
Diss. ETH No. 14950

Zero Copy Strategies
for Distributed CORBA Objects

in Clusters of PCs

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Christian A. Kurmann

Dipl. Informatik-Ing. ETH
born December 5, 1970

citizen of Gossau (SG) and Hohenrain (LU), Switzerland

accepted on the recommendation of
Prof. Dr. Thomas M. Stricker, examiner
Prof. Dr. Burkhard Stiller, co-examiner

2002

c� Christian Kurmann, 2002. All rights reserved

”Communication bandwidth is like candy given to a small child
– you give the child one piece of candy

and he wants a pound.”
Hershey’s Law

Abstract
Clusters of Personal Computers (CoPs) offer the best compute performance at the lowest
price. Workstations with ’Gigabit networking to the Desktop’ can enable a new game
of multimedia applications that benefit from higher communication bandwidth and lower
latency. In order to reach the full Gigabit/s speed on normal PCs with their typically
weak memory subsystems it requires either additional hardware for protocol processing
or alternatively, a highly efficient software system that circumvents data copies.

In this dissertation we successfully introduced speculation techniques into system
software design and managed to implement a clean zero-copy solution entirely in soft-
ware that runs with commodity network interface cards (NICs) like the ubiquitous and
cheap Gigabit Ethernet adapters, using the standard TCP/IP protocol and the socket API.
The implementation techniques are similar to the ones that are already widely used in
the hardware design of pipelined microprocessors and should be considered to be used
in software as well. Measurements and statistical studies show a huge potential for such
techniques to achieve better software efficiency, that means to provide in software what
the hardware promises to be able to deliver.

Distributed and parallel computing is one of the major trends in the computer industry.
As systems become more distributed, they also become more complex and have to deal
with new kinds of problems. To answer the growing demand in distributed software, sev-
eral middleware environments have emerged during the last few years. The Component
Object Request Broker Architecture (CORBA) is an example of a middleware that shows
the concepts used also in many of the competing standards. These environments however
typically are not implemented for being used in high speed communication settings and
therefore cannot deliver the performance up to the application. Furthermore these envi-
ronments often lack support for “one-to-many” communication primitives; such primi-
tives greatly simplify the development of several types of applications that have require-
ments for parallel processing, high availability, fault tolerance, or collaborative work.

Since the zero-copy principle is applicable and must be rigidly used to all levels of
software, we extend the design from low level drivers and protocol stack implementa-
tions to middleware packages like CORBA that ease the implementation of distributed
applications. We demonstrate a study of this topic using a data and compute intensive ap-
plication, a real-time distributed DVD-to-MPEG4-Transcoder, that is properly modeled
by parallel objects in CORBA and still strictly adheres to the zero-copy paradigm of a
highly efficient software implementation running on a Cluster of commodity PCs.

iii

Kurzfassung
Clusters of Personal Computers (CoPs) liefern exzellente Rechenleistung zu tiefem Preis.
Auch Computernetzwerke basierend auf modernen, allgemein verfügbaren Technologien
bieten immer höhere Bandbreiten und kleinere Latenzzeiten. Um aber tatsächlich Band-
breiten von einem Gigabit/Sekunde in realen Anwendungen zu erreichen, benötigen sol-
che Cluster umfangreiche Hardwareunterstützung oder alternativ hochoptimierte Softwa-
resysteme, welche Kopien im limitierenden Memorysystem der Maschinen vermeiden.

Wir verwenden spekulative Methoden, die auch in der Prozessoroptimierung gebräuch-
lich sind. Damit gelingt es uns, auch die bis anhin unumgängliche letzte Datenkopie in
einem TCP/IP-Stack zu eliminieren und dadurch mit existierenden, einfachen Gigabit
Ethernet Adaptern effiziente Zero-Copy-Kommunikation zu realisieren. Messungen und
statistische Auswertungen zeigen, dass solche spekulativen Techniken auch in Softwa-
re ihre Berechtigung haben und ein riesiges Potential zur Effizienzsteigerung ausspielen
können. D.h. sie erlauben Implementationen, welche die von der Hardware versprochenen
Leistungen auch in Software der Applikation zur Verfügung stellen können.

Verteilte und parallele Systeme sind mitunter einer der Haupttrends in der aktuellen
Computer Industrie. Aber während die Systeme immer mehr verteilt ablaufen, werden
sie gleichzeitig auch immer komplexer und kämpfen mit neuartigen Problemen. Entspre-
chend der grossen Nachfrage nach Unterstützung beim Verteilen von Prozessen wurden
deshalb in den letzten Jahren einige sogenannte Middleware Umgebungen entwickelt. Die
Component Object Request Broker Architecture (CORBA) ist ein Beispiel, welches viele
ähnliche Konzepte, die auch deren Konkurrenzprodukte benutzen, vereint. Solche Umge-
bungen sind aber leider oft nicht für Hochgeschwindigkeitsnetze konzipiert und können
daher die exzellenten Kommunikationsleistungen der Hardware nicht nutzen. Im weiteren
fehlt es oft an “one-to-many”-Primitiven. Diese sind aber gerade die Voraussetzung zur
Unterstützung des Entwicklungsprozesses von Applikationen, welche parallel laufende
Prozesse, hohe Verfügbarkeit und Fehlertoleranz benötigen.

Da das Zero-Copy-Konzept auch auf andere Software-Schichten als das Betriebs-
system anwendbar ist, zeigen wir, wie die Zero-Copy-Fähigkeit auch in Middleware-
plattformen wie CORBA realisiert werden kann. Wir demonstrieren die Konzepte und
Resultate dieser Thematik mit einer daten- und rechenintensiven, verteilten MPEG2-zu-
MPEG4 Transkodierungs-Applikation. Diese wurde mittels CORBA und parallelen Ob-
jekten modelliert und profitiert trotzdem von der hoch optimierten Cluster-Plattform.

v

Acknowledgements
I am indebted to many people without whose this project would not have been possible
and I would like to take the opportunity to express my sincere gratitude to all the people
that generously gave me their support, time, and energy.

First and foremost, I thank my advisor, Professor Thomas M. Stricker for his patient
guidance, encouragement, and confidence. Toms drive and innovative ideas have effected
me deeply. It has been very rewarding and fruitful to work with him. I much appreciated
the freedom I was granted to pursue my ideas and I am glad for the time that we worked
together.

Special thanks go to my co-examiner Professor Burkhard Stiller for his very helpful
suggestions, comments, and discussions.

Many thanks to my students Roman Roth, Michel Müller, Irina Chihaia, Rolf Laich,
Matthias Ackermann, Michael Keller, Ralf Brunner and Urs Hardegger for great parts of
the implementation and many stimulating discussions.

I would also like to especially acknowledge the great efforts that went into the review-
ing of drafts of this thesis by my collegues Michela Taufer and Felix Rauch. The thesis
has benefited greatly from their suggestions. Any omissions that remain are purely my
responsibility.

Many fellow PhD students and friends have also helped and inspired me along the
way, including my bike buddy Roger Weber and the CS-Gourmet&Wine-Club Jürg Bol-
liger, Hans Domjan, Roger Karrer, Patrik Reali and Pieter Muller. At the same time,
I would like to extend my gratitude to all our colleagues on the CS-floor. All of them
have brought color and good vibes to the countless Nespresso coffee breaks, lunches, dry
run talks, SOLA relays, skating expeditions, assistant evenings and other social events.
Many thanks to Eva Ruiz, Erwin Oertli and Viktor Schuppan for regularly organizing the
“Assistentenabend” and various special events.

My dearest thanks go to my parents, Heidi and Alois Kurmann and my sister Silvia
Piol-Kurmann who gave me the most valuable assets in life: love, encouragement and
support.

Finally, I want to dedicate this work to my wife Nadja and my son Fabrice in appre-
ciation of their love, understanding and encouragement. Without Nadja’s patience and
support I could not have finished this thesis. Thank you for the joy of knowing you and
for the wonderful person you are.

vii

Contents

Abstract iii

Kurzfassung v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 3
1.3 Contributions . 4
1.4 Roadmap . 6

2 Background 9
2.1 Clusters of Commodity PCs . 9

2.1.1 Prerequisites . 9
2.1.2 High Performance and Supercomputing 10
2.1.3 Massively Parallel and Vector Parallel Computers 10
2.1.4 The Beowulf Project . 11
2.1.5 Commodity Off-the-Shelf Systems and Standard Software 12
2.1.6 Commodity Networks for Commodity PCs 12
2.1.7 Classification . 13
2.1.8 The Cluster Community . 14

2.2 Cluster Networking Technologies . 15
2.2.1 Networking Technology Categories 15
2.2.2 Cluster Networks and Supercomputer Networks 16
2.2.3 Wormhole Routing Messaging Network - Myricom Myrinet . . . 17
2.2.4 Remote Mapped Memory Network - Dolphin PCI-SCI 17
2.2.5 Traditional Wide Area Network - Gigabit Ethernet 18
2.2.6 MPP Supercomputer Network - Cray T3D, A Reference Point . . 19

2.3 Communication with no Memory to Memory Copies 21

ix

x CONTENTS

2.3.1 Increase in CPU, Memory and Networking Technology 21
2.3.2 Communication Input/Output 22
2.3.3 Optimizing User-Kernel Boundary Crossing 22
2.3.4 User-level Network Interface Protocols 23
2.3.5 Complex Do-It-Yourself Hardware 25
2.3.6 Copy Avoidance Techniques . 26
2.3.7 Operating System Structures . 27
2.3.8 User-Kernel Shared Memory . 28
2.3.9 User-Kernel Page Remapping 29

2.4 Distributed Computing . 30
2.4.1 Network Computing Systems 30
2.4.2 Remote Procedure Calls . 30
2.4.3 Distributed Computing Systems 31
2.4.4 Message Passing . 31
2.4.5 Distributed Shared Memory . 32

2.5 Object-Based Computing . 33
2.5.1 Concepts . 34
2.5.2 Object-Oriented Frameworks . 34
2.5.3 Objects in Distributed Computing 35
2.5.4 The Object Management Group and CORBA 35
2.5.5 The Object Management Architecture 36
2.5.6 The Object Request Broker . 38

3 Zero Copy Implementation Strategies 41
3.1 Zero-Copy Communication . 41
3.2 Communication Granularity . 43

3.2.1 Communication System Comparison 44
3.2.2 Transfer Modes and their Natural Implementation 49
3.2.3 Performance Evaluation . 52
3.2.4 Communication Granularity Achievable in Commodity Clusters . 59

3.3 Motivations for Zero-Copy . 60
3.3.1 A Lesson about Software Inefficiency 60
3.3.2 Where Does the Efficiency Get Lost 61
3.3.3 Trends in Memory and Network Speed 64

3.4 Layered Systems . 64
3.4.1 Design Strategies for Communication Networks 65
3.4.2 OSI and Internet Reference Model 66
3.4.3 The Middleware Infrastructure 68

3.5 CORBA and Parallel Computing . 70
3.5.1 CORBA versus MPI . 70

CONTENTS xi

3.5.2 Functionality versus Efficiency 71

3.6 Extention of the Zero-Copy Paradigm 72

3.6.1 Problems with Commodity Communication Hardware 73

3.6.2 Problem with Object Oriented Middleware 73

4 Zero Copy Concepts for Commodity Hardware 75
4.1 Special Challenges of Commodity Hardware 76

4.1.1 Downside of Backward Compatibility 76

4.1.2 TCP Transmission Control Protocol 76

4.1.3 IP Internet Protocol . 76

4.2 Related Work in Zero-Copy Communication with Ethernet 77

4.2.1 Zero-Copy Software Architectures 77

4.2.2 Gigabit Networking Alternatives and their Solution for Zero-Copy 80

4.2.3 Zero-Copy Extentions to Existing Technologies 83

4.3 Enabling Zero-Copy for Commodity Ethernet Hardware 84

4.3.1 Speculative Processing for Packet Defragmentation 85

4.3.2 Gigabit Ethernet and its NICs 85

4.3.3 An Implementation of a Zero-Copy TCP/IP Stack 86

4.3.4 Changes to the Linux TCP/IP Stack for Zero-Copy 86

4.3.5 Speculative Defragmentation in Hardware 87

4.3.6 Subject of Speculation . 88

4.3.7 Packet Transmission and Reception 89

4.3.8 Interrupt Coalescing and Adaptive Latency Optimization 90

4.4 Performance Results . 91

4.4.1 Performance Limitation in PCI based PCs 91

4.4.2 Measured Best Case Performance (Gains of Speculation) 92

4.4.3 Performance of Fallback (Penalties when Speculation Fails) . . . 93

4.4.4 Rates of Success in Real Applications 94

4.4.5 Execution Times of Application Programs 95

4.4.6 Benefit on Modern Machines . 98

4.5 Improving the Success Rate for Speculation 100

4.5.1 Admission Control for Fast Transfers 100

4.5.2 Implicit versus Explicit Allocation of Fast Transfers 101

4.6 Enhanced Hardware Support for Speculative Zero-Copy 102

4.6.1 A Control Path Between Checksumming- and DMA-Logic 102

4.6.2 Multiple Descriptor Lists for Receive 102

4.6.3 Content Addressable Protocol Match Registers 103

4.7 Future Perspective . 105

xii CONTENTS

5 Zero Copy Concepts for Distributed Object Middleware 107
5.1 Achieving High Performance in Middleware 108

5.1.1 Performance Optimizations . 108
5.1.2 Optimization Incorporation . 109

5.2 Limited Heterogeneity . 110
5.2.1 Standard Data Path Bypassing 111
5.2.2 Integration of MPI in CORBA 111
5.2.3 Legacy Code Wrapping . 112
5.2.4 Bypass of Marshaling/Demarshaling 112

5.3 The Underlying Communication Unfrastructure 113
5.3.1 Message Passing Models . 114
5.3.2 Control and Data Transfer Messages 114
5.3.3 Decoupling Synchronization and Data Transfers 115
5.3.4 Decoupling Increases Performance 116
5.3.5 Direct Deposit Messaging . 117

5.4 Connecting Client and Server . 117
5.4.1 The GIOP Protocol . 118
5.4.2 Common Data Representation 118
5.4.3 Marshaling . 119
5.4.4 CDR and Streams . 119
5.4.5 Transport Requirements . 120
5.4.6 GIOP Messages . 121
5.4.7 The IIOP Protocol . 124

5.5 MICO as a Software Platform for Zero-Copy 125
5.5.1 MICO our Software Platform 125
5.5.2 Shortcomings and State of the Art in CORBA Middleware 126
5.5.3 Data Structure Analysis . 128
5.5.4 Data Path Analysis . 128

5.6 Modifications of MICO for Zero-Copy 130
5.6.1 A New Datatype: Sequence of ZC OCTET 130
5.6.2 Direct Deposit Sender . 132
5.6.3 Direct Deposit Receiver . 133
5.6.4 Separate High-Bandwidth Connection 133

5.7 Performance Evaluation . 135
5.7.1 TTCP - TCP Performance Benchmark 135
5.7.2 CORBA Implementation of TTCP 136
5.7.3 Hardware Platform . 136
5.7.4 Experimental Setup . 137
5.7.5 Performance Results of MICO With Zero-Copy 138
5.7.6 Benefit of Zero-Copy Middleware 140

CONTENTS xiii

6 Modeling Distributed Objects for Parallel Processing 141
6.1 Parallelization with CORBA . 142
6.2 Reusing CORBA Patterns for Parallel Processing 143

6.2.1 COS Event Service . 143
6.2.2 COS Notification Service . 147
6.2.3 Object Groups in Fault Tolerant CORBA 148
6.2.4 Load Balancing Service . 149
6.2.5 Data Parallel CORBA . 151

6.3 Ways to Integrate Parallelism into CORBA 153
6.3.1 Integration Approach . 153
6.3.2 Interception Approach . 154
6.3.3 Service Approach . 154
6.3.4 Evaluation of the Different Approaches 154

6.4 Distributor Service . 157
6.4.1 Design Requirements . 157
6.4.2 Prerequisites . 158
6.4.3 Event Communication . 159
6.4.4 Integrated Load Balancing . 160
6.4.5 Distributor Channels . 164
6.4.6 Proxy Objects . 165
6.4.7 Asynchronous, Decoupled Delivery Communication 166
6.4.8 Locking . 167
6.4.9 POA Manager . 167

6.5 Experiences . 168

7 Zero-Copy Distributor Framework Evaluation 169
7.1 Distributor Framework . 170

7.1.1 Architecture . 170
7.1.2 Chunk Pool . 171
7.1.3 Module Interface . 171
7.1.4 Activation of Objects and Scheduling 174

7.2 Components for an MPEG Transcoder 175
7.2.1 Parallel Encoder Design . 176
7.2.2 MPEG Transcoding . 177
7.2.3 Partitioning of a Video Stream for Encoding 178
7.2.4 Parallelization of MPEG-4 Encoding 178
7.2.5 MPEG-4 Encoding . 179
7.2.6 Collector . 179
7.2.7 External Components . 180

7.3 Implementation of a Distributed MPEG Transcoder 181

xiv CONTENTS

7.3.1 Chunk Communication . 181
7.3.2 Import Modules . 183
7.3.3 Process Modules . 184
7.3.4 Export Modules . 185
7.3.5 trans command . 186
7.3.6 Example . 186

7.4 Evaluation of the Results . 188

8 Conclusions 191
8.1 Efficient Defragmentation with Ethernet 193
8.2 Throughput Efficient Middleware . 194
8.3 Parallelization Framework for CORBA 195

A MPEG-4 Compression – An Introduction 199

B trans Manpage 203

C IDL - Load Balancing Service 207

D IDL - Distributor Service 211

Bibliography 217

Curriculum Vitae 229

1
Introduction

1.1 Motivation

The focus of novel computer architectures in Parallel- and Distributed Computing has
shifted away from custom built massively parallel systems competing for world records
towards some smaller and more cost effective systems built from personal computer parts.
The steady and exponential growth of performance in commercial microprocessors man-
dates the use of these off-the-shelf components in all high performance systems and – at
this time – alternative designs do not have a real chance to compete.

This trend lead to the overwhelming popularity of Clusters of PCs to run traditional
supercomputer application codes. A closer look at this trend reveals a further evolution
towards even more parallelism and towards a wider distribution. The better connectivity
of most computers on the Internet will shortly permit a new view of things suggesting that
all those personal computers and workstations form a giant global computational grid.

For the development of PC clusters the recent cost/performance gains in network tech-
nology are probably as important as the performance increase in microprocessor technol-
ogy. In the field of high performance distributed computing the growth in networking en-
abled scientific applications that need to access large data sets over high speed networks.
High data rates in the Gigabit/s range are also one of the enabling technologies for col-
laborative work applications like multimedia collaboration, video-on-demand and digital
image retrieval. But many parallel applications for clusters are still limited by the com-
munication bandwidth of the available communication system software. The extremely
high bandwidth capabilities available by special purpose hardware challenge high perfor-
mance software systems to really deliver to the user what is provided by the hardware.
The ratio between sustained software bandwidth versus hardware bandwidth defines our
perception of communication software efficiency and its optimization constitutes the most
central subject of this thesis.

To achieve optimal communication software efficiency and high data rates many re-
cent efforts have focused on designing better software architectures using the so called
Zero-Copy principle. Well designed software is capable of moving data between applica-
tion domains and network interfaces without intervention of the CPU and the memory bus

1

2 CHAPTER 1. INTRODUCTION

intensive copy operations. This is important as the available network speeds exceeded the
memory copy bandwidth of commodity systems in several epochs during the evolution
of computers in the past and presumably also in the future. Unlike conventional paral-
lel programs, the multimedia applications and tools for telecooperation mentioned above
are not coded for APIs of high speed message passing libraries, but expect the standard
Berkeley Socket API used in networking or they rely on standardized distributed object
middleware like CORBA.

Optimal efficiency and best possible communication speed for these latter software
environments is still a research issue even if the number of Fast Ethernet (100 MBit/s)
and Gigabit Ethernet (1000 MBit/s) installations is rapidly growing. Ethernets became
the most common means to connect computers and information appliances to the Inter-
net. High volumes translates into low unit costs and therefore Gigabit Ethernet tech-
nology could become highly interesting for cluster computing, although the technology
was clearly designed for a traditional networking world of globally interconnected net-
works. There are two mayor problems with this commodity technology. First Gigabit
Ethernet, like all previous versions of Ethernet, has been designed for an unacknowl-
edged, connection-less datagram delivery service. This must be fixed by a protocol stack
which on the Internet is mostly the TCP/IP protocol. While IP provides the addressing
and the packet fragmentation, only TCP provides a reliable, stream oriented, full duplex
connection with flow control between two end points. Second, while one of the big advan-
tages of Gigabit Ethernet is the backward compatibility with its predecessor Fast Ethernet
(100 MBit/s), the downside is that its maximum transmission unit (MTU) of 1500 Bytes
coming from the original Ethernet still remains smaller than the memory page size of any
processor architecture.

Looking at the demands of error and congestion control mechanisms of Gigabit Eth-
ernet, it might look completely hopeless to implement a fully compatible, fast zero-copy
TCP/IP protocol stack with the existing PCI based network interface cards (NICs). A
new software implementation technique is needed and with our proposed speculative im-
plementation the most efficient zero-copy architecture becomes feasible, despite standard
components.

Given that a zero-copy operating system environment is possible in the low level net-
working layers it makes no sense to introduce another copy in an upper software layer
again. The last few years brought several programming environments to the marketplace
that greatly reduce the complexity of developing distributed software. These environ-
ments, which we summarize under the term middleware, because they appear between
application programs and operating system services, provide high-level facilities for de-
veloping distributed applications without having to deal with low-level details, such as
remote communication and object location. They use object-oriented concepts to abstract
the complexity of the system and promote modularity and reusability. Additionally these
environments offer frameworks for the integration of heterogeneous distributed compo-

1.2. THESIS STATEMENT 3

nents. Examples of these middleware architectures are OMG’s CORBA [112] and the
CORBA Component Model (CCM), Sun Java’s’ RMI [163] and Java Beans or Microsoft’s
DCOM [19] and .NET.

Regarding feasibility of high bandwidth with these middleware implementations we
also need new implementation techniques to make those software systems comply with
the zero-copy regime and to enable them to communicate large amounts of data most
efficiently. A better software system can be achieved by introducing separate Control-
and Data Transfers for the remote method invocations on the middleware layer.

Looking at the published experience reports with applications so far the use of dis-
tributed object middleware in high performance parallel and distributed computing has
been fairly limited. This might partly be because of the inefficiency that kills any benefit
of high performance communication systems or alternatively because the above men-
tioned middleware packages were not created with parallel computing in mind. Looking
at the conceptual issues there is no reason why a system that follows object oriented
design patterns and does not contradict the goal of high performance and optimal sys-
tem efficiency could not be achieved. We just have to prove that the proposed zero-copy
techniques are general enough and that they do not pose undue restrictions on a clean con-
ceptual model of parallel processing with distributed objects. A Distributor Framework
that uses a CORBA Distributor Service to inherently parallelize jobs and partition data
is a portable and transparent solution that allows data parallel programming with all the
advantages of object and component oriented application development and deployment.

1.2 Thesis Statement

In this dissertation I claim that:

“An efficient communication system must be able to deliver the maximal per-
formance of the underlying hardware to the user application.

Efficient communication software requires a zero-copy architecture that cir-
cumvents memory-to-memory copies across all software layers in between
the application and the hardware.

A true zero-copy system architecture can be achieved even on commodity
hardware for standard communication protocols.”

The validity of my thesis is proven by the construction and the evaluation of a system
that masters many particular challenges in the research area of system software. A multi-
layer system structure starts at the network device driver level, extends through a protocol
stack, across the user/kernel boundary, uses distributed object communication middleware
and ends at the top level of the application. The primary challenge to achieve zero-copy
across all layers is the inherent complexity in such a highly layered system itself. The

4 CHAPTER 1. INTRODUCTION

existing operating system TCP/IP stacks are not designed for high performance systems
and remain therefore sub-optimal. The commodity Gigabit Ethernet NIC hardware is
too simple for a true zero-copy architecture and the standard application programming
interface, the Berkeley Sockets API, uses copying-semantics that are inappropriate for
zero-copy.

As a second challenge the synchronous request-reply paradigm given by most object
middleware makes parallelization difficult. This is one of the reasons why distributed
object middleware is still rarely chosen for high performance programming of commodity
clusters of PCs.

1.3 Contributions

My dissertation establishes the thesis and experimentally verifies its validity as follows:

� As a primary contribution it presents a true zero-copy communication architecture
that includes all layers of a modern software system. It shows that optimal commu-
nication software efficiency does not need to introduce even a single memory-to-
memory copy and that such an implementation can indeed be achieved transparent
to the user, with cheap commodity hardware, standard programming interfaces and
common distributed object middleware.

