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Abstract

We propose and analyze a domain decomposition method on non-matching grids for
hp-finite element approximations of the Stokes problem in two dimensions. No weak
or strong continuity of the discrete velocities, is imposed across the boundaries of the
subdomains. Instead, we employ suitable bilinear forms defined on the common in-
terfaces, typical of discontinuous Galerkin approximations. Our main result is the di-
vergence stability of some finite element approximations on geometrically conforming
and non-conforming subdomain partitions. Our lower bound for the inf-sup constant
depends on the stability constants of the local problems and the subdomain partition.
Our bounds show a slight degradation with the polynomial degree for non-conforming
partitions.
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1. Introduction. In this paper we consider the Stokes problem in a bounded
polygonal domain Q C R?:

—vAu+Vp=f£f, inQ,
divu =0, in Q, (1.1)
u =0, on 012,

This system of differential equations describes the motion of an incompressible viscous
fluid with no convection. Here, v > 0 is the viscosity of the fluid and f : Q — R? is an
external force. The unknown fields are the velocity u and the pressure p. The second
equation represents the incompressibility condition. For simplicity we only consider
homogeneous Dirichlet boundary conditions.

The computational domain 2 is supposed to be partitioned into a finite number
of subdomains. We wish to employ different and independent conforming hp finite el-
ement approximations on each subdomain. As opposed to the mortar method, where
weak continuity conditions are imposed on the velocity across the subdomain bound-
ary, we employ a discontinuous Galerkin (DG) approach here. No kind of continuity
is imposed across the interface between the subdomains but suitable bilinear forms
defined on the interface are added to the variational formulation of the problem in
order to ensure the consistency and the well-posedness of the discrete problem.

DG methods have a long history and have recently become more and more pop-
ular. They have been heavily tested and studied, and they present considerable ad-
vantages for certain types of problems, especially those modelling phenomena where
convection is moderate or strong; see the monograph [9]. In addition, more general
meshes can be employed than in the case of conforming approximations and thus
simpler adaptive strategies are possible.

The main result of this paper is the divergence stability of some finite element
approximations obtained using a DG approach for the case of a fixed subdomain
partition and is given in Theorem 4.1. Roughly speaking, the lower bound found
for the inf-sup constant depends on the inf-sup constants of the local problems and
the subdomain partition. If the partition is geometrically conforming, the constant
exhibits the same dependence in the polynomial degree as the local ones, and only
depends on the topology of the partition, but not on the number of subdomains or
their size. If the partition is not conforming our bounds show a slight degradation
with the polynomial degree. Only numerical results will be able to show if our bounds
are sharp, and to compare our approach with a mortar one. We note in particular that
a similar approach as in [2] can be also employed using a DG approach for spectral
element approximations. We do not consider this case in this work.

Some work has already been done for the approximation of the Stokes problem

on non-matching grids using a mortar approach:
In [1] hp finite element approximations are considered with conforming subdomain
partitions. The analysis of the divergence stability of our DG method borrows some
techniques originally employed there; see in particular the construction of interface
functions in Lemma 5.1 and in [1, Lemma 3.1], and the use of the connectivity matrix
of the subdomain partition. In [2], a mortar method for spectral approximations is
proposed. The techniques employed for the divergence stability of the corresponding
approximations are similar to those in [1], but they rely on different technical tools,
a fact that does not allow to combine them with those in [1] in a straightforward way
in order to analyse approximations where finite and spectral elements are coupled.
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Ours is not the first method where a DG approached is employed with approx-
imations on non-matching grids for the Stokes problem. In [10], a similar approach
is proposed and analysed for the Stokes and Navier-Stokes problems. There however
the analysis is carried out only for the case of two subdomains and severe restrictions
are imposed on the local meshes. In particular, on the interface between the subdo-
mains, a mesh must be a refinement of the other. Moreover, in the discrete problem,
extra jump terms are added to the interface bilinear forms, which do not appear to
be necessary in our approach.

The remainder of this paper is organised as follows:

In section 2 we present the continuous Stokes problem. In section 3 we define the
finite element spaces and make precise assumptions on the subdomain partition. The
discrete problem is derived in section 4, where, in particular, we define discrete bilinear
forms and norms. In section 5 we derive some technical tools needed in section 6,
where the divergence stability is proven for the case of a fixed decomposition. Finally,
the analysis of the well-posedness of the discrete problem and a priori estimates are
presented in section 7.

