Development and applications of antibody-cytokine fusion proteins for targeted tumor therapy

Author(s): Halin, Cornelia

Publication Date: 2002

Permanent Link: https://doi.org/10.3929/ethz-a-004370501

Rights / License: In Copyright - Non-Commercial Use Permitted
Development and applications of antibody–cytokine fusion proteins for targeted tumor therapy

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
for the degree of
DOCTOR OF NATURAL SCIENCES

Presented by

Cornelia Halin
Dipl. Natw. ETH – ETH Zürich
Born October 4, 1974
from Germany

accepted on the recommendation of

Prof. Dr. Dario Neri, examiner
Prof. Dr. Heidi Wunderli-Allenspach, co-examiner

Zürich, Mai 2002
1. SUMMARY
Seite Leer / Blank leaf
Monoclonal antibodies specific for tumor associated antigens represent an attractive avenue for delivering bioactive agents to the tumor in a selective manner. In fact, several antibody-based biopharmaceuticals have recently been approved by the FDA, and many more are currently in clinical development. However, in spite of these promising developments, solid tumors have often proven to be relatively resistant to antibody-based therapies. This is due, in part, to the relative inaccessibility of tumor cells and to the poor penetration of antibodies into the tumor tissue. Since tumor cells are separated from the blood by endothelial cells and extracellular matrix (ECM) components surrounding the vasculature, tumor uptake is highly limited by the antibody’s ability to cross this layer.

Considering the limitations of antibody-based targeting of individual tumor cells, recent research has focused on the development of antibodies which selectively target the tumor neo-vasculature, while sparing mature blood vessels and healthy tissues. Vascular targeting approaches are interesting for a number of reasons:

1. Markers on the tumor neo-vasculature are readily accessible to intravenously administered antibody derivatives.
2. Markers of neo-vasculature are typically produced by endothelial cells and/or by fibroblasts. Such cells are genetically more stable than tumor cells.
3. There is a growing evidence that the selective damage of tumor neo-vasculature may lead to massive death of tumor cells, which rely on blood vessels for their supply of nutrients and oxygen to satisfy their metabolic needs. It is estimated that more than a hundred tumor cells rely on one endothelial cell for survival.
4. Therapeutic strategies directed against tumor neo-vasculature appear to reduce the tumor’s ability to develop metastases and may overcome multi-drug resistance.
Recently, we have described the tumor targeting properties of scFv(L19), a human monoclonal antibody fragment specific for the ED-B domain of fibronectin, a marker of angiogenesis. This antibody has been shown to selectively target the neo-vasculature in vivo in animal models and in patients.

Based on scFv(L19), the following two issues have been addressed in this thesis:

- Is it possible to employ scFv(L19) to selectively deliver bioactive molecules, such as cytokines, to the tumor neo-vasculature for enhancing their therapeutic activity?

- How can one further increase tumor uptake, and thus the efficacy of therapeutic and diagnostic applications, of scFv(L19)-based antibodies?

We could show that a fusion of interleukin-12 (IL-12) with scFv(L19) exhibits very potent anti-tumor effects in murine tumor models, strikingly superior to the action of the untargeted cytokine. Furthermore, combined administration of the IL-12 scFv(L19) fusion protein and of the same antibody fused to tumor necrosis factor alpha (TNFα) was significantly more potent, as compared to treatment with only one antibody cytokine fusion protein alone.

Whereas fusion of TNFα to scFv(L19) resulted in a significant enhancement of antibody uptake in the tumor, two other antibody fusion proteins comprising different isoforms of vascular endothelial growth factor (VEGF, also known as vascular permeability factor) were not capable of increasing tumor targeting. Similarly, conjugation of scFv(L19) to the cell permeating HIV-1 derived TAT peptide did not enhance tumor uptake.
1. ZUSAMMENFASSUNG
Seite Leer / Blank leaf
Monoklonale Antikörper mit Spezifitäten für Tumor assoziierte Antigene sind geeignete Vehikel, um selektiv bioaktive Substanzen im Tumorgewebe zu akkumulieren. In den letzten Jahren wurden mehrere Antikörper von der amerikanischen Kontrollbehörde FDA (Food and Drug Administration) für die Tumortherapie zugelassen, und viele weitere werden zur Zeit klinisch evaluierter. Trotz dieser vielversprechenden Entwicklung hat sich gezeigt, dass feste Tumore oft nur schlecht auf diese Therapieform ansprechen.

