

Reflection seismic 1 script

Educational Material

Author(s):

Kruk, Jan van der

Publication date:

2001

Permanent link:

https://doi.org/10.3929/ethz-a-004363847

Rights / license:

In Copyright - Non-Commercial Use Permitted

Seismische Mess-Systeme

Land Marine

Seismic System

Seismic sources

Important properties:

- Energy
- Waveform
- Repeatability
- Cost and use in the field

Seismic/Acoustic spectrum

Seismic sources

Impulsive source/Non impulsive source

Explosive source/Non explosive source

Advantages/disadvantages

Dynamite (explosive impulsive source):

- 40% of the seismic measurements
- Not really repeatable
- Exact time of detonation is difficult to obtain
- Detonators are sometimes used for shallow applications
- High energy
- For each application the amount of dynamite can be adjusted

Hammer

Shear wave hammer

Vibroseis truck

Reynolds, 1997

Earliest known seismoscope

Principle of a geophone

Characteristic of a geophone

Damping factor h

Array of geophones

Apparent velocity:

$$v_{app} = \frac{v}{\sin \alpha}$$

Apparent wavelength:

$$\lambda_{app} = \frac{V_{app}}{f}$$

Response function:

$$R = \frac{\sin(n\beta)}{\sin(\beta)}$$

where:

$$\beta = \frac{\pi \Delta x}{\lambda_{app}}$$

And n is the number of geophones in a group

 $\frac{\text{detector spacing } \Delta x}{\text{apparent wavelength } \lambda}$

Geophone array

Clustered geophones

Geophone arrays

Marine seismic data acquisition

PGS J.W. Schoolmeesters

Chirp

Boomer

Principle of an Airgun

(Bolt-Systems)

Inside of an airgun

Response from an airgun

Air gun array

One air gun

Array of air guns

Sonobuoy

Hydrophone

Principle of piezoelectric effect

Voltage proportional to the variation of the pressure

Marine streamer

PGS J.W. Schoolmeesters

Tail Buoy

Processing room

Multi-channel seismic recording system

sampling

Registration of the measured data at certain time intervals

Sampling interval Δt sampling rate $1/\Delta t$ Sampling will preserve all frequencies up to the Nyquist frequency: $f_N=1/(2 \Delta t)$

Aliasing

(b)

(Kearey and Brooks, 1991)

Nyquist Frequency:

$$f_{\text{Ny}} = \frac{1}{2} \cdot \frac{1}{\Delta t}$$

Typical sampling distances: 0.25,0.5 ms:

High resolution seismic

1 ms, 2 ms

Oil exploration

4 ms or larger

Crust seismic

Dynamic range

Range which can be measured using different number of bits:

8-bit: 1 mV - 256 mV

24-bit: 1 μV - 16 V

Dynamic range is expressed in dB,

$$20\log\left(\frac{A\max}{A\min}\right)$$

Examples:
$$20 \log \left(\frac{256 \text{mV}}{1 \text{mV}} \right) = 48 \text{dB}$$

$$20\log\left(\frac{16V}{1\mu V}\right) = 144dB$$

Saving requirements

Saving requirements depend on:

- Number of channels
- Number of values per channel (Sampling rate, Time window of sampling)
- Number of bytes per sampled value

Example

Channels: 96

Sampling rate: 2 ms Time window: 0.8 s

Format: 4 Bytes per value

 \Rightarrow (800 / 2) Values x 96 channels x 4 Bytes = 0.146 MBytes