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Abstract

In this thesis we consider the complexity of finding subdivisions ofpolytopes
and polytope complexes with certain extremal properties. Subdivisions will

include dissections (subdivisions into simplices with vertices among the poly-

tope vertices such that no two simplices intersect in their relative interiors)
and triangulations (dissections that form a simplicial complex). Extremal will

always mean having a minimal or maximal number of full-dimensional sim¬

plices.

In the first part we consider minimal subdivisions. The main result is that it

is NP-haxd to find the minimal triangulation of3-dimensional polytopes. We

also investigate the relations of minimal triangulations, minimal dissections

and minimal triangulations using additional interior points in this context.

In the second part we consider maximal triangulations. The problem offinding
a maximal boundary triangulation over all realizations ofa polytope, i.e. of all

polytopes having the same combinatorial face structure, will turn out very

hard, as hard as solving systems of polynomial equations and inequalities —

at least iVP-hard.

Using the same techniques we were also able to find interesting results about

the realization spaces of polytopes: There are 4-polytopes any realization of

which has a certain polygon as a face, and the shape of this polygon is pre¬

scribed up to projective equivalence. We will show that this result is best

possible in some ways and extend it to higher dimensions.
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Zusammenfassung

Diese Arbeit behandelt die algorithmische Komplexität des Problems, gewisse
extremale Unterteilungen von Polytopen und Polytopkomplexen zu finden.

Die Unterteilungenumfassen simpliziale Zerlegungen (Unterteilungen der Poly¬

tope in Simplizes, deren Ecken auch Ecken der Polytope sind, sodass sich nie

zwei Simplizes im relativen Inneren schneiden) und Triangulierungen (sim¬

pliziale Zerlegungen, die einen Simplizialkomplex bilden). Extremal heisst

für uns eine minimale oder maximal Anzahl von volldimensionalen Simplizes.

Der erste Teil ist minimalen Zerlegungen gewidmet. Als Hauptergebnis zeigen

wir, dass es NP-schwer ist, die minimal Triangulierung eines 3-dimensionalen

Polytops zu finden. Ausserdem untersuchen wir die damit zusammenhängen¬
den Beziehungen von minimalen Triangulierungen, minimalen simplizialen

Zerlegungen und minimalen Triangulierungen, die zusätzliche innere Punkte

verwenden. Dabei wird klar werden, wie stark die Annahme eines Simplizialkom-

plexes in diesem Zusammenhang ist.

Im zweiten Teil beschäftigen wir uns mit maximalen Triangulierungen. Das

Problem, maximale Triangulierungen des Polytoprands über alle Realisierun¬

gen zu finden, d.h. wenn wir alle Polytope mit derselben kombinatorischen

Seitenstruktur betrachten, stellt sich als sehr schwer heraus, so schwer, wie

es ist ein System von Polynomgleichungen und -Ungleichungen zu lösen —

mindestens NP-schwer.

Wir benutzen die gleichen Techniken dazu, weitere Fragen in der Theorie der

Realisationsräume von Polytopen zu beantworten. Zum Beispiel gibt es 4-

dimensionale Polytope, die in jeder Realisierung ein gewisses Polygon als

Seitenfläche haben, und diese Seitenfläche wird in jeder Realisierung bis auf

projektive Äquivalenz die gleiche Form haben. Wir werden zeigen, dass dieses

Resultat aufgewisse Art bestmöglich ist, und es aufhöhere Dimensionen ve¬

rallgemeinern.
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... so I figured out what you gotta do, man, every time you're lookin'

for a piece of action and you ain't gettin' that, man, you know what you

gotta do, baby, you better try harder ...

Janis Joplin
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Chapter 1

Introduction

A general paradigm in algorithmic mathematics is the decomposition of com¬

plex structures into smaller pieces - often it is easier to handle many small

objects than one big one. Think ofnumerical integration where shapes are ap¬

proximated by a collection ofcubes, oftopology where topological spaces are

broken down into cell complexes in order to compute topological invariants,
or ofalgebra where exact sequences are applied to get a computational handle
on groups or other structures.

The subdivisions ofpolytopes into simplices is an incarnation ofthis paradigm.
We study the following type of subdivisions:

Definition 1.1 A triangulation ofa d-dimensional polytope P is a collection

T ofd-dimensional simplices such that

1. the vertices ofthe simplices in T are among the vertices ofP,

2. the union ofthe simplices in T equals P, and

3. the intersection of any two simplices in T is a face of both simplices

(which is possibly empty).

The size ofa triangulation is the number ofd-simplices it contains.

Observe that, if the dimension is at least 3, polytopes can have triangulations
with different sizes (see Figure 1.1).

In this thesis we study minimal and maximal triangulations, i.e. triangulations
whose size is minimal or maximal among all triangulations of the polytope.

3



4 Chapter 1. Introduction

Figure 1.1: Two triangulations of the bipyramid over the hexagon having

sizes 6 and 8, respectively

1.1 Applications of Optimal Triangulations

We give now a brieflist ofapplications ofminimal and maximal triangulations

in various fields:

• One standard method for the computation of the volume of a polytope

uses a triangulation since the volume ofa simplex is easily expressed as

a determinant. It is conceivable that triangulations with a small number

of simplices help in keeping down the computation time ofthe volume.

Note that the volume computation is #P-hard if the dimension is part

ofthe input [24].

• Maybe the first impulse to study minimal triangulations came from the

approximation offixpoints ofcontinuous maps. In economics and game

theory market equilibria are computed using fixpoints. Efficient algo¬
rithms for approximate fixpoints exploit the combinatorial structure ofa

suitable triangulation of the domain of the map [59]. These algorithms

are very sensitive to the triangulation used since they are incremental

and move from simplex to simplex. One measure for the suitability of

a triangulation is the number of simplices used. The cube, while not

the only interesting example, is particularly interesting: Stacking tri¬

angulated cubes may give rise to triangulations of unbounded or large

regions in euclidean space. The problem of finding the minimal trian¬

gulation of the d-cube has been extensively studied, the answer is only
known up to d = 7 [34], other than that only non-matching upper and

lower bounds are known [19, 33,41,56].



1.1. Applications of Optimal Triangulations 5

• Closely related to this is the area of mesh generation with its applica¬
tions in finite element methods [9]. Finite element methods have proved
indispensable for physical simulation. These methods discretize the

simulated domain—for example, the air around a wing—by dividing
it into many small "elements," like triangles or tetrahedra. The goal
of these methods is then the approximation of solutions for differential

equations by only considering local interactions within one simplex or

between adjacent simplices in the mesh (the triangulation).

Also in simplicial meshes suited for finite element methods the trian¬

gulation plays an important role in the performance of the method. A

small number of simplices will certainly help in keeping the number of

computations down. However, besides size of the triangulation other

measures are important, for example the concrete shapes of the tetra¬

hedra. There are a number of other measures of a triangulation whose

optimization will warrant good performance of the application, these

include a small number of "slivers" (long and thin simplices that in¬

troduce numerical instabilities), minimizing the largest dihedral (most
obtuse) angle (also causing instabilities), minimizing the total length of
interior edges etc.

• Understanding minimal triangulations of convex polytopes is also re¬

lated to the problem of characterizing the /-vectors of triangulations
of balls and polytopes (see open problems in [11]). In fact, the study
of minimal triangulations of topological balls and of polytopes found

an application in the calculation of maximum rotation distance of bi¬

nary trees. Sleator et al. [55] use a nice volume argument in hyperbolic

space which links the size of a minimal triangulation via a universal

lower bound on the hyperbolic volume of a simplex to the overall vol¬

ume of special polyhedra which turns out to be linear in the number of

vertices.

• Triangulations also play an important role in the classification of real

algebraic curves. In fact, by a powerful combinatorial technique due

to Viro ([35], see also [50]) it is possible to construct real algebraic

curves, so-called T-curves, whose topological shape is determined by a

triangulation of the integer points in a given polytope. Maximal trian¬

gulations correspond in this framework to particularly interesting topo¬

logical types.
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1.2 The Results in this Thesis

One of the main goals in our research was to determine the complexity of

finding minimal or maximal triangulations of convex polytopes. The compu¬

tational geometry literature has several articles dealing with polynomial algo¬

rithms for finding triangulations ofoptimal size [2,28]. In particular, Bern and

Eppstein asked in 1992 whether there is a polynomial-time algorithm to com¬

pute a minimal triangulation ofa 3-polytope (Open Problem 12 in Section 3.2

[9]). We will prove that such an algorithm cannot exist unless P = NP.

Extremal Triangulations are not Invariants of the Face Lattice

The first question which was anwered in this context was whether the mini¬

mal or maximal triangulations are invariants ofthe face lattice ofa 3-polytope,
i.e. if different coordinatizations might have different minimal or maximal tri¬

angulations. In dimension 2 all convex n-gons have only triangulations ofsize

n — 2 and all ofthem are present in all coordinatizations. Two polytopes with

the same oriented matroid (i.e. with the property that all simplices spanned by
d + 1 vertices have the same orientation) have the same triangulations [12].

This question is therefore a reformulation ofthe question whether the extremal

triangulation solely depends on the face lattice or whether interior oriented

matroid information is necessary. This question is of course interesting when

trying to design algorithms tofind small triangulations.

In three dimensions this was known for maximal triangulation: the regular 3-

dimensional cube has a maximal triangulation of size 6 while a perturbation

gets it up to 7 tetrahedra (see Chapter 4).

For minimal triangulations Richter-Gebert and independently Brehm solved

this problem by supplying the polytope in Figure 1.2: This polytope has two

vertex-edge chains on the boundary, i.e. sequences of vertices in which con¬

secutive vertices are joined by edges, such that all vertices of one chain are

joined to the two end vertices of the other and vice versa. These vertex-edge

chains all of whose vertices are joined to exactly two other vertices have a

very powerful property if there are only few vertices outside the vertex-edge
chain: Any small triangulation must use the diagonal connecting the two ver¬

tices. Ifthe two pairs of end points are coplanar this is not possible, ofcourse.

In Chapter 2 we will show that in this case the minimal triangulation has 10

tetrahedra, but if the vertex-edge chains are moved a bit apart (such that their

convex hulls do not meet) then both diagonals can be used and a minimal

triangulation uses 9 tetrahedra.
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Figure 1.2: Two coordinatizations ofthe 7-cabbage which have minimal tri¬

angulations ofsizes 10 and 9

Theorem 1.2 The minimal size ofa triangulation ofa convex 3-polytope is

not an invariant oftheface lattice:

1. There is a simplicial convex 3-polytope with 10 vertices for which the

minimal number of tetrahedra possible in a triangulation depends on

its coordinates.

2. The example is smallestpossible in dimension and number ofvertices.

The proof appeared in [5], we present it in Chapter 2.

Minimal Dissections and Triangulations using Interior Points

The power ofthe vertex-edge chains spawned the solution of other problems
concerning minimal subdivisions generalizing triangulations. Relaxing the

face-to-face condition in the definition of triangulations we get the notion of

dissections: a subdivision of a polytope such that any two simplices must not

meet in their interiors, but not necessarily in common faces (see Figure 1.3).

A natural question was whether dissections could have smaller size than min¬

imal triangulations. Independently Böhm [14] and Gritzmann and Klee [32]
raised this issue. As pointed out in Section 8.4 of [32], this question is rel¬

evant in the study of complexity classes of basic problems in computational

convexity. The answer is yes:

Theorem 1.3 There is afamily ofpolytopes P^ss (m an integer parameter)
allowing a dissection which is smaller than every triangulation ofP^ss. The

gap is linear in the number ofvertices.
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%,

Figure 1.3: A dissection ofthe octahedron which is not a triangulation

Also we can relax the notion of triangulation by allowing the simplices hav¬

ing other vertices than just the polytope vertices, namely additional interior

points. These are often called Steiner points. We refrain from this notion

as it is confusing with the original meaning of Steiner point (which refers to

the additional points in a special problem, namely finding a spanning tree of

minimal total length ofpoints in the plane using additional vertices).

Could a triangulation using additional interior points have fewer tetrahedra

than a triangulation without interior points? This question was posed several

times [14, 20, 32, 34]. It reminds of the fact that Delaunay triangulations of

point sets can have smaller complexity when throwing in more points. (No¬

tice that Delaunay triangulations are almost never minimal triangulations. We

come back to this issue when we talk about approximations.) Again, the an¬

swer is yes.

Theorem 1.4 1. There is afamily ofpolytopes P^1 allowing a triangu¬

lation using an interiorpoint which is smaller than every triangulation

ofP1 not using interior points. This gap is linear in the number of

vertices.

2. Even more, the gap and the minimal number ofused interior vertices

can be prescribed: Given two numbers h > 1, k > 1 there is a simpli-
cial convex 3-polytope P such that every triangulation ofP using less

than h interior points has at least k tetrahedra more than a triangula¬
tion ofP with h suitably chosen interior points.

The proofwhich appeared in [5] can be found in Chapter 2.
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Finding Minimal Triangulations is NP-hard

Let us make a slight digression to non-convex polytopes: For non-convex

polyhedra a triangulation cannot always be found. As an example we note

the Schönhardt polytope [9, 42, 51, 52] which will play an important role in

the sequel. It is obtained by twisting the top face of a triangular prism in

a clockwise direction (see the first transformation in Figure 1.4). Ruppert
and Seidel [51] showed that it is NP-hard to decide if a polyhedron can be

triangulated. (Note however that every polyhedron can be triangulated if one

allows the simplices to have vertices other than the polytope vertices [9, 16,

17].)

Now consider vertex-edge chains patched to the sides ofthe Schönhardt poly-

tope; we call the resulting convex polytope cupola (see the second transfor¬

mation in Figure 1.4). We can construct polytopes from this polytope which

Figure 1.4: Patching the sides of a Schönhardt polytope with vertex-edge
chains we obtain the cupola, glued to a biggerpolytope it has theproperty that

the vertex triangulating the topface must lie in a special cone—the visibility
cone

have a remarkable property in every minimal triangulation: The fourth point
of the tetrahedron which triangulates the top face has to lie in a special cone,

the visibility cone. Furthermore, we are able to prescribe the visibility cones

at will. Also we can glue many cupolas to one frame polytope and get many

restrictions of points triangulating some boundary triangles lying in specified

visibility cones.

These observations turn out to be the decisive ingredients in the proofofNP-

hardness of finding the minimal triangulation of 3-polytopes. Define the fol¬

lowing decision problem:
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MlNTRIANG(d)

Given: A d-dimesional polytope P and a natural number K

Question: Is there triangulation ofP with less than K simplices?

Theorem 1.5 MinTriang(3) is an NP-completeproblem.

We prove iVP-completeness by giving a polynomial transformation from the

well-known Satisfiability problem:

Satisfiability (SAT)

Given: A logical formula / consisting ofc logical clauses over v

variables

Question: Is there an assignment oftrue/false to the variables which

satisfies all clauses?

Given such a logical formula / we will construct a 3-dimensional polytope,

our so-called logicalpolytope Pf and a number Kf which will admit a trian¬

gulation using less than Kf tetrahedra if and only if the formula / admits a

satisfying truth assignment. This construction will be such that the encoding

length ofthe vertex coordinates ofthe polytope are bounded by a polynomial
in c and v. The proofappeared in [6]. We give it in Chapter 3.

The corresponding decision problems for minimal dissections and minimal

triangulations are:

MlNDlSSECT(d)

Given: A d-dimesional polytope P and a natural number K

Question: Is there a dissection ofP with less than K simplices?

MinTriangIP(<2,Z)

Given: A d-dimesional polytope P and a natural number K

Question: Is there a triangulation ofP using at most I interior points
with less than K simplices?

Since the vertices of logical polytopes will be in general position, it does not

have dissections which are not triangulations, hence MinDissect(3) is also

ATP-complete. By a supplementary construction on top ofthe logical polytope
we will also be able to show the result for triangulations using a specified
maximum number I of interior points, MinTriangIP(3, /) is TVP-complete
if/ is not part ofthe input.

There are other interesting conclusions from this theorem. First of all, the

hardness of the decision problem implies the hardness of the optimization
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problem: If there was a polynomial algorithm which finds the minimal trian¬

gulation (dissection) ofthe polytope P/ then we could also determine whether

this triangulation (dissection) is smaller than the number Kf. This proves that

it is NP-hard to find the minimal triangulation (dissection) of a polytope.

Second, these completeness and hardness results can be extended to polytopes
of any fixed dimension > 3: Taking the pyramid over a polytope P results in

a polytope Ppyr of one dimension higher. This polytope has the property
that each triangulation (dissection) consists of simplices which are pyramids
over simplices in the original polytope P. Moreover, these lower-dimensional

simplices form a triangulation (dissection) of P. Hence the triangulations

(dissections) ofP are in a size-preserving one-to-one correspondence with the

triangulations (dissections) of P. Thus, it is at least as hard to find the size of

the smallest triangulations in four dimensions as it is in three. Repeating this

pyramid construction a sufficient number of times, adding a new dimension

each time, we have the following corollaries (the third result was recently
obtained in [45] via a direct transformation of3-SAT):

Corollary 1.6 /. MlNTRlANG(d), MlNDlSSECT(d), andMmTRlAMG(d, I)
are NP-completefor all d > 3 and I > 0 (d and I are not part ofthe

input).

2. Finding the minimal triangulations (dissections) ofpolytopes infixed
dimension d is NP-hardfor all d>3.

3. Finding the minimal triangulations (dissections) of the boundaries of

polytopes infixed dimension d is NP-hardfor all d > 4.

4. Fix a number I. Finding the minimal triangulation of 3-dimensional

polytopes using at most I interiorpoints is NP-hard.

The proof can be found in Chapter 3.

Notice that Corollary 1.6.4 is not really what one wants: It would be inter¬

esting to know whether finding the minimal triangulation using an arbitrary
number of interior points is also hard. We strongly conjecture this. This is an

open problem.

The result also generalizes from realized polytopes to matroidpolytopes [12].
This is so since every polytope gives rise to a matroid polytope (computable
in polynomial time) and the triangulations of the two are in 1-to-l correspon¬

dence.

Corollary 1.7 For dimensions 3 and higher computing a minimal triangula¬
tion ofa matroidpolytope is NP-hard
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Once the hardness of a problem is established the natural question is for ap¬

proximations. First notice that Delaunay triangulations are a good approxi¬
mation since they have quadratic worst-case complexity [30] which as bad as

it gets: the upper bound of the size of a triangulation is 0(n L(d+1)/2J) [49].

But the so-called pulling triangulation [39] is an easy 2-approximation can

be computed in time n log n. It is obtained by singling out one vertex p of

the polytope, triangulating all facets not containing p. Then the tetrahedra ob¬

tained as the convex hull of the triangles and p provide a triangulation. The

size of the triangulation is bounded by the size of the boundary triangulation
which is a complete graph and therefore In — 4. On the other hand each tri¬

angulation has at least size n - 3 [49]. Recently, Chin et al. [18] were able to

improve the approximation ratio to 0(2 - 1/ yjn).

There are however classes of polytopes for which it is easy to give minimal

triangulations. One is the class of stacked polytopes. These are polytopes
that can be obtained from a d-simplex by attaching one d-simplex after the

other to it, always maintaining convexity [5,49]. Recently [60] this class was

somewhat enlarged using vertex-edge chains.

Note that the question of finding maximal triangulations is only partly an¬

swered. If the dimension part of the input the problem was recently shown to

be #P-hard [24].

Extremal Triangulations over all Realizations

Since minimal and maximal triangulations are not invariants ofthe face lattice

it is natural to ask for the minimal or maximal triangulations among all real¬

izations ofa polytope. (A realization is a polytope with the same face lattice.)
In two dimensions this is again easy since all triangulations are present in all

realizations of a polygon. In three dimensions this is basically open.

What makes this problem intrinsically different is that the face lattice does

not determine the oriented matroid ofthe polytope vertices. The oriented ma¬

troid encapsulates exactly the combinatorial information which is necessary

to decide if a collection of simplices is a triangulations and which is not. This

seems to suggest that in order to compute extremal triangulations an algorithm
has to look at all realizations ofthe polytope.

In three dimensions there might be some hope: The spaces of all realizations

of a polytope is simply connected, this is a consequence ofthe proof Steinitz'

theorem which gives a combinatorial characterization of all face lattices of

convex 3-polytopes [61]. The proof is constructive, so it is possible to find

at least one realization of a given face lattice. Another approach to find a
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realization uses "stress graphs" [46].

On the other hand, Richter-Gebert [46] has shown that the space of all re¬

alizations of a 4-polytope can be arbitrary complicated, as complicated as a

solution set of any polynomial equation and inequality system. For this uni¬

versality theorem for polytopes he proves that the problem of finding a real¬

ization of a face lattice is at least as hard as the problem offinding a solution

to a system ofpolynomial equations and inequalities, the existential theory of
the reals (ETR).

Existential Theory of the Reals (ETR)

Given: A system of polynomials {fj} and {gk} with algebraic
coefficients in variables xi,...,xn

Question: Is there an assignment ofreal numbers to the variables x i

which satisfies all equations fj (x\,..., xn) = 0 and all

inequalitiesgk{xi,...,xn) < 0?

It is unknown whether the existential theory of the reals is in NP. It is in

PSPACE [15], but PSPACE-hardness is also not known. However, it is

easy to see that ETR is at least NP-haid (simple transformation from the SAT

problem).

We will use the ETR to show that the following problem is hard:

MAXTRIANGÖFL(d)

Given: The face lattice of a d-dimensional polytope P and a

number K

Question: Is there a realization ofP which admits a boundary trian¬

gulation using more than K d-simplices?

Theorem 1.8 MaxTriangôFL(5) is as hard as the existential theory ofthe

reals, hence at least NP-hard.

We use Richter-Gebert's universality construction to encode a 5-polytope most

ofwhose facets are pyramids over pyramids over polygons. These 4-polytopes
have the same triangulations in every realization, so it is easy to triangulate
them maximally. (The triangulations of a pyramid are in 1-to-l correspon¬

dence with the triangulations ofthe ground face. Hence all triangulations of a

pyramid over a pyramid over a polygon are present in all realizations.)

However, in our construction one facet is a pyramid over a hexagonal prism.
Our universality construction ensures that only two realizations of this prism
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are possible, one with a large maximal triangulation (17 tetrahedra) and an¬

other with a smaller maximal triangulation (14 tetrahedra). Also a given in¬

stance of the ETR (a so-called driving system of polynomial equations and

inequalities) is encoded in the polytope such that the large triangulation can

be attained ifand only ifthe instance has a solution. So by finding the maximal

boundary triangulation over all realizations it is possible to decide whether the

driving ETR instance has a solution.

This result is interesting in two ways: First, it is the first triangulation result

which takes into account the space of all realizations ofa polytope. Second, it

is one of the first applications ofthe universally theorem for polytopes.

Naturally, finding minimal triangulations over all realization is also interest¬

ing. We strongly conjecture that they are very hard, as well. Unfortunately,
due to the reliance of our proof on maximal triangulations ofprisms this con¬

struction does not just carry over to minimal triangulation: all realizations of

a prism over a polygon have the same minimal triangulations [25].

Prescribing Exact Shapes of Faces of Polytopes by their Face Lattice

In the years before the universality theorem for polytopes several researchers

had found examples of polytopes whose face lattices put restrictions on the

shape of some oftheir faces. Not all realizations of these faces could be com¬

pleted to a realization ofthe big polytope. The universality theorem also gen¬

erates instances of this category of polytopes that prescribe some property to

a face: in every realization the slopes ofthe edges ofa polygonal face encode

a solution to a system ofpolynomial equations and inequalities.

The question now was whether it is possible to prescribe the exact shape of a

face in all realizations. With exact shape we mean that in every realization the

face is determined up to a projective transformation. This is all one can ask

for since projective transformations of a polytopes induce projective transfor¬

mation of all oftheir faces and leave the face lattice invariant. We can give an

affirmative answer for faces in dimensions d > 2:

Theorem 1.9 1. Let G be a d-dimensional (realized) polytope with alge¬
braic vertex coordinates. Then we can construct a d + 2-dimensional

polytope P which has aface G which in every realization is the image

ofaprojective transformation ofG.

This result is especially interesting since it presents a nice interface for further

results in this area ofrealization spaces in view ofthat the universality theorem

itself always seems kind ofhard to handle as a basic building block.
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We conjecture that d-faces of d + 1-polytopes can not be prescribed. While

in dimension d = 2 this is a consequence of Steinitz' theorem, in higher
dimensions this is open.

1.3 Organization of the Thesis

In the first part of this thesis we talk about minimal triangulations (and dis¬

sections) of polytopes. In Chapter 2 we give the formal definitions of trian¬

gulations and dissections, supply the vertex-edge chain lemma and give ap¬

plication of this lemma. The results are mainly due to Richter-Gebert and

De Loera and independently Brehm. However, they present nice applications
of the key lemma (the proof of which is supplied by the author). The results

already appeared in a joint article [5]. Chapter 3 is dedicated to the proof that

MinTriang(3) and MinTriangIP(3, /) are ATP-hard. This construction

was mainly done by the author and is to appear in [6].

In the second part we talk about maximal triangulations and their behavior

under coordinate change as well as the prescribing ofthe shapes of faces. The

results are joint work of Richter-Gebert and the author. In Chapter 4 we give
an introduction to the concept of combinatorial polytopes and their realiza¬

tions, prescribing of properties, and to Richter-Gebert's universality theorem

for polytopes. A short appendix gives the prerequisites of the theory of pro¬

jective spaces we will use in the later chapters. In Chapter 5 we prove Theo¬

rem 1.9. Many of the techniques presented there we will reuse in Chapter 6

when we show that MaxTriangöFL(5) is hard.
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Chapter 2

Minimal Triangulations and

Dissections

2.1 Decomposing Polytopes Into Simplices

In this thesis we will consider three concepts of decomposing d-dimensional

convex polytopes into simplices (for an overview see also [39]). A dissection

ofa d-dimsional polytope P is a collection D ofd-dimensional simplices such

that

1. the vertices ofthe simplices in D are among the vertices ofthe polytope

P,

2. the union of the simplices in D is the polytope P, and

3. no two simplices in D intersect in their interior.

A triangulation T ofP is a dissection ofP with the additional condition that

any two simplices in T intersect in a common (possibly empty) face. One

could say equivalently that a triangulation is a dissection such that the sim¬

plices and their (iterated) intersections form a simplicial complex. Figure 2.1

shows a dissection of the octahedron. Note that the top left simplex and the

bottom front simplex meet in a two-dimensional set which is not a face to

either ofthem. Hence, this dissection is not a triangulation.

A triangulation of a d-dimensional polytope P using interior points is a col¬

lection T of d-dimensional simplices such that

19
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Figure 2.1: A dissection ofthe octahedron which is not a triangulation

1. the vertices ofthe simplices in T are contained in P,

2. any two simplices in T intersect in a common face, and

3. the union of the simplices in T is the polytope P.

The vertices of the simplices in such a triangulation fall of course in two

classes: the ones that are also vertices of the polytope and the ones that are in

the (relative) interior of (some face of) the polytope. Sometimes we will pre¬

scribe or bound the number ofthese vertices: we will speak of triangulations

using (at most) I interiorpoints.

In this thesis we are only interested in combinatorial data of these decompo¬

sitions, more precisely the size: The size of a triangulation (dissection / trian¬

gulation using interior points) is the number ofits (d-dimensional) simplices.

In dimensions greater than two different triangulations and dissections can

have different sizes: For instance, the bipyramid over the hexagon admits tri¬

angulations with six tetrahedra (join the six edges of the hexagon with the

vertical interior edge) and with eight tetrahedra (triangulate the hexagon and

join each triangle with the top and with the bottom apex), see Figure 1.1.

We will say that a dissection / triangulation / triangulation using interior points
is minimal I maximal ifits size is minimal / maximal among all dissections / tri¬

angulations / triangulations using interior points.

Some ofthe results in this thesis are (in hindsight) very easy to come by once

the main ingredients have been figured out. The proofs to these results present

a premium way into the subject: As they build on each other, we can get a
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Figure 2.2: A vertex-edge chain oflength 4

nice view on the key ideas that are also used in the more complex treatments

of Chapter 3.

2.2 Vertex-Edge Chain Lemma

We now present the lemma that showcases the main non-trivial effect we will

use in all the examples. The lemma shows that a certain substructure in the

face lattice of a polytope forces certain interior edges to appear in triangula¬
tions of small size.

Definition 2.1 Let Pbea not necessarily convex 3-dimensionalpolytope hav¬

ing thefollowingproperties:

1. It contains the following collection of triangular facets: (a,qi,qi+i),
and (b, qi,qi+i)for i = 0,..., m (seeFig. 2.2).

2. Thepoints qi are in convexposition.

3. All edges (qi, qf)for \i — j\ > 2 go through the interior ofP.

We say that a polytope satisfying the assumptions 1.-3. has a vertex-edge

chain q0,..., qm+\ of length m with diagonal (a, b).

Such a vertex-edge chain has a natural small triangulation consisting of the

tetrahedra spanned by the diagonal and consecutive vertices on the chain. We

cannot prove that this is a subtriangulation of every minimal triangulation

(since this is false). But we can prove that if the diagonal is not present in

the triangulation then we have a guaranteed lower bound on the size of the

triangulation.
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Lemma 2.2 Vertex-Edge Chain Lemma Let P be a polytope on n vertices

with a vertex edge chain of length m and T a triangulation ofP (possibly
with interior points) that does not use the diagonal (a, b). Then T uses at

least n + m — 3 tetrahedra.

This lemma creates the possibility to force the occurrence ofmany tetrahedra

when some interior edges are absent. The lemma is so useful because its local

assumptions (the vertex-edge chain on the boundary and the non-existence of

just one interior edge) have global effects (a relatively large triangulation).

Before we come to the proofwe state a lemma which links the number ofthe

tetrahedra ofa triangulation to the number ofinterior points and interior edges.
It follows that minimal triangulations are the ones using the smallest number

of interior edges. In the proof ofLemma 2.2 it will turn out to be much easier

counting interior edges than counting tetrahedra.

Lemma 2.3 Let P be a 3-polytope with n vertices. For a triangulation T of
P with riint interior points, the number of tetrahedra in T is related to the

number ofinterior edges e^t ofT by theformula:

\T\ = n - nint + eint - 3. (2.1)

Even though an easy consequence of the Euler formula for simplicial com¬

plexes, we list the proof for the sake of completeness.

Proof: The triangulation T defines a simplicial complex. Let e denote the

number of edges ofT on the boundary of P, t the number oftriangles ofT in

the boundary of P, and tint the number of interior triangles of T. Since P is a

topological ball the Euler formula implies:

n + nint - e - eint +t + tint - \T\ - 1 = 0.

Each tetrahedron has four triangular faces, so ifwe sum over all tetrahedra we

count all interior triangles twice, so

4|T| - t - 2tint = 0.

Using these two equations we can eliminate tint, we obtain

n + rum -e- eint + -t + \T\ - 1 = 0 (2.2)

The vertices edges and triangles ofT on the boundary ofP define a complete

planar graph, therefore

e = 3n — 6

* = 2n - 4
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Substituting these two equations into Equation 2.2 gives the desired result. D

Notice that Lemma 2.3 is false for dissections since dissections are not in

general simplicial complexes. So in particular, this lemma represents a way to

distinguish dissections and triangulations.

Proof of Lemma 2.2: By Lemma 2.3 it suffices to show that T has at least

m interior edges. The proof is then complete since n int is a non-negative
number.

The proof proceeds by induction on the length m of the vertex-edge chain.

The claim is clearly true for m = 0. Fix a triangulation T of P.

Case 1: There is a qi for 1 < i < m which is not incident to an interior

edge in T. We now show how to invoke induction: A vertex qi untouched

by an interior edge belongs to the tetrahedra a^a = (a,qi-1,qi,qi+i) and

°i,b = (b,qi-i,qi,qi+i). This is so because the triangle (a,qi,qi+i) is in

some simplex, and if the fourth point is some other vertex besides qi-\ orb

we have an interior edge touching qi. Furthermore the fourth point cannot be

b since in this case the edge ab would be present. By chopping off these two

tetrahedra together with the vertex qi we can apply induction to guarantee that

the remaining triangulation T \ Gi,a,<Ti,b has at least m - 1 interior edges.

Together with the edge Cj_i^+i they account for m interior edges in T. Note

Figure 2.3: Chopping offvertex qi which is not incident to any interior edge

that possibly (çi_i, qi+i ) is now a non-convex edge. Invoking induction might
not be possible then. We have seen though that we do not use convexity ex¬

plicitly, but only that all edges incident to the qi which are not expressly on

the boundary are interior edges. This will carry on in Case 2. Hence there is

no problem with the induction.

Case 2: All qi, 1 < i < m, are incident to an interior edge in T. Now

we do not invoke induction, rather we will show the claim directly. We set

up a one-to-one (but not necessarily onto) map from the set {ci,..., qm} to

a subset of the interior edges that touch them: The vertices qi come along
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a polygonal curve in a canonical order which is reflected by their indices.

