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ABSTRACT

The present thesis investigates a new variant for physics-based information visualization.
The fundamental idea bases on a quantification of the similarity of related objects,
expressed by the parameters of a mass-spring system. Since the spring stiffnesses corre-
spond to the computed similarity measures, the system converges into an energy mini-
mum, which reveals multidimensional relations and adjacencies in terms of spatial
neighborhoods. 

As a part of this work we develop a platform-independent framework, called IVORY,
for physics-based visualization and analysis of multidimensional data relations. The soft-
ware design follows strictly the theory of operator frameworks. It is fully implemented in
JAVA and its architecture features client-server setup, which allows to run the visualization
even on thin clients. In addition, VRML 2.0 exports can be viewed by any VRML enabled
web browser. Individual visual metaphors and interaction paradigms are invoked into
IVORY via an advanced plug-in mechanism. The configuration of IVORY is accom-
plished using a specialized high-level script language, the Information Visualization
Modeling Language (IVML).

In order to simplify complex setups we suggest visual clustering algorithms for postpro-
cessing. We present a set of three new visual clustering algorithms − called Ellipsoidal,
BLOB and H-BLOB clustering − which group and visualize cluster hierarchies at multiple
levels-of-detail. We propose that the algorithms are especially suited for the visualization
of very large data sets and for visual decision making in information visualization. 

The versatility of the framework and its algorithms is demonstrated by means of exper-
imental results. They show the framework’s capability to visualize large and complex vol-
umes of different types of abstract data. Furthermore, a usability test including daily-
business cases in the areas of our cooperation partner validates IVORY’s performance in
practice.

This project was sponsored by the Advanced Engineering Center (ACE) of UBS Basel
(Switzerland). For that reason the framework is mainly employed in the context of risk
analysis, stock prediction, document retrieval and other tasks being important in the con-
text of banking.
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ZUSAMMENFASSUNG

Diese Dissertation stellt eine neue Methode der physikalisch-basierten Informationsvisu-
alisierung vor. Die grundsätzliche Idee basiert dabei auf der Quantifizierung der Ähnlich-
keit von in Beziehung stehender Objekte, welche wiederum die Parameter eines Masse-
Feder-Systems konfigurieren. Weil die Federhärte und die berechneten Ähnlichkeitswerte
korrespondieren, konvergiert das System in ein energetisches Minimum, das die inhärent
in den Daten enthaltenen Beziehungen und Zusammenhänge als räumliche Nachbar-
schaften widerspiegelt. 

Als Teil dieser Arbeit entstand ebenfalls das plattform-unabhängige Framework
IVORY zur physikalisch-basierten Visualisierung multidimensionaler Datenrelationen.
Das Softwaredesign orientiert sich streng an der Theorie der Operator-Frameworks. Die
Implementation ist vollständig in JAVA realisiert worden und unterstützt Client/Server-
Konfigurationen, womit die Visualisierung ebenfalls auf Thin-Clients genutzt werden
kann. Zusätzlich können Szenen in VRML 2.0 exportiert werden, womit sie mittels eines
Web-Browsers mit installiertem VRML-Plugin betrachtet werden. Individuelle visuelle
Metaphern und Interaktionsparadigmen (Information Drill-down) werden modular
durch einen sogenannten Plugin-Mechanismus ins System integriert. Die Konfiguration
von IVORY erfolgt mit einer eigens dafür entwickelten Sprache, die Information Visuali-
zation Modeling Language (IVML). 

Zusätzlich erlaubt das Framework komplexe Szenen mittels verschiedener Verfahren
visuell und analytisch zu clustern. Wir präsentieren in diesem Kontext drei neue Cluste-
ringansätze: Ellipsoid-, BLOB und H-BLOB-Clustering. Sie berechen mehrstufige Clus-
ter-Hierarchien und stellen diese anschliessend dar. Diese Verfahren eignen sich besonders
zur Visualisierung sehr grosser und komplexer Datensätze und für Decision-Making-Sys-
teme.

Die Vielseitigkeit des Frameworks und dessen Algorithmen wird anhand verschiedener
experimenteller Beispiele aus diversen Anwendungsgebieten gezeigt. Sie demonstrieren die
Leistungsfähigkeit des Frameworks im Bereich grosser, komplexer und abstrakter Daten-
volumen verschiedenen Typs. Abschliessend wird mittels einer Anwenderstudie die Leis-
tungsfähigkeit von IVORY in alltäglichen Arbeitsprozessen beurteilt. 

Das Projekt wurde in Kooperation mit dem Advanced Engineering Center (ACE) der
UBS Basel durchgeführt. Aus diesem Grund liegt das Hauptanwendungsgebiet für das
System im Bereich der Finanzdienstleistungen.
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1INTRODUCTION

Visual communication has always been of fundamental importance to mediate informa-
tion and to understand complex relationships. With the advent of the computer, scientific
visualization was born as a discipline [MDB87] and has found many applications in vari-
ous fields of science and engineering. However, whereas in the past research was mostly
focused on the visualization of spatial data sets and metric spaces, the design of new visual
metaphors for abstract, complex information spaces has recently emerged as a challenging
research topic. Applications are manifold and range from web/network visualization and
document retrieval, via customer data to risk and portfolio management in the financial
services [CEG96]. They are developed as a crucial support of today’s demands on the
knowledge crystallization process [RSP+93], which essentially comprises the following
steps:

Nowadays, high computing performance, global broadband networks and distributed
data bases − including the World Wide Web − provide platforms for new dimensions of
retrieval systems. The problem of spotting the relevant information has changed pro-
foundly. Since data warehouses have been established as a well-prove technology gathering,

1. Extracting information from a huge amount of arbitrary data

2. Gaining knowledge on the basis of the extracted information

3. Making decisions based on the extracted knowledge and the user’s experience
1



2 Introduction
storing and accessing the data no longer denotes a real challenge. Today, many of our daily
activities, such as shopping and using a credit card, making phone calls or simply surfing
the internet are routinely registered in some way or other. As a result, many companies
hoard a vast quantity of customer data out of which they expect valuable information
about the clients and their specific behavior which again may offer the potential for a com-
petitive advantage. However, extracting useful information inherently contained in this
tremendous amount data is a challenge of its own. This problem is known as data mining.

For most of the previously established data analysis methods the abundance of data is
a serious problem. Unable to view the data as a whole, they suffer from a strongly parti-
tioned view whereas each fragment misleadingly seems to contain noise only preventing
the extraction of the desired information. A lot of research effort went into developing
more advanced data mining methods to automate data filtering processes and information
extraction. As a result, sophisticated statistical and heuristic approaches have been
designed to find the implicit but potentially useful information buried in large data vol-
umes.

These approaches, however, suffer from two substantial shortcomings. First, they oper-
ate in batch mode, which inherently prevents user interactions during the analysis process.
Since the input data may vary significantly, the correct parametrization of the involved
algorithms is virtually impossible. As a consequence, several runs are required to finally
obtain the desired result − the possibility of interaction would doubtlessly alleviate this
problem. Secondly, results are presented in a textual form or simple graphics only.
Although a lot of the analysts are used to working with texts and tables, this form of rep-
resentation is rather unsuitable for today’s data volumes. On the one hand, only a limited
number of result items can be displayed without overloading the presentation. On the
other hand, text or even simple charts are unable to reflect the complexity of today’s infor-
mation. Thus, potentially important information could remain undiscovered.

As a consequence, the visualization and computer graphics communities have been
challenged to develop advanced methods and tools for understanding, navigating through
and interactively analyzing abstract information spaces. To achieve this goal, there is not
only the problem of how to represent object attributes visually to be solved, but also the
more fundamental one of effectively mapping abstract data features to visual properties−
the research field of information visualization was born.

1.1 INFORMATION VISUALIZATION

Information visualization describes the process of transforming information into a visual
representation enabling the user to interactively explore large and complex data spaces at
a more abstract level. Its main goal is to provide the viewer with a qualitative understand-
ing of the information content, and thus amplify cognition. It efficiently supports the user
in the task of knowledge crystallization described previously in this chapter. To this end,
information visualization takes heavily advantage of the enormous storage capabilities, the
computational power and the high performance graphics subsystems of today’s comput-
ers. According to [CMS99] information visualization can be defined as follows:

Information Visualization

The use of computer-supported, interactive, visual representation
of abstract data to amplify cognition.
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In contrast to the data used in scientific visualization, the one applied in the context of
information visualization is usually non-spatial and abstract, which implies that no obvi-
ous spatial mapping exists.Thus, defining a meaningful projection from data space into
the physical space is one of the most crucial tasks in the visualization of abstract informa-
tion.

1.1.1 Basic Principles

Since effective data mining depends on an expert’s knowledge − and in contrast to the pre-
viously mentioned data mining methods − the theory of information visualization inte-
grates the user with its abilities as an important element into the analysis process. Thus,
such systems need to take human cognitive, perceptual and intuitive capabilities into
account. Graphical representations, using appropriate visual paradigms, do not only pro-
vide an efficient way of information condensing, but also make consequent use of powerful
human-computer interfaces. The information can be ascertained by the user in a multi-par-
allel manner, while it is examined concurrently by the strongest available pattern recogni-
tion processor−the human visual system. Thus, presenting the data in a visual manner may
reduce the amount of extra cognitive work.

In order to support the user in the dynamic process of information exploration, which
may involve detection, measurement and comparison, data specific interaction meth-
aphors provide the possibility for direct data manipulations. They promise to enhance our
understanding of complex multidimensional data as well as assist us in navigating and
exploiting today’s information collections. By including interaction into the process of
knowledge crystallization will enhance to an interactive analysis cycle.

1.1.2 Origins

This subsection presents the main parts of the historical evolution of this admittedly rather
young research field. According to [CMS99] the first time use of the term information
visualization was in [RCM89]. 

Playfair (1786) was one of the earliest to use abstract shapes, such as lines in order to
represent data visually. At this time the development of the classical data plotting methods
were started. In his work, Tufte [Tuf83] mentions the famous graphical picture of Napo-
leon's terrible defeat in Russia as one of the earliest multi-dimensional illustrations. It
shows a combination of data map and time series, documenting Napoleon’s disastrous
losses in 1812. The graphic was drawn in 1861 by the French engineer Charles Joseph
Minar (1781-1870).

At a later date in 1967, the French cartographer Bertin published his theory, which
identifies the basic elements of diagrams and mentions a framework for their design. Other
pioneering work was done by E. R. Tufte, a political scientist from Yale. He focuses on
the visualization of data with inherent geometrical semantics. In 1983, Tufte published a
theory that emphasized maximizing the density of useful information, which includes
layout rules, the mapping of attributes and governs color compositions.

In 1977 when statistical experiments were designed as well organized and defined pro-
cesses and the suggestion of exploratory analysis seemed like heresy, John Tukey a long-
term Bell Labs and Princeton companion, came up with the idea of introducing interac-
tion to experiments. Thereby, the intention was to dynamically find patterns one has not
thought of before in the data. His work Exploratory Data Analysis initiated and established
the use of interactive graphics to give rapid statistical insight into data.
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At a time when the scientific visualization community was already able to present main-
stream rendering techniques for data types with an underlying physical model − such as
flow, voxel or geographical data − the visual representations for arbitrary multidimensional
data just began to emerge. A book of particular interest in this context, is the one titled
Dynamic Graphics for Statistics written by Cleveland and McGill back in 1988. Inselberg’s
parallel coordinates [ID90] and Mihalisin’s technique of cycling through variables at dif-
ferent rates [MTS91] were other important contributions.

In the late eighties the computer graphics and artificial intelligence communities inves-
tigated in automatic design of visual data presentation. The visual quality of the results was
of little interest compared to the aspects of automating the graphical representation of the
data. Not until around 1990, when the development of graphics hardware took a step for-
ward and got generally available at affordable prices, a new generation of user interfaces
emerged. They focused on user interaction with large and high-dimensional data sets, such
as telecommunication traffic or document collections.

After these initial steps in the field of information visualization a large variety of mod-
ified and new approaches followed. The perspective wall [MRC91], cone trees [RMC91]
and their hyperbolic projections [MHC+96] are only the most prominent examples. 

More expatiated surveys of contemporary information visualization methods can be
found in [CEG96, Kei97 or CMS99].

1.1.3 Visualization Techniques

This section provides an overall view of a variety of information visualization techniques
which find their application in many systems. These range from the familiar line plots, pie
charts or histograms to the technique of projecting high-dimensional abstract data spaces
into a visual representation rendered in a physical space. Since the first-mentioned meth-
ods are limited to a relatively small amount of not too complex data, they will be discussed
no further. 

All the techniques presented below take data-specific properties into account in order
to produce a meaningful mapping to objects within the visualization. [Wis+95, Cha96]
for instance, visualized text documents and clusters as galaxies and themescapes, whereas
[CK95] proposed cone trees which specifically address hierarchical organization. Another
promising method is [BF95] or [Woo95], who essentially used self-organizing schemes
and neural networks to arrange information objects of the WWW. In a more general
understanding, multidimensional visualization problems have been stressed in [YR91 and
CK95]. Here, mathematical projection algorithms were introduced to map data into sub-
spaces while preserving their most important features. Interestingly, many current meth-
ods use physically-based paradigms, such as [Ben96] or [HD95], where information units
are taken as nodes of some generalized mass spring system revealing the structure of rela-
tions upon relaxation. These types of multidimensional visualization methods have been
studied extensively in graph theory, and efficient algorithms had been introduced for fast
graph relaxation, such as [FLM94, BF95].

According to the main techniques they employ these methods can be categorized
roughly into the classes [Kei97b] shown in Table 1.1.
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Table 1.1  Classification of visualization techniques

Technique / Description Example

Geometric Techniques

Basic Idea: Visualization of geometric trans-
formations and projections of the data

Examples: Scatterplot, Projection Views, Land-
scapes, Hyperslice, Parallel Coordinates

Icon-based Techniques

Basic Idea: Visualization of data properties as 
features of icons

Examples: Chernoff Faces, Stick Figures, 
Shape-Coding, Color Icons, Tile Bars

Pixel-oriented Techniques

Basic Idea: Each attribute value is represented 
by one single pixel

Examples: Recursive Patterns, Circle Segments, 
Spiral- & Axes-Techniques

Hierarchical Techniques

Basic Idea: Visualization of the data using a 
hierarchical partitioning into subspaces

Examples: Dimensional Stacking, Worlds-
within-Worlds, Treemap, Cone Trees, Info-
Cube

Graph-based Techniques

Basic Idea: Visualization of large graphs (2D/
3D) using techniques to convey the meaning 
of the graph efficiently

Examples: Straight-Lines Graph, Curved-Lines 
Graph, Orthogonal Graph, Cluster-Optimized 
Graph, Symmetry-Optimized Graph
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Which technique would be the best choice for a certain problem depends on the one
hand on the type of data and on the other hand on the particular data aspects of interest.
Virtually any data may be processed by several visualization techniques. However, each
one will consider different facets in the resulting visual representation. Therefore, we
should also take a short survey on properties of analysis tasks. The following classification
has been derived from a proposition presented in [Kei97b]

For the task of explorative analysis, where apriori no hypothesis about the data exists,
the technique of choice must be able to handle a large volume of data at once while respect-
ing its complexity and/or dynamics. In contrast, we may select a less complex technique

Distortion Techniques

Basic Idea: Distortion of the image to allow a 
visualization of larger amounts of data

Examples: Perspective Wall, Bifocal Displays, 
TebleLens, Hyperbolic Representation

Hybrid Techniques

Basic Idea: Integrated use of multiple tech-
niques in one or multiple windows to enhance 
expressiveness

Examples: IVEE, XmDv

Explorative Analysis (with or without any previous knowledge)

Start: data without hypothesis about it

Process: interactive, usually undirected search for patterns, trends, etc. 

Result: visualization of the data which might provide a hypotheses

Confirmative Analysis

Start: hypothesis about the data

Process: goal-oriented examination of the hypothesis

Result: visualization, which allows the user to confirm or reject the 
hypothesis

Presentation

Start: facts to be presented are well known and approved

Process: choice of an appropriate presentation technology

Result: high-quality visualization presenting the facts

Table 1.1  Classification of visualization techniques

Technique / Description Example
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when dealing with confirmative analysis problems. Since there already exists an under-
standing of the data, basic or geometrical techniques may be adequate for the job. Greater
parts of the information presentation task is covered by the distorting techniques, which
concentrate on the appearance, accessibility and usability of the data. These assignments
are only rough and there is some degree of overlap, for example high quality rendered
graph-based techniques may also apply for presentation purposes perfectly.

1.1.4 Frameworks and Systems

Due to the tremendous importance of visualization methods various commercial systems
and frameworks have successfully been designed in the past, part of which are available as
commercial products. One of the pioneers is AVS/Express [AVS97] that uses a data flow
paradigm and allows the user to compose a visualization application interactively by defi-
nition of data flow paths between individual modules. Similar paradigms have been imple-
mented in the IRIS Explorer [SGI91] or in IBM’s DataExplorer [IBM91]. Another
elegant visualization library is provided by General Electric’s VTK [SML96] and can be
customized in TCL/TK. However, most of the general purpose toolkits and libraries target
at classical scientific visualization of spatial data.

For information visualization and visual data mining sophisticated algorithms and met-
aphors had been devised in recent years to visually inspect abstract and multidimensional
information spaces (see also Section 1.1.3). However, generic frameworks and systems are
rare and mostly limited in their adaptabilities, such as statistics packages, like Bell Lab’s
XGobi [ATT97], IVEE [AW95] or the hierarchical algorithms in SGI’s SiteManager.
Conversely, visual data mining tools, like SGI’s MineSet [SGI97] often provide visualiza-
tion functionality, but, have limited flexibility regarding the integration of new data types
and metaphors. The latest representatives of frameworks developed by Visual Insight
[VI97] and Visual Decision [VD98] appear to be open and more flexible in their core
design.

Figure 1.1  Classification of established visualization frameworks, systems and
techniques. Drawing their flexibility against their visualization domain.
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1.2 CONTRIBUTION

The main contribution of this thesis is the presentation of a sound and versatile framework
for physics-based information visualization. The key concept is an efficient multi-resolu-
tion setup, breaking down the structural and visual complexity of scenes. 

• Visualization Techniques: We present a generalized variant for physically-based visual-
ization of multi-dimensional relations in arbitrary and large data sets. The approach is
based on the quantification of the similarity of abstract data objects, which then gov-
erns the parameters of a mass-spring system. Relaxation of the model figures out the
structural relations in information space. Much effort has gone into on finding appro-
priate particle simulation methods which allow stable and reproducible simulation
results, as they are needed for the layout algorithm. However, not much attention was
given to the development of new numerical methods on our own.

• Similarity Measurement: Information visualization targets data sets, which inherently
lack a quantifiable similarity measurement. This work presents a systematic approach
to quantify similarity for the most common data types encountered in this research
field.

• Framework Design: Although there already exist a number of systems, most lack gen-
eral usability. We developed a generic framework for physics-based visualization and
the analysis of multidimensional data relations. The system is open and expandable
and follows a consequent separation of data-dependent and data-independent compo-
nents. It is capable to handle static as well as dynamic data likewise. Individual visual
metaphors and interaction paradigms are invoked via an advanced plug-in mecha-
nism. Alternative layout and clustering methods are also plugable at runtime.

• Configuration Language: We introduce a fully object-oriented script language named
Information Visualization Modeling Language (IVML), which is specially designed to
describe information visualization problems. The language accomplishes rapid proto-
typing and dynamic configuration for the framework.

• Complexity Handling: The complexity and amount of data forces the use of an effi-
cient level-of-detail strategy. In order to efficiently cope with large data sets we pro-
pose the ellipsoidal clustering, which wraps similar objects with an ellipsoidal surface.
For complex data volumes two visually superior clustering mechanisms−BLOB and
H-BLOB−enable a hierarchical encapsulation of similar objects by implicit shapes.

• Usability Testing: We show the framework’s versatility by experimental results, dem-
onstrating IVORY’s capability to simplify and enhance the feasibility of cluster visual-
ization. In addition, a usability test including daily-business cases in the areas of our
cooperation partner UBS has validated IVORY’s performance in practice.

We have published research results from our physically-based information visualization
method in [SGE97, GSF97]. The concepts of the IVORY framework design and the
information visualization modeling language have been published in [SGB98]. The
BLOB clustering and its hierarchical successor the H-BLOB methods have first been pre-
sented in [SGB98, SBG00]. Further on, three additional publications [HDH+00,
HDH+00 and HHD+01] with HP Research Laboratories (Palo Alto, CA) demonstrate
the practical value of many of IVORY’s core ideas.
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1.3 CHAPTER OUTLINE

The remainder of the thesis is outlined as follows:

• Chapter 2 places the fundamentals for a proper framework design presented later on
in Chapter 6. An operation model is discussed, in order to systematically examine the
interaction between framework components. The proposed operator classification
enables us to design new components while keeping their general reusability in mind. 

• Chapter 3 introduces a mathematical framework for the quantification of the similar-
ity of related objects located in arbitrary information spaces. The framework depends
on the well-known theory of metric spaces. Furthermore, a selection of commonly
used similarity functions is given.

• Chapter 4 describes physics-based models and their key issues more detailed. This
includes the presentation of an advanced force model, a spherical initialization
approach for the model and a study of numerical integration methods.

• Chapter 5 contains a introduction to graph theory with respect to information visual-
ization. We define the conventions used when drawing as well as a set of key issues
that a layout may be required to satisfy. In particular, we take a closer look at force-
directed graphs and show the interplay with the methods introduced in Chapter 4.

• Chapter 6 contains the description of IVORY, a physics-based framework for informa-
tion visualization, which reveals multidimensional relations and adjacencies in terms
of spatial neighborhoods. The framework bases principally on algorithms and meth-
ods introduced in the previous chapters. In addition, different conceptual aspects of
the framework architecture as well as implementation issues are described.

• Chapter 7 examines established clustering algorithms concerning the demands of
today’s information visualization systems emphasizing specific advantages and disad-
vantages. Upon the analysis’ insights, we introduce three new visual clustering algo-
rithms called Ellipsoidal, BLOB and H-BLOB clustering. They provide effective
approaches for efficient level-of-detail strategies and fit seamlessly into the IVORY
framework presented in Chapter 6.

• Chapter 8 introduces the information visualization modeling language (IVML), which
is distinctively proposed to describe information visualization problems. After deter-
mining the requirements, we present the language’s design concepts. The section
closes with the language specification and the implementation issues.

• Chapter 9 shows the versatility of the framework by experimental results, demonstrat-
ing IVORY’s capability to efficiently represent real-world configurations in a visual
format. These examples cover the areas of financial analysis, e-commerce, document
retrieval and image retrieval. Additionally, we present the results of the usability study
realized in cooperation with our partner UBS, which focuses on the general applicabil-
ity of IVORY’s new visualization paradigm.

• Chapter 10 summarizes the conclusions of this thesis and points out future directions.

• The appendix includes the package layout of the IVORY framework components as
well as the grammar of the information visualization modeling language (IVML). Fur-
thermore, the original questionary of the usability test introduced in Chapter 8 is
appended.
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2OPERATOR FRAMEWORK 
ARCHITECTURE

The aim to develop a new information visualization framework1 (IVF) calls for some thor-
ough preparational work. One of the key factors for a successful framework design is a
well-devised and proper definition of its structure and components. There are many con-
siderations to be addressed by the design. In fact, the demands on IVF or on frameworks
in general are manifold, which usually concludes in a trade-off design approach. On the
one hand, a framework should be as generic as possible in order to be applicable to a large
variety of problem classes. On the other hand, it has to handle very domain specific prob-
lems, encapsulate them in components and thus hide them from the framework user.

In addition, another important issue is the question about the reusability of compo-
nents. Since, often we already have a solution for one problem, we would like to reuse it
− whenever possible − in similar cases. However, the large variety of information visual-
ization operators and their manifold applications make them difficult to implement in a
reusable manner. Therefore, a powerful framework design should consider this aspect in
its core structures.

This chapter places the fundamentals for a proper framework design presented later on
in Chapter 6. An operation model is introduced, in order to systematically examine the
interaction between framework components. The proposed operator classification enables
us to design new components while keeping their general reusability in mind. 

2.1 FUNCTIONALITY

Information visualization has made great strides in the development of a semiology of
graphical representation methods [CM97, Mac86]. Yet, it lacks a framework for studying

1.  In the context of this work we do not explicitly distinguish between the expressions framework and toolkit.
We will call the definition of a modular concept a framework, as well as its implementation.
11



12 Operator Framework Architecture
visualization operations. This stands in clear contrast to the area of scientific visualization
with its much longer background, where quite large a number of general purpose toolkits
is available [AVS97, IBM91, SML96]. There, past research in data-flow networks and the
visualization pipeline [CM97] helps to understand the implied visualization processes, the
operators and their interaction. 

With our framework we explicitly propose an operator-centric design approach, which
will lay the systematic foundations for an effective and consistent IVF design. By operator
we generally mean all functions applied directly to the data or to one of its possible repre-
sentations, producing a transformation or generating a new representation or view of the
original data. In opposite to data-centric approaches that support overloading of operators
− commonly used in the object oriented world − we split a single operator into several dif-
ferent operators, if it appears to be able to work on multiple data types. On one hand this
assumption leads to a sound theory, on the other hand it actually corresponds to the reality
of information visualization systems.

In fact, we introduce an entire operator framework (OF) for information visualization
systems, which again serves as a skeleton to build upon the overlaying IVF (see Chapter 6).
Primarily, the OF will assist us in the following three tasks:

1. Understanding the interactions between different operators

2. Examining and recording operator properties 

3. Developing a classification for the space of operators. 

Previous work concerning this topic has been published in [CR98]. The authors present
a powerful and flexible approach based on the semiology of graphic representations. They
describe the properties of such a framework and use it to characterize typical operations
relevant to their field of application and the focus of their impact. Their work addresses
problems specific to framework designers as well as users-specific issues.

Although our work pursues similar goals it differs in some important aspects. First, we
extend the considerations by a finer-grained abstraction model. Second, we exclude all
aspects concerning the unification of the interaction and the visualization. In our opinion,
this topic has its very own challenges which should be discussed separately. Along with it,
we also eliminate the arbitrarily merging of end-user and designer aspects. Hence, we con-
centrate our reflections on problems arising in the domain of framework designers only.
Finally, for the sake of an improved presentation our approach follows a reversed argu-
mentation chain compared to [CR98].

2.2 FUNDAMENTAL CONCEPTS

The presented concept is founded by systematically determining fundamental properties
of operators from the information visualization point of view. These will determine the
criteria for the operator classification presented later on in this section.

Chuah and Roth [CR96] previously presented a model that categorizes basic visualiza-
tion interactions (BVI). The classification taxonomy shown in Figure 2.1 is based on
Foley’s user interaction framework [FVF+90] and extends it for the purpose of a more
detailed handling of information visualization specific operations, such as data filters.

Starting from the root node on the left side, the first hierarchy step subdivides the inter-
actions according to the corresponding argument type they work on. On the upper end,
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we find a set of data interactions. They run directly on the raw data and may change the
state of the data by such processes as adding, deleting or modifying subsets of the data. In
the middle section operations run on sets. They mainly hold meta information derived
from the raw data by some extraction processes. Operations on this level may modify a
logical intermediate state of the data. Finally, on the lower end the graphical operations
are located. They change the visualization content only − typically no underlying data set
will be changed. Examples of such operators include view transformations (rotation, trans-

Figure 2.1  Chuah and Roth’s Basic Visualization Interaction Taxonomy [CR96].
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lation, zooming, etc.), the manipulation of graphical objects (copy, delete, etc.) and the
encoding of data properties to visual attributes.

Inspired by this work we will ameliorate the principal idea as far as operator reusability
is concerned. In particular, the aspect of data flow in such systems deserves some further
consideration. In addition, Chuah and Roth define a taxonomy tree. This classification
scheme works hierarchically, meaning that the classification criteria only make sense with
respect to the corresponding parent operation. This kind of scheme is well suited to cate-
gorize a fixed set of frequent operators. However, our experience has shown that for the
current problem a flat partitioning of the operator space, according to a small set of global
criteria, proves to be more useful.

Nevertheless, Chuah and Roth’s work provides important indicators regarding a clas-
sification with respect to operator reusability. Especially, the first level of hierarchy − the
division in data, set and graphic operations − seems to be an interesting starting point. A
quite similar partition is exhibited by the visualization pipeline [Gro94] defined in
Figure 2.2.

On the upper end, the pipeline starts with the raw data. Over two intermediate stages
the pipeline ends in the visualization. Fundamentally, it describes a transition from raw
data values to a visual representation (view) of the same data. On each stage of this pipeline
various operators may be applied. Thereby, we may identify two different types. First,
there are the operators, which act on a single stage within the pipeline. This means, the
input arguments and the result are members of the same stage. Second, we have the oper-
ators taking input arguments from one stage, but producing a result that belongs to the
next stage. Thus, we may consider stage transitions as a result of corresponding operators.

As a first result we can categorize operators according to the stage the operator is
involved in and whether the operator works within a single stage or not.

Basing on this first categorization the next section develops an abstraction model in order
to examine the aspect of operator reusability in more detail. This will then lead to a set of
characteristic properties and finally to a reusability classification scheme.

Table 2.1  Categorization of operators according to its input
arguments and the result type

Operator Category Input Result

Data Stage Operators RD RD

Data Transformation Operators RD AA

Analytical Abstraction Stage Operators AA AA

Visual Mapping Operators AA VA

Visualization Abstraction Stage Operators VA VA

Visual Transformation Operators VA V

View Stage Operators V V

RD: Raw Data − AA: Analytical Abstraction − VA: Visualization Abstraction − V: View
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2.3 ABSTRACTION MODEL

Frequently, published concepts dealing with the current topic suffer from limited power
of distinction. Because these models run on the restricted differentiation between the cat-
egories of value and view operators, they essentially consider two different levels of abstrac-
tion only. As the previously introduced BVI model shows, these approaches provide a too
polarized view. Furthermore, the binary distinction between a value and a view operator
is not always clear.

Our abstraction model is based on the visualization pipeline with its different stages
(see Figure 2.2), where each stage holds a specific representation of the original data. At
the outset, we have the raw data which may be of any type and format (HTML-Docu-
ments, DB-Records, images, complex geometry, etc.). Examples for operators working on
this stage are data parsers and data specific filters. On the next stage, we find the analytical
abstraction of the underlying data. It embodies the data in a generalized and abstract
manner (weighted graph, feature vectors, etc.). This representation is also called metadata
or information. This analytical abstraction is further reduced into some form of visual
abstraction, which is a visualizable representation. The data here consists of attributed geo-
metrical objects (boxes, spheres, polygons, etc.). Finally, a visual transformation produces
a view that may be displayed on a screen. This completes the pipeline.

While examining the different data representations associated with each stage, we may
come to the very intuitive conclusion that the degree of abstraction increases with the level
of a stage along the pipeline. Starting with the raw data the generalization of its represen-
tation increases with each transformation and eventually ends in a view regardless of the
initial type of data. Thus, the raw data is a concrete instance of a data representation. It
may occur in an arbitrary number of variations. By contrast, the view embodies the most
general stage. This grounds on the fundamental assumption that once we reach the stage
of a view we are dealing with graphic primitives such as points, lines and polygons that a
view can operate on in exactly the same ways. One and the same type of view may suffice
to handle a large amount of peculiarity raw data may exhibit.

Figure 2.2  The standard visualization pipeline adapted for the purpose of infor-
mation visualization. The pipeline is annotated with the corresponding data
types for each stage and their degree of abstraction
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One should be aware that the process of data transformation down the pipeline is typ-
ically not lossless. Thus, in order to minimize the loss of information optimization aspects
play an important role when determining the concrete set of data mappings and transfor-
mations.

As a matter of fact, it may be an essential necessity to have a larger set of views occa-
sionally. However, this requirement does not establish on the inability of a view to manage
the amount of underlying data. It is rather based on the demand for multiple views on the
same data, where each view may be parameterized individually.

Summarizing, the information visualization pipeline comprises four different degrees
of abstraction. The degree of abstraction increases along the direction of the pipeline,
where the view represents the stage with the highest degree (see Figure 2.2). Thus the chal-
lenge of operator reusability is no longer a question of “value” or “view”, but rather a ques-
tion of the degree of abstraction the operator acts on. Value and view represent thereby
only the two extrema.

2.4 CLASSIFICATION OF OPERATORS

The previous observations together with the operator categorization from Section 2.2 are
supposed to be used for extracting a generalized classification scheme for operators. In the
following, unless otherwise mentioned, the reusability of an operator will implicitly be
assumed as classification criterion.

Inspecting operator properties while following the information pipeline from the raw
data to the view, we discovered that operators can be classified according to their reusabil-
ity based on a very small set of criteria. In fact, we may distinguish between operators that
are:

1. Specially designed for a specific task

2. Similar according to their functionality

3. Similar according to their implementation

On the lowest level we have the operators that are specially designed for a specific task in
a particular domain. These operators are application task and data dependent and thus
tightly bound − we call this class the bound operators. An example for operators belonging
to this class are highly specialized geometry parsers decoding specific model properties in
order to control a particular feature detection algorithm.

Next are the operators that have similar semantic, but the underlying implementations
differ in a decisive manner. These operators are functionally similar across different appli-
cations. However they are still data dependent and consequently they require adaption
efforts for different types of data − they are termed functional operators. Large parts of the
group of database operations, such as adding or deleting data records belong to this oper-
ator class. Another example are visual mappers, which are operators that map a set of data
properties to a set of visual attributes. In both cases the semantic of operators are the same
across applications, however the implementation heavily depends on the underlying data
type.

Finally, there is the class of operators that have a similar semantic as well as an exactly
identical implementation independent of a given application context. Therefore, these
operators perform data independent tasks. They are named operational operators, because
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they are operationally similar across applications. The perfect examples here are the classes
of geometric and scene operators we know from computer graphics. Concretely, geometry
transformations as well as lighting and view operations belong to this class.