The particular challenges related to zero-copy at the different layers of system soft-
ware comprise:

1. A hardware driver and protocol stack layer running with a commodity net-
work interface card and mapping the frames containing data and protocol infor-
mation to the data-link format. Like the original, this improved operating system
protocol stack (i.e. TCP/IP stack) should provide a reliable streaming service upon
an unreliable best effort packet delivery service of the underlying network.

A first specific contribution of this dissertation enables efficient zero-copy commu-
nication with commodity network technology by eliminating the two memory copies
in the standard Linux TCP/IP protocol stack while communicating over Gigabit
Ethernet. This is achieved with a new approach introducing speculation techniques
for the communication software.

2. A distributed object middleware layer that facilitates the development of dis-
tributed applications for the programmer and standardizes the interface to the com-
munication API on different operating system and different hardware platforms.

A second contribution of the thesis is an end-to-end software system that allows to
deliver data from the operating system interface through a distributed object middle-
ware to any user application without using another data copy. The thesis applies the

1.3. CONTRIBUTIONS 5

principle of separating the control- and data transfers of a CORBA remote method
invocation. By distinguishing between control and data messages in the IIOP (Inter-
net Inter-ORB Protocol) implementation of a CORBA request broker the zero-copy
paradigm for data transfers can be maintained in this middleware layer.

3. An application layer in which a data intensive application must be modeled
cleanly using transparent standard services for load balancing, distribution and par-
allel execution in a cluster environment.

At the application level my dissertation contributes a Distributor Framework that
allows an effective development process resulting in very efficient zero-copy com-
pliant applications.

� As a general contribution in its own right this dissertation proposes probabilistic
software implementation techniques for the optimization of system software. The
techniques are successfully applied to eliminate the two memory copies in a stan-
dard TCP/IP protocol stack in an area where a deterministic zero-copy implemen-
tation remained impossible given the required functionality of standard sockets and
the limited capabilities of simple commodity network interfaces. With this new
approach of speculation techniques for the communication software an “almost”
zero-copy architecture becomes feasible even for simple and cheap commodity Gi-
gabit Ethernet hardware that seemed to require copies before.

A proof of concept for such a speculative software solution is presented and ana-
lyzed. Its core is built around a network interface card driver which initializes and
uses the standard components in a much more efficient way than previous driver
implementations. It optimistically speculates to process all the common cases very
fast, eventually in a slightly incorrect way, and to worry about the special cases and
cleanup later. For the average performance of such a solution the speculation gain,
penalty and success rates have to be analyzed properly.

� Finally as an experimental study on high performance distributed applications the
dissertation argues that the underlying point-to-point invocation model of object
oriented middleware limits its suitability for various types of parallel and distributed
applications. Therefore object oriented middleware is rarely being used in high
performance parallel and distributed computing, although it offers many advantages
when developing and deploying component-based distributed applications.

With the optimizations introduced in the dissertation the middleware communica-
tion efficiency could be increased significantly making it much more valuable for
high speed distributed computing applications. To further ameliorate the suitabil-
ity of distributed object middleware for high performance computing this disserta-
tion introduces a service-based approach to support transparent parallelization with

6 CHAPTER 1. INTRODUCTION

CORBA. With the proposed Distributor Service following object oriented design
patterns parallel and distributed applications may profit from an inherent paral-
lelization support together with all the other CORBA functionalities and advantages
provided by a component based software design.

1.4 Roadmap

Chapter 2 defines the general domain of our work and the applications we are focusing
on. It gives the backgrounds needed to understand the topic. An in-depth discussion of
related research in the area of zero-copy architectures reveals the issues that have largely
remained open so far and will consequently be explored by this dissertation. Furthermore
we introduce the area of Clusters of commodity PCs, which are todays supercomputers of
choice for many types of applications and we provide some short descriptions of cluster
interconnects that were used as an experimental basis for this dissertation. An overview
of distributed computing leads to the object oriented design models. Even as these de-
sign strategies are not yet often used in the high performance computing field, we want
to show, that it is indeed possible to optimize therein a CORBA framework, so that ob-
ject oriented designs for distributed applications can be implemented intuitively and still
perform efficiently. An overview of the Component Object Request Broker Architecture
concludes the introductory Chapter on all technologies used in the thesis.

In Chapter 3 we look into high performance communication systems and compare
their natural communication modes and interfaces. The performance evaluation of this
comparison shows, that for fine-grained accesses it is still needed to pack the data on
the sender and unpack it on the receiver. This introduces a memory-to-memory copy.
None of the currently existing communication systems was able to do the fine-grained
accesses faster in hardware unlike Cray systems in the fast T3D, T3E. This confirms our
thesis that zero-copy is needed especially for large coarse grain contiguous transfers. For
fine-grained accesses we need packing/unpacking and therefore need copying anyway.
Another reflection looking into the memory-to-memory copy problem in todays complex
layered system architectures justifies the arguments that for performance reasons a zero-
copy data path through all layers of a modern software system is essential. In the chapter
the different levels involved are described in more detail. In our understanding a zero-
copy architecture really means no (zero) memory-to-memory copies along the path form
the network device through all the system and middleware layers up to the application.
Two main problems are identified which will be addressed in the following two chapters.

Chapter 4 discusses how to achieve zero-copy with simple commodity networking
hardware. Our defragmenting TCP/IP driver working over Gigabit Ethernet is based on
the same speculation techniques that are common to improve processor performance with
instruction level parallelism. Such techniques have never been considered for the imple-
mentation of standard communication stacks before. With this speculative implementa-

1.4. ROADMAP 7

tion we are able to eliminate the last copy of a TCP/IP stack even on simple, existing
commodity hardware. We integrated our network interface driver into the Linux TCP/IP
protocol stack and added some well known page remapping and fast buffers strategies
to reach an overall zero-copy communication architecture. To keep the speculation rate
high we further introduced a network control architecture directly on Ethernet level. This
transparent solution keeps scheduling complexity away from the application programmer
and inherently tries to allocate a zero-copy blast channel on fast transfers. Based on our
experience with that driver we can also suggest simple hardware improvements to the
network interface to increase the speculation success rates.

Chapter 5 starts with a survey of object-based distributed systems and presents opti-
mizations needed to a CORBA Object Request Broker to adhere to the zero-copy princi-
ple. We use the idea of separating the control and data transfer to achieve this. While
heterogeneity in distributed systems is natural to some extent, most distributed systems
are characterized by a rather limited heterogeneity. The integration of a new ZeroCopy-
Sequence type in an Open Source ORB is discussed which is used like standard Sequence
types. The new type specifies a different marshaling and send routine that separates con-
trol and data transfers. The excellent performance achieved proves that the optimized
ORB achieves the underlying network performance and therefore does not copy the data
in memory.

Given a very efficient zero-copy environment Chapter 6 discusses some ideas on how
to model distributed objects for properly parallel programming. The optimized CORBA
ORB shall be used to parallelize jobs and distribute data without internal copies. We
outline the requirements of such applications regarding parallelization support, present
and evaluate different patterns followed by existing systems to support parallelization and
load balancing in the CORBA middleware environment. A broad overview of related
work leads to the observation that none of the current approaches are able to completely
satisfy the requirements for optimal efficiency and they are not fully consistent with the
modular, component-based architecture promoted by CORBA. We introduces the design
of a CORBA Distributor Service. This application pattern allows transparent paralleliza-
tion with decoupled clients and servers. With an inherent load balancing service the
CORBA Distributor Service serves as the basic foundation to implement parallel appli-
cations on clusters of PCs with object and component based technology that still adheres
to the zero-copy principle. The pattern specifies an architecture and a set of interfaces for
object groups.

Chapter 7 finally introduces a Distributor Framework that allows a very short and intu-
itive development process resulting in zero-copy aware, parallel and distributed CORBA
applications. By adopting this framework approach, we inherit from the major CORBA
features, such as heterogeneity, portability, interoperability, modularity and reusability.
The framework is further evaluated by the implementation and characterization of an
MPEG2-to-MPEG4 Transcoder. This is a real-life video encoding application that uses

8 CHAPTER 1. INTRODUCTION

the Distributor Framework and the CORBA Distributor Service to parallelize an object
oriented MPEG Transcoder modeled as described in Chapter 6. The parallel encoder
objects run on a Cluster of PCs equipped with commodity Gigabit Ethernet NICs and
optimized with the speculative zero-copy TCP/IP stack as well as the zero-copy ORB.

Chapter 8 finally draws the conclusions about our work and summarizes the results of
this thesis.

2
Background

The goal of this dissertation is to investigate high bandwidth communication in clusters of
commodity hardware. We want to provide a framework for efficient communication with
standard interfaces, even with standard middleware and object oriented design methods.

This chapter discusses the approaches that can be taken or have already been taken to
achieve this goal and concludes that efficient communication with extremely high band-
widths can only been achieved when the data is not copied in-memory. The discussion
of related research into zero-copy reveals the issues that have largely remained open so
far and will consequently be explored by this dissertation. Further this chapter introduces
the general system research area the dissertation focuses on, Clusters of commodity PCs,
which are todays supercomputers of choice for many types of applications. It also surveys
communication system technologies used in such clusters and in particular their network
interfaces.

An attractive and fashionable programming paradigm is the object oriented design.
Since this model is not yet used frequently in the high performance computing field, we
want to prove, that it is indeed possible to provide a CORBA framework, to enable object
oriented designs for distributed applications, which can be implemented intuitively and
still perform efficiently. We therefore introduce the general concept of the Component
Object Request Broker Architecture in another part of this chapter.

2.1 Clusters of Commodity PCs

2.1.1 Prerequisites

The personal computer (PC) used on every desktop has been augmented with many fa-
cilities, especially in the field of multimedia processing. Applications in this area often
have a very high demand on processing power, storage and communication. The advance
of PCs is based on the remarkable development of the microprocessor technology that
is following Moore’s law which predicts doubled performance in every 1.8 years. With
the processing power the cost/performance ratio increased even more in the recent years
making PCs cheaper than ever.

9

10 CHAPTER 2. BACKGROUND

A second very important progress in distributed computing is caused by the large
spread and the ubiquity of PCs, and the cheap networking technology resulting in today’s
Internet. The success of the World Wide Web and Electronic Mail lead to a coverage
of the Internet which will not only allow electronic commerce but will further result in
a consolidation of multimedia facilities to make the PCs an information hub in the fu-
ture. Progress in technology increases the speed of networks in a local from 10 over 100
to 1000 MBit/s in the last 6 years, and commodity technologies like Ethernet reduced
hardware costs dramatically.

2.1.2 High Performance and Supercomputing

As the driver for better Intra- and Internets, there are many applications that process huge
amounts of transactions, such as WWW services, mail services, news services, video-
streaming services or Internet searching. In addition to these applications some large-
scale computation power is required for simulation and data-mining. A good example is
bio-informatics, that has emerged in the past two or three years and holds promise for un-
derstanding many mechanisms of diseases and their remedies, as well as designing drugs
including fundamental research on macro-molecular processes. This technology needs
molecular dynamics applications and data-mining of the human genome that processes
and search huge volumes of data and requires high performance computing. Another ex-
ample are simulations in physics, e.g. for understanding the climate and the ocean systems
to be able to predict floods, global warming and weather disasters.

The corresponding scientific simulations require huge amounts of computation power
to run climate and weather models or fluid dynamics applications. To process such huge
data tasks, the demand for special purpose parallel supercomputers has largely increased.
In the past such systems were built with dedicated expensive hardware, especially for the
inter-processor communication, today these systems are built from commodity proces-
sors.

2.1.3 Massively Parallel and Vector Parallel Computers

Cray, Inc. introduced the CRAY-1, a vector parallel computer, in 1976 and installed the
first machine at the Los Alamos National Laboratory for 8.8 million dollars. It boosted the
world-record speed to 160 MFlops (million floating-point operations per second). Cray
and other computer vendors, such as NEC and Fujitsu, have developed so called vector
parallel computers whose processing units were dedicated and could not be used as ef-
ficiently for other purposes. The design of new systems also required the development
of appropriate operating systems, compilers and programming environments which re-
sulted in expensive machines and very long development cycles. The CRAY-2 achieved
1.9 GFlops in 1985 and the CRAY C90 16 GFlops in 1991. As in the 1970s and 1980s,

2.1. CLUSTERS OF COMMODITY PCS 11

there were no alternatives to these high performance supercomputers and so they got very
popular in the high performance computing community despite their high price tag.

After RISC-based microprocessors were introduced in the late 1980s, computer ven-
dors such as Thinking Machine, Intel, and Cray, rethought the concept of supercomput-
ers. The idea was to connect thousands or millions of microprocessors by a high speed
network. This should enable to build high performance computing environment which
should then replace vector computers for some applications.

Because neither standard high performance I/O busses nor networks were available
at this time, super computer vendors started to develop dedicated high performance net-
working architectures, which enabled parallel supercomputers using standard RISC-based
microprocessors. Such parallel computers were referred to as a Massively Parallel Com-
puters (MPP). The first MPPs were announced in the early 1990s and could achieve about
ten times the performance of a vector computer cutting down the cost of development
significantly.

However, MPPs still involved the development of high performance networks and
system software which kept the development cycles high in contrast to that in the PC
market where the microprocessor’s clock speed and performance improved much faster.
The MPPs could not catch up to the latest microprocessor technology and most vendors
withdrew from the market in the latter half of the 1990s.

Thanks to the performance improvements in the PC world as well as improvements
in commodity computer networks it became common to build cost-effective parallel pro-
cessing systems by combining of-the-shelf PCs. Such systems are called cluster systems
(Clusters of PCs (CoPs), Clusters of Workstations (COWs)) or just Beowulfs.

2.1.4 The Beowulf Project

In the early 1990s Thomas Sterling and Donald Becker were working at the Center of
Excellence in Space Data and Information Sciences (CESDIS) under the sponsorship of
the Earth and space sciences (ESS) project. The ESS project is a research project within
the High Performance Computing and Communications program. One of the goals of the
ESS project is to determine the applicability of massively parallel computers to the prob-
lems faced by the Earth and space sciences community. To address problems associated
with the large data sets that are often involved in ESS applications they built a cluster
computer consisting of 16 DX4 processors connected by channel bonded Ethernet and
called their machine Beowulf [12, 139].

The machine was an instant success and their idea of providing commodity off-the-
shelf (COTS) base systems to satisfy specific computational requirements quickly spread
through NASA and into the academic and research communities. The development effort
for this first machine quickly grew into the Beowulf Project [11] .

12 CHAPTER 2. BACKGROUND

2.1.5 Commodity Off-the-Shelf Systems and Standard Software

The COTS industry provides fully assembled subsystems (microprocessors, motherboards,
disks and network interface cards) and the mass market competition has driven the prices
down and the reliability up for these subsystems.

The development of publicly available and robust systems, in particular the Linux
operating system, the GNU compilers and programming tools as well as the MPI and
PVM message passing libraries, provided the scientists with all the hardware independent
software they needed. With this de facto standard software suite the programmers have
the guarantee that the programs they write will also run on future clusters — regardless of
who makes the processors or who manufactures the networks. A natural consequence of
combining the common system software with common vendor hardware is that the system
software must be developed and refined only slightly ahead of the application software.
In most cases bundling vendor software and hardware renders the system software to be
perpetually immature. The experience with Beowulf system software contributed that
rule.

Many research programs have produced years of experience working with parallel
algorithms but this did not automatically lead to high performance systems an had lit-
tle impact. The owners experience showed that obtaining high performance, even from
vendor provided parallel platforms was hard work and required researchers to adopt a do-
it-yourself attitude to systems building. This was in part responsible for the crisis in the
MPP industries during the late 1990ies.

A second aspect of working with parallel platforms is an increased reliance on compu-
tational methods in many sciences and therefore an increased need for high performance
computing. One could argue that the combination of these conditions (hardware, soft-
ware, experience and expectation) provided an environment that makes the development
of compute clusters seem like a natural evolutionary event.

2.1.6 Commodity Networks for Commodity PCs

We are constantly reminded of the performance improvements in microprocessors, but
perhaps as important to the development of PC clusters is the recent cost/performance
gains in network technology. The long history of Multiple Instruction/Multiple Data
MPP machines (multiple autonomous processors simultaneously executing different in-
structions on different data) includes many academic groups and a few commercial ven-
dors that have built multiprocessor machines based on what was then the state-of-art mi-
croprocessor, but they always required special “glue”-chips or complex interconnection
schemes. For the academic community this lead to interesting research and the explo-
ration of new ideas, but usually resulted in dedicated machines which life cycles that were
too strongly correlated to the life cycle of the graduate careers of those working on them
(or tenure cycles of the professors that supervised them :-)). Vendors usually made choices

2.1. CLUSTERS OF COMMODITY PCS 13

for special features or interconnection schemes to start out with certain characteristics of
their machine or to tailor a machine to a perceived market. To exploit these enhancements
required programmers to adopt a vendor specific programming model which often lead to
dead ends with respect to software development. So by the late 1990ies something had to
change.

The cost effectiveness and Linux support for high performance networks in PC class
machines has enabled the construction of balanced systems built entirely of COTS tech-
nology which has made generic architectures and programming model practical.

In 1998, a good choice for a balanced system was 16 Dual 400 MHz Pentium II
processors connected by Fast Ethernet and a Fast Ethernet switch like our first Cluster of
PC (CoPs). But the exact network configuration of a balanced cluster does continue to
change and will remain dependent on the size of the cluster and the relationship between
processor speed and network bandwidth as well as the current market price for each of
these components.

An important characteristic of clusters is this ready adaptation to the component mar-
ket — processors type and speed, network technology, relative costs of components —
do not change the programming model. Therefore, users of these systems can expect to
enjoy some more forward compatibility than experienced before with the MPP systems.

However, until short the performance of Beowulf clusters was limited compared to
that of commercial parallel supercomputers even with higher processing speed. This was
especially due to the networking hardware limitations of commodity hardware. Of course
there were special purpose networking technologies like Myrinet, SCI or Quadrics but
these cannot been considered for cheap Beowulfs that optimize raw CPU power for the
Dollar.

With the appearance of Gigabit Ethernet, Gigabit class communication has become
available in commodity networks. This fact shows that the performance of commodity
networks has nearly caught up with that of dedicated cluster networks.

Using Gigabit Ethernet, a high performance cluster system with application perfor-
mance comparable to that of dedicated networks can be built in a LAN environment. An
example is our current CoPs which consists of 16 Dual 1 GHz Pentium III nodes con-
nected with Gigabit Ethernet by a central Gigabit Ethernet Switch.

2.1.7 Classification

Besides some experienced parallel programmer, PC clusters have been built and used by
programmer with little or no parallel programming experience. In fact, clusters of PCs
provide some users with limited resources (e.g. universities) with an excellent platform
to teach parallel programming courses and provide cost effective computing to their com-
putational scientists.

In the taxomony of parallel computers, clusters of commodity PCs fall somewhere

14 CHAPTER 2. BACKGROUND

between MPP (Massively Parallel Processors, like the nCube, CM5, Convex SPP, Cray
T3D, Cray T3E, etc.) and NOWs (Networks of Workstations) [8]. They benefit from
developments in both these classes of architecture. MPPs are typically larger and have
a low latency interconnect network unlike a Beowulf cluster. Programmers of clusters
are still required to worry about locality, load balancing, granularity, and communication
overheads in order to obtain the best performance. Even on shared memory machines,
many programmers develop their programs in a message passing style. Programs that do
not require fine-grain computation and communication can usually be ported and can run
effectively on Beowulf clusters. Porting an application to a NOW or the Grid [60] is usu-
ally an attempt to harvest unused cycles on an already installed base of workstations in a
lab, a campus or the Internet. Programming in this environment requires algorithms that
are robust against load balancing problems and extremely tolerant for large communica-
tion latency. Any program that runs on a NOW will run well on a cluster of commodity
PCs..

A Beowulf class cluster computer is distinguished from a Network of Workstations by
several subtle but significant characteristics. First, the nodes in the cluster are dedicated
to the cluster. This helps ease load balancing problems, because the performance of indi-
vidual nodes are not subject to external factors. Also, since the interconnection network is
isolated from the external network, the network load is determined only by the application
being run on the cluster. This eases the problems associated with unpredictable latency in
NOWs. All the nodes in the cluster are within the administrative jurisdiction of the cluster.
For examples, the interconnection network for the cluster is not visible from the outside
world so the only authentication needed between processors is for system integrity. On a
NOW, one must be concerned about network security. Finally operating system parame-
ters can be tuned to improve performance on a cluster. For example, a workstation should
be tuned to provide the best interactive feel (instantaneous responses, short buffers, etc),
but in clusters the nodes can be tuned to provide better throughput for coarser-grain jobs
because they are not interacting directly with users.

2.1.8 The Cluster Community

The Beowulf Project grew from the first machine and likewise the cluster community
has grown from the different NASA projects. Like the Linux community, the cluster
community is a loosely organized confederation of researchers and developers. Each
organization has its own agenda and its own set of reasons for developing a particular
component or aspect of the system. As a result, cluster computers range from clusters
with a dozen nodes to clusters with several hundred nodes. Some systems have been built
by computational scientists and are used in an computation setting, some have been built
as test-beds for system research and others are serving as inexpensive systems to teach
parallel programming.

2.2. CLUSTER NETWORKING TECHNOLOGIES 15

Most architects in the community are self taught practitioners. Since everyone is doing
their own thing, the notion of having a central standardization body does not make sense.
But the community is held together by the willingness of its members to share ideas and
discuss successes and failures in their development efforts. The future of the Beowulf
alike projects will be determined collectively by the individual organizations contributing
to the project and by the future of mass-market commodity PCs. As microprocessor
technology continues to evolve and higher speed networks become cost effective and as
more application developers move to parallel platforms, the Beowulf project will evolve
further to fill its niche.

2.2 Cluster Networking Technologies

A few years ago Cray Research announced its T3D MPP line and set high standards
for Gigabit/s SAN (System Area Network) interconnects of microprocessor based MPP
systems sustaining 1 Gigabit/s per link in many applications. Today the communication
speed is still at about a Gigabit/s, but major advances in technology managed to drasti-
cally lower costs and to bring such interconnects to the mainstream market of PCI based
commodity personal computers. Many products are available today where we look at a
selection of three technologies which are different in its types: The Myricom’s Myrinet,
Scalable Coherent Interface (SCI) and Gigabit Ethernet. All networking technologies in-
clude cabling for SAN and LAN distances and adapter cards that connect to the standard
I/O bus of a high end PC. All technologies can incorporate crossbar switches to extend
point to point links into a network fabric. Myrinet and Gigabit Ethernet links are strictly
point to point while SCI links can be rings of multiple nodes that are possibly connected
to a switch for expansion.

This section discusses some different high speed cluster interconnects used for my
studies and compares them with an MPP supercomputer class network.

2.2.1 Networking Technology Categories

Two of the most promising networking technologies for interconnecting compute nodes at
Gigabit speeds in a high-performance Cluster of PC’s (CoPs) are Myricom’s Myrinet[16],
Dolphin’s Scalable Coherent Interface (SCI)[41, 1]. Of course this list is by no means
complete. There are a few old interconnect technologies that are not as actively marketed
like e.g. the memory channel or there are other technologies that are newly announced or
even shipping and we were just unable to evaluate like Quadrics [124] and Giganet [75]
which resemble the SCI technique as they implement remote memory mapping technolo-
gies.

Whereas nearly all types of supercomputer backplanes or special purpose clustering
networking technologies provide link level flow control mechanisms and error detection

16 CHAPTER 2. BACKGROUND

at the lowest hardware level to guarantee reliable transmission between the routing nodes
traditional wide area networks (i.e. switched Ethernet) do usually not include such facili-
ties. Any hardware flow control on their links and overflow or congestion problems result
in a loss of packet in the intermediate switches and require end-to-end retransmission of
lost data. Protocols capable of detecting loss and responsible for packet retransmission
necessarily involve state at both ends of a data transmission. Because of this state they
are said to be connection oriented.

In general a connection oriented network architecture does not fit the message passing
libraries very well. Still many public implementations of the popular message passing
APIs (e.g. MPI) can operate using reliable TCP streams as their means of communica-
tion, but their performance is limited by a fundamental mismatch of their model and the
underlying communication structure. A conventional networking interconnect, running
on standard protocols like TCP/IP over Ethernet or ATM are used under totally different
conditions. For those much more flexible networks the APIs of choice are TCP streams
(sockets) or RPC stub generators. Message passing libraries that operate directly on the
hardware are rarely used on this class of networks.

But nevertheless these commodity networks, especially Gigabit Ethernet [136], bring
“Gigabit Networking to the Desktop” which is one of the enabling technologies for col-
laborative work applications like multimedia collaboration, video-on-demand, digital im-
age retrieval or scientific applications that need to access large data sets over high speed
networks.