We mark or orient the interior edges q^ that touch a vertex qi as follows: If

v g {qo,..., qm+i}, we call the edge q^ special, otherwise we orient it from

smaller to larger index. For the vertices qi with special edges incident to them,

we map qi to one ofthose (see Figure 2.4.a). Ifa vertex qi has no special edges,
but has outgoing interior edges, we map it to the outgoing edge qiqk with the

smallest index k (see Figure 2.4.b). We are left with the case ofthose vertices

qi that have only incoming interior edges incident to qi. Consider the triangle

(a,qi,qi+i). It has to be in some tetrahedron ofT whose fourth point is bound

to be a qja with ja < i, otherwise qi enjoys the presence ofan incident special
or outgoing edge. Likewise (6, Ci, qi+i) is in a tetrahedron with fourth point

qjb with jb <i. Ifboth ja = jb = « -1, there can be no interior edges incident

to qi (see above), a contradiction to the case assumption. Let j be any ofja,

jb such that j < i - 1. Map qi to qjqi+i. See Figure 2.4.c.

qk
^

Qi

Qi y^^tfi+i

(a) ' (b) (c)
• v

Figure 2.4: Three ways ofmapping vertices to interior edges

We claim that the given map is one-to-one. If some vertex qi maps to the

special edge qjV, then necessarily i = j. There are potentially two vertices

that can be mapped to an interior edge qjqk with j < k: qj when qjqk is the

chosen outgoing edge of qj and qk-i, in case qk-i has only incoming edges.
In the latter case one of the tetrahedra (a,qj,qk-i,qk) and (b,qj,qk-i,qk)
has to be in the triangulation, and qj will be mapped to the smaller indexed

edge Çj<?A:-i- This is an interior edge since j < k — 2, so qj cannot also be

mapped to qjqk. The injectivity ofthe map is proven. D

In order to show the power ofthe key lemma we use it to give answers to some

ofthe initial questions.
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2.3 Consequences ofthe Vertex-Edge Chain Lemma

2.3.1 Dissections can be Smaller than Minimal Triangula¬
tion

Theorem 2.4 There is an infinitefamily ofpolytopes P^88 onn = 4 + 2m

vertices (m an integerparameter) allowing a minimal dissection ofsize 2m —

2, but the minimal triangulation ofP^ss has 3m + 1 tetrahedra.

Notice that the gap between minimal dissection and minimal triangulation is

minimal in the number ofvertices.

The construction will rely on the degeneracy of the constructed point config¬
uration - dissections of polytopes with vertices in general position are auto¬

matically triangulations.

Proof: We first show the construction ofP^88 which has a minimal dissec¬

tion using 6 tetrahedra and a minimal triangulation using 7 tetrahedra. It is

obtained as the convex hull of a square and two pairs of vertices, one on each

side of the square, which are aligned to the two diagonals of the square. The

smallest dissection is shown in Figure 2.5, it has six tetrahedra: In the top part

Figure 2.5: A polytope whose minimal dissection is smaller than the minimal

triangulation (dissection shown)

there are the three tetrahedra spanned by the diagonal pointing away from us

and the three edges on the top. Furthermore there are the three tetrahedra in

the bottom part using the diagonal going across from us.

On the other hand each triangulation has at least seven tetrahedra: We have

shown in Lemma 2.2 that a smaller triangulation (one with less than 8 + 2 —

3 = 7 tetrahedra would have to use both diagonals of the square (as did the

dissection). However, it is impossible to have both diagonals in a triangulation
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since they meet in a point which is a face to neither of them - the tetrahedra

would not form a simplicial complex.

Hence the triangulation in Figure 2.6 with seven tetrahedra is minimal and

larger than the minimal dissection.

Figure 2.6: A minimal triangulation ofthe polytope in Figure 2.5

This construction can be generalized in the following fashion: We start with

the square and build two vertex-edge chains of length m over its two diago¬

nals, one going in the direction of each diagonal. We obtain P^
**

: for in¬

stance in Figure 2.6 we were looking at P^188. The 2m+ 2 tetrahedra spanned

by the edges of the vertex-edge chains and the suitable diagonal ofthe square

make up a dissection ofP^ **. (This is also the smallest dissection since each

tetrahedron has two triangles ofP^** as facets, more cannot be achieved since

no vertex ofP^ss has degree 3.)

But since a triangulation cannot use both diagonals, by Lemma 2.2 it has to

use at least n + m - 3 = 3m + 1 tetrahedra. This bound is tight: it can

be achieved by a pulling triangulation: Choose all tetrahedra spanned by one

of the four vertices of the inner square (say v) and a boundary triangle not

incident to v. In Figure 2.6 v was chosen to be the vertex closest to the viewer.

D

Notice that the dissection p^lss with 6 tetrahedra and 2 interior edges also

proves that Lemma 2.3 cannot hold for dissections.

2.3.2 Face Lattice does not Suffice for Minimal Triangula¬
tion

The minimal size of a triangulation ofa convex 3-polytope is not an invariant

ofthe face lattice.
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Theorem 2.5 There is a simplicial convex 3-polytope with 10 vertices for
which the minimal number oftetrahedra possible in a triangulation depends
on its coordinates.

PROOF: Consider the polytope P = P3d*** which is obtained by erecting two

vertex-edge chains of length three over the two diagonals of a square (see the

previous section). Now perturb the rightmost vertex by a slight downward

movement and get the polytope P'. Figure 2.7 shows the minimal triangula¬
tion ofP' (9 tetrahedra). But this is only possible because the four vertices of

the tetrahedron in the middle are not coplanar. In the polyhedron P they are

coplanar, and Lemma 2.2 tells us that P has a minimal triangulation of at least

10 tetrahedra. By coning from any of the six-valent vertices we can obtain

such a triangulation. This proves the first part ofTheorem 1.2. Ü

Figure 2.7: Theface lattice ofthis polytope does not determine the minimal

triangulation

This polytope is indeed the smallest example with this behavior. The proof
can be found in Section 4 of [5].

Remark: In this case the degeneracy is not really necessary (as opposed to

the last section):

First, it is clear that the polytope P' can be perturbed such that its vertices are

in general position and such that its minimal triangulation is still 9.

Second, by pulling the rightmost vertex by a slight upward (followed by a

perturbation which removes all degeneracies, but leaves all simplex orienta¬

tions intact) we get a polytope P" which also has a minimal triangulation of

10. Here is the reason: A triangulation using 9 tetrahedra would have to use
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both diagonals, but by Lemma 2.3 it could not use more than these two inte¬

rior edges. However, the polytope has 16 triangles, so some tetrahedra in a

size-9 triangulation must have more than one of these triangles on its bound¬

ary. There is no three-valent vertex, so there can only be two exterior triangles
on each tetrahedron. If we look at all pairs of adjacent triangles and the edge
shared by them we can identify two cases: Either the edge is on the vertex-

edge chain and the tetrahedron is pierced by the "other" diagonal. This cannot

happen in a triangulation. Or the edge is ofthe form aqi and the opposite edge
in the tetrahedron is an interior edge. But we had assumed that there are only
two interior edges, the diagonals. So this is also impossible. Hence there is

no triangulation with 9 tetrahedra and the smallest triangulation is the pulling

triangulation from the last section with 10 tetrahedra.

2.3.3 Interior Points can make Minimal Triangulation Smaller

Theorem 2.6 There is a family of convex polytopes P1 allowing a trian¬

gulation using an interior point which is smaller than every triangulation of
P1 not using interior points. This gap is linear in the number ofvertices.

Proof: Consider a triangular prism. We mark one diagonal edge of each

quadrilateral face in a circular fashion (no two of the diagonals intersect) -

see Figure 2.8. Over each quadrangular face we construct a vertex-edge chain

of length m with the marked edge as diagonal. The vertices on the chains

are placed sufficiently low over the base triangle of the prism such that the

tetrahedron spanned by the top triangle and each of the points is pierced by
the corresponding diagonal (this is closely related to the construction of the

cupola from the Schönhardt polytope mentioned in the introduction which is

made concrete in the next chapter). We obtain the polytope P1-

The reader may verify that this is perfectly possible: First, errect a parabolic
curve connecting the two outmost vertices ofthe new vertex-edge chain. Then

identify a point on this parabola which lies below the intersection ofthis curve

with the plane spanned by the diagonal and its "opposite" vertex of the top

triangle. This point is low enough over the bottom triangle such that the the

tetrahedron spanned by the point and the top triangle intersects the interior of

the corresponding diagonal. Finally, place the points of the vertex-edge chain

on the parabola between the constructed point and the bottom triangle.

All three vertex-edge chains allow us to invoke Lemma 2.2: So if a triangu¬
lation does not use any of the marked diagonals it will have at least 4m + 3

tetrahedra (the polytope has 3m + 6 vertices). On the other hand, we claim



2.3. Consequences of the Vertex-Edge Chain Lemma 29

Figure 2.8: The polytope P1 - a triangular prism patched with three ver¬

tex-edge chains

that is impossible to have a triangulation which uses those three edges simul¬

taneously. The reason is that the top face must belong to a tetrahedron, and if

the fourth point is among the three vertices of the bottom triangle, the inter¬

section with one of the diagonals is not a face to both ofthem. Finally, if the

fourth point is a point of a vertex-edge chain, there is a bad intersection with

the corresponding diagonal by construction. Hence, every triangulation must

have at least 4m + 3 tetrahedra.

For a small triangulation ofP* using an interior point triangulate the vertex-

edge chains with the tetrahedra spanned by the diagonals and two consecute

chain vertices. The remaining triangular prism now has to be triangulated

using the marked diagonals. These diagonals split the quadrangular faces into

two triangles - the bondary of the prism is triangulated. Choose any point in

the interior ofthe prism and take all eight tetrahedra spanned by this point and

one of the triangles in the boundary of the prism. Hence we have 3m + 11

tetrahedra.

Putting it all together: For m > 8, our polytope P^* has a minimal triangu¬
lation which is larger than than the minimal triangulation using one interior

point. The gap is m - 8 = n/3 - 10 which is linear in the number n of

vertices.



30 Chapter 2. Minimal Triangulations and Dissections



Chapter 3

MinTriang(3) is Hard

3.1 Introduction

In the previous chapter we had glued vertex-edge chains to the three rectangu¬
lar sides of a prism. Even more powerful effects can be observed ifwe perturb
the vertices ofthe prism before the gluing. An appropriately perturbed version

of the prism (the Schönhardt polytope) is another main ingredient (next to the

vertex-edge chain). The patched version of this perturbed prism (the cupola)
will help us to prove that many interior points might be needed for a minimal

triangulation and that MinTriang is hard.

We introduce the non-convex Schönhardtpolytope [9, 38, 39, 42, 51, 52]. It

is a non-convex polytope obtained by twisting the top triangle of a triangu¬
lar prism in a clockwise direction (see the first transition in Figure 3.1) The

Figure 3.1: From prism to Schönhardtpolytope to cupola
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three quadrangular sides are then broken up and "bent in," thus creating the

non-convex edges. The resulting polytope is non-convex and it cannot be tri¬

angulated: Much like in the last section, whichever point we would choose as

fourth point ofthe tetrahedron having the top triangle as a face the tetrahedron

would not be completely inside the polytope - the non-convex edges are "in

the way."

Imagine the Schönhardt polytope part of a bigger polytope which stretches

below its bottom face. This non-convex polytope can only be triangulated if

the top triangle finds a fourth point with which it spans a tetrahedron which

in turn is completely inside the polytope. This fourth point has to lie in the

triangular cone defined by the faces adjacent to the top triangle as we will

show in the next section. This cone is called visibility cone.

Now we convexify the Schönhardt polytope by attaching three circular vertex-

edge chains opposite to the concavities. Thus, we create a convex polytope
that satisfies the hypothesis ofLemma 2.2, and that we will call a cupola (see
second transition in Figure 3.1 ). We can combine the properties ofvertex-edge
chains and of Schönhardt polytopes. Namely, in order to have a small triangu¬
lation of the whole polytope, the three diagonals ofthe Schönhardt polytope
inside the cupola have to be used. But then, the tetrahedron containing the

triangular top face of the Schönhardt polytope must not intersect the diago¬
nals. The fourth vertex of this tetrahedron will have to lie in the triangular

visibility cone we defined for the Schönhardt polytope. (This is only true if

the vertices of the vertex-edge chain are placed sufficiently low over the bot¬

tom triangle; in this case the tetrahedra spanned by these vertices and the top

triangle intersect the diagonals, thus cannot be used in a small triangulation.)

In summary, one can say that the convexified Schönhardt polytope - the cupola
- as part of a bigger polytope forces small triangulations to contain a tetrahe¬

dron spanned by the triangular top face and a fourth vertex in a special cone

determined by the Schönhardt polytope.

3.1.1 The Logical Polytope

In [51] Ruppert and Seidel used the Satisfiability problem (SAT, see p. 10)
to prove that it is NP-complete to decide whether a non-convex polyhedron
admits a triangulation. Their constructions used Schönhardt polytopes, and in

particular their visibility cones, to do the transformation. In our case, because

we need convexity and are talking about minimal (or at least small) triangu¬

lations, we glue cupolas, instead of Schönhardt polytopes. They are glued to

a bigger polytope along their bottom faces. We call this polytope the logical
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polytope since for each logical (SAT) formula there will be a logical polytope
which has a small triangulation if and only if the formula is satisfiable.

Similar to [51], we have variable cupolas and clause cupolas. The visibility
cones of the variable cupolas contain only two truth-setting vertices, one for

false and one for true. The visibility cones of the clause cupolas contain as

many literal vertices as there are literals in the logical clause. Each variable

must choose between a "true" or "false" value. Inside each clause at least

one variable will be chosen to be true (to satisfy the clause). We model these

logical choices by the geometric choices ofwhich vertex in the visibility cone

of a (variable/clause) cupola is used to triangulate the top face (see schematic

Figure 3.2). In addition, our polytope satisfies some blocking conditions: the

X false X true

| \
visibility cone

Figure 3.2: One ofthe vertices is used to triangulate the cupola's top face,
thus the choice between true andfalse

tetrahedron spanned by the top face of a clause cupola and a literal vertex

coming from a negated variable Xt will improperly intersect the tetrahedron

spanned by the top face of the cupola of variable Xi and the truth-setting

vertex corresponding to true (see Figure 3.3). In this way the choices made

for the truth values of the variables and for the literals satisfying the clauses

will be consistent.

In Section 3.3 we will give a detailed description of the logical polytope, of

its building blocks and their interplay. We will see why there is no small

triangulation if the logical formula is not satisfiable (relatively easy) and how
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variable cupola

X% l^^^^^ WB clause cupola

Xt = true

Figure 3.3: Not both: Negated literal ~>Xt triangulating its literal clause and

true triangulating variable Xt

to construct a small triangulation based on a satisfying truth assignment to the

variables ofthe logical formula (harder).

Still missing at this point is the construction of the logical polytope given a

logical formula. It is a priori not clear whether there is a polytope having the

properties of the logical polytope. For the polynomial transformation (from

SAT) however, we need to give an algorithm to compute the coordinates of

the logical polytope. The binary encoding length of the polytope, as well

as the running time of the algorithm, have to be polynomial in the encoding

length of the SAT instance. Each step of the construction will be polynomial,
this is a delicate point in the formal argument. We apply a sequence of these

constructions (polynomially many). The coordinates of the vertices of the

polytope are potentially singly exponential, but their binary encoding length
is guaranteed to be polynomial. Section 3.4 is dedicated to this task.

3.1.2 Minimal Triangulations Needing Many Interior Points

We will now briefly describe how we can apply the technique of cupolas to

showing that sometimes many interior points are necessary to get the minimal

triangulation.

Consider a 3-polytope having many (say k) cupolas. Suppose that the visi-
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bility cone of each cupola contains no other vertices of the polytope except

the vertices of the top triangle of the cupola and that visibility cones of differ¬

ent cupolas do not intersect. Assuming the vertex-edge chains of the cupola
is very long (m a very big number), only by placing interior points in each

visibility cone one can achieve a small triangulation. Hence the minimal tri¬

angulation of this polytope must use at least A; interior points. In Section 3.5

we will make this argument precise.

3.2 Schönhardt Polytope and Cupola

3.2.1 The Technique of Gluing

We recall the notion ofbeyond aface (see [61] p. 78): A point p is beyond a

face F ofa polytope P if it (strictly) violates all inequalities defining facets of

P containing F, but it strictly satisfies all other inequalities that define other

facets of P. The polytope Pbeyond f is the (closure of the) set of all points

beyond F (for a two-dimensional example see Figure 3.4). We denote by

Figure 3.4: The polytopes Pbeyond F and P\F

P \ F the polyhedron defined by all facet-defining inequalities that do not

hold with equality for all points in F. This is exactly P U Pbeyond f- In our

constructions we will often put one or more points beyond some face, and then

take the convex hull. This will only destroy the facets containing this face, and

introduce new ones containing the new points. We will say we attach (or glue)

one polytope P to another polytope Q along facets Fp of P and Fq of Q if

P Ç Qbeyond FQ and Q C Pbeyond fp •
It is important to observe that the result

of the gluing, the convex hull oftheir union, contains both the face lattices of

P and Q without, of course, Fp and Fq (see Figure 3.5).
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conv(P U Q)

Figure 3.5: The result ofgluing P toQ is conv(P U Q)

Figure 3.6: Schönhardtpolytope: its diagonals, skylight and visibility cone

32.2 Schönhardt Polytope

The Schönhardt polytope is obtained from a triangular prism by twisting the

triangular top face, breaking up and "bending in" the quadrangular faces (see
the first transition in Figure 3.1). It was named after its first occurrence in [52]
(see also [42]). For the notion of non-convex polytope and what it means to

triangulate them we refer to [17].

Definition 3.1 A Schönhardt polytope is a non-convex polytope with six ver¬

tices A\, A2, A3, Bi, B2, and B3 andfacets (Ai,A2,A3), (Bi,B2,B3),
(A1,B1,A2), (BUA2,B2), (A2,B2,A3), (B2,A3,B3), (A3,B3,BX), and

(B3,BuAi). At exactly the edges (B1,A2), (B2,A3), (£3,^1) the corre¬

spondingfacets are to span an interior angle greater than tt (the edges are
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said to be reflex or non-convex). These edges are called the diagonals ofthe

Schönhardt polytope. The topface (B\,B2,B3) is called the skylight of the

Schönhardtpolytope.

Six points are said to be in Schönhardt position if they are the vertices of a

Schönhardtpolytope. We say that the skylight is visible^/rom a point x (or x is

able to see the skylight, or x is a viewpoint ofthe skylight) if the tetrahedron

spanned by x and the skylight does not intersect any ofthe diagonals in their

relative interior. The visibility cone ofthe Schönhardtpolytope is the triangu¬
lar cone bounded by theplanes B1B2A2, B2B3A3, and B3B\A\. See Figure
3.6.

The use ofthe word "skylight" is motivated by the idea that the skylight trian¬

gle is a glass window and light comes through it illuminating the interior ofthe

Schönhardt polytope defining a cone oflight. A point is visible by the skylight
if none of the diagonals are "in the way." It is obvious that this non-convex

polytope cannot be triangulated (without adding new points): The fourth point
of the tetrahedron containing the skylight must be one of Ai, A2, or A3, but

the diagonals "obstruct the view" ofthe skylight from these vertices. The visi¬

bility cone will be shown to contain all the visible points which are interesting
in our construction.

3.2.3 Cupola

We will not use the Schönhardt polytope as is, but we will patch its sides with

vertex-edge chains - and thereby convexify it - obtaining the cupola. Glued to

a bigger polytope the cupola will force that certain tetrahedra occur in a small

triangulations.

Definition 3.2 A convexpolytope C is called an m-cupola (or a cupola ifthe

m is clear) ifit has thefollowingproperties:

1. The vertices ofC are Ai,A2, A3, Bi,B2, B3, and q\ (k = 0,..., m +

1, i = 1,2,3), where thepairs qlQ = Ai andqlm+1 = Bi+i are identified

(see Figure 3.7).

2. The vertices A\, A2, A3, B\, B2, and B3 are in Schönhardt position,

and (A\, A2, A3) (the bottomfacet) and (Pi, B2,B3) (the skylight) are

facets ofC.

3. The other facets of C are (Bi,qlk,q\+1) and (Aj,q\,q%k+l) for k —

0,...,m + l, » = 1,2,3,
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4. the vertices q\(k = 1,..., m) lie on same the side oftheplane BiAi+i Bi+2

asAi(i = 1,2,3/

Figure 3.7: A cupola as part ofa larger convexpolytope P

Remark 3.3 The combinatorial structure of the Schönhardtpolytope and of
the cupola are symmetric with a order of 3. The index arithmetic in the pre¬

vious definition and in the sequel is therefore meant to be modulo 3. For

instance, the diagonals are the edges (Ai, Pj_i) (i = 1,2,3).

Let us digest this definition now. The basis of a cupola is a Schönhardt poly-

tope. The sides of it are patched with vertex-edge chains such that (a) the

resulting polytope is convex and (b) the Lemma 2.2 can be invoked forcing
small triangulations to contain the diagonals as edges.

The last property of the cupola (Definition 3.2 (4)) means that the vertices of

the vertex-edge chain are "low over" the bottom facet of the cupola. We need

this condition for the following reason: Cupolas force small triangulations of

the polytope to which they are glued to use the diagonals. From this we want

to conclude that the skylight has to be triangulated by a vertex lying in the

visibilty cone. Ifthe vertices ofthe vertices ofthe vertex-edge chain q I are on

the same side of plane B3A\B2 as A3 then the tetrahedron spanned by a q\
and the skylight will be pierced by the diagonal B3A\. The reader may check

in Figure 3.7 that this feels right. Hence it cannot be one of these vertices

triangulating the skylight. Item 2 of the next lemma makes this argument

precise.

But if the skylight is triangulated by none of the vertices of the vertex-edge
chains - and therefore by none of the vertices of the cupola - it has to be
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triangulated by a vertex lying beyond the bottom facet of the cupola. Item

3 of the next lemma states that in this case the triangulating vertex is in the

visibility cone.

Lemma 3.4 Schönhardt Position. Let Ax, A2, A3, B\, B2, B3 be six points
in Schönhardt position. We denote by Ca,b the convex hull ofthe six points.
Then

1. All orientations ofsimplices spanned byfour ofthese six points are de¬

termined up to one global sign change. As a consequence, the sixpoints

are in convex position. Their convex hull Ca,b is an octahedron that

has (^4i, ^2,^4.3) and (B\,B2,B3) as facets, it has edges (A{,Bi+i)
(i = 1,2,3), and the line segments (Ai, P«-i) (i = 1,2,3) are its diag¬
onals

2. There are no points that can see the skylight (Bi,B2,B3) and, at the

same time, (1) are beyond either ofthe edges (Ai, Pi+i) ofCA,B, and

(2) are on the side of the plane B\A2B3 opposite to B2 or similarly

for the analogous planes BiA3B2, #2^1P3 ond the points B3, B\

respectively.

3. The visible points beyond the facet (A\,A2,A3) ofCA,B ore exactly
thepoints that are also in the visibility cone ofthe Schönhardtpolytope.

Take a look at Figure 3.8. It shows a point p outside of the visibility cone

and thereby illustrates Item 3 of the previous lemma: a point below the face

(A\, A2, A3 ) is in the visibility cone ifand only ifthe tetrahedron (p,B\,B2,B3)
pierces one of the diagonals.

Figure 3.8: A point outside the visibility cone

Note also that Item 2 of the previous lemma is the reason for Item 4 of the

definition ofthe cupola (Definition 3.2): The proofofthis lemma is in Section

3.2.5.
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3.2.4 How to Use Cupolas

We are now ready to give the statement about how we use cupolas:

Proposition 3.5 Let C be an m-cupola which is part ofa larger polytope P

in the sense that the set Q = closure(P — C) is a convexpolytope and Q and

C share the commonfacet (A\, A2,A3). Let n be the number ofvertices ofP
and n' be the number ofvertices ofQ.

IfT is a triangulation ofP with theproperty that thefourth point ofthe tetra¬

hedron containing the skylight ofC is not in the visibility cone ofC, then there

are at least n + m — 3 = n' + Am tetrahedra in the triangulation.

PROOF.If the vertex triangulating the skylight ofC is a vertex ofon a vertex-

edge chain of C, then it does not see the skylight by Definition 3.2.4 and

Lemma 3.4.2. Ifit is in Q instead, then it has to be beyond the face (A i, A2, A3 )
of C. Hence by Lemma 3.4.3 it cannot see the skylight either. Therefore the

triangulation T does not use one ofthe diagonals. By Lemma 2.2 the number

oftetrahedra is at least n + m —3. Since by construction n = n' + 3(m + 1),
the number oftetrahedra is also at least n' + 4m. D

Proposition 3.5 stated that we get a large triangulation if we triangulate the

skylight of a cupola by a vertex outside the visibility cone. Now we want

to estimate how much smaller a triangulation is if we use a vertex v in the

visibility cone instead. We give a relatively small triangulation of the cupola
and of the space between the bottom face (Ai,A2,A3) of the cupola and the

triangular face F ofP with the help of the vertex v.

Proposition 3.6 Let F be triangularface ofapolytope P, andC an m-cupola
attached to it according to Definition 3.2. Let vbea vertex ofP in the visibility
cone ofC. Then there is a triangulation ofconv({v} UFUC) with at most

3m + 16 tetrahedra.

PROOF.First ofall, we triangulate along the vertex-edge chains using the tetra¬

hedra (Bi,Ai+1,qlk,ql+1) fori = 1,2,3,andfc = 0,...,m.

After removing these tetrahedra, we are left with the union ofthe Schönhardt

polytope on the vertices Ai, A2, A3, Pi, B2, B3, and the convex polytope

conv({f},P, (A1,A2,A3)). This is a non-convex polytope with all edges,

except the diagonals, being convex (easy conclusion from Lemma 3.4 and

the construction). Since the specified vertex v is inside the visibility cone, it

sees all facets of this polytope, except the three facets it is incident to, from

the interior. In particular, we can form tetrahedra of all these facets and v
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and none of them intersect badly. They are 7 tetrahedra for the facets of the

Schönhardt polytope (since we do not count the bottom face) and at most 6

for the rest (the convex hull of F and (Ai,A2,A3) has—by a planar graph

argument—at most 2-6 — 4 = 8 facets, subtracting 2 for F and (AX,A2,A3)
gives 6). Ü

It is this 3m in contrast to the 4m in Proposition 3.5 which makes this way

oftriangulating optimal for large m. We give more details on the use of these

propositions in Section 3.5 when we look at an actual logical polytope with

many cupolas.

3.2.5 Proof of the Schönhardt Position Lemma

In the proof of Lemma 3.4 we have to make argument about the relative po¬

sition of points with respect to planes spanned by points. For instance it is

necessary (but not sufficient) for a line segment to pierce a triangle that the

endpoints of the segment lie on opposite sides of the triangle. This kind of

information is captured by the oriented matroid of the points. In fact, in our

proof we only use the oriented matroid properties of the relative positions of

the points.

For the theory of oriented matroids we refer to [12] and [61]. Here we only
sketch the necessary definitions and how they are related to the notion ofvisi¬

bility. The orientation of a simplex (xi, x2, x3, £4), is defined as

r t 1 ,

( x\ x2 x3 X4 \
[x1,x2,x3,X4] =sign det I

1 1 1 1 j.

It is easy to see that this definition of orientation reflects our intuition of ori¬

entation perfectly. All such orientations make up the chirotope of an oriented

matroid (see page 123 in [12]).

Given the oriented matroid of points x\,...,xn in d-space, its circuits are

functions C : {x\,..., xn} \-t {+, -, 0} that correspond to so-called mini¬

mal Radon partitions. This means that the convex hulls ofC+ = {xi\C(xi) —

+} and C~ = {xi\C(xi) = -} intersect in their relative interiors, and C+

and C~ are minimal at that. It is easy to check that the function

{omit

Xi

(-I)1 •[x1,..^,xd+{] ,ifxe{x1,...,xd+i},

0 otherwise,
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defines a circuit if it is not identical 0. In fact, all circuits can be obtained this

way. We will compute circuits to use an argument of the following form: x

does not see the skylight if and only if there is a circuit such that the positive

part is one of the diagonals and negative part is the set containing x and a

subset ofvertices ofthe skylight. Since then the tetrahedron spanned by x and

the skylight is pierced by the diagonal.

Important tools to compute simplex orientations are the Grassmann-Plücker

relations (see Section 2.4 in [12]): For points a, b, xx,..., x± they state that

the set of signs

{ [a,b,xi,x2]-[a,b,x3,xA],
- [a, b, x\, x3] • [a, b, x2, x4],
[a,b,x1,X4]-[a,b,x2,x3] }

is either identical 0 or contains both a + and a —. The Grassmann-Plücker

relations follow easily from the corresponding determinant equation (try it!).
The typical use of the Grassmann-Plücker relations is to deduce one orienta¬

tion when the others are known. We can read the orientations of some ofthe

different tetrahedra from two-dimensional projections (drawings) of the point

configurations as in Figure 3.6. We use a left-hand-rule coordinate system,

i.e., we decide whether the triangle (xi, x2, x3) is oriented counterclockwise

(+) or not (-), also if £4 is on our side of the plane spanned by x\, x2,

and x3 (+) or not (—), and multiply these two signs to obtain the orientation

[x1,x2,x3,xa\.

Proof of Lemma 3.4.

1. In a Schönhardt polytope, the simplices (A1, A2, A3, Pi ), and (A\, A2, A3, B2 )
have the same orientation since edges (Ai, A2) artd(A2,A3) are both incident

to facet (A\, A2, A3) and they are both non-reflex edges.

By the this argument, going around the boundary of a Schönhardt polytope,

keeping in mind which edges are reflex, we can determine the orientation of

12 simplices up to one global sign change (there are 12 edges). But there are

Q =15 simplices formed by the vertices ofthe Schönhardt polytope. The re¬

maining three simplices are (A x, A2, B2, P3 ), (A2, A3, Bx, B3 ), (At, A3, Bx, B2 ).
The signs are determined by the following Grassmann-Plücker relations: For

(A1,A2,B2,B3) take a - Aub - A2, xx = A3, x2 = Bx, x3 = P2,
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£4 = B3 (the other two by circular index shift). Then:

?

{ [A1,A2,A3,B1]-[A1,A2,B2,B3],
- +

-[A1,A2,A3,B2]-[A1,A2,B1,B3],

[A1,A2,A3,B3]-[A1,A2,B1,B2] } D {+,-}.

This forces [Ai,A2,B2,B3} = +.

61 62

Figure 3.9: Two views ofthe Schönhardt polytope, the second view is along

edge (i4iA2)

There is a nice way that the use this Grassmann-Plücker relation can be pic¬
tured. Namely, an equivalent formulation is that there are rays a3,bi,b2, and

b3 emitting from the origin of the plane such see in the direction of a: ray y is

to the left if and only if the sign [Ai,A2,X,Y] = +. (The rays come from a

special view of the configuration along the edge (Ai,A2). This corresponds
to the fact that the signs involving A\ and A2 capture the projection of the

point configuration along the line (Ai,A2)) But the signs say that 03 has all

bi right from it, but b3 is to the left of b\ and b2 is to the right of fei, hence b3

must be to the left of b2. Therefore [A\, A2, P2, P3] = +•

From the chirotope information it is easy to check that all vertices are in con¬

vex position (see description ofhow to read the facets ofthe convex hull from

the chirotope in Chapter 3 of [12]), and that their convex hull Ca,b is indeed

an octahedron.

2. We will show that if a point x lies beyond A\B2 of Ca,b, on the side of

B\A2B3 opposite to B2 ,
then (B\,A2) and the triangle (P2, B3,x) form a

minimal Radon partition in the set ofvertices A\, A2, A3, B\, B2, B3, and x,
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hence have an interior point in common. This means x cannot see the skylight.
For this, we compute the following orientations:

since (Bi,B2,B3) is a facet of Ca,b \ (AX,B2),
since (A2,B2, B3) is a facet of Ca,b \(A1,B2),
from the assumption on x,

from the Grassmann-Pücker relation below,
from Part (1).

The necessary Grassmann-Plücker relation is the one with a = B\, b = B2,

x\ = B3, x2 = A\, x3 = A2, and x± = x such that

-[B1,B2,B3,x] = +

+[A2,B2,B3,x] = +

-[A2,BuB3,x] = —

+[A2,BuB2,x] —
—

-{A2,B1,B2,B3\ —
—

{ [B1,B2,B3,A1]-[B1,B2,A2,x],

-[B1,B2,B3,A2)-[B1,B2,A1,x],
+

[B1,B2,B3,x)-[B1,B2,A1,A2] }2{+,-}

forces [Bi,B2, A2,x] = -.

3. If a: is in the visibility cone V, then it is, by part (2) of this lemma, on the

same side as B3 with respect to the plane B\A2B2. Hence ^42 is on opposite
side of B3 with respect to the plane B\B2x. Therefore, the relative interior

of the convex hull of B\ and A2 lies strictly on one side of the plane B\B2x,
and the tetrahedron (B\ ,B2,B3,x) on the other side ofthis plane. Therefore

those two point sets cannot have points in common. By symmetry it follows

that the other two diagonals do not obstruct any point of V from seeing the

skylight either.

Assume now that a point x is beyond face (Ai,A2,A3), but outside of V,

i.e., for instance on the Ai side of the plane B\B2A2. We claim that the

pair {Bi, A2 }, {B2,B3,x} forms a circuit in the oriented matroid ofthe point

configuration of the vertices of Ca,b and x. This means that the triangle

(B2,B3,x) is pierced by the diagonal (B\ ,A2) in the relative interior, hence

x is not visible.

