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Abstract We define a twisted two complex variables Rankin-Selberg convolution of Siegel
cusp forms of degree 2. We find its group of functional equations and prove its analytic
continuation to C

2 . As an application we obtain a non-vanishing result for special values of
the Fourier Jacobi coefficients. We also prove the analytic properties for the characteristic
twists of convolutions of Jacobi cusp forms.

Mathematics Subject Classification (2000) 11F46 · 11F66 · 11F50

1 Introduction

In this article we study characteristic twists of the two complex variables Rankin-Selberg
convolution of Siegel cusp forms introduced in [7]. We also investigate the analytic properties
of a twisted Dirichlet series attached to a pair of Jacobi cusp forms. As an application of our
main theorem we obtain a non-vanishing result for the Dirichlet series attached to Fourier
Jacobi coefficients of our Siegel forms.

In the case of one complex variable the analytic properties of characteristic twists of Rankin
Selberg type Dirichlet series for Siegel modular forms together with their applications to non
vanishing results have been studied in a series of papers (see [2,11,12]).

In the study of characteristic twists of several complex variables Dirichlet series, we would
like to point out that, other than the expected technical difficulties, a new complication arises.
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346 Ö. Imamoḡlu, Y. Martin

Unlike the papers cited above, in the case of several complex variables, it is essential to twist
with more than one Dirichlet character as it is done in [4] for other series. It is only then
that one can obtain the full group of functional equations and hence the desired analytic
continuation to C

2 of the new series.
In order to state precisely our main result, let F(Z) and G(Z) be two Siegel cusp forms

of weight k over Sp2(Z). Each has a Fourier series representation with complex coefficients,

say c(T ) and d(T ), respectively, where T =
(

n r/2
r/2 m

)
runs over the set J of half-integral,

positive definite matrices in Q
2,2. Define the multiple Dirichlet series

L(Fχ,ψ ,G; s, w) =
∑

T ∈ J
r (mod 2m N )

χ(n)ψ(m)c(T )d(T )m−s(4 det T )−w, (1)

where χ (resp.ψ) is a Dirichlet character mod N (resp. M). This series is absolute and locally
uniform convergent on the region Re(s) > 2, Re(w) > k + 1. Define next

Λ
(
Fχ,ψ ,G; s, w

) =
(

2π

M N

)−s

Γ (s)L(χ2ψ2, 2s)L
(
Fχ,ψ ,G; s, w

)
(2)

and

Λ̃
(
Fχ,ψ ,G; s, w

) = N−k+3/2
( π

N

)−2w+k−3/2
Γ (w)Γ

(
w − k + 3

2

)

×L(χ2, 2w − 2k + 3)L

(
Fχ,ψ ,G; s − w + 1

2
, w

)
, (3)

whereΓ (s) is Euler’s gamma function and L(φ, s) is the L-function of the Dirichlet character
φ. Our main theorem gives the analytic properties of (1).

Theorem 1 Let F(Z) and G(Z) be Siegel cusp forms of weight k > 1 over Sp2(Z). Let
M and N be relatively prime positive integers. Let χ (resp. ψ) be a Dirichlet character
modulo N (resp M) such that χ , χ2, χ2ψ2 are primitive and non-principal. Then the series
L

(
Fχ,ψ ,G; s, w

)
i) admits a holomorphic continuation to C

2, and
ii) satisfies the functional equations

Λ
(
Fχ,ψ ,G; s, w

) = (−1)k
Gχ2ψ2

M
Λ

(
Fψ,χ ,G; 1 − s, s + w − 1

2

)
,

Λ̃
(
Fχ,ψ ,G; s, w

) =
( Gχ√

N

)4

Λ̃
(
Fχ,ψ ,G; s, 2k − w − 2

)
,

where Gφ denotes the Gauss sum of the Dirichlet character φ.

As an application of our main theorem we obtain.

Corollary 1 Let F(Z) and G(Z) be Siegel cusp forms of weight k for Sp2(Z) and denote
by fm(τ1, z) resp. gm(τ1, z) their Fourier–Jacobi coefficients. Fix any w ∈ C with Re(w) >
k + 1, an odd squarefree integer L ≥ 5 and ε ∈ {±1}.

If there exists m0 such that gcd (m0, L) = 1 and L( fm0 , gm0 ;w) �= 0 then there are
infinitely many integers m with L( fm, gm;w) �= 0 and

(m
L

) = ε.
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On characteristic twists of multiple Dirichlet series associated to Siegel cusp forms 347

This article is organized as follows: In Sect. 2 we recall the definition and properties of two
Eisenstein series that are variations of the Epstein zeta function. They are key ingredients in
the integral representation of our Dirichlet series. In Sects. 3 and 5 we define the two twisted
Dirichlet series that we study in this paper. One for Jacobi forms and another for Siegel cusp
forms (1). In Sects. 4 and 6 we establish the analytic properties of those series. The proof of
our main result is in the latter. Finally, in Sect. 7 we indicate how to prove Corollary 1.

Notation If w ∈ C then e(w) = e2π iw. The complex upper half plane is denoted by H.

Throughout this article M and N denote positive integers. If γ =
(

a b
c d

)
belongs to Γ0(N )

or Γ 0(N ) and χ is a Dirichlet character mod N then χ(γ ) := χ(d). In case that the character
χ is primitive, we denote by Gχ the Gauss sum associated to it. Throughout, we say that χ is
the principal character if it is trivial and primitive. The symbol ζ(s) is always the Riemann
zeta function. If A is any matrix, we denote by t A its transpose and by det A its determinant.

Unless we say otherwise, the entries of any matrix X in R
2,2 are labeled as X =

(
x1 x2

x3 x4

)
.

Whenever we write a 4 by 4 matrix as γ =
(

A B
C D

)
, the blocks A, B,C, D are in R

2,2.

2 Eisenstein series

Let us start with the set P of symmetric, positive-definite matrices Y in R
2,2. Any γ in

GL2(R) acts on P via Y [γ ] = tγYγ . Notice that H and SP = {Y ∈ P | det Y = 1} can be
identified as SL2(R)-spaces by the map

τ = x + iy → Pτ =
(

y 0
0 y−1

) [(
1 0
x 1

)]
, where x = Re(τ ), y = I m(τ ). (4)

Conversely, if Y =
(

y1 y2

y2 y4

)
is in P and det Y = t2, then t−1Y ∈ SP . The inverse image of

the latter under the mapping (4) is τY = y−1
4 (y2 + i t).

Let (u1, u2) and (v1, v2) be in Q
2. For any Y in P and s in C let

ζ(u1,u2), (v1,v2)(Y ; s) =
∑

(l,c)∈Z
2

(l+v1,c+v2)�=(0,0)

e(u1l + u2c)

(
Y

[
l + v1

c + v2

])−s

. (5)

This series is the Epstein zeta function. It is absolute and locally uniform convergent on the
half-plane Re(s) > 1. The productπ−sΓ (s)ζ(u1,u2), (v1,v2)(Y ; s) has an analytic continuation
to C. This is entire if (u1, u2) /∈ Z

2. Otherwise it is holomorphic on C − {1} with a simple
pole at s = 1. The residue at this point is (det Y )−1/2. Moreover

e(u1v1 + u2v2)π
−sΓ (s)ζ(u1,u2), (v1,v2)(Y ; s)

= (det Y )−1/2 π−(1−s)Γ (1 − s)ζ(v1,v2), (−u1,−u2)

(
Y −1; 1 − s

)
. (6)

For more details about (5), see, for example [15, pp. 60–71] or [12, p. 493]. The first Eisenstein
series that we recall involves the groups

Γ0(N ) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (N )

}
and Γ∞ =

{
±

(
1 l
0 1

)
| l ∈ Z

}
.
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348 Ö. Imamoḡlu, Y. Martin

Definition 1 Let N and N ′ be positive integers with N |N ′, φ a Dirichlet character modulo
N and s a complex variable. For any τ in H set

EN ′,φ(τ, s) =
∑

γ∈Γ∞\Γ0(N ′)
φ(γ ) (I mγ (τ))s . (7)

This series is absolute and locally uniform convergent on the region Re(s) > 1. Moreover,
EN ′,φ(γ (τ ), s) = φ(γ )EN ′,φ(τ, s) for any γ ∈ Γ0(N ′).