Unlike conventional parallel programs, these applications are not coded for APIs of
high speed message passing libraries, but for the socket API of a TCP/IP protocol stack.
The number of Fast Ethernet (100 MBit/s) and Gigabit Ethernet (1000 MBit/s) installa-
tions is rapidly growing as they become the most common means to connect workstations
and information appliances to the Internet. High volumes translate into low unit costs and
therefore Gigabit Ethernet technology could become highly interesting for cluster com-
puting, although the technology itself was designed for a traditional networking world of
globally interconnected computers (i.e., the Internet).

A brief survey will explain the important characteristics, properties and differences of
interconnects suitable for high speed clusters.

2.2.2 Cluster Networks and Supercomputer Networks

Since the mode of operation of an SCI interface connected to a PC is so similar to the
hardware of a processor node in a Cray T3D system we provide a short description of its
communication technology as a reference for mechanisms and services as well as perfor-
mance (see in Section 3.2). The Cray T3D is a non-commodity platform, that reached the
end of its life cycle in the mean time, but is still faster (and still much more expensive)
than any of its competitors today.

2.2. CLUSTER NETWORKING TECHNOLOGIES 17

The main difference between the old T3D and the newer commodity interconnects
for PCs is found in the indirect access to the network and the memory through an I/O
bus. The “motherboard” chipset of a PC which includes the memory controller and an
I/O-Bus bridge assumes the role of a main internal switching hub of the system. All I/O-
operations including Gigabit networking must be performed over the PCI-bus, a standard
I/O interface with lower bandwidth than the host- and memory-bus. With the advent of
games and virtual reality the bandwidth requirements for graphics has outgrown the PCI
bus and the PC industry reacted with a separate graphics port (AGP) for the newer PCs.
Unfortunately networking seems less important to the mass market and has not yet been
accommodated with a special port by the motherboard chipsets. The Cray T3D allows di-
rect access to the memory via a highly optimized deposit/fetch engine. In addition to that
engine a so called DTB annex supports direct communication from the processors caches
to the network via an address translator and a few special FIFOs. The principle differ-
ence between the two commodity systems, Myrinet and SCI lays in the large amount of
staging memory and the fully functional RISC processor core provided on every Myrinet
interface board versus the simple buffer-oriented network interface hardware on the SCI
network interfaces.

2.2.3 Wormhole Routing Messaging Network - Myricom Myrinet

The Myrinet technology is a SAN or LAN networking technology based on networking
principles previously used in massive parallel processors (MPPs) [16]. Myrinet networks
are built from links that carry a pair of full duplex 2 GBit/s channels that connect host
and switches point-to-point. Wormhole routing with link level flow control guarantees
the delivery of messages despite congestion, the checksums are just for the detection of
electrical errors. The 4 to 128 port switches of Myrinet may be connected among each
other by links in any topology. Myrinet packets are of arbitrary length and therefore can
encapsulate any type of packet (i.e. Ethernet packets, IP packets, MPI messages) and most
notably - the maximum length of the packet (MTU) is not limited. In the network link
level flow control guarantees integrity of the data transfers at the expense of an increased
potential of mutual blocking and deadlocks in the switches.

A Myrinet host adapter contains a LANai chip with a RISC Processor core, several
DMAs and the entire network interface integrated in one VLSI chip. In addition to the
LANai there are some MByte of fast SRAM on the adapter card to store a customizable
Myrinet Control Program (MCP) and to act as staging memory for buffering packets.

2.2.4 Remote Mapped Memory Network - Dolphin PCI-SCI

The primary goals of the Scalable Coherent Interface (SCI) technology is to provide bus
functionality with point-to-point interconnects including scalable cache coherent shared
memory between physical distributed processors and memory systems (IEEE Std 1596-

18 CHAPTER 2. BACKGROUND

1992 [1]). SCI supports a variety of topologies including rings and switched rings. The
current versions of most PCI-SCI adapter card only implement a subset of the IEEE stan-
dard excluding the hardware cache coherency protocols. For full coherency there are a few
expensive adapters available that replace one Pentium processor in multiprocessor moth-
erboard and connect directly to the processor bus. The most simple full duplex connection
can be established with two unidirectional links each allowing 1.6 GBit/s throughput.

We examined Dolphin’s PCI-SCI adapters [41]. Those adapters currently support two
modes of operation, one mode for per-word, shared memory operation (by transparently
forwarding requests and responses between PCI busses) and one mode for block operation
in message passing (executed by DMAs). In the first case, a load/store request to the
remote memory is sent the adapter card on the PCI bus instead and translated into an
SCI read/write request, sent to the remote PCI bus of the receiver and executed there as
a memory operation with a potential return of data to the sender (remote reads). At the
receiver a Read/Write requests to the remote memory segment is mapped to, is forwarded
to the memory system through the local PCI bus.

The card consists of two main parts: the protocol engine and the link controller. The
sent data with its management information is stored in eight 64Byte stream-buffers se-
lected by the store address. This allows the hardware to gather contiguous data and com-
bine it to a single SCI data packet. The packet is either transmitted when the stream-buffer
is full, by an explicit buffer flash or an implicit timeout. With this pipelined transmission,
high data rates can be achieved for contiguous data. PCI-to-SCI memory address mapping
is also handled by the protocol engine with an Address Translation Table (ATT) where 32-
Bit PCI addresses are converted to global 64-bit SCI addresses. Since SCI protocols are
bus protocols, this mapping is seamless much like a PCI bridge and can be performed with
low overhead. The most significant 16 bits of the SCI address are used to select between
64K distinct devices. This SCI address space is then mapped into user space. In addition
to the logic for single word/single cache line transfers, blocks can be handled by a DMA
engine that moves data transparently from local memory of a sender to the receiver. The
SCI link controller chip provides flow control and guaranteed delivery of SCI packets.

2.2.5 Traditional Wide Area Network - Gigabit Ethernet

Standard Gigabit Ethernet [136] is the latest speed extension of the well known Ethernet
technology. Gigabit Ethernet is successful for several reasons. The technology is simple,
which translates to high reliability and low maintenance cost as well as a reasonable cost
of entry (e.g. compared to ATM). As the basic technology has remained, this makes Gi-
gabit Ethernet networks completely compatible with existing slower Ethernets. Gigabit
Ethernet, like all previous versions of Ethernet, has been designed for an unacknowl-
edged, connection-less delivery service and provides point-to-point connections support-
ing bi-directional communication including link-level (but no end-to-end) flow control.

2.2. CLUSTER NETWORKING TECHNOLOGIES 19

Therefore it demands of error and congestion control mechanisms which are normally
solved by a TCP/IP protocol stack.

But backwards compatibility also brings problems, as the original 1500 Byte maxi-
mum packet length has not been increased, which makes the interrupt rate high on such
networks unless interrupt coalescing is used. Compared to the other technologies pre-
sented in this section, the latency of Ethernet is high ranging from 20 µs to several hun-
dred µs depending on the NIC hardware, network speed and OS.

Gigabit Ethernet is layered on top of the already developed and tested physical layer
of enhanced ANSI standard Fiber-Channel optical components that are well proven for
connecting a network host-adapter to a central high performance packet switching back-
plane.

Our NICs (PacketEngines GNIC-II) use the Hamachi Ethernet interface chipset that
is a typical Gigabit Ethernet controller. Besides some buffering FIFOs towards the link
side, the controller chip hosts two independent descriptor-based DMA processors (TX
and RX) for streaming data to and from host memory without host intervention hereby
reducing the CPU load necessary for network handling. Advanced interrupt coalescing
techniques reduce the number of host interrupts to a minimum and multiple packets can be
handled with a single interrupt. The controller chip also detects TCP/IP protocol frames
and correctly calculates the necessary checksums while forwarding the packets to the host.
Some large internal FIFOs and an extended buffering capability in external SRAM chips
maximize the autonomy of operation and limit the chances of packet loss.

The most appealing feature of Ethernet is its price. The cheapest Gigabit Ethernet
NICs can be obtained for far less than adapters of competing technologies.

2.2.6 MPP Supercomputer Network - Cray T3D, A Reference Point

The Cray T3D node is an interesting example of an old style multiprocessor node archi-
tecture specifically designed for a distributed and parallel system. Although the original
design is already retired at this time of emerging PC clusters, it still sets the standards
for a good communication interface. The implementation is done in a heat producing,
expensive bipolar ECL gate array technology that does not impose any compromises for
cost or for standardization. There was no commercial pressure to use a PCI bus between
the processor an network interface and Cray even built its own chip foundry to achieve a
shorter turn around on the gate arrays used in the network interface.

The processor board comprises a 150MHz 64bit DEC Alpha EV-4 microprocessor
(21064), a local memory system, a memory mapped network interface to send remote
stores to the network, and a fetch/deposit engine usually names “the annex” according to
the construction plans of the vendor and according to other publications. The memory of a
T3D node is a simple memory system built from DRAM chips without extensive support
for interleaving and pipelined accesses. Unlike DEC Alpha workstations, the node has no

20 CHAPTER 2. BACKGROUND

virtual memory and runs with a special version of the DEC Microprocessor without the
functional units for paged virtual memory.

The interface between the computation agent and the main memory is centered around
an 8KB primary cache and a write back queue (WBQ) which are integrated on-chip within
the DEC Alpha microprocessor. An external read-ahead circuitry (RDAL) can be turned
on by the programmer at load-time to improve performance of contiguous load streams;
we have measured improvements of approximately 60% with read ahead. For writes, the
default configuration of the cache is write-around, and support for writes consists of the
write back queue provided by the microprocessor. The documentation of the Cray T3D
Application Programmers Course [34] specifies the local read bandwidth at 55 MB/s for
non-contiguous single word transfers, and up to 320 MB/s for contiguous reading of cache
lines with read-ahead. The latency of a load from main memory is around 150 ns.

The interface between the processor and communication system on the Cray T3D
consists of the annex, a memory mapped communication port, which maps some range
of free address space to the physical memory of another node in the system; this node is
then selected as a communication partner. The communication partner can be switched
with a fixed overhead by modifying the appropriate annex entry. The significant fixed
cost for switching the communication partner justifies our classification of the T3D as a
highly advanced distributed memory, message passing machine. Once a store operation is
issued to the communication port, the communication subsystem takes over the specified
address and data, and it sends a message out to the receiver. Remote loads are handled in
a similar way and can be pipelined with an external, 16 element FIFO queue. This queue
requires direct coding support by the programmer or compiler and is rarely used.

At the passive end the fetch/deposit engine completes the operation as a remote load/
store on behalf of the user at the other node. These accesses happen without involvement
of the processor at the receiver node (i.e., there is no requirement to generate an interrupt).
This circuitry can store incoming data words directly into the user space of the processing
element, since both address and data are sent over the network. The on-chip cache of the
main processor can be invalidated line by line as data are stored into local memory, or it
can be invalidated entirely when the program reaches a synchronization point.

Transfers from the processor to the communication system can be performed at a rate
of approximately 125 MB/s, and if multiple nodes perform remote stores of contiguous
blocks to a single node, these transfers can be processed at the full network speed (160
MB/s) [104]. The number of network nodes is only half the number of microprocessors
(or processing nodes). If just one of the two processors is communicating at a time, the
network can be accessed at up to 125 MB/s, if both processors are communicating the
full speed of a network access is available and each processor obtains about 75 MB/s in
bandwidth to access the network.

The interconnect topology for data transfers in the T3D is a three dimensional torus
with dimension order wormhole routing. Service and IO nodes are inserted into the regu-

2.3. COMMUNICATION WITH NO MEMORY TO MEMORY COPIES 21

lar grid in at least two dimension, so that they can be reached by dimension order routing
without any problems. Routing is fully deterministic and determined by a global hardware
routing table loaded at boot time. There are several sets of virtual channels to permit full
torus routing with a dateline and also to permit a complete separation between operating
system traffic and user program traffic.

2.3 Communication with no Memory to Memory Copies

2.3.1 Increase in CPU, Memory and Networking Technology

Computer technology has advanced at phenomenal rates given its relatively recent birth,
and this rate of advance appears likely to continue. This progression, however, is highly
uneven, with some areas experiencing much more rapid improvement than others. A
major change has occurred in the relative speeds of processors, memory, and devices. All
have become faster, but memory has not kept pace with processors or devices. In modern
systems, memory is often the bottleneck that limits overall performance. Furthermore,
not only is the gap between memory and processor speeds growing, but the rate of this
growth has increased in recent years. Reported growth rates for processors range from 40
to 100 percent per year, while memory latency performance grows by 7 percent per year
(Figure 2.1).

Year

10

100

1000

Performance

CPU

Memory

100’000

10’000

1980

1

1990 2000

Figure 2.1: Memory system performance increase versus CPU improve-
ment. (Memory Graphic Hennessy Patterson 3rd Edition) [71]

In nearly all modern computer systems, slow memory stands between fast processors
and fast, high-bandwidth devices such as RAID (Redundant Array of Inexpensive Disks)
storage systems, Gigabit Ethernet or Myrinet networks and digital media devices. Al-
though there exist operating system techniques which do not unconditionally copy data
within memory during I/O (Input/Output), these all suffer either from feature compro-
mises, such as a loss of protection, or from limited applicability, such as specialized pro-
gramming interfaces.

22 CHAPTER 2. BACKGROUND

2.3.2 Communication Input/Output

The traditional arrangement of software in a computer system divides functionality be-
tween two domains, that of the operating system (OS), or kernel, and that of user-level
processes. An operating system provides basic services for the management of physical
resources such as memory and processor time. It also encapsulates low-level services in a
convenient, abstract representation. User-level processes provide richer functionality by
making use of the resources offered by the operating system. Another issue is the security
that is brought by the separation of user and kernel levels. Where the kernel code can
access all data and physical devices, user processes are kept in their own private address
space with access to devices over the interface provided and controlled by the kernel. One
of the most fundamental services provided to user-level processes by an operating system
is the abstraction of peripheral devices.

In broad terms, I/O is usually taken to mean the movement of data to and from pe-
ripheral devices. Such peripherals include disks, networks, graphic displays, and other
hardware components. Among these devices, performance characteristics and modes of
operation usually differ substantially. To a programmer writing user-level code, I/O has
a slightly different meaning. I/O represents the movement of data between a program
and either a device, or a part of the system that resembles a device. For example, a Unix
socket, on which an application performs I/O operations, could be one endpoint of a com-
munication path that spans a network. This socket represents the network device, and I/O
operations on the socket cause data to enter or leave the system via a peripheral. In this
dissertation we want to focus on exactly this case, that data really has to be communicated
over a physical network, that means been copied from one machine to another. We won’t
look deeper into local inter-process communication.

2.3.3 Optimizing User-Kernel Boundary Crossing

The division of a system into user and kernel portions remains highly desirable, because
of the simpler view on the system that is gained, and in most cases, because of the in-
creased reliability gained from protection. However, user-level processes are separated
from devices by an I/O system that generally depends on in-memory copying. Especially
in older systems, the processing of the messages by the kernel caused multiple copies
and many context switches which increased the overall end-to-end latency largely. The
failure of memory speeds to match the growth of processor and device speeds has caused
in-memory copying to become the principal impediment to fully exploiting the potential
of modern processors and devices.

Recent efforts have been focused on designing optimized software architectures called
zero-copy, capable of moving data between application domains and network interfaces
without CPU and memory bus intensive copy operations. A variety of approaches to host
interface design and supporting software have been proposed.

2.3. COMMUNICATION WITH NO MEMORY TO MEMORY COPIES 23

2.3.4 User-level Network Interface Protocols

A common reaction to the problem of User-Kernel boundary crossing is to abandon the
clean separation between user processes and the kernel. Either programs formerly written
at the user level are buried within the kernel. This case is often found in database server
systems, where query modules are pushed down to the device driver level so that they can
directly (and more quickly) examine incoming blocks of data. The drawback: Forcing
user-level functionality into the kernel requires a great deal of effort. Portability and
generality are lost when functions are mixed into the kernel. Furthermore, modifying a
kernel is usually much harder than writing independent code.

The more common case in experimental systems is to elevate low level functions
formerly hidden in the kernel to the user level. Like this the kernel boundary can be
moved from the critical path of the message. User-level processes can then directly access
device registers to perform I/O operations without kernel intervention. This means that
parts of the protocol or the entire protocol moved to the user space from the kernel space.

The SHRIMP Project (Scalable High-performance Really Inexpensive Multi-Processor)
[46] studied how tho build systems to deliver performance competitive with or better than
commercial multi-computer servers. The topics are protected user-level communication,
efficient message passing and shared virtual memory. Virtual Memory Mapped Commu-
nication (VMMC) [45] is a communication model providing direct data transfer between
the sender’s and receiver’s virtual address spaces. VMMC provides protected user-space
communication in a multiprogrammed environment, and was designed to minimize the
software communication overhead, especially at the receiving side. VMMC tolerates net-
work errors and guarantees in-order message delivery. Flow control, if needed, is the
responsibility of higher-level software, since the sender deposits data directly in the re-
ceiver’s memory.

Generic Active Messages AM [158, 156] provide the user with a model where control
and data transfers are integrated. Each message specifies a remote handler that will be
run upon receipt of the message. Restrictions are im posed on the operations that can
be performed in the handlers. Each request is matched with a reply. Every network
operation involves a round trip message exchange. Network errors are not tolerated and
flow control is used to avoid dropping messages. Each sender has a number of tokens
that it can use to send messages to a particular receiver. If these tokens are consumed, the
sender must wait for replies before it can send more messages. Messages are delivered in
FIFO order. There is no support for multiple processes per node. AM provides protection
within a node, but allows arbitrary functions to be called as handlers on the remote node;
therefore, the receiver needs to trust the sender. A newer, revised version of AM, AM-II,
that deals with many of the limitations of the original design.

Basic Interface for Parallelism BIP [129] is a minimal library that aims at providing
raw hardware performance to its users. To achieve this, it allows direct access to all

24 CHAPTER 2. BACKGROUND

system resources and provides data transfer only (no transfer of control). It is intended
for single-user systems, and supports neither protection nor multiprogramming and does
not support flow control of the receive buffer.

Fast Messages (FM) [121, 122] provides FIFO message delivery, and assumes a re-
liable network. Each message carries a pointer to a function that consumes the data at
the receiver. Since messages need to be consumed, flow control is provided between the
sender and the receiver to avoid buffer overflow at the receiver. An important part of
FM is the streaming interface [120] that allows the user to compose a message from non-
adjacent data pieces in the user address space. This provides the user with scatter/gather
type operations.

One of the first examples using commodity components (like Ethernet) is U-Net [157,
160, 161]. It especially aimed at eliminating system call overhead that in the first half of
the 1990s was very expensive (e.g. 5.5 us on SuperSPARC 75MHz systems). U-Net used
user-level communication on commodity networks, such as Fast Ethernet and ATM. A
user-level communication facility handles the network interface hardware directly without
using hardware interrupts. U-Net/MM [162] also supports zero-copy communication on
ATM.

Virtual Interface Architecture VIA [47, 155], is an industry standard, high-performance
communication interface for system area networks (SANs). VIA provides protected user-
level zero-copy data transfer, enabling low latency and high bandwidth. The communi-
cation model includes both cooperative communication (send/recv) and remote memory
access (get/put).

The design of VIA was strongly influenced by the academic on low-overhead com-
munication research (e.g. U-Net, Active Messages, Fast Messages) as well as experience
with MPPs. VIA can be accelerated by relatively inexpensive VIA-aware hardware, and
such hardware will more naturally support VIA than competing communication software
interfaces. Examples of VIA-aware hardware include Giganet, Synfinity, and ServerNet-
II. Myrinet, because of its programmable processor and other features, can also be made
VIA-aware.

The VIA API consists of a library of routines called the VI Provider Library (VIPL)
and a descriptor format for descriptors that are shared by the user application and VIA-
aware hardware. VIA communication routines are normally implemented entirely at user
level, while other functionality (e.g. connection management and memory registration)
are implemented in the operating system kernel.

Since VIA was only intended to be used for communication across the physical servers
of a cluster (in other words across high-bandwidth links with very high reliability), the
specification can eliminate much of the standard network protocol code that deals with
special cases. Also, because of the well-defined environment of operation, the message
exchange protocol was defined to avoid kernel mode interaction and allow for access to
the NIC from user mode. Finally, because of the direct access to the NIC, unnecessary

2.3. COMMUNICATION WITH NO MEMORY TO MEMORY COPIES 25

copying of the data into kernel buffers was also eliminated since the user is able to directly
transfer data from user-space to the NIC. In addition to the standard send/receive opera-
tions that are typically available in a networking library, the VIA provides Remote Direct
Memory Access operations where the initiator of the operation specifies both the source
and destination of a data transfer, resulting in zero-copy data transfers with minimum
involvement of the CPUs.

PM [151] the underlying low level messaging library of the SCore Cluster System
Software developed by the Real World Computing Partnership RWCP in Japan (now PC
Cluster Consortium) uses a daemon to multiplex communications for multiple processes
over each network interface. The system was designed to support gang scheduling, so
most of the protection issues are avoided by having one process access the network in-
terface at each time. PM provides in-order message delivery and flow control between
the sender and the receiver, but does not tolerate network errors. It supports two kinds of
usage: a traditional send/receive model, and a remote write model. System buffers can be
accessed directly, avoiding the overhead of an additional copy to/from application buffers.

All of these techniques carry penalties. Elevating low level services out of the kernel
also leads to a loss of generality. For example, a device whose registers are mapped by
one process cannot be simultaneously accessed in the same manner by any other process.
In addition, safety and reliability are more difficult to obtain when low level operations
are not kept under wraps inside the kernel. While tearing down the user-kernel boundary
can provide immediate performance gains, the long-term result is usually a loss. Keeping
user and kernel services separate is the best long-term strategy.

2.3.5 Complex Do-It-Yourself Hardware

Another common technique for improving I/O performance is to substantially increase the
sophistication, and computing power, of peripheral devices. In the traditional architecture,
the NIC would simply take the data from the host and put it on the interconnect. However,
modern NICs have programmable processors and huge amounts of memory placed in the
peripheral or in the hardware interface by which the peripheral is connected to the I/O
bus [16, 80]. This second computer makes them capable of sharing some of the message
processing work with the host, thus reducing the load on the main processor and memory.
This technique yields improvements that apply only to a particular device (the one with the
extra processor). These improvements usually come with a substantial penalty in design
complexity, as tasks formerly performed entirely in the kernel must now be divided among
two computational domains.

A different approach to copy-free I/O by peripherals takes advantage of the DMA (Di-
rect Memory Access) hardware present in most peripheral devices. This hardware allows
the device to copy data to and from system memory without direct supervision by the
CPU. With careful planning, it is sometimes possible to perform these DMA transfers di-

26 CHAPTER 2. BACKGROUND

rectly to or from the memory of a user-level process, without an in-memory copy through
the kernel.

It is feasible arranging for DMA from a process to a device, although blocking the
process during the transfer can reduce concurrency. The more difficult problem is the
other way round, arranging for DMA from a device to a process. Network interfaces pro-
duce data unpredictably and packets may arrive in any order, for any of several receivers.
Only if the interface has sufficient processing power to inspect packets and determine
their destinations a DMA transfer can reliably be performed to the correct target buffer.

The technique known as kernel streaming eliminates in-memory copies during I/O
by removing the user-level process from the I/O path. Data enters the kernel from one
device, say a hard drive, then leaves for another device, e.g. the networking interface,
without ever being copied to or from a user-level process. This technique is interesting
for file- or web-servers and is implemented in Linux with the sendfile system call. In
the Linux community this technique is often addressed as zero-copy streaming, even if
there still exists a copy for defragmenting the file system cache pages to Ethernet frames
in the TCP/IP stack. As the last copy is always the most expensive one (the data of
further copies lies often in the cache), we could not measure much improvement with the
sendfile implementation. In addition to eliminating all copies (in theory), further savings
may result from fewer context switches and system calls. Unfortunately, few devices are
suited to talking directly to each other without some amount of intermediate processing.
One system which supports kernel streaming is Splice [49, 50].

Finally, there is an I/O technique even faster than kernel streaming. Bus architectures
like the PCI bus enable devices to communicate directly, without passing data through the
CPU or even the memory system. This form of communication is called device streaming.
In practice, it is extremely uncommon for any two devices, even identical ones, to be able
to communicate directly, because a great deal of processing normally provided by the
kernel must be incorporated directly into the devices. If each device is enhanced with a
local processor and some form of operating system, the problem becomes essentially one
of multiple systems communicating over a local area network, the system I/O bus. An
example of such a system is the OPIOM I/O system [63] where a Myrinet adapter directly
communicates with a SCSI adapter.

