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ZUSAMMENFASSUNG 

 

Diese Doktorarbeit identifiziert und beantwortet grundlegende Fragen der 

Strukturgeologie, welche entweder nicht gestellt oder nicht befriedigend gelöst worden 

waren. Der Themenbereich umfasst eine grosse Bandbreite von Problemen, welche von 

Einzelpartikelrotation zur Mehrschichtfaltung reicht. Dies sind Themen der klassischen 

Strukturgeologie, und trotzdem sind Effekte erster Ordnung nicht berücksichtigt 

worden. Faltung ist ein Beispiel. Die existierenden Theorien nehmen an, dass die 

faltenden Schichten unendlich lang sind oder die Kompression direkt durch starre 

Wände als Randbedingung an den Schichtenden angesetzt wird. Beide Annahmen sind 

selten relevant für die Geologie und wir zeigen, dass das Schichtlänge zu –dicke 

Verhältnis, zum Beispiel einer Quarzvene, einen entscheidenden Einfluss auf den 

Faltungsprozess ausübt. Dies resultiert in drei neuen Faltungsmodi welche gewisse 

Widersprüche der klassischen Theorien erklären. Wir geben eine Erklärung für die 

beobachteten kleinen Wellenlänge zu Schichtdicke Verhältnisse, welche im 

Widerspruch zu der grossen Variabilität natürlicher Viskositätskontraste stehen. 

Ein weiteres Beispiel für die adressierten grundlegenden Fragen ist das Verhalten von 

Partikeln in Scherzonen. Diese Partikel zeigen oft eine regelmässige Ausrichtung 

(SPO), welche mit den klassischen Theorien nicht erklärt werden kann. Häufig sind 

diese Partikel von einem Mantel umgeben, welcher oft studiert wurde, dessen Funktion 

jedoch auf die eines passiven Deformationsaufzeichnungsgerät reduziert wurde. Dies 

steht im klaren Widerspruch zu der beobachteten Lokalisierung der Deformation im 

Mantelmaterial, welche ein Indikator für die Schmierwirkung des Mantels ist. Durch die 

explizite Modellierung des Mantels als separates, weiches Material entwickeln wir eine 

analytische Theorie, welche den Charakter der SPO erklärt. In Kombination mit einer 

grossen Anzahl numerischer Experimente schaffen wir ein Werkzeug das uns erlaubt 

die Mantelmaterialproduktivität, den Mantel-Matrix Viskositätskontrast und den totalen 

Scherbetrag abzuschätzen, basierend auf einfachen geometrischen Parametern, welche 

entweder im Feld oder anhand von Dünnschliffen bestimmt werden kann. 

Intuitiv ist es akzeptiert, dass Kombinationen von reiner und einfacher Scherung zu 

asymmetrischen Falten führen. Frühere Studien mit analogen Materialien, analytischen 
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Theorien und numerischen Modellen konnten jedoch den Bezug zwischen einfacher 

Scherung und Faltenasymmetrie nicht darlegen. Wir zeigen hier unter welchen 

Bedingungen einfache Scherung tatsächlich asymmetrische Falten verursacht und wie 

dieser Zusammenhang benutzt werden kann, um ein Werkzeug zu entwickeln, welches 

dazu dient den Scherbetrag anhand der Faltengeometrie abzuschätzen. 

Die letzte Frage welche wir in dieser Arbeit ansprechen bezieht sich auf die Bildung 

von Knicken in gefalteten Mehrschichtsequenzen. Dieses Phänomen wird 

normalerweise mit anisotropen und/oder nichtlinearen Rheologien verknüpft. Wir 

können jedoch zeigen, dass einfache, Newtonische Mehrschichlagen Knicke ausbilden 

können, wenn sie unter kombinierter einfacher und reiner Scherung deformiert werden 

und eine starre Basis vorhanden ist. Konsequenterweise muss die Interpretation von 

Faltungsmechanismen und –bedingungen diese Resultate berücksichtigen und 

entsprechend angepasst werden. 

Das Hauptwerkzeug, welches in dieser Arbeit angewandt wird, sind die Konzepte der 

Kontinuumsmechanik. Wir benützen analytische, numerische und kombinierte 

Techniken, welche auf die spezifischen Probleme abgestimmt sind und die Vorteile der 

benutzen Methode berücksichtigen. Diese Methoden umfassen die analytischen 

Formulierungen dünner und dicker Platten, die komplexe Potentialmethode von 

Muskhelishvili, Finite Differenzen, Finite Elemente und Spektralmethoden. 
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ABSTRACT 

 

This thesis identifies, and gives solutions to, unanswered first order questions in 

structural geology concerning a wide range of problems from isolated clast behavior to 

multilayer folding. These are classical themes of research in structural geology and 

elsewhere; however, some of the basic problem characteristics have not been adequately 

accounted for in previous works. Folding is such an example, because the theory of 

folding assumes infinitely long layers or rigid wall boundary conditions directly applied 

to the layer extremities. Both assumptions are rarely appropriate for geology, e.g., we 

show that the aspect ratio of an isolated layer, such as a quartz vein, is a principal 

controlling factor of the folding process. Our analysis discovers three new folding 

modes that explain inconsistencies that are intrinsic to the classical theories. In 

particular, we give an explanation for the natural preference of small wavelength to 

layer thickness ratios that is in disagreement with the wide range of natural viscosity 

contrasts. 

Another example for the addressed fundamental questions is the behavior of clasts in 

shear zones. Such clasts often show a shape preferred orientation (SPO) that cannot be 

explained by classical theories. The mantle that often surrounds these clasts had been 

the focus of many studies, however, it has been regarded as a passive strain recorder. 

This is in contradiction to the strain localization that takes place in the mantle, which is 

an indicator for the lubricant rheology of the mantle material. By the explicit 

introduction of a weak mantle material we succeed in developing an analytical theory 

that explains the character of the observed SPO, and in combination with a vast number 

of numerical experiments we develop a tool for estimating mantle material productivity, 

mantle-matrix viscosity contrast, and shear strain based on simple geometrical 

parameters that can be measured in the field.  

It is intuitively accepted that combinations of pure and simple shear lead to asymmetric 

folds. However, previous analogue, analytical, and numerical experiments failed to 

identify the relationship between fold asymmetry and simple shear. We show under 

which conditions the simple shear – asymmetry conjecture is justified and outline how it 

can be used to estimate shear strains from natural folds. 
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The final question that we address is the formation of kinks in folded multilayer stacks. 

While this phenomenon is generally attributed to anisotropic and/or non-linear 

rheologies, we show that simple Newtonian multilayer stacks, subjected to general 

shear, and close to a no-slip base can exhibit kinking as well, which changes the 

interpretation of natural multilayer folds. 

The key tool used to answer each question posed is the concept of continuum 

mechanics. We employ analytical, numerical, and combined techniques tailored to the 

requirements of the specific problems in such a way as to acknowledge the limitations 

of each method. These methods include thin and thick plate formulations, 

Muskhelishvili’s complex potential method, finite differences, finite elements, and 

spectral codes. 
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CHAPTER 1: INTRODUCTION 

 

In a time where it is fashionable to employ black-box codes to solve seemingly 

complicated problems with even more complex rheologies this thesis focuses on 

classical themes of structural geology such as clasts and folds. Both subjects have been 

intensely studied; yet, there is a trail of first order questions that were either not asked 

previously or solved unsatisfactory. Folding is such an example. All theories assume 

that folds grow due to layer parallel compression in infinitely long layers or in finite 

length layers with the boundary conditions applied through rigid walls directly onto the 

layer extremities. While this is the case for engineering problems for which the (elastic) 

theories were originally developed (Euler, 1744), it has rarely relevance to geology 

where infinitely long layers are certainly not possible and usually no rigid walls are in 

the proximity. A classical field example of folds are quartz veins in slates (Sherwin and 

Chapple, 1968). Such veins are likely to have aspect ratios in the range of 500-1000 

(Vermilye and Scholz, 1995) and are isolated in the surrounding slate and “feel” the far-

field compressional flow only through the slate. The question arises if classical folding 

theories are applicable to such configurations. 

To address this folding question we first investigated the elliptical clast/inclusion 

embedded in a matrix and subjected to far-field flow conditions. The mantle that often 

surrounds porphyroclasts had been profoundly studied mainly for kinematic reasons 

(e.g., Passchier and Trouw, 1996) but it had been considered as a passive marker despite 

the fact that it is causes strain localization and is likely to be the weakest phase in the 

system. Related to this inappropriate resolution of the mantle material is the fact that 

classical theories for clast rotation (Ghosh and Ramberg, 1976) fail to explain the shape 

preferred orientation common in natural shear zones (e.g., ten Grotenhuis et al., 2002). 

Another problem addressed in this thesis is the condition for the development of fold 

asymmetry. Intuitive argumentation identifies simple shear as the cause. However, most 

previous studies involving analogue, analytical, and numerical modeling do not attribute 

any influence of simple shear on the folding process. A related topic is kinking, which is 

frequently observed in multilayer stacks. It is a commonly believed that material 

anisotropy and/or material non-linearity is required for kinking. Yet, a much simpler 
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case of multilayer folding, a stack of Newtonian layers in combined pure and simple 

shear with a base nearby, also results in kink fold morphologies. 

 

 

METHODS 

The key tool used to answer the raised first order questions is the concept of continuum 

mechanics with its different analytical and numerical implementations. Where possible 

we derived analytical solutions, based on the theories of thin and thick plates, and the 

complex potential method of Muskhelishvili (1953). The latter is a powerful method to 

obtain analytical solutions for the bi-harmonic equation in relatively complex two-

dimensional domains. Where it was not possible to obtain analytical solutions we 

sought numerical ones. Two different methods were used: a mixed spectral/finite 

difference method and the finite element method (FEM). Both methods were developed 

specifically for this work. Most of the development was done in MATLAB and, where 

speed requirements made it necessary, in FORTRAN90/95. The spectral code allows 

incompressible Newtonian and power-law rheologies, the FEM implements Newtonian, 

power-law, elastic and visco-elastic (Maxwell) rheologies. The reason why two 

different codes were developed is because each has its advantages and therefore they are 

suitable for different kinds of problems. For example, multilayer folding, as it is 

presented in this thesis, is ideally solved with the spectral code. The spectral code is 

optimized to take advantage of the periodic nature of the problem and is capable of 

giving results quickly when the multilayer stack consists of many layers that are all 

perturbed with a random noise signal – a task that would result in supercomputer scale 

FEM models. On the other hand, the lubricated rigid clast in a shear zone is better 

solved with the FEM code. The complex geometry resulting from the tail formation 

with very narrow films of weak materials, the material parameter variations over eight 

orders of magnitudes, and the focus on pressure as a key parameter are much better 

handled by the FEM code. The combination of numerical codes and analytical solutions 

has the advantage that for simpler problems the numerical codes can be tested and 

tuned, which assures that the more complex problems, where no analytical solutions can 

be found, will be resolved properly. 
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THESIS STRUCTURE 

CHAPTER 2 - MANTLED PORPHYROCLAST GAUGES 

This chapter introduces the characteristics of clast behavior in general (i.e., combined 

pure and simple) shear. Employing the FEM code the influence of boundary conditions, 

non-linear rheologies, intermediate layers between clast and matrix, geometry, and 

finite strain on the kinematic and dynamic parameters is investigated. It is shown that 

lubricated clasts can rotate syn- as well as antithetically to the applied simple shear flow 

and it is found that they stabilize at positive inclinations to the shear plane. Systematic 

analysis of more than 8000 experiments is used to construct so called “attractor maps” 

that can be used to obtain estimates for mantle material productivity and viscosity 

contrast between mantle and matrix, based on simple geometrical parameters that can be 

determined in the field or on thin sections. It is also shown how shear strain estimates 

can be obtained from mantled clasts alone, in absence of better strain recorders. 

 

CHAPTER 3 - ANALYTICAL SOLUTIONS FOR DEFORMABLE ELLIPTICAL 

INCLUSIONS IN GENERAL SHEAR  

This chapter presents a collection of analytical solutions for deformable inclusions. The 

technique employed is the complex potential method of Muskhelishvili (1953). In 

contrast to previous work our solutions are valid for finite viscosity contrasts between 

clast and matrix, covering the entire range from voids to rigid clasts. In addition we 

provide the solution for the mantled circular clast. The chapter focus is on the use of the 

solutions for geological problems, such as overpressure generation due to clasts in shear 

zones. The solutions are also an excellent opportunity for two-dimensional numerical 

code benchmarking and testing, because the problem solved is truly two-dimensional, 

exhibits sharp gradients in material properties and solutions, and must be solved 

accurately on a variety of scales simultaneously. 
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CHAPTER 4 - MUSKHELISHVILI’S METHOD APPLIED TO ELLIPTICAL AND 

LUBRICATED CIRCULAR INCLUSIONS IN GENERAL SHEAR: 

SOLUTION IMPLEMENTATION IN MATLAB 

This chapter demonstrates the ease with which the complex potential solutions given in 

Chapter 3 can be implemented in MATLAB. Having native support for complex 

numbers, MATLAB is an ideal tool for this. This scripts are online available and are 

meant to support teaching and research. 

 

CHAPTER 5 - ARE ISOLATED STABLE RIGID CLASTS IN SHEAR ZONES 

EQUIVALENT TO VOIDS? 

Combining field data, analogue modeling, and our analytical and numerical results, this 

chapter gives an analytical explanation for the observed shape preferred orientation of 

clasts in natural shear zones. We show that it is possible to reduce the mantled clast, or 

more general the lubricated clast, to an equivalent void. This equivalent void has the 

rotational character of a real void, but cannot change its shape, which is supported by 

the rigid clast. The resulting theoretical curve for clast stabilization shows that the stable 

inclination angle decreases with increasing aspect ratio. The curve agrees well with field 

data, in contrast to previous theoretical work. 

 

CHAPTER 6 - FOLDING OF FINITE LENGTH LAYERS 

We investigate the influence of the finiteness and aspect ratio of layers on folding 

mechanism. This analytical work is a synthesis of the classical thin-plate theory with the 

Muskhelishvili solutions presented in Chapter 3. We show that the aspect ratio of the 

layer has a first order influence on the folding process and discover three new folding 

modes. In the viscous(layer)-viscous(matrix) case the new folding mode gives an 

explanation for the long standing problem of the natural preference of small wavelength 

to thickness ratios (Sherwin and Chapple, 1968), which cannot be explained by classical 

folding theories. The new folding modes in the elastic-viscous case show a dependence 

of the elastic folding process on the applied far field strain rate, which is verified with 

analogue experiments. Our new theory determines the value of the layer parallel 

12 



compressive stress, which is a significant advance because this stress component is 

difficult to evaluate, as it is not constant throughout the folding process. 

 

CHAPTER 7 - NUMERICAL MODELING OF SINGLE LAYER FOLDING IN 

GENERAL SHEAR 

The parameters that cause fold asymmetry are disputed and, in particular, it is unclear if 

asymmetric folds can be used as indicators of the simple shear component of the general 

shear far-field flow. This situation is exacerbated by the lack of a complete dataset of 

kinematic and dynamic parameters throughout single layer fold development. Such a 

dataset is required in order to evaluate the applicability of the geometric and kinematic 

tools that are in use for fold characterization and process identification. We show that 

combinations of layer parallel pure an simple shear indeed lead to asymmetric fold 

development, which is, however, a passive process. The resulting fold geometries and 

vergence are correct recorders of the simple shear component and can be used in 

combination with the strain map developed by Schmalholz and Podladchikov (2001) to 

get estimates for competence contrast, bulk shortening, and total shear strain. 

 

CHAPTER 8 - MULTILAYER FOLDING 

The multilayer folding chapter is a combination of analytical thick-plate theory and 

spectral code experiments. The analytical part investigates folding in a simple 

multilayer stack under pure shear and identifies a new folding mode. The numerical 

experiments show the fold morphologies that result in Newtonian multilayers under 

pure and general shear as a function of the presence of a nearby no-slip base. The 

general shear experiments develop kinks if the no-slip base is relatively close. This is an 

important finding because the rheologies employed are neither anisotropic nor non-

linear, which was previously thought to be the requirement for kinking. Consequently 

the folding mechanism and -condition interpretation must take this into account and be 

adjusted accordingly. 
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Equation Section 1 

CHAPTER 2: MANTLED PORPHYROCLAST GAUGES 

 

(This chapter is submitted to “Journal of Structural Geology” by Daniel W. Schmid and Yuri Yu. 

Podladchikov. It is meant to be published together with the manuscript "Analogue modelling of the 

influence of aspect ratio and particle/matrix interface slip on the rotational behaviour of monoclinic and 

elliptical rigid particles in non-coaxial flow" by Stefano Ceriani, Neil Mancktelow and Giorgio 

Pennacchioni.) 

 

 

ABSTRACT 

We investigate the behavior of the isolated mantled porphyroclast in a shear zone. The 

method employed is a Finite Element Model. Three distinct phases, clast, mantle and 

matrix are present, the rheologies are power-law with exponents ranging from 1 to 5 and 

the far-field boundary condition is simple shear. The effective viscosity of the mantle is 

assumed to be less than those of the clast and the matrix. We show for which sets of 

parameters mantled porphyroclasts reach super-horizontal stabilization, relative to the 

shear plane and sense. Clasts in natural mylonites frequently exhibit similar orientation, 

which is interpreted as a stable inclination. The systematic examination of the 

matrix/mantle/clast system allows for the construction of attractor maps that can be 

directly used as gauges for (i) the effective viscosity contrast between matrix and mantle 

, (ii) the productivity of mantle material around the clast as a function of the bulk shear 

strain, and (iii) for the total shear strain. The necessary data required to use the attractor 

maps are simple geometrical parameters that can be measured in the field, clast aspect 

ratio, clast inclination versus the shear plane, mantle thickness, and mantle and clast 

area. This new method successfully reproduces the characteristics of natural 

porphyroclast and is in good agreement with data from natural shear zones.  

 

Keywords:  

Rotating clasts, Stabilization, Back-Rotation, Lubrication, Numerical Modeling, 

Rheology, Mantle Productivity, Shear Strain Estimation 
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INTRODUCTION 

The frequent observation of mantled porphyroclasts in mylonitic shear zones together 

with their distinct geometries has stimulated a major quest to find possible applications 

as gauges capable of providing quantitative data on the rheology, kinematics and 

dynamics. While there appears to be common agreement on the usefulness of mantled 

porphyroclasts as indicators of shear sense (e.g., Hanmer and Passchier, 1991), all other 

possible interpretations as natural microgauges are still disputed. In particular, it is 

unclear if mantled porphyroclasts record information on the vorticity of the bulk flow 

and, more importantly, if they are reliable measures of rheology (Passchier et al., 1993; 

Bons et al., 1997; Pennacchioni et al., 2000). It was also seen that mantled 

porphyroclasts may actually rotate in opposite directions to the applied shear sense 

(Ghosh and Ramberg, 1976; Marques and Coelho, 2001; Pennacchioni et al., 2001; 

Mancktelow et al., 2002) and the parameters controlling potential back rotation are not 

unequivocally established. 

We believe that much of the uncertainty stems from the fact that the most basic 

requirements to study mantled porphyroclasts in a shear zone were rarely met in 

previous works, namely that the mantled porhyroclast in a matrix represents a three 

phase system: the clast, the mantle and the matrix. Consequently three (possibly) 

different material properties must be employed. Given the large natural differences in 

grain sizes between clast and mantle material and the amount of strain localization in 

the mantle it seems a fair assumption that the mantle material is the weakest phase in the 

system. Most previous studies have however modeled the mantle as a passive strain 

tracker in the matrix, starting from Passchier and Simpson’s pioneering work (1986).  

The well known analytical solution for rigid particles in simple shear was derived by 

Jeffery (1922) and extended to contemporaneous pure and simple shear by Ghosh and 

Ramberg (1976). However, the interest in the behavior of isolated inclusions is not only 

restricted to geologists but is in fact of relevance to a large part of the scientific 

community. Based on the alternative analytical solutions by Muskhelishvili (1953) and 

Eshelby (1959), researchers in the fields of composites and defects in solids have 

recently derived expressions for an inclusion with imperfect bonding to the matrix (e.g., 

Mura, 1987; Furuhashi et al., 1992; Gao, 1995; Ru and Schiavone, 1997; Shen et al., 

2001). A common finding of these recent works is that the so called Eshelby conjecture 
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(Mura, 2000) does not hold for a cylindrical or elliptical inclusion with a slipping 

interface. The Eshelby conjecture states that constant stresses applied at infinity cause 

constant stresses inside the inclusion, i.e., for arbitrary combinations of pure and simple 

shear, and arbitrary orientation and aspect ratio of the ellipsoidal inclusion, the stress 

state inside is homogenous and can be completely described by a single stress tensor. 

This result is of fundamental importance for geological applications, where the observed 

systems are not likely to show perfect bonding between clast and matrix (either due to 

interfacial slip or the presence of a third phase, i.e., the mantle). Inhomogeneous stress 

states inside the inclusion are not only expected to change the flow patterns, but may 

cause transitions into different deformation mechanisms fields, drive metamorphic 

reactions and be the cause for asymmetric zoning (e.g., myrmekite distribution, 

Simpson and Wintsch, 1989). Certainly the loss of homogeneity of the stresses inside 

the inclusion has a significant influence on texture evolution which, up to now, has been 

based on the Eshelby solution (e.g., Kocks et al., 1998). 

The subject of this study is the three phase mantled porphyroclast system subject to 

simple shear, sufficiently isolated that the boundary conditions do not disturb the 

behavior of the clast and with no other clasts in the vicinity. Since we explicitly assume 

that the effective viscosity of the mantle material is less than that of the matrix, we will 

refer to it as a “lubricant”. This terminology has the advantage that it is geologically 

neutral and is also applicable to the end-member case where the thickness of the 

lubricant vanishes, but slip is allowed on the inclusion-matrix interface. Due to the 

plane strain assumption this study is restricted to two dimensions. The clast is assumed 

to be elliptical, including the degenerate case of a circular inclusion. Hence, strictly 

speaking, we assume that in three dimensions the clast is an infinitely long elliptical 

cylinder. 

The analytical works mentioned above only provide closed-form solutions (solutions 

with a finite number of terms) for the case of lubricated circular inclusions (Shen et al., 

2000). In the case of lubricated elliptical inclusions, the solutions are infinite series that 

usually converge to an acceptable error with only a few of the series terms used. 

However, since there is no significant difference between a truncated infinite analytical 

solution and a numerical model that approximates the governing Stokes equations 

locally with polynomials of chosen order, we prefer to use a Finite Element Method 
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(FEM). This has the advantage that arbitrary geometries, non-linear materials (here 

Non-Newtonian power-law) and finite strains can be studied. 

In the first section of the paper the model method and setup are explained. Then the 

influence of a lubricating layer on the stress distribution and the rotation at initial and 

finite stages is demonstrated with examples of circular and elliptical inclusions. Finally 

we show under which conditions the lubricated inclusion has stable positions and how 

viscosity contrast between matrix and lubricant and the productivity rate of fine grained 

mantle material can be estimated from geometrical parameters by means of attractor 

maps. 

 

 

NUMERICAL METHOD AND SETUP 

The numerical model used is a personally developed two-dimensional FEM code using 

the seven node Crouzeix-Raviart triangle (Crouzeix and Raviart, 1973) to solve the 

Stokes equations for incompressible, viscous materials. A mixed method is employed, 

with linear interpolation of pressure, since this avoids spurious pressures usually 

appearing due to the incompressibility constraint (Brezzi and Fortin, 1991). The code 

has been extensively tested from simple flow problems to mantle convection. The 

specific check of the numerical model versus the solutions of Jeffery and Ghosh and 

Ramberg is given in Appendix 1. 

The initial configuration of the numerical experiments is depicted in Figure 1. Since the 

presence of boundaries may influence the behavior of a rotating inclusion (Ildefonse et 

al., 1992; Bons et al., 1997; Marques and Coelho, 2001), care was taken to avoid such 

boundary effects. In all models, the length of the inclusion is only five percent of the 

shear zone width and the lateral boundaries are even farther apart, with the length of the 

ellipse only one to two percent of the box length. The thickness of the lubricating layer 

was in the range of zero to fifty percent of the short axis of the ellipse. 

18 



 

 

Figure 1 

Initial configuration of the experiments. A competent ellipse (dark gray) is coated 

with a weak lubricant layer (light gray), and embedded in a matrix of intermediate 

effective viscosity. The sketch is not to scale with respect to the actual particle-

matrix size relationship (see text). The aspect ratio of the ellipse is given with R  

which is the ratio of the two axes, a/b. The orientation of the inclusion is measured 

as the angle ψ , between the long axis and the shear plane, with 0ψ >  meaning 

counterclockwise. Due to the symmetry of the system ψ  only varies from –90° to 

90°. The thickness of the lubricant, , is measured as the intersection of the line 

defined by the short axis of the ellipse and the lubricant layer and given in percent 

of b . The boundary condition applied is a constant shear velocity on top and bottom 

and a free surface condition at the lateral boundaries. The shear angle 

H

φ  is a 

measure of the achieved shear strain γ , which is defined as (tan )γ φ= . 
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Figure 2 

Typical mesh generated for an ellipse of aspect ratio 2:1 with a 10% lubricant layer 

between ellipse and matrix. Initial number of elements is more than 20’000.  

The necessary resolution around the particle was achieved by mesh refinement, with a 

typical example displayed in Figure 2. 

The boundary conditions applied are constant shear strain rate on top and bottom 

resulting in constant shear velocities, and stress free boundaries at the lateral sides. The 

definition of the shear strain rate γ  is  

 xv
y

γ ∂
=
∂

 (1) 

where  is the horizontal velocity in the Cartesian coordinate system (Figure 1). Hence 

positive 

xv

γ  values mean top to the right shearing, which is the case for all experiments 

presented here. 
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The rheologies studied are Newtonian and Non-Newtonian power-law, for which the 

relationship between deviatoric stresses, ijτ , and strain rates, ijε , can be written in 

general form as (e.g., Ranalli, 1995) 

 2ij ijτ ηε=  (2) 

where η  is the effective viscosity of the material and defined as  

 
1 1
n

eBη ε
 −
=


  (3) 

Here eε  is the effective strain rate,  is the power-law exponent and n B  is a pre-

exponential material constant, which, in the case of a Newtonian material ( n ), is the 

viscosity. The definition of 

1=

eε  is  

 
2

2

2
xx yy

e

ε ε
xyε ε

− 
=  

 
+  (4) 

and follows the Mohr circle construction (Jaeger and Cook, 1979) of the maximum or 

effective shear stress eσ  

 
2

2

2
xx yy

e

σ σ
xyσ σ

− 
=  

 
+  (5) 

For scalability it is useful to give the viscosities as relative values. Unless stated 

otherwise, the “rigid” inclusion was assumed to be 1000 times more competent, i.e., 

viscous, than the matrix. The viscosity of the lubricant was a fraction of the matrix 

viscosity ranging from 1/2 to 1/50’000. Viscosity contrasts are clearly defined for 

Newtonian materials. The case of power-law materials is less straightforward, because 

strain rates enter the expression of the effective viscosities and these are not known a 

priory. As a first proxy, the applied far-field strain rate values may be used to evaluate 

the effective viscosities. However, due to the expected strain rate localization in the 

weak lubricant the calculated values will not correspond to the actual contrasts present 

in the experiment. Ten and Yuen (1999) have already pointed out that even a small 

difference in the B  values of clast and matrix behaving as power-law materials can 

result in large effective viscosity contrasts. This topic will be discussed in the section 

considering power-law behavior. 
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Due to the large overall and local strains expected for the problem, continuous 

remeshing was applied for the finite strain runs, whereby the surrounding box was kept 

rectangular and only the contours of the lubricant layer and the elliptical inclusion were 

actually moved, generating a new mesh for every time step. With this procedure, the 

danger of mesh distortion is eliminated and the only restriction on achievable strains 

result from the increasing memory usage due to the ever-growing number of elements, 

caused by the formation of tails and thinning of the lubricant around the ellipse. Since 

neither Newtonian nor power-law rheology exhibits memory apart from the geometrical 

configuration, this permanent remeshing does not introduce additional problems since it 

does not involve interpolation of the stress tensor that would be required by, for 

example, viscoelastic rheologies. 

 

 

CIRCULAR INCLUSIONS  

INITIAL STAGES 

The simplest type of inclusions are of circular shape since there is no dependence on 

orientation angle ψ . We therefore start to illustrate the problem for this basic shape. 

The characteristic effects of the presence of a lubricating layer on stress and strain rates 

are shown on in Figures 3 to 9. The parameters used to illustrate the problem are 

pressure, , effective strain rate, P eε , effective shear stress, eσ , and the inclination of 

the maximum stretching direction, θ . The convention used here is that compressive 

pressures are positive. We display pressure perturbation values only, i.e., an arbitrary 

lithostatic component may be added without any influence on the results. 
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a) b) 

  
c) d) 

Figure 3 

Rigid circular inclusion, no lubricant and perfect bonding between matrix and clast. 

For this and all other experiments the shear sense is top to the right. Note that only 

the region immediately surrounding the inclusion is displayed but the full model is 

much larger (c.f., Figure 2). /clast matrixη η =1000/1 

23 



  
a) b) 

  
c) d) 

 

Figure 4 

Weak circular inclusion, no lubricant and perfect bonding between matrix and clast.  

/clast matrixη η =1/1000 
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a) b) 

  
c) d) 

 

Figure 5 

Rigid circular inclusion with a lubricant layer. 

=10, H /lubricant matrixη η =1/10 
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a) b) 

  
c) d) 

 

Figure 6 

Rigid circular inclusion with a lubricant layer. 

=10, H /lubricant matrixη η =1/1000 
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a) b) 

  
c) d) 

 

Figure 7 

Rigid circular inclusion with a lubricant layer. 

=20, H /lubricant matrixη η =1/1000  
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a) b) 

  
c) d) 

 

Figure 8 

Rigid circular inclusion with a lubricant layer. 

=30, H /lubricant matrixη η =1/1000 
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a) b) 

  
c) d) 

 

Figure 9 

Rigid circular inclusion. Clast and matrix are power-law materials. 

=0, =3.3, =3.05, H clastn matrixn /clast matrixη η =10/1 
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In order to understand the influence of a lubricant layer on the inclusion behavior it is 

necessary to first look at the two most simple end-member cases of inclusions: the very 

competent and the very weak. For contrasting this two end-members of inclusions they 

are compared in Figures 3 and 4. Not unexpectedly, high pressures develop adjacent to 

the rigid inclusion in the two quadrants where simple shear streamlines impinge on the 

inclusion. The other two quadrants are in relative extension, show low pressures and 

would in nature be the potential sites for the development of pressure shadows (e.g., 

Passchier and Trouw, 1996). Due to the symmetry of the system, the absolute 

amplitudes of the pressure perturbations in all four quadrants are equal. The effective 

strain rate is lowest in the inclusion; the maximum shear stresses are, however, found 

within the inclusion. With the exception of the matrix close to the inclusion the 

maximum stretching direction is everywhere around 45°. 

If we introduce a weak instead of a strong inclusion not only the viscosity contrast is 

flipped but also p , eε , eσ  and θ . This means that compressive areas become 

extensive, regions with no shear strain rate become highly strained and the maximum 

shear stress is big where it was small before. The pressure in the inclusion is still zero, 

however, it is now the location of the highest effective strain rates and the lowest 

effective stresses. All of this although the applied simple shear boundary condition 

remained unchanged (top to the right). 

The significance of the Eshelby conjecture is shown by this two end-member cases: 

although changing the relative viscosity contrast completely changes the kinematic and 

dynamic parameters, the inside of the inclusion stays homogeneous with all displayed 

parameters having a constant value. The introduction of a slipping interface (Figure 5), 

achieved through the explicit introduction of a lubricating layer, results in a dramatic 

change to a heterogeneous stress and strain rate distribution in the inclusion, consistent 

with published analytical solutions (Shen et al., 2001). Qualitatively, the weak mantle 

allows propagation of the outside pressures into the inclusion. On the other hand, 

increasing lubrication (i.e., decreasing viscosity of the weak mantle) progressively 

inverses the pressure distribution in the matrix surrounding the inclusion so that, for a 

lubricant layer with viscosity of 1/1000 and a thickness of 10% (Figure 6), the originally 

compressive quadrants have become extensive and vice versa. The reason for this 

progressive change in the matrix pressure distribution is that, with decreasing viscosity 
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of the lubricant, the matrix does not “feel” the inclusion anymore, and the pressure 

distribution in the matrix comes to resemble the case of a weak inclusion (Figure 4). 

This effect is further amplified if the thickness of the lubricating layer is increased 

(Figures 7 and 8), thus progressively masking the rigid inclusion until the stress state in 

the inclusion is almost homogenous, as shown for the weak inclusion (Figure 8). 

The effect of the lubricant layer on the effective shear strain rate, eε , is that it acts as a 

strain concentrator and exhibits the highest effective strain rates. The amplitude of eε  

increases with decreasing lubricant viscosity, but decreases with increasing lubricant 

thickness. 

The influence of a lubricant layer on the effective shear stress is that, analogous to the 

behavior of , the matrix values approach the case of a weak inclusion with decreasing 

lubricant viscosity and increasing . The values of 

P

H eσ  in the lubricant are smallest. 

Interestingly the values within the clast decrease, with decreasing lubricantη  and 

increasing , from the rim, but remain highest in the center of the clast, an observation 

made previously by Kenkmann (2000). 

H

Another case where the Eshelby conjecture does not hold, even without the presence of 

a lubricant, is when the employed rheologies are Non-Newtonian (Figure 9). Here both 

materials, clast and matrix, have a power-law exponent n=3. The inclusion values 

become inhomogeneous only because of the Non-Newtonian character of the matrix, 

i.e., a power-law inclusion alone still follows the Eshelby conjecture. While the general 

features of the corresponding Newtonian case (e.g., Figure 3) are preserved the power-

law has an important influence on the viscosity distribution. Although the effective 

viscosity contrast was scaled, using the boundary condition strain rate values, to be 10:1 

its actual value is around 150:1 (Figure 9d) and follows the findings of Ten and Yuen 

(1999). The reason for the discrepancy between the predicted and the actual effective 

viscosity contrast is that the boundary condition strain rates not a reliable proxy for the 

effective strain rate that enters the expression of the effective viscosity of a power-law 

material, eqn. (3). Indeed it can readily be seen from the Newtonian case (Figure 3b) 

that the effective strain rate in the strong inclusion is very low and consequently the 

effective viscosities expected for a power-law material will be high. 
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EFFECT OF FINITE STRAIN 

The finite strain behavior is illustrated in  
Figure 10, based on the already discussed rigid circular inclusion with =10, H

/lubricant matrixη η =1/1000 (Figure 6). The achieved shear strain was γ =0.56 (cf. Figure 1 

for the definition of γ ). Although this is a relatively small γ  value, it is sufficient to 

significantly decrease the lubricant thickness in the compressive quadrants and to form 

tails. The geometry of the clast is φ -type (Passchier and Trouw, 1996) which would 

evolve into a σ -type with increasing strain (Ceriani et al., 2002). The stress distribution 

still closely looks like the corresponding initial situation, but the increasingly sharp the 

tail tips start acting as stress concentrators, like the tips of a crack (Jaeger and Cook, 

1979). 

