mzuriCh ETH Library

Two linear time algorithms for MST
on minor closed graph classes

Report

Author(s):
Mare$§, Martin

Publication date:
2002

Permanent link:
https://doi.org/10.3929/ethz-a-004354035

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
FIM's preprints

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004354035
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Two Linear Time Algorithms for MST on Minor Closed Graph Classes
Martin Mares*

Department of Applied Mathematics
and Institute for Theoretical Computer Science (ITT)
Charles University
Malostranské nam. 25, 118 00 Praha 1, Czech Republic

E-mail: mares@kam.mff.cuni.cz

ABSTRACT: This article presents two simple deterministic algorithms for finding the
Minimum Spanning Tree in O(|V| + |E|) time for any proper class of graphs closed
on graph minors, which includes planar graphs and graphs of bounded genus. Both
algorithms require no a priori knowledge of the structure of the class except for its
density; edge weights are only compared and no random access to data is needed.

1. INTRODUCTION: THE MST PROBLEM

The problem of finding a minimum spanning tree of a weighted undirected graph is one of the
most well-known algorithmic problems of combinatorial optimization. Since the first solution by
Boruvka [1] in 1926 (see [9] for an English translation), a plethora of increasingly more efficient
algorithms has been developed (for the full story, see [7] and [4]).

Assuming that edge weights are taken from an arbitrary ordered set (the only operation defined
on them is comparision), the current speed record is held by the algorithms of Chazelle 2] and Pettie
[10] which achieve time complexity O(m - a(m,n)) where n and m are the number of vertices and
edges of the graph and a(m,n) is an inverse of the Ackermann’s function. If the edge weights are
integers whose bits can be manipulated in constant time, there exists a MST algorithm by Fredman
and Willard [3] running in linear time on an unit-cost RAM. Also, there is a randomized algorithm
with expected linear tme for the general case due to Karger et al. [5].

Recently, Pettie and Ramachandran [11] have shown an algorithm for the pointer machine
with running time bound by the size of the optimum MST decision tree. Since the decision-tree
complexity is an obvious lower bound for the algorithmic time complexity of the problem, this
algorithm is optimal up to a multiplicative constant and that no random access is needed to achieve
optimality. However, the decision-tree complexity of the MST is still unknown and no non-trivial
lower bounds are known, hence it’s still open whether the MST can be found in linear time or not.

Although for general graphs it’s still unresolved, there are several special cases where linear-
time algorithms are known to exist. When the graph is sufficiently dense, meaning that it has at
least 7 - log® n edges for some k, Tarjan’s O(m - 3(m,n)) algorithm [12] performs linearly. On the
other end of the spectrum, the exist several O(m + n) algorithms for planar graphs (e.g., by Matsui
[6]), so the only problematic cases seem to be low density graphs with no special structure which
could be taken advantage of.

This article narrows the gap by showing two MST algorithms which run in linear time for
any proper class of graphs closed on graph minors which includes planar graphs and graphs of

* Partially supported by the Project LNO0OA056 of the Czech Ministry of Education and by the
Forschungsinstitut fiir Mathematik, ETH Ziirich, Switzerland
! log(k) denotes binary logarithm iterated £ times

1

bounded genus. We base our time bounds on density of minor closed classes (see e.g. Nesetfil and
De Mendez [8]). Our algorithms don’t require any specific knowledge of class structure except for
class density needed by the second algorithm. This is an obvious improvement over the previous
results for planar graphs which require construction of a planar embedding.

2. MINOR CLOSED CLASSES

We’ll need a definition of a graph minor and several statements about density of minor closed
classes of graphs.

Definition. Graph H is a minor of graph GG if it can be obtained from GG by a sequence of edge
deletions and contractions.

Definition. Let C be a class of graphs. We’ll define its edge density o(C) to be an infimum of all o
such that |E(G)| < o+ |V(G)| holds for any G € C.

Theorem 1 (This seems to be well known, see e.g. Theorem 6.1 in [8]). A minor closed class C
has finite edge density iff C is a proper class, i.e. different from the class of all graphs and the empty
class.

Lemma 1 (Density Lemma). Let C be a graph class with density ¢ and G € C a graph with
n vertices. Then at least n/2 vertices of G have degree at most 4p.