2.3.6 Copy Avoidance Techniques

To preserve protection, multiuser systems usually do not allow applications to access
Input/Output devices directly: Applications can perform I/O only indirectly, by explicit or
implicit requests to an authorized kernel- or user-level server or pager and ultimately to an
authorized driver. However, requests and their respective replies may involve significant
data and control passing overheads, such as copying and context switching.

As discussed in the last section a long line of research has aimed at alleviating I/O

2.3. COMMUNICATION WITH NO MEMORY TO MEMORY COPIES 27

data and control passing overhead, often proposing:

� Changing the semantics of data passing between applications and the operating
system, so as to avoid data copying; or

� Changing the structure of the operating system, so that data passing and control
passing between applications and operating system can be reduced or eliminated.

This section discusses specific techniques that have been proposed or implemented to
avoid in-memory copying during communication preserving the data passing semantics.
And still the system structure can give end-to-end improvements competitive with those
of data and control passing optimizations that change semantics or structure.

Each of these techniques eliminates copies at one or more points in the system. Since
copying data usually places the data in the cache, where subsequent copies are much
faster, the largest performance gain can only be achieved if every single copy is elimi-
nated, rather than if only some copies are eliminated.

2.3.7 Operating System Structures

Peripheral drivers in an operating system have to access device controller registers and
other data structures that generally should not be accessible by applications. Therefore,
the protection domains of drivers and applications usually must be different.

The assignment of separate protection domains for applications and drivers depends
on the structure of the operating system. Such structure establishes how system imple-
mentation is decomposed into modules, how protection domains are implemented, and
how protection domains are assigned to system modules and applications so as to pre-
serve system protection and integrity.

To implement protection domains, most operating systems rely on two hardware-
supported processor features: virtual memory (VM) management and privilege modes.
VM hardware treats memory addresses issued by processes as virtual and automatically
translates such addresses into physical ones. Physical addresses are used to access physi-
cal memory. In the most common scheme, physical memory is split into fixed-size blocks
(e.g. 4 KByte for an x86, 8 KByte for an Alpha system), called pages. To translate virtual
addresses into physical ones, VM hardware consults the current page table . If a process
issues a virtual address for which no valid translation exists in the page table, control of
the processor is automatically transferred to the system’s VM fault handler by issuing a
page fault trap. In systems such as Mach and those derived from BSD Unix or Linux,
allocated pages belong to a memory object. Each memory object is backed by a pager.
On a page fault, the handler allocates a physical page and invokes the object’s pager to
retrieve the contents of the virtual page into the physical page. When the pager returns,
the VM fault handler maps the physical page to the faulted process. Therefore it modifies

28 CHAPTER 2. BACKGROUND

the page table so that the faulted virtual address translates into the physical address of the
page. The handler then makes the faulted process again runnable.

Because the number of pages in physical memory is limited, each page allocation
necessitates, in general, a counterbalancing page deallocation. A kernel-level process
scans and deallocates currently allocated pages when the number of free pages in the
system is low. If the daemon selects for deallocation a page that was modified after being
last retrieved from its pager, the daemon invokes the pager to save the page’s contents.
When the pager returns, the daemon unmaps the page and places it in a list of free pages.
Pagers usually save and retrieve page contents to and from storage devices, but may also
do so remotely, over a network. In Mach and related systems, applications can supply
their own user-level pagers when allocating a region, that is, memory spanning a given
range of virtual addresses.

The correspondence between virtual addresses and pages in physical memory and
backing storage devices is called an address space. The instruction to switch the current
page table is usually privileged, that is, can be executed only in the processor’s kernel
mode. By running each application in its own address space, in user mode, systems
can prevent applications from gaining direct access to each other’s or the system’s data
(including, for example, device controller registers). Code running in kernel or user mode
is also called kernel-level or user-level code, respectively. To switch into kernel mode,
applications typically have to execute a special instruction, the system call, which jumps
to a well defined address. The system installs its own code at such address, and sets up
application address spaces so that applications cannot otherwise access (or corrupt) the
memory occupied by system code. Most processors can address a wider range of virtual
addresses in kernel mode than in user mode. The system address space, therefore, can be
implemented as a complement to every application’s address space, and no address space
switching is necessary to cross the kernel/user protection boundary.

2.3.8 User-Kernel Shared Memory

The use of virtual memory generally makes it possible for two or more processes to share
memory in a portion of their address spaces, while remaining otherwise isolated. This
technique allows fine-grained communication, which may be asynchronous, without nec-
essarily compromising the protection provided by independent virtual address spaces.

With the same technique it is also possible for a process to share memory with the
kernel. Since the kernel may have full access to all memory, this sharing may be more a
matter of definition than mechanism. By sharing a pool of memory where data is stored
during I/O, both the user-level process and the kernel can access the data without in-
memory copies.

Although the concept of shared memory I/O is simple, the mechanism is complicated
in practice. The user-level process and the kernel must coordinate their access to the data,

2.3. COMMUNICATION WITH NO MEMORY TO MEMORY COPIES 29

because there is now only one copy in memory. When new data is placed in the shared
pool by the kernel, the process must learn where the data arrived. A process may have
no way to take data that arrives in the pool of one device and transfer it to the pool of a
different device, other than copying the data in memory. Finally, because the user-level
process retains full access to the data at all times, and can modify it asynchronously, safety
and security may be compromised.

2.3.9 User-Kernel Page Remapping

Another approach to copy-free I/O is to use the virtual memory system to transfer memory
dynamically between the kernel and a user-level process, rather than sharing a static pool
of memory. Because the virtual memory system implements protection in units of pages
of memory, this technique is called page transfer, or virtual page remapping. If a page
transfer system revokes access by user-level processes when a page is in use by the kernel,
security problems such as those described for a shared memory system can be avoided. A
page transfer system need not be bound to a per-device pool of memory, so inter-device
I/O without in/memory copying may be easier. Page transfer mechanisms can still be
complicated for reasons similar to those which complicate a shared memory approach. In
particular, a user-level process may experience rapid modifications of its virtual address
space as pages appear and vanish.

Container Shipping [7], DASH [6], FBufs [43, 44], and the mmap facility [94] all
employ some form of page transfer or sharing to eliminate copies.

DASH did include a data transfer mechanism for I/O that used virtual page remapping
to avoid in-memory copies. But the key feature of DASH was high-performance inter-
process communication via page remapping.

Fbufs uses virtual memory manipulations to move data between the kernel and a user-
level process. Offset and length information are used to locate data within page-based
buffers. The Fbufs mechanism requires that all data be read-only at every point after it
enters memory. This key constraint makes it impossible to perform small, fine-grained
modifications on a data stream without copying the entire stream. While Fbufs can speed
up I/O that does not modify data, the readonly constraint greatly reduces the generality
of the solution. Fbufs also achieves great speed gains by not enforcing the protection
between a user-level process and the kernel.

Container Shipping offers universal I/O facility, usable with any device and uncon-
strained by the device type and selective complete access controlled by the user-level
process without read-only constraints, indirect access functions, or copy-on-write penal-
ties. Container Shipping specifies only a transfer mechanism, so it can be integrated with
an existing I/O subsystem rather than replacing it. Memory is never shared, so protection
is never compromised.

All these IPC facilities with copy avoidance provide interfaces with non-copy seman-

30 CHAPTER 2. BACKGROUND

tics and therefore are incompatible with the many applications written according to that
semantics. Emulated Copy [22] preserves copy semantics and can therefore be used to
optimize I/O interfaces of systems such as Unix, which also have copy semantics. Emu-
lated Copy uses input alignment for input by page swapping even when the client buffer
is not page-aligned. Another optimization is transient output copy-on-write, which allows
to output data in-place and with strong integrity guarantees. A detailed overview of data
passing semantics is given in [21].

2.4 Distributed Computing

Computing systems have evolved from centralized architectures to distributed systems.
Distributed systems have then further evolved from simple client/server applications run-
ning on Local Area Networks (LANs) to complex systems involving a huge number of
machines across Wide Area Networks (WANs). This section presents a brief history of
distributed computing [14].

2.4.1 Network Computing Systems

A networked application is a computer application that consists of several decoupled com-
ponents communicating by exchanging messages. The development of client/server net-
worked architectures peaked during the 1980s, when it became possible to put the power
of a mainframe on a desktop computer. The concerns of network computing are generally
described in terms of the Open Systems Interconnection (OSI) layering. In this descriptive
structure, several software layers abstract the details of the physical network, packet and
message transmission, routing, data representation, addressing, and session management.
Each layer is built using the services provided by the underlying layers. The TCP/IP pro-
tocol suite is a typical example of a network architecture that is closely matched with the
OSI model. A property inherent to the OSI model is that communication is limited to
point-to-point data transmission.

2.4.2 Remote Procedure Calls

The next big evolution of distributed computing occurred with the introduction of Remote
Procedure Calls (RPCs) [15]. RPCs allow client programs to transparently issue calls to
procedures defined by remote server programs. The complexity of making connections
and marshaling data in and out of messages is completely hidden from the application
by stubs that mimic the interface of the procedure calls. Network operating systems have
been hugely successful over the last 15 years, and RPC mechanisms have been extensively
used in these operating systems for distributed services such as network file systems, name
services, and synchronized clock services.

2.4. DISTRIBUTED COMPUTING 31

2.4.3 Distributed Computing Systems

In the late 1980s, with the availability of powerful desktop computers that can be inter-
connected through very fast networks, centralized multi-processor parallel architectures
have been progressively replaced by distributed system architectures. The term distributed
computing, in contrast with network computing, designates a set of tightly coupled pro-
grams executing on one or more computers and coordinating their actions. These pro-
grams know about one another and cooperate to perform a task that none could carry out
in isolation. Such systems allow the sharing of information and resources, and may be
composed of small, cost-effective computers that combine their processing power.

A typical example of a distributed computing system is the Parallel Virtual Machine
(PVM) [147], which is a software package that permits a heterogeneous collection of
computers hooked together by a network to be used as a single large parallel computer.
Thus large computational problems can be solved at low cost by temporarily using the
combined power and memory of many computers.

2.4.4 Message Passing

Message passing has been widely adopted as the communication paradigm in the pro-
gramming of distribute memory parallel systems. The Message Passing Interface MPI
[57] is a standardized messaging API used for programming a certain class of parallel
machines especially those with distributed memory. Such runtimes allow the sending and
receiving of messages through explicit send and receive operations with various seman-
tics (blocking or non-blocking). Messages are usually associated with a type to allow a
selection at the receiving side.

Although in the past there were many variations, the basic concept of processes com-
municating through messages is well understood. While substantial progress has been
made in casting significant applications in this paradigm, first each vendor has imple-
mented its own variant. After several systems have demonstrated that a message passing
system can be efficiently and portably implemented, in 1992 the time has been come to
try to standardize both the syntax and semantics of a core of library routines that will be
useful to a wide range of users and efficiently implementable on a wide range of comput-
ers.

The design of MPI has largely been influenced by the most attractive features of a
number of existing message passing systems, rather than selecting one of them and adopt-
ing it as the standard. Most of the major vendors of concurrent computers were involved
in MPI, along with researchers from universities, government laboratories, and industry.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [42]. MPI1 embodied the main features as being necessary in a message passing
standard mainly focusing on point-to-point communications. The Draft MPI standard

32 CHAPTER 2. BACKGROUND

was then presented at the Supercomputing 93 conference in November 1993 by the MPI
Forum, membership of which has been open to all members of the high performance com-
puting community. It included collective communication routines and thread safeness.

The main advantages of establishing a message-passing standard are portability and
ease-of-use. In a distributed memory communication environment in which the higher
level routines and/or abstractions are build upon lower level message passing routines
the benefits of standardization are particularly apparent. Furthermore, the definition of a
message passing standard, such as MPI, provides vendors with a clearly defined base set
of routines that they can implement efficiently, or in some cases provide hardware support
for, thereby enhancing scalability.

The goal of the Message Passing Interface was to develop a widely used standard for
writing message-passing programs. As such the interface should establish a practical,
portable, efficient, and flexible standard for message passing. The MPI standard therefore
defines an abstract library interface for message passing and bindings of this interface to
major programming languages. Coming from the high-performance computing commu-
nity, MPI focused on Fortran and C bindings and was enhanced with a binding to C++
later.

One major goal of the specification was to allow efficient, high-performance imple-
mentations of the interface, which make direct use of inter-node communication mecha-
nisms in a parallel computer. That means communication offloading to communication
co-processors can be implemented where available. MPI by design allows efficient com-
munication by avoiding memory-to-memory copying and communication overlapping of
computation. To ease complexity the standard assumes a reliable communication inter-
face beneath the library that means that the user needs not to cope with communication
failures. Such failures have to be dealt with by the underlying communication subsystem.

The interface works equally well in a shared-memory architecture, and on distributed
memory systems (in particular on the local area network). Therefore, algorithms written
for the MPI are scalable across a wide variety of computing platforms. High-performance
computing platforms today often come with customized MPI implementations. In addi-
tion, a number of free implementations are available. These implementations typically
allow distribution over the local network, thus supporting cluster of PCs solutions.

2.4.5 Distributed Shared Memory

Distributed shared memory systems [95] like TreadMarks [87, 5] or Cashmere-2L [140]
are seen as an alternative for the programming of distributed and parallel systems. They
give the illusion of a single address space in a computational infrastructure in which each
node has its own local physical memory.

The OpenMP application program interface is an emerging standard for parallel pro-
gramming on shared-memory multiprocessors. It defines a set of program directives and

2.5. OBJECT-BASED COMPUTING 33

a library for run-time support that augment standard C, C++ and Fortran [73, 152, 59].
Jointly defined by a group of major computer hardware and software vendors, OpenMP
is a portable, scalable model that gives shared-memory parallel programmers a simple
and flexible interface for developing parallel applications for platforms ranging from the
desktop to the supercomputer.

In contrast to MPI, OpenMP facilitates an incremental approach to the parallelization
of sequential programs: The programmer can add a parallelization directive to one loop
or subroutine of the program at a time. Unlike POSIX threads [23], OpenMP specifi-
cally addresses the needs of scientific programming, such as support for Fortran and data
parallelism.

2.5 Object-Based Computing

While distributed computing is appealing, since it allows us to decompose and extend
applications in a very flexible and powerful way, it is harder to manage because we have
to address issues such as independent failures, unreliable communication, and insecure
communication.

Booch [17] presents the inherent complexity of software as deriving from four ele-
ments:

� the complexity of the problem domain

� the difficulty of managing the developmental process

� the flexibility possible through software

� the problems of characterizing the behavior of discrete systems.

A common goal to most analysis and design methods is to hide this inherent complexity,
and to give the illusion of simplicity. Dealing with complexity may be addressed through
the use of decomposition, abstraction, and hierarchy. Object-oriented analysis and de-
sign is a method based on object-oriented decomposition where the complex problem is
viewed as a meaningful collection of small objects that collaborate to achieve some higher
level behavior.

Object-oriented programming today is the most widely used programming model to-
day. The work has led to a fundamental change in how software systems are designed
and programmed, resulting in reusable, reliable, scalable applications that have stream-
lined the process of writing software code and facilitated software programming. Current
object-oriented programming languages include C++ and Java, both widely used in pro-
gramming a wide range of applications from large-scale distributed systems to personal
applications.

34 CHAPTER 2. BACKGROUND

2.5.1 Concepts

The major goal of Object-Oriented Programming (OOP) [159] is to provide a better pro-
gramming model for representing the world. The basis of the object model is the concept
of objects, which are entities modeled on the real world, that have specific properties and
exhibit specific behavior. An object is an instance of a class. Objects provide the means
for combining behavior and state (i.e., program and data) into a single entity. The four
major concepts underlying OOP are abstraction, encapsulation, inheritance, and polymor-
phism.

� Abstraction Abstraction is a key concept of object-oriented design. It is one of the
fundamental ways to cope with complexity. An abstraction focuses on the outside
view of an object and offers a simple and concise representation of a more com-
plicated idea. The aim of abstraction is to hide complexity: complexity does not
disappear, but does move to a more appropriate point in the architecture.

� Encapsulation Encapsulation hides the implementation details of an object from
the services it can provide, by separating the contractual interface of an abstraction
and its implementation. Other objects can request services by sending messages
to the object that provides the service. By decoupling the interface and the imple-
mentation, encapsulation enables us to modify an object’s implementation without
affecting its clients.

� Inheritance Inheritance enables us to pass along the capabilities and behavior of
one class of objects to another. Inheritance defines a relationship between a child
class that inherits from a parent class. The child class can be specialized by mod-
ifying inherited methods, or adding new ones. The parent is not affected by this
modification. Inheritance enables us to reuse the properties of existing objects.
Some systems support multiple inheritance, in which a child class may inherit from
several parent classes.

� Polymorphism Polymorphism is the ability to substitute objects with matching in-
terfaces for one another at runtime. With polymorphism, objects that have common
descriptions can respond to the same request with different actions, depending on
their type. Polymorphism makes it possible to design applications that are easily
extensible.

2.5.2 Object-Oriented Frameworks

A framework is a reusable design expressed as a set of abstract classes and the way their
instances collaborate [62]. This design is a solution for a family of problems. It describes
how the software is decomposed into a set of interacting objects which have a given
responsibility.

2.5. OBJECT-BASED COMPUTING 35

Frameworks are generally classified according to two different categories: white-box
and black-box frameworks. White-box frameworks exhibit the internal structure of their
class to the user. The application specific behavior is usually defined by adding methods to
subclasses of the framework classes. Each method added to a subclass must abide by the
internal conventions of its super-classes. Black-box frameworks are composed of compo-
nents that provide the application-specific behavior. These components interact together
using method invocations, so the user needs to understand only the external interface of
the components.

Black-box frameworks are easier to use and learn than white-box frameworks, be-
cause the user is not required to have knowledge about internal details of the classes he
uses. Black-box frameworks make it easy to change behavior at runtime, by replacing a
component by another component with the same protocol. On the other hand, white-box
frameworks are more flexible since they permit the definition of other behaviors than that
supplied by the framework, and the number of possible combinations of components is
not predetermined by the architecture of the framework. In this thesis, we describe an
architecture that defines a black-box style framework.

2.5.3 Objects in Distributed Computing

Distributed object middleware (DOM) such as CORBA combines to varying degrees the
functionality of all all the mentioned middleware with object-oriented concepts to extend
the benefits of object-oriented software engineering to distributed computing.

Several environments provide object-oriented abstractions and frameworks for dis-
tributed computing. Some of them mainly define wrappers on top of operating system
services, such as the Adaptive Communication Environment (ACE). Other infrastructures
provide more elaborate facilities for distributed protocol composition. Modern object-
oriented programming languages include intrinsic support for distributed objects, such as
Java Remote Method Invocation (RMI) mechanisms.

2.5.4 The Object Management Group and CORBA

The OMG was established in 1989 to create standards for distributed object computing.
One of its aim was to ”move software development closer to the age of components”. Its
standards were intended to allow interoperability of objects, components, and applications
in a heterogeneous networked environment. Early efforts resulted in the creation of the
Object Management Architecture (OMA) specification. The OMA reference model as it
now stands is shown in Figure 2.2.

36 CHAPTER 2. BACKGROUND

2.5.5 The Object Management Architecture

The OMA is a cornerstone of the OMAs standards [106]. It provides a definition of
object concepts and terminology, but leaves actual implementation decisions to vendors.
This allows a variety of approaches to be taken to build a product. The OMA describes
five components, as follows:

CommonCommon
FacilitiesFacilities

Object Request Broker (ORB)Object Request Broker (ORB)

Object ServicesObject Services

ApplicationApplication
InterfacesInterfaces

DomainDomain
InterfacesInterfaces

User oriented interfaces:
document management,

user interfaces, ...

Organization specific
interfaces

Industry specific interfaces:
health care, manufacturing,

financial, telecomm., ...

System level services: naming, events, transactions, security, ...

Figure 2.2: The OMA’s Object Management Architecture.

� The Object Request Broker: The object request broker (ORB) is the core compo-
nent of the OMA. It transparently allows requests from the other four components
to be transmitted, using standardized interfaces. The ORB can be viewed as an
“object bus”, through which heterogeneous objects can interoperate. Interfaces for
CORBA objects are defined by the interface definition language (IDL), a program-
ming language-independent specification. The IDL is used to create the visible
interface between a client and a server.

� Object Services: The object services are the set of general purpose system-level
components that are fundamental in order to build robust and useful distributed ob-
ject systems. A CORBA service is basically a set of CORBA objects with their
corresponding IDL interfaces, that can be invoked through the ORB. Services are
not related to any specific application but are basic building blocks, usually pro-
vided by CORBA environments, supporting basic functionalities useful for most
applications. Several services have been designed and adopted as standards by the
OMG.

� Application interfaces: Application Interfaces are the interfaces that are specific
to an organization or application and are developed during system construction. An
interface is a description of a set of possible operations that a client may request

2.5. OBJECT-BASED COMPUTING 37

from an object. An object satisfies an interface if the object can be specified as the
target in each potential request described by the interface.

� Common facilities: The Common Facilities provide end-user-oriented capabilities
useful across many application domains, that can be configured to the specific re-
quirements of a particular application. These are facilities that sit close to the user,
such as printing, document management, and electronic mail facilities.

� Domain interfaces: Domain Interfaces represent vertical areas that provide func-
tionality of direct interest to end-users in specific application domains, such as fi-
nance or health care.

The OMA specifies a classical abstract object model. According to this model, a client
submits a request to an object. A client is an entity that requires a service to be performed
outside of its internal definition. An object, also called an object implementation or server,
performs one or more services for a client. The request consists of an operation - also
called a method - a target object, and zero or more parameters. The interface is the
description of operations supported by the object with the associated request format. IDL
is used to define an interface between clients and servers.

ObjectObject
ImplementationsImplementationsClientsClients

Object Request Broker (ORB)Object Request Broker (ORB)

Figure 2.3: The ORB handles requests to objects.

CORBA is the standard that specifies a concrete object model based on the OMAs
abstract model. Its basic function is to handle requests between clients and object im-
plementations, as shown in Figure 2.3. The ORB handles these requests, either within a
single computer or across a network in a transparent fashion.

CORBA has several mechanisms to handle these requests. The client can use the
following: IDL stub. An interface that is completely defined in the IDL an tied to a
specific target object. Dynamic invocation. A general interface that is independent of the
target object interface

The client also can talk to the ORB, but this is used only rarely., The client makes a
request by having an object reference, a pointer or address on a network, for an object
with a desired service. The client either sends the request through the static IDL subs or
generates the request and sends it through the dynamic invocation.

38 CHAPTER 2. BACKGROUND

2.5.6 The Object Request Broker

The ORB component of CORBA provides more than just messaging mechanisms for
remote object invocations. It also provides the environment for managing objects, adver-
tising their presence, and describing their meta-data. A current CORBA 2.4 ORB [112]
consists of several parts, as shown in Figure 2.4.

ObjectObject
ImplementationsImplementationsClientsClients

Stubs
(SII)

Dyn.Inv.
Intf.(DII)

ORB
Interface

Skeletons
(SII)

Dyn.Skel.
Intf (DSI)

Interf.
Rep.

Impl
Rep.

Object Request Broker (ORB)Object Request Broker (ORB)

Object
Adapter

Figure 2.4: A CORBA Object Request Broker

� The Interface Repository (IR) stores interface definitions. It allows the user to ob-
tain and modify the description of component interfaces, the methods that they sup-
port, and the parameters that they require. The interface repository allows CORBA
components to have self-describing interfaces.

� The client stubs – or Static Invocation Interface (SII) – provide an interface-specific
API for invoking CORBA objects. A client application can invoke a server object
through a client stub. From the client’s perspective, the stub is a local proxy for a
remote server object. Stubs are generated by an IDL compiler.

� The Dynamic Invocation Interface (DII) allows the creation of requests and invoca-
tion of objects at runtime. CORBA defines APIs for looking up the server interfaces,
creating requests, generating parameters, issuing the remote call, and getting back
the results.

� The ORB interface defines a few general APIs to local ORB services.

� The server skeletons – or Static Skeleton Interface (SSI) – provide static interfaces
to server objects. They contain the code necessary to dispatch a request to the
appropriate method. Skeletons are generated by an IDL compiler.

� The Dynamic Skeleton Interface (DSI) provides a runtime binding mechanism for
objects that need to handle requests for interfaces not known at compile time. The
DSI is the server equivalent of the DII.

2.5. OBJECT-BASED COMPUTING 39

� The Object Adapter (OA) provides the mechanisms for instantiating server objects,
passing requests to them, and assigning them object references. A standard object
adapter called the Basic Object Adapter (BOA) must be supported by each ORB
implementation. From CORBA 2.2 on the specification introduces a new Portable
Object Adapter (POA) that overcomes many of the BOA limitations.

� The Implementation Repository stores ORB-specific details about object imple-
mentations, their activation policy, and their identity.