2. Problem Setting. Let Q be a bounded polyhedral domain in R2. For D C R?
we introduce the following spaces

L*(D) = v:D—>R|/|v|2dm<oo ,
D

Li(D) = UEL2(D)|/Uda::0 ,
D

H™D) ={ve L*(D)| 0 € L*(D), |a|<m}, m €N,

H{(D) ={ve H'(D)| v=0on dD}.
In the following, (u,v)p, (u,v)p, and (7,€)p denote the scalar products in L?(D),
L?(D)?, and L?(D)?*2, respectively, with ||u||p, ||ul|p, and ||7||p the corresponding
norms. We denote the norm of H*(D) or H*(D)", s € R, by || - ||s,p. Analogous
notations are employed for the corresponding semi-norms for s > 0. In case D = (,
we drop the subscript 2 and, in case s = 0, we also drop the subscript 0. We recall
that the semi-norm |u|i o = |[|[Vulloq is a norm in H}(Q)?. For D C R? we denote
by |D| the area of D.
For a vector u, the tensor Vu is defined by
Ou;
(V“)ij =Ui5 = a—m;a

with u; the i-th component of u.
Given f € L?(Q)% and v > 0, the Stokes problem (1.1) can be written in variational
form as: Find u € H}(Q)2,p € L3(Q), such that

{u(vu,vV)Q — YV V)g = (F,v)a, veH(Q)?, 1)

(V- -u,q)qo =0, q € L3(Q).
The well-posedness of this problem is ensured by the two stability conditions
v (Vu, Vv) < vluly [v]s, (2.2)

(V : ll,p) < \/i |'I_1|1 ||p||7
2



the coercivity condition
v(Va,Va) > vfuf}, ue H}(Q), (2.4)
and the divergence stability condition

sup (V ) V,p)

>yllpll, peLj@), v>0, (2.5)
orveri(@? |V

see, e.g., [7, Chapter II] for a comprehensive analysis.

3. Finite Element Spaces. We partition {2 into N non-overlapping, shape-
regular polygonal subdomains Q;, i =1,..., N, of diameter H;, with H := max{H;}.
We assume that our partition is shape-regular, i.e., the aspect ratio of subdomains
is bounded. In this paper we do not assume that this partition is geometrically
conforming (regular), i.e., that the intersections between two different subdomains are
either empty, or a vertex or an edge that is common to both subdomains, but we also
consider non-conforming (irregular) partitions. We make the following assumption.

AssuMPTION 3.1. The subdomain partition is shape-regular and the length of the
sides of each polygon Q; is comparable to its diameter H;.

On each ; we then introduce a conforming, shape-regular affine quadrilateral mesh
T: of maximum diameter h;; see, e.g., [14]. These meshes are independent and they
do not need to match across the subdomain interfaces. In each subdomain we then
introduce a conforming and divergence stable approximation for the Stokes problem:
e Qpy2 - Qp with discontinuous pressures; see, e.g., [17].
® Qrt+1 - Qp with continuous pressures, also known as Taylor-Hood elements:
see, e.g., [6, 7].
Other choices are also possible; see, e.g., [4].
More precisely, on each subdomain we choose one of the following velocity /pressure
pairs for k; > 0:

Vi () = {u € H'(Q0)? | u, € Qusa(R)® K€ Tiy Wpgnpo, =0}, (3.1)

My, () = {p e L*(%) | p, € Qui(k) KET}, (3.2)
or

Vi () = {u € H'(90)? | w, € Quia(W)® K ETi, Wygnpn, =0},  (33)

My, () ={p e H' ()| p. € Qp41(rk) €T}, (3.4)

where Qg (k) is the space of the polynomials of maximum degree k in each variable
on k. We define the N-vector k := {k1,ks,...,kn} and we take k := max{k}. The
global approximation spaces are defined as

N
Vi = Vi(Q) == [ Vi (92), (3:5)
i=1 N
My, = My(Q) == L3(Q) 0 [ M. (). (3.6)

Given a vector w or a function v, we denote by w; and v; respectively, their restrictions
to ;. We next define the intersections

Eij =900; N an,
3



the set

M = {(i,§) | lenght (E;;) #0, i# j},

and the skeleton

r= (J Ej

(i,j)eM

We note that one edge £ = F;; = E;; corresponds to two couples in M and, since the
subdomain partition may not be geometrical conforming, it may not coincide with an
entire side of the polygons 2; and ;.

Given an interior edge E € I', there are two subdomains, §2; and Q;, with, e.g., i < j,
that share this edge. We define the jump [v] and the average < v > on E as

1
[’U]E:UHE—Ule, <U>E:§(Ui\E+’Uj\E) ,

and n as the unit normal which points from Q; to €2;, i.e., n = n;.
The following local stability result holds.
LEMMA 3.1. There exist constants vi, independent of T; such that:

— /div v; pi dx

Q;
sup pillo,o:s  pi € Mg, ()N Lg(ﬂi)-

VZEV]CI(QI)OH&(QI) |Vi|179i

> Vs

For the case of Qo — Qp elements, the inf-sup constant depends only on k:
Y > ck~1/?; see [17]. We recall that this bound is sharp; see [3, Remark 25.2].
For the case Qi+2 — Qr41 elements, we know of no theoretical sharp bound explicit
in k, but numerical evidence shows that v, ~ ck™%, with & = 1/2 and ¢ independent
of the local mesh size; see [18].