Proof: Assume the contrary: let there be at least n/2 vertices with degree greater than 4p. Then
>, deg(v) > n/2-4p = 2on which is in contradiction with the number of edges being < pn. (The
proof can also be viewed probabilistically: let X be degree of a vertex of G chosen uniformly at
random. Then EX < 2p, hence by the Markov’s inequality Pr[X > 49| < 1/2, so for at least n/2
vertices deg(v) < 4p.)

For planar graphs, the bound can be easily tightened:

Lemma 2 (Density Lemma for Planar Graphs). Let G be a planar graph with n vertices. Then
at least n/2 vertices of v have degree at most 8.

Proof: It suffices to show that the lemma holds for triangulations (if there are any edges missing,
the situation can only get better) with at least 3 vertices. Since G is planar, > deg(v) < 6n. The
numbers d(v) := deg(v) — 3 are non-negative and) d(v) < 3n, hence by the same argument as in
the previous proof, for at least n/2 vertices v it holds that d(v) < 6, hence deg(v) < 8.

3. A META-ALGORITHM

Our two algorithms are variations on the original algorithm by Boruvka, but instead of growing
a forest of MST subtrees by joining them by edges newly proven to be in the MST, we keep
each subtree contracted to a single vertex. Both algorithms can be considered incarnations of the
following “meta-algorithm”:
1. Start with the input graph.
Find some edges which are part of the MST of the current graph.
Contract the graph along these edges.

Clean up the graph (to be explained in a moment).

AR

Repeat steps 2—4 until there are no edges left.

2

This procedure is obviously correct (due to it stopping after a finite number of contractions and
the well-known fact that given any subset A of MST edges, the rest of the MST are just edges of a
MST of the same graph with edges of A contracted). However, we need to decide on how will we
choose the edges to be contracted and how to represent the graph in order to perform searching for
these edges and all the contractions efficiently.

We’d like to make use of low density of proper minor closed classes of graphs, but unfortunately
it isn’t as simple as it looks, because edge contractions produce loops and parallel edges, leaving
us with a multigraph which of course can have a superlinear number of edges. Loops are the easy
part: they can be easily detected and removed immediately after the contraction. From a set of
parallel edges, we can delete all but the lightest one, but the key problem is to avoid spending a lot
of time on detecting them.

To accomplish this, we introduce a cleanup phase which is called occassionally during the course
of the algorithm and whose purpose is to prune the graph (make it again a simple graph). Addi-
tionally, if we are using any kind of arrays to represent the graph (which is not needed, everything
can be done with linked lists on the pointer machine, but arrays are often easier to handle if they’re
available), we also should renumber the vertices to keep the arrays bounded by the current number
of vertices instead of the original one.

The cleanup phase starts by bucket-sorting all graph edges lexicographically (which brings
parallel edges together), walking the edge list sequentially and deleting the unnecessary parallel
edges. Then it recalculates vertex degrees, removes zero degree vertices from the vertex list and
if we're using arrays, then also creating new vertex numbers, compactifying the vertex array and
renumbering all vertex number occurences in the edge list. The cleanup takes time O(m +n) where
m and n are the number of edges and vertices before the cleanup took place, so we need to use this
fine spice very carefully.

Without loss of generality, we’ll assume that the graph is connected and that all the edge
weights are distinct.

4. ALGORITHM 1

We'll follow the meta-algorithm, using the fact that for each vertex, the lightest incident edge
belongs to the MST (it follows from the Tarjan’s blue rule [12] applied to a cut formed by edges
incident to the vertex). No cycles can arise since the edge weights are distinct. Also, we’ll process
contractions due to all vertices of the current graph at once and clean up the graph afterwards.
This gives:

Algorithm 1.

1. Start with the input graph.

2. Construct a temporary graph G’ on the same set of vertices. For each vertex v, G’ contains
the lightest edge of G incident to v.

3. Contract the graph along the edges of G': find connected components of G’ and renumber
all vertices of G according to the component where their cousin in G’ lies.

4. Clean up the graph (as defined before).
5. Repeat steps 2-4 until there are no edges left.

Lemma 3. For any proper minor closed class of graphs C, Algorithm 1 finds the MST of any graph
in this class in time O(o(C) - n).

Proof: Correctness follows from the meta-algorithm (we need the properties of the graph class only
for the time bound). Each pass of the algorithm takes time O(m +n) and it reduces n at least by a
factor of two. All graphs generated by the algorithm (after cleanup) are minors of the input graph,
so they belong to C as well, so according to Theorem 1, m < gn holds for all of them. Therefore
the total time spent by the algorithm is O(on + on/2 + on/4 +...) = O(on).