3
Zero Copy Implementation

Strategies

Previous work resulting from the early projects in network computing states the observa-
tion that badly designed I/O buses and slow memory systems in PCs or workstations are
the major limiting factor in achieving sustainable inter-node communication at Gigabit/s
speeds [90]. Today’s high speed networks, I/O systems and hierarchical memory sub-
systems operate at comparable bandwidth of about 100 MByte/s. Therefore one of the
most important challenges for communication system software is to prevent data copies
in memory when communicating at full speed.

In this chapter we will first look at the question of whether the communication granu-
larity matters and investigate for which granularities communication in commodity clus-
ters can be improved and made fully efficient. Then the chapter gives an overview of
why zero-copy software techniques are needed and of the software layers involved in
extremely fast communication of user-level applications. Middleware is used to ease ap-
plication development and is especially useful dealing with the additional complexity of
software in parallel and distributed systems. The drawback is that the middleware intro-
duces a further system layer which has to be studied and carefully designed to provide the
expected performance. We explain in this introduction chapter why we selected CORBA
over MPI as our a middleware of choice to study zero-copy optimizations.

3.1 Zero-Copy Communication

This dissertation argues that the in-memory copies are a bottleneck in communication
system software. This bottleneck can be eliminated without special hardware, without
changing protocols or interfaces and without compromising the protection mechanism
of the user/kernel boundary. More importantly, this gain can be achieved in most cases
without compromising the richness and variety of the creative style of programming that
is possible only at the user-process level. Full-speed access to the fastest network devices
in fact can be offered through standard system interfaces and for standard networking
protocols.

41

42 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Two key points must be considered when establishing a strategy for high-performance
I/O. First, in a system where the memory copy speed is similar to, or even lower, than
the speed of the I/O bus or the network, performing a single copy of data during I/O is
unacceptable. The streaming performance of modern memory systems is normally slower
than the I/O busses and even slower than the network. Fast caches do not help since large
amount of data are to be transferred and there is rarely any immediate reuse of data.

The second point that must be considered is that most I/O interface architectures re-
quire that data is staged in main memory before it is consumed by a user level process
which will read it. For example, the high performance of many filesystems depends on
read-ahead caching, where data is optimistically placed in memory before a process re-
quests it. Such a strategy permits that a following request may be quickly satisfied. This
observation also holds for networked filesystems. Different message passing paradigms
allow to send data to a receiver without waiting for a corresponding receive operation of
the destination process. This is certainly the case for e.g. full postal semantics where the
data must be received and stored in buffers by the operating system or the communication
library. For commodity hardware where protocol processing is performed by the main
CPU, one is faced by the same situation. Packets have to be received by the system before
knowing to what communication stream they belong to and buffering becomes inevitable.
This leads to the suboptimal performance of TCP over Gigabit Ethernet as shown in Fig-
ure 3.1. An optimized hardware with special purpose interfaces on the other hand can
achieve real Gigabit/s throughputs as seen with Linux-BIP on Myrinet. The figure is
further explained in Section 3.3.1.

MPI-Linux 2.0-BIP

MPI-Linux 2.2

TCP-Linux 2.2

TCP-Windows NT

0 20 40 60 80 100 120 140
Transfer-rate [MByte/s]

Gigabit Ethernet 32bit-PCI2020

3535

Myrinet 32bit-PCI

4242

125125

PII 400 MHz, Linux 2.2

1
G

ig
ab

it/
s

Figure 3.1: The operating system software cannot keep up with the hard-
ware speed for Gigabit Ethernet and TCP/IP whereas special purpose hard-
ware allows real Gigabit/s communication even on simple commodity PCs.

To obtain the good performance of BIP with Myrinet it is therefore necessary to elim-
inate all in-memory copying, and to allow true zero-copy communication for all data that
arrives in memory from the network before it is requested.

This dissertation describes the design, implementation, and performance of a zero-
copy communication environment without weakening the protection mechanism of the

3.2. COMMUNICATION GRANULARITY 43

user/kernel boundary or placing semantic restrictions on the application programming in-
terface nor restrictions on the types of network devices that can be used. The fundamental
techniques that are employed to achieve this is virtual memory remapping in combination
with protocol speculation and a separation of control and data transfers. The memory
remapping technique moves data in memory between the address spaces of the process
and the kernel, without copying the data. This data exists in buffers kept by the kernel
or the user that are just remappable memory pages. The newly introduced technique of
protocol speculation allows to communicate these memory pages across interconnects
that do not provide reliable connections in hardware and with a maximal transfer unit
(MTU) smaller than such a memory page. This is required to use the ubiquitous Eth-
ernet technology with zero-copy. The software design enables the benefits of copy-free
virtual memory remapping for all forms of networking I/O, and also enables additional
optimizations that further improve I/O performance. On top of more efficient commu-
nication libraries or more efficient frameworks for object oriented distributed computing
like CORBA the user applications can be optimized for development effectiveness and
for communication efficiency and high bandwidths. While we keep all API (application
programming interface) standards we introduce separate primitives for control and data
transfers in the ORB implementation.

3.2 Communication Granularity

The viability of a zero-copy technique often depends on communication granularity. In
this section we will compare some PCI based networking systems to the supercomputer
communication system of the T3D to find the native modes of communication with PCI
systems and to determine the right level of data granularity where zero-copy communi-
cation can still make sense on commodity systems. We therefore rely on three readily
available networking technologies for Intel based systems to study this issue: Myrinet,
SCI and Gigabit Ethernet which were introduced and characterized in Section 2.2.

In addition to transferring contiguous blocks which is the natural way to communicate
in message passing systems, the Direct Deposit Model [145] allows to copy fine grained
data directly out of the users data structure at the sender into the users data structure at the
receiver, involving complicated access patterns like indexing or strides. Old supercom-
puters could handle fine grain communication well unlike the now modern commodity
systems which fail at fine grain patterns.

In most applications we encounter a few very characteristic communication patterns
when data arrays are partitioned and redistributed. For transposes of distributed arrays
and many other redistributions, every processor must exchange data with every other pro-
cessor i.e. perform an “all-to-all personalized communication” (AAPC) operation. The
end-to-end performance of an array transpose is largely determined by the ability of the
memory and communication system to collaborate and handle local and remote copy

44 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

User Space System Space Network System Space User Space

gather&pack transfer packetize extract transfer unpack&scatter

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
��������

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

send

receive

Figure 3.2: Reference model of basic communication steps for traditional
message passing libraries including extra steps within the application or
middleware for packing and unpacking of the message data at both end-
points.

transfers with strides (dense matrices) or indices (sparse matrices) optimally.

Figure 3.2 shows a typical scenario, and illustrates the different steps of traditional
message passing implementations as they are performed for a typical parallel computa-
tion. In practice, the data to be exchanged are usually stored in program variables, and
those are not generally stored in contiguous memory locations. Therefore for a fine-
grained communication step normally looks like this: The sender first gathers and packs
the data from its original location into contiguous blocks for more efficient transfers, say
a strided access to an array it wants to communicate. This is then made available or trans-
fered to the system space. The send function may complete at this time (for the sender
application), and the user may or may not be free to overwrite the data. Then network pro-
tocol headers, trailers and routing headers are generated which wrap the message. This
step potentially breaks large messages into smaller packets and fragments the message.
All outgoing message packets are queued and injected into the network if the network is
ready to accept another message. On the receiver this packet is correspondingly received,
the data extracted from the wrappers and the packets are reassembled into messages if
necessary. Incoming messages are buffered or matched with pending receives. Then the
data is transferred from system space to user space, the internal buffers are released and
the data scattered to its final location by the application or the middleware.

As we will see in our evaluation different communication technologies have a different
amount of hardware support for such transfers. This fact is exposed by our study of
deposit transfers explained in this section.

3.2.1 Communication System Comparison

The key functions of a communication system within a distributed system is to move data
and to provide explicit synchronization for consistency. This can be done at different
abstraction levels with more or less support by the system. We attempt to find a common

3.2. COMMUNICATION GRANULARITY 45

denominator for an evaluation and the comparison of different Gigabit interconnects by
selecting a few common operations and examine the ways those can be performed with
different abstractions and different amount of support from system software. At the lower
levels the performance results are highly transparent and we can easily relate them to the
specifications of the hardware while at the higher level the performance figures correspond
closely to what an application can expect from the system. Therefore we propose to do
the comparison at three different levels:

� Direct Deposit: for simple remote load/store operations. The performance at this
level is expected to be closest to the actual hardware performance.

� MPI Message Passing: for an optimized standard message passing library. Care-
fully coded parallel applications are expected to see the performance measured at
this level.

� TCP/IP: for a connection oriented TCP/IP LAN emulation protocol. Users that
substitute a Gigabit network for a conventional LAN will see a performance com-
parable to this benchmark.

Direct Deposit with its simple “no fuzz” remote store semantics allows us to evaluate
the fraction of the hardware performance that is sustainable by software in the different
technologies. The transfer of non-contiguous blocks exposes the capability of the hard-
ware to handle fine grained communication. If the hardware is unable to execute fine
grained transfers efficiently, aggregating copies must be used which might largely affect
the sustainable bandwidths.

At a higher level we further explore the transfer modes of MPI message passing com-
munication with full buffering according to clean postal semantics and alternatively with
some common “zero-copy” shortcuts that typically restrict the semantics of the messaging
API and that makes buffering unnecessary.

To investigate the performance delivered in a classic, connection oriented networking
protocol required to provide reliable communication for some interconnects we picked
the “TCP/IP over LAN” protocol or protocol emulation respectively.

In the latter two cases the transfer of contiguous blocks satisfies the needs of the data
representations in the principle API, but additional copies of data may be unavoidable due
to the tricky postal semantics of send and receive calls in message passing or due to the
requirement for retransmission to achieve reliable connections in TCP/IP.

Direct Deposit

Conventional message passing programs use the same mechanism (messages) for control
and data transfers. The Direct Deposit Model [145] classifies control and data messages
based on their contents. Control messages are linked to synchronization and are often

46 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

part of the protocol. Data messages contain a significant amount of data that is moved
between nodes and benefit for better communication bandwidth. Control messages are
mostly empty and low latency is all that counts for handling them efficiently. Most high
performance interconnects permit low latency signaling for control messages. The cor-
responding issues of their implementation and optimization is beyond the scope of our
evaluation in this paper. The major concern is with the data transfers. Typically the source
of data is in the virtual memory of a user process on the sender node, and the destination
is in the user’s memory at the receiver.

In the deposit model only the sender actively participates in the data transfer, “drop-
ping” the data directly into the address space of the receiver, without active participation
of the receiver process. The model allows a clean separation of control and data messages.
In the deposit model, control messages, barriers or semaphores are used to deal with ex-
plicit synchronization, and data messages are sent only when the receiver has signaled its
willingness to accept them.

In addition to transferring contiguous blocks the deposit model allows to copy fine
grained data directly out of the users data structure at the sender into the users data struc-
ture at the receiver, involving complicated access patterns like indexing or strides. As we
will see in our evaluation different communication technologies have a different amount
of hardware support for such transfers. This fact is exposed by our study of deposit trans-
fers.

The deposit transfers can be implemented in software e.g. on top of an active mes-
sage layer [158], where the sender node just sends the data, and a handler is invoked
on the receiver to move the data to its final destination. However, our understanding of
direct deposit suggests that a general control transfer in the form of an RPC should be
avoided and that previously asserted synchronization is sufficient to move the data. Fur-
thermore the functionality of the handler is fixed and the deposit operation at the receiver
only affects the memory system of the receiver. Unlike in the original active messages
a good and efficient implementation of direct deposit therefore mandates that the deposit
handler is implemented directly in hardware, e.g. by DMAs or alternatively by a second
“communication” co-processor, which executes only handlers and unpacks messages.

Direct deposit strongly resembles a simple remote store on a NUMA architecture.
The difference between deposit and NUMA stores is that the deposit model promotes
and assumes aggregation despite the non- contiguous access patterns that occur when
communication data is placed directly to its destination in user space.

MPI Message Passing

The most widespread use of the MPI API is an example of the classical postal model. Both
the sender and receiver participate in a message exchange. The sender performs a send
operation and the receiver issues a receive operation. These operations can be invoked in

3.2. COMMUNICATION GRANULARITY 47

Figure 3.3: Two scenarios: First with restricted postal semantics based
on synchronous, blocking send calls, which may release the sender only
when the receive is executed; Second with full postal semantics where non-
blocking calls are always permitted, forcing the communication system to
buffer the messages until received.

either order, blocking or non-blocking. That is, messages can be sent at any time without
waiting for the receiver. This enhancement in functionality forces the system to buffer the
data until the receiver accepts it.

An optimization, so that no additional copy is needed on the receiver node, delays the
transfer and waits until the receive is posted which then pulls the data from the sender.
We call this restricted postal semantics. Figure 3.3 shows two possible scenarios of postal
semantics. The upper chart shows how data can be transferred directly when restrictions
on the use of the send and receive calls are accepted. In the picture the restricted calls
are synchronous and mutually block to wait for completion at both ends of the transfer.
Restricted postal semantics is enough for this scenario and a message passing library can
prevent data buffering.

In the lower chart full postal semantics is assumed and required. The messages can
be sent without looking at the receiver. But they have to be buffered by the communi-
cation system until the receiver is eventually ready to accept them. This buffering might
introduce additional copying of the data.

MPI-communication functions must be implemented with the lower level primitives
that are offered directly by the communication technology or their software interfaces.
Often this primitives are just remote load or remote store but it can be a socket API with
a TCP/IP stack underneath too.

48 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

For clean higher level abstractions buffering is an important part of the message pass-
ing system. The typical amount of data transferred is usually too large to be stored in
special purpose registers of the network interface or in the buffers along the path from a
sender to the receiver. Therefore buffering is done by a higher level of the message passing
library and involves the memory system at the end-points. Many simple libraries just al-
low to map the implementation of blocking sends directly to a fast direct deposit including
synchronization functionality. Those can be compared with the restricted semantics sce-
nario. The proper execution of non-blocking sends need buffering on the receiver side and
often leads to an additional copy operation which again largely affects the performance.
This mode of operation is characterized by the full postal message passing scenario. In
a serious performance characterization of any MPI implementation both cases should be
evaluated separately.

TCP/IP

Connection oriented LAN network protocols are particularly important for Clusters of
PCs and crucial to their commercial viability. Most protocol stacks are provided by the
default operating system of the PCs and many software packages using these protocols
and the socket interface are available. In our Clusters of PCs (CoPs) project we do not
want to limit ourselves to deploying ever cheaper GigaFlops to our research colleagues
in computational chemistry or computational biology, but intend to widen the range of
parallelizable applications from scientific codes to databases and Internet servers. Espe-
cially for web-servers or commercial databases and middleware-systems it would not be
viable to change the standard communication protocols to restricted high speed messag-
ing. For network file systems on clusters, like NFS or Sprite, both UDP/IP and TCP/IP
must be provided. With an optimized IP or socket API implementation a Cluster of PCs
can provide high performance at a good price for a larger number of programs, than a ded-
icated cluster with just a message passing system software does. Additionally networking
protocols ensuring reliable transfers are crucial for gigabit technologies that do not offer
reliable services in hardware.

IP is primarily designed for Internet communication and not for messaging in parallel
systems. However it can offer an unreliable, connectionless network service fragmenting
packets in IP-datagram and deliver them according to the IP address scheme. Transport
protocols as UDP and TCP allow to extend communication to different processes of the
same end system by a port concept (sockets). TCP further enables full duplex communi-
cation over a reliable data stream by implementing flow control and retransmission with
a sliding windows protocol. The latter functions of TCP are less important in a cluster
interconnect (there should be no loss in the switches) but its API is very common if not
ubiquitous.

3.2. COMMUNICATION GRANULARITY 49

Because the protocol is implemented without specific knowledge of the used hard-
ware, assuming an unreliable network service like Ethernet or the Internet respectively,
the performance of IP will rarely match the performance of optimized MPI and direct
deposit protocols. Especially the latency for TCP data transfers is much higher due to
connection setup, which might be acceptable or unacceptable to certain applications.

3.2.2 Transfer Modes and their Natural Implementation

We focus on the performance of moving data itself and disregard any difference in amount
of local or global cache coherency that the different technologies offer, since at this point
none of the technologies can offer automatic fully coherent shared memory to support
a standard shared memory programming in hardware. Such will remain a privilege of
much less scalable or more expensive systems like bus based SMPs and directory based
CC-NUMAs. Furthermore the implication of different network topologies is an extremely
well researched topic and therefore we assume that a sufficient number of switches is used
in both systems to provide full bisectional bandwidth as this is the case in most smaller
systems. It is also clear the data transfers to remote memory must be pipelined and aggre-
gated into large messages. The pure ping-pong latency of a single word transfer remains of
little interest for a comparison of the sustainable end-to-end throughput achieved for dif-
ferent communication patterns in different transfer modes with processors, co-processors
and DMAs all working.

Until recently the maximal performance of the memory- and the I/O-system was rarely
achieved by the network interconnects. Therefore neither the performance of the I/O bus
designs nor the performance of the common system software was optimized enough to
work with Gigabit networking. Those two factors are the principle bottleneck in today’s
Clusters of PC’s.

A further bottleneck is the lack of local memory system performance in PCs. Memory
system performance is not only important to computational efficiency in applications with
large datasets, but it is also the key to good performance of inter-node communication.
While high end MPP node designs can afford memory systems with special hooks for
inter-node communication at Gigabit/s speeds, low end systems must rely entirely on
mass market memory systems and standard I/O interfaces (i.e. a PCI bus) for economic
reasons.

The main difference between different adapters of different network technologies are
the default and alternate transfer modes they can operate in. Although the hardware mech-
anisms involved in transfers between main memory, staging memory and network FIFO
queues may be vastly different, the purpose of all data transfers remains the same: Move
data from user space of a sending process to the user space of a receiving process. Most
interconnect designs can do this with close to peak speed for large blocks of data and for
the special semantics of zero-copy messaging.

50 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

To explore these issues in more depth, we require that a direct remote memory opera-
tion can also include more complex memory operations at the receiving end e.g. strided
stores. A typical application for such an operation would be the boundary exchange of an
iterative FEM solver working on large, distributed sparse matrices.

We study two options for transfers for each of the interconnects discussed. One mode
is mostly processor driven and utilizes the most direct path from memory to the network
FIFOs, while the other mode is DMA driven. The latter mode makes a few additional
copies on the way to the network interface but uses DMAs to do them in parallel to the
regular activities of the processor.

To implement the remote memory system performance tests with their complicated
strided patterns we can either use the hardware support provided by the communication
adapter or the packing/unpacking with the main processor that always leads to an addi-
tional copy operation, but avoids the inefficiency of single word transfers across the PCI
bus.

� Direct deposit, mapped: The main processor pushes the data directly into the
network FIFOs through regular store operations addressed to a special segment of
virtual memory, mapped directly to the network interface and through that port on
to the memory of the remote processor. Contrary to a common belief the precise
layout of the assembly instructions to trigger this remote store or load operation
does not matter. It is well conceivable that a parallelizing compiler handles a remote
store as two separate stores for address and data, since the compilers have to know
about local and remote for performance optimizations.

This mode of operation is the native mode of operation for an SCI adapter and for
the Cray T3D which have both direct hardware support for it. A Myrinet adapter
can only map the send registers and the staging memory (SRAM) directly into the
user address space of the application, but not the remote memory itself. It seems
that direct remote stores are impossible unless the two dedicated co-processors at
the sender and the receiver side become involved. A dedicated control program
for those co-processors must shadow the adapters staging memories, transfer the
data across the network and move the incoming data to the remote memory at the
receiving end, so an SCI like remote store operation can be emulated for contiguous
and strided blocks of data. This technique does not work too well for an isolated
store but performs adequately for an aggregation of multiple stores with indexes or
strides. For Gigabit Ethernet, especially for simple standard interface cards without
programmable processors, this mode can not be implemented in an efficient way.
The only possibility would be to implement a descriptor list, which scatters the
Ethernet packets according to the specified stride but unpacking by the processor is
the much more natural way.

3.2. COMMUNICATION GRANULARITY 51

� Direct deposit by DMA: The application stores its data (and potentially also the
addresses) into a reserved, pinned address segment of local memory instead of the
mapped remote address space. Starting from there the DMA engine of an adapter
can pull the data directly into the network FIFO queues on the interface for trans-
mission.

This mode of operation works very well for contiguous blocks of data. SCI in direct
message passing mode can send blocks of the mapped memory using its DMA. The
DMA controller utilizes the most efficient sequence of SCI transactions to achieve
highest possible throughput. Myrinet with its three DMAs on the LANai allows a
similar mode of operations. Furthermore there is a bit more flexibility since data
can be gathered in small portions, stored at the staging memory and sent directly to
the packet interface. The DMAs can be supervised and periodically restarted by the
Lanai MCP. For Gigabit Ethernet this mode can be used assumed that the hardware
can fragment the data and enclose the fragment by protocol headers and trailers.
This technology is discussed in detail in Chapter 4.

� Buffer packing with processor or DMA at the sender: The main processor or a
DMA of the PC gathers the segmented data into the network FIFO via a segment
of mapped main memory. Then, the network card’s co-processor or another DMA
transfers the message into the network FIFO.

In this mode the message is processed by either the main processor or a network
processor and a DMA and finally transmitted into the network FIFO. Measurements
indicate that this is the best way of transferring data over a PCI bus system and it can
therefore be called the native sender mode for either Myrinet or Gigabit Ethernet.
Depending on the block size of strided and indexed transfers packing with the main
processor first can be faster than gathering them directly with the DMA.

� Buffer unpacking with processor or DMA at the receiver: The main proces-
sor packs the destination store addresses along with the data into a message. The
adapter gets the prepared message by a DMA and pushes it into the network FIFO.
On the receiver node the main processor or the network card’s message processor
reads address and data words and scatters the data via DMA transfers to a segment
of main memory.

Again the message is processed by either the main processor or a network processor
and a DMA at the receiver side. Measurements indicate that this is the best way of
transferring data with scattering on the receiver and can therefore be called the
native receive mode for Myrinet and Gigabit Ethernet. Depending on the block size
and access pattern unpacking with the main processor can be faster than scattering
them with the DMA.

52 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

3.2.3 Performance Evaluation

In our performance evaluation we discuss the throughput to move data in different appli-
cation scenarios. For the best understanding of our measurements it is important to keep
in mind at which level the benchmark is performed (lowest level of deposit or highest
level of LAN emulation) and which data path (mode of operation) is used.

For all modes of operation that involve packing/unpacking operations of messages
or buffers, the local memory system performance is very important for communication
performance. As a preliminary step to our evaluation we developed a novel memory
system micro-benchmark. Unlike the simplistic McCalpin loops [102] our test captures
all aspects of the memory hierarchy, in particular its performance behavior with temporal-
and spatial locality (varying working sets and strides) [142, 143, 93]. Our ECT memperf
(Extended Copy Transfer Characterization) benchmark [92] therefore goes beyond pure
loads and stores bandwidth to measure the copy throughput with a simultaneous load and
store data stream. Most end-to-end transfers in compiled parallel programs involve fine
grain accesses, either with strides into arrays or a large number indexed smaller blocks to
gather/scatter data from/into distributed collections of objects. Therefore we graph access
patterns for various strides, from contiguous blocks up to single 64bit entities spaced a
constant strides of 64 apart.

The same method is used to measure remote accesses for machines with full, partial or
without support for coherent shared memory. For the measurement we use the framework
for characterizing local and remote memory system performance [142].

For the best characterization of an interconnect technology, the remote memory sys-
tem performance figures for different access patterns (strides) and a large working set are
the interesting issue. The measured copy performance for the same operation in the local
memory system is included into the Figures 3.4 - 3.6 just for a comparison. Since we
are only discussing remote deposit (and leave out remote fetch) all transfers in our charts
are done by contiguous loads from local memory and strided stores to the same local or
remote memory system.

To approximately match the performance of the T3D Alpha system with the com-
modity PC systems we chose a 200 MHz Intel Pentium Pro system with an Intel 440FX
Motherboard Chipset. The processor, the data bus to SDRAM and the PCI Bridge are
connected by a proprietary 64-bit 66 MHz host bus (512 MByte/s). The external PCI bus
is 32 bit wide and runs at 33 MHz (132 MByte/s).

The performance numbers in Figures 3.4 - 3.6 show, that the copy bandwidth of the
memory system on Pentium Pro PC’s of only 45 MByte/s is much less than the peak
performance of modern interconnects. Copying data in the same memory system with the
processor is therefore always a bottleneck and must be avoided at all cost.