The local meshes are required to satisfy the following property:

ASSUMPTION 3.2. There exists constants such that for (i,j) € M:

Chj S hz S Ch]

We define 7 as the set of the indices j so that the pair (i,j) € M. To a given
decomposition we associate a connectivity matrix A = (aij)lgi,jgN, the entries of
which are defined by:

card (i), if j =1,
a;; =< —1, if j €4,
0, otherwise.

The symbol card (i) denotes the cardinality of the set 4, or, in other words, the num-
ber of the neighbours of ;. This connectivity matrix describes the topology of the
decomposition of 2 and does not depend on the size of the subdomains. We remark
that card (i) gives an upper bound for the number of sides of the polygon ;.

We make the following assumption:



AssSuMPTION 3.3. For each subdomain Q;, the number of neighbours is uniformly
bounded, i.e., there exists a constant C' such that

card(3) < C, i=1,...,N.

Before proceeding, we recall some definitions and properties.
An N x N matrix B = (b;j)1<i,j<n is an L-matrix if

bi; >0 and bij <0, 75 7-

In addition, B is said to be irreducible if, for any pair 4,5 (1 <,j < N), there exists
a sequence 1,142, ...,I, such that

bii1 ‘bi1i2'---‘binj 750

Since () is connected, it is then easy to check that the connectivity matrix A is an
irreducible L-matrix. The proof of the following property can be found in [1, Lemma
4.1].

LEMMA 3.2. Let A be a symmetric, irreducible L-matriz that satisfies

N
Zai]’:O izl,...,N.
j=1

Then, its eigenvalues (A\;)1<i<n are all nonnegative and, if in increasing order, the
first eigenvalue Ay = 0 is simple.

4. Discrete Problem. In this section we introduce a DG formulation. Unlike
the mortar finite element method, where the continuity of the velocities between sub-
domains is imposed through suitable matching conditions, here we take independent
discrete velocity spaces on the subdomains. As in DG approximations on conform-
ing meshes, the idea is to consider Problem (1.1) on each subdomain 2; and impose
Dirichlet conditions weakly on the boundary 9€2; using the value on the boundary of
the neighbouring subdomains. We then choose suitable numerical fluxes on the inter-
face I'. Finally an interface term penalising the jumps of the velocity is added, as for
similar DG approximations of second order problems. This is a standard procedure
in the derivation of DG formulations; see, e.g., [13, 8, 12]. Here the penalization term
is chosen as

/ ofu] - V]dS—_ Z / [u] - [ ds—%i l/ |- [v]ds, (4.1)

r (Lj)eMpg,, Eij

where the penalization coefficient for the velocity space is

zel, (4.2)

with oy a positive constant, and

(4.3)

k(l‘) . max{ki,kj}, ifx € 0N an,
) A, if z € 80; NN,



and

h(z) = min{hi,hj}, if z € 00; N an,
) A if z € 90, N ON;

see [15].
Following [18], we introduce the following bilinear forms a(:,) and b(,-):

a(u,v) ::i/l/Vu-Vvdm+/au[u]-[v]ds+

ilei T

+/([u]<yvv:n>—[v]<1/Vu:n>)ds,
r

N
b(u, q) 3:—Z/divu'qdw+/<q>[u-n]ds,

i=1 Q; r

and define the following discrete problem:
Find (u,p) € Vi x M}, such that:

a(u,v)+b(v,p):/f-vda:, v E Vg,
Q
b(uaq) = 07 q € Mk

We note that, by integrating by parts, we can also write b(-,-) as

N
b(v,p):Z/v-Vpda:—F/[p]<v-n> ds.

i:lgi

For discrete velocities we define the norm

N
ul? = S IVull2 0, + / olfullPds, wue Vi.
T

i=1

The main result of this paper is the following divergence stability property.
THEOREM 4.1. There exists a positive constant By such that

b(v,p)
sup
ozveVi [Vln

> Brllpll, p€ My,

where B depends on the constants yi, of Lemma 3.1 and the partition of ().
The precise form of §i is given in section 6.1.
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5. Technical Tools. In this section we develop some tools needed for the proof
of Theorem 4.1. We have the following important property. -
LEMMA 5.1. Let E;; = 0Q;N0Q;. Then there exist functions w* € Vi, such that

wi =0 on Q\ (2 UQ;UE;), (5.1)
Eij Eij

W, < aij = i / |Eijl, (5.3)

wil = wit, (5.4)

with wfj and w;..j the restrictions of w' to Q; and €;, respectively.
Here we have &;; < C for a conforming partition and &;; < C max(k;, k;) for a
non-conforming partition, where the constant C' depends only on the topology of the
partition.