5. ALGORITHM 2

Instead of batching the contractions, we can also perform them greedily on the lightest edges
adjacent to low-degree vertices and delay the cleanup until we run out of such vertices. This gives
our second algorithm (¢ is a parameter to be chosen later):

Algorithm 2.

1. Start with the input graph.

2. While there exists a vertex v with deg(v) < 6t, select the lightest edge e incident to v and
contract it (just remove all edges incident to v and add them back to the graph with v
renumbered to the other end of e). Delete all loops and isolated vertices that arise. To
avoid sequential searching, keep a queue of such low-degree vertices.

3. Clean up the graph (as defined above).
4. Repeat steps 2—-3 until there are no edges left.

For minor closed classes of graphs, we’ll set ¢ to the density of the class or, if the exact density is
unknown, to any upper bound of the density. We’ll get:

Lemma 4. For any proper minor closed class of graphs C, Algorithm 2 with t > o(C) finds the
MST of any graph in this class in time O(tn).

Proof: According to Theorem 1, we know that C (where the input graph and all the cleaned up
intermediate graphs belong) has finite density ¢ < ¢t and Lemma 1 tells us that after a cleanup, at
least a half of the vertices has deg(v) < 4p < 4t. Because of this, our algorithm always stops and
since it’s following the meta-algorithm, it’s correct.

Step 2 contributes to the total running time by O(tn) — each contraction takes O(t) and it
removes at least one vertex, so it suffices to show that the total time spent by the cleanups is linear.

Let n; and m; denote the number of vertices and edges of the graph G, at the start of step 1.
The time spent by a single cleanup is O(ny 4+ mg3) — remember that we might need to clean up
holes after vertices which have gone during step 2, but we can account the holes to these vertices
and bound the rest of the cleanups by O(n3 + ms) = O(m3) as G is connected.

We know that G5 is a multigraph with deg(v) > 6t for all v, while G4 is a simple graph with
deg(v) < 4t for at least a half of its vertices. Therefore each cleanup decreases the sum of all degrees
by at least tns and ng > mg3/o > ms/t, so the number of edges drops by at least tnz/2 > ms/2,
hence my < mg3/2 < my/2 and all the cleanups together take time O(m+m/2+m/4+...) = O(m)
which we were to prove.

Remark. For planar graphs, we can take advantage of having proven Lemma 2 and improve the
algorithm by a constant factor by setting the parameter t to 7/3.

6. CONCLUSIONS

We’ve presented algorithms for the minimum spanning tree problem which run in deterministic

linear time for any class of graphs closed on graph minors. This further reduces the classes of graphs
where the complexity of finding the MST is unknown, but it still leaves the general version of the
problem open.

1]

7. REFERENCES
O. Boruvka. O jistém problému minimalnim (About a Certain Minimal Problem). Prdce mor.
prirodovéd. spol. v Brne, 111:37-58, 1926. Czech with German summary.
B. Chazelle. A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity.
J. ACM, 47:1028-1047, 2000.
M. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. In Proceedings of FOCS’90, pages 719-725, 1990.
R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. Annals of
the History of Computing, 7:43-57, 1985.
D. R. Karger, P. N. Klein, and R. E. Tarjan. Linear expected-time algorithms for connectivity
problems. J. ACM, 42:321-328, 1995.
T. Matsui. The Minimum Spanning tree Problem on a Planar Graph. Discrete Applied Math-
ematics, 58:91-94, 1995.
J. Nesgettil. Some remarks on the history of MST-problem. Archivum Mathematicum, 33:15-22,
1997.
J. Nesettil and P. O. de Mendez. Colorings and Homomorphism of Minor Closed Classes. To
appear in Pollack-Goodman Festschrift, Springer Verlag, 2002.
J. Nesetril, E. Milkova, and H. Nesettilova. Otakar Boruvka on Minimum Spanning Tree
Problem. Discrete Mathematics, 233(1-3):3-36, 2001.
S. Pettie. Finding minimum spanning trees in O(ma(m,n)) time. Tech Report TR99-23, Univ.
of Texas at Austin, 1999.
S. Pettie and V. Ramachandran. An Optimal Minimum Spanning Tree Algorithm. In Proceed-
ings of ICALP’2000, pages 49—60. Springer Verlag, 2000.
R. E. Tarjan. Data structures and network algorithms, volume 44 of CMBS-NSF Regional
Conf. Series in Appl. Math. STAM, 1983.