-[B2,B3,A2,x] = -

+[Bl,B3,A2,x] = +

-[B1,B2,A2,x] = +

+[BuB2,B3,x} = -

-[BUB2,B3,A2] = +

since (B2, B3,AX) is a facet of Ca,b \ (AX,A2, A3),
from the Grassmann-Plücker relations below,
from the assumption on x,

since (Bx, B2, B3) is a facet of Ca,b \(A1,A2,A3),
from Part (1).
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In this case, we have to apply the Grassmann-Plücker relations twice to get

[Bi,B3,A2,x] = +. First we deduce [A\,A2,B3,x] = - from the Grassmann-

Plücker relation with a = A\, b = A2, %i = A3, x2 = x,x3 = B2, x4 = B3:

/ s / s

{ [AuA2,A3,x]-{Al,A2,B2,B3],
+ ?

/
A

v / ^

- [AUA2,A3,B2] • [Ax,A2,x,B3],
+ +

[A1,A2,A3,B3]-[A1,A2,x,B2] }^{+,-}

Now we use this orientation to formulate a = A2,b = B3,x\ = A\,x2 = B\,

^3 = B2, X4 = x:

+

in

{ [A^B^A^Bi] -[A2, A3, B2,x],
+ ?

-[A^B^AuB^-lA^B^B^x],
+

[A2,B3,A1,x]-[A2,B3,B1,B2] }3{+,-}

order to get the desired [A2,B3,Bi,x] = -.

3.3 The Transformation from SAT

It is our intention to model the well-known satisfiability problem (SAT) using
the visibility cones of cupola polytopes. Just as Ruppert and Seidel did in

[51], from now on we will restrict our attention to special SATinstances: each

variable appears exactly three times, twice unnegated and once negated. This

is not really necessary, but simplifies explanations. We will argue in Section

3.3.1 why this restriction is valid. The formula

/ = (xlw^x2wx3y-^x4)A(-nX1vx2v^x3wx4)A(x1yx2yx3yxé)

is such a special SAT formula. The figures in this section will correspond to

this particular instance.

In Section 3.3.1, we will introduce the formal definition of the family of logi¬
calpolytopes Vf,m associated to a given logical formula / and a natural num¬

ber m. This number m will denote the length of the vertex-edge chains of the
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cupolas we use. In order to define logical polytopes, we will specify the face

lattice of a frame polytope, reveal where the m-cupolas are glued, and then

give more conditions on the positions ofthe vertices relative to each other. To

achieve our goal we need two lemmas. The first lemma ensures that logical

polytopes exist and that we can construct them in polynomial time (see the

proof in Section 3.4.4). The second lemma assures that, among all logical

polytopes ofa fixed logical formula, the size m ofthe vertex chains in cupolas
can be adjusted to (1) be polynomial in the number of logical variables and

clauses, and (2) to be large enough to guarantee the equivalence between log¬
ical satisfiability ofthe logical formula and small triangulations of the logical

polytope. We will prove this second lemma in Section 3.3.2.

Lemma 3.7 There is a polynomial algorithm that, given any positive integer
m and a logicalformula f containing C clauses and V variables, produces
a logical polytope P G Vf,m with m vertices on each vertex-edge chain. The

number ofvertices ofP is bounded by a polynomial in m, C, and V. Also,

the coordinates ofthe vertices have binary encoding length polynomial in m,

CandV.

Lemma 3.8 Let f be a logicalformula containing C clauses andV variables.

There exists apolynomial m(C,V) with integer coefficients such thatfor m =

m(C,V) andfor any logical polytope P G Vf,m the following is true: P

admits a triangulation with < K = n + m — 4 tetrahedra ifand only ifthere

is a satisfying truth assignment to the variables oftheformula f.

Finally, using these two properties, we are ready for the proof of the main

result.

Proof of Theorem 1.5: The problem is clearly in NP: checking whether

a collection of tetrahedra is indeed a triangulation of the polytope P needs

only a polynomial number ofcalculations. Every pair oftetrahedra is checked

for proper intersection (in a common face or not at all), and the sum of the

volumes equals the volume ofP (computable for instance by a pulling trian¬

gulation of the polytope, see Section 2.3.1). Also the size of triangulations of

a given polytope is bounded by a polynomial in n of degree two (this follows

from the well-known upper bound theorem, for details see [49]).

By Lemma 3.7, from a given logical formula / on V logical variables and

C clauses, we can construct a logical polytope P G Vf,m(ç,v) of encoding

length polynomial in V and C. Hence, by Lemma 3.8 there is a polynomial
transformation that establishes the polynomial equivalence of a solution for
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the SAT problem and the existence of small triangulations ofP (small means

of size less than K as given in the statement). This completes the proof. D

3.3.1 Logical Polytopes

First of all, we want to argue why the restriction to the special SATformu¬
las (every variable appears exactly twice unnegated and once negated) is NP-

complete: The SAT problem remains NP-complete even for instances where

each variable or its negation appear at most three times (see references on

page 259 in [31]). In addition, a change of variables can be used to change
a non-negated variable into a negated variable if necessary. Also note that if

a variable appears only negated or only positive the variable and the clauses

that contain it can be discarded. Finally, if a variable appears exactly once

positive and exactly once negated then it can be eliminated by combining the

two clauses that contain the two variables into one.

Now, we want to define the family of logical polytopes Vf,m for a given log¬
ical formula / and a given positive integer number m. We start by describing
its face lattice. To prevent a possible confusion we remark that our vertices

will be labeled by the letters Cj when the are related to logical clauses, Xj

when they are related to logical variables, and zj when the vertex is auxiliary.
Points always have subscripts and/or subscripts thus should not be confused

with their coordinate-entries (x, y, z).

In a logical polytope there will be an m-cupola for each clause and one for

each variable and its negation. The cupolas will be glued to aframe polytope
which resembles a wedge. Look carefully at Figure 3.10 for an example ofthe

overall structure.

Figure 3.11 gives a view of the lower hull ofthe frame polytope. The sharp

part of the wedge consists of 2C + 1 vertices (where C is the number of

clauses) Co, ..., c2c. We call this part of the frame polytope the spine. We at¬

tach the clause cupola associated with clause i to the triangle (c2i, c2i+i, c2i+2)

(shaded in the picture).

On top ofthis wedge structure we will put a series ofroofs. They are triangular

prisms, spanned by the two triangles (zj>, zF, zA) and (z\, zR, z%B), one for

every variable Xi ofthe logical formula. The variable cupolas will be attached

to the triangular facet (zlL, zR, zB), the back gables (the triangular faces are

shaded in Figure 3.12).

The variable cupola of variable Xi is such that its visibility cone contains

exactly the front vertices vertices zlT and zF. We will use these cupolas to
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3 clauses

Figure 3.10: Sketch ofa logicalpolytope

Figure 3.11: The spine ofthe wedge: here the clause cupolas are attached
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Figure 3.12: The roofs, back gables shaded

read from a small triangulation of the polytope the logical value of variables

according with the following rule: if the truth-setting vertex zlT associated

to the ith logical variable is used to triangulate the skylight of the cupola for

variable i, then we set Xi = true. Ifthe truth-setting vertex used to triangulate
the skylight ofthe cupola for variable i is instead zF then Xi = false.

Beyond the quadrilateral face containing zlT we will place the literal vertices

x\ and x\ which corresponds to the positive occurrences of Xi in the logical
formula. Beyond the other quadrilateral face we will place the other literal

vertex x3 which correspond to the negated occurrence of X{. These vertices

are in the visibility cones ofthe three cupolas ofthe clause where variable Xi

or its negation appears.

Figure 3.13: A roof back gable shaded, z-coordinate superelevated

We list the five conditions on logical polytopes which are necessary for the

transformation to work in both ways, i.e. a small triangulation yields a satis-
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fying truth assignment for our logical formula and vice versa.

Definition 3.9 For a given logicalformula, the family Vf,m o/"logical poly-

topes is the set ofall three-dimensionalpolytopes P that satisfy thefollowing
conditions:

1. (Convexity and Face Lattice) The logicalpolytope must be convex, and

the face lattice is as we just described it. In particular, several m-

cupolas are part of the polytope, onefor each clauses and variable in

f-

2. (Visibility) The literal vertices x\, x2, and a:| are vertices in the vis¬

ibility cone associated to their respective clause m-cupolas, but ofno

other clause visibility cone. The vertices zlT,zF are the only vertices in

the visibility cones ofthe ith variable m-cupola.

3. (Blocking) This constraint ensures that the assignment oftrue orfalse
valuesfor variables is done consistently, i.e. the positive (negative) lit¬

erals can be used to make their clauses true ifand only ifthe variable

is set true (false).

Concretely, the tetrahedron spanned by zF and the skylight of the m-

cupola ofvariable Xi intersects the interior ofthe tetrahedron spanned

by x\ (by x\) and the skylight of the clause m-cupola corresponding
to x\ (to x\). Also the tetrahedron spanned by zlT and the skylight of
the m-cupola of variable Xi intersects the interior of the tetrahedron

spanned by x\ and the skylight of the clause m-cupola corresponding
to it. See Figure 3.14for an example.

4. (Non-blocking) Using the vertex z%Tto triangulate the interior ofthe i-

th variable m-cupola should notprevent the non-negated literal vertices

from seeing their associated m-cupolas. Concretely, ifj is the clause

corresponding to the literal vertex x\, then tetrahedra (zip, z%L, zR, zB)
and (x\, c2j-2, C2j-\, C2j) do not intersect at all. The canonical ana¬

logue shall holdfor x2 and x\ (for x\ replace zt by zp).

5. (Sweeping) Because we intend tofollow the same triangulation proce¬
dure which was proposed by Ruppert and Seidel [51], and which we

will explain in Section 3.3.2, we will need that

(a) the variable x\ is to the "left" (negative x direction) ofthe planes

c2k-iC2kZF, c2kC2k+izF, andc2k-ic2k+izFforO < k < C - 1.
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skylight of variable Xt

roof of variable X,

skylight of clause j

Figure 3.14: Blockingfor consistent logical values

(b)x\ istothe "left" oftheplanes c2k-\C2kx\, c2kC2k+ix\, and c2k-iC2k+ix\

forO<k<C-l.

(c) x3 is to the "left" oftheplanes c2k-\c2kZF, c2kC2k+iZF, andc2k-ic2k+\zlF
forO<k<C-l.

(d) zip istothe "left" oftheplanes c2k-\C2kx\, C2kC2k+\Xl2> c2k-iC2k+ix2>

c2k-ic2kxi, c2kC2k+ix3, andc2k-iC2k+iX3for 0 < k < C - 1.

3.3.2 Using the Logical Polytope

ProofofLemma 3.8: If a triangulation T of the polytope has < n + m - 4

tetrahedra, then by Proposition 3.5 the skylight of each cupola is triangulated

by a vertex in the visibility cone of the cupola. In particular, one of z
F

and

zT is chosen to triangulate the cupola corresponding to variable Xi for each i.

We claim that assigning to X» the truth value according to this choice (zF >->

false, zt •-> true) satisfies all clauses ofthe formula.

Each clause cupola skylight is triangulated by one of the literal vertices, say

clause j by the positive literal vertex x[ (or x\). By the blocking conditions, it

cannot be the case that the variable skylight ofXi is triangulated by zF since

these tetrahedra would intersect badly. So we had set Xi to true. Having x\
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(or x2) in clause j's visibility cone meant that variable Xi appears unnegated

in this clause. If the skylight of clause cupola j is triangulated by x
3, by the

same argument Xi was set to false, and clause j satisfied by the literal -iX».

Hence all clauses are satisfied.

Now we need to prove the converse. If there is a true-false assignment
that satisfies all logical clauses we must find a triangulation that has no more

than K tetrahedra. For that we construct a "small" triangulation. There are

three different kinds oftetrahedra: the ones triangulating the cupolas, the ones

triangulating the roofs, and the ones triangulating ofthe rest ofthe wedge. We

know how to triangulate a cupola if we know a vertex in its visibility cone

(see the proof ofProposition. 3.6). For the rest we will now follow a sweeping

procedure which was first described by Ruppert and Seidel [51].

The sweeping triangulation proceeds by triangulating "slices" that correspond
to the different variables Xi to Xy, i.e. from right to left. The variable roofs

are arranged sequentially for exactly this purpose. A slice is roughly speaking
the part of the tetrahedra between a roof and vertices of the spine. After the

ith step of the process the partial triangulation will have triangulated the first

i slices. The part of the boundary ofthe partial triangulation that is inside the

logical polytope will form a triangulated disk. We will call it the interface

following the convention of Ruppert and Seidel. It contains the following

triangles:

I(zT,
c2j-2, c2j) : if clause j is satisfied by one

ofthe first i variables, or

and (zT, c2j-i, c2j) : otherwise,

for all j = 1,..., C. Before the first step, the partial triangulation is empty.

After the last step the partial triangulation will cover the whole logical poly-

tope. In general, the vertices ofthe ith roofwill see all triangles ofthe interface

and will be used as apexes to form new tetrahedra to add to the current partial

triangulation. This way the interface will slowly move from right to left.

Now we describe in detail the triangulation step for the ith variable X,. Since

we are only concerned with roof vertices in roof i, we will drop all super¬

scripts. The triangulation step depends on whether Xi is set true or false in

the satisfying assignment. Let us consider first the case Xj = true:

The point zt is used to triangulate the interior ofthe variable cupola associated

to Xi according to Proposition 3.6. From zt we also form six tetrahedra with

the following triangles: (zL,xi,zB), (x^,zB,zA), (zb,za,x2), (zb,x2,zr),
(zA,x1,x2),and(xi,ZA,zF).
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Figure 3.15: The interface after step 2

Figure 3.16: Removing the tetrahedra spanned by zt and the shaded triangles
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Figure 3.17: The sweep

Now we come to the part of the triangulation which gave the sweeping pro¬

cedure its name. We form the tetrahedra between x i and the current interface

triangles. This is possible by part (a) of Condition 5. We also use the tetrahe¬

dron (xi ,zt,co,zf). This is illustrated in the transition from a. to b. in Figure
3.17. The interface advances to x i, i.e. if (zf , Cj, c* ) was an interface triangle

before, now (xi, c3,, ck ) is an interface triangle. Also (zp, c2c ,zr)'\s replaced
by the triangle (x\, c2c, zr) .

Since Xi is set to true we can use x\ to triangulate its clause cupola according
to Proposition 3.6. We only do this if the clause cupola has not been previ¬

ously triangulated using an other literal vertex. Condition 2 ensures that x i is

in the visibility cone ofthe clause cupola coming from the clause that contains

the unnegated literal Xi. Furthermore, Condition 4 ensures that we can actu¬

ally perform this triangulation of the clause cupola without badly intersecting
the tetrahedra of the variable cupola. In Figure 3.17.C. we see that if x\ is

used to triangule clause j's cupola, then the interface triangle (x i, c2j-2, c2j )
is replaced by the two triangles (xi,c2j-2,C2j-\) and (xi,C2j-i,C2j).
We repeat this procedure with a: 2, i.e. form tetrahedra with X2 and the current

interface triangles, and then use X2 to triangulate its clause cupola ifnecessary

(Figure 3.17.d.). This is possible by part (b) of Condition 5. We continue by
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forming tetrahedra using zt as apex (Figure 3.17.e, possible by Condition 5,

part (d)). At last, we will include the triangle (c2c, zl,zb). All these triangles
are visible by part (d) of Condition 6. After all these tetrahedra are added the

interface is ready for the next variable.

Figure 3.18: The sweepfor Xi = false

Let us now consider the triangulation step in the case Xj is set to be false: We

use the vertex zp to triangulate the variable cupola as well as seven faces ofthe

roof (see Figure 3.18): (zT,x^,zA), (x^,zA,zB), (x^,zL,zB), (zB,zA,x2),
(zb,x2,zr), (za,x2,xi), (x2,x1,zr). The reader can see that on the roofwe

are leaving only the vertex öTjj". Next the tetrahedron (zp, zl, zr, C2c) is cut

out. Hereby the interface triangle (zF, zr, c2c) is replaced by (zf, zl,c2c)
(Figure 3.18.c). Then £3 will be used as apex with the triangles in the in¬

terface. If the negated literal Xi is used to satisfy its clause j, the jth clause

cupola is triangulated by 2T3". The interface advances as in the irwe-case. Then

zt can be used to form tetrahedra with the triangles in the interface. In the

end the interface is again ready for the next variable.

How many tetrahedra can such a triangulation have? Triangulating all cupo¬

las with a vertex in their visibility cones yields at most (3m + 16) (C + V)
tetrahedra (Proposition 3.6). In one step ofthe sweeping triangulation the tops

of the roofs are each triangulated using six or seven tetrahedra (if the variable

is unnegated or negated, resp.). Furthermore, the interface is triangulated by

some vertices three times (in the positive case by x\, by x\, and by zT) or two

times (in the negative case by x3 and by zT). The interface contains in each

step between C and 2C triangles. Eventually, in either case there is one more

tetrahedron (see above). An upper bound for the size of this triangulation is
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therefore

#T < (3m + 16)(C + V) + 7V + 3CV + l

= m(3C + 3V) + 16(7 + 23V + ZCV + 1

Pr(V,C7)

What is the number of the vertices of the logical polytope in terms of the

number of clauses and variables? We have V logical variables and C clauses

in the SAT instance. We have m interior points each ofthe vertex-edge chains

we added (later we will determine the value ofm as a polynomial function of

V and C). We observe that we have 3m -I- 6 vertices in each cupola, hence we

have (3m + 6) (V + C) for all cupolas. We have in each roofnine vertices, two

of them are shared with the subsequent roof except for the last roof. Hence

the total number of vertices in roofs is 7V + 2. We have left only the 2C + 1

vertices along the spine. In conclusion, the number of vertices ofP is

n = (3m + 6)(V + C) + 7V + 2 + 2C + l

= m(3C + 3V) + 8C + 13V +3

Pn(C,V)

We had said before that a "bad" triangulation (where at least one cupola sky¬

light is triangulated by a vertex not lying in its visibility cone) has at least

n + m - 3 = m(3C + 3V + 1) + pn(C, V) tetrahedra. On the other hand

a "good" triangulation has at most m(3C + 3V) + Pt(C, V) tetrahedra. We

can now set m = m(C, V) = pt(C, V) - pn(C, V) + 1. Then, if a good

triangulation exists, its size is smaller than or equal to K = n + m —4, and if

not, all triangulations are larger than K. D

3.4 Constructions

So far we have only talked about the properties of the various construction

steps, the properties of the Schönhardt polytope, the properties of the cupola
and the properties of the logical polytope. In order to show the iVP-hardness

ofMinTriang(3) however, we have to demonstrate how to construct each of

these entities. We split this into several steps: In Section 3.4.2 we will show

how to construct a Schönhardt polytope and an m-cupola if only the rest of

the polytope and a visibility cone is known. Then in Section 3.4.3 we will

show how to construct visibility cones satisfying certain conditions. This in
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turn we will use in the last step in Section 3.4.4 when we construct the logical

polytope itself.

Many times we will need to construct a point or a hyperplane satisfying certain

"open" polynomial conditions, i.e. its coordinates must satisfy certain strict

polynomial inequalities. Our construction paradigm is it to start in a special
position (if we want to construct a point beyond a face, we start on the face)
and perturb this point slightly. This perturbation has to be carried out in a way

that the encoding length of the coordinates of the points do not get to large.
Section 3.4.1 will describe the algorithmic version ofthis paradigm.

3.4.1 Constructing Points Satisfying Open Conditions

For our constructions we will often have situations where we want to move

points from a special position to a more general position while other condi¬

tions are still satisfied. As long as these other conditions are open conditions,

i.e. polynomial strict inequalities in the coordinates of the points, we can use

the following paradigm:

Elementary steps of construction include operations such as taking the join
of two or three points, intersecting planes and lines, putting points on poly¬
nomial curves, etc. The coordinates of the resulting construction elements are

therefore polynomials in coordinates ofthe input elements. On the other hand,

we will have requirements on the positions of the points with respect to some

planes or other points on lines etc. All these conditions can be formulated as

strict polynomial inequalities in coordinates of the construction elements. An

essential element of our construction is that our systems of strict polynomial

inequalities will depend on one single parameter e. All these polynomial in¬

equalities are satisfied at e = 0, but an additional requirement for us is e > 0.

The following lemma describes a polynomial algorithm to find a number 0

such that all 0 < e < eo solve the inequality system.

Lemma 3.10 1. Suppose p(e) — aded + + a\e + oo is a polynomial

with p(0) > 0. Let e0(p) := min ( 1, —.—
Q° ,—rr). Thenfor

\ 2(\ai\-\ r\a,d\)J
0 < e < eo(p) we havep(e) > 0.

Hence, the construction of 6q can be done in time polynomial in the

encoding length ofthe coefficients ofp, andeo haspolynomial encoding

length.

2. p\,..., pi are univariatepolynomials such thatpi (0) > 0,..., pi (0) >

0 then there is a rational number, eo > 0, such thatpi (e) > 0,..., pi (e) >
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Ofor all 0 < e < eo. Moreover, the encoding length ofeo is bounded by
apolynomial in the encoding length ofthe coefficients ofp i,..., pi.

Proof: For 0 < e < 1 we have that a^e* > -|aj|e. The reason is that for

ai > 0, aii > 0 > -|fli|e, and for a* < 0, o^e* > e^e = -|a*le- Hence for

0<e<eo(p)

d d

P(e) > Yl -la*le + a° > ~ 12 Kl9^d° + ao > 0.

i=l i=\ ^l^i=l \ai\

For the second part, take the value eo(pi,... ,pr) '= min(eo(pi),..., e0(pr))-
Now all the conditions are simultaneously satisfied. D

For example in order to construct a point beyond some triangular facet we

might want to take the barycenter of this face and move it just a bit out of

the polytope such that all other facet-defining inequalities are still satisfied.

The point then has the coordinates p(e) = pbary + e • dnormai- For e = 0

this point is in the polytope therefore satisfies all facet-defining inequalities

ajp(e) — hi > 0. The lemma says that we can find an e0 such that for all

0 < e < eo the point p(e) is beyond the facet. In our proof ofthe hardness of

MinTriang we will also require polynomiality of the encoding length of e o-

It is guaranteed.

Ofcourse, in general the real solutions ofa multivariate system ofinequalities

coming imposed by geometric requirements may be empty, but our steps of

construction reduce everything to sequentially solving easy univariate systems

of inequalities.

3.4.2 Constructing a Cupola from a Visibility Cone

In this section we will show that cupolas can be attached to any face of a

frame polytope using intermediate polytopes and that the visibility cone can

be prescribed. The following theorem does not have the full strength we need

for the construction of the "logical polytope" we need to show the hardness

of MinTriang. Later, we will use a slightly stronger version which we will

present at the end of this section. However, this theorem captures the main

ideas used to construct a cupola.

Lemma 3.11 (Cupola Construction from a Given Visibility Cone) Let F be

afacet ofa ^-polytope P, and V be a triangular cone such that F D V is a
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triangle in the relative interior ofF, and m be a positive integer. Then there

is an m-cupola C beyond FofP such that P is beyond (^1,^21^3) ofC
and such that V is the visibility cone ofC. Moreover, the input length ofC is

polynomial in the input lengths ofP, V and m.

Before we come to the proof, we will exhibit a necessary condition of the

visibility cone V of a cupola C and the facet the cupola is being glued upon.

It will imply that we cannot directly attach a cupola to a face (as in [51]), but

we have to construct an intermediate polytope first.

Figure 3.19: Collinearity condition in the base triangle ofa cupola

Lemma 3.12 Let A\, A2, A3, B\, B2, B3 be vertices in Schönhardtposition.

Define l\ to be the intersection line ofplanes B3B\A\ and B1B2A2, lines

I2 and l3 are defined accordingly (Figure 3.19, note that they contain the ex¬

treme rays ofV). The lines l\, l2, and l3 intersect the relative interior ofthe

bottomface (A\ ,A2,A3) ofa cupola C. The intersection points D\, D2, and

D3 areforced to have the following collinearities: A\D\D2, A2D2D3, and

A3D3DX.

Proof./i enters the Schönhardt polytope S in point B\, runs along facet

(Ai,Bi,B3) until it reaches the edge (Ai,B3) where it goes into the inte¬

rior of S. Then the relative interior of (AX,A2,A3) contains the point D1. In

this way, D\, D2, A2 are all on the planes AxA2A3 and BiB2A2. D

ProofofLemma 3.11: We proceed in three steps. The lines l\,h,h are defined

as in Lemma 3.19.
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The bottom triangle (A\,A2,A3). We will now construct an intermediate

polytope beyond F which will have a triangular facet (A i, A2, A3) which is

(1) parallel to F, and which is (2) intersected by the cone V in a triangle

(Di,D2,D3) in the relative interior such that (3) the collinearity condition

from Lemma 3.12 holds.

To do this, we place a plane H parallel to and slightly above F such that

the intersection points Di of H and U (i = 1,2,3). Also H has to be so

close to F that the k do not cross between H and F. By prolonging the

line segment D3DX slightly beyond Dx (staying in P \ F) we obtain point

Ax, analogously construct A2 and A3 (Figure 3.20). Taking the convex hull

of F and the points Ai, A2 and A3 gives then the intermediate polytope,
whose face (A\,A2, A3) has the collinearity condition. These constructions

are polynomially constructible in the sense ofLemma 3.10.

Figure 3.20: Building the intermediatepolytopefor the cupola

Theframe ofthe cupola. As in the construction ofthe bottom facet (A i, A2, A3),
we place a plane H' parallel and slightly above this facet. The intersection of

H' and V is the triangle (Bx ,B2,B3) (B\ is on the same extreme ray ofV as

Di and so on). See Figure 3.21.

It is clear from the construction that triangles (Di,D2,D3), (Ai,A2,A3),
and (B\,B2, B3) are parallel and all oriented the same way. Therefore it is

not hard to check that the points A\,A2,A3,B\,B2, and B3 are vertices of a

Schönhardt polytope whose visibility cone is V. Polynomiality of this part of

the construction follows from Lemma 3.10 as well.

Attaching the vertex-edge chains. Now that the frame of a cupola is done,

i.e., the vertices Ai,...,B3 are in Schönhardt position, it remains to patch
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Figure 3.21: Building theframe ofa cupola

the key structures of Lemma 2.2, the vertex-edge chains q\ (i = 1,..., m,

j = 1,..., 3), to the sides ofthe frame conv(P U {Ai,... B3}).

Given triangular faces (a,qo,qm+i) and (b,qo,qm+i) ofa convex polytope P

and a plane G which (strictly) separates points qo and qm+\. We claim that

we can construct points qi,...,qm beyond the edge (go, 9m+i ) ofP such that

the convex hull ofP U {qi} has the properties ofLemma 2.2 and such that the

points q\,..., qm lie on the same side ofG as qo. Moreover, the input length
ofthe constructed points is polynomially bounded in the input length ofP and

G.

By applying our claim three times, we will conclude our proof. The vertices

q\ are placed beyond edge (Aj, Bj+i), vertices Bj and Aj+i take the roles of

a and b, G is the plane spanned by Bj, Aj+i and Bj+2. It is easy to check that

this is exactly what we want for Lemma 2.2 and for the cupola conditions.

Now we prove the claim. We will put the points q% (i = 1,..., m) on a

parabola segment, beyond the edge (q0,qm+1). Let H be a plane contain¬

ing Co and qm+i which also intersects the interior of P. This plane has the

property that it contains points beyond edge (qo,Qm+i)- It is constructible

in polynomial time. Let v be the sum of the two normal vectors of planes

aqoQm+i and bq0qm+1, and H the plane containing qo and qm+i parallel to v.

Let now D be the intersection point of G and (qo, qm+i)- Let w be a vector

of direction of the intersection line of G and H, such that starting at D it is

pointing out of P. Now let E£ = D + ew for e > 0 to be specified later.

For small e, Ee is beyond (q0, qm+i). Hence the parabola defined according

to Lemma 3.13, stated and proved below, by p(0) = qo, p(l/2) = Ee, and
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Figure 3.22: Construction ofthe vertex-edge chain

p(l) = qm+i lies entirely in H, and for arguments between 0 and 1 passes

just beyond (qo, qm+i). Let qi = p(i/(4m)) fori = l,...,m. For small

s all those points are beyond (qo, qm+i) and on the same side of G as qo

(polynomial conditions, use Lemma 3.10). Also, they are in convex position
such that the convex hull of P U {q\,..., qm} has exactly the required face

lattice. D

Lemma 3.13 Let po, p\, p2 be three non-collinear points in M.3 and to, t\,

t2 be three distinct real numbers. Then there is a unique curve p : M. —>• E3

such thatpo = p(to), p\ = p(t\), andp2 = p(t2) which is quadratic in every

coordinate. Furthermore, all points on p(t) are in the plane spanned by po,

P\, andp2, and they are in convex position. Also a plane containing p(r) and

p(l)for some r ^ I which does not contain all ofp has all points between I

and r on one ofits sides and all otherpoints on the other side.

PROOF.Sincepo,Pi,P2 havetobeonthe£0>£i> h positions ofthe curve

/ ax + bxt + cxt2 \

p(t) = I ay + byt + Cyt2 j ,

\ az + bzt + czt2 J
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Q-x bx Cx \ / 1 î l

ay by cv to h t2

az bz cj U t2 t2

we have the condition

/ : : : \

PO Pi P2

V ' ' ' J

By the non-singularity ofthe Vandermonde matrices, there is a unique solution

to a.,b., c. given the pi and ti.

The curves which are quadratic in every coordinate are linear transforms of

the moment curve m(t) — (l,t,t2). This curve lies entirely in the re = 1

plane, is convex, and has the condition that it intersected by each plane at

most twice (or it is in this plane). All these properties are invariant under

linear transformations.

3.4.3 Constructing a Visibility Cone

In order to use the cupola as a basic building block, we need to have a visibility
cone that contains a specified set ofvertices and intersects the relative interior

of some face. Once we have that we can construct the cupola as described in

the previous section. The set will consist of all vertices lying in a specified

plane.

Lemma 3.14 Let H be a plane which intersects the relative interior ofsome

face F ofa polytope P, and let S = {vi, ...,vs} be the set ofvertices ofP

lying in H, not including the vertices ofF. Let S' = {w\,..., wsi} be a set of

points in relint(F) D H. It is possible to construct a triangular cone V which

intersects F in a triangle that lies in the relative interior ofF and V contains

S and S' in its interior and no other vertex ofP.

The reader may not see at this point the purpose of the set 5', but we will

justify it at the end ofthis section.

Proof.P n H is a polygon. Without loss of generality, F n H is horizontal

and situated on the top of the polygon P n H (see Figure 3.23). Let I be

the line connecting the leftmost point of 5' and leftmost vertex of 5 (the one

encountered first when walking around P C\ H counterclockwise, starting at

FnH). Analogously, let r be the line connecting M and the rightmost vertex

ofS.

The area between / and r (in H) is already a cone containing S and no other

vertices ofP. We will perturb it in a way that the other conditions are satisfied

as well.
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First shift / and r parallely outwards, guaranteeing that they still intersect F f)

H in its relative interior (easy open conditions); we obtain /' and r'. Also, let

/' be a line in H parallel to F just outside P, i.e., such that I' and r' intersect

/' in the same order as F n H (again using Lemma 3.10).

Figure 3.23: Construction ofI and r, then V andr' (viewed in H)

Now we will rotate H about /' and r' and /', getting three planes bounding
the desired triangular cone: Let H be oriented in some way, and a #x > 6#
be its defining inequality. Let v be some point which lies on the positive side

of H. Let Gi' be the plane through I' and v. By construction, all vertices

in S lie on the same side of Gv, so we can orient it such that S is on its

positive side. Let ayx > by be its defining inequality. Perform the same

construction for r' and /' obtaining Gr> and Gp, also orienting them in a way

that v is on their respective positive sides. Let G\, be the plane defined by

(an + eai')x > bn + sbi>. This plane contains V and for small e it is very

close to H. Hence, it is the rotation ofH abouti' in the direction ofplane Gi>.
Also let Gsr, be defined by (an + £<V )x >bn + ebri, and Gp be defined by

(—an + eap)x > —bn + sbp.

Obviously, all points in S and in S' are on the positive sides ofthe planes Gf,,
Ger,, and Gp. For small e > 0, these planes do not "sweep" over vertices ofP

which are not in 5, and it is easy to see that in this case, there are no vertices

of P that satisfy all three new inequalities. Also for small e, the points in F

satisfying all three inequalities define a triangle in the relative interior of F

with endpoints G\, D G£r, n F, Ger, D G), n F, and G), D G\, n F. Hence,
the set of all points satisfying the three inequalities is a triangular cone V with

the desired properties. The conditions on e are open polynomial conditions

according to Lemma 3.10. D

This lemma can be used to build one cupola over the facet F. However, there

might be problems ifwe keep on constructing around the polytope, like adding
more cupolas over other facets of P. The visibility cone we just constructed



3.4. Constructions 65

Figure 3.24: Rotated hyperplanes, viewed by their intersections with F

might "catch" points we construct later. But these constructions all happen

beyond facets ofP, so we can use the following lemma to construct all cupolas
one after the other without their visibility cones catching extra vertices.

Lemma 3.15 Let H\,..., Hn hyperplanes, intersectingfacets F\,... ,Fn of
a polytope P with the restriction that Fi D Hj — 0 for all i ^ j. Then

Pbeyond Fi PI Hj = §for all % ^ j.