Lemma 1 If Re(s) > 1 then

2L(φ, 2s)EN ′,φ(τ, s) = N ′−2s
N ′∑

r=1

φ(r)ζ(0,0),(0,r/N ′)(Pτ ; s), (8)

where τ ∈ H and Pτ ∈ P are related as in (4).
If φ is a primitive, non-principal character then π−sΓ (s)L(φ, 2s)EN ′,φ(τ, s) admits a

holomorphic continuation to C. If φ is the principal Dirichlet character and N ′ = N = 1
then 2L(φ, 2s)EN ′,φ(τ, s) = 2ζ(2s)E(τ, s) where E(τ, s) is the weight zero Eisenstein
series associated to SL2(Z).

Proof For any τ = x + iy in H,

2L(φ, 2s)EN ′,φ(τ, s) =
∑

c,d∈Z

(c,d)�=(0,0)

φ(d)
ys

|cN ′τ + d|2s

=
∑

c,d∈Z

(c,d)�=(0,0)

φ(d)

(
y(cN ′)2 + (cN ′x + d)2

y

)−s

=
∑

c,d∈Z

(c,d)�=(0,0)

φ(d)

(
Pτ

[
cN ′
d

])−s

.

If we write every d above as d = r + l N ′ with r (mod N ′), l ∈ Z, we get (5).
The second part of the lemma for φ primitive and non-principal follows from the equation

above, the analytic continuation of the Epstein zeta function and the orthogonality relation
of Dirichlet characters. If φ is the principal character the equation is clear and the statement
well-known. 	


Let χ be a Dirichlet character mod N . In this work we use the series EN 2,χ2(τ, s) and
EN ,χ2(τ, s). They are related, as we can see in the next proposition if we set

EN ′,χ2(τ, s) =
(

N 2

π

)s

Γ (s)L(χ2, 2s)EN ′,χ2(τ, s)

for N ′ = N , N 2 and WN 2 =
(

0 −1/N
N 0

)
.

Proposition 1 Let χ be a primitive, non-principal Dirichlet character mod N such that χ2

is also primitive and non-principal mod N. Then EN ,χ2(τ, s) and EN 2,χ2(τ, s) are entire
functions of s, they satisfy

EN 2,χ2(τ, s) = Gχ2

N
E

N ,χ2(WN 2τ, 1 − s)

and EN 2,χ2(τ, s) = O(y Re(s)) as y = I m(τ ) → ∞.
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On characteristic twists of multiple Dirichlet series associated to Siegel cusp forms 349

If χ0 is the principal character then E1,χ0(τ, s) = π−sΓ (s)ζ(2s)E1,χ0(τ, s) is a series
with a holomorphic continuation to C − {0, 1}. At s = 0, 1 it has simple poles with residue
Ress=1E1,χ0(τ, s) = 1. Moreover, E1,χ0(τ, s) = E1,χ0(τ, 1 − s) and E1,χ0(τ, s) = O(yσ ) as
y → ∞ where σ = max{Re(s), 1 − Re(s)}.
Proof The first part of the proposition follows from Lemma 1. Also, from (8) and the func-
tional equation (6) of the Epstein zeta function one gets

2π−sΓ (s)L(χ2, 2s)EN 2,χ2(τ, s)

= N−4sπ−(1−s)Γ (1 − s)
N 2−1∑
r=0

χ2(r)ζ(0,r/N 2),(0,0)(P
−1
τ ; 1 − s). (9)

Using (5) and

N 2−1∑
r=0

χ2(r)e

(
dr

N 2

)
=

{
NGχ2 χ̄2(d/N ) if N |d,
0 otherwise

which holds as χ2 is primitive, one obtains

N 2−1∑
r=0

χ2(r)ζ(0,r/N 2),(0,0)(P
−1
τ ; s) = NGχ2

∑
c,d∈Z

(c,d)�=(0,0)

χ̄2(d)

(
P−1
τ

[
c

d N

])−s

whenever Re(s) > 1. On the other hand Pγ (τ) = Pτ [tγ ] for all γ ∈ SL2(R). Therefore

P−1
τ

[
c

d N

]
= PWN2 (τ )

[
cN
d

]
.

From these equations and Lemma 1 we deduce

N 2−1∑
r=0

χ2(r)ζ(0,r/N 2),(0,0)(P
−1
τ ; s) = 2NGχ2 L(χ2, 2s)EN ,χ̄ (WN 2(τ ), s). (10)

Now (8), (9), (10) and the analytic continuation of EN ,χ2(τ, s) yield the functional equation
in the proposition. As for the asymptotic behavior of EN 2,χ2(τ, s), notice that

2L(χ2, s)EN 2,χ2(τ, s) = ys
∑
c,d Z

(c,d)�=(0,0)

χ2(d)|c(N 2τ)+ d|−2s .

The latter is a classical Eisenstein series whose Fourier expansion in terms of powers and
Bessel functions is well-known (see, for example [14]). From it one gets the desired asymp-
totic. The statements about E1,χ0(τ, z) are those of a classical Eisenstein series (see [3]). 	


Next we define a second kind of Eisenstein series. Start with the complex-valued function

ps,w(Y ) = ys
1(det Y )w, where Y =

(
y1 y2

y2 y4

)
∈ P (11)

and s, w are in C (for details on this map see [16, vol. II]). Then recall the notation

Γ 0(N ) =
{(

a b
c d

)
∈ SL2(Z) | b ≡ 0 (N )

}
, Γ 0

0 (M, N ) = Γ0(M) ∩ Γ 0(N ),

Γ 0∞(N ) = Γ∞ ∩ Γ 0(N ) and Γ∞
0 (N ) =

(
0 1

−1 0

)
Γ 0∞(N )

(
0 −1
1 0

)
.
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350 Ö. Imamoḡlu, Y. Martin

Definition 2 Let φ be a Dirichlet character modulo M N such that φ(−1) = 1. Let s, w be
two complex variables. For any Y in P set

Eφ(Y ; s, w) =
∑

γ∈Γ 0
0 (M,N )/Γ

0∞(N )

φ(γ )p−s,−w(Y [γ ]). (12)

This series has been extensively studied if φ is the principal character [13,16]. In particular,
the comparison with the latter implies that (12) is absolute and locally uniform convergent
on the region Re(s) > 1. Moreover,

Eφ(Y [γ ]; s, w) = φ(γ )Eφ(Y ; s, w) for γ ∈ Γ 0
0 (M, N ).

Let H2 = {
Z ∈ C

2,2 | t Z = Z , I m Z pos. def
}
. The symplectic group Sp2(R) acts on H2

via γ Z = (AZ + B)(C Z + D)−1, where we write γ =
(

A B
C D

)
.

Definition 3 Let C(N ,M) be the group of matrices

C(N ,M) =
{(

t A t AB
0 A−1

)
∈ Sp2(Z) | A ∈ Γ 0

0 (M, N )

}
.

The action of Sp2(R) on H2 induces an action of C(N ,M) on H2 and the action of GL2(R)

on P induces an action of Γ 0
0 (M, N ) on P . The correspondence Z → Y = I m Z is a

well-defined map that preserve those actions. Furthermore,

Eφ (I m(γ Z); s, w) = φ(A)Eφ (I m(Z); s, w)

for any γ =
(

t A t AB
0 A−1

)
∈ C(N ,M) and (s, w) in the domain of convergence.

Lemma 2 If Re(s) > 1 then

2L(φ, 2s)Eφ(Y ; s, w) = M−2s (det Y )−w
M N∑
r=1

φ(r)ζ(0,0), ( r
M N ,0)

(
Y

[(
N 0
0 1

)]
; s

)
.

(13)

If φ is a primitive, non-principal character then π−sΓ (s)L(φ, 2s)Eφ(Y ; s, w) admits a
holomorphic continuation to C

2.
If φ is the principal character then M N = 1 and

L(φ, 2s)Eφ(Y ; s, w) = (det Y )−w−s/2ζ(2s)E(τY , s)

where E(τ, s) is the classical weight zero Eisenstein series associated to SL2(Z) and τY is
the element of H associated to Y in remark below (4).

