Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

Author(s):
Mergenthaler, Bianca; Richner, Thomas

Publication Date:
2002

Permanent Link:
https://doi.org/10.3929/ethz-a-004350536

Rights / License:
In Copyright - Non-Commercial Use Permitted
Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

Diplomarbeit am Institut für terrestrische Ökologie ETH Zürich, Fachbereich Bodenschutz

Bianca Mergenthaler
Thomas Richner

Diplomprofessor:
Prof. Rainer Schulin
Betreuer:
Dr. Gerhard Furrer

Zürich, Januar 2002
Verdankung

Unser Dank gilt besonders unserem Betreuer Dr. Gerhard Furrer für die wissenschaftliche Anleitung und seine wertvollen Anregungen.

Auch sollen dankend erwähnt werden: Hermann Mönch der EAWAG in Dübendorf, Dr. Michael Plötze des Tonmineralogischen Instituts der ETH Zürich, Judith Burri und Matthias Achermann des Umweltschutzamtes Luzern, Guido Schmid des Umweltschutzamtes St. Gallen und die Mitarbeiter des Instituts für terrestrische Ökologie.

Zürich, Januar 2002

Thomas Richner
Bianca Mergenthaler
Inhaltsverzeichnis

Zusammenfassung ... 5

Abbildungsverzeichnis .. 6

Tabellenverzeichnis .. 7

1 Einleitung ... 9
 1.1 Kontext ... 9
 1.2 Aufgabenstellung ... 9
 1.3 Zieldefinition .. 10

2 Antimon - Theorie und Grundlagen ... 11
 2.1 Verhalten ... 11
 2.1.1 Vorkommen und Verwendung ... 11
 2.1.2 Spezierung, Bindungsformen .. 12
 2.2 Adsorption an Festphasen .. 12
 2.3 Grenzwerte ... 13
 2.4 Toxikologie .. 14

3 Material und Methoden ... 16
 3.1 Untersuchungsflächen ... 16
 3.1.1 Schiessanlagen Zihlmatt und Stand B (Allmend, Stadt Luzern) 16
 3.1.2 Schiessanlage Mettlen, Eschenbach (Kanton St. Gallen) 17
 3.1.3 Schiessanlage Giessen, Benken (Kanton St. Gallen) ... 18
 3.2 Laboruntersuchungen ... 18
 3.2.1 Bodencharakterisierung .. 18
 3.2.2 Bestimmung der Elementkonzentrationen ... 19
 3.2.3 Röntgendiffraktometrie (X-Ray Diffraction, XRD) .. 20
 3.2.4 Kugelfangproben- und Geschosswaschung ... 20
 3.2.5 Chemische Extraktionsverfahren ... 21
 3.2.6 Oxidation im Batchversuch ... 23

4 Resultate .. 25
 4.1 Kugelfangmaterial- und Geschosswaschung ... 25
 4.2 Bindungsspezifische Analyse des Kugelfangmaterials .. 25
 4.3 Oxidation im Batchversuch ... 27
 4.4 Elementgehalte bestimmt mit RFA .. 32
 4.5 Antimonspeziierung ... 33
5 Interpretation und Diskussion ... 35
 5.1 Schwermetallgehalte .. 35
 5.2 Korrelationen ... 37
 5.3 Beurteilung der Oxidation ... 39
 5.4 Beurteilung der Mobilität ... 41
 5.5 Wasserbeurteilung ... 44
 5.6 Modellrechnungen ... 44
 5.7 Kritische Überprüfung der Resultate .. 47
 5.7.1 Systematische Fehler .. 47
 5.7.2 Messfehler der Bestimmungsmethoden 48
 5.7.3 Quantitative Fehlerbestimmung ... 49
 5.8 Vergleich mit anderen Arbeiten ... 49
 5.9 Fazit ... 50

6 Literaturverzeichnis .. 51
Zusammenfassung

Der vorliegende Bericht ist das Resultat der Diplomarbeit im Fachbereich Bodenschutz des Studienganges Umweltingenieur der Eidgenössischen Technischen Hochschule Zürich.

Es zeigte sich, dass auch nach 45 Waschschritten mit Nanopurwasser aus dem Kugelfangmaterial weiterhin Antimon ausgewaschen werden konnte. Im Vergleich dazu vermogen Natriumnitrat (Extraktionsmittel zur Bestimmung des löslichen Schwermetallgehaltes nach VBBo) nur kleine Konzentrationen zu extrahieren.

Die gewonnenen Erkenntnisse zeigen, dass sich Antimon zwar unter einfachen Bedingungen auswaschen lässt, aber unter Einbezug des zeitlichen Faktors stark verdünnt wird. Eine Fixierung an amorphem Eisen(hydr)oxiden verkleinert die Mobilität zusätzlich.
Abbildungsverzeichnis

Abbildung 2.1: Adsorptionsisotherme von KSB(III) und KSB(V)(OH), an Eisen(hydr)oxide (Boyle et al., 1983). 13
Abbildung 4.1: Auswaschung: Antimonkonzentrationen. ... 25
Abbildung 4.2: Sequentielle Extraktion: Verteilungsmuster der Antimonbelastung in den Kugelfängern der untersuchten Schiessanlagen. ... 26
Abbildung 4.3: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Projektilen. ... 28
Abbildung 4.4: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Schrotkugeln. ... 28
Abbildung 4.5: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Kugelfangmaterial der Schiessanlage Zihlmatt. ... 29
Abbildung 4.6: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Kugelfangmaterial der Schiessanlage Stand B. ... 29
Abbildung 4.7: Batchversuch: Projektile bei Anfangs-pH 5 und Ionenstärke 0.1 und 0.001 M. ... 30
Abbildung 4.8: Batchversuch: Projektile bei Anfangs-pH 3 und 10, bei unterschiedlicher Begasung. ... 30
Abbildung 4.9: Batchversuch: Schrotkugeln bei Anfangs-pH 3 und 10. ... 31
Abbildung 4.10: Batchversuch: Schrotkugeln mit Ionenstärke 0.1 und 0.001 M und unterschiedlicher Begasung. ... 31
Abbildung 5.1: Verschiedene Analysemethoden für Kugelfangproben. Die RFA diente als Referenz. Zusätzliche Darstellung der Antimonkonzentrationen der Waschung. ... 35
Abbildung 5.2: Sequentielle Extraktion: Matrixeffekte bei der AAS-Messung des Antimonstandards in verschiedenen Lösungen. ... 36
Abbildung 5.3: Korrelation der Totalgehalte der Kugelfangproben (Antimon und Blei). Dabei handelt sich um Daten, die mittels RFA ermittelt wurden. ... 38
Abbildung 5.4: Korrelation der Antimon- und Bleikonzentrationen aus der Waschung des Kugelfangmaterials der Anlage Stand B. ... 38
Abbildung 5.5: Verschiedene Antimonkonzentrationsangaben bei Proben mit unterschiedlichen Wasser- und Bodenverhältnissen. ... 39
Abbildung 5.6: Antimonkonzentration in Funktion des End-pHs der Lösungen mit Projektilen (P1 bis P8). ... 40
Abbildung 5.7: Sequentielle Extraktion: Verlauf der Antimonkonzentration der Kugelfangproben der einzelnen Fraktionen. ... 42
Abbildung 5.8: Grundwasserkörper bei der Schiessanlage Mettlen, Eschenbach. ... 45
Abbildung 5.9: Flussdiagramm von Antimon in den Grundwasserkörpern. ... 46
Abbildung 5.10: Mittels RFA bestimmte Schwermetallverteilung im Abrieb der Projektil P4. ... 46
Abbildung 5.11: Verteilung der Schwermetalle innerhalb der Geschosse (Anhang E). ... 47
Abbildung 5.12: Verteilung des Antimongehalts in der Tiefe des Kugelfangs der Schiessanlage Mettlen (Gresch und Wettstein, 2001). ... 50
Tabellenverzeichnis

Tabelle 2.1: Auswahl einiger Grenzwerte für Antimon.. 14
Tabelle 2.2: Chemische Parameter und Werte (Schmitz, 2000). ... 14
Tabelle 3.1: Schwermetalleintrag durch den Schiessbetrieb der Anlage Zihlmatt, Luzern. Die Belastung durch Bleischrot wurde nicht berücksichtigt........... 16
Tabelle 3.2: Schwermetalleintrag durch den Wurfaubenschiessbetrieb neben der Anlage Zihlmatt, Luzern... 17
Tabelle 3.3: Schwermetalleintrag durch den Schiessbetrieb der Anlage Stand B, Luzern. ... 17
Tabelle 3.4: Schwermetalleintrag durch den Schiessbetrieb der Anlage Mettlen, Eschenbach. ... 17
Tabelle 3.5: Schwermetalleintrag durch den Schiessbetrieb der Anlage Giessen, Benken. .. 18
Tabelle 3.6: Analysemethode.. 19
Tabelle 3.7: Bezeichnung der Bindungsformen und eine ökologische Bewertung (Blay, 1999) der sequentiellen Extraktion nach Zeien und Brümmer (1989).. 22
Tabelle 4.1: Sequentielle Extraktion: Bindungsspezifische Charakterisierung der Antimonkonzentrationen der einzelnen Fraktionen der Kugelfangproben. 26
Tabelle 4.2: Sequentielle Extraktion: Bindungsspezifische Charakterisierung von Antimon. .. 27
Tabelle 4.3: Batchversuch: Methodenparameter... 27
Tabelle 4.4: RFA: Vor der Waschung.. 32
Tabelle 4.5: RFA: Nach der Waschung. .. 32
Tabelle 4.6: RFA: Nach der sequentiellen Extraktion. ... 32
Tabelle 4.7: RFA: Nach dem Batchversuch... 33
Tabelle 4.9: Antimonspezierung: Dreiwertiges und totales Antimon unterschiedlicher Feststoff/Flüssigkeits- Verhältnisse... 34
Tabelle 5.1: RFA: Extrahierte Schwermetallmenge in Prozent zur Differenz aus der RFA.. 36
Tabelle 5.2: Antimon- und Bleikonzentrationen in filtrierten und unfiltrierten Lösungen des Batchversuchs (Kugelfangproben Stand B am 3. Dezember 2001). ... 37
Tabelle 5.3: Leicht mobilisierbares Antimon nach 45 Waschritten im Vergleich zu den löslichen Gehalten der Extraktion mit Natriumnitrat. 41
Tabelle 5.4: Leicht mobilisierbares Blei nach 45 Waschritten im Vergleich zu den löslichen Gehalten der Extraktion mit Natriumnitrat...................................... 41
Tabelle 5.5: Sequentielle Extraktion: Prozentuale Verteilung von Antimon der einzelnen Fraktionen zum total gemessenen Antimon nach Zeien und Brümmer (1989). ... 41
Tabelle 5.6: Sequentielle Extraktion: Prozentuale Verteilung von Blei der einzelnen Fraktionen zum total gemessenen Blei nach Zeien und Brümmer (1989)........ 43
Tabelle 5.7:	Sequentielle Extraktion: Vergleich der Antimonkonzentrationen aus der Kugelfangmaterialwaschung und den ersten beiden Fraktionen.	43
Tabelle 5.8:	Modellrechnung der Antimonauswaschung.	44
Tabelle 5.9:	Zeitdauer in Jahren bis sich 50 % der einzelnen Schwermetalle im Abrieb P4 befinden.	47
Tabelle 5.10:	Systematische Fehlerquellen.	48
Tabelle 5.11:	Beispiel einer Fehlerrechnung. Mittelwert aus acht Eluat-Messungen der sequentiellen Extraktion nach 45 Waschschritten.	49
Tabelle 5.12:	Beispiel einer Fehlerrechnung. Mittelwert aus drei RFA-Messungen nach 45 Waschschritten.	49
1 Einleitung

1.1 Kontext

1.2 Aufgabenstellung

In dieser Diplomarbeit werden Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen untersucht. Auf folgende Schwerpunkte wird eingegangen:

- Antimon in Kugelfängen als Gefahrenquelle für Boden und Grundwasser
- Untersuchung der Oxidationskinetik
- Die Mobilität von Antimon im Vergleich zu derjenigen von Blei
- Vergleich der gesetzlich festgesetzten Grenzwerte der Schweiz und anderer Länder

Die so gewonnenen Erkenntnisse zeigen Umweltbedingungen, die entweder eine starke Fixierung oder eine erhöhte Mobilität von Antimon in Böden und Geschossen zur Folge haben.

1.3 Zieldefinition

2 Antimon - Theorie und Grundlagen

2.1 Verhalten

2.1.1 Vorkommen und Verwendung

In der Luft kommt Antimon als Schwebeteilchen rund 3'000 mal häufiger (0.0017 bis 63 ng/m³) als in der Erdkruste vor (Mortimer, 1996). 41 % entstammen natürlicher Freisetzung: Staubverfrachtungen, Vulkanausbrüche und Waldbrände. Antimon wird atmosphärisch über weite Distanzen transportiert und gelangt nach Auswaschen durch Niederschläge in die Nahrungs kette, wo es sich anreichert. Den grössten Anteil am anthropogenen Antimonereintrag haben industrielle Prozesse wie Metallverhüttung, Müll- und Kohleverbrandung (Kohle: 0.1 – 10 ppm Antimon, jährliche Freisetzung weltweit: 5’000 - 10’000 t; Stöss, 1995). Auch Schiessanlagen stellen wegen der antimonhaltigen Munition eine nicht zu unterschätzende Bodenbelastung dar, die als kleinräumige, hochkonzentrierte Anreicherung vor allem in den Kugelfängen auftritt. Ebenso stellt das kommunale Abwasser einen wichtigen Immissionspfad dar. Kläranlagen können Antimon nur ungenügend zurückhalten. Der Antimonkonzentration in Gewässer bedingt...
Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen
durch den Eintrag von Giessereien, Wäschereien und Farbhersteller beträgt zwischen 1 und 100 ppm. Die industriellen Einträge erfolgen meist durch dreiwertiges Antimon, dennoch fand Blay (1999) in Ufernähe von Fliessgewässern ein Verhältnis von Sb(V) zu Sb(III) von etwa 70 bis 94 zu 1 vor. Die Belastung des Flusswassers liegt bei 0.1 bis 1 ppb (Meerwasser: 0.2 ppb, Grundwasser: 0.2 ppb, Thermalwasser: 0.93 ppm; Streit, 1991).