The remainder of this section is devoted to the proof of Lemma 5.1. This proof is
carried out separately for the cases of a conforming and a non-conforming partition.

5.1. Proof for conforming partitions. Let E;; = 0Q; N0, = [21, 23], where
z1 and 2o are the endpoints of our edge. We suppose for simplicity that the edge E;;
is parallel to the z-axis. We define

() = 6 ()
w (z) : =21 (5.5)

with the quadratic bubble
(5.6)

We note that

w (z1) = w (z2) =0, / wds = 1.
This trace can be then extended by zero on the rest of 9; (resp. 0;), in order to
give a piecewise quadratic function defined on the boundary 9€; (resp. 012;). We take
the extension Rgq,w" to (;, as the piecewise quadratic, discrete harmonic extension
of w* on the whole subdomain ;. In order to find a bound for |R9iw”|1 0. e

use a scaling argument. We first consider a dilation 7 — = that maps a reference
domain 2 into ;. We suppose that the edge E;; is the image of the reference interval

E = (—1,1). We can write
5 Sl A2 5 2
[Ra.eli, < C|Ra®l g < CCq 181l 5 < €,

where §(Z) = (1 —2?)/4 and the constants only depend on the shape of ;. We recall
that Ha/?(E) is the largest subspace of H'/2(E) for which the extension by zero from
E to the whole of 89 is contained in H/?(99); see, e.g., [11]. Using (5.5) then yields
9P < OByl (5.7)
7
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Our velocities wﬁj € Vi(9;) and w;-j € Vi () are taken equal to the vectors

(0, Rg,w"), (0, Ro,w'). We then have

/w?-nds:/w;-]-nds:/w”dszl.

Finally, we define w¥ € V}, as

w:] (x), ifz ey,
w'(z) = qwi(z), ifzey,
0, otherwise.
We note that those functions are continuous across I
Inequality (5.7) yields that
|WU|h <v |WZJ|1,QZ- +v |WZJ|17Q]- <
C C C a

< + < =l
|Eij| 1B — 1Byl |Eil

which proves (5.3).
Properties (5.1) and (5.2) follow directly from the construction of wi/, while (5.4)
follows from the symmetry of the problem.

5.2. Proof for non-conforming partitions. We fix (i,7) € M. As in the
previous subsection, we suppose for simplicity that the edge FE;; is parallel to the
r-axis. We define 4 as the set of the vertices of all the subdomains ;.

For each pair (i,j) € M there exists two points z; and 2, contained in .4 and lying
on E;; such that E;; = Ej; = (21,22). We note that, if the subdomain partition is
not conforming, z; and z> may not be vertices of both subdomains; see Figure 1. We

Q,

20
1 x
z,=2Y

\“

-1

—=8

F1a. 5.1. Intersection of two substructures of a non-conforming partition.

also define the following points:
° zy) is the nearest mesh point to z; that belongs to [z1,22) and is a node of

the triangulation of 7;.
° zéi) is the nearest mesh point to z» that belongs to (z1,22] and is a node of

the triangulation of 7;.



An analogous definition holds for zy ) and zéj ). We assume that the above points are

defined for each edge. In particular, this is true if, e.g., the following Assumption is
satisfied.
ASSUMPTION 5.1. Let E;; = 0Q; N 0. Then

1 1
h; < §|Eiy’|, h; < §|Eij|-

We consider the following functions defined on FE;; for [ equal to ¢ or j, as showed in
Figure 5.2:

L0 2 (g O
oi(r) = ( 2 (Z(l)) (Z(l))Ql ), if z € Hl),zél)] ,
2 1
0, if v € Fy; \ [Zy),zél)] .

0 0

]

z,=2Y 20 2 z,=2)
Fia. 5.2.
We then define
oi(z)
wi\r) = y
(z) 5
where
2D
By = / pi(z) de = / o (z) de = zél) — zil).
D Eij

As for the case of a conforming decomposition, we extend these functions by zero to
the rest of 9Q; (resp. 0€;) and we take R, w; (resp. Ro,w;) as the discrete harmonic
extension of w; (resp. w;) on the whole subdomain Q; (resp. ;) . We then define
our velocity w¥ € V}, as

(0, Rini), ifzxe Qi,
wil(z) = (0, Ro,wj), if x €y,
0, otherwise.