Proof The elements of Γ 0
0 (M, N )/Γ 0∞(N ) are in one to one correspondence with the tuples

(a, c) ∈ Z
2/± 1 with M |c and gcd (a, Nc) = 1. Hence

2Eφ(Y ; s, w) = (det Y )−w
∑

(a,e)∈Z
2

gcd (a,M Ne)=1

φ(a)

(
Y

[
a

Me

])−s

. (14)
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On characteristic twists of multiple Dirichlet series associated to Siegel cusp forms 351

Therefore

2L(φ, 2s)Eφ(Y ; s, w) = (det Y )−w
∑

(a,e)∈Z
2

(a,e)�=(0,0)

φ(a)

(
Y

[
a

Me

])−s

= M−2s (det Y )−w
M N∑
r=1

φ(r)
∑

(l,e)∈Z
2

(l M+ r
N ,e)�=(0,0)

(
Y

[(
N 0
0 1

) ( r
M N + l

e

)])−s

,

and (13) follows. As in the proof of the first lemma, the statement for φ primitive and non-
principal follows from Eq. (13), the analytic continuation of the Epstein zeta function and
the orthogonality relation of Dirichlet characters.

On the other hand, if φ is the principal character then M = N = 1 and

2L(φ, 2s)Eφ(Y ; s, w) = (det Y )−w
∑

(c,d)∈Z
2

(c,d)�=(0,0)

(
Y

[(
c
d

)])−s

.

If we write Y as in (11) and put det Y = t2, the previous equation is

2L(φ, 2s)Eφ(Y ; s, w) = t−2w−s
∑

(c,d)∈Z
2

(c,d)�=(0,0)

(
t

y4

)s ∣∣∣∣c
(

y2

y4
+ i

t

y4

)
+ d

∣∣∣∣
−2s

.

	


The arguments in this article use the Eisenstein series Eχ2ψ2(Y ; s, w) where χ (resp.
ψ) is a Dirichlet character mod N (resp. mod M). For simplicity we assume the condition
gcd (M, N ) = 1 from now on and set

Eχ2ψ2 (Y ; s, w) = Ms(M N )−wπ−sΓ (s)L(χ2ψ2; 2s)Eχ2ψ2 (Y ; s, w) . (15)

Proposition 2 Let χ andψ be Dirichlet characters as above such that χ2ψ2 is primitive and
non-principal. Then Eχ2ψ2 (Y ; s, w) admits a holomorphic continuation to C

2 and satisfies

Eχ2ψ2 (Y ; s, w) = Gχ2ψ2√
M N

E
χ2ψ

2

(
Y −1

[( 1
N 0
0 1

M

)]
; 1 − s,−w − 1

2

)
.

Proof Since χ2ψ2 is primitive and non-principal, the holomorphic continuation of
Eχ2ψ2 (Y ; s, w) to C

2 is a consequence of Lemma 2. For the proof of the identity, observe
that (13) and the functional equation of the Epstein zeta function yield

2π−sΓ (s)L(χ2ψ2, 2s)Eχ2ψ2 (Y ; s, w) = π−(1−s)Γ (1 − s)M−2s N−1

× (det Y )−w− 1
2

M N∑
r=1

χ2ψ2(r)ζ( r
M N ,0), (0,0)

(
Y −1

[( 1
N 0
0 1

)]
; 1 − s

)
. (16)
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352 Ö. Imamoḡlu, Y. Martin

On the other hand, for arbitrary s with Re(s) >> 0 and primitive χ2ψ2

M N∑
r=1

χ2ψ2(r)ζ( r
M N ,0), (0,0)

(Y ; s)

=
∑

(l,e)∈Z
2

(l,e)�=(0,0)

(
M N∑
r=1

χ2ψ2(r)e

(
rl

M N

)) (
Y

[
l
e

])−s

= Gχ2ψ2 L(χ2ψ
2
, 2s)

∑
(l,e)∈Z

2

gcd (l,M Ne)=1

χ2ψ
2
(l)

(
Y

[(
1 0
0 1

M

)(
l

Me

)])−s

= 2Gχ2ψ2

(
det Y

[(
1 0
0 1

M

)])w
L(χ2ψ

2
, 2s)E

χ2ψ
2

(
Y

[(
1 0
0 1

M

)]
; s, w

)
.

(This last step is a direct consequence of (14)). Thus

M N∑
r=1

χ2ψ2(r)ζ( r
M N ,0), (0,0)

(
Y −1

[( 1
N 0
0 1

)]
; 1 − s

)
= 2Gχ2ψ2(M N )2w+1

×(det Y )w+ 1
2 L(χ2ψ

2
, 2(1 − s))E

χ2ψ
2

(
Y −1

[( 1
N 0
0 1

M

)]
; 1 − s,−w − 1

2

)
. (17)

Now, we just put together (16) and (17) to get

π−sΓ (s)L(χ2ψ2, 2s)Eχ2ψ2 (Y ; s, w) = M−2s N−1π−(1−s)Γ (1 − s)

× Gχ2ψ2 L(χ2ψ
2
, 2(1 − s))(M N )2w+1 E

χ2ψ
2

(
Y −1

[( 1
N 0
0 1

M

)]
; 1 − s,−w − 1

2

)
.

The desired functional equation is a rearrangement of this expression. 	


3 A twisted convolution of Jacobi cusp forms

For any δ in SL2(Z), (λ, µ) in Z
2, (τ, z) ∈ H × C and positive integers k, m, define

J ([δ, λ, µ]; τ, z) = (cτ + d)−kem
(

−c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz + λµ

)
. (18)

This is a 1-cocycle. The group Γ J = SL2(Z) � Z
2 acts on the set of functions f (τ, z) :

H × C → C via

f |k,m[δ, λ, µ](τ, z) = J ([δ, λ, µ]; τ, z) f

(
aτ + b

cτ + d
,

z + λτ + µ

cτ + d

)
. (19)

This can be extended to an action of SL2(R) � (R2 · S1), where S1 is the unit circle in C.
A Jacobi cusp form of weight k and index m over Γ J is a holomorphic function f (τ, z) :
H × C → C such that f |k,m[δ, λ, µ](τ, z) = f (τ, z) for all [δ, λ, µ] ∈ Γ J and equal to a
Fourier series

f (τ, z) =
∑

n,r ∈ Z

4mn>r2

c(n, r)e(nτ)e(r z). (20)
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Jacobi cusp forms of weight k and index m over subgroups of Γ J are defined similarly
(see for example [5, p. 9]). Let N be a positive integer and χ any Dirichlet character modulo
N . If f (τ, z) is a Jacobi cusp form as above, define

fχ (τ, z) =
∑

n,r ∈ Z

4mn>r2

χ(n)c(n, r)e(nτ)e(r z). (21)

It is easy to check that for primitive χ one has

Gχ fχ (τ, z) =
∑
µ (N )

χ(µ) f |k,m
[(

1 µ/N
0 1

)
, 0, 0

]
(τ, z), (22)

From this identity follows that fχ (τ, z) is a Jacobi cusp form of weight k, index m and
character χ2 over the group Γ0(N 2) � (NZ × Z).

Define next cr (D, χ) = χ(n)c(n, r)whenever D = 4mn −r2. The invariance of fχ (τ, z)
under [I d, Nλ, 0] for any λ in Z yields cr (D, χ) = cr ′(D, χ)whenever r ≡ r ′ (mod 2m N ).
This identity together with simple manipulations of (21) imply

fχ (τ, z) =
∑
µ

fχ,µ(τ )Θm N ,µ (Nτ, z) , (23)

where the sum is over the integers µ mod 2m N and

fχ,µ(τ ) =
∞∑

D=1

cµ(D, χ)e

(
D

4m
τ

)
, (24)

Θm N ,µ(τ, z) =
∑
r∈Z

r≡µ (2m N )

e

(
r2

4m N
τ + r z

)
. (25)

Let g(τ, z) be second Jacobi cusp form of weight k and index m over the group Γ J , say
g(τ, z) = ∑

n,r d(n, r)e(nτ)e(r z). If we put dr (D) = d(n, r) whenever D = 4mn − r2 we
have

g(τ, z) =
∑
ν (2m)

gν(τ )Θm,ν(τ, z) with gν(τ ) =
∞∑

D=1

dν(D)e

(
D

4m
τ

)
. (26)

Obviously, we can also write (26) as g(τ, z) = ∑
ν (2m N ) gν(τ )Θm N ,ν(Nτ, z).