3.2. COMMUNICATION GRANULARITY 53

Performance of Direct Transfers

The performance of direct transfers is measured for contiguous blocks (stride 1) and for
increasing strides (2..64). The first set of performance curves in Figures 3.4 - 3.6 (bullet)
marks the performance for the most direct transfers by store operations to the mapped
remote memory or an emulation thereof. The second curve (triangle) marks the per-
formance for highly optimized buffer packing transfers. In this case the transfers were
optimized as well as we could. If the DMA was faster, then DMA was used. The relation-
ship between local and remote memory performance can be understood by comparing the
performance curves of local memory for the corresponding copy operation to the direct
and buffer-packing remote performance curves (squares).

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

10

20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (M

by
te

/s
)

Store Stride (1: contiguous 2-64: strided)

local memory

remote memory,
direct

remote memory,
DMA plus unpack

126

Intel Pentium Pro (200 MHz) with Myrinet

Figure 3.4: Throughput of the Myrinet Host Adapter for direct mapped
emulation and buffer packing transfers. As a reference the performance of
the local memory system is given for the same copy operation (contiguous
loads / strided stores).

For Myrinet (see Figures 3.4) the store by the DMA is very much affected by the
size of the chunks transferred by one DMA activation. The buffer packing mode with the
main processor seems to perform at about memory copy bandwidth whereas the DMA
transfers suffer from the overhead of too many DMA initializations and too many PCI
bus arbitrations. The buffer packing, native mode can fully use the DMAs to boost the
case of large contiguous blocks.

For SCI we also observe good performance for contiguous blocks in direct transfer
mode (see Figure 3.5). This is when the eight stream buffers work optimally. For strided
data the performance of remote stores on PCI collapses to under 10 MByte/s and appears

54 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

10

20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (M

by
te

/s
)

Store Stride (1: contiguous 2-64: strided)

local memory

remote memory,
direct

remote memory,
DMA plus unpack

C l u s t a r

Intel Pentium Pro (200 MHz) with SCI Interconnect

Figure 3.5: Throughput of the Dolphin PCI SCI Adapter for direct mapped
and buffer packing transfers. As a reference the performance of the local
memory system is given for the same copy operation (contiguous loads /
strided stores).

to be unstable. The sloped curve from stride 2 to stride 8 can be explained by the me-
chanics of the stream buffers. For stride 2 only one stream buffer is used as the direct
mapping of the stride 2 addresses to the same 64 Byte stream buffer leads a sequence of
non-pipelined single word transfer. The buffer is always sent directly with only 8 Bytes
of data and the next value addressed to the same buffer has to wait, until an acknowledge
releases the buffer again.

As with Myrinet it turns out to be faster with SCI to unpack a communication buffer
than to execute transfers directly in this case.

The Cray T3D on the other hand offers (or better offered) a completely different per-
formance picture (see Figure 3.6). It turned out that it was always best to execute a data
transfer in direct mode. Buffer packing included copies and those slowed down the trans-
fers. For contiguous blocks a direct copy to remote memory was even faster than a local
copy from and to memory - this is not surprising since two memory systems - one at the
sender side and one at the receiver’s side are involved for a single data transfer in the
remote case.

We did not measure direct transfers with Gigabit Ethernet, as this traditional wide area
technology relies on a TCP/IP protocol stack to ensure reliable transfers. The performance
that can be achieved in maximum is limited by the copy bandwidth of the memory system.

3.2. COMMUNICATION GRANULARITY 55

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

by
te

/s
)

Store Stride (1: contiguous 2-64: strided)

local memory

remote memory, direct

remote memory,
unpack at receiver

Cray T3D: Local and remote memory copies

Figure 3.6: Throughput of the Cray T3D for direct mapped and buffer pack-
ing transfers. As a reference the performance of the local memory system is
given for the same copy operation (contiguous loads / strided stores). Note
that two T3D nodes can exchange data faster than a single node can copy it.

Performance of MPI Transfers

The performance of the higher level transfers indicates how well system programmers
can work with the hardware. We used a full function standard message passing libraries
with buffering for true postal message passing and a reduced zero-copy library for reasons
explained in the earlier section. So our evaluations use two different tests exposing the
performance at full postal functionality with buffering and at the reduced functionality
with direct transfers.

On Myrinet we use BIP-MPI [129] for tests in message passing. BIP (Basic Interface
for Parallelism) is a high performance library with a possibility simplified data transfer
semantics. The code was developed at the ENS of Lyon, France. Although this imple-
mentation might eventually fall a bit short in terms of compliance with the extensive MPI
standard, it seems to provide a stable API for all important basic functions. BIP-MPI
is a modified MPICH version using BIP to drive the Myrinet network hardware. The
performance of BIP-MPI (see Figure 3.7) matches the raw performance at 126 MByte/s
for blocking send and receives measured with large blocks (� 1 MByte). Half of peak
performance can be reached with messages of roughly 8 KByte size.

For SCI we we used the ScaMPI MPI implementation [9]. This is a fully standard-
ized version delivered by a joint research project between industry and academia. The
same picture as with Myrinet is given for SCI. For blocking send and receives measured
with large blocks good performance can be achieved, but copying prevents better results

56 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Myrinet: fastest MPI block transfers of different sizes

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92 16

k
32

k
65

k
13

1k
26

2k
52

4k 1M

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 [M

by
te

/s
]

Block Size [Byte]

restricted
semantics

full postal
semantics

Figure 3.7: Throughput of BIP-MPI transfers over Myrinet either for re-
stricted and full postal semantics.

SCI: fastest MPI block transfers of different sizes

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92 16

k
32

k
65

k
13

1k
26

2k
52

4k 1M

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 [M

by
te

/s
]

Block Size [Byte]

restricted
semantics

full postal
semantics

80

0

Figure 3.8: Throughput of ScaMPI transfers with SCI either for restricted
and full postal semantics.

3.2. COMMUNICATION GRANULARITY 57

for the non-blocking case. Here again the performance drops to the local memory copy
bandwidth for strided stores.

For the non-blocking calls, where the sends are posted before the receives, MPICH
enforces buffering which drops the performance to the one of the local memory copy.
An optimization uses the LANai staging memory wherefore blocks until 64KByte can be
buffered without an additional local memory copy. When two sends are posted before the
receive the peak performance is measured at 32KByte blocks.

GigEthernet: fastest MPI block transfers of different sizes

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92 16

k
32

k
65

k
13

1k
26

2k
52

4k 1M
0

20

40

60

80

Th
ro

ug
hp

ut
 [M

by
te

/s
]

Block Size [Byte]

restricted
semantics

full postal
semantics

10

30

50

70

Figure 3.9: Throughput of MPICH transfers with Gigabit Ethernet either
for restricted and full postal semantics.

For Gigabit Ethernet again the bandwidth largely relies on the copy bandwidth of
the memory system as all the MPI transfers are mapped to TCP/IP transfers. Even with
restricted semantic and without buffering in the communication library, copying is in-
volved by the communication stack. We used the MPICH implementation using TCP/IP
as transport protocol for the measurements with Gigabit Ethernet. The results are very
unsatisfactory but not surprising. The TCP stack introduces a memory copy, so that even
the reduced semantic which does not need buffering in MPI results in bad performance of
just 30 MByte/s. Like with the Myrinet MPICH implementation, the non-blocking calls,
where the sends are posted before the receives, enforces buffering which drops the per-
formance again because a second local memory copy has to be performed in the library
resulting at 22 MByte/s.

For the Cray T3D we show results of a high performance MPI implementation for the
by the Edinburgh Parallel Computing Center in cooperation with Cray Research (CRI)
[24] (see Figure 3.10). The EPCC MPI provides the full MPI specification and was de-
veloped using the SHMEM get/put primitives on the T3D. The measured performance

58 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Cray T3D: fastest MPI block transfers of different sizes

20

40

60

80

100

120

Block Size [Byte]

40 100 40000100001000
0

Th
ro

ug
hp

ut
 [M

by
te

/s
]

restricted
semantics

full postal
semantics

Figure 3.10: Throughput of EPCC-MPI transfers for the T3D either for
restricted and full postal semantics.

corresponds to the BIP-MPI over Myrinet where blocking calls don’t need any buffering
whereas non-blocking semantics slows down by an additional copy in the local memory
system.

Performance of TCP/IP Transfers

For a significant growth of market share for clusters of PCs it is most important to port
traditional applications quickly and easily by simply substituting a conventional LAN
network (e.g. switched 100BaseT) by a gigabit technology interconnect, especially in the
booming area of servers for the Internet and for the important application of distributed
database and middle ware systems. In this mode of operation the performance of a fully
standardized protocol stack like TCP/IP is essential. Therefore we measured the stan-
dard and the best LAN/IP emulation packages that were available for each interconnect
technology (with the exception of the T3D, where IP does not make much sense).

The Linux TCP/IP stack is a one copy implementation that has to fragment and de-
fragment the user data passed to the communication socket. After the fragmentation, the
protocol data is generated and and send to the NIC hardware. On the receiver the data is
must be defragmented and copied to the receiver process. This explains why the TCP/IP
performance for Gigabit Ethernet can not be faster than a local memory copy. The pro-
tocol overhead does the rest and a poor performance of 33 MByte/s can be achieved for
large contiguous block transfers.

Myricom offers TCP/IP emulation by a fully compliant TCP/IP protocol stack that

3.2. COMMUNICATION GRANULARITY 59

transfers data at 20 MByte/s. BIP-TCP [129] improved this performance by using the
“zero-copy” BIP interface so that about 40 MByte/s are reached. The BIP implementers
use the original Linux protocol stack and substituted the transfer mechanism using their
BIP message passing system for the lower layers.

For our SCI cards we could only reproduce 22 MByte/s with a TCP/IP protocol stack
implementation similar to the BIP-TCP of PC2 Paderborn. It uses the standard Linux
stack and substituted the transfer mechanism using remote mapped segments.

3.2.4 Communication Granularity Achievable in Commodity Clusters

The above study clearly shows that excellent performance for direct remote memory op-
erations on low-end Gigabit/s technologies with PCI-based systems is very limited to a
few ideal cases. Except for Gigabit Ethernet, the transfer rates typically peak near the
bandwidth limits of the PCI-bus or the interconnect and are almost comparable to the
rates seen in traditional MPP supercomputers.

But such good performance is only achieved for the most simple transfer modes like
direct remote deposits of contiguous blocks of data and remain restricted to non buffering
MPI communication scenarios. For strided data accesses the performance of the SCI and
Myrinet interconnect totally collapses, while the traditional MPP can do those cases at
acceptable speeds. The DMA transfers on the commodity PCs suffer from the overhead of
too many DMA initializations and too many PCI bus arbitrations which can be overcome
in a buffer packing mode with the main processor limited by the local memory copy
bandwidth. For Gigabit Ethernet there is no way in doing direct deposit in hardware
and the performance of the buffer packing mode is similar to the cluster interconnects
as also the local memory copy bandwidth is the limiting factor. For the implementation
of message passing libraries with buffering semantics (e.g. MPI) the performance of
the all interconnect is again reduced to the local memory system bandwidth while the
traditional MPP can do those cases at much better speeds. Similar limitations due to
copies in the local memory system slow down the IP over LAN performance in most
cases. Especially with Gigabit Ethernet, which relies on a TCP/IP stack, just a small
fraction of the hardware performance can be achieved, mostly due to memory copies in
the operating system stack.

The performance for the special purpose hardware is remarkable given the low cost
of these interconnect boards. It stays close to a Gigabit but due to the aforementioned
limitations we expect that any Cluster of PCs built with any PCI card interconnect will
get into some difficulties with applications that require complex, dense communication
patterns or rely on standardized high level networking APIs and protocols such a TCP/IP.
With such condition precedent to the communication the performance of fine grain ac-
cesses is always limited by the memory system of the host, as the data has to be packed
and unpacked to be transferred.

60 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Therewith we can state that communication granularity matters largely. Zero-copy
transfers are an absolute prerequisite for large blast transfers where large bandwidths are
requested. For dense communication patters, packaging and contiguous transfers are al-
ways faster even with dedicated remote shared memory hardware and zero-copy is there-
fore not worthwhile. We therefore concentrate on bandwidth sensitive applications and
expect a fast memory system to be available for dense communication patterns.

3.3 Motivations for Zero-Copy

The discussion in the last section exposed the real bottlenecks in commodity high speed
networking for clusters of PCs: The evident lack of performance for the Gigabit Ethernet
technology. This lead to my investigations of whether this technology will be successful
and can ever perform at levels interesting for cluster computing.

3.3.1 A Lesson about Software Inefficiency

In the meantime Gigabit Ethernet networking hardware became readily available and will
be commodity and very cheap in the future (i.e. it already comes directly build on server
motherboards and even with laptop computers). But the discrepancy between hardware
performance and overall system performance remains the highest among the three exam-
ples discussed. Disappointing communication performance results if standard interfaces
and protocols such as the socket API and TCP/IP are used, even when using special pur-
pose technologies. Figure 3.11 shows the data rates achieved for large transfers with the
French BIP MPI library [129, 64] for Myrinet and with standard TCP/IP protocol stacks
as of fall 1999 for Gigabit Ethernet. The tests execute over the different technologies in-
terconnecting the same PC hardware, expecially the same I/O-bus and the same memory
system. Even if the tests use different middleware or communication libraries they imple-
ment the same task and the result is exactly identical. This implies that the state of the art
in gigabit networking with commodity components at the border of the third millennium
is still not what we would expect it to be.

The Myrinet-MPI performance is close to the PCI bus limit and proves that data trans-
fers at a Gigabit/s speed can indeed be achieved even with commodity platforms using
a PCI bus based network interface card. The TCP performance is about one third of the
maximal achievable rate and shows the problem we are focusing on, the poor performance
with a socket standard interface using TCP/IP and Gigabit Ethernet. One reason of the
good performance of MPI over Myrinet are large packet sizes and that there is no need
for packet fragmentation.

This fact really shows the need for new techniques especially for commodity Gigabit
Ethernet and TCP/IP where the software cannot keep up with the hardware. Advances in
network bandwidth follow a step function, but the fastest networks tend to stay close to

3.3. MOTIVATIONS FOR ZERO-COPY 61

MPI-Linux 2.0-BIP

MPI-Linux 2.2

TCP-Linux 2.2

TCP-Windows NT

0 20 40 60 80 100 120 140
Transfer-rate [MByte/s]

Gigabit Ethernet 32bit-PCI2020

3535

Myrinet 32bit-PCI

4242

125125

PII 400 MHz, Linux 2.2

1
G

ig
ab

it/
s

Figure 3.11: The throughput numbers for large data transfers over Gigabit/s
point-to-point links with standard and special purpose networking technol-
ogy and communication system software show that the operating system
software cannot keep up with the hardware speed for Gigabit Ethernet and
TCP/IP.

the limit of the hosts. Given a sufficiently fast network, achievable TCP performance de-
pends on optimizations to minimize networking overhead. With Gigabit Ethernet widely
deployed and 10 GB/s Ethernet on the horizon, these optimizations are highly relevant
again today, three years after the original experiment was conducted with the first Gigabit
Ethernet hardware available.

3.3.2 Where Does the Efficiency Get Lost

Modern TCP/IP implementations can transfer data at a high percentage of available net-
work link bandwidth, reflecting the success of many years of refinements [84]. Clark
and Jacobson proved in [29] that protocol costs for TCP/IP are significant but they are
not the limiting factor for a well implemented TCP/IP stack. Among other problems that
were found, previous stack implementations used a strict layering model which caused
bad buffering decisions and unnecessary memory traffic. Another important optimization
proposed lead to protocol processing, that could be accelerated significantly by predict-
ing the next arriving packet based on packets that have been previously received. Even
though TCP needs to be able to handle many kinds of different circumstances, e.g. con-
nection setup and packet loss, in most cases packets arrive in order and without errors
in the data they carry. This standard code path should be optimized, even at the cost of
making recovery from error conditions more expensive.

To find out the system factors that can limit bandwidth for TCP on high-speed net-
works we measured the overheads for TCP communication in a Linux system. Another
detailed analysis is given in [85].

On the fastest networks, application-to-application throughput is limited by the capa-
bility of the end systems to generate, transmit, receive, and process the data at network
speeds. Delivered performance is determined by a combination of factors relating to the

62 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

packet to interface
transmission

TCP/IP protocol

application buffer
to system buffer

copy

checksum
computation

network driver

packet deposition
in host memory

TCP/IP protocol

system buffer to
application buffer

copy

checksum
comparison

network driver

Figure 3.12: Sources of end-system overhead for TCP/IP

host hardware, interactions between the host and the network adapter, and host system
software.

Data transmission using TCP involves the operating system (OS) facilities for memory
and process management, as well as the TCP/IP protocol stack and the network device and
its driver. Figure 3.12 [27] identifies the key sources of overhead when transmitting data
over a TCP connection in a typical system. CPU overhead for processing each network
packet or frame occurs in the end points. These per-packet costs include the overhead to
execute the TCP/IP protocol code, allocate and release memory buffers, and field device
interrupts for packet arrival and transmit completion. In addition to the per packet costs
the system is charged with costs for each byte of data sent or received. These per-byte
costs incur at the stages shown in white in Figure 3.12 and include overheads to move
data within the end system and to compute checksums to detect data corruption in the
network.

The potential for high bandwidth has little value in practice if communication over-
heads leave no CPU power to the application to process the data. CPU utilization is just
as important as bandwidth, since the bandwidth requirement of any application will drop
if application processing alone saturates the CPU.

All the optimizations we propose in the thesis, are fundamentally directed at reducing
overhead; they increase the delivered bandwidth indirectly by preventing the saturation
of the host CPUs. The bandwidth measurements shown in Section 3.3.1 all occupied the
CPU to nearly 100%.

To better understand the costs responsible for the CPU utilization, we carefully in-
strumented the Linux 2.2 TCP/IP stack and NIC driver with CPU performance counter
profiling points with low overhead and measured the single overheads on the different
operating system levels for a receiver at the given maximal bandwidth of 42 MByte/s.

3.3. MOTIVATIONS FOR ZERO-COPY 63

Figure 3.13 shows the breakdown of receiver overhead into the following five categories:

� data movement overheads for copying and checksumming,

� virtual memory management costs (buffer page allocation and page remapping),

� TCP/IP protocol stack overheads,

� interrupt handling for received packets and

� driver overheads and DMA initializations.

0

20

40

60

80

100

Pe
rc

en
t C

PU

Host Overhead
for TCP/IP over
Gigabit Ethernet

Pentium II 400 MHz,
32 bit/ 33 MHz PCI,
Linux 2.2

Others
Copy &
Checksum

Buffer
Management
Interrupt

TCP/IP

Driver/ DMA
Init

Figure 3.13: Host overhead for TCP-IP communication over Gigabit Ether-
net on a PC running Linux at 400 MHz.

The measurement was done for large data transfers with the maximum Ethernet packet
size of 1500 Byte (Maximal Transfer Unit). The CPU utilization of nearly 95% at a
bandwidth of 320 MBit/s explains the limited bandwidth achievable with this technology.

The graph shows that about 50% of CPU time is spent for some data movement at
the socket layer. At the same time the checksum can be calculated and this is more or
less for free as the data movement is responsible for the bottleneck. The less important
overheads are the buffer management with 6% and the processing of interrupts with 13%.
The TCP/IP stack overheads do not exceed 9% on a 400 MHz Pentium II which confirms
the result described in [29].

Copying and checksumming optimizations are extremely important even on the plat-
forms that are strong enough to achieve peak bandwidth without optimizations. Any
reduction in overhead translates directly into lower CPU utilization, leaving more cycles
available for a higher packet volume leading directly to higher bandwidth or higher appli-
cation processing rates at a given bandwidth.

64 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

It is tempting to assume that the advances in CPU power given by Moore’s Law will
render these limitations increasingly irrelevant, but this is not the case. The limiting
factor is not CPU processing power but the ability to move data through the host I/O-
and memory systems. Wider data paths can improve raw hardware bandwidth, but more
bandwidth is invariably more expensive for a given level of technology.

3.3.3 Trends in Memory and Network Speed

CPU clock cycle speeds, together with the number of instructions that can be issued in one
cycle, determine the rate at which processing can be performed. I/O operations require
processing at several levels, such as the manipulation of the representation of data as it
moves through the system. Memory speed affects the rate at which data can be moved
to, from, or within memory. I/O data typically resides in at least one location in memory
while some I/O operation is performed.

CPU and memory speeds show a technology trend that directly relates to the perfor-
mance of an I/O subsystem. Although CPU and memory are the two most tightly coupled
components of a computer system, they have completely different curves of advancement
in technology (see Figure 2.1 in Section 2.3.1).

This also holds for advances in network speed over time. Figure 3.14 compares mem-
ory speed versus network speed improvements in four to five years. While the memory
copy transfer bandwidth improved by a factor of 4 from 1996–2000 the commodity Ether-
net network bandwidth got 10 times faster in the same time period, and for the near future
10Gig Ethernet is on the horizon. Memory system speed improves steadily, but a trend
that network bandwidth matches or even exceeds the increase in memory copy bandwidth
is clearly visible.

Looking at this performance picture we can solely argue that zero-copy techniques
will be essential to optimal system performance in the future.

3.4 Layered Systems

Complex layered systems, and even complex monolithic systems, can always be classi-
fied as a hierarchy of levels of abstractions. The decomposition of complex monolithic
systems into subsystems or layers can improve the view and understanding substantially.

The idea of near-complete decomposability introduced and studied by Ando and Si-
mon 1961 [138] in the field of economic structures and in a variety of biological models
has been brought to computer science by Courtois [32, 33]. His important observation was
that large computer systems can usefully be considered as nearly completely decompos-
able systems - systems arranged in a hierarchy of components and subcomponents with
strong and fast interactions within components compared to weak or slow interactions
between these components.

3.4. LAYERED SYSTEMS 65

0

400

800

1200

1600

FX/P6 200
LX/PII 230
BX/PII 400
BX/PIII 600
820/PIII 600
840/PIII 800

M
bi

t/s
0

400

800

1200

1600

Fast
Ethernet
Gigabit
Ethernet
10Gigabit
Ethernet

M
bi

t/s
Performance Improvements over 4-5 Years

×10 ×4

Networking Performance Memory Copy Performance

year1996 2001 year1996 2001

Figure 3.14: Speed improvements of network copy bandwidth for commod-
ity networks (Ethernet) and memory copy bandwidth in commodity PCs
from 1996 to 2001. Networking speed come close to memory speed and
improve faster, memory system bandwidth improves more steadily instead.

Decomposability in program behavior has been used by Dijkstra for a hierarchical
modeling and organization of a multiprogramming computer system. In [37, 38] he
showed how advantageous it is from a point of view of a software designer to structure
a computer operating system as a hierarchy of abstraction levels. These levels are con-
sidered as an ordered sequence of abstract machines, each one defined and executed in
term of the previous one. A practical example of such a hierarchy of levels of abstractions
is reported in [37]. In [40] Dijkstra states that through abstract machines the hardware
resources of a computer system can be provided to the upper levels of an operating sys-
tem in a much more user-convenient way and can therefore help by the construction and
validation of large software systems [39, 123].

3.4.1 Design Strategies for Communication Networks

When designing a communication network, one must deal with the inherent complexity
of coordinating asynchronous operations communicating in a potentially slow and error-
prone environment. It is also essential that distributed systems agree on a protocol or on
a set of protocols for determining host names, locating hosts on the network, establishing
connections, and so on. We can simplify the design problem (and related implementation)
by partitioning the problem into multiple layers. Each layer on one system communicates

66 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

with the equivalent layer on other systems. Each layer may have its own protocols, or
may be a logical segmentation of some protocol. This protocols may be implemented in
hardware or software. For example, the three lowest level layers for the logical commu-
nications between two computers are often implemented in hardware.

3.4.2 OSI and Internet Reference Model

The traditional way of describing network protocols is to divide a protocol stack into mul-
tiple layers. The International Standards Organization (ISO) refers to seven layers with
each protocol layer interacting only with the layers below and above with the following
descriptions ([36, 148]):

� Application: The application layer is responsible for interacting directly with the
users. This layer deals with file transfer, remote-login protocols, and electronic
mail, as well as

� Presentation: The presentation layer is responsible for resolving the differences in
formats among the various sites in the network, including character conversions,
and half duplex-full duplex modes (character echoing). By using the same machine
architectures like in cluster computing this can be prevented.

� Session: The session layer is responsible for implementing sessions, or process-to-
process communications protocols. Typically, these protocols are the actual com-
munications for remote logins, and for file and mail transfers.

� Transport: The transport layer is responsible for low-level access to the network and
for transfer of messages between the clients, including partitioning messages into
packets, maintaining packet order, controlling flow of data and congestion control,
and generating physical port addresses. This is often implemented by the TCP
protocol.

� Network: The network layer is responsible for providing connections and for rout-
ing packets in the communication network, including handling the address of out-
going packets, decoding the address of incoming packets, and maintaining routing
information for proper response to changing load levels. Routers work at this layer.
This layer is normally implemented with the IP protocol.