Interestingly, the kinematics of the circular clast are almost unaffected by the presence 

of a lubricating layer (Figure 11). This is astonishing, given that in the presented case 

the lubricant viscosity is very small. Initially the synthetic rotation of the clast slows 

down and then accelerates to a value slightly higher than the analytical value of the 

perfectly bonded case, which is /ψ γ =-0.5. 

  
a) b) 
Figure 10 

Finite strain experiment with a circular inclusion. =10, H /lubricant matrixη η =1/1000. 
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Figure 11 

Comparison of the rotational behavior of the lubricated circular clast versus the 

analytical solutions derived for the perfectly bonded case. 

 

 

ELLIPTICAL INCLUSION 

INITIAL STAGES 

The fundamental behavior of an elliptical inclusion is discussed here using the example 

of an ellipse with an aspect ratio of 2:1, Figure 12. The basic characteristics of stress 

and strain rate distributions and amplitudes of the case of a circular inclusion (Figure 3) 

are preserved. However, the inclination of the inclusion, ψ , plays now also an 

important role (Figure 14). The introduction of a lubricant with lubricantη =1/1000 and 

=10 (Figure 13) already causes the pressure and effective shear stress to vanish 

within the inclusion. This reflects the analytical prediction of Stagni (1991) who found 

that an elliptical inclusion with imperfect bonding to the matrix should remain stress 

free when subjected to remote simple shear parallel to the long axis of the ellipse. The 

particular interface condition employed by Stagni was that the normal tractions are 

continuous but the shear tractions vanish. Vanishing stresses can also be observed for 

the vertical ellipse (Figure 15), which may simply be looked at as a degenerate case of a 

horizontal ellipse. 

H

33 



  
a) b) 

  
c) d) 

 

Figure 12 

Rigid elliptical inclusion with perfect bonding between clast and matrix. 

=0, H R =2, ψ =0° 
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a) b) 

  
c) d) 

 

Figure 13 

Rigid elliptical inclusion with a lubricant layer. 

=10, H /lubricant matrixη η =1/1000, R =2, ψ =0° 
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a) b) 

  
c) d) 

 

Figure 14 

Rigid elliptical inclusion with a lubricant layer. 

=10, H /lubricant matrixη η =1/1000, R =2, ψ =45° 
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a) b) 

  
c) d) 

 

Figure 15 

Rigid elliptical inclusion with a lubricant layer. 

=10, H /lubricant matrixη η =1/1000, R =2, ψ =90° 
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a) b) 

  
c) d) 

 

Figure 16 

Rigid elliptical inclusion with a lubricant layer.  

Lubricant and matrix are power-law. 

=10, n =1, =3, =3, H clast matrixn lubricantn /lubricant matrixη η =1/10, R =2, θ =30° 
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a) b) 

 

Figure 17 

Effective viscosities corresponding to Figure 16. 

a) Effective viscosity values in the range 0.01:0.1. The lubricant values are almost 

everywhere ten times to low compared to the predicted value of 0.1 using the 

background strain rate. 

b) Effective viscosity values in the range 0.1:2. The matrix values are close to 1, the 

value predicted with the background strain rate. 

 

If power-law instead of Newtonian materials are used the Eshelby conjecture does not 

hold anymore, as already observed for the circular inclusion. The predicted effective 

viscosities are again incorrect. In particular the effective viscosities in the lubricant are 

approximately one order of magnitude wrong (Figure 17a), approximately 0.01 in most 

of the lubricant instead of the predicted 0.1. The reason are the high observed effective 

strain rates in the lubricant layer (Figure 16b). Interestingly the prediction of effective 

viscosity values largely holds for the matrix (Figure 17b), which is due to the 

corresponding eε  values, that do not deviate much from the predicted values deduced 

from the boundary condition. 
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FINITE STRAIN 

The finite strain behavior is illustrated based on the rigid elliptical inclusion with an 

aspect ratio of 2:1, =10 and H /lubricant matrixη η =1/1000 (Figure 13). The achieved shear 

strain was γ =.86. Again, this is a relatively small γ  but it is sufficient to substantially 

decrease the lubricant thickness in the compressive quadrants to form σ -type tails and 

bring the particle into a meta-stable position. As in the case of the circular inclusion the 

progressively increasing sharpness of the tail tips acts as a stress concentrator. 

In contrast to the circular case the introduction of a lubricant layer has a drastic effect on 

the kinematic behavior of the elliptical inclusion (Figure 11). Starting from its initial 

position parallel to the shear flow the inclusion rotates “backwards”, i.e., antithetically 

against the applied simple shear flow. With increasing shear strain the inclusion 

approaches a quasi-static inclination of approximately 30° to the shear plane. This 

inclination is not truly static due to continuous movement of lubricant towards the tails. 

With decreasing thickness the particle is expected to move towards the shear plane and 

eventually rotate again according to Jeffery’s theory. 

  
a) b) 

Figure 18 

Finite strain experiment with an elliptical inclusion performed to γ =.86. 
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Figure 19 

Comparison of the rotational behavior of the lubricated clast versus the analytical 

solutions derived for the perfectly bonded case. Aspect ratio of clast is 2:1. 

 

 

LUBRICATED INCLUSION ROTATION MAPS (LIRM) 

INTRODUCTION 

The introduction of a lubricant layer drastically changes the dynamics and the 

kinematics of elliptical inclusions. On the other hand, the progressive development of 

tails does not appear to significantly influence the dynamics or the kinematic behavior 

of the inclusion. The tails only slightly alter the stress distribution through the change in 

geometry of the lubricant layer. However, the stress distribution in the direct vicinity of 

the inclusion remains almost identical to the case of a lubricated porphyroclast without 

tails. Analogue modeling shows that the kinematic behavior is not changed by the 

presence of tails (Ceriani et al., 2002). The influence of the tails is purely one of mass 

balance – the formation of tails reduces the thickness of lubricant material around the 

inclusion. We therefore conclude that tail formation is not a first order effect and we test 

this hypothesis by comparing instantaneous, single time-step experiments with finite 
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strain experiments. This is done with the aid of so-called “lubricated inclusion rotation 

maps” (LIRM). Each LIRM summarizes several hundred single time step experiments 

in which, for a given aspect ratio and lubricant viscosity, the rotation rate ψ  and the 

lubricant thickness change rate , were measured as a function of orientation angle H ψ  

and lubricant thickness . H

 ( ,H f H )ψ=  (6) 

 ( ,g H )ψ ψ=  (7) 

where f  and  are constructed as lookup tables from more than 8000 numerical 

experiments. 

g

The reason why  is a key parameter is that it determines the lubricant behavior over 

the largest part of the inclusion surface, i.e., the sides parallel to the long axis. Hence  

controls if this channel-like region increases or decreases in thickness, in competition 

with the tails. In contrast to the tails, these lubricant channels exert tractions on the 

inclusion and therefore must be considered when studying the behavior of an elongated, 

lubricated inclusion. In fact, the comparison with a channel flow, driven by pressure 

gradients is even more appropriate if the pressure along the channel is taken into 

account. It is clear from the previous section that pressures are highest near the center of 

the channel and lowest in the pressure shadow zones into which the material is expelled.  

H

H

The two building blocks of a LIRM, ψ and  as a function of H ψ  and , are shown in 

Figure 20 and Figure 21, respectively, with the example of an inclusion of aspect ratio 

2:1 and lubricant viscosity 1/1000. As already demonstrated the introduction of a 

lubricant layer has a strong influence on the rotation rates (Figure 20). With increasing 

, the rotation rates go rapidly from Jeffery’s solution (zero lubricant) into a steady 

field in which back-rotation (positive 

H

H

ψ ) occurs for orientations close to the shear 

direction. In this case of a strong viscosity contrast between matrix and lubricant, this 

steady field is already reached with only 2% lubricant. Interestingly the ψ  field is 

always symmetric around 0ψ = . On the other hand,  is more sensitive to the amount 

of lubricant and does not show a steady state with respect to H . Based on the measured 

values of 

H

ψ  and  a first LIRM can be constructed (Figure 22).  H
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Figure 20 

Normalized rotation rate as a function of inclusion inclination and the thickness of 

the lubricant. The red line in the foreground represents the analytical solution from 

Jeffery. The black line is the zero rotation rate contour. Above the zero contour 

back-rotation occurs, below the rotation is synthetic. 

 

 

Figure 21 

Normalized thickness change rate as a function of inclusion inclination and the 

thickness of the lubricant. The black dotted line is the zero thickness change rate 

contour. 
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Figure 22 

LIRM for a lubricated inclusion of aspect ratio 2:1 and lubricant viscosity 1/1000. 

Thin straight arrows symbolize the inclusion flow direction derived from single time 

step experiments. Thick arrows show the path of actual finite strain experiments. 

The field of decreasing H (negative , light gray) is overlain by the field of back-

rotation (positive 

H

ψ , dark gray).  

The basic assumption of a LIRM is that the knowledge of ψ  and  from the 

instantaneous experiments are sufficient to describe the movement of an inclusion in the 

H

Hψ −  plane. The measured values of ψ  and  are hereby translated into velocity 

vectors in the 

H

Hψ −  plane. The amount of information needed can, however, be 

reduced to the position of the zero contours of ψ  and . These define entirely how a 

lubricated inclusion moves in the 

H

Hψ −  plane.  
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Inside the field bounded by ψ =0 (dark gray) back rotation occurs and the inclusion is 

rotated towards positive ψ  values. Outside this field, synthetic rotation takes place. If 

only the vertical velocity (due to ψ ) is taken into account, the entire zero contour of ψ  

would summarize the locations of stable orientations of the inclusion since the 

inclination should not change once the contour is reached. This is only true for the 

positive leg of the ψ

H

=0 line which acts as an attractor line, able to attract inclusions 

from the entire ψ −  plane due to the vertical periodicity of the system. The negative 

leg is instable and small disturbances will move the inclusion away from it towards the 

attractor line. Since the steady field of ψ =0 with respect to  is already reached here 

with ≈2% it is expected that natural inclusions with the given aspect ratio and 

viscosity contrast are most likely to be found at a positive inclination towards the shear 

plane of ≈35°.  

H

H

H

The interpretation of the =0 contour follows similar arguments. Inside the contour 

(light gray) the values are negative and hence the lubricant thickness decreases, which is 

to be expected for positive inclinations. Therefore the inclusion will be moved towards 

smaller  values inside the contour and the opposite is true for locations outside the 

contour. If the zero contours of  and 

H

H

H ψ  would intersect at positive inclinations a true 

stable attractor point would be found. This is however not the case here nor in any other 

experiment with no lubricant productivity, which will be discussed later. 

In order to verify the predictive power of LIRMs finite strain runs were performed with 

randomly chosen starting positions in Hψ −  plane and their trace plotted on the 

presented LIRM (Figure 22) . The lines follow the velocities derived from single time 

step experiments quite well and clearly indicate the attraction potential of the attractor 

line. This again demonstrates that the tails are not a key parameter in the mantled 

porphyroclast system. 

 

DEPENDENCE OF ATTRACTOR LINES ON LUBRICANT VISCOSITY 

The functionality of LIRM was discussed above with the example of a relatively high 

viscosity contrast between matrix and lubricant of 1000:1. In order to check the 

influence of the viscosity contrast on the position of the attractor line LIRMs were 
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constructed for a range of different viscosity contrasts. The resulting attractor lines are 

shown in Figure 23. The characteristic behavior is that with decreasing lubricant 

viscosity less lubricant material is needed for back rotation to occur, the field of back 

rotation becomes larger with respect to ψ  and tends towards a maximum value. If the 

viscosity of the lubricant is too close to the matrix value, no attractor line exists and 

hence no back rotation occurs. This was checked here with a lubricant value of 1/2, for 

which no back rotation occurred in the investigated  range. On the other hand, 

lowering the viscosity contrast below 1/1000 has no further significant influence on the 

results. The case of 1/50’000 was checked and yields almost identical values to the 

1/1000 case. 

H

 

 

Figure 23 

Attractor lines for an inclusion with aspect ratio 2:1. The viscosity contrast 

/lubricant matrixη η  is given on the right border. The field of back-rotation is a function 

of the viscosity contrast between matrix and mantle as indicated by the iso-viscosity 

contours. 
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ATTRACTOR MAPS 

The cases presented so far of inclusions with a given initial lubricant thickness are 

somewhat arbitrary since in natural mylonites the lubricant mantle would be expected to 

develop progressively during ongoing deformation. With the onset of deformation, local 

stress concentrations around the porphyroclast could lead to local cataclasis (e.g., Tullis 

and Yund, 1987) or crystal-plastic re-crystallization. Here it is important to note the 

difference in scaling between velocities and stresses. While, for given shear strain rate, 

the absolute values of the velocities around the clast decrease with decreasing size of the 

clast, this is not the case for the amplitudes of the local stresses. It is clear from 

dimensional and analytical arguments (Jaeger and Cook, 1979) that the stresses are 

independent of clast size and do not decrease with decreasing clast size, contrarily to 

proposed by Passchier and Simpson (1986). 

In order to account for productivity of mantle material during deformation we add a 

productivity rate, Π , to the LIRM. Π  is defined analogous to  and describes the 

change in the thickness solely due to the productivity. The total change in lubricant 

thickness is now the sum of Π +  and therefore the zero contour lines of the (total) 

thickness change rate will be altered, depending on the value of 

H

H

Π . The effect of this 

addition of Π  is shown in Figure 24. Note that the productivity values are given 

normalized with γ  and for readability of the plots multiplied by 100. 

 100
γ
Π

Π =  (8) 

We can express Π  as 

 100 100 dHH
dγ

Π = =  (9) 

Hence the meaning of the measured Π  value is that per one γ , /100Π  percent mantle 

material is produced. 
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Figure 24 

LIRM with added productivity for an ellipse with aspect ratio 2:1 and lubricant 

viscosity 1/1000. 

The important effect of adding  is that, for certain values, the zero contours of  

now intersect the attractor line. These intersection points are stable attractor points that 

attract inclusions from the entire 

Π H

Hψ −  plane and, once the attractor point is reached, 

the inclusion will remain in this inclination with the corresponding value of lubricant 

thickness for as long as the productivity Π  remains unchanged. For a given aspect ratio 

two parameters greatly affect the location of the attraction point: Π  and /matrix mantleη η  

(cf. Figures 23 and 24). Conversely, many points in the Hψ −  plane may become 

attraction points for a particular combination of Π  and / mantlematrixη η . 

In order to summarize the existence of attractor points for different aspect ratios, 

viscosity contrasts, productivity rates, and power-law exponents we have produced the 

attractor maps displayed in Figure 25.  
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a) R =2, =1, =1 b) lubricantn matrixn R =2, n =3, n =3 lubricant matrix

  
c) R =3, =1, =1 d) lubricantn matrixn R =3, n =1, n =3 lubricant matrix

  
e) R =6, =1, =1 f) lubricantn matrixn R =6, n =3, n =5 lubricant matrix

Figure 25 

Attractor maps for various aspect ratios and power-law exponents. 
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For given Hψ −  couples (and aspect ratio) the attractor maps yield the values of the 

matrix-mantle viscosity contrast and mantle productivity rate that allow the particle to 

maintain it’s inclination, ψ . The values of Π  and /matrix mantleη η  can be by interpolation 

between the corresponding iso-contour lines (solid=viscosity contrast, dashed=mantle 

productivity). The attractor maps also allow a comprehensive overview over the size of 

the fields in which stable inclinations occur and thus at which particle inclination back-

rotation is to be expected. In particular the attractor maps yield the maximum possible 

inclination angle.  

The characteristics of the attractor maps are: 

1. The iso-viscous attractor lines show, for all aspect ratios and rheologies, the 

same tendency, namely that decreasing the viscosity of the lubricant widens the 

field of back rotation in the Hψ −  plane.  

2. Once the viscosity of the lubricant is <1/1000 of the viscosity of the matrix the 

behavior of the inclusion is no more sensitive to further decreases in lubricant 

viscosity for the range of  considered. Zooming into the map would make the 

dependence on larger viscosity contrasts visible. 

H

3. Increasing the aspect ratio leads to a decrease in the maximum stable inclination 

angle. 

4. For all Newtonian rheologies, the lubricant viscosity has to be less than 1/2 that 

of the matrix for back rotation to occur (given that the maximum lubricant 

thickness is <=50). 

5. The introduction of power-law rheology increases the maximum stable 

inclination angle. 

6. The introduction of a power-law lubricant allows stabilization to occur already 

for an effective viscosity contrast of 1/2 (due to the underestimation of the actual 

effective viscosity contrast). 

7. Productivities that produce stable attractor points lie in the range 

0.22 100≤ Π ≤ , i.e., (0.002%-1%)*b per 1γ∆ = . 
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APPLICATION OF ATTRACTOR MAP METHOD 

VISCOSITY CONTRAST AND PRODUCTIVITY ESTIMATION  

The primary use of the presented attractor maps is for estimating the rate at which the 

clast material was turned into mantle material and for approximating the effective 

viscosity contrast between mantle and the matrix. The required information are simple 

geometrical parameters, measurable in the field or thin sections. This procedure is 

demonstrated with the example of the mica fish in Figure 26. The mica is embedded in a 

quartz rich matrix, the shear sense is top to the left and the shear plane is horizontal. 

Relative to the shear plane, the clast shows a positive inclination, which is assumed to 

be stable. The clast is surrounded by finer grained material that is derived from the clast 

and long but very thin tails exist, as indicated by the trace of fine grained mica material 

at the top right and bottom left of the clast. 

The geometrical parameters needed for the attractor map method are aspect ratio, 

inclination and mantle thickness. The first two parameters are easily determined and the 

values are  and / 3.a b = 5 ψ =14°. The attractor map that comes closest to the measured 

aspect ratio was generated for /a b 3= , which is assumed to be applicable. Since the 

clast is not perfectly elliptical, several ways exist in which to determine , as shown in 

the insert of Figure 26. However, the average value is around 

H

17H ≈ , and it is obvious 

from the corresponding attractor map, Figure 27, that variations on the observed scale 

are not significant. The measured values of ψ  and  allow for the construction of an 

intersection point on the attractor map. 

H

This intersection point yields the estimates of mantle material productivity and viscosity 

contrast between matrix and mantle material, which are found by interpolating between 

the solid lines (viscosity contrast) and dashed lines (mantle productivity). Doing this 

reveals that the viscosity contrast between the matrix and the mantle was rather small, in 

the range of 1:5 to 1:10. The mantle material productivity is approx. 2.5Π ≈ . Thus, if 

the position of the mica is indeed stable, it needs to produce 0.025% mantle material 

(relative to b) per γ  to maintain the present inclination. Both obtained parameters, the 

effective mantle-matrix viscosity contrast and the mantle material productivity rate, are 

in a reasonable range that may be expected for natural mylonites. 
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Figure 26 

Mica fish from the Dent Blanche nappe. Height of picture is 70µm. Shear sense is top to 

left, shear plane is horizontal. Measured aspect ratio is R=3.5, inclination ψ =14°, and 

mantle thickness is ca. H=17 (average of two different measurements). 

(Photo courtesy G. Pennacchioni) 

 

 

Figure 27 

Interpretation of Figure 26 on the 

corresponding attractor map. Solid 

are the iso-viscosity-contrast lines, 

dashed are the iso-mantle-

productivity lines (normalized →Π ).
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SHEAR STRAIN ESTIMATION 

The attractor map method has been derived as a tool for estimating the productivity of 

mantle material and the viscosity contrast between matrix and mantle. However, if it is 

possible to determine the total area of mantle material, M , we can use the mantle 

productivity value to estimate the total amount of shear strain. The corresponding 

equation is 

 100 M
cb

γ =
Π

 (10) 

where M  is the area of the mantle and  is the circumference of the ellipse. Since the 

exact expression of the circumference of an ellipse is an infinite series, we must use an 

approximated form. The simplest form is (given by Kepler (c.f., Kepleri, 1860)) 

c

  (11) (c aπ= + )b

which has a maximum error of 21%≈ . Better approximations, notably the ones by 

Ramanujan, can be found in Almkvist and Berndt (1988).  

The clast example given in Figure 26 has very narrow tails that are almost impossible to 

identify and consequently, the total mantle area is difficult to determine. Therefore, we 

demonstrate the shear strain estimation with a hypothetical case, Figure 28. The 

attractor map yields a mantle material productivity rate of 3Π ≈ . Substituting the 

additional geometrical parameters into eqn. (10), we obtain a shear strain approximation 

of 5.3γ ≈ .  

Cases like the one shown in Figure 26 where the area of the mantle material cannot be 

determined, either because it is to narrow at places or dissolved, may still yield shear 

strains if the original size of the clast can be estimated. In Figure 28a), the dashed black 

line represents such a hypothetical original clast. In nature, statistics of clast sizes inside 

and outside shear zones may be used to approximate the amount of mantle material 

produced. Or it may simply be assumed that the largest clast size outside the shear zone 

corresponds to the largest clast size within the shear zone. 
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The strain estimate formula for this case is  

 100 1o

c

b
b

γ
 

= Π  
−   (12) 

where b  and  are the original and current minimum clast radius, respectively.  o cb

More generally, the method may be applicable to polyphase rocks that show a distinct 

orientation and grain size when subject to shear, a hypothesis that should be tested 

either by laboratory experiments with torsion rigs, with field examples or numerically. 

 

 

LIMITATIONS OF THE ATTRACTOR MAP METHOD 

In order to be able to tackle the complexity of the mantled porphyroclast system we 

have restricted our investigation to elliptical shapes. Clasts in natural mylonites can 

have more complex forms. However, it has been shown by Ferguson (1979) and Arbaret 

et al. (2001) for the classical Jeffery solution that even if strongly non-elliptical objects 

are used, the ellipse shape based theory remains an excellent approximation of the 

rotational behavior. We expect to see a similar insensitivity to actual clast shape 

concerning the validity of the presented attractor maps. Indeed, Mancktelow et al. 

(2002) have shown that lubricated rhomboidal particles show the same characteristic 

back-rotational and stable inclination behavior as observed here.  

Another objection that might be considered is that natural clasts with systematic 

orientation are observed but they do not have a mantle. It is likely that such clasts have 

an imperfect bonding to the matrix which can be looked at as the limiting case of a 

lubricant layer, where the thickness goes to zero, normal tractions are continuous but 

shear tractions vanish. Therefore the clast behavior will effectively follow the 

descriptions above. Yet, the attractor maps will not be applicable since there is no actual 

lubricant layer that is perfectly bonded to the clast and the matrix. 

Previous explanations of systematic clast stabilization have been mostly based on the 

combined effect of pure and simple shear. Here we focus only on simple shear and 

ignore possible pure shear components. If an additional pure shear component is present 

the results may be altered, however, mylonites are characterized by the large amounts of 
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shear displacement accumulated in relatively narrow zones and therefore clearly simple 

shear dominated the system. Under these conditions, the combined pure and simple 

shear theory does not exhibit stable inclinations and can be ruled out. We therefore 

conclude that, apart from very particular cases, the effects of contemporaneous pure 

shear are minor. 

Care has been taken to avoid boundary or clast interaction effects. This simplifies the 

analysis but is to some extent unrealistic since the clast densities in mylonites may lead 

to clast interaction. It has been shown by Ildefonse et al. (1992) that the interaction 

effects become significant if individual clasts are closer than one diameter, and this 

distance is assumed to be the limit of applicability of the presented work. 

Another important aspect is that natural shear zones accommodate large amounts of 

strain through strain partitioning whereby large areas do not deform much and most 

strain is concentrated in the narrow zones that make up the so-called C-S fabrics (Berthe 

et al., 1979; Lister and Snoke, 1984). If a C-S fabric is present then local shear flows 

may differ from the bulk shear and consequently the shear strain recorded by a clast 

may not be representative for the bulk of the rock mass. 

 

 

CONCLUSIONS 

We have investigated the mantled porphyroclast in a shear zone as a three phase system 

where the viscosity of the mantle material is lower than the matrix and the “rigid” clast. 

The introduction of a weak mantle has a strong influence on the distribution and 

amplitudes of effective strain rates, pressures and maximum shear stresses. The most 

prominent effects of the weak mantle are found in the clast kinematics. We have shown 

that for a large set of parameters the clast has meta-stable positions that are always at 

positive inclinations relative to the shear plane and direction. In order to reach this 

positions the clast can either rotate with the applied shear or against it, depending on the 

starting position. If a mantle material productivity rate is added, which is clearly the 

case in nature, stable inclination angles result. These inclination angles range from 40° 

to 0°, depending on the viscosity contrast between matrix and mantle, the power law 

exponent of the materials, the thickness of the mantle, the mantle material productivity, 
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and the aspect ratio. Generally the stable inclination angle decreases with growing 

aspect ratio, which is in agreement with observations of clasts in natural shear zones 

(ten Grotenhuis et al., 2002). 

Systematic investigation of the behavior of the lubricated clast in a shear zone results in 

attractor maps. These maps are a novel tool for estimating the mantle material 

productivity and the viscosity contrast between mantle and matrix by means of simple 

geometrical parameters. In combination with the area of the clast and the mantle, the 

knowledge of the mantle material productivity rate yields an approximation for the total 

shear strain. In absence of conventional shear strain markers, such as vein offsets, the 

new method is the only tool that can provide estimates for the shear strain.  
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APPENDIX - CHECKS VERSUS ANALYTICAL SOLUTIONS 

In order to check the numerical code for the specific problem, several finite strain runs 

with a rigid clast in a weak matrix ( /clast matrixη η =1000) were performed and compared to 

the solutions of Jeffery (1922) and Ghosh and Ramberg (1976). Since continuous 

remeshing is applied the achievable strains are unlimited and the experiments simply 

stopped after they had eaten enough CPU time. The comparison shows that numerical 

values coincide with the analytical solutions. The only case where a slight deviation is 

observed is for large γ  values in the ψ γ−  plot. This is due to the accumulation of 

smallest deviations from the analytical values that add up in this plot since it is plotted 

versus γ  together with the application of a simple time stepping scheme (Euler).  
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a) b) 

 

Figure 29 

Comparison of numerical code versus analytical solutions. 

a) Circular inclusion 

b) Elliptical inclusion with aspect ratio 2:1 
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Equation Chapter 1 Section 1 

CHAPTER 3: ANALYTICAL SOLUTIONS FOR 

DEFORMABLE ELLIPTICAL INCLUSIONS IN GENERAL 

SHEAR 

 

 

(This chapter is submitted to “Geophysical Journal International” by Daniel W. Schmid and Yuri Yu. 

Podladchikov) 

 

 

SUMMARY 

Using Muskhelishvili’s method, we present closed-form analytical solutions for isolated 

elliptical inclusions in general shear far-field flows. The inclusion is either perfectly 

bonded to the matrix or to an intermediate layer, termed the “mantle”. The solutions are 

valid for incompressible all-elastic or all-viscous systems. The actual values of the shear 

modulus or viscosity in the inclusion, mantle and matrix can be different and no limits 

are imposed on the possible contrasts. The presented solutions are complete two-

dimensional solutions and the parameters that can be analysed include all kinematic 

(stream functions, velocities, strain rates, strains) and dynamic parameters (pressure, 

maximum shear stress, etc.). Refraining from giving the tedious derivation of the 

presented solutions we focus on how to use the solutions, how to extract the parameters 

of interest and how to apply and verify them. Since we want to demonstrate the 

usefulness of Muskhelishvili’s method for slow viscous flow problems, we apply our 

results to the mantled porphyroclast in a shear zone. Another important application is 

the benchmarking of numerical codes for which the presented solutions are most 

suitable due to the infinite range of viscosity contrasts and the strong local gradients of 

properties and results. In order to stimulate a more widespread use of the 

Muskhelishvili’s method, all solutions are implemented in MATLAB and downloadable 

from the web. 

61 



INTRODUCTION 

The aim of this paper is threefold: i) to demonstrate the power of Muskhelishvili’s 

complex variable method (Muskhelishvili, 1953) for solving two dimensional viscous as 

well as elastic problems, ii) provide a set of analytical solutions that are of major 

importance for various geological and geophysical applications, and iii) present a set of 

benchmarks that allow thorough testing of numerical codes solving incompressible, 

variable viscosity problems in two dimensions. 

 

OVERVIEW MUSKHELISHVILI METHOD 

The original motivation for the development of the Muskhelishvili method was to 

obtain analytical formulae for stress concentration around holes and recesses in 

engineering structures and machines (Savin, 1961). This was important because it had 

been noticed that, for example, canon holes in battle ships may cause a large reduction 

in strength so that even collisions with small vessels could cause the battle ship to break 

apart (Muskhelishvili, 1953). Kolosov (1907) first derived the analytical expression for 

stress concentration around an elliptical hole through the use of complex potentials. In 

the twenties and early thirties, Muskhelishvili generalized the method through the use of 

conformal mapping. With his method it is possible to solve the problem of an elastic 

plate containing holes of virtually any shape and many other problems of torsion, 

contact and bending. His work was published in book form in 1933 as “Some 

fundamental Problems of the Mathematical Theory of Elasticity” and the English 

translation became available in 1953. 

Based on this historical excursion it may seem that the method is restricted to problems 

in elasticity. However, the instantaneous elastic and viscous problems are 

mathematically identical and, therefore, the method is equally valid for problems of 

slow viscous flow. Another perception may be that the method is only applicable to 

holes or voids. In fact, the method is mainly applied to problems involving voids such 

as cracks or tunnels (e.g., Jaeger and Cook, 1979), yet it is not limited to such 

applications as we will show here. 
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GEOLOGICAL RELEVANCE 

In order to demonstrate the power of Muskhelishvili’s method for problems of slow 

viscous flow, we will provide the analytical solutions for three different problems and 

emphasize how to use them. The solutions given are applicable to many different 

problems in geology and geophysics. We choose here to principally relate the solutions 

to the mantled porphyroclast in a mylonitic shear zone. The term “mantled 

porphyroclast system” is defined as follows (cf. Figure 1): a two-dimensional, mantled 

porphyroclast system  

1. is a three phase system (clast, mantle and matrix), with three, possibly different, 

viscosities 

2. is subjected to general shear, i.e., any combination of arbitrary inclined pure and 

simple shear 

3. contains inclusion and mantle with elliptical shapes that are confocal 

4. includes all degenerate cases such as circular shapes, infinite aspect ratios and 

zero mantle thickness. 

The classical analytical solution for this problem was determined by Jeffery (1922) who 

derived the complete three dimensional solution for the rotational behaviour of a rigid 

ellipsoidal inclusion in a Newtonian matrix deforming in simple shear. By combining 

Jeffery’s and Muskhelishvili’s solutions, Ghosh and Ramberg (1976) derived how a 

rigid elliptical inclusion behaves in general two-dimensional shear. Yet, both Jeffery’s 

and Ghosh and Ramberg’s solutions only describe the kinematics of the rigid inclusion 

and do not give the dynamic parameters such as the stress components. In recent years 

interest in obtaining the distribution and amplitudes of the stresses in and around 

inclusions has been expressed. The pressures and differential stresses around inclusions 

are needed to interpret localized metamorphic reactions (e.g., Simpson and Wintsch, 

1989) and for understanding deformation mechanisms (e.g., Kenkmann and Dresen, 

1998). Local stress deviations caused by the presence of almost rigid clasts may, for 

example, cause over- or under-pressures in the geologic system that can hamper the P-T 

path interpretation and hence, the conversion of pressures into burial depth (e.g., 

Tenczer et al., 2001). Another shortcoming of the mentioned solutions is that they are 

strictly only valid for infinite viscosity contrasts between the clast and matrix. There is 
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no existing solution used for the analysis of deforming media that accounts for clasts 

that are either mantled or do not have perfectly bonded interfaces. Since finite viscosity 

contrasts and slipping interfaces are more likely to be the normal case than the 

exception, it is essential to have the analytical solution of the mantled porphyroclast 

system, not only in terms of kinematics, but also dynamics. The similarity between the 

mantled clast and the slipping interface clast is that at the limit of vanishing mantle 

viscosity and small mantle thickness, the normal traction and velocity are continuous 

through the interface, but the shear tractions and tangential velocity vanish, which are 

the characteristics of a slipping interface. Thus, the slipping interface clast is an end-

member case of the mantled clast.  

Two relatively straightforward methods are available to obtain exact analytical solutions 

for the described problem: the mentioned Muskhelishvili method and Eshelby’s solution 

(Eshelby, 1959). The solution found by Eshelby is capable of dealing with three-

dimensional spherical inclusions and is used frequently in fracture mechanics (e.g., 

Rice, 1968). It has also been used occasionally to analyse the behaviour of clasts in 

viscous shear flows (Bilby et al., 1975; Freeman, 1987). However, even proponents of 

Eshelby’s solution affirm that “for plane strain or plane stress inhomogeneity problems, 

the complex potential method of Muskhelishvili (1953) is more effective than the 

equivalent inclusion method (i.e., Eshelby’s solution)” (Mura, 1987).  

The interest in isolated lubricated or perfectly bonded particles is not restricted to the 

geological community but is in fact inherent to a many other fields of science. The 

importance of the behaviour of composites has mainly stimulated researchers in recent 

years to derive the analytical solution for problems similar to the one posed here. As 

expected, the methods used are those of Eshelby and Muskhelishvili. Since the relevant 

references stem from different fields of science, it is difficult to answer the question 

concerning who the original authors of the principal solutions are. Additional 

complication comes from the fact that a large portion of the literature was originally 

written in Russian and was either never translated or is difficult to obtain. The books by 

Muskhelishvili (1953) and Savin (1961) contain most of the individual building blocks 

that make up the described problem. Therefore, we leave further research up to the 

interested reader and simply list the related literature: Mura (1987), Stagni (1991), 
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Furuhashi et al. (1992), Huang et al. (1993), Gao (1995), Ru and Schiavone (1997), 

Shen et al. (2001). 

Common findings of the more recent works are that (1) the Eshelby conjecture does not 

hold for imperfect bonding between matrix and clast, and (2) the lubricated ellipse does 

not have a closed-form solution. The first finding simply means that the stress and strain 

(rate) components inside the inclusion cannot be described by a single value, which is 

the case for the perfect bonding between clast and matrix. The second finding means 

that the solution is an infinitely long series (Shen et al., 2001). For this reason we refrain 

from presenting the mantled elliptical inclusion here. Instead we concentrate on the 

cases for which finite series solutions can be found. 