2.1.2 Spezierung, Bindungsformen
Natürlich vorkommendes Antimon besteht zu 57% aus dem Isotop 121Sb, zu 43% aus dem Isotop 123Sb (Holleman et al., 1985).
Unter aeroben Redoxbedingungen wird Antimon(III) zu thermodynamisch stabilerem Antimon(V) oxidiert. Bei pH 2 ist Sb(III) in 30 Minuten zu 70 % in Sb(V) umgewandelt (Quantitativer Ablauf nach 24 h), während bei pH 8 in derselben Zeitspanne nur noch knapp 20 % oxidiert werden konnten. In antimonhaltigen Böden konnte gezeigt werden, dass Bakterien (Stibiobacter senarmontii) dreiwertiges Antimon zu fünfwertigen oxidieren (Fahrenhorst, 1993; Krachler et al., 2001; Alloway, 1999).
Antimon(III) liegt über einen grossen pH-Bereich ungeladen als Sb(OH)$_3$ vor. Erst bei pH-Werten unter 3 treten gemäss der Reaktionsgleichung Sb(OH)$_3$ + H$^+$ ↔ Sb(OH)$_2^+$ + H$_2$O einfach positiv geladene Sb(OH)$_2^+$ - Kationen, bei pH-Werten über 11 Anionen auf (Sb(OH)$_3$ + H$_2$O ↔ Sb(OH)$_4^-$ + H$^+$; Anhang D, Abbildung D2). Bildet das Trihydroxokomplex übersättigte Lösungen, so fallen Antimon(III)oxidhydrate aus, die in die kristalline Form des Oxs Sb_2O_3 übergehen und sich als weisse, blättrig-grobkristalline, spröde Substanz an Oberflächen absetzen können. Gelöstes fünfwertiges Antimon liegt unterhalb von pH-Werten 2.7 als Sb(OH)$_4^+$ Kation vor. In wässriger Phase liegt Sb(V) über einen pH-Bereich von 2.7 bis 10.4 als mononegative Spezies [Sb(OH)$_6$]$^-$ vor (Krachler et al., 2001). Durch Hydrolyse entstehen Wasserstoffverbindungen des Antimons (SbH$_3$). Mit Natrium bildet Antimon ein schwerlösliches Salz (NaSb(OH)$_6$).

2.2 Adsorption an Festphasen
2.3 Grenzwerte

Tabelle 2.1: Auswahl einiger Grenzwerte für Antimon.

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Sb</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/l</td>
<td>0.01</td>
<td>Altlastenverordnung (1998): Beurteilung der Einwirkungen von belasteten Standorten auf Gewässer</td>
</tr>
<tr>
<td>mg/l</td>
<td>0.1</td>
<td>Gewässerschutzverordnung (1999): Beurteilung der Einleitung von Industrieabwasser in Gewässer oder in Kanalisation</td>
</tr>
<tr>
<td>mg/m³</td>
<td>5</td>
<td>Luftreinhalteverordnung (1998): Beurteilung staubförmiger Antimonverbindungen (Massenstrom min. 25 g/h)</td>
</tr>
<tr>
<td>mg/kg Überzug</td>
<td>60</td>
<td>Verordnung über Gebrauchsgegenstände (1995): Farben, Zeichen- und Malgeräte</td>
</tr>
<tr>
<td>Massenprozent</td>
<td>0.05</td>
<td>Verordnung über Materialien und Gegenstände aus Kunststoff (1998): Pigmente und Farbstoffe</td>
</tr>
<tr>
<td>µg</td>
<td>0.2</td>
<td>Verordnung über die Sicherheit von Spielzeug (1995)</td>
</tr>
</tbody>
</table>

In Deutschland, wo der Umgang mit Antimonkontaminationen in Böden, Sedimenten und Altlasten im Bodenschutzgesetz geregelt ist, gibt es eine Vielzahl von Richt- und Grenzwerte für Antimon (Anhang D, Tabelle D1). Eine Angleichung der deutschen Trinkwasserverordnung an die weltweit strengste, neue EU-Trinkwasserrichtlinie hat im Dezember 2000 begonnen (Tabelle 2.2; Schmitz, 2000).

Tabelle 2.2: Chemische Parameter und Werte (Schmitz, 2000).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EU-Trinkwasserrichtlinie (mg/l)</th>
<th>geltende Trinkwasserordnung vor Änderung (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>gleich 0,005</td>
<td>0,01</td>
</tr>
<tr>
<td>Arsen</td>
<td>gleich 0,01</td>
<td>gleich 0,01</td>
</tr>
<tr>
<td>Blei</td>
<td>gleich 0,01</td>
<td>0,025 ab 1.1.2003-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01 ab 1.12. 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bisher 0,4</td>
</tr>
</tbody>
</table>

2.4 Toxikologie

(letale Dosis für 50% der Versuchstiere) für Mäuse, Kaninchen und Ratten bei einigen hundert mg/kg, beim Menschen bei 100 mg/kg (Merian et al., 1984). Die Streuweite der im Menschen nachgewiesenen Konzentrationen ist gross (1-70 mgSb/kg). Antimon findet sich vor allem in gut durchbluteten Organen. Haut, Lunge, Schilddrüse und Nebennieren weisen Konzentrationen von 0.5 mgSb/kg auf. Die akute Intoxikation nach oraler Aufnahme von elementarem Antimon äussert sich durch Irritation der Schleimhaut als Erbrechen und Durchfall. Inhalieren antimonhaltiger Gase (Stiban, Antimonchloride) führt durch Bronchitis zu entsprechenden Beschwerden. Stibin wirkt als antimonhaltige Verbindung akut neurotoxisch. Kariovaskuläre Nebenwirkungen sind nach der Verabreichung von Medikamenten mit antimonhaltigen Verunreinigungen (Antimon(III)oxiden, Antimonsulfiden) beschrieben. Chronische Exposition wirkt im Tierversuch kanzerogen (Streit, 1991).
3 Material und Methoden

3.1 Untersuchungsflächen

3.1.1 Schiessanlagen Zihlmatt und Stand B (Allmend, Stadt Luzern)

Die heute private, für obligatorische Schiessübungen zur Verfügung stehende Schiessanlage Zihlmatt ist seit 1935 in Betrieb. Bis 1995 wurden ca. 7 Millionen Schuss abgegeben. Die Antimoneinträge sind hier von allen untersuchten Schiessanlagen am größten (Tabelle 3.1).

<table>
<thead>
<tr>
<th>Munition</th>
<th>Zeitraum der Verwendung</th>
<th>Schuss pro Jahr</th>
<th>Schwermetalleintrag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blei (kg)</td>
</tr>
<tr>
<td>GP 11</td>
<td>1935 – 1991</td>
<td>120'000</td>
<td>56'000</td>
</tr>
<tr>
<td>GP 11</td>
<td>1992 – 1995</td>
<td>30’000</td>
<td>750</td>
</tr>
<tr>
<td>Gw Pat 90</td>
<td>1992 – 1995</td>
<td>90’000</td>
<td>810</td>
</tr>
<tr>
<td>Totaler Schwermetalleintrag</td>
<td></td>
<td>57'560</td>
<td>1'171</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Schwermetalleintrag durch den Wurftaubenschiessbetrieb neben der Anlage Zihlmatt, Luzern.

<table>
<thead>
<tr>
<th>Munition</th>
<th>Zeitraum der Verwendung</th>
<th>Schuss pro Jahr</th>
<th>Schwermetalleintrag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blei (kg)</td>
</tr>
<tr>
<td>Bleischrot</td>
<td>1960 - 2001</td>
<td>12'000</td>
<td>12'700</td>
</tr>
<tr>
<td>Totaler Schwermetalleintrag</td>
<td></td>
<td></td>
<td>12'700</td>
</tr>
</tbody>
</table>

Es wurde geschätzt, dass 1.5 Schuss für jede Wurftaube abgegeben wird und dass 18’000 Wurftauben pro Anlage und Jahr anfallen. Bei einem Taubengewicht von ca. 110 g entspricht dies einer Menge von 1’980 kg Taubenscherben. Die grössten Scherben werden auf den meisten Anlagen eingesammelt.

Die Schiessanlage Stand B ist seit 1966 in Betrieb und im Besitz der Stadt Luzern. Bis 1995 beläuft sich die totale Belastung auf 5.5 Millionen Projektilen (Tabelle 3.3).

Tabelle 3.3: Schwermetalleintrag durch den Schiessbetrieb der Anlage Stand B, Luzern.

<table>
<thead>
<tr>
<th>Munition</th>
<th>Zeitraum der Verwendung</th>
<th>Schuss pro Jahr</th>
<th>Schwermetalleintrag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blei (kg)</td>
</tr>
<tr>
<td>GP 11</td>
<td>1966 – 1991</td>
<td>190’000</td>
<td>40’000</td>
</tr>
<tr>
<td>Gw Pat 90</td>
<td>1992 – 1995</td>
<td>142’500</td>
<td>1’280</td>
</tr>
<tr>
<td>Totaler Schwermetalleintrag</td>
<td></td>
<td></td>
<td>42’480</td>
</tr>
</tbody>
</table>

3.1.2 Schiessanlage Mettlen, Eschenbach (Kanton St. Gallen)

Tabelle 3.4: Schwermetalleintrag durch den Schiessbetrieb der Anlage Mettlen, Eschenbach.

<table>
<thead>
<tr>
<th>Munition</th>
<th>Zeitraum der Verwendung</th>
<th>Schuss pro Jahr</th>
<th>Schwermetalleintrag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blei (kg)</td>
</tr>
<tr>
<td>GP 11</td>
<td>1930 – 1991</td>
<td>45’000</td>
<td>23’000</td>
</tr>
<tr>
<td>Gw Pat 90</td>
<td>1992 – 2001</td>
<td>33’750</td>
<td>910</td>
</tr>
<tr>
<td>Totaler Schwermetalleintrag</td>
<td></td>
<td></td>
<td>24’760</td>
</tr>
</tbody>
</table>

3.1.3 Schiessanlage Giessen und Benken (Kanton St. Gallen)

Die Schiessanlage Giessen bei Benken ist seit 80 Jahren in Betrieb. Auf die sechs Zielzscheiben wird mit einer jährlichen Schießfrequenz von 10'000 Schuss geschossen (Tabelle 3.5).

Tabelle 3.5: Schwermetalleintrag durch den Schiessbetrieb der Anlage Giessen, Benken.

<table>
<thead>
<tr>
<th>Munition</th>
<th>Zeitraum der Verwendung</th>
<th>Schuss pro Jahr</th>
<th>Schwermetalleintrag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blei (kg)</td>
</tr>
<tr>
<td>GP 11</td>
<td>1922 - 1992</td>
<td>10'000</td>
<td>5'866</td>
</tr>
<tr>
<td>GP 11</td>
<td>1992 – 2001</td>
<td>2'500</td>
<td>189</td>
</tr>
<tr>
<td>Gw Pat 90</td>
<td>1992 – 2001</td>
<td>7'500</td>
<td>440</td>
</tr>
<tr>
<td>Totaler Schwermetalleintrag</td>
<td></td>
<td></td>
<td>6'495</td>
</tr>
</tbody>
</table>

3.2 Laboruntersuchungen

(Eine detaillierte Beschreibung der Laborarbeiten befindet sich im Anhang B)

3.2.1 Bodencharakterisierung

Beprobungstechnik

Analytik

Gemäss VBBo (1998) wurden die Proben während einer Woche bei 40°C getrocknet, anschliessend zerstampft und gesiebt (Siebgrösse: 2 mm). Für die folgende Analytik (Tabelle 3.6) wurde nur Feinerde verwendet.
Tabelle 3.6: Analysemethoden.

<table>
<thead>
<tr>
<th>Gemessener Parameter Verfahren</th>
<th>Hilfsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Messung Glaselektrode</td>
<td>Calciumchlorid (CaCl₂)</td>
</tr>
<tr>
<td>Kalkgehalt CO₂-Produktion durch Säure-Base-Reaktion</td>
<td>Salzsäure (HCl)</td>
</tr>
<tr>
<td>Organische Substanz Oxidation</td>
<td>Wasserstoffperoxid (H₂O₂)</td>
</tr>
<tr>
<td>Korngrössenanalyse Pipettmethode</td>
<td>Calgonlösung</td>
</tr>
<tr>
<td>Totale Schwermetallgehalte Antimon und Blei (Atomabsorptionsspektrometer)</td>
<td>Salpetersäure (HNO₃)</td>
</tr>
<tr>
<td>Gelöste Schwermetallgehalte Antimon und Blei (Atomabsorptionsspektrometer)</td>
<td>Natriumnitrat (NaNO₃)</td>
</tr>
</tbody>
</table>

3.2.2 Bestimmung der Elementkonzentrationen

Röntgenfluoreszenzspektroskopie (RFA)

Die RFA wird seit 70 Jahren zur Elementanalyse von Festkörpern eingesetzt und besitzt eine Schlüsselrolle bei der raschen und genauen Gehaltsbestimmung einzelner Bodenelemente. Es können rund 90 % aller chemischen Elemente erfasst werden, sofern sie als Haupt- oder Nebenkomponenten vorliegen. Hohe Spezifität und ein grosser dynamischer Bereich (Prozent bis ppm, d.h. 5 Grössenordnungen) machen die RFA trotz erheblichem technischen Aufwand zu einer universellen und weit verbreiteten Methode der Materialprüfung (Stern, 1996/1997).
Flammen-Atomabsorptionsspektroskopie (AAS)

Bestimmung des dreiwertigen Antimons anhand der Hydridtechnik und Atomfluoreszenzspektroskopie

3.2.3 Röntgendiffraktometrie (X-Ray Diffraction, XRD)

3.2.4 Kugelfangproben- und Geschosswaschung

An der Eidgenössischen Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG) wurde mit Kugelfangmaterial (Siebdurchmesser: 0.5 mm) der Anlagen Mettlen, Stand B und Zihlmat eine Waschung mit Nanopurwasser mit unterschiedlichen Festphasen/Flüssigkeitsverhältnissen durchgeführt. Während 24 Stunden wurden die Proben geschüttelt, anschliessend filtriert und die Filtrate auf ihren totalen und dreiwertigen Antimongehalt untersucht.
3.2.5 Chemische Extraktionsverfahren

- Austauschbare Kationen oder mobile Fraktionen an Feststoffoberflächen werden durch Verdrängungsreaktionen mit Salzlösungen ermittelt. Andere Feststoffphasen werden nur schwach angegriffen.