Our first purpose is prove property (5.3), i.e., to find a bound for:

N
Wil = S oW 5, + [ ][ ds (5:5)
i=1

T
9



We note that, as opposed to the case of a conforming partition, this velocity is not
continuous across F;;. For the first term we proceed exactly as in the case of a
conforming partition and, as for (5.7), we obtain

C

: (5.9)
|Eij|?

12
z]|
|W 1o S

For the second term we proceed in the following way.
We first map the interval (zy),zél)) into the reference interval:

~ ~ 2 (z— 20

H ~
7] (Z§),Z£)) _)(_171)7 'T'_)-T:tl(x): (AZ(I) )’

PONRNO) . .
with Z(!) L > 2 and AZO = zé) - z§ ). We can then write our functions @1
as
pi(x) = p(ti(x)),
where
. 1—2?

The second term in (5.8) can then be written as

[o il as = [o|wi]f ds= [ o) ds =
T

E;j Eij
_ pile) _ so_<>)
B /U ( Bi B; do <
Eij
1 1\?
< 2ﬁiE/ (pi(z) — ;(x))? dz + 20 (E - ﬂ—j) E/ pi(2)? dz =
= A+ B.

We start with the term A.
Using the mean-value theorem of differential calculus we can write the following

bound:

lpi(2) = pi(@)] = |9 (fi) = & (£(2))] 18], o - [Eil2) — E5(2)] - (5.10)

The last term on the right-hand side can be further decomposed as

~ 7 (z) = 2($—Z(i)) 2($—Z(j))

tz(w) - J( )_ A7) - AZG) =
2 (z—-20) -2 (z—2ZW) , 1 1
— —z - _ - )=
= AZO) +2 (v 29) <AZ(i) Az(j>> =
=:I+1I,

(5.11)
10



and, since

2 max(hi, hJ)
\Eijl 7

4 max(hi, h])

~2
<C Il <
|<P|1,oo >0, 1] < |Eij|2

1] <
it follows from the definition of o and Assumption 3.2 that

g |~
A< [ 180 o (1P +111F) do <
J

El‘j
< Cmax(f?,kf-) N C’max(zk?,k]?) <
B B
< C max(k, k3)
T |EyP

We now consider the term B.

|£L' - Z(])|a

(5.12)

Combining inequality (5.10) and property (5.11) and using similar argument as before,

we obtain

18; - ;] < / i) — pj(2)) dz <
E;j

<18l [ [fite) ~Ei(@)] o <
Eij
< C max(h;, hj),
and thus, using the definition of o and Assumption 3.2,
1 1)\? / C max(k2, k2)
B=20 |-+ () de < ———22°
<ﬁl ﬁ]) v ( ) - |Eij|2

where we have used
/ o(z)? de < O |Ey|
Ei]'
Combining the bounds for A and B in (5.12) and (5.13), we then obtain
Y C maX(k’?, k'2)
ol[w]|"ds < —————2.
[ 7l as < =2
r
Finally, combining (5.9) and (5.14) yields
C C max(k?,k?) a?

PR ij

+ =
|Eij |2 |Eij |2 |Ei;|?

lwH[; <

(5.13)

(5.14)

which proves (5.3). We note that here, as opposed to the conforming case, the constant
a;; also depends on the degrees k. This is due to the fact that the functions w* are
not continuous on the whole domain and the penalization term depends on the degrees

k.

The other properties of Lemma 5.1 follow directly from the definition of w/.
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6. Proof of Theorem 4.1. We define the set of all piecewise constant pressures
Mm:{qeﬁﬁn|WHEQMmLi:L“”N}, (6.1)
and the space defined by the velocities founded in the previous section
X :=span{w" | (i,j) € M} C V.

We use an argument which was originally proposed by Boland & Nicolaides; see [5].
Any p € M}, can be decomposed into two functions, one with zero mean value in each
Q;, the other constant on each subdomain:

p=D+D (6.2)

with

By = — r)dr
= o / p(e)ds. (63)

Is easy to see that P belongs to My and that p; € L3(€;) N My, (2;)
We note that if p € My then

N
B0 = S 5210 (6.4)
i=1
N
S5 1 = 0. (6.5)
i=1

We proceed by proving two stability results for p and p.

LEMMA 6.1. For each p; € L3(2;) N My, (Q;) there exists a velocity v; € Vi, ()N
H{(Q;) such that

- / div ¥: 5 dz = |l o
Q;

~ 1
[Vili,o: < —|Ipillo,q;-
Vs

i

Proof. Since in each Q; we have chosen conforming and stable finite element
spaces, Lemma 3.1 ensures the existence of this velocity. O
We will then define v € V;, by

Vig. = Vi, i=1,...,N.
:

Since v vanishes on T', is continuous on . Consequently we have

N
b(v,p) = Y _ Iills.0, = IPll5.0 (6.6)
i=1
and

N N C,
B =Y IVelRa, < — 5l g,
i=1 i=1 Vi

12



ie.,
- C 1
[o]n < — lIPllo,0 = = [Pllo,2; (6.7)
Yk I6]

where

Vi 1= 1gglN’yki7 B = v/C.

