

Reflection seismic 1 script

Educational Material

Author(s):

Kruk, Jan van der

Publication date:

2001

Permanent link:

https://doi.org/10.3929/ethz-a-004363847

Rights / license:

In Copyright - Non-Commercial Use Permitted

Amplitude Preservation

Important methods:

- Trace equalisation
- AGC Automatic gain control
- Correction for spherical Divergence
- Programmable Gain functions

Loss of amplitude due to

- Reflection and transmission at an interface
- Geometrical spreading
- Absorption
- Receiver response
- Measurement system

Problem for Data processing

- Individual large Amplitudes dominate the processing
- Reflections are difficult to recognize
- Strong amplitude contrasts influence the digital filtering (especially for large travel-times)

Common shot-gathers just after demultiplexing

Correction for spherical divergence

$$A(t) = \frac{1}{r} \implies G(t) = v \cdot t$$

Layered space:
$$A(t) = \frac{1}{\left[v_{rms}(t_{tw})\right]^2 t_{tw}} \Rightarrow G(t) = \left[v_{rms}(t_{tw}) / v(0)\right]^2 \left[t_{tw} / t_{tw}(0)\right]$$

Advantage:

Physical base for amplitude correction Relative Amplitude difference remains equal

Disadvantage:

Velocity function not known beforehand Noise sources can still remain dominant

Raw field records from land survey

Rapid decay in amplitudes at late times

Corrected field records from a land survey

Restored amplitudes at late times (unfortunately ambient noise also has been strengthened

Yilmaz, 1987

Common skaftenteraget balancing plexing Corrected for wavefront divergence

AGC - Automatic Gain Control

Normalization of amplitude for a certain time sample in a certain time window (not for the whole trace)

Advantage:

All traces are more equal which is needed for further processing (Stacking: summation of different traces)
Amplification of Amplitudes for larger travel times
Disadvantage:

No physical base for amplification Shadow effect Can lead to amplification of noise

Different AGC functions

Numbers on top indicate gain window sizes in milliseconds

Programmable Gain function

Compensation for losses and geometrical spreading:

$$A(t) = A_0 k t^n e^{at}$$

Advantage:

Partly based on physics

Known function: original data can be recovered

Disadvantage:

Results depend strongly on used gain function

programmed gain curve

Calculation of decay of amplitude and determine a Gain function

Four different PGC functions

Scale factors are indicated by the circled numbers at the times of application

Trace balancing

All traces are normalized using a certain amplitude:

RMS

Median value

Maximum Value

Advantage:

All traces are more equal which is needed for further processing (Stacking: summation of different traces)

Disadvantage:

No physical base for amplification No equalisation of losses with time Large value in a trace can dominate

Field record from marine survey

Yilmaz, 1987