Im Routineeinsatz der Extraktionsverfahren müssen einige Einschränkungen berücksichtigt werden:

- Die meisten Auslaugungsschritte sind nicht selektiv.
- Über kationenaustauschbare und organisch gebundene Metallanteile ist wenig bekannt.
- Die Reaktionen werden beeinflußt sowohl durch Zeitdauer der Versuche als auch durch die Volumenverhältnisse von Feststoff und Flüssigkeit.
- Der pH-Wert muss fortwährend kontrolliert werden: Ein kleiner Feststoffanteil kann vor allem bei hohem Carbonatgehalt der Lösemittel und kleiner Pufferkapazität zu einem Anstieg des pH-Wertes in der Extraktionslösung führen.
- Bei der Präparation der Proben können Verfälschungen auftreten sowohl durch Veränderung der kationenaustauschbaren Anteile bereits bei der Trocknung des
Probenmaterials als auch durch reduzierte Feststoffe, deren sulfidische Komponenten rasch oxidieren. Sekundäreffekte können zu einer Wiederadsorption oder erneuten Ausfällung der gelösten Metallkomponenten an die suspendierten Feststoffpartikel führen.

<table>
<thead>
<tr>
<th>Fraktion</th>
<th>Bindungsformen</th>
<th>Mobilität</th>
<th>Pflanzenverfügbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mobile Fraktion</td>
<td>Wasserlösliche und austauschbare Schwermetalle. Leicht lösliche, metallorganische Komplexe</td>
<td>sehr hoch, da bereits gelöst oder leicht löslich</td>
<td>aktuell pflanzenverfügbar</td>
</tr>
<tr>
<td>2. Leicht nachlieferbare Fraktion</td>
<td>Spezifisch adsorbierte, oberflächennahe okkludierte und an Calciumcarbonat gebundene Formen. Metallorganische Komplexe, geringer Bindungsstärke</td>
<td>kurzfristig mobilisierbar</td>
<td>kurzfristig verfügbar</td>
</tr>
<tr>
<td>3. Mn-Oxid-gebundene Fraktion</td>
<td>mittelfristig mobilisierbar, begünstigt durch pH-Absenkung</td>
<td>mittelfristig mobilisierbar, durch Phytochelate reduktiv mobilisierbar</td>
<td></td>
</tr>
<tr>
<td>4. Organisch gebundene Fraktion</td>
<td>mittelfristig mobilisierbar, gekoppelt an Humusbildungs- und abbauprozesse</td>
<td>mittelfristig verfügbar, abhängig von der Biologie und Chemie der Rhizosphäre</td>
<td></td>
</tr>
<tr>
<td>5. Amorphe Fe-Hydroxid-gebundene Fraktion</td>
<td>langfristig mobilisierbar (wie 3.)</td>
<td>langfristig verfügbar</td>
<td></td>
</tr>
<tr>
<td>7. Residual gebundene Fraktion</td>
<td>langfristig immobile</td>
<td>minimale Verfügbarkeit</td>
<td></td>
</tr>
</tbody>
</table>
3.2.6 Oxidation im Batchversuch

pH-Wert

Anionische Verbindungen (wie Antimon) zeigen eine grössere Löslichkeit bei höheren pH-Werten. In der Regel wird jedoch bei Schwermetallen (kationische Verbindungen) die Auslaugbarkeit im höheren pH-Bereich durch die Bildung schwerlöslicher Hydroxide und in Folge hydrolytischer Sorption an den Feststoffoberflächen drastisch reduziert. Solche Abhängigkeiten sind charakteristisch für Sorptions- und Desorptionsreaktionen und lassen Rückschlüsse auf die chemische Bindung am Feststoff zu.

Redoxverhältnisse

Ebenfalls grossen Einfluss auf die Bindungsstabilität der Metalle an Feststoffen haben Veränderungen des Redoxpotentials. Dies gilt vor allem für die Oxidation anaerober Schlämme, bei der für eine Reihe potentiell toxischer Metalle eine Remobilisierung erfolgt.

Brannon (1984) untersuchte das Verhalten und die Mobilisation von Arsen und Antimon in kontaminierten Sedimenten unter aeroben und anaeroben Verhältnissen. Unter anaeroben Bedingungen wurden bei einer grossen Anzahl von Sedimenten Arsenat (As(V)) zu Arsenit (As(III)) reduziert. So wurde z.B. bei einer Sedimentprobe, der man As(V) zugesetzt hatte, nach 3 Wochen Inkubationszeit 70% als wasserlösliches As(III) wiedergefunden. Gleichzeitig konnte die Bildung organischer Arsenverbindungen nachgewiesen werden. In Kurzzeit-Auslaugversuchen mit destilliertem Wasser und mit Wasser erhöhter Salinität wurde vor allem As(III) freigesetzt, insbesondere dann, wenn die Eisengehalte niedrig und die Porenwassergehalte der Sedimente hoch waren. Dabei zeigte der Salinitätsgrad einen geringen Einfluss auf die Remobilisation von As(V), As(III) und organischen Arsenverbindungen.
Brannon führte auch Langzeit-Auslaugexperimente (sechs Monate) unter aeroben Bedingungen durch. Dabei stellte er eine Arsen-Freisetzung über die gesamte Dauer der Laugungsperiode fest. Im allgemeinen zeigte sich anfänglich eine bevorzugte Freisetzung von As(III), gefolgt von As(V) und organischem Arsen während der ersten drei Monate. Im verbleibenden Zeitraum wurde As(V) bevorzugt mobilisiert. Im Gegensatz dazu wurde bei den Langzeittests unter anaeroben Bedingungen nahezu ausschließlich As(III) freigesetzt. Nach sechs Monaten Auslaugung korrelierten die Arsenwerte mit den Eisen- und CaCO₃-Gehalten der Sedimente.

Erhöhung der Salzkonzentration

Ein Überangebot an Kationen verdrängt ausser Blei feststoffgebunde Metallonen (Initiale Bildung von Chlorokomplexen neben Calcium- und Magnesiumionen).
4 Resultate

4.1 Kugelfangmaterial- und Geschosswaschung

Bei der Waschung der Projektil- und Schrotkugeln nahm die Antimonkonzentration im Gegensatz zu derjenigen der Kugelfangproben nach zehn Waschschritten mit Nanopurwasser bereits deutlich ab (Abbildung 4.1). Der Anteil an auswaschbarem Antimon pendelte sich jeweils nach 45 Waschschritten auf Werte zwischen 2 und 3 ppm in der Waschlösung ein. Blei hingegen zeigt höhere auswaschbare Konzentrationen (Anhang C, Abbildung C1).

Abbildung 4.1: Auswaschung: Antimonkonzentrationen.

4.2 Bindungsspezifische Analyse des Kugelfangmaterials

Die Bindung von Antimon an die unterschiedlichen Festphasen des Kugelfangmaterials variiert stark. Die dominierenden Fraktionen, die gefunden wurden, sind:

- in Giessen-Benken die zweite Fraktion (leicht nachlieferbar) und fünfte Fraktion mit je 29 %,
- in Zihlmatt, Luzern, die vierte Fraktion (organisch gebunden) mit 44%;
- in Stand B, Luzern, die fünfte Fraktion (an amorphe Fe-Hydroxiden gebunden) mit 50%,
- und in Mettlen, Eschenbach, wiederum die fünfte Fraktion (an amorphe Fe-Hydroxiden gebunden) mit 50%.

In der Abbildung 4.2 sind die Anteile an Antimon in den einzelnen Fraktionen angegeben (Anhang F, Abbildung F1).

Tabelle 4.1: Sequentielle Extraktion: Bindungsspezifische Charakterisierung der Antimonkonzentrationen der einzelnen Fraktionen der Kugelfangproben.

<table>
<thead>
<tr>
<th>Fraktionsbezeichnung</th>
<th>Mettlen Sb (ppm)</th>
<th>Zihlmatt Sb (ppm)</th>
<th>Giessen Sb (ppm)</th>
<th>Stand B Sb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mobil</td>
<td>74</td>
<td>46</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>2. Leicht nachlieferbar</td>
<td>331</td>
<td>539</td>
<td>106</td>
<td>444</td>
</tr>
<tr>
<td>3. an Manganoxide gebunden</td>
<td>494</td>
<td>662</td>
<td>59</td>
<td>458</td>
</tr>
<tr>
<td>4. Organisch gebunden</td>
<td>3'897</td>
<td>4'063</td>
<td>63</td>
<td>3'152</td>
</tr>
<tr>
<td>5. an Fe-(Hydr)oxide gebunden (amorph)</td>
<td>5'470</td>
<td>3'379</td>
<td>105</td>
<td>4'441</td>
</tr>
<tr>
<td>6. an Fe-(Hydr)oxide gebunden (kristallin)</td>
<td>454</td>
<td>557</td>
<td>18</td>
<td>427</td>
</tr>
<tr>
<td>Σ (1.-6. Fraktion)</td>
<td>10'718</td>
<td>9'246</td>
<td>369</td>
<td>8'946</td>
</tr>
</tbody>
</table>
Obwohl mit der Waschung leicht lösliche Anteile der Schwermetalle entfernt wurden, bindet Antimon der Kugelfangproben Zihlmatt und Stand B in relevanten Mengen vor allem an amorphe Eisen(hydr)oxide (Tabelle 4.2).

Tabelle 4.2: Sequentielle Extraktion: Bindungsspezifische Charakterisierung von Antimon im gewaschenen Kugelfangmaterial.

<table>
<thead>
<tr>
<th>Fraktionsbezeichnung</th>
<th>Zihlmatt</th>
<th>Stand B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>1. Mobil</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>2. Leicht nachlieferbar</td>
<td>346</td>
<td>2’313</td>
</tr>
<tr>
<td>3. an Manganoxid gebunden</td>
<td>568</td>
<td>219</td>
</tr>
<tr>
<td>4. Organisch gebunden</td>
<td>3’926</td>
<td>2’183</td>
</tr>
<tr>
<td>5. an Fe-(Hydr)oxide gebunden (amorph)</td>
<td>4’083</td>
<td>4’551</td>
</tr>
<tr>
<td>6. an Fe-(Hydr)oxide gebunden (kristallin)</td>
<td>645</td>
<td>306</td>
</tr>
<tr>
<td>Σ (1.-6. Fraktion)</td>
<td>9608</td>
<td>9’603</td>
</tr>
</tbody>
</table>

4.3 Oxidation im Batchversuch

Tabelle 4.3: Batchversuch: Methodenparameter.

<table>
<thead>
<tr>
<th>Projektil</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schrotkugeln</td>
<td>K1</td>
<td>K2</td>
<td>K3</td>
<td>K4</td>
<td>K5</td>
<td>K6</td>
<td>K7</td>
<td>K8</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>Z1</td>
<td>Z2</td>
<td>Z3</td>
<td>Z4</td>
<td>Z5</td>
<td>Z6</td>
<td>Z7</td>
<td>Z8</td>
</tr>
<tr>
<td>Stand B</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>S5</td>
<td>S6</td>
<td>S7</td>
<td>S8</td>
</tr>
<tr>
<td>Begasung mit Luft</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Ionensstärke</td>
<td>0.1 M</td>
<td>0.1 M</td>
<td>0.001 M</td>
<td>0.1 M</td>
<td>0.1 M</td>
<td>0.1 M</td>
<td>0.001 M</td>
<td>0.1 M</td>
</tr>
<tr>
<td>Anfangs-pH</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>End-pH</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Projektile</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6.5</td>
<td>7</td>
</tr>
<tr>
<td>Schrotkugeln</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4.8</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbildung 4.3: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Projektilen.

Bis zum 21. Tag stieg die Antimonkonzentration aller Proben rasch an, um sich zwischen 50 und 60 ppm einzupendeln (Abbildung 4.4). Auffällend sind die hohen Antimonwerte bei K4, die sich vor allem während den ersten Tagen von den übrigen abheben.

Abbildung 4.4: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Schrotkugeln.

Abbildung 4.5: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Kugelfangmaterial der Schiessanlage Zihlmatt.

Abbildung 4.6: Batchversuch: Aufsummierte Antimonkonzentrationen der Lösungen mit Kugelfangmaterial der Schiessanlage Stand B.
Bilder am Ende des Batchversuchs (Geschosse im Trockenzustand)

Auf den Geschossen bildete sich während des Batchversuchs ein feinschichtiger, je nach Ionenstärke und Begasung in Farbe und Intensität verschiedener Belag (Anhang F, Abbildung F3). Bei der Ionenstärke 0.1 M färbten sich die Projektilte rot, bei kleinerer Ionenstärke traten weisse Anlagerungen auf (Abbildung 4.7).

Abbildung 4.7: Batchversuch: Projektilte bei Anfangs-pH 5 und Ionenstärke 0.1 und 0.001 M.

Durch Eisenoxidation kam es bei Begasung mit Druckluft zu einer rostroten Färbung. Die Projektilte in Lösungen mit pH-Wert drei besitzen einen matten weissen (P5) oder roten (P1) Überzug (Abbildung 4.8).