LEMMA 6.2. There exists a constant (3, independent of h but dependent on the
decomposition of Q such that

> Blpll, Pe M.

Proof. For every p € My, we construct a function ¥ € Vj, such that:

b(¥,p) > |IBll3,

6.8
v < %Hﬁ”o- (6.8)

Thanks to Lemma 5.1, we can find a function w* € V}, supported in Q; U ﬁj such
that:

/wzj-nds:/w;j-nds:/w::j-nids:—/w;j-njds:L i>j. (6.9)

The divergence theorem ensures that:
/div w do = — /div wil dr = 1. (6.10)
Q; Q]‘
We can also find a velocity Wi €V} supported in Q; U ﬁj, defined as
w' = || p; w¥, such that:
—/diijij dr = /divw;if dz = || p;.
Q; Q]‘

Unlike the function wil defined in lemma (5.1), we see that these functions W/ and
w/* are different. We then set

N
W=y Yy wh (6.11)
i=1 jei

We can easily check that W belongs to X. Indeed, there are two contributions in the
sum in (6.11) for each edge E;;, corresponding to E;; and to Ej; = Ejj.
We first note that for (i,5) € M, i > j,

/<17>[Wij-n]ds: Z /<I_7>Emz Wil -n]g,,, ds =
(

T m7l)EMEml
= S <pen [l i
(m,l)eM Eo

= <P >g; (=D + Q| p;) =0,
13



where we have used (6.9). Using (6.10), we then find

N
ICENIEESY /diva?L-ﬁmdm+/<ﬁ>[Wij-n]ds:
m:lgm T
= —/divWﬁj -@dm—/divWﬁ-j pjdr =
o8 Q;

J

-P; / divw, do — p; / div W;-j dz =
Q; Q;

=D; 19| D; — P; 14| D; = i U] (B; — D).

We can then write

or, equivalently,
b(¥.p) =p" BP,
where B = (b;;)1<i,j<n is a a sparse matrix defined as

| Q| card (i), ifj =i,

bij =191/, if j €,
0, otherwise.
If we introduce the matrix D = diag (|Q4],...,|n]|), we see that from (6.4)

p' Dp=|pll.q, PE M,

where we have used the same notation for a function p € My and the corresponding
vectors of values p;. In order to prove the first of (6.8), we need to show that the
minimum
_TB_
= min 2P (6.12)
peP\{0} p° Dp

is positive and does not depend on h. We consider the eigenvalue problem
D 'Bp=A\p, DP#0.

It is easy to check that the matrix A = D~!'B is the connectivity matrix defined in
section 3. Thanks to Lemma 3.2, its eigenvalues A; are all positive except A\; = 0,

14



which is simple. The kernel of A involves only constant vectors (see proof of [1, Lemma
4.1]). Therefore

Y= )\2 = 1nf)\z

i>2

The choice Vv = 7! W ensures that the first equation of (6.8) holds.

Using (5.3), we have
% < iy 1] B3]

With the definition of the h-norm, see (4.9), and property (4.1), we can also write

N
VI =Y ¥lia + Z /a|v]| ds. (6.13)

=1 (l n)eMpg,

The first term in (6.13) can be written as

2ZZWM+W) <

=1 |n€l

N
Z |V|%7Ql
=1

1,9
2 N 2 2
<3 ZCard (1) Z (|Wnl|1,9, + |Wln|1,§2,) =
it nel
2 . .
= 2 (g cont )ZZ (%" ]+ 1¥"r,)

For the second term we find

LY /a|v1|ds—2i2 [ ot

ln)EM Ein (Lm)eM g

Z /0’|W +w" |ds:

(Lm)eM g,

S [ (1P ) as =

(L,n) EM g,

Z /a| 2 ds =

(L,n) EM g,

2zz/a|

=1 nel g
15
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Combining these two inequalities, using the definition of the h-norm first and of W'
then, we obtain

N
2 _ 2 —1 =l
VI, < ? lfsnla;](vcard(l) lzlg(hvnh Ql+|wn|19 )+
=1 n€l
5% o KAl
=1 nelE
< 2 max card (I iz |_l”|
— 42 \U<i<N e h =
2 al )
< " lrsnlaév card (I ;Zealn o |u|” =
9 N
— =2 2 2
=5 (gt SR e, <
2 "o o 2 a7
<= 52 10 n
< (g ot 0) Sortion (e <
<2 aw) Z o
- ma. car ma
>~ 72 1§l§}§\f 2 X m Dy Iy

where

a2
= () 10

Using Assumption 3.3 and equation (6.4) we have also proved the second equation of
(6.8) with

R —
c <max m)
1<I<N

Now we are able to check the inf-sup condition (4.10). The pressure can be
decomposed as p = p + p. We define also the velocity
V=V +AYV, (6.14)

where ) is a real number to be chosen later.
It is easy to check, since p € P and v; € H}(Q;) (1 <i < N), that b(v,p) = 0.