� Data-Link: The data-link layer is responsible for handling the frames, or fixed/length
parts of packets, including any error detection and recovery that occurred in the
physical layer. Ethernet is an example for this layer. with schemas for distributed
systems.

3.4. LAYERED SYSTEMS 67

� Physical: The physical layer is responsible for handling both the mechanical and
electrical details of the physical transmission o a bit stream. At the physical layer,
the communicating system must agree on the electrical representation of a binary
0 and 1, so that when data are sent as a stream of electrical signals, the receiver is
able to interpret the data properly as binary data. This layer is implemented in the
hardware of the networking device.

While the OSI model is a good way of designing and describing network protocols,
it is not a very efficient way of implementing them. An implementor would most likely
prefer a model where data is transferred reliably directly between applications through an
ideal network with infinite bandwidth and zero latency. In practice, neither the compli-
cated OSI model nor the ideal single layer model are feasible.

In a layered approach, the problem of transferring data is divided into multiple smaller
problems. This causes difficulties in the implementations, since the individual layers have
no knowledge about the overall picture and thus may make bad decisions about how to
buffer data. This may cause severely degraded and unpredictable performance [35, 83].

User
space

Kernel
space

NIC

PCI Bus

ApplicationApplication

MPIMPI

Socket APISocket API

TCP/IPTCP/IP--StackStack

Network InterfaceNetwork Interface

NIC DriverNIC Driver

Control/Data
Transfer

Separation

Middleware
copies

Speculative
Defragmentation

U-Net, VIA,
FBufs, Copy
Emulation

CORBACORBA

Data Path

Send and Receive Buffers

System Page Pool
Protocol handling,
Packet Generation

User Mapped
Data Pages

DMA

Marshalling,
Buffering

Control Path OptimizationOverhead

Protection
boundary

copies

Driver
copies

Figure 3.15: Control path and data path in a typical system environment.

Figure 3.15 shows a typical layered communication system where the application
communicates its data via a middleware package like MPI or CORBA (see Section 2.4.4
and 2.5.4). The middleware uses a communication service of the operating system like
e.g. the Berkeley socket application programming interface to pass the data to the system.
The system then adds transport and network protocol headers for TCP/IP and Ethernet
and sends the data via the driver to the network interface hardware that implements the
data-link and physical layer.

68 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Looking at the data path, we can see the optimizations done to the layering structure
on the operating system side. The data still has to be copied from the virtual user memory
space into a system page pool. But by omitting the layering in the data path any piece of
data has to be touched only once. The main point here is that the system uses the same
data structures throughout the whole stack. Therewith also parallelism inside the stack
can be maximized.

What still remains is the layering of application and middleware in user space and the
networking subsystem of the operating system in the kernel space.

3.4.3 The Middleware Infrastructure

Middleware has emerged as an important architectural component in supporting dis-
tributed applications. The role of middleware is to present a unified programming model
to application writers and to mask out problems of heterogeneity and distribution. It
is a connectivity software that consists of a set of enabling services that allow multiple
processes running on one or more machines to interact across a network. Middleware
is essential to migrating mainframe applications to client/server applications and to pro-
viding for communication across heterogeneous platforms. This technology has evolved
during the 1990s to provide for interoperability in support of the move to client/server
architectures.

The importance of the topic is reflected in the increasing visibility of standardiza-
tion activities such as the Object Management Group’s Common Object Request Broker
Architecture (CORBA) and the CORBA Component Model, the Java Remote Method In-
vocation (RMI) and Java Beans, Microsoft’s DCOM/.NET and the Open Software Foun-
dation’s Distributed Computing Environment (DCE).

The main purpose of middleware services is to help solve many application connectiv-
ity and interoperability problems. Middleware allows application processes to transpar-
ently collaborate across processes and networks despite different system policies, operat-
ing systems, programming languages, machine data formats, and networking protocols.
In performing this function, it replaces the upper layers five through seven of the OSI
model (session, presentation and application layer). As outlined in Figure 3.16 middle-
ware services are sets of distributed software that exist between the application and the
operating system and network services on a system node in the network [13]. It provides a
more functional set of Application Programming Interfaces (API) than the operating sys-
tem and network services that allow an application to scale up in capacity without losing
functionality.

Distribution transparency is an essential requirement of what a middleware must pro-
vide. Specific examples include: Easing the burden of developing distributed applications,
typically by providing communication services, correcting endpoint domain inconsisten-
cies, and providing solutions that are reliable and scalable.

3.4. LAYERED SYSTEMS 69

Middleware (Distributed System Services)Middleware (Distributed System Services)

PlatformPlatform

APIs (e.g. CORBA Objects)APIs (e.g. CORBA Objects)

Operating SystemOperating System

Platform Interface (e.g. socket API)

PlatformPlatform
Operating SystemOperating System

Platform Interface (e.g. socket API)

ApplicationApplication ApplicationApplicationApplicationApplication

NetworkNetwork

Figure 3.16: Use of Middleware

While there is no formal characterization of middleware, in general there are five cate-
gories based on significant standards or products in the marketplace.

� Data Access: Connectivity to databases.

� Remote Procedure Call (RPC): Procedure calls between distributed applications.

� Transaction Processing (TP) Monitors: Distributed transaction management.

� Message Oriented Middleware (MOM): Asynchronous communications between
systems.

� Distributed Object Technology (DOT): Object invocations between distributed ap-
plications.

Each of these classes of middleware help to reduce the complexity of building certain
classes of distributed systems. It is interesting to note that the order also implies the
evolution of this technology. Data access and RPC middleware arrived first on the scene,
followed by transaction processing monitors and MOM middleware. Distributed object
technology is the latest category of middleware, this is the class where CORBA fits. It is
based on the best attributes of each of the other categories.

All middleware requires an underlying transparent and associated network protocol as
a base on which to build. The data-link and physical layers are typically hidden from the
middleware by the transport and network layers. Therefore, they are relatively unimpor-
tant to middleware design. But regarding the statement in the last section, that layering
can be harmful for efficiency, this is a problem we address in this thesis.

70 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

3.5 CORBA and Parallel Computing

Parallel programming systems (APIs and middleware) often use the same distributed
hardware platform technology as CORBA: multiple interconnected computers cooper-
ating on an application. Parallel systems have evolved independently from object-based
and distributed object computing (e.g. MPI [57]).

This fact prevents parallel applications from taking advantage of the large investment
in distributed object software technologies and tools, and also makes it difficult to add
parallel parts to distributed CORBA applications. The result of this trend is that parallel
programming requires a lot of redundant learning for significantly overlapping technolo-
gies (e.g. typed message passing). Similarly, CORBA applications that need parallel
subsystems require that the CORBA-programmers learn different tools and technologies
for no good technical reason. A unified model for parallel and distributed computing
could help to avoid this.

Parallel applications are characterized by a set of processes operating in parallel, usu-
ally on parts of a larger data set that is divided up among the participating processes. Data
is typically redistributed in a global operation between a set of sending processes and a
set of receiving processes, which are sometimes the same single set.

The middleware system of CORBA has generally been considered unsuitable for par-
allel programming due to its client/server model and due to the lack of peer-to-peer se-
mantics and the resulting difficulty of achieving true concurrency and/or distributed data
flow. A number of these issues have been mitigated by recent additions to CORBA such
as asynchronous messaging, multithreading, and reactive/recursive ORB implementations
(which can process a request while waiting for a reply, all in a single thread). However,
not all common interactions needed in high performance distributed computing can be
described in today’s CORBA model.

Several independent projects have demonstrated CORBA’s usefulness for parallel pro-
gramming ([109, 153]), generally by extending the interactions available and supporting
some level of data partitioning [127, 86] (see Section 5.2.2). This has typically resulted in
non-standard ORB extensions that are not portable or interoperable. But as the CORBA
specification is not static, these project resulted in an new extention and the Data Parallel
CORBA specification [113]. We will discuss this in Section 6.2.5.

3.5.1 CORBA versus MPI

In the HPC community the message passing paradigm (with libraries like MPI) is the
common starting point for application development. MPI in its basic principle is very
simple and it can quite easily be optimized with different well known implementation
techniques. Highly optimized MPI implementation exist for most supercomputers and
most large scale distributed systems. While MPI is certainly a convenient interface to
implement message-passing-based algorithms, a number of problems can be identified:

3.5. CORBA AND PARALLEL COMPUTING 71

� It is difficult to integrate external communication into MPI. There is e.g. no straight-
forward way to integrate the CORBA request processing into the processing of MPI
send and receive calls.

� Representing complex data structures is much easier in CORBA. With IDL, com-
plex data structures can be described in a language independent way, and tools
generate language bindings to transmit these data automatically.

� Addressing in MPI is on the process level, not on the object level. Thus, in an
object-oriented parallel algorithm, addressing of individual objects must be imple-
mented on top of the existing message-passing functionality.

A main problem of MPI is, that it is really just intended to provide a fast message
passing facilities but lacks any more sophisticated functionality of a distributed object
model. MPI makes applications very difficult to program and is criticized for exposing a
low level of machine abstraction that does not map well to any programming model.

These problems seem to be solved in CORBA with most implementations, but there
the communication efficiency often remains unsatisfactory. CORBA is primarily used for
coupling clients to servers which might be implemented in different languages and run
on completely different system architectures and operating systems. CORBA takes the
part of negotiating object method invocations and data conversion. As normally many of
these remote calls are issued by a client, CORBA ORB optimizations first of all focus on
latency as CORBA systems are often latency limited.

Distributed object middleware technology on the other hand provides the largest set of
support services. Naming, trading, transaction and security services are all integral parts
of CORBA. The best of Data Access, RPC, Transaction Processing Monitor and Message
Oriented Middleware have been utilized in CORBA.

3.5.2 Functionality versus Efficiency

In the second part of the thesis we argue for CORBA as an alternative to a message passing
interface to give the application developers additional flexibility and the possibility for
object oriented component design methods as well as the usage of design patterns. In our
application domain we expect the need of large data transfers over high speed networks in
cluster. And that is where optimization for high bandwidth with a CORBA system comes
in.

As it is not so easily possible to improve MPI and just implement more functionality
that eases application development without changing and enhancing the basic specifica-
tion we chose to take the rich functionality of CORBA and optimize the ORB so that high
bandwidth communication is handled efficiently (Figure 3.17).

72 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

Functionality

Ef
fic

ie
nc

y

Difficult to do while
preserving standards.

higher

hi
gh

er

lower

CORBA

MPI
Doable with
standard
implementations.
Aim of this work.

Figure 3.17: CORBA versus MPI. While the efficiency of CORBA imple-
mentations can be improved, the functionality of MPI is fixed by the speci-
fication.

3.6 Extention of the Zero-Copy Paradigm

In this chapter we suggested that with the right granularity and the right data representa-
tion, communication in high speed commodity clusters can be very efficient, in particular
when using specialized hardware and optimized communication system software. We fur-
ther identified the main performance problem with Gigabit Ethernet, namely inefficient
transport protocols whose operating system implementations introduce copies in the local
memory system. As todays network bandwidths match the memory transfer speeds, this
memory copy turned out to be the most expensive bottleneck in high bandwidth com-
munication with Ethernet. The zero-copy paradigm we propose is therefore absolutely
needed to achieve efficiency.

Todays complex systems need to be composed out of many components involving
different layers that ease the development and divide the applications complexity into
concise parts. As a consequence we need a to extend the zero-copy principle to all the
involved layers.

Our understanding of a zero-copy architecture really means zero data copies through
all the involved layers (see Figure 3.18). That means that no copy may occur in the
communication system including the hardware drivers and the network and transport pro-
tocols as well as by crossing the kernel-user boundary involving the socket interface. In
a zero-copy system a middleware that provides an easier to program system abstraction
and functionalities to the application may not introduce any copies as well.

Wherever a copy occurs in any layer, this copy is always one copy too much and
breaks the whole zero-copy principle. Performance wise the first copy is always the most

3.6. EXTENTION OF THE ZERO-COPY PARADIGM 73

TCP/IPTCP/IP--StackStack

MPIMPI CORBACORBA

ApplicationApplication

Network InterfaceNetwork Interface
NIC DriverNIC Driver

Figure 3.18: Layered hardware/software system

expensive one, considering that data might be readily available in the cache after a first
access and render additional copies to be cheaper.

As the system layer and the middleware layer have to be discussed separately and can
not be merged into one, we divide the further reflection of the thesis into two main im-
plementation fields for the zero-copy principle: (a) commodity communication hardware
and (b) object oriented middleware.

3.6.1 Problems with Commodity Communication Hardware

Section 3.2.3 already discussed the bad performance that can be achieved by using Gigabit
Ethernet with a commodity PC compute platform. It becomes more and more important
to port traditional applications quickly and easily to parallel infrastructures like clusters
by simply substituting a conventional LAN network by the next generation technology. In
this mode of operation the performance of a fully standardized protocol stack like TCP/IP
is absolutely essential.

The Linux TCP/IP stack and driver architecture already implements many optimiza-
tions and the driver even boast itself as a zero-copy architecture. But in its whole the
system is a one copy implementation because the system still has to fragment and defrag-
ment the user data which is passed to the communication socket. After the fragmentation,
the protocol data is generated and sent to the NIC hardware. On the receiver the data is
defragmented and copied to the receiver process.

We propose speculation techniques that are well known from processor design to over-
come those limitations. These enabling techniques were newer used before in communi-
cation software implementations. Chapter 4 discusses how with speculation the nearly
hopeless case of a zero-copy TCP/IP stack for simple Gigabit Ethernet hardware becomes
feasible.

3.6.2 Problem with Object Oriented Middleware

In Section 3.5 we explained why CORBA is an interesting concept and why this middle-
ware concept should be used in clusters. To prove that it is indeed possible to provide the

74 CHAPTER 3. ZERO COPY IMPLEMENTATION STRATEGIES

best possible bandwidth of a communication system through a CORBA layer to an ob-
ject oriented application design we introduce specialized marshalling plugins in CORBA
ORBs which allow the arguments to object messages to be passed by reference through
the ORB and further to the system. We achieve this by separating control and data transfer
in IIOP.

The granularity of objects that have to be communicated is an important aspect. In
Section 3.2 we have stated, that only large contiguous transfers can really benefit from
larger bandwidth. This must be considered in the object model of the application. The
granularity of the object has to be chosen in a way to permit larger collections or larger
grained granularity that is better qualified for high bandwidth communication must be
taken into account.

The techniques to overcome the bandwidth limitations of CORBA middleware are
subject of Chapter 5. We show that even open source middleware software can meet the
requirements realistically. We present techniques to overcome the bandwidth bottleneck
of CORBA middleware and introduce a zero-copy ORB implementation.

4
Zero Copy Concepts for

Commodity Hardware

As discussed in the previous chapters, Cluster of PCs (CoPs) with Gigabit/s interconnects
promise to give workers access to a new game of multimedia applications, but the full
potential of Gigabit/s communication technology still remains unused, as long as com-
modity network adapters like Ethernet NICs or standard protocols like TCP/IP are used.
Commodity PCs with their modest memory subsystem performance require either a hard-
ware acceleration or alternatively, a true ”zero-copy” communication software architec-
ture to reach the full network speeds in applications. Correctly defragmenting packets
of the various communication protocols in hardware remains an extremely complex task
and most widely used protocol stacks for Gigabit Ethernet require at least one last copy
for the (de)fragmentation of the transferred network packets preventing a true zero-copy
communication system.

This chapter describes a prototype implementation of a defragmenting driver based
on the same speculation techniques that are common to improve processor performance
with instruction level parallelism. With our speculative implementation we are able to
eliminate the last copy of a TCP/IP stack even on simple, existing hardware [91]. We
integrated our network interface driver into the Linux TCP/IP protocol stack and added
some well known page remapping and fast buffers strategies to reach an overall zero-copy
communication architecture. Based on our experience with that driver we can also sug-
gest simple hardware improvements to the network interface to increase the speculation
success rates.

An evaluation with measurement data indicates, that we can reduce the CPU load
of communication processing for Gigabit Ethernet significantly, that speculation will suc-
ceed in most cases and that we can improve the performance for burst transfers by a factor
of 1.5–2 over the standard communication software in Linux 2.2.

75

76 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

4.1 Special Challenges of Commodity Hardware

Gigabit Ethernet, like all previous versions of Ethernet, has been designed for an un-
acknowledged, connection-less delivery service and provides point-to-point connections
supporting bi-directional communication including link-level (but no end-to-end) flow
control. One of the big advantages of Gigabit Ethernet is the backward compatibility with
its predecessor, so called Fast Ethernet (100 MBit/s).

4.1.1 Downside of Backward Compatibility

The downside of the backward compatibility of Gigabit Ethernet to its predecessor is that
because of the unreliable service a software protocol layer has to take over the responsi-
bility for reliable connections. This is where TCP/IP comes in and is absolutely needed.
A second disadvantage is Ethernets maximum transmission unit (MTU) of 1500 Byte
which still remains smaller than the page size of any processor architecture. Ethernet
driver systems thus use at least one data copy to separate headers from data, that ren-
ders efficient zero-copy techniques useless, unless defragmentation is done in hardware.
Therefore the current standards prevent efficient zero-copy techniques from being used
and simple copy-techniques are most common in current implementations.

Looking at the resource demands of the error and congestion control mechanisms in
Gigabit Ethernet, it might look completely hopeless to implement a fully compatible,
fast zero-copy TCP/IP protocol stack with the existing PCI based network interface cards
(NIC). Looking more closely at the currently available hardware solutions things do look
quite a bit better than expected. Based on link-level flow control, a dedicated network
control architecture for high speed communication can be devised so that under certain
assumptions, a rigorous true zero-copy protocol might still be feasible with off-the-shelf
components.

4.1.2 TCP Transmission Control Protocol

The Transmission Control Protocol (TCP) [79] is the transport protocol from the Internet
protocol suite. In this set of protocols, the functions of detecting and recovering lost or
corrupted packets, flow control and multiplexing are performed at the transport level. TCP
uses sequence numbers, cumulative acknowledgment, windows of packets in transit and
software checksums to implement these functions.

4.1.3 IP Internet Protocol

TCP is used on top of a network-level protocol called Internet Protocol (IP) [78]. This
protocol, which is a connectionless or datagram packet delivery protocol, deals with host

4.2. RELATED WORK IN ZERO-COPY COMMUNICATION WITH ETHERNET 77

addressing and routing, but the latter function is almost totally the task of the Internet-
level packet switch, or gateway. IP also provides the ability for packets to be broken into
smaller units (fragmented) on passing into a network with a smaller maximum packet
size. The IP layer at the receiving end is responsible for reassembling these fragments.
For a general review of TCP and IP, see [141]. Below IP we typically find a driver layer
dealing with the specific network technology being used. This may be a very simple layer
in the case of a local area network like Gigabit Ethernet, or a rather complex layer for a
network such as a token ring. On top of TCP we find a number of application protocols,
that make networking available to a user application.

4.2 Related Work in Zero-Copy Communication with Ethernet

A fair amount of previous work in this area resulted from the early projects in network
computing. In it many researchers widely acknowledge the observation that badly de-
signed I/O buses and slow memory systems in PCs or workstations are the major limiting
factor in achieving sustainable inter-node communication at Gigabit/s speeds [90].

Since today’s high speed networks, I/O systems and hierarchical memory systems
operate all at comparable bandwidth of about 100 MByte/s, one of the most important
challenges for communication system software is therefore to prevent data copies.

This section gives a short overview and a classification of existing, but partial zero-
copy software techniques as well as the networking technology alternatives which provide
optimized hardware support. For a detailed discussion see Chapter 2.

4.2.1 Zero-Copy Software Architectures

Many recent efforts have focused on designing software architectures to overcome copies
due to OS protection domains (user mode, kernel mode). The proposed solutions, called
zero-copy, provide the capability of moving data between application domains and net-
work interfaces without CPU and memory bus intensive copy operations. A variety of
approaches to host interface design and supporting software have been proposed. To give
an overview of previous and related work we slightly extend a classification in [28].

1. User-Level Network Interface (U-Net) or Virtual Interface Architecture (VIA):
Low level hardware abstractions for the network interfaces suggest to leave the
implementation of the communication system software to libraries in user space
[157, 160, 47, 46].

2. User/Kernel Shared Memory (FBufs, IO-Lite): The technique relies on shared
memory semantics between the user and kernel address space and permits to use
DMAs for moving data between the shared memory and network interface. Such

78 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

drivers can also be built with per-process buffer pools that are pre-mapped in both
the user and kernel address spaces [44, 119].

3. User/Kernel Page Remapping with Copy on Write and Copy Emulation: These
implementations re-map memory pages between user and kernel space by editing
the MMU table and perform copies only when needed. They can also benefit from
DMA to transfer frames between kernel buffers and the network interface [28, 22,
20].

However the three classes of solutions can not achieve a clean zero-copy on simple
commodity hardware. Despite a strict zero-copy handling within the operating system,
the implementation techniques mentioned above still fail to remove the last copy in the
Gigabit Ethernet driver that is due to packet defragmentation. There are many successful
prototypes, but most of them include semantic restrictions for zero-copy buffer manage-
ment and only work with network technologies supporting large frames. A good overview
is given in [21]. A better operating system support for I/O streams is described in [103].

Our work targets zero-copy without semantic restrictions for commodity network in-
terfaces. The basic idea of manipulating the behavior of the Ethernet driver to reduce
in-memory copy operations is not new and it has been explored with conventional Ether-
net at 10 MBit/s more than a decade ago. These investigations were in the context of:

4. Blast transfer facilities: Blasts are special protocols for large transfers [165]. The
definition of the protocol requires the recipient to have sufficient buffers available
to receive the data before the transfer takes place. It is assumed that the source and
the destination machine are more or less matched in speed. The protocol is im-
plemented at the network interrupt level and therefore not slowed down by process
scheduling delays. The sufficiently low frequency of the network errors typically
allows blasts with full retransmission on error to be acceptable. Acknowledges are
sent only after all the fragments of a blast have arrived.

5. Optimistic Blasts: In [25], the driver’s buffer chain is changed in a way that the
headers and the data of the incoming packets are separated by the network interface
card. The observation that, during a bulk data transfer over a network, there exists
a high probability that the next packet received by the destination host is the next
packet in the transfer is correct. This observation allows an optimistic implementa-
tion of a bulk transfer in a way, that the network adapter on the destination host is
programmed to deposit the data directly to its final destination in the user space.

6. Transparent Blast Facility: Although the optimistic blast algorithm is effective, it
has serious shortcomings, mainly that it is tailored to work for a single dedicated
transport protocol. The algorithm requires that all packets have an identical fixed
sized header. Therefore the algorithm is not designed to work in a heterogeneous

4.2. RELATED WORK IN ZERO-COPY COMMUNICATION WITH ETHERNET 79

network that supports TCP/IP or multiple protocol suites. This lack of transparency
was already shown by [105] where all the header data for different protocols which
were added to payload were padded to the same lengths. This makes it easy to
separate it again and running different protocols. The pages with the contiguous
data parts were then re-mapped from kernel to user space. The headers go to kernel
buffers like with the Optimistic Blasts.

All these previously described schemes need to take some special action in case the
blast transfer is interrupted by some other network packet: The first approach is to limit
the blast transfer length and copy the data to the correct location after an interrupted blast.

In the ten years since these investigations on blast transfers, the network and mem-
ory bandwidths have increased by two orders of a magnitude and architectural limitations
apply. However, the architecture of popular network interfaces for Fast and Gigabit Eth-
ernet has hardly changed. Blast transfers use dedicated protocols and therefore dedicated
application programming interfaces. Because this lack of transparency none of the blast
techniques have made their way into production clusters or standard operating systems.

7. Scheduled Transfer Protocol: A new attempt for a blast transfer protocol is de-
scribed in Scheduled Transfer Protocol (STP) [77]. STP is a connection-oriented
data transfer protocol designed for high-speed local area networks. It was origi-
nally designed as part of the ANSI/NCITS standardization work for Gigabyte Sys-
tem Network (GSN), a high-speed network media supporting speeds of up to 6400
MBit/s.

STP allows to deposit data directly in the memory of the receiver by a clean sepa-
ration of control and data transfers.

The basic design principle of STP is that as much work as possible should be per-
formed by the transmitter, and the receiver only needs to verify the incoming packet and
place the data into the correct buffer. Before any data transfer happens, small control
messages are transmitted to pre-allocate buffers at the receiver before the data movement
begins. The data can then be directly moved from the network into host memory. This
reduces the workload of the receiver considerably and makes hardware acceleration rela-
tively simple to implement as the state information for the protocol is very low. This also
makes zero-copy receives possible. To accomplish these goals, STP must make several
compromises. The network is assumed to be secure, reliable and have very low latency.