 

NUMERICAL CODE BENCHMARKING 

The merit of analytical solutions is that they are the final answer to the question asked. 

In addition the answer to the follow-up questions are usually directly deducible from the 

solutions found. This is especially true for Muskhelishvili solutions which are complete 

two dimensional solutions and come with a set of rules on how to extract any desired 

kinematic or dynamic parameter. Yet, cases for which analytical solutions can be found 

are the minority and generally asymptotic methods (e.g., Barenblatt, 1996) combined 

with numerical models must be used instead or in addition. Nevertheless, analytical 

solutions retain their importance because numerical codes must be tested. The majority 

of analytical benchmark tests in use are restricted to essentially one dimensional 

viscosity profiles (Moresi et al., 1996). These may be difficult enough as demonstrated 

by Pelletier et al. (1989), nevertheless two dimensional codes should be benchmarked 

versus appropriate analytical solutions. “Essentially one dimensional” refers to the 

category of tests that are based on linear stability analysis such as two-dimensional 

folding (e.g., Biot, 1961; Fletcher, 1974) or diapirism (Chandrasekhar, 1961). 

Mathematically, in these problems the viscosity contrast does not affect the left-hand-

side, i.e., the stiffness matrix of the system, but only contributes to the right hand side of 

the system of linear equations generated by the discretisation process. These problems 

do not account for any interaction between different harmonics (in frequency space) and 

are therefore only partly suitable for two dimensional benchmarking. 
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The solutions presented here implement genuine two dimensional problems. The 

complete solution is described using simple polynomials for complex potentials. The 

entire viscosity contrast range is covered and strong local gradients of properties and 

solutions can be present (such as within the rim), features which are crucial for proper 

code benchmarking. 

 

SOLUTION IMPLEMENTATION AND AVAILABILITY 

We choose to present the solutions without cumbersome derivation, because it is our 

aim to demonstrate how the basic set of equations allows for the derivation of any 

desired parameter and how the results can be applied and verified. Naturally, the 

solutions fulfil mass and force balance, rheological equations and far-field boundary 

conditions. They are obtained by matching the tractions and the velocities through the 

interfaces and solving the linear system of equations for the coefficients of the 

polynomial representations of complex potentials. In the same manner one can verify 

the presented solutions.  

In order to stimulate a more widespread use of Muskhelishvili’s method in general, and 

application of our results in particular, all MATLAB scripts used within this paper will 

be made available. MATLAB can directly deal with complex numbers and is therefore 

most suitable for visualizing solutions in terms of complex potentials. In addition, the 

scripts generate color plots that are more meaningful than the grayscale images 

presented here. The scripts are downloadable free of charge through the e-collection of 

the ETH Zürich under http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=188. 

Figures in this paper that have a corresponding MATLAB script contain the name of the 

generating script in brackets at the end of the figure caption. 

 

 

BRIEF REVIEW OF MUSKHELISHVILI’S METHOD 

An in-depth introduction to Muskhelishvili’s method is beyond the scope of this paper. 

Instead we will just provide the most important equations and describe how the various 

parameters of interest can be extracted from the obtained solution. Since the 
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documentation of Muskhelishvili’s method is not easily obtainable, we give a few, 

hopefully helpful, references. Readers who are completely unfamiliar with the concept 

of complex potentials may start with the related fields of fluid dynamics, heat 

conduction and electrostatics, where the equations are Laplacian instead of double 

Laplacian, and consequently the solutions are simpler (only one complex potential). In 

addition, more literature on this subject exists, for example, the classical textbook by 

Batchelor (1967) and the very detailed introduction by Spiegel (1964). Muskhelishvili’s 

method is best explained in the original author’s work. This book is not common to all 

libraries and we allow ourselves to point out that it is available again through Kluwer’s 

“Printing on Demand” (PoD) program; unfortunately at a somewhat expensive price. A 

more recent book providing a detailed introduction to the subject is Lu (1995). Readily 

accessible is the book by Jaeger and Cook (1979) which gives quite a broad introduction 

to the use of the method, mainly for the concentrations of stress around holes. 

 

BASIC SET OF EQUATIONS 

Muskhelishvili’s method makes use of the fact that problems in two dimensions can 

conveniently be expressed in terms of a complex coordinate . This is related to the 

usual, real 

z

x y−  Cartesian coordinates through 

  (1) z x iy= +

where i  is 

 1i = −  (2) 

In polar coordinates we can write z as  

 cos sinz r irθ θ= +  (3) 

where  is the radius, or the distance of the point to the origin and the angle r θ  is a 

measure of the angular distance to the horizontal. The latter form can be further 

converted with Euler’s formula to  

 iz re θ=  (4) 

The basis of the Muskhelishvili method is that the bi-harmonic equation, which 

describes the two-dimensional plane stress or plane strain elasticity problem, has a 
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general solution that can be expressed in terms of two complex functions,  and 

. The conditions imposed on 

( )zφ

( )zψ ( )zφ  and ( )zψ

ln( )z

 are that they must conform with the 

applied boundary conditions and be analytic, i.e., satisfy the Cauchy-Riemann equations 

(e.g., Jaeger and Cook, 1979). In simple terms, this means that complex potentials must 

be “normal” functions of z, such as , , , but not sin( )z 2z z ,  or ℑ . The 

over-bar denotes conjugation, ℜ  means the real part and 

( )zℜ ( )z

ℑ  the imaginary part. 

As already mentioned the instantaneous elastic and viscous problems are identical and 

the method equally applicable. Since we advocate a more widespread use of the method 

to slow flow problems, we provide here the three fundamental equations of the 

Muskhelishvili method for slow, incompressible, viscous flow in plane strain: 

  (5) ( )(4xx yy zσ σ φ′+ = ℜ )

 ( ) ( )
2

yy xx
xyi z z z

σ σ
σ φ ψ

−
′′ ′+ = +  (6) 

 ( ) ( ) ( )
2x y

z z z z
v iv

φ φ ψ
µ
′− −

+ =  (7) 

xxσ , yyσ  and xyσ  are the components of the stress tensor, v  and  are the horizontal 

and vertical velocities, 

x yv

µ  is the viscosity of the material for which  and  are 

valid, prime and double prime denote the first and second derivatives versus . Once 

the analytical expressions of  and 

( )zφ ( )zψ

z

( )zφ ( )zψ  are obtained, stresses, velocities and a 

variety of other parameters can be evaluated. For example, the pressure ( p ) is obtained 

through eqn. (5) as  

 ( )(2 )p zφ′= − ℜ  (8) 

Since the force balance equations determine the pressure only up to a constant, p  is the 

pressure perturbation, i.e., an arbitrary (lithostatic) value may be added without any 

influence on the result. The sign convention used is that compressive pressure 

perturbations are positive.  

Another useful parameter is the effective or maximum shear stress (τ ), which is 

calculated as (e.g., Ranalli, 1995) 
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2

2
xx yy

xy

σ σ
τ σ

− 
=  

 
+  (9) 

The Cartesian components of the velocity, v  and , are obtained from eqn. (7) by 

taking the real and imaginary parts, respectively. Another practical parameter for the 

analysis of two-dimensional flows is the stream function,

x yv

Θ , (Turcotte and Schubert, 

1982). The contour lines of  are used to visualize the flow of individual particles in 

steady state. The Cartesian definition of the 

Θ

Θ  is 

 ( ),
x

x y
v

y
∂Θ

= −
∂

 (10) 

 ( ),
y

x y
v

x
∂Θ

= +
∂

 (11) 

Hence,  can be obtained by integrating either v  or v . Θ x y

 

Figure 1 
Setup of circular inclusion problem. A clast with radius r  is embedded in a matrix and 
subjected to combined pure and simple shear far-field flows. In the case of a mantled 
circular inclusion, a layer of constant thickness is introduced between clast and matrix. 
The layer-matrix interface is defined through radius r . The origin of all coordinate 
systems is chosen to be the centre of the clast. The position of a point P in the z-plane can 
be expressed by three different coordinate systems, P( ), P(

c

p

l

z px , ), P( r ,py p pθ ). Note that 
the presented analytical solutions are based on the assumption  that the box boundaries 
are far from the clast and hence the size ratio of the box to the rest is not to scale. 
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FAR-FIELD FLOW EXPRESSIONS IN COMPLEX POTENTIALS 

The kinematic boundary condition used in this work are pure shear (ps) strain rate, ε , 

and/or simple shear (ss) strain rate. In terms of complex potentials we write: 

 

Pure Shear 

  (12) ( ) 0
ps

zφ =

 ( ) 2
ps

z zψ µ ε= −  (13) 

which through (7) give 

 x yv iv zε+ =  (14) 

using the identity given in eqn. (1) the typical pure shear flow field is obtained 

 xv xε=  (15) 

 yv yε= −  (16) 

 

Simple Shear 

 ( )
2ss

iz zφ µ γ= −  (17) 

 ( )ss
z i zψ µ γ=  (18) 

 ( )
2x y
iu iv z z γ+ = − −  (19) 

 xv yγ=  (20) 

  (21) 0yv =
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General Boundary Conditions 

The addition of these shear flows yields the genera, combined pure and simple shear 

(gps) boundary conditions: 

 ( )
2gps

i zz µγφ = −  (22) 

 ( ) ( )2
gps

z i zψ γ ε µ= −  (23) 

 

 

CIRCULAR INCLUSION 

SOLUTION 

The circular inclusion in a matrix of different viscosity subject to the general boundary 

conditions can be solved with Muskhelishvili’s method and a detailed account for this 

problem has been given in Jaeger and Cook. Naturally, we need two sets of  and 

 to describe the result. One set, 

( )zφ

( )zψ ( )c
zφ  and ( )c

zψ , describes the result within the 

inclusion/clast and is valid from the origin, chosen to be the centre of the clast, to the 

clast radius, r . The second set of complex potentials, c ( )m
zφ  and , determines 

the solution in the matrix. Subscripts “c” and “m” are used to distinguish clast and 

matrix values, respectively. 

( )m
zψ

Clast 

 ( )
2 cc

iz zφ µ γ= −  (24) 

 ( ) ( )2 2 c m
c

c m

z i zµ µψ γ ε
µ µ

= −
+

 (25) 

Matrix 

 ( ) ( ) 2 12
2 mm

iz z i Aφ µ γ γ ε cr z−= − − +  (26) 
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 ( ) ( ) ( ) 4 32 2mm
z i z i Ar zψ γ ε µ γ ε c

−= − − +  (27) 

with 

 ( )m c m

c m

A
µ µ µ
µ µ

−
=

+
 (28) 

 

APPLICATIONS 

Clast Kinematics 

With this solution in terms of complex potential solution, it is possible to derive useful 

expressions such as the complete kinematics of the clast by plugging  and  

into the velocity expression (eqn. (7)): 

( )c
zφ ( )c

zψ

 ( )2
2

m
x y

m c

iv iv i z zµ γ ε
µ µ

+ = + −
+

γ  (29) 

This expression is valid for all possible viscosity contrasts between clast and matrix and 

for arbitrary combinations of simple and pure shear. It allows us to study the rotational 

behaviour of a circular clast in a mylonitic shear zone. Jeffery (1922) has shown that the 

rigid inclusion rotates with a rate that is half the applied shear rate. In order to reproduce 

this result, we need to derive the rotation rate, ω , that is inherent to eqn. (29). In 

Cartesian coordinates the rotation rate is defined as  

 1
2

yx vv
y x

ω
∂ ∂

= − + ∂ ∂ 
  (30) 

and is closely related to the shear strain rate, xyε , that is  

 1
2

yx
xy

vv
y x

ε
∂ ∂

= + ∂ ∂ 


  (31) 

Hence in simple shear only ( 0ε = ), the clast rotation rate, inherent to eqn. (29) is  

 
2
γω = −  (32) 
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which is identical to Jeffery’s result. If we apply a top to the right (positive) shear strain 

rate, then the clast rotates with the simple shear flow in a clockwise sense, at a rate that 

is half the applied shear rate. However, the rotation rate which we derived is not only 

valid for rigid clasts, but for arbitrary viscosity contrasts between clast and matrix. 

Therefore the factor two difference between the applied shear rate and the rotation rate 

persists independently of the actual viscosities. However, only the kinematics of the 

infinitely rigid inclusion are reducible to a rigid body rotation. All other circular clasts 

will show some shear deformation that is  

 m
xy

m c

µε γ
µ µ

=
+

 (33) 

As predicted 0xyε →  for cµ →∞

0c

 and the maximum shear rate is obtained for the 

infinitely weak inclusion, µ → . Naturally when c mµ µ=  the shear strain rate in the 

clast is equal the far-field value in the matrix. It is noteworthy that already a clast that is 

only a hundred times more competent than the matrix will already exhibit a shear 

deformation that is smaller than one percent of the matrix value. This could be used as a 

viscosity contrast measure in shear zones. 

 

Clast Dynamics 

One of the driving forces of phase transitions and metamorphic reactions is the pressure. 

The pressure inside the clast is obtained by plugging ( )c
zφ  into eqn. (8) which yields 

 0  (34) cp =

Eqn. (34) holds irrespective of the boundary conditions and viscosities – the clast itself 

stays at the background (lithostatic) pressure.  

The second important driving force is the differential or maximum shear stress, cτ . 

Analogous to the pressure cτ  inside the inclusion has the property that it can be 

described with one single constant value  

 2 22 4 c m
c

c m

µ µτ ε γ
µ µ

= +
+

 (35) 
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In the case of an infinitely weak inclusion the maximum shear stress vanishes. In 

contrast, for the rigid inclusion, cτ  is a function of the kinematic boundary conditions 

and the viscosity of the matrix: 

 2 22 4c mτ ε γ µ= +  (36) 

This value is likely to be characteristic for most competent clasts since a viscosity 

contrast between clast and matrix of 10:1, yields already a maximum shear stress value 

that deviates less than 10% from the cµ →∞  case. 

 

Matrix Dynamics 

The matrix values of p  and τ  do not show the property of single constant values 

sometimes referred to as “Eshelby conjecture” (e.g., Mura, 2000), but are by no means 

more complicated to derive. Using the given complex potentials of the matrix, the 

pressure is 

 ( )2
2

22 m c m
m c

c m

ip r
z

µ µ µ γ ε
µ µ

− += − ℜ+  

  (37) 

Reverting to polar coordinates this expression simplifies to  

 ( ) ( ) ( )(
2

22 sin 2 2m c m c
m

c m

rp
r

µ µ µ )cos 2γ θ ε θ
µ µ

−
= − +

+
 (38) 

If we are interested in the matrix pressure on the clast-matrix boundary we simply set 

 to obtain cr r=

 ( ) ( ) ( )(2 sin 2 2 com c m
m

c m

p
µ µ µ )s 2γ θ ε θ
µ µ

−
= − +

+
 (39) 

We can immediately see that in simple as well as pure shear there are two pressure 

maxima and minima along an entire clast circumference. The amplitudes of these 

extrema depend on the viscosities and the applied far-field flow, but not on the clast 

size. This is also the case for all other stress and strain rate components and contradicts 

the proposition of Passchier and Simpson (1986) that the amplitude of the driving forces 

of clast re-crystallization should decrease with decreasing clast size. It is also important 
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to realize that pressure, in contrast to for example traction components, is not required 

to be continuous through an interface ( 0cp =  within the inclusion). 

Plotting eqn. (39) for various viscosity contrasts and simple shear only results in Figure 

2. As for the differential stresses in the clast ( cτ ), we see that the infinite viscosity 

contrast pressure limit is approached rapidly and therefore this limit may be taken to be 

representative for the majority of natural clasts. 

 

 

Figure 2 

Pressure around cylindrical inclusions with different clast-matrix viscosity contrasts in 

simple shear. θ  is in Figure 1. 

(The name of the generating Matlab script is cyl_p_interf.m) 

The value of this infinite pressure limit is obtained by setting cµ →∞  and 3 4θ π=  

which results in  

 2m mp µ γ=  (40) 

Therefore the maximum over-pressure in the matrix is two times the applied far-field 

stress ( mµ γ ). Tenczer et al. (2001) obtained a normalized pressure value of 1.5 (see 
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their Figure 5). Interestingly, their numerical Newtonian experiments clearly agree with 

the theory presented here, but still show an approximate error of ca. 7% from the correct 

solution. This is a case where proper benchmarking could have been fruitful in order to 

determine the resolution required and the efficiency of the numerical implementation. 

Only afterwards more complex rheologies such as power-law should be modelled. 

Eqn. (39) is equally applicable to competent as well as to weak inclusions ( c mµ µ< ). 

Thus we are able to plot the matrix pressures extrema at the interface and 3 4θ π=  for 

the entire range of /c mµ µ  (Figure 3). The behaviour of the weak inclusion is the 

inverse of the competent inclusion, i.e., the loci of compression become extensive and 

vice versa. This is interesting, because the applied simple shear far-field flow is still the 

same, i.e., the top left and the bottom right quarter (relative to the clast) are still 

“streamed” at by the background component of the flow. However, if the clast is weaker 

than the matrix this quadrants go into relative extension, while the originally extensive 

quadrants become compressional (cf., Figure 6b in Tenczer et al., 2001). It can be 

shown that this is characteristic for all dynamic and kinematic parameters. 

 

Figure 3 

Pressure extrema in the matrix as function of /c mµ µ . (cyl_p_interf_max.m) 

76 



 

Figure 4 

Pressure field around competent clast embedded in a weak matrix and subjected to 

simple shear. (cyl_p_matrix.m) 

 

%CYL_P_MATRIX.M  
%FAR-FIELD FLOW - VISCOSITIES - GEOMETRY 
gr = 1; 
er = 0; 
mm = 1; 
mc = 1e6; 
rc = 1; 
 
%PRESSURE CALCULATION IN THE Z-PLANE 
[X,Y] = meshgrid(-2:.01:2); 
Z = X+i*Y; 
P = -2.*mm.*(mc-mm)./(mc+mm).* ... 
   real(rc^2./Z.^2.*(i*gr+2*er)); 
P(abs(Z)<rc) = NaN; 
 
%PLOTTING 
pcolor(X,Y,P) 
axis image; 
shading interp; 
hold on; 
contour(X,Y,P, [-1.5,-1,-.5,0,.5,1,1.5], 'k'); 
colorbar('horiz'); 
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Eqn. (37) does not only contain interface information, but was in fact derived to show 

the complete analytical expression for the two-dimensional pressure perturbation field 

outside a circular clast, cf. Figure 4. Since complex numbers, potentials and cryptic 

letters like ℜ  have a certain deterrence potential we demonstrate the ease of using eqn. 

(37) explicitly by means of the complete MATLAB script that produces Figure 4. 

Although based on a simple script, Figure 4 displays the entire characteristics of 

pressure perturbations around rigid clasts in simple shear. The size and the shape of the 

over- and under-pressure regions can be captured and hence the estimated dimensions of 

possible pressure shadows. The pressure field expectably shows a perfect point 

symmetry around the clast centre. Using a different method Masuda and Ando (1988) 

could not obtain this perfect point symmetry although their analytical series solution had 

24 terms. 

 

 

CIRCULAR INCLUSION WITH A RIM 

SOLUTION 

The circular inclusion with a rim is a three phase system where a zone of constant 

thickness (termed “layer” in the following) and possibly different viscosity is introduced 

between the clast and the matrix. Accordingly the solution consists now of three 

different sets of ( )zφ  and  for clast, matrix and layer for which the subscript “l” 

is introduced. Note that the solutions in clast and matrix are also altered due to the 

presence of the rim.  

( )zψ

The additional parameters introduced are the viscosity of the layer, lµ , and the radius of 

the layer-matrix interface, c.f., Figure 1. For geometrical reasons the condition imposed 

on r  is  l

  (41) lr r≥ c

cIf  the rim has zero thickness and the previous solution is recovered. In order to 

reduce the number of parameters involved we normalize by 

lr r=

mµ  and r . Therefore the c
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viscosities present are cµ  and lµ  and the remaining radius is , where the tilde means 

normalization. 

lr

iγ Q z

z

µ +

) 2ε

) l

(5 +

ε

)ε

) 7 2
i

−

() 8 +

8

Due to the increasing complexity of the geometry and number of parameters, the 

solution for the mantled circular inclusion is significantly more involved in terms of 

coefficients, but not in terms of the form of the solution: 

Clast 

 ( ) ( ) 3
12

2 cc

iz zφ γ ε= − −  (42) 

  (43) ( ) ( 2
c

z i Qψ γ= −

Layer 

 ( ) ( ( ) 3
32

2l

iz i Q z i Qφ γ γµ γ ε= + − + −  (44) 42 z

6z  (45) ( ) ( )32 2
l

z i Q z i Qψ γ γ ε−= + −

Matrix 

 ( ) ( 12
m

z i Q zφ γ ε γ−= +  (46) z

2 z ( ) ( )32
m

z i Q z iψ γ ε γ ε−= + −  (47) 

The coefficients Q  to Q  depend only on 1 cµ , lµ , and , are therefore real, and are 

given in the Appendix. The general form of the solution in terms of which powers of  

are present can be explained as follows. Inside the clast only positive powers of  are 

admissible because otherwise the functions would not be analytic since division by zero 

would occur in the centre of the clast, (

lr

z

z

0z = ). On the other hand, in the matrix all 

values of stress, strain rate and velocities, and hence ( )zφ  and , must decay 

towards the background/far-field state with increasing distance from the layer/clast. 

Therefore the solution in the matrix consists of the far-field flow and negative powers of 

. The complex potentials within the layer have the task to match the matrix and the 

clast and hence the polynomials contain both, negative and positive powers of . 

( )zψ

z

z
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APPLICATIONS 

Clast Kinematics 

We have seen that the circular clast with perfect, direct bonding to the matrix rotates in 

simple shear with a rate that is half the applied shear rate, irrespective of /c mµ µ . The 

question that arises is what influence an intermediate layer, strong or weak, between 

clast and matrix has on the rotation rate. Evaluating the Cartesian velocity components 

within the clast we obtain 

 3 22 1 1 2 12 6 21
2 2

x

c c c c c c

v Q Q Q Q Qy y y y x x x
r

3γ ε
µ µ µ µ µ

  
= + + + + + +  
  





 (48) 

 3 22 1 1 2 12 6 21
2 2

y

c c c c c c

v Q Q Q Q Qx x x x y y y
r

3γ ε
µ µ µ µ µ

  
= − + + − + +  
  





 (49) 

We can see that the first term in the simple shear part is a rigid body rotation at a rate 

that is half the applied shear rate. Setting 0ε =  and evaluating the expression for the 

rotation rate (cf. eqn. (30)) results in 

 ( 2 2131
2 c

Q y xω γ γ
µ

= − − − )

m

 (50) 

which confirms the above observation. However, clearly the Eshelby conjecture is 

violated since the rotation rate is not constant within the clast. Yet, for the infinitely 

rigid clast the second term of eqn. (50) vanishes. This result is noteworthy since it 

implies that the rotation of a circular, rigid clast is independent of a strong ( lµ µ> ) or 

very weak/lubricant rim ( l mµ µ ). 

We conclude here our investigation about the rotation rates of circular clast: The rigid 

circular clast always rotates with / 2ω γ= − , irrespective of the matrix viscosity and the 

presence of additional interfaces/layers between clast and matrix. If the clast is not rigid 

the presence of a layer between the clast and the matrix disturbs this equality. Yet, if the 

clast is directly and perfectly coupled to the matrix it will always rotate with / 2ω γ= − , 

irrespective of the viscosity contrast between clast and matrix.  
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For completeness we also give the related shear strain rate, which is 

 ( 2 22 13
2xy

c c

Q Q y xε γ γ
µ µ

= + + )  (51) 

As expected xyε  vanishes for rigid clasts. 

Dynamics 

The exceptional characteristics of the circular clast embedded in a matrix and subject to 

uniform far-field boundary conditions are that the inside of the clast shows constant 

dynamic values and in particular no pressure perturbation is generated in simple shear. 

Plugging the ’s of the three different phases into the pressure equation the 

following expressions are obtained 

( )zφ

 ( 2
1 12 3 6c

m

p i Q z Q zγ ε
µ

= − ℜ − )2  (52) 

 ( ) ( )( 2
32 2 3 2l

m

p i Q z i Qγ ε γ ε
µ

−= − ℜ − − + − )2
4z  (53) 

 ( )( 2
72 2m

m

p i Q zγ ε
µ

−= − ℜ − − )  (54) 

Setting 0ε =  and reverting to polar coordinates the non-dimensional pressures are  

 (2
16 sin 2c

m

p Q r )θ
γµ

=  (55) 

 (23
42

2 6 sin 2l

m

p Q Q r
r

)θ
γµ

 = + 
 

 (56) 

 (7
2

2 sin 2m

m

p Q
r

)θ
γµ

=  (57) 

Eqn. (55) generally indicates that the property of zero pressure perturbation in the clast 

is lost. Interestingly the pressures inside the clast is now synchronized with the outside. 

Both, eqn. (55) and (57), exhibit two minima and two maxima around the clast 

circumference at exactly the same locations. In the matrix, this was already obtained for 

the case of perfect direct bonding between circular clast and matrix. Indeed eqns. (57) 
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and (38) are very similar and naturally are identical if the viscosity of the layer is equal 

the matrix value.  

Although the property of zero pressure perturbation within the clast is lost, certain limits 

still exhibit this characteristic. (1) When the viscosity of the layer is equal to the matrix 

value ( 1lµ = ) then  is zero and consequently 1Q 0cp = . (2) If the layer becomes very 

lubricant ( 0lµ → )  also vanishes and the clast pressure is lithostatic.  1Q

Plotting the complete two-dimensional pressure perturbation, stream function, and 

maximum shear stress fields is straightforward. The only information required are γ , 

ε , cµ , lµ  and . Results for selected sets of parameters are displayed in Figures 5 to 7.  lr
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a) Pressure b) Max. Shear Stress c) Stream-function (matrix contoured only) 

 

Figure 5 

Competent cylindrical inclusion surrounded by a weak layer, subjected to simple shear. 

0ε = , 1γ = , , 1.2lr = 1000cµ = , 1/1000lµ =  (cyl_w_rim.m) 
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a) Pressure b) Max. Shear Stress c) Stream-function (matrix contoured only) 

 

Figure 6 

Weak cylindrical inclusion surrounded by a strong layer, subjected to simple shear. 

0ε = , 1γ = , , 1.2lr = 1/1000cµ = , 1000lµ =  (cyl_w_rim.m) 

 



   

a) Pressure b) Max. Shear Stress c) Stream-function (matrix contoured only) 

Figure 7 

Competent cylindrical inclusion surrounded by a weak layer, subjected to combined pure and simple shear (horizontal compression and 

horizontal simple shear) . 

1ε = − , 1γ = , , 1.2lr = 1000cµ = , 1/10lµ =  (cyl_w_rim.m) 
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ELLIPTICAL INCLUSION 

CONFORMAL TRANSFORMATIONS 

Until now we have focused on circular inclusion problems. Given the geometry, these 

solutions could have been found also in cylindrical coordinate systems, though without 

the convenience of already existing expressions for all kinematic and dynamic 

parameters. However, the genuine strength of Muskhelishvili’s method is that 

conformal transformations may be applied. Conformal transformation means a 

coordinate transformation that is analytic, i.e., fulfills the Cauchy-Riemann equations. 

The geometrical meaning of conformal transformation is that the mapping is unique and 

that both amplitude and sense of angles are preserved. 

The reason why conformal transformations are useful is because they allow solution 

finding for complex physical problems (z-plane) in geometrically simpler image planes 

(ζ ). The most famous usage of conformal solution transformation maybe by due to 

N.E. Joukowski who succeeded in 1906 to calculate the lift of an airfoil. He reduced the 

problem to calculating the flow around a rigid cylinder in the image plane and then, 

using what is now called Joukowski transform, translated his solution to the physical 

domain, where the cylinder becomes an airfoil (this class of airfoils now being called 

Joukowski airfoils).  

The Joukowski transform is not only suitable to study airplane wings, but is also 

appropriate for the study of elliptical inclusion. The most general definition of the 

Joukowski transform is 

 mz R ζ
ζ


= +

 


  (58) 

However, for our study R  and  can both be set to 1, since for elliptical shapes they 

are not needed. The characteristic effect of the Joukowski transform is explained in 

Figure 8. Certain off-centre circles in the 

m

ζ -plane become airfoil-like shapes in z. Since 

we are interested in elliptical inclusions in z, we restrict the possible circles in ζ  to the 

class whose centre coincides with the coordinate system origin. Due to the condition of 

uniqueness of the mapping we have to restrict the possible circle radii, ρ , to  

 1ρ ≥  (59) 
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The circle with 1ρ =  becomes a slit in z and has an infinity aspect ratio t . The 

definition of  is t

 at
b

=  (60) 

The relationship between ρ  and  is inverse, i.e., the aspect ratio in z decreases as t ρ  

increases in ζ . The explicit relationship is 

 
( )( )1 1

1
t t

t
ρ

− +
=

−
 (61) 

Hence, for a given physical problem with an elliptical inclusion of aspect ratio t  we can 

set up the corresponding problem in z, where we have the matrix from infinity to ρ  and 

the inclusion from ρ  to 1. Therefore the inclusion is a ring in ζ , cf. Figure 22 in the 

appendix. 

The conservation of amplitudes and sense of angles is an important feature for the 

analysis of the results since it facilitates switching between ζ  to z. This property can be 

seen from Figure 8, where the point Π  in ζ  corresponds to P in z. While (in polar 

coordinates) ρΠ  can be different from Pr , θΠ  must be identical with Pθ . 

 

 

Figure 8 

Joukowski transform. The transform maps the image plane, ζ , to the physical 

plane, . (zhouk_demo.m) z
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FAR-FIELD FLOW CONDITIONS 

The far-field flow conditions in the physical domain are still pure shear and/or simple 

shear. Since we solve the problem in the image plane ζ , we must translate the boundary 

conditions from z to ζ . This is done by replacing z with the expression of the 

Joukowski transform. Given that we are dealing with a non-circular inclusion the angle 

(α ) between the boundary condition flow and the long axis of the ellipse must also be 

considered (Figure 9). The definition of α  used is that it is measured from the 

horizontal of the boundary conditions and positive values are counter-clockwise. For 

this system the we can write the combined pure and simple shear boundary conditions 

with the inclination α  as 

 ( )( ) 1
2gps

iz µγφ ζ ζ
ζ


= − +

 


  (62) 

 ( ) ( ) 212 i
gps

i e αψ ζ γ ε µ ζ
ζ

− 
= − + 

 
 (63) 

Setting 0α =  restores the general horizontal boundary conditions (eqns. (22) and (23)). 

 

 

Figure 9 

Boundary condition for the elliptical inclusion. In this example 20α = − ° . 
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SOLUTION 

The solution for the elliptical inclusion with inclined arbitrary combinations of pure and 

simple shear is: 

 ( )( ) ( ) ( )2
3

1 2

1
2 cm

iiz B
B B

φ ζ γ ζ ρ 1
ζ ζ

ℑ Β ℜ Β  
= − + + − 

   
  (64) 

 ( )( ) ( ) ( )( ) ( ) ( )
5 3

1 2

1 1
m

i
z i B

B B
ψ ζ ζ

ζ ζ ζ
ℑ Β ℜ Β  

= − ℜ Β + ℑ Β + + −   −   
 (65) 

 ( )( ) ( ) ( ) ( )24

1 1 2

11
2

cc
c cc

ii Bz
B B B

µµ γφ ζ ρ µ ζ
ζ

 ℑ Β ℜ Β  
= − − − +       


   (66) 

 ( )( ) ( ) ( )4

1 2

12 c cc

i
z

B B
ψ ζ µ ρ ζ

ζ
ℑ Β ℜ Β 

= − + + 
  


  (67) 

where  contains rotated boundary condition terms Β

 ( ) 22 ii e αε γ −Β = −  (68) 

and 1B  to 5B  are real-valued combinations of cµ  and ρ  

  (69) 4
1 1c c c cB µ ρ µ ρ= + + 4 −

4 +

4 +

4

8 +

  (70) 4
2 1c c c cB µ ρ µ ρ= − +

  (71) 4
3 1c c c cB µ ρ µ ρ= − −

  (72) 4
4 1c c c cB µ ρ µ ρ= − − − +

  (73) 8
5 1c c c cB µ ρ µ ρ= − −

As before we have used mµ  to normalize the viscosities, and the inside radius of the 

inclusion ring in ζ  to normalize all length parameters, hence the tildes. 
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BASIC SET OF EQUATIONS 

The original basic set of equations at the beginning of this paper was given for the 

physical plane z. The solution presented above is written in terms of the image plane 

coordinates ζ . We must therefore analyze how to transfer the solutions. The only 

complication caused by the use of two different coordinate systems is that for spatial 

derivatives the chain rule of differentiation must be applied. Taking  as an 

example the first derivative versus z becomes: 

( )( zφ ζ )

 
( )( ) ( )( )z z

z z
φ ζ φ ζ ζ

ζ
∂ ∂ ∂

=
∂ ∂ ∂

 (74) 

This is convenient, since ( )( ) /zφ ζ∂ ζ∂  can be directly computed and / zζ∂ ∂  is the 

inverse of /z ζ∂ ∂ : 

 
( )( ) ( )( ) 1z z z

z
φ ζ φ ζ

ζ ζ

−∂ ∂  ∂
=  ∂ ∂ ∂ 

 (75) 

In analogy we can find the second derivative as 

 
( )( ) ( )( ) ( )( )2 12 2

2 2

z z zz z
z

φ ζ φ ζ φ ζ
ζ ζ ζ ζ ζ ζ

1
z

− − − ∂ ∂ ∂     ∂ ∂ ∂ = +      ∂ ∂ ∂ ∂ ∂ ∂ ∂      

∂  (76) 

Writing φ  and ψ  instead of ( )( zφ ζ )  and ( )( )zψ ζ  the basic set of equations under 

conformal Joukowski mapping becomes: 

 2

12
1

p φ
ζ ζ−

 ∂
= − ℜ − ∂ 

  (77) 

 
( ) ( )

2

2 32 22 2 3

1 1 2 1
2 11 1

yy xx
xyi

σ σ φ φ ψσ ζ
ζ ζ ζ ζζ ζ ζ

−− −

 −   ∂ − ∂ ∂ + = + + +  ∂ ∂ ∂  − − 
ζ−

 (78) 

 
2

1 1
1
2x yv iv

φφ ζ ψ
ζ ζ ζ

µ

−

  ∂
− + −  − ∂  + =  (79) 
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APPLICATIONS 

Clast Kinematics 

Based on Muskhelishvili’s method, Ghosh and Ramberg (1976) have derived the 

kinematic behaviour of the rigid elliptical clast in combined pure and simple shear. With 

the solution provided here it is possible to obtain the expression for the kinematic 

behavior of any kind of elliptical inclusion, competent or weak, in combined pure and 

simple shear. Analyzing the complex potential expressions of the clast it is evident that 

it is possible to rewrite them directly for the z-domain. Both, ( )( )c
zφ ζ  and , 

are a function of 

( )( )c
zψ ζ

( )1ζ ζ+ , which is the definition of the used Joukowski transform 

(eqn. (58)). Therefore we can replace ( )1ζ ζ+  by z to obtain expressions that are valid 

in z. This greatly simplifies the analysis, since coordinate transformations are no longer 

employed and consequently the simpler z-set of the basic equations can be used. The 

resulting expression for the rotation rate is 

 
2 2 2 2

2 2

1 1 1sin(2 ) cos(2 )
2 2 2 4

c c c c

c c c c

t t t t
t t t t

µ µ µ µ
2

ω α ε α γ γ
µ µ µ µ
− + + − + − +

= +
+ + + +

−  (80) 

This expression successfully reproduces Ghosh & Ramberg’s cµ →∞  case and can be 

used to explore the entire field of c tµ − . We can, for example, set 0ε =  and vary cµ  

and  as in done in Figure 10 for different aspect ratios t. It can be observed that if the 

clast aspect ratio is big enough and the viscosity is less than the matrix value, a field of 

back rotation comes into existence (Figure 10b) which is limited by the intersections 

with the 

t

0ω =  line. If the inclusion is inclined with an angle corresponding to this field, 

it will rotate against the applied shear sense towards the lower intersection point. Since 

this field of back rotation only exists for weak inclusions, it must be realized that the 

corresponding shear strain rates are not negligible and may overprint the back rotation. 