Proof.Assume there is a point u in Pbeyond Fi H Hj (i / j). Then this point
also lies in (P \ Fi) n Hj, but on the non-positive side of Fi. Let v be a point
in Fj n Hj, Then v is also in (P \ F{) n Hj (since Fj Ç P Ç P\ F{), but

on the positive side of Fi. Hence, there must be a point w on the line segment

[u, v] which is on the hyperplane containing Fi. The whole segment lies in

P\Fi, hence every point on it has to satisfy all of P's defining inequalities

except that of Fi. So w lies in the facet Fi. But it also lies in Hj (the whole

line segment does), which contradicts the assumption FiDHj = 0.

In Section 3.1 we will need an additional condition: Given a set oflines in the

plane H (ofLemma 3.14) that pierce the face F, we want to be sure that these

lines also pierce the skylight of the constructed cupola. (This condition will

play an important role when we want to force so-called blocking conditions,

see Section 3: At some point two tetrahedra spanned by two skylights and two

respective visible vertices v and v' will have to intersect in their interiors. This

is already guaranteed if the corresponding lines g and g
' intersect inside the

polytope.)
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The next theorem specifies the way in which we will use all the preceding
lemmas in our construction in Section 3:

Theorem 3.16 (Full-Strength Cupola Construction) Let Hi beplanes that in¬

tersectfacets Fi ofapolytope P in their relative interiors such that Fi n Hj =

$for all i Ï j. Let Si = {vj,...,uj.} := (vert(P) n Hi) \ Fit and

Li = {g\,..., g%s,} sets of lines. Assume further that each of the lines pj

pierces the relative interior ofFi and is incident to some v\.

Then we can sequentially construct all cupolas Ci beyond the faces Fi such

that in the resulting polytope their visibility cones contain Si and no other

vertices. In addition, the skylight ofthe cupola over each Fi is pierced by the

lines in Li.

PROOF.The theorem follows from the ideas in Lemmas 3.11 and 3.14. In the

construction of the visibility cone over facet F{, we invoke Lemma 3.14 with

the polytope P U |J -^ Pbeyond f, •
The set S'i is of course {IDFi\l e Li}. The

cupola construction was such that the cupolas over Fj were always beyond the

facet Fj, so the constructed visibility cones contain no vertices of the other

cupolas. In order to have the lines in Li pierce the skylight of cupola i we

have to alter the construction of the cupola in Lemma 3.11: when we put the

planes parallel to F, we do it in such a way that the triangles (A i, A2, A3) and

then (Pi ,B2,B3) are pierced by these lines. These are both open conditions

on the distance of the planes to P. D

3.4.4 Constructing a Logical Polytope

ProofofLemma 3.7: The construction will be carried out in five stages. By the

time we end the construction all five requirements of the definition of logical

polytopes must be satisfied, but three of the conditions will not be met until

the last stage.

1. Give coordinates of the basic wedge, with rectangular faces on top for

each variable.

2. Attach the roofs for each variable, giving preliminary coordinates for

the literal vertices and preliminary coordinates for the points on the

lower edge (the spine of the wedge).

3. Perturb the literal vertices to their final positions.

4. Perturb the vertices on the spine of the wedge.
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5. Attaching the variable cupolas following the procedures of Section 2.

In every step we will build a construction element (a point, a line, or a plane)
whose coordinates are polynomials in the construction elements up to that par¬

ticular moment. Hence, the encoding length ofeach new construction element

is bounded by a linear function of the encoding length of the construction

so far. The number of construction steps is polynomially bounded in C and

V. Hence the encoding length ofthe whole construction is also polynomially
bounded in C and V. Note however, that the coordinates themselves will in

general be exponentially large.

Instead of writing explicit (and highly cumbersome) coordinates for the con¬

struction elements, we rely on Lemma 3.10 to ensure that such coordinates

can be found if one has really the desire to see a particular logical polytope.
A key property of Stages 2-4 in the construction is that the geometric condi¬

tions we want to determine a finite collection of strict polynomial inequalities
in a single variable. Then, by Lemma 3.10, we know there is an appropiate

polynomial size solution. In subsequent stages ofthe construction similar new

systems, for other independent parameters, will be solved, preserving what we

had so far, but building up new properties.

Stage 1: The basic wedge. Consider the triangular prism which is the convex

hull of the six points c0 = (0,0,0), c2C = (0,1,0), *£ = (0,0,1), zF =

(1,0,1), z\ = (0,1,1), and zR = (1,1,1). See Figure 3.25(a). In order to

obtain a convex structure on the top of the wedge, we consider the function

f(x) = x(l — x) + 1. The vertices of each roof boundary (that is zlT and

zF as well as zR and zlL) will lie on the surface z = f(x). More specifically,

4 = 4+1 = (i/V,0,f(i/V)) and 4 = y?1 = (i/V,l,f(i/V)) fori =

0,..., n. By the concavity of/, the points are indeed in convex position and

their convex hull, the wedge has the desired face lattice (see Figure 3.25(b)).

Figure 3.25: Construction ofthe wedge
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So far none ofthe conditions we want are satisfied (not even partially).

Stage 2: The roofs. We will first attach the points z\ and zB to the quadrilat¬
eral face (z\, zlR, zlT, zF). Then we give preliminary coordinates to the literal

vertices and to the vertices on the spine.

Let zA = 1/2 • (4 + 4) + (0,1/3, tr00f) and zB = 1/2 • (4 + zF) +

(0,2/3, troof) where troof is a non-negative parameter that is called the roof

height. That is the points have the same x coordinate as the midpoint be¬

tween zlT and zF, y coordinate 1/3 and 2/3 respectively, and height tr0of over

the face (zlT, zF, zlL,zR). We want to choose troof in a way that zA and zB

are beyond the facet (zlT,zF,z%L,zR) (see Figure 3.25(c)). We can easily
achieve this by the technique presented in Lemma 3.10: The only possibly
concave edges are the (z%T, zlL). One restriction is therefore that all determi¬

nants det(;zy, z%L, zA~l, zA) have to be positive. These are finitely many open

quadratic conditions on troof. For troof = 0 the points zA an zB are inside the

facets (z%T, zF,z%L, zR), hence the edges in question are trivially convex. We

will get more polynomial constraints on troof below and then solve all simul¬

taneously to find the suitable roof height.

The spine ofthe wedge is still a line. We now put preliminary points co,...,c2c
on this line. Let

uU) = le
and Cj = (0, u(j), 0) for j = 0,..., 2C - 1, and c2c = (0,1,0) (see Figure

3.26). As an auxiliary point, let bi be the barycenter ofthe points c2/-2, c2/-i,

and c2i (/ = 1,..., C). At this moment, this point bi = c2*_i. Later, as we

perturb the spine vertices bi will move accordingly, always bi — l/3(c2j_2 +

C2Z-1 +C2l).

M Ci C3 C5 C7 Cs
V <"• » »'"- -»" m » - --' I

Co, C2 C4 C6 ! 1 !

°
>2

Figure 3.26: Preliminary coordinatesfor the spine vertices

Now we want to give initial positions to the literal vertices. Say variable Xi

occurs unnegated in clauses l\ and l2 and negated in Z3. Note that lj depend on
the variable we are considering. For instance, in our example logical formula

on p. 45, for variable X\,h = 1, l2 = 3, and l3 = 2. But for variable X2,

/j =2,/2 = 3,and/3 = 1.

\x»y
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The preliminary literal vertex x\ is the intersection of the y = u(2l\ - 1)
plane with the line connecting zF and zB. We do the same for the other

positive occurrence of Xi and obtain the preliminary x\. For the negative
occurrence of Xi, we take the line connecting zlT and zB, intersect it with the

y = u(2l3 — 1) plane, and obtain the preliminary x\. We join the preliminary

x\ and bir by a line d\ (this line lies in the y = u(2h — 1) plane). Do the

analogue process for x2 and x3, obtaining d\ and d3. Later we will move the

vertices x\,x\,x\ along their respective lines d\,d2,a\a little out ofpolytope
in order to turn them into extreme points. The lines dj will also be used for

blocking conditions.

Figure 3.27: Construction ofthe literal vertices in the Xi slice ofthe wedge

Let H% be the plane that contains z%T and zF and the midpoint of the edge

(z%L,zB) (Figure3.28). The only vertices above H% are x\,x\, x3,zA, and zB,

and the only vertices on H% are zlT and zF. This follows from the convexity
ofthe current polytope.

Let g\ (g\) be the line in the plane Hl which is incident to zF and intersects the

line d\ (d2). Note that this intersection point lies in the segment (x\, 02^-1)
(the line segment (x\, c2i2-i )), thus in the interior ofthe constructed polytope.

Analogously, let g3 be the line in the plane Hl which is incident to zlT and

intersects the line segment (#3,c2j3_i). It can be verified that if the roof

height is small (zlL, zR,zB) is pierced by the #j in its relative interior. This is

another strict polynomial inequality in troof. It will be the planes Hl and lines

glj (i = 1,..., V) from which we make the visibility cones for the cupolas of
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Figure 3.28: Construction ofH% and g\

variables Xi according to Theorem 3.16.

It is important to note right now that the non-blocking conditions are satis¬

fied for this special position of the vertices. We do not want the tetrahedron

(zlT, zlL,zR, zB) and the triangle (x\, c2ix-2, c2/x) to intersect. From this we

get strict polynomial inequalities on tTOof- They are satisfied for troof = 0 since

the y coordinates ofthe spine vertices c/ are smaller than 1/2. A suitable value

of troof can be found solving the univariate inequality system we accumulated

in our discussion (Lemma 3.10). It is easy to check that the sweeping condi¬

tions are also satisfied for the preliminary position ofthe points x \, x2, x\. So

far we have met two ofthe five required conditions to have a logical polytope.

Stage 3: Literal vertices Now we put the final xlj (j'< = 1,2,3) a little outward

on line dj (Figure 3.27). A little for x\ and x\ means that the positive literal

vertices lie in a plane parallel to the face (zR, zB,zA,zF) very close to it. We

treat x\ similarly. If the three literal vertices are moved a sufficiently small

distance enteral the face lattice ofwhat we get after taking the convex hull is as

Figure 3.13 (a) in all roofs. See also the Schlegel diagram in 3.13 (b).

By construction Hi contains zF and zlT, and the y — u(2j -1) planes contain

all literal vertices corresponding to clause j. This will become important for

the visibility conditions (see Stage 5). Also, for small tuerai the non-blocking
and sweeping conditions are satisfied.

Although we do not have the blocking condition yet auxiliary lines can be set

up: As above, let Zi, l2, h be the clauses to which the literal vertex x\, x\,

x\ belong. We made sure that the line segments (c2h-\,x\) and (zF,zB)
intersect in their respective relative interiors. Hence, by the construction of
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line g\, it is also pierced by (x[, c2ix _i ) between zp and the face (zlL ,zR,zB).

(Analogously, (c2i2-i, x\) and (zF,gl2 D (z\, zR, zB)) as well as (c2z3-i, 4)
and (zlT, g\ n (z\, zR, zB)) intersect in their relative interiors). Later on this

intersection will evolve into the real blocking conditions using Theorem 3.16.

Stage 4: The perturbing the vertices on the spine of the wedge. We now

perturb the points Cj on the spine of the wedge. Every even-indexed c2/ is

changed to lie on a parabola, and for the moment the odd-indexed vertices

C2Z-1 are changed to lie on the line connecting c2/_2 and c2j. The y coordi¬

nates of all points stay the same:

C2l = f - (y - l)2 • teven, 2/, (y ~ l)2 ' teven

Note that by the 1/2 in the x coordinate, the points are moved into the poly-

tope. The changes (parameter teven) must be small enough that the convex

hull now has the desired appearance (Figure 3.29) and the non-blocking con¬

ditions and the sweeping conditions are still satisfied. Once more we appeal
to Lemma 3.10. The polynomials inequalities are now on the variable teVen

and the sweeping and non-blocking were satisfied at teven = 0. The reader

should note that while the constructed vertices in the roofs do not change coor¬

dinates, dependent construction elements like the lines d]- (connecting x%j and

c2ij -i) and glj (lying in H% and intersecting dp change when the spine vertices

move. However, the parameter teven has to be small enough that the prelimi¬

nary blocking conditions are still met: gj still pierce the facet (zlL, zR,zB) in

its relative interior, and #j and d* intersect in the interior ofthe polytope.

Figure 3.29: Perturbation ofthe vertices on the spine

Now we move the odd points c2/-i beyond the face Gi = (c2\-2, c2\,z%): to

this end, we choose a point pi beyond Gi andmoveto c2j-i +t0dd(pz — c2z-i)-
Such a point pi is easily found by taking a normal to Gi through its barycen¬

ter and moving outwards while staying beyond the face (note that this in¬

volves again Lemma 3.10, see the definition of beyond). The parameter 10dd is
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chosen small enough: Convexity and the correctness of the face lattice are

easily achieved. Also the sweeping conditions are valid for slight moves.

Keeping t0dd small also guarantees the non-blocking conditions: the tetra¬

hedron (x\,c2i1-2, c2i1-x,c2il) is only slightly bigger than just the triangle

(x\,c2i1-2, c2ix) which did not intersect the tetrahedron (z%T, z\, zR, zB) (x2

and x\).

For the blocking conditions, let Xi be the jth logical variable in clause I. Note

that now the line d*- intersects the triangle (c2i-2,c2i-i,c2i) in its relative

interior. The lines <yj are updated as the lines d*- move. Since todd is small, #j
still pierces the facet (z\, zR, zB) in its relative interior, and </*• and d*- intersect

in the interior of the polytope. Note that d] is still in the y = u(2l - 1) plane
because the y coordinates of the spine vertices were conserved.

Stage 5: Attaching the cupolas. It remains to construct all the cupolas. Over

the facets (zlL,zR,zB) (i = 1,..., V) we construct cupolas using the planes
Hi and sets of lines {g\,g2,g3}, and over the facets (c2/_2,c2/_i,c2/) (i =

1,..., C) we construct the clause cupolas using they = g(2l — 1) planes and

the sets of lines {d] | Xi's jth occurence is in clause I}. We invoke Theorem

3.16 and get the final polytope. By this construction, it is convex, has the

correct face lattice, and the visibility conditions are satisfied.

The reader will recall that #j and d] intersect in the interior of the polytope.

Say again variable Xi occurs unnegated in clauses l\ and l2 and negated in

/3. By Theorem 3.16 p] pierces the skylight of the cupola corresponding to

variable Xi and d* pierces the skylight corresponding to its clause lj. Hence,

the tetrahedron spanned by zF and the variable Xi's skylight together with

the tetrahedron spanned by x\ (x2) and clause Zi's skylight (Z2's skylight)
intersect in their interiors. Analogously, the tetrahedron spanned by z%T and

the variable X^s skylight and the tetrahedron spanned by x\ and clause /3's

skylight intersect in their interiors. These are exactly the blocking conditions.

All other conditions concerned only points we constructed before, so they are

still satisfied. The final polytope is therefore a logical polytope. D

3.5 Minimal Triangulation with Interior Points

We consider now again the concept of triangulations using additional interior

points. We want to construct a polytope now whose minimal triangulation
uses at least & interior points. Then we will show that MinTriangIP(3, Z) is

NP-hard.
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Theorem 3.17 Given two numbers h > 1, k > 1 there is a simplicial convex

3-polytope P such that every triangulation of P using less than h interior

points has at least k tetrahedra more than a triangulation ofP with h suitably
chosen interiorpoints.

PROOF: Let P be a simplicial 3-polytope on np vertices with at least h facets.

For h of these (triangular) facets F = (AL, A2, A3) we construct a visibility
cone as follows:

Choose three points D\, D2, D3 in F such that Ai, Di, andD;+i are collinear,

but such that D\, D2, and D3 are not collinear. Then consider a point C

beyond F and a plane H such that the intersections Bi = H D DiC are still

beyond F, but on the other side of C w.r.t. Di. These constructions are easy

to accomplish (even in polynomial time by Lemma 3.10). See Figure 3.30.

Figure 3.30: Constructing disjoint visibility cones over manyfacets

It is not hard to see that the points Ai, Bi (i = 1,..., 3) are in Schönhardt

position and that the visibility cone is the triangular cone with apex C and

rays CBi. Note that this visibility cone contains no other points of P. Now

we can complete the cupola construction (according to the construction in

Lemma 3.11) and get an m-cupola where m is to be specified later.

We perform this construction for all h triangular facets. Then the subsets of

the visibility cones consisting of the points below the corresponding skylight
do not intersect each other and contain no vertices.

Let T be a triangulation of this polytope P/p with less than h interior points.
We will show that this is a large triangulation: There is one visibility cone
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which contains no interior point and no vertex of P^ .
Hence by Proposi¬

tion 3.5 T has at size at least n + m - Z where n is the number of vertices of

P[p. By construction n = np + Zh(m + 1).

We will now construct a small triangulation using h interior points: Of course

we will place one interior point in each visibility cone. Let C be a point in

the visibility cone of a cupola which is very close to C. With very close we

mean close enough that it can triangulate all facets of the Schönhardt poly-

tope from within. This point is easy to find since C can see the lower facets

(Ai, Ai+i,Bi) and the facet (Ai, A2,A3) from within, and any point in the

visibility cone can see all other facets from within. Then we can triangulate
the Schönhardt polytope using 8 tetrahedra. The vertex-edge chains can be

triangulated using 3(m + 1) tetrahedra. The original polytope P remains, by
a pulling triangulation we can triangulate it using at most 2np — 1 tetrahedra.

We obtain a triangulation ofP[p with at most 2np - 7 + Sh + Zh(m + 1).
Hence for m > k+n + 8h — 4 this triangulation is at least k tetrahedra smaller

than any triangulation using less than h interior points. D

Corollary 3.18 MinTriangIP(3, h) is NP-hardfor all h > 0. Thereby h

is notpart ofthe input.

Proof: Let Pf be the logical polytope constructed from a given SAT formula

/ without the vertex-edge chains. Beyond the front triangle of the wedge
we construct a vertex-edge chain consisting of h vertices. (We have to take

care that they are not in any visibility cones, but this is an open condition

satisfied by Co, so if we build everything very close to Co we are fine. By
Lemma 3.10 this can be achieved in polynomial time.) Over the triangles of

Figure 3.31: Constructing h triangularfacets where we can glue cupolas with

empty visibility cones
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these triangles we can construct Schönhardt polytopes with empty and disjoint

visibility cones as in the previous proof. Now construct all vertex-edge chains

(in the logical polytope and in the h Schönhardt polytopes) with length m —

5h + V + Z+pT(C,V)-pn(C,V). The resulting polytope has n = Zm(C +

V+h)+4h-l+pn(C, V) vertices. We have to show now that / is satisfiable if

and only this polytope has a small triangulation (less than n+m—3 tetrahedra)

using at most h interior points.

In a small triangulation of less than n + m-Z tetrahedra all skylights must be

triangulated by points in their visibility cone. In particular the h new skylights
must be triangulated. But their visibility cones contain no vertices, so we have

to introduce interior points as above. Furthermore, they do not intersect, so we

must place one interior point per new cupola. This leaves no interior points,
so the remaining cupolas must be triangulated with vertices of the polytopes.

By the properties of the logical polytope this means that the formula / is

satisfiable.

On the other hand if/ is satisfiable we triangulate all new cupolas with interior

points as in the previous lemma, needing 8 + Z(m + 1) tetrahedra per cupola.
Then we can triangulate the the new structures we attached to the front face

ofthe wedge by forming the h - 1 tetrahedra oftwo consecutive new vertices

and the edge (co, zF). It remains the wedge plus a pyramid over its front face.

We triangulate the front face by pulling c0 and using this triangulation (having
V triangles) we pull the last new vertex. We are left with the logical poly-

tope which we have seen we can triangulate using m(ZC + ZV) +Pt(C,V).
Summing up all numbers we get

#T = Zm(C + V + h) + 9h-l + V+ pT(C, V).

By construction ofm this number is smaller than n + m — Z.
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Chapter 4

Realizations of Polytopes

The face lattice ofa polytope (the partially ordered set ofall faces) contains the

combinatorial information of the polytope. It is interesting to ask how much

ofthe information about the polytope is already stored in the face lattice.

Let us first look at an example where the face lattice does not contain enough
information to give a valid answer for every realization, namely maximal tri¬

angulations. The 3-dimensional cube can be realized as the unit cube spanned

by the vertices {0, l}3; its maximal triangulation has 6 tetrahedra1. However,

another realization ofthe cube is an upright prism over a non-rectangular four¬

gon whose maximal triangulation has 7 tetrahedra (Figure 4.1).

We want to answer the following questions:

1. Is there a polytope such that in every realizations a face has a certain

shape? In other words, can weprescribe the exact shape ofa face using

only the combinatorial data of the polytope?

2. Is it hard to find maximal boundary triangulations over all realizations

of a polytope?

The answer to both questions is yes, and in a very strong sense:

Yes, for every d-polytope G with algebraic coordinates we can construct a

d+2-polytope P such that any realization ofP has a face which is projectively

equivalent to G. This result is best possible in two ways: We cannot hope to

lrrhis is easy to see: Each tetrahedron has volume at least 1/3!, so in order to fill the body of

volume 1 there can be at most 6; this bound is achieved by any coning triangulation.

79
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Figure 4.1: The maximal triangulation of the prism over a non-rectangular

square has 7 tetrahedra: As opposite edges of this polytope are not parallel
like in the unit cube, they span a tetrahedron; the rest ofthe polytope can be

triangulated using three tetrahedra on each side ofthis tetrahedron.

accomplish more than projective equivalence, because projective images of a

polytope have the same face lattice. Andwe cannot hope to prescribe the exact

shape of polygons with non-algebraic coordinates (more precisely, polygons
for which all projective images have non-algebraic coordinates); this is an

implication ofthe Tarski-Seidenberg theorem [40, 53].

And yes, it is as hard as the existential theory ofthe reals to find the maximal

boundary triangulation over all realizations of d-polytopes for d > 5. This

implies for instance ATP-hardness.

One ofthe main (outside) tools for these results is Richter-Gebert's Universal¬

ity Theorem [46]: He showed that realization spaces of4-polytopes can be as

complicated as any primary semialgebraic sets2 can be. Viewed this way the

combinatorial structure already encode pretty much. He encoded polynomials

equation and inequality systems, in shortpolynomial systems into 4-polytopes
which then had the following properties:

1. in each realization there is a face which "encodes" a solution to the

polynomial systen and

2. for each solution is a realization with a face which "encodes" this real¬

ization.

2
a basic primary semialgebraic set is the solution set of a system ofpolynomial equations and

strict inequalities with algebraic coefficients
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Since we rely heavily on his construction we recall it in great detail. Along
with introducing the precise notation and stating general-knowledge prerequi¬
sites this is the main contents ofChapter 4.

In Chapter 5 we will use Richter-Gebert's construction to come up with poly-

topes which prescribe the exact shape of one of its faces. First we will show

how to prescribe 2-faces of 4-polytopes by making explicit use of Richter-

Gebert's construction. Then we will prescribe d-faces of d + 2-polytopes for

d > 3. For this we will employ the results of the first part ofthis section.

Chapter 6 is dedicated to the proofofthe hardness of finding maximal bound¬

ary triangulations over all realizations. We will encode a given polynomial

system (a so-called driving system) in a polytope: the polytope will have a re¬

alization with a large boundary triangulation if and only if the driving system
has a solution.

Most facets of this polytope have only triangulations which exists in every

realization and are easy to compute. (For an intuition, think pyramids over

polygons: all of their triangulations are present in every realization.) But

the shape of one facet is prescribed to have only two possible realizations,

one with a large triangulation and another with a smaller triangulation. The

driving system is now encoded in such a way that the realization with the large

triangulation is only possible if the driving system has a solution.

Overview of this Chapter

In this chapter we want to introduce all the techniques and all notation we

need for our constructions and which are either common knowledge or other

peoples results. Among the first are the remarks in Section 4.1 about com¬

binatorial vs. realized polytopes. In Section 4.2 we define the concept of a

combinatorial polytope which prescribes a property of one of its faces. We

give various constructions which are examples for this concept and which are

prerequisites of the Universality Theorem for polytopes. Actually, all these

constructions can be found in Richter-Gebert's monograph [46] in one way or

the other. In Section 4.3 we state the Universality Theorem in a form which

we can use in later chapters. We give some, not all, details of the construc¬

tion, just so much that the reader can appreciate our changes to it in the said

later chapters. At the end of this chapter, in Section 4.4, we have placed an

appendix on projective spaces and projective transformations and how poly-

topes fit into this picture. The results there are again common knowledge,
nevertheless we added the proofs to keep this treatment self-contained.
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4.1 Combinatorial Polytopes and Realizations

Faces of Polytopes

A polytope is equivalently the convex hull of a finite number of (finite) points
and the intersection of a finite number of halfspaces such that the result is

bounded.

The faces of a polytope are the intersection ofthe polytope with a supporting

hyperplane (a hyperplane which defines a halfspace which together with the

hyperplane itselft contains the whole polytope). Equivalently it is the zero set

of an affine functional (a linear functional followed by a scalar translation)

which is non-negative on the whole polytope. By this definition the empty

set and the whole polytope are also (so-called improper) faces. Notice that

faces are again polytopes. The dimension of a face is the dimension of the

containing affine space. Ifthe dimension ofa polytope is d then we call the 0-

dimensional, 1-dimensional, d — 2-dimensional, and d — 1-dimensional faces

vertices, edges, ridges, and facets, respectively. We will call the set of all

vertices ofa polytope vert(P), and the set ofall facets facets(P).

Labeling of Faces

Iftwo vertices p and q are connected by an edge we denote the edge by p V q.

Similarly, if two edges e and / share a vertex we denote it e A /. This is an

abuse ofthe notation for the join (V) and the meet (A) ofprojective subspaces

(see Section 4.4 for the definitions) since we will use the name ofaface and

the name of its projective closure interchangably. This extends to the case

where conv({a, b, c, d}) is a quadrangular face of a polytope P; then we will

also denote it by the name of the plane a V 6 V c — and actually mean the

intersection of the plane with the polytope (a V b V c) n P. Also we will use

the name ofa flat piercing a polytope and the set of intersection ofthe flat and

the polytope interchangably: Ifp and q are vertices not connected by an edge,
then p V q denotes both the line containing both ofthem as well as its segment

inside of the polytope, i.e. the diagonal connecting p and q.

Let us see this notation at work in polygons. If the edges of a polygon are

labeled by an index set X = (oi,..., an) we will refer to this polygon by

G(X) = G(a\,..., an) (see Figure 4.2). Very often we will use the integers

1,..., n as edge labels. The vertices of the polygon are then the intersection

i A i + 1 of consecutive edges (addition modulo n the number of edges).
The diagonals or chords of the polygon we label particularly: (i,j) is the
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Figure 4.2: The polygon G(l, 2, Z, 4,5,6,7)

diagonal spanned by the vertex before edge i and the vertex after,;', i.e.(i,j) =

(i — 1 A i) V (j Aj + 1). Naturally, we identify (i, i) and i.

Schlegel Diagrams

We remind the reader of an important tool to visualize higher-dimensional
polytopes, the Schlegel diagrams. Schlegel diagrams are constructed using
central projections ofpolytopes onto one oftheir facets. The projection central

is chosen beyond that facet so that all other polytope vertices are projected
into the chosen facet (see Figure 4.3 and [61]). The images of the d — 2-

dimensional faces (ridges) on the chosen facet subdivide this facet cells: these

are the images ofthe other facets and they are actually projectively equivalent
to them.

Figure 4.3: Left: Construction ofSchlegel diagram ofa Z-dimensional cube;

Right: Schlegel diagram ofapyramid over a Z-dimensionalprism (4-polytope)
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Combinatorial Polytopes

The face lattice of a polytope is the partially ordered set of all faces of a

polytope, ordered by inclusion. The face lattice captures the combinatorial

structure of its boundary. It is an atomic lattice, i.e. each face is completely
determined by its vertex set (which is the set of atoms beneath it in the or¬

dering). But it is also coatomic, i.e. each face is the intersection of the facet

that include it. Hence the face lattice is already completely determined by the

vertex sets of its facets. This gives rise to the following definition.

Definition 4.1 The combinatorial polytope of a polytope P is the set P of
vertex label lists for allfacet ofP, i.e. the set P = {vert(F)\Ffacet ofP}.

P= { {a,b,c},
{a',b',c'},
{a,b,a',b'},
{b,c,b',c'},

c {a, c, a',c'} }.

Figure 4.4: Example ofapolytope and its combinatorialpolytope

Consider two polytopes P and Q which share a facet F such that P and Q
are on different sides of F and such that P U Q is a convex polytope. The

facets of the resulting polytope are of course all facets of P and all facets

of Q except the facet F, so the combinatorial polytope of P U Q is easily
described: all facets of P and all facets of Q, except the common facet. We

use this operation as a generalization ofthe concept ofcombinatorial polytope
in the following recursive definition:

Definition 4.2 A set P oflists ofvertex labels is called a (general) combina¬

torial polytope on a vertex set X

1. ifit is the combinatorialpolytope ofa polytope P with vert(P) = X,

or

2. ifthere are combinatorialpolytopes Q andQ
'
on vertex label sets Y and

Y' suchthat X = YöY', YOY' Qf\Q', and P = QöQ'\YnY'.

P =
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In the latter case, ifwe denote F = Y n Y', we say P is the connected sum of

Q and Q' alongfacet F. We write P = Q#fQ'-

(See Section 4.2.2 for more details on connected sums.)

Theface lattice of a combinatorial polytope P is the set of all intersections

of the sets in P, partially ordered by inclusion. This lattice is still atomic

and coatomic. Hence the elements of the face lattice can again be thought
of as combinatorial polytopes, these are the (combinatorial) faces of P. The

maximal vertex sets will of course correspond to the (combinatorial)facets of

the combinatorial polytope.

Once a combinatorial polytope P is fixed, by an abuse of notation we will

often identify the vertex sets of a face (the elements of the face lattice P)
with the face itself (which is again a combinatorial polytope). For instance

the combinatorial polytope F = {{a, b}, {b, c}, {a, c}} is a facet of the poly-

tope P in Figure 4.4 and is identified with its vertex set, the element {a, b, c}
of the face lattice of P. Also the intersection of F with the face G =

{{a, b}, {a, a'}, {b, b'}, {a1, b'}} we will write Ff)G = {a, b} = {{a}, {&}}.

A polytope P is a called the realization of a combinatorial polytope P iftheir

face lattices are isomorphic, i.e. if there is a vertex labeling ofP such that the

vertex sets on each facet of P are exactly the facets of P. A combinatorial

polytope is realizable if it has a realization. Notice that all faces of combina¬

torial polytopes are realizable. Also in our constructions in Chapters 5 and 6

all combinatorial polytopes will be realizable.

Notice that if a combinatorial polytope is realizable its (combinatorial) faces

are in one-to-one correspondence with the (realized) faces of the realizing

polytope, and of course they have the same vertex sets. The dimension of a

(combinatorial) face F is then the length ofa chain in the face lattice down to

0. (This definition makes sense since face lattices of combinatorial polytopes
is graded.)

Two (combinatorial or realized) polytopes P and P' are said to be combina¬

torial equivalent if there is a bijection / of their vertex sets such that F is

a facet (face) of P if and only if f(F) is a facet (face) of P'. Two projec-

tively equivalent polytopes are of course combinatorially equivalent, but the

converse does not hold at all (it is already false for pentagons).

Examples: Pyramids and Prisms

Given a realizable combinatorial d-polytope P on a vertex label set X, the

pyramid over P with apex y £ X is defined as the combinatorial d + 1-
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polytope pyr(P,y) = {F U {y}\F £ P}U X: Its facets are P itself and

pyramids over the facets of P. We abbreviate pyr(P, y) by pyr(P) ifwe do

not explicitly care about the label of the apex.

This way ofgiving a combinatorial definition for a special combinatorial poly-

tope will occur often in the sequel. We must take care that the result really is

a combinatorial polytope. In this case it is the combinatorialpolytope ofa re¬

alizedpolytope: Given any realization P ofP in Rd+1 and a point y outside

ofthe d-dimensional hyperplane, the convex hull conv(P, y) is a realization

ofpyr(P,y).

Let P and P' be two realizable d-polytopes on disjoint vertex index sets X and

X' which are combinatorially equivalent. Theprism over P and P' is defined

as the combinatorial d + 1-polytopeprism(P,P') = {X} U {X1} U{FU
/(F) |F e P}. (Obviously it is a combinatorial polytope.) The facets of this

polytope are of its top and bottom faces which are combinatorially equivalent
to P and prisms over all facets of P. In the case that X' = {x'\x X} we

abbreviate prism(P, P') by prism(P). See Figure 4.5.

Figure 4.5: Pyramid and prism over a pentagon P with vertex set

{a, b, c, d, e}

4.2 Prescribing Properties of Faces

In our constructions we want the combinatorial structure of our polytope to

restrict the shape of some of its faces. The next definition encapsulates our

need.

Definition 4.3 Let F be a face of a combinatorial polytope P. Let E be a

property that a realization ofF can have or not have. We say that P prescribes

EforF
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1. ifin every realization ofP the realization ofF has property E and

2. ifevery realization ofF with property E can be completed to a realiza¬

tion ofP.

The main primitive construction of a polytope which prescribes the property
ofone ofits faces is the so-called Lawrence extension which we will introduce

presently.

Note that in the above definition we do not only demand that the face in every

realization of the polytope has the desired shape, but also that if a realization

of the face has the property that it can occur in a realization of the polytope.
This will allow us to superimpose prescribed properties using connected sums

(see Section 4.2.2).