16



In addition, since the bilinear form b(-, ) is continuous, we have:

b(v,p) = b(V,p) + b(V.p) + Ab(¥,p) + Ab(¥,D) >
> |1pllg — Abp(¥, )| + Al >
> |Ipllg — Ac V|5 1Bllo + A [Pl >

18115 — ||p||o 1Bllo + AIBIIS >

Ac? _
§|II31|3+/\ 1-— | IIplls.
2p

Y%

I \/

—2
The choice A = — ensures

c
32
b(v,p) > 5 ||131|o toa 5 1pll5 >

—2
LB
5mm{l,c—2} Ipl3

VIn =V + AV < V] + AV]n < = ||I31|o += ||p||o

Y%

and

2

1 A2 1 3
< 3 + ? lIpllo = 7 T lIpllo-
We also have proved Theorem 4.1 with
mln{l, = } 532 —
B = — — ~CjB
9 Ni + /3_ 24/t + 625

6.1. Remarks on the inf-sup constant. In this section we want to analyse the
inf-sup constant 34 found previously for the case of conforming and non-conforming
partitions. First we have to analyse the constants 3 and 3 in the two cases. In Lemma
6.1 we have seen that there is no distinction for 3: in both cases this constant depends

only on the i, of Lemma 3.1.

However, for 3 we have to separate the cases. With a conforming partition, using

Assumption 3.1 and the property
which bound the term maxn;, follows that

B>c

17



We have also found that § depends only on the second eigenvalue v = Xy of our
connectivity matrix, i.e., depends only on the topology of the decomposition in sub-
domains. Likewise we have that

depends only on the topology of the decomposition and on the g, .
Otherwise, in the case of a non-conforming partition, we recall that

aij S C max(ki,kj);
therefore follows that
B>cyk™,

where ¢ depends to the size of the edges FE;;. We have also found that our inf-
sup constant (i, besides depending to v, k and the 7y,, depends to the partition in
subdomains (not only the topology).

7. Well-posedness and a priori estimates. This section is based on [18,
section 7], also we will omit the proofs and write only the results.
Before proceeding, we note that our discrete bilinear forms a(-,-) and b(-,-) are not
continuous on the original spaces H' () and LZ(Q), due to the interface contributions.
This makes the analysis more complicated. However two weaker continuity properties
hold. We need to define two suitable stronger norms. For a velocity V we set

N
1
IVIE=IVE+ Y [oviFds+ 3 [ 2 [wvPas

eeM e ileQi

We note however that, in case v € V}, the inverse estimate [16, Eqq. 4.6.4 and 4.6.5]
and the definition of o ensure that

Ve <{lIvllle < C1vla, (7.1)

with a constant C' that only depends on gy. We have the following property.
LEMMA 7.1. Let V € L2()2, such that V. € H*()?, fori = 1,...,N, and
w € Vi,. Then there exist constants independent of V,w,h and k such that

la(V,w)| < av|[|V]|ly [W]x,
and, in case V € Vj,
la(V,w)| < a'v|V], |W]|p.

Analogously, we define a stronger norm for the pressure:

N
1
lQIE =1l + 3 [ 5 Q% ds
=1,
18



In case q € My, the inverse estimate yields

llallo.o < llallly < Cllallo,e, (7.2)

with a constant that depends only on oy.

LEMMA 7.2. Let Q € L(Q) and v € L*(Q)?, such that Q € H'(Q;) and v €
HY(Q), i =1,...,N. Then there erist constant independent of Q,v,h and k such
that

b(v, Q) < BIvIn 1@,

and, in case () € My,
b(v, Q)| < 8" [v]n [|Qllo-
We finally recall that the bilinear form a(:,) is coercive, i.e.,
a(u,u) = v|uf;, u € V. (7.3)

Existence and uniqueness of the discrete problem (4.7) are ensured by (7.3), the
continuity properties in Lemmas 7.1 and 7.2, and the discrete inf-sup condition. With
the following lemma we will proof the consistency of our methods.

LEMMA 7.3. Let {U,P} € H'(Q)? x L(Q) be the solution of the continuous
problem (1.1). If U € H5(Q;)? and P € HY(Q;), for i = 1,...,N, the {U, P}
satisfies the discrete problem

a(U,v)+b(v,P):/f-vd:U, v eV,

Q
b(an) = 07 q € Mk

With the following lemmas we want to proof a priori error estimates for the
velocity and for the pressures.