The expression for the minimum required aspect ratio for back-rotation to occur in the 

case of the infinitely weak inclusion is 

 1t = + 2  (81) 
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a) 

 

 
b) 

 

Figure 10 

Rotation rates for elliptical inclusions with aspect ratio 2 (a) and 6 (b). 

(ell_rot_rate.m) 
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Clast Pressure 

The Eshelby conjuncture holds for circular as well as any kind of elliptical inclusion 

subjected to homogeneous far-field stresses. To verify this we derive the pressure 

expression within the clast as 

 ( ) ( )( ) ( ) 2

4 4

2 1
2 cos 2 sin 2

1
c cc

m c

p µ ρ
ε α γ α

µ ρ
−

= +
c c cρ µ µ+ − +

 (82) 

Since only constants are involved, this expression yields a constant pressure value 

within the inclusion. We can also see that the horizontal simple shear ( 0ε =  and 0α = ) 

does not cause a pressure perturbation within the elliptical inclusion. The same is true 

for a pure shear only case where the boundary condition is 45° inclined. In the limit of a 

circular inclusion, ρ →∞ , the pressure perturbation is likewise 0. It is also obvious that 

in simple as well as pure shear the rotating inclusion goes through two maxima and two 

minima in one full rotation. For the combined pure and simple shear an interesting 

parameter is the inclination angle at which, for given boundary condition amplitudes, 

the maximum absolute pressure deviation from the background state occurs. Taking the 

derivative of cp  versus α , equating to 0 and solving for α  we obtain 

 1 1arctan
2 2

γα
ε

= 
 


  (83) 

For simple shear only this yields 45α = ° , for pure shear only 0α = ° . Substituting eqn. 

(83) into (82) results in the actual expression for the maximum, absolute pressure 

perturbation within the elliptical inclusion: 

 ( )2 2

4 4

2 1 4
max

1
c cc

m c c c c

p 2ρ µ γ ε
µ ρ µ µ ρ

− +
=

− + +
 (84) 

This expression can be used to derive the maximum pressure perturbation occurring in 

the rigid ( cµ →∞ ) elliptical inclusion in pure shear: 

 
2 1

2 2
c

m

p t
tµ ε
−

=
−

 (85) 

This shows that the maximum pressure perturbation, equal the overpressure, is roughly 

equal to t  times the characteristic far-field matrix stress value. / 2
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Pressure Around Rigid Elliptical Clast 

Substituting the complex potentials of the matrix into the Joukowski transformation 

adjusted pressure expression, we obtain the corresponding pressure perturbation values: 

 ( ) ( )2
3
2

1 2

2
1

m c

m

ip B
B B

ρ
µ ζ

 ℑ Β ℜ Β 
= − ℜ − −  −   

  (86) 

which can be written 

 ( ) ( )( ) ( ) ( )( )

23

1 2

1 2
2

2 *

sin 2 2 cos 2 cos 2 2 sin 2
1

m
c

m

p B
B B

B i

ρ
µ

γ α ε α γ α ε α
ζ

= −

 − − + − +
ℜ  − 

B
 (87) 

This expression is again closely related to the matrix pressure expression around the 

circular clast (eqn. (38)). Namely, if we set 0α = , 0ε =  and investigate the small 

aspect ratio case, cρ →∞ , the two expressions are identical. 

Setting cρ ρ= , and 0α =  the expression for the matrix pressure around the clast-

matrix interface subjected to ellipse long axis parallel far-field flow can be derived. 

Results for different t  and cµ  in simple shear are shown in Figure 11, and pure shear in 

Figure 12. In order to synchronize the plots, we scale the pressure values by the 

characteristic far-field matrix stress. This is 4 mµ γ  in simple shear and 2 mµ ε−  in pure 

shear. The minus sign takes care of the pressure sign convention. 

In all four cases the maximum pressure perturbation around the circular clast is two 

times the matrix stress value. Inversion of the clast-matrix viscosity contrast causes a 

sign flip of the pressure perturbation. The behaviour of the elliptical inclusion is more 

complicated. In simple shear the competent elliptical clast causes progressively less 

pressure perturbation with increasing aspect ratio, the inverse is true for the weak 

inclusion. An additional effect, that can be observed is that the more elongated the 

elliptical inclusion in simple shear, the closer the pressure extrema are to the tips. 
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a) 
 

 
b) 
 

Figure 11 

Matrix pressure at the clast-matrix interface for ellipse parallel simple shear.  

(a) / 1000c mµ µ = , (b) / 1/1000c mµ µ =  

(ell_p_interf.m) 
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a) 
 

 
b) 
 

Figure 12 

Matrix pressure at the clast-matrix interface for ellipse parallel pure shear.  

(a) / 1000c mµ µ = , (b) / 1/1000c mµ µ =  

(ell_p_interf.m) 
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Interestingly the effect of increasing the aspect ratio of the competent inclusion is 

opposite in simple shear and pure shear. In pure shear the pressure perturbation around 

the competent elliptical inclusion grows with increasing aspect ratio. It appears that the 

maximum pressure (at the tips, 0θ = ) grows linearly with t . On the other hand the 

maximum absolute pressure perturbation driven by the presence of a weak inclusion 

first increases with increasing t , but then decreases again. Deriving the analytical 

expression for the maximum pressure perturbation generated by ellipse parallel pure 

shear in the tips, yields: 

 ( )( )
2

1 1
2

2 2
cm

m c

tp t
t t
µ

µ ε µ 1
+ −

=
− + +

 (88) 

Indeed, the limit of this expression for the rigid inclusion is 

 1
2

m

m

p t
µ ε

= +
−

 (89) 

and for the infinitely weak inclusion 

 ( )
2

1
2

2 1
m

m

t tp
tµ ε
+

= −
− +

 (90) 

Plotting the latter yields Figure 13, and it can be seen that the pressure perturbation has 

a maximum at 1t = + 2 . The amplitude of this pressure perturbation is however minor. 

 

Figure 13 

Maximum pressure perturbation caused in the tips by the infinitely weak 

elliptical inclusion as a function of the aspect ratio. 
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Complete Pressure Field 

For convenience the presented solution consists of a redundant set of parameters. It is 

clear that at any instant, for any kind of combined pure and simple shear a set of 

principal axis can be found along which no shear stress occurs. Hence the instantaneous, 

arbitrary inclined, combined simple and pure shear problem can be reduced to one of 

inclined pure shear only. To give an idea of the pressure field in two-dimensions it is 

therefore sufficient to illustrate it based on inclined pure shear, as done in Figures 14 to 

17. The difference between a competent and a weak inclusion is depicted in Figures 14 

and 15. The transition causes a flip in the pressure field and the tips of the weak 

elliptical inclusion become regions of relative extension although they lie in the 

direction of maximum compression.  

If the pure shear is inclined at 45° to the ellipse long axis the equivalent pressure field of 

horizontal simple shear is obtained (compare Figures 16 and 11a). Figure 17 shows how 

with larger aspect ratios the elliptical inclusion causes pressure concentrations near the 

tips, although the inclination of the boundary condition does not coincide with the major 

axis of the ellipsoidal inclusion. For a comparison of the pressure field in z and ζ  

please refer to the Appendix. 
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Figure 14 

Pressure field around elliptical inclusion 

, 2t = 0γ = , .5ε = − , 0α = ° , 1000cµ = . (ell_dynamix.m) 

 

 
Figure 15 

Pressure field around elliptical inclusion 

, 2t = 0γ = , .5ε = − , 0α = ° , 1/1000cµ = . (ell_dynamix.m) 
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Figure 16 

Pressure field around elliptical inclusion 

, 2t = 0γ = , .5ε = − , 45α = − ° , 1000cµ = . (ell_dynamix.m) 

 

 

Figure 17 

Pressure field around elliptical inclusion 

, 4t = 0γ = , .5ε = − , 30α = − ° , 1000cµ = . (ell_dynamix.m) 

100 



Clast Maximum Shear Stress 

The complete confirmation of the Eshelby conjuncture is that with eqn. (78) the 

following expression for the elliptical inclusion can be derived: 

 ( ) ( )4

1 2

2
2

yy xx
xy c c

i
i

B B
σ σ

σ µ ρ
− ℑ Β ℜ Β 

+ = − +
 

  (91) 

Together with the fact that we have already shown that the pressure inside the inclusion 

is always homogenous, it can be deduced from eqn. (91) that all stress components are 

homogenous since only coordinate independent constants are involved. The 

corresponding expression for the maximum shear stress is 

 ( ) ( ) ( ) ( )2 2
4

4 4 4 4

sin 2 2 cos 2 cos 2 2 sin 2
2

1 1c c
m c c c c c c c c

γ α ε α γ α ε ατ ρ µ
µ ρ ρ µ µ ρ ρ µ µ

+ − +  
= +  + − + + + −  





 (92) 

In simple shear only the maximum τ  experienced by a rotating inclusion is  

 ( )2

2

11
4 4 2

c

m c

t
t t 1

µτ
µ γ µ

+
=

+ +
 (93) 

For clast in a shear zone where generally c tµ  we can derive a simpler expression for 

the maximum τ : 

 ( )21
4 8m

t
t

τ
µ γ

+
=  (94) 

For clasts with pressure insensitive visco-plastic rheology eqn. (94) can be used to 

determine if the clast is behaving viscously or starts to yield. It can be seen that at least 

an aspect ratio of 6:1 is required to produce a maximum shear stress value within the 

clast that exceeds the far-field shear stress value ( 4 mµ γ ). 

Complete Maximum Shear Stress Field 

Evaluating the maximum shear stress for the matrix as well, we are in the position to 

plot the complete two-dimensional maximum shear stress field. If the materials behave 

plastically according to a von Mises failure criterion, Figures 18 to 21 can be interpreted 

as displaying the proximity to failure. 

101 



 

Figure 18 

Maximum shear stress field around a strong elliptical inclusion 

, 2t = 0γ = , .5ε = − , 0α = ° , 1000cµ = .  

 

 

Figure 19 

Maximum shear stress field around a weak elliptical inclusion 

, 2t = 0γ = , .5ε = − , 0α = ° , 1/1000cµ = . 
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Figure 20 

Maximum shear stress field around a strong elliptical inclusion 

, 2t = 0γ = , .5ε = − , 45α = − ° , 1000cµ = . 

 

 

Figure 21 

Maximum shear stress field around a strong elliptical inclusion 

, 4t = 0γ = , .5ε = − , 30α = − ° , 1000cµ = . 
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DISCUSSION AND CONCLUSION 

We have presented the complete set of possible closed-form analytical solutions for 

isolated, deformable elliptical inclusions subjected to general shear, far-field flows. Our 

aim was to demonstrate how the essential parameters can be extracted from the two 

complex potentials that form the solution based on Muskhelishvili’s method.  

The rheologies used in this work are all Newtonian. It is clear that for geological 

purposes a more adequate rheology would be more complex, such as power-law. The 

method as it is presented here is applicable to incompressible all-elastic and all-viscous 

problems. Due to the established validity of Eshelby's conjecture for inclusions with 

perfect bonding to the matrix, it is possible to introduce more complex rheologies for 

the inclusion since the uniformity of the inclusion values largely facilitates the analysis. 

For example, it is possible to introduce a power-law or visco-elasto-plastic rheology for 

the inclusion. However, for the matrix, or even the layer between inclusion and matrix, 

this is not possible. Yet, it must be emphasized that the analytical analysis of the 

Newtonian case is of utmost importance.  

(1) The presented analytical solutions allow for verification, testing and tuning (e.g., 

necessary mesh resolution) of numerical codes for the Newtonian case. This should be 

the pre-requisite before investigating non-linear rheologies. 

(2) Only analytical solutions allow for elegant handling of large parameter-spaces. 

Especially, if the characteristics of the system are unexpected, as shown here, analytical 

solutions are the fastest possible way to capture the systematics and to train the 

intuition. Based on the understanding from the analytical solutions, the analysis can be 

continued with combined asymptotic and numerical methods. 

(3) Generally, the power-law results are a variation of the Newtonian results preserving 

many of the Newtonian characteristics. This is true for mantled porphyroclasts (Schmid 

and Podladchikov, 2002) and another example is the folding of a Newtonian layer (Biot, 

1961) compared to a power-law layer (Fletcher, 1974).  

(4) Analytical solutions allow for direct and precise analysis of key-parameters 

throughout the domain, which with numerical models can only be achieved through 

systematic runs that may involve thousands of experiments. 
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Our application to a "real" geological problem is to the mantled porphyroclast in a shear 

zone. The results have important implications concerning the: i) distribution and 

amplitudes of the driving forces of phase changes, metamorphic reactions and 

deformation mechanisms, ii) estimation of clast-matrix viscosity contrasts, iii) 

kinematic clast behaviour and development of shape preferred orientations, iv) strain 

estimation from clasts in natural shear zones, v) general understanding of the clast as a 

function of geometry, present phases and viscosity contrasts. However, we leave it to 

the reader to explore further applications of geological problems. The possibilities are 

vast and promising applications include dikes with or without chilled rims, magma 

chambers, faults surrounded by damaged zone areole, cracks filled with another phase, 

zonation of crystals, etc. The number of additional problems that can be solved with 

Muskhelishvili's method is infinite. Through the use of Schwarz-Christoffel 

transformations (Spiegel, 1964; Driscoll and Trefethen, 2002), arbitrary single polygons 

can be treated. Combined with the variational principles of conformal transformations 

(Lavrentev and Schabat, 1967), the resulting analytical tools are capable of dealing with 

a huge variety of two-dimensional problems in elasticity and slow viscous flows. 

However, it should be realized that the number of problems already solved with 

Muskhelishvili's method is immense and these solutions just await applications in 

geology and geophysics. 
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APPENDIX: 

COEFFICIENTS FOR CIRCULAR INCLUSION WITH RIM 

Equation Chapter (Next) Section 1 

Q-COEFFICIENTS 

  (A1) ( )2 2 4 6
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K-COEFFICIENTS 

 1 l cK µ µ=  (A10) 

 ( )( )2 1l c lK µ µ µ= − −  (A11) 

 ( )( )3 1l c lK µ µ µ= + +  (A12) 
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 ( )( )6 1l c lK µ µ µ= − +  (A15) 

 ( )( )7 1l c lK µ µ µ= + −  (A16) 

 ( )( )( 2
8 1l c l c l lK )µ µ µ µ µ µ= − + − +  (A17) 

 ( )( )( 2
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APPENDIX: 

PRESSURE FIELD COMPARISON IN Z AND ζ  

The power of the described method is that a solution for a problem with a complex 

geometry in the physical domain (z) can be solved through the help of conformal 

mapping in a geometrically simpler image domain (ζ ). Figure 8 shows how the 

Joukowski transformation works. As a farther illustration we show here a direct 

comparison of the pressure fields in z and ζ  for an elliptical inclusion. 

  

  
a) b) 

Figure 22 

Comparison of the  two-dimensional pressure field in image domain ζ  (a) and 

physical domain z (b).  

, 2t = 0γ = , .5ε = − , 0α = ° , 1000cµ = . 
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CHAPTER 4: MUSKHELISHVILI’S METHOD APPLIED TO 

ELLIPTICAL AND LUBRICATED CIRCULAR INCLUSIONS IN 

GENERAL SHEAR: SOLUTION IMPLEMENTATION IN MATLAB 

 

(This chapter is published in the e-collection of the ETH Zurich by Daniel Schmid and Yuri 

Podladchikov. It can be downloaded free of cost under the following URL 

http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=bericht&nr=188) 

 

Keywords: Muskhelishvili Method, Circular and Elliptical Inclusions, Lubricated 

Inclusions, Mantled Inclusions, Pure and Simple Shear, Viscous Rheology, Elastic 

Rheology, Incompressibility 

 

 

INTRODUCTION 

Two-dimensional problems in elasticity can be solved analytically by means of 

Muskhelishvili’s method1. This method is based on the fact that the result of the bi-

harmonic equation can represented by two complex potentials, called  and . 

The classical application of the method are circular and elliptical holes. At the 

beginning of the 20th century engineers had to face the problem that openings for the 

cannons on battle ships or for windows in airplanes could weaken the bulk structure so 

much that small forces/collisions could cause complete failure. This prompted the 

school of Kolosov and later Muskhelishvili to develop a method capable of solving such 

problems analytically. 

( )zφ ( )zψ

In elastic geo-engineering problems such as tunnel building, Muskhelishvili’s method is 

frequently applied, but rarely in the related field of slow viscous flow. Yet, the two 

problems are mathematically identical and consequently Muskhelishvili’s method 

                                                      
1 Muskhelishvili, N.I., 1953. Some basic problems of the mathematical theory of elasticity. 
Noordhoff, Groningen, 704S.  
Through Kluwer’s PoD program the book is available again and can be printed on demand, 
www.wkap.nl. 
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equally well applicable. We have recently shown 2 the applicability of the method to 

slow viscous flow and we have derived all possible closed form solutions for mantled 

inclusions. “Mantled inclusions” means that we are dealing with a three phase system 

(inclusion, mantle and matrix), of incompressible materials with three, possibly 

different, viscosities. The inclusion is elliptical, including all shapes from infinite aspect 

ratio to circular inclusion. The inclusion is subjected to far-field general shear flows, 

i.e., arbitrary combinations of inclined pure and simple shear. Since, the solution for the 

mantled elliptical inclusion is an infinite series, we only present here the closed form 

solutions, which are: circular inclusion perfectly bonded to the matrix, circular inclusion 

perfectly bonded to an intermediate layer (mantle) which is perfectly bonded to the 

matrix, and the elliptical inclusion perfectly bonded to the matrix. 

In order to stimulate a more widespread use of Muskhelishvili’s method which may be 

hampered by the fact that it makes use of “obscure” complex potentials we give here the 

complete set of MATLAB3 scripts which we used to implement the solutions and 

visualize the results. The eight scripts provided have the following tasks: 

 

 

CYL_P_INTERF.M 
Pressure in the matrix at the circular clast-matrix interface.  

CYL_P_INTERF_MAX.M 
Maximum pressure in the matrix at the circular clast-matrix interface as a function 

of the viscosity contrast between clast and matrix. 

CYL_P_MATRIX.M 
Pressure around circular inclusion. 

CYL_W_RIM 
Complete two-dimensional field of pressure, maximum shear stress and stream 

function, when there is a third material between cylindrical inclusion and matrix. 

ELL_DYNAMIX.M 
2D pressure, stress and maximum shear stress caused by an elliptical inclusion 

                                                      
2 ETH PhD Thesis by Dani Schmid, 2002. 
3 MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA, 
info@mathworks.com, http://www.mathworks.com 
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ELL_P_INTERF.M 
Pressure in the matrix at the elliptical clast-matrix interface.  

ELL_ROT_RATE.M 
Analytical formula for the rotation rate of an ellipse in combined, inclined simple 

and pure shear. 

ZHOUK_DEMO.M 
Demonstration of the Joukowski transform. 

 

 

These scripts also allow extraction of numerous other parameters with the help of the 

three basic formulae of Muskhelishvili’s method: 

 ( )(2 )p zφ′= − ℜ  (1) 

 ( ) ( )
2

yy xx
xyi z z z

σ σ
σ φ ψ

−
′′ ′+ = +  (2) 

 ( ) ( ) ( )
2x y

z z z z
v iv

φ φ ψ
µ
′− −

+ =  (3) 

Where p  is the pressure perturbation, σ  is the total stress tensor, µ  the viscosity,  

the complex coordinate,  the velocity vector, 

z

v x  and  the usual Cartesian 

coordinates, ' means the first derivative versus  and '' the second,  is equal 

y

z i 1− , the 

over bar denotes conjugation, and ℜ  means the real part. 

These expressions are only valid if no conformal mapping is applied. For cases where 

the Joukowski transformation is used, i.e., elliptical inclusions, care must be taken 

concerning the spatial derivatives. Since the problem is solved in a geometrically 

simpler image plane ζ , but the spatial derivatives must still be taken versus , i.e., the 

complex coordinate of the physical plane, the relevant expressions are more 

complicated and the following set of equations must be employed: 

z
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  ∂
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MATLAB SCRIPTS 

Please note, that since these scripts are provided free of cost we put a big disclaimer on 

all of them and do not take any liability for correctness, errors, loss or whatever may 

happen; you use it at your own risk. Therefore the following applies to all of them: 

 

%============================================================= 

DISCLAIMER OF WARRANTY: 

Since the Software is provided free of charge, it is provided on an as is basis, without 

warranty of any kind, including without limitation the warranties of merchantability, 

fitness for a particular purpose and non-infringement. The entire risk as to the quality 

and performance of the Software is borne by the user. Should the Software prove 

defective, the user will assume the entire cost of any service and repair.  

 

LIMITATION OF LIABILITY:  

Under no circumstances and under no legal theory, tort, contract, or otherwise, shall the 

authors be liable to the user or any other person for any indirect, special, incidental, or 

consequential damages of any character including, without limitation, damages for loss 

of goodwill, work stoppage, computer failure or malfunction, or any and all other 

commercial damages or losses. 

%============================================================= 
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CYL_P_INTERF.M 

%================================================================= 
% CYL_P_INTERF.M 
% 
% Pressure in the matrix at the circular clast-matrix interface.  
% 
% 2002, Dani Schmid 
% 
%================================================================= 
%SETUP ANGLES 
theta   = 0:2*pi/359:2*pi; 
 
%VISCOSITIES 
mm      = 1; 
mcs     = [1,2,10,1e6]; 
 
%FAR FIELD FLOW 
er      = 0; 
gr      = 1; 
 
%CALCULATE AND PLOT 
Styles  = {':k', '-.k', '--k', '-k'}; 
figure(1); 
clf 
counter=1; 
for mc=mcs; 
    Pressure    = 2.*mm.*(-2.*mc.*cos(2.*theta).*er- ... 
                  mc.*gr.*sin(2.*theta)+2.*mm.*cos(2.*theta).* ... 
                  er+mm.*gr.*sin(2.*theta))./(mc+mm);     
    plot(theta/pi*180, Pressure, Styles{counter}); 
    hold on; 
    counter     = counter+1; 
end 
 
axis([0 360 -2 2]); 
set(gca, 'XTick', [0:45:360]); 
xlabel('\theta'); 
ylabel('p/(\mu_m\gamma)', 'Rotation', 0); 
title('Pressure Around Cylindrical Inclusion') 
legend('\mu_c/\mu_m=1','\mu_c/\mu_m=2','\mu_c/\mu_m=10', ... 
       '\mu_c/\mu_m=\infty', -1); 
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CYL_P_INTERF_MAX.M 

%================================================================= 
% CYL_P_INTERF_MAX.M 
% 
% Maximum pressure in the matrix at the circular clast-matrix  
% interface as a function of the viscosity contrast between clast 
% and matrix.  
% 
% 2002, Dani Schmid 
% 
%================================================================= 
 
%LOGARITHMIC RANGE OF VISCOSITIES 
mm          = 1; 
mc          = logspace(-3,3); 
 
%FAR FIELD FLOW 
gr          = 1; 
 
%MAXIMUM PRESSURE EXPRESSION 
Pressure    = 2.*mm.*(mc-mm)./(mc+mm).*gr; 
 
%PLOT PRESSURE vs. THETA 
figure(1); 
clf 
plot(mc, Pressure, '-k'); 
set(gca, 'XScale', 'log'); 
grid on; 
set(gca, 'XMinorgrid', 'off'); 
 
xlabel('\mu_c/\mu_m'); 
ylabel('p/(\mu_m\gamma)', 'Rotation', 0); 
title('Max. Pressure as f(\mu_c/\mu_m)') 
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CYL_P_MATRIX.M 

 

%================================================================= 
% CYL_P_MATRIX.M 
% 
% Pressure around circular inclusion 
% 
% 2002, Dani Schmid 
% 
%================================================================= 
%FAR FIELD FLOW - VISCOSITIES - GEOMETRY 
gr = 1; 
er = 0; 
mm = 1; 
mc = 1e6; 
rc = 1; 
 
%PRESSURE CALCULATION IN THE Z-PLANE 
[X,Y]  = meshgrid(-2:.01:2); 
Z      = X+i*Y; 
P      = -2.*mm.*(mc-mm)./(mc+mm).*real(rc^2./Z.^2.*(i*gr+2*er)); 
 
%PRESSURE IS ONLY FOR THE OUTSIDE OF THE CLAST 
P(abs(Z)<rc) = NaN; 
 
%PLOTTING 
pcolor(X,Y,P) 
axis image; 
shading interp; 
hold on; 
contour(X,Y,P, [-1.5,-1,-.5,0,.5,1,1.5], 'k'); 
colorbar('horiz'); 
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CYL_W_RIM 

 

%================================================================= 
% CYL_W_RIM 
% 
% Complete two-dimensional field of pressure, maximum shear stress 
% and stream function 
% 
% 2002, Dani Schmid 
% 
%================================================================= 
%DEFINE i 
i   = sqrt(-1); 
I   = sqrt(-1); 
 
%INPUT PARAMETERS 
er  = -0;   %Negative values indicate horizontal compression 
gr  = 1;    %Positive value indicate top to the left shear 
rl  = 1.2; 
ml  = 1e+3; 
mc  = 1e+3; 
 
%DESIRED BOX SIZE 
bs  = 3; %Times rl 
 
%K's 
K1 = ml*mc; 
K2 = (ml-mc)*(ml-1); 
K3 = (mc+ml)*(ml+1); 
K4 = ml/(ml-1); 
K5 = ml/(ml+1); 
K6 = (ml-mc)*(ml+1); 
K7 = (mc+ml)*(ml-1); 
K8 = (ml-mc)*(mc+ml)*(1-ml+ml^2); 
K9 = (ml-mc)*(mc+ml)*(3-8*ml+3*ml^2); 
 
%Q's 
Q0 = K2^2+K2*K3*(-4*rl^2+6*rl^4-4*rl^6)+K3^2*rl^8; 
Q1 = 4*K1*K2*(rl^2-rl^4)/Q0; 
Q2 = (-16*K1*K2*rl^2+12*K1*K2*rl^4+4*K1*K3*rl^8)/Q0; 
Q3 = K2*K4*(-2*K2*rl^2+2*K3*rl^8)/Q0; 
Q4 = K2*(ml^2+K1)*(2*rl^2-2*rl^4)/Q0; 
Q5 = K2*K4*(-2*K2*rl^4+2*K3*rl^8)/Q0; 
Q6 = K3*(K2*K5*(-8*rl^2+6*rl^4)+2*(ml^2+K1)*rl^8)/Q0; 
Q7 = (-K2*K6*rl^2+4*K2*K7*rl^4-6*K2*K7*rl^6+4*K8*rl^8 ... 
     -K3*K7*rl^10)/Q0; 
Q8 = (-K2*K6*rl^4+4*K2*K7*rl^6-2*K9*rl^8+4*K2*K7*rl^10 ... 
     -K3*K7*rl^12)/Q0; 
 
%RESOLUTION 
nr          = 100; 
nt          = 200; 
Theta       = 0:2*pi/nt:2*pi; 
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%CLAST 
[R, THETA]  = meshgrid(0:1/nr:1, Theta); 
z           = R.*exp(i*THETA); 
x           = real(z); 
y           = imag(z); 
Z_CLAST     = z; %Save z's for later contour plots 
 
 
%Pressure 
figure(1); 
clf 
PRES_CLAST  = -6*Q1*real(z.^2*(-2*er+i*gr)); 
pcolor(real(z), imag(z), PRES_CLAST); 
hold on; 
%Streamfun 
figure(2); 
clf 
STREAM_FUN_CLAST = er.*(-2./mc.*Q1.*y.^3.*x-1./mc.*Q2.*y.*x ... 
   -2./mc.*Q1.*x.^3.*y)+(-1./4.*y.^2-1./4.*1./mc.*Q2.*y.^2 ... 
   -1./2.*1./mc.*y.^4.*Q1).*gr; 
pcolor(real(z), imag(z), STREAM_FUN_CLAST); 
hold on; 
%TAU 
figure(3); 
clf 
TAU_CLAST = sqrt((-2.*Q2.*er+6.*Q1.*real(conj(z).*z.*(I.*gr ... 
   -2.*er))).^2+(Q2.*gr+6.*Q1.*imag(conj(z).*z.*(I.*gr-2.*er))).^2); 
pcolor(real(z), imag(z), TAU_CLAST); 
hold on; 
 
 
%LUBR 
[R, THETA]  = meshgrid(1:(rl-1)/nr:rl, Theta); 
z           = R.*exp(i*THETA); 
x           = real(z); 
y           = imag(z); 
Z_LUBR      = z; 
%Pressure 
figure(1) 
PRES_LUBR   = 2*real((i*gr+2*er)*Q3./z.^2-3*(-2*er+i*gr)*Q4*z.^2); 
pcolor(real(z), imag(z), PRES_LUBR); 
%Streamfun 
figure(2) 
STREAM_FUN_LUBR = ... 
   -1./2./ml.*er.*(4.*x.*y.^3.*Q4+2.*y.*Q3./(x.^2+y.^2).*x ... 
   -2.*Q5.*y.*x./(x.^2+y.^2).^2-x.*(-2.*Q3./(x.^2+y.^2).*y ... 
   -6.*Q4.*(x.^2.*y-1./3.*y.^3))-2.*Q4.*(x.^3.*y ... 
   -y.^3.*x)+2.*Q6.*y.*x)-1./2.*1./ml.*gr.*(1./2.*y.^2.*ml ... 
   -x.*(Q3./(x.^2+y.^2).*x-3.*Q4.*x.*y.^2) ... 
   -3./2.*Q4.*x.^2.*y.^2+3./4.*Q4.*y.^4-x.^2.*Q3./(x.^2+y.^2) ... 
   -Q4.*(3./2.*x.^2.*y.^2-1./4.*y.^4)-Q5.*( ... 
   -x.^2./(x.^2+y.^2).^2+1./2./(x.^2+y.^2))+1./2.*Q6.*y.^2); 
 
pcolor(real(z), imag(z), STREAM_FUN_LUBR); 
%TAU 
figure(3); 
TAU_LUBR    = sqrt(real( ... 
   -conj(z).*(2.*(I.*gr+2.*er).*Q3./z.^3+6.*(I.*gr ... 
   -2.*er).*Q4.*z)+3.*(I.*gr+2.*er).*Q5./z.^4-(I.*gr ... 
   -2.*er).*Q6).^2+imag(-conj(z).*(2.*(I.*gr+2.*er).*Q3./z.^3 ... 
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   +6.*(I.*gr-2.*er).*Q4.*z)+3.*(I.*gr+2.*er).*Q5./z.^4-(I.*gr ... 
   -2.*er).*Q6).^2); 
pcolor(real(z), imag(z), TAU_LUBR); 
 
%MAT 
[R, THETA]  = ... 
meshgrid(rl:(sqrt(2*bs^2*rl^2)-rl)/nr:sqrt(2*bs^2*rl^2), Theta); 
z           = R.*exp(i*THETA); 
x           = real(z); 
y           = imag(z); 
Z_MAT       = z; 
%Pressure 
figure(1) 
PRES_MAT   = 2*real((i*gr+2*er)*Q7./z.^2); 
pcolor(real(z), imag(z), PRES_MAT); 
%Streamfun 
figure(2) 
STREAM_FUN_MAT = ... 
   er.*(-2.*Q7.*y.*x./(x.^2+y.^2)+Q8.*y.*x./ ... 
   (x.^2+y.^2).^2-x.*y)+(-1./2.*y.^2+Q7.*x.^2./ ... 
   (x.^2+y.^2)+1./2.*Q8.*(-x.^2./(x.^2+y.^2).^2+1./2./ ... 
   (x.^2+y.^2))).*gr; 
pcolor(real(z), imag(z), STREAM_FUN_MAT); 
%TAU 
figure(3); 
TAU_MAT     = ... 
   sqrt((-2.*er+real(2.*conj(z).*(I.*gr+2.*er).*Q7./z.^3 ... 
   -3.*(I.*gr+2.*er).*Q8./z.^4)).^2+(gr+imag(2.*conj(z).* ... 
    (I.*gr+2.*er).*Q7./z.^3-3.*(I.*gr+2.*er).*Q8./z.^4)).^2); 
pcolor(real(z), imag(z), TAU_MAT); 
 
