

Reflection seismic 1 script

Educational Material

Author(s):

Kruk, Jan van der

Publication date:

2001

Permanent link:

https://doi.org/10.3929/ethz-a-004363847

Rights / license:

In Copyright - Non-Commercial Use Permitted

Filters

- Temporal Fourier $(t \Rightarrow f)$ transformation
- Spatial Fourier $(x \Rightarrow k_x)$ transformation applications
- \Rightarrow f-k_x transformation
- Radon $(\tau-p_x)$ transformation
 - Linear Radon transform
 - Parabolic Radon transform

Transformation domains

1-D-Transformation

t domain Time domain

Fourier transformation

f domain Frequency domain

2-D-Transformation

Temporal Fourier transformation

Fourier Transformation:

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-i2\pi ft}dt$$

Inverse Fourier Transformation:

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{i2\pi ft}df$$

Sampling will preserve all frequencies up to the Nyquist frequency:

$$f_N=1/(2 \Delta t)$$

- amplitude
- phase

Spatial Fourier transformation

Fourier Transformation:
$$G(k_x, f) = \int_{-\infty}^{\infty} g(x, f) e^{i2\pi k_x x} dx$$

Inverse Fourier Transformation:

$$g(x,f) = \int_{-\infty}^{\infty} G(k_x, f) e^{-i2\pi k_x x} dk$$

Spatial Fourier transformation is discussed for one horizontal (x) direction, but can be carried out in the two horizontal directions.

Temporal versus Spatial Fourier transformation

Temporal Fourier transformation

```
Sampling interval \Delta t sampling rate (sampling frequency) 1/\Delta t Sampling will preserve all frequencies up to the Nyquist frequency: f_N=1/(2 \ \Delta t)
```

Spatial Fourier transformation

```
Spatial sampling interval \Delta x
Spatial sampling rate (sampling frequency) 1/\Delta x
Sampling will preserve all frequencies up to the Nyquist frequency: k_N=1/(2 \Delta x)
```

Apparent velocity:

The phase velocity which a wavefront appears to have along a line

of geophones

$$\lambda_{\rm app} = \frac{v}{f}$$

$$V_{app} = \infty$$

$$\lambda_{\mathrm{app}} = \infty$$

Apparent velocity:

$$v_{app} = \frac{v}{\sin \alpha}$$

Apparent wavelength:

$$\lambda_{app} = \frac{V_{app}}{f}$$

Apparent wavenumber k_{app}

⇒Number of waves per unit distance perpendicular to a wavefront

Spatial sampling criterion

From a practical point of view, subsequent measurements must be carried out in such a way that events on separate traces can be correlated as coming from the same horizon or reflection point in the subsurface (Yilmaz, 1987)

For a given frequency component, the time delay between subsequent measurements can be at most half the period (T/2) of that frequency component to enable a correlation of two measured reflections as coming from the same horizon

Max time delay:
$$\Delta t = \frac{\Delta x}{v_{app}^{\text{min}}} < \frac{T^{\text{min}}}{2} = \frac{1}{2f^{\text{max}}}$$

Two spatial samples for one apparent wavelength

Spatial sampling criterion

f-k-Spectrum

Aliasing

Influence of frequency on aliasing

Influence of dip on aliasing

Summation of dipping events

Influence of spacing on aliasing

Yilmaz, 1987

Composite walk-away noise test

Rejection ground roll energy

CMP gathers from a shallow marine survey before and after F-k dip filtering to remove coherent noise with corresponding f-k spectra

Yilmaz, 1987

CMP gathers from a shallow marine survey

Synthetic CMP gathers containing multiples

primaries
$$+\frac{\text{Water-bottom}}{\text{multiples}} =$$

VM velocity multiples VP velocity primaries

NMO correction using primary velocity function

Zeroing in the f-k domain

Zero-ing in f-k domain

CMP gathers with strong multiples

VM1= slow (water-bottom) multiples VM2= fast (peg-leg) multiples NMO corrected data using primary velocities

Yilmaz, 1987

CMP stack using former gathers

Use of radon transformation

- Velocity filter
- Suppression of multiples
- Interpolation of traces
- Analysis of guided waves

Hyperbola maps onto an ellipse

τ -p transformation for various arrivals

P1 and P2 are primaries W is water bottom which results in multiples

Dipping event in different domains

Reducing source-generated noise in shallow seismic data using linear and hyperbolic τ–p transformations

Roman Spitzer, Frank Nitsche and Alan G. Green

2-D velocity model

48 receivers 5 m. interval

Source location: 5 m from first geophone 3m depth

Shot gather

- (a) Raw shot gather
- (b) Time and offset varying gain
- (c) Spectral balancing (80-250 Hz)

Linear τ-p transformation

Result of filtering

Difference Between (a) And (c)

Hyperbolic τ-p transformation

Hyperbolic τ-p transformation

Amplitude of each sample is squared

Inverse hyperbolic τ-p transformation

Shot gather along a high-resolution seismic line in northern Switzerland

- (a) Raw shot gather
- (b) Time and offset varying gain
- (c) Spectral balancing (80-250 Hz)

Linear τ-p transformation

Result of filtering

Difference Between (c) And (c)

Hyperbolic τ-p transformation

Hyperbolic τ-p transformation

Amplitude of each sample is squared

Inverse hyperbolic τ-p transformation

Stacked sections

Processing:

- CMP sorting
- NMO corrections

- •NMO stretch mute
- Stacking

Reflections were found to extend to shallower depths and more continuous