Abbildung 4.8: Batchversuch: Projektilte bei Anfangs-pH 3 und 10, bei unterschiedlicher Begasung.
Die Schrotkugeln K1 und K4 zeigen einen milchigen Überzug bei matter, gelbgrüner (K1) und blaugrauer (K4) Färbung (Abbildung 4.9).

Mit abnehmender Ionenstärke lagerte sich ein dichter, heller Belag ab (Anhang F, Abbildung F4). Die mit Druckluft begasten Lösungen mit Schrotkugeln zeigen eine helle Farbe, K7 einen gelben Überzug (Abbildung 4.10).

Abbildung 4.10: Batchversuch: Schrotkugeln mit Ionenstärke 0.1 und 0.001 M und unterschiedlicher Begasung.
4.4 Elementgehalte bestimmt mit RFA

Die Anlage Mettlen wies (außer bei Mangan) die höchsten Konzentrationen auf. Der Gehalt der Kugelfangprobe lag mit fast 10'000 ppm für Antimon, 2'200 ppm für Bismuth und 1'000 ppm für Thallium weit über den gängigen Konzentrationen im Boden (Tabelle 4.4).

Tabelle 4.4: RFA: Vor der Waschung.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon (ppm)</th>
<th>Blei (ppm)</th>
<th>Thallium (ppm)</th>
<th>Bismuth (ppm)</th>
<th>Eisen (ppm)</th>
<th>Mangan (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giessen</td>
<td>299</td>
<td>7008</td>
<td>5</td>
<td>60</td>
<td>28'770</td>
<td>947</td>
</tr>
<tr>
<td>Mettlen</td>
<td>9'806</td>
<td>220'400</td>
<td>1'026</td>
<td>2'213</td>
<td>76'480</td>
<td>808</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>6'364</td>
<td>137'400</td>
<td>749</td>
<td>1'353</td>
<td>38'200</td>
<td>370</td>
</tr>
<tr>
<td>Stand B</td>
<td>7'893</td>
<td>160'700</td>
<td>712</td>
<td>1'663</td>
<td>69'810</td>
<td>772</td>
</tr>
</tbody>
</table>

Die Antimongehalte der getrockneten Proben nach der Kugelfangmaterial- und Geschoss-waschung vom Stand B waren grösser als die von Zihlmatt (Tabelle 4.5).

Tabelle 4.5: RFA: Nach der Waschung.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon (ppm)</th>
<th>Blei (ppm)</th>
<th>Thallium (ppm)</th>
<th>Bismuth (ppm)</th>
<th>Eisen (ppm)</th>
<th>Mangan (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>4'883</td>
<td>113'400</td>
<td>602</td>
<td>1'122</td>
<td>38'223</td>
<td>323</td>
</tr>
<tr>
<td>Stand B</td>
<td>5'560</td>
<td>110'883</td>
<td>497</td>
<td>1'117</td>
<td>69'560</td>
<td>695</td>
</tr>
</tbody>
</table>

Nach sequentieller Extraktion enthalten die Proben des Kugelfangs Zihlmatt mehr Antimon als die Proben des Stand B. Die Eisenkonzentration der Proben vom Stand B war vier mal höher als die der Proben von Zihlmatt (Tabelle 4.6).

Tabelle 4.6: RFA: Nach der sequentiellen Extraktion.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon (ppm)</th>
<th>Blei (ppm)</th>
<th>Thallium (ppm)</th>
<th>Bismuth (ppm)</th>
<th>Eisen (ppm)</th>
<th>Mangan (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>5'282</td>
<td>93'964</td>
<td>450</td>
<td>873</td>
<td>7'203</td>
<td>93</td>
</tr>
<tr>
<td>Stand B</td>
<td>3'443</td>
<td>73'445</td>
<td>313</td>
<td>683</td>
<td>28'824</td>
<td>357</td>
</tr>
</tbody>
</table>

Am Versuchsreihenende wurden die getrockneten Proben einer letzten RFA unterzogen. Aus einem Vergleich mit den Werten der Tabelle 4.6 wird ersichtlich, dass alle Elementkonzentrationen bis auf einen Drittel abnehmen (Tabelle 4.7).
Tabelle 4.7: RFA: Nach dem Batchversuch.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon (ppm)</th>
<th>Blei (ppm)</th>
<th>Thallium (ppm)</th>
<th>Bismuth (ppm)</th>
<th>Eisen (ppm)</th>
<th>Mangan (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>1876</td>
<td>30718</td>
<td>59</td>
<td>261</td>
<td>3803</td>
<td>49</td>
</tr>
<tr>
<td>Stand B</td>
<td>2913</td>
<td>65450</td>
<td>239</td>
<td>641</td>
<td>27018</td>
<td>351</td>
</tr>
</tbody>
</table>

4.5 Antimonspeziierung

Wasser

Dreiwertiges Antimon konnte im Bachwasser der Schiessanlage Mettlen bei Eschenbach, in Piezometerrohren und drei Vertikalfilterbrunnen in nur geringen Konzentrationen nachgewiesen werden, zum Teil sogar unter der Bestimmungsgrenze. Im Wasser der beiden Piezometerrohre wurde nur das Gesamiantimon gemessen. Der totale Antimongehalt zeigt hier deutlich höhere Werte als in natürlichen Wässern (Tabelle 4.8).

<table>
<thead>
<tr>
<th>Beprobungsstandort</th>
<th>dreiwertiges Antimon µg Sb(III)/l</th>
<th>Gesamt-Antimon µg Sbtot/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpwerk Risifeld-Neuhaus</td>
<td>0.012</td>
<td>1.27</td>
</tr>
<tr>
<td>Pumpwerk Balmen</td>
<td>0.009</td>
<td>1.49</td>
</tr>
<tr>
<td>Pumpwerk Jonern</td>
<td>*</td>
<td>1.26</td>
</tr>
<tr>
<td>Bachwasser Eschenbach</td>
<td>*</td>
<td>0.21</td>
</tr>
<tr>
<td>Piezometer "Flach"</td>
<td>-</td>
<td>82.1</td>
</tr>
<tr>
<td>Piezometer "Scheibe"</td>
<td>-</td>
<td>57.7</td>
</tr>
</tbody>
</table>

Kugelfang

Tabelle 4.9: Antimonspezierung: Dreiwertiges und totales Antimon unterschiedlicher Feststoff/Flüssigkeits-Verhältnisse.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Verdünnung (Wasser / Boden)</th>
<th>dreiwertiges Antimon: Sb(III) (ugSb(III)/l)</th>
<th>Totalgehalt: Sb(III)+Sb(V) (ugSb/l)</th>
<th>Sb(III)/Sb_{tot} (ppb)</th>
<th>Sb(III)/Sb_{tot} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand B</td>
<td>20</td>
<td>22</td>
<td>1'130</td>
<td>22'600</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6</td>
<td>910</td>
<td>18'200</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>52</td>
<td>1'170</td>
<td>11'700</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
<td>990</td>
<td>9'900</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>1'220</td>
<td>7'320</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>1'300</td>
<td>7'800</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15</td>
<td>1'560</td>
<td>4'680</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>6'000</td>
<td>18'000</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>29</td>
<td>7'000</td>
<td>7'000</td>
<td>0.41</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>20</td>
<td>6</td>
<td>9'000</td>
<td>180'000</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3</td>
<td>6'000</td>
<td>120'000</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12'000</td>
<td>120'000</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7</td>
<td>9'000</td>
<td>90'000</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>15'000</td>
<td>90'000</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11</td>
<td>16'000</td>
<td>96'000</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12</td>
<td>15'000</td>
<td>45'000</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>47</td>
<td>27'000</td>
<td>81'000</td>
<td>0.18</td>
</tr>
<tr>
<td>Mettlen</td>
<td>20</td>
<td>319</td>
<td>6'375</td>
<td>1'400</td>
<td>22.77</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>246</td>
<td>4'915</td>
<td>1'260</td>
<td>19.51</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>1'720</td>
<td>17'200</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>47</td>
<td>1'750</td>
<td>17'500</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11</td>
<td>2'110</td>
<td>12'660</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>1'960</td>
<td>11'760</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>104</td>
<td>2'040</td>
<td>6'120</td>
<td>5.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>2'040</td>
<td>6'120</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2'050</td>
<td>2'050</td>
<td>0.05</td>
</tr>
</tbody>
</table>
5 Interpretation und Diskussion

5.1 Schwermetallgehalte

Totale Schwermetallgehalte

Vor allem wiesen die Konzentrationen der Probe Stand B im HNO₃-Auszug mit ähnlichen Ergebnissen wie die Kugelfangmaterialwaschung mit Nanopurwasser zu tiefe Werte auf. Salpetersäure scheint deswegen ein nur wenig geeignetes Extraktionsmittel für Antimon darzustellen (Anhang C, Tabelle C7).

Extrahierte Schwermetallmenge

Tabelle 5.1: RFA: Extrahierte Schwermetallmenge in Prozent zur Differenz aus der RFA. Einige Werte lagen unter der Bestimmungsgrenze (*).

<table>
<thead>
<tr>
<th></th>
<th>Antimon (%)</th>
<th>Blei (%)</th>
<th>Thallium (%)</th>
<th>Bismuth (%)</th>
<th>Eisen (%)</th>
<th>Mangan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td></td>
<td>104</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z6</td>
<td></td>
<td>369</td>
<td>292</td>
<td>*</td>
<td>85</td>
<td>79</td>
</tr>
<tr>
<td>Z8</td>
<td></td>
<td>686</td>
<td>419</td>
<td>*</td>
<td>103</td>
<td>86</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>253</td>
<td>157</td>
<td>*</td>
<td>130</td>
<td>56</td>
</tr>
<tr>
<td>Stand B S4</td>
<td>629</td>
<td>385</td>
<td>*</td>
<td>152</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td></td>
<td>759</td>
<td>725</td>
<td>*</td>
<td>124</td>
<td>78</td>
</tr>
</tbody>
</table>

Abbildung 5.2: Sequentielle Extraktion: Matrixeffekte bei der AAS-Messung des Antimonstandards in verschiedenen Lösungen.
5.2 Korrelationen

Filtrierte/unfiltrierte Lösungen

Bei den Lösungen aus dem Batchversuch zeigt eine Filtration (Porendurchmesser: 0.45 µm) bei den gemessenen Antimonkonzentrationen keine Veränderung. Der Filter hält Partikel mit Durchmesser größer als 0.45 µm zurück. Antimon ist demnach an Partikel kleiner als 0.45 µm gebunden oder liegt in gelöster Form vor. Bei der Untersuchung der filtrierten Lösungen auf Blei werden hingegen nur 20 bis 50% erfasst (Tabelle 5.2).

<table>
<thead>
<tr>
<th></th>
<th>Antimon (filtriert/unfiltriert in %)</th>
<th>Blei (filtriert/unfiltriert in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand B (S1)</td>
<td>91</td>
<td>20</td>
</tr>
<tr>
<td>Stand B (S2)</td>
<td>105</td>
<td>51</td>
</tr>
<tr>
<td>Stand B (S3)</td>
<td>102</td>
<td>20</td>
</tr>
<tr>
<td>Stand B (S4)</td>
<td>106</td>
<td>21</td>
</tr>
</tbody>
</table>

Antimon(tot)/Blei(tot) in den unbehandelten Kugelfangproben

Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

Abbildung 5.3: Korrelation der Totalgehalte der Kugelfangproben (Antimon und Blei). Dabei handelt sich um Daten, die mittels RFA ermittelt wurden.

Antimon/Blei der Kugelfangmaterialwaschung

Abbildung 5.4: Korrelation der Antimon- und Bleikonzentrationen aus der Waschung des Kugelfangmaterials der Anlage Stand B.
Antimon bei verschiedenen Wasser-/Bodenverhältnissen

Während bei den totalen Antimonkonzentrationen, gemessen in der Flüssigkeit, ein stetiger Anstieg festgestellt werden konnte, nehmen sie auf den Boden bezogen ab (Abbildung 5.5). Daraus lässt sich schliessen, dass sich durch das zunehmende Feststoff-/Flüssigkeitsverhältnis eine Sättigung ergab.

![Abbildung 5.5: Verschiedene Antimonkonzentrationsangaben bei Proben mit unterschiedlichen Wasser- und Bodenverhältnissen.](image)

5.3 Beurteilung der Oxidation

Einfluss des pH-Wertes auf die Oxidation

Im Verlauf der Versuche veränderte sich der ursprünglich in der Lösung angesetzte pH-Wert. Innerhalb eines Tages stellte sich der End-pH ein. Je grösser die Zeitspanne zwischen den Messungen war, desto stärkeren Einfluss übte der End-pH auf die Oxidationsprozesse aus (Abbildung 5.6). In den Lösungen mit Projektilen können die, aufgrund der eingesetzten Oxidationsmittel, die widersprüchlichen Daten durch den Einfluss des End-pHs erklärt

Abbildung 5.6: Antimonkonzentration in Funktion des End-pHs der Lösungen mit Projektilen (P1 bis P8).

Einfluss des Oxidationsmittels auf die Oxidation

Einfluss der Ionenstärke auf die Oxidation

Im Gegensatz zu Blei ist bei Antimon kein Einfluss der Ionenstärke auf die Oxidation ersichtlich (Anhang C, Abbildungen C2 und C3). Da Antimon vor allem anionisch in der Lösung vorliegt, verhält es sich anders als die kationischen Schwermetalle, welche in Konkurrenz mit Natriumionen stehend, vermehrt verdrängt werden. Mit Natrium bildet Antimon ein schwerlösliches Salz (NaSb(OH)_6) und kann sich so dem Nachweis durch eine AAS-Analyse entziehen (Kapitel 2.3).
5.4 Beurteilung der Mobilität

Tabelle 5.3: Leicht mobilisierbares Antimon nach 45 Waschschritten im Vergleich zu den löslichen Gehalten der Extraktion mit Natriumnitrat.