 
%FINALIZE PLOTS======================================== 
%Complex coordinates of clast and layer 
Clast   =    exp(i*Theta); 
Layer   = rl*exp(i*Theta); 
 
figure(1) 
axis off 
axis equal 
axis([-bs*rl bs*rl -bs*rl bs*rl]); 
shading interp; 
plot(real(Clast), imag(Clast), '--k'); 
plot(real(Layer), imag(Layer), '--k'); 
title(['P \epsilon:',num2str(er),' \gamma:', num2str(gr), ... 
   ' \mu_c: ',num2str(mc),' \mu_l: ',num2str(ml), ... 
   ' r_l: ',num2str(rl)]); 
cb_h        = colorbar('horiz.'); 
pos_cb      = get(cb_h, 'pos'); 
set(cb_h, 'pos', [.26666, pos_cb(2), .504, pos_cb(4)]) 
set(get(cb_h,'Title'),'String','P'); 
 
figure(2) 
axis equal 
axis([-bs*rl bs*rl -bs*rl bs*rl]); 
shading interp; 
plot(real(Clast), imag(Clast), '--k'); 
plot(real(Layer), imag(Layer), '--k'); 
colorbar('horiz.'); 
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Z           = [ Z_MAT          ]; 
STREAM_FUN  = [ STREAM_FUN_MAT ]; 
contour(real(Z), imag(Z), STREAM_FUN, 10, 'k') 
axis off; 
axis equal 
axis([-bs*rl bs*rl -bs*rl bs*rl]); 
shading interp; 
plot(real(Clast), imag(Clast), '--k'); 
plot(real(Layer), imag(Layer), '--k'); 
title(['\Theta \epsilon:', num2str(er),' \gamma:',num2str(gr), ... 
   ' \mu_c: ',num2str(mc),' \mu_l: ',num2str(ml),' r_l: ', ... 
   num2str(rl)]); 
cb_h        = colorbar('horiz.'); 
pos_cb      = get(cb_h, 'pos'); 
set(cb_h, 'pos', [.26666, pos_cb(2), .504, pos_cb(4)]) 
set(get(cb_h,'Title'),'String','\Theta'); 
 
figure(3) 
axis off 
axis equal 
axis([-bs*rl bs*rl -bs*rl bs*rl]); 
shading interp; 
plot(real(Clast), imag(Clast), '--k'); 
plot(real(Layer), imag(Layer), '--k'); 
title(['\tau \epsilon:', num2str(er),' \gamma:', num2str(gr), ... 
' \mu_c: ',num2str(mc),' \mu_l: ',num2str(ml), ' r_l: ', ... 
num2str(rl)]); 
cb_h        = colorbar('horiz.'); 
pos_cb      = get(cb_h, 'pos'); 
set(cb_h, 'pos', [.26666, pos_cb(2), .504, pos_cb(4)]) 
set(get(cb_h,'Title'),'String','\tau'); 
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ELL_DYNAMIX.M 

 

%================================================================= 
% ELL_DYNAMIX.M 
% 
% 2D pressure, stress and maximum shear stress caused by an 
% elliptical inclusion 
% 
% 2002, Dani Schmid 
%================================================================= 
 
%COMPLEX NUMBER DEFINITION 
I       = sqrt(-1); 
i       = sqrt(-1); 
 
%VISCOSITY CONTRAST BETWEEN CLAST AND MATRIX 
mc      = 1000; 
 
%FAR FIELD FLOW 
er      = -.5; 
gr      = 0; 
alpha   = -30/180*pi; 
 
%ASPECT RATIO, t CANNOT BE 1 or SMALLER, USE t=1.001 FOR CIRCULAR 
INCLUSION APPROXIMATION 
t       = 4; 
rc      = sqrt((t-1)*(t+1))/(t-1); 
 
%SOLUTION CONSTANTS 
BC      = (2.*er-I.*gr).*exp(+2.*I.*alpha); 
B1      = rc.^4.*mc+rc.^4-1+mc; 
B2      = rc.^4.*mc+rc.^4-mc+1; 
B3      = rc.^4.*mc-mc-rc.^4+1; 
B4      = -rc.^4.*mc-mc-rc.^4+1; 
B5      = rc.^8.*mc-mc-rc.^8+1; 
 
%RESOLUTION 
rs      = 100; 
ts      = 200; 
 
%CLAST GRID IS FROM 1..rc 
[rho, theta]    = meshgrid(1:(rc-1)/rs:rc, 0:2*pi/ts:2*pi); 
zeta_clast      = rho.*exp(i*theta); 
p_clast         = real(-I.*mc.*B4./B1.*gr+2.*rc.^2.* ... 
                  (mc-1).*(I.*mc.*imag(BC)./B1-real(BC)./B2)); 
tau_clast       = -2.*mc.*rc.^4.*(I.*imag(BC)./B1+real(BC)./B2); 
tau_clast       = sqrt((real(tau_clast)).^2 ... 
                  + (imag(tau_clast)).^2); 
%Correct size of arrays 
p_clast         = ones(size(rho))*p_clast; 
tau_clast       = ones(size(rho))*tau_clast; 
 
%MATRIX 
[rho, theta]    = meshgrid(rc:2*rc/rs:3*rc, 0:2*pi/ts:2*pi); 
zeta_mat        = rho.*exp(i*theta); 
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p_mat           = -2.*rc.^2.*real(B3.*(-I.*imag(BC).*B2+ ... 
                  real(BC).*B1)./(zeta_mat.^2-1)./B1./B2); 
str_mat         = conj(zeta_mat+1./zeta_mat).* ... 
   ((-I.*gr./zeta_mat.^3+2.*B3.*rc.^2.*(I.*imag(BC)./B1- ... 
   real(BC)./B2)./zeta_mat.^3)./(1-1./(zeta_mat.^2)).^2- ... 
   2.*(-1./2.*I.*gr.*(1-1./(zeta_mat.^2))-B3.*rc.^2.* ... 
   (I.*imag(BC)./B1-real(BC)./B2)./zeta_mat.^2)./(1- ... 
   1./(zeta_mat.^2)).^3./zeta_mat.^3)+(-(real(BC)+I.*imag(BC)) ... 
   .*(1-1./(zeta_mat.^2))-B5.*(I.*imag(BC)./B1-real(BC) ... 
   ./B2)./(zeta_mat.^3-zeta_mat).^2.*(3.*zeta_mat.^2-1))./ ...  
   (1-1./(zeta_mat.^2)); 
 
tau_mat         = sqrt((real(str_mat)).^2 + (imag(str_mat)).^2); 
 
%TRANSLATE zeta -> z 
z_clast         = zeta_clast+1./zeta_clast; 
z_mat           = zeta_mat+1./zeta_mat; 
 
%PLOT IN ZETA (IMAGE) DOMAIN 
figure(1); 
clf 
subplot(211) 
pcolor(real(zeta_clast), imag(zeta_clast), p_clast); 
hold on; 
pcolor(real(zeta_mat),   imag(zeta_mat),   p_mat); 
shading interp; 
axis image; axis off; 
title('Pressure') 
colorbar('vert') 
 
subplot(212) 
pcolor(real(zeta_clast), imag(zeta_clast), tau_clast); 
hold on; 
pcolor(real(zeta_mat),   imag(zeta_mat),   tau_mat); 
shading interp; 
axis image; axis off; 
title('\tau') 
colorbar('vert') 
 
%PLOT IN Z (PHYSICAL) DOMAIN 
figure(2); 
clf 
subplot(211) 
pcolor(real(z_clast), imag(z_clast), p_clast); 
hold on; 
pcolor(real(z_mat),   imag(z_mat),   p_mat); 
shading interp; 
axis image;axis off; 
title('Pressure') 
colorbar('vert') 
 
subplot(212) 
pcolor(real(z_clast), imag(z_clast), tau_clast); 
hold on; 
pcolor(real(z_mat),   imag(z_mat),   tau_mat); 
shading interp; 
axis image; axis off; 
%title('\tau') 
colorbar('vert') 
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ELL_P_INTERF.M 

%================================================================= 
% ELL_P_INTERF.M 
% 
% Pressure in the matrix at the elliptical clast-matrix interface. 
% 
% 2002, Dani Schmid 
%================================================================= 
 
%CLEAR FIGURE 
figure(1); clf 
 
%COMPLEX NUMBER DEFINITION 
I       = sqrt(-1); 
i       = sqrt(-1); 
 
%VISCOSITY CONTRAST BETWEEN CLAST AND MATRIX 
mc      = 1e+3; 
 
%FAR FIELD FLOW 
er      = -1; 
gr      = 0; 
alpha   = 0/180*pi; 
 
%ASPECT RATIO, t CANNOT BE <=1, USE t=1.001 FOR CIRCULAR INCLUSION 
t       = [1.0001, 2, 10, 20]; 
Styles  = {':k', '-.k', '--k', '-k'}; 
 
%CIRCUMFERENCE 
theta   = 0:2*pi/360:2*pi; 
 
for m=1:length(t) 
  %TRANSLATE ASPECT RATIO INTO RADIUS 
  rc      = sqrt((t(m)-1)*(t(m)+1))/(t(m)-1); 
  %PRESSURE ON RADIUS 
  press=(2.*mc.*rc.^4-2.*mc-2.*rc.^4+2).*rc.^2./... 
   (mc.*rc.^4+mc-1+rc.^4)... 
  ./(1+rc.^4+mc.*rc.^4-mc).*((rc.^2.*(cos(theta).^2-sin(theta) ... 
  .^2)-1)./((rc.^2.*(cos(theta).^2-sin(theta).^2)-1).^2+4.*rc.^4 ... 
  .*sin(theta).^2.*cos(theta).^2).*(-2.*er.*cos(2.*alpha)-gr ... 
  .*sin(2.*alpha)).*(mc.*rc.^4+mc-1+rc.^4)+2.*rc.^2.*sin(theta) ... 
  .*cos(theta)./((rc.^2.*(cos(theta).^2-sin(theta).^2)-1).^2+4.* ... 
  rc.^4.*sin(theta).^2.*cos(theta).^2).*(-gr.*cos(2.*alpha)+ ... 
  2.*er.*sin(2.*alpha)).*(1+rc.^4+mc.*rc.^4-mc)); 
   
  %PLOTTING 
  plot(theta/pi*180, press, Styles{m}); 
  hold on; 
end 
achsen  = axis; 
axis([0 360 achsen(3:4)]); 
set(gca, 'Xtick', [0:45:360]) 
grid on; 
 
title('Pressure around elliptical inclusion'); 
xlabel('\theta'); ylabel('Pressure'); 
legend('t=1','t=2','t=10','t=20', -1); 
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ELL_ROT_RATE.M 

 

%================================================================= 
% ELL_ROT_RATE.M 
% 
% Analytical formula for the rotation rate of an ellipse in  
% combined, inclined  simple & pure shear 
% 
% 2002, Dani Schmid 
% 
%================================================================= 
%CLEAR FIGURE 
figure(1); 
clf; 
 
%FAR FIELD FLOW 
er      = 0; 
gr      = 1; 
alpha   = -pi/2:(pi/2)/100:pi/2; 
 
%ELLIPSE ASPECT RATIO 
t       = 6; 
 
%VISCOSITIES 
mc      = [1e6,      1,  1/10, 1/100]; 
Styles  = {':k', '-.k', '--k', '-k'}; 
 
for m=1:length(mc) 
    %ROTATAION RATE 
    rot_rate = (-1./2.*(t.^2-mc(m).*t.^2+mc(m)-1)./ ... 
               (mc(m).*t.^2+mc(m)+2.*t).*cos(2.*alpha)-1./2).*gr ... 
               -1./2.*(2.*mc(m).*t.^2-2.*t.^2-2.*mc(m)+2)./ ... 
               (mc(m).*t.^2+mc(m)+2.*t).*sin(2.*alpha).*er; 
 
    %PLOT 
    plot(rot_rate, alpha/pi*180, Styles{m}); 
    hold on; 
end 
grid on; 
xlabel('Rotation Rate/Shear Rate'); 
ylabel('\alpha'); 
legend('\mu_c/\mu_m=\infty','\mu_c/\mu_m=1', ... 
       '\mu_c/\mu_m=1/10','\mu_c/\mu_m=1/100', -1); 
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ZHOUK_DEMO.M 

 

%================================================================= 
% ZHOUK_DEMO.M 
% 
% Demonstration of the Joukowski transform 
% 
% 2002, Dani Schmid 
% 
%================================================================= 
%RESOLUTION 
nt          = 200; 
Theta       = 0:2*pi/nt:2*pi; 
 
%SETUP THREE DIFFERENT CIRCLES 
SLIT        =   exp(i*Theta); 
ELLE        = 2*exp(i*Theta); 
JOUK        = 2*exp(i*Theta)-0.9696+i*0.3473; 
 
%PLOT IN ZETA 
figure(1) 
clf 
subplot(121) 
hold on; 
plot(real(SLIT), imag(SLIT), '-k'); 
plot(real(ELLE), imag(ELLE), '--k'); 
plot(real(JOUK), imag(JOUK), ':k'); 
axis equal 
grid on 
title('\zeta-Plane'); 
 
%TRANSFORM  
SLIT    = SLIT + 1./SLIT; 
ELLE    = ELLE + 1./ELLE; 
JOUK    = JOUK + 1./JOUK; 
 
%PLOT IN Z 
subplot(122) 
hold on; 
plot(real(SLIT), imag(SLIT), '-k'); 
plot(real(ELLE), imag(ELLE), '--k'); 
plot(real(JOUK), imag(JOUK), ':k'); 
axis equal; 
grid on 
title('z-Plane'); 
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CHAPTER 5: ARE ISOLATED STABLE RIGID CLASTS IN 

SHEAR ZONES EQUIVALENT TO VOIDS? 

 

 

(This chapter is submitted “Tectonophysics” by Daniel W. Schmid and Yuri Yu. Podladchikov) 

 

 

ABSTRACT 

Isolated rigid clasts in shear zones often exhibit systematic inclinations with respect to 

the shear plane at shallow positive angles. This shape preferred orientation cannot be 

explained by any of the analytical theories used in geology. It was recently recognized 

that a weak mantle surrounding the clast or a slipping clast-matrix interface may be 

responsible for the development of the observed inclinations. Physical considerations 

lead us to conjecture that such mantled rigid clasts can be treated effectively as voids. 

The resulting theory agrees well with field data, in contrast to previous models. The 

theory has implications for our understanding of: clast rotation, shape preferred 

orientation development, strain estimation, and far-field flow reconstructions. 

 

 

Keywords: clasts, inclusions, shear zones, stabilization, theory 
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INTRODUCTION 

Geological field observations sometimes deliver counterintuitive and seemingly 

coincidental patterns. Careful examination often resolves these paradoxes by correcting 

our intuition, which is usually based on oversimplified or non-direct analogies. The 

“strange coincidences” do not call for special physics; they call for more quantitative 

evaluation of classical physics predictions compared to quick qualitative intuition-based 

reasoning. We see the ongoing active discussion on synchronous stabilization of 

apparently non-interacting rigid particles in shear zones tending towards instantaneous 

stretching directions, instead of being continuously rotated, as an excellent example of 

such a paradox.  

If one considers a simple thought experiment whereby a Swiss cheese is sheared, its 

holes will deform to ellipses, initially aligned towards the stretching direction at 45° to 

the shear plane. Why do we see an almost identical picture for rigid particles in shear 

zones, having large inclination angles to the shear zone, even after the surrounding 

matrix accommodated enormous amounts of shear strain (Figure 1)? A picture of an 

airfoil, welded to something out of the observation plane, resisting the action of the gas 

flow that tries to turn and to lift it comes to mind. What holds the clasts in mylonitic 

shear zones? Why do they all have (coincidentally?) similar inclination angles after 

thousands percent of strain? The resolution discussed here is that presence of a 

seemingly unimportant thin, and weak, boundary layer, or imperfect welding of the clast 

to the matrix turns the clast into a hybrid of quasi-rigid and quasi-void behaviors. This 

mantle causes the clast to back-rotate toward the stretching direction as a void would, 

but the presence of the clast allows this void to keep its overall shape as a rigid particle. 

The behavior of particles embedded in a matrix and subjected to boundary conditions 

remains a problem of fundamental interest for many branches of science. The analytical 

theories used in geology go back Jeffery (1922) who, based on Einstein (1906), 

developed a theory that explains the behavior of a rigid ellipsoid immersed in a viscous 

fluid subjected to far field simple shear flow. The most important addition was made by 

Ghosh and Ramberg (1976) who combined Jeffery’s theory and Muskhelishvili’s (1953) 

complex variable method to a two dimensional theory that explains the behavior of rigid 

elliptical particles embedded in a viscous fluid subjected to arbitrary combinations of 

pure and simple shear. 
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Figure 1 

Ultramafic mylonite showing a clear shape preferred orientation of olivine porphyroclasts 

inclined at a low angle to the shear plane (horizontal). Shear sense is top to the right. Site 

location is near Finero in the Italian western alps. The inclination angle measure 

convention is displayed in the insert. (Photo courtesy G. Pennacchioni) 

 

Other fields of science developed more complex theories in order to respond to the 

specific needs. Based on the alternative analytical solutions by Muskhelishvili (1953) 

and Eshelby (1959), researchers in the fields of composites and defects in solids derived 

in recent years the expressions for inclusions with imperfect bonding to the matrix (e.g., 

Mura, 1987; Furuhashi et al., 1992; Gao, 1995; Ru and Schiavone, 1997; Shen et al., 

2001). A common finding of these works is that the so called Eshelby conjecture does 

not hold for a cylindrical or elliptical inclusion with a slipping interface. The Eshelby 

conjecture states that stresses applied at infinity cause constant stresses inside the 

inclusion, i.e., for arbitrary combinations of pure and simple shear, and arbitrary 

orientation and aspect ratio of the ellipsoidal inclusion, the stress state inside is 

homogenous and can be completely described by a single stress tensor. 

The invalidity of Eshelby’s conjecture is of fundamental importance for geological 

applications, where the observed systems are not likely to show perfect bonding 
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between clast and matrix (either due to interfacial slip or the presence of a third, weak 

phase, i.e., the mantle). Inhomogeneous stress states inside the inclusion are not only 

expected to change the flow patterns, but may cause transitions into different 

deformation mechanism fields, drive metamorphic reactions and be the cause for 

asymmetric zoning (e.g., myrmekite distribution, Simpson and Wintsch, 1989). 

The focus of this study is the kinematic behavior of isolated, rigid clasts in shear zones. 

The term rigid is used here to describe a phase that has a much higher resistance to flow 

than all other phases present, thus termed weak. A clast that only interacts with the 

homogenous surrounding matrix and not with nearby clasts is designated an isolated 

clast. Ildefonse et al. (1992) have shown that the interaction effects become significant 

if individual clasts are closer than one diameter, and this distance is assumed to be the 

limit of applicability of the presented work.  

The motivation for this study is the aforementioned observation that natural shear zones 

often exhibit systematic inclinations of porphyroclasts (Passchier and Trouw, 1996; 

Snoke et al., 1998). Analysis of natural data sets reveals that these inclinations are at 

shallow, positive angles with respect to the shear plane (e.g., Figure 1 and Mancktelow 

et al., 2002) and that there is a general trend for more elongated clasts to be less inclined 

with respect to the shear plane (Pennacchioni et al., 2001; ten Grotenhuis et al., 2002, 

cf. Figure 4). If large numbers of clasts show these inclinations then they must be stable 

or at least meta-stable, with the clast rotation rates, ω , vanishing compared to the shear 

rate, γ . Existing analytical theories used in structural geology fail to give an 

explanation for the observed stable positions, either because no stable positions exists 

(Jeffery, 1922) or because the location and trend of the stable position does not 

correspond to the field data (Ghosh and Ramberg, 1976, cf. Figure 4). However, there is 

evidence from field data and analogue modeling that the observed stable orientations are 

due to interfacial slip or a weak mantle (Ildefonse and Mancktelow, 1993; Marques and 

Coelho, 2001; Mancktelow et al., 2002). If this is indeed the reason for clast 

stabilization then we need to rethink the possible applications, such as deciphering the 

far-field flow conditions during deformation (Ghosh and Ramberg, 1976; Passchier, 

1987) and strain determinations (see Arbaret et al., 2000, for a review). 
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IGNORING THE CLAST TO STUDY THE CLAST 

Mantled porphyroclasts exhibit the largest strains in the fine-grained mantle material. 

Consequently, it is likely that the mantle material has the smallest resistance to flow and 

thus the smallest viscosity of the system. We term such clasts “lubricated”. If the clast 

does not generate any mantle and behaves rigidly, slip is likely to occur between the 

matrix and clast. This interfacial slip case is simply an end-member of the lubricated 

clast in the limit of vanishing mantle viscosity. 

If the weak mantle of the lubricated clast is either sufficiently thick (compared to the 

clast size) or has a vanishing viscosity compared to the matrix (the clast is assumed 

rigid), then the presence of the clast will be effectively masked by the mantle, e.g., the 

matrix does not “feel” the shear resistance of the clast. Practically matrix-mantle 

viscosity contrasts of 100:1 are already enough to “hide” the clast (Schmid and 

Podladchikov, 2002b). Since vanishing shear tractions cannot be responsible for the 

clast kinematics, the normal traction components must be analyzed. For example the 

pressure distribution in the matrix can be used as a proxy to determine if the clast-

mantle couple behaves effectively as a rigid clast or as a void. Figure 2 shows the 

comparison of a lubricated clast to these two end-member cases. Although the 

lubricated clast has undergone substantial finite strain and developed complex mantle 

geometry it clearly corresponds to the weak clast case, which exhibits almost the same 

pressure perturbation pattern, i.e., pressure shadows. Hence, with respect to the normal 

tractions the presence of the rigid clast is again hidden from the matrix and the far-field 

flow. Therefore the lubricated clast can be reduced to a void. 

It is tempting to use pressure or another stress component to explain clast rotation and 

stabilization based on the intuition that everything flows from high to low pressure areas 

and to argue that the high pressure zones adjacent to the clast push it towards the 

pressure lows (e.g., Marques and Coelho, 2001). Yet, because inertial effects are 

negligible the net forces and torques acting on any particle are always zero, irrespective 

of the particle rotation, and cannot determine the rotation direction. We therefore need 

to find an admissible explanation. 
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ROTATION DIRECTION OF PERFECTLY BONDED INCLUSIONS  

Stable clast inclinations are the result of vanishing rotation rates. The rotational 

behavior of different kind of clast is of considerable complexity and illustrated here by 

means of some model cases. For example, the rigid circular clast always rotates with the 

applied shear sense, i.e., clockwise in top to the right simple shear. Jeffery (1922) 

showed that this rotation rate is half of the applied shear rate. If the circular clast has the 

same viscosity as the matrix material, then it is just a recorder of the homogeneous finite 

simple shear strain. The initially circular form will be instantaneously deformed into an 

ellipse with the long axis near vertical. With increasing strain this ellipse will become 

progressively elongated and the inclination will tend towards the shear plane (Ramsay 

and Huber, 1983). In contrast to this behavior is that of a  circular void, which also 

cannot maintain its shape. Being pulled into the instantaneous stretching direction, the 

first ellipse appearance of the void is at 45° to the shear plane – as described with the 

Swiss cheese example in the introduction. The finite strain behavior is again that the 

ellipse becomes more elongated and approaches asymptotically the shear plane. Thus 

for all cases considered, the rotation direction of an elliptical shape derived from 

initially circular inclusion is synthetic with applied shear sense. This observation is 

dramatically altered for initially non-circular inclusions. 

The behavior of clasts that are elliptical to start with requires knowledge of the initial 

inclination – for now we assume that the long axis is parallel to the shear plane. If rigid, 

such a clast will still rotate synthetically with the shear sense. However, due to its 

elliptical shape the rotational behavior is pulsating. If the particle is shear plane parallel, 

the simple shear flow easily streams around the particle, which consequently rotates 

slowest in this position. On the other hand, if the particle is inclined vertically to the 

shear plane it is a relatively large obstacle to the shear flow and consequently rotates 

fastest. The analytical expression describing this behavior goes again back to Jeffery’s 

work and is displayed in Figure 3. If the elliptical clast in the shear plane parallel 

position has the same viscosity as the matrix the ellipse will be passively deformed. 

Although the simple shear flow has only shear plane parallel velocities the ellipse will 

initially undergo apparent back-rotation, antithetically against the shear sense. This can 

be easily checked with any drawing program. For finite strains the ellipse is 

progressively stretched and approaches the shear plane.  
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a) 

 
b) 

 

Figure 3 

Rotational behavior of elliptical inclusions. The field where weak inclusions rotate 

backwards/antithetically is underlain gray. 

a) Aspect ratio R=2 

b) Aspect ratio R=6 

134 



The passive ellipse is a case of no viscosity contrast between the clast and the matrix, 

whereas the rigid case corresponds to the infinite contrast of viscosities. Therefore, 

lowering clast/matrix viscosity contrast from infinity to unity causes change in rotation 

direction from synthetic to antithetic. 

The last and most relevant example is the shear plane parallel void, a case of infinitely 

small clast/matrix viscosity contrast. It may be speculated that it rotates backwards, 

extending the tendency of the passive ellipse compared to the rigid particle due to 

further drop of the clast-matrix viscosity contrast. The void can accommodate by 

deformation the pull towards the instantaneous stretching direction, which adds an extra 

component to the back-rotation compared to the passive ellipse case. This intuitive 

reasoning is rigorously verified by an exact analytical solution. We used 

Muskhelishvili’s method (cf. Schmid and Podladchikov, 2002a) to derive the expression 

for the elliptical clast rotation, α , for simplicity approximated by the tangential velocity 

at the tip and divided by the tip to clast-clast center distance: 

 ( )
2

2

2 2 1cos 2
2 2 4

c c

c c

R R
R R

µ µα α
γ µ µ

+ − +
=

+ + 2
−  (1) 

Here γ  is the applied shear strain rate ( /xv yγ = ∂ ∂ ), x  and  are Cartesian coordinates 

parallel and orthogonal to the shear plane, respectively,  the velocity vector, 

y

v α  the 

inclination of the ellipse to the simple shear flow, cµ  the viscosity ratio between clast 

and matrix ( /c mµ µ ), and R  the aspect ratio of the elliptical inclusion. The sign 

convention used is that top to the right shearing is positive and all positive angular 

quantities mean counter-clockwise. The rigid limit ( cµ →∞ ) of eqn. (1) is identical to 

Jeffery’s expression (1922), cf. Figure 3. However, our interest is the infinitely weak 

inclusion, 0cµ → , for which we obtain 

 ( )2 1 1sin
2

R
R R

ω α
γ

+
= − +  (2) 

This expression has the interesting property that positive rotation rates result when  

 ( )2 1sin
2 2R

α <
+

 (3) 
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(γ  always assumed to be positive). This means that the elliptical void indeed rotates 

backwards from a shear plane parallel position. However, it can be deduced from eqn. 

(3) that the maximum α  for which back-rotation occurs is  

 1arcsin
2 2R

α =  + 


  (4) 

which only yields 30° for  as the maximum possible value for 1R → α , contrasting the 

45° degrees that represent the direction of maximum instantaneous extension. 

The characteristic rotational behavior of elliptical inclusions according to eqn. (1) is 

depicted in Figure 3. The rigid inclusion rotates according to Jeffery’s theory, always in 

agreement with the applied shear sense. The distinctive effect of decreasing the 

inclusion viscosity is to amplify the behavior of the rigid inclusion, i.e., to accelerate the 

rotation where it is already fast and to slow it down where it is slow. If 1cµ <  the slow 

field even goes into back-rotation. The larger the aspect ratio is the smaller the size of 

the back-rotation field. 

The expression of the maximum angle for which back-rotation occurs has a second 

significance: it represents meta-stable and stable clast inclinations. At the inclination 

angle described by eqn. (4) the rotation rate is zero and there is a mirror angle with 

respect to the shear plane that also has this characteristic. This negative, mirror angle is 

a meta-stable inclination, since the inclusion will stay at this inclination once it is there, 

but even the smallest perturbation will cause the inclusion to move towards the positive 

zero-rotation inclination. In fact, inclusions from all possible inclinations will either 

rotate forwards or backwards towards the positive inclination, which is why the positive 

inclination is stable. 

Figure 3 also illustrates a seeming contradiction to our argumentation: the shear plane 

parallel passive ( / 1c mµ µ = ) ellipse is predicted to have zero rotation rate, which is 

opposed to the suggested drawing program exercise. This is the drawback of our 

simplified expression for the elliptical shape rotation rate, which may be nonzero even if 

material point at the tip does not move. Nevertheless, the tangential tip velocity is an 

accurate proxy for the rotation velocity. In addition we are really dealing with a 

lubricated clast that has only some characteristic of void as explained in the following. 
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EQUIVALENT VOID CONJECTURE 

Lubricated rigid clasts, such as are common in natural shear zones, can be reduced to 

equivalent voids. The equivalent void has an elliptical shape, approximating the size of 

the clast. The rotational behavior of the equivalent void is given by the tangential tip 

velocity of real voids. This velocity pulls the equivalent void into a stable inclination 

that is at shallow positive angles to the shear zone. In contrast to real voids, shear 

deformations of the equivalent void can be ignored because its shape is given and 

supported by the contained rigid clast. The rigid clast is assumed to follow the pull of 

the tips and stabilize at approximately the angles predicted by the equivalent void 

theory. 

 

 

VERIFICATION 

To verify the validity of our assumption of void behavior, we compare the equivalent 

void theory with the geometry resulting from the presented finite strain experiment, 

Figure 3 (mid section). The clast-lubricant system has rotated backwards from the 

initially horizontal position into the present inclination, which is stable. The measured 

aspect ratio of the weak phase is 2.5:1, which, according to eqn. (4), should have a 

stable inclination at 22°. This theoretical value is remarkably close to the measured 

value of 21°. The aspect ratio of the clast itself is 2:1 and its inclination 28°. This is 

steeper than what our void theory predicts (24°) and is characteristic for all finite strain 

experiments performed. However, the measured deviations were never large, 

considering the simplifying assumptions made. The required shear strain to reach the 

stable orientation is < 1, i.e., the total angle of the shear deformation < 45°. 

The most important test case of any geological theory is the comparison with field data. 

Figure 4 shows the comparison of the equivalent void theory versus natural data and the 

Ghosh and Ramberg theory. Ghosh and Ramberg (1976) derived their stable positions 

for a perfectly bonded clast in combined pure and simple shear. For given relative 

intensity of this two shear components the clast may have stable positions, depending 

on the aspect ratio. However, for any given far-field flow the stability curves lie in the 

gray areas and follow the trends indicated by the dashed lines. This trend conflicts with 
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the field data. In contrast, our equivalent void theory, shows excellent agreement with 

the field data, both in trend and absolute amplitudes of the angles. 

 

 

Figure 4 

Comparison of natural data points collected by ten Grotenhuis et al (2002) to the 

presented void theory (bold solid line). The gray fields indicate the location of 

possible stable inclinations according to Ghosh and Ramberg’s combined pure and 

simple shear theory. Examples resulting from particular shear flow combinations are 

the dashed lines. The meaning of the terms “transpression” and “transtension” is 

explained through the arrows. 
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CONCLUSIONS 

The combination of field, analogue, numerical and analytical results reduces the 

problem of the back-rotating and stabilizing competent clast in a shear zone to the one 

of an isolated void of fixed elliptical shape. Based on Muskhelishvili’s (1953) method 

we have derived a theoretical curve for stable clast inclination that agrees well with 

natural data and represents an improvement compared to classical theories. The 

characteristics of the stable positions are that they are at shallow positive angles to the 

shear plane and the stable inclination angle decreases with increasing clast aspect ratio. 

The prerequisite for the theory to be applicable is the presence of a weak phase (weaker 

than the matrix) between rigid clast and matrix or imperfect bonding between clast and 

matrix, both of which are often the case in natural shear zones. 

The equivalent void theory has the following important geological implications. i) 

Clasts in shear zones can have stable positions in simple shear without the requirement 

of an additional pure shear component. ii) The stable orientation can be approached 

either syn- or antithetically, hence the clast can rotate against the applied shear sense. 

iii) The strain needed to develop a strong shape preferred orientation is small ( 1γ ≈ ) 

and therefore evaluations based on other theories may overestimate strain by orders of 

magnitudes. iv) The reconstruction of far-field shear flow conditions and the kinematic 

vorticity analysis must be modified to incorporate these new findings. 
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APPENDIX – MATLAB SCRIPT SUPPLEMENT TO FIGURE 4 

%===================================================================== 
% PLOT_STABLE_POS.M 
% 
% Plot stable clast inclinations in shear zones according to the 
% equivalent void theory and to Ghosh & Ramberg, 1976 
% 
% 2002, Dani Schmid 
%===================================================================== 
 
%INITIALIZE FIGURE 
figure(1) 
colormap(gray) 
clf 
hold on 
 
%VARIOUS sr VALUES AFTER GHOSH & RAMBERG 1976, sr = pure shear rate / simple shear rate 
Sr  = [-5, -1, -.2, +5, +1, +.2]; 
 
%ASPECT RATIOS 
R   = 1:.001:21; 
 
%NEW VOID THEORY 
angle   = asin(1./sqrt(2*R+2))/pi*180; 
void    = plot(R, angle, '-r'); 
set(void, 'LineWidth', 2); 
 
%STABLE FIELD BOUNDARY FOR GHOSH AND RAMBERG 1976 
stable_bdry                 = -atan(R)/pi*180; 
stable_bdry(stable_bdry<0)  = stable_bdry(stable_bdry<0)+180; 
stable_bdry                 = -stable_bdry+90; 
plot(R,  +stable_bdry, 'b'); 
fill([R, max(R), min(R)], [+stable_bdry,  0,  0], 'b'); 
fill([R, max(R), min(R)], [-stable_bdry, 90, 90], 'b'); 
 
%PLOT STABILITY CURVES FOR sr VALUES 
for sr=Sr 
    %THETA_5 eqn. 8b, GHOSH & RAMBERG 1976 
    theta_5     = atan(-sr*(R.^2-1)-sqrt(sr^2.*(R.^2-1).^2-R.^2)); 
    theta_5(:, imag(theta_5)~=0)    = NaN; 
    theta_5                         = real(theta_5); 
    theta_5                         = theta_5/pi*180; 
    theta_5(theta_5<0)              = theta_5(theta_5<0)+180; 
     
    %TRANSLATE ANGLES INTO OUT SCHEME 
    theta_5 = -theta_5+90; 
     
    %SOLID IS STABLE - DASHED IS INSTABLE 
    stable = plot(R, +theta_5, '-k'); 
end 
 
%ADJUST PLOT 
set(gca, 'Xlim',  [1, max(R)]); 
set(gca, 'Xtick', [1:2:max(R)]) 
set(gca, 'Ylim',  [-90, 90]); 
set(gca, 'Ytick', [-90, -45, 0, 45, 90]) 
grid on 
 
xlabel('Aspect Ratio') 
ylabel('Inclination') 
legend('VOID THEORY', 'GHOSH&RAMBERG fields of stable positions',... 
       'GHOSH&RAMBERG Examples of stable positions', 4) 
title('STABLE INCLINATIONS IN SHEAR ZONES') 

141 



 

142 



 

CHAPTER 6: FOLDING OF FINITE LENGTH LAYERS 

 

(This chapter will be submitted “Journal of Geophysical Research” by Daniel W. Schmid, Yuri Yu. 