Obviously, this classification correlates heavily with the previously developed categori-
zation of pipeline operators and the abstraction model. In a next step we join these three
concepts in a multi-layered classification scheme, which is shown in Figure 2.3. By these
means, we can deduce essential design issues for a powerful and sound framework design.

Figure 2.3  Summarizing list of recognized operator classes

Figure 2.4  Schematic view on the joined concepts of the information visualiza-
tion pipeline, the operator categorization, the degree of abstraction and finally
the operator classification.
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2.5 IMPLICATIONS FOR FRAMEWORK DESIGNS

This subsection summarizes the consequences of the theory presented above. Further-
more, it describes how this OF affects the design process of information visualization sys-
tems.

A first quite simple realization is the fact that, if we intend to introduce a new operator
in a reusable manner it has to be situated in the class of operational operators. From the
visualization pipeline point of view this condition is equal to a placement after the visual
mapping operators − in other words, the operator should be designed to work on data with
the highest possible degree of abstraction. On the other hand, if we know on which stage
preexisting operators work, we may identify those that are not application domain specific
and thus are easily reusable.

Operations with the same functionality may be invoked on several levels. Typical
examples are data filters or clustering techniques. Since, the breadth of an operator
depends on how far down it appears in the visualization pipeline, we are tempted to con-
stantly choose a position as close to the view stage of the pipeline as possible. However,
this strategy hase also some disadvantages. Especially, in the case of filter-like operators this
approach may lead to a considerable and unnecessary increase of data traffic down the
visualization pipeline. Since, typical data volumes of serious information visualization
problems tend to be large, this strategy may result in a permanently overloaded system. In
such a case we prefer to drop the reusability aspect. Data specific filters on an early stage
may significantly ease the problem while saving resources.

This knowledge can be used to design an extensible and well-structured IVF. Accord-
ing to the different operator classes and their corresponding property profiles, operators
are implemented within the system’s kernel or, alternatively, in plugable modules. The
framework supports the modularization of the system kernel. Furthermore, it helps with
the definition of a sound interface architecture connecting such modules.

And finally, by forcing operation designers to think about where a given operator may
exist in the pipeline, the operator’s semantics are made explicit. Hence, a potential end-
user can interact more accurately with such a system because he understands how opera-
tors at different stages of the pipeline fit together.
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3METRIC SPACES

Metrics occur in many disciplines of computing science (e.g. combinational logic, seman-
tic analysis or fractal image generation) and their meaning varies within a broad spectrum.
In the more applied fields, we often consider a metric in the sense of a geometrical dis-
tance.

In our case, metrics serve as a base concept for quantifying the similarity of related
objects, which will govern the parameters of a spring-embedding system. These in turn,
determine the resulting object arrangement in space thereby revealing multidimensional
object relations in terms of spatial neighborhood. Therefore, metrics play a major role in
unveiling multidimensional relations and adjacencies in terms of spatial neighborhood.
Thus, special observation must be given to the design of a metrics. For every specific prob-
lem and in particular for the pertinent raw data a corresponding metric must be defined.
This chapter is supposed to provide the basics for this purpose.

This chapter introduces a mathematical framework for the quantification of the simi-
larity of related objects located in arbitrary information spaces. The framework depends
on the well-known theory of metric spaces. Furthermore, a selection of commonly used
similarity functions is developed.

It should be admitted that our presentation of metrics in this section is somewhat
focused on the scope of our application domain. The presentation in this chapter follows
largely the two references [AM75] and [GA92], to which we refer the reader for a broader
and more in depth treatment of the subject.

3.1 TERMINOLOGY AND BASIC DEFINITIONS

Definition. A metric (or distance function) on a set  is a function 
mapping a pair of elements to a non-negative real number, satisfying the following four
axioms:

1. ; 

2. ; 

X d : X X R→× 0+

d x x,( ) 0=  x∀ X∈

d x z,( ) d x y,( ) d y z,( )+≤  x∀ y z, , X∈
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3. ; 

4. ; 

Each condition is to be understood as universally quantified with respect to . Axiom
1 may be termed reflexivity: the distance from an element to itself is always 0. Axiom 2 −
called the triangle inequality − asserts that one cannot shrink the total distance traveled by
making detours. Axiom 3 is symmetry, meaning that the distance from  to  is the same
as the distance from  to . Finally, Axiom 4 is the inverse of Axiom 1 − called identity.

Example: One of the most familiar distance functions is the Euclidean metric
 defined by

In this case the metric axioms can easily be checked by visual inspection. Let A, B, and C
be three points in , that span a triangle ABC with sides a, b, c as shown here.

Axioms 1, 3 and 4 are immediate. Clearly ,  and
, where P is an arbitrary Point in . For Axiom 2

(triangle inequality)  which is equal to  and obvi-
ously true for any triangle ABC.

Definition. A set  together with a distance function  defines a metric space, in the fol-
lowing notated as ( , ).

Moreover, we distinguish between different sub-categories of metric spaces. They meet
varying combinations of the axioms listed previously. The most familiar sequence of these
axioms is [1, 2, 3, 4], which says that ( , ) is a proper metric space. If we weaken this
definition, namely by dropping Axiom 3, we speak of a quasi-metric space. Dropping the
symmetry axiom makes sense, when we think of the distance  as a measure of the
effort involved going from  to ; then think of hilly terrain. We should point out that
for quasi-metric spaces the notation of Axiom 4 has to be logically expanded to the formu-
lation  for all . Further, if Axiom 4 is
dropped from one of the formulations considered so far, the corresponding metric name
will be joined by the prefix “pseudo-”; thus, a pseudo-metric space is defined by [1, 2, 3], a
pseudo-quasi-metric space by [1, 2], etc.

3.2 MAPPINGS

Following the definitions, this subsection discusses mapping functions (or maps) between
metric spaces. Applied to two metric spaces, they allow − from a theoretical point of view
− the projection of features from one space into the other. That is, supposed we have two
metric spaces and we know the features of one of them. If we manage to define a mapping
function connecting the two spaces, we may assume corresponding features for the second

d x y,( ) d y x,( )=  x∀ y, X∈

d x y,( ) 0= x⇒ y=  x∀ y, X∈

x y z, ,

x y

y x

d : R
2

R
2

R→×
0+

d x1 x2,( ) y1 y2,( ),( ) x1 y1–( )2 x2 y2–( )2+=

R
2

A B

C

c

a
b

P

d A A,( ) 0= d A B,( ) d B A,( ) c= =

d A P,( ) 0= AP⇒ 0 A⇒ P= = R
2

d A C,( ) d A B,( ) d B C,( )+≤ b c a+≤

X d

X d

X d

d x y,( )
x y

d x y,( ) 0=( ) d y x,( ) 0=( )∧( ) x⇒ y= x y, X∈
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metric space. In addition, maps present a powerful tool to derive new metric spaces based
on already existing ones.

For the reason of simplicity we will state mapping definitions only for metric spaces even
when they apply without adjustment to all the subclasses of metric spaces mentioned in
the previous subsection. However, comment will be reserved for those situations in which,
the dropping of one of the axioms does make a significant difference.

Definition. Let ( , ) and ( , ) be metric spaces. A function  is an isometry
from ( , ) to ( , ) if for all , , that is, if  pre-
serves distances; in this case, the function  is designated also as isometric.

Except for pseudo-metric spaces, an isometry defines one-to-one relationship; for if
 then , which implies by Axiom 1 .

Because axiom 4 has been dropped for pseudo-metric spaces the first implication could
obviously be invalidated. Consider . Then  is termed non-expansive
if, for all , , while  is uniformly continuous pro-
vided

. (3.1)

The idea of uniform continuity is that if two points are close in  then their images are
to be close in , uniformly across the space . Note that, isometry is the strictest notion
of a structure-preserving map between metric spaces. That gives us the following implica-
tion chain:

 is isometric ⇒  is non-expansive ⇒  is uniformly continuous. (3.2)

Definition.  is an isomorphism, if  is an isometry and  is onto. A
function  is onto (or a surjection) if . I.e.  can return any value in

. This means that its image is equal to its codomain. In this case  is also an isomor-
phism, since .

Definition. If  is a Lipschitz map if there exists  such that
 for all . Lipschitz maps are much more general

than isometries, but of course, every isometry and every non-expansive map is a Lipschitz
map with .

3.3 CONSTRUCTIONS

We now point out some of the principal ways of constructing new metric spaces from old
ones. Particularly, we consider techniques to build sub- or supersets of metric spaces, sym-
metrize quasi-metrics or lift a pseudo-metric space to a metric space.

Table 3.1  Summary of metric categories

Name Met Axioms Dropped Property

Metric 1, 2, 3, 4

Quasi-metric 1, 2, 4 Symmetry

Pseudo-metric 1, 2, 3 Identity

Pseudo-quasi-metric 1, 2 Identity and symmetry

X d Y e f : X Y→
X d Y e x1 x2 X∈, e f x1( ) f x2( ),( ) d x1 x2,( )= f

f

x1 x2≠ e f x1( ) f x2( ),( ) d x1 x2,( ) 0≠= f x1( ) f x2( )≠

f : X d,( ) Y e,( )→ f

x1 x2 X∈, e f x1( ) f x2( ),( ) d x2 x2,( )≤ f

ε 0 δ 0 x1 x2 X : d x1 x2,( ) δ≤ e f x1( ) f x2( ),( ) ε≤⇒∈,∀>∃>∀

X

Y X

f f f

f : X d,( ) Y e,( )→ f f

f : X Y→ f X( ) Y= f

Y f
1–

d f
1–
y1( ) f

1–
y2( ),( ) e ff

1–
y1( ) ff

1–
y2( ),( ) e y1 y2,( )= =

f : X d,( ) Y e,( )→ λ 0>
e f x1( ) f x2( ),( ) λd x1 x2,( )≤ x1 x2 X∈,
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Weighted Sum Construction. Let , where  be a collection of metric
spaces; all defined on the same set of objects , but with different metrics . The
weighted sum construction defines an appropriate overall distance function as a weighted
linear combination defined by

, with  and  for all . (3.3)

The weights  allow to control the influence of each metric function . It can easily be
shown that  still defines a metric space, by meeting all 4 Axioms. However, if one
of the metric spaces of  belongs to the class of pseudo- or quasi-metric spaces, needs
a closer examination.

Axiom 1,2 �

Axiom 3

⇒ all  must satisfy Axiom 3

Axiom 4

for all 

⇒ some  must satisfy Axiom 4

Note that  is a pseudo-metric space provided all  are pseudo-metric spaces,
while for  to be a quasi-metric space it is sufficient that at least one of the  is a
quasi-metric.

Metric Subspace. This is one of the simplest construction schemes and produces lots
of new metric spaces. If ,  is a metric space, the subspace metric  is just
the restriction of  to , defined by  for all . Then 
is a metric subspace as is trivial to verify. In fact,  is the unique metric on  rendering
the inclusion function  an isometry.

Example: Consider  defined by . Then  
. As  can be made arbitrary large,

 is not Lipschitz if . On the other hand, let
. Then  for  so that

 is a Lipschitz map since .

Symmetrizing a quasi-metric space. There are cases, where symmetric metric
spaces are required. For example the similarity space defined on a set of objects (see
Section 3.4). However, in a straight forward approach, it is sometimes hard to find a sym-
metric metric formulation. With less an effort, one could define a quasi-metric on the
same set of objects, setting up a quasi-metric space. For this case we consider a useful pro-
cess for symmetrizing a quasi-metric space. Let  be any quasi-metric space. Define the
conjugate of , written , by

• all  satisfy Axiom 3  ⇒  satisfies Axiom 3

• some  satisfy Axiom 4 ⇒  satisfies Axiom 4
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. (3.4)

One easily verifies that  is a quasi-metric on . Then we obtain a (symmetric) metric
space  by taking

. (3.5)

As we can easily prove,  meets all metric axioms and  specifies a metric space.

Example: Consider the quasi-metric space , where  is the set of real numbers 
and  is defined by . Then  and  becomes

.

Lifting a pseudo-metric. Finally, we remark that any pseudo-metric evolves in a
rather trivial way to a metric, by identifying points having  distance. If  is a
pseudo-metric space, we define , where  is the set of equivalence
classes of elements of  under the equivalence given by  and

. That means, all the objects of  with  are projected
onto one single element of X, thus . 

Metric-stretcher. Given is a function . If  satisfies the conditions
,  is one-to-one and  if , then  is called a metric-

stretcher. It can easily be shown that, if  is a metric and 
is a metric-stretcher then  defined by  is again a
metric.

3.4 QUANTIFYING SIMILARITY IN INFORMATION SPACE

One of the very challenging problems of information visualization is the definition of a
mathematical framework for the quantification of similarity of entities (= items) in infor-
mation space. One should be aware that because of its manifoldness this field is still a hot
topic in ongoing research. In general, similarity quantification may be described as a func-
tion that associates a numeric value with a pair of sequences, with the idea that a higher
value indicates greater similarity. A similarity measure is a type of scoring function.

Definition. The similarity  on a set of objects  is defined as a 1-normalized, inverted
metric1 . The value of  is computed using a
weighted sum construction over the attribute sequences of  and . A value of 
means that the two objects  and  have minimal and in the case of  maximal
similarity, whereas the value of the self-similarity of an object  is always bounded to

.

 Remark, that much like a pseudo-metric a similarity value of  does not neces-
sarily imply the identity of the two involved items  and  − meaning that,  and 
represent one and the same item instance. Nevertheless, in such a case the item attributes
are identical in pairs regarding to the criteria defined in the similarity computation. There-
fore, we may regard the similarity still as a metric function.

1.  For the special purpose of physics-based information visualization we demand a metric fulfilling least Ax-
ioms 1, 2 and 3 (see Section 3.1). Therefore, a pseudo-metric is the weakest valid representant at this point.

d
1–
x y,( ) d y x,( )=

d
1–

X

X d
*,( )

d
*
x y,( ) max d x y,( ) d

1–
x y,( ),( )=

d
*

X d
*,( )

X d,( ) X R

d d x y,( ) x y–= d
1–
x y,( ) y x–= d

*

d
*
x y,( ) max x y– y x–,( ) x y–= =

0 X d,( )
X' d',( ) X' X   ≡⁄=

X x y≡ d x y,( )⇔ 0=

d' x y,( ) d x y,( )= X d x y,( ) 0=

X' X⊆

f : R
0+

R
0+→ f

f 0( ) 0= f f x( ) f y( )+ f z( )≥ x y z≥+ f

d : X X R
0+→× f : R

0+
R
0+→

df : X X R
0+→× df x y,( ) f d x y,( )( )=

s O

s : O O 0…1 ][→× sij s Oi Oj,( )=

Oi Oj sij 0=

Oi Oj sij 1=

Oi

sii 1=

sij 1=

Oi Oj Oi Oj



24 Metric Spaces
The definition of an applicable similarity, which by definition is a function operating
on the attribute sets of two items, is intrinsically task and data dependent. According to
the operator classification given in Section 2.4 on page 16 it belongs to the group of
bounded operators. Based on the same items one could define a whole set of distinct sim-
ilarities; each dedicated to a different task. Therefore, when constructing a similarity mea-
surement we have to be aware what it supposed to express. The general question we have
to ask, is: 

“What does similarity mean in the specific context?”

Without doubt, this process requires a lot of experience value and heuristics. Thus, the
support of an expert with domain specific experience and knowledge is essential. 

However, the previously presented theory of metrics and metric spaces provides a solid
foundation for measuring distances in arbitrary object spaces, thereby making it feasible as
an appropriate instrument for similarity measurement. Analogous to the metric theory, we
define that a set of entities together with the similarity function span a similarity space.
Entities which are close in object space, this is with a small distance are “more similar”,
than those items with a larger distance, which are designated to be “less similar”.

In general, we find two different approaches to establish a formal association between
a metric space and a similarity space. Starting with the former (and stricter) case, the fol-
lowing section describes two different mapping schemes allowing a well defined construc-
tion of a similarity based on an arbitrary but already defined metric function.

Mapping Scheme A.  We define a linear mapping function from metric distances to
the normalized similarity domain, which reflects this behavior and further takes the simi-
larity specific co-domain into account:

. (3.6)

The function  is defined as a metric-stretcher (see Section 3.2) that scales the metric func-
tion  to a normalized co-domain of 

, (3.7)

where  designates the maximal possible value of  for a given set of items.

Mapping Scheme B. Less common is an alternative definition of  that avoids the
involvement of a scaling function. Thereby,  will be defined as

Figure 3.1  Chart showing the interdependence of the similarity value  and the
metric value  when applying Mapping Scheme A (in case of a known )
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. (3.8)

Considering the pros and cons of this formulation, we can establish that, compared to the
previous definition of , shown in Equation 3.6, this formulation does not require a
value for the upper boundary . This could be an advantage, particularly if an estima-
tion of  is very expensive or even impossible to compute for a given problem. How-
ever, there are disadvantages as well: Equation 3.8 performs decently only, if the image of
the metric function  starts near zero and reaches sufficiently large values. Fur-
ther, the alternative definition introduces additional non-linear behavior, which could be
difficult in the sense of reasonable predictions and control.

In the following subsections we give a selection of different commonly used similarity
functions listed by the type of the input data. We do not claim completeness, rather we
focus on a basic set of similarities applied in the examples presented later on in Chapter 9.

3.4.1 Booleans

Starting with the simplest form of input data, this function computes a value expressing
the similarity between two boolean values − obviously a trivial case.

The underlying metric function is considered of pseudo-metric type, because it can return
a distance value of zero even if  (see Section 3.1). The projection into the similarity
space is done by the a linear mapping function combined with the identity function.

Figure 3.2  Chart showing the interdependence of the similarity value  and the
metric value  when applying Mapping Scheme B (in case of an unknown )
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3.4.2 Scalars

In the case of scalar values, we generally construct a valid metric function by applying the
absolute value function to the difference of the two scalar input values

. As one can easily verify, this metric evidently satisfies all metric
axioms (1 to 4).

A sound mapping to a similarity function can be achieved in two different ways. If the
upper bound of  is known, we may apply Mapping Scheme A − presented previ-
ously − to get Similarity A shown below. Otherwise, if the maximum value is unknown,
we must use the non-linear Mapping Scheme B ending up in Similarity B. 

3.4.3 N-dimensional Scalar Vectors

Similarity measurement of -dimensional vectors calls for a closer inspection. Different
metric definitions may be applied to measure the affinity of two -dimensional vectors.
Subsequently, the two most common, the distance measurement and the angle measurement
are discussed in more detail.

Distance Measurement. A common approach to compute the distance between the
end points of two vectors, is to apply a norm , where the most fre-
quent norm definition is the -norm, also known as the Euclidean norm. However, we
may also think of other norm definitions, such as the maximum-norm  or the min-
imum-norm ; each holding its specific norm characteristics. It depends on the given
problem, which norm fits best. However, all these norm variations have in common that
a similarity value of  is reached only, if  and  are identical in all of their  dimen-
sions. That is, when the two vectors point to exact the same location in the -dimensional
space.

In the light of an example (Section 3.1), we have already shown that the Euclidean norm
fulfills the criteria of a metric function. Therefore,  denotes a true metric func-
tion.

Concerning the similarity mapping, analogous problems to the case of scalars occur.
Again, depending on the criterion of an unknown  − that is, if vectors are of arbitrary
length − we apply the appropriate scheme from Section 3.4.  

Angle Measurement. In contrast to the distance-based similarity measurement, the
angle measurement follows a less restrictive approach. The maximum similarity value is
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already reached, when the two vectors referring to  and  point to the same direction,
and thus the angle between  and  becomes zero (please compare with vectors  and

 in the sketch below). 

If two vectors point to the same direction there is a scalar  so that .
This equation can only be satisfied if each separate component of  and  matches up.
Thus, compared to the distance measurement the similarity condition has been weakened
to the effect that it is now sufficient if there is a constant ratio between the components of
the two vectors. That means, the unit of measurement now has a relative characteristic.

The metric, underlying the similarity, is based on the definition of the dot product

 .
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We may easily extract the cosine of the enclosed angle 

,

which may already be applied as a metric, in some cases. In order to avoid additional non-
linearity, the arc’s cosine is computed. Consequently, we get a range of values between 
and  for this metric. This metric obviously belongs to the category of pseudo-metrics,
since − as shown in the previous subsection − the identity criterion is not met as sole excep-
tion of the four axioms. In order to get a valid similarity function a metric stretcher with
a constant factor of  is applied, consequently.

Besides the more conservative similarity assessment the angle measurement has the advan-
tage, that it fundamentally works within a limited and well defined co-domain. Therefore,
we neither have to consider any case distinction nor do we have to introduce any undesir-
able non-linearity.

Finally, choosing a similarity measurement for -dimensional vectors highly depends
on the concrete application. Even, if we work on the same data set, we may first choose
the distance measurement, but prefer the angle measurement for an analysis with a slightly
different focus. A concrete example may be given from the area of document retrieval anal-
ysis. Supposed a document is described by an -dimensional feature vector, where each
entry denotes for example the relative frequency of a given keyword within the document’s
text. If our analysis focuses on finding sets of preferably equal documents, we apply the
distance measurement. However, if the search is confined to the finding of documents
dealing with a similar topic, then the angle measurement is employed.

3.4.4 Dynamic Numerical Data Series

The class of dynamic numerical data series defines another set of problems that principally
bases on -dimensional data vectors too. However, the mathematical instrument to mea-
sure similarity in dynamic numerical data series − also called timeseries − is provided by the
area of statistics and probability calculus. Since we may consider timeseries as a sequence
of discrete random variables, we may apply the theory of descriptive statistics. It defines a
measure of distance between two variables by quantifying their stochastic interdepen-
dence.

For our particular case, we are interested in quantifying the similarity between the
courses of two different data sources. The correlation coefficient  is used to answer the
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question: Is a change in one of the independent variables linearly associated with a change
in the other independent variable?

Linear Correlation. If the data distribution is normal, the correlation coefficient  may
be defined directly on the data series. The measurement basically relies on a covariance
computation. However, since the covariance may become any value depending on the
underlying timeseries, this approach will require the use of the unfavorable Mapping
Schema B in the similarity mapping step. Therefore, a normalized replacement − the linear
correlation coefficient  − is preferred. This coefficient is calculated as:

, (3.9)

where  and  denote the empirical mean value over the corresponding timeseries.

A value of  indicates no linear relationship between the two timeseries,
whereas a value of  or  suggests a strong linear relationship
between the two timeseries. If  holds a positive value, the behavior of the two
timeseries shows a similar tendency in principle. This means, that if the values of one series
increase over time, the other series will likely rise too. Correspondingly, if  is negative
the connection behaves reversely.

Depending on the concrete use case, two different variants of a similarity mapping are
meaningful. The first variant Metric A/Similarity A applies a scaling with a factor of .
An alternative mapping definition Metric B/Similarity B uses the absolute value in order
to project the values into a valid co-domain. 

Both transformations finally map the values of the chosen metric (see Equation 3.9) to
the normalized co-domain of a similarity function. However, they differ decisively in the
manner they rate a reversal connection between the two timeseries. Where Metric A/Sim-
ilarity A considers this behavior as completely non-similar, Metric B/Similarity B judges it
− alike to the case of a similar behavior − as completely similar.

As one may have noticed, this definition seems to be quite similar to the previously pre-
sented angle management applied to -dimensional scalar vectors. In fact, it is mainly a
question of how we look at the data. From a statistical point of view we compute an empir-
ical correlation value between two variables changing over time. Switching to a geometri-
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cal interpretation, the two data series may be equivalently viewed as -dimensional
vectors. Doing so, the correlation essentially corresponds to the cosine of the angle in
between the two corresponding vectors, which have been translated preliminary by their
respective mean value.

Again, the metric  belongs to the category of the pseudo-metrics, because the
identity axiom is not fulfilled for this case.

Rank Correlation. When the distribution of variables is not normal, the degree of rela-
tionship between the variables can be calculated using rank correlation. Instead of using
the precise values of the variables. The data series are ranked (  and ) in order of size,
and calculations are based on the differences between the ranks of corresponding values.
Let  be a data series containing the squared differences:

Then, using Spearman's formula, correlation is estimated according to:

(3.10)

The rank correlation is a robust and resistive alternative to the linear correlation (See also
[PFT+88]). Concerning the similarity mapping, the same approaches applied to the linear
correlation may successfully suit for this case.

3.4.5 Non-Numerical Entities

One may easily think of a large variety of similarity measure examples involving non-
numerical entities. To give the reader an impression of the wide thematic range, the work
presented in [LL00] may be mentioned as an exponent of a very pictorial example. They
present a similarity measure motivated by cognitive considerations based on the method
of discrete curve evolution and simplification of visual parts. This shape-matching tech-
nique is applied to retrieve similar objects in image databases of 2D objects. At the other
end, we have the class of abstract problems. An appropriate example for that is represented
by the work of Girardi and Ibrahim [GI94]. They introduce a similarity measure to
retrieve affine software parts. The underlying metric bases on the automatic extraction of
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lexical, syntactic and semantic knowledge from natural language descriptions of software
artifacts.

However, in order to stay focused, we will limit the further discussion on non-numer-
ical entities to the class of document retrieval problems. Please be aware, that this restric-
tion mainly applies to the selection of examples following in Chapter 9.

Measure of the similarity between documents. Documents can be character-
ized by a large number of attributes. Thus, a document may be seen as a -dimensional
attribute vector − a document description vector (DDV). The set of all DDVs set up a doc-
ument space. Each element of such a vector describes one specific property of a document.
The meaningful determination of such property values still belongs to the hot topics of
document retrieval research and shall not be discussed here. Our further reflections assume
that a standard document retrieval engine is involved. Therefore, the DDVs result from a
retrieval query by submitting a set of keywords. The involved retrieval engine then deter-
mines the value for each element in a DDV which will be sent back to the user.

The similarity of two documents can be measured as the distance between the two corre-
sponding DDV in the document space. A comparable measurement for -dimensional
scalar vectors has already been presented in Section 3.4.3. However, as the example in
Table 3.2 shows the elements of a DDV may be of different types.

 In order to reduce this case to the one in Section 3.4.3, we must find a way to map the
non scalar elements of a DDV to a single number. Again, this problem looks quite familiar
to us, if we think back to the beginning of this chapter. In fact, defining an appropriate
metric to each single DDV element solves the mapping problem. This gives us a two-stage
measure process. In the first stage, we apply a metric on the level of the elements of each
DDV. In the second stage, the similarity of the then scalar vectors is quantified based on
the formulas for -dimensional scalar vectors introduced in Section 3.4.3.

The following subsections present metrics for the non-trivial element types. Obviously,
score and length will not appear because they are already scalars. Even the key-
word-counts element is not of special interest, because its type is already covered by
the metric for -dimensional scalar vectors introduced in Section 3.4.3. Thus, the lan-
guage and location remain for a closer examination.

Language. The language similarity can be mapped to a binary metric, in the simplest
case. If the two languages to compare are identical  will take the value 1, otherwise 0.
Of course, one could think of more sophisticated approaches, that for instance take lin-
guistic aspects into account. In that case, the underlying metric would be expanded to a
scalar value.

Table 3.2  Elements of a typical document description vector

Name Description Type

score Overall relevance of the document (within a result list) scalar

location The URL of the document url

language Language, automatically detected by the retrieval system enum

keyword-counts Relative frequency for each keyword (search argument) vector

length Absolute length measured in Bytes scalar
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n

n

n
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Uniform Resource Locator (URL). A URL [W3C97] can be logically subdivided
into three parts: the protocol, the hostname and the path. For the purpose of document
retrieval the protocol has no relevance. By contrast, the hostname and the path reveal
information about the location of a document. Providing a URL similarity enables one to
compare in quantity the location of two documents.

The hostname (= hostaddress) contains information about the physical location of a
document. It is structured in a hierarchical manner, where dots separate the single address
parts. Starting from the end with the most important element, the document’s top level
domain name (in our example "ch"), the importance decreases to the left. Usually, the top
level domain will be followed by a second level domain name ("ethz") and finally the name
referring to the physical machine ("graphics").

Regarding this structure the obvious approach to compute a similarity value between
two hostnames would be to split each one into a set of tokens. Those will be compared
one-to-one right to left, with the token position being taken into consideration as a
weight. This weight is supposed to be larger the closer the token’s positions are located to
the right. We propose the following metric for hostnames:

(3.11)

where

and  is the number of hostname tokens.
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The parameter  reflects how heavily the hierarchy is weighed.
Valid values lie in the interval . Choosing a value of , we get the degenerated case
that everything except the tail end of the hostname − the top level domain − would be
omitted. On the other hand, if we set  to  all tokens will have
an equal influence. With foresight to the use of the metric as a base for the similarity mea-
surement the value range of Equation 3.11 is already normalized to  by dividing
through the sum over all weight factors. For two identical hostnames we receive a metric
distance of .

The path comes with its own metric definition, even if its general structure is very sim-
ilar to the one for hostnames, it differs in the hierarchy weighting. For the path the hier-
archical structure is weighted from the left to the right.

(3.12)

where

and  is the number of path tokens. For the function  the definition from
Equation 3.11 is still valid.

Analogous to the  we may influence the weighting of the
path hierarchy with a parameter . The path metric function is nor-
malized to the co-domain  as well. Note, the token comparison proceeds from left
to right, which is exactly the reversed order compared to the hostname metric.

As a formula for the complete URL metric we apply the Weighted Sum Construction
introduced in Section 3.3. Consequently,

(3.13)

where

 and .

The two additional weights  and  allow to steer the influence of the host-
name and the path component respectively. In practice, this has a certain relevance with
respect to the technique of host mirroring.
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Input Type: . . . . . . Document Location
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4PHYSICS-BASED MODELS

The following chapter establishes the mathematics for the physics-based models which con-
stitute the basics for the applied visualization paradigms. Particularly, it lays the founda-
tions for the force directed layout mechanisms for weighted graph-structures which will be
explained in more detail in Section 5.2.3 on page 72. Therefore, this chapter is laid out
more generously in its circumference. However, since basic research in physics-based
models is not a part of the core areas of this project − we consider ourselves more as users
of those models − the following sections are limited to introduce the mathematical foun-
dations required to understand the basics of the presented approaches. Specifically, we
consider the different aspects of various numerical simulations for mass-spring systems,
which from a general point of view belong to the more generic class of N-body problems.
Additionally, this chapter includes the presentation of a new spherical initialization
approach for this kind simulation models.

An extensive theoretical treatise of these algorithms is beyond the scope of this work.
There exists a wide range of information sources available that descend from various appli-
cation areas such as particle physics, chemistry and astronomy. Accordingly, for a compre-
hensive introduction concerning physics-based models we refer to the excellent works of
[Wit96, WBK95 and GT88]. Furthermore, additional in-depth information can be found
in [Gar94, HE88] and with emphasis on numerical methods we recommend [HNW91,
HW96, Sch93, Dem96a, Dem96b, RG87, Gre90 and PFT+88].

In analogy to [BET+98], when examining physics-based models we can distinguish two
main parts on principle:

1. The model itself: a force system primarily defined by mass points and a set of con-
necting springs. More complex systems may arise with supplementary type of
forces (e.g. electrical or gravitational forces).

2. The numerical method: this is a technique for finding an equilibrium state of the
force system, that is, a position for each mass object, such that the total force on
every mass is zero.
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36 Physics-based Models
The subsequent sections are divided according to the two main ingredients of this
approach. The first half of the chapter presents the chosen model and covers the basics of
the dynamics for mass-spring systems. The remainder discussess the problems of numerical
methods, with an emphasis on their numerical stability and the requirements of interactive
simulation.

4.1 BASIC MASS-SPRING SYSTEMS

We briefly review the principles of the dynamics of mass-spring and particle systems.
Mass-spring systems belong to the group of linear finite element methods and have been
widely used in computer graphics because they provide a simple means of generating phys-
ically realistic motion for a wide range of interests [WBK95]. In particular, they serve to
simulate the motion of complex physical bodies approximately, by splitting the mass into
a collection of single mass points, which are connected by a set of springs. Furthermore,
mass-spring systems are also applied to abstract structures, such as graphs, equipping them
with adjustable physical behaviors. 

A basic mass-spring system consists of a number of mass objects, in the following
referred as particles. In an idealized mass-spring system, a particle  is an object that only
has mass , position  and velocity , and responds to external forces , but that
exhibits no spatial extent. A spring is represented by an object that connects two particles

 and , and that is defined by a zero length  and a spring constant  (see Figure
4.1). Additionally, a spring is considered to have zero mass. Without distorting the results
of non-degenerated problems, these assumptions are primarily made in order to simplify
the simulation of such systems.

Applying Hook’s law, the principal equation that governs the attractive force 
between two mass points  and  is given by

(4.1)

where

 . . . . . . . . . spring stiffness

. . . . . . . . . . zero length of connecting spring

, . . . . . . . spatial position of particle , respectively 

Figure 4.1  A basic mass-spring system, illustrating the forces between two mass
objects  and .
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The total force  on a particle  results from the superposition of all forces 
due to all incident springs connected to . We also add a velocity-dependent friction

 to the system in order to prevent undesirable harmonic oscillation [HE88]. Hence,
the resulting equation for the total force is

(4.2)

where

. . . . . force on  generated by the spring connection to 

 . . . . . . friction force acting on 

. . . . . . . . . set of indices  of particles  directly connected to 

. . . . . . . . . . friction coefficient

. . . . . . . . . velocity of particle 

4.2 ADVANCED FORCE MODELS

With respect to our application domain we extend the concept of a basic mass-spring
system by adding further force types. Naturally, we keep the spring and the friction forces
as parts of the system. Additionally, we model repelling electrical forces. All particles are
charged with equal polarity to prevent an accidental and as such unwanted coincidence of
their positions. The electrical force on a particle  exerted from another particle  fol-
lows the inverse square law and can be described as

(4.3)

where

Figure 4.2  Total force  on a particle  resulting from the set of superposed
spring forces  and the cushioning friction force .
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. . . . . . . . . . constant defined by , where  is the dielectrical constant.