Definition 4 For Jacobi cusp forms f (τ, z) and g(τ, z) as above and a Dirichlet character χ
modulo N , define

L( fχ , g; s) =
∞∑

D=1

∑
µ (2m N )

cµ(D, χ)dµ(D)D
−s . (27)

Since f (τ, z) and g(τ, z) are cusp forms one has cµ(D, χ) = O(Dk/2) and dµ(D) =
O(Dk/2) for all µ, D. Thus L( fχ , g; s) is an absolute and locally uniform convergent series
on the region Re(s) > k + 1. This convolution was studied in [7] in the case where χ is the
principal character.

In order to give an integral representation for (27) we identify any (τ, z) ∈ H × C with
the tuple of real coordinates (x, y, p, q) via the equations τ = x + iy and z = pτ + q . Then
we notice that

h fχ ,g(τ, z) = ykem(2p2iy) fχ (τ, z)g(τ, z) (28)
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is invariant under the action (19) whenever δ is in Γ∞ =
{
±

(
1 l
0 1

)
| l ∈ Z

}
and (λ, µ) is

in NZ × Z. The volume element y−2dqdxdpdy of H × C is also Γ J -invariant, thus the
integral in the next lemma is well-defined.

Lemma 3 For any s in C with Re(s) > k + 1,
∫

H×C/Γ∞�(NZ×Z)

h fχ ,g(τ, z)ys−2dqdxdpdy

= 1√
m

(π
m

)−s−k+ 3
2
Γ

(
s + k − 3

2

)
L

(
fχ , g; s + k − 3

2

)
. (29)

Proof We may compute this integral using the Γ∞ � (NZ × Z)-fundamental domain
{
(x, y, p, q) ∈ R

4 | 0 ≤ x, q ≤ 1, 0 < y < ∞, 0 ≤ p ≤ N
}
. (30)

We omit the details since the argument is very similar to the proof of Lemma 2 in [7]. 	


4 Analytic properties of L( fχ , g; s)

The purpose of this section is to prove the meromorphic continuation and the functional
equation of L( fχ , g; s).

Lemma 4 If δ ∈ SL2(Q) then

h fχ ,g (δ(τ, z)) = ykem (
2p2iy

)
fχ |k,m[δ, 0, 0](τ, z)g|k,m[δ, 0, 0](τ, z).

In particular h fχ ,g (γ (τ, z)) = χ2(γ )h fχ ,g(τ, z) for any γ in Γ0(N 2).

The proof of this fact is a straightforward computation. It uses that (18) is a cocycle and

ykem (
2p2iy

) = (I m(τ ))k em
(
(z − z)2

τ − τ

)
.

We omit the details. This lemma together with the properties of the Eisenstein series (7) allow
us to express (29) as

∫

H×C/Γ0(N 2)�(NZ×Z)

h fχ ,g(τ, z)EN 2,χ2(τ, s)y−2dqdxdpdy

= 1√
m

(π
m

)−s−k+ 3
2
Γ

(
s + k − 3

2

)
L

(
fχ , g; s + k − 3

2

)
. (31)

Next, for any Dirichlet character χ mod N set

Aχ =
∑

µ, ν (N )
gcd (µ,N )=gcd (ν,N )=1

µµ∗≡νν∗≡1 (N )

χ(µ− ν)e
(
(ν∗ − µ∗)/N

)
.
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Lemma 5 For any s in C with Re(s) >> 0,

∫

H×C/Γ0(N 2)�(NZ×Z)

h fχ ,g(τ, z)EN ,χ2
(
WN 2τ, s

)
y−2dqdxdpdy

= Aχ
Gχ

1√
m

(π
m

)−s−k+3/2
Γ

(
s + k − 3

2

)
L

(
fχ , g; s + k − 3

2

)
. (32)

Proof The integral in the left hand side of (32) is equal to

∫

H×C/Γ0(N 2)�(NZ×Z)

h fχ ,g

(
W −1

N 2 (τ, z)
)

EN ,χ2(τ, s)y−2dqdxdpdy. (33)

Now set Γ0(N ) = ∪N
j=1Γ0(N 2)M j with M j =

(
1 0

j N 1

)
. Any fundamental domain F for

the action of Γ0(N )� (NZ×Z) on H×C defines the fundamental domain ∪N
j=1[M j , 0, 0]F

of Γ0(N 2) � (NZ × Z) on H × C. This fact and the invariance of EN ,χ2(τ, s) under M j

allow us to write (33) as

∫
H×C/Γ0(N )�(NZ×Z)

⎛
⎝ N∑

j=1

h fχ ,g

(
W −1

N 2 M j (τ, z)
)⎞
⎠ EN ,χ2(τ, s)y−2dqdxdpdy.

Now, for any δ in Γ0(N ) and 1 ≤ j ≤ N there is δ′ in Γ0(N 2) and 1 ≤ l ≤ N such
that W −1

N 2 M jδ = δ′W −1
N 2 Ml . Moreover χ(δ′) = χ(δ). From these facts, Lemma 4 and the

definition of EN ,χ2(τ, s) we deduce that the previous integral is equal to

∫
H×C/Γ∞�(NZ×Z)

⎛
⎝ N∑

j=1

h fχ ,g

(
W −1

N 2 M j (τ, z)
)⎞
⎠ ys−2dqdxdpdy

=
∫

H×C/Γ∞�(NZ×Z)

⎛
⎝ N∑

j=1

h fχ ,g

(
T− j W −1

N 2 (τ, z)
)⎞
⎠ ys−2dqdxdpdy. (34)

where T− j = W −1
N 2 M j WN 2 =

(
1 − j/N
0 1

)
. In the following we use Lemma 4 and the

fundamental domain (30) in order to compute this integral. Since χ is primitive, by (22) one
has

N∑
j=1

fχ |k,m[T− j W −1
N 2 , 0, 0](τ, z)g|k,m[T− j W −1

N 2 , 0, 0](τ, z)

= 1

Gχ
∑
µ (N )

∑
ν (N )

χ(µ− ν) f |k,m[TµW −1
N 2 , 0, 0](τ, z)g|k,m[TνW −1

N 2 , 0, 0](τ, z).

Put l = gcd (µ, N ) and t = gcd (ν, N ). Also write lµ (resp. tν) in place of µ (resp. ν). Then
the last expression is equal to
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1

Gχ
∑

l|N , t |N
gcd (l,t)=1

∑
µ (N/ l), ν (N/t)

gcd (µ,N/ l)=gcd (ν,N/t)=1

χ(lµ− tν) f |k,m[TlµW −1
N 2 , 0, 0](τ, z)

×g|k,m[TtνW −1
N 2 , 0, 0](τ, z). (35)

Let µ∗, ν∗ be integers such that µµ∗ ≡ 1 (mod N/ l) and νν∗ ≡ 1 (mod N/t). Then

f |k,m[TlµW −1
N 2 , 0, 0](τ, z) = f |k,m

[(
l −µ∗/N
0 1/ l

)
, 0, 0

]
(τ, z),

g|k,m[TlµW −1
N 2 , 0, 0](τ, z) = g|k,m

[(
t −ν∗/N
0 1/t

)
, 0, 0

]
(τ, z).

These remarks show that (35) can be written as

1

Gχ
∑

l|N , t |N
gcd (l,t)=1

(lt)k
∑

µ (N/ l), ν (N/t)
gcd (µ,N/ l)=gcd (ν,N/t)=1

χ(lµ− tν) f

(
l2τ − lµ∗

N
, lz

)
g

(
t2τ− tν∗

N
, t z

)
.

Using this and the Fourier representation of f (τ, z) and g(τ, z) we conclude

1∫
0

1∫
0

N∑
j=1

fχ |k,m[T− j W −1
N 2 , 0, 0](τ, z)g|k,m[T− j W −1

N 2 , 0, 0](τ, z)dqdx

= 1

Gχ
∑

l|N , t |N
gcd (l,t)=1

(lt)k
∑

µ (N/ l), ν (N/t)
gcd (µ,N/ l)=gcd (ν,N/t)=1

χ(lµ− tν)
∑

j, j ′∈Z

4mj ′> j2

c(t2 j ′, t j)

×d(l2 j ′, l j)e

(
((lt) j ′ + j p)ltiy − lt2 j ′µ∗

N

)
e

(
((lt) j ′ + j p)ltiy − l2t j ′ν∗

N

)
.