Podladchikov, and Fernando O. Marques) 

 

 

ABSTRACT 

Folding of finite length ductile and elastic layers embedded in a Newtonian viscous 

matrix are investigated and compared to conventional folding experiments, such as 

folding of an infinite layer or a finite layer in direct contact to lateral boundaries. Thin 

plate approximation combined with the complex potential method is used throughout 

the analysis. For power law layers, the infinite layer expression for the dominant 

wavelength remains valid, but the growth rate is greatly decreased for high viscosity 

contrast cases. This decrease helps to explain the apparent absence of periodic 

waveforms with very large wavelength to thickness ratio in nature. These findings are 

verified by 2D finite element simulations. In the elastic case, a set of new dependencies 

quantifying folding is revealed. A weak relationship between dominant wavelength and 

strain rate is established and verified by laboratory experiments over a controlling 

parameter range of ten orders of magnitude. The importance of the finite length of the 

folding layer is controlled by a dimensionless parameter  that is equal to the effective 

viscosity contrast divided over aspect ratio of the layer. If  the aspect ratio of the 

layer has a substantial influence on the folding process. Conversely, if  the 

classical "infinite" setup can be used without loss of accuracy even if the layer length is 

finite. All folding modes and the corresponding applicability ranges are summarized in 

an overview table. Appropriate quantification of folding modes is important for scaling 

of laboratory experiments, for deducing strain and rheological contrasts from natural 

folds and for identification of folding as a leading strain accommodation mode. 

aD

D 1a

1aD
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INTRODUCTION 

Folding theories elaborate on the original setup chosen by Leonhard Euler in the early 

18th century (Euler, 1744) who developed the theory for an elastic bar, surrounded by a 

much less competent matrix (air), and subjected to compression and/or moments, 

directly applied to the lateral boundaries. Substantial and important modifications of 

Euler’s theory contributed to our understanding of how folds develop in nature. The 

features accounted for by these modifications include: finite competence contrast 

between layer and matrix, different combinations of layer and matrix rheologies, layer 

parallel shortening due to compression, finite amplitude effects, gravity and erosion, 

finite width matrix material, i.e., channels, three dimensional folds, and interaction in 

multi-layered systems. References can be found in textbooks such as Price and 

Cosgrove (1990) and Johnson and Fletcher (1994). A recent addition to the existing 

theories was made by Schmalholz and Podladchikov (2000; 2001) who developed a 

theory that predicts finite amplitude folding in pure shear up to 50 percent shortening 

and allows rheology independent strain estimates for fold geometries. 

However, two principal features of natural folds have not been investigated: i) real folds 

are observed in layers of finite length and ii) usually there are no rigid walls that directly 

apply boundary conditions onto the lateral layer ends. This statement is scale 

independently valid: from small veins to subducting slabs. For example Sherwin and 

Chapple (1968) made measurement on the prototype of folds in layers of finite length 

where no rigid walls are present: quartz veins embedded in slate. This paper stimulated 

much research to explain the observed natural preference of small wavelengths to 

thickness ratios. Such ratios suggest small (<100) viscosity contrasts, in contradiction to 

laboratory measurements that show variability of the viscosity of natural rocks over 

many orders of magnitudes (Biot, 1961). 
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Figure 1 

Extremity of a folded quartz vein, Almugraf, Portugal. 

 

 

In this paper we investigate in two dimensions the folding of finite length layers 

embedded in a less competent matrix and subjected to pure shear far-field flow. The 

rheology of the matrix is assumed to be Newtonian, but we investigate the behavior of 

Newtonian, power-law and elastic layers. The basis of our approach is that a finite 

length layer can be approximated as an elongated ellipse, for which we can perform the 

basic state analysis that yields all necessary values for the classical linear stability 

analysis of folding. 
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BASIC STATE ANALYSIS 

The indispensable requirement for the study of folding instability is the understanding 

of the basic state. The basic state has the same boundary conditions, material properties 

and geometrical configuration as the folding model, but no perturbation that could grow 

is present. In the “classical” basic state a layer is embedded in a weaker matrix and the 

entire system is subjected to layer-parallel compression, directly applied through rigid 

lateral boundaries onto matrix and layer (Figure 2). Knowing the boundary conditions 

and the material rheologies, one may deduce all components of strain (rates) and 

stresses throughout the system. 

The basic state of the finite length layer is notably different (Figure 3). The layer is 

isolated within the surrounding matrix and has no direct contact to the boundaries of the 

box. Consequently the values of stress and strain (rate) within the system are not a priori 

known, even if rheology, geometry, and boundary conditions are given. Approximating 

the finite length layer by an ellipse simplifies the problem, because several analytical 

solutions exist for elliptical inclusions in a matrix subjected to general shear flows. 

Elliptical inclusions have an exceptional property that under homogenous boundary 

conditions (e.g., pure shear far-field flow), all stress and strain (rate) components within 

the inclusions are constant with respect to space and can be completely described by a 

single value. Examples are pressure ( p ), layer-parallel stress ( xxσ ), and total layer 

parallel strain rate ( xxε ). The origin of this observation is often attributed to Eshelby 

(1957; 1959) who developed an analytical theory that allows to find the complete 

solution for the three dimensional ellipsoidal inclusion subjected to far field boundary 

conditions. In two dimensions, this property was already noted by Hardiman (1954). 

Constant values inside the inclusion additionally simplify the analysis of finite length 

layer folding, as it allows for straightforward combination of our basic state analysis 

with the “classical” folding analysis that also relies on constant values. 
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Figure 2 

”Classical” basic state configuration, after Smith (1977). 

 

 

Figure 3 

Illustration of a finite length layer subject to horizontal compression. 

Note that a typical real layer is likely to have a larger aspect ratio and the bounding 

box would be much larger with respect to the layer. h and l are the layer thickness 

and length, respectively. 
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SOLUTION WITH MUSKHELISHVILI’S METHOD 

In order to derive the analytical expression of the background state we employ the 

method of Muskhelishvili (1953). This method allows finding analytical solutions for a 

wide range of problems of two-dimensional viscous flow and elasticity. Solutions are 

given in terms of complex potentials ( )zφ  and ( )zψ , where z is the complex 

coordinate. Once these complex potentials are obtained the following basic formulae 

allow extraction of the desired parameters in the case of incompressible viscous 

materials: 

 ( )(2
2

xx yy z )σ σ
φ

+
′= ℜ  (1) 

 ( ) ( )
2

yy xx
xyi z z z

σ σ
σ φ ψ

−
′′ ′+ = +  (2) 

 ( ) ( ) ( )
2x y

z z z z
v iv

φ φ ψ
µ
′− −

+ =  (3) 

where 1i = − , µ  the material viscosity, x and y are the usual Cartesian coordinates 

(Figure 3) that relate to the complex coordinate through z x iy= +

xx

,  and  are the 

horizontal and vertical velocities, respectively, and 

xv yv

σ , yyσ  and xyσ  are the 

components of the total stress tensor. The over-bar means conjugation and ℜ  the 

real part.  

( )

The complete analytical solution for the inside of an arbitrary inclined elliptical 

inclusion with finite viscosity contrast to the matrix, subjected to horizontal pure shear 

far-field flow is  

 ( ) ( )
( ) ( ) ( )

( ) ( )
2 2

4 4

2 2
cos 2 sin 2m l m l l m

l m l m l m l m

r r
z i

r r
µ µ µ µ µ µ

zφ α α
µ µ µ µ µ µ µ µ

 − −
= −  + − + + + − 

ε  (4) 

 ( ) ( ) ( ) ( ) ( )
4 4

4 4

4 4cos 2 sin 2l m l m

l m l m l m l m

r rz i
r r
µ µ µ µ zφ α α

µ µ µ µ µ µ µ µ
 −

= −  + − + + + − 
ε  (5) 

α  is the angle of long axis inclination measured from the x-axis (positive values are 

counter-clockwise), ε  is the far field strain rate ( /xv xε = ∂ ∂ ), lµ  is the layer viscosity, 

148 



mµ  the matrix viscosity, and  is a function of the ellipse aspect ratio, a l , and can 

be determined through: 

r / h=

α =

( )µ

τ xx

σ

( )zφ ′

+ +

xxε

 
( )( )1 1

1
a a

r
a
+ −

=
−

 (6) 

Eqns. (4) and (5) are only valid inside the elliptical inclusion; the expressions for the 

outside are more complex since the matrix does not exhibit the constant value property. 

However, in the thin layer approximation of folding analysis only the layer internal 

values matter and consequently we focus on these. For now we will assume that the 

inclusion is oriented parallel to the applied pure shear (Figure 3). Therefore we set 

0  and eqns. (4) and (5) simplify to: 

 ( ) ( )

2

4

2 m l m

l m l m

r
z

r
µ µ

φ ε
µ µ µ µ

−
=

+ − +
 (7) z

 ( ) ( )
4

4

4 l m

l m l m

rz
r
µ µ zφ ε

µ µ µ µ
−

=
+ − +

 (8) 

 

VISCOUS LAYER IN VISCOUS MATRIX 

The above expressions are derived for the viscous inclusion in a viscous matrix. The 

key parameters needed for the analysis of fold growth are the horizontal stress, xxσ , the 

horizontal deviatoric stress, xx , and the horizontal strain rate, ε , in the layer. 

Combining eqns. (1) and (2), xx  can be extracted through  

 ( ) ( )(2xx z z zσ φ ψ′ ′ ′= ℜ − −  (9) )

which yields 

 ( )( )
2

1 2
2

2
m m m

xx
m m l

a a a
a a

µ µ µ lµσ ε
µ µ µ

+ − + +
=  (10) 

Note that this xxσ  is only determined up to a constant, therefore a (lithostatic) pressure 

component may be added without influencing the results.  

 can be deduced from eqn. (3) as 
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 ( )
( )

2

2

1
1 2

m
xx

m l

a
a a

µ
ε ε

µ µ
+

=
+ +

 (11) 

These two expressions exhibit familiar limits. Setting  in a →∞ xxσ  we obtain 

 4 2xx l mσ µ ε µ ε= −  (12) 

If in addition the viscosity of the layer is significantly higher than that of the matrix we 

can omit the second term to get 4 lµ ε , which is the total horizontal stress value used in 

the classical viscous folding theory (Biot et al., 1961).  

On the other hand, if lµ →∞  in eqn. (10) then we get  

 ( )2 1xx m aσ µ= + ε  (13) 

which is identical to the result Mandal et al (2001) obtained based on Jeffery’s (1922) 

theory. For  this expression yields the background value, a →∞ ε , as the horizontal 

strain rate in the layer, xxε . This is equivalent to applying the boundary conditions 

through a rigid wall directly onto the layer.  

The infinitely rigid inclusion is not deformable and consequently eqn. (11) yields 

0xxε =  for lµ →∞ . 

The limit values of xxσ  and xxε  either checkable versus intuition or published results. 

However, in order to check the validity also for intermediate cases we have employed a 

finite element code. The elements are triangular Crouzeix-Raviart elements with 

continuous (bubble node enriched), quadratic basis functions for the velocities and 

discontinuous linear basis functions for pressure. The incompressibility constraint is 

taken care of by Uzawa iterations (Cuvelier et al., 1986). In all performed checks the 

deviations between analytical and numerical results were less than 1%, which confirms 

the validity of the derived expressions over the entire range of viscosity contrasts and 

aspect ratios. 

The complexity of the derived expressions for xxσ  and xxε  can be reduced through the 

introduction of the dimensionless parameter  aD

 1l
a

m

D
a

µ
µ

=  (14) 

150 



Using  we can approximate aD xxσ  and xxε  as: 

 14
1 2xx l

aD
σ µ≈

+
ε  (15) 

 1
1 2xx

aD
ε ε≈

+
 (16) 

Thus, the horizontal deviatoric stress, xxτ , inside the finite length layer is 

 12
1 2xx l

aD
τ µ≈

+
ε

m

 (17) 

aD  is useful because it readily allows analyzing the competing effects of the aspect 

ratio, , versus the viscosity contrast, a /lµ µ . Two distinct limits can be characterized. 

If , the layer has a much larger aspect ratio than the viscosity contrast to the 

matrix and all the classical values of folding analysis are recovered (proven in the 

following). If , the aspect ratio of the finite length layer is smaller than the 

viscosity contrast and new expressions are obtained, which govern new folding modes. 

The quality of the -approximations is displayed in Figure 4, showing that the errors 

introduced by the approximated form are generally negligible for realistic aspect ratios. 

1aD

1aD

aD

Figure 4 
a) Error of xxσ  approximation versus viscosity contrast and aspect ratio 
b) Error of xxε  approximation versus viscosity contrast and aspect ratio. 
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POWER-LAW LAYER IN VISCOUS MATRIX 

Laboratory measurements show that real rocks almost never have a Newtonian 

rheology, but exhibit non-linear power-law behavior. In order to take the corresponding 

effects into account we introduce a power-law material layer. Since we us the thin plate 

approximation in the following analysis of fold growth we can ignore shear 

deformations, and thus introduce the power-law rheology for the layer as: 

 
1
n

xx xxBτ ε=  (18) 

where  is the power-law exponent and n B  is a material constant. For the folding 

analysis the horizontal strain rate in the layer can be split into a mean and a fiber 

component (Timoshenko and Woinowsky-Krieger, 1959) 

 xx B Fε ε ε= +  (19) 

where Bε  is the value of the mean layer-parallel strain rate caused by the shortening and 

Fε  is the fiber strain rate caused by flexure of the layer (Schmalholz and Podladchikov, 

2000). Substituting eqn. (19) into (18) and expanding the nonlinear eqn. (18) by a 

second order Taylor series around xx Bε ε=  yields the following linear approximation 

for the horizontal deviatoric stress: 

 2 2 e
xx e B Fn

µτ µ ε ε= +  (20) 

where eµ  is the effective viscosity of the layer, which is defined by  

 
1 1

2
n

e B
Bµ ε

 −
=


  (21) 

In the case of a Newtonian layer, 1n = , we get 2 lB µ=  and therefore e lµ µ= .  

The expressions for xxσ , xxτ  and xxε  which we derived for a Newtonian layer 

embedded in a likewise matrix remain applicable, by replacing lµ  by eµ . Since we are 

interested in the most general solution form, we will use power-law rheology in the 

following, from which the Newtonian case can be deduced. The fiber strain rate, Fε , 

will be determined in the linear stability analysis of the folding instability. The mean 
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layer-parallel strain rate, Bε , is identical to the basic state xxε  and, therefore, the 

effective viscosity can be related to the far field strain rate, ε , through the following 

implicit equation 

1 − 
 



2 xxGε=

 

1

1
2 1 2

n

e
a

B
D

µ
 

=  + 
 (22) ε

 

 

 

ELASTIC LAYER IN VISCOUS MATRIX 

Above we performed the basic state analysis for an incompressible viscous layer in an 

incompressible viscous matrix, albeit the method of Muskhelishvili was derived 

originally for elastic problems. Since the infinitesimal (all) viscous and (all) elastic 

problem are identical (e.g., Eshelby, 1957) this could be done without further 

complication. However, this is not the case for the elastic finite length layer in the 

viscous matrix. The problem must be reduced to one of only one type of rheology. This 

is possible through the use of the correspondence principle (Biot, 1954) done here by 

the introduction of an effective viscosity. The behavior of the incompressible elastic 

inclusion is hereby translated into one of a viscous inclusion with corresponding 

(effective) viscosity. The same technique was essentially already employed in the 

treatment of the power-law layer.  

First we express the elastic rheology, due to our focus of interest, only in terms of 

horizontal deviatoric normal components: 

 2xx xxGτ ε=  (23) 

where  the shear modulus and G xxε  the horizontal strain. Taking the time derivative of 

eqn. (23) we can write: 

 2xx xxG
t t
τ ε∂ ∂

=
∂ ∂

 (24) 

153 



Substituting eqns. (16) and (17) as a function of ( )e tµ  into eqn. (24) results in an 

ordinary differential equation for the unknown effective viscosity of the elastic layer, 

. Assuming that at time t  the elastic layer is unstrained, the initial effective 

viscosity is 

( )e tµ 0=

( )0eµ 0= . Consequently the effective viscosity is 

 ( ) 1 1 2exp
2 2e m m

m

Gtt a a
a

µ µ µ
µ

 
= − + 

 
  (25) 

Through the introduction of this effective viscosity the results of the viscous basic state 

analysis become applicable to the elastic case, by performing the substitution (25) 

throughout and taking care of the time dependence of the effective viscosity. The  

number for the elastic case is therefore: 

aD

 ( ) 1e
a

m

t
D

a
µ
µ

=  (26) 

and the general expression for xxσ  in the elastic beam (eqn. (15)) becomes 

 ( ) ( ) 14
1 2xx e

a

t t
D

σ µ=
+

ε

t

 (27) 

We point out that the somewhat complicated effective viscosity expressed in eqn. (25), 

can be further simplified through a second order Taylor series expansion around =0, 

which results in  

t

  (28) ( )e t Gµ =

Although much simpler, the maximum error introduced in the entire  range is less 

than 25% (Figure 5), which is acceptable for this study. In addition, the errors are 

restricted to a small range around 

aD

1aD = . 
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Figure 5 

Error in  caused by the ( )xx tσ

( )e tµ = Gt  approximation. 

LINEAR STABILITY ANALYSIS 

Having derived the basic state expressions we can investigate the development of folds 

in finite length layers by means of the so called “linear stability analysis”. The interface 

between layer and matrix is now assumed to be perturbed and we employ the bending 

equation (Biot, 1961) in order to analyze the growth of these perturbations.  

 

VISCOUS LAYER IN VISCOUS MATRIX 

The behavior of a power-law viscous layer in a Newtonian matrix is determined by 

 
3 5 2

4 2 0
3
e

xx m
h w wh q
n x t x

µ σ∂ ∂
+ +

∂ ∂ ∂
=  (29) 

Here  is the vertical component of the stress exerted by the matrix onto the layer 

boundary and  is the deflection of the layer. Assuming a sinusoidal perturbation, we 

can express  as: 

mq

w

w

  (30) ( ) ( )sinw A t kx=

where  is the amplitude of the sinusoidal perturbation with time and k  is the 

wavenumber, related to the wavelength 

( )A t

λ  by: 

 2k π
λ

=  (31) 
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We choose q  to represent two adjacent viscous half spaces (Biot, 1961).  m

 4m m
wq k
t

µ ∂
=

∂
 (32) 

Different expressions for q , covering a wider range of cases can be found in 

Schmalholz et al. (2002). Substituting eqns. (32) and (30) into (29) results in an 

ordinary differential equation for 

m

( )A t  which has the following solution 

 ( ) ( ) 3 3

30 exp
12 xx

e m

hknA t A t
h k n

σ
µ µ

 
=  + 

  (33) 

where  is the initial amplitude of the perturbation. Eqn. (33) shows the well known 

result that the amplification of initial perturbations is exponential with time (see 

Schmalholz and Podladchikov (2000) for finite amplitude behavior). The part of the 

exponent in front of  is termed growth rate, 

( )0A

t α :  

 3 3

3
12 xx

e m

hkn
h k n

α σ
µ µ

=
+

 (34) 

Since all initial perturbations, independent of the wavelength, are exponentially 

amplified, it is necessary to determine the wavelength at which the growth rate is 

maximum. This is done by taking the derivative of α versus , setting it to zero and 

solving for . The only positive solution of k  yields 

k

k

 32
6

e

m

h
n
µλ π
µ

=  (35) 

Interestingly, the dominant viscous wavelength does not depend on  and is therefore 

insensitive to the finiteness of the layer.  

aD

Plugging eqn. (35) into (34) and using the general expression for xxσ  (eqn. (15)), the 

general viscous maximum growth rate is given by 

 
2

31 4
1 2 3

e

a m

n
D

µα ε
µ

 
=  +  

 (36) 

Eqns. (35) and (36) show the typical effect of a power-law layer, i.e., with increasing 

power-law exponent  the wavelength decreases, but the growth rate increases.  n
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Viscosity Contrast Smaller Than Aspect Ratio – Classical Limit 

As already mentioned the  parameter is useful to distinguish competing effects of 

aspect ratio and viscosity contrast. In the case of a very long layer  and 

consequently we can directly obtain the classical growth rate expression 

Da

0Da →

 
2

34
3

e

m

n µα ε
µ

 
=  
 

 (37) 

 

Viscosity Contrast Larger Than Aspect Ratio 

On the other hand, if the viscosity contrast is significantly larger than the aspect ratio 

then  and eqn. (36) simplifies to  1Da

 
2

31 4
2 3

e

a m

n
D

µα ε
µ

 
=  

 
 (38) 

Using the definition of  (eqn. (14)) this evaluates to aD

 
( )

1 12 3 32
3

e

m

nl
h

µα ε
µ

−
 

=  
 

 (39) 

This result is important because the growth rate shows an inverse proportionality to the 

effective viscosity contrast, i.e., long wavelength/high-viscosity contrast folds are 

suppressed, a feature reported from natural folds (Sherwin and Chapple, 1968) but not 

inherent to the “classical” theories. 

 

ELASTIC LAYER IN VISCOUS MATRIX 

The behavior of an elastic beam in a viscous matrix is determined by 

 
3 4 2

4 2 0
3 xx m

Gh w wh q
x x

σ∂ ∂
+ +

∂ ∂
=  (40) 
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Using the same expressions for  and  as for the viscous case, we can solve eqn. 

(40)for the dominant elastic wavelength and maximum growth rate 

w mq

 2
xx

G hλ π
σ

=  (41) 

 
31

6
xx

m G
σα

µ
=  (42) 

These are the classical expressions, which are valid if xxσ  is constant.  

We have seen in the basic state analysis that the effective viscosity, eqn. (25), and the 

horizontal stress, eqn. (27), of the elastic layer are time dependent. Thus, it is not 

admissible to substitute the time-dependent xxσ  into eqns. (41) and (42), and it is 

therefore necessary to derive the corresponding expressions, with the time dependency 

taken into account: 

 
( )2

2
1 2a

a

D
a

D h
e D

λ π
ε −

=
− + +

 (43) 

 
( )3 22

3

1 2

6

aD
ae

m a

e D

D

εµα
µ

−− + +
=  (44) 

The effective viscosity used in these expressions is the simplified form, eqn. (28), which 

can be written in terms of bulk strain ε , i.e., assuming constant far-field strain rate: 

 e
GGt εµ
ε

= =  (45) 

This can be used to simplify eqns. (43) and (44) to 

 
1

212
2

aD hλ π
ε

+ =  
 

 (46) 

 
3

22
6 1

e

m aD
µ εα
µ

 
=  + 

  (47) 

The errors introduced through these simplifications are small; in the case of the 

dominant wavelength expression the maximum error in the entire  range is less than aD
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7% (Figure 6). Therefore, we perform the remaining analysis with the simplified 

expressions. As for the viscous case we distinguish the small and the large  limits. aD

 

 

Figure 6 

Error in the dominant 

wavelength expression due to 

the usage of the simplified 

form (eqn. (46)). 

 

 

Effective Viscosity Contrast Smaller Than Aspect Ratio 

Elastic layers with aspect ratios that are larger than the effective viscosity contrast are 

characterized by . The corresponding dominant wavelength and maximum 

growth rate are 

1aD

 
1

212
2

hλ π
ε

 =  
 

 (48) 

 
3

22
3

e

m

µα ε
µ

=  (49) 

These expressions are very close the classical expressions, eqns. (41) and (42), if the 

following relationship between total horizontal stress and strain is taken into account: 

 4xx xxGσ ε=  (50) 
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Eqn. (50) is valid for the classical elastic beam. Rewriting and substituting xxε ε=  

yields 

 1 2
2 xx

G
ε σ
=  (51) 

Hence, our small  limit expressions for the dominant wavelength and maximum 

growth rate differ from the classical expressions only by a factor of 

aD

2  and 3 22− , 

respectively. These differences are due to the time-dependency of xxσ . 

 

Effective Viscosity Contrast Larger Than Aspect Ratio 

In the second limit of the finite length elastic layer, the effective viscosity contrast is 

larger than the aspect ratio, i.e., 1 . In this case the expressions are aD

 
1

2
2

2
aD hλ π
ε

 =  
 

 (52) 

 
3

22
6

e

m aD
µ εα
µ

 
=  

 
 (53) 

Substituting the definition of  we can write aD

 
1

2

2
2 m

G h
a

λ π
µ ε

 
=  

 
 (54) 

 ( )
1

2 3
22

3
e

m

aµα ε
µ

−
 

=  
 

 (55) 

 

Transition From Small to Large  - Wavelength Locking aD

Folding in finite length elastic layers embedded in a viscous matrix is complicated 

through the varying effective viscosity. While in viscous-viscous folding the  

number is constant and given by the experimental setup, this is not true for the elastic-

aD
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viscous case. Assuming sufficient strain, the  number will go from zero to very large 

values, which is due to the ever increasing effective viscosity contrast, cf. eqns. (25) and 

(28). One can imagine the elastic layer as an initially unloaded spring, embedded in a 

viscous medium. With increasing deformation of the viscous medium the spring will get 

continuously loaded, which makes it progressively more difficult to further deform the 

spring as it becomes harder in an “effective viscosity” sense. Thus, sufficient strain 

assumed, every finite length elastic layer will record folding in the small and the large 

 number domain. In addition, the dominant wavelength expression of the small  

domain is a function of the bulk strain, which makes it difficult to identify one single 

dominant wavelength that results from folding in this domain. We can resolve this 

problems by introducing a parameter , which controls the wavelength locking. This 

term refers to the stage at which the fold has developed a significant amplitude that 

locks the wavelength selection process. Since elastic materials are very strain sensitive 

we expected that the wavelength locking takes place in the early stages of fold 

development. Wavelength locking is therfore very different from the frequently 

discussed “fold locking” concept that refers to the final stages of fold development 

during which the active amplification has come to an end (e.g., Biot, 1961; Ramsay, 

1974; Cobbold, 1976). The definition of  is 

aD

aD aD

A

a

A

5
2

ε

  (56) (ln ( ) / (0)A A t A= )

If the folds are locked in the small  domain, we can set  equal the corresponding 

amplification expression, eqn. (49) 

D A

 
3

22 2
3 3

e

m m

GA µ ε ε
µ µ

= =
ε

 (57) 

This can be solved for the corresponding bulk strain, ε , at which locking takes place: 

 
2

52
3

mA
G
µ εε

 
= 
 

  (58) 

Plugging the resulting expression for  into the small  dominant wavelength 

expression, eqn. (48), we obtain the wavelength that will be inherent to the fold 

throughout the rest of the deformation: 

aD
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1

58
3 m

G
A

λ π
µ ε

 
= 

 
  (59) 

The dominant wavelength expression of the large  domain, eqn. (54), does not 

depend on the bulk strain it is therefore not necessary to introduce the wavelength 

locking concept for large  numbers. 

aD

aD
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TABLE 1 - SUMMARY OF FOLDING MODES 
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 Case     Amplification Dominant Wavelength Condition  Parameters
General 2

34
3 1 2

e

m a

n
D

µ ε
µ

 
  + 

  
1

312
6

e

m

a
n
µπ
µ

 
< 

 
 

 

Large 
Aspect Ratio
Classical 
Limit 

2
34

3
e

m

n µ ε
µ

 
 
 

 
1

312
6

e

m

h
n
µπ
µ

 
 
 

 1
3

max
12

6

e

m

e

m

a

n

µ
µ

µπ
µ

 
 
 >        

 

 

D
U

C
T
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E

 L
A

Y
E
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Small, Finite 
Aspect Ratio

1
3

2

9
2

e

m

a
n

µ ε
µ

−
 
 
 

  
1

312
6

e e

m m

a
n
µ µπ
µ µ

 
< < 

 
 

 

e
a

m

D
a

µ
µ

=  

1 1

2
n

e
Bµ ε

 − 
 =  

la
h

=  

 

General 3
22

3 1
e

m aD
µ ε
µ

 
 + 

 
1

212
2

aD hπ
ε

+ 
 
 

 
1

212
2

aD aπ
ε

+  < 
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Large 
Aspect Ratio 3 5

2 22 2
3 3

e

m m

G Aµ ε ε
µ µ ε

= =  

 

1
2max( , 2 )e

m

a µ πε
µ

−>  
 

E
L

A
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A
Y

E
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Small, Finite 
Aspect Ratio ( )

1 1
2 2 33

222 2
3 3

e

m m

Ga aµ ε ε
µ µ ε

− −
   

=   
   

 

1
22

m

G h
a

π
µ ε

 
 
 

 
1

3
22 e

m m

G a µπ
µ ε µ

 
< < 

 
 

 

e
a

m

D
a

µ
µ

=  

e Gt G εµ
ε

= =  

la
h

=  

 

11 522 8
3 m

Gh
A

π π
ε µ ε

   =   
   

 



TABLE 2 - USED SYMBOLS 

( )A t  Amplitude of interface perturbation at time t  

( )0A  Initial amplitude of interface perturbation ( 0t = ) 

mµ  Matrix viscosity 

eµ  Effective viscosity of layer (elastic or power-law) 

n  Power-law exponent of viscous layer material 

( )e tµ  Time dependent effective viscosity of elastic beam 

η  Effective viscosity contrast 

G  Shear modulus of elastic beam 

a  Layer aspect ratio 

l  Layer length 

h  Layer thickness 

ε  Bulk (far-field) pure shear strain rate 

ε  Bulk strain 

xxσ  Layer parallel total stress (without lithostatic pressure) 

xxτ  Layer parallel deviatoric stress 

xxε  Layer parallel strain rate 

xxε  Layer parallel strain 

aD  Parameter controlling folding domain 

t  Time 

k  Wavenumber 

λ  Wavelength 

A  Wavelength locking parameter 
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DISCUSSION 

VISCOUS LAYER IN VISCOUS MATRIX 

Dominant Wavelength 

A prominent feature in folding of a finite length viscous layer is that the dominant 

wavelength selection is insensitive to the aspect ratio of the isolated layer and the 

corresponding expression is identical to the classical formula. The reason is that the 

dominant wavelength selection does not depend on the layer parallel stress, xxσ , which 

is just a multiplyer in eqn. (34). 

 

Maximum Growth Rate Spectra 

Besides the dominant wavelength the second important quantity is the normalized 

maximum growth rate, /α ε , which is the coefficient in front of the bulk matrix strain, 

ε , in the amplification expression. The maximum growth rate exhibits drastic changes 

depending on the competing effects of effective viscosity contrast and aspect ratio, 

Figure 7. These competing effects are characterized by the  number. In the small  

number limit, the aspect ratio is much larger than the viscosity contrast. This is the 

classical case for which the theory predicts infinitely increasing maximum growth rate 

values with increasing viscosity contrasts. Natural folds, in layers of finite length, will 

not exhibit this behavior. Instead, for large viscosity contrast, they will be controlled by 

the large  number limit, in which case the maximum growth rate actually decreases 

with increasing viscosity contrast. Introducing the effective viscosity contrast (

aD aD

aD

η ): 

 e

m

µη
µ

=  (60) 

we can determine the  value at which the transition from the small to the large  

number limit happens, by differentiating the general, normalized maximum growth rate 

aD aD

 
2

31 4
31 2

n

a

α ηηε
 =  
 +

 (61) 
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versus η , equating to 0 and solving for η . This yields, independently of the power-law 

exponent, 

  (62) aη∗ =

where the * means critical value. The corresponding  is  aD

  (63) 1aD ∗ =

However, besides , there is a second restriction for the applicability of the large 

 number limit. Namely, for large viscosity contrasts, the length of the layer may 

simply be too small to accommodate even one dominant wavelength. This limit is 

specified through 

1aD >

aD

 
1

312
6

a
n

π η  ≤ 
 

 (64) 

In terms of the presented maximum growth rate versus viscosity contrast plot we can 

determine this applicability limit, by substituting eqn. (64) into the normalized 

maximum growth rate of the large  limit: aD

 
1

2 3 1
32

9
n aα η

ε
− 

=  
 

 (65) 

which yields  

 1/32
3

nα π
ε
=  (66) 

In order to make the diagram (Figure 7) as general as possible, the growth rates are 

additionally normalized by 
2

3n . Thus, the entire plot becomes independent of the 

power-law exponent, with the exception of the large  limit size limitation, eqn. (66), 

which is 

aD

 1/32
3

nα π
ε

−=  (67) 

This result is logical, since higher power-law exponents cause shorter dominant 

wavelengths and therefore more folds can be hosted onto a layer of given length. 
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Figure 7 

Normalized maximum growth rates, 2 3/ / nα α ε= , versus effective viscosity contrast. 

Domain characterization and four specific examples of layers with different aspect ratios. 

The plot is power-law exponent independent with the exception of the size of  the “No 

Folding” field, which is here given for a Newtonian rheology, n=1. The additional 

horizontal scales show the dominant wavelengths that correspond to the effective viscosity 

contrasts. 

The characteristic effect of the transition from the small to the large  regime is also 

evident in Figure 8, where the maximum growth rate is contoured in the aspect ratio – 

viscosity contrast space. As in Figure 7, the maximum growth rate is normalized by 

aD

ε  

as well as 2 3n . Thus, Figure 8 is applicable independently of the power-law exponent. 

The exception is again the boundary to the field where the dominant wavelength longer 

than the layer itself. This boundary line is given through the dominant wavelength 

expression, which is dependent on n , and when normalized by 2 3n  becomes 

 
1

3
112

6
a π η − =  

 
n  (68) 

167 



 

Figure 8 

 contour plot of the normalized maximum growth rate, 10log α , versus aspect ratio and 

viscosity contrast. Since 2 3/ / nα α ε=  the plot is power-law exponent independent, with 

the exception of the “No Folding” field, which is given for a Newtonian layer. 

 

In the classical analysis small growth rate values such  (Figure 7) could be 

ignored, because it can be argued that layer shortening would overprint the folding (e.g., 

Sherwin and Chapple, 1968). However, the folding of finite length layers exhibits two 

different timescales, one related to the matrix shortening and a second related to the 

layer shortening. Since in the large  domain, the layer experiences only a fraction of 

the matrix shortening, the growth rate may still be sufficient to compete the layer 

shortening and develop significant folds. The relationship between far-field, matrix 

shortening and layer shortening in the large  domain is (cf. eqn. (16)) 

1/32 / 3 nπ −

aD

aD

 2 a xxDε ε=  (69) 
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Consequently, the growth rates in the large  domain are 2 -times larger, when 

normalized over the appropriate strain rate, i.e., the layers own strain rate instead of the 

far field 

aD aD

ε . Hence, the seemingly small growth rates must be taken into account in the 

folding analysis. 

 

Complete Growth Rate Spectra 

The difference between the two timescales can also be analyzed by looking at the 

complete (not only maximum) growth rate spectra. For this we substitute the general 

expression for xxσ , eqn. (15), into the complete viscous growth rate expression, eqn. 