This technique will be used to achieve the following goals: In Chapter 5, we

will eventually be able to show that we can construct 4-polytopes (d + 2-

polytope) with a 2-face (d-face) which will be prescribed to be projectively

equivalent to a given polygon (d-dimensional polytope). So the property E

which we will prescribe is the projective equivalence of the face to the given

polygon. In Chapter 6 we will prescribe weaker properties in order to show

the hardness offinding maximal triangulations ofpolytope boundaries over all

realizations.

4.2.1 Lawrence Extension

The Lawrence extension is a method to encode incidence information of a

polytope in a polytope ofone dimension higher. We will first give a description
ofits (realized) construction, then see some examples, and finally see what the

properties are that Lawrence extensions prescribe.

Construction

Let P be a d-dimensional polytope and q a finite point outside of P. Embed

this configuration into Rd+1 such that P and ç lie in a the affine closure P

of P. Consider a line which intersects the hyperplane P in the point q. Let

q+ and q~ be two distinct points on this line on the same side ofP such that

q~ lies between q and q+. The (realized) Lawrence extension is the polytope
A = A(P,q) = conv(P U {q+,q~}). Let A(P,q) be its combinatorial

polytope.
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Example: Tent

The easiest example of a Lawrence extension is the tent. This is a 3-

dimensional (combinatorial) polytope consisting ofa ground face and two ad¬

ditional vertices. Let e and / two non-adjacent edges of a polygon P and q

the intersection e A / ofthe lines containing e and /. Then the tent is defined

as tente>f(P) := A(P,q). See Figure 4.6.

Figure 4.6: The tent tent6J (P)

The Properties Prescribed by Lawrence Extensions

It is not hard to see that one facet of A(P, q) is P itself. If P is the com¬

binatorial polytope associated to P then for every realization P'ofP which

occurs in a realization ofA(P, q) there will be a point q' with the same relative

position to the faces of P' as q to the faces of P. In this way the Lawrence

extension^rascnèes the existence ofa point q with these properties on a com¬

binatorial level.

Before we come to the precise statement, we need more notation. Define

T°(P, q) the set of combinatorial facets of P whose realization in P has a

supporting hyperplane containing q. Define also 1Z°(P, q) the set of combi¬

natorial ridges of P whose realization in P does not contain q in their affine

hull, but has a supporting hyperplane containing q.

We say that a point q' conforms with a pair of sets (!F°, 1Z°) with respect to a

polytope P' if F° = T°(P',q') and ft0 = n°(P',q'). Let EconfoTm(P,q)
be the property ofa realization P'ofP that there is a point q' which conforms

with J*{P,q) and K°(P,q).

Theorem 4.4 The combinatorialpolytope A(P, q) has afacet P which is the

combinatorial polytope ofP. Furthermore, A(P, q) prescribes the property

Econf°rm(P, q)for itsface P.
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We will prove this result later in this Section on page 93.

Example: Transmitter polytope

Richter-Gebert uses Lawrence extensions in the proofofhis Universality The¬

orem. One ofthe first examples is the transmitter polytope. It is the Lawrence

extension A(P, q) where P is a prism over a polygon which is such that there

is a point q which is the intersection of all lines containing edges which con¬

nect two corresponding points of the bottom and top face. Figure 4.7 shows

the Schlegel diagram of the result.

Figure 4.7: The transmitterpolytope

Theorem 4.4 now implies that in every realization of this Lawrence extension

there is a point q which lies in the planes defined by the quadrangular facets.

(The set T° contains all quadrangular facets on the sides ofthe prism.) Hence

the lines supporting the edges of the prism connecting top and bottom poly¬

gons must all go through the point q: they are the intersections oftwo ofthese

planes. But therefore the top and the bottom polygons are projectively equiv¬
alent since one is a central projection of the other, with q as projection center.

It is for this projective equivalence that the polytope is named transmitter: it

transmits information (the position of the points up to projective transforma¬

tions) from one polygon to the other.

But prescribing a property had a second implication: any realization of the

prism such that the edges connecting top and bottom polygons meet in a point
can be completed to a realization of the transmitter polytope. But this means

that the combinatorial structure ofthe transmitter does not depend on the shape
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of the ground face: any realization of the polygon with a parallel prism built

over it can be completed to a realization ofthe transmitter, i.e. the transmitter

prescribes nothing for the polygon (other than that it is a convex polygon).

This construction, i.e. taking the parallel prism over a polytope P and then

Lawrence extension with the common direction ofthe parallel lines at infinity,

canonically works also in higher dimensions.

Notice that even though the pyramids over the top and the bottom faces ofthe

prism P are projectively equivalent in every realization of A(P, q), the top

pyramid itself (and the bottom pyramid as well) is not prescribed, i.e. for any

of its realization there is a realization ofA(P, q) which contains this pyramid.
This will become important when we use this polytope as "neutral" transmit¬

ter, i.e. a transmitter polytope which does not add any restrictions (see below).

Example: The polytope X, the Lawrence extension over a tent

We want to look at a 4-dimensional polytope that prescribes a property ofa 2-

face: Let G = G(l, 2,3,4,5,6) be a hexagon with the property that the lines

containing the edges 2 and 5 as well as line containing the diagonal (1,3)

go through a point. Let P = tent2,5(G) be a tent over G. Denote by a

and b its vertices outside the ground face G. The lines (1,3) and a V ft both

go through the point 2 A 5, so they span a 2-dimensional plane. The lines

(1A 6) V a and (4 A 5) V 6 also lie in this plane, so they meet in a point q. Let

X = X(l, 2, Z, 4,5,6) be the Lawrence extension A(P, q). Notice that T°

consists ofthe triangular faces a V 3, a V 4, b V 6, and b V 1}. 1Z° consists of

the two edges 2 and 5.

The combinatorial polytopes X ofX prescribes for the hexagon G that the

diagonal (1,3) goes through the point 2 A 5: IfX is a realization ofX then

by the Lawrence extension (Theorem 4.4) the four triangular facets ofthe tent

1V a, 3 V b, 4 V b, and 6 V a meet in a point q. Hence the lines (1A 6) V a and

(3 A 4) V & also meet in q. Therefore the points a, b, 1 A 6, and 3 A 4 lie in a

2-dimensional plane H. Furthermore, the two quadrangular planes 2 V a V b

and 5 V a V & and the ground face ofthe tent meet in a point, this must be the

point 2 A 5. But since 2 A 5 lies on a V b, it must be in H. The intersection

ofH and the plane containing the ground face of the tent contains the points
1A 6, 2 A 5, and 3 A 4. Hence these points are collinear. That we can extend a

hexagon with the desired property to a realization ofX follows directly from

the construction.
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1A6

3A4
2A5

Figure 4.8: The polytope X(l, 2, Z, 4,5,6)

The Face Lattice of the Lawrence Extention

We will see now that the face lattice of a Lawrence extention is already de¬

termined of the position of the point q with respect to the facets of P: first

we will give the face latttice ofA in terms of all faces, then (as a corollary) a

description of its facets.

The point q defines three subsets of the set of faces of P: the sets G+ —

G+ (P, q) and Q~ = G~(P,q) contain all faces ofP with defining supporting

hyperplanes having q on theirpositive side (negative side resp.). The set Q ° is

the set of all faces having a supporting hyperplane containing q. Note that all

three sets contain the empty face and that G° also contains the whole polytope
P as a face.

Lemma 4.5 Thefaces ofA are:

1. allfaces ofP,

2. conv(F U {q+})for allfaces F G G+,

3. conv(F U {q~})for allfaces F G~,

4. conv(F U {q+, q~})for allfaces F G°-

These are allfaces. Hence the vertices ofthepolytope A are the vertices ofP
and the points q+ and q~.
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Proof: We will show first that all faces ofA show up in the list we gave.

Let F be a face ofA and H its supporting hyperplane (i.e. A n H = F). Call

Fp the intersection of F with the hyperplane containing P: Fp = F D P.

We claim that Fp is a face ofP and that

F = conv(FP U ({q+,q~} fï F)),

i.e. F is the convex hull ofFp and the right choice of q+ and q~.

Notice that P is a supporting hyperplane ofA (q+ and q
~

are on the same side

of P). Therefore P defines the face P of A. Hence FP = (AnP)nH =

P n H is a face of P. The vertices ofF come in two kinds: the ones that are

in P, these are the vertices of Fp, and the ones not in P, these are among

{q+, q~ } n F. This shows the claim.

Case 1. Neither q+ nor q~ are in F. Then F = Fp is a face of P.

Case 2. The point g+ is in F, but g~ is not. Then F is the convex hull

of Fp and q+. Notice that since H contains q~ on its positive
side and since q~ is between q and q+, also g is on H's positive
side. Hence Fp is a face in G+-

Case 3. The point q~ is in F, but q~ is not. Analoguously to case 2,
F = conv(FP U {q }) andFP e G~.

Case 4. Both g+ and q~ are in F. Then F is the convex hull ofFp and

g+ and g~. The hyperplane H contains q+ and q~, therefore

also g. Hence Fp is in Ç/0.

Conversely, it is easy to show that all listed sets are indeed faces. We will do

this exemplarily for the set conv(F U {g+}) for a face F e G+- Let Hp be

a hyperplane that supports F. The span H = Hp V g+ is a d-dimensional

hyperplane. It has g and all other vertices of P on one side of it. Since g
~~

is located between g and g+, it also has q~~ on the same side. Hence H is a

supporting hyperplane ofA and defines the face conv(F U {g+} ). D

This proofis an adaption ofthe proofofLemma 3.3.3 of [46] which states the

cone version of this lemma.

The facet description now follows easily: We let T+ = T+(P, q) and T~ =

T~ (P, q) be the sets containing the facets which have g on their positive side

(on their negative side, respectively). Then we weed out the faces ofA which

are not d-dimensional and obtain:

Corollary 4.6 Thepolytope A has exactly thefollowingfacets:

1. P itself,
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2. conv(F U {q+})for allfacets F G T+,

3. conv(F U {q~})for allfacets F G T~,

4. conv(F U {g+, q~})for allfacets F G J70, and

5. conv(R U {g+, q~})for all ridges R G H°.

The Proofof the Prescribability of g's Existence

Proof of Theorem 4.4: In Corollary 4.6 we have shown that the Lawrence

extension A(P, g) has a facet P which is the combinatorial polytope of P. It

remains to show

1. that for any realization A' of A(P, g) where P' is the realization

of P there exists a point q' such that g' conforms with JT° and 1Z°,
i.e. F°(P', q') = F°(P, q) andK°(P', q') = K°(P, q) and

2. that all realizations P' with this property can be completed to a realiza¬

tion ofA(P,g).

We begin by showing that in any realization A' of A(P, g) there is a point

g' which conforms with J70 and 1Z°. The vertices q+' and q~' of this real¬

ization must lie outside of the hyperplane containing the facet P'. Let q' be

the intersection point of the line q+' V q~' and this hyperplane. Any support¬

ing hyperplane H of a face conv(G' U {g+/, g~'}) for G G G° contains g'.

Hence the induced hyperplane H n P' for G' of P' also contains g'. Hence

G0(P',q')=G°(P,q).
Note that T°(P',q') = G0 H facets(P'). The "Ç" direction is clear. No

other facets have supporting hyperplanes containing q': any such facet would

be in a face of A' containing q' and one ofq+' or q~', in which case it would

have to contain both vertices, hence be in G°, a contradiction. A similar argu¬

ment shows that KQ(P', q') = 11° (P, q).

It remains to show that any realization P'ofP such that there is a point q'
which conforms with F0 and 71° can be completed to a realization ofA(P, g).
The idea is to follow the construction ofthe Lawrence extension at the begin¬

ning of this section: embed P' in Rd+1 and consider two points q+ and q~

on a line which pierces the d-dimensional hyperplane P
'
in q'.

We can assume that q' is a finite point: If it is not, then perform a perturbing

projective transformation / on P' which makes q' finite, then construct A'
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and transform back by an extension of the inverse transformation /
' which

leaves A' finite. Such an extension is not hard to find (Lemma 4.15).

For such a finite q' Corollary 4.6 tells exactly what the facets ofA'(P', q') are.

The trouble is that a priori we do not know whether F+(P,q) = T+ (P',q')
and T~ (P, q) = T~ (P', q'). In fact they do not have to be equal like that,

but it could be that ^+(P,g) = T~(P',q') andT~(P,q) = F+(P',q').
This would not constitute a problem since the face lattice would still be com¬

binatorially equivalent with g+ corresponding to q~ and q~ corresponding to

q+l. But why are these the only possibilities?

Denote T the set of facets of a combinatorial polytope P and 1Z the set of

its ridges. Each ridge is representable as the pair of the facets containing it,

so by an abuse of notation 1Z C T x T. The facet graph G = (T,1Z) is

the graph on the vertex set T where two facets are connected if they share a

ridge. As we will show now, for a realization P of P and a point q outside

ofP removing J70 (P, q) from the vertex set and 1Z° (P, q) from the edge set

of this graph partitions it into two connected components. The vertex sets of

these components are exactly the sets T+ and T~. Once this is shown there

can only be the two partitions and the proof is complete since T+ and T~

determine T° — facets \ (F+ U T~) and 1Z° = {all ridges contained in a

facet ofT+ and one ofT~}.

The facet sets F+ (P, q) and T~ (P, q) partition the remaining facets T\TQ.
Each of these sets is connected (as a subgraph): Consider a hyperplane H

between P and q and project P onto this hyperplane with projection center q

(see Figure 4.9). The facets in T+ induce a polytopal subdivision ofthe image
of P. The ridges between two facets in T+ are mapped to the facets of the

facet images. It is easy to see that the facet graph ofa polytopal subdivision is

connected. Also the facets in T~ induce a polytopal subdivision ofthe image
of P, so also this component is connected.

We have to show that they are indeed two components, i.e. that there is no

ridge connecting a facet of F+ and one of T~ which is not in 7Z°. The

defining inequalities ofa facet F+ which is strictly valid for q and the defining

inequality of another facet F~ which is strictly invalid for g such that the two

facets share a ridge R can be convexly combined into a defining inequality of

R which is satisfied with equality for g. But g cannot be in the affine hull ofR

or else F+ and F~ would also contain g in their affine hulls. Hence R G 1Z°

(see Figure 4.10). D
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Figure 4.9: The projection ofP onto a hyperplane H induces a polytopal
subdivision

Figure 4.10: The hyperplane defining R also containing q
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4.2.2 Connected Sum and Necessarily Flat Faces

We will show now how to use the connected sum operation in order to con¬

struct compound properties. For this we need the notion of necessarily flat

faces.

Given two combinatorial d-polytopes P and Q whose vertex sets intersect in a

common facet F, we defined the connected sum P#fQ = PuQ\ {F} as the

combinatorial polytope having all facets ofP and Q except F (and therefore

all lower-dimensional faces of both polytopes). We also say that P#pQ is

obtained by gluing PtoQ along F.

^1 /Z@±

Figure 4.11: Gluing a cube to a 3-sidedprism along a square

One way of realizing P#fQ is to realize P and Q separately such that the

realization Fp and Fq of the common facet F are projectively equivalent.
Then projective transformations can make them touch each other in F such

that they lie on different sides ofF and their union is convex (for instance by

sending a point beyond Fp to infinity, same for Fq). See Figure 4.11.

The combinatorial structure of P may restrict the ways in which its facet F

(and its faces) can be realized. The same holds for Q. So realizing P#pQ in

this way we have superimposed both obstructions on the faces of F from P

andQ.

But are these all realizations of P#pQ? In general no, for instance the con¬

nected sum in Figure 4.11 might be perturbed in a way that the vertices on F

are not coplanar (Figure 4.12). The convex hull of the vertices on F is not

"flat." In this case the realization of P#fQ cannot stem from the union of

two polytopes realizing P and Q and the superimposing argument does not

work.

In order for the superimposing argument to hold in every realization of

P#fQ, the vertices ofF must be realized in a d — 1-dimensional hyperplane.
This gives rise to the definition ofnecessaryflat faces:
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Figure 4.12: A realization ofthe connected sum ofcube and triangularprism
such that the gluingfacet is notflat — the polytopes cannot be separated

Definition 4.7 A d-dimensional polytope P is necessarily flat iffor any real¬

ization ofthefacets ofP in a space ofdimension > d — i.e. any realization of
the vertices ofF such thatfor eachfacet F ofP the corresponding vertex set

spans a polytope combinatorially equivalent to F — there is a d-dimensional

hyperplane containing all vertices ofP.

This condition of necessary flatness is exactly what is need for the gluing
facet F in order that every realization of P#fQ can be obtained from real¬

izing P and Q with common facet F: In any realization of P# fQ all facets

of the facet F are realized, so we can cut this polytope along the hyperplane

containing all facets ofF and obtain two polytopes P and Q which are com¬

binatorially equivalent to P and Q.

Examples of Necessarily Flat Polytopes

As is easy to see, the only two-dimensional necessarily flat polytope is the

triangle. However, in dimensions d > 2, there are well-known classes of nec¬

essarily flat polytopes: for instance pyramids, prisms, and tents. It is easy to

see that the pyramid is necessarily flat, the ground face is d — 1-dimensional,

so ground face and apex together span a d-dimensional hyperplane. This ar¬

gument extends to the following class of combinatorial polytopes:

Lemma 4.8 Suppose P is a combinatorial d-polytope with twofacets F and

F' which contain all vertices among them and whose intersection is a ridge

(d — 2-dimensionalface) R. Then P is necessarilyflat.

This class includes the tents and, for that matter, all higher-dimensional
Lawrence extensions where JF° is non-empty.
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Proof: Suppose all ofP's facets are realized in some En with n>d. Let F,

F', and R be the realizations ofF,F', and R. Then necessarily R = F n F'

and Risd — 2-dimensional. If there is no vertex p G F\F' then all vertices

lie in the hyperplane F' and we are done. Otherwise we claim that the d-

dimensional hyperplane H = F'Vp contains all vertices. Note that F = RVp

(the inclusion D follows from F containing both R and p, also they have

same dimension d - 1 since p £ R). Since H contains both R and p, it must

contain all of F. The vertices ofP are all in one ofF and F', therefore in the

d-dimensional hyperplane H. D

Lemma 4.9 Let P be a realizable combinatorial polytope such that

prism(P) has dimension d > 2. Then prism(P) is necessarilyflat.

Figure 4.13: Proofofprism being necessarilyflat

Proof: Suppose all facets ofprism(P) are realized. In particular, the real¬

ization P ofthe bottom face lies in a d - 1-dimensional hyperplane P. Let p

be a vertex ofP and p' be the corresponding vertex in polytope P
'

realizing
the top face. We can assume that this vertex p' is not in P: if all vertices of

P' were in P then all vertices would be in this d — 1-dimensional hyperplane.
We claim that the d-dimensional hyperplane H = PVp' contains all vertices.

Let F be a facet ofthe ground face P containing p and F
'
the corresponding

facet ofthe top face (which necessarily contains p'). The vertices ofF and F'

span a side facet of the pyramid, hence they must lie in a d - 1-dimensional

hyperplane. But this is the hyperplane spanned by the vertices of F and p',
hence it is contained in H. The same argument holds for another facet G of

P containing p and its corresponding facet G' ofthe top face. Hence we have
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two facets F' and G' ofthe top face which lie in H. Hence all ofthe top face

must lie in H. D

There are a host ofnot necessarily flat polytopes. For instance all simplicial d-

polytopes onmore than d+1 vertices are not necessarily flat: In any realization

of such a polytope in a d-dimensional subspace H of Rd + 1 one point could

be perturbed to be lying outside ofH while the facets would still be in d — 1-

dimensional hyperplanes - as they are simplices.

Prescribing and Gluing

Richter-Gebert in his Universality construction only glues along pyramids,

prisms, and tents. Since all these are necessarily flat, the realizing polytopes
can actually be split along these necessarily flat (three-dimensional) facets.

So in order to get all possible realizations of the constructed polytope it is

feasible to realize the building block polytopes in all possible ways with the

only obstruction that the touching faces are projectively equivalent.

We want to regard the special case:

Lemma 4.10 Let P and Q be combinatorialpolytopes which share afacet F

which is a pyramid over someface G. Suppose now that P and Q separately

prescribe that G has someproperties Ep and Eq, respectively. Then P#pQ

prescribes that G has Ep and Eq.

This lemma encapsulates exactly what we meant when we said that the con¬

nected sum operation allows us to combine properties prescribed by different

polytopes into one compound property. Most constructions in this thesis use

this gluing along pyramids.

Proof: Every realization ofP#pQ is the union of a realization P ofP and

a realization QofQ since pyramids are necessarily flat. Hence the realization

G ofG must have both properties.

Let now G a realization ofG with both properties and P and Q two realiza¬

tions ofP and Q which include G as a face. Since pyramids are projectively

equivalent if and only if their ground face is projectively equivalent, we can

find a projective transformation T which leaves G invariant and makes T(P)
and Q share the facet F (Lemma 4.15 in the appendix of this chapter). By
another projective transformation leaving F invariant the polytopes can be

brougth in a position where they lie on opposite sides of F and that their

union is convex.
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4.3 Prescribing Edge Slopes of Polygons

We present now the link between algebra and geometry, more specifically the

way polynomials equations and inequalities are encoded in polytopes.

4.3.1 Normal Polygons and Computation Frames

Richter-Gebert uses polygons to encode variables into polytopes. More pre¬

cisely, he constructs combinatorial polytopes some ofwhose 2-faces are guar¬

anteed to have a certain shape in every realization.

We call a polygon G — G(l,...,n,l',...,n') normal if the intersections

s(i) = i A i' all lie on a common line l^. We call these intersection points

slopes since if Zoo is the line at infinity, then i and i' are parallel and s(i) can

be thought of as their common slope. (In this case we can identify the point

s(i) with homogeneous coordinates (x, y, 0) with the number y/x which is

exactly the common slope ofthe parallel lines.)

oo

1',

x\l jXi //w\\
x2\

fy/V

k A-w|\•A '-
oo^s, „(0) s(l) s(xi) s(x2) s(oo'

Figure 4.14: The computationframe G[0,1, x\,..., xn, oo]

Richter-Gebert encodes numbers in these slopes of normal polygons. All ob¬

structions on the slopes of polygons come from the face lattice information

of polytopes and therefore these slopes can only be determined up to a pro-

jectve transformation. Thus he picks three special edges whose slope act as

a reference, as a projective basis: 0, 1, and oo. The other edges are labeled

xi,..., xn (and ofcourse there are the opposite edges 0', 1', x[,..., x'n, oo').

Definition 4.11 A combinatorial polygon G is called a computation frame

if its edges are labeled 0,1, X\,..., xn, oo, 0', 1', x[,..., x'n, oo', i.e. G =

G(0,1, xi,..., xn, oo, 0', 1', x[,..., x'n, oo').
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A (realized) normal polygon G which is labeled as a computation frame is

called normal computation frame (see Figure 4.14).

In a normal computation frame G let ai = cr(s(oo),s(0)\s(l),s(xi)) for
i = 1,..., n (for the definition ofthe cross ratio seepages 113+). Then G is

said to encode the assignment Xi = on.

In a very special position, if/qo is the line at infinity and the slopes are sq = 0

(edge 0 parallel to the z-axis), si = 1, and Soo = oo (edge oo is parallel to the

y-axis), we canjust read offthe variable values from these slopes: x »
= s(x{).

It is easy to see that every normal computation frame can be projectively trans¬

formed to a polygon with these special slopes for 0,1, and oo. Hence we must

have 1 < xi < ... < xn < oo (convexity argument).

Notice that if a normal computation frame encodes an assignment Xi = on

then the set ofpoints s (0), s (1), s (x i),... ,s(xn),s(oo) is projectively equiv¬
alent to the set of numbers 0,1, ol\, ..., an, oo. This is so since s(0), s(l),
and s(oo) constitute a projective basis and cross ratios are projectively invari¬

ant. Be aware that once these three slopes are known, an assignment Xi = oti

determines all other slopes.

4.3.2 Richter-Gebert's Universality Theorem

For shortness we call a system of polynomial equations and inequalities a

polynomial system.

In his monograph [46] Richter-Gebert showed that, given a polynomial system

S there is a 4-dimensional combinatorial polytope P(S) such that the solution

space of 5 is equivalent3 to the space of all realizations of P(S). He shows

the theorem for polynomial systems in a special form, the Shor normalform:

Definition 4.12 A polynomial system in the variables x \,..., xn is said to be

in Shor normal form [46] ifthe only inequalities are 1 < x\ < ... < xn < oo

and ifthere are only equations oftheform Xi + Xj = Xk or Xi •

Xj = Xk-

Shor [54] proved that for every polynomial system with algebraic coefficients

there is a Shor normal form with a stably equivalent solution space.

For our argument we will need the following slight strengthening of the Uni¬

versality Theorem.

3
Equivalent here means stably equivalent which is an algebraic notion which implies homo-

topy equivalence, i.e. the topology is preserved [46].
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Theorem 4.13 For a system S ofequations and inequalities on the variables

xi,... ,xn in Shor normal form, there is a combinatorial 4-polytope P(S)
with a 2-face G = G[0,1, x\,..., xn, oo] such that P(S) prescribes that G is

a normal computationframe encoding a solution ofS.

In other words,

1. For each realization ofP the polygon realizing G is a normal computa¬

tion frame and the variables values encoded in it constitute a solution of

S.

2. For each solution x\,...,xn of S, each realization of G as a normal

computation frame encoding this solution can be completed to a real¬

ization of P(S).

The original Universality Theorem (Theorem 8.1.1 in [46]) in essence only
differs in the second item:

2.' For each solution xi,...,xn there is a realization of G encoding this

solution which can be completed to a realization ofP(S).

We will now examine the constructions in the proof of the Universality The¬

orem and see that our version of the Universality Theorem follows. These

constructions are also essential ingredients in the later chapters.

Connector

We obtain the 4-dimensional connector polytope by gluing two 4-dimensional

transmitters over n-gons (with the same n) along the prism facet. This prism
facet is necessarily flat, so the connector contains the obstructions of both

transmitters. The resulting polytope among others has four facets that are

pyramids over the n-gon. (There are only two copies of the n-gon, but each

has two pyramids incident to it.) By the transmitter property all four pyramids
are projectively equivalent in every realization, but the shape ofthe pyramids
is not prescribed further.

In our construction we will use the connector as a distributor ofinformation: If

we glue to it two polytopes along two ofthe pyramids then the remaining two

pyramids must have the shape prescribed by both polytopes. In the polytope

diagrams that we will see later we will draw the connector polytope as a dot

with lines coming out of it: The lines are the pyramid facets along which we

can glue more polytopes.
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Gluing Diagrams

In order to visualize the gluing in four dimensions when there are many partak¬

ing polytopes we use gluing diagrams. There polytopes are just boxes which

are connected by lines. In our constructions in Chapters 5 and 6 we only use

pyramids as glue. So the lines between the polytope boxes always mean pyra¬

mids over polygons. For the connector polytope we have four pyramids, its

symbol is just a dot. Figure 4.15 shows the gluing diagram of four polytopes
which all have a pyramid face over an n-gon G which each ofthem prescribes
to have a certain property. By gluing them together G is now prescribed to

have all four properties.

Q

p R

s

— giugluing facet F = pyr(G)

Figure 4.15: Gluing diagram which prescribes manyproperties on G

Edge Forgetter

By a construction similar to the transmitter we obtain the edge forgetter.

(Richter-Gebert calls this polytope the forgetful transmitter; we renamed it

because we contrast it in later chapters with the vertex forgetter.) This

polytope is constructed as follows: Take an upright prism over a polygon

G(l, 2,...,i-l,i + l,...,n). Now cut off the vertex i-lAi + 1. The new

facets introduces a new edge to the bottom polygon, say i. The edge forgetter
E \ i is the Lawrence extension of this mutilated prism where q is the inter¬

section ofthe edges connecting the top and bottom faces (and the one that was

cut off). Notice that for this Lawrence extension T° contains the side facets

of the prism (without the facet introduced by the cut-off vertex), T+ are the

bottom polygon and the new triangular facet, and T
~

is the top polygon. The

ridge set TZ° is empty. See Figure 4.16.

By a Lawrence extension argument much like the one about the transmitter
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Figure 4.16: Edgeforgetter E\2

this polytope prescribes for the mutilated prism facet that the lines supporting
the edges in the top polygon areprojectively equivalent to their corresponding
lines in the bottom polygon. Of course, the bottom polygon has one edge

more, this edge has beenforgotten.

We can glue two ofthese edge forgetters on top ofeach other along a common

pyramid. By stacking more edge forgetters on top of each other many edges
ii,..., ir can be forgotten. The resulting polytope E\i\,...,ir prescribes
that the the edges of the polygon on the small end are projectively equivalent
to the corresponding edges of the polygon on the large end.

In the polytope diagrams we will draw the forgetters as trapezoids: the small

end signifies the pyramid over the polygon where edges or vertices have been

forgotten, the large end signifies the pyramid with a complete edge or vertex

set (see Figure 4.17).

— E\2 —

Figure 4.17: Symbolfor the edgeforgetter
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Adding and Multiplying

The most involved part in Richter-Gebert's construction considers the poly-

topes that encode addition and multiplication: For addition he constructs the

combinatorial 4-polytope Px+y [0,1, x\, x2, x3, oo] which contains a pyramid
facet over a 12-gon G = G[0,1, xi,x2,x3, oo]. This polytope prescribes that

G is a normal computation frame encoding that the variables xi, x2, and X3

satisfy xi+x2 = x3 (see Theorem 7.1.1 in [46]). Also he constructs the com¬

binatorial 4-polytope and Px'y[0,1, x\, x2,x3,00] which contains a pyramid
facet over a 12-gon G = G[0,1, x\,x2, x3,00] and prescribes that G is nor¬

mal and encodes that xi • x2 = x3 (see Theorem 7.2.2 in [46]). Figure 4.18

shows the diagram pieces for these polytopes, the lines going out ofthe boxes

are of course the pyramids over the 12-gons.

Px+y[0,l,x1,x3,x3,oo] Px-y[0,l,x1,x3,x3,oo]

Figure 4.18: Symbolsfor adding and multiplyingpolytopes

How to encode a concrete Shor Normal form

We now give an example which showcases the proof technique of Theo¬

rem 4.13 and should make the general construction evident. Figure 4.19 shows

the schematic view ofthe constructed polytope for the Shor normal form

1 < Xi < X2 < X3 < X4 < X5 < OO,

Xi +X3 = £4,

X2 +X4 =x5,

x2 x3 = x5

From the connectors on the right-hand side that share the computation frame

G[0,1, x\, x2, x3, £4, x5,00] we have three edge forgetters, each of which is

glued to an adding or multiplying polytope. Notice first that this polytope pre¬

scribes that the computation frames of the connectors be normal: The points
0 A 0', 1 A 1', xi A x[, x3 A x'3, a;4 A x\, and 00 A oo' are on a line by the

adder Px+y[0,1, x\, x3, £4,00], the other points x2 A x'2 and £5 A x'5 are on

the same line spanned by 0 A0' and 1A1' by the other adder. Also the polytope

prescribes that all three equations in the computation frames of the connec¬

tors are prescribed to be valid. By the computation frame encoding trivially
1 < X\ < ... < xn < 00.
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Px+y[0,l,xi,x3,xA,oo]

Px+y[0,l,x2,X4,x5,oo]

Pxy[Q,l,x2,x3,x5,oo]

E\x2,x5,x'2,x'5

E\x1,x3,x'1,x'3

E\xi,X4,x[,x'4

Figure 4.19: Polytope prescribing the solution for a concrete Shor normal

form

4.4 Appendix: Projective Space and Polytopes

Realizations of combinatorial polytopes can never be unique: a translation or

a rotation of a polytope P which realizes a combinatorial polytope P results

in other realizations of P. Affine transformations of Rd (linear transforma¬

tions followed by a translation) preserve the face lattice of a polytope. Even

more general transformation that leave the face lattice of polytope invariant

are projective transformations which act on the projective space MPd.

We first give an introduction to projective spaces, projective subspaces and

the projective transformations between them. We will be most interested in

the various ways of constructing projective transformations for its use in later

constructions. Also we briefly explain cross ratios and quadrangular sets. Fi¬

nally, we show how to embed convex polytopes in the projective setup.

4.4.1 Projective Space

We want to give a short introduction to projective spaces and projective trans¬

formations. We assume the reader is familiar with affine geometry (points,

lines, planes not necessarily through the origin ofsome Rd). The points in Rd

are called finite points. It is often helpful, however, to include infinite points.
These can be thought of as equivalence classes of lines where two lines are

equivalent if they are parallel. When we say "parallel lines meet at infinity"
we mean that for each direction of parallel lines we add one point at infinity.
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The union ofthe finite and infinite points is the d-dimensionalprojective space
RPd.

A The parallel lines meet at a common

point at infinity.

/ Thereby the direction and its nega-
^ tive are not distinguished

Figure 4.20: Construction ofRP2 from R2 by adding points at infinity

The d-dimensional projective space also be obtained as the set of all 1-

dimensional linear subspaces (lines through the origin) of the space Rd+1 (or

any d + 1-dimensional vector space over E) — or the quotient space of Rd+1

where scalar multiples of vectors are identified.

A usual translation between the two approaches is homogenization: Embed

the d-dimensional affine space Ed in the zd+i = 1 plane of the vector space

Ed+1. Eachfinite point in RPd corresponds to a certain line through the origin

and the lifted point in Ed+1, namely

(Xl,...,xd)eRPd - M(xi,..., xd, 1) C Rd+l

Hence thefinite points are the ones having representing d + 1-vectors with

non-zero last coordinate. On the other hand, a point at infinity corresponds
to a line containing only vectors with last coordinate zero. By a projective

point x we will from now on mean a set of the form R(x i,..., xd+i) where

ofcourse the x\,..., xd+i are only determined up to common scalar multiple.