Arguing exactly as in [12, p. 497], the fact that χ is non-principal and primitive yields

1∫
0

1∫
0

N∑
j=1

fχ |k,m[T− j W −1
N 2 , 0, 0](τ, z)g|k,m[T− j W −1

N 2 , 0, 0](τ, z)dqdx

= Aχ
Gχ

∑
j, j ′∈Z

4mj ′> j2

χ( j ′)c( j ′, j)d( j ′, j)e
(
2( j ′ + j p)iy

)
.

Next we compute

N∫
0

em(2p2iy)

1∫
0

1∫
0

N∑
j=1

fχ |k,m[T− j W −1
N 2 , 0, 0](τ, z)g|k,m[T− j W −1

N 2 , 0, 0](τ, z)dqdxdp

= Aχ
Gχ

∑
n,r∈Z

4mn>r2

χ(n)c(n, r)d(n, r)e(2niy)

N∫
0

e
(
2(mp2 + r p)iy

)
dp

= Aχ
Gχ

∑
µ(2m N )

∞∑
D=1

cµ(D, χ)dµ(D)e

(
D

2m
iy

) ∑
l∈Z

N∫
0

e2m
((

p + l N + µ

2m

)2
iy

)
dp.
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The inner sum is equal to (my)−1/2. Thus the integrals in (34) are equal to

∞∫
0

N∫
0

1∫
0

1∫
0

ykem(2p2iy)
N∑

j=1

fχ |k,m[T− j W −1
N 2 , 0, 0](τ, z)

×g|k,m[T− j W −1
N 2 , 0, 0](τ, z)ys−2dqdxdpdy

= Aχ
Gχ

∑
µ (2m N )

∞∑
D=1

cµ(D, χ)dµ(D)
1√
m

∞∫
0

e

(
D

2m
iy

)
yk+s−5/2dy

= Aχ
Gχ

1√
m

(π
m

)−s−k+3/2
Γ

(
s + k − 3

2

)
L

(
fχ , g; s + k − 3

2

)

provide that s ∈ C satisfies 2Re(s) > 3 − 2k. 	

For convenience we introduce the completed Dirichlet series

Λ̃( fχ , g; s) = 1√
m

(π
m

)−s ( π

N 2

)−s+k− 3
2
Γ (s)Γ

(
s − k + 3

2

)

×L(χ2, 2s − 2k + 3)L( fχ , g; s).

From Lemmas 3 and (31) one has∫

H×C/Γ0(N 2)�(NZ×Z)

h fχ ,g(τ, z)EN 2,χ2

(
τ, s − k + 3

2

)
y−2dqdxdpdy = Λ̃( fχ , g; s)

(36)

for all s in C with Re(s) > 2k − 1/2.

Theorem 2 Let f (τ, z) and g(τ, z) be Jacobi cusp forms of weight k and index m over the
Jacobi group Γ J .

Let N be a positive integer and χ a Dirichlet character mod N such that both χ and χ2

are non-principal and primitive.
Then the series Λ̃( fχ , g; s) has a holomorphic continuation to the whole complex plane

and satisfies

Λ̃( fχ , g; s) =
( Gχ√

N

)4

Λ̃( fχ , g; 2k − s − 2).

Proof Let Ω be any compact subset in the s-complex plane.
By Proposition 1, the exponential decay of h fχ ,g(τ, z) as y → ∞ and the description

of the fundamental domain of H × C/Γ0(N 2) � (NZ × Z) given in (30), it is easy to see
that h fχ ,g(τ, z)EN 2,χ2(τ, s) is; (i) bounded on

(H × C/Γ0(N 2) � (NZ × Z)
) × Ω , (ii) a

continuous function on (τ, z) for each s, and (iii) a holomorphic function on s for each (τ, z).
These conditions imply that the integral in (36) defines a holomorphic function on the interior
of Ω .

This fact implies the analytic continuation of Λ̃( fχ , g, s) to C.
Next we prove the functional equation. From Lemma 3, the identity in Proposition 1 and

Lemma 5 we have

Λ̃( fχ , g; s) = AχGχ2

Gχ N
Λ̃( fχ , g; 2k − s − 2).
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Finally we recall the identity

AχGχ2

Gχ N
=

( Gχ√
N

)4

which is proved as in [11, p. 116]. 	


For our purposes we also need the analogue of Theorem 2 whenχ is the principal character
χ0 (and so N = 1).

Theorem 3 Let f (τ, z) and g(τ, z) be Jacobi cusp forms of weight k and index m over the
Jacobi group Γ J . Let χ0 be the principal Dirichlet character.

Then the seriesΓ (s −k +3/2)−1Λ̃( fχ0 , g; s) has a holomorphic continuation to C−{k −
1/2} with at most a simple pole at s = k − 1/2. The residue at such a point is 2−1 < f, g >
where < f, g > denotes the Petersson inner product of Jacobi cusp forms. Furthermore,

Λ̃( fχ0 , g; s) = Λ̃( fχ0 , g; 2k − s − 2).

Remark This theorem is equivalent to Corollary 1 in [7]. Notice however a counting error in
the latter. The residue of Γ (s − k + 3/2)−1Λ̃( fχ0 , g; s) at s = k − 1/2 is given without the
factor 2−1. The discrepancy is explained by a missing 2 in Eq. (20) of [7].

5 A twisted convolution of Siegel cusp forms

Let k be a positive integer and F(Z) : H2 → C a Siegel cusp form of weight k over the
group Sp2(Z). Then

F(Z) =
∑

T ∈ J
c(T )e(T Z) =

∑
T ∈ J

c(T )e(nτ1 + r z + mτ2), (37)

where J is the set of half-integral, positive-definite matrices in R
2,2 and the generic matrices

T in J and Z in H2 are denoted as

T =
(

n r/2
r/2 m

)
and Z =

(
τ1 z
z τ2

)
.

If we write the coefficients in (37) as c(T ) = c(n, r,m), we may consider for positive integers
m, n the subseries

fm(τ, z) =
∑

n,r ∈ Z

4mn>r2

c(n, r,m)e(nτ + r z),

f̃n(τ, z) =
∑

m,r ∈ Z

4mn>r2

c(n, r,m)e(mτ + r z).

They are Jacobi cusp forms of weight k and index m (resp. n) over Γ J . Clearly

F(Z) =
∞∑

m=1

fm(τ1, z)e(mτ2) =
∞∑

n=1

f̃n(τ2, z)e(nτ1). (38)
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Consider the matrix

I =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ ∈ Sp2(Z). (39)

Then F(Z)|k[I] = F(Z). This implies

(−1)k
∞∑

n=1

f̃n(τ1, z)e(nτ2) =
∞∑

m=1

fm(τ1, z)e(mτ2),

which in turn yields (−1)k f̃m(τ, z) = fm(τ, z) for all m.

Definition 5 Let χ (resp. ψ) be a Dirichlet character modulo N (resp. M). We define the
twisted Siegel cusp form Fχ,ψ(Z) as

Fχ,ψ(Z) =
∑

m,n,r ∈ Z

n>0, 4mn>r2

χ(n)ψ(m)c(n, r,m)e(nτ1 + r z + mτ2).

A formal manipulation of this series yields

Fχ,ψ(Z) =
∞∑

m=1

ψ(m) fm,χ (τ1, z)e(mτ2) =
∞∑

n=1

χ(n) f̃n,ψ (τ2, z)e(nτ1). (40)

Consequently, Fχ,ψ(I Z) = (−1)k Fψ,χ (Z).

Definition 6 Let ∆(N ,M) be the group of matrices γ =
(

A B
C D

)
in Sp2(Z) which satisfy

the set of congruences

c1 ≡ 0 (N 2), c4 ≡ 0 (M2), c2 ≡ c3 ≡ 0 (M N ), d2 ≡ 0 (N ) and d3 ≡ 0 (M).

These identities imply a3 ≡ 0, a1d1 ≡ 1 (mod N ) and a2 ≡ 0, a4d4 ≡ 1 (mod M)
(see [12]). In particular χ(γ ) = χ(d1) and ψ(γ ) = ψ(d4) are well-defined multiplicative
characters of ∆(N ,M). For convenience these characters are evaluated on the lower right
entry of the group elements. Thus χ(γ )ψ(γ ) = χψ(d4) = χψ(D). Consider the matrices

W M
N =

⎛
⎜⎜⎜⎝

0 0 1/N 0

0 0 0 1/M

−N 0 0 0

0 −M 0 0

⎞
⎟⎟⎟⎠ and Tµ/N

ν/M =

⎛
⎜⎜⎜⎝

1 0 µ/N 0

0 1 0 ν/M

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

where µ, ν are integral parameters. They are in Sp2(Q).