(34): 

 3 3

43
12 1 2

e

e m

hkn
h k n Da

µα
ε µ µ

 
=  + + 

 (70) 

Using  to normalize the length parameters, and eqn. (31) to introduce the normalized 

wavelength, 

h

/ hλ λ= , eqn. (70) becomes 

 
2

3 3

43
1 24 6

e

e m

n
Dan
µα π λ

ε π µ µ λ
 

=   ++ 
 (71) 

If we normalize eqn. (71) by the layer strain rate value, xxε , eqn. (16), we obtain 

 
2

3 3

3 4
4 6 e

xx e m

n
n

α π λ µ
ε π µ µ λ

 
=  + 

  (72) 

This expression is identical to the classical growth rate spectra, which are independent 

of the aspect ratio and . The difference of eqns. (71) and (72) is illustrated in Figure 

9. The small growth rates of Figure 9a) cannot be ignored, since they are as large as the 

classical ones, if normalized by the appropriate strain rate. However, the amount of bulk 

strain required to build folds of the same amplitude is -times larger. The reason to 

use the normalization in eqn. (71) is because 

aD

2 aD

ε  is known beforehand, while xxε  is not.  
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a) 

 
b) 

Figure 9 

Complete growth rate spectra for Newtonian layer with viscosity contrast 100:1 in 

the / ah Dλ − -space. 

a) Normalized over far field strain rate ε . 

b) Normalized over layer strain rate xxε . 
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Finite Strain Experiments 

In order to verify the folding characteristics of a finite length viscous layer up to large 

deformations, we performed numerical experiments (a short description of the code 

used can be found in the section “Basic State Analysis-Viscous Layer in Viscous 

Matrix”). We present three experiments, which are all Newtonian with a viscosity 

contrast of 100:1 (Figure 11). The aspect ratio is varied in order to change the  

number. As already discussed, the dominant wavelength does not depend on , but the 

growth rate expression, eqn. (61), yields decreasing values with increasing  number, 

i.e., smaller aspect ratios. Given viscosity contrast, the maximum  number is limited 

by  

aD

aD

aD

aD

 ( )max e
a

m

D µ
µ λ

=  (73) 

which is the expression for the smallest aspect ratio that can still accommodate one 

dominant wavelength. 

 

 

Figure 10 

Normalized growth rate (α ε ) versus  for Newtonian layer with viscosity 

contrast 100:1. The three points on the left correspond to the experiments in Figure 

11. The last point, which is followed by the dotted line, represent the maximum 

possible  for the given viscosity contrast. 

aD

aD
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Figure 11 

Folding in finite length layers. Viscosity contrast is always 100:1. Bulk shortening in all 

three experiment is 33%. 

 

Figure 11 shows three fold experiments with the same layer-matrix viscosity contrast 

and the same amount of bulk shortening (33%). The  number increases from top to 

bottom, 0 (boundaries directly connected to the layer), 0.5 and 1.6. For comparison the 

initial length of the  and the 

aD

0aD = 0.5aD =  layers was set equal. Since the dominant 

wavelength in viscous-viscous folding is not sensitive to , all three fold interfaces 

had the same initial perturbation. 

aD

The fold amplitudes in these experiments show how the growth rate decreases with 

increasing  number, with respect to the bulk strain and strain rate. The folds in the 

 configuration have, at 33% percent shortening, almost gone through the entire 

field of active amplification (Schmalholz and Podladchikov, 2000) and developed 

significant amplitudes. The  folds have a considerably lower growth rate and 

are consequently less pronounced. This layer “feels” less compression than the 

equivalent , which can also be seen from the fact that the  fold train is 

still longer, although thier initial layer lengths were identical. Another verification of the 

folding theory is that the folds towards the tips are less developed than in the center of 

the layer. This is due to the initial perturbation which was put on the entire layer with a 

fixed wavelength. The required wavelength to thickness ratio was tuned to fit the center 

of the layer. Due to its elliptical shape the thickness of the layer decreases towards the 

aD

aD

0aD =

0.5aD =

0= 0.5aD =
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tips. Consequently, the wavelength to thickness ratio of the perturbation near the tips is 

larger than the dominant value, and hence the folds grow slower (cf., Figure 9). 

Interestingly, the folded quartz vein in Figure 1 shows the same behavior.  

Applicability of Finite Strain Theory 

The question arises, whether the finite amplitude solution and strain map, developed by 

Schmalholz and Podladchikov (2000; 2001), are valid for folds in layers of finite length. 

Their technique is consistently based on layer-strain and layer-amplification. Therefore 

the applicability of their results is not diminished by the finiteness of the layer length. 

However, the strain estimates resulting from the strain map are only a valid 

approximation for the layer and will underestimate the bulk (overall) matrix strain 

which is usually of great interest in nature. However, with the theory developed here it 

is possible to translate the layer strain into the larger bulk matrix strain. The 

corresponding expression can be derived with eqn. (16) as: 

 ( )1 2 a xD xε ε= +  (74) 

In nature the value of  can be evaluated from simple geometrical parameters: the 

aspect ratio can be measured directly and the effective viscosity contrast can be 

determined by the competence estimation method developed by Schmalholz and 

Podladchikov (2001).  

aD

Relevance to Natural Folds 

Natural folds show a preference for small wavelength to thickness ratios (Sherwin and 

Chapple, 1968). This observation implied that Biot’s theory of viscous folding (Biot, 

1961) is not applicable because the resulting wavelength to thickness ratios require such 

small viscosity contrasts that the corresponding growth rates would be too small to 

develop folds. Further theoretical investigations, and additions such as layer parallel 

shortening (Sherwin and Chapple, 1968) and power-law materials (Fletcher, 1974; 

Smith, 1975) were thus developed to explain small wavelength to thickness ratios. 

However, these theories explain why small wavelength to thickness ratios are possible, 

but no known theory explains why large wavelength to thickness ratios are not observed 

in nature, supposedly having much larger growth rates. Variations in material properties 

of natural rocks are vast and therefore large effective viscosity contrasts are likely to be 
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the general case rather than the exception. Hence, large wavelength to thickness ratios 

should be commonly observed, because this is intrinsic to all existing theories. 

Our theoretical development explains for the first time a mechanism that suppresses 

large wavelength to thickness ratios. We simply re-analyzed the most fundamental part 

of the analysis of folding: the basic state. Our basic state is a layer of finite aspect ratio, 

which clearly must be the case in nature. While for large enough aspect ratios 

(compared to the viscosity contrast), the classic theory is recovered, this is not case if 

the aspect ratio is small. In this new mode, the layer does not “get” the layer parallel 

stress, xxσ , from a force directly applied to its ends, but from the matrix that is 

deforming faster than the layer and exerting shear stresses all along the layer. Our 

theory does not invalidate previous arguments such as layer parallel shortening, but it is 

important to realize the influence of the finiteness of the layer length on the folding 

behavior as a first order effect. 

Ending the Small Viscosity Contrast Paradox 

Arguably, natural layers admissible for fold amplification are likely to have aspect 

rations less than 1000. For example veins have aspect rations in the range 100-500 (e.g., 

Vermilye and Scholz, 1995). It is hard for natural processes “to prepare” a long layer, 

having maximum of deviation from perfect plane smaller than half of the layer 

thickness. Larger amplitudes of initial perturbation move folding out of the exponential 

amplification, where dominant folding frequencies are expected to develop, into large 

amplitude mode characterized by weak wavelength selectivity and by kinematic 

dominance of initial heterogeneities (Schmalholz and Podladchikov, 2000). For 

example, 1 km long 1 m thick layer should not deviate more than half a meter from a 

perfect plane, nowhere within its 1 km length! It is shown here that classical folding 

theories are not applicable for the finite layers having aspect ratio less than 1000 if 

viscosity contrasts are greater than 1000. Therefore, the lack of natural fold trains 

indicating large viscosity contrasts is due to inapplicability of the classical theories 

rather than due to absence of large viscosity contrasts in natural setting. This conclusion 

basically resolves the long-standing paradoxical discrepancy between laboratory 

measurements and field observations. 
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ELASTIC LAYER IN VISCOUS MATRIX 

From the above discussion of the viscous-viscous case, it follows that our theory is 

closely related to the classical theory, developed by Biot, especially in the small  

domain. For the elastic layer in a viscous matrix, we have shown in the linear stability 

analysis that the small  limit is closely related to the corresponding classical 

expression. However, the classical expressions for the dominant wavelength and growth 

rate of an elastic layer embedded in a viscous matrix, eqns. (41) and (42), leave the 

layer parallel stress, 

aD

aD

xxσ , as an unknown. Since xxσ  must change throughout the folding 

of an elastic layer (progressive loading) and the dominant wavelength expression 

depends on xxσ , it is unclear which value for xxσ  should be used for the dominant 

wavelength and growth rate expressions. Indeed, for geological problems xxσ  may be 

used as a fitting parameter between natural folds and theory (Turcotte and Schubert, 

1982). Our theory directly determines xxσ  and relates it to the far-field strain rates. The 

far-field strain rates are assumed to be constant and not influenced by the folding 

process and should therefore be easy to determine. 

Similarity to the Viscous-Viscous Case 

The viscous-viscous folding of finite length layers has two characteristics: 1) the 

wavelength does not depend on , and 2) the growth rate has, for given aspect ratio, a 

maximum at the domain transition, 

aD

1aD = . While the first is not the case for the finite 

length elastic layer, the growth rates show indeed a similar behavior. If we define the 

growth rate as the coefficient in front of 
3

2ε  in the elastic amplification expression, then 

we also obtain a maximum at the domain transition. For small  numbers, the growth 

rate increases with the first power of the increasing effective viscosity contrast, and for 

large  the growth rate decreases with the square root of the effective viscosity 

contrast (Figure 12). As for the viscous-viscous case, three domains exist: small  

number, large  number, and “No Folding”. The distinctive growth rate behavior and 

domain characterization can also be seen on the contoured plot of the growth rate versus 

aspect ratio and viscosity contrast (Figure 13).  

aD

aD

aD

aD
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Figure 12 
Maximum growth rate, 3 2/Amplificationα ε= , versus effective viscosity contrast, 
and domain characterization. 

 

 

Figure 13 
 contour plot of the maximum growth rate, 10log 3 2/Amplificationα ε= , versus 

aspect ratio and effective viscosity contrast. The “No Folding” field is bulk strain 
dependent and here given for 0.01ε = . 
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The “No Folding” domain in Figures 12 and 13 means that the aspect ratio of the layer 

is too small to accommodate even one dominant wavelength. Within the scope of this 

work we have not determined what exactly happens if a layer is configured to lie in the 

“No Folding” domain. Three different possibilities exist: 1) non-dominant wavelengths, 

which fit onto the layer amplify, 2) Euler beam buckling takes place, or 3) no folding. 

Analogue experiments point to the third possibility. 

 

Comparison to Analogue Experiments 

The folding of finite length elastic layers is, due to the constantly changing effective 

viscosity, growth rates, dominant wavelengths and domain transitions, of considerable 

complexity. The derivation of the relevant formulae uses several simplifications, which 

should only affect the domain transition values, around 1aD ≈ . In order to test the 

presented theory, we performed analogue experiments, which give insight into the 

domain transition and especially the approximate order of magnitude of the yet 

undetermined wavelength locking parameter in the small  domain, . aD A

The experiments were performed under constant velocity pure shear. A strip of elastic 

material was embedded in a Polydimethylsiloxane (PDMS) matrix with an approximate 

viscosity of 5e4[Pas]. The strips were made of either Plasticine, Cellophane or 

Aluminum foil. The physical parameters of these strips are given in Table 3. It is 

notable that metal foils are amongst the oldest materials used in the experimental 

folding literature as already Smoluchowski (1909) used tin foil and beaten gold in the 

experimental verifications of his theoretical results. Pictures of the characteristic 

behavior of the three materials are shown in Figures 14 to 16. 

 

Table 3 

Material Properties 

 Plasticine Cellophane Aluminum Foil 

G [Pa] 1.62e-4 1.76e+8 1.13e+11 

h [m] 1e-3 4e-5 1e-5 

l [m] 0.2 0.2 0.2 
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a) 

 
b) 

 

Figure 14 

Plasticine experiments in the small  domain with identical geometrical 

configuration.. The influence of the bulk strain rate on the wavelength is clearly 

visible.  

a)  

b)  

aD

4 11.9e sε − −=
2 13.6e sε − −=
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Figure 15 

Cellophane experiment at 4 11.9e sε − −=  (compare to Figure 14a). 

 

 

Figure 16 

Aluminum experiment at 4 14.5e sε − −= . Few localized folds take up all the strain. 
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Our theory has no means of determining if a material actually locks the folds in the 

small  number domain or if they are chiefly formed in the large  domain. Yet, for 

any given material and aspect ratio a few experiments are sufficient to determine the 

slope on a log-log fold arc length versus strain rate plot. If the arc length decreases with 

aD aD

1 5ε  then the folds were determined in the small  domain and the wavelength locking 

amplitude  and the  number can be determined. On the other hand if the arc length 

decreases only with 

aD

A aD

1 2ε  then the folds were formed in the large  number domain. aD

Figure 17 summarizes the analogue experiments and makes a comparison to the theory. 

It is evident that all plasticine, cellophane and most of the aluminum experiments 

exhibit the same 1/5 slope, which attributes the folding to the small  domain. While 

plasticine and cellophane have the same locking parameter, the aluminum foil shows a 

smaller locking parameter. Consequently, less amplification is needed to lock the fold 

development in the aluminum. This may be attributed to the fact that with the aluminum 

it is difficult to maintain a smooth, undisturbed surface when the experiment is set up. 

Additionally the aluminum is much thinner than the cellophane and especially the 

plasticine and it is therefore likely to have large initial perturbations relative to its 

thickness. This and further problems with the aluminum experiments are described in 

detail in the “Appendix”.  

aD

 

 

Figure 17 

Analogue experiments versus analytical theory. 
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Translating these values of  into bulk matrix strain, results in values within the range 

of 5  to  for plasticine and cellophane, and values of the order  for aluminum 

foil. These values are extremely small and show how fast a finite length elastic layer 

“decides” upon what the dominant wavelength should be. 

A
2e− 45e− 6e−

Unfortunately, the large  number domain is only represented by two points from the 

aluminum foil experiments. In addition, these two points are actually just transitional 

values (i.e.,  and ). More experiments are required to prove our 

theoretical investigation of the existence of a second elastic folding domain. However, it 

seems that the last data point of the aluminum series cannot be explained by the 

continuation of the small  domain as the discrepancy would be too big. Furthermore,  

the theoretical large -domain dominant wavelength value corresponds quite well 

with the mentioned experimental data point, which is encouraging because the dominant 

wavelength in the large  domain is solely dependent on material properties and no 

fitting “fudge” factor like  can be used to improve the match between theory and 

experiment. 

aD

aD

a

aD

1.1aD = 2.0aD =

A

D

 

 

CONCLUSIONS 

We have shown that the finiteness of the length of a layer has a first order influence on 

folding. For the viscous-viscous case the present theory explains why large wavelength 

to thickness ratios are not favoured. In the case of the elastic layer in the viscous matrix 

we have eliminated the need to guess the layer parallel stress, xxσ , and we have shown 

that the dominant wavelength expression is weakly (to the power 1/5) dependent on the 

bulk strain rate, which was previously not recognized. 

The derivation presented is based on the assumption that the compression is layer 

parallel. However, the results of the basic state analysis can be easily generalized, as the 

presented solution in terms of complex potentials is already derived for inclined pure 

shear. For any inclination, the required layer values can be determined and the linear 

stability analysis performed. Yet, if there is an angle between layer and pure shear then 

the layer will also rotate and the folding will be in competition to the rotation. Since the 
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rotation will move the layer from compression into fields of extension, the layer has 

only restricted time to develop folds. If an additional simple shear component exists, 

then the finite length layer may continuously rotate (Jeffery, 1922) and therefore 

undergo progressive shortening and extension. In order to complete this study, it is 

therefore essential to combine the general shear Muskhelishvili solution with the linear 

stability analysis of folding which will yield a theoretical analysis of one of the most 

common (folding) situations in nature: the finite length layer in general shear.  
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APPENDIX 

ALUMINIUM FOIL EXPERIMENTS 

The analogue experiments with aluminum foil embedded in PDMS showed a tendency 

to amplify only a few folds to a large amplitude before other parts of the layer started to 

develop folds. The reason for this may be that the aluminum foil is difficult to handle, 

and it is hard to maintain a perfectly smooth surface while putting the foil into the 

PDMS. Additionally, the foil already has a certain structure when rolled off the roll. 

Since the fold amplification is exponential, small irregularities in the initial layer 

perturbation can cause significant differences in the finite amplitude behavior, 

especially strain localization. These types of problems seem to be characteristic for thin 

metal foils; Smoluchowski (1909) already observed similar troubles with beaten gold.  

The wavelength used to compare to the theory is therefore taken to be the arc length of 

the “dominant member”. The dominant member is the fold that seems representative for 

the entire fold train. In order to illustrate which arc length was chosen to be the 

dominant member and how the folds develop into the finite amplitude stage, we present 

here the analyzed finite amplitude pictures from all aluminum experiments. The black 

line is always the digitized aluminum foil and the red line the dominant member.  

 

 a) ε =1.2e-2 
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 b) ε =4.7e-3 

 c) ε =1.0e-3 

 d) ε =5.25e-4 
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 e) ε =4.7e-4 

 f) ε =4.5e-4 

 g) ε =2.2e-4 
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 h) ε =5.8e-5 
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Equation Section 1 

CHAPTER 7: NUMERICAL MODELING OF SINGLE 

LAYER FOLDING IN GENERAL SHEAR 

 

 

NOTE: Due to the media content this paper should be viewed in the PDF version (on 

the companion CD) where all the movies can be played. This hardcopy version is 

merely printed for reasons of completeness. 

 

 

ABSTRACT 

Asymmetric folds are by far the majority of natural folds. Nevertheless, they are, in 

comparison to their symmetric counterparts, not adequately studied and the asymmetry 

causing processes are still under speculation. Intuitive argumentations suggest that 

rotational deformation drives asymmetry. Yet, previous analytical, analogue, and 

numerical experiments have not been able to identify this as the cause for fold 

asymmetry. Based on fully dynamic, two-dimensional numerical modeling we show 

how combined layer parallel pure and simple shear results in asymmetric folds. 

Comparison to the kinematic and dynamic fold development under pure shear only 

fosters our understanding of the lifetime of a fold, from its initial to the final (radiator) 

stages. We find that fold asymmetry is mainly a passive phenomenon. We outline how 

this passive character allows for the construction of a shear strain map. Such a map, in 

combination with the strain map developed by Schmalholz and Podladchikov (2001), 

would allow determining competence contrast, shortening strain as well as shear strain 

directly in the field from simple geometrical parameters.  
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INTRODUCTION 

Folding is one of the main mechanisms by which layered rocks accommodate 

shortening. Consequently folds have been, for many years, the focus of research in 

structural geology. The subject is well studied from analytical (e.g., Biot, 1961; 

Ramberg, 1963; Chapple, 1968; Smith, 1975; Johnson and Fletcher, 1994; Schmalholz 

and Podladchikov, 2000), analogue modeling (e.g., Ghosh, 1966; Cobbold, 1975; 

Abbassi and Mancktelow, 1992) and numerical modeling (e.g., Dieterich, 1970; Manz 

and Wickham, 1978; Hudleston and Lan, 1994; Zhang et al., 1996; Mancktelow, 1999; 

Schmalholz and Podladchikov, 1999) points of view. However, there is no “complete 

dataset” for the most classical case of folding, i.e., a single competent layer embedded 

in a viscous matrix, subjected to layer parallel compression. By “complete dataset” we 

mean kinematic parameters such as velocity, strain rate and strain, as well as dynamic 

parameters such as stress and pressure throughout the fold development. Despite the 

sound mechanical understanding of the folding process, structural geology mainly relies 

on kinematic concepts such as flexural slip folding or shear folding (Ramsay and Huber, 

1987; Twiss and Moores, 1992) and on geometrical classifications such as the dip 

isogon (Ramsay, 1967). This kinematic approach certainly has its eligibility since, in 

geological studies, the only preserved quantity of the process is the geometrical 

configuration. However, in order to verify the applicability of the kinematic approach it 

is necessary to verify these concepts versus dynamic continuum mechanics models, 

which is why we provide here the complete dataset for six different numerical 

experiments. 

Another point which we address in this paper is the asymmetry of folds, which most 

natural folds exhibit. It is intuitively accepted that the asymmetry is caused by simple 

shear superposed onto a pure shear shortening. Yet, infinitesimal analytical theories 

show that simple shear has no influence on the folding process (Treagus, 1973; Johnson 

and Fletcher, 1994, p.62). This observation is supported by analogue experiments 

(Ghosh, 1966; Manz and Wickham, 1978). In addition there is some doubt whether the 

vergence of folds (Bell, 1981) can be used as a reliable indicator for the direction of the 

simple shear component of the far-field flow. For example Reches and Johnson (1976) 

and Pfaff and Johnson (1989) have reported kink fold asymmetries opposite to the bulk 

simple shear component, and Krabbendam and Leslie (1996) explained asymmetric 
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multilayer folds in the Scottish Highland with a simple shear component that is opposite 

to the vergence. The numerical experiments by Anthony and Wickham (1978) 

contribute to this confusion in that their folds develop a weak asymmetry, but the long 

limb thickens and the short limb thins (with respect to each other), which is against our 

intuitive understanding of asymmetric fold development. We want to resolve this 

confusion (or maybe contribute to it) by demonstrating under which conditions 

asymmetric folds develop in single layers and we reestablish the use of fold vergence as 

a reliable indicator of the simple shear sense.  

 

MODEL DESCRIPTION 

The model developed for this study solves the Stokes equations for incompressible flow 

of Newtonian fluids in the absence of body forces such as gravity. In indicial notation, 

the Eulerian formulation of the basic equations is (Mase, 1970): 

The continuity equation 

  (1) , 0i iv =

The equations of motion  

 , 0ij jσ =  (2) 

the constitutive equations for incompressible Newtonian fluids   

 ( , ,ij ij i j j i )p v vσ δ µ= − + +  (3) 

where , iv ijσ , p , ijδ , µ  are the velocity, total stress tensor, pressure, Kronecker delta 

and viscosity, respectively. Eqns. (1) to (3) form a closed system of partial differential 

equations and thus can be solved for the unknown velocities. The numerical method 

used is a mixed finite difference / spectral method, already successfully applied to study 

high amplitude folding in Schmalholz and Podladchikov (2000) and documented in 

detail by Schmalholz et al. (2001). With this method the periodic nature of folds is taken 

into account by applying a spectral expansion in the direction of the periodicity (x-

direction in Figure 1), in the other, orthogonal direction, a conservative finite difference 

method with a staggered grid (Canuto et al., 1988) is used. 
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a) 

 

b) 

Figure 1 

Model setup - a competent layer is embedded in a weaker matrix. 

a) Pure shear 

b) Simple shear and its effect on the lateral boundaries. 
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The model setup follows the classical way of embedding a competent layer in a weaker 

matrix. This system is then subjected to layer parallel pure shear with constant velocity 

boundary conditions relative to a fixed spatial point (Figure 1). The simple shear 

boundary condition is similar to Ghosh (1966) and identical to Johnson and Fletcher 

(1994) but is different to previous numerical work (Anthony and Wickham, 1978). 

Namely, we apply a constant velocity at the top and bottom of the numerical box and 

periodic boundary conditions at the lateral boundaries. Contrasting constant shear rate 

(rigid lateral wall) boundary conditions (for simple shear), this avoids strong boundary 

effects. The effect of the employed simple shear boundary condition is depicted 

symbolically in Figure 1b, where the weak matrix accommodates much more shear 

strain than the competent layer. 

In the initial configuration of all presented experiments the thickness (h) to wavelength 

(λ ) ratio was set according to Biot’s theory (1961): 

 32 l

mh
µλ π
µ

=  (4) 

where lµ  and mµ  are the viscosity of the layer and the matrix, respectively. In order to 

allow for fold growth the layer was sinusoidally perturbed with an amplitude of 1 5  of 

the layer thickness.  

0
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VISUALIZATION  

Six different parameters are visualized for every individual experiment: material, active 

flow, maximum shear strain rate, strain, maximum shear stress and pressure. These are 

explained in detail below: 

 

MATERIAL 

Simply a visualization of the geometrical evolution of the fold by means of the viscosity 

distribution. Red (layer) is more competent than blue (matrix). 

 

ACTIVE FLOW 

Since the pure and simple shear background components of the flow are well known 

(e.g., Ramsay and Huber, 1983) and overprint the actual shape changing active flow, it 

is custom (Ramberg, 1963; Cobbold, 1975) to visualize only the active flow (also 

termed perturbation or secondary flow). The active flow is simply the total flow minus 

the pure and simple shear background components. Instead of using arrows, it is 

advantageous to use streamlines to plot the active flow. The streamlines are contour 

lines of the stream function ψ , which is defined as 

 1v ,2ψ= −  (5) 

 2v ,1ψ=  (6) 

Streamlines are useful because in steady state they are trajectories of individual material 

particles that are moved by the flow. An example of how velocity vectors translate into 

the stream function and streamlines is given by the comparison in Figure 2a) and b). 

The vortex structure, especially if complex, can be more intuitively captured through the 

stream function plot. Red (positive) values symbolize clockwise rotating vortexes, blue 

(negative) values counter-clockwise rotation. The contour lines are tangential to the 

velocity vectors. 
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a) b) 

 

Figure 2 

Different ways of visualizing the active flow field caused by a layer in pure shear with a 

small perturbation and a viscosity contrast of 100:1.  

a) Arrows, b) Stream function and Streamlines 

 

EFFECTIVE STRAIN RATE 

The maximum shear strain rate, also termed effective strain rate, Eε , at a point is 

described with a coordinate frame independent measure, the square root of the second 

invariant (e.g, Ranalli, 1995). 

 
1

21
2E ij ijε ε ε= 

 

  (7) 

 

LONGITUDINAL STRAIN 

The position of a so called neutral line or surface of a fold, where the extension is zero, 

is often discussed in the folding literature (e.g., Ramsay and Huber, 1987; Price and 

Cosgrove, 1990; Twiss and Moores, 1992) and is an important concept for analytical 

folding theories which may or may not take shear deformation across the layer into 
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account. Therefore, we measure the accommodated strain by means of the longitudinal 

strain along initially horizontal lines (Ramsay and Huber, 1983, p.285). This measure is 

zero for originally horizontal lines that maintain their length, negative if they are 

shortened and positive if they are stretched. The zero contour is drawn in white. The 

strain measure method implemented is based on a passive square grid that is moved 

with the total velocity field. Since the original grid does not follow the geometry of the 

problem, i.e., crosscuts the initial fold geometry that has a small perturbation, some 

squares overlap the layer-matrix interface and therefore record a strain mixture. This is a 

minor drawback that only concerns the fold-matrix interface. The use of a Eulerian grid 

for strain recording, based on the cumulated strain rate tensor, could improve this. 

 

 

EFFECTIVE STRESS  

The definition of the maximum shear stress, or effective stress, Eσ ′ , at a point is 

analogous to the maximum shear strain rate defined as the square root of the second 

invariant. 

 
1

21
2E ij ijσ σ σ′ ′ ′= 

 

  (8) 

where ijσ ′  is the deviatoric stress tensor ( ij ij ijpσ σ δ′ = + ). For two different cases the 

maximum shear stress can be interpreted as a measure of proximity to failure: i) fold 

and matrix are pressure insensitive plastic materials (e.g., von Mises), and ii) the fold 

thickness is negligible compared to the depth at which the fold is located in the 

lithosphere. 

 

PRESSURE 

Since the set of Stokes equations determines the pressure only up to a constant, any 

constant (lithostatic) value my be added to the presented values without influence on the 

results. As a consequence, the pressure perturbation can take both, negative and positive 

values, which is naturally not the case for the complete pressure. 
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RESULTS 

A total of six complete experiments are documented on the following pages, four pure 

shear and two experiments where pure and simple shear parallel to the layer act 

contemporaneously. The initial setup and the boundary condition follow the description 

in Figure 1. In order to see the results it is necessary to have the QUICKTIME plugin 

that can be downloaded freely from www.apple.com/quicktime. 

In order to focus on the interesting part of the experiments some matrix was clipped and 

therefore the vertical boundaries do not represent the physical boundaries of the 

experiments. Another point worth explaining is that in order to make optimal use of the 

available space, the area is not kept constant in the movies, which is not the case in the 

actual experiments. A last point that might cause confusion is the lateral periodicity. 

Especially in the general shear experiments parts of the folds leave the box on the right 

side and come back in on the left side. One must imagine the displayed data as a TV 

screen section of an infinitely long fold train. On new widescreen TVs the picture would 

look like Figure 3. 

 

 

 

 

Figure 3 

Lateral periodicity demonstrated with the example of longitudinal strain of a layer 

with viscosity contrast 50:1, subjected to general shear. 38.9xxε = , 2.77γ =  
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198 PURE SHEAR 

Viscosity Contrast 25:1 

      

Material Active Flow Eff. Strain Rate Long. Strain Eff. Stress Pressure 
 
Viscosity Contrast 50:1 

      

Material Active Flow Eff. Strain Rate Long. Strain Eff. Stress Pressure 

 



Viscosity Contrast 100:1 

      

Material Active Flow Strain Rate Strain Stress Pressure 
 
 
Viscosity Contrast 200:1 

      

Material Active Flow Strain Rate Strain Stress Pressure 
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COMBINED PURE AND SIMPLE SHEAR 200 

Viscosity Contrast 50:1 

      

Material Active Flow Eff. Strain Rate Long. Strain Eff. Stress Pressure 
Viscosity Contrast 100:1 

      

Material Active Flow Eff. Strain Rate Long. Strain Eff. Stress Pressure 

 



DISCUSSION AND INTERPRETATION OF PURE SHEAR 

EXPERIMENTS 

Four different pure shear experiments are presented where the viscosity contrast varies 

from 25:1, 50:1, 100:1 to 200:1. The numerical resolution used was 2000 finite 

difference points by 64 spectral harmonics. 

 

GEOMETRICAL EVOLUTION AND ACTIVE FLOW FIELD 

Subjected to lateral compression, the layer starts to amplify the initially small 

perturbation and develop into a fold. This is best seen in the active flow field plots, 

which for all four viscosity contrasts initially consists of two amplifying vortexes 

(Figure 5). According to Biot’s theory the growth rate increases with increasing 

viscosity contrast according to  

 
2

34
3

l

m

µα
ε µ

 
=  
 

 (9) 

The growth rate describes how many times faster the instability grows compared to the 

purely passive, kinematic amplification, which is due to the background pure shear. The 

relevant growth rate spectra are shown in Figure 4. The growth rate for a fold with 

viscosity contrast 200:1 is approximately 4 times larger than for a fold with viscosity 

contrast 25:1. Since the amplification initially follows an exponential law, the effect of 

the different growth rates is tremendous. 

 

Figure 4 

Biot growth rate spectra for 

different viscosity contrasts.
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a) 0.0xxε =  b) 36.1xxε =  c) 57.8xxε =  
   
Figure 5 

The characteristic active flow vortex pattern of the evolution of a single layer fold. 

The viscosity contrast is 200:1. 

 

The increase in the vigor of the amplification is reflected in the size of the vortexes 

compared to the thickness of the layer. Namely, the vortex size grows with increasing 

viscosity contrast. This follows the analytical and experimental considerations of 

Ramberg (1961) who found that the “contact strain”, i.e., the region over which the 

matrix records the deformation caused by the folding of a nearby layer, is limited to 

about one initial wavelength on either side of the layer. Since the initial wavelength 

increases according to eqn. (4), the region of contact strain increases also and it is to be 

expected that the size of the active flow field enlarges. Active flow plots for initial 

stages were shown previously by Ramberg (1963) in his analytical work and by 

Cobbold (1975) in experimental work. 

The two initial active flow vortexes drive the amplification and development of folds. 

Infinitesimal folding theories state that the growth of the fold is exponential. Clearly, 

this can only be the case for small strains and it has been shown by Schmalholz and 

Podladchikov (2000) that the fold development goes from exponential into a layer-

length controlled growth mode. This decreases the fold growth rate and is captured here 

by the steady shrinkage of the amplifying vortexes with increasing strain, which leads to 

a complete breakdown of the two amplifying vortexes into a six vortex pattern (Figure 
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5b). The task of this new vortex structure is to act against the passive pure shear 

stretching, as the layer tries to maintain its length. Therefore the top and bottom row of 

vortexes rotate against the fold, in an attempt to compensate the pure shear stretching. 

The middle row of vortexes accommodates further horizontal shortening through 

rotating the limbs into a steeper orientation. Once the limbs are vertical, the middle row 

of vortexes disappears and a four vortex structure tries to prevent the layer from passive 

stretching. Yet, the counter-rotating vortex structure is not strong enough to overprint 

stretching of the fold into a “radiator stage” (Schmalholz and Podladchikov, 1999). It is 

interesting, that folds in layers with strong viscosity contrasts go much faster, in terms 

of bulk strain, through the 2-6-4 vortex behavior. This is again related to their higher 

growth rates that leads to much larger amplification for given strain, compared to less 

competent layers. 

Folds with larger viscosity contrast do not just grow faster and build up larger 

amplitudes; they also show less internal deformation. A fold of viscosity contrast 200:1 

for example remains a parallel fold (Ramsay and Huber, 1987) up to high amplitude 

stages. A fold with viscosity contrast 25:1 accommodates much of the shortening by 

layer parallel thickening and internal shear deformation. This can be well observed in 

the maximum shear strain rate movies. This has been recognized for a long time and 

Sherwin and Chapple (1968) have provided corrections for the analytical theories. 

The fold development behavior described here is not new. It follows the descriptions of 

fold life times given by several previous authors (e.g., Ramsay, 1974; Cobbold, 1976). 

Yet, the evolution of the active flow field vortex structure, which is important to 

understand fold process, has not been analyzed elsewhere. 

 

EFFECTIVE SHEAR STRAIN RATE AND LONGITUDINAL STRAIN 

As already discussed in the geometrical evolution section the weak layer shows much 

more internal deformation than a strong layer. This is also manifested in a comparison 

of maximum shear strain rate plots for different viscosities, for example 25:1 versus 

200:1. While the strong layer stays dark blue (very little shearing) over most of the 

shortening, the weak layer shows during the first 50% of shortening strong internal 

shearing and large internal variations in shear strain rate. While the outer hinges are 
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regions of relatively little shear straining, the inner hinges and the limbs record much 

higher maximum shear strain rates. However, due to its relative incompetence, the 

matrix records the highest values of maximum shear strain rates throughout the folding 

process. The location of the maximum shear strain rates in the matrix is always, 

independent from strain and viscosity contrast, in the inner hinge region where the 

matrix is squeezed away by the approaching limbs. 

The measured strain gives the information if originally horizontal lines, which basically 

is the case for the initial configuration of the layer, are stretched or shortened. In the 

case of the very weak layer (viscosity contrast 25:1), all elongations recorded within 

60% shortening, are negative, i.e., all lines are shorter than they were originally. This 

can again be explained by the massive layer parallel shortening, that occurs because of 

the small growth rates compared to the kinematic background deformation. With 

increasing viscosity contrast and strain, regions of extension come into existence. As 

expected from geometrical considerations, the location where this extension takes place 

is in the outer hinge region (e.g., Ramsay and Huber, 1987). However, generally 

geometric constructions overestimate size and the amplitude of the extensional field at 

the outer hinge of the layer. 