4.4.2 Projective Subspaces

The linear subspaces of Ed+1 induce the projective subspaces (flats) of RPd.

This is possible since linear subspaces are closed under scalar multiples. For a

subset S of RPd we denote by S the projective closure of S which is defined

as the smallest flat that contains S. The subsets of these projective subspaces

consisting of their finite points are then the affine subspaces of Ed: points,

lines, planes, hyperplanes etc. The smallest affine subspace containing a set S
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x3 = 1 plane

x3 = 0 plane

Figure 4.21: Homogenization

of finite points is called the affine hull of S. We will not distinguish between
the affine and projective subspaces as well as between the affine hull and the

projective closure. By this token we will use these names of affine subspaces
interchangeably with their projective closures. Now it becomes clear why
it is sensible to talk about the hyperplane "at infinity", it is induced by all

vectors in Ed+1 having last coordinate zero which is a linear subspace, more

precisely ad- 1-dimensional hyperplane. Projective subspaces are again

projective spaces, namely if a flat Vproj is induced by a linear subspace Vun
of Ed+1, then Vproj can be viewed as the set of 1-dimensional subspaces of

Vun, i.e. Vproj = Vun/R. Hence, whenever we talk about the projective space
Ed, this space acts as a representative for any d-dimensional flat.

The union ofprojective subspaces in general is not a projective subspace. We
call the span orjoin offlats V and W ofRPd the smallest projective subspace
containing all points ofVUW. Denote the join of V and W by V V W.

If S and T are mere subsets of RPd, we abbreviate S V f by S V T. (See

Figure 4.21 for the join of two points.) On the other hand, the intersection

or meet of projective subspaces is always a projective subspace. Denote the

meet oftwo flats V and W by V A W. Again for mere subsets S and T ofRd

abbreviate 5 A T by S A T.

We say a set of points in EPd is in general position if the span of any d-

element subset contains no other of the remaining points. This is equivalent
to the fact that the representing vectors in Ed+1 are also in general position,
i.e. that every d + 1-element subset ofthem is a linear basis.

line pVg
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4.4.3 Projective Transformations

Linear transformation between linear subspaces of Ed+1 commute with mul¬

tiplying vectors with real scalars. Hence they induce transformations of the

projective subspaces, the projective transformations. It is a fundamental the¬

orem they are exactly those transformations that take projective subspaces to

projective subspaces. It is this property that also implies that the meet and

projective transformations as well as join and projective transformations com¬

mute, i.e. for subsets S and T and a projective transformation / we have

f(S AT) = f(S) A f(T) and f(S V T) = f(S) V f(T). Naturally, for

a projective transformation / : EPd -> W the restriction f\v : V -+ W for a

subspace V ofRPd is a projective transformation. We call a projective trans¬

formation invertible if the inducing linear transformation is invertible. This is

equivalent to the fact that the projective transformation preserves the dimen¬

sions of projective subspaces. Most of the projective transformations we will

use will be invertible (we will draw the reader's attention to the rare cases

where they are not). We say that two sets S and T are projectively equivalent
if there is an invertible projective transformation / such that f(S) = T.

The d — 1-dimensional hyperplanes ofEPd are in a natural one-to-one corre¬

spondence with the points ofRPd : They are induced by a d-dimensional sub-

space of Ed+1 which can be represented by their orthogonal 1-dimensional

subspaces. By this token, a point p e RPd represented by a vector

(pi,..., pd+1 ) is on a d — 1-dimensional hyperplane H represented by a vec¬

tor (a\,..., ad+i) if and only if these vectors are orthogonal: a\p\ + ... +

Ud+iPd+i = 0. This duality of points and d - 1-dimensional hyperplanes
carries over many results about points in projective space to corresponding
results about d— 1-dimensional hyperplanes. A projective transformation cor¬

responding to a linear transformation with invertible matrix M takes a hy¬

perplane represented by a vector a = (ai,..., ad+i) to the hyperplane with

vector M_1a.

The next three lemmas are tools to construct projective transformations. The

first lemma tells us that the image of d + 2 points in general position in a

projective space of dimension d uniquely determines the projective transfor¬

mation.

Lemma 4.14 Let v\,..., vd+2 RPd be in general position and

wi,..., wd+2 RPd in any position. Then there is exactly one projective

transformation f such that f(vi) = Wifor all i = 1,..., d + 2.

Ifthe Wi are in generalposition then f is invertible.
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This lemma gives rise to the concept of a projective basis of a d-dimensional

projective space: it is a set of d + 2 points in general position. Whenever a

configuration ofpoints in EPd is determined up to a projective transformation

it is enough to fix the position of d + 2 points in general position and then

the position of all other points is fixed. For instance, in one dimension it is

enough to fix the position of three points, the position of all other points is

then determined by their cross ratio with the projective basis. Note that this

lemma also holds in the dualized version, i.e. when the points are substituted

by d — 1-dimensional hyperplanes.

Proof: We must find a linear transformation / such that for any representing
vectors v\,..., vd+2 and w\,..., wd+2 ofthe projective points with the same

symbols we have f(vi) = Xwi.

By general position the representing vectors v i,..., vd+i are independent and

linearly span Ed+1. Hence there are scalars pi,..., pd+i such that vd+2 =

HiVi + ... + pd+ivd+\. By another general position argument the pi are

unique (vi,..., vd+\ are linear independent) and nonzero (for all i the vectors

v\,...,Vi-\, Vi+i,..., vd+i, vd+2 are independent, hence pi cannot be zero).
Also there are unique and nonzero scalars v\,..., vd+i such that wd+2 =

VXW\ + ... + vd+1wd+1.

There is exactly one linear transformation mapping the vectors p iVi to the

vectors U{W{ fori = 1,..., d + 1. By linearity this transformation also takes

vd+2 to wd+2. Uniqueness is also not hard to see: If a linear transformation

took the vectors piVi to vectors different from a common scalar multiple of

ViWi then it would not take vd+2 to a scalar multiple ofwd+2. Hence the linear

transformation is unique up to common scalar multiple. D

The second lemma tells us how we can extend a projective transformation

defined on a subspace V to a projective transformation mapping an additional

point p $ V to an arbitrary vertex q.

Lemma 4.15 Let V be aprojective subspace ofRPd, f be an invertiblepro¬

jective transformation on V, p and q somepoints outside V andp' andq' some

points outside off(V) such that f(V A (p V q)) = f(V) A (p' V q'). Then

there is a unique projective transformation g onV V p such that g\v = f,

g(p) =p',andg(q) = q'.

Proof: Let dy be the dimension of V. Let vq = V A (p V q) and

wo — f(V) A (p' V q'). Pick dy + 1 points v\,...,vdv+i such that the

dy + 2 points vq, v\ ,..., vdv+i in V are in general position. Then the points
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p,q,v\,..., vdv+\ are in general position and span V V p. Similarly the im¬

ages Wi = f(vi) fori = 1,..., dy + 2 and the points p' and q' are in general
position. See Figure 4.22.

Figure 4.22: Construction ofg in the ProofofLemma 4.15

By the previous lemma there is a projective transformation g such that g(p) =

P',9(q) =q',9(vi) = wi,...,g(vd+1) = u;d+i. Note that pniapsV" to/(V)
and the line p V q to the line p' V q' (join and projective transformations com¬

mute). Hence it also maps the meet v0 = V A(p\/q) tow0 = f(V)A(p'\/q').
Since again by the previous lemma there is only one projective transforma¬

tion in V taking v0, vi,..., vdv+i to w0, w\,..., wdv+\, the transformation

g must equal / on V.

As an easy corollary we note that if the image of only one point outside V is

known then there are many projective transformations extending /:

Corollary 4.16 Let V be a projective subspace ofRPd, f be an invertible

projective transformation on V, p some point outside V and p' some point
outside off(V). Then there is a projective transformation gonVVp such

thatg\v = / andg(p) = p'.

The last of the lemmas in this section will be crucial in the sequel: In EP3,
under some assumptions a projective transformation is uniquely determined

by the images of four points in general position and the image of a plane.

Lemma 4.17 Let vi,..., vd+i G RPd in generalposition and H be a hyper¬

plane that misses all ofthem. Furthermore, letw\,..., wd+\ G RPd also be

in generalposition and G be a hyperplane missing all ofthem.

Then there is a unique projective transformation f with f(vi) = Wifor all

i = 1,... ,d+l and with f(H) = G.
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Proof: Let Hi be the hyperplane spanned by the vertices except vf. Hi =

\Jk+i Vk- The hyperplanes Hi,..., Hn, H are in general position. This is so

since no meet on d of these hyperplanes is contained in the two remaining

hyperplanes: (1) Afc^ï ^* = vi *s not contained in either Hi (the Vj are in

general position) or H (assumption that Vi £ H) and (2) Afc/tj Hk AH =

(vi V Vj) A H is not on Hi or else Vj lies on H (Hj analogously).

Define similarly Gi = wi V ... V Wi-\ V Wi+i V ... V wd+i, then

G,G\,..., Gd+i are also in general position. If there is a projective trans¬

formation with T(vi) = Wi, then by

T(Hi) = T(ü!V...Vt;i_iVt;j+iV...Vi;w)

= w1 V ... V Wi-i V Wi+i V ... V wd+i

- Gi

it has to map Hi to G«. By the dualized version ofLemma 4.14 there is exactly
one projective transformation T with T(H) = T(G) and T(Hi) = Gi. Note

that then necessarily

T(vi) = T(H1A...AHi-1AHi+1A...AHd+1)

= Gi A ...
A Gi-i A Gi+1 A

...
A Gd+1

= Wi-

D

We should also talk about very special projective transformations, the projec¬

tions.

Lemma 4.18 Let V and V two d — 1-dimensional projective subspaces of
RPd and c a point outside ofV and V. Then the function f : V -+ V,

f(p) = (p v c) A V is an invertible projective transformation.

Proof: Let W be a d - 1 dimensional projective subspace which intersects

both V and V in V D V, but which does not contain c. By Lemma 4.15

there is a unique projective transformation g : RPd -+ RPd which extends

the identity map of W and map c back to c and some point p in V to f(p).
This projective transformation takes V to V since V = (V A W) V p and

g(V) = g(V AW) y g(p) = (V A W) V f(p) = (V AW)V f(p) = V.

We claim that g\v — f: Let q G V. Then qw '•= (q V c) A W lies in W,

hence g(qw) = id(qw) = qw- But q = (qw V c) A V, hence #(g) =

(9(qw) V 0(c)) A g(V) = (q V c) A V = f(q). D



4.4. Appendix: Projective Space and Polytopes 113

V AV

Figure 4.23: ProofofLemma 4.18

4.4.4 Cross Ratios and Quadrangular Sets

For four points Pi, p2, p3, Pa G EP1 with representative vectors p[ep, p2ep,
p3ep, pr3p G E2 the cross ratio is defined as

det(pr1ep,pr3ep)-det(pr2ep,pr4ep)

This definition makes only sense since different representatives differ only by
nonzero scalar multiples which cancel out in the quotient. If the pi are finite

points the cross ratio can be computed by using only the signed (!) euclidean

distances ofthe points:

cr(px,p2\p3,pA) =
|P1,P4|'|P2,P3|

since det( (p*), (p13) ) — p3-pi = \pi,p3\. Cross ratios are evidently invariant

under invertible projective transformations of E1. Using this, we can define

the cross ratio of four points on a line in a higher-dimensional projective space

by projecting the line down to EP1 and computing the cross ratio there. Note

that these general cross ratios are invariant under invertible projective trans¬

formations ofthe line containing the four points.

Let p, q, r, s four points on a line such that p, q, and r are distinct. Then

the cross ratio cr(p, q\r, s) determines the position of s: The unique projec¬
tive transformation / taking p to oo G EP1, ç to 0 and r to 1 leaves the

cross ratio invariant, hence cr(p,q\r,s) = cr(oo,0|l,/(s)) = f(s). So

/_1 (cr(p, q\r, s)) determines s.
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Finally, we want to briefly talk about quadrangular sets: Six points on a line

/ are called a quadrangular set if they are the intersections of / with the six

possible lines formed by four distinct points. We note two properties of quad¬

rangular sets:

Lemma 4.19 1. Five points in a quadrangular set determine the sixth

point.

2. Quadrangular sets are invariant underprojective transformations.

a

ab cd ac adbc bd

Figure 4.24: The points ab, cd, ac, ad, be, bd are a quadrangular set

Proof: If the points are labeled as in Figure 4.24 then we can define two

projections, one uses a as projection center and projects / to b V d and the

other uses c as projection center and projects b V d back to I. If we label

p — (a V c) A (b V d) then since projections leave cross ratios invariant we

have cr(bd, ab\ac, ad) = cr(bd, b\p, d) = cr(bd, bc\ac, cd). Note now that if

all points in the quadrangular set except for instance cd are known, then also

these cross ratios are known and therefore also cd. By symmetry this holds

for all other points as well. It also follows that quadrangular sets are invariant

under projective transformations. D

4.4.5 Polytopes in Projective Space

A polytope is equivalently the convex hull ofa finite number of(finite) points
and the intersection of a finite number of halfspaces such that the result is

bounded. How does this fit in with the projective closure of the affine real

space? A hyperplane does not cut the projective space into two components,

it stays connected. This is where the hyperplane at infinity comes into play:
A hyperplane does cut the set offinite points into two two components. We

call these components halfspaces. The convex hull is similarly defined: two

finite points p and q cut the line pV q into two connected pieces, we call the
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piece which does not contain an infinite point the line segment between p and

q .
The following lemma gives a criterion for betweenness.

Lemma 4.20 Ifp, q, r, s are distinct points on a line such that p and q are

finite and r is not between p and q. Then s is not between p and q ifand only

ifcr(p, q\r, s) > 0.

The lemma is an easy implication on the formula of the cross ratio using

signed euclidean distances.

Projective transformations do not in general map polytopes back to polytopes:

points of the polytope might get mapped to infinity and the result would not

be convex. We define admissible projective transformation of a polytope P

according to Ziegler [61] as projective transformations that do map P back to

a polytope. We note the following lemma from Ziegler's treatment:

Lemma 4.21 Let P be a polytope in Rd C RPd and f a projective trans¬

formation such that the preimage of the hyperplane at infinity under f does

not intersect P. Then the image f(P) consist only offinite points and

f(P) is the convex polytope spanned by the images of the vertices of P,

i.e. f(P) = conv(f(vert(P))).

If two polytopes P and P' are projectively equivalent, the invertible projec¬
tive transformation / with f(P) = P' induces a one-to-one correspondence
between the faces ofP and the faces ofP', i.e. for all faces F ofP the image

f(F) is a face of P' with the same dimension as F and vice versa.
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Chapter 5

Prescribing Faces of

Polytopes

In this chapter we prove the following two results concerning the prescriba-

bility of the exact shape ofpolytopes:

1. Let G be a (realized) polygon with algebraic vertex coordinates. Then

we can construct a combinatorial 4-dimensional polytope P(G) which

has a face G which it prescribes to be projectively equivalent to G (Sec¬
tion 5.2).

2. Let d > 3. Let G be a d-dimensional (realized) polytope with alge¬
braic vertex coordinates. Then we can construct a combinatorial d + 2-

dimensional polytope P(G) which has a face G which it prescribes to

be projectively equivalent to G (Section 5.3).

Note that these results are best possible in two ways: First only projective

properties can be prescribed by combinatorial polytopes, so we cannot ask

more than prescribing G up to projective equivalence. Second a combinato¬

rial polytope cannot prescribe one of its faces to be projective to a polytope
with non-algebraic coordinates (more specifically a polytope every projective

equivalence of which has non-algebraic coordinates): In the next section we

will show how the decision algorithm for the existential theory ofthe reals by
Tarski (and later Seidenberg) [13] implies that if a polytope has a realization

with non-algebraic coordinates then it must also have a realization with purely

algebraic coordinates.

117
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By a variant of Steinitz' theorem [3] it is impossible to prescribe 2-faces of

3-polytopes. It remains unknown, however, whetherfacets of 4-polytopes or

higher-dimensional polytopes can be prescribed. Some polytopes occuring
as these facets which can be prescribed are prisms and the "taco" polytopes

depicted in Figure 5.9. No other classes are known to us.

5.1 Algebraic Numbers and the Existential The¬

ory of the Reals

Real algebraic numbers are real roots of rational univariate polynomials.
Since we are only concerned with real numbers here (or more precisely only
with ordered fields) we will just say algebraic numbers when we mean real

algebraic numbers. Each real algebraic number a can be separated by an ir¬

reducible rational polynomial / and two bounding rational numbers, i.e. a is

represented by a triple (/, /, r) such that a is the only number with f(a) = 0

and I < a < r.

The existential (problem ofthefirst-order) theory of the reals is the decision

problem whether a set ofpolynomial equations (f(x i,..., xn) =0) and poly¬
nomial inequalities (f(x\,..., xn) < 0 or < 0) with coefficients in a real-

closed field has a solution in this field. (Real-closed fields are ordered fields

where every positive number has a root and where every odd-degree poly¬
nomial has a root.) The Tarski-Seidenberg theorem [53] gives a finite deci¬

sion procedure for this problem which only uses the axioms ofthe real-closed

fields. Since both the field of real algebraic numbers as well as the field of

real numbers are real-closed, a polynomial system either has a solution in the

algebraic numbers or no solution at all (not even in the real numbers). A nice

survey for this subject is [40].

Theorem 5.1 A combinatorial polytope either has a realization using only
real algebraic coordinates or it has no realization at all, not even in the real

numbers.

Proof: The realization space of a combinatorial polytope is the solu¬

tion set of polynomial equations and inequalities: For each d + 1-tuple

(vi,... ,vd, Vd+i) of vertices lying on a common facet we get the equation

det^1 - Vd Y)=0
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where Vi Rd. For each d-tuple of vertices on a facet and a d -I- 1st vertex

vd+1 not in this facet the equation is changed into a < 0. (The d-tuple must be

oriented correctly, but it is easy to find a consistent orientation for each d-tuple
of vertices in a facet from the realized polytopes of which the combinatorial

polytope is composed.)

Now by the Tarski-Seidenberg theorem this polynomial system either has a

real algebraic solution - in which case it is realizable over the algebraic num¬

bers - or no real solution at all - in which case it is nonrealizable, even over

the real numbers. Ü

5.2 4-Polytopes Prescribing 2-Faces

In this section we will show the prescribability of polygons in 4-polytopes.
We will give an overview ofthe proofnow:

The first goal will be, given algebraic numbers 1 < a\ < ... < am, to

construct a 4-polytope P(a\,...,am) which prescribes one of its polygonal
faces to be normal and have edge slopes which are projectively equivalent to

0,1, a\,..., am, oo. (The edge slopes are points on a line, the a j are points
on the real line, so it makes sense to speak of projective equivalence.) We do

this by constructing a polytope which prescribes one ofits faces to be a normal

computation frame that encodes the assignment Xi = ai for i = 1,..., m.

In Section 5.2.1 we will show a lemma which implies that for a polynomial

system that defines the algebraic numbers ot\ < ... < am there is a Shor nor¬

mal form S = S(ai,..., am) in variables xi < ... < xn (with n > m) such

that the only solution for x\,..., xm are the algebraic numbers a\,..., am

(Corollary 5.3).

For this Shor normal form we can invoke Richter-Gebert's universality theo¬

rem (Theorem 4.13): In Section 5.2.2 we will use edge forgetters to forget all

edges corresponding to auxiliary variables (variables x i with i > m), this will

give us a polytope which prescribes a polygon to be normal and to have the

exact edge slopes 0,1, a\,..., am, oo (up to projective equivalence).

In order to make the leap from prescribing the slopes ofthe edges to prescrib¬

ing the actual edges we use a new kind of gadget, the vertex forgetter. We

introduce it in Section 5.2.3 and put it to work in Section 5.2.4. In the latter

section we talk about prescribing a centrally symmetric polygon G .
This

polygon is of course normal — the line containing the edge slopes is at infin¬

ity. But also each diagonal connecting two vertices v and w is parallel to the

diagonal connecting the vertices opposite to v and w, hence these diagonals
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also meet on this line. We call these intersection points the chord slopes. If

we delete a vertex and its opposite from the set of vertices and take the con¬

vex hull we get a polygon which has a 1-chord of the original polytope on its

boundary and therefore still is a normal polygon.

We can presribe the edge slopes of this polytope (ifthe vertex coordinates are

algebraic numbers then all edge slopes and chord slopes are also algebraic).
To this polytope we glue a new kind ofpolytope the vertexforgetter: this new

kind of polytope works a bit like the edge forgetter, only it forgets vertices

rather than edges, and all other vertices are projectively equivalent.

By gluing this to a polytope which prescribed the original edge slopes of

G^ we obtain a polytope which prescribes the edge slopes and a 1-chord

slope. We use connectors and many polytopes which presribe different 1-

chord slopes and obtain one big polytope P(G<>) which prescribes that one

of its faces has all edge slopes and 1-chord slopes of G^ (up to projective

equivalence).

In Section 5.2.5 we will see that prescribing the slopes of the edges and the

1-chords ofa polygon up to projective equivalence suffices for prescribing the

whole polygon.

This construction only works for centrally symmetric polytopes (or polytopes

projectively equivalent to them). In order to prescribe arbitrary polygons we

deform the given polygon so that it is has one long edge and is otherwise very

flat. We then glue a copy ofthis polytope to this long edge such that the result

is centrally symmetric. We can prescribe this polytope and then use vertex

forgetters to forget the double vertices.

5.2.1 Constructing a Special Shor Normal Form

In order to interface with Richter-Gebert's universality theorem (Theo¬
rem 4.13) we need to use Shor normal forms.

If a polynomial equation f(x\,..., xn) is of the form Xi + Xj — xk =0 we

say it is a simple addition. It is a simple multiplication if it is of the form

Xi •

Xj
— Xk = 0. If it is ofone ofthe two forms we call it a simple equation.

A simple inequality is one ofthe form Xi — Xj < 0 or 1 — Xi < 0.

We remind the reader that a polynomial system in the variables x i,..., xn

is said to be in Shor normalform [46] if the only inequalities are simple in¬

equalities establishing a total order of the variables which are all greater than

one (i.e. l<a^i<...<a:n<oo) and if the only equations are simple
equations. Shor [54] proved that for every polynomial system there is a Shor
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normal form with an equivalent solution space. Equivalent here means sta¬

bly equivalent [46]. Roughly speaking, the solution spaces oftwo polynomial

systems are stably equivalent if they can be obtained by rational changes of

variables and special, so-called stable, projections (eliminating variables with

special restrictions). This is an algebraic notion which preserves the topology
of the solution space, it implies homotopy equivalent.

We need a slight strengthening ofhis result: for every polynomial system such

that the first m variables are totally ordered there is a Shor normal form also

containing these m variables. Furthermore these two systems are equivalent
in the way that the projections to these first m variables ofthe solution spaces

of the two systems are equal.

Lemma 5.2 Suppose we are given a polynomial system S (with algebraic

coefficients) in the variables X\,..., xn, with the additional restriction that

for thefirst m variables we have 1 < X\ < ... < xm.

Then there is a system S' ofpolynomial equations of variables x\,..., xn>

(with n' > n) in Shor normalform such that the following partial solution

equivalence holds:

For each assignmentfor thefirst m variables X\ = a\,..., xm = am we

have the equivalence: the assignment can be completed to a solution ofS if
and only ifit can also be completed to a solution ofS'.

We will use this to transform a polynomial system in ordered variables 1 <

xi < ... < xm to a Shor normal form with auxiliary variables (all greater than

xm). This Shor normal form we can prescribe using the universality theorem.

Edge forgetters will get rid ofthe auxiliary variables (see Section 5.2.2).

Proof: Our proofofthis lemma is a small extension to Shor's proofthat every

polynomial (in)equality system is equivalent to a system in Shor normal form.

Our (and his) proof is divided into three steps: In each step we transform the

polynomial system to another one which is more like the Shor normal form.

Each ofhis transformation guarantees that the solutions of the systems can be

translated one to the other. For each step we will give an extension of Shor's

system which guarantees the partial solution equivalence.

In the first step Shor reduces the original system to a system containing only

simple equations (simple additions and simple multiplications) and simple in¬

equalities. He does this by introducing all intermediate steps ofthe polynomi¬
als as new variables.

In a slight modification of his process we first encode the coefficients of the

polynomials in auxiliary variables which are defined by simple equations. We
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start with Vq whose value is defined in the simple addition V0 = Vo + Vq

and V\ which is defined by V\ = V\ • V\. We can then build powers of 2,

V2 — V\ + V\ and V2i+\ = V2i • V2. We can now build all positive integers
following the binary encoding: for a number n with the binary decomposition

n = Ysilo n&% m*s number is build according to this sum of products.

Canonically we build negative integers V-n + Vn = Vo and rational numbers

Vn/m •Vm = Vn.

We also successively build the powers of variables: from x we get to Vx2,
an auxiliary variable representing the value x2, by the equation x - x = Vxi.

Again, we first encode the powers of a variables with an exponent which is a

power of 2 and then by binary encoding all other powers of this variable.

By multiplying coefficients with powers of variables we get auxiliary vari¬

ables for the monomials, which can be added to get (rationals) polynomials.
Coefficients which are algebraic numbers can also be built now: Let a be an

algebraic number which is defined by f(a) = 0 for a rational polynomial and

singled out from the other roots of / by the bounds I < a < r for rational

numbers / and u. We have seen to define a variable Va which is the solution

for / and lies between / and r. This we can use as a coefficent now.

For example the system consisting of two variables x\ and x2 with m — 1, i.e. x\ > 1, and the

single inequality 2x\ — X2 > V% is translated to the system consisting of seven variables M,

V2, V^2, VXl, Vx2, V2x2, VX2, and V2x2_X2 and of the equations and inequalities

Vi-Vi — VX Vi+Vi — v2

Vva-Vyff = v2 Vi < VV-2
VX1 VX1 = vx> V2 Vx2

1

= V**
V2x\-x2 +V*2 = rç«? vvs < v*** -X2

Vx < VX1

Of course, after the introduction of auxiliary variables the variables 1 < x 1 <

... < xm are still present in the (inequality system and therefore the partial
solution property holds.

In the second step Shor assumes a system Ssimple in (relabeled) variables Xi

consisting only ofsimple equations and inequalities. He constructs a new sys¬

tem where all variables are shifted by a large number a as to make them greater
than 1: He introduces a variable Va and variables VXi+a for each variable Xi

(and more auxiliary variables) and constructs a system Sa ofsimple equations
and inequalities which guarantees the following translation of solutions: For

each solution of Sa the value of xi — VXi+a — Va is a solution of the original

system Ssimple - Conversely, for each solution of Ssimple and each number a

the assignment Va = a and VXi+a = Xi + a constitutes a solution of Sa-
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As an example for this construction we note that the simple inequality a; < Xj becomes just

Vxi+a < Vxj+a and the simple addition Xi + Xj = xy. becomes:

Vxi+a + Vxj+a = Vxi+Xj+2a

Vxk+a + Va = VXi +Xj+2a

The simple multiplication is more complicated, we refer to Shor's proof [54].

This translation works for all values of a and each variable is of the form

V...+ka for some positive integer k, so Shor can require that all new (shifted)
variables be greater than 1 and above translation still works for numbers a

which are greater than the largest absolute value of a variable xi. By the

additional requirements that all Vs are greater than 1 we obtain the system

SÎ1.

We augment Shor's system 5>* by introducing the variables VXi and the equa¬

tions VXi +Va = VXi+a for alii = 1,..., m (the first m variables). A solution

ofthis system 5"ew translates to a solution of Ssimple because it only added

constraints to S^1. On the other hand, in each solution of S>* the first m

variables VXl+a,...,VXm+a were such that VXi+a - Va was a solution for

Ssimple, hence greater than 1, so the requirement VXi > 1 is no new obstruc¬

tion. Therefore the natural translation between solutions of 5>x andS

is valid. The systems SSimpie and 5"ew are partial-solution equivalent since

the ambiguity of the solutions ofS^1 introduced by adding the number a has

cancelled out in S%ew by subtracting it.

In the third step Shor translates a system of simple equations and inequalities
in variables all greater than 1 (relabeled to x{) to a system Sb: He shifts each

variables by a different power of a large number b. He introduces for each

variable Xi a variable VXi+bi (as well as a variable Vb and more auxiliary

variables) and he gives simple equations and a total order of these variables

such that the following equivalence holds: For all solutions of Sew there is

a large number b0 (for instance &o = max Xi + 1) such that for all numbers

b > b0 the assignment Vb = b, VXi+bi = Xi + bl and the induced values for the

auxiliary variables constitute a solution of 5&. Conversely, Xi = VXi+bi - V&;

computes a solution for S2ew from a solution for S&.

The only easy translation is from the simple inequality a? < Xj : Shor introduces a new "unused"

power of b, say ba and writes

Vxi+b* + *)><*-& = Vxi+ba

Vxj +bi + Vba - bi - V*i +ba

Vxi+ba < Vxj+b<*

vbi+vba_b. = vba

Vbj+Vba_bj = Vba
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(Multiplication equations build the powers of 6 successively.) More auxiliary variables and equa¬

tions are necessary for addition and multiplication. But since b is assumed to be very large (at least

larger than any Xi), all these introduced variables can be brought into a total order, for example
the above variables are ordered like:

Vbi < Vx.+bi < Vbj < VXj+bJ < Vba_bj < Vba_bi < Vba < Vx.+ba < Vx.+ba.

The nice thing is that in the total order of the variables in Sb the variable Vb
is the smallest one. So we can again augment this system by variables VXi for

the first m variables xi,...,xm fitting in the total order before Vb:

KVXl<...<VXm<Vb<...

such that S%ew and this system Sbew are partial solution equivalent: Again
the ambiguity ofthe shift by the bl is canceled out by this extension, the proof
of the validity ofthis operation is left to the reader. D

Corollary 5.3 Let a\ < ... < am be algebraic numbers all greater than 1.

Then there is a Shor normalform S = S(ai,..., am) in variables x\,..., xn

(with n> m) which has a solution and such thatfor all solutions ofS thefirst
m variables are X\ — a\,..., xm = am.

Proof: Let (fi, /*, Wj) the triples defining the ai, i.e. fi is a polynomial with

integer coefficients such that ai is the only root between the rational numbers

U and Ui. The polynomial system 1 < x\ < ... < xm, fi(xi) = 0, k <

Xi < Ui for alH = 1,..., m then has the unique solution Xi = ai. The Shor

normal form constructed in Lemma 5.2 is partial solution equivalent with this

polynomial system, hence it has a solution and each solution has the first m

variables assigned to ai. D

5.2.2 A Polytope Prescribing Algebraic Edge Slopes

In Section 4.3 we have seen that Richter-Gebert's universality theorem implied
that for each Shor normal form S there is a polytope P(S) such that every

realization of P(S) contains a normal computation frame encoding a solution

of 5 and, conversely, every normal computation frame encoding a solution of

S can be completed to a realization ofP(S) (Theorem 4.13).

We want to construct a combinatorial polytope P(a \,..., am) which exactly
prescribes the slopes of a normal 2-face to algebraic numbers 0 < 1 < a i <

... < am < oo:
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By Lemma 5.3 we can translate the defining equations and inequalities of

1 < ai < ... < am into a Shor normal form S(a\,..., am) in the variables

1 < x\ < ... < xn such that the ai are the sole solutions of x\,..., xm.

Then P(ai,..., am) can be constructed from the polytope constructed in

Theorem 4.13, i.e. from P(S(ai,..., am)), by forgetting all edge pairs cor¬

responding to the auxiliary variables xm+i, ...,xn (see Figure 5.1).

& \ %m+\ i xm+l '
• • • ' xm xn

Figure 5.1: Construction ofP(a\,..., am)

Lemma 5.4 Thepolytope P(a\,..., am) prescribes that one ofitspolygonal

faces Gprescribes that G is a normal computationframe and that G encodes

the assignment x\ = a\,..., xm = am. Theface G is theface ofa pyramid

facet.

The last phrase of the lemma is important so that we can glue more stuff to

(the pyramid over) this polygon and thereby impose more properties on G.

Algebraic numbers are fine, but we want to prescribe actual polygons. Let

G be a (realized) normal polygon with algebraic vertex coordinates. Then

the coordinates of the slopes s(i) = i Ai' for i = 1,... ,n of G are alge¬
braic numbers. So are the numbers ai = cr(s(l),s(2)\s(S),s(i + 3)) for

l<i<m = n — 3. These numbers are totally ordered and greater than

1. These are the numbers that are encoded in G if we view it as a compu¬

tation frame where line 1 corresponds to oo, line 2 corresponds to 0, line 3

corresponds to 1 and lines i + 3 correspond to the variables Xi. We define

Psl(G) = P(a\,..., an_3). From the above lemma (and from Lemma 4.15

we conclude:

Corollary 5.5 The combinatorial 4-polytope Psl(G) has a polygonal face
G which is prescribed to be normal and have slopes which are projectively

equivalent to the slopes ofG. Theface G is theface ofa pyramidfacet.

P(S(a1,...,am))
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5.2.3 The Vertex Forgetter

We have seen how to presribe the slopes ofedges ofa polygonal face. In order

to prescribe the exact shape of a polygon we will prescribe also the slopes of

diagonals (chords) of the polygon. In order to translate prescribing of edge

slopes to prescribing of chord slopes we want to "forget vertices." To this end

we introduce the vertex forgetter polytope.