<table>
<thead>
<tr>
<th></th>
<th>Nach 45 Waschschritten (ppm Sb)</th>
<th>Löslicher Gehalt (NaNO₃-Extraktion) (ppm Sb)</th>
<th>pH-Wert (-)</th>
<th>Kalkgehalt (Gew.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>154.9</td>
<td>8</td>
<td>6.45</td>
<td>3.17</td>
</tr>
<tr>
<td>Stand B</td>
<td>152.5</td>
<td>3</td>
<td>6.66</td>
<td>6.79</td>
</tr>
</tbody>
</table>

Der Grund für die kleine Menge an gelöstem Blei bei Stand B im Vergleich zu Zihlmatt kann neben dem höheren Kalkgehalt vor allem der in Zihlmatt tieferen pH-Wert sein (Tabelle 5.4). Dass sich die gelösten Antimonkonzentrationen in der Größenordnung der Bleiwerte befinden, erstaunt, da sich die Totalgehalte der beiden Schwermetalle um ein Vielfaches unterscheiden (Anhang C, Abbildung C1).

Tabelle 5.4: Leicht mobilisierbares Blei nach 45 Waschschritten im Vergleich zu den löslichen Gehalten der Extraktion mit Natriumnitrat.

<table>
<thead>
<tr>
<th></th>
<th>Nach 45 Waschschritten (ppm Pb)</th>
<th>Löslicher Gehalt (NaNO₃-Extraktion) (ppm Pb)</th>
<th>pH-Wert (-)</th>
<th>Kalkgehalt (Gew.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>253.9</td>
<td>4</td>
<td>6.45</td>
<td>3.17</td>
</tr>
<tr>
<td>Stand B</td>
<td>132.7</td>
<td>2</td>
<td>6.66</td>
<td>6.79</td>
</tr>
</tbody>
</table>

Bindungsformen

Die verschiedenen Kugelfangproben der Schiessanlagen zeigen trotz unterschiedlicher Beschaffenheit eine ähnliche Verteilung der Antimonkonzentrationen innerhalb der einzelnen Fraktionen, die zur Einteilung der Bindungsformen dienen (Abbildung 5.7).
Der größte Teil des Antimons ist an amorphe Eisen(hydr)oxide oder an organischer Substanz gebunden (Tabelle 5.5). Nach Zeien und Brümmers ist die Verfügbarkeit von Antimon als gering anzusehen, eine Mobilisierung kann durch reductive Prozesse oder Chelatisierung erfolgen. Eine Ausnahme bildet die Kugelfangprobe der Anlage Giessen, deren Grossteil an Antimon sich nicht nur auf die 4. und 5. Fraktion bezieht. Der höchste Wert liegt in der 2. Fraktion und ist nach Zeien und Brümmers als leicht nachlieferbar zu bezeichnen. Kleine Veränderungen des Milieus können bei dieser Bindungsform genügen, um weiteres Antimon zu lösen. Berücksichtigt man aber die Gesamtkonzentration an Antimon, die in Giessen im Vergleich zu den anderen Standorten um ein Vielfaches kleiner ist, so ist die ökotoxikologische Gefährdung aufgrund der Mobilität aber nicht erhöht (Tabelle 4.4).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraktion</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1. Mobile Fraktion</td>
</tr>
<tr>
<td>2. Leicht nachlieferbare Fraktion</td>
</tr>
<tr>
<td>3. Mn-Oxid-gebundene Fraktion</td>
</tr>
<tr>
<td>4. Organisch gebundene Fraktion</td>
</tr>
<tr>
<td>5. Amorphe Fe-Hydroxide</td>
</tr>
<tr>
<td>6. Kristalline Fe-Hydroxide</td>
</tr>
</tbody>
</table>

Tabelle 5.6: Sequentielle Extraktion: Prozentuale Verteilung von Blei der einzelnen Fraktionen zum total gemessenen Blei nach Zeien und Brümmer (1989).

<table>
<thead>
<tr>
<th>Fraktion</th>
<th>Zihlmatt (Pb/Pb$_{tot}$ in %)</th>
<th>Stand B (Pb/Pb$_{tot}$ in %)</th>
<th>Giessen (Pb/Pb$_{tot}$ in %)</th>
<th>Mettlen (Pb/Pb$_{tot}$ in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mobile Fraktion</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>2. Leicht nachlieferbare Fraktion</td>
<td>61.6</td>
<td>75.1</td>
<td>58.2</td>
<td>49.6</td>
</tr>
<tr>
<td>3. Mn-Oxid-gebundene Fraktion</td>
<td>15.2</td>
<td>12.4</td>
<td>4.8</td>
<td>23.8</td>
</tr>
<tr>
<td>4. Organisch gebundene Fraktion</td>
<td>21.6</td>
<td>11.7</td>
<td>29.5</td>
<td>25.8</td>
</tr>
<tr>
<td>5. Amorphe Fe-Hydroxide</td>
<td>0.9</td>
<td>0.4</td>
<td>5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>6. Kristalline Fe-Hydroxide</td>
<td>0.4</td>
<td>0.2</td>
<td>2.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Leicht mobilisierbares Antimon und Blei

Tabelle 5.7: Sequentielle Extraktion: Vergleich der Antimonkonzentrationen aus der Kugelfangmaterialwaschung und den ersten beiden Fraktionen.

<table>
<thead>
<tr>
<th>Woche</th>
<th>Sequentielle Extraktion</th>
<th>Waschung</th>
<th>Verhältnis Waschung (in 45 Schritten) zu 1. Fraktion in der sequentiellen Extraktion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Fraktion (ppm Sb)</td>
<td>2. Fraktion (ppm Sb)</td>
<td>Waschung (ppm Sb)</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>46</td>
<td>539</td>
<td>153</td>
</tr>
<tr>
<td>Stand B</td>
<td>24</td>
<td>444</td>
<td>154</td>
</tr>
</tbody>
</table>
5.5 Wasserbeurteilung

Eine Beurteilung der in Tabelle 4.4 aufgeführten Messergebnisse der Grund- und Bachwasserproben in der Umgebung der Schiessanlage Mettlen wird mit Hilfe der EU-Trinkwasserrichtlinie (Tabelle 2.2) und der Altlastenverordnung (Tabelle 2.1) durchgeführt.

Trinkwasser

Das Wasser der Fassungen Risifeld-Neuhaus, Balmen und Jonern zeigt totale Antimongehalte, die unter der EU-Richtlinie von 5 µgSb/l liegen. Nach wie vor scheint von der Schiessanlage Mettlen, obwohl sie im Zuströmbereich der Filterbrunnen Balmen und Jonern liegt, hinsichtlich Antimon keine Beeinträchtigung der Wassergüte auszugehen.

Bachwasser

Im allgemeinen sind Oberflächengewässer in der Schweiz karbonatisch, was eine Freisetzung von Schwermetallen weitgehend verhindert. Der 10-fache Konzentrationswert nach Altlasten-Verordnung (AltIV) dient bei der Beurteilung der Oberflächengewässer als quantitatives Beurteilungskriterium (BUWAL, 2000). Das Resultat der Bachwasseruntersuchung unterschreitet den AltIV-Grenzwert von 0.1 mgSb/l deutlich. Aufgrund einer staken Verdünnung ist dieses Wasser kaum belastet. Die Antimongehalte des Bachwassers können als unbedenklich eingestuft werden, liegen seine Totalkonzentrationen um einen Faktor sechs tiefer als jene des Trinkwassers.

5.6 Modellrechnungen

Modell 1: Kugelfangmaterialwaschung

In den Resultaten der Waschung der Kugelfangproben konnte eine stetige Abnahme der Antimonkonzentrationen festgestellt werden. Sinken die Konzentrationen in gleichem Masse (Anhang C, Abbildungen C4 und C5), so werden bei der Probe von Zihlmatt nach 110 und jener vom Stand B nach 150 Waschgängen kein Antimon mehr in der Lösung nachweisbar sein. Die aufsummierten Antimonkonzentrationen sind in der Tabelle 5.8 aufgeführt.

<table>
<thead>
<tr>
<th>Tabelle 5.8: Modellrechnung der Antimonauswaschung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemessene Werte</td>
</tr>
<tr>
<td>Antimon (ppm)</td>
</tr>
<tr>
<td>Zihlmatt</td>
</tr>
<tr>
<td>Stand B</td>
</tr>
</tbody>
</table>
Modell 2: Natürlicher Waschprozess

Ein Bezug der durchschnittlichen, jährlichen Niederschlagsmenge mit der Wassermenge, die bei der Kugelfangmaterialwaschung verbraucht wurde, soll folgendes Modell zeigen:

- Wasservolumen pro Probemasse (45 Waschschritte à 0.6 l, Bodenmasse mit 100 g) ergibt 270 l/kg
- Boden (1 m² Fläche und 5 cm Tiefe) bildet ein Volumen von 0.05 m³
- Die Dichte von 5 g/cm³ (aufgrund des hohen Schwermetallgehalts) wird für die Kugelfänge der Anlagen Zihlmatt und Stand B angenommen
- Die durchschnittliche jährliche Niederschlagsmenge von 1'000 mm wird durch Verdunstung auf 600 mm reduziert (entspricht 600 l)

Daraus ergibt sich eine Niederschlagsmenge von 2.4 l pro kg Boden und Jahr. Bei einem verbrauchten Wasservolumen von 270 l pro kg Boden müsste es rund 113 Jahre (jährliche Niederschlagsmenge von 1'000 mm) regnen, damit eine vergleichbare Menge an Antimon mobilisiert wird.

Modell 3: Antimoneintrag in das Grundwasser

\[
\begin{align*}
\text{v}_{GW} &= 6.8 \text{ m/d (homogener GW-Leiter)} \\
\text{h}_{GW} &= 6.8 \text{ m} \\
\text{b}_{GW} &= 100 \text{ m} \\
E &= 0.3 \text{ (Porosität)}
\end{align*}
\]

Abbildung 5.8: Grundwasserkörper bei der Schiessanlage Mettlen, Eschenbach.

Während 113 Jahren wird insgesamt ein Grundwasservolumen von 57.2 Mio m³ kontaminiert. Im Vergleich mit einem natürlichen Waschprozess werden 150 mg Antimon aus einem kg Bodenkörper ausgewaschen (Abbildung 5.9).
Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

Kugelfang
Kontamination: 150 ppm „waschbares“ Sb
\[V = 25 \, \text{m}^3 \]
\[\rho = 5 \, \text{g/cm}^3 \]
\[18.75 \, \text{kg Sb} \]

Grundwasser
\[V = 57.2 \, \text{Mio m}^3 \]
Antimongehalt: 0.33 µgSb/l

Abbildung 5.9: Flussdiagramm von Antimon in den Grundwasserkörper.

Modell 4: Sedimentierte Rückstände der Projektil in den Versuchsflaschen des Batch-
experiments

Nach jeder Messung der Elementkonzentrationen in den Lösungen des Batchversuchs (Schrotkugeln, Projektil), konnte feinkörniges, am Flaschengrund sedimentiertes Material ausgemacht werden (Anhang F, Abbildung F5). Das Material der Probe P4 wurde gesammelt und mittels RFA analysiert (Abbildung 5.10).

Abbildung 5.10: Mittels RFA bestimmte Schwermetallverteilung im Abrieb der Projektil P4.

<table>
<thead>
<tr>
<th>Metall</th>
<th>Gewichtsprozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
<td>0.05%</td>
</tr>
<tr>
<td>Nickel</td>
<td>1%</td>
</tr>
<tr>
<td>Mangan</td>
<td>0.3%</td>
</tr>
<tr>
<td>Antimon</td>
<td>0.25%</td>
</tr>
<tr>
<td>Eisen</td>
<td>94.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metall</th>
<th>Gewichtsprozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
<td>0.05%</td>
</tr>
<tr>
<td>Nickel</td>
<td>1%</td>
</tr>
<tr>
<td>Mangan</td>
<td>0.3%</td>
</tr>
<tr>
<td>Antimon</td>
<td>0.25%</td>
</tr>
<tr>
<td>Eisen</td>
<td>94.9%</td>
</tr>
</tbody>
</table>
Die Verteilung der Schwermetalle des Abriebs ist, von jener der Geschosse (Abbildung 5.11) verschieden.

Abbildung 5.11: Verteilung der Schwermetalle innerhalb der Geschosse (Anhang E).

Die Modellrechnung bezieht sich auf die Frage, wie lange es dauern würde bis die Hälfte der einzelnen Schwermetalle in den Geschossen mit der Zusammensetzung aus Abbildung 5.11 im Abrieb zu finden wären. Der ganze Prozess spielt sich unter den Bedingungen des Batch-versuchs (pH-Wert: 10, Ionenstärke: 0.1 M, Gas: Druckluft) ab. Schon nach drei Jahren wäre der Eisengehalt im Projektil auf 50 % reduziert (Tabelle 5.9). Die vorherrschenden Bedingungen begünstigen den schnelleren Antimoneintrag in die Feinfraktion als dies bei Blei der Fall ist.

Tabelle 5.9: Zeitdauer in Jahren bis sich 50 % der einzelnen Schwermetalle im Abrieb P4 befinden.

<table>
<thead>
<tr>
<th>Schwermetal</th>
<th>Zeitdauer (Jahre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blei</td>
<td>301</td>
</tr>
<tr>
<td>Antimon</td>
<td>83</td>
</tr>
<tr>
<td>Eisen</td>
<td>3</td>
</tr>
<tr>
<td>Kupfer</td>
<td>683</td>
</tr>
<tr>
<td>Nickel</td>
<td>79</td>
</tr>
</tbody>
</table>

Eine Mineralanalyse hat gezeigt, dass Eisen in Form von Eisen(hydr)oxiden (Lepidocrocit) und Hydrocerussit vorliegt und eine genügend grosse Adsorptionsoberfläche für Antimon darstellt. Die sequentielle Extraktion nach Zeien und Brümmer beweist, dass Antimon vor allem an amorphe Eisen(hydr)oxide gebunden vorliegt (Tabelle 5.5). Gelangt Eisen in solch grossen Mengen in den Boden, scheint eine Fixierung von Antimon gesichert.