 

EFFECTIVE SHEAR STRESS AND PRESSURE 

As already pointed out in the section “Visualization” the maximum shear stress and the 

maximum shear strain rate are closely related. In fact we can express one through the 

other by  

 2E Eσ µε′ =  (10) 

where µ  is the viscosity of the point for which Eσ ′  and Eε  are valid. Although they 

contain redundant information, the example in Figure 6 shows that none is obsolete. The 

maximum shear strain rate shows the regions where the material undergoes maximum 

shear straining, which is the matrix material between the limbs, close to the hinges. At 

this location the matrix must contemporaneously accommodate the laterally 

approaching hinges and expel material from the core. On the other hand, the maximum 

shear stress visualizes the proximity to failure. 
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a) b) 
Figure 6 

Comparison of maximum shear strain rate (a) versus maximum shear stress (b). 

Viscosity contrast is 50:1. Bulk shortening 63%. 

 

At this high amplitude stage the limbs are closest to failure, because they are stretched 

by the pure shear kinematics, which overprints the described counter-rotating active 

flow vortexes. Due to the large differences in viscosity it is impossible to understand the 

different meaning of Eε  and Eσ ′ , if only one of them is displayed. 

The finite strain evolution of Eε  and Eσ ′  is as follows: Eε  is mainly matrix related and 

continuously records growing values with increasing strain. Eσ ′  is layer related and has 

a maximum at intermediate strain values. Starting from the initial stage where the layer 

exhibits an almost constant value, Eσ ′  keeps increasing with increasing strain. These 

maximum values are restricted to the inner hinges. Once the two vortex pattern starts to 

become smaller, the Eσ ′  values decrease. The final stage (Figure 6) is related to the 

breakdown of the six vortex pattern. The Eσ ′  maxima become large in extent (the entire 

limb region), yet the values are much smaller than the maxima that occurred during the 
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limb stretching and even smaller than the initial values. Hence, if Eσ ′  is used as a 

measure of failure proximity, the fold would have yielded much earlier. 

The remaining dynamic parameter is pressure. In terms of maximum values its 

evolution is similar to the maximum shear stress. The entire layer is initially under a 

pressure that is equivalent to 2 lµ ε  (Biot, 1961). In the next stage the maximum 

pressure progressively increases, but is restricted to the inner hinges. However, once the 

four vortex stage is reached the pressure behavior starts resembling more the maximum 

shear strain rate, in that the maxima are found within the matrix. This is due to the fact 

that the matrix is trapped within the fold core. 

 

 

DISCUSSION AND INTERPRETATION OF GENERAL SHEAR 

EXPERIMENTS 

Two different experiments with combined pure and simple shear are presented where 

the viscosity contrast is 50:1 and 100:1, respectively. The numerical resolution used was 

2000 finite difference points by 64 spectral harmonics. The shear stress to normal stress 

ratio in the undisturbed matrix was set to be 5:1. The direction of the simple shear 

component top to the right. 

 

GEOMETRICAL EVOLUTION AND ACTIVE FLOW FIELD 

The most noticeable effect of the additional simple shear component on the active flow 

field is that still two amplifying vortexes exist, but they are inclined against the applied 

simple shear. As long as the two vortex pattern exists there is almost no visible 

component of asymmetric fold shape. Once the vortexes become weaker, the folds 

develop a vergence which accords with the applied simple shear. Hence, the 

development of fold asymmetry is a passive, geometrical process. It may be compared 

to the final stage of the pure shear single layer folds where the background pure shear 

component stretches the limbs and the active flow tries to prevent this. In a similar 

fashion the active flow acts against the movement of the passive simple shear 

component, without success. 
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The development of fold asymmetry is limited by the lateral space. This becomes 

progressively more restricted as more shortening is accommodated. The individual 

folds, implicit in the assumption of lateral periodicity, force themselves back into the 

“radiator stage” in which the asymmetry remains visible due to the thickness differences 

in the limbs. This thickness difference stems from the fact that the fore limb is 

shortened, while the back limb is being stretched by the simple shear (Figure 9). Note, 

that this stretching and extension are mostly relative, overprinted by the overall pure 

shear shortening. An absolute extension of originally horizontal lines in the limbs 

indeed occurs first in the back limb, but only in the very late stages where the 

background pure shear already stretches the limbs.  

The flow pattern evolution is, due to the asymmetry, much more complex, but follows 

the 2-6-4 vortex pattern. In general it seems that despite the formation of asymmetric 

folds, the folding in combined pure and simple shear is very similar to the pure shear 

only case. If this is the case the finite amplitude theory of Schmalholz and Podladchikov 

(2000) should be applicable to the asymmetric case as well. Their theory successfully 

describes the single layer fold development in pure shear at least up to threefold 

shortening. In order to compare our results to their theory we must define wavelength 

and amplitude of asymmetric folds. Our method of measuring is depicted in Figure 7. 

 

 

Figure 7 

Wavelength and amplitude measurement for comparison with finite amplitude theory. 
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a) 

 
b) 

Figure 8 

Comparison of combined pure & simple shear experiments to the exponential 

solution and to the finite amplitude solution of Schmalholz & Podladchikov. 

a) Viscosity contrast 50:1 

b) Viscosity contrast 100:1 
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The direct comparison of the numerical runs to the theory is shown in Figure 8. Both 

experiments show excellent agreement with the finite amplitude theory. In contrast and 

as shown by Schmalholz and Podladchikov (2000) the infinitesimal, exponential 

solution is only valid for small amounts of shortening. The applicability of the finite 

amplitude theory serves as the basis for the strain and competence contrast estimation 

method developed by Schmalholz and Podladchikov (2001), which allows to deduce the 

competence contrast and the strain accommodated by a fold by means of two simple 

geometrical parameters: the amplitude to wavelength ratio and the layer thickness to 

wavelength ratio. We can therefore conclude that the strain and competence contrast 

estimation method is also applicable to asymmetric folds, which was uncertain before. 

The remaining key unknown in the field is the amount of accommodated bulk shear 

strain, which is due to the simple shear component of the flow. Combining the values 

that the strain map yields and fold asymmetry it is possible to determine the shear strain. 

The method of measuring the fold asymmetry (A) is depicted in Figure 9. The 

corresponding mathematical expression to quantify the asymmetry is 

 1BackLimbAsymmetry
ForeLimb

= −  (11) 

 

 

 Figure 9 

Fold asymmetry measurement method. 
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The results from the two experiments performed are depicted in Figure 10. Interestingly 

the two measured data lines almost collapse, although their viscosity contrasts differ by 

a factor two. The use of Figure 10 is to determine overall simple shear component. 

Given a natural fold, the strain map can be used to estimate the accommodated 

shortening and the viscosity contrast. This information together with the asymmetry 

data allows to deduce the shear strain, as explained with one example in Figure 10. Due 

to the character of the curve always two values are possible. The larger value is related 

to the approaching of the neighboring folds and therefore associated with large 

shortening strains. Therefore it is possible resolve this ambiguity. 

The shear strain plot presented in Figure 10 is only based on two experiments. In order 

to develop it into a useful tool, a systematic investigation of viscosity contrasts and pure 

to simple shear rate ratios is needed. Additionally it should be verified how different 

rheologies, such as power-law and viscoelasticity influence the results. 

 

 

Figure 10 

First version of a shear strain map. Thick line is fitted, thin lines are from the two simple 

shear experiments. The dashed line shows how a measured fold asymmetry value can be 

used to infer possible shear strain amounts. (The noise in the two original signals stems 

from using a somewhat crude method to determine the second derivative, which 

represents the curvature and is needed to identify the hinge.) 
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EFFECTIVE SHEAR STRAIN RATE AND LONGITUDINAL STRAIN 

Both, maximum shear strain rate and longitudinal strain differ significantly from the 

pure shear only case. The main reason is that, from the start, the undisturbed matrix 

shows five fold higher effective strain rates (according to our setup of simple to pure 

shear ratio). This largely overprints the fold development. Consequently, the recorded 

strains are much larger in the matrix. As a result, extension starts within the matrix, not 

the outer hinge, and at much smaller shortenings than required in pure shear only 

experiments. With increasing strain the field of extension enlarges and progressively 

incorporates parts of the layer, firstly the outer hinge. Soon afterwards the entire back 

limb is in extension. It must be noted that for folds in general shear the use of 

longitudinal strain of originally horizontal lines is only sub-optimal. In pure shear only 

it is to be expected that one of the principal axes of the strain ellipsoid follows the 

deformation of originally horizontal lines. This is unlikely to be the case for folding in 

general shear. Therefore the applied method may fail to capture any maximum or 

minimum extension at a point. 

 

EFFECTIVE SHEAR STRESS AND PRESSURE 

In the initial phase of pure shear dominance and strong amplification, both, maximum 

shear stress and pressure are almost identical to the pure shear only case. With 

progressive asymmetry of the fold geometry the two parameters deviate from the pure 

shear only case. However, the general characteristics of where minima and maxima 

occur and how large their amplitudes are, are overall preserved.  

 

 

CONCLUSIONS 

We provide with this work key examples of single layer fold development up to very 

high amplitude stages. The chief kinematic and dynamic parameters are analyzed and 

should be used for tuning the classical, geometry or kinematics, based methods. We 

have focused on the developed of asymmetric folds and analyzed how the asymmetry 
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influences the fold development. We demonstrated that combinations of pure and 

simple shear lead to asymmetric folds if the appropriate set of boundary conditions is 

used. However, the asymmetry does not grow as an instability but is mainly a kinematic 

effect that becomes possible at relatively large amplitude stages, where the active fold 

amplification decays. Consequently, parameters such as effective stress and pressure 

deviate in general shear only slightly from the pure shear case. This explains why first 

order analytical theories that are strictly valid only for the initial stages are not sensitive 

to the layer parallel simple shear component and is in agreement with the argumentation 

outlined by Johnson and Fletcher (1994). We show that the vergence of the folds and 

the limb thickness ratios can be used as shear sense indicators. Opposite senses of fold 

vergence reported by Reches and Johnson (1976) are related to multilayers and 

restricted to kinking. Argumentations put forward by Krabbendam and Leslie (1996) are 

related to purely passive deformation of already existing folds and are only relevant if 

several deformation phases can be identified. 

An advantageous consequence of the passive nature of the fold asymmetry development 

is that the pure shear based finite amplitude theory and the strain map developed by 

Schmalholz and Podladchikov (2000; 2001) is applicable to asymmetric folds. Since the 

strain map yields the competence contrast and the amount of layer parallel shortening, 

the only undetermined parameter is the shear strain. Based on the few experiments 

available we have shown that it is possible to use the fold asymmetry to infer the bulk 

shear strain. However, a systematic study of competence contrast and simple shear to 

pure shear ratios is needed to develop a complete shear strain map. The combination of 

such a shear strain map with the aforementioned strain map will result in a major tool 

for field geology, because for the first time strain reconstructions could be performed 

with simple geometrical parameters, but based on a solid continuum mechanistic 

fundation.  

 

212 



REFERENCES 

Abbassi, M.R. and Mancktelow, N.S., 1992. Single layer buckle folding in non-linear materials-
I: Experimental study of fold development from an isolated initial perturbation. Jou. 
Struct. Geol., 14(1): 85-104. 

Anthony, M. and Wickham, J., 1978. Finite-element simulation of asymmetric folding. 
Tectonophysics, 47(1-2): 1-14. 

Bell, A.M., 1981. Vergence - an Evaluation. Journal of Structural Geology, 3(3): 197-202. 
Biot, M.A., 1961. Theory of Folding of Stratified Viscoelastic Media and Its Implications in 

Tectonics and Orogenesis. Geological Society of America Bulletin, 72(11): 1595-1620. 
Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., 1988. Spectral Methods in Fluid 

Dynamics. Springer series in computational physics. Springer, Berlin Heidelberg. 
Chapple, W.M., 1968. A mathematical theory of finite-amplitude rock-folding. 

Geol.Soc.Am.Bull., 79: 47-68. 
Cobbold, P.R., 1975. Fold propagation in single embedded layers. Tectonophysics, 27: 333-351. 
Cobbold, P.R., 1976. Fold shapes as functions of progressive strain. Phil. Trans. R. Soc. 

London, A283(129-138). 
Dieterich, J.H., 1970. Computer experiments on mechanics of finite amplitude folds. Can. J. 

Earth Sciences(7): 467-476. 
Ghosh, S.K., 1966. Experimental tests of buckling folds in relation to strain ellipsoid in simple 

shear deformations. Tectonophysics, 3: 169-185. 
Hudleston, P.J. and Lan, L., 1994. Rheological controls on the shape of single-layer folds. J. 

Struct. Geol., 16(7): 1007-1021. 
Johnson, A.M. and Fletcher, R.C., 1994. Folding of viscous layers. Columbia University Press, 

New York. 
Krabbendam, M. and Leslie, A.G., 1996. Folds with vergence opposite to the sense of shear. 

Journal of Structural Geology, 18(6): 777-781. 
Mancktelow, N.S., 1999. Finite-element modelling of single-layer folding in elasto-viscous 

materials: the effect of initial perturbation geometry. J. Struct. Geol., 21(2): 161-177. 
Manz, R. and Wickham, J., 1978. Experimental analysis of folding in simple shear. 

Tectonophysics, 44: 79-90. 
Mase, G.E., 1970. Continuum Mechanics. Schaum's Outline Series. McGraw-Hill, New York. 
Pfaff, V.J. and Johnson, A.M., 1989. Opposite Senses of Fold Asymmetry. Engineering 

Geology, 27(1-4): 3-38. 
Price, N.J. and Cosgrove, J.W., 1990. Analysis of Geological Structures. Cambridge University 

Press, Cambridge. 
Ramberg, H., 1961. Contact strain and folding instability of a multilayered body under 

compression. Geol. Rdsch., 51: 405-439. 
Ramberg, H., 1963. Fluid dynamics of viscous buckling applicable to folding of layered rocks. 

Bull. Am. Ass. Petr. Geol., 47(3): 484-505. 
Ramsay, J.G., 1967. Folding and fracturing of rocks. International series in the earth and 

planetary sciences. McGraw-Hill, New York, 568 pp. 
Ramsay, J.G., 1974. Development of Chevron Folds. Geological Society of America Bulletin, 

85(11): 1741-1754. 
Ramsay, J.G. and Huber, M.I., 1983. Strain analysis. Academic Press, London, 307 pp. 
Ramsay, J.G. and Huber, M.I., 1987. Folds and fractures. Academic Press, London, XI, [392] 

1987. pp. 
Ranalli, G., 1995. Rheology of the Earth. Chapman & Hall, London [etc.], 413 pp. 
Reches, Z. and Johnson, A.M., 1976. Theory of Concentric, Kink and Sinusoidal Folding and of 

Monoclinal Flexuring of Compressible, Elastic Multilayers .6. Asymmetric Folding and 
Monoclinal Kinking. Tectonophysics, 35(4): 295-334. 

Schmalholz, S.M. and Podladchikov, Y., 1999. Buckling versus folding: Importance of 
viscoelasticity. Geophysical Research Letters, 26(17): 2641-2644. 

213 



214 

Schmalholz, S.M. and Podladchikov, Y.Y., 2000. Finite amplitude folding: transition from 
exponential to layer length controlled growth (vol 179, pg 363, 2000). Earth and 
Planetary Science Letters, 181(4): 619-633. 

Schmalholz, S.M. and Podladchikov, Y.Y., 2001. Strain and competence contrast estimation 
from fold shape. Tectonophysics, 340(3-4): 195-213. 

Schmalholz, S.M., Podladchikov, Y.Y. and Schmid, D.W., 2001. A spectral/finite difference 
method for simulating large deformations of heterogeneous, viscoelastic meterials. 
Geophys. J. Int, In press. 

Sherwin, J.A. and Chapple, W.M., 1968. Wavelengths of Single Layer Folds - a Comparison 
between Theory and Observation. American Journal of Science, 266(3): 167-179. 

Smith, R.B., 1975. Unified Theory of Onset of Folding, Boudinage, and Mullion Structure. 
Geological Society of America Bulletin, 86(11): 1601-1609. 

Treagus, S.H., 1973. Buckling Stability of a Viscous Single-Layer System, Oblique to Principal 
Compression. Tectonophysics, 19(3): 271-289. 

Twiss, R.J. and Moores, E.M., 1992. Structural Geology. W. H. Freeman and Company, New 
York. 

Zhang, Y., Hobbs, B.E. and Ord, A., 1996. Computer simulation of single-layer buckling. J. 
Struct. Geol, 18(5): 643-655. 

 



CHAPTER 8: MULTILAYER FOLDING 

 

 

“It is apparent, however, that the theory of folding of single layers tells us almost 

nothing about most folds, which are in rocks consisting of many, interlayered, stiff and 

soft beds, that is, consisting of multilayers”. (Johnson and Ellen, 1974) 

“Certain classical fold forms, such as kink and box folds, are conspicuously absent in 

the multilayers analyzed in this paper” (Johnson and Pfaff, 1989) 

 

 

ABSTRACT 

Multilayer folding is the dominant folding mode in nature, but due to the overwhelming 

possible parameters space many questions concerning the folding of multilayers are not 

answered from theoretical and practical viewpoints. For example it is not clear if there 

is a distinct multilayer folding mode at all or if there is just a smooth transition from 

welded, effective single layer to real single layer folding. We show analytically that 

such a folding mode exists and explain why it dominants the folding in natural rocks. 

Another question that we address is the formation of kink bands. Explicitly resolving 

the basic characteristics of a relatively simple model configuration with a numerical 

code we show that kinking is a dominating mechanism in the folding of simple 

multilayered Newtonian fluids subjected to general shear in the proximity of a no-slip 

base. This renders anisotropic, non-linear, and elasto-plastic rheologies unnecessary and 

consequently changes the way process controlling mechanisms are deciphered from 

natural folds.  
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INTRODUCTION 

The first citation at the beginning of this chapter stems from Johnson and Ellen (1974), 

which was the first of an entire series of papers about folding that resulted in Johnson’s 

book “Styles of Folding” (1977). Indeed, given the abundance of folds in multilayered 

strata compared to the rare occasion that one actually discovers a single layer fold in 

nature, it seems unjustified that single layer folding attracted so much attention. 

However, it is obvious that due to their geometrical simplicity single layer folds are the 

easiest to tackle by means of analogue, numerical and analytical modeling. Furthermore, 

single layer folding may be taken as a special case of multilayer folding, which, due to 

its easy accessibility, can serve as the fundament of multilayer folding theories. The 

majority of analytical studies for multilayer folding are based on the thick-plate 

formulation (Ramberg, 1963; Ramberg, 1970; Johnson and Pfaff, 1989; Cruikshank and 

Johnson, 1993). The thick-plate assumption has the advantage, over the thin-plate (Biot, 

1961), that layer deformation and interaction are automatically taken care of, and 

various boundary conditions can be introduced (e.g., Schmalholz et al., 2002). This may 

be the reason why no systematic analysis of the most simple multilayer case exists: only 

two different materials, competent layers and weaker matrix, embedded in two infinite 

matrix half-spaces and subjected to layer parallel pure shear. What are the dominant 

wavelengths and maximum growth rates for such a system? How do they depend on 

layer-interlayer spacing, viscosity contrast, and number of layers? 

The second citation is from Johnson and Pfaff (1989) and points out some of the 

symptomatics of previous multilayer folding research. Kink folds or box folds are 

common in natural multilayers, but can only be reproduced in experiments if anisotropic 

(Cobbold et al., 1971) or/and non-linear (Latham, 1985) materials are used. Theoretical 

considerations conclude that conventional materials cannot be used to model kinking 

and Cosserat continua (Adhikary et al., 1999) or other special formulations (Hunt et al., 

2000) must be introduced. Common to these formulations is that, instead of modeling 

the layers explicitly, it is assumed that they can be treated as a homogenous, anisotropic 

material. This goes back to Biot (1965) who employed the same method when he 

originally investigated the development of internal instabilities in the folding in a 

multilayer stack. The question, which we ask here, is if all this complexity is really 
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necessary? Maybe a much simpler setup, such as simple multilayered Newtonian fluids 

subjected to general shear, can also develop kinks? 

In order to answer the raised first order questions, we must use adequate tools. Due to 

the geometrical non-linearity of the studied system and the fact that folding is a finite 

strain phenomenon, only a combination of analytics and numerics, that incorporates the 

entire non-linear interaction, can tackle the problem. Following previous work we apply 

the thick plate theory to analytically investigate the folding of the simple multilayer 

stack. The reason for this is that the thin-plate theories generally do not incorporate the 

to be expected shear deformations. More general effective thin-plate approaches require 

a priori knowledge of the morphology of the multilayer response, i.e., welded multilayer 

folding can be handled by the “leaf spring model” (McNutt et al., 1988; Burov and 

Diament, 1995). The purpose of this paper is to establish the morphological multilayer 

folding modes in a wide parameter range. Therefore it is preferable to apply a thick-

plate theory for infinitesimal stages and numerical simulations of the complete Stokes 

equations for the non-linear finite amplitude stages. 

 

Figure 1 

Folding in multilayer stacks, Almugraf, Portugal. 
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METHODS 

Both methods that we use are described elsewhere and therefore not documented in 

detail here. The linear stability analysis performed with the thick-plate approximation is 

explained in Johnson and Pfaff (1989). The numerical code used for the finite amplitude 

behavior under general shear is a descendant of a previous code that is documented in 

Schmalholz et al. (2001). It is based on a mixed finite difference/spectral formulation, 

whereby in the direction orthogonal to the layer a finite difference scheme is used and in 

the layer parallel direction a spectral expansion is employed that makes use of the lateral 

periodicity, which is intrinsic to the problem. This new code version has several 

improvements implemented. While the transformation of the input signal to the 

frequency space is still based on an analytical Fourier transform, the necessary 

convolutions for the signal multiplication in frequency space are now based on Fast 

Fourier Transforms (Cooley and Tukey, 1965) which increases the performance 

significantly. In addition, a full cosine and sine signal implementation is used now, that 

allows to study combined effects of pure and simple shear. Therefore the bandwidth had 

to be increased because the system only convergences if a complex conjugate system is 

formed that contemporaneously solves for the +k-th and the –k-th harmonic. The 

implementation of the layer parallel simple shear uses a constant velocity boundary 

condition at the top and the bottom, which is different to the constant lateral shear strain 

rate (rigid wall) boundary conditions usually employed in analogue (e.g., Cobbold et al., 

1971; Manz and Wickham, 1978) or numerical modeling (Anthony and Wickham, 

1978). This avoids strong boundary effects that are disturbing the analysis of the model. 

The combination of constant pure shear rate and constant simple shear stress boundary 

conditions results in a set of velocity boundary conditions that are shown in Figure 2.  

The materials used here are simple Newtonian fluids in the absence of gravity. This 

does not mean that the results are not applicable to large-scale tectonics. Schmalholz et 

al. (2002) have derived the conditions for which gravity is important and have shown 

for several large-scale tectonic examples that gravity had no controlling influence on the 

folding process. 
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Figure 2 

Multilayer setup: a number of layers are subjected to combined layer parallel pure and 

simple shear. In the horizontal direction periodicity is assumed. The thick-plate analysis 

assumes an infinite half space above and below the layer stack. In the numerical model 

the layer stack can be close to a no-slip base. The thickness of the competent (black) layer 

is , the thickness of the weak interlayer is . In the thick-plate experiments the 

amplitude of the initial perturbation is determined by the eigenvalue analysis, in the 

numerical experiments the layers were individually perturbed with a random red noise 

with amplitude . 

CH WH

/ 50CH

 

219 



THICK PLATE LINEAR STABILITY ANALYSIS 

The basic equations for the thick plate analysis result in a complex system that must be 

analyzed with eigenvalue analysis in order to determine dominant wavelength and 

growth rate of the multilayer stack (Ramberg, 1970). If we take Figure 2 as an example 

and specify the viscosity contrast, the eigenvalue analysis will yield an eigenvalue and a 

set of eigenvectors. The eigenvectors determine the relative amplitudes, with which the 

interfaces must be perturbed so that the stack amplifies fastest, for the given 

wavelength. The growth rate is determined by the eigenvalue. To determine the 

maximum possible growth rate an eigenvalue analysis must be performed for the all 

possible wavelengths. As pointed out in the introduction single layer folding is an end-

member case of multilayer folding. The expected result of the linear stability analysis is 

depicted in Figure 3. If the individual layers are very close to each other, the effect of 

the weak interlayer will become negligible and the stack will fold as an effective single 

layer. On the other hand if the individual layers are too far apart then no interaction 

takes place anymore and the individual layer behaves as a normal single layer. It can be 

expected that the distance where the mutual layer influence becomes negligible is about 

one dominant wavelength, as determined by Ramberg (1961) with his contact strain 

theory. The interesting region of layer-interlayer thickness ratio ( ) is in-

between this two end member cases. Is there a smooth transition from one limit to the 

other, or is there a third folding mode? 

/CH HW

 

 

 

 

 

 

 

 

Figure 3 

Expected result of linear 

stability analysis (see text for 

explanation). 
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Figure 4 

Normalized dominant wavelength versus layer-interlayer thickness ratio. Colors are 

related to number of layers, line styles to viscosity contrasts.  

 

The answer, given in Figure 4, is clear: there is a third mode, which is a true multilayer 

mode. The dominant wavelengths are normalized by the dominant wavelength of the 

effective single layer. Naturally, the effective and the real single layer are related, but 

since the effective single layer is thicker than the individual (real) layer the normalized 

values go from 1 in the effective single layer domain (small  values) to smaller 

dominant wavelengths values in the real single layer domain (large  values). 

In-between this two there is a third plateau that is centered on 

/CH HW

W/CH H

/ 1C WH H = , 

independently of viscosity contrasts and number of layers. 
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Figure 5 

Normalized maximum growth rate versus layer-interlayer thickness ratio. 

 

However, this third plateau is only of interest if the corresponding growth rates are 

significant compared to the background, kinematic shortening. The corresponding plot 

is shown in Figure 5. The normalization used is again the value of the effective single 

layer. It is clear that the effective single layer and the real single layer should have the 

same growth rates, which is reflected in the near one values in the two domains. The 

growth rates that correspond to the described third plateau are significantly larger than 

the single layer values. Thus, the third plateau represents an important folding mode. 

The third folding mode is especially interesting because it has shorter dominant 

wavelength to thickness ratios than the effective single layer. This could be another 

explanation for the natural preference of small wavelength to thickness ratios which is 

in contradiction to the large viscosity contrast variations (Sherwin and Chapple, 1968). 
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Figure 6 

Improved normalization, which reduces the dependency on viscosity contrast and 

number of layers. a) Dominant wavelength b) Maximum growth rate. 
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The results in Figure 4 and Figure 5 are normalized by the corresponding value of the 

effective single layer. Although similar, the resulting curves differ significantly and it is 

preferable to develop an improved normalization that results in a single curve that is 

valid for the entire parameter range studied. If such a curve can be found the controlling 

parameters can be identified and the mechanism of the folding process can be better 

understood. The proposed normalizations for the maximum growth rate (α ) and the 

dominant wavelength (λ ) are: 

 ( ) ( )ln
1 exp

2
C

W

nµα α
µ π

 
= − −

 
  (1) 

 ( )1
1n

n

λ
λ

−
=

− 
 
 

 (2) 

where Cµ  and Wµ  are the viscosity of the competent and weak materials, respectively, 

and  is the number of layers. n

The corresponding plots are given in Figure 6. These simple normalizations are 

reasonably effective in reducing the curve variability and can be used to derive an 

analytical expression for folding in the complex parameter space described here. For 

example the maximum growth rate common to all layer configurations is (Figure 6b) 

1 4α ≈ . Therefore we can rearrange eqn. (1) to obtain the maximum growth rate 

expression that is valid for any number of layers in the entire range of viscosity 

contrasts: 

 ( )ln
1 exp

4 2
C

W

nµα
µ π

 
= + 

 
  (3) 

For improved visualization of the effect of viscosity contrast we select two datasets, 5 

and 50 competent layers, and plot λ  and α  in the /C W C WH H µ µ−  space (Figure 7). 

We can clearly identify the three different folding mode domains, which are separated 

by sharp transitions. Thus, the used normalizations reduce the complexity of the 

described multilayer folding to determining the straight lines that separate the three 

fields.  
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a)  
 

b)  
 

Figure 7 

Visualization of the viscosity contrast effect in the /C W C WH H µ µ−  space for 5 

and 50 competent layers.  
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NUMERICAL ANALYSIS OF FINITE AMPLITUDE MORPHOLOGY 

To study the finite amplitude fold morphology we applied the described finite 

difference/spectral code. We present here a few specific cases, which allow us to 

generate the “Fold Morphology Table”. In all cases the viscosity contrast is 50:1 and 21 

competent layers are modeled. The thickness ratio of competent to incompetent layers is 

always 2:1, which is in the region of the multilayer folding mode, described in the 

section “Thick Plate Linear Stability Analysis”. Therefore complex interaction is 

expected, which differs significantly from single layer folding. All layer interfaces were 

given an initial red noise perturbation with amplitude . The red noise was 

generated by cumulating a pseudo random signal and subsequently removing the linear 

trend. Compared to the thick plate analysis two additional factors were analyzed: 

contemporaneous simple shear and the influence of a no-slip base. The far-field simple 

shear stresses in the matrix were set to tenfold the pure shear values. If present, the no-

slip base is at the bottom of the box and its proximity is specified the  parameter, 

which is the ratio of the base size to the stack size (Figure 2). The numerical resolution 

used was 2000 finite difference points by 128 spectral harmonics. For each case several 

snapshots are given at different amounts of total shortening (

/ 50CH

xx

/bh hs

ε ) and shear strain (γ ). 

γ  is defined as the total shear displaced divided by the original box height. 

Multilayer folding in the absence of the base is not very different in pure shear only and 

combinations of pure and simple shear. An initial dominant wavelength is selected and 

amplified. However, before 50% shortening is achieved the exponential amplification 

decreases strongly and it becomes more favorable to fold the stack on a larger 

wavelength that can accommodate further strain. The development of fold asymmetry 

can also be attributed to these late stages. The progressive decrease of the stack to base 

distance leads to an increased sharpness of the finite amplitude folds. While the pure 

shear only experiments develop chevron like folds the general shear results in the 

formation of kink bands. Figure 10 shows an interesting phenomenon of this kink 

development. The presence of a no-slip base causes the fold asymmetry to grow with 

much smaller shortening strains. This early development prevents the accommodation 

of further strain because this would require stretching of the short limb. Therefore the 

fold “tries” to develop a second hinge in long limb that grows against the applied simple 

shear. 
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Case 1 

a) Initial situation 

 

b) xxε  = 44.3, γ  = 0 

 

c) xxε  = 79.7, γ  = 0 
 

 

Figure 8 

Folding of a 21 layer stack 

subjected to pure shear, 

embedded in viscous half 

spaces. 

/ 5c w 0µ µ = ,  / 2c wh h =
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CASE 2 

a) Initial situation 

 

b) xxε  = 31.9, γ  = 4.65 

 

c) xxε  = 54.5, γ  = 6.69 

 

d) xxε  = 76.8, γ  = 7.61 

 

 

 

 

 

 

Figure 9 

Folding of a 21 layer stack 

subjected to general shear, 

embedded in viscous half 

spaces. 

/ 5c w 0µ µ = ,  / 2c wh h =
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CASE 3 

a) Initial Situation 

 
b) xxε  = 32.7, γ  = 4.8 

 
c) xxε  = 53.7, γ  = 6.85 

 
d) xxε  = 71.4, γ  = 7.98 

 

Figure 10 

Folding of a 21 layer stack subjected to general shear with a no-slip base close. 

/ 5c w 0µ µ = , , / 2c wh h = / 3b sh h 2=  
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CASE 4 

a) Initial Situation 
 

  

b) xxε  = 49.7, γ  = 0 

 

c) xxε  = 79.7, γ  = 0 
 

 

Figure 11 

Folding of a 21 layer stack 

subjected to pure shear with a no-

slip base very close. 

/ 5c w 0µ µ = , h h , / 2c w =

/ 1b sh h 2=  
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CASE 5 

a) Initial Situation 
 

 

b) xxε  = 46.3, γ  = 6.27 

 

c) xxε  = 57.9, γ  = 7.22 

 

 

Figure 12 

Folding of a 21 layer stack subjected to general shear with a no-slip base very 

close. 

/ 5c w 0µ µ = , , / 2c wh h = / 1b sh h 2=  
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FOLD MORPHOLOGY TABLE 

 Pure Shear General Shear 
N

o 
B

as
e 

  

B
as

e 
/ S

ta
ck

 =
3/

2 

  

B
as

e 
/ S

ta
ck

=1
/2

 

  

232 



DISCUSSION AND CONCLUSIONS 

The key finding of our thick plate analysis is the identification of a distinct third folding 

mode that is a true multilayer mode. This mode occurs if the thickness ratio of 

competent to incompetent layer thickness is approximately 1:1, independently of the 

number of layers and the viscosity contrast. It exhibits growth rates that are significantly 

faster than single layer growth rates and may explain why single layer folding is rare in 

nature. In addition this mode exhibits small wavelength to stack thickness ratios, which 

agrees with natural observations. 

Our study of finite amplitude multilayer folding is maybe the only existing example 

where a large number of layers with initial randomly perturbed interfaces are explicitly 

modeled with a fully dynamic code, as opposed to effective property approximations. 

The characteristic effect of the presence of a rigid base is to suppress the pure shear 

folding mode. Therefore, the multilayer stack in this situation becomes more sensitive to 

the contemporaneous simple shear and the kinking mode becomes the dominant and 

fold morphology determining process. However, the observed kinking is not the 

outcome of prescribed geometry but the true result of a relatively simple model 

configuration. We found that simple shear, the presence of a base, and the number of 

layers exert a chief influence on the kink formation. Additionally we demonstrate that 

kinking is possible if Newtonian rheology is used, rendering anisotropic, non-linear, and 

elasto-plastic rheologies as not necessary conditions for kinking. In other words: the 

observation of kinking in the field cannot be used as an indicator for low-grade / brittle 

conditions. 

The results presented here establish the applicability ranges of previously developed 

single layer folding theories. Welded mode and independent mode both can be 

described as effective single layers. Similar and concentric folding modes are 

characterized by penetrative deformation. Transition to the kinking mode, facilitated by 

simple shear and the proximity to the base, exhibits a switch to strong strain partitioning 

and large, weakly deformed areas within the multilayer stacks. The quasi-rigid body 

behavior of these areas may be similar to the clast behavior in general shear or folding 

of the finite length competent layers, studied in the previous chapters. Detailed 

elaboration of this issue is the topic of ongoing studies outside the scope of this work. 
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