Lemma 6 i) ∆(N ,M) = Sp2(Z) ∩ (
W M

N

)
Sp2(Z)

(
W M

N

)−1
.

ii) Fχ,ψ(Z) = 1
M N

∑
j,µ (N )

∑
l,ν (M) χ( j)e

(− jµ
N

)
ψ(l)e

(−lν
M

)
F(Z) |k

[
Tµ/N
ν/M

]
.

iii) If γ is in ∆(N ,M) then Fχ,ψ(Z) |k[γ ] = χ2ψ2(γ )Fχ,ψ(Z). Indeed the function
Fχ,ψ(Z) is a Siegel cusp form of weight k and character χ2ψ2 over ∆(N ,M).
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360 Ö. Imamoḡlu, Y. Martin

iv) If χ and ψ are primitive non-principal characters then

Fχ,ψ(Z) |k
[
W M

N

]
= (M N )−1G2

χG2
ψ Fχ,ψ(Z).

The proof of this lemma is straightforward (see [12] for similar results).
An easy consequence is that Fχ,ψ(Z) is then a Siegel cusp form of weight k and character

χ2ψ2 over the group ∆(N ,M).

Definition 7 Let L be a positive integer and

C∞(L) =
{(

t A t AB
0 A−1

)
∈ Sp2(Z) | A ∈ Γ 0∞(L)

}

This is a subgroup of Sp2(Z). If a Siegel cusp form H(Z) = ∑
T ∈J a(T )e(T Z) over a

congruence subgroup of Sp2(Z) is invariant under C∞(L), then a(T ) = a(T ′) whenever the

matrices T =
(

n r/2
r/2 m

)
and T ′ =

(
n′ r ′/2

r ′/2 m′
)

satisfy

m = m′, r ≡ r ′ (mod 2mL) and det T = det T ′.

Definition 8 Let H1(Z) and H2(Z) be two Siegel cusp forms of weight k over a congruence
subgroup of Sp2(Z), invariants under C∞(L), with Fourier series Hj (Z) = ∑

T ∈J a j (T )e
(T Z). Define the multiple Dirichlet series

L(H1, H2; s, w) =
∑
T ∈J

r (mod 2mL)

a1(T )a2(T )m
−s(4 det T )−w. (41)

The estimates a j (T ) = O(T k/2) for j = 1, 2 hold for such Siegel cusp forms. Thus the
series L(H1, H2; s, w) is absolute and locally uniform convergent on the region Re(s) > 2
and Re(w) > k + 1.

The rest of this article is about a particular case of this convolution, e.g., the series (1)
associated to the Siegel cusp forms F(Z) and G(Z) whose Fourier series are (37) and
G(Z) = ∑

T ∈J d(T )e(T Z) resp., plus the characters χ , ψ mod N and M . We use that both
Fχ,ψ(Z) and G(Z) are invariant under C∞(N ).

The Fourier Jacobi series of Fχ,ψ(Z) is given in (40). Similarly we can write G(Z) =∑∞
m=1 gm(τ1, z)e(mτ2)where gm(τ, z) = ∑

n,r d(n, r,m)e(nτ+r z). A formal manipulation
in the region of convergence yields

L(Fχ,ψ ,G; s, w) =
∞∑

m=1

ψ(m)L( fm,χ , gm;w)m−s . (42)

This equation relates the twisted convolution of Siegel cusp forms with the twisted convolu-
tion of Jacobi forms.

Our next goal is to find an integral representation for L(Fχ,ψ ,G; s, w). For this reason
we consider the Eisenstein series (12) with φ = χ2ψ2. From its functional equation and the
remark below Lemma 6 one has that Fχ,ψ(Z)G(Z)Eχ2ψ2 (I m(Z); s, w) is invariant under

any transformation of C(N ,M) on Z . On the other hand the volume element (det Y )−3d XdY
of H2, where X = Re(Z), Y = I m(Z), is invariant under Sp2(R). Thus the integral in the
proposition below is well-defined.
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Proposition 3 Let F(Z),G(Z) (resp.χ,ψ) be Siegel cusp forms (resp. Dirichlet characters)
as above.

If s, w are in C with Re(s) > 2, 2Re(w) > 4k − 1 and 2Re(s + w) > 1 then∫
H2/C(N ,M)

Fχ,ψ(Z)G(Z)Eχ2ψ2

(
Y ; s,−s − w − 3

2

)
(det Y )−3d XdY

= (4π)−s−w+ 1
2 π−wΓ (w)Γ

(
s + w − 1

2

)
L

(
Fχ,ψ ,G; s, w

)
. (43)

Proof The left hand side of (43) is equal to∫
H2/C∞(N )

Fχ,ψ(Z)G(Z)p−s,−(−s−w−3/2) (Y ) (det Y )−3d XdY. (44)

Consider next C∞ =
{(

t A t AB
0 A−1

)
∈ Sp2(Z) | A ∈ Γ∞

}
. This group has the coset decom-

position C∞ = ⋃
a (N ) γaC∞(N ) where γa =

(
t A 0
0 A−1

)
with A =

(
1 a
0 1

)
. Let F be the

C∞-fundamental domain in H2 given in [10, p. 548]. Then{(
τ1 z
z τ2

)
| (τ1, z) ∈ H × C/Γ∞ � (NZ × Z), x2 ∈ [0, 1], y2 ∈ (p2 y1,∞)

}
,

where x j , y j , p, q are the real coordinates determined by τ1 = x1 + iy1, τ2 = x2 + iy2 and
z = pτ1 + q , is equal to the C∞(N )-fundamental domain ∪a (N )γ

−1
a F . Using the latter we

can write (44) as

∫
H×C/Γ∞�(NZ×Z)

∞∫

y2=p2 y1

1∫
x2=0

Fχ,ψ(Z)G(Z)p−s,s+w (Y ) (y2 − p2 y1)
− 3

2

×y
− 1

2
1 dx2dy2dqdx1dpdy1.

In order to compute this integral we first observe that

1∫
x2=0

Fχ,ψ(Z)G(Z)dx2 =
∞∑

m=1

ψ(m) fm,χ (τ1, z)gm(τ1, z)e(2miy2).

Secondly, we consider the substitution t = y2 − p2 y1 and the hypothesis 2Re(s + w) > 1
to obtain

∞∫

y2=p2 y1

e(2miy2)(y2 − p2 y1)
s+w− 3

2 dy2 = e(2imp2 y1)(4πm)−s−w+ 1
2Γ

(
s + w − 1

2

)
.

These computations yield that (44) is equal to

(4π)−s−w+ 1
2Γ

(
s + w − 1

2

) ∞∑
m=1

ψ(m)m−s−w+ 1
2

×
∫

H×C/Γ∞�(NZ×Z)

em(2p2iy1) fm,χ (τ1, z)gm(τ1, z)y
w+ 3

2 −2
1 dqdx1dpdy1.
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Finally, we use Lemma 3 and hypothesis 2Re(w) > 4k−1 to compute the last integral. 	


For future references observe that the interchange of characters χ,ψ in Definition 5 gives
the Siegel cusp form Fψ,χ (Z) of weight k over the group∆(M, N ). An argument analogous
to the one above shows that

∫
H2/C∞(M)

Fψ,χ (Z)G(Z)p−s,−(−s−w− 3
2 )
(Y ) (det Y )−3d XdY

= (4π)−s−w+ 1
2 π−wΓ (w)Γ

(
s + w − 1

2

)
L

(
Fψ,χ ,G; s, w

)
. (45)

So far we have that both sides of (43) are absolute convergent and identical on the
region given in Proposition 3. Our next result establishes the holomorphic continuation of
L(Fχ,ψ ,G; s, w) to a larger region.