5.7 Kritische Überprüfung der Resultate

5.7.1 Systematische Fehler

Durch systematische Fehler (Tabelle 5.10) können bei der Spurenanalyse im ppb-Bereich relative Abweichungen von mehreren hundert Prozent entstehen.
Tabelle 5.10: Systematische Fehlerquellen.

<table>
<thead>
<tr>
<th>Verbundverfahren</th>
<th>Systematischer Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenahme</td>
<td>Inhomogenitäten, Blindwerte</td>
</tr>
<tr>
<td>Aufbewahrung</td>
<td>Probenveränderungen, Blindwerte</td>
</tr>
<tr>
<td>Probenvorbereitung</td>
<td>Inhomogenitäten, Blindwerte, Elementverluste</td>
</tr>
<tr>
<td>Einwaage</td>
<td>Wägfehler, Inhomogenitäten</td>
</tr>
<tr>
<td>Lösen</td>
<td>Blindwerte von:</td>
</tr>
<tr>
<td></td>
<td>- Gefäßen</td>
</tr>
<tr>
<td></td>
<td>- Luft</td>
</tr>
<tr>
<td></td>
<td>- Reagenzien</td>
</tr>
<tr>
<td>Aufschluss</td>
<td>Verluste durch:</td>
</tr>
<tr>
<td></td>
<td>- Adsorption</td>
</tr>
<tr>
<td></td>
<td>- Verflüchtigung</td>
</tr>
<tr>
<td>Abtrennung</td>
<td></td>
</tr>
<tr>
<td>Anreicherung</td>
<td></td>
</tr>
<tr>
<td>Bestimmungsmethode</td>
<td>Messfehler, Kalibrierfehler</td>
</tr>
</tbody>
</table>

5.7.2 Messfehler der Bestimmungsmethoden

Atomabsorptionsspektroskopie

Bei der Atomabsorptionsspektroskopie müssen eventuell mehrere Verdünnungen zur Herstellung der Messlösung durchgeführt werden. Dadurch erhöhen sich die relativen Messfehler um über 2% (Heinrichs et al., 1990).

Für die Bestimmung des Antimons im Flammen-AAS wurden bei drei möglichen Resonanzlinien gleicher Empfindlichkeit die 217.6-nm-Linie verwendet. In Anwesenheit von hohen Eisen-, Kupfer- und Bleikonzentrationen zeigen sich auf dieser Linie durch unvollständige Isolierung der von dem zu bestimmenden Element absorbierten Strahlung leichte spektrale Interferenzen.

Röntgenfluoreszenzspektroskopie

Atomspektrometrische Analysen (relativer Analysefehler: 1–2%) zeigen bei der quantitativen Messung von Flüssigkeiten genügend Präzision, während die Bestimmung von Elementen in Feststoffen durch die Matrixempfindlichkeit beeinträchtigt wird (Kläntschi et al., 1996).
5.7.3 Quantitative Fehlerbestimmung

<table>
<thead>
<tr>
<th>Standort</th>
<th>Fraktion 1 Sb (ppm)</th>
<th>Fraktion 2 Sb (ppm)</th>
<th>Fraktion 3 Sb (ppm)</th>
<th>Fraktion 4 Sb (ppm)</th>
<th>Fraktion 5 Sb (ppm)</th>
<th>Fraktion 6 Sb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>40 ± 0.5</td>
<td>346 ± 17</td>
<td>568 ± 16</td>
<td>3926 ± 133</td>
<td>4083 ± 270</td>
<td>645 ± 12</td>
</tr>
<tr>
<td>Stand B</td>
<td>31 ± 0.4</td>
<td>2313 ± 296</td>
<td>219 ± 6</td>
<td>2183 ± 40</td>
<td>9551 ± 1107</td>
<td>306 ± 9</td>
</tr>
</tbody>
</table>

Tabelle 5.12 zeigt die Fehlerintervalle, die aufgrund der Mittelung aus drei Messwerten entstanden sind. Die Spannweite der Abweichungen liegt für die Proben aus Zihlmatt zwischen 4-7 %, jene für Stand B zwischen 2-25 %.

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon (ppm)</th>
<th>Blei (ppm)</th>
<th>Thallium (ppm)</th>
<th>Bismuth (ppm)</th>
<th>Eisen (ppm)</th>
<th>Mangan (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zihlmatt</td>
<td>4883 ± 219</td>
<td>113400 ± 5232</td>
<td>601 ± 21</td>
<td>1122 ± 41</td>
<td>38223 ± 2758</td>
<td>322 ± 14</td>
</tr>
<tr>
<td>Stand B</td>
<td>5559 ± 1103</td>
<td>110883 ± 23513</td>
<td>497 ± 123</td>
<td>1116 ± 256</td>
<td>69560 ± 1430</td>
<td>695 ± 39</td>
</tr>
</tbody>
</table>

5.8 Vergleich mit anderen Arbeiten

Eine Bindung geht Antimon der Kugelfangproben vor allem mit organischen Substanzen und amorphen Eisen(hydr)oxiden ein (Tabelle 5.5). In allen Anlagen befindet sich aufgrund der gleichen Emissionsquelle (Anhang E, Tabelle E1) sehr viel Eisen im Oberboden, das sich als idealer Bindungspartner für Antimon anbietet. In Tiefen von 25-75 cm konnten nur noch geringe Mengen an Antimon gefunden werden. Diese Verteilung im Kugelfang weist auf eine hohe Fixierung hin. Daraus lassen sich die vorhergehenden Vermutungen bestätigen, die dem Antimon eine geringe Mobilität nachsagen.
5.9 Fazit

Aufgrund der Analysedaten und der aufgeführten Erkenntnisse kann davon ausgegangen werden, dass sich noch ein Grossteil des emittierten Antimons im Bereich der Kugelfänge befindet.

Abbildung 5.12: Verteilung des Antimongehalts in der Tiefe des Kugelfangs der Schiessanlage Mettlen (Gresch und Wettstein, 2001).
6 Literaturverzeichnis

Alloway B. J., 1999:

Sorption wässriger Antimon-Spezies an bodenbildenden Festphasen und Remobilisierung durch natürliche Komplexbildner. Dissertation an der Technischen Universität München, Fakultät für Landwirtschaft und Gartenbau. 192 S.

Transformation, fixation und mobilisation of arsenic and antimony in contaminated sediments. Technical Report D-84-1. U.S. Army Waterways Experiment Station, Vicksburg, Miss.

BUWAL. 1997.
Wegleitung Bodenschutz- und Entsorgungsmassnahmen bei 300m-Schiessanlagen. Vollzug Umwelt, 49 S.

BUWAL. 2000.
Voruntersuchung einer Schiessanlage. Vorgehen am Beispiel des belasteten Standorts Grosswiyer, Goldau SZ. Umwelt Materialien, Nr. 124.

Die Belastung von Böden auf Sportschiessplätzen durch Bleischrot und Wurftauben. Umweltbundesamt Berlin, Texte 35/89, 125 S.

Sigg, L. und W. Stumm. 1996.
Aquatische Chemie. Vdf Hochschulverlag, 4. Auflage. 498 S.

Umweltministerium Baden-Württemberg.
Schadstoffbelastung der Böden und des Aufwuchses im Bereich von Wurftauben-Schiessanlagen. Heft 38, 32 S.

Gesetzestexte

AltlV. 1998.

GebrV. 1995.

GG. 1998.

GSchV. 2000.
Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

KsV. 1998.
Verordnung über Materialien und Gegenstände aus Kunststoffe (KsV), SR 817.041.1. Eidg. Drucksachen- und Materialzentrale, Bern

LRV. 1998.
Luftreinhalteleverordnung (LRV), SR 814.318.142.1. Eidg. Drucksachen- und Materialzentrale, Bern

MG. 2000.

VBBö. 1998.

VSS. 1995.

Weitere Literaturquellen

www.usantimony.com/products/ant_oxide.html

54
Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen

Anhang

Anhang A: Untersuchungsflächen
Anhang B: Laborberichte
Anhang C: Messresultate
Anhang D: Daten zu Antimon
Anhang E: Zusammensetzung der wichtigsten Geschosse
Anhang F: Bilder

Diplomarbeit am Institut für terrestrische Ökologie ETH Zürich, Fachbereich Bodenschutz

Bianca Mergenthaler

Thomas Richner

Diplomprofessor:
Prof. Rainer Schulin
Betreuer:
Dr. Gerhard Furrer

Zürich, Januar 2002
Untersuchungsflächen

A1 Die Schiessanlagen Zihlmatt und Stand B, Allmend Luzern

Abbildung A2: Sicht auf die Zielscheiben der Schiessanlagen Zihlmatt (links) und Stand B (rechts). Im Vordergrund ist ein Teil des Zwischengeländes zu sehen.

Abbildung A3: Sicht auf das Zwischengelände und das Schützenhaus der Anlage Zihlmatt. Auf der linken Bildseite befindet sich ein Teil des Schützenhauses der Anlage Stand B.
Abbildung A4: Kugelfang der Schiessanlage Zihlmatt. Probennahme durch die Vertiefungsblockgruppe.

A2 Die Schiessanlage Mettlen bei Eschenbach, Kanton St. Gallen

Abbildung A6: Sicht auf das Zwischengelände und das Schützenhaus der Schiessanlage Mettlen, Eschenbach.

Abbildung A7: Der Kugelfang der Anlage Mettlen ist mit Gummimatten ausgelegt.

A2.1 Grundwasser

A2.2 Schutzzonen

Abbildung A14: Legende zu den Gewässerschutzkarten (AfU St. Gallen)
Gewässerschutzbereiche:
Bereich A: Gebiete mit Grundwasservorkommen, die sich für die Wassergewinnung eignen.
Bereich B: Gebiete mit Grundwasservorkommen, die sich für die Wassergewinnung weniger eignen.
Bereich C: Alle Gebiete, die nicht zu den Zonen A, B oder S gehören.

Grundwasserschutzzonen
Zone S: Grundwasserschutzzonen um Grund- und Quellwasserfassungen.
 - Fassungsbereich S1 (häufig eingezaunt)
 - engere Schutzzone S2 (Bauverbot)
 - weitere Schutzzone S3 (Pufferzone)

Die Schiessanlage Mettlen liegt im Gewässerschutzbereich A. Das Zwischengelände liegt teilweise in den Grundwasserschutzzonen S2 und S3.
A3 Die Schiessanlage Giessen bei Benken, Kanton St. Gallen

A3.1 Grundwasser

Abbildung A15: Grundwasserkarte, Massstab 1:10'000, der 300 Meter Schiessanlage Giessen, Benken im Kanton St. Gallen (AfU St. Gallen).
A3.2 Schutzzonen

Anhang B

Laborberichte

B1 Bodencharakterisierung...B2
B2 Kugelfangmaterial- und Geschosswaschung..B2
B3 Sequentielle Extraktion...B3
B4 Oxidation im Batchversuch ...B4
B5 Röntgenfluoreszenzspektroskopie..B4
B6 Antimonspezifizierung mit Hydridtechnik und AtomfluoreszenzspektroskopieB5
Laborberichte

B1 Bodencharakterisierung

Die Böden der Schiessanlagen Zihlmat, Stand B in Luzern und Mettlen in Eschenbach sowie Giessen bei Benken wurden auf ihre Schwermetallgehalte sowie anderer Bodenparameter hin untersucht.

Korngrößenanlayse

Die abgewogenen, mit H₂O₂ oxidierten Proben wurden in 0.2%-ige Calgonlösung mit Ultraschall dispergiert und in einen mit Wasser gefüllten, geschüttelten Stehzylinder gegeben. Mit der Gleichung nach Stokes wurde die Zeit bestimmt, nach welcher mit der Pipette eine Probe entnommen werden musste, um die gewünschte Korngrösse zu erfassen.

pH-Bestimmung

Der pH-Wert wurde mittels pH-Glastelektrode gemessen. Eine 0.01 M Calciumchlorid-Lösung (CaCl₂) wurde als Elektrolytlösung verwendet. Im Verhältnis 2:5 wird Boden damit in Zentrifugenröhrchen gemischt und dreimal im Abstand von 10 Minuten geschüttelt. Nach weiteren 10 Minuten wird in der obenstehenden flüssigen Phase der pH-Wert gemessen.

Kalkgehalt

Die quantitative Bestimmung der Carbonate erfolgte nach der idealen Gasgleichung mit der Erfassung der Freisetzung von CO₂ nach Zugabe von 10%iger Salzsäure (HCl).

Organische Substanzen

Die resultierende Gewichtsdifferenz der mit Wasserstoffperoxid (H₂O₂) oxidierten organischen Anteile der Bodenproben zu unbehandelten Proben diente als Anteil organischer Substanz.

Totale und lösliche Schwermetallgehalte (Antimon und Blei)

- Salpetersäure löste den grössten Teil der Schwermetalle von den Bodenpartikeln, so dass die quasi-totalen Gehalte bestimmt werden konnten.
- Mit Natriumnitrat wurde der mobile, für Pflanzen verfügbare Anteil der Schwermetalle gemessen.

B2 Kugelfangmaterial- und Geschosswaschung

Die bei 40°C getrockneten und gesiebten (Siebdurchmesser: 2 mm) Kugelfangproben der Schiessanlagen Zihlmat und Stand B wurden auf je 8 Polyethylenflaschen (1'000 ml) verteilt. 100 g Boden wurden jeweils mit 600 ml Nanopurwasser gemischt. Die am Standort gesammelten Projektile (ca. 1'000 g) wurden im Verhältnis 1:3 mit Wasser ebenfalls in 8 Polyethylenflaschen gegeben. Die Schrotkugeln (aus ungebrauchten, neuen Patronen) wurden analog den Kugelfangproben im Feststoff/Lösungs-Verhältnis 1:6 gemischt.