The vertex forgetter works quite similar to the edge forgetter: Start with a

(realized) polygon G(l,..., n), construct a prism over this polygon such that

the edges connecting top and bottom faces meet in a point (their supporting

lines, that is). But then consider the convex hull of the bottom polygon and

all the vertices of the top polygon except one, say i A i + 1. Now perform
a Lawrence construction analoguous to the edge forgetter, i.e. with q the the

intersection point of the upright edges.

Let us list the facet sets as seen from q: T° are the side faces ofthe prism, F+

the bottom polygon, T~ the top polygon and the new triangular facet. The

upright edges constitute the set 11°. Now the resulting polytope V \ i A i + 1

prescribes that the vertices ofthe top polygon are projectively equivalent to the

corresponding vertices of the bottom polygon: The top polygon hasforgotten
the vertex iAi + 1. Note that since the facet sets can be seen purely combina¬

torially, the shape of the bottom and top polygons are not further prescribed.

Figure 5.2: Vertexforgetter V \ 1 A 2
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As with the edge forgetters we can stack vertex forgetters on top ofeach other

(by gluing along the pyramids) and forget many vertices vi,...,vr. The poly-

tope is then called V \ v\,..., vr. Its symbol for the polytope diagrams is

shown in Figure 5.3. The small end denotes the pyramid containing the poly¬

gon where the vertex has been forgotten.

y\iA2

Figure 5.3: Symbolfor the vertexforgetter

Sometimes it is better to regard this polytope as a vertex inventor this is espe¬

cially the case when the small end is prescribed to have some shape, and other

end has more vertices whose only restriction is that the result must be convex.

The next section shows an application ofthis concept.

5.2.4 Prescribing Edge and 1-Chord Slopes of Centrally

Symmetric Polytopes

Let G^ be a centrally symmetric polytope with algebraic vertex coordinates.

Let its edges be 1,2,..., n, V, 2',..., n' and suppose n > 5, i.e. the polytope
has at least 10 edges. Figure 5.4 shows a projective transform ofthis polytope
where the line loo where all opposite edges and diagonals meet is finite.

We will construct a polytope which prescribes the edge slopes and the 1-chord

slopes ofone polygonal face to be projectively equivalent to the ones ofG
.

By applying Corollary 5.5 we can prescribe the slopes ofthe edges to be pro¬

jectively equivalent to the slopes ofG^. By removing vertex i A i + 1 and its

opposite vertex i' A i + V we get a smaller polygon Gf which is also normal

and which has the (former) 1-chords (i, i + 1) and (i',i + l') on its boundary.

(Note that we define the index addition cyclically: n + 1 = 1' and n + 1' = 1.)

Call Psl(Gf) the polytopes which prescribe the of a polygonal face to be

the slopes of Gf (again Corollary 5.5). Figure 5.5 shows how we glue these

P(Gf) together: On the right-hand side we see many connector polytopes
which all share a 2n-gon; eventually this will be prescribed to be projectively

equivalent to G®. The polytope Psl(G<>) on top assures that these 2n-gons

projectively have the same slopes as G^. For each i = 1,..., n we glue a

vertex-forgetter polytope to a connector, they forget the vertices i Ai + 1 and
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Figure 5.4: Labeling in the centrally symmetric polygon

G(l,2,...,n,l',2',...,n')
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i' A i + V. On the other side ofthis vertex forgetter we glue the Psl (Gf ). We
call this polytope P(G<>).

0>
*l(G?)

Psl(G?)

P*l(G%)

P8/(G°)

V \ 1 A 2,1' A 2'

V \ 2 A 3,2' A 3'

sl(G»)
0^

Psl(Gt) V\nAl',n' AI

G'

Figure 5.5: Gluing diagram ofthe polytope P(G^)
0>

Lemma 5.6 The polytope P(G<:>) prescribes that the polygonal face in the

last connector is normal with line Zoo» that opposite 1-chords also meet on

the line Iqq, and that these points, the edge slopes and the 1-chord slopes,

areprojectively equivalent to the edge slopes and 1-chord slopes ofG®. This

polygonalface is the groundfacet ofa pyramidfacet ofP(G ^).

Proof: Consider a realization of the polytope P(G<>). The polygon in the

connecting pyramid ofPsl (G®) and the connector that is glued to it is normal

and its edge slopes are projectively equivalent to the ones of G®. Denote it

«/(G^). Similarly denote sl(Gf) the polygons in the connecting pyramid of

psl (Q<>^ (for ^ _ i5 _ _ ^ n) an(j me vertex forgetter which is glued to it. It is

also normal and has edge slopes which are projectively equivalent to the ones

ofC??.
Consider sl(G^). The vertex forgetters ensure that there is a projective trans¬

formation Ti that map all vertices of sl(Gf ) to the corresponding vertices of
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s^G0). Hence also in s/(G°) the the 1-chords (1,2) and (1', 2') meet on Zoo

(projective transformations commute with the meet operation)

Since only the vertices 1 A 2 and 1' A 2' of s^G^) are forgotten by the

vertex forgetter the transformation T\ maps the edges 3,4,5,..., n and

3', 4', 5',..., n' to their corresponding edges in s^G^). Hence also s(3),
s(4), and s (5) and therefore all intersection points on the line Zoo are mapped
to their correspondents: this follows from Lemma 4.14 since the slopes s(3),
s(4), and s(5) are a projective basis of Zoo. But this means that the projective

equivalence of the lines Zoo of the polygons G^ and s^G^) extends also to

the slope of 1-chord (1,2). The same argument works for all other 1-chord

slopes s(2,3),..., s(n, 1'). This concludes the proof. D

5.2.5 Edge Slopes and 1-Chord Slopes Suffice

The next lemma implies that if all edge and 1-chord slopes of a normal poly¬

gon are prescribed then the polygon is prescribed (up to projective equiva¬

lence). The lemma makes a stronger statement: the polygon need not be nor¬

mal, but the intersections of the edges and the 1-chords with an exterior line

are prescribed. These intersection points we also call slopes (following the

intuition of thinking of this line as the line at infinity).

Also it is not even necessary to know all 1-chord slopes: if all but two are

known, the polygon is already prescribed. This strengthening ofthe statement

will be very important in the next chapter when we reuse this lemma.

Lemma 5.7 Let G = G(l,..., n) an n-gon with n > 4. Let I be a line

outside of G. Furthermore let l(i) = i A I be the intersection of the line

containing the edge i with I and let l(i,j) — (i,j) A I be the intersection

containing the chord (i,j) = (i — 1A i) V (jAj +1) with I. Letfurthermore ki

and k2 two distinct edges (see Figure 5.6). Let G — G(l ',..., n') be another

n-gon, V be a line outside G' and define l'(i') and l'(i', i + V) accordingly.

Ifthere is a projective transformation f : I -+ V such that f(l(i)) = l'(i')for
alii E {l,...,n)andf(l(i,i + l)) = V (i',i + V) for all i {l,...,n}\
{k\, k2} then G and G' are projectively equivalent.

The immediate consequence of this lemma and Lemma 5.6 is

Corollary 5.8 Let G be a centrally symmetric polytope and P(G ) the

combinatorial polytope which prescribes all edge and 1-chord slopes of a

polygonalface G to be projectively equivalent to the edge and 1-chord slopes
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Z(t + 1)
l(i,i + l)

l(i)

Figure 5.6: Illustration ofLemma 5.7: ifall intersection points with the exte¬

rior line I, i.e. the slopes, are known, G is determined up to projective equiv¬
alence

ofGQ. The polytope P(GQ) prescribes that G is projectively equivalent ot

G<>.

Proof of Lemma 5.7: First we will show the following fact:

Ifthe projective transformation / maps the slopes

l(i) h- l'(i')

l(i,i + l) i-> l'(i',i + l')

l(i + l) h-> l'(i + l')

then it also maps l(i,j) h» l'(i',j').

We prove the fact using induction on j — i. The case j - i = 0,1 are trivial.

Suppose the fact is proven for chords up to difference j — i < m. We will

now tackle the case j — i = m. Consider the following vertices: i — 1 Ai,

iAi + l,j — lAj, and j A j +1. They span the six lines (two edges and four

chords) i, j, (i,j), (i + l,j - 1), (i, j - 1), (i + l,j). The intersection points
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of these lines with Z are a quadrangular set (see Figure 5.7). Five ofthese are

slopes map correctly under / since they are edge slopes or chord slopes with

difference < m (by induction assumption). So the sixth slope l(i, j) must also

be mapped to its counterpart l'(i',j') (by Lemma 4.19 about quadrangular

sets). This concludes the proof of the fact.

l(i + l,j)
Khj)

i(i+ i,j-i)
i(i,i -1)

i(i)

Figure 5.7: The quadrangular set l(i), l(j), l(i,j), l(i + 1, j — 1), l(i,j — 1),
l(i + l,j)

The fact implies that /(Z(&i + 1, k2)) = l'(ki + 1', k2) since the edge slopes

l(i) for all i and the 1-chord slopes l(i, i + 1) for k\ < i < k2 are correctly

mapped by /.

This is necessary in order to invoke Lemma 4.15: There is a unique projective
transformation g which extends / and maps k\ — 1 A k\ and k2 — 1 A k2 to

their counterparts in G'. We will show that g(G) = G'.

Notice that a vertex i A i + 1 between k\ and k2 (i.e. k\ < i < k2) is the

intersection ofthe lines l(ki + l,i)V(kiAki + l) andl(i+l,k2)V(k2Ak2+ l).
Check that for the slopes l(ki + 1, i) and l(i + 1, k2) the assumptions of the

fact at the beginning of the proof hold. Hence they are correctly mapped
under f = g\t. Since projective transformations commute with meet andjoin
the vertex i Ai + lis mapped correctly under g as well. The same kind of

argument shows that the vertices i A i +1 on the other side ofk i and k2 (i < k\

or k2 < i) are mapped correctly.

We have shown now that g maps all vertices ofG correctly to their counter¬

parts in G'. It remains to show that g is admissible for G, i.e. no point ofG is

mapped to infinity. Then we can invoke Lemma 4.21 to show that g(G) = G'.

Since the preimage ofinfinity ofg is a line, it suffices to show that no point on

i-1
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the boundary ofG is mapped to infinity. No vertex is mapped to infinity, we

have just shown that they are mapped to (finite) vertices.

Let us consider an edge i. The image of the line i contains the following
four points: the vertices i - 1' A i' and i' A i + V, the slope l'(i') and the

intersection with infinity i A oo. The last two points are not between the two

vertices of the edge: V was assumed to be outside of G' and of course an

edge of a polygon does not contain infinite points. Hence by Lemma 4.20 the

cross ratio cr(i — V Ai',i' Ai + l'\l'(i'),i' A oo) > 0. Hence also for the

preimages we have cr(i — 1 Ai,i Ai + l\l(i), g~x (i A oo)) > 0 which again

by Lemma 4.20 means that g
_1

(i A oo) lies not between i — lAi and iAi + 1.

Hence g(i) = i' and therefore g(G) — G'. Ü

5.2.6 Gluing Everything Together

LetGbe a polygonwith algebraic coordinates onn > 6 vertices. By a rational

invertible projective transformation T we bring it into aflat shape, i.e. such

that it has one long edge and other vertices are vertically above this edge. (This
is not hard: consider two points o and b beyond an edge e ofthe polygon such

that a V b does not meet the polygon. The projective transformation mapping
the endpoints of e back to themselves and a and b to different points at infinity
not on ë is such a transformation.)

Now we turn a second copy ofthe transformed polygon 180 degrees about the

midpoint of this edge and take the union of these polygons (see Figure 5.8).
We obtain a centrally symmetric polygon G^ on 2n - 2 > 10 vertices. The

coordinates ofthis polytope are obviously algebraic numbers.

Figure 5.8: Flattening and doubling a polygon gives a centrally symmetric

polygon

We can prescribe the centrally symmetric polytope G®. By deleting n — 2

vertices we can recover the flat polygon. We do this by gluing vertex forgetter



134 Chapter 5. Prescribing Faces of Polytopes

V \ V A 2',... ,n - V A n' to the prescribing polytope P(G<>). Call the

resulting polytope P(G).

Corollary 5.9 Thepolytope P(G) prescribes itsface to beprojectively equiv¬
alent to G.

5.3 d + 2-Polytopes Prescribing d-Faces

This section is dedicated to showing that d-dimensional faces of d + 2-

polytopes can be exactly prescribed up to projective equivalence (for d > 3).
Remember that the underlying idea about prescribing a polygonal face was

to encode all information of the polygon in points on a line. Using Richter-

Gebert's universality theorem we could "do arithmetic" with the points on this

line.

This section follows this paradigm of encoding information about a polytope
on lines:

Definition 5.10 Let P be apolytope and e one ofits edges. The line image on
e of a facet F in P is the intersection ofë with the hyperplanes F supporting

F, i.e. imge(F) = e A F. The line image of e in P is the map

imge : facets(P) -+ 2R

F i-> eAF

Figure 5.9: The line image of an edge of the taco polytope. It is obtained

by the convex hull oftwo polygons F i and F2 sharing the edge e. Note that

e - imge(F1) = imge(F2).
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Figure 5.9 shows a polytope P which is the convex hull of two polygons

sharing an edge e and the line images on this edge e. Note that for the two

facets sharing e the line image is the whole line. Note that line images can

also be at infinity and that different facets can have the same line image.

The main fact leading to our result is: A d-dimensional polytope is determined

up to projective equivalence if the line images of its are determined up to pro¬

jective equivalence. More specifically, if all line images of edges in a certain

edge set E oftwo combinatorially equivalent polytopes P and P
'
are projec¬

tively equivalent by possibly different projective transformations then there is

one projective transformation taking P to P'.

The construction ofthe combinatorial d+2-polytope which encodes the exact

shape P of one of its d-faces is divided into three parts:

1. In Section 5.3.1 we will show Lemma 5.11 which encapsulates the main

fact.

2. In Section 5.3.2 we will construct a d -I- 1-polytope which has one facet

combinatorially equivalent to P and a polygonal face G
e
which encodes

the line image of P of one edge e. Then we will show how to glue a

d -I- 1-polytope to this polytope which prescribes the exact shape ofG e,

and therefore the line image with respect to the one edge.

3. Finally in Section 5.3.3, we will show how the these construction pieces
act together. We do this construction for every edge of P. We lift the

combinatorial d + 1-polytopes which prescribe one line imgage of P

to d + 2-space by erecting pyramids over it. We construct a d + 2-

dimensional connector polytope and use it to glue the one-edge-image

prescribing polytopes together. Finally, we show how to perform slight

changes to P in order to invoke the main fact. The resulting polytope
will prescribe one of its d-faces to be projectively equivalent to P.

Most of our constructions we will only show how to do for d = 3. This is

quite feasible since the arguments easily extend to higher dimensions. In the

cases where this extension is not canonical we will specifically note this.

5.3.1 Few Line Images Suffice

We will show now that under certain conditions on the face lattice ofP (a ver¬

tex ofdegree d which is only called in simplex facets and which is "far away"
from at least one facet) the line images of a few edges suffice to determine

exact shape ofthe polytope.
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Lemma 5.11 Let P and P' be d-dimensional polytopes with identicalface
lattice. Furthermore, let pbe a vertex ofdegree d ofP such that

1. the neighbors ofp are qo,..., qd,

2. allfacets incident to p are simplices, i.e. facets with vertex sets

omit pi

{p,qu...,qd},

3. there is afacet G ofP such that G fl {p, q\,..., qd} = 0,

4. there are projective transformations fi : pW qi -> p' V q\ such that

fi(imgpVqi (F)) = imgp,Wq>. (F')for allfacets F ofP.

Then there is a projective transformation f such that f(P) = P'. In particu¬

lar, flpVqi = fi-

Figure 5.10: Top view of P, with the line images ofG on the edges pV qi

(i = 1,2,3;

Proof: Whenever we consider some face of P, by attaching a prime to its

name we mean image under the face lattice isomorphism to P '. For instance,
ifF is a face ofP, then F' is the corresponding face of P'.

First, we will now construct a candidate projective transformation /, then

that it really has the desired properties: Since G does not contain any of
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Qi <7i » • • •

» Qd, by convexity G does not either. Furthermore by the face struc¬

ture ofP the p, qi,..., qd are in general position. Hence by Lemma 4.17 there

is a unique projective transformation / such that

f(G) = G7,
f(p) = P',

f(Qi) = Qi for all t = 1,..., d.

Since p, qi, and (p V qi) A G are distinct points on p V qi and since fi and /
have the same value at these points, by Lemma 4.14 they must be equal:

/ IpVÇi — Ji-

We will now show that / maps all supporting hyperplanes of facets to the

supporting hyperplanes ofthe corresponding facets. It follows that the vertices

are mapped ofP are mapped to the corresponding vertices ofP '. Eventually,

we will show that / is admissible, i.e. it maps P to P'.

omit qi

Consider the facets Fi — p V q\ V ...
V qd. The transformation / maps their

supporting hyperplanes to the corresponding supporting hyperplane ofP '.

Let F be one of the remaining facets of P. None of the points (p V qi) A F

coincides with p since F is not incident to p. From p,q\,...,qd being in

general position, it follows that also (p V qi) A F are in general position, hence

span F. The transformation / takes the line image ofp V qi to the line image

ofp' V qi (onp V qi it coincides with fi). So / maps a set of points spanning

F to points in F'. Since / is invertible, f(F) = F'.

It remains to show that / is also admissible, i.e. that it maps the convex hull of

the vertices ofP to the convex hull ofthe vertices ofP'.lff was not admissi¬

ble, by Lemma 4.21 it would map points inside P to infinity. If /
_1 (oo), the

preimage of the hyperplane at infinity, intersected P, then there would also

be an edge intersecting this hyperplane: In this case, since /
_1 (oo) partitions

the vertices of P according to its sides and since the vertex-edge graph of

P is connected, there will be an edge whose endpoints are on both sides of

f~l (oo). Hence it remains to show that no edge rVsofP intersects /
_1 (oo).

For each edge r V s of P there is a facet F which contains neither r nor s

(i.e. r, s, and (r V s) A F are three distinct points): For the edges having both

endpoints in {p, qx,..., qd} the facet G takes this role. For all other edges, at

most one of r and s is equal to some qi. Then Fi is a facet not containing r

ands.
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The facet F is such that point (r V s) A F is outside of the edge r\/s. The

same holds in P', i.e. (r' V s') A F' lies outside of r' V s'. Of course the

hyperplane at infinity meets r' V s' in a point outside of the edge. Hence by
Lemma 4.20 the cross ratio

cr(r',s'\(r' V s') A F', (r' V s') A oo) > 0.

This cross ratio is invariant under the projective transformation /-1|r'As' ,

hence

cr(r,s\(rVs) A F,(rVs) A/"1 (oo)) > 0.

It follows by Lemma 4.20 that (rVs)A/-1 (oo) lies outside ofthe edge rVs.
D

5.3.2 A d + 1-Polytope Prescribing one Line Image

In order to construct a polytope which prescribes the line image of one of its

facets we will proceed in two steps:

1. We will construct a d + 1-polytope which links the line image an edge
of one of its facets P to the line image of a polygon G (Section 5.3.2).

2. We will glue another polytope to this polytope which prescribes the

shape ofG, thereby prescribing the one line image ofP (Section 5.3.2).

Polygon Slopes Linked to Line Image

Let P be the combinatorial polytope corresponding to the polytope P we want

to prescribe and e an edge ofP. We will now construct a combinatorial d +1-

polytope Pe which has P as a d-face and a polygon Ge as a 2-face such that

1. the faces P and Ge share the edge e, and

2. in every realization Pe ofPe the line image of the d-face P' realizing
P is encoded in intersections of the edges of the realization Ge of Ge.
More precisely, for each facet F of P' there will be an edge i of Ge
such that

imge(F) = e A i.

Of course, the points e A i are the line image of Ge, so we could say that we

link the line image ofP to the line image ofG.
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We will construct Pe by constructing a realized polytope Pe and defining Pe

to be the combinatorial polytope corresponding to P
e.

Let Fi and F2 be two facets ofP incident to the edge e. Let the facets ofPbe

partitioned into sets Fq,...,^ such that two facets F and F
'

are in the same

set if and only if their line images on e coincide, i.e. imge(F) = imge(F').
Wl.o.g. To consists of F\ and F2. Order the set T\,..., Tn according to

their occurence on the line image of e. For all i = l,...,n denote pi —

imge(F) for F e Fi. Hence px and pn are the endpoints of e. E.g. for the

polytope in Figure 5.9 we have pi = imge(Fi),p2 = imge(Fo),... ,p*> —

imge(F3).

Now embed P into Rd+1 and consider a polygon Ge which lies in a plane that

shares only the line supporting the edge e with the d-dimensional hyperplane
P and has the following properties: Besides e it has n edges 1,..., n and

for all edges i = 1,..., n the intersection of the supporting lines of i and e

coincide with the line image pi, i.e. i A e = pi.

Such a polygon is easy to construct: First draw edge 1 into a space direction

that misses P (i.e. the projective 2-flat e V1 intersects the hyperplane contain¬

ing P only in e). Then connect the endpoint of edge 1 with p 2 and construct

edge 2 on this line such that the convex hull of e, 1, and 2 has theses three

edges on their boundary: This is easy to achieve by letting edge 1 go off from

the intersection with edge 0 in the right direction and by letting it be short

enough. Construct the edges 3,..., n — 1 in the same way, always taking

care that (after having constructed edge i) the convex hull of e, 0,..., i has

these edges on its boundary. At the end the edge n is already constructed. See

Figure 5.11.

Ph P6 P7 P8 Pi P2 P3 P4

Figure 5.11: The polygon Ge. Attention: Ge does not lie in the same

Z-dimensional hyperplane as P
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Define Pe to be the convex hull ofP and Ge. The nice thing is now that the

facets of this d + 1-dimensional polytope can be combinatorially described if

the facet partition Ti is known and that we can use the face lattice of Pe to

prescribe the connection between the line image imge ofP and the polygon
Ge already on the combinatorial level.

Lemma 5.12 The polytope Pe = conv(P, Ge) has thefollowingproperties:

1. all vertices ofP and ofGe are vertices ofPe,

2. the polytope P is afacet ofPe and the polygon Ge is aface ofPe,

3. the polytopes conv(F\ U Ge) and conv(F2 U Ge) arefacets and they
are necessarilyflat,

4. for alii = 1,..., n and all F G Ti thepolytopes conv(FUi) arefacets.

Remark: We know much more about the polytope Pe. For instance, we

have not listed all facets of Pe : we omitted the tetrahedral facets conv(P U j)
for all edges R of P that are incident to two facets F £ Ti and F' G Tk

and i < j < k. (This completes the list of facets of Pe.) This shows that the

combinatorial structure ofPe is already known once the partition ofthe facets

ofP into the Ti is known.

Another Remark: Furthermore, in dimension d = 3 we know a (relatively)
simple description of what these facets look like: The facets of the form

conv(F U i) for facets F G Ti are Lawrence extensions of F with respect

to the point pi. The facet conv(Fi U Ge) has the following facets: (1) Fi and

Ge themselves, (2) quadrilateral or triangular facets conv(/ U i) for edges of

Fi such that / = Fi A F for some facet F e Ti and (3) triangular facets

conv(u U j) for vertices v of Fi which are between two edges / = Fi A F

and /' = Fi A F' with F G T» F' G Tk, and i < j < k. The facet F2

has an analoguous description. However, we do not make explicit use ofthese

properties in the sequel, so we omit the easy but somewhat technical proof. In

Figure 5.12 the reader can find all these properties at work.

Proof of Lemma 5.12: The intersection of the d-dimensional hyperplane
P and the 2-dimensional plane Ge is the line ë. Therefore P contains none of

the vertices ofGe except the vertices on e. All ofthe vertices ofGe lie on the

same side of this hyperplane. Hence P supports the facet PofPe and all of

P's vertices are vertices of Pe.

We want to prove now that vertices v ofG
e
are vertices ofPe (w.l.o.g. we can

assume v £ e. Let ev be a supporting line off andpv = ev A e. Thenpr is
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Figure 5.12: Schlegel diagram ofPe where P is a (warped) cube: Fi =front

facet, F2 = topfacet, To = {rightfacet}, T\ — {backfacet}, T2 = {bottom
facet}, Tz = {leftfacet}

outside of e, but on ê, therefore outside of P. Hence there is a 2-dimensional

hyperplane H C P which contains pv, but which does not cut P. Then the

3-dimensional hyperplane HVv contains v, but has all other points ofP and

Ge on the same side, i.e. it supports v.

The facet Fi ofP is defined by a d - 1-dimensional supporting plane. This

plane contains e, so the span H ofthis plane with some vertex ofG e
contains

all of Ge. The d-dimensional hyperplane H has all other vertices ofP on its

other side, hence H is a supporting hyperplane of Pe and defines the facet

conv(Fi U Ge). By the same reasoning conv(F2 U Ge) is a facet of Pe. The

intersection ofthe two facets conv(F i U Ge ) n conv(F2 UGe ) is a face ofPe.

It contains all vertices of Ge, but no other vertices ofP than the endpoints of

e. Therefore this face is Ge and all vertices ofGe are vertices of Pe.

Let F G Ti be a facet of P. Suppose i < n. Define the d-dimensional plane

Hp, = F V (i A i + 1). We claim that Hp is a supporting hyperplane ofPe.

This hyperplane is d-dimensional since the hyperplane F C P and i A i +1 is

not in this hyperplane, so F cannot contain this endpoint. The hyperplane Hp
contains pi since F does. Hence it also contains the other endpoint i — 1 A i

of i. Therefore it has all other vertices of Ge on one side. Since it contains

F it has all vertices of P on one side as well. These have to be the same

sides since e is shared by Ge and P. Hence conv(F U i) is a face. It is also

a facet since F is d — 1-dimensional and i is not contained in the hyperplane
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containing F. The case i = n works analoguously, when we exchange the

roles ofi — 1 Ai = n — 1 An and i + 1 Ai = e An. D

Let Pe be the combinatorial polytope with the same face lattice as Pe, let

P be its facet corresponding to the polytope P and Ge be the 2-dimensional

face corresponding to Ge. The previous lemma implies that in any realization

of Pe the line image in the realization of P of the edge e is encoded in the

realization of Ge-

Corollary 5.13 Let P'e be a realization ofPe, P' and G'e the induced real¬

izations ofP and Ge- Thenfor P' the line image ofthe edge e is

imge(F) = i Ae

for allfacets F G Ti ofP' and all edges i = 1,..., n ofG'e.

Proof: For a facet F G Ti the facet F V i spans a d-dimensional supporting

hyperplane of P'e. This hyperplane meets ë in exactly one point. But also F

and i meet i in exactly one point. It follows that all these points have to be

equal, hence F A e = i A e. D

Prescribing One Line Image

We will show now how to construct a combinatorial d + 1-polytope which

prescribes the line image of one edge of one of its facets.

First we attach pyramids to Pe in order to obtain a facet

pyr(. ..(pyr(Ge)) --)- Along this facet we will then glue pyramids
over pyramids etc. over a 4-polytope prescribing the exact shape ofG

e.

We erect a pyramid on Pe over its facet Fi \J Ge: By an abuse of nota¬

tion we write pyr(F\ U Ge) for the pyramid whose ground facet combin-

torially equivalent to the facet Fi U Ge of Pe. Consider the connected sum

Pe#F1uGepyi'(Fi UGe). The facet Fi UGe is necessarily flat since in all real¬

izations ofthe d- 1-faces all vertices lie in the two hyperplanes spanned by the

vertices in Fi and in Ge, and these hyperplanes share the line ë (Lemma 4.8).
Since one face ofpyr (Fi U Ge) is Ge the new polytope has a face pyr(Ge).
In dimension d = 3 we are done since this face pyr(Ge) is already a facet. In

higher dimensions, we erect a pyramid over a facet ofthis polytope containing
the face pyr (Ge). The resulting polytope has a face pyr(pyr (Ge))- We pro¬

ceed attaching pyramids until we end up with a facetpyr (... (pyr(Ge)) ---)
Note in all the later steps we glued along pyramids which are necessarily flat.
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Along pyr (... (pyr (Ge ))...) we glue an iterated pyramid over a prescribing

polytope P(Ge) of Section 5.2.6 which prescribes that the polygon is projec¬

tively equivalent to Ge. (Note that P(Ge) is a 4-polytope which already has

a facet pyr(Ge).) We obtain the combinatorial polytope P^re (P).

Since we glue only along necessarily flat faces and since iterated pyramids
do not change properties prescribed by the polytope P(G e) we obtain the

following lemma:

Lemma 5.14 Every realization pPre' of P^re (P) has the property that its

facet P' (which is combinatorially equivalent to P) has a the line image on e

which is projectively equivalent to the line image on e in P.

Note that we have not shown (but we could) that Pepre(P) prescribes this

property since not every realization ofP with the right line image on e might
extend to a realization ofPe. (After the statement ofLemma 5.12 we remarked

that this is so, but we have not proven it.) However, our statement is sufficient

for the proof ofthe main result.

5.3.3 Gluing many Line-Image Prescriptors

We have seen how to construct a d + 1-dimensional polytope pPre (P) which

has a facet P which is combinatorially equivalent to P such that in realiza¬

tion the line image w.r.t. the edge e is projectively equivalent ot the line im¬

age in P (Lemma 5.14). Also we have seen that under some conditions the

line images of a few edges suffice to determine the exact shape of a polytope

(Lemma 5.11).

We will now see how to glue together the polytopes P|re (P) for some edges

e. First we will show how to augment a polytope P to a polytope Paug
which satisfies the assumptions of Lemma 5.11. Then we will show how to

glue together the different prescriptor polytopes Pfre (Paug)- It will become

necessary to lift the construction to dimension d + 2. At the end we will show

how to rectify the augmentation such that the resulting polytope prescribes
that a face is projectively equivalent to P.

Augmenting the polytope P

In order to be sure that the line images of some edges determine the exact

shape of the polytope in Lemma 5.11 we needed the conditions that there is

a degree-d vertex p which is only incident to facets which are simplices and

such that there is a "far-away" facet G.
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Let P be the given d-polytope and F one of its facets. Consider d points

qi,...,qd beyond F of P which are in a hyperplane which is parallel to F.

It is not hard to see that those points are easy to construct (even in polynomial

time). The convex hull conv(P U {q\,..., qd}) thus has a simplex facet q\ V

...
V qd. Let p be a vertex beyond this facet. We define Paug be the convex

hull conv(P U {p, <?i,..., qd}) (see Figure 5.13).

Figure 5.13: Construction ofp and q\,..., qd

Obviously, p is only adjacent to the vertices qi. Also the facets that containp
are exactly p V q\ V ... V qi-\ V <^+i V ...qd. All of P's facets except F are

still facets of PaUg- Note that they are all far away from p in the sense that

they do not intersect the edges p V qi. Furthermore, the vertices of P are all

present in PaUg-

Connector in Dimension d + 2

We will construct a d + 2-dimensional connector polytope which will have

the property that it has four pyramid facets whose (d-dimensional) ground
faces are projectively equivalent in every realization. This is the canonical

generalization of the construction for d = 2 in Chapter 4.

Consider the d + 1-dimensional prism P x {0,1} and q the intersection ofthe

edges connecting the bottom facet P x {0} to the top facet P x {1} (q is on

the plane at infinity).

The transmitter polytope is the Lawrence extension of this prism with respect
to q. In every realization the two copies of the combinatorial polytope P in

prism(P) are projectively equivalent. (Also each realization of P can be

completed to a realization of the transmitter polytope.) This is so since To

contains all facets except the top and bottom facet of the prism and therefore

the existence of a point q conforming with To implies that the edges connect-



5.3. d + 2-Polytopes Prescribing d-Faces 145

ing corresponding vertices of top and bottom faces of the pyramid also meet

in q. Hence the bottom face ofthe pyramid is a projection of the top face.

Along the facet prism(P) we glue another one ofthese transmitter polytopes
and obtain a polytope that prescribes that the four facets pyr(P) are projec¬

tively equivalent. Notice that pyr(P) is necessarily flat even though P might
not be (we showed in Lemma 4.9 that prisms are always necessarily flat).

Gluing Everything Together

Consider the polytopes Ppyeqi (Paug)- All of them have a facet which is com¬

binatorial equivalent to PaUg - (This is the facet which in every realization has

the same line image on p V qi as PaUg-) We glue the pyramids over these

polytopes along the pyramids over this facet to connector polytopes (see Fig¬
ure 5.14).

pyr(P^qi(Pau9))

pyr(P^eq2(Paug))

pyr(P$qd(Pau9))

V\p,qi,...,qd

Figure 5.14: Gluing diagram ofthe polytope which prescribes P

To the last connector polytope we glue a d + 2-dimensional vertex forgetter

polytope which forgets the vertices p,q\,...,qd. This polytope works exactly

like the 4-dimensional vertex forgetter. We leave out the details since the

construction almost identical to the construction ofthe connector polytope.

Since all gluing facets are necessarily flat (pyramids), we get a polytope such

that in every realization the d-faces which are combinatorially equivalent to

Paug have line images on p V qi which are projectively equivalent to the line
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images of Paug- It follows by Lemma 5.11 that these faces must be projec¬

tively equivalent to Paug- Chopping off the superfluous vertices leaves us

with a polytope which is projectively equivalent to P. This is exatly the face

present at the small end ofthe vertex forgetter. Hence this polytope prescribes
that one face is projectively equivalent to P.