LEMMA 7.4. Let the exact solution {U, P} € H'(Q)? x LZ(Q) be in H™ (Q;)? x
H™(Q;), i =1,...,N, with m; > 2 and n; > 1. Then there ezists a constant C,
independent of h and k, but depending on v and oy, such that

1 hslfl h’r'i
|U—u|h <CZ 3 |U m;.Q; + — Pni7Qi } (74)

mi kn’

with 1 < s; <min{k; +2,m;}, 1 <r; <min{k; + 1,n;} and By the inf-sup constant.

LEMMA 7.5. Let the exact solution {U, P} € H'(Q)? x LZ(Q) be in H™i (Q;)? x
H"(Q),1=1,...,N, with m; > 2 and n; > 1. Then there exists a constant C,
independent of h and k, but depending on v and oy, such that

1 Rs! 1 Rl
||P — p||o<02< Py [U ;.0 +ﬁ—ﬁ Pm,szl-), (7.5)

with 1 < s; < min{k; +2,m;}, 1 <r; <min{k; + 1,n;} and By the inf-sup constant.

19



(1]
2]

(14]

(15]

(16]
(17]

(18]

REFERENCES

F. Ben Belgacem. Mixed mortar finite element method for the incompressible Stokes equations:
convergence analysis. Siam J. Numer. Anal., 37(4):1085-1100, 2000.

F. Ben Belgacem, C. Bernardi, N. Chorfi, and Y. Maday. Inf-sup conditions for the mortar
spectral element discretization of the Stokes problem. Numer. Math., 85(4):257-281, 2000.

Christine Bernardi and Yvon Maday. Spectral methods. In Handbook of Numerical Analysis,
Vol. V, Part 2, pages 209-485. North-Holland, Amsterdam, 1997.

Christine Bernardi and Yvon Maday. Uniform inf-sup conditions for the spectral element
discretization of the Stokes problem. Math. Models Methods Appl. Sci., 9:395-414, 1999.

J. M. Boland and Roy A. Nicolaides. Stability of finite elements under divergence constraints.
SIAM J. Numer. Anal., 20(4):722-731, 1983.

Franco Brezzi and Richard Falk. Stability of higher—order hood-taylor methods. Siam J.
Numer. Anal., 28(3):581-590, 1991.

Franco Brezzi and Michel Fortin. Mized and Hybrid Finite Element Methods. Springer-Verlag,
New-York, 1991.

Bernardo Cockburn, Guido Kanschat, Dominik Schétzau, and Christoph Schwab. Local dis-
continuous Galerkin methods for the Stokes system. Technical Report 00-14, Seminar fiir
Angewandte Mathematik, ETH, Ziirich, 2000.

Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu (Eds.). Discontinuous Galerkin
Methods. Springer-Verlag, 2000. Lecture Notes in Computational Science and Engineering,
vol. 11.

Vivette Girault, Béatrice Riviere, and Mary F. Wheeler. A discontinuous Galerkin method
with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems.
Technical Report 02-08, TICAM, 2002.

P. Grisvard. FElliptic Problems in nonsmooth domains. Pitman, Boston, 1985.

Peter Hansbo and Mats G. Larson. Discontinuous Galerkin methods for incompressible and
nearly incompressible elasticity by Nitsche’s method. Technical Report 2000-06, Chalmers
Finite Element Center, Chalmers University of Technology, G&teborg, 2000.

Paul Houston, Endre Siili, and Christoph Schwab. Discontinuous hp—finite element methods
for advection—diffusion problems. Technical Report 00-07, Seminar fiir Angewandte Math-
ematik, ETH, Ziirich, 2000. Submitted to Math. Comp.

Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations.
Springer-Verlag, Berlin, 1994.

D. Schétzau, Ch. Schwab, and A. Toselli. Mixed hp-discontinuous Galerkin finite element
methods for the Stokes problem. Technical Report 02-10, Seminar for Applied Mathematics,
ETH Ziirich, 2002. in press in STAM J. on Numer. Anal.

Christoph Schwab and Manil Suri. The p and hp version of the finite element method for
problems with boundary layers. Math. Comp., 65:1403-1429, 1996.

Rolf Stenberg and Manil Suri. Mixed hp finite element methods for problems in elasticity and
Stokes flow. Numer. Math., 72:367-389, 1996.

A. Toselli. hp-discontinuous Galerkin approximations for the Stokes problem. Technical Report
02-02, Seminar for Applied Mathematics, ETH Ziirich, 2002. in press in Math. Models
Method. Appl. Sci.

20