, . . . . . . . charge applied to particle , respectively 

, . . . . . . . spatial position of particle , respectively 

As a second extension we introduce gravity to the model. The gravity paradigm we apply
in this case is special with respect to its interaction behavior. In contrast to the electrical
forces gravity does not interact between individual particles, although they might have a
mass larger than zero. We rather think of a large mass point  positioned at the origin of
the spatial coordinate system. Each particle  is exposed to the gravitational force 
resulting from its own mass  and the mass object  only. Consequently, the gravity
force always points towards the origin, which gives this force a desired centering charac-
teristic. Newton’s first law, the law of gravitation, defines the force according to the fol-
lowing equation

(4.4)

where

 . . . . . . . . . . gravitational constant 

 . . . . . . . . .mass of particle 

 . . . . . . . . .mass of fictive object located at the origin

. . . . . . . . . . spatial position of particle 

Recapitulating, we propose an extended mass-spring system, which includes the following
list of forces that have an effect on each individual particle :

Force Type Equation

Spring force

Friction

Electrical force

Gravitation
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Considering this extended model we obtain the total force on a particle 

(4.5)

or expanded to full length

(4.6)

 . . . . . . . . spring stiffness

. . . . . . . . . zero length of connecting spring

. . . . . . . . . set of indices  of particles  directly connected to 

. . . . . . . . . . friction coefficient

. . . . . . . . . current velocity of particle 

 . . . . . . . . . constant defined by , where  is the dielectrical constant.

, . . . . . . charge of particle , respectively 

. . . . . . . . . . gravitational constant 

 . . . . . . . . mass of particle 

. . . . . . . . . mass of fictive object located at the origin

, . . . . . . spatial position of particle , respectively 

In a more verbose form Equation 4.6 may be interpreted as follows:

• The first term, the spring force component, is responsible to push a particle into a
certain distance to another one, where the pursued distance corresponds to the
value of the spring zero length . The endeavour of the spring to reach  is pro-
portional to the spring constant .

• The value of the friction component is independent of the position and therefore it
obviously does not have a direct influence on the particle placement. Friction
essentially improves the system stability by suppressing oscillation.
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40 Physics-based Models
• The term for the electrical force makes sure that two particles located coinciden-
tally close will be pushed away from each other. Because this force follows the
inverse square law, it’s influence diminishes rapidly. Therefore it is restricted to the
case where the distance between two particles is very small. The repulsion can be
controlled by adjusting the values for the charges  and .

• Finally, the gravity term tends to pull the particles towards the origin, which has
the effect of a final particle arrangement centered around the origin. In most of the
cases this force is very weak. To augment its impact the mass  has to be
increased.

4.3 DIFFERENTIAL EQUATIONS

If we consider the motion of a particle  by applying Newton’s second law, Equation 4.6
converts into the familiar second-order linear ordinary differential equation (ODE)
[Wit96] of the form

(4.7)

which could also be written as 

. (4.8)

In order to determine the spatial motion − including velocity and the current position −
of a particle , a variety of numerical integration methods such as Euler or Runge-Kutta
[Sch93, HNW91] can be used. Most of these methods are only applicable to first-order
ODEs. But our problem, shown in Equation 4.8, is of second-order type. However, we
can always convert a second-order equation to a system of first-order ODEs by introduc-
ing auxiliary variables. Here we introduce the additional variable  − representing the
velocity − which results in the following system of coupled first-order ODEs.

Figure 4.3  Total force  on a particle  resulting from the superposition of
spring, friction, electrical and gravitational forces.
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(4.9)

This splitting technique entails a two step integration scheme. After we have computed
the total forces  and the resulting accelerations, we first integrate the accelerations over
time to compute the velocities  and then integrate the velocities  to compute the posi-
tions  of the particles.

Because both equations in this system of Equation 4.9 can be integrated concurrently,
we can assemble them to form a 6-dimensional vector. The space spanned by these vectors
is also called the phase space [Wit96]. The component-wise formulation1 of the phase
space equation of motion is

. (4.10)

Since the force  is exclusively a function of  and the time , Equation 4.10 now
behaves like an ordinary scalar first-order ODE, with the only difference that the involved
functions are of vector type. This circumstance implies that the standard numerical inte-
gration methods are directly applicable to Equation 4.10. For a further discussion of
numerical integration methods we refer to Section 4.6 on page 55. 

When we consider a whole system of  particles, it is described analogously by  copies
of Equation 4.10, concatenated to an 6 -long vector. Figure 4.4 shows a sequence of
snapshots illustrating the calculated movements of a small mass-spring system consisting
of 4 particles connected as shown. The initial arrangement is shown in the leftmost image.
This defines the ODE’s start values. From there the numerical simulation runs until the
system converges into an equilibrium state, where all particle positions remain stable.

1.  Please note that for an improved presentation we have dropped index  for the notation of Equation 4.10.

Figure 4.4  A simple mass-spring system converging to its equilibrium state. The
relaxation sequence starts on the left and progresses to the right.
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42 Physics-based Models
4.4 INITIAL PARTICLE POSITIONING

In this section we discuss possible strategies concerning the initial arrangement of particles.
Since, our simulation problem results in an ODE that belongs to the class of initial value
problems, this procedure is crucial to the subsequent relaxation process and thus, to the
resulting equilibrium state. In addition, we have to be aware that our model corresponds
to a high dimensional optimization problem [YR91, Ben96] and is prone to all the known
problems associated with subspace procedures [GK95]. 

Typically, physics-based models and their corresponding differential equations emerge
from fields that attempt to model the physical behaviour of real systems. Such fields are
particle physics, chemistry and astronomy. All those systems have in common, that their
initial state is determined by their real world equivalents. However, since our field of appli-
cation deals with abstract data this correspondence is nonexisting. Consequently and in
order to prevent the system from convergence to a local minimum, a skilful precondition-
ing paradigm should be applied.

Therefore, we propose a two-step initialization strategy, where tightly connected parti-
cles should be positioned as close as possible to each other [SGE+97]. The first step com-
prises the determination of  positions in space. The second step assigns each particle 
to one of the  positions determined previously. It is clear, that we won’t succeed in the
general case, but the method reported below avoids most initial ill-conditioning.

4.4.1 Determination of Initial Positions

Given is a set of particles . One may think of several different approaches to
detremine  initial positions in practice. The following subsections categorize and desribe
them by their individual strategy of chosing the positions.

Point positioning. The point positioning presumably marks the most simple strategy.
Following this strategy, one single position in space (e.g. the origin of the current coordi-
nate system) is determined only, which will be valid for all particles. This approach leads
to a simulation process where all particles will diverge in a explosive manner from the point
of initilization to find their equilibrium in a certain distance to each other. Actually, this
idea will not work in practice! The proposed initialization denotes a singular point, where
we get undefined expressions in the underlying ODEs. In order to avoid this undesirable
effect, we may ease the initialization constraint by choosing the positions not at a single
point but rather around a single point. However, such a simulation will still show very
large forces which may result in numerical instability.

Random positioning. Another simple and still rather pragmatic approach is the
random positioning. Following this strategy the  initial positions will be determined ran-
domly in space, whereas an initialization parameter controls the maximal dilataion of the
scattering. In many cases this method will turn out satisfactory. However, it suffers from
the main disadvantage that the simulations initialized in such a way are not reliably repro-
ducable. A fact, that makes this method unusable for our purposes.

Shape embedded positioning. The shape embedded positioning approach directly
addresses the drawback of the random strategy by binding the initial positions to a well
defined surface. Thereby, the arrangement of the initial positions, so called patches, follows
the best possible evenly distribution within the given geometrical constraints. With this
embedding approach the initialization process becomes well defined and reproducible.
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A implementation of this strategy is the paradigm of spherical embedding also presented
in [SGE+97]. Since this strategy emerges as a concret result from our work and was for
most of the examples it will be described in more detail hereafter.

The basic idea is to determine the  initial positions equally spaced on the surface of a
sphere with radius  as illustrated in Figure 4.5a. The center of the sphere is located at
the origin of the used coordinate system. Such an arrangement yields a satisfying approx-
imation for an intrinsically aimed equidistant particle distribution in space, which would
be optimal from a theoretical point of view. The major advantage of this arrangement is
the degree of symmetry inherent to the geometry of a sphere. It fairly supports the attempt
that non of the spacial dimensions is supposed to be favored.

Computing equally spaced positions on a sphere results in a nontrivial optimization
task, the so-called Fekete-problem [PSS97], which however is approximated efficiently by
a Poisson disc sampling procedure in spherical coordinates [Gla95]. Thereby, the positions
are determined interatively by successively allocating solid angle element  as depicted in
Figure 4.5b. The center of such an element  denotes the position to initially place a par-
ticle. In doing so, the angle between the position vectors of two particles will be at least as
large as a fixed anlge . In other words, the distance of two particles must not under-
shoot a distance threshold , computed by the following relation:

(4.11)

where

. . . . . . . distance threshold

. . . . . . . minimal angle between two positions

. . . . . . . . . distribution factor 

 . . . . . . . . . radius of the spherical surface

 . . . . . . . . . number of particles

For the purpose of a simpler formulation Equation 4.11 was developed under the assump-
tion, that the sum of solid angle elements complete exactly to a whole sphere. Since this is

Figure 4.5  a) Initialization of particles on a virtual sphere. b) Poisson disc sam-
pling for initial positioning
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44 Physics-based Models
actually not true, we scale the element’s surface with a factor  to take this into
account. As a concequence, this factor has a direct influence on the uniformity of the dis-
tribution of the initial positions is illustrated in Figure 4.6.

4.4.2 Assign particles to initial positions

Now that the initial positions have been determined, a second step will cover the assign-
ment of particles  to these  positions. Thereby, each particle will be assigned
to exactely one position whereas each position does accept no more than one particle. This
assignment may again occur by means of different strategies, discussed hereinafter.

Random assigment. Again at this level, a straightforward random assignment strategy
could be employed. However, two grave disadvantages makes this assigment method in
practice of no avail. Firstly the assignments found by using this strategy are not reproduc-
ible due to the random characteristic of the procedure itself. Secondly, the algorithm con-
sequently ignores the given physics-founded connectivity between particles. Thus, it is
potentially possible that this proceeding results in a disadvantageous particle assignment.
This is for example the case if strongly connected particles are placed far from each other.

Especially with regard to our concrete usecase the initialization strategy has to be aware
of the spring forces in our system, which mainly determine the resulting particle layout. It
should be avoided that weakly connected or even unconnected particles will be spatially
neighboring after relaxation simulation. This may for example be the case if connections
in short distance come to lie crosswise to each other initially (see Figure 4.7a). If this is the
case, an undesirable cluster of particles will result near the connection’s intersection point
as shown in Figure 4.7b. In terms of the underlying spring connectivity, this cluster arises
by chance and without a corresponding equivalence in the underlying connection topol-

Figure 4.6  Poisson disc distribution for: a) , b) 

Figure 4.7  Unfavourable initialization with crossing connections. a) Initial
layout b) Arrangement after relaxation, undesirably clustering of unconnected
particles
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4.4 Initial Particle Positioning 45
ogy. The presens of such “fake” clusters ihibit the desired interference of the resulting spa-
cial arrangement onto the subjacent connectivity.

Breadth-first-traversal assigment. The breadth-first-traversal assigment startegy is a
promising approach that takes the existing connections into consideration by placing
strongly connected particles at neighboring positions. For that the particles and connec-
tions are considered as a special instance of a weighted graph, where not the edges but the
vertices are weighted.

We start with an initial weighting of all particles , where the weight  is defined by
the sum of spring constants  of all adjacent springs.

 (4.12)

where

. . . . . . . . . weight of particle 

 . . . . . . . . spring constant of spring connecting particle  and 

. . . . . . . . . set of indices  of particles  directly adjacent to 

This weighting emphasizes the importance of particles with strong connections. From
there, a list  of all objects is built which is sorted with respect to the
weights . The assignment of particles to the computed surface positions is figured out
by a breadth-first-traversal strategy. The algorithm starts from the particle with the largest

 and assigns it to a first position. The positions are now ranked according to their
Euclidian distance from the initial particle in 3D space. In the next step, all directly con-
nected particles are visited and assigned in the order of their weights. From there, the pro-
cedure traverses the list recursively until all objects are assigned.

Figure 4.8 illustrates the procedure. The numbers shown indicate the sequence order
in which the particles are traversed. The particles drawn in gray are those already visited
by the time the recursion is applied the first time. A pseudocode fragment for the method
is given below in Table 4.1.

Figure 4.8  Assignment order of breadth-first-traversal assignment

1

4

8

10

11

9
32

5
6

7

Pi wi
kij

wi kij

j Ai∈

∑=

wi Pi

kij Pi Pj

Ai j Pj Pi

P P1 … Pn, ,{ }=

wi

wi



46 Physics-based Models
Depth-first-traversal assignment. This strategy has been developed as an alernative
to the breadth-first-traversal assignment procedure described above. It shares the basic con-
cept, but applies a different type of traversal strategy.

The algorithm starts from the particle with the largest  and assigns it to a position.
Subsequently, the directly connected particle holding the largest  is traversed, then a
direct neighbor of that one and so forth. This process is continued recursive until a perticle
is reached that does either not have any further connections or only such too already
attended particles. Figure 4.9 illustrates the traversal algorithm. The numbers beside
besides each particle mark the order in which the graph is traversed. Particles that have
already been visited when the first recursion run is finished are shown in gray.

Table 4.2 describes the assignment algorithm in the form of a short sequence of
pseudocode.

Table 4.1  Pseudocode listing breadth-first-traversal position assigment

P={P1,...,Pn} // initial particle list //
S={S1,...,Sn} // initial positions //
T={} // list of sublists //

while (P not empty) do
fetch particle Pi from P | wi = wmax 
assign any position Sk to Pi: Pi -> Sk 
remove Sk from S 
generate list Li of all directly
connected particles Pl ∈ P sorted with respect to kil
keep wi with Li
add Li into T

while (T not empty) do
fetch sublist Lm from T | wm = wmax
remove all particles ∈ Lm from P

while (Lm not empty) do
fetch next particle Pj from Lm
assign free position Sk to Pj | dist(Sk,Sm)=min: Pj -> Sk
remove Sk from S
generate list Li of all directly
connected particles Pl ∈ P sorted with respect to klj
keep wj with Lj
add Lj into T

od
od

od

Figure 4.9  Assignment order of depth-first-traversal assignment
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4.5 FORCE CALCULATION SCHEMES

Current literature describes many different particle simulation models, however most of
them differ primarily in the type of the used force calculation scheme. Because of their
actual  characteristic force calculations denote a crutial part for an efficient particle
simulation. Especially for typical models − consisting of a large number of particles − these
costs assume hardly controllable proportions. Therefore, literature knows a wide range of
optimizing calculation schemes in order to handle this issue.

A comprehensive recapitulation can be found in [Gra96, HE88]. Table 4.3 shows a
compilation of such methods − including references in case the reader desires further
information. Because not all of them are relevant in the context of our work and some of
them are just hybrids of two or more basic ones, we restrict ourselves to discuss only four
selected methods: the particle-particle model (PP), the particle-mesh model (PM), the top
down tree-code (TDTC) and the fast multipole method (FMM). The PP model uses a dis-
tance formulation of the force law, the PM model treats the force as a field quantity by
approximating it on a mesh, the TDTC model optimizes force calculations by using hier-
archical structures and a superior force decomposition and the FMM model can be
regarded as a hybrid of the PM and the TDTC models, which is achieved by using a par-
ticle-mesh technique, or by using a tree code.

The PM approach will allow us to model a system in which the physics is determined
by the interaction of a small number of particles only. PM techniques are most effective
when the particle density distribution is relatively uniform. Because of its dynamic clus-
tering technique, tree codes (e.g. TDTC) are favored in systems with large density con-
trast.

Table 4.2  Pseudocode listing depth-first-traversal position assigment

P={P1,...,Pn} // initial particle list //
S={S1,...,Sn} // initial positions //
T={} // list of sublists //

while (P not empty) do
fetch particle Pi from P | wi = wmax 
assign any position Sk to Pi: Pi -> Sk 
remove Sk from S 
generate list Li of all directly
connected particles Pl ∈ P sorted with respect to klj
insert elements of Li into T

while (T not empty) do
assign value of index k to m

fetch first particle Pj from T
remove Pj from P

assign free position Sk to Pj | dist(Sk,Sm)=min: Pj -> Sk
remove Sk from S
generate list Li of all directly
connected particles Pl ∈ P sorted with respect to klj
insert elements of Lj at the beginning of T

od
od

od

O N
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The following subsections will intorduce a set of calculation methods, which have a certain
relevance with respect to our work. Each subsection closes with a short discussion about
the main advantages and drawbacks of the presented method.

4.5.1 The Particle-Particle Method (PP)

The PP method (also known as direct summation method) is conceptually the simplest of
all particle simulation methods. The state of the system at some time  is defined by the
set of particle positions  and velocities . The main loop updates these values with
respect to the present force contributions and equations of motion (See “Differential
Equations” on page 40.) to obtain the new state of the system a discrete time step  later.

The temporal evolution of the particle system is achieved by a repeated application of the
time step loop, as listed in Table 4.4.

The PP direct integration approach is trivial in its elements, but has high computa-
tional costs. Due to the straightforward force accumulation approach,  operations
are required per time step to evaluate the resulting forces on all  particles. Typically, up
to thousand time steps are needed to reach a stable particle distribution (equilibrium), so
if forces are long-ranged the PP method is feasible only up to a few hundred particles.
However, for close-range dynamics of particles the number of operations depends only on
the sum of neighbours added over all particles , which are close enough to a certain 
in order to significantly contribute to the accumulated forces . The same consideration
can be made for plain mass-spring systems, where the number of significant neighbours is
equal to the number of directly spring-connected particles. Thus, the operations count
corresponds to the sum of spring connections over all particles :

Table 4.3  List of force calculation methods 
(methods discussed in this section are shown in bold)

Force Calculation Method  References

Particle-Particle (PP) [GT88], [HE88]

Particle-Mesh (PM) [HE88]

Particle-Particle/Particle-Mesh (P3M) [HE88]

Particle Multiple-Mesh (PM2) [GCW97]

Nested Grid Particle-Mesh (NGPM) [SR96]

Top Down Tree-Code (TDTC) [Dem96a, BH86]

Bottom Up Tree-Code (BUTC) [Pre86], [JP89]

Fast-Multipole-Method (FMM) [Dem96b, RG87, Gre90]

Tree-Code Particle Mesh (TPM) [Xu96]

Self-Consistent Field (SCF) [HO92]

Symplectic Method [CS90]
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It follows that, if we have a favorable particle distribution or a sparsely connected mass-
spring system the  dependence of the operations count can be dropped and the PP
method becomes applicable for larger systems with up to  particles.

Since this restriction in the number of particles is much too low for most simulation prob-
lems, more efficient techniques have been developed. However, these more elaborated
techniques often tend to be less accurate than the PP method. 

Table 4.4  Time step loop of particle-particle method (PP)

1. Accumulate forces by finding force Fij of particle Pj on Pi

// Reset all force accumulators //
for i = 1 to N do

Fi = 0
od

// Accumulate forces //
for i = 1 to N-1 do

for j = i+1 to N do
Fi = Fi + Fij
Fj = Fj - Fij

od
od

2. Integrate equations of motion (e.g. Euler’s method)

for i = 1 to N-1 do
vi

new = vi
old + Fi/mi*dt

xi = xi + vi
old*dt

od

3. Update time counter

t = t+dt

Figure 4.10  Flowchart of particle-particle code (PP)
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4.5.2 The Particle-Mesh Method (PM)

The PM method is one of the oldest improvements over PP, introduced somewhere
around 1985 by R.W. Hockney & J.W. Eastwood [HE88]. It handles the force as a field
quantity by approximating it on a regular array of mesh points. This could be either a 1D,
2D or 3D mesh, depending on the type of simulation. Thus, it not only uses a discretiza-
tion of time, but also a discretization of space. Differential operators, such as the Laplacian

, are replaced by finite difference approximations on the mesh.

Each particle mass is assigned to one or more nearest mesh points. There are many dif-
ferent strategies how this assignment − an interpolation process − could be done [HE88].
So, basically mass is not considered to be located on points other than the mesh points.
Based on this discrete mass distribution we could define a density function .

According to the Poisson equation

(4.13)

where

 . . . . . . . . . .potential

 . . . . . . .density function

we can calculate the potential  on every meshpoint only from the density function .
This can be done using the Fast Fourier Transforms (FFT). If the potential  is known at
every meshpoint, we can easily calculate the force field  in every meshpoint  by
taking the gradient of the potential (Equation 4.14).

(4.14)

where

. . . . . . . . force field in a specific meshpoint 

 . . . . . . . . . .potential

The force on a particle is obtained by using some sort of interpolating technique on the
array of mesh-defined values. For several reasons this interpolation technique corresponds
almost always to the one used for the mass assignment to the mesh.

So, the principle time step loop of the PM method differs from that of the PP only in
the issue of the force calculation and looks as follows:

Steps (1a) and (1d) have operation counts proportional to the number of particles .
The operation counts for step (1b) scales as  when using the fast Fourier
transform (FFT) technique, where  is the number of mesh points. At last, the opera-
tions for step (1c) are proportional to . Hence, if we consolidate the cost over all
these steps we can see that the number of operations for a complete time step scales as

.

where
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The result is a much faster, but in general less accurate force calculation than we would
obtain using the previously introduced PP method. More precisely, concerning the PM

method the interaction between close particles − where close means being at a shorter dis-
tance than the meshspacing − is only a very rough approximation and so it is important
that the total force on a particle is mainly determined by the most distant particles (so-
called uncorrelated systems) if we want this method to be accurate. 

Nevertheless, if the opposite is the case, where close neighbours contribute primarily to
the force on a particle (so-called correlated systems) a very fine mesh resolution is required
to achieve even modestly accurate individual particle trajectories. Consequently, the PM
method gets expensive in terms of memory as well as computational costs. A more efficient
approach, namely the tree code method, tailored to this type of systems will be discussed in
the following subsection.

Table 4.5  Time step loop of particle-mesh method (PM)

1a. Assign density values ro(x,y) to the mesh

1b. Solve field potential equation (Poisson’s) on the mesh

1c. Calculate forces F’uv from the mesh-defined potential
involving Equation 4.14.

1d. Interpolate forces Fi at particle positions xi

2. Integrate equations of motion (e.g. Euler’s method)

for i = 1 to N-1 do
vi

new = vi
old + Fi/mi*dt

xi = xi + vi
old*dt

od

3. Update time counter

t = t+dt

Figure 4.11  Flowchart of particle-mesh code (PM)
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Unfortunately, the PM method bears further restrictions. PM is limited to the handling
of forces which are actually representable by a field, such as electrical or gravitational
forces. Consequently, only forces with a globally valid characteristic are acceptable, which
excludes all systems that involve spring-forces, which have an undesired two-body connec-
tion pattern.

4.5.3 The Top Down Tree Code Method (TDTC)

Another improvement over the PP are the TDCT algorithms, with their main representa-
tive being the so-called Barnes-Hut method (BHM) − which will be discussed in the fol-
lowing. It was first introduced in 1986 by J. Barnes and P. Hut [BH86] and is based on
an earlier algorithm of A. Appel published in 1985 [App85]. It addresses the problem of
the expensive far-field force calculations by substituting a large group of far away particles
with a single virtual particle with the total mass of all particles and with its position in the
center of mass of the distant group.

The algorithm is based on a data structure called oct-tree in 3D (or quad-tree in 2D),
which partitions space and groups particles that are close to each other. The tree structure
for a given input distribution is obtained starting from a root cell, which is large enough
to hold all particles during he whole simulation. Then we recursively split cells in each
direction into two smaller parts of equal size, until each cell contains one single particle
only. 

In addition, the BHM introduces a superior approach for the per particle  force deal-
ing with the subsequent force superposition concept.

(4.15)

Consequently, the resulting force  gets decomposed into three independent force
components, where external forces  such as friction can be computed for each
particle independently. Further, the forces caused by the nearest neighbours

 only require interaction with just those particles. Computationally
much more expensive is the evaluation of the far field forces , like electrostatic
forces, because for each particle they depend on the parameters of all other particles

where  is the force of particle  on Particle .

We can conclude that the computational cost for the external and nearest neighbour
forces seem to rise with order  only. However, the effort for the far field forces grows
with . The BHM addresses exactly this problem with a divide-and-conquer strategy
following simple physical intuition. Particles are grouped into clusters by an adaptive oct-
tree data structure. The idea is to approximate the force exerted on a particle by a suffi-
ciently distant cluster of particles, by substituting the singe particles and computing an
interaction between the particle and the cluster’s center of mass instead.

Pi

Ftot
i Fexternal

i Fnearest neighbors–

i Ffar field–

i
+ +=

Ftot
i

Fexternal
i

Fnearest neighbors–

i

Ffar field–

i

Ffar field–

i Fij

i j≠

∑=

Fij Pj Pi

O N( )
O N

2( )



4.5 Force Calculation Schemes 53
A common condition for a cluster being “sufficiently far away” from a particle is, that the
ratio of the side length of the oct-tree cell  containing the cluster to the distance 
between particle  and cluster is smaller than some threshold value . The approxima-
tion error can be controlled by choosing a suitable value for . A smaller  usually
improves the simulation precision, but increases the computational effort.

This technique achieves a cost reduction from  to  in the uniform
case. Since the BHM operates without grid and has no preferred geometry, it is generally
more accurate than the PM method. Especially, because its space subdivision works adap-
tively based on the current particle distribution the algorithm performs excellently for
highly non-uniform distributions. 

The basic steps of one iteration of the BHM are as follows:

Table 4.6  Time step loop of top down tree-code method (TDTC/BHM)

1a. Build (or update) the oct-tree data structure, by
recursively subdividing the computational domain into
smaller and smaller cells.

1b. For each cell compute the center of mass (or some
higher-order approximation) and the total mass of the
particles it contains.

1c. For each particle, perform a traversal of the oct-tree in
order to compute the force exerted on the body. The
traversal starts at the root. At each visited node, if the
cluster defined by all bodies inside this node is
sufficiently far away, compute the interaction Fifar-field
with its center of mass. Otherwise continue with visiting
all its child nodes.

1d. Based on Equation 4.15 compute the resulting forces Fitot

2. Integrate equations of motion (e.g. Euler’s method)

for i = 1 to N-1 do
vi

new = vi
old + Fitot/mi*dt

xi = xi + vi
old*dt

od

3. Update time counter

t = t+dt
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The main disadvantage is that BHM, like other tree-based methods, requires a large
amount of auxiliary memory to store additional information (center of mass, total mass
per cell) for each single cell on each tree-level.

4.5.4 The Fast Multipole Method (FMM)

The FMM was first published 1985 by V. Rokhlin and L. Greengard [Rok85, RG87 and
Gre90]. The algorithm is based on a tree code that uses two representations of the poten-
tial field. The two representations are: The far field (multipole) and the local expansion. The
two representations are referred to as the duality principle. With its subdivision scheme and
the field-based force computation, the FMM combines the characteristics of the PM and
the TDTC methods. 

The strategy of the FMM is to compute a compact expression for the potential  (sim-
ilar to PM), which can be easily evaluated along with its derivative, at any point . The
FMM achieves this by evaluating the potential  as a multipole expansion, which can be
viewed as a kind of Taylor expansion, which is accurate when  is large. For optimization
reasons concerning the computational costs, the multipole expansion is subdivided into
two auxiliary expansions: an outer expansion and an inner expansion. The outer expansion
computes the potential outside a certain cell, due to the particles inside a cell. In contrast,
the inner expansion, computes the potential inside a cell, due to the particles outside. The
core of the FMM a is clever algorithm which converts an outer expansion to an inner
expansion in a constant amount of time for any cell.

Since, the computation of an outer expansion is reasonable and the conversion to an
inner expansion has been highly optimized, it can be shown that it is computationally less
expensive to compute the potential  indirectly by evaluating the outer expansion first
and then run the conversion step subsequently. This approach contrasts a direct evaluation
of the multipole expansion, which would result in clearly higher computational costs. 

A more accurate explanation of the multipole expansion is beyond the scope of this sub-
section. At this point we refer to [RG87] for further information and we now present a
high-level listing of the algorithm’s time step loop:

As we can see, the algorithm shares the divide-and-conquer and the oct-tree paradigm with
BHM, but differs in the following points:

• FMM computes an expression for the potential  at each point , not the
force as does BHM.

• FMM stores more information than only the mass and center of particles per
oct-tree cell. This more complicated expansion determines a more accurate,
but also more expensive approach.

• FMM applies a fixed oct-tree subdivision to compute the potential, rather
than a set varying with the parameter  and location of the center of mass.

In contrast to the BHM, the FMM is capable to achieve full machine precision, where the
computational complexity of the FMM is lower by an order of magnitude. Since we are
traversing the tree in step (1b), (1c) and (1d), and doing a constant amount of work per
node, the total work is proportional to the number of nodes. The number of nodes is in
turn proportional to the number of particles, so these steps have computational costs in
the order of . Step (1e) has obviously order  since we visit each particle once
to compute the resulting force vector. Step (1a), building the oct-tree, has order 

φ
x

φ
x

φ

φ x

δ

O N( ) O N( )
O N b⋅( )



4.6 Numerical Time Integration Methods 55
supposed the number of oct-tree levels is set to a fixed value . Thus, the FMM’s overall
costs amount to the order of  [Ess92].

The FMM is very popular in particle physics and astronomical simulations. However,
for our purpose the FMM lacks the possibility to consider spring-forces in the particle
model, a restriction inherited from the affinity to the PM method. The latter similarly
accelerates the force computations by evaluating a potential representation instead.

4.6 NUMERICAL TIME INTEGRATION METHODS

The particles in our simulated systems move according to the second-order ODE shown
in Equation 4.7 and later on specified as a system of first-order ODEs (see Equation 4.9).
Due to the forces involved and the form  takes, the equation systems encountered in
the context of our application are very difficult to solve analytically. Thus, numerical
methods must be used to obtain solutions approximating the system changes over time
accurately. Since, we are especially interested in the animation of particles’ trajectories iter-
ative approaches are preferred.

With this, we reach the second of two core parts of a physics-based model, as men-
tioned in the introduction of this chapter. We will discuss different approaches of numer-
ical time integration methods with a special emphasis on the actual approximation
algorithm, to its stability and efficiency. The information contained in this subsection is
based on the excellent contributions of [HE88, HNW91, HW96, HWB95, Sch93,
WBK95 and Wit96]. 

For simplicity, we focus our discussion to the problem of a single first-order ODE
(analogous to Equation 4.10). However, generality is preserved since higher-order ODEs
can always be transformed into a system of first-order ODEs. As we will see, most of the

Table 4.7  Time step loop of fast multipole method (FMM)

1a. Build the oct-tree containing all the points.

1b. Traverse the oct-tree from bottom to top, computing the
outer expansion for each cell in the tree.

1c. Traverse the oct-tree from top to bottom, computing the
inner expansion for each cell in the tree.

1d. For each leaf, add the potential contributions of nearest 
neighbours and particles in the leaf to the result of the
inner expansion computed in the previous step. 

1e. Compute Fitot exploiting the simple coherence between the
potential and the force shown in Equation 4.14.

2. Integrate equations of motion (e.g. Euler’s method)

for i = 1 to N-1 do
vi

new = vi
old + Fitot/mi*dt

xi = xi + vi
old*dt

od

3. Update time counter

t = t+dt

b
O N( )
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common numerical integration schemes are for this reason limited to process only on the
latter. So, using a generalized formulation we have an equation

, (4.16)

where  depends on time  and the function  expresses the right hand side of the equa-
tion. In addition an initial condition

(4.17)

is given. Besides, we take it for granted that the requirements for the existence of an unam-
biguous solution are met and will not touch on these questions. For a further study of this
point we refer to [HNW91].

The particular class of this type of problems is called initial value problems. In contrast
to boundary value problems, in which values for  are given at two end points, these prob-
lems are defined by a single start value  at a certain position . Starting from this posi-
tion, we take a time-step  by involving the derivative function  to compute an
approximate change in , also referred as . Before calculating the next time step we
add  to  in order to obtain the new value. In numerical methods the derivative func-
tion  usually is encapsulated and viewed as a black box, where we provide the numerical
arguments and receive the corresponding numerical value for  in return. Numerical
integration methods operate by performing one or more instances of these derivative eval-
uations at each time step. 

In general, this means that in the step from the mathematical description of physical
laws of particle systems to their numerical simulation the continuous ODEs
(Equation 4.10) are substituted by linear algebraic relationships. Continuos functions 
and  are replaced by values at discrete time intervals. Since, the problem of numerical
integration of ODEs appears in many different domains (astrophysics, chemistry, classical
mechanics, etc.), there are a wide variety of integration schemes which approximate con-
tinuos first-order ODEs by discrete analogs. We can unite those schemes under the gen-
eralized linear multistep equation:

 (4.18)

Further on, we can classify discrete equations of this form depending on the value of .

If  is zero, the scheme is called explicit and we may solve it for  directly in terms of
known quantities. In contrast, if  is nonzero, the scheme is called implicit and we must
utilize iterative approaches to find , unless  is simple.

In the following, we briefly summarize the most commonly used integration schemes,
which are also implemented in our framework, which is described later on in Chapter 6.
Thereafter, a more detailed discussion will focus more soffisticated variations, with a spe-
cial focus to our field of application. In particular, we take a look at an integration algo-
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rithm compounding the standard schema with a specially customized variable step size
strategy. We will also examplify a modified Runge-Kutta method especially optimized to
work directly on second order ODEs.

4.6.1 Runge-Kutta Methods

Runge-Kutta methods belong to the group of one-step techniques and can either be of
explicit or implicit nature. The Euler's method denotes the most simple representative of a
Runge-Kutta method. It is termed a first-order integration method because the integration
error over a finite interval scales with . 

The method is straight-forward, easy to understand and to implement. Particularly, it
serves as a good illustration to explain the priciples of Runge-Kutta methods. Table 4.8
shows the pseudo-code for the Euler’s update algorithm.