Eine Erklärung für die ausbleibende Wirkung ist die oftmals nur minime Anreicherung der hochmolekularen Antikörper im Tumorgewebe: Die Antikörper sind kaum in der Lage, aus den Blutgefäßen, vorbei an den Endothelzellen, durch die extrazelluläre Matrix zu gelangen und in das Tumorgewebe einzudringen. Demzufolge können sie die Tumorzellen nicht vollumfänglich erreichen.

Angesichts dieser Schwierigkeit hat sich in den letzten Jahren in der auf Antikörpern basierenden Tumortherapie ein neues Konzept durchgesetzt, das nicht die Tumorzellen selbst sondern die in Tumoren vorhandenen neuen Blutgefäße als Angriffspunkt der Therapie ins Zentrum rückt. Strategien, die sich gegen die Blutgefäß-Neubildung richten, sind aus mehreren Gründen von Interesse:

1. Antigene, die spezifisch in und um die neuen Blutgefäße exprimiert werden, sind leicht zugänglich für intravenös verabreichte Antikörper.

3. Neueste Daten bestätigen, dass die selektive Zerstörung von neuen Blutgefässen in
Tumoren zum Tod von Hunderten von Tumorzellen führen kann. Letztere
benötigen intakte Blutgefäße für die Zufuhr von Sauerstoff und Nährstoffen und
für die Entfernung von Abfallprodukten.

4. Es gibt Anzeichen dafür, dass dieser therapeutische Ansatz das Metastasieren von
Tumoren reduzieren kann und keine Resistenzentwicklung gegen das Medikament
auftritt.

Kürzlich wurde von unserem Arbeitskreis ein monoklonales Antikörper-Fragment,
scFv(L19), mit Spezifität für einen Angiogenese-Marker - die ED-B Domäne von
Fibronectin - entwickelt. In Tiermodellen sowie in einer ersten klinischen Studie an
Krebspatienten konnte gezeigt werden, dass sich dieses Antikörper-Fragment selektiv in
neuen Blutgefässen von Tumoren anreichert.

In der hier vorgelegten Dissertation wurden, ausgehend von dem bestehenden
scFv(L19) Antikörper-Fragment, folgende zwei Fragestellungen untersucht:

- Kann scFv(L19) verwendet werden, um selektiv bioaktive Substanzen, wie Zytokine,
in Tumor Blutgefässen anzureichern und um deren therapeutische Wirkung dadurch
zu verstärken?
- Wie kann die, sowohl für diagnostische wie auch therapeutische Anwendungen,
erfolgsbestimmende Akkumulation von Antikörpern im Tumor erhöht werden?

In Tumormodellen in Mäusen konnte gezeigt werden, dass das Fusionieren von
Interleukin-12 (IL-12) mit scFv(L19) (IL12-L19) dem Zytokin eine um ein Vielfaches
verstärkte anti-Tumor-Aktivität verleiht. Ausserdem zeigte die Applikation von IL12-
L19 in Kombination mit einem zweiten Fusionsprotein, bestehend aus TNFα und scFv(L19) (L19-TNFα), eine bei weitem stärkere Wirkung als die Therapie mit nur einem der beiden Fusionsproteine alleine.

Während die Fusion von scFv(L19) mit TNFα eine Steigerung der Akkumulation des Antikörpers im Tumor bewirkte, zeigten zwei weitere Fusionsproteine, bestehend aus scFv(19) und zwei Isoformen von VEGF ("vascular endothelial growth factor", auch bekannt unter dem Namen "vascular permeability factor"), keine verstärkte Anreicherung im Tumor. Auch die Kopplung von scFv(L19) mit dem von HIV-1 stammenden TAT Peptid, das Zellmembran-penetrierende Aktivität besitzt, hatte keine Erhöhung der Akkumulation des Antikörpers im Tumor zur Folge.