Nach einem halbstündigen Schüttelprozess im Überkopfschüttler mit 30 U/min bei Zimmertemperatur wurden die Lösungen anschliessend 15 min bei 2'500 U/min zentrifugiert und mem branfiltriert (Filterdurchmesser: 0.45 µm). Die Extrakte wurden (nicht angesäuert) im AAS auf ihre Elementkonzentrationen (Antimon, Blei, Eisen, Mangan, Bismuth und Thallium) untersucht.
Der Waschvorgang wurde für die Geschosse 10 und für die Bodenproben 45 Mal wiederholt, wobei das Nanopurwasser jedes Mal erneuert wurde.
An der EAWAG konnte mit den Kugelfangproben der Anlagen Mettlen, Zihlmatt und Stand B ein ähnlicher Waschversuch durchgeführt werden. Die Proben (Siebgrösse: 0.5 mm) wurden in verschiedenem Verhältnis mit Nanopurwasser gemischt und während 24 Stunden geschüttelt. Die Suspension wurde anschliessend filtriert und die Antimonkonzentration in der Lösung gemessen. Neben dem totalen Gehalt konnte mit der Hydridtechnik und Atomfluoreszenz das dreiwertige Antimon erfasst werden.

B3 Sequentielle Extraktion

Die erhaltenen Eluate wurden dann im AAS auf ihren Gehalt an Antimon, Blei, Eisen, Mangan, Thallium und Bismuth untersucht.

Tabelle B1: Bindungsformen und die zugehörigen Extraktionslösungen der sequentiellen Extraktion (Zeien und Brümmer, 1989).

<table>
<thead>
<tr>
<th>Fraktion</th>
<th>Bindungsformen</th>
<th>Extraktionsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mobile Fraktion</td>
<td>Ammoniumnitrat, 1 M NH₄NO₃, 2 g/50 ml Eluent, 24 h im Überkopfschüttler</td>
<td></td>
</tr>
<tr>
<td>2. Leicht nachlieferbare Fraktion</td>
<td>Ammoniumacetat, 1 M NH₄OAc, pH 6.0, 2 g/50 ml Eluent, 24 h Überkopfschüttler</td>
<td></td>
</tr>
<tr>
<td>3. Mn-Oxid gebundene Fraktion</td>
<td>Hydroxylammoniumchlorid und Ammoniumacetat, 0,1 M NH₂OH-HCl und 1 M NH₄OAc, pH 6,0 bzw. 5,5, 2 g/50 ml Eluent, 30 min Überkopfschüttler</td>
<td></td>
</tr>
<tr>
<td>4. Organisch gebundene Fraktion</td>
<td>Titriplex, 0,025 M NH₄-EDTA, pH 4,6, 2 g/50 ml Eluent, 90 min Überkopfschüttler</td>
<td></td>
</tr>
<tr>
<td>5. Amorphe Fe-Hydroxide</td>
<td>Ammoniumoxalat, 0,2 M NH₂-Oxalat, pH 3,25, 2 g/50 ml Eluent, 4 h im Dunkeln im Überkopfschüttler</td>
<td></td>
</tr>
<tr>
<td>6. Kristalline Fe-Hydroxide</td>
<td>0,1 M Ascorbinsäure, pH 3,25, 2 g/50 ml Eluent, 30 min Wasserbad bei 96°C</td>
<td></td>
</tr>
<tr>
<td>7. Residual gebundene Fraktion</td>
<td>Konzentrierte Salpetersäure (HNO₃) und Perchlorsäure (HClO₄), 2 g/HCl: Salpetersäure (3:1) 20 ml, 2 h Rückflusskochen</td>
<td></td>
</tr>
</tbody>
</table>

Anhang C – Mobilität und geochemisches Verhalten von Antimon im Boden von Schiessanlagen
B4 Oxidation im Batchversuch

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>pH-Wert</th>
<th>Ionenstärke</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>P1/K1/S1/Z1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P2/K2/S2/Z2</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P3/K3/S3/Z3</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P4/K4/S4/Z4</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P5/K5/S5/Z5</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>P6/K6/S6/Z6</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P7/K7/S7/Z7</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P8/K8/S8/Z8</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

B5 Röntgenfluoreszenzspektroskopie

Folgende Bodenproben und Proben des Geschossabriebs wurden röntgenfluoreszenz-spektroskopisch auf ihre Elementgehalte hin untersucht:

- Getrockneter, gesiebter (Siebdurchmesser: 2 mm) Boden der vier Anlagen zu Beginn der Versuche
- Boden der vier Anlagen nach sequentieller Extraktion
- Getrockneter Boden der Anlagen Zihlma tt und Stand B nach 45 Waschschritten
- Getrockneter Boden der Anlagen Zihlma tt und Stand B nach 45 Waschschritten und nach sequentieller Extraktion
- Getrockneter Boden der Anlagen Zihlmatt und Stand B nach 45 Waschschritten, nach sequentieller Extraktion und abgeschlossenem Batchversuch
- Getrockneter Geschossabrieb nach 10 Waschschritten
- Abrieb im Verlauf des Batchversuchs (Projektilen und Schrotkugeln)

B6 Antimonspezifizierung mit Hydridtechnik und Atomfluoreszenzspektroskopie

Anhang C

Messresultate

C1 Bodencharakterisierung ... C2
C2 Kugelfangmaterial- und Geschosswaschung C2
C3 Analyse der Bindungsformen ... C3
C4 Oxidation im Batchversuch .. C4
C5 Schwermetallgehalte ... C5
C6 Korrelationen .. C6
C7 Modellrechnung ... C7
C8 Verteilung von Antimon in die Tiefe des Kugelfangs C8
Messresultate

C1 Bodencharakterisierung

Tabelle C1: Bodencharakterisierung (Teil 1).

<table>
<thead>
<tr>
<th>Standort</th>
<th>Antimon</th>
<th>Blei</th>
<th>pH</th>
<th>Kalkgehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td>gelöst</td>
<td>total</td>
<td>gelöst</td>
</tr>
<tr>
<td>Giessen</td>
<td>203</td>
<td>3</td>
<td>12200</td>
<td>1</td>
</tr>
<tr>
<td>Mettlen</td>
<td>253</td>
<td>6</td>
<td>285000</td>
<td>1</td>
</tr>
<tr>
<td>Stand B</td>
<td>273</td>
<td>3</td>
<td>196800</td>
<td>2</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>2923</td>
<td>8</td>
<td>230733</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle C1: Bodencharakterisierung (Teil 2).

<table>
<thead>
<tr>
<th>Standort</th>
<th>organischer Gehalt</th>
<th>Korngrössenverteilung</th>
<th>Bodentyp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Gew.%)</td>
<td>(Gew.%)</td>
<td>Gemäss Körnungsdreieck nach Gisi et al. (1997)</td>
</tr>
<tr>
<td>Sand</td>
<td>Schluff</td>
<td>Ton</td>
<td></td>
</tr>
<tr>
<td>Giessen</td>
<td>8</td>
<td>22</td>
<td>39</td>
</tr>
<tr>
<td>Mettlen</td>
<td>5</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Stand B</td>
<td>6</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>26</td>
<td>14</td>
<td>25</td>
</tr>
</tbody>
</table>

C2 Kugelfangmaterial- und Geschosswaschung

Abbildung C1: Auswaschung: Bleikonzentrationen.
Tabelle C2: Sequentielle Extraktion: Schwermetallkonzentrationen vor der Auswaschung.

<table>
<thead>
<tr>
<th>Metallspezies</th>
<th>1. Fraktion (ppm)</th>
<th>2. Fraktion (ppm)</th>
<th>3. Fraktion (ppm)</th>
<th>4. Fraktion (ppm)</th>
<th>5. Fraktion (ppm)</th>
<th>6. Fraktion (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mettlen</td>
<td>74</td>
<td>331</td>
<td>494</td>
<td>3897</td>
<td>5470</td>
<td>454</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>46</td>
<td>539</td>
<td>662</td>
<td>4063</td>
<td>3379</td>
<td>557</td>
</tr>
<tr>
<td>Giessen</td>
<td>19</td>
<td>106</td>
<td>59</td>
<td>63</td>
<td>105</td>
<td>18</td>
</tr>
<tr>
<td>Stand B</td>
<td>24</td>
<td>444</td>
<td>458</td>
<td>3152</td>
<td>4441</td>
<td>427</td>
</tr>
<tr>
<td>Blei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mettlen</td>
<td>108</td>
<td>161000</td>
<td>77400</td>
<td>83838</td>
<td>1738</td>
<td>775</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>873</td>
<td>147163</td>
<td>36325</td>
<td>51538</td>
<td>2113</td>
<td>838</td>
</tr>
<tr>
<td>Giessen</td>
<td>12</td>
<td>7800</td>
<td>650</td>
<td>3950</td>
<td>738</td>
<td>263</td>
</tr>
<tr>
<td>Stand B</td>
<td>675</td>
<td>204350</td>
<td>33775</td>
<td>31763</td>
<td>1000</td>
<td>563</td>
</tr>
<tr>
<td>Eisen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mettlen</td>
<td>2</td>
<td>143</td>
<td>476</td>
<td>4271</td>
<td>13758</td>
<td>12479</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>2</td>
<td>33</td>
<td>163</td>
<td>4939</td>
<td>11462</td>
<td>838</td>
</tr>
<tr>
<td>Giessen</td>
<td>2</td>
<td>8</td>
<td>89</td>
<td>811</td>
<td>3891</td>
<td>6150</td>
</tr>
<tr>
<td>Stand B</td>
<td>1</td>
<td>7</td>
<td>271</td>
<td>4822</td>
<td>34793</td>
<td>11311</td>
</tr>
<tr>
<td>Mangan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mettlen</td>
<td>106</td>
<td>114</td>
<td>30</td>
<td>43</td>
<td>72</td>
<td>33</td>
</tr>
<tr>
<td>Zihlmatt</td>
<td>40</td>
<td>74</td>
<td>53</td>
<td>21</td>
<td>2113</td>
<td>838</td>
</tr>
<tr>
<td>Giessen</td>
<td>27</td>
<td>230</td>
<td>179</td>
<td>27</td>
<td>77</td>
<td>30</td>
</tr>
<tr>
<td>Stand B</td>
<td>58</td>
<td>120</td>
<td>79</td>
<td>27</td>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>
C4 Oxidation im Batchversuch

Tabelle C3: Batchversuch: Antimonkonzentrationen aus den Proben mit Projektilen.

<table>
<thead>
<tr>
<th>Zeitspanne: Tage</th>
<th>1</th>
<th>3</th>
<th>9</th>
<th>14</th>
<th>17</th>
<th>21</th>
<th>26</th>
<th>31</th>
<th>32</th>
<th>38</th>
<th>42</th>
<th>48</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>P1</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>0.9</td>
<td>1.5</td>
<td>2.7</td>
<td>2.3</td>
<td>-</td>
<td>1.7</td>
<td>0.8</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>P2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>2.5</td>
<td>2.2</td>
<td>-</td>
<td>1.9</td>
<td>1.3</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>P3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>3.2</td>
<td>3.5</td>
<td>-</td>
<td>1.5</td>
<td>1.1</td>
<td>3.0</td>
<td>0.7</td>
</tr>
<tr>
<td>P4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.1</td>
<td>1.0</td>
<td>0.8</td>
<td>1.3</td>
<td>2.5</td>
<td>2.1</td>
<td>-</td>
<td>1.9</td>
<td>1.5</td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>P5</td>
<td>0.7</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.3</td>
<td>1.5</td>
<td>2.5</td>
<td>2.8</td>
<td>1.8</td>
<td>1.6</td>
<td>0.7</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>P6</td>
<td>0.7</td>
<td>1.2</td>
<td>1.0</td>
<td>0.9</td>
<td>0.7</td>
<td>1.4</td>
<td>2.6</td>
<td>4.3</td>
<td>2.0</td>
<td>1.7</td>
<td>0.6</td>
<td>2.2</td>
<td>0.7</td>
</tr>
<tr>
<td>P7</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.9</td>
<td>1.3</td>
<td>2.2</td>
<td>2.9</td>
<td>-</td>
<td>2.6</td>
<td>3.6</td>
<td>1.7</td>
<td>3.4</td>
<td>1.9</td>
</tr>
<tr>
<td>P8</td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
<td>1.3</td>
<td>1.3</td>
<td>1.9</td>
<td>3.2</td>
<td>-</td>
<td>3.0</td>
<td>4.1</td>
<td>0.0</td>
<td>2.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Mittelwert Projektile

| | 0.9 | 1.1 | 0.9 | 1.2 | 0.9 | 1.5 | 2.7 | 2.9 | 2.3 | 2.2 | 1.0 | 3.0 | 1.2 |

Tabelle C4: Batchversuch: Antimonkonzentration aus den Proben mit Schrotkugeln.