Although Euler’s method can produce good function approximation in theory, it is not
used in practice because of its lack of accuracy and numerical stability. We may show this
by means of two small examples [WBK95]. Consider the case of a 2D function  whose
integral curves are concentric circles, like it is shown in Figure 4.13a. Starting from an
arbitrary point  governed by  we are supposed to orbit forever on whichever circle it
started on. Instead, according to Euler’s method, with each step we will move on a straight
line to a circle of larger radius, so that the covered path follows an outward spiral. Notice,
that shrinking the step size doesn’t cure the problem, it only decreases the grade of the out-
ward spiral. On a second example we show a potential unstable behavior of this method.
Consider a 1D function , for which the solution should decay from any starting

Table 4.8  The Euler’s update algorithm

1. Choose a fix step size h, then

,

2. Computation rule to get approximated solutions

, (4.19)

Figure 4.12  Euler’s method uses the derivative at time  to compute an approx-
imative function value  for the next time step . Here shown by means
of a one dimensional scalar example.
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point  to zero. For step sizes  we get reasonable results, but for larger step sizes
the solution starts oscillating around zero and even diverges if , which means that
the system blows up.

Classical Runge-Kutta Approach. There is a large number of derivative methods
that essentially base on the Euler’s integration schema. Virtually all of them face the prob-
lem of instability by including additional Euler steps into one time step, which results in
higher order methods. The most popular of this kind is the 4-stage or classical Runge-Kutta
method of fourth order. However, we abandon a further discussion at this point of the clas-
sical Runge-Kutta approaches. Instead of we refer to the comprehensive literature already
mentioned in the introduction of this chapter.

Adaptive Runge-Kutta Approach. A general problem of all the numerical integra-
tion methods presented up to this point is the appropriate selection of the step size . Sup-
posed the forces get temporarily large, and consequently so do the velocities, particles will
travel too far and the error can get unacceptably large or still worse, the system may get
unstable. On the other hand, if the chosen step size is small enough to handle the preced-
ing scenario, it might need a vast number of steps to integrate over the entire time-interval,
even if the entire rest of the simulation is well-behaved. Thus, if we choose a fixed step size
− which we obviously want to determine as large as possible − we can only proceed as fast
as the “worst” section of  in  will allow.

As an improvement, we think of a method which adaptively controls  as we march
forward in time. Starting from a predefined value for  the algorithm increases  when-
ever the local discretization error falls below a certain threshold value. By contrast, the step
size  will be automatically cut down when the error gets inadmissible large. In essence,
this summarizes the idea of adaptive step sizing: varying  over the course of solving the
ODE.

Adaptive with Maximum Error Criterion. The step size control algorithm pro-
posed in the previous section is not suitable in any case. It belongs to a class of step size
altering methods, that tend to avail the accuracy of the simulation only. That is because
the variation of the step size is driven by the local discretization error. There are problems,
particularly in computer graphics, which demand other step size adjustment criterions.
For example, for many of the animation simulations, computational speed is much more
important than meticulous numerical accuracy. In fact, we are interested in a visually
pleasing result which is usually met with a stable solution. So, the applied step size adjust-
ment should be driven rather by stability preserving factors than accuracy. Hence, we look
for a method which selects the step size in each step the biggest possible, always at the

 

Figure 4.13  Two small examples illustrating a possible (a) inaccurate and (b) in-
stable behavior of the Euler’s method.
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boundary of loosing stability. The trick is to recognize instability just before it gets visible
on the screen. 

A very promising approach based on a standard Runge-Kutta method is proposed in
[BW98]. Although, the application area is quite different from ours, the fundamental
goals are the same. Applied to our context, instability arises almost exclusively from strong
spring forces and typically becomes apparent in the form of vastly fast diverging particles
(comparable with an explosion). Therefore, after each explicit step, we treat the resulting
position changes  as a proposed change for each particle . If any of these values
exceeds a prescribed threshold  then we discard the proposed changes, reduce the cur-
rent step size and try it again.

Admittedly this step size adjustment method gives quite a heuristic impression. Never-
theless, since this method is based on one of the established Runge-Kutta integration
schemes, this method − though simple − has performed very well in practice.

Reduced Runge-Kutta optimized for Second Order ODEs. In [Col66] Zur-
mühl suggests an adapted version of the classical Runge-Kutta method, which is optimized
with regard to second-order ODEs, such as Equation 4.8.

As mentioned in Section 4.3 for most of the numerical integration schemes those
ODEs have to be split up into a system of first-order ODEs. Those may be arranged using
a vector notation, which allows a simplified treatment as a single vector-based first-order
ODE. Nevertheless, the resulting computational costs for second-order ODEs are approx-
imately double compared to those emerging from their first-order instances.

This algorithm recombines the previously divided second-order ODE and processes
the first and second derivative slotted into each other trying to reuse calculations in each
case. Consequently, the algorithm saves operations and therefore cuts down computation
time. The algorithm runs with a constant step size  and has the following structure:

Table 4.9  A reduced Runge-Kutta update algorithm optimized for second order 
differential equations

1. Choose a step size , then

, (4.20)

2. Computation rule to get approximated solutions

(4.21)
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Implicit Runge-Kutta. Implicit implicit Runge-Kutta methods have their natural role in
the solution of so-called stiff problems, where strong stability is turned into a severe hand-
icap for traditional explicit methods. The first methods were introduced around 1824 by
Cauchy for the sake of error estimations [HNW91]. Cauchy inserted the mean value the-
orem into the explicit integral of 

(4.23)

to obtain in a first step

(4.24)

and finally

(4.25)

with . The two remarkable extreme cases are , yielding

, (4.26)

which is already known to the reader as the explicit Euler method we discussed previously
and 

, (4.27)

which we call the backward or implicit Euler’s method.

, (4.22)

Table 4.9  A reduced Runge-Kutta update algorithm optimized for second order 
differential equations
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4.6.2 Leap Frog Method

There is a group of numerical integration algorithms which can be applied directly to a
system of coupled ODE’s, but only a few respect the symmetric structure of the position
and velocity calculations occurring in our problems. One of them that does is the Leap
Frog integrator. The name of the algorithm comes from the fact that the velocities are eval-
uated at the mid-point of the position evaluation, the velocities leap by a half-step 
over the positions, and vice versa. Thus, position and velocity updates are computed in an
interlaced manner.

The advantage of this method is that the velocities are explicitly calculated giving an
additional handle for controlling purposes. On the other hand, the disadvantage is that
they are not calculated at the same time. So, a linear approximation is required to extract
the instantaneous velocities at an integer time-steps :

(4.32)

After all, we accomplished an integration scheme which “jump-starts” from an offset in
velocity by  from the specified initial value . Additionally, similar errors are
made in extracting  at later times.

Table 4.10  The implicit Euler’s update algorithm

1. Choose a step size , then

, (4.28)

2. Computation rule to get approximated solutions

, (4.29)

Table 4.11  The Leap-Frog update algorithm

1. Choose a step size , then

, (4.30)

2. Computation rule to get approximated solutions

, (4.31)
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(4.33)

4.7 STIFF PROBLEMS AND NUMERICAL STABILITY

While the intuitive meaning of stiff is clear to all specialists, a precise formal description is
hard to define. One of the first and also one of the most pragmatic opinion goes back to
1952 (Curtiss & Hirschfelder): Stiff equations are equations where certain implicit methods,
in particular BDF1, perform better, usually tremendously better, than explicit ones. Certainly
the eigenvalues of the Jacobian  have some relevance, but also quantities such as the
dimension of the system, the smoothness of the solution or the integration interval are
important.

ODE systems which describe physical, biological or chemical processes tend to produce
resulting functions composed of parts that exponentially fade away in strongly varying
manner. In the context of this work, this may happen if a particle system consists of a
mixed configuration of very strong and very weak springs.

Choosing a method for a numerical approximation of such ODE systems one should
be well conscious of the specific characteristics of the given system and the potentially aris-
ing solution functions. Ignoring these aspects may lead to completely inaccurate approxi-
mate solutions, evidently having nothing in common with the exact result.

Such a behavior is called instability and occurs mainly together with stiff differential
equations. However, talking of “stiff differential equations” − strictly speaking an equation
is not stiff. A particular initial value problem for that equation may be stiff, in some
regions. The size and location of these regions depend on the initial value, the chosen
numerical integration method and the error tolerance.

Figure 4.14  Leap Frog integration scheme. Positions at time  are updated us-
ing velocities at time , velocities at  are updated using forces at time

.
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The mathematical theories which establish a connection between stiff problems and
numerical stability help us to distinguish between different types of instability, choose an
adequate numerical approximation method and adjust its parameters.

4.7.1 Stability Analysis for Runge-Kutta Methods

Though we mentioned in the introduction of this section that stiff systems call for implicit
methods, we may still apply explicit methods to stiff problems under certain conditions.
In order to get more specific, we undertake a so-called stability analysis for the selected set
of numerical methods presented in Section 4.6. As a result we will be able to determine
domains of stability for each of them.

Definition. If we can express an integration step in the form of , the
function  is called the stability function of a numerical integration method. It can be
interpreted as the numerical solution after one step for

, , , (4.34)

the famous Dahlquist test equation. The set

(4.35)

is then called the stability domain of the method.

The step size  of a numerical method has to be chosen such that for  the
condition  is always valid. In the case of ODE systems we have to be aware of this
circumstance, because the step size  has to be determined small enough particularly to
ensure  for all . Otherwise the computed results are inaccurate, which means
that the method becomes instable.

The following stability analysis procedures will be performed in analogy to the proce-
dures presented in [HW96]. All reflections will be based on the scalar equation

. (4.36)

Let  be a smooth solution of Equation 4.36. We linearize  in its neighborhood as
follows

.

Writing  for  we obtain

In the sense of a first approximation we consider the Jacobian  as constant and neglect
the error terms. Omitting the bars we arrive at

. (4.37)

We now may apply different numerical integration methods to Equation 4.37 to study
their behavior and determinate their specific stability characteristics.

Euler’s method. We apply Euler’s method (Table 4.8) to Equation 4.37 and obtain

(4.38)
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with

.

We suppose that  is diagonalizable with eigenvectors  and the corresponding
eigenvalues . We transform  to Jordan canonical form (see HNW91, Section
I.12) and write  in this basis as

(4.39)

Inserting this into Equation 4.38 we get

(4.40)

Obviously the value for  remains bounded for , if for all eigenvalues  the com-
plex number  lies in the set

which is the circle of radius 1 and centre (-1, 0) in the complex plain.

Midpoint Method. The midpoint method can be viewed as a low order Runge-Kutta
method. Thus, its stability analysis will proceed comparably to the more general case, the
classical Runge-Kutta method. That’s why we present the midpoint’s stability region with-
out its derivation and refer for such to the more general case in next subsection.

Thus, because the midpoint method corresponds to a 2nd-order Runge-Kutta
( ), its stability domain is defined by the polynomial

. (4.41)

The shape of the corresponding stability domain is shown in Figure 4.15.

Classical Method. Now, we consider the classical Runge-Kutta method. Formulated in
a more general way, this method applied to Equation 4.37 gives

(4.42)

where

.

Since the variable  in Equation 4.42 reflects the order of the method we focus on and the
method is of 4th order, the value for  is defined by . Inserting  repeatedly into
Equation 4.42 while applying the correct values  and  that apply to the classical
Runge-Kutta method, yields
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where

(4.43)

is a polynomial of degree . As a consequence, the classical Runge-Kutta method
with  exhibits the stability function

. (4.44)

The corresponding stability domain is represented as a part of Figure 4.15.

4.8 IMPLICATIONS FOR INFORMATION VISUALIZATION

One of the crucial issues concerning the application of physics-based models in the context
of graph layouting and information visualization are stable and reproducible simulation
results.

So, which algorithms are suitable for the field of information visualization? In the con-
text of our research work we applied the classical Runge-Kutta or the Leap-Frog method to
virtually all of our examples. This can explained out of the following two reasons. Firstly,
we were actually never faced with a mal-conditioned or stiff problem. Thus, there were no
requirements to use an implicit approach. However, if there were indications of a stiff
problem we could easily reconfigure the physical-system by involving modified similarity

Figure 4.15  Domains of absolute stability plotted in complex -space for the
set of presented numerical time integration methods a) Euler, b) Midpoint and
c) Runge-Kutta. Note that the size of the regions grows with the order of the
method.
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functions (see Section 3.4) or different mapping operators for the layout model (see
Section 6.3). Secondly, all of the examples were mainly good-natured in the sense of there
was no need for applying adaptive approaches in order to handle heavily varying dynamics.
In addition, a rudimentary performance test has shown that for the size of problems we
deal with there was no significant speed-up when using a higher-order, adaptive or implicit
method.

Finally, we did some experiments with stochastic methods, such as [FLM94]. How-
ever, these approaches were not followed up in this work because of their considerable lack
of reliability.



5

5GRAPH VISUALIZATION

In contrast to other authors, we reject the commonly used term of graph drawing to title
this chapter. Usually, graph drawing covers the problem of graph layouting as well as the
actual drawing of a graph under one single term. Since visualization techniques have tre-
mendously advanced lately, the actual part of drawing the graph has gained more impor-
tance. Originated by the visualization community, there are various convincing new
approaches to represent such structures, including methods using 3D scenes and alterna-
tive geometries. Consequently, in our work we explicitly distinguish between two different
tasks: the graph layouting and the graph rendering. Graph layouting deals with the problem
of constructing geometric representations of graphs in space, whereas graph rendering
covers the task of representing graphs visually exclusively. In order to keep a clean naming
and to avoid possible misunderstandings we replace the original term graph drawing by
graph visualization, which includes the layouting and rendering each as a separate subpro-
cess. 

The main purpose of this chapter is to introduce the basics of graph visualization.
Section 5.1 provides the fundamentals and theory to understand subsequent sections,
which treat the process of embedding similarity information in graphs. The subsequent
Section 5.2 examines various graph layouting techniques, with a particular emphasis on
algorithms which preserve the embedded information. Relating to our research we devote
a separate subsection to the category of force-directed methods. Section 5.3 then presents
progressive techniques to depict a previously layouted graph. Finally, Section 5.4 closes
this chapter with an application-specific analysis of implementation and complexity issues,
which results in the introduction of an new type of graph data structure, the implicit adja-
cency matrix.

5.1 GRAPH THEORY

The origin of graph theory probably goes back to a paper written by Leonhard Euler in
1736. It was titled Solutio problematis ad geometriam situs pertinentis [Eul36] and treated
the question of whether or not it is possible to plan a walk over the seven bridges of
67
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Königsberg in such a way that each of the bridges will be crossed only once. To solve the
problem in a general manner Euler abstracted the bridges into edges and pieces of land into
nodes of a graph. In this way, he was able to analytically determine the conditions which
are required to permit such a walk.

In a more general way, managing this kind of connectivity information is fundamental.
Today, connectivity information is present for example in geographic information systems
(GIS), in transportations, in network routing tables or in parent-child relationships
defined by hierarchical data-structures. Indeed, connectivity information can be defined
by all kinds of relationship that exists between pairs of objects.

Applications of graphs being popular and diverse, researchers developed a common ter-
minology to describe different components and properties in an abstract manner. In this
section we introduce the most important terms with respect to our context. A more
detailed treatment may be found in [BM76, Har72 and BET+98] from where most of the
following presentation was compiled.

5.1.1 Basic Definitions

A graph  consists of a finite set  of vertices and a finite multiset  of edges,
that is, unordered pairs  of vertices, where . We call  the vertex set and 
the edge set of .

Thus, a graph is a way of representing connections or relationships between pairs of
objects from some collection . One should be aware that, depending on the context, the
vertices of a graph are sometimes called nodes and edges may also be called links, arcs or
connections.

Edges in a graph are either directed or undirected. An edge  is said to be directed
from  to  if the pair  is ordered, with  preceeding . An edge  is said to
be undirected if the pair  is not ordered, that is,  is the same as . If all
edges in a graph are undirected, then we say the graph is an undirected graph. Likewise, a
directed graph or a digraph, is a graph whose edges are all directed. A graph that has both
directed and undirected edges is often called a mixed graph.

An edge  with  is called a self-loop. The definition of a graph refers to the
collection of edges as a multiset − not a strict set − thus allowing more than one edge to
connect the same pair of vertices. Such edges are called parallel edges or multiple edges. A
simple graph has no self-loops and no multiple edges.

Figure 5.1  A simple undirected graph showing different computers and the net-
work links connecting them. Connections are labeled with their respective band-
width.

G V E,( )= V E

u v,( ) u v V∈, V E

G

V

u v,( )
u v u v,( ) u v u v,( )

u v,( ) u v,( ) v u,( )

128 kB/s

64 kB/s

51
2 k

B/s

32 kB/s

64 kB/s 128 kB/s

12
8 

kB
/s

forest gump american

pie

man

rain

u v,( ) u v=



5.1 Graph Theory 69
A path in a graph  is a sequence  of distinct vertices of ,
such that  for . A path is a cycle if .

The two vertices joined by an edge are called the end vertices or endpoints of the edge.
Two vertices are said to be adjacent if they are endpoints of the same edge. An edge is said
to be incident on a vertex if the vertex is one of the edge’s endpoints. The degree of a vertex

 is the number of incident edges of . The degree of a vertex  always corresponds
exactly to the number of vertices adjacent to .

5.1.2 Weighted Graphs

In order to quantitatively express the strength of a relation between two objects, the fea-
tures of a basic graph are insufficient. For example we might be using a graph to represent
a network of computers, such as shown in Figure 5.1. Suppose our task is to find the fastest
way to route a data packet from one computer to another. In order to solve this problem,
the connectivity information provided by the network graph alone is insufficient. The net-
work links need to be annotated with the connection speed. More abstractly, these (quan-
titative) annotations can be seen as a weight associated with each edge of the graph.

A weighted graph is a structure , where  is a graph and  is a
function mapping each edge  in  to its weight  in .

We are now able to define additional properties of a graph which allows a more accu-
rate measurement of the relations represented by a graph. Among others, the computation
of the shortest path between two vertices  belongs to this group.

Let  be a weighted graph. We define the length (or weight) of a path 
in  as the sum of the weights of the edges on this path. That is

, 

where  is the number of vertices of the path. We define the distance  from a
vertex  to a vertex  in  as the length of the shortest path from  to , if such a path
exists. If there is no path at all from  to  we set .

Suppose we are assigned the task to minimize the number of connections of the net-
work shown Figure 5.1 without losing throughput. However, each computer still has to
remain linked to the network. Again, the problem can be modeled by creating a weighted
graph , such that each vertex  represents a computer and each edge  a connection
between two computers. We can then assign a weight  for each edge  that is equal
to the inverse of its bandwidth. Thus, we want to find a tree  that contains all the vertices
in  and minimizes the sum

.

Such a tree, containing every vertex of a connected graph  is said to be a spanning tree.
The spanning tree  with smallest total weight is known a the minimum-spanning tree.

Because of our specific application domain, we confine our further considerations to
undirected, weighted, simple graphs. Thus, unless otherwise stated, we assume that graphs
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70 Graph Visualization
are simple and undirected. This assumption greatly simplifies the presentation of algo-
rithms and data structures.

5.2 GRAPH LAYOUT

The community of mathematicians has been investigating this problems for centuries. In
the 1960s, computer scientists began to use graph drawing to assist with the understanding
of software. Probably the first paper presenting an algorithm for automatic generation of
drawings of graphs was presented by Knuth in 1963 [Knu63]. Today a large variety of
applications in science and engineering take advantage of this technology.

The core graph layouting problem can be formulated in simple terms: Given a set of
vertices with a multiset of edges, calculate the position of the vertices and the curve to be
drawn for each edge. Obviously, the problem itself is not so simple. When layouting a
graph, we would like to take into account a variety of aesthetic criteria. For example, the
display of symmetries as well as keeping the number of edge crossings at a minimum are
often highly desirable in visualization applications. In this scenario, many graph layouting
problems may be formalized as non-linear optimization problems.

Most of the following information is based on the consolidated findings reported in
[BET+98].

5.2.1 Conventions

A layout convention describes the basic rules that a layout algorithm must follow. As an
example, in drawing class hierarchy diagrams as part of a software engineering process, we
could settle for the convention of representing all the vertices as boxes and all the edges as
polygonal chains consisting of horizontal and vertical segments. For real-world applica-
tions a layout convention can become very complex, because it takes many details into
account. Over time the following list of commonly used layout conventions has arisen.

Table 5.1  List of widely used layout conventions [BET+98]

Name / Description Example

Polyline Layout

Description: Each edge is drawn as a polygo-
nal chain.

Straight-line Layout

Description: Each edge is drawn as a straight 
line segment.
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Layout conventions represent a rule that a layout must satisfy to be admissible. Obviously,
some layout conventions do not work on certain types of graphs. Thus, the class of input
graph is an essential decision parameter in favor or against a graph layout methodology.

5.2.2 Key Issues

Key issues specify layout properties that we would like to apply “as much as possible”. Most
of them concern themselves with aesthetic aspects in order to enhance readability. The fol-
lowing commonly adopted aesthetic rules are ordered by the impact they have on the read-
ability of a graph layout (see [BFN85], [PCJ96] and [STT91]):

Orthogonal Layout

Description: Each edge is drawn as a polygo-
nal chain of alternating horizontal and verti-
cal segments.

Grid Layout

Description: Vertices, crossings, and edge 
bands have integer coordinates.

Planar Layout

Description: No two edges cross.

Table 5.2  List of commonly adopted aesthetic issues

Name Description

Predictability Two different runs on the same graph should result in the same 
layout.

Crossings Minimization of the total number of crossings between edges.

Area Minimization of the area of the drawing, where the area can be 
defined in different ways. For example, we can define this as the 
area of the smallest convex hull or simply as the area of the small-
est rectangle with horizontal and vertical sides covering the lay-
out.

Total Edge Length Minimization of the sum of the lengths of the edges.

Maximum Edge Length Minimization of the maximum length of an edge.

Uniform Edge Length Minimization of the variance of the lengths of the edges.

Table 5.1  List of widely used layout conventions [BET+98]

Name / Description Example
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Unlike layout conventions, the above key issues are naturally associated with optimiza-
tion problems. In order to optimize for speed many approximation strategies and heuris-
tics have been developed.

5.2.3 Force-Directed Layout Methods

Most graph layout algorithms are based on the following two simple observations
[BET+98]:

• Key issues often conflict with each other. Thus tradeoffs are unavoidable.

• Even if the adopted aesthetics do not conflict, it is often algorithmically difficult to
deal with all of them at the same time.

Literature presents many layout techniques, such as [RT81, RMC91, CK95, Mun97],
each using distinctive precedence relation among key issues. Hence, each technique aims
to satisfy key issues with another priority. Excellent bibliographic surveys [BET+94,
HMM00] books [BET+98] and articles [PCJ96] exist concerning this topic.

After having examined the key issues prioritization used by different categories of
layout approaches, we have determined−with respect to our field of application−that the
class of force-directed methods fits best. They deliver highly symmetric layouts, and tend to
distribute vertices very evenly. Furthermore, as long as no statistical probability is involved
force-directed methods achieve a high predictability. In general, however, these methods
can be rather slow. Nevertheless, force-directed algorithms are very popular. Their physi-
cal analogies make them easy to understand and relatively simple to code.

P. Eades was probably the first to propose a force directed algorithm for graph layout-
ing [Ead84]. In his paper vertices and edges of a graph were modeled as physical bodies
tied with springs. Using Hooke’s law describing forces between the bodies, he was able to
produce layouts for undirected graphs.

Since then, his method was repeatedly improved and many force-directed algorithms
have been proposed [KK89, BF95, HH91, Kam89a, FLM94]. Some of the best known
algorithms are titled Springs and Elastical Forces, The Barycenter Method, Forces Simulating
Graph Theoretic Distances and Magentic Fields [BET+98]. These methods differ, both in

Total Bends Minimization of the total number of bends along the edges.

Maximum Bends Minimization of the maximum number of bends along one 
edges.

Uniform Bends Minimization of the variance of the number of bends along the 
edges.

Angular Resolution Maximization of the smallest angle between two edges incident 
on the same vertex.

Aspect Ratio Minimization of the aspect ratio of the drawing, which is defined 
as the ratio of the length of the longest side to the length of the 
shortest side of the smallest rectangle with horizontal and verti-
cal sides covering the layout.

Symmetry Respect the symmetries of the graph in the layout.

Time complexity Layouts should be computed at interactive speeds.

Table 5.2  List of commonly adopted aesthetic issues

Name Description
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the way forces are applied, and in the method used to find an equilibrium configuration
for the physical model. Still, in general, all of these have two parts:

Roughly speaking, the model encodes the key issues for the layout, meaning that the
forces are parametrized so that the equilibrium configuration is a pleasing layout. For our
concrete case this means the embedding of the quantified similarity, which will be
described in Chapter 6 more detailed. For the If a model has once be defined, then the
layout algorithm may be watched as a abstract physical simulation process, which allows
the application of the entire range of numerical methods already discussed in Chapter 4.

5.3 GRAPH RENDERING

Graph rendering is a process which is completely orthogonal to the graph layouting
described previously. Independently of the graph’s arrangement in space, the rendering
determines the visual appearance of a graph. To make things clear, at this point we do not
consider the group of techniques used to enhance the visual appearance of a graph as a
whole. For those techniques we refer to Chapter 7. This subsection discusses methods to
visualize the individual elements of a graph: the vertices and the edges.

Especially for applications emerging from our concrete field of interest, where graphs
are employed as abstract representations for complex associations between data objects, an
adequate visual representation is desirable. The procedures known from classical graph
theory may not satisfy here, because they are designed with the objective to visualize the
structure of a graph only. For this purpose the commonly applied line drawings, as shown
in Figure 5.2a, are absolutely sufficient. Each vertex is represented by a labeled box or a
circle. Edges are drawn as simple lines.

For applications where not only the graph structure is of interest, but also the actual
attributes associated with the vertices and edges, more complex visualization methods are
absolutely vital. The simplest approach would be to label the graph elements with the cor-
responding values. However, this method would rapidly lead to overloaded and confusing
visualizations. To solve this problem, we introduce new visual metaphors by taking advan-

1. Model A force system defined by the vertices and edges, which pro-

vides a physical system for the graph.

2. Algorithm This is a technique for finding an equilibrium state of the force

system. This state defines a layout for the graph.

Figure 5.2  Different types of graph rendering: a) Classical line drawings
b) More progressive visualization technique in 3D space using colored edges.
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tage of the immense potential of today’s rendering methods. In this way, we are able to
achieve a significantly higher information density, which results in clearer and more con-
vincing visual representations. Therefore, the basic idea is to map attributes attached to
graph elements, such as actual data values for a vertex or the corresponding connection
strength for an edge, directly onto the visual parameters of the rendering process. For
example, we may map the quantified strength of a connection to the thickness or color of
the edge representing the connection (see Figure 5.2b). For the case of vertices we may also
think of parametrizing the shape of its visual representation in order to get an meaningful
image [CMS99].

Nevertheless, not all of the possibilities offered by today’s graphics systems also have
advantageous implications for the expressiveness of the visualization. For example, only a
few kinds of shapes make sense to represent an edge. In particular, we have to distinguish
strictly between the rendering of vertices and the rendering of edges. For these two graph
elements two different sets of suitable parameters apply. The following Table 5.3 lists for
each of the two elements the visual parameters that have shown expressive results in our
research work.

It goes without saying, that the various parameters may be also used in any possible
combination. However, practical experience tells us that some parameters should be
applied in a restricted way.

Table 5.3   Compilation of visual parameters showing meaningful results

Graph 
Element

Parameter Application Example

Vertex

Color

Discretely or continuously color-coded attribute 
values: E.g. the color may be switched between 
green and red to indicate the sign of the underly-
ing value (green = positive, red = negative).

Texture
If vertices represent for example products, an 
image of the product may be applied as texture.

Scaling
The importance of a vertex may be used to scale 
the vertex. Thus more important vertices will 
appear larger than others.

Shape

Static icons or automatically generated shapes 
based on attribute values: E.g. vertices having the 
same type of attributes associated may hold an 
equally shaped icon [CMS99].

Short Label Logical name for the vertex.

Edge

Color
Discretely or continuously color-coded attribute 
values: The color may denote the connection 
weight or strength.

Texture
The texture may include an arrow like pattern to 
express the direction of the underlying depen-
dence [HDH+00].

Thickness
The thickness may vary dependent on the uncer-
tainty of the underlying relation. Thus, more reli-
able relation will appear thicker than others.

Short Label
Logical name for the edge or the connection 
strength in numerical format.
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For example, special attention must be paid to the scaling parameter of a vertex when
used within three dimensional visualizations. It should be varied by large enough discrete
steps only. Otherwise, the scaling will interfere with the perspective projection resulting in
confusing images, where one could hardly tell if an object is smaller than the other because
it lies behind the other or because it was just scaled down. In addition to the parameters
listed above we also tried to alter the shape of edges. However, unless they have a distinc-
tive line characteristic which visually connects the two vertices one can hardly tell the dif-
ference between edges and vertices and, as a consequence, we would loose the connectivity
information. In our work we therefore use rounded or squared pipes as typical edge shapes.

How the mapping from attributes values to visual parameters will actually be defined
depends strongly on the concrete case of application. Thus, no generally valid procedure
can be given here.

5.4 IMPLEMENTATION ISSUES

Based on the premise, that we move in an object-oriented environment this subsection
covers interface and implementation issues of a graph class. Obviously, the content of a
graph object consists of vertices (nodes) and the edges (connections). The graph object
should export methods to add, delete and search for those. Additionally, a set of methods
returning global information, as well as methods returning vertex and edge specific param-
eters is required. The internal data structure of a graph object may vary depending on the
specific demands of the concrete application.

5.4.1 Graph Methods

We start with the definition of a practical interface for the graph class. One should be
aware that this interface is defined for undirected graphs only. Hence, all methods dealing
with directed edges are omitted [GT98].

General Methods. A collection of methods returning general graph information.

Updating Methods. Methods enabling the adding and deleting of vertices and edges.

numVertices() returns the number of vertices

numEdges() returns the number of edges

vertices() returns an enumeration of the vertices

edges() returns an enumeration of the edges

insertVertex( , ) inserts and returns a new vertex tagged with label 

and an associated object 

insertEdge( , , , ) inserts and returns an edge between vertices  and ,

tagged with label  and an associated object 

removeVertex( ) removes vertex  and all its incident edges

removeEdge( ) removes edge 
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Edge and Vertex Methods . This group takes vertices and edges as arguments and
return argument specific informations

5.4.2 Data Structures

The literature describes several ways to implement a graph with a concrete data structure.
In this subsection will discuss different quality aspects of three popular approaches, usually
referred as edge list, adjacency list and adjacency matrix. In addition, we compare them to
an implementation specially customized to meet the demands of today’s graph visualiza-
tion problems. It is called the implicit adjacency matrix.

Which data structure suites the best depends primarily on the characteristics of a graph.
In all cases of the representations, the vertices of the graph are stored in a container, for
example a list or a hashmap. The major difference the four structures consists in the way
of organizing the edges. The edge list and the adjacency list store only the edges that are
actually present in the graph. In contrast, the adjacency matrix keeps storage for each pos-
sible edge in the graph as a precaution, wether there exists such a edge or not. At last, the
implicit adjacency matrix does not store any edge at all. It assumes that all attributes for a
edge can be computed or retrieved on-the-fly without much drawback. 

As we will explain in this section this difference implies that for a graph  with  ver-
tices and  edges, an edge list or adjacency list representation consumes , a
adjacency matrix representation  and finally a implicit adjacency matrix represen-
tation  space. But memory consumption is only one of the critical parameters. The
following subsections will present a more detailed analysis.

Edge List. The edge list structure is possibly the simplest, thought not the most efficient,
representation of a graph . All vertices are stored in a container , which typically
implements a sequence or hashmap interface depending on type of the primary vertex
identifier. If the vertices are numbered in sequence and this number is the vertex’s identi-
fier likewise, then a sequence would be the right choice. On the other hand, if vertices are
tagged with labels we will prefer the hashmap as container implementation, in order to be
able to conveniently search for specific vertices.

The distinguish feature of the edge list structure is the way in which it represents edges.
In this structure, an edge  of  is explicitly represented by an edge object. The edges are
stored in a container , which would typically be a sequence or hashmap.

The main feature of the edge list structure is that it provides direct access from edges to
its incident vertices. Consequently, methods running edge-centric operations on the graph

degree( ) returns the degree of 

adjacentVertices( ) returns an enumeration of the vertices adjacent to 

incidentEdges( ) returns an enumeration of the edges incident upon 

endVertices( ) returns an two-array holding the end vertices of 

opposite( , ) returns the endpoint of edge  distinct from 

areAjacent( , ) returns true if vertices  and  are adjacent

getEdge( ) returns edge tagged with 

getVertex( ) returns vertex tagged with 
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are very simple to implement (see Section 5.4.1). Nevertheless, the opposite operations,
like finding all edges that are incident upon a certain vertex, require an exhaustive inspec-
tion of container . 

A summary of the complexity of graph operations applied to the edge structure imple-
mentation of a graph is given in Section 5.4.3.

Adjacency List. The adjacency list structure extends the edge list structure by adding
extra information that supports the acceleration of vertex-centric operations that require
access to the incident edges of that vertex. The adjacency list structure provides direct
access both from the edges to the vertices and from the vertices to their incident edges.
Therefor, the adjacency list adds a incidence container  to each vertex . The con-
tainer stores references to the edges incident on . Additionally, each edge  holds a
reference to the positions in the incidence container  and .

Table 5.4 illustrates the improved running time of a number of the graph operations
in comparison with the edge list structure. The space used is .

Adjacency Matrix. From the theory we know, that a graph  with  verti-
ces may be described by matrix  of size . Such a matrix is called adjacency matrix.
Its rows and columns correspond to vertices, with cells  holding a reference to the edge

, if the edge exists.

