and Theorem 4.6 apply again, because

π0
xmax,n+r−xmin,n+r

→ 0 so that for large enough x(n+r)m the noise component becomes negligible.

Proof of Lemma 4.11:
Proof of (4.9): Recall (2.19). For given xn+1, xn+2 can be chosen so large that p(n+1)0 gets
arbitrarily small for all possible choices of (aj , σj) ∈ C from Lemma 2.2, C determined from
xn or xn+1. Because of

∑s
j=0 p(n+1)j = 1 and p(n+1)0 < 1

2 , say, for all iteration steps apart
from the beginning, there must be a j ∈ {1, . . . , s} such that p(n+1)j > 1

2s . Because of the
non-robustness of the weighted mean, xn+1 can be chosen so large that aj leaves an arbitrary
compact set.

Proof of (4.10): Let the parameters before the kth EM-iteration be denoted by ak
j , σ

k
j , πk

j , pk
ij .

Assume that x1 ≤ . . . ≤ xn ≤ xn+1 (w.l.o.g.), pk
(n+1)0 > 1

2 and (ak
j , σ

k
j ) ∈ C for j = 1, . . . , s.

For k = 1, this holds because of p1
(n+1)j = 0. Observe πk

0 > 1
2(n+1) and, for j = 1, . . . , s,

pk+1
(n+1)j =

πk
j ϕak

j ,σk
j
(xn+1)∑s

j=1 πk
j ϕak

j ,σk
j
(xn+1) + πk

0/(xn+1 − x1)
≤ 1√

2πσk
j

e
− (xn+1−xn)2

2(σk
j
)2 2(n + 1)(xn+1 − x1).

Let
ϕmin = min

(a,σ)∈C, x=x1,...,xn

ϕa,σ(x).

Observe for j = 1, . . . , s, where πk
j ≥ πmin,

pk+1
1j =

πk
j ϕak

j ,σk
j
(x1)∑s

j=1 πk
j ϕak

j ,σk
j
(x1) + πk

0/(xn+1 − x1)
≥ πmin

ϕmin

ϕ0,σ0(0)
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Note that ak+1
j is a weighted mean of the weighted mean of x1 with weight pk+1

1j and xn+1

with weight pk+1
(n+1)j and the corresponding weighted mean of the other points. For xn+1 large

enough, the weighted mean of x1 and xn+1 is ≤ x1 + ε for arbitrarily small ε > 0 because
pk+1
(n+1)j → 0 for xn+1 → ∞. The same argument holds for the scale parameter by use of the

weighted mean of (x1 − ak+1
j )2 and (xn+1 − ak+1

j )2. Because this holds for all iteration steps,
this holds as well for every (not necessarily unique) limit point.

Proof of Theorem 4.13:
Let xn+g = (x1, . . . , xn+g). Let ξ∗ = ξn+g,s = arg max

ξ̂

Ln+g,s(ξ̂,xn+g). For r < s,

Ln+g,s ≤
n∑

i=1

log

 r∑
j=1

π∗j fθ∗j
(xi) +

s∑
j=r+1

π∗j fθ∗j
(xi) + π∗0b

+ g log fmax.

Assume that the parameter estimators of s − r (i.e., at least one) mixture components leaves
a compact set D of the form D = [πmin, 1] × C, C ⊂ IR × IR+ compact, πmin > 0. Let the
mixture components be ordered in such a way that only for j = 1, . . . , r < s : (π∗j , a

∗
j , σ

∗
j ) ∈ D.

From (2.6):
∑r

j=1 π∗j fθ∗j
(xi) ≥ rπminfmin, while

∑s
j=r+1 π∗j fθ∗j

(xi) gets arbitrarily small for
large enough D by (2.7). Thus, for arbitrary ε > 0 and large enough D:

Ln+g,s ≤
n∑

i=1

log

 r∑
j=1

π∗j fθ∗j
(xi) + π∗0b

+ g log fmax + ε (6.3)

≤ max
r<s

Ln,r + g log fmax + ε.

On the other hand, ξ̂ could be defined by π̂0 = nπ0+g
n+g , π̂j = n

n+gπj , âj = aj , σ̂j = σj , j =
1, . . . , s. Therefore,

Ln+g,s ≥
n∑

i=1

log

 s∑
j=1

πjfθj
(xi) + (π0 +

g

n
)b


+g log[(π0 +

g

n
)b] + (n + g) log

n

n + g

⇒ max
r<s

Ln,r ≥
n∑

i=1

log

 s∑
j=1

πjfθj
(xi) + (π0 +

g

n
)b


+g log[(π0 +

g

n
)b] + (n + g) log

n

n + g
− g log fmax − ε.

This contradicts (4.12) by ε → 0.