Proposition 4 Let F(Z), G(Z), χ and ψ be as in Proposition 3.
Then L(Fχ,ψ ,G; s, w) admits a holomorphic continuation to the region of C

2 determined
by the inequalities Re(s) > 1, Re(w) > − 1

2 .
In particular, the completed Dirichlet seriesΛ(Fχ,ψ ,G; s, w) introduced in (2) admits a

holomorphic continuation to the same region and the series Λ̃(Fχ,ψ ,G; s, w) introduced in
(3) admits a holomorphic continuation to to the region Re(s + w) > 1/2, Re(w) > −1/2
with w �= 0.

Proof Let R be the GL2(Z)-fundamental domain in P known as Minkowski’s reduced
domain. Since Γ 0

0 (M, N ) has finite index in the group SL2(Z), there is a positive integer ν
and matrices A j such that GL2(Z) = ∪νj=1 A jΓ

0
0 (M, N ). Then ∪ j R[A j ] is a Γ 0

0 (M, N )-
fundamental domain in P . Consider

C =
{(

t A t AB
0 A−1

)
∈ Sp2(Z) | A ∈ GL2(Z)

}
.

Clearly, there exists a fundamental domain V ′ for the action of C on H2 such that Y ∈ R
whenever Z ∈ V ′. Moreover, C = ∪νj=1C(N ,M)γA j , where γA j =

(t A j 0
0 A−1

j

)
. Hence, the

integral in the left hand side of (43) is equal to

ν∑
j=1

∫
H2/C

Fχ,ψ(γA j Z)G(γA j Z)Eχ2ψ2

(
Y [A j ]; s,−s − w − 3

2

)
(det Y )−3d XdY (46)

for Re(s) > 1. Next we prove that the left hand side of (43) is absolute and locally uniform
convergent using the integrals in (46). Let Re(s) = r, Re(w) = t and pick j in {1, 2, . . . , ν}.
If r > 1 then

∣∣∣Eχ2ψ2

(
Y [A j ]; s, w

)∣∣∣ ≤
∑

A∈SL2(Z)/Γ∞
p−r,−t (Y [A]).
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As shown in [13, p. 143], there exists a real constant C (which depends locally on s, w but
is independent of Y ∈ R) such that the last series is bounded by Cp−r,−t (Y ). Thus

∫
H2/C

∣∣∣Fχ,ψ(γA j Z)G(γA j Z)Eχ2ψ2

(
Y [A j ]; s, w

)
(det Y )−3

∣∣∣ d XdY

≤ C
∫

H2/C

∣∣∣Fχ,ψ(γA j Z)G(γA j Z)
∣∣∣ p−r,−t (Y )(det Y )−3d XdY. (47)

Let us write ||H(Z)|| = ∑
T |a(T )e(T Z)| for any H(Z) = ∑

T a(T )e(T Z) and
Γ 2(M2 N 2) for the principal congruence subgroup of level M2 N 2 in Sp2(Z). Choose also
matrices γ1, γ2, . . . , γµ such that Sp2(Z) = ∪µj=1Γ

2(M2 N 2)γ j .

Since Fχ,ψ(Z) is a Siegel cusp form of weight k and trivial character on Γ 2(M2 N 2),
the function F̃(Z) = ∑µ

j=1 Fχ,ψ(Z)|k[γ j ] is a Siegel cusp form of weight k and trivial

character on Sp2(Z). In particular, there are positive real numbers c1, c2 such that ||F̃(Z)|| ≤
c1e−c2tr(Y ) for all Z in H2 with Y in R (see a proof of this fact in [9, p. 57]). Hence

|Fχ,ψ(Z)| ≤ ||Fχ,ψ(Z)|| ≤ ||F̃(Z)|| ≤ c1e−c2tr(Y )

for all those Z . Similarly, for any matrix γA j the map Fχ,ψ(γA j Z) = ±Fχ,ψ(Z)|k[γA j ] is a

Siegel cusp form of weight k and trivial character over γ−1
A j
Γ 2(M2 N 2)γA j = Γ 2(M2 N 2).

Thus the same argument yields the inequality |Fχ,ψ(γA j Z)| ≤ c1e−c2tr(Y ) for all Z in H2

with Y in R. From these facts and the corresponding inequality for |G(γA j Z)|, we conclude
the existence of positive real numbers c1, c2 such that

|Fχ,ψ(γA j Z)G(γA j Z)| ≤ c1e−c2tr(Y ) (48)

for all j = 1, 2, . . . , ν and all Z in H2 with Y in R. Now we use (46), (47) and (48) to get
the existence of positive real numbers C and c2 such that

∫
H2/C(N ,M)

∣∣∣∣Fχ,ψ(Z)G(Z)Eχ2ψ2

(
Y ; s,−s − w − 3

2

)
(det Y )−3

∣∣∣∣ d XdY

≤ C
∫

H2/C
e−c2tr(Y ) p−r,r+t (Y )(det Y )−

3
2 d XdY

= C
∫
R

e−c2tr(Y ) p−r,r+t (Y )(det Y )−
3
2 dY. (49)

Finally we recall the existence of a real constant C ′ such that det Y ≤ y1 y2 ≤ C ′ det Y for

all Y =
(

y1 v

v y2

)
in R. This fact and (49) imply that the absolute convergence of the integral

in the left hand side of (43) follows from the convergence of

∫
R

e−By1−By2 y−r
1 (y1 y2)

r+t− 3
2 dY ≤

∞∫
0

e−By1 y
t− 3

2
1 dy1

−y1/2∫
−y1/2

dv

∞∫
0

e−By2 y
r+t− 3

2
2 dy2

where B is some positive real number. The latter converges if r > 1 and t > − 1
2 .
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The convergence of (43) that we just proved and the holomorphicity of Eφ(Y ; s, w) on
the region Re(s) > 1 give the holomorphic continuation of the right hand side of (43). From
this we get the holomorphic continuation of L(Fχ,ψ ,G; s, w) to the given region. 	


6 A functional equation for L(Fχ,ψ,G; s,w)

Consider the function Λ̃
(
Fχ,ψ ,G; s, w

)
given in (3). From Eq. (42) one has

Λ̃
(
Fχ,ψ ,G; s, w

) =
∞∑

m=1

ψ(m)Λ̃( fm,χ , gm;w)m−s

on the region of convergence of L
(
Fχ,ψ ,G; s − w + 1/2, w

)
. A direct application of Theo-

rem 2 yields a functional equation.

Proposition 5 Let F(Z) and G(Z) be Siegel cusp forms of weight k over Sp2(Z). Let M
and N be relatively prime positive integers. Let χ (resp. ψ) be a Dirichlet character modulo
N (resp M) such that both χ and χ2 are primitive and non-principal. Then

Λ̃
(
Fχ,ψ ,G; s, w

) =
( Gχ√

N

)4

Λ̃
(
Fχ,ψ ,G; s, 2k − w − 2

)
. (50)

Next we give a functional equation for Λ
(
Fχ,ψ ,G; s, w

)
.

Proposition 6 Let F(Z) and G(Z) be Siegel cusp forms of weight k over Sp2(Z). Let M
and N be relatively prime positive integers. Let χ (resp. ψ) be a Dirichlet character modulo
N (resp. M) such that χ2ψ2 is primitive and non-principal. Then

Λ
(
Fχ,ψ ,G; s, w

) = (−1)k
Gχ2ψ2

M
Λ

(
Fψ,χ ,G; 1 − s, s + w − 1

2

)
. (51)

Proof Notice first that the combination of Propositions 2 and 3 yield

Ms(M N )−(k−s−w−3/2)(4π)−s−w+1/2π−s−wΓ (s)Γ (w)Γ
(

s + w − 1

2

)

× L(χ2ψ2, 2s)L
(
Fχ,ψ ,G; s, w

) = Gχ2ψ2√
M N

∫
H2/C(N ,M)

Fχ,ψ(Z)G(Z)

× E
χ2ψ

2

(
Y −1

[( 1
N 0
0 1

M

)]
; 1 − s, s + w − k + 1

)
(det Y )k−3d XdY. (52)

Now we focus on the Eisenstein series occurring in this integral. Since (det Y )Y −1 =
Y

[(
0 −1
1 0

)]
, we have

Eφ

(
Y −1

[(
1/N 0

0 1/M

)]
; s, w

)

= (det Y )s+2w
∑

A∈Γ 0
0 (M,N )/Γ

0∞(N )

φ(a1)p−s,−w
(

Y

[(
0 −1/M

1/N 0

)
A

])

= (det Y )s+2w
∑

B∈Γ 0
0 (M,N )/Γ

∞
0 (M)

φ(b4)p−s,−w
(

Y

[
B

(
0 − 1

M
1
N 0

)])
.
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For the last identity we used that conjugation by

(
0 N

−M 0

)
defines a group isomorphism

from Γ 0
0 (M, N ) onto Γ 0

0 (M, N ) which takes Γ 0∞(N ) onto Γ∞
0 (M). Notice also that

p−s,−w
(

Y

[(
0 − 1

M
1
N 0

)])
= N 2s(M N )2w p−s,−w

(
Y

[(
0 −1
1 0

)])
.