Thus, similar to the adjacency list structure, the adjacency matrix representation of a
graph extends the edge data structure with an additional component, the adjacency matrix

. It allows us to determine adjacencies between pairs of vertices in constant time .
In this case, the performance gain comes at a price in the memory requirement, which is
now , and in a increased running time of other methods (see Section 5.4.3). More-

Figure 5.3  Basic structure of an Edge List.

Figure 5.4  Basic structure of an Adjacency List.
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over, if the matrix  is implemented by a two dimensional array, each vertex insertion or
deletion now requires the allocation of a whole new matrix , which takes time .

However, this drawback can be eased by choosing a more advanced data structure to
implement matrix . First of all we may implement the  matrix  by a linked list
of  one-dimensional arrays each of size . This drops the time needed to insert and
delete a vertex to . Furthermore, since we work with undirected graphs, the adja-
cency matrix  is of diagonal-symmetric from, allowing us to reduce it to a lower-left tri-
angular matrix. After all, the space needed decreases to . There are also
approaches using hashmaps in order to represent an adjacency matrix . Hashmap imple-
mentations typically allocate space for edges actually present in the graph only. Thus,
depending on their load factor they show a much slimmer space usage pattern. However,
since hashmaps do not preserve the order of elements they contain, heavy drawbacks may
imply for graph operations normally profiting of the matrix structure ordered by columns
and rows (e.g. operation incientEdges).

Implicit Adjacency Matrix. The implicit adjacency matrix structure takes into
account, that the memory consumption denotes the main bottleneck for all of the previous
structures when looking at real-world problems. On the other side, most of the time our
computer’s CPU and network run under moderate load only. Thus, it might be faster to
recompute connection parameters on request, than storing them in a data structure that
consumes huge amounts of memory and may put the machine in a slow swapping status.

The implicit adjacency matrix, shares the same interface as the standard adjacency
matrix structure. But, it does not store any information about edges. Consequently, the
implicit adjacency matrix demands no space for an edge data structure. Instead an implicit
rule is given in order to create a requested edge and all its attributes on-the-fly. This rule
mainly consists of a piece of code, containing the knowledge of where to get the edge data
and how to compute the corresponding attributes. Whenever an edge object is accessed
this rule is called and a so called shadow edge for the actually requested edge will be
returned. A shadow edge may be considered as a read-only view onto the edge’s attributes
(see Figure 5.6).

In order to find a machine dependant balance between memory consumption and
CPU load, a configurable cache might be attached storing already computed shadow
edges. Edges that are requested more than once are then directly returned from the cache.
Beyond that, if the represented graph  is small enough or sparse, the implicit data struc-

Figure 5.5  Basic structure of an Adjacency Matrix.
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ture might be translated into an adjacency list structure (as described above) by applying
a compilation mechanism. Such a structure then represents a adequately optimized struc-
ture for such type of graphs.

5.4.3 Complexity Considerations

The following table provides an overview of the complexity of some typical graph opera-
tions. The operations are listed in the table’s rows, whereas each column names a distinct
graph data structures on which the operation is performed. 

In conclusion, we observe a trade-off between memory consumption and running time.
Since, each of the discussed graph representations has its characteristic strengths, one has
to take the graph’s structure into account to achieve acceptable results.

Figure 5.6  Basic structure of an Implicit Adjacency Matrix.

Table 5.4  Complexity considerations of the graph data structures
presented previously in Section 5.4.2.

Operation Edge List
Adjacency 

List
Adjacency 

Matrix

Implicit 
Adjacency 

Matrix

numVertices, numEdges

vertices

edges

insertVertex

insertEdge -

removeVertex

removeEdge -

opposite, degree, endVertices

incidentEdges, adjacentVertices

areAdjacent, getWeight

Memory requirement
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6

6THE IVORY FRAMEWORK

Encouraged by the convincing results obtained using some of our first visualization pro-
totypes, which have clearly proven the feasibility of our idea to utilize physics-based
models in order to effectively visualize relations in arbitrary data spaces, we decided already
in a very early stage of our work to build a framework. This decision was supported by the
observation that the individual prototypes shared a significant amount of structure and
code, independently of the type of input data they were operating on.

The IVORY framework we present in this chapter has been developed as an open and
flexible system for information visualization. It introduces a new set of visualization and
interaction paradigms for abstract data sets. It closes the gap between the well proven gen-
eral purpose visualization tools, such as AVS [AVS97] and the IBM DataExplorer
[IBM91], mainly designed for the purpose of scientific visualization and the powerful but
restricted information visualization methods. We refer to Section 1.1.4 on page 7 for a
more complete overview of existing systems and algorithms. 

From a technical point of view, the design of our frame work follows strictly the Oper-
ator Framework Architecture we have developed in Chapter 2. Within this architecture we
also address the various theories presented in the earlier chapters of this work. Although
this framework is primarily designed for physics-based approaches to multidimensional
information spaces, the underlying design principles make it a versatile framework for the
investigation and application of new visual metaphors.

6.1 REQUIREMENTS

The list of requirements for the IVORY framework was inspired by various interesting
approaches [Wis+95, Cha96, BF95, Woo95, YR91, GK95, Ben96, HD95 and CEG96]
that can be found in literature. Each of these shows its specific strengths and weaknesses
in different application scenarios. We have consolidated these behaviors and combined it
with the knowledge we gained from experimenting with our protoypes to define the
requirements for the IVORY framework. The following enumeration lists the six most
crucial requirements for the framework:
81
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• Scalability: Usually, the kind of systems we build here only have an advantage over
conventional visualization techniques − such as standard business charts − when the
data to be analyzed is of large volume and high complexity. Thus, the system must be
scalable in order to be able to handle large amounts of multi-dimensional data, which
might even vary over time.

• Flexibility: One of the main requirements concerns the flexibility. As a framework, it
must be designed with the potential to handle different type of input data with a min-
imal amount of configurational effort. 

• Extendability: The framework must be open to handle future problems dealing with
new − yet even unknown − data types. This calls for some kind of a plug-in mecha-
nism, that allows the dynamic addition of data-specific functionality, which might
include operations specific to a certain data type, visual metaphors or the support for
data-specific interaction techniques.

• State-of-the-art visualization technique: The applied visualization technique should
make use of the users’s cognitive system while taking advantage of the performance of
today’s graphics hardware.

• Clustering and hierarchies: The huge amount of information forces the use of a multi-
resolution setup in order to break down the complexity. Hence, appropriate methods
for the clustering of objects and for interactive level-of-detail control are needed.

• High Portability: Two important aspect have to bear in mind to give a framework the
chance for general acceptance: First the pervasive compliance to established standards
(OpenGL, VRML, etc.) is essential. Second, the implementation should be as inde-
pendent of operating systems as possible.

6.2 THE FUNDAMENTAL VISUALIZATION CONCEPT

Especially for the case of large data sets the individual data object becomes almost insig-
nificant. In contrast, such data volumes inherently imply a dense network of multidimen-
sional relationships, where in general each information unit is related to many other units.
The resulting topological organization corresponds to a multidimensional graph, that
describes these relations.

Our experience has shown that visualization techniques that rely on the connectivity
information of data sets show very promising results. The main idea consists in the quan-
tification of these high-dimensional relations, which yields a measure for the degree of
similarity for each pair of two data entries. Thus, we now deal with a weighted multidi-
mensional graph, where the weights are equal to the quantified similarity between the two
data nodes attached to the ends of an edge. We may also think of the weight as the dis-
tance. Thus, we end up with the ability to express the similarity between two data objects
by means of a distance.

However, the reader should be aware that we still deal with high-dimensional adjacen-
cies, which cannot be visualized straightforwardly and have to be mapped into a subspace
− the Euclidean space for our concrete case. There exist several techniques for topology-
preserving transformations from a high dimensional data domain to Euclidean space
[LVC95]. One of them is called multidimensional scaling (MDS) [You87]. Other widely
spread methods are employing with neural networks, namely with topology-preserving
Kohonen networks [Koh95, GS93], which belong to the group of self-organizing features
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maps (SOM). As a third technique spring-embedding systems (SES) perform the desired
transformation by running a physics-based simulation process [BF95, HH91].

The IVORY framework will base on the latter technique, which means that we will
make consequent use of the theory of physics-based models presented in Chapter 4.
Together with the methods developed in Chapter 5, we are now able to express high-
dimensional similarities between two data objects by means of a simple Euclidean dis-
tance. Thus, more similar data objects will be arranged closer together, than those having
less in common. The result will typically present a set of object groups − so-called clusters
− similar to the image shown in Figure 6.1.

6.3 IMPLEMENTATION OF THE ABSTRACTION MODEL

The IVORY framework strictly follows the Operator Framework Architecture (OFA) pre-
sented in Chapter 2. This section will describe how the architecture is actually put into
action for the concrete case of the IVORY framework.

The organization of the following subsections follows closely the structure of the OFA.
We start on the level of the raw data and continue in the direction of the increasing level
of abstraction up to the visual representation of the original data. We describe the data rep-

Figure 6.1  Typical result computed by the IVORY framework.

Figure 6.2  IVORY’s consequent implementation of the Operator Framework Ar-
chitecture (OFA).
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resentations for each abstraction stage as well as the concrete implementations of the dif-
ferent stage transition operators.

Raw Data. In IVORY the raw data may consist of an arbitrary data type. No restrictions
apply to the type, volume, complexity or origin of the input data.

One of the most important operations on the level of data stage operators is the data
acquisition. It is the starting point of every visualization or visual mining procedure and
supplies the system with raw material. In the simplest case the data can be read from an
ASCII-file. For more complex scenarios, typical data sources encompass conventional data
bases (such as SQL, DB2, DBase), search-engines in the internet, the World Wide Web
(WWW) or real-time data tickers (e.g. Reuters Ticker). The acquisition process obviously
belongs to the data-dependent operators and therefore needs to be implemented for each
data type anew.

Other typical data stage operators are filtering and aggregation operators. However, if
we implement those on this level we have to be aware that − according to the OFA − they
belong to the class of bound operators and thus require a new implementation for each new
data type. Especially for the case of the filtering operators, one should take the possibility
of a reusable filtering operator on a higher abstraction level into account.

Data Transformation. The process of data transformation embeds the original data
into an abstract representation. In the concrete case of the IVORY framework the abstract
representation consists of a weighted graph data structure (see Section 5.1). This transfor-
mation creates a vertex for each data object. In addition, relations between data objects are
mapped to corresponding edges in the graph, where the weight for each edge is defined by
the quantified similarity of the two associated data objects.

The set of data transformation operators are either of bound or functional type. Bound
operators may be required prior to the similarity computations in order to convert the raw
data to one of the formats proposed in Section 3.4. The actual similarity computations
belong to the group of functional operators, because they are semantically similar but typ-
ically vary in their concrete implementations.

Analytical Abstraction. The analytical abstraction constitutes the core data structure
of the IVORY framework. This layer implements one of the weighted graph data struc-
tures presented in Section 5.4.2. It stores the connectivity information as well as the meta-
data for an application. Therefore, we refer to its edges also as connections and to its vertices
also as data objects. The weighted graph is the bases for many of the following operations
including any kind of connectivity analysis or layout operations.

Based on the OFA the operators of this layer are of functional type. However, practice
has shown that we have to distinguish two different groups of analytical abstraction stage
operators: on one hand there are those that work on the raw data, e.g. filtering operators
working on the connectivity information as well as on some attributes of the underlying
raw data. These operators consists of data-dependent parts and are thus of functional type.
On the other hand we have the large group of classical graph operators (e.g. path-finders
[TLA90, GT98], minimum spanning tree, etc.) that act on the abstract graph data only.
These operators can even be classified as operational operators.

Visual Mappings. The visual mapping operators are responsible for transforming the
analytical abstraction into a visual representation, thus determining its resulting visual
appearance. Since our analytical abstraction consists of a standard weighted graph data
structure, we may draw on rich resources from the field of graph visualization (see
Chapter 5).
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According to Chapter 5, IVORY applies a force-directed technique for the graph lay-
outing (see Section 5.2.3). In the current setting the advanced force model introduced in
Section 4.2 is used as the standard layout model for IVORY. As a part of the layout model
we propose the following four different mapping configurations for the stiffness  and rest
length :

All configurations listed above have in common, that similar data objects will be pulled
together by a large  and/or a small . The last version also takes the reliability of indi-
vidual similarity values into account and is used for the visualization of uncertain or unre-
liable data. Physical model parameters not named in the configurations above can be
considered as data independent and are mainly used to optimize the readability of the
layout (see Section 5.2.2).

Concerning the graph rendering, a set of operators is provided to assign the desired
visual metaphors to the elements of our visual representation (see Section 5.3).

Visualization Abstraction. The visual abstraction is implemented by a layouted
graph. By “layouted” we mean, that each of the vertices has its coordinates attached and
the graph is now displayable in a viewer.

Valid visualization abstraction stage operators are for example filtering and clustering
operators. By the use of filtering operators, for instance, the user can select interesting sub-
sets of objects. Conversely, clustering operators are used as a method to handle complex
visualizations, where groups of objects are condensed to one meta-object, a cluster. Because
clustering operators constitute a key issue of this work, they will be discussed in a separate
chapter (see Chapter 7). All operators on this level belong to the class of operational oper-
ators. Hence, they act completely independently of the concrete type of the underlying raw
data.

Visual Transformation. The group of visual transformation operators covers most of
the user navigation functionality. With a small set of zooming, translation and rotation
operators we enable the user to navigate through the layouted graph.

All these operators belong to the class of operational operators, because they work
directly and exclusively on the layouted graph.
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Viewer. The IVORY viewer is implemented by an interactive 3D-Browser. It is respon-
sible for the correct rendering of the layouted graph. Operators on this level mainly serve
to adjust some rendering parameters, such a the rendering quality or the settings for anti-
aliasing.

6.4 SOFTWARE ARCHITECTURAL ISSUES

The IVORY software architecture results from a combination of the list of requirements
(see Section 6.1), the understanding we obtained from the theory of the OFA (see
Chapter 2) and the experience gained during this research project. Hence, the architecture
was not defined in a single step, but rather crystallized from a dynamic development pro-
cess.

As illustrated by the horizontal separation in Figure 6.3 we employed a frontend/back-
end-concept, where the backend is responsible for efficient number crunching and the
frontend handles the graphical user interface and user interactions. In addition, we strictly
distinguish between data-dependent and data-independent components (vertical separa-
tion in Figure 6.3). All data-dependent components are thoroughly distilled into so-called
plug-ins (see Section 6.4.2). All other parts are packed into a highly optimized and data-
independent kernel structure (see Section 6.4.1). 

Thus, speaking in the consent of the OFA the kernel contains only abstract data struc-
tures and operational operators, whereas plug-ins accommodate bound as well as functional
operators. Hence, in order to visualize a new raw data type, the user essentially needs to
write an appropriate plug-in, while the remainder of the system will not be affected at all.

Figure 6.3  Schematic overview of the system-components in IVORY
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The system is completed with a script language − called IVML − handling the config-
uration of the kernel and the individual plug-ins. For further details we refer at this point
to Chapter 8.

6.4.1 Framework Kernel

The abstract framework kernel of IVORY contains generic implementations of all
common components underlying our physics-based visualization approach. In particular,
this also includes all operational operators. The kernel belongs to the set of data-indepen-
dent components of the framework. Thus, kernel operators are highly reusable (see
Chapter 2) and shorten the design cycles of novel visual metaphors. Unlike most visual-
ization systems, where the frontend/backend-separation is introduced to detach system-
dependent from system-independent code segments, we employed this notion primarily
to run the system in a client-server setup over a network.

Frontend. The frontend is designed to run in a Java enabled WWW-browser. It consists
of three parts. The visualization subsystem, which is responsible for all visual system out-
puts, as well as for the handling of user inputs. The 2D graphical user interface (GUI),

shown on the left hand side of Figure 6.4, covers all standard I/O tasks with appropriate
menus and dialog boxes. By default an outline of all loaded objects (plug-ins) is shown as
a collapsable tree structure. The 3D browser is presented on the right side of Figure 6.4. It
manages the visualization of the calculated object arrangements and basic navigation func-
tions. Note that the visualized objects do not belong to the frontend. In order to decouple
the frontend from the viewer we defined a generic 3D viewer interface. Thus, only the
defined interface has to be re-implemented when changing the VRML viewer.

In addition we introduce two messenger components. The propagator is responsible to
inform the backend whenever a user interaction has invalidated the integrity of the fron-
tend and the backend data-structures. E.g. if the user manipulates the layout parameters,
the backend has to recalculate the corresponding object arrangement and synchronize

Figure 6.4  Screenshot showing the main GUI elements of the IVORY frontend.
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88 The IVORY Framework
itself with the frontend. The visualizer has a similar task, but takes care of the opposite
direction from the backend data-structure to the frontend visualization.

Backend. The backend supports two different execution modes: either it is directly
attached to the frontend and runs in the same address space or it runs as a separate server-
application on a different machine. In the second case the frontend and backend commu-
nicate over a Java socket connection.

One of the main design goals for the backend was a responsive data-structure (see
Section 5.4.2), where all the instantiated objects (e.g. plug-ins) are stored. It is strictly
optimized for fast object insertion, deletion and look up. The structure is initialized by the
IVML subsystem (see Chapter 8), which is responsible for dynamic object instantiation
according to the parsed configuration script. Hence, this subsystem must be able to load
and link unknown plug-ins at run-time. 

As indicated in Figure 6.3, we distinguish two different subsystem components access-
ing the core data-structure directly. Based on the objects stored in the core structure the
layout subsystem builds up a extended mass-spring-network similar to the one presented
in Section 4.2. It also contains state-of-the-art differential-equation-solvers to simulate
networks relaxation over time. This includes specifically gradient (Euler, Runge-Kutta) or
stochastic (annealing) based methods. In practice, gradient algorithms turn out to be
much more suitable to treat time-varying data (see Section 4.6). The second subsystem is
the analysis component comprising selection filters, path-finders (see Section 5.1.2) and
clustering algorithms (see Section 7.2 and Section 7.3). The subsystem interfaces allow
users at a systems designer’s level to easily extend kernel algorithms (see Section 6.5).

Transparent Network-Layer. All communication between frontend and backend is
streamed over the network-layer. Hence, the communication is generally transparent to all
system components from above and guarantees full independence of the IVORY execu-
tion mode (stand-alone or client/server).

6.4.2 Plug-in Mechanism

From the conceptual point of view plug-ins serve as a container for all data-dependent
operators (such as bound and functional operators). They have a standardized interface and
are dynamically loadable at system run-time. The set of basic plug-in types (BaseData,
BaseConn, BaseCluster and BaseAbstract) reflect the fundamental compo-
nents the framework consists of. In fact, these are the only plug-in types that are actually
known to the framework kernel.

While defining the abstraction level of IVORY’s plug-ins, we focused on productivity
and ease of use. Since plug-ins only contain functions implementing a specific metaphor
or theorem the plug-in programmer can concentrate his efforts on the data-specific issues.
Recalling the abstraction model shown in Figure 6.2 a plug-in may contain, for instance,
a similarity metric and a visual metaphor parametrizing the visualization.

For reasons of simplicity plug-ins contain both frontend and backend components.
Conceptually, the separation is reflected by two groups of methods. Unlike AVS 5
[AVS97], where separate computation and description modules exist, an IVORY plug-in
is always viewed as one entity even though individual classes belong either to the client or
to the server.

The design of new plug-ins takes advantage of the object-oriented approach of the
framework, where we make extensive use of object inheritance. All plug-ins are derived
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from a small set of base classes and are thus organized in a hierarchical structure as illus-
trated in Figure 6.5. The most important classes are discussed in the following subsections.

Base Objects. The base object class (BaseObj) is the root of the plug-in hierarchy.
Virtually it is the only object class known in the abstract information visualization kernel
of the system. It essentially determines the set of methods the plug-ins may be accessed
through.

A selection of the most important (abstract) methods are given below:

Figure 6.5  IVORY’s plug-in hierarchy: The base classes.
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Data Objects. Data objects are directly derived from the base object class and serve as
an access interface to the explored data. The data management is individually solved by
the actual implementation of a data object. For each instance of a data object a correspond-
ing particle-mass is automatically created in the layout-subsystem. The setup of particle
parameters is handled by the additional backend method explained below.

Due to its paramount importance for many applications we support time-variant data
and multiple data channels per data object in our implementation. A good example is the
analysis of a set of critical interest rates of different countries over the last years. In this
case, a data object is allocated for each country. In each data object one channel is opened
for each data feed.

Connection Objects. Connection objects are of the same inheritance level as the data
objects. This object type serves as a binding object, which represents the relation of two
data objects and is of fundamental relevance for the resulting object layout.

For each connection object instance a corresponding spring is created in the layout-
subsystem. The physical parameters of the spring are defined via the additional backend
method described below.

• getEditComponent  (abstract)
If the object features editing, the method provides an editor component for the

above information. This enables specifically data editing at runtime.

• getVisPar (implemented)
Returns the previously calculated visual parameters by calling the method

calcVisPar.

Backend Methods

• calcVisPar (abstract)
Calculates the visual parameters (position, scale, orientation and color) of an

object depending on the underlying data. This way, specific data-properties can

be mapped onto visual attributes.

Additional Backend Methods

• calcParticle (abstract)
In this method non-visual parameters of the particle attached to the data object

could be parametrized. In this way the object behavior during the layout pro-

cess can be defined.

Additional Backend Methods

• calcConnection (abstract)
In this method non-visual parameters of the spring corresponding to the con-

nection object can be parametrized. 



6.5 Framework Configuration 91
Cluster Objects. Another object type of the first derivation level are the cluster objects.
They enable a hierarchical organization of the visualization and can be looked at as data
object containers.

Note, that they are created by the corresponding clustering algorithm located in the
analysis subsystem. The details of these algorithms are discussed in Chapter 7. For each
identified cluster a new instance is allocated. The appearance of this instance is a result of
the cluster analysis calculations. Figure 6.6 shows a scene containing several differently
shaped cluster instances. 

Abstract System Object. Our experience has shown that generic objects without a
visual appearance are very helpful for efficient solutions. Thus, we introduce so-called
abstract system objects. Examples are parameterized global functions, such as data or cur-
rency converters. 

Another area of application is the attachment of additional I/O-devices. For example,
our physics-based system is predestinated for the use of force-feedback devices. An object
representing the device is derived from the abstract system class and helps to seamlessly
integrate it into IVORY.

6.5 FRAMEWORK CONFIGURATION

According to the abstraction model of the OFA we may define configuration layers that
enable the configuration of the framework on different abstraction levels. These layers
result from a slightly different view of the framework architecture and are shown in
Figure 6.7. At the bottom we find the physics-based information visualization kernel. It
can be configured through a very low level interface only. The plug-ins are located in the
middle of the scheme. They form the elements for a higher level configuration of the
underlying kernel. Finally, on the top of the design, the IVML script language completes
the configuration model of our framework. As described in Chapter 8 this script language
offers the highest level of abstraction regarding the configurability of the framework.
Hence, the level of abstraction in Figure 6.7 increases from the bottom to the top.

It is remarkable that the degree of abstraction for the configuration layers runs exactly
in opposite direction to the one of the operators: operators of a high abstraction level offer
generally configuration capabilities of a low abstraction degree only, and vice versa. For
example, the kernel which accommodates operators of a very high abstraction level, pro-
vide configuration interfaces having only a very low degree of abstraction. In general, only
technically experienced users, such as system-designers, are capable of configuring the
framework kernel. On the other hand, the IVML script language offers a very high level

Figure 6.6  A example scene containing several cluster object instances. The corre-
sponding shapes are computed using a blobby cluster method (see Section 7.3.2).
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of abstraction. But, since IVML scripts task and data-dependent, they belong to the oper-
ators with a low degree of abstraction.

In order to offer an appropriate interface for different types of users, IVORY can be
configured at 4 different levels of abstraction, depicted in Figure 6.7. The standard user,
such as a financial analyst, will apply preconfigured instances of IVORY in his everyday
work. The more advanced power user can customize existing configurations using the
script language IVML (see Chapter 8). Administrators may program Java plug-ins (see
Section 6.4.2) implementing new visual metaphors and layout algorithms. Finally, the sys-
tems designer may modify and extend the IVORY kernel by adding new classes for solvers,
particle engines or other kernel methods.

6.6 IMPLEMENTATION ISSUES IN JAVA

Some Arguments pro Java: In this context, a new trend in portability emerges with Java
[SUN97] and its “write once, run everywhere” philosophy. In this way applications run
(almost) on any operating system supporting Java. We believe that the leak of performance
compared to C++ will get obsolete over time. Here, the performance improvements made
with every new Java release and the availability of native code Java compilers [IBM97] are
good evidences.

In addition, besides all the euphoria, Java is widely accepted as a highly portable quasi-
standard in the computer community and is available on many operating systems. Fur-
thermore Java is strongly object-oriented, which is critical for a well structured implemen-
tation of a complex framework.

The IVORY implementation takes full advantage of all sophisticated features provided
by JAVA. Each plug-in is mapped onto a Java class. Thus, the loading of individual plug-
ins at runtime can be accomplished by the dynamic class loading mechanism of Java. The
Java reflection model is used by the IVML interpreter to check, read and set the field values
of plug-in objects.

We use the naming convention for setter and getter methods of Java Beans to access the
underlying Java member variables. The Beans compliance enable to use all advanced Beans
features [JavaBean96], such as property editing. Although our current client-server imple-
mentation is based on a proprietary object serialization protocol, we are currently working
on an RMI-based method invocation.

Figure 6.7  User abstraction model and system architecture
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One of the critical implementation issues of IVORY was the 3D API. The OpenGL
bindings, available in beta-version from [Mag97], are fast, however, are on a low abstrac-
tion level and do not support advanced object management by scene graphs. In addition,
some rendering features, such as texture mapping are not implemented. In addition,
VRML parsing has to be provided by the user.

An early version of IVORY was based on Dimension X’s Liquid Reality class library
[MS97], which was the only appropriate 3D Java API at that time. The robust beta version
supported VRML and has been ported onto many platforms. Since the scene graph data
structures are maintained in Java, the system performance is low. 

Our next implementation uses SGI’s CosmoPlayer [Cos97] for visualization. Unlike
the libraries from above, the software is essentially a VRML 2.0 viewer plug-in for WWW
browsers which has no immediate 3D API for Java. However, viewer control and callback-
functions can be invoked through the LifeConnect mechanism of the WWW-browser and
the External Author Interface (EAI) of CosmoPlayer. The scene rendering is based on
OpenGL and thus supported by a wide range of hardware accelerators. At this time Cos-
moPlayer is available for SGI, Windows 95/NT and Apple Macintosh.

Unlike OpenGL, Sun’s Java3D [J3D97] provides a powerful API for 3D graphics
including scene graph optimization and VRML extensions. The platforms comprise SUN,
HP, SGI, Windows 98/2000 and Linux. The current version of IVORY uses Java3D to
implement the 3D browser interface. In its present version Java3D provides a stable and
reasonable fast graphics library. In addition, Java3D’s rendering engine is build on top of
OpenGL, which, if an appropriate graphics system is present, enables hardware accelerated
rendering.
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7CLUSTERING

The term clustering refers to the process of grouping similar objects together, where simi-
larity is captured by a metric function as it was presented in Chapter 3.

Clustering methods have been a hot topic in different research fields such as: statistics,
pattern recognition, machine learning, etc. Due to the constantly increasing size of data
sets handled over the last years, clustering also has advanced to a key technology in the area
of information visualization and data mining. In fact, with the use of today’s technology
for data generation and collection, typical data sets have grown by magnitudes. Since the
human cognitive system is limited to recognize only a very small number of objects at once
(around 7 objects [Mil56]) as well as due to performance restrictions of today’s graphics
hardware we are forced to use an efficient level-of-detail strategy. Consequently, the liter-
ature describes various interesting data clustering approaches including their efficient and
refined implementations [DO74, GGR99, GRS98, HH98, JD88, KHK99, ZRL96].

In this chapter we propose three additional clustering algorithm for postprocessing.
The simplest one clusters individual objects by computing an ellipsoidal hull around
them. The ellipsoid is parametrized by the principal components of the underlying object
group. For more complex scenarios we introduce a blobby clustering mechanism, called
BLOB, that enables encapsulation of similar objects by implicit shapes. Finally, we present
a direct successor of the BLOB algorithm, called H-BLOB, which groups and visualizes
cluster hierarchies at multiple levels-of-detail. Our clustering algorithms are highly reus-
able for a large variety of data clustering tasks, because they are all implemented as visual-
ization abstraction stage operators (see Section 2.4).

7.1 PRINCIPLES

Because of the reusability criterion our main interest lies in designing clustering algorithms
that operate on the visual abstraction level as defined by the OFA introduced in Chapter 2.
Since the visual abstraction is implemented by a layouted graph we focus on the problem
of clustering large data sets in Euclidian space, also referred to as the coordinate space
[GRG+99], in which data objects can be represented as vectors . Unlike raw datav R

n∈
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objects located in a data domain, also referred to as the distance space [GRG+99] or the
arbitrary metric space, the vector representation gives access to various efficiently imple-
mented vector operations (e.g. addition, multiplication, dot-product, etc.), which enables
one to calculate simplified representations of complex data subregions at interactive rates.
No similar operations are defined in distance space. The only possible operation is the
computation of a distance function between two data objects, thus rendering the problem
of clustering gets significantly more complex.

In order to simplify the geometry and topology of complex object setups, we will pro-
vide a set of clustering algorithms for postprocessing. In contrast to many other cluster-
based systems, we will not only calculate clustered object layouts including corresponding
one- or multi-level partitions (as a group of cluttered single objects) but we will also com-
pute different types of enfolding surfaces (ellipsoids, implicit surfaces, etc.) for each cluster
[DO74, Epp95]. Aiming at a reduction of complexity, such a surface can replace a large
group of single objects in a higher level of representation. Without losing significant visual
information, the complexity of the scene may be drastically reduced. At the same time, the
visual distinctness increases. In our terminology we call the computation of one- or multi-
level partitions analytical clustering and the finding of enfolding surfaces visual clustering.

The remainder of this chapter is organized as follows. In Section 7.2, we give an over-
view of analytical clustering algorithms. In Section 7.3, we present different techniques we
use for visual clustering. We introduce three different algorithms dedicated to visualize
partitions and cluster hierarchies. The chapter closes with Section 7.4 describing imple-
mentation issues.

7.2 ANALYTICAL CLUSTERING ALGORITHMS

Clustering algorithms can be roughly divided into two categories: partitioning and hierar-
chical methods. In the following two subsections we present a variety of widely used par-
titioning, respectively hierarchical clustering algorithms, followed by a description of
different advanced cluster visualization techniques.

The following list is far from being complete, but it should outline the main clustering
techniques, upon which most of today’s clustering algorithm are based. This section
mainly intends to set our work into context and to better understand our new approaches.

Figure 7.1  Clustering of a subset of objects performed with BLOBS. a) Initial ob-
ject layout b) Clustered configuration with enclosing implicit surface.

a) b)
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7.2.1 Partitioning Methods

Partitioning cluster methods (PCM) attempt to analytically subdivide a set of data objects
into a certain number of clusters, assuming that clusters are of hyper-ellipsoidal shape and
of similar size. Like other centroid-based techniques they generally fail, if clusters differ
significantly in shape or size. We will take a closer look at two representative algorithms
and their qualities.

C-Means. The basic idea of the C-means method is to join an object obji to a cluster clustj
if the distance between the position  of the data object obji and the center  of the clus-
ter clustj is less than a threshold value :

(7.1)

The center position  of cluster clustj is defined by the arithmetic average of the positions
of all data objects  enclosed by cluster clustj

(7.2)

where  designates the number of data objects within the current cluster.

The C-means algorithm iterates over all data objects obji and verifies for each object obji
if there exists a cluster clustj the center  of which is closer to  than . If there are such
clusters the object will be added to the cluster that is closest to the object. Otherwise a new
cluster is generated with the object xi as its only member. After assigning the object to a
cluster, its center position will be updated, i.e. the center will shift.

A major disadvantage of the C-means method is the user defined selection of the cluster
threshold value . In some cases, the determination of a proper value for  may be very
difficult. With too large a value clusters will contain objects which do not correspond. On
the other hand, too small a value will result in clusters each holding only one single object.
Another drawback is the sensitivity of the algorithm to the order of traversal of the given
objects. In particular, the choice of the starting object has a great influence on the resulting
cluster distribution.

The cost of the C-means algorithm is of order  being defined by the worst case
scenario, with each object located in its own cluster. But due to the very simple operations

Figure 7.2  a) Partitioning using C-means method with threshold , where the
assignment of object x is undetermined. Object y, on the other hand, could not
be assigned to any existing cluster. Therefore, it generates a new one. b) Com-
pletely clustered scene.
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the C-means method relies on, it is very fast in general. A pseudocode fragment is given
below.

K-Means. K-means belongs to the class of iterative clustering techniques. Choosing the
K-means method we have to preselect the number  of clusters that the algorithm will gen-
erate.

First  initial cluster centers are defined. An object obji is assigned to the cluster clustj
when its center  is closest to the object position . In such a way, all objects are associ-
ated to exactly one cluster. At the beginning of the next iteration, the cluster centers  of
all  clusters are updated to the arithmetical average of all positions of associated
objects. Thereafter, another assignment round starts using the recently computed cluster
centers. The iteration loop stops if all cluster centers have converged into a stable position.

The K-means method poses a problem concerning the selection of the initial positioning
of the  clusters. An unlucky choice may have an important influence on the resulting
object clustering.