Proof of Theorem 4.15:
Add points xn+1, . . . , xn+g to xn. Let Cm(s, η̂) be the value of the BIC for s mixture components
and parameter η̂, applied to the dataset xm, m ≥ n. Let Cm(s) be its maximum. With the
same arguments as those leading to (6.3), construct for arbitrary ε > 0 a suitably large compact
C ⊂ IR × IR+, containing the location and scale parameters of all mixture components of
τ = (s, η) = (s, ηn,s), and assume that (a∗j , σ

∗
j ) ∈ C for only r < s components of τ∗ =

arg max
ŝ,η̂

Cn+g(ŝ, η̂). Get

Cn+g(s∗) ≤ 2
n∑

i=1

log

 r∑
j=1

π∗j fθ∗j
(xi)

+ 2g log fmax + ε− (3s∗ − 1) log(n + g), (6.4)
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and, by taking ŝ = s + g, π̂j = n
n+gπj , j = 1, . . . , s, π̂s+1 = . . . = π̂s+g = 1

n+g , θ̂j = θj , j =
1, . . . , s, âs+k = xn+k, σ̂s+k = σ0, k = 1, . . . , g,

Cn+g(s∗) ≥ 2
n∑

i=1

log

 s∑
j=1

n

n + g
πjfθj

(xi)

+ 2g log
fmax

n + g
− (3(s + g)− 1) log(n + g). (6.5)

By combination,

n∑
i=1

log

 s∑
j=1

πjfθj
(xi)

− n∑
i=1

log

 r∑
j=1

π∗j∑r
k=1 π∗k

fθ∗j
(xi)

− ε ≤

≤ g log(n + g)− 3
2(s∗ − (s + g)) log(n + g)− n log n

n+g + n log

(
r∑

k=1

π∗k

)
≤

≤ 1
2(5g + 3s− 3r + 2n) log(n + g)− n log n.

This cannot happen for arbitrarily small ε under (4.14).

A sufficient condition for breakdown can be derived by explicit contamination. Let y = xn+1 =
. . . = xn+g. For fixed ŝ, it follows from Lemma 4.3, that

lim
y→∞

Cn+g(ŝ) = 2
(

Ln,ŝ−1 + g log (fmax) + n log
n

n + g
+ g log

g

n + g

)
− (3ŝ− 1) log(n + g).

This cannot be maximized by s∗ = ŝ > s + 1, because the penalty on s is larger for n + g
points than for n points and s∗ − 1 with parameters maximizing Ln,s∗−1(η̂,xn) must already
be a better choice than s for n points unless s∗ ≤ s + 1. It follows that the existence of r < s
with

2Ln,s − (3(s + 1)− 1) log(n + g) < 2Ln,r − (3(r + 1)− 1) log(n + g)

suffices for breakdown of at least one component, which is equivalent to (4.16).

Proof of Theorem 4.18:
Let d = 1

xmax,n−xmin,n
, d∗ = 1

xmax,n+g−xmin,n+g
. Replace (6.4) by

Cn+g(s∗) ≤ 2
n∑

i=1

log

 r∑
j=1

π∗j fθ∗j
(xi) + π∗0d

∗

+ 2g log fmax + ε− (3s∗ − 1) log(n + g), (6.6)

and (6.5) by

Cn+g(s∗) ≥ 2
n∑

i=1

log

 s∑
j=1

n

n + g
πjfθj

(xi) +
n

n + g
π0d

+2g log
fmax

n + g
−(3(s+g)−1) log(n+g).

(4.15) follows from d ≥ d∗ in (6.6).

Lemma 4.3 holds as well for maximizers of (2.10), and therefore (4.17) carries over as well.

References

Akaike, H. (1974) A new look at the statistical identification model, IEEE Transactions on
Automatic Control 19, pp. 716-723



REFERENCES 26

Banfield, J. D. and Raftery, A. E. (1993) Model-Based Gaussian and Non-Gaussian Cluster-
ing, Biometrics 49, pp. 803-821.

Bozdogan, H. (1994) Mixture Model Cluster Analysis Using Model Selection Criteria and a
New Informational Measure of Complexity. In: Bozdogan, H. (ed.), Multivariate Statis-
tical Modeling, Vol. 2, Proceedings of the First USA/Japan Conference on the Frontiers
of Statictical Modeling. An Informational Approach, Kluwer Academic Publishers, Dor-
drecht, pp. 69-113.

Bryant, P. and Williamson, A. J. (1986) Maximum likelihood and classification : a compari-
son of three approaches. In: Gaul, W. and Schader, R. (eds.), Classification as a Tool of
Research,Elsevier Science, pp. 33-45.

Byers, S. and Raftery, A. E. (1998) Nearest Neighbor Clutter Removal for Estimating Fea-
tures in Spatial Point Processes, Journal of the American Statistical Association, 93, pp.
577-584.

Campbell, N. A. (1984) Mixture models and atypical values, Mathematical Geology, 16, pp.
465-477.