<table>
<thead>
<tr>
<th>Zeitspanne: Tage</th>
<th>1</th>
<th>3</th>
<th>9</th>
<th>14</th>
<th>17</th>
<th>21</th>
<th>26</th>
<th>31</th>
<th>32</th>
<th>38</th>
<th>42</th>
<th>48</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>K1</td>
<td>3.2</td>
<td>3.0</td>
<td>1.8</td>
<td>0.6</td>
<td>0.8</td>
<td>4.8</td>
<td>7.0</td>
<td>6.6</td>
<td>-</td>
<td>1.7</td>
<td>5.8</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>3.5</td>
<td>3.8</td>
<td>2.2</td>
<td>10.5</td>
<td>10.2</td>
<td>11.8</td>
<td>12.7</td>
<td>9.9</td>
<td>-</td>
<td>0.6</td>
<td>5.9</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>2.7</td>
<td>4.6</td>
<td>2.7</td>
<td>7.3</td>
<td>12.2</td>
<td>12.8</td>
<td>5.5</td>
<td>4.6</td>
<td>-</td>
<td>3.7</td>
<td>0.9</td>
<td>5.7</td>
<td>0.3</td>
</tr>
<tr>
<td>K4</td>
<td>9.3</td>
<td>18.4</td>
<td>28.0</td>
<td>14.9</td>
<td>9.7</td>
<td>11.8</td>
<td>14.2</td>
<td>12.5</td>
<td>-</td>
<td>15.5</td>
<td>2.0</td>
<td>7.1</td>
<td>3.0</td>
</tr>
<tr>
<td>K5</td>
<td>2.2</td>
<td>1.4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.0</td>
<td>5.0</td>
<td>8.0</td>
<td>-</td>
<td>6.8</td>
<td>4.7</td>
<td>2.2</td>
<td>6.3</td>
<td>-</td>
</tr>
<tr>
<td>K6</td>
<td>2.2</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
<td>1.8</td>
<td>2.7</td>
<td>6.2</td>
<td>-</td>
<td>4.5</td>
<td>4.4</td>
<td>2.0</td>
<td>6.9</td>
<td>-</td>
</tr>
<tr>
<td>K7</td>
<td>2.8</td>
<td>1.6</td>
<td>1.8</td>
<td>1.1</td>
<td>2.0</td>
<td>1.8</td>
<td>5.3</td>
<td>-</td>
<td>4.1</td>
<td>3.0</td>
<td>0.5</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>K8</td>
<td>2.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.5</td>
<td>7.3</td>
<td>5.7</td>
<td>5.9</td>
<td>-</td>
<td>5.3</td>
<td>7.3</td>
<td>2.2</td>
<td>4.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Mittelwert Kugeln

| | 3.5 | 4.4 | 5.1 | 4.9 | 5.6 | 7.0 | 8.1 | 8.4 | 5.2 | 6.4 | 1.5 | 5.6 | 1.8 |

Tabelle C5: Batchversuch: Antimonkonzentrationen aus den Kugelfangproben Zihlmatt.

<table>
<thead>
<tr>
<th>Zeitspanne: Tage</th>
<th>4</th>
<th>7</th>
<th>11</th>
<th>17</th>
<th>23</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>Z1</td>
<td>229</td>
<td>252</td>
<td>266</td>
<td>296</td>
<td>317</td>
<td>317</td>
</tr>
<tr>
<td>Z2</td>
<td>254</td>
<td>271</td>
<td>286</td>
<td>316</td>
<td>338</td>
<td>338</td>
</tr>
<tr>
<td>Z3</td>
<td>256</td>
<td>280</td>
<td>298</td>
<td>333</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>Z4</td>
<td>231</td>
<td>249</td>
<td>259</td>
<td>289</td>
<td>312</td>
<td>312</td>
</tr>
<tr>
<td>Z5</td>
<td>236</td>
<td>251</td>
<td>260</td>
<td>287</td>
<td>287</td>
<td>287</td>
</tr>
<tr>
<td>Z6</td>
<td>256</td>
<td>272</td>
<td>283</td>
<td>311</td>
<td>311</td>
<td>311</td>
</tr>
<tr>
<td>Z7</td>
<td>250</td>
<td>274</td>
<td>290</td>
<td>327</td>
<td>327</td>
<td>327</td>
</tr>
<tr>
<td>Z8</td>
<td>211</td>
<td>227</td>
<td>238</td>
<td>268</td>
<td>268</td>
<td>268</td>
</tr>
</tbody>
</table>

Mittelwert Zihlmatt

| | 240 | 260 | 272 | 303 | 315 | 315 |
Tabelle C6: Batchversuch: Antimonkonzentrationen aus den Kugelfangproben Stand B.

<table>
<thead>
<tr>
<th>Zeitspanne: Tage</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>14</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>S1</td>
<td>109</td>
<td>148</td>
<td>-</td>
<td>175</td>
<td>193</td>
<td>206</td>
<td>236</td>
<td>236</td>
<td>236</td>
</tr>
<tr>
<td>S2</td>
<td>160</td>
<td>186</td>
<td>-</td>
<td>211</td>
<td>230</td>
<td>279</td>
<td>403</td>
<td>403</td>
<td>403</td>
</tr>
<tr>
<td>S3</td>
<td>106</td>
<td>137</td>
<td>-</td>
<td>158</td>
<td>173</td>
<td>180</td>
<td>194</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>S4</td>
<td>101</td>
<td>127</td>
<td>-</td>
<td>155</td>
<td>172</td>
<td>184</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>S5</td>
<td>69</td>
<td>91</td>
<td>-</td>
<td>111</td>
<td>131</td>
<td>145</td>
<td>167</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>S6</td>
<td>119</td>
<td>-</td>
<td>140</td>
<td>165</td>
<td>187</td>
<td>264</td>
<td>367</td>
<td>367</td>
<td>374</td>
</tr>
<tr>
<td>S7</td>
<td>100</td>
<td>-</td>
<td>131</td>
<td>155</td>
<td>168</td>
<td>175</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>S8</td>
<td>82</td>
<td>-</td>
<td>112</td>
<td>145</td>
<td>166</td>
<td>183</td>
<td>209</td>
<td>209</td>
<td>211</td>
</tr>
<tr>
<td>Mittelwert Stand B</td>
<td>106</td>
<td>150</td>
<td>119</td>
<td>159</td>
<td>177</td>
<td>202</td>
<td>246</td>
<td>246</td>
<td>247</td>
</tr>
</tbody>
</table>

C5 Schwermetallgehalte

Vergleich der Totalaufschlüsse

Tabelle C7: Totale Antimonkonzentrationen der Kugelfangproben im Vergleich der Analysemethoden. Zusätzlich sind die Konzentrationen des Antimons aus der Waschung aufgeführt.

<table>
<thead>
<tr>
<th>Beprobungsstandort</th>
<th>RFA</th>
<th>Aufschluss mit HNO3</th>
<th>Sequentielle Extraktion (6 Fraktionen)</th>
<th>Auswaschung nach 45 Schritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
<td>Sb (ppm)</td>
</tr>
<tr>
<td>Giessen</td>
<td>299</td>
<td>203</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>Mettlen</td>
<td>9806</td>
<td>253</td>
<td>10718</td>
<td></td>
</tr>
<tr>
<td>Zihlmat</td>
<td>6364</td>
<td>2'923</td>
<td>9246</td>
<td>155</td>
</tr>
<tr>
<td>Stand B</td>
<td>7893</td>
<td>273</td>
<td>8946</td>
<td>152</td>
</tr>
</tbody>
</table>
C6 Korrelationen

C7 Modellrechnung

Abbildung C4: Modell 1: Ausgewaschene Antimongehalte der Kugelfangprobe Stand B.

Abbildung C5: Modell 1: Ausgewaschene Antimongehalte der Kugelfangprobe Zihlmatt.
C8 Verteilung von Antimon in die Tiefe des Kugelfangs

Abbildung C6: Verteilung des Antimongehalts in der Tiefe des Kugelfangs der Schiessanlage Zihlmatt.

Abbildung C7: Verteilung des Antimongehalts in der Tiefe des Kugelfangs der Schiessanlage Stand B.
Anhang D

Daten zu Antimon

D1 Antimon in der Natur ... 2
D2 Dreiwertiges Antimon in Abhängigkeit des pH-Wertes (in Lösung) 3
D3 Grenzwerte in der Bundesrepublik Deutschland 3
Daten zu Antimon

D1 Antimon in der Natur

Abbildung D1: Antimonspezies in der Natur (Boyle et al., 1983).
D2 Dreiwertiges Antimon in Abhängigkeit des pH-Wertes (in Lösung)

Abbildung D2: Konzentrationen der Hydrolyseprodukte dreiwertiger Antimonspezies und totales Sb (III) (fette Kurve) im Gleichgewicht mit Sb$_2$O$_3$ (Ionenstärke 1M, bei T = 25°C; Bess et al., 1976).

D3 Grenzwerte in der Bundesrepublik Deutschland

Für die verschiedenen Medien gibt es in Deutschland eine Vielzahl von Richt- und Grenzwerten für Antimon. In der nachfolgenden Tabelle D2 sind einige Hinweise zusammengefasst (Blay, 1999).

Tabelle D1: Auswahl einiger Grenz-, Richt- und Stufenwerte für Antimonbelastungen verschiedener Medien (Blay, 1999).

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Sb</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng/m3</td>
<td>0.03</td>
<td>(Jahresmittel) Luftqualitätsstandard zum Schutz des Menschen</td>
</tr>
<tr>
<td>µg/m2 d</td>
<td>2</td>
<td>(Jahresmittel) Luftqualitätsstandard zur Umweltvorsorge zum Schutz der Böden</td>
</tr>
<tr>
<td>mg/m3</td>
<td>0.05</td>
<td>Emissionsgrenzwerte Abfallverbrennungsanlagen in seinen Verbindungen als Sb</td>
</tr>
<tr>
<td>(RW 1) mg/kg / µg/l</td>
<td>30 / 10 (A)</td>
<td>Gültig für den Einbau von Boden, Bauschutt, Strassenabfall etc. in Deponien der Z-Klassen. Angaben für Gesamtgehalte und wässrige Eluate.</td>
</tr>
<tr>
<td>(RW 2) mg/kg / µg/l</td>
<td>150 / 40 (A)</td>
<td>(A): nur bei Verdacht</td>
</tr>
<tr>
<td>(Stufe-1-Wert) mg/l (Stufe-2-Wert) mg/l</td>
<td>10 / 40</td>
<td>Stufenwerte für Leitparameter Trinkwasserverordnung</td>
</tr>
<tr>
<td>(Stufe-1-Wert) mg/l (Stufe-2-Wert) mg/l</td>
<td>5 / 20</td>
<td>Stufenweise Leitparameter für Grund- und Sickerwasser des Merkblattes des Bayerischen Landesamtes für Wasserwirtschaft</td>
</tr>
<tr>
<td>(Stufe-1-Wert) mg/kg (Stufe-2-Wert) mg/kg</td>
<td>5 / 20</td>
<td>Stufenweise Emissionsabschätzung bei Boden- und Bodenluftbelastungen des Merkblattes des Bayerischen Landesamtes für Wasserwirtschaft</td>
</tr>
<tr>
<td>mg/l</td>
<td>0.3</td>
<td>Rahmen-Abwasser-Verwaltungsvorschrift</td>
</tr>
</tbody>
</table>
Zusammensetzung der wichtigsten Geschosse

E1 Geschosse GP 11 und Gw Pat 90
E2 Schrotkugeln
Zusammensetzung der wichtigsten Geschosse

E1 Geschosse GP 11 und Gw Pat 90

Tabelle E1: Geschosse GP 11 und Gw Pat 90 (BUWAL, 1997).

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>GP 11</th>
<th>Gw Pat 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaliber</td>
<td>7.5 mm</td>
<td>5.6 mm</td>
</tr>
<tr>
<td>Gesamtgewicht (100%)</td>
<td>11.3 g</td>
<td>4.1 g</td>
</tr>
<tr>
<td>Gewicht des Kerns (75%)</td>
<td>8.55 g</td>
<td>3.05 g</td>
</tr>
<tr>
<td>(Pb: 8.38 g, Sb: 0.17 g)</td>
<td></td>
<td>(Pb: 2.99 g, Sb: 0.06 g)</td>
</tr>
<tr>
<td>Gewicht des Mantels (Fe mit 22%)</td>
<td>2.45 g</td>
<td>0.93 g</td>
</tr>
<tr>
<td>Gewicht der Plakierung (3%)</td>
<td>0.3 g</td>
<td>0.12 g</td>
</tr>
<tr>
<td>(Cu: 0.26 g, Ni: 0.04 g)</td>
<td></td>
<td>(Cu: 0.1 g, Ni: 0.02 g)</td>
</tr>
</tbody>
</table>

Tabelle E2: Elemente in den Geschossen GP 11 und Gw Pat 90 (BUWAL, 1997).

<table>
<thead>
<tr>
<th>Elemente</th>
<th>GP 11</th>
<th>Gw Pat 90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g)</td>
<td>(Gew.%)</td>
</tr>
<tr>
<td>Pb</td>
<td>8.38</td>
<td>74.2</td>
</tr>
<tr>
<td>Fe</td>
<td>2.45</td>
<td>21.7</td>
</tr>
<tr>
<td>Cu</td>
<td>0.26</td>
<td>2.3</td>
</tr>
<tr>
<td>Sb</td>
<td>0.17</td>
<td>1.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.04</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>11.30</td>
<td>100.0</td>
</tr>
</tbody>
</table>

E2 Schrotkugeln

Tabelle E3: Bleischrot (Umweltministerium Baden-Württemberg).

<table>
<thead>
<tr>
<th>Element</th>
<th>(Gew.%)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>92</td>
<td>25.72</td>
</tr>
<tr>
<td>Sb</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>As</td>
<td>0.6</td>
<td>0.17</td>
</tr>
<tr>
<td>Cu</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Rest</td>
<td>5.38</td>
<td>1.49</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>
Anhang F

Bilder

F1 Sequentielle Extraktion ...F2
F2 Kaskade des Batchversuchs ..F2
F3 Totalansicht der Projektile ...F3
F4 Totalansicht der Schrotkugeln ...F3
F5 Ablagerungen aus den Batchversuchen ..F4
Bilder

F1 Sequentielle Extraktion

Abbildung F1: Sequentielle Extraktion: Lösungen.

F2 Kaskade des Batchversuchs

Abbildung F2: Batchversuch: Mit Druckluft begaste Kaskade.
F3 Totalansicht der Projektil

Abbildung F3: Batchversuch: Projektil.

F4 Totalansicht der Schrotkugeln

Abbildung F4: Batchversuch: Bleischrotkugeln.
F5 Ablagerungen aus den Batchversuchen

Abbildung F5: Batchversuch: Getrocknete Rückstände der Projektil P1, P2 und P4.