Table 7.1  Pseudocode listing of the C-mans algorithm

O={O1,..,On} // initial object list; ri = position of Oi
K={} // set of clusters; cj = centroid of Kj
while (O not empty) do
fetch object Oi from O | minima = delta
for each cluster  do
if (|cj - ri| < minima) then
Kmin = Kj
minima = |cj - ri|

fi
od

if (minima < delta) then
add Oi into Kmin | update cmin

else
create new cluster Knew
add Oi into Knew | cnew = ri
add Knew into K

fi
od

end

Figure 7.3  The same scene as shown in Figure 7.2 clustered with the K-means
algorithm a) The iteration steps for the 3 cluster centroids. b) Resulting clustered lay-
out.
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K-means’ iterative behavior and the apriori unknown number of iterations makes the
cost estimation more difficult than for the C-means algorithm. In each step, the algorithm
calculates the distances between all  object and the  cluster centers, i.e. calculates 
distances. Since  is constant, the costs are of order  per iteration step.

7.2.2 Hierarchical Methods

Hierarchical clustering methods (HCM) are commonly used in the area of information visu-
alization and data mining. In contrast to partitioning clustering methods, which subdivide
a set of objects into a certain number of clusters, hierarchical clustering generates a nested
sequence of partitions. We call this a cluster tree (as shown in Figure 7.4). 

An agglomerative hierarchical clustering algorithm starts with n atomic clusters, each con-
taining exactly one object. At each step, the algorithm merges the two most similar1 clus-
ters and thus decreases the total number of clusters by one. These steps recur until only
one single cluster, containing all objects, remains. Any two clusters generated by such a
procedure are either nested or disjoint. In contrast, divisive hierarchical clustering reverses
the process by starting with a single cluster holding all objects and subdividing it into
smaller sets [JD88].

Many variants of agglomerative hierarchical clustering methods are known, mainly dif-
fering in the definition of the metric applied in updating the similarity between existing
and merged clusters. 

Along with the incremental algorithms mentioned above, there is a group of non-incre-
mental clustering methods (e.g. CLUSTER/S [SM86]). The discussion of those algo-
rithms is beyond the scope of this chapter, and their methods are not considered in the
following.

In the remainder of this section we shall discuss two different agglomerative hierarchi-
cal clustering methods: the single linkage method and the complete linkage method. For an
in-depth description we refer to [Zup82].

Single Linkage Method. Another straightforward and quick clustering technique is
called single linkage method (SLM) or nearest neighbor technique. For this algorithm we
define the distance between two clusters as the minimal spacing between two arbitrary
objects, each located in two different clusters. Assuming that  is the distance between

Figure 7.4  a) Probable object arrangement with 8 objects. b) Corresponding
cluster tree with 4 levels generated by an agglomerative, hierarchical clustering
algorithm

1.  In the current context similarity of two objects is defined by the inverse of their distance. Thus the algo-
rithm merges the two closest clusters in each step.
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object  from cluster  and object  from cluster . Then, the distance
 between clusters  and  is defined as

. (7.3)

That means we measure distances between two clusters as the distance of the closest pair
of objects each belonging to a different cluster. The SLM synthesizes clusters analogous to
the general description found at the beginning of this section. 

A problem of SLM is the algorithm’s tendency to generously accept object chains as
clusters. Assume we have an object configuration like the one shown in Figure 7.5. The
SLM would string objects between A and B to a chain. Thus, objects A and B will be
assigned to the same cluster. SLM generates three clusters (drawn with a solid line). Build-
ing only two clusters (shown with a dotted line) would be a superior solution.

Unlike centroid-based algorithms, this method could discover clusters of arbitrary shape
and different size. Unfortunately, the procedure is highly susceptible to noise and outliers.

To build up the cluster tree, the single linkage method has to compute the distance in
pairs between every two objects, i.e. supposed we have  objects, we have to perform

 distance evaluations per iteration, which dearly is of order  over all
n iteration steps.

Complete Linkage Method. Another clustering method, the complete linkage method
(CLM), takes into account the chain formation and defines the distance between two clus-
ters  as the maximal distance between two of their objects

(7.4)

Supposed we run the CLM on an object topology that already contains two shorter cluster
chains, the distance between the two clusters is now defined by the two furthest away
objects not located in the same cluster. This is equal to the distance of the outermost object
on the one side of a chain and the outermost object on the other side of the other chain.
Thus, chain formation is suppressed.

As mentioned at the beginning of this section, there are many other well known clus-
tering algorithms, i.e. BIRCH [ZRL96], which is basically an extension of the K-means
clustering, but adequately addresses the problem of large data sets. CURE [GRS98] rem-
edies the drawback of single centroid representation by taking advantage of a multi-cen-
troid representation of clusters. Hence this algorithm is more robust to outliers and
identifies clusters varying in size and having non-spherical shapes. A recent approach is
called CHAMELEON [KHK99], a hierarchical clustering algorithm that measures inter-

Figure 7.5  Generation of chains applying the single linkage method
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cluster similarity based on a dynamic model. In addition to other algorithms, CHAME-
LEON clustering is based not only on vicinity of objects but also considers corresponding
connectivity information. This combination results in a robust handling of data that con-
sists of clusters being of different shape, size or density.

7.3 VISUAL CLUSTERING METHODS

Powerful visual clustering mechanisms to simplify the viewable structure of complex sub-
regions are essential to provide an efficient level-of-detail strategy.

There is quite a large number of algorithms and systems treating the subject of cluster
visualization. Virtually all of them take the problem of cluster visualization simply as a
layout problem, thus focusing on optimizing the computation and spatial grouping of
crowds of single data objects. The visualization then is limited to drawing just a simple
shape (dot, icon, glyph, etc.) for each data object (shown in Figure 7.6a). Thus, the actual
visual clustering process is rather done by the user’s perceptual system than by the visual-
ization system itself.

There are two reasons to go a step further: first today’s graphics hardware − though current
progress in this area is tremendous − is not yet ready for the data volumes we would like
to address with present data management systems (i.e. data warehouses). Second, the user’s
perceptual system should be relieved of gathering single points into a cluster object. In
order to speed up the decision making process and to increase the decision’s quality, clus-
ter visualization has to take the step to the next higher level of visual representation.

Only a few approaches make an effort in this direction. Some of the systems attempt
to break down complexity by running a preclustering algorithm on the initial data set.
Afterwards the system confines itself to displaying only objects on a chosen clustering level,
where clusters are represented by a simple shape at the position of their centroids. Doing
so, we lose most of the information contained in a cluster. Only the cluster’s position is
visible to the user. Information about the internal object distribution, including size, ori-
entation and variation is visually not available to the user.

Initial work about a more powerful visualization method is reported in [Hen+95], where
wrapping hyperspheres accomplish the clustering of data objects. Building on this tech-
nique, we propose a PCA-based technique (Section 7.3.1) where the basic idea is to wrap
ellipsoids around each object group whose shape is controlled by the principal compo-

Figure 7.6  Different techniques to visualize clusters of data objects. a) cluster repre-
sented by a cluttered group of single objects b) visualization with ellipsoidal surfaces
wrapped around clusters c) objects visually combined by a BLOB surface (see
Color Plate 4 on page 184).
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nents of the respective cluster (shown in Figure 7.6b). In either of these approaches the
restriction to a quadric surface representation of the clustering hull represents an unneces-
sary restriction. The internal object distribution is only roughly approximated, as well in
size as in orientation. This drawback gets addressed by an algorithm called BLOB-cluster-
ing (Section 7.3.2), the fundamental idea of which is to use blob functions combined with
a marching cube [Blo94] algorithm to represent the enfolding cluster surface (see
Figure 7.6c). The generated shape represents the distribution of the included data objects
in the best possible manner. All of the cluster visualization methods mentioned above are
limited to work on partitions only. None of them takes advantage of the hierarchical infor-
mation cluster structures inherently contain. Therefore, we extend the BLOB-based
approach in order to group and visualize cluster hierarchies at multiple levels-of-detail.
This method is called H-BLOB clustering (Section 7.3.3).

7.3.1 Ellipsoid Clustering

In order to simplify the geometry and topology of complex object arrangements it is nec-
essary to provide an efficient level-of-detail strategy. Initial work for information visualiza-
tion is reported in [Hen+95] where simple clustering is done by wrapping hyperspheres
around groups of objects. The transparency of the hyperspheres was controlled as a func-
tion of the distance to the viewer. Unlike this approach we propose a K-means and prin-
cipal component analysis (PCA) based clustering mechanism which will be explained in the
upcoming section. 

The basic idea is to wrap ellipsoids around each cluster whose shape is controlled by the
principal components of the respective cluster. The method is designed as a two pass pro-
cedure, where in a first step all objects in the scene are divided into a set K of disjoined
subsets using one of the partitioning methods presented in Section 7.2.1.

The second pass comprises the parametrization of an affine map which transforms the
initial 3D spherical shape appropriately into the scene. For a given cluster from K this
transform is defined by a translation vector , a scaling matrix  and a rotation matrix

. Thus, the transformation is figured out by the following set of equations. We start
from the implicit equation of the unit sphere with surface vector

(7.5)

and perform a subsequent affine mapping by

, (7.6)

where

 . . . . . . surface vector of the ellipsoid

Subsequently we describe how to compute the translation, the scaling and the orientation
of an ellipsoid that encloses a set of  points  in space.

Translation of the Ellipsoidal Surface. The center  of the ellip-
soid can be obtained immediately as the arithmetic average of the position of the points in
space:
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(7.7)

Scaling and Orientation of the Ellipsoidal Surface. The scaling and orientation
of the ellipsoid can be computed with the covariance matrix  of the set of points. The
matrix  is defined as follows:

(7.8)

DEFINITION. A value σ is called eigenvalue of a  matrix , if a vector  exists,
such that . The vector  is defined as the eigenvector of the eigenvalue .
A matrix of dimension  has exactly  eigenvalues and  eigenvectors.

By solving the eigenproblem  we then compute the 3 eigenvalues

 

and the associated eigenvectors  which define the required transfor-
mation matrices. Note, since the eigenproblem is of dimension 3x3 it can be solved ana-
lytically. 

The scaling matrix  is thus constructed using the three eigenvalues ,  and 
of the matrix :

(7.9)

The orientation of the ellipsoid is specified by the rotation matrix , which is defined by
the eigenvectors ,  and  of the covariance matrix :

(7.10)

The three eigenvalues of the covariance matrix  defined in Equation 7.8 are evaluated
by setting the determinant of the matrix  to zero and solving the resulting system
for :
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(7.11)

Equation 7.11 can be interpreted as a polynomial  of degree three in the unknown
σ. The three solutions ,  and  of  correspond to the eigenvalues of the
matrix .

Finally, the three eigenvectors ,  and  of  can be computed from the eigen-
values of  as:

(7.12)

Due to the statistical properties of the principal components it is not guaranteed that all
objects of a cluster are enclosed by the ellipse. Therefore we carry out additional postpro-
cessing and adjust the scaling of the ellipsoidal hull until all objects are enclosed. 

Adjustment of the scaling. In order to adjust the scaling matrix  it must be tested
whether all the points  lie in the interior of the ellipsoid. If this is not the case, then it
is necessary to adjust the scaling of the ellipsoid. To make the computations easier, the
center of the ellipsoid must be set in the origin of the coordinate system. This is accom-
plished by translating and rotating all the points  using the position and orientation of
the ellipsoid. Figure 7.7 illustrates this process with an example.

The scaling factor  can be computed from the new coordinates  of all the

points  and the three eigenvalues ,  and  of the covariance matrix  as:

(7.13)

The position of a point  relative to the ellipsoid can be extracted from the magnitude of
:

The point lies in the interior of the ellipsoid

The point lies on the surface of the ellipsoid

The point lies outside the ellipsoid

Figure 7.7  Adjustment of the scaling using a transformed point set, which is cen-
tered on the origin
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If , then the values ,  and  must be increased, in order to meet the condition
.

The strategy to modify the values was constructed experimentally. The idea behind this
method was to make the three semi-axis of the ellipsoid equally large, thus letting the ellip-
soid approximate a sphere. If after this transformation the value of τ is still larger than one,
the semi-axis are scaled by a factor of , so that the point is guaranteed to lie on the surface
of the ellipsoid. This strategy can be implemented in four the steps shown below:

• increase the smallest semi-axis  up to the largest semi-axis  and check
whether the condition  can be met.

• Increase the medium semi-axis  up to the largest semi-axis  and check
whether the condition  can be met.

• Increase both the smallest semi-axis  and the medium semi-axis  up to the
largest semi-axis  and check whether the condition  can be met.

• If none of the previous steps was successful, re-scale all three semi-axis , ,
and  by a factor of .

Table 7.2 shows a pseudo code implementation of this strategy.

Table 7.2  Pseudocode listing of the ellipsoid scaling adjustment

for each point xi=(x,y,z) of the cluster do
compute 
if (  > 1) then
//sort eigenvalues 1, 2 and 3
determine min, mid and max
// sort coordinates according to eigenvalues
determine xmin, xmid and xmax

if (x2min/ max+x
2
mid/ mid+x

2
max/ max <= 1) then

min=x
2
min/(1-x

2
mid/ mid-x

2
max/ max)

elsif (x2min/ min+x
2
mid/ max+x

2
max/ max <= 1) then

mid=x
2
mid/(1-x

2
min/ min-x

2
max/ max)

elsif (x2min/ max+x
2
mid/ max+x

2
max/ max <= 1) then

min=x
2
min+x

2
mid/(1-x

2
max/ max)

mid= min
else

min= min*

mid= mid*

max= max*
fi

fi
od
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τ

σmin σmax

τ 1≤
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7.3.2 BLOB Clustering

The fundamental idea is to use blob functions to represent individual objects and cluster-
ing shapes [GSF97]. Blobs, as initially been introduced to the graphics community by
[Bli82] allowing us to represent complex geometric shapes by implicit formulations. Here,
a given volume is expanded by placing individual 3D basis functions  − so-called
blobs − at some spatially scattered object locations . Introducing a set of weights

 and  features an additional degree of freedom where the volume function 
is obtained by the following linear expansion:

(7.14)

An implicit definition of a 3D clustering isosurface is determined by selecting an isovalue
 with

(7.15)

Note that for a physical interpretation the 3D basis function  can be considered describ-
ing some scalar field or potential. An appropriate choice of the bases is required for effi-
cient handling of the blobs. In most cases, Gaussians or cubic splines provide good results.
In a Gaussian representation of the field we have:

(7.16)

where  and  stand for individual scalar weights. For the exponent function  we
adapted an approach proposed by [Mur91] who essentially used a superquadric as

(7.17)

where  and  are parameters to control the smoothness of the resulting shape. This
formulation allows a maximum degree of freedom in modeling the implicit shape.

The effects of implicit clustering are illustrated by the picture series of Figure 7.9. Two
initially disjoint isotropic (Gaussian) fields are clustered by an implicit isosurface which is
computed by superimposing the associated basis functions. In the rightmost picture of the

Figure 7.8  Illustration of the clustering method: a) Initialization, b) Model after
relaxation with a highlighted minimal path between two objects, c) Disjoined
clusters as transparent ellipsoids
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series the shape of the upper basis function was modified by tuning the superquadric
parameters  and , respectively. This property enables adapting individual clustering
shapes to the underlying application scenario.

A more complex clustering problem is depicted in Figure 7.10 where a subset of scat-
tered objects was wrapped by blob clustering using the approaches described above. We
observe that the implicit shape resulting from the individual field functions smoothly
encapsulates all desired objects. Unlike with PCA based clustering, almost no space is
wasted.

Yet, a problem arising with clustering is an undesired intersection of the hull with indi-
vidual objects outside the cluster, such as presented in Figure 7.11a. Here, an interesting
property of the blob approach helps to solve the problem. By assigning a negative value to
the weight  we generate an inhibiting field and the clustering hull is pushed away from
the object (Figure 7.11b). Isosurfaces can be computed at interactive rates using appropri-
ate techniques.

However, the blob approach from above essentially performs a visual clustering. The
automatic identification of subsets of objects has to be computed by additional procedures
upon isosurface reconstruction.

We propose to modify an implicit surface polygonizer, such as the one presented in
[Blo94]. The following algorithm computes a semantic encapsulation of objects into sets
of individual clusters under the following restrictions:

Figure 7.9  a) Illustration of implicit surfaces obtained from two field functions
as their centroids are approaching. b) Modification of the shape by setting

 for the upper field function (see Color Plate 1 on page 183).

Figure 7.10  Clustering of a subset of objects scattered in 3D space: a) initial
configuration, b) clustering isosurface as a transparent hull wrapped around the de-
sired objects (see Color Plate 2 on page 183).
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• disjointness: objects may belong to one and only one cluster. Multiple assignments are
prohibited.

• non-intersection of clusters: clusters must not intersect. As illustrated in Figure 7.11,
undesired intersections can be resolved using negative weights

The above preconditions guarantee a partitioning of objects into disjoint clusters
encapsulated by disjoint isosurfaces. In this case the object belongs to the cluster whose
surface is intersected first when traveling on a ray from the object center outwards. A
pseudocode segment of the respective volume-based clustering algorithm is shown in
Table 7.3.

The algorithm starts from the center of a given object, and after discretization of the field
function it searches the nearest volume cell intersecting the isosurface defined by . If
the isosurface segments (triangles) of this voxel have already been computed, the surface
segment exists and the object is added to the corresponding cluster. If not, the clustering
hull (isosurface) is initialized and computed recursively with the cell as a seeding point.

Note that this method requires to store the visited cells. For efficient implementation,
we recommend to build a hash table with keys computed from cell coordinates.

7.3.3 H-BLOB Clustering

All of the cluster visualization methods mentioned above are limited to work only in com-
bination with partitioning clustering algorithms. None of them takes advantage of the hier-
archical information cluster structures inherently contain. Therefore, we propose a new

Figure 7.11  a) Undesired intersection of object and hull. b) repulse of the clus-
tering surface from the object by assigning a negative value for  (see Color Plate 3
on page 183).

Table 7.3  A pseudocode segment of the volume-based clustering algorithm

Input(ciso)

For (all DataObjects O) do
Search(first cell V intersected by cluster C, ciso)
if(V already computed)
// Object O belongs to cluster C
add(O to children-list of C)

else
// Traverse recursively to compute isosurface
traverse(surface C starting with V, ciso)

fi
od

a) b)

b

ciso
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simple and fast clustering technique that has its strength in the visualization of hierarchical
clustering structures, that is to say cluster trees.

In this section, we present a new hierarchical clustering and visualization algorithm
called H-BLOB (Hierarchical-BLOB), which groups and visualizes cluster hierarchies at
multiple levels-of-detail [SBG00]. Our method is fundamentally different from conven-
tional clustering algorithms, such as C-means, K-means, or linkage methods which are pri-
marily designed to partition a collection of objects into subsets sharing similar attributes.
These approaches usually lack an efficient level-of-detail strategy that breaks down the
visual complexity of very large data sets for visualization. In contrast, our method com-
bines grouping and visualization in a two stage process constructing a hierarchical setting.
In the first stage a cluster tree is computed making use of an analytical clustering process.
Exploiting the inherent hierarchical structure of this tree, a second stage visualizes the clus-
ters by computing a hierarchy of implicit surfaces. 

The H-BLOB algorithm is considered to be a direct derivative of the BLOB clustering
method presented in Section 7.3.2, extended by the capability to handle hierarchical set-
tings. In fact, it is a combination of various techniques and algorithms described in pre-
ceding sections, each one applied to a suitable subtask according to its strengths.

Stage I: Edge Collapse Clustering. Inspired by the persuasive idea of the edge col-
lapsing algorithm presented in [Hop96], we propose a new simple and efficient clustering
method, called edge collapse clustering (ECC).

The algorithm we present, belongs to the category of agglomerative hierarchical cluster-
ing methods. Thus, the general structure is very similar to the methods presented in
Section 7.2.2. 

In contrast to the linkage methods the ECC bases on centroids; hence, it only works in
coordinate space. We define the distance  between two clusters clusti and clustj as the
distance between their centroids  and 

. (7.18)

The process of cluster merging works analogously to the process shown in Section 7.2.2,
but with the following extension:

Each cluster clusti is equipped with a weight  corresponding to the number of objects
contained in clusti. The weight  is initialized with a value of one. With each iteration,
the algorithm merges the two closest clusters, i.e. the pair of clusters with minimal distance

, into a new one, called clustnew with centroid . At the same time, the parameters
of the new cluster are updated corresponding to the formulas below:

(7.19)

(7.20)

If the two clusters are of different weight, the new cluster will be located closer to the
heavier, i.e. larger cluster, which is desirable in practice.

Figure 7.12 illustrates the algorithm by means of an example with 5 objects spread on
a plane. Each iteration step is shown on a separate line, with the actual object arrangement
in the left half and the current cluster tree on the opposite side. Starting with 5 single
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objects, the ECC algorithm merges them into a single cluster after the same number of
iteration steps. The thick line, highlights the edge to be collapsed next.

Since each cluster is defined by its centroid only and as the distance metric depends only
on the centroid’s coordinates, every two clusters are virtually interconnected with exactly
one edge of length . Consequently, ECC takes advantage of the inherent hierarchical
structure of a cluster tree. The computational complexity for each iteration step is defined
by the corresponding number of clusters. This is an advantage compared to the linkage
algorithms, which always operate on the initial set of all single objects. Hence, the ECC
algorithm is computationally less complex than linkage methods.

The disadvantages concerning the fragile user-driven parameter preselection of the C-
and K-means methods do not apply for ECC. Although this technique is partly based on
centroids, it is more stable with respect to unconstrained shapes and different cluster sizes
than C- and K-means. The undesirable effect of chain formation does not occur for ECC.

Unfortunately, the ECC is still in the same polynomial order as the linkage techniques.
It also preforms  iterations steps and computes in each of the steps  dis-
tances. Since ECC computes distances based on centroids we get a triangular cost scheme
over all iterations, which results in an complexity of order  regard-
ing the number of computed distances.

Stage II: Cluster Tree Visualization. The cluster tree generated as a result of the first
stage must now be visualized. Each hierarchy level should be handled separately, i.e. we
compute a separate surrounding surface for each cluster at a specific hierarchy level.

As a basic idea we devote resources to the BLOB algorithm described in [GSF97]. The
fundamental idea of BLOB clustering is to give each object a spatial extension by attaching
a spherical primitive to its center. In general a primitive is a working model comprising a

Figure 7.12   a) - e) Progressive edge-collapse algorithm. Red line indicates edge
to be collapsed next. Current cluster tree levels (I-V) are shown on the right-hand
side.
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parameterized oriented shape and a corresponding 3D field function . Primi-
tives and their parameterization will be explained in more detail in the next section. 

To compute a BLOB surface, we superimpose all field functions  in space
and accordingly run a marching cube algorithm [Blo94] to extract the implicit surface at a
given isovalue. The subsequent sections explain how we extend this algorithm in order to
handle hierarchical cluster structures efficiently. 

Visualization using BLOBS. As a straightforward approach to visualize a single cluster
on a given cluster level, we could assume a scenario where a primitive is attached to each
of the cluster’s objects. Supposed we choose a skillful parameterization of those primitives,
we could obtain an isosurface that fully encloses all objects and the visualization problem
would be superficially solved.

Even if this approach results in fair visual results, it has a tremendous handicap. For
very large clusters holding a huge number of single objects the computational cost rises
excessively. That effect occurs because in order to perform an isosurface extraction we have
to evaluate the superimposed field at given points in space which involves the evaluation
of the field equation for every single primitive. The problem could be alleviated if we
would be able to find a way to limit the number of primitives during visualization.

We consider the cluster tree shown in Figure 7.13, which is subdivided into 3 hierar-
chical levels. The topmost cluster on level I contains all 5 objects (ABCDE). If we intend
to visualize this cluster, we have to take into account five different primitives – one for each
object.

To limit the number of primitives we propose the following approach: instead of
attaching primitives to every single object, we just consider the objects one level below the
level of interest. Thus, in order to visualize the cluster in level I we attach primitives to the
level II cluster objects, i.e. to the clusters (ABC), (D) and (E). Or, if we aim to visualize
clusters of level II, we utilize cluster objects from level III and so forth.

For satisfactory results, we need to extend the characteristics of the primitives used,
which – in the original BLOB paper [GSF97] – were restricted to be of radial symmetric
shape. This is due to the fact that in contrast to the previous BLOB clustering algorithm
primitives now have to account for the properties of a whole object set rather than of only
one single object. We suggest the extension of our concept of a primitive to an elliptical
feature, the so called ellipsoidal primitive. The following sections will give a more exact def-
inition.

Figure 7.13  Cluster tree with three levels. It is a condensed view on the corre-
sponding tree shown in Figure 7.12e without displaying level II and IV.
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Extension to Ellipsoidal Primitives. Ellipsoidal primitives are a direct extension to
the common primitives determined in [GSF97]. The characteristics of an ellipsoidal prim-
itive is specified by an ellipsoidal shape and the field function . For the definition of the
shape and the computation of its size, orientation and position we refer to Section 7.3.1.
The definition of  is

(7.21)

where  is the distance to ellipsoidal surface,  defines the maxi-
mal magnitude of the function inside the ellipsoid, and  influences the descent of the
field function.

Figure 7.14 compares the fields of a spherical symmetric primitive to the field of a new
ellipsoidal primitive defined by Equation 7.21 on the basis of their isolines. Inside the red
area the field has a value of .

The field  of a single ellipsoidal primitive could be described as follows: for all points
inside the ellipsoid the value of the field is uniformly . Starting at the surface of the ellip-
soid the field descents exponentially and monotonously as a function of the distance to the
surface.

Computation of Ellipsoidal Gaussian Fields. An ellipsoid is defined by its scaling
matrix S, its rotation matrix R and its center . From the diagonal elements of the scaling
matrix result the three half axes ,  and .

Transforming the ellipsoid into the origin will simplify subsequent formulas. In order
to compute the value of the field function  at a point  from Equation 7.21,
the coordinates of  have to be transformed: first,  is translated by the negative values
of vector  according to

. (7.22)

Then,  is rotated by the inverse rotation matrix R:

(7.23)

To gather the distance between the transformed point  and the surface of the ellipsoid,
it is necessary to intersect the connecting line between the center of the ellipsoid – which
is equal to the origin – and the point  with the ellipsoidal surface. To this aim the line

 is parametrized with  running from 0 to 1. 

Figure 7.14  Isolines of a) a spherical, symmetric primitive and b) a new ellip-
soidal primitive.
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(7.24)

A point  is located on the surface of the ellipsoid, if the ellipsoidal equation evaluates
to 1:

(7.25)

Substituting Equation 7.24 into Equation 7.25 yields for the intersection point :

(7.26)

If , then the point lies within the ellipsoid. With this  can be computed using
transformed coordinates:

(7.27)

Parameter Definition for Ellipsoidal Primitives. The ellipsoidal primitives con-
tain the two parameters  and , which control the descent and magnitude of the cor-
responding field function. These two parameters should be determined automatically,
because a configuration by the user may be tricky and instable. Whenever possible, the
algorithm should disburden the user of such decisions.

The simplest approach would be a static setting for these two parameters. Unfortu-
nately, this idea is not acceptable because the visualized clusters vary too much in both
scale and position. Thus, it is impossible to find fixed values delivering satisfactory results
under all circumstances. The parameters have to be set in context with the underlying
ellipsoid. We will discuss two possible approaches solving this problem:

1. The heavier a cluster is, i.e. the more objects it contains, the larger becomes the
value of the magnitude  of the ellipsoid primitive’s field function.

2. The larger the maximum extension of the ellipsoid is, the weaker becomes the
descent  of the ellipsoid primitive’s field function.

Experiments have shown, rule one can lead to very big BLOB surfaces, e.g. if the object
distribution in space is dense. Hence, this rule was dropped and a fixed value is assigned
to  (e.g. =1.0).

The second rule on the other hand has turned out to provide a relevant visual feedback.
The parameter  is defined as

(7.28)

where the value for the constant factor  must be determined experimentally, yet.

Determination of Isovalues to ensure connected BLOB-Surfaces. Accord-
ing to [GSF97] a BLOB’s shape is strongly influenced by the corresponding isovalue

. The smaller this value, the larger the BLOB’s extension will get. In order to ensure
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that a BLOB encloses all its objects the correct choice of  is crucial. In this section, heu-
ristics for the automatic determination of isovalues are presented.

Take the example of Figure 7.15a where an enclosing BLOB surface for three objects
A, B and C has to be computed. The indicated number on the connecting edges illustrates
the minimal value of the superimposed field along the edge. In order to assure as tight a
BLOB as possible we have to look for the largest isovalue which still guarantees that the
BLOB does not break apart.

Figure 7.16 shows three possible cases for the choice of an isovalue. On the left hand
side, the chosen value results in the illustrated split-up into two subclusters because

 is bigger than the minimal field value on edges AB and BC. On the right hand
side, too small an isovalue does not provide for a distinctive shape. The case illustrated in
the middle seems ideal. Choosing  – bigger than the minimum on edge AB but
smaller than the minimal value on BC – results in a tight single BLOB surface enclosing
all objects.

This example shows how to find an ideal isovalue: look for the biggest value that still
guarantees for a single enclosing surface. This is equivalent to choosing a value such that
all objects are connected by edges with minimal field value bigger or equal to the isovalue.

There are two problems in this approach: first, graph theory shows that it is very expensive
to find a minimal spanning tree [BM76], at least if cluster sizes approach several hundred
objects. Second, finding the minimal field value on interconnecting lines is expensive too,
as it is impossible to find an analytic solution for arbitrarily superimposed fields. In the
remainder of the section, we present an approach which in most cases yields suitable isov-
alues.

Figure 7.15  a) Three objects for which an enclosing tight BLOB surface has to be
found. b) Objects of a cluster with so-called outlier objects. The interconnecting
lines between outliers and the cluster center are marked in red.

Figure 7.16  left: isovalue too big, BLOB breaks apart, middle: optimal isovalue,
tight BLOB enclosing all objects, right: isovalue too small, non-distinctive shape
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Figure 7.15b shows a constellation of several objects of a cluster for which an enclosing
BLOB surface has to be found. The red dot marks the center of the cluster. Intuitively,
objects close to cluster center will not cause problems. In contrast, it is troublesome to
account for outliers – objects which are far apart from the cluster’s center. Instead of look-
ing for a minimal spanning tree for all of the cluster’s objects we concentrate on the out-
liers. Therefore, we look for the minimal field value on the interconnecting lines between
the outlier and the cluster center. Figure 7.15b shows these lines highlighted in red. The
smallest value found is regarded as a good approximation to the ideal isovalue.

We are left with the problem of finding the minimal field value on the lines between
outliers and the cluster center. To this aim, we employ a Newton iteration scheme in order
to find the zero crossings of the first derivative of the superimposed field function with
regard to the parametrization t of the interconnecting line

. (7.29)

The corresponding Newton iteration step is given by

. (7.30)

As it is hardly possible to find symbolic expressions for the first and second derivative of
the field function f, they are approximated in terms of central differences as follows:

(7.31)

As the reader may have noticed, this procedure is not guaranteed to find the global mini-
mum but is highly dependent on the choice of a favorable initial value . In order to find
a good value for , we sample the value of the field function on equidistant points on the
interconnecting line and choose  to be the smallest value found during the sampling
procedure. As a matter of fact, the outlined procedure still does not provide for finding the
global minimum. However, practice has shown, that it yields suitable isovalues for non-
pathological cases. For clusters of less than five objects the minimal spanning tree is com-
puted which guarantees for the optimal isovalue.

The following small example illustrates the basic properties of the H-BLOB clustering
algorithm. The scene consists of 5 single objects each represented by a colored sphere. We
present two snap-shots of the cluster tree buildup sequence including the corresponding
implicit cluster surfaces generated by the H-BLOB algorithm. 

7.4 IMPLEMENTATION ISSUES

All algorithms have been fully implemented as part of a class library in JAVA. For the
domain of 3D visualization we apply Java3D in the version 1.1.2. All computational work
is done on a standard PC completed with a hardware accelerated graphics subsystem
(Open GL). Even for more complex examples we still get interactive frame rates.

f′ t( ) 0=

tn 1+ tn
f′ t( )
f″ t( )
-----------–=

f′ t( ) f t t∆+( ) f t t∆–( )–

2
----------------------------------------------≈

f″ t( ) f′ t t∆+( ) f′ t t∆–( )–

2
-------------------------------------------------≈

 
2f t 2 t∆+( ) 2f t( ) 2f t 2 t∆–( )+–

4
-----------------------------------------------------------------------------=

t0
t0

t0



116 Clustering
The first issue concerns the isosurface extraction. In spite of the multi-resolution
approach it remains the most time consuming part of the algorithm. Implicit surfaces may
provide very nice shapes, but are computationally very expensive. There are many sources
available for this topic, but for our prototype implementation our choice was [Blo94].

Regarding the implementation of the H-BLOB algorithm there is an additional issue
worth to be mentioned. It concerns the data structure used for the edge collapse clustering.
Since this stage of the algorithm makes heavy use of point-to-point distance calculations
and cluster merging, together with the higher order characteristic of the problem, makes
a good choice difficult. Employing standard data structures quickly leads to a performance
bottleneck, mostly because of memory shortage. Some promising work addressing this
type of problem can be found in [Epp95].

Figure 7.17  Small example showing the clustering process by means of 5 simple
objects. Snapshots with 4 respectively 2 clusters are shown. Level indicates the hi-
erarchy level in respect with the cluster tree.

5 objects - 4 clusters - level 2 5 objects - 2 clusters - level 4

a) b)
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8INFORMATION 
VISUALIZATION MODELING 
LANGUAGE (IVML)

Having a flexible and powerful framework is just one part of the game − in order to make
the most of its abilities an equivalently potent configuration tool is needed. For the con-
crete case of the IVORY framework the Information Visualization Modeling Language
(IVML) will cover this requirement. It accomplishes the configuration and parametriza-
tion of both the framework kernel as well as the various plug-ins to be loaded. IVML
denotes an elementary component of the framework configuration model presented in
Section 6.5 on page 91. Implemented as an open and object-oriented high-level script lan-
guage, IVML is distinctively proposed to generically describe the topology of information
visualization problems. The reader may find the detailed EBNF definition of IVML in
Appendix B. In addition, Appendix B shows an overview of the IVORY plug-in classes
and their inheritance dependencies.