Celeux, G. and Soromenho, G. (1996) An entropy criterion for assessing the number of clusters
in a mixture, Journal of Classification, 13, pp. 195-212.

DasGupta, A. and Raftery, A. E. (1998) Detecting Features in Spatial Point Processes With
Clutter via Model-Based Clustering, Journal of the American Statistical Association, 93,
pp. 294-302.

Davies, P. L. and Gather, U. (1993) The identification of multiple outliers, Journal of the
American Statistical Association, 88, pp. 782-801.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society B, 39, pp. 1-38.

DeSarbo, W. S. and Cron, W. L. (1988) A Maximum Likelihood Methodology for Clusterwise
Linear Regression, Journal of Classification, 5, pp. 249-282.

Donoho, D. L. and Huber, P. J. (1983) The notion of Breakdown point, in Bickel, P. J., Dok-
sum, K. and Hodges jr., J. L. (Eds.): A Festschrift for Erich L. Lehmann, Wadsworth,
Belmont, CA, pp. 157-184.

Fraley, C., and Raftery, A. E. (1998) How Many Clusters? Which Clustering Method? An-
swers Via Model Based Cluster Analysis, Computer Journal, 41, pp. 578-588.

Gallegos, M. T. (2001) A Robust Method for Clustering Analysis, NEC Research Index,
http://citeseer.nj.nec.com/406099.html.

Garcia-Escudero, L. A., and Gordaliza, A. (1999) Robustness Properties of k Means and
Trimmed k Means, Journal of the American Statistical Association, 94, pp. 956-969.

Hampel, F. R. (1971) A General Qualitative Definition of Robustness, Annals of Mathematical
Statistics, 42, pp. 1887-1896.

Hampel, F. R. (1974) The Influence Function and Its Role in Robust Estimation, Journal of
the American Statistical Association, 69, pp. 383-393.



REFERENCES 27

Hastie, T. and Tibshirani, R. (1996) Discriminant analysis by Gaussian mixtures, Journal of
the Royal Statistical Society B, 58, pp. 155-176.

Hathaway, R. J. (1985) A constrained formulation of maximum-likelihood estimation for nor-
mal mixture distributions, Annals of Statistics, 13, pp. 795-800.

Hathaway, R. J. (1986) A Constrained EM Algorithm for Univariate Normal Mixtures, Journal
of Statistical Computation and Simulation, 23, pp. 211-230.

Huber, P. J. (1964) Robust estimation of a location parameter, Annals of Mathematical Statis-
tics, 35, pp. 73-101.

Huber, P. J. (1981) Robust Statistics, Wiley, New York.

Keribin, C. (2000) Consistent estimation of the order of a mixture model, Sankhya A, 62, pp.
49-66.

Kharin, Y. (1996) Robustness in Statistical Pattern Recognition, Kluwer Academic Publishers,
Dordrecht.

Lindsay, B. G. (1995) Mixture Models: Theory, Geometry and Applications, NSF-CBMS Re-
gional Conference Series in Probability and Statistics, Hayward.

McLachlan, G. J. (1987) On bootstrapping the likelihood ratio test statistic for the number of
components in a normal mixture, Applied Statistics, 36, pp. 318-324.

McLachlan, G. J. and Basford, K. E. (1988) Mixture Models: Inference and Applications to
Clustering, Marcel Dekker, New York.

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, Wiley, New York.

Peel, D. and McLachlan, G. J. (2000) Robust mixture modeling using the t distribution,
Statistics and Computing, 10, pp. 335-344.

Redner, R. A. and Walker, H. F. (1984) Mixture densities, maximum likelihood and the EM
algorithm, SIAM Review, 26, pp. 195-239.

Rocke, D. M. and Woodruff, D. L. (2000) A Synthesis of Outlier Detection and Cluster Iden-
tification. Submitted manuscript, University of California, Davis.

Roeder, K. and Wasserman, L. (1997) Practical Bayesian density estimation using mixtures of
normals, Journal of the American Statistical Association, 92, pp. 894-902.

Schwarz, G. (1978) Estimating the dimension of a model, Annals of Statistics 6, pp. 461-464.

Tyler, D. E. (1994) Finite sample breakdown points of projection based multivariate location
and scatter statistics, Annals of Statistics, 22, pp. 1024-1044.

Wang, H. H. and Zhang, H. (2002) Model-Based Clustering for Cross-Sectional Time Series
Data, Journal of Agricultural, Biological and Environmental Statistics, 7, pp. 107-127.

Zhang, J. and Li, G. (1998) Breakdown properties of location M-estimators, Annals of Statis-
tics, 26, pp. 1170-1189.

Zuo, Y. (2001) Some quantitative relationships between two types of finite sample breakdown
point, Statistics and Probability Letters 51, pp. 369-375.