Hence

Eφ

(
Y −1

[(
1/N 0

0 1/M

)]
; s, w

)

= N 2s(M N )2w (det Y )s+2w
∑

B∈Γ 0
0 (M,N )/Γ

∞
0 (M)

φ(B)p−s,−w
(

Y

[
B

(
0 −1
1 0

)])

= N 2s(M N )2w (det Y )s+2w
∑

B∈Γ 0
0 (N ,M)/Γ

0∞(M)

φ(B)p−s,−w
(

Y

[(
0 −1
1 0

)
B

])
.

In particular, using (15) and the matrix I defined in (39) one can write (52) as

Gχ2ψ2√
M N

N 1−s(M N )w−k+2π−(1−s)Γ (1 − s)L(χ2ψ
2
, 2(1 − s))

×
∫

H2/C(N ,M)

∑
B∈Γ 0

0 (N ,M)/Γ
0∞(M)

(−1)k Fψ,χ (I Z)G(I Z)χ2ψ2(B)

×p−(1−s),w+2 (I mI Z [B]) (det Y )−3d XdY.

Let F be any fundamental domain of the quotient space H2/C(N ,M). Then its image
I(F) is a fundamental domain of the quotient space H2/C(M, N ). Consequently, the last
expression is equal to

(−1)k
Gχ2ψ2√

M N
N 1−s(M N )w−k+2π−(1−s)Γ (1 − s)L(χ2ψ

2
, 2(1 − s))

×
∫

H2/C(M,N )

∑
B∈Γ 0

0 (N ,M)/Γ
0∞(M)

Fψ,χ (Z)G(Z)χ
2ψ2(B)p−(1−s),w+2 (Y [B])(det Y )−3d XdY,

Next put γB =
(

t B 0
0 B−1

)
, use that Fψ,χ (Z) is invariant under∆(M, N ) up to the character

χ2ψ
2

and that G(Z) is Sp2(Z)-invariant to write the above as

(−1)k
Gχ2ψ2√

M N
N 1−s(M N )w−k+2π−(1−s)Γ (1 − s)L(χ2ψ

2
, 2(1 − s))

×
∫

H2/C(M,N )

∑
B∈Γ 0

0 (N ,M)/Γ
0∞(M)

Fψ,χ (γB Z)G(γB Z)p−(1−s),w+2 (I mγB Z) (det Y )−3d XdY

= (−1)k
Gχ2ψ2√

M N
N 1−s(M N )w−k+2π−(1−s)Γ (1 − s)L(χ2ψ

2
, 2(1 − s))

×
∫

H2/C∞(M)

Fψ,χ (Z)G(Z)p−(1−s),w+2 (Y ) (det Y )−3d XdY. (53)
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Finally, observe that the last integral is like the one in (44) and so equal to

(4π)−wπ−(s+w−1/2)Γ

(
s + w − 1

2

)
Γ (w)L

(
Fψ,χ ,G; 1 − s, s + w − 1

2

)
. (54)

Putting together (52), (53) and (54) one gets a functional equation for the multiple Dirichlet
series in (2). 	


Now we are ready to prove our main result.

Proof of Theorem 1 First we recall that L(Fχ,ψ ,G; s, w) is a holomorphic function on the
region

D1 =
{
(s, w) ∈ C

2 | Re(s) > 1, Re(w) > −1

2

}
.

After Propositions 5 and 6 it suffices to show that L(Fχ,ψ ,G; s, w) admits a holomorphic
continuation to C

2. To this end we observe that the functional equation (50) allows us to
define L

(
Fχ,ψ ,G; s, w

)
as a holomorphic function on

D2 =
{
(s, w) ∈ C

2 | Re(w) > −1

2
Re(s)+ k − 1

2
, Re(w) > 2k − 3

2

}
.

Similarly, the functional equation (51) allows us to extend L
(
Fχ,ψ ,G; s, w

)
to a holomorphic

function on D3 = {
(s, w) ∈ C

2 | 0 > Re(s), Re(w) > −Re(s)
}
.

Next, if we apply Eq. (50) first, (51) second, and (50) again, we get a functional equation
that continues L

(
Fχ,ψ ,G; s, w

)
to a holomorphic function on the region D4 ={

(s, w) ∈ C
2 | Re(s) > 1, 2k − 1 − Re(s) > Re(w), 0 > Re(w)

}
(here we use the hypo-

thesis k > 1). This process shows that we have a holomorphic function on the open set
D1 ∪ D2 ∪ D3 ∪ D4. Since the later is connected, we can extend L

(
Fχ,ψ ,G; s, w

)
to a

holomorphic function on its convex hull (see [6, p. 41]). That is C
2. 	


Notice that the two functional equations in Theorem 1 are of order two, and they do not
commute. In particular we can get new identities by composing them. If we define

˜̃Λ(Fχ,ψ ,G; s, w) = 2−2s
( π

M

)−2s+k−3/2 ( π

M N

)−2s+2k−3
Γ (s)

×Γ
(

s + w − 2k + 5

2

)
L(χ2ψ2, 2s + 2w − 4k + 5)

×Γ
(

s − w + 1

2

)
L(χ2ψ2, 2s − 2w + 1)

×Γ
(

s − k + 3

2

)
L(ψ2, 2s − 2k + 3)L

(
Fχ,ψ ,G; s − w + 1

2
, w

)
,

(55)

and apply consecutively to it the functional equations in (51), (50) and (51) again, we obtain

˜̃Λ (
Fχ,ψ ,G; s, w

) = Gχ2ψ2Gψ2χ2

M N

( Gψ√
M

)4 ˜̃Λ (
Fχ,ψ ,G; 2k − s − 2, w

)
. (56)

123



On characteristic twists of multiple Dirichlet series associated to Siegel cusp forms 367

7 A non-vanishing consequence

In this last section as an application of Theorem 1, we generalize a non-vanishing result in
[2]. Consider the multiple Dirichlet series (1) with χ equal to the principal character χ0. By
Theorem 3 the completed Dirichlet series Λ̃(Fχ0,ψ ,G; s, w)defined in (3) has a meromorphic
continuation to C

2 with a simple pole at w = k − 1/2 for every s with Re(s) >> 0. In such
a case,

Resw=k−1/2Λ̃(Fχ0,ψ ,G; s, w) = 2−1
∞∑

m=1

ψ(m) < fm, gm > m−s . (57)

This is the series studied in [11,12]. If we put

D(F,G, ψ; s, w) = π−2w+k−3/2Γ (w)Γ

(
w−k+ 3

2

)
ζ(2w−2k + 3)˜̃Λ (

Fχ0,ψ ,G; s, w
)
,

we get a generalization of (57). Indeed,

D(F,G, ψ; s, w) = 2−2s
( π

M

)−4s+3k−9/2
Γ (s)Γ

(
s + w − 2k + 5

2

)

× L(ψ2, 2s + 2w − 4k + 5)Γ

(
s − w + 1

2

)
L(ψ2, 2s − 2w + 1)

×Γ
(

s − k + 3

2

)
L(ψ2, 2s − 2k + 3)

∞∑
m=1

ψ(m)Λ̃( fm, gm;w)m−s .

Furthermore, from equation (56) one gets

D(F,G, ψ; s, w) =
( Gψ√

M

)4 ( Gψ2√
M

)2

D(F,G, ψ; 2k − s − 2, w).

Using this identity and arguing as in the proof of Theorem 2 in [2] with the series

L(Fχ0,ψ ,G; s, w) =
∞∑

m=1

ψ(m)L( fm, gm;w)m−s

instead of (57) for fixed w with Re(w) >> 0 one obtains Corollary 1 in the introduction,
which is a direct generalization of Theorem 2 in [2].
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