8.1 SCOPE

The Information Visualization Modeling Language (IVML) is a language for modelling
relation-based information topologies. This comprises all aspects of the input data as well
as a description of the relations implicitly contained in the data. Hence, IVML mainly
deals with data objects representing the actual information as well as connection objects
expressing the relation between two data objects. In the case of IVORY these objects are
implemented by plug-in objects (See “Plug-in Mechanism” on page 88.).

Since information visualization problems fall into a wide range of different problem
classes, a high-level configuration language is a prerequisite for an efficient use of any
framework in this area. In practice, problems appearing seemingly different may be visu-
117
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alized often with an identical set of data and connection objects just by re-parameterizing
these. IVML is a high-level configuration language considering these aspects. As such, it is
implemented as an interpreted script language that yields short turn-around times. Hence,
IVML gives the advanced framework user (see Section 6.5 on page 91) a powerful tool to
rapidly configure the behavior and parameterize the visual metaphors of the individual
plug-ins, namely the data and connection objects.

In summary, the IVML script language serves the following four purposes:

1. Declaration of involved data sources

2. Definition of appropriate plug-in sets

3. Parameterization of chosen components

4. Description of the visualization problem’s topology

Although, IVML is perfectly adapted to the concepts of IVORY, it does not have to be
used in combination with the IVORY framework.

8.2 REQUIREMENTS

The IVML script language is designed to meet with the following requirements:

• Object-oriented and open
Since plug-ins are built up hierarchically, the language should support a concept of
inheritance. Based on the object-oriented approach IVML is supposed to provide
the ability to add new object types that enable even the configuration of yet
unknown plug-ins. 

• Context-free
For the sake of simplicity of the corresponding parser, the language should be con-
text-free. As a consequence, a one-pass, one-token-look-ahead parser implementa-
tion is sufficient.

• Prototype support
Language must support a kind of prototype-mechanism that enables the script pro-
grammer to declare templates of object groups in order to generate instances of
them later on.

• Composability
Provide the ability to use and combine externally defined objects within an IVML
scene. A typical IVML scene will be composed of a set of subscripts: one to define
the environment, another to define object appearances and a third to define prob-
lem specific configured object templates. With this mechanism modular script
design and re-usability become feasible. Hierarchical inclusion enables the creation
of scenes of arbitrary length.

• Support for active objects
It must be possible to define objects capable of generating new objects. As a result,
data objects may actively gather information autonomously. In addition, connec-
tion objects may be generated automatically by an active connector object joining
data objects by means of a connection rule.
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• Expressions and references
In order to offer a flexible script language, expressions and references must be sup-
ported. Hence, calculations and mutual dependences of object parameters may be
expressed in the script flow.

• Scene-global time line
An integral part of each IVML scene is an attached time line defining the timewise
start and end point of the underlying data as well as its temporal resolution. This
enables the creation of interactive time line animations of dynamic data sources.

8.3 DESIGN CONCEPTS

Considering the requirements listed in the preceding section, we notice that a language
well known in the field of computer graphics satisfies most of the conditions: The Virtual
Reality Modeling Language (VRML)1 in the current version 2.0. It is a format for describ-
ing interactive 3D objects and worlds. VRML is used in a variety of application areas such
as engineering and scientific visualization, multimedia presentation, entertainment and
educational titles, web pages, and shared virtual worlds. It was designed to be a universal
interchange format for integrated 3D graphics on the World Wide Web [VRML97].

In our setting we will adopt most of the characteristics of VRML. One of the most
important characteristics is related to the VRML object definition model. Similar to
VRML the basic building blocks describing an IVML scene are objects defined by fields −
also called field containers. Fundamentally, the number of fields and their names are deter-
mined by the set of configurable object parameters. The following example outlines a typ-
ical IVML object:

SimpleData {
visual IVVisual {

color <1.0, 0.0, 0.0>
scale <4.0, 4.0, 4.0>

}
label "Demo Object 1"

appearanceURL "./shapes/apple.wrz"
datapath "../nov01/apple.data"

}

In the case of IVML each object is implemented by a corresponding IVORY plug-in
(See “Plug-in Mechanism” on page 88.). The field container’s type thereby determines the
key for the plug-in mapping. For the case of the preceding example, the objects Simple-
Data and IVVisual are implemented by corresponding IVORY plug-ins having the
same name. The fields visual, label, appearanceURL and datapath of the Sim-
pleData object are mapped to the corresponding plug-in parameters. The same applies
to the type IVVisual with its fields color and scale.

8.3.1 Deviations from the VRML standard

Unfortunately, some of the requirements for IVML demand adaptations of the VRML
language. Most of the changes affect the language syntax only.

1.  According to the name of the International Standard ISO/IEC 14772-1:1997, VRML 2.0 is also re-

ferred to as VRML97.
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Expressions. The strongest deviation to VRML is the integration of expressions. Each
IVML field can consist not only of a numerical or literal value, but also of arbitrary expres-
sions. Expanding the language syntax in such a way, implies however further changes. In
particular, problems concerning the parsing of multi-value fields (e.g. vectors) crop up.
Therefore, in IVML the comma is demanded as a separator in multi-value fields. 

Additionally, each single value of a multi-value field must be unambiguously parsable.
This claims an extended notation for vectors using ‘<‘ to mark the start and ‘>’ to mark
the end of a vector. 

References. In VRML references are introduced with the keyword USE followed by an
object path leading to the field which is supposed to be referenced. Since in IVML refer-
ences may be directly integrated in expressions, the keyword USE is not required. To keep
the implementation of the reference handling simple, certain rules apply:

1. References must always contain a complete and absolute path, from the root up to
the target field or object. Therefore variable names become indeed longer, but the
resolving of such names gets considerably simpler (e.g. system.clus-
ter.transparency).

2. To ensure that relative references may be constructed using the special pathnames
me and parent. Me refers to the object in which the expression is located. Corre-
spondingly, parent addresses the object one level above in the object hierarchy
from the object denoted by me (e.g. me.parent.label).

Prototypes. As in VRML prototypes in IVML begin with the keyword PROTO followed
by the name of the prototype. The prototype is in turn followed by an object definition in
braces that applies to that prototype. In contrast to VRML, this definition may consist
only of a single object on the uppermost level.

The following example defines a prototype with name p1 and type SimpleData. In
addition the prototype field value is preset to the expression (2*me.a)/sin(0.334),
where me.a can remain undefined yet:

PROTO p1 {
SimpleData {

...
value (2*me.a)/sin(0.334)
...

}
}

The VRML keyword EXTERNPROTO that specifies an externally implemented prototype
has been dropped in IVML. Since IVML supports a more generalized object approach,
where each IVML object is implemented by a corresponding IVORY plug-in, the
EXTERNPROTO mechanism is inherently contained in each IVML definition statement.

8.4 SPECIFICATION

8.4.1 Language Basics

As illustrated in Figure 8.1 below, an IVML script consists of several sections. Except for
the Header, a section always consists of a sequence of (hierarchical) object definitions.
Inside an object definition a set of fields can be defined. In general, the order of the sec-
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tions does not matter except for the Header which has to be at the beginning and proto-
types must be defined before they are applied. 

Additionally, the language permits using the keyword INLINE, which enables the tex-
tual import of external resources. These may for example contain prototype definitions of
general importance complementing the prototype set defined in the original IVML script.
A further application concerns the import of object appearances usually stored in separate
VRML files.

Below you will find a description of individual script sections in accordance with the
structure shown in Figure 8.1.

Header. The header simply identifies the IVML script and version. 

#IVML 1.0

Constant Section. Constants are declared as fields of type SVString. They are kept in
objects of class IvoryConst. Since constants may be arbitrarily named the IvoryConst
object is capable to manage arbitrary field names.

Type description:

IvoryConst {
SVString any_fieldname_1
SVString any_fieldname_2 
... 
SVString any_fieldname_n

} 

Example: 

DEF myconst IvoryConst {
myTitle "Hello World"
myURL "http://hello.world.com/basics.html"

}

System Parameter Section. System parameters are stored in an IvorySystem
object, which is automatically initialized at parse-time of the script. If no system object was
defined anywhere in the script a default instance will be created. By convention, the Ivo-
rySystem object always has the name system. Thus an explicit naming can be omitted. 

Type description:

Figure 8.1  Schematic structure of an IVML script

Constants

System Parameters

Environment

Prototypes

Generators

Layout Objects

Header

IVML Script
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IvorySystem {
SVString codebase
SVString scriptbase
IVInfo info 
BaseLayout layout
BaseCluster cluster

}

Example:

DEF system IvorySystem {
info IVInfo {

title "Economic indices"
info ["Example scene for Ivory V2.0"]

}
layout RKLayout {

series IVTimeSeries {
start 1.1.75
stop 31.12.94

}
}
cluster BlobCluster {

visible TRUE
transparency 0.8

}
}

The various system fields are now explained briefly. The codebase contains the path to
the plug-in classes. This field is set to be read-only. The scriptbase similarly points to
the directory from where the IVML script was loaded. The info field holds general
remarks and annotations about the current scene. This may be a scene title or a short
description of the input data. Furthermore the layout algorithm to be applied and its spe-
cific parameters are determined by the field layout. In the same way the clustering
method can be configured freely by setting the cluster field.

Environment Section. The environment object IvoryEnvironment contains
VRML inlays to define individual backgrounds, light sources, cursors and static scene
parameters. It implicitly called env. As with the IvorySystem object an instance is gen-
erated implicitly unless it is done explicitly elsewhere in the script. Since the various field
names are rather self-explanatory, a more detailed explanation is omitted here for brevity. 

Type description:

IvoryEnvironment {
SVNode lights
SVNode cursor
SVNode billboards 
SVNode environment 
SVNode viewpoints 
SVNode script 
SVNode userdef
MVRoute routes 

} 

Example:

DEF env IvoryEnvironment {
lights INLINE "brightLight.wrl"
cursor INLINE "crossCursor.wrl"
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environment INLINE "financeEnv.wrl"
billboards INLINE "extendetBboard.wrl"

}

Prototype Section. In order to construct a number of objects with common field val-
ues, a so-called prototype can be employed. Instead of defining all field values for every
object instance individually, these can be set once in the prototype definition. The object
instances are then created by cloning the prototype. As a consequence, all field values are
inherited by the object. Individual entity characteristics can still be changed, however, at
the time of the actual object creation. A prototype has the same type as the object it con-
tains. 

On one hand, this approach increases the legibility of a script, and so decreases possible
occurrence of typos and other errors. On the other hand, it reduces the script length and
with that the parser’s expenditure. Besides the performance improvement, prototypes
increase the modularity and reusability of IVML scripts.

Syntax:

PROTO identifier {
classname {

# field settings
}

}

Example:

First, two prototypes (SphereData, CubeData) are defined. Both of them base on the
same object class (SimpleData), but have, however, different appearance fields. 

PROTO SphereData {
SimpleData {

appearance "Sphere {}"
}

}

PROTO CubeData {
SimpleData {

appearance "Box {}"

Figure 8.2  This small scene consisting of 4 objects arranged in a tetrahedron
shows the use of prototypes. Each object is defined using a different prototype
(SphereData, CubeData, etc.) which gives the object its particular shape. Never-
theless all objects are of the same type SimpleData.
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}
}

In the following an object data1 gets instantiated by means of the prototype Sphere-
Data. Consequently, the new object adopts the appearance from the prototype and
data1 will be displayed as a sphere.

DEF data1 SphereData {
...

}

Again an object − this time data2 − of class SimpleData gets created. However, in this
case the appearance field of the prototype CubeData is redefined. The object data2 will
be represented by a cone.

DEF data2 CubeData {
appearance "Cone {}"

}

Layout Object Section. The most important objects which are specified in a script are
located in this section − the layout objects. With them the actual data and its implicit rela-
tion topology are brought into the system. One can distinguish between two types: First
the data object that serves as a container for the data to be visualized. Second the connection
object that abstracts the relation between two data objects (see Section 8.4.4). 

All layout objects find their implementation in the form of an IVORY plug-in, derived
from either the base class BaseData or BaseConn, as the case may be. After the parsing
has finished all objects are filled in into the backend data structure of IVORY. They form
the foundation for all further operations (layout computation, clustering, connectivity
analysis, etc.) in the system. In contrast to all other object types, layout objects may have
their corresponding representation in the visualization. 

Example:

# Prototype for our data objects
PROTO CGGPersData {

PersonalData {
visual IVVisual {

scale <4.0, 4.0, 4.0>
}
datapath "sql:pers:cgg:" + me.name
infoURL "http://info.server.org/pers/" + me.name
appearanceURL system.scriptbase + "./faces/" + me.name

}
}

DEF Tinu CGGPersData {
label "Tinu Roth"

}
DEF TC CGGPersData {

Figure 8.3  Illustration of the scene resulting from the script above

Tinu TC

PersConn
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label "Tom Sprenger"
}
DEF PersConn PersonalConn {

leftObj Tinu
rightObj TC

}

The shown example involves two data objects − named Tinu and TC − both of type Per-
sonalData. Their definition and instantiation occurs indirectly by means of the proto-
type CGGPersData. It presets the field values for the data source, a URL probably
containing additional information and a link to the object’s appearance description.
Within the actual object definition it suffices to put the correct label. Finally, a connection
object PersConn is defined, which brings the Tinu and the TC data objects in relation to
each other.

Generator Section. Up to now, all object were passive in the sense of dynamic object
creation. Each single object has to be defined explicitly in the script. This is likely to be
sufficient for lab examples and small applications. However, thinking of real world exam-
ples consisting of several hundreds or even thousands of data and connection objects one
realizes easily that more powerful mechanisms are needed for such complex environments.

A rule-based generation mechanism is needed. That is what generator objects are for (see
Section 8.4.4). Configured with a generation rule and a template of the objects to be gen-
erated they offer automatic object creation. Immediately after the parsing has completed
the rules of all generator objects are applied one after the other to the scene.

This approach is in particular conceivable for connection objects, but also for data
objects. Consequently, we may identify two main types of generator objects: Data source
handlers manage the information de-multiplexing of a data source. As a main task they pass
on the partitioned information to existing data objects or create a new object if required.
Connectors on the other hand create new connections between data objects on request.
Hence, they support the description of the topology of the visualization problem. 

8.4.2 Coordinate System

Analogous to VRML IVML uses a Cartesian, right-handed, 3-dimensional coordinate
system [VRML97]. By default, objects are projected onto a 2-dimensional screen by pro-
jecting them in the direction of the positive Z-axis, with the positive X-axis to the right
and the positive Y-axis up. Moving the camera − using the keyboard or mouse − alters this
default projection.

8.4.3 Fields

Fields represent the properties of the configurable objects. In general, we may distinguish
between two different field types. A field is either of type plain field or a substructure.

Plain Fields. The plain fields actually hold the values of object properties. They thus
comprise the basic configuration data containers. Plain fields may be again divided into
two subcategories. If the field content consists of a single value only, it is a singlevalue field.
Otherwise it is a question of a multivalue field.

Table 8.1 lists the plain field types currently supported by IVML1. All fields contain an
internal value object storing the actual value respectively values of the field and optionally

1.  Similar to the plug-in model for objects, also new IVML fields types may be added to the system.
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an expression tree. The value object bases on either a built-in Java object (e.g.
java.lang.String) or a customized container object (e.g. ivory.ivml.Vec2f). In
the sense of an object-oriented approach we may assign a value of the same type or any
derivation of that to a field.

Substructures. Substructures are sub-objects, which basically correspond to conven-
tional object definitions but take place inside of another object. A sub-object is stored
as a reference to an IvoryFieldContainer.

8.4.4 Field Containers

A field container typically consists of one or more fields. A field can be either a plain field
or a substructure (see Section 8.4.3). In the case of a plain field the container itself holds
the assigned value. Otherwise a reference to another field container is stored in the con-
tainer structure as it is shown in Figure 8.4.

The field container defines the basic functional component of the IVML script lan-
guage. From the IVML point of view, field containers are pure structural objects that group
together a number of fields. Apriori, they do not provide any further functionality. This
looks different from the viewpoint of the framework. Every container has its equally

Table 8.1  List of valid IVML plain fields including their 
corresponding internal value types

Singlevalue
Field

Internal
Value type

Multivalue
Fields

Internal
Value type

SVBool java.lang.Boolean MVInt32 java.lang.Integer[]

SVInt32 java.lang.Integer MVFloat java.lang.Float[]

SVFloat java.lang.Float MVString java.lang.String[]

SVDouble java.lang.Double MVRoute java.lang.String[]

SVString java.lang.String

SVVec2f ivory.ivml.Vec2f

SVVec3f ivory.ivml.Vec3f

SVRotation ivory.ivml.Rotation

SVColor ivory.ivml.Vec3f

SVTime ivory.ivml.Time

SVNode java.lang.String

Figure 8.4  Example showing the basic structure of a field container.
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named counterpart on the framework side in the form of an IVORY plug-in (see
Section 6.4.2 on page 88). By definition the plug-in must − analogously to the JavaBeans
specification [JavaBeans96]- provide a getter- and a setter-method for each field of the
field container. While parsing the script each field container triggers the dynamic loading
of its associated plug-in class. With every loading the framework is expanded by additional
functionality. Thus, the sum of loaded containers finally defines the functional scope of
the configured framework.

Definition:

DEF identifier PluginClassName {
...
field definitions

...

}

As a consequence of the interdependence described above it is not only the framework
gaining functionality with every new plug-in, but also IVML’s vocabulary that grows.
With every new plug-in automatically a new field container type becomes known in the
script language. Field containers may be divided up into three main groups: system objects,
layout objects and generators. A similar subdivision into different Java packages can be
found on the part of the plug-ins. In following, the different groups are explained in more
detail.

System Objects. Global parameters, layout settings and the VRML environment are
held in system objects (see also Section 8.4.1). All System objects get implemented by spe-
cial plug-in classes located in the IVML system package. 

The two main types of system objects are IvorySystem and IvoryEnvironment. If
they are not defined in the script, the interpreter generates them implicitly. Since they may
exist only once in the entire system, their names are generated automatically.

• IvorySystem is designated always as system 

Figure 8.5  Plug-in hierarchy of generic IVML specific classes

abstract ClassClass Interface
extends
implements

IvoryFieldContainer

IVGravity

IvoryEnvironment

IvoryConst

IvorySystem

IVVisual

BaseCluster

BaseConn

BaseData

BaseObj

NameConnector

TypeConnector

DataSourceHandler

Connector



128 Information Visualization Modeling Language (IVML)
• IvoryEnvironment is designated always as env

A peculiar characteristic has the third system object, the IvoryConst container. It
deviates from the restriction that for every field in the field container a method must be
defined in the plug-in. The field handling is generalized to the effect that as many field as
desired with arbitrary names can be managed. This extension allows a convenient admin-
istration of named constants.

Layout Objects. Basically, IVML recognizes two types of layout objects, namely data
objects and connection objects. The former serve as placeholders for the actual data, while
the latter define the connectivity between data objects. The joined plug-in classes are
named BaseData and BaseConn. They both reside in the IVORY public plug-in package
which also accommodates any of their user-written derivatives. As can be inferred from
Figure 8.5, both plug-ins are derived from the same base class BaseObj. All types of layout
objects may be defined either explicitly in the script or instantiated at run-time by gener-
ators. In addition, layout objects are the only entities that may have a visual representation
shown in the visualization.

Base Object (BaseObj). This object establishes the basis for all layout objects. It contains
the elementary properties that are common to all layout objects.

Definition:

BaseObj {
SVString name # "BaseObj"
SVString label # "DefaultBaseObj"
IVVisual visual # {see below}
SVBool fixed # FALSE
SVBool gravity # FALSE
SVBool lookAtMe # FALSE
SVNode appearance # "Sphere {}"
SVString appearanceURL# {empty}

}

IVVisual {
SVVec3f position # <0,0,0>
SVRotation rotation # <0,0,1,0>
SVVec3f scale # <1,1,1>
SVColor color # <1,1,1>

}

Explanation:

Type Name Description

SVString name Indicates the name of the object. At declaration time the 
DEF identifier − if present − is assigned. The object’s 
name is used for referencing purposes. This field is Read-
Only.

SVString label Determines the visual text tag of an object. This can not 
be employed to reference the object. It has rather infor-
mative character.

IVVisual visual Defines the visual parameters of an object, such as scal-
ing, rotation, etc. However, it does not include the 
object’s shape description. Usually most of the fields are 
computed by metrics implemented in the plug-in.

SVBool fixed Determine whether the object’s position is supposed to 
be fixed in the coordinate system.
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Base Data Object (BaseData). The data object abstracts the actual data to be visualized.
It is derived directly from the basic object (BaseObj). Hence, the data object automati-
cally inherits all fields already defined in the basic object. Furthermore, the data object
complements the container by fields required for the parametrization of the layout process.
User-defined data objects must be derived from BaseData in order to work properly in
the framework.

Definition:

BaseData {
# These fields are inherited from BaseObj
SVString name # "BaseData"
SVString label # "DefaultBaseData"
IVVisual visual
SVBool fixed 
SVBool gravity
SVBool lookAtMe
SVNode appearance

# These fields are members of BaseData
SVFloat mass
SVFloat spaceFactor
SVFloat lamda
MVString neighbors

}

Explanation:

SVBool gravity Switches on a virtual gravity force, that causes the object 
to stay aligned in the direction of the X-axis indepen-
dently of any other applied transformation.

SVBool lookAtMe Determine whether the object is supposed to align itself 
always in the direction of the camera (billboard effect).

SVNode appearance Defines the appearance of the object in syntax VRML.

SVString appearanceURL Names an URL to a VRML file, that contains an object 
appearance description. If both appearance fields are 
set, the field appearance is superseded.

Type Name Description

SVFloat mass Contains the mass value for this object. This will have an 
impact on the object position computed by a physics-
based layout algorithm.

SVFloat spaceFactor Contains a spaceFactor value for this object. This will 
affect the object position computed by the physics-based 
layout algorithm.

SVFloat lamda Contains the charge value for this object. This will have 
an impact on the object position computed by a physics-
based layout algorithm.

MVString neighbors Holds the names (BaseObj.name) of all objects con-
nected to this. Of particular interest may be the length 
of this multi-value field which indicates the number of 
neighbors. This field is Read-Only.

Type Name Description
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Base Connection Object (BaseConn). The connection objects are used for the linkage of
two data objects. Similar to data objects, connection objects inherit all fields from the base
object and supplements those with additional fields required mainly for layouting. Exten-
sions of connection objects must be derived from the class BaseConn in order to work
properly in the framework.

Definition:

BaseConn {
# These fields are inherited from BaseObj 
SVString name # "BaseConn"
SVString label # "DefaultBaseConn"
IVVisual visual
SVBool fixed
SVBool gravity
SVBool lookAtMe
SVNode appearance

# These fields are members of BaseConn
BaseData leftObj # null
BaseData rightObj # null
SVFloat correlation
SVFloat strength 
SVFloat defaultLength 

} 

Explanation:

Generator Objects. The specific quality of generator objects is that unlike all other
objects they have an active component. Generator objects can create new layout objects
autonomously by following certain rules defined specifically to this purpose. They are acti-
vated after the complete parsing of the IVML script. After that, the generators can keep
on working in the background, generating new objects or deleting existing ones as
required.

Abstract Definition:

Generator {
BaseObj template

}

Type Name Description

BaseData leftObj, 
rightObj

These substructures refer to data objects, that are sup-
posed to be linked by this connection object.

SVFloat correlation Indicates the similarity of the two connected data 
objects. This value is usually computed by the plug-in 
metric function.

SVFloat strength Contains a strength value for this connection. This will 
have impact to the positions of the connected data 
objects. The larger it is the stronger becomes the connec-
tion.

SVFloat defaultLength Contains a value for the default or rest length of this 
connection. This will have impact to the positions of the 
connected data objects. The larger it is the more far 
away from each other are the data objects positioned.
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Explanation:

Connector. In order to automatically generate connection objects, so-called connectors
can be employed. The basic connector is defined in an abstract manner and is thus not
applicable in a script. Of more practical interest are the two extensions NameConnector
and TypeConnector. They are both derived from the base connector class IvoryCon-
nector. The NameConnector includes an additional field that will contain the name-
based linking rule. Similarly, the TypeConnector includes a field containing the type-
based generation rule.

Definition:

NameConnector {
BaseObj template # inherited from Generator
MFString names
}

TypeConnector {
BaseObj template # inherited from Generator
MFString types
}

Explanation:

Type Name Description

BaseObj template Defines the object, that will be cloned whenever the 
generator wants to create a new object instance.

Type Name Description

MFString names By means of a pair of name patterns this field indicates, 
between which data objects the connector is supposed 
to construct connection objects. In the case of the 
NameConnector the connection rule is defined as fol-
lows:

names [ident1 ident2]
whereas ident1 and ident2 are the two name pat-
terns of data objects to be linked. Thereby, all data 
objects whose name satisfies ident1 are connected 
with all those fitting ident2.The names may contain 
wildcards (‘*’ and ‘?’).

Example 1: The subsequent rule connects the data object 
with the name data1 with all those having a name that 
starts with B_Data:

names ["data1", "B_Data*"]
Example 2: In order to generate a complete graph, that 
is to link every data object with every other, the follow-
ing rule can be applied:

names ["*", "*"]
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Datasource Handler. In principle, there are two ways of getting data into data objects.
On the one hand, the data import may be governed by the data objects themselves. They
are passed the required source parameters (filenames or URLs) and will load the data on
initialization. Alternatively, data imports may be managed by a global data source handler
that automatically generates the required objects in accordance with the kind of data that
is found.

Definition:

DataSourceHandler {
BaseObj template # inherited from Generator

# These fields are members of DataSourceHanlder
NameConnector nameConnector
TypeConnector nameConnector
MVString sources
}

Explanation:

MFString types By means of a pair of type patterns this field indicates, 
between which data objects the connector is supposed 
to construct connection objects. In the case of the 
NameConnector the connection rule is defined as fol-
lows:

types [type1 type2]
whereas type1 and type2 are the two type patterns 
of data objects to be connected. Thereby, all data 
objects whose type satisfies type1 are connected with 
all those satisfying type2.The types may contain wild-
cards (‘*’ and ‘?’).

For the following examples we assume data objects of 
the classes AppleData and PearData were defined in the 
script. In order to interconnect all objects of class Apple-
Data one writes:

types ["AppleData", "AppleData"]
To connect all objects of the two classes in pairs:

types ["AppleData", "PearData"]

Type Name Description

NameConnector nameConnector Handles the name-based connecting of newly 
created data objects. This connector can be con-
figured as described in the previous subsection.

TypeConnector typeConnector Handles alternatively the type-based connecting 
of newly created data objects. This connector can 
be configured as described in the previous sub-
section.

MVString sources List of source URLs where the handler reads the 
data from.

Type Name Description
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8.5 IMPLEMENTATION ISSUES

8.5.1 Interpreted script language

The fundamental question of whether to use compiled or interpreted components is
solved by a compromise. On one hand the interpreted approach is used wherever the exe-
cution repetition is very low and performance is therefore of secondary importance. On
the other hand compiled code is used for all low-level and often-run-through program seg-
ments.

In contrast to all other system components which are built using a compiled language
providing a maximum of speed, the IVML configuration scripts are handled by an inter-
preter. Since they execute only once at start-up time we balance time against flexibility.
However, some speed optimization mechanisms are required − especially in the area of
expression evaluations. The most important aspects are described in the two subsequent
sections.

8.5.2 Extensibility through Java’s Reflection API

The IVORY implementation takes full advantage of all sophisticated features provided by
Java. Each plug-in is mapped onto a Java class. Thus, the loading of individual plug-ins at
runtime can be accomplished by the dynamic class loading mechanism of Java. The Java
reflection model is used by the IVML interpreter to check, read and set the field values of
plug-in objects.

We use the naming convention for setter and getter methods of the JavaBeans API
[JavaBeans96] to access the underlying Java member variables. The JavaBeans compliance
enables the use of all advanced JavaBeans features, such as property editing.

8.5.3 Dirty-Tag Propagation

In order to accelerate expression evaluation the computed value will be cached. As long as
the dirty tag is not set in an expression, it will deliver the cached value on request. But how
can an expression get dirty?

Expressions are organized as trees of value, variable, operator and function nodes. If the
value of a variable node changes, e.g. in cases were a user changes a property of an object,
all nodes ‘above’ the respective node become invalid. In other words, every node undergo-
ing a property change has to propagate the change to his parent as well as, possibly, to all
variable nodes it is referenced by. This is done by setting the dirty flag on such nodes.
These nodes will, in turn, inform their parent nodes, and so forth. Figure 8.6 illustrates
how dirty propagation works. By changing the value of the reference of variable node, the
dirty flag propagates via function node up to the root.

8.5.4 Constant Folding

An expression may contain several constant values. Every value is included in the expres-
sion tree as a value node. After resolving the references, constant subtrees may be reduced
to a single node, provided that no other nodes reference the respective subtree. This is
done as follows: First, the node is checked for constancy. If it is constant, it is then trans-
formed into a value node, unless it already was a value node to begin with. For a node to
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decided whether or not it is constant, it may have to check its child nodes. However, it can
be said that value nodes are always constant, while variable nodes never are.

Figure 8.7b depicts the expression tree from Figure 8.7a after constant folding. The
function node is not constant, because its right child node is a variable node. As a conse-
quence, the operator node, cannot be constant either.

8.6 EXAMPLE

The following example illustrates the usage of IVML. We define a simple, static graph
consisting of 6 data objects and 12 interconnections. The associated connectivity matrix
is given by:

The IVML code fragment depicted below contains the full definition of the graph. We
start with a prototype definition of a generic data object from which all subsequent

Figure 8.6  Dirty-Tag propagation within an expression tree

Figure 8.7  Example of an expression tree reduced through constant folding
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instances are derived. The prototype contains a default initialization of information
assigned to all objects, such as color or scale factors. Note that the geometry of the proto-
type object is hardwired in the plug-in SimpleData, which itself is derived from the Base-
Data class (see also Appendix A.5). Next, two individual objects (ellipses in Figure 8.8) are
instantiated overwriting some of the default parameters of the prototype. In particular, we
overwrite the object appearance by an VRML 2.0 expression, which can be either inlined
or given by a URL. Likewise, we generate the four spherical objects. The subsequent pro-
totype definition of connection objects is used by the following expressions, which
describe the links between all objects. It can be seen, that the wildcard expressions in
IVML, such as "R*" tremendously simplify the definition of the graph topology of our
example.

Corresponding IVML-Script:

#IVML V1.0
# Example: Simple Objects

# First set some global parameters
IvorySystem {

info IVInfo {
title "Simple Objects"
info  ["Ivory V2.0 Example"]

}
}

# Define a prototype for our 
# data objects
PROTO data {

Table 8.2  Connectivity matrix of the example shown below

T1 T2 R1 R2 R3 R4

T1 1 1 1 1

T2 1 1 1 1

R1 1 1 1 1

R2 1 1 1 1

R3 1 1 1 1

R4 1 1 1 1

Figure 8.8  Layout computed from IVML script presented below
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SimpleData {
label "Simple Object "+me.name
spaceFactor 5.0
visual IVVisual {

color <1,0.5,0.5>
}

}
}

# Define the 2 Top-Objects special
DEF T1 data {

visual IVVisual {
color <1,1,0.5>

}
appearance INLINE “ellipse.wrl”

}
DEF T2 data {

visual IVVisual {
color <1,1,0.5>

}
appearance INLINE “ellipse.wrl”

}

# Define the ring objects
DEF R1 data {}
DEF R2 data {}
DEF R3 data {}
DEF R4 data {}

# Define a prototype for our 
# connection object
PROTO conn {

SimpleConn {
defaultLength 10.0

}
}

# make the connections
# connect first top with all
# objects in ring
NameConnector{

template conn {}
names ["T1","R*"]

}

# connect second top with all
# objects in ring
NameConnector{

template conn {}
names ["T2","R*"]

}

# connect the ring objects
conn {

label "R1_R2"
leftObj R1
rightObj R2

}
conn {
label "R2_R3"

leftObj R2
rightObj R3

} 
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conn {
label "R3_R4"
leftObj R3
rightObj R4

}
conn {

label "R4_R1"
leftObj R4
rightObj R1

}
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9RESULTS

9.1 USABILITY STUDY

9.1.1 Objectives and Limitations

The present chapter describes the results of usability tests with the data visualization tool-
kit (IVORY) conducted from January 31 to February 4, 2000, at the usability lab of the
software ergonomics department of UBS. The tests did not, as is generally the case, focus
on ergonomic aspects of the application, but rather on the general applicability of a new
visualization paradigm to document retrieval. Due to the limited test set size (6 test users),
only qualitative statements could be expected.

Figure 9.1   Floor plan of the UBS usability lab.
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Video cameras record
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9.1.2 The UBS Usability Lab

The usability lab at UBS Zürich-Altstetten provides the infrastructure for systematic and
effective usability testing. The lab consists of two rooms separated by a one-way mirror,
i.e. an observation room and a testing room (compare Figure 9.1). In the testing room, the
user is left to himself while working through the test tasks with the application. In the
observation room, his actions are monitored and journalized, and design ideas are dis-
cussed. Video facilities allow recording of monitor and user actions.

9.1.3 Scenario

The usability tests were conducted with a total of 6 test users (1 female, 5 male), all of them
working in the IT department of UBS. After a short introduction on how to use the tool,
each of the test users had to work through a total of 10 test tasks with the tool (see
Appendix C for a copy of the questionnaire). The tasks consisted of finding textual infor-
mation in the bank’s internal network (Intranet). The tool offers various visualization
techniques to support the search (HTML list, 2D visualization and 3D visualization). For
the first six tasks, the visualization technique to be used was stipulated in the question-
naire. For the remaining four tasks, the choice was left to the user. During the testing, the
users were left undisturbed to work through the tasks in the testing room, while usability
engineers monitored their actions via the one-way mirror from the observation room. All
user actions were logged and recorded on video.

9.1.4 Hypothesis

Our usability study aimed at putting to the test the following two hypotheses:

• 2D and 3D visualization are well suited to explorative searching process.