Chapter 6

MaxTriangöFL(5) is Hard

This chapter is dedicated to the proof that the problem of finding a maximal

number ofsimplices in a triangulation ofthe boundary ofa d-polytope over all

realizations is hard where d > 5. To give the precise statement we need to set

up some terminology: For a polytope P the boundary dP is the union of all

its faces. A triangulation ofthe boundary ofa polytope is defined canonically:
It is a set ofd— 1-dimensional simplices whose union is the polytope boundary
such that any two simplices meet in a (possibly empty) common face.

Consider the following decision problem:

MAXTRIANGÔFL(d)

Given: A face lattice L of a d-dimesional polytope
K

Is there a realization P of L such that there

and a integer

Question: is a triangu-

lation ofdP with more than K simplices?

This chapter is dedicated to the proof of the following theorem:

Theorem 6.1 The problem MAXTRIANG<9FL(d) for d > 5 is as hard the

existential theory ofthe reals.

For the definition of the existential theory of the reals see Section 5.1. This

hardness implies iVP-hardness. Note that it is unclear whether this problem is

in NP since no polynomial certificate is known (there are already 4-polytopes
which in every realization have an exponential encoding length).

The proofwill use the following different realizations ofthe hexagonal prism:
first the upright prism over a regular hexagon, second the upright prism over a

147
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slight perturbation of the regular hexagon. If the ground faces are precisely

O, - conv{(-), (-),(;), ©.(^.(li)},
a„ = ^°nv { ("o2) ' ("i1) ' (Î). (o) ' (-o5s) ' (-as) } '

then the polytopes Pi = Gi x [0,1] have maximal triangulations 14 and 17,

respectively (see Figure 6.1). These number were computed using DeLoera's

UniversalBuilder [23] and Cplex.

maximal 14 tetrahedra maximal 17 tetrahedra

Figure 6.1: Two realizations of the hexagonal prism with different maximal

triangulations

In order to show that MaxTriang#FL(5) is as hard as the ETR, we will

encode an ETR instance S (a system ofpolynomial inequalities and equations)
into a combinatorial polytope. This encoding will be in several steps, each of

them will use the following notation:

Notation. A polytope Pprescribes properties Fo or E\ of one of its faces F

depending on (the solvability of) the driving system S if

1. in the case that S has no solution, P prescribes F to have E0 and

2. in the case that S has solutions, P prescribes F to have E0 or Fi.

The proof is structured as follows. At the beginning we will work in four di¬

mensions and only in the last step go into the fifth dimension. Given a driving

polynomial system S we we will construct a combinatorial polytope which in

every realization has a prism over a hexagonal ground face which is projec¬
tively equivalent to the hexagons G14 or G17, depending on S. Following the

above notation we mean that G17 can only occur in a realization if the sys¬

tem S has a solution; but in any case there is always a realization with G14.
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By adding more construction elements and lifting the construction to the fifth

dimension we get a combinatorial polytope which has a pyramid over P14 or

P17, again depending on the solvability of S.

The construction will be such that all other facets are pyramids over pyramids.
A pyramid over a pyramid over a polygon has the same number of simplices
in every realization (namely n — 2 if it is an n-gon). So the maximal triangu¬
lation ofthe boundary ofpolytope will only depend on the triangulation ofthe

pyramid over the prism which is either P14 or P17. Since it can be P17 only
if S had a solution we get that by maximimally triangulating we can decide

whether S has a solution.

We have to spend some time checking that the encoding length ofthe polytope
is polynomial in the encoding length of S.

In Section 6.1.2 we will show the start of the construction: Given a driving

polynomial system S and two sets 1 < a\ < ... < am and 1 < ß\ < ...
<

ßm of algebraic numbers we will construct a Shor normal form 5|hor such

that a solution of Sfhor has the ai as a solution for the first m variables if and

only if5 has a solution. The ßi however are always part of a solution of Sghor
and there are no other partial solutions of Sfhor.
In Section 6.1.3 we will use this and Richter-Gebert's universality theorem

(Theorem 4.13) in order to construct a polytope with a polygonal face G which

is prescribed to encode the ai or the ßi. But it prescribes the ai only if 5 has

a solution.

Using this construction, the polytope prescribes only the edge slopes ofnormal

polygons. This is not enough: for instance the polygons G14 and G17 have

the same edge slopes. In order to prescribe the exact shape of a polygon we

do the same tricks as in the last chapter: We flatten G14 and G17 until we can

double them such that the results are centrally symmetric (convex) polygons.
Then by forgetting vertices and prescribing the slopes of these polygons we

can prescribe edge and 1-chord slopes. In Section 6.1.4 we supply the details.

On the run we analyse the various proofs and show that all constructions are

doable in running time which is polynomial in the encoding length of the

driving system.

Up to this point we have constructed a combinatorial 4-polytope which pre¬

scribes that a hexagonal prism is prescribed to have the ground face G14 or

G17, depending on the driving system S. Two requirements still have to be

met: all other facets must be pyramids and the prisms must not only have the

right ground faces, but really be projectively equivalent to P14 or P17, de¬

pending on the driving system. In order to achieve the first, we glue pyramids



150 Chapter 6. MAxTRiANGdFL(5) is Hard

to all other facets. In Section 6.2.1 we will show that this does not change

anything in the prescribing properties of the polytope. This has the effect that

all facets (except the hexagonal prism) are pyramids over polygons.

In Section 6.2 we will show what kind of gadget will ensure that the prism
is prescribed to be one of P14 and P17. We will have to lift the polytope
to the fifth dimension by considering the bipyramid over it. The facets of

this bipyramid are pyramids over the facets of the original polytope, for each

original facet there are two pyramids. We end up with a polytope all ofwhose

facets are pyramids over pyramids over polygons except one pyramid over a

hexagonal prism which is prescribed to be projectively equivalent to P14 or

P17, depending on the driving system S.

6.1 Prescribing Polygons Depending on a Driving

System

Given a polynomial system S we want to construct a combinatorial polytope
whose maximal boundary triangulation over all realizations has different sizes,

depending on whether this driving system S has a solution or not.

6.1.1 Encoding Length

The encoding length ofa polynomial system S with algebraic coefficients is

the sum of the encoding lengths of the participating polynomials. The en¬

coding length of a polynomial is the sum of the encoding lengths of each

monomial. The encoding length ofa monomial is the encoding lengths of its

coefficients plus the sum ofthe encoding lengths of its exponents. The encod¬

ing length ofan integer is the ceiling ofthe dual logarithm ofits absolute value

plus 1. For instance 17x4y3 has encoding length |~log2 17 + 1~| + [log2 4 +

1] + [log2 3 + 1] = 6 + 3 + 3 = 12. The encoding length of 0 is 0. The

encoding length ofa rational number is the sum of the encoding lengths of

its denominator and of its numerator. The encoding length of an algebraic
number a represented by the irreducible integer polynomial / and the lower

and upper bounds I and r is the sum ofthe encoding lengths off, I, and r.

We define the encoding length ofa combinatorial polytope as the product of

the number of vertices and the number of facets. (We could define it as the

number ofvertex-facet incidences, but in fixed dimensions the two definitions

are polynomially bounded one by the other.)
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6.1.2 A Driving Polynomial System

The first step in our construction is the construction of a Shor normal form

such that a partial solution has different values, depending whether the driving

system S has a solution or not.

Let So and S\ be polynomial systems in variables x\,...,xm and S be the

driving polynomial system in the variables y\,...,yn. Think ofSi as the sys¬

tem which determines the coordinates of a polygon with a large triangulation,
and So as a system which has a polytope with a small triangulation as a solu¬

tion. (This will be made clearer below.) We want to construct a polynomial

system S' in the variables Xi and yj such that xi,...,xm are always a solu¬

tion of So or of Si, but they can only be a solution of S\ if S has a solution.

So if a polytope prescribes for a polygon to encode the solutions of S ' then

after forgetting all variables except x\,..., xm the existence of a solution of

S is encoded in the different realizations of this polygon, i.e. the realization

can only encode a solution of Si ifS had a solution.

Let F (Fi and Fo, respectively) be the set of polynomials / that occur in the

equations / = 0 of5 (Si and So, resp.) and G (Gi and Go, resp.) be the set of

polynomials g that occur in the inequalities g < 0 ofS (Si and So, resp.). We

define the system S' in the variables xi,...,xm,yi,...,yn, and additional

variables L and zi,..., Zk to be

f(yi,---,yn) l = 0 forall/eF

9(yi,---,yn) -z2j+l = 0 for all g e G and some unused index j

L-(l-L) — 0

L ' f(xli i xm) = 0 for all f eFi

L-g(xi,...,xm) < 1-L for all geGi
I - L) f(xi,...,xm) — 0 for all f eFo
I - L) g(xi,...,xm) < L for all g E Go

Let V(S) Ç Rn be the solution set ofS, i.e.

V(S)= {(yi,-..,yn) I /(yi,...,i/„)=Oforall/eFand
g(yi,..., yn) < 0 for all g <E G}.

Similarly, let V(Si), V(S0) Ç Em be the solution sets of Si and S0-

Lemma 6.2 1. IfV(S) = 0 then ttx(V(S')) = V(S0) and

2. ifV(S) ^ 0 then ttx(V(S')) = V(S0) U V(Si),
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where ttx is the projection

Rn+m+k+i _^ Rm^

(yi,...,yn,xi,...,xm,L,zi,...,zk) *-> (xi,...,xm)-

Proof: In any solution of S', L is either 0 or 1. Ifwe want to have L = 0 then

the equations and inequalities involving y i,..., yn are trivially satisfied with

Zj = 0. For xi,...,xm we only have the obstructions f(xi,..., xm) = 0

for all f e Fo and g(xi,...,xm) < 0 for all g e Go- If L = 1 then

f(yi, ...,yn) = 0 for all / G F and g(yu..., yn) • z) = -1. For this

to hold it is necessary and sufficient that Zj = y/—l/g(yi,-.-,yn) and

g(yi,...,yn) < 0. Furthermore, the only obstructions for x i,..., xm are

f(xi,..., xm) = 0 for all / G Fi and g(xi,..., xm) < 0 for all g G Gi. D

Depending on the existence of a solution of the driving system S we want

to prescribe different polygon shapes. For this we need Shor normal forms.

Also, it will turn out to be sufficient that Si and So have only one solution

each, namely the edge slopes ofgiven polygons.

Let Si be the polynomial system whose only solution for its variables

xi,...,xm are algebraic numbers 1 < ai < ... < am. Let similarly So
be the polynomial system that defines algebraic numbers 1 < ßi < ... < ßm.
Then by Lemma 5.2 we can transform S' into a Shor normal form. We denote

this S|hor - S|hor(ai,..., am \ßi,... ,ßm)

Lemma 6.3 1-IfS has solutions then in any solution ofSghor thefirst m
variables are assigned to the ai or to the ßi.

2. IfS has no solution then in any solution ofSg thefirst m variables

are assigned to the ai.

3. The system Sg can be computed in time which is polynomial in the

encoding length ofS. (The ai and ßi are considered as constants.)

Proof: The first two parts ofthe lemma follow directly from Lemma 6.2. We

only have to prove the polynomiality ofthe construction.

The system S' constructed from S, Si and So according to Lemma 6.2 clearly
has encoding length linear in the encoding length of S. So we only have to

check the polynomiality of the construction from Lemma 5.2. For this we

follow the construction step by step.
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In the first step we decomposed the polynomial equations and inequalities into

simple equations and inequalities by introducing (many) auxiliary variables.

Note however, that the number ofequations and inequalities we used to encode

the various intermediate terms is always linear in the encoding length of these

terms: this is so for V0 and Vi, inductively for all V2i, for all Va where a is

a positive integer and then a negative integer, rational number and algebraic

number; the same inductive buildup leads to polynomial encoding length for

auxiliary variables for monomials and polynomials.

In the second step we introduce a constant number of variables for each old

variable and a constant number ofequations and inequality for each old equa¬

tion and inequality. Since all operations are simple the encoding length of

them is also constant. So the encoding length is linear in the enconding length
ofthe system coming out ofthe first step.

In the third step we introduce new variables for each old variable and each

equation and inequality. Also for each operation we introduce a constant

number of new operations. Again this means only adding a linear factor to

the encoding length. We end up with a Shor normal form S|hor which has

polynomial (even linear) encoding length in the original system S. Ü

6.1.3 Prescribing Edge Slopes Depending on Driving Sys¬
tem

We have seen that from a driving polynomial system S we can construct a Shor

normal form which depending on the existence of a solution to S has one or

two predefined partial solutions ai or ßi for the first m variables. This Shor

normal form we can encode in a polytope using Richter-Gebert's universality

construction (Theorem 4.13). Using this we will be able to prescribe the slopes
of a polygonal face to be fixed (if S has no solution) or to take on one oftwo

states (if S has solutions).

Let Gi and G0 be two normal polygons with algebraic coordinates and

ai,...,am and ßi,..., ßm the numbers they encode as a computation frame

(see Section 4.3.1). S is still the driving polynomial system. We define the

polytope Psl(Gi\G0) to be

P(S|hor(ai,... ,am\ßu .. .,ßm))#(E \ xm+i,x'm+1,.. -,xn,x'n),

i.e. the polytope which encodes the Shor normal form

Ssixor(ai,...,am\ßi,---,ßm) glued to edge forgetters that forget the

edges corresponding to all variables except xi,... ,xm-
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Lemma 6.4 Pgl (Gi |Go) has apolygonalface G such that

1. if S has no solution P prescribes G to have edge slopes projectively

equivalent to the edge slopes ofGo, and

2. ifS has solutions then P prescribes G to have edge slopes projectively

equivalent to either the edge slopes ofGi or to the edge slopes ofGi.

The encoding length ofP is polynomially bounded by the enconding length of
S (Gi are considered as constant).

Proof: The ground face of the pyramid along which the edge forgetter is

glued is prescribed to be a normal computation frame encoding a solution to

Sshor(ai,..., am \ßi, • •

•, ßm)- At the other end of the edge forgetter the

edges corresponding to the auxiliary variables have been forgotten, hence the

ground face ofthat pyramid is prescribed to be a computation frame encoding
the ai and the ßi, depending on S. But this means that this 2-face has projec¬

tively equivalent edge slopes to Gi or G0, depending on S. This proves the

first two statements. It remains to prove the polynomiality ofthe construction.

S|hor has polynomial encoding length in S by Lemma 6.3. Richter-Gebert's

construction ofF(S|hor) is such that for each simple addition in S|hor there is

one addition gadget Px+v [0,1, x«, Xj, xk, oo], an edge-forgetter for the n — 3

edge pairs corresponding to the variables which do not occur in this addition

and one connector. Also for each simple multiplication there is one multipli¬
cation gadget PX'V[Q,1, Xi, Xj, Xk, oo], an edge forgetter and a connector.

Since the number of auxiliary variables n — m was polynomial in the encod¬

ing length of S, this polytope as well as the edge forgetter for the auxiliary
variables have an encoding length which is polynomial in the encoding length
ofS. D

6.1.4 Prescribing Arbitrary Polygons Depending on Driv¬

ing System

Now we will show how to construct a combinatorial polytope encoding a driv¬

ing system S which prescribes that a specified 2-fàce G is projectively equiv¬
alent to Gi4 or to Gi7, but to G17 only if S has a solution. Also G will be

the ground face of a prism facet. The construction is similar to the one in

Section 5.2.4.
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First we apply a projective transformation to both polygons and obtain "flat'

polygons:

^

o j ' (-1j ' (-1) ' ( o ) ' (13/3) ' (13/3) J '

,

0 ) ' V-V '

V-V
' I 0 j ' (13/11) ' (13/11) J

G14 ~ conv

G17 ~ conv

These we double as in Section 5.2.6 and get centrally symmetric, hence nor-

<2>

<Si>

Figure 6.2: Constructions of(Gu)^ and(Gn)(>

mal, polygons (G14)0 and (Gn)^ (see Figure 6.2). The slopes ofthese poly¬

gons are:

s(l) s(l,2) s(2) s(2,3) s(3) s(3,4) s(4) a(4,5) a(5)

(Gu)<

(G17)0

00

00

8 1 1

3 2 4

12 1 1

11 2 4

0

-r —: 0

2

9

2

5

8

7

2 2 12

9 5 17

As in Section 5.2.4 we will one by one forget the vertices 1 A 2, 2 A 3, 3 A 4,

and 4 A 5 as well as their opposite vertices and prescribe the slopes of these

polytopes.
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Note that all edge slopes and all but two 1-chord slopes are identical. Hence

when we delete 2 A 3, the resulting polytopes (G 14)^ and (Gi7)2 have the

same slopes. So we can prescribe these common slopes with the polytope
Psl ((Gi4)£). (This polytope does not depend on the driving system S.) The

same we can do for the deletion of vertex 3 A 4.

We use the polytopes Psl((Gu)f\(Gi7)t) and Pg((Gu)%\(G17)i) pre¬

scribe slopes depending on the driving system S. To the last connector we

glue a vertex forgetter which forgets the auxiliary vertices. See the upper part

of the gluing diagram in Figure 6.4.

Consider a realization ofthis polytope. The polygon s^G^) which is the com¬

mon polygon ofthe connectors on the right-hand side of the diagram has the

same edge slopes as (Gu)® and (Gn)^. It also has the same 1-chord slopes

5(2,3) ands(3,4) since this is prescribed by Psl((Gu)^) andPsl((Gu)$).
BothP^((Gi4)?|(Gi7)f) andPsl((Gu)$\(Gi7)$) encode the driving sys¬

tem and depending on the existence ofa solution, the 1-chord slopes of5(1,2)
and s(4,5) can be the ones ofG14 or G17.

The trouble is if our driving system has a solution, then the two polygons

sl(Gi) and sl(G%) can have inconsistent slopes for 5(1,2) and s(4,5), one

coming from G14 and one from G17. By Lemma 5.7 each ofthe four combi¬

nations gives a polygon which is determined up to projective equivalence: we
have a 10-gon where all edge slopes and all 1-chord slopes except s(5,1 ') and

5(5', 1) are known. Figure 6.3 shows the four possible common realizations

where the auxiliary vertices 1' A 2',..., 4' A 5' have already been forgotten.

But notice that among these four polygons only G14 and G17 are nor¬

mal. So we glue another polytope to a connector, a normalizer. This is a

polytope which only ensures that its gluing pyramid has a normal ground
face. We can obtain such a polytope can for instance by encoding an

empty Shor normal form (i.e. no variables). Or we can use Richter-Gebert's

#(1,2,3,4, l',2',3',4') polytope whose gluing facet is a pyramid over a

normal octagon with the only restriction that the edge slopes are harmonic,
i.e. cr(s(l), s(2), 5(3), s(4)) = -1. Then we can just forget edges 4 and 4'

and get a necessarily normal hexagon (see Figure 6.5 which has no more re¬

strictions. So among the four mentioned realizations only the desired two,

G14 and G17, are eventually possible.

To the last normalizer we glue a transmitter (not a connector, just half of it).
Call the resulting polytope Ps(Gi4|Gi7). We conclude:

Lemma 6.5 Thepolytope P = Ps(Gu \Gn) has aface F which is a hexag¬
onalprism.
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«(1,2) = -8/3
5(4,5) = 8/7

5(1,2) = -8/3
s(4,5) = 12/17

s(l,2) =-12/11
5(4,5) =8/7

G17

5(1,2)
«(4,5)

-12/11
12/17

Figure 6.3: Thefourpossible realizations before normalizing

1. IfS has a solution then F is prescribed to have top and bottom faces
which are projections ofeach other and which are projectively equiva¬
lent to Gi4 orGi7.

2. IfS has no solution then F is prescribed to have top and bottomfaces
which are projections ofeach other and which are projectively equiva¬
lent to G14.

The encoding length ofP is polynomial in the encoding length ofS.

Are we done yet? We have constructed a 4-polytope that prescribes that one of

its a 3-prism facets has both top and bottom polygon projectively equivalent to

Gi4 or Gi7, depending on the existence ofa solution of a driving polynomial

system. Notice that this prism is otherwise free to take any shape and in par¬

ticular that this does not mean that the prism is prescribed to be projectively

equivalent to P14 (or P17): the bottom and top face might not be parallel. In

that case the maximal triangulations would be different. Check out the prism
in Figure 6.6. The ground face is a regular 6-gon G14. The side edges are all

parallel, but the vertices in the top face have heights 1 (front edge), 3 (next

two vertices), and 5 (back edge). This polytope has a maximal triangulation
of even 18 tetrahedra (so it is neither P14 nor P17).
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sl{G?)
0^

Psl((Gu)0)

^l((Guf1\(Gi7)t)~y

Psl((Gu)%)

Psl((Gu)$)

P^((Gi4)2l(Gi7)iTy-[V\4 A 5,4' A 5

V \ 1 A 2,1' A 2'

V \ 2 A 3,2' A 3'

V \ 3 A 4,3' A 4'

V^l'A^'A^'A^'AO'

normalizer

transmitter

sZ(G^)
0>

F = prism(G)

Figure 6.4: Gluing diagram ofthe polytope Ps(Gu\Gi7)

£\4,4' #(1,2,3,4,1', 2', 3', 4')

Figure 6.5: Gluing diagram ofthe normalizer
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Figure 6.6: A prism with groundface Gu, but a maximal triangulation with

18 tetrahedra. Nota: DeLoera, Santos, and Takeuchi [25, 58] proved that this

realization has the maximal triangulation ofthe hexagonalprism.

6.2 Prescribing Hexagonal Prisms Depending on

Driving System

We have seen now how to construct a combinatorial polytope which encodes

a driving polynomial system in a way that one facet is a prism over a special

polygon Gi4 or G17, but G17 is only possible if the system had a solution.

We promised, however, to construct a polytope

1. such that one facet must be projectively equivalent to one ofthe hexag¬
onal prisms P14 = G14 x [0,1] or Pn = Gi7 x [0,1] — depending
on the existence of a solution for S — and

2. such that all other facets are pyramids over polygons.

We first tackle the second problem, then the first.

6.2.1 All Other Facets are Easy to Triangulate

For all facets F of P = Ps(Gi4|Gi7) which are neither pyramids nor the

special hexagonal prism facet which we have prescribed we do the following

operation: Consider the pyramid pyr(F), this has the ground facet F. Along
this face we glue P, i.e. P' = P#ppyr(F). We do this for all facets which

are not pyramids, one by one. The result Ppyr = Pgyr (Gia\Gi7) is a poly-

tope which has only pyramid facets (except the special hexagonal prism), but

does it still prescribe anything?
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Yes, it does since all facets F were necessarily flat, so in each realization

of Ppyr we could chop the pyramids back off and obtain a realization of P.

Conversely, given a realization of P we can place a point beyond each non-

pyramid facet (except the special hexagonal prism), take the convex hull and

obtain a realization ofPpyr. The reason that all facets are necessarily flat is

that in our construction we only used the building blocks of Richter-Gebert's

construction, and those are the transmitters, edge forgetters, the polytope X,
the pyramid over a tent over an octagon, and a polytope which we will see in

a minute (Richter-Gebert calls it a "slope transmitter"). It is easy to check that

all faces of these are indeed of the three categories.

6.2.2 The Parallelifier

In this section we will only talk about G14. However, our argument eventually

only use the combinatorial polytope, hence it all is also valid for G17.

Suppose Q is a hexagonal prism whose bottom face G = G(l,..., 6) and top
face G' = G(l',..., 6') are projections of each other and which are in turn

projectively equivalent to G14. Since G14 is normal, so are G and G'. Hence

there are lines /qo and l'^ which include the vertices 1 A 4, 2 A 5, and 3 A 6

(1' A 4', 2' A 5', and 3' A 6', respectively). We can prescribe a polytope to have

these properties.

Ifwe prescribe further that 1A 4 = 1 '
A 4' and 2 A 5 = 2' A 5' then necessarily

l^ = l'^ (they have two points in common). But not only that:

Lemma 6.6 Q is projectively equivalent to Pu.

Proof: In lieu of a proof will construct the projective transformation. Since

top and bottom faces are projections of each other there is a point q (outside
of Q) which is the intersection of edges connecting the top and bottom face.

There is an (invertible) projective transformation taking the ground face G to

G14 x {0}. By Lemma 4.15 there is a unique projective transformation /

taking q to the intersection of the upright edges of P14 and which takes one

point of the top face G' to the corresponding vertex ofG14 x {1}.

Then / must map the line l^ of G to the corresponding line l}L of G14.
This line is actually at infinity, since opposite edges are parallel in G14. But

since Zoo = I'oo, the plane G' is mapped to a plane which is parallel to G14 x

{0}. This plane must be at E2 x {1} since one point in it (the vertex of G') is

mapped to its correspondent in G14 x {1}.
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Also the images of the upright edges of Q are all parallel since q is mapped
to the intersection points of the upright edges of P14 which is at infinity. So

these lines map to {v} x R where v is a vertex of G14. It follows that the

vertices of the top face G' are mapped to their correspondents inGi4 x {1}:
they are intersections of {v} x R and E2 x {1}. The preimage of/ of the

hyperplane at infinity misses Q since it is the plane spanned by Zoo and q. It

follows that f(Q) =PU-

In order to prescribe that 1A 4 = 1' A 4' we use Lawrence construction again.
Start with P14. The parallelifier is the (combinatorial) Lawrence extension

A(Pi4,1 A 4). The set T° consists of the top and bottom polygon as well as

the quadrangular faces 1V1' and 4 V 4', T+ are the quadrangular faces 2 V 2'

and 3 V 3' and T~ are the quadrangular faces 5 V 5' and 6 V 6'. See Figure 6.7.

This polytope prescribes exactly that 1 A 4 = 1' A 4', and we could glue it to

Figure 6.7: The parallelifier: quadruple ofedges must go through apoint

our construction.

Again, as in Section 6.2.1, we can make all non-pyramid facets of this poly-

tope into pyramids by gluing pyramids over them. This does not change the

prescribing power since these facets are necessarily flat (pyramids or tents).
The resulting polytope we call the modifiedparallelifier Par 1,4.

The choice ofopposite edges is of course not limited to 1 and 4: By relabeling
we can construct the polytope Par2$ which prescribe that 2 A 5 = 2' A 5'.

In the next section we show how to attach these polytopes to the polytope

prescribing the ground face of the hexagonal prism.
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6.2.3 Bipyramids

Ifwe glue a parallelifier to the polytope P = P|yr(Gi4|Gi7) along a hexag¬
onal prism, then this prism is gone—to the interior of the polytope—and
it does us no good to have prescribed it. Also, one quadruple would not

be enough to really have G14 x [0,1]. The way out of this dilemma is

to lift the construction to the fifth dimension. First construct a bipyramid
over the whole polytope we constructed so far. The bipyramid is defined as

bipyr(P) = pyr(P,pi)#Ppyr(P,p2). This polytope Pbsipvr(Gu\Gi7)
has two new vertices, pi andp2- It is still a combinatorial polytope since it is

realizable (with G14). Its facets are exclusively pyramids over the facets ofP;

two pyramids, one with apex pi, the other with apex p2 share a 3-face which

is a facet of P. So this bipyramid has only facets which are pyramids over

pyramids over polygons and two facets which are pyramids over a hexagonal

prism. Note that these facets share the hexagonal prism. The ground face

of this hexagonal prism is prescribed to be projectively equivalent to G14 or

G17, depending on the driving system S.

We do not know whether P is necessarily flat. But the bipyramid still pre¬

scribes that the 3-face corresponding to the prism facet of P has top and bot¬

tom faces projectively equivalent to G14 (or G17): All 3-faces of P are still

present, in each realization of the bipyramid. All basic building blocks are

necessarily flat since they are all Lawrence extensions where T° is non-empty

(necessarily flat by Lemma 4.8), except the pyramid over a tent which is a

pyramid (necessarily flat by Lemma 4.9). Hence each building block pre¬

scribes what it is supposed to prescribe and glued together they play together

just like before.

By the same token we can construct the bipyramid ParliPyr over the modi¬

fied parallelifier Par1,4. It has many facets which are pyramids over pyramids
over polygons (quadrilaterals or hexagons) and two pyramids over a hexago¬
nal prism. This hexagonal prism is prescribed to have 1 A 4 = 1' A 4': All

2-faces of the modified parallelifier are there, hence all 3-faces of the paral¬
lelifier (which are necessarily flat) lie in 3-dimensional hyperplanes, therefore

all vertices coming from the parallelifier (which in turn is necessarily flat) lie

in a 4-dimensional hyperplane, so it still has its power to prescribe.

We can glue one pyramid over the hexagonal prism ofPsipyr (Gu\Gi7) to the

pyramid over the hexagonal prism ofPar 1^yr. To the other pyramid over the

hexagonal prism of Psîpî/r(Gi4|Gi7) we can glue Par^1^. Let us analyse
the facets. There are only pyramids over pyramids over polygons, except two

pyramids over a hexagonal prism. Notice that by the gluing construction this
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is again the same hexagonal prism. Since the pyramid over the hexagonal

prism (the gluing facet) is necessarily flat, the hexagonal prism is prescribed
to be projectively equivalent to P14 or P17.

6.2.4 Triangulating the Polytope

Note that all triangulations of a pyramid are induced by triangulations of the

ground face.

In any realization of this polytope the maximal boundary triangulation only

depends on the triangulation of the pyramids over the hexagonal prism: All

other facets have only triangulations which are present in any dimension (n—2
if they are pyramids over pyramids over n-gons). Say we have a realiza¬

tion where the hexagonal prism is projectively equivalent to P14. Then the

two pyramids over it have (each separately) a maximal triangulation of 14 4-

simplices. But this maximal triangulation can also be achieved: start with a

triangulation of the hexagonal prism with 14 3-simplices. Also triangulate all

polygons in any way (except the boundary of the hexagonal prism which is

already triangulated).

Now these triangulations can be extended to triangulations of the pyramids
over these faces and to the pyramids over the pyramids such that the whole set

of 4-simplices is a triangulation: It is easy to see that this forms a subdivision

of all facets into 4-simplices. The only thing that could go wrong is that two

facets have a different triangulation in a common 3-face. But this 3-face must

be either a tetrahedron, a pyramid over a polygon, or the hexagonal prism. But

these either have a unique triangulation or we had determined the triangula¬

tion, so the two adjacent facets could not induce different triangulations.

The same construction works ifthe hexagonal prism is projectively equivalent
to P17. Only then there are 6 4-simplices more. This surplus can only be

achieved if S has a solution. It follows that by triangulating the boundary

maximally over all realizations we can decide whether S has a solution.
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affine functional, 82

affine hull, 108

affine subspace, 107

algebraic number, 118

encoding length, 150

atomic lattice, 84

bipyramid, 162

boundary ofa polytope, 147

chord slopes, 120

chord of a polygon, 82

coatomic lattice, 84

combinatorial polytope

general definition, 84

of a polytope, 84

ofa polytope, 86

combinatorially equivalent, 85

connected sum, 85,96

connector polytope, 102

Cplex, 148

cross ratio, 113,133

DeLoera's UniversalBuilder,

148

dépendance ofdriving system, 148

dimension of a face, 82

dissection, 19

driving system, 148

edge, 82

edge forgetter, 103

encoding length
of a combinatorial polytope,

150

of a polynomial system, 150

ETR, see existential theory of the

reals

Euler formula, 22

existential theory of the reals, 13,

118

face, 82

combinatorial, 85

face lattice, 84

isomorphic, 85

of a combinatorial polytope,
85

facet, 82

combinatorial, 85

facets(P), 82

flat, see projective subspace

G[0, l,xi,...,xn,oo], 101

Ge, 139

Gi4andGi7, 148,155

G°, 133

general position, 108

gluing, see connected sum

gluing diagram, 103

homogenization, 107

join of projective subspaces, 108
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Lawrence extension

realized, 87

line image, 134

matroid polytope, 11

maximal triangulation, 20

maximla triangulation, 3

MAXTRiANGdFL(d), 147

meet ofprojective subspaces, 108

minimal triangulation, 3,20

necessarily flat, 97

normal polygon, 100

normalizer, 156

Pfss, 25

Pfss, 27

P(ai,...,am), 124

Pe, 140

P(G), 134

P(G°), 129
pdiss *){.

rm '
z,u

P£',28
Psl(G), 125

Pu and Pit, 148

parallelifier, 160,161

partial solution equivalence, 121

polynomial system, 80,101

prescribing properties of faces, 86

depending on a driving sys¬

tem, 148

prism, 86

projection, 89,112

projective closure, 107

projective basis, 100,110

projective space, 107

projective subspace, 107

projective transformation, 109

admissible, 115

extending, 110

invertible, 109

unique, 109

projectively equivalent, 89,109

pyramid, 85

quadrangular set, 114,132

real algebraic number, 118

real-closed field, 118

realizable, 85

realization, 85

Richter-Gebert's Universality
Theorem, 102

ridge, 82

5(ai,...,aro),119,124
Schlegel diagram, 83

Shor normal form, 101, 119,120

simple addition, 120

simple equation, 120

simple multiplication, 120

size

of a dissection, 20

of a triangulation, 3,20

slope in normal polygons, 100

stacked polytope, 12

supporting hyperplane, 82

tent, 88

transmitter polytope, 89

triangulation, 3,19
ofa polytope boundary, 147

using interior points, 19

vert(P), 82

vertex, 82

vertex forgetter, 119, 120,126

vertex-edge chain, 21

vertex-edge chain lemma, 22

X the polytope, 90
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