• For focused searching, the traditional HTML list presentation is preferred.

9.1.5 Observations and Results

All in all, the users appeared to have no problems using the tool. The results obtained in
the tests basically confirmed the above hypotheses.

The users opted for 3D or 2D visualization of their own accord whenever the task asked
for consulting an overview or making a comparison, for example for estimates on fre-

Figure 9.2  Video snapshots of a typical session: a) A test person currently work-
ing on an exercise, b) User and expert in the concluding personal interview

a) b)
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quency or for explorative searching in cases where the clues were few. Navigation in 3D
search space seemed to hardly pose a problem. Yet it has to be said that the tasks were
solved just as efficiently with 2D visualization, and the 2D navigation was described as
simpler. For the presentation of complex data, however, having a third dimension was rec-
ognized as an advantage.

Due to the simplifications introduced by the tool, users quickly learned how to apply
the 3D presentation techniques (relaxing, clustering). Clustering in particular was repeat-
edly described as helpful. Some users stated that they would prefer the tool to offer further
simplification by encapsulating the required steps in one function.

For focused searches, e.g. where the search criteria were clear, conventional list presen-
tation was generally preferred, yet some of the users successfully solved the tasks using 2D
or 3D presentations. List presentation was frequently described as impractical.

9.1.6 Conclusions

In the usability lab, the tool left a surprisingly good impression and caused hardly any
problems. In real-life environments, the visualization approach is expected to provide a
useful alternative to conventional methods. Particularly for the presentation of complex
data involving comparisons and estimates, 3D visualization is clearly advantageous.

Assessment given by the UBS Usability Lab: “In our opinion, the visualization
approach implemented in the tool provides an innovative, useful and functional alterna-
tive to conventional data presentation that is particularly useful for the presentation of
complex data.”

9.2 APPLICATIONS AND COVERAGE EXAMPLES

The following four application examples are intended to give an impression of the variety
and flexibility of the IVORY framework. Note however that the 2D pictures of this section
do not reveal the full 3D arrangement computed by our method.

Figure 9.3  Two typical IVORY scenes from this test showing clustered Intranet
documents arranged according to subject (see Appendix 11). a) Shows the result of
scenario 2, no visual clustering, 150 documents b) Presents a snapshot of scenario 10,
BLOB clustering, 100 documents (see Color Plate 5 on page 184).

a) b)
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9.2.1 Prediction of Long Term Interest Rates

In this example our approach is applied to the visualization and analysis of the correlation
of long term interest rates with other important economic parameters. 

First, our method is compared to a traditional way of analyzing multidimensional rela-
tionships of economic indicators. The goal was to evaluate the influence of the indicators
presented in the diagrams of Figure 9.4a on the long term interest rates of individual coun-
tries. Each of these indicators was computed relative to the USA as a reference. The most
common approach consists in producing bar charts, as depicted in Figure 9.4b, showing
the correlation with individual indicators for different countries. These charts form a basis
for further interpretation performed by the financial analyst. In order to map the problem
onto our visualization paradigm we start from a special instance of our model. By impos-
ing displacement constraints we first generate a subset of four objects which keep their
position during relaxation. In order to arrange these objects favorably for the resulting
visualization they are positioned each at the corners of a imaginary tetrahedron. Our indi-
cators are mapped on these object types. All the other objects represent the countries and
are connected via links to all rigid objects from above. The spring stiffness of a link corre-
sponds to the correlation of the associated indicator to the long term interest rates of this
country. Note that the movable objects are not interconnected.

Figure 9.4  Condensing multivariate relationships: a) Stack of conventional dia-
grams b) Correlation tables c) Physically-based visualization paradigm.

Figure 9.5  Two views showing the influence of individual economic indicators
onto the long term interest rates of different countries (Data source: courtesy of
UBS AG, Switzerland)

a) b) c)

a) b)
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Figure 9.5 displays two views of the relaxed model. The cubes at the vertices of the tet-
rahedral structure stand for the different indicators taken into account and the spheres rep-
resenting the countries are textured with their flags. Although the definition of individual
indicators is beyond the scope of this paper we observe that the interest rates of Canada
correlate tightly with the index DRX, whereas Switzerland relates more closely to GAP and
CPI. Conversely, Germany is located near the center of gravity of the plane spanned by
DRX, BIPC and GAP and is hence equally influenced by those measures.

The performance of the blobby clustering method (see Section 7.3.2 on page 106) is
illustrated in the series of Figure 9.6, where different snapshots are presented as obtained
from interactive settings of the isovalue. All blobs were equally weighted by the parameter
a of Equation 7.16. Cluster sets of a single object are colored in red, those of two or three
objects are in green whereas larger sets are rendered in blue. As expected, the system dis-
criminates elegantly Canada − since heavily influenced by DRX − from the rest of the ana-
lyzed countries. Conversely, countries equally influenced by all indicators, such as France
or Switzerland are grouped together in Figure 9.6b.

9.2.2 Shopping-Basket Analysis

The following example emerged as a feasibility study from a 3 month stay in 1999 at
Hewlett-Packard (HP) Research Laboratories, Palo Alto, USA. The main goal of this
knowledge transfer was to enable HP’s visual mining platform VisMine [HP©] to use the
IVORY technology. The main area of application consisted in the visual analysis of large
e-commerce log files. With the kind consent of HP some of the results can be presented
as a part of this work. Additional information has been published in [HDH+00,
HDH+01, HHD+01].

Figure 9.6  Clustering the results of Figure 9.5: a) a = 6.0 and ciso = 0.1, b) a = 1.0 and
ciso = 0.9, c) a = 0.55 and ciso = 1.1.

a)

b)

c)
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Market basket analysis has become a key success factor in e-commerce. However, it is
a challenge to mine customer's purchasing behavior from the millions of Internet transac-
tions we typically find in a productive e-commerce systems. Such transactions are often
composed of several products (items) that are purchased together in the same shopping
basket. Understanding relationships across hundreds of product lines and among millions
of transactions provides insight and predictability into product affinity and purchasing
behavior.

The basic idea is to define a metric measuring the closeness of relationships between
items that co-occur in transactions. As a result, the system visualizes frequent item sets by
means of object clusters in 3D space. The chosen technique provides a fast and intuitive
way for e-commerce managers to navigate through large-volume purchasing data in order
to easily find product affinities by locating corresponding clusters in the visualization. 

At HP Laboratories, the system has been used to visually mine over a dataset containing
500,000 transactions covering 600 different products for market basket analysis. The
image below shows a view on spatially clustered product objects − computed by the
VisMine system − that were frequently bought together.

The raw data for the analysis consists of a huge amount of session log data coming from
the HP's shopping village Internet store. It’s internal structure is made up of a simple list
of user transactions 

.

Each transaction  is composed of a set of products  that were bought in this transac-
tion

, where .

Each product  is defined by a set of attributes , such as type, product description,
color or prize

, where .

Figure 9.7  Snapshot of a VisMine scene showing a set of clustered product ob-
jects. Additionally, detailed info is shown in an extra for a product of special in-
terest. [HP©].
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The main idea is to represent the products in question as simple spherical objects in
space. Furthermore, the connection between two objects is parametrized by the frequency
of occurrence of the associated products in the same transaction. For the reason of a more
efficient access during the following computations, we reorganize the data as follows. Basi-
cally, we merge the information distributed over  and  into an extended product .
This extended product contains all attributes  as well as a complete list  of all trans-
actions in which the product  occurs:

, with 

We thus define the problem-specific similarity as

After the layout process has converged we discover several object clusters in space. One
of them has been captured in Figure 9.8. The color of the spheres codes the product fre-
quency. Red indicates that a product has been bought often, whereas yellow means that
the corresponding product has been bought rather rarely.

We may easily locate a cluster of products, which have been frequently bought in the
same shopping basket. The zoomed view shows more detail. As it is marked by the dashed

triangle one may recognize a group of five spatially close product objects. Three of them
(P95, P137 and P147) are part of a regular triangular relation structure, each having a high
similarity with both others. The two additional product objects (P17, P108) are mainly
associated with a single product. These observations are confirmed also by the values of
the similarity matrix. We conclude that products of the PhotoSmart family are often

Figure 9.8  Different views on the results of the shopping basket analysis
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bought together. In particular, the products P95 HP PhotoSmart Photo Cartridge,
P137 HP PhotoSmart A6 (4” x 6”) Glossy Paper and P147 HP PhotoSmart Photo Postcard
Paper can be found very frequently in the same basket.

9.2.3 Document Retrieval Visualization

This example is derived from a real world document retrieval research project. We applied
our new technique to a hit list (result list) originating from an intranet document query.
The actual case consists of 100 single document objects. To each of them a feature vector
is attached, keeping all keywords (search words) with their corresponding frequency. All
these vectors define a keyword space, where feature vectors exhibit a similar distribution
of key words point in the same direction. With the aim of grouping documents treating
similar topics close together, similarity has been defined by using the angle measurement
from Section 3.4.3 on page 26.

For the visual clustering stage we applied the H-BLOB technique with a defined max-
imum of 20 clusters. We then repeatedly merged 50% of the clusters, yielding 6 hierarchy
levels with 20, 10, 5, 3, 2 and 1 clusters, respectively. In Figure 9.9 we show 4 selected
images from this session.

Figure 9.9  Document Retrieval Visualization using H-BLOB clustering. Cluster hi-
erarchies are shown with 20, 10, 5 and 1 cluster (see Color Plate 6 on page 185).

5 clusters1 cluster

10 clusters 20 clusters
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9.2.4 Image Retrieval Example

This problem stems from the area of analysis and retrieval of images based on their content
in very-large databases. The retrieval process requires a fast but also efficient feature extrac-
tion mechanism as well as a powerful interaction paradigm allowing the user to navigate
through the image space. Here, our concern is obviously with the latter part.

Our example originates from the research project Chariot [WPL01] done by Roger
Weber. Currently, he is a member of the database system research group [DBS01] of Prof.
H.-J. Schek at ETH. This example has been chosen not only to demonstrate new visual-
ization approaches but also to illustrate complementary techniques of analytical and visual
retrieval procedures in the field of high-dimensional and complex data spaces. 

In order to characterize color images, we apply a technique that extracts, according to
[SO95], a 9-dimensional feature vector. The different feature values arise as follows: First,
each pixel is transformed from the RGB into the Lab-space [FVF+90]. There, the first two
momenta of the color channels are computed. The following list assigns the values to a
position within the feature vector:

Note that all values are normalized by the standard distribution of the respective com-
ponent over all pictures. Each image is identified by an unambiguous object ID (OID) and
its URL to the location where the actual image data is retrieved. 

Table 9.1  Assignment of feature vector values

Pos Value Description

1 mean(L) mean value (average)

2 mean(a)

3 mean(b)

4 var(L) variance

5 var(a)

6 var(b)

7 cov(L,a) co-variance

8 cov(a,b)

9 cov(b,L)

Figure 9.10  Two different images with their corresponding feature vectors

OID = 12915OID = 10184
URL = ../images/8118.jpgURL = ../images/3824.jpg

3.2521
0.0709
0.8180
0.2178
0.0720
0.1915
0.2115
0.1572
0.2624

3.9012
-0.4079
0.6251
0.4103
0.0209
0.1095
0.0439
0.0433
0.0978
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In order to measure the similarity between two images we apply the distance measure-
ment formula for n-dimensional vectors (see Section 3.4.3 on page 26) to the two associ-
ated feature vectors. The pictures below illustrate the nice results we got from the IVORY
system.

As one may recognize easily for this example the applied methods work as expected.
Pictures showing the same visual characteristics are layouted in close distance to each

Figure 9.11  Screen shots from the image retrieval example: a, b) Initial arrange-
ment on a virtual spherical surface c-f) Different views of resulting object layout
automatically arranged by the IVORY framework (see Color Plate 7 on page 186).

c) d)

a) b)

e) f)
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other. This results in very nice and compact clusters that are especially well recognizable
in Figure 9.11e and Figure 9.11f.

In Figure 9.11d the visualization is enriched with semi-transparent BLOB-clusters in
order to visually support the object clusters. In addition, Figure 9.11d-f show an image
inspector that was poped up as a result of a drill-down interaction.
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10CONCLUSIONS AND OUTLOOK

We presented a new variant for physics-based information visualization and illustrated its
versatility. The fundamental idea bases on a quantification of the similarity of related
objects, which governs the parameters of a mass-spring model. Relaxation of the model
figures out the structural relations in information space. 

In contrast to many other information visualization systems, our approach is supported
by a solid framework of established theories. Thus, the amount of heuristics has been
reduced to a minimum, which makes parametrization of such complex systems principally
predictable.

Additionally, we presented a new approach towards a portable, object-oriented frame-
work especially designed for physics-based information visualization. The system is open
and expandable by adding new plug-ins. With the multi-layered abstraction model for
users we provide adequate interfaces to configure our system at different abstraction levels.
This covers a fast visualization prototyping using predefined plug-ins, but also a very flex-
ible low-level system access.

We also introduced a new script language named Information Visualization Modeling
Language (IVML), which is distinctively proposed to describe information visualization
problems. As an interpreted high-level language it enables users to efficiently describe indi-
vidual visualization problems and to build fast prototypes. The language is open, object-
oriented and features scene graphs.

Another contribution of this work is a set of new visual clustering algorithms - called
Ellipsoidal, BLOB, and H-BLOB clustering - which provides an efficient level-of-detail
strategy and are consequently capable to cluster and visualize very large and complex data
volumes. The key concept is an efficient multi-resolution setup, breaking down the struc-
tural and visual complexity of scenes. 

We have shown the framework’s versatility by experimental results, demonstrating its
capability to visualize large and complex volumes of different types of abstract data. Fur-
thermore, a usability test including daily-business cases in the areas of our cooperation
partner has validated IVORY’s performance in practice.
151
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Future work has to encompass the development of hierarchically organized layout sub-
systems, which make use of the object clustering analysis embedded into the system. We
expect a tremendous speedup for the layout. 

Additionally, more effort has to be spent on the aspects of self-parametrization of algo-
rithms. Up to now, for each new application domain quite an number of parameters have
to be set manually by an expert. By finding rules that are able to determine suitable sets of
initial parameter, the framework would take the next step in the direction of a user-
friendly tool.

With the tremendous speed of technical progress in the area of graphics hardware, new
possibilities of visualizing data using more meaningful representations becomes possible,
even on standard desktop computers or notebooks. Thus, further efforts have to consider
more advanced data representation techniques that achieve superior visual quality.

We are convinced that the physically-based approach fits also nicely advanced I/O con-
cepts with force and tactile feedback. Only, for the benefit of other research topics little
effort has been spent on this aspects. However, any work in this area will emphasize a nat-
ural human-computer interface and mediates an additional sensoric cue to the user.
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APACKAGE LAYOUT

This chapter shows an overview of important IVORY classes. The arrangement is orga-
nized according to IVORY’s package structure.
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A.1 IVORY.BACKEND

Figure A.1  Layout of package ivory.backend
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A.2 IVORY.BACKEND.CLUSTER

Figure A.2  Layout of package ivory.backend.cluster
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A.3 IVORY.BACKEND.LAYOUTSYSTEM

Figure A.3  Layout of package ivory.backend.layoutsystem

Params

ivory.ivml.system

IvoryFieldContainer

ivory.backend

ivory.shared.gui

Updatable

abstract ClassClass Interface extends
implements

GEMConnection

RKConnection

GEMParticleIterator

LinearParticleIterator

GEMRelaxer

Particle

RKRelaxer

RandPermutation

Status

GEMParticle

RKParticle

Connection

BaseLayout

RKParticleDialog

LFParticleDialog

ParticleSystem

GEMParticleSystem

RKParticleSystem

GEMPhysical

RKPhysical

Status

Status

ivory.backend.layoutsystem

LFParticleSystem

GEMParticleDialog

LFPhysical



157
A.4 IVORY.IVML.SYSTEM

Figure A.4  Layout of packages ivory.ivml.system

abstract ClassClass Interface extends
implements

ConnectionReference

ConnectorException

Connector

NameConnector

TypeConnector

IVGravity

IVInfo

IVVisual

IvoryConst

IvorySystem

IvoryEnvironment

ivory.ivml.system

IvoryFieldContainer



158 Package Layout
A.5 IVORY.PLUGIN

Figure A.5  Layout of package ivory.plugin
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A.6 IVORY.IVML

Figure A.6  Layout of package ivory.ivml
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B

BTHE GRAMMAR OF IVML

This chapter presents a grammar for the Information Visualization Modeling Language
(IVML). The grammar presented gradually in Chapter 8 was suitable for the purpose of
explanation. However, the grammar presented in this chapter uses a formal EBNF nota-
tion and can thus serve to implement an IVML parser.

General remarks on the notation of the EBNF and script language.

• Variables are written in italic.

• Terminal symbols are written in bold.

• Alternations are indicated with “|”.

• Repetitions (zero or more occurrences) are enclosed by “{“ and “}”.

• Options (zero or one occurrences) are enclosed by “[“ and “]”.

• “<“ and “>” stand for: any character from.

• The ‘#’ (0x23) character starts a comment, provided that it occurs outside of a quoted
string. The subsequent characters up to the end of the line are treated as whitespaces.

• Whitespaces are: CR (0x0d), LF (0x0a), space (0x20) and tab (0x09) provided that
they occur outside of a quoted string.

• In the subsequent EBNF all information about whitespaces are left out in order to
increase the legibility. It should be clear by intuition, where whitespaces must happen
and where not. For example, it is obvious that between the individual digits of an inte-
gerValues no whitespaces must happen. On the other hand, between a keyword and
one identifier a whitespaces are allowed.
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B.1 BASICS

alphaChar := <abcdefghijklmnopqrstuvwxyz> 
| <ABCDEFGHIJKLMNOPQRSTUVWXYZ>. 

digit := <0123456789>.

hexDigit := <0123456789abcdefABCDEF>.

alphanumChar := alphaChar | digit.

escapedChar := “!” | < 0x24 - 0x7f > | “\n” | “\t” | “\”” | “\r” | “ “ | “\\”.

identifier := ( alphaChar | “_” ) { alphanumChar | “_” }.

qualident := ( ( “me.” ( identifier | “parent” ) ) | identifier )
{ “.” ( identifier | “parent” ) } [ “[“ expression “]” ].

wsChar := ‘0x09’ | ‘0x0a’ | ‘0x0d’ | ‘0x20’ | ( ‘#’ { anyChar } ‘0x0a’ ). 

ws := wsChar { wsChar }.

B.2 VALUES

integerVal := ( digit { digit } ) 
| ( “0x” | “0X” ) hexDigit { hexDigit }.

floatVal := digit “.” { digit }.

stringVal := “““ { escapedChar } “““ .

vec2fVal := “<“ sum “,” sum “>”.

vec3fVal := “<“ sum “,” sum “,” sum “>”. 

rotationVal := “<“ sum “,” sum “,” sum “,” sum “>”.

timeVal := integerVal timeDim
| dateVal
| “IV_TIME_FIRST” | “IV_TIME_LAST”
| “IV_TIME_NULL”. 

timeDim := “ns” | “us” | “ms” | “s” | “m” | “h” | “d” | “mon” | “y” | “f”. 

dateVal := dayVal “.” monthVal “.” yearVal 
[ “:” hourVal [ “:” minuteVal [ “:” secondVal ]]].

dayVal := digit [ digit ]. 

monthVal := ( digit [ digit ] )
| “Jan” | “Feb” | “Mar” | “Apr” | “Mai” | “Jun”
| “Jul” | “Aug” | “Sep” | “Oct” | “Nov” | “Dec”. 

yearVal := digit digit [ digit digit ]. 

hourVal := digit digit. 

minuteVal := digit digit. 

secondVal := digit digit. 
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boolVal := “TRUE” | “FALSE”.

nodeVal := “““ ( VRMLSceneGraph | fileName ) “““. 

VRMLSceneGraph := see syntax of vrml

fileName := “file:” pathName | url. 

routeVal := “““ identifier “.” identifier “TO” identifier “.” identifier “““.

B.3 EXPRESSIONS

expression := sum [ compOp sum ]. 

compOp := “=” | “<=” | “>=” | “<“ | “>” | “!=”. 

sum := product { sumOp product }.

sumOp := “+” | “-”.

product := term { prodOp term }. 

prodOp := “*” | “/”. 

term := [ “-” ]
( constant
| function
| variable
| “(“ expression “)” ). 

constant := rotationVal | vec3fVal | vec2fVal | timeVal | floatVal | integerVal
| boolVal | stringVal | nodeVal. 

function := identifier “(“ [ expression { “,” expression } ] “)”.

variable := qualident. 

B.4 DECLARATION

definition := namedClassDescr | classDescr. 

namedClassDescr := “DEF” identifier classDescr.

classDescr := classIdent “{“ { fieldDef } “}”. 

classIdent := identifier.

fieldDef := svFieldDef
| mvFieldDef
| subFieldDef. 

svFieldDef := identifier expression.

mvFieldDef := identifier “[“ [ expression { ( “,” | “;” ) expression } ] “]”. 

subFieldDef := identifier classDescr. 
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protoDecl := “PROTO” identifier “{“ { classDescr } “}”.

B.5 SCRIPT

ivoryScript := ivmlHeader
constSection
systemSection | inline
vrmlSection | inline
protoSection 
defSection
connSection
dsrcSection.

ivmlHeader := “#IVML 1.0 \n” 

constSection := { constDef | inline }. 

inline := “INLINE” “““ fileName “““. 

constDef := “DEF” identifier “IvoryConst” “{“ { svFieldDef } “}”.

systemSection := [ “DEF” “system” ] “IvorySystem” “{“ { fieldDef } “}”. 

vrmlSection := [ “DEF” “env” ] “IvoryEnvironment” “{“ { fieldDef } “}”. 

protoSection := { protoDecl | inline }.

defSection := { definition | inline }. 

connSection := { connDef | inline }.

connDef := ( “NameConnector” | “TypeConnector” ) “{“ { fieldDef } “}”. 

dsrcSection := { definition | inline }.



C

CUSABILITY TEST SCENARIO

This chapter hold a copy of the questionary, that was used for the usability test running
from January 31 to February 4, 2000, at the usability lab of the software ergonomics
department of UBS. Full particulars concerning the test can be gleaned in Section 9.1 on
page 139.

(IN GERMAN)
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166 Usability Test Scenario
Physikalisch-basierte Informationsvisualisierung Thomas Sprenger

IVORY - Anwenderstudie

31.1.2000 – 4.2.2000

Usability Lab UBS, Zürich

1  Einführung

Im Kontext dieses Projekts entsteht ein plattform-unabhängiges Framework (IVORY) zur physikalisch-
basierten Visualisierung multidimensionaler Datenrelationen. Die Implementation ist vollständig in
Java 1.2 realisiert. Das Softwaredesign orientiert sich an der Theorie der Operatorklassifikation und der
Operator-Frameworks. Individuelle, visuelle Metaphern und Interaktionsparadigmen (Information
Drill-down) werden modular durch einen sogenannten Plugin-Mechanismus auf den entsprechenden
Operatorlevels ins System eingebunden. Die Konfiguration von IVORY erfolgt über eine
Skriptsprache, genannt IVML (Information Visualization Modeling Language).

Die Funktionsweise des Systems basiert auf der Quantifizierung der Ähnlichkeit von in Beziehung
stehender Objekte, die wiederum die Parameter eines Masse-Feder-Systems konfigurieren. Weil die
Federhärte und die berechneten Ähnlichkeitswerte korrespondieren, konvergiert das System in ein
energetisches Minimum, das die inhärent in den Daten enthaltenen Beziehungen und Zusammenhänge
als räumliche Nachbarschaften widerspiegelt. Die so berechneten Objektkonfigurationen werden in
einer dreidimensionalen Ansicht dem Benutzer präsentiert. Das Framework erlaubt damit eine
effiziente (visuell-) explorative Analyse grosser Datenvolumen. Über die definierten Paradigmen kann
dabei mit den Daten direkt interagiert werden. Zusätzlich erlaubt das Framework komplexe Szenarien
mittels verschiedener Verfahren (Ellipsoid, Blob, H-Blob, etc.) visuell und analytisch zu clustern.

Das Projekt wird in Kooperation mit dem Advanced Engineering Center (ACE) der UBS Basel
durchgeführt. Aus diesem Grund liegt das Hauptanwendungsgebiet für das System im Bereich der
Finanzdienstleistungen zu denen unter anderem auch das Documentretrieval im Intranet gehört.

Diesen Anwendungsbereich fokusiert auch die vorliegende Anwenderstudie. Am Beispiel des
Dokumentretrievals soll eine Verifikation des Frameworks erfolgen. Es wird dabei vorausgesetzt, dass
die berechneten Objektkonfigurationen der Visualisierung, die in den Daten enthaltenen Relationen in
genügend guter Qualität reflektieren. D.h. die Studie konzentriert sich auf die Analyse und Beurteilung
des für viele Benutzer neuen Mensch-Maschinen-Interfaces. 

Der grobe Aufbau der Studie besteht aus drei Teilen. In einem ersten Beispiel sollen Sie das Framework
und dessen Komponenten ein wenig kennenlernen. Insbesondere können Sie sich mit der Navigation in
der dreidimensionalen Szene ein wenig vertraut machen. Im zweiten Teil werden Ihnen verschiedene
Szenarien präsentiert, welche Sie mit einer der vorgegebenen Visualisierungstechniken bearbeiten
sollen. Zum Schluss können Sie die im dritten Teil der Studie gestellten Aufgaben mit einer von Ihnen
frei gewählten Visualisierung lösen.

Swiss Federal Institute of Technology Zurich
Politecnico federale di Zurigo
Ecole polytechnique federale de Zurich´ ´

Zurich¨
Technische Hochschule
Eidgenossische¨
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Einführungsbeispiel

Im IVORY Framework wir zur Visualisierung der Ergebnisse eine 3D-Darstellung verwendet. Diese
erlaubt es dem Benutzer, sich frei durch den Ergebnisraum zu bewegen. Es sind dabei Bewegungen in
allen 6 Freiheitsgraden möglich (Verschiebungen und Rotationen). Weil die Navigation in solchen
virtuellen Räumen für viele Benutzer neu und dementsprechend ungewohnt ist, startet diese Studie mit
einem kleinen Einführungsbeispiel. Dabei können Sie sich gleichzeitig mit der Navigation (Maus und
Tastatur), wie auch mit den verschiedenen Tastenbelegungen von IVORY vertraut machen.

Öffnen Sie die Datei “Einführungsbeispiel.ivml” und warten Sie bis alle Objekte geladen sind. Ihre
Aufgabe ist es nun die Datenobjekte in einer vorgegeben Reihenfolge zu besuchen. Hinter jedem
Objekt versteckt sich als Information ein Wort. Werden die einzelnen Worte in der richtigen
Reihenfolge aneinander gehängt, so ergibt sich die gesuchte Lösung. Gestartet wird mit der gelben
Kugel in der Mitte. Die weitere Folge der Besuche verläuft von dort immer entlang der grünen
Verbindungen. Viel Spass!

Antwort/Bemerkungen:

.....................................................................................................................................................................

.....................................................................................................................................................................

.....................................................................................................................................................................

2  Aufgaben

Situation: Sie bekommen von einem Kunden eine Anfrage. Er hätte von Ihnen gerne den
aktuellen Zins auf dem UBS Privatkonto gewusst.

Queryvorschlag: +Zins +Privatkonto

Visualisierungsart: HTML Liste

Antwort/Bemerkungen:

.....................................................................................................................................................................

1.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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Situation: In Ihrer Abteilung wird ein neues Projekt mit Java gestartet. Weil die Kompetenz
auf diesem Gebiet in Ihrer Umgebung noch nicht so gross ist, fragen Sie sich,
welche anderen Abteilungen in der UBS sich mit Java beschäftigen. Wenn es
eine ausgezeichnete Abteilung gibt,  machen Sie mit einem der Verantwortlichen
gleich einen Termin ab.

Queryvorschlag: Java

Visualisierungsart: 2D

Antwort/Bemerkungen:

....................................................................................................................................................................

Situation: Für eine Präsentation sollen Sie eine Zusammenstellung der Abteilungen
machen, die in der UBS Forschung betreiben. Insbesondere interessiert dabei der
Anteil des Bereichs Economical Research?

Queryvorschlag: Forschung Research

Visualisierungsart: 3D

Antwort/Bemerkungen:

....................................................................................................................................................................

2.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7

3.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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Situation: Ein neu zu erstellender Bericht soll über die Verbreitung, der in der UBS
eingesetzten Programmiersprachen informieren. Schätzen Sie ab über welche
Programmiersprachen in der UBS am meisten publiziert wird?

Queryvorschlag: java c cpp C%2B%2B smalltalk pascal basic cobol

Visualisierungsart: HTML Liste

Antwort/Bemerkungen:

.....................................................................................................................................................................

Situation: Sie sollen einen offiziellen UBS-Fax mit aktuellen Informationen an einen
Kunden senden. Deshalb suchen Sie auf dem Intranet nach einem Fax-Template
für Word. Zur weiteren Bearbeitung laden Sie dieses auf die lokale Festplatte.

Queryvorschlag: download UBS fax template word

Visualisierungsart: 2D

Antwort/Bemerkungen:

.....................................................................................................................................................................

4.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7

5.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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Situation: Sie starten in Java ein neues Projekt. Gerne profitieren Sie von den Erfahrungen
anderer Entwickler. Dies ist umso effizienter, wenn gleiche Tools eingesetzt
werden. Welches ist in der IT Schweiz die Standardentwicklungsumgebung für
Java?

Queryvorschlag: IDE +Java Standard Entwicklungsumgebung

Visualisierungsart: 3D Szene

Antwort/Bemerkungen:

....................................................................................................................................................................

Situation: Welche Application Server werden im Projekt WAP (WASP) als Standard
empfohlen?

Queryvorschlag: application server standard wasp

Visualisierungsart: Nach freier Wahl des Benutzers

Antwort/Bemerkungen:

....................................................................................................................................................................

6.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7

7.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Welche Visualisierungsart haben Sie für diese Aufgabe gewählt?
�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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Situation: Ein Kollege, welcher erst seit kurzem in der UBS arbeitet, fragt Sie nach einer
Abteilung in der UBS, welche Fonts und Templates anbietet?

Queryvorschlag: Vorlagen Templates Schriften Fonts Logo

Visualisierungsart: Nach freier Wahl des Benutzers

Antwort/Bemerkungen:

.....................................................................................................................................................................

Situation: Für einen Bekannten, der sich sehr für den Bereich Java-Programmierung
interessiert, suchen Sie ein internes Stellenangebot für einen Java-Entwickler.
Wer bietet in diesem Bereich offene Stellen an?

Queryvorschlag: job offer +java Entwickler Developer

Visualisierungsart: Nach freier Wahl des Benutzers

Antwort/Bemerkungen:

.....................................................................................................................................................................

8.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Welche Visualisierungsart haben Sie für diese Aufgabe gewählt?
�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7

9.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Welche Visualisierungsart haben Sie für diese Aufgabe gewählt?
�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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Situation: Die UBS bietet ein breites Spektrum an sportlichen Aktivitätsmöglichkeiten.
Welche Sportart ist die häufigste in der UBS?

Queryvorschlag: Fussball Schiessen Squash Tennis Laufen Fahrrad

Visualisierungsart: Nach freier Wahl des Benutzers

Antwort/Bemerkungen:

....................................................................................................................................................................

Besten Dank für Ihre Mitarbeit.

10.  Szenario

Was ist Ihr subjektiver Eindruck betreffend der benötigten Zeit zum
Lösen der Aufgabe? (1 = sehr kurz, 7 = sehr lange)

�������
1 2 3 4 5 6 7

Welche Visualisierungsart haben Sie für diese Aufgabe gewählt?
�������
1 2 3 4 5 6 7

Wie gut wurden Sie durch die verwendete Visualisierungsart in Ihrer
Aufgabe unterstützt (1 = sehr schlecht, 7 = sehr gut)

�������
1 2 3 4 5 6 7

Sind Sie mit dem gefundenen Ergebnis zufrieden? (1 = überhaupt nicht,
7 = ausserordentlich)

�������
1 2 3 4 5 6 7

Wie schätzen Sie die Vollständigkeit Ihrer Lösung ein? (1 = mangelhaft,
7 = komplett)

�������
1 2 3 4 5 6 7
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ECOLOR PLATES
  

Color Plate 1  a) Illustration of implicit surfaces obtained from two field functions as their cen-
troids are approaching. b) Modification of the shape by setting  for the upper
field function (see Figure 7.8 on page 106).

Color Plate 2  Clustering of a subset of objects scattered in 3D space: a) initial
configuration, b) clustering isosurface as a transparent hull wrapped around the desired ob-
jects (see Figure 7.10 on page 107).

Color Plate 3  a) Undesired intersection of object and hull. b) repulse of the clustering surface
from the object by assigning a negative value for  (see Figure 7.11 on page 108).

a) b)
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184 Color Plates
 

Color Plate 4  Different techniques to visualize clusters of data objects. a) cluster represented
by a cluttered group of single objects b) visualization with ellipsoidal surfaces wrapped around
clusters c) objects visually combined by a BLOB surface (see Figure 7.6 on page 101).

Color Plate 5  Two typical IVORY scenes from this test showing clustered Intranet documents
arranged according to subject (see Appendix 11). a) Shows the result of scenario 2, no visual
clustering, 150 documents b) Presents a snapshot of scenario 10, BLOB clustering, 100 docu-
ments (see Figure 9.3 on page 141).

c)

b)a)

a) b)
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Color Plate 6  Document Retrieval Visualization using H-BLOB clustering. Cluster hierarchies
are shown with 20, 10, 5 and 1 cluster (see Figure 9.9 on page 146).

5 clusters

1 cluster

10 clusters

20 clusters



186 Color Plates
Color Plate 7  Screen shots from the image retrieval example: a, b) Initial arrangement on a
virtual spherical surface c-f) Different views of resulting object layout automatically arranged
by the IVORY framework (see Figure 9.11 on page 148).
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