STP can be used through several different APIs, including BSD sockets and libST
which is a OS bypass library designed for use with STP. The protocol is also being adopted
as a solution for networked storage (SCSI over STP (SST) standard). An implementation
of STP over Gigabit Ethernet for Linux [125] is currently available as a kernel patch but
only works with programmable Ethernet interfaces which are rarely standard commodity
equipment.

80 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

Our work is different, since it aims at performance improvements by improving the
integration of fast transfers with existing hardware and existing protocol stacks and, as
a novelty, we add the distinct viewpoint of speculative protocol processing with cleanup
code upon failure.

This clearly leads to a better understanding of the hardware support. We therefore
will point out two simple and effective enhancements of the current network adapters
which would keep the simplicity of the hardware but improve the ability so that efficient
zero-copy communication for special blast over TCP/IP become possible.

4.2.2 Gigabit Networking Alternatives and their Solution for Zero-Copy

For System Area Networks (SAN) of the clusters of PC platform a few highly attractive
SAN alternatives to Gigabit Ethernet are available or at least proposed an in the state of
being developed.

1. SAN Alternatives to Gigabit Ethernet: Those alternatives comprise Myrinet [16],
SCI [41], Giganet [75], ATM-OC12 and InfiniBand [82]. For a more detailed
overview see Chapter 2. There are some relevant architectural differences between
these interconnect technologies and Gigabit Ethernet. In most special purpose SAN
technologies the transfers between the host and the application program can be done
in blocks whose size is equal or larger than a memory page size; this is fundamental
for zero-copy strategies and efficient driver software.

Myrinet interconnects support long packets (unlimited MTU), link level error and end-
to-end flow control that is properly handled by deadlock free routing in the wormhole
switches. Furthermore, the Myrinet network interface card provides significant process-
ing power through a user programmable RISC core with large staging memory. Under
these circumstances there is much less justification for a TCP/IP protocol stack. Similarly
the bulk data transfer capability of SCI interconnects relies on hardware for error and flow
control in the network to avoid the problem of fragmenting packets. Giganet also incorpo-
rates a supercomputer-like reliable interconnect and pushes a hardware implementation of
VIA to provide zero-copy communication between applications from user space to user
space. In contrast to these supercomputing technologies, the ATM-OC12 hardware oper-
ates with packet losses in the switches and highly fragmented packets (MTU of 53 Byte).
However, with such fast links and such small packets, there is no hope for defragmenta-
tion in software and ATM adapters must provide this functionality entirely in hardware.
The rich ATM functionality comes at a hardware cost, that might be too high for most PC
clusters. ATM technology disappeared almost entirely from high performance computing
but remains the premier option for wide area network backbones.

InfiniBand is a new SAN technology sponsored by nearly all major computing ven-
dors, including Compaq, Dell, Intel, IBM, Microsoft, Sun and HP. It supports a wide

4.2. RELATED WORK IN ZERO-COPY COMMUNICATION WITH ETHERNET 81

range of applications from a switched backplane interconnect for a single host (replac-
ing the PCI bus) to connecting a large number of independent hosts and I/O components
(replacing Ethernet and Fiber Channel). The address space for different nodes on a Infini-
Band network is done using IPv6 addresses and therefore an integration of WAN and SAN
with simple bridges is possible. The first implementations of InfiniBand are scheduled to
arrive in 2002.

InfiniBand is not just a hardware solution. The standard includes a full featured pro-
tocol layer that is very similar to software-based solutions. It uses basically the VIA
primitives for its operation at the transport layer.

InfiniBand comes in three different versions, 1x, 4x and 12x, which run at 2.5 GBit/s,
10 GBit/s and 30 GBit/s, respectively. On the physical level it uses 4096 Byte frames, but
supports reliable transfers in units of up to 2 GBytes.

2. Silicon TCP/IP: A similarly expensive hardware solution is SiliconTCPTM [80].
It implements a TCP/IP stack in hardware which leads to the benefit of very low
main processor utilization but in current implementations it cannot keep up with a
Gigabit/s rate of fast interconnects. For most protocols including TCP/IP, however,
implementing hardware acceleration is challenging, defining an appropriate layer
for dividing the software and hardware components is very difficult. That’s why
moving the entire protocol into hardware is an certainly option that would make it
easier to achieve full performance. But for economic (and often technical) reasons
the option is rarely exercised.

3. Hardware Accelerated TCP/IP: Despite the difficulties involved, hardware accel-
erated TCP/IP is still very attractive. This line of designs does not intend to imple-
ment a full TCP/IP stack in hardware, but rather offloads the fast path of protocol
processing.

The simplest form of acceleration, the hardware checksumming mechanism, is now
a standard feature in every new NIC, although the feature is often unusable due to
hardware problems. For the majority of client-server applications, such as HTTP
or NFS, where a server is connected to a high-speed network an just serves files to
multiple clients on slower networks, those hardware checksums can enable zero-
copy transmits.

Although the company built on SiliconTCP was a failure, the route of TCP/IP im-
plemented entirely in hardware will undoubtedly be tried again in the future despite past
experience that has shown it to be a bad idea due to technical reasons, e.g. entire systems
in a chip. Many protocol bugs are only apparent on fast networks and remain impossi-
ble to fix for anyone except the vendor. Upgrading a system to new protocols such as
IPv6 remains impossible without upgrading the hardware. The extra messaging required
between the OS and the NIC to guarantee a proper flow control also often removes any

82 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

benefit gained. But despite all those difficulties involved, hardware accelerated TCP/IP is
still very attractive and the approach starts to look promising again facing all the cheap
network processors in development right now. Furthermore FPGAs become large and
cheap enough to accommodate a protocol processing engine. Several hardware manufac-
turers already announced chips that implement some support for TCP in hardware. But it
will still take time until this technology becomes available and will be built into commod-
ity PCs in a second step. So there is plenty of opportunity for a new software solution to
be successful.

Instead of implementing the full TCP/IP functionality in hardware simpler lightweight
protocols were developed as already mentioned in the last section.

4. Ethernet Lightweight Protocols with Hardware Support: Lightweight proto-
cols count on faster in-time packet delivery with lower error rates and hardware
flow control enabled as guaranteed by newer interconnect technologies. That does
not only simplify the implementation of such protocols and minimizes the footprint
of such stacks but also allows to run these stack engines on slow and simple pro-
cessors as available on some current Ethernet adapters. Ethernet Message Passing
(EMP) [137], Arsenic [126] or STP on Ethernet [125] are examples of such proto-
cols that rely on adapter hardware support.

For a while Alteon Web Systems, now owned by Nortel Networks, produced a Gigabit
Ethernet network interface chipset based on a general purpose embedded microprocessor
design which they called the Tigon2. It is novel because most Ethernet chipsets were
mostly fixed full custom hardware designs, using a standard descriptor-based host com-
munication protocol. A fully programmable microprocessor allows for much flexibility
in the design of a communication system. This chipset was sold on boards by Alteon, and
was even used in motherboards or NIC designs by other companies, including Netgear.

The only thing that is mandatory for the usability of such adapters in research is that
the hardware implementor provides the technical specifications of the processors and tools
to implement and change the protocol firmware. This was the case with Alteon for the first
two generations allowing research and development in that area without producing ones
own hardware. Many research groups provided implementations and optimized versions
of their protocol on this hardware. Even the Jumbo Frame idea (see next paragraph) was
first implemented with this adapter. But nevertheless the latest update of the chipset is not
Open Source anymore while the old hardware is discontinued. Unfortunately the entire
software architecture depends on the vendor and the Alteon NIC was taken off the market.
This means for many researchers to continue with old hardware or implement their own
design anyway.

Again a slightly different approach is to take a special purpose high speed networking
adapter like Myrinet and program it the way that it behaves like an Ethernet adapter and
can send TCP/IP packets.

4.2. RELATED WORK IN ZERO-COPY COMMUNICATION WITH ETHERNET 83

5. Zero-Copy TCP with Hardware Support: The Trapeze[26, 61] project shows ex-
periences with high-speed TCP/IP networking on a gigabit-per-second Myrinet net-
work, using a Myrinet messaging system called Trapeze. It explores the effects of
common optimizations above and below the TCP/IP protocol stack, including zero-
copy sockets, large packets with scatter/gather I/O, checksum offloading, message
pipelining, and interrupt suppression.

The Trapeze project is said to hold the world record for ”the first demonstration on
public record of end-to-end TCP/IP at faster than a gigabit-per-second”. The 1.147 Gi-
gabit/s TCP/IP data rates in the netperf benchmark was performed over a Myrinet LAN
using Myricom’s 64 bit Myrinet/PCI interfaces in Compaq XP-1000 (Alpha 21264) work-
stations running FreeBSD. While native Myrinet protocols can sustain Gigabit/s data rates
these are much more difficult to achieve when using the standard TCP/IP protocols. The
Duke software and the Myrinet control program employ zero-copy, gather-scatter, and
checksum-offload techniques, that are all assisted by the protocol engines and hardware
features of the 64-bit Myrinet/PCI interfaces. Myrinet interfaces are an added value cost-
ing $1000 per cluster node and can hardly be labeled commodity hardware.

4.2.3 Zero-Copy Extentions to Existing Technologies

To overcome the problem of packets that are smaller than a memory page, some Gigabit
Ethernet vendors propose a change of the standard by simply introducing larger frame
sizes.

1. Jumbo Frames: Jumbo Frames [4] by Alteon Websystems is an attempt to es-
tablish a new Ethernet standard with an increased frame size. In this solution the
maximal Ethernet packet size (MTU) is increased to 9000 Byte and a proprietary
network infrastructure supporting them is required. In addition to reducing the
number of interrupts, Jumbo Frames are large enough to accommodate for entire
memory pages.

This technique is primarily useful for applications that have their focus on sending
data like web servers, while the receive part does not profit much. Jumbo Frames make
the software defragmentation into whole memory page sizes needless but nevertheless,
the concept of Jumbo Frames does not solve the problem of header/payload separation
hereby contradicting the idea of using mainstream networking technologies in a cluster of
PCs.

As the Jumbo Frame extention is just specified for Gigabit Ethernet, IP routers or
switches have to overtake the task of fragmenting the large frames into smaller packets
when forwarded to a Fast Ethernet link. This functionality may exist in the products of
a few vendors but it is often not available in current switching hardware which limits

84 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

the hardware choices on the market to a minimum. Furthermore, many high-end SAN
interconnects used wormhole forwarding in the past, where most LAN Ethernet switches
are built with simple store-and-forward packet handling. In packet switched networks,
the presence of Jumbo Frames will result in high latency not only for the Jumbo Frames
itself but also for all small packets traveling in the same network.

Instead of demanding ever increasing packet sizes in high performance networking
we suggest to incorporate a modest additional hardware support for defragmentation of
small Ethernet packets (similar to ATM cells) which results in lower overall latencies and
high bandwidth transfers for highly fragmented packets. As such interfaces are still not
available today, we enlist techniques of speculation to go the route of efficient defrag-
mentation at the driver level in software as this is already properly defined by the IP over
Ethernet standard. Due to speculation this can be done with the existing network interface
hardware.

As a last point I shall mention that the Transmission Control Protocol is improving as
well. An aspect of high-speed networking, which will not be dealt with in this thesis, is
performance on wide-area networks such as the Internet.

2. Improvements to TCP: The view of high speed network performance over the
Internet changes the problem from being able to send packets as fast as possible
from user buffer to user buffer into being able to accurately estimate the maximum
rate data can be transferred without packets being dropped and recovering from any
errors as quickly as possible. Current research in this area includes improvements to
the TCP selective-acknowledgment option [55] and congestion management [56],
choosing the correct size for socket buffers and the use of parallel streams as well
as developments for High Speed TCP like larger Congestion Windows or limited
Slow-Start.

TCP is able to accomplish this with reasonable success, although some improve-
ments are still needed. The problem is, that all modifications made to it must be fully
backwards-compatible with existing TCP implementations, work even on slow networks
and maintain the politeness of TCP (which prevents the Internet from collapsing). These
restrictions make any radical changes to the protocol impossible.

4.3 Enabling Zero-Copy for Commodity Ethernet Hardware

In order to achieve networking performance between 75 and 100 MByte/s with a standard
Gigabit/s network interface, a zero-copy protocol architecture is absolutely necessary.
With the common restriction of the MTU to 1500 Byte (which is less than a page size) and
the usual hardware support of a descriptor based Ethernet network interface, it seems to
remain impossible to solve the problem of a true zero-copy transfer because of simplistic
DMA hardware cannot even reliably separate protocol header and payload data.

4.3. ENABLING ZERO-COPY FOR COMMODITY ETHERNET HARDWARE 85

It may be possible to send data without local memory copies which is done with
current expensive server hardware. This is especially useful for Web and file servers
which have to ship loads of data to many clients but just receive small request packets from
these clients. This is different in our scenario of high performance distributed computing
where one single connection from a producer to a consumer requires the full available
bandwidth. In this scenario the receive operation has to be efficient as well and therefore
optimized for zero-copy similarly to the send operation. Therefore our new method in
this thesis must address zero-copy in the sender and the receiver as well.

4.3.1 Speculative Processing for Packet Defragmentation

To overcome the restrictions given by standard network technologies and the simple hard-
ware functionalities, we propose to use speculative processing in the receiver driver to
defragment IP-fragments with the current hardware support. In our implementation of IP
over Ethernet the driver pretends to support an MTU of an entire memory page (4 KByte)
and handles the fragmentation into conventional Ethernet packets at the lowest possible
level. By speculation we assume that during a high performance transfer all Ethernet
packets will arrive free of errors and also arrive in the correct order so that the receiving
driver can put the payload of all fragments directly into the final destination. Once the
defragmentation problem is solved and the packet is properly reassembled in a memory
page, all well known zero-copy techniques can be used to pass the payload further to the
application.

As with all speculative methods, the aim of speculative defragmentation is to make
the best case extremely fast at the price of a potentially more expensive cleanup opera-
tion if something went wrong. We will show with application statistics that the best case
is indeed the common case. If either the data is smaller than a page or a speculative
zero-copy defragmentation does not succeed because of interfering packets, the data is
passed to a regular protocol stack to be handled in a conventional one-copy manner. With
the current hardware only one high performance stream can be processed at a time with
optimal performance. The other streams are throttled to lower performance. On other
network technologies like e.g. Myrinet, this is also the case since large transfers are non
interruptible. The zero-copy transfers must be scheduled explicitly or implicitly between
two nodes (an implicit solution is given in Section 4.5). A main point of this implemen-
tation is that it can always coexist with normal TCP/IP and ARP networking traffic while
running without a performance penalty.

4.3.2 Gigabit Ethernet and its NICs

In our experimental cluster of PCs we use off-the-shelf 400 MHz Pentium II PCs, running
Linux 2.2, connected via Gigabit Ethernet by fiber optic cables. Our Gigabit Ethernet

86 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

test bed comprises a SmartSwitch 8600 manufactured by Cabletron and GNIC-II Gigabit
Ethernet interface cards manufactured by PacketEngines.

Gigabit Ethernet is successful for several reasons. The technology is simple, which
translates to high reliability and low maintenance cost as well as a reasonable cost of entry
(e.g. compared to ATM). Gigabit Ethernet is layered on top of the already developed
and tested physical layer of enhanced ANSI standard Fiber-Channel optical components
that are well proven for connecting a network host-adapter to a central high performance
packet switching backplane.

The PacketEngines NICs use the Hamachi Ethernet interface chipset that is a typical
Gigabit Ethernet controller. Besides some buffering FIFOs towards the link side, the
controller chip hosts two independent descriptor-based DMA processors (TX and RX)
for streaming data to and from host memory without host intervention hereby reducing
the CPU load necessary for network handling. Advanced interrupt coalescing techniques
reduce the number of host interrupts to a minimum and multiple packets can be handled
with one single interrupt. The controller chip also detects TCP/IP protocol frames and
correctly calculates the necessary checksums while forwarding the packets to the host.
Some large internal FIFOs and an extended buffering capability in external SRAM chips
maximize the autonomy of operation and limit the chances of packet loss when the host
processor is heavily loaded.

4.3.3 An Implementation of a Zero-Copy TCP/IP Stack

For a prototype implementation of our zero-copy TCP/IP stack with driver level fragmen-
tation we use several well-known techniques as indicated in Section 4.2 and Chapter 2
— in particular “page remapping” [28] and copy emulation [22] or as an alternative the
“fast buffer” concept [44] enhanced by container shipping ideas [7]. The two different
zero-copy techniques demonstrate that the speculative defragmentation technique is an
independent achievement and that it works with different OS embeddings.

4.3.4 Changes to the Linux TCP/IP Stack for Zero-Copy

The Linux 2.2 stack is similar to the BSD implementation and already applies a single-
copy buffering strategy which required only a few changes to make it suitable for zero-
copy. We added a new socket option allowing applications to choose between the new
zero-copy sockets and the traditional ones.

On the sender side, the data to be sent is copied and checksummed out of the applica-
tion buffer into a so called socket buffer in kernel space. Instead of copying the data, we
remap the whole page from user to kernel memory and mark it copy-on-write to preserve
the correct API semantics. A pointer (zc data) to the remapped page is added to the socket
buffer data structure to keep our changes transparent to the rest of the stack (Figure 4.1).
The original packet data field is still used by the stack for the generation of the headers.

4.3. ENABLING ZERO-COPY FOR COMMODITY ETHERNET HARDWARE 87

ET
H

ET
H IPIP TC
P

TC
Pskb->head

Zero-Copy-Data (Memory Page)

Enhanced
Socket Buffer

skb->data

...

skb->zc_data

...

...

Figure 4.1: Enhanced socket buffer with pointer to a zero-copy data part
(memory page)

We do not checksum data as this can be offloaded to the hardware. This can be activated
by just setting a flag in the socket buffer.

On the receiver side, the original device driver controls the DMA operation of the
incoming frame to a previously reserved socket buffer during the interrupt. Later, after
the time-critical interrupt, the data is immediately defragmented in the IP-layer and passed
to the TCP-layer. When the application reads the data from the socket, it is finally copied
and defragmented to the application buffer. This is different in our implementation where
we reserve an entire memory page from the kernel to store a series of incoming fragments.
Once this page holds an entire 4 KByte IP packet, it is passed through the IP and TCP
stack where it normally remains unchanged and the remapped to the address space of
the receiving application. Remapping instead of copying is possible once the following
conditions are met:

1. The user buffers are page aligned and occupy an integral number of MMU pages.

2. The received messages must be large enough to cover a whole page of data.

3. The zc data-pointer must point to the data of the zero-copy socket buffer.

If one of the conditions is violated our implementation falls back to the normal opera-
tion of the Linux TCP/IP stack and preserves the copy semantics of the traditional socket
interface.

4.3.5 Speculative Defragmentation in Hardware

Our fragmenting Ethernet driver manages to send and receive an entire memory page
and further features header separation in hardware. The TCP protocol stack therefore
automatically generates zero-copy packets of 4 KByte whenever possible and the driver
decomposes them into three IP-fragments, each fragment using two DMA descriptor en-
tries — one for the header data and one for the application data. Therefore six descriptors

88 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

are used to transmit or receive one fragmented zero-copy packet. This scheme of de-
scriptor management permits to use the DMA-engine of the NIC in order to fragment and
defragment frames directly from and into memory pages that are suitable for mapping
between user and kernel space.

Data PayloadET
H

ET
H IPIP TC
P

TC
P

data
status length

zc_data
status length

zc_data
status length

14,20

14,20

ET
H

ET
H IPIP

ET
H

ET
H IPIP

data
status length

data
status length

zc_data
status length

Data Payload

14,20,20 40961460 1480 1156

1st Frag. 2nd Frag. 3rd Frag.

DMA-Descriptors

Figure 4.2: Descriptor list with 6 entries showing a defragmented 4 KByte
packet. The header data consists of an Ethernet and an IP part, in the first
packet additionally a TCP part. The numbers indicate the length of the parts
in Byte.

A descriptor entry comprises fields to a pointer to the data in the buffer, for status and
for the buffer length. Figure 4.2 shows a snapshot of a descriptor list after the buffers were
written by the DMA. With an End Of Packet flag in the descriptor status field the con-
troller allows for the bytes of an Ethernet frame to extend across several buffers. Thanks to
this indicator it becomes possible to automatically separate the headers from the payload.

4.3.6 Subject of Speculation

There are two points where speculation is needed in our implementation. The problem
is that descriptors must be statically pre-loaded in advance without knowing what the
next packets to arrive will contain. With that a proper separation of header and data is
only possible by guessing the length of the header1. That means we first speculate on the
precise packet format (i.e. the protocol, the header-lengths and the data-field sizes). For
the zero-copy implementation the length of the Ethernet-, IP- and TCP-header fields must
be pre-negotiated and assumed correctly.

When choosing another protocol (e.g. IPv6 or a special purpose protocols) the only
thing that has to be altered in the driver are the length values of the header and data fields
that are speculated on.

1The Hamachi chip does protocol interpretation at runtime to calculate checksums, but we found no way
to use this information to control the DMA behavior. We hope that future Gigabit interface designs have
better support for this.

4.3. ENABLING ZERO-COPY FOR COMMODITY ETHERNET HARDWARE 89

Ethernet Network

zcdata

header

2nd 3rd

Fragmentation

1st

zcdata

header

2nd1st

Defragmentation

3rd

Speculation !

Figure 4.3: Fragmentation/Defragmentation of a 4 KByte memory page is
done by DMA through the interface hardware.

The second point we are speculating about is that that all fragments of a whole page
arrive in proper order. As described above we engage the well specified technique of IP-
fragmentation. This means, that each 4 KByte packet will be fragmented on the lowest
driver level to 3 IP-fragments and sent over the network. As discussed in [88] fragmenta-
tion can be harmful to the performance for long distance traffic where packet loss occurs
or different routes are parallelly used and packet reordering is needed. In our environ-
ment of a cluster network with a central switch this is not the case at all as packets errors
are very seldom (fiber connectors), packet loss is absolutely minimized by link level flow
control by the Ethernet hardware and reordering does not occur. The only case where the
speculation could be wring is when interfering packets occur (e.g. ARP packets or more
than one stream to the same receiver).

In case of a mis-speculation a software cleanup is performed. The scheme has the
nice property that data is never lost. That means by introducing the copy which was first
optimized away the packets can be cleanly reordered again.

If an incoming frame does not match the expected format of an IP fragment or contains
unexpected protocol options, the zero-copy mode is aborted and the packet is passed to
the regular protocol stack and copied. In the current implementation every unexpected
non-burst packet causes zero-copy operation to be disrupted.

4.3.7 Packet Transmission and Reception

The responsibility of fragmenting packets of 4 KByte payload into appropriate Ethernet
fragments is taken away from the standard IP-stack and given to our NIC driver. The
driver logically emulates a virtual network interface that allows to send larger Ethernet
frames. The fragmentation is done in a standard way as specified by the IP protocol by
setting the More Fragments flag and the proper offsets in the IP-header within the original

90 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

Ethernet Network

zcdata

header

2nd 3rd

Fragmentation

1st

zcdata

header
Speculation !

2nd1st

3rd

Interfering

Defragmentation

Copy!

Figure 4.4: When interleaving packets occur, some data ends up in a dis-
placed location because of a mis-speculation. The driver therefore intro-
duces the copy that was optimized away again to sort things out.

packet as outlined in Figure 4.3. The status of transfer (fast or regular) and packet length
is known to the sender, so there is no speculation involved here. That means that moving
the fragmentation/defragmentation from the IP-stack to the device driver allows to offload
the time consuming task to the NIC hardware.

Upon packet arrival, the controller logic transfers the header and the payload into
the buffers in host memory designated by the speculatively pre-loaded receive descriptor
list. After all the fragments are received or, alternatively, after a timeout is reached, an
interrupt is triggered and the driver checks whether the payloads of all received fragments
have been correctly written to the corresponding buffer space. Those checks involve the
protocol family, the IP-packet IDs and the fragment offsets.

In the success case, if all the fragments have been received correctly, the IP-header
is adapted to the new 4 KByte frame and the packet is passed further to the IP-stack. In
the failure case, if the driver has received an interfering packet between the individual
fragments of a 4 KByte frame, some data ends up in a displaced location because of a
mis-speculation (see Figure 4.4). As soon as the device driver detects this condition the
receiving DMA is stopped and the data has to be copied out of the wrongly assumed final
location into a new socket buffer and afterwards passed forward for further processing.
Hence back pressure is applied to the link and a packet loss can be prevented in most
cases due to buffers in the NIC and the Gigabit Switch.

4.3.8 Interrupt Coalescing and Adaptive Latency Optimization

A downside of the speculative defragmentation as proposed in this section is depicted in
Figure 4.2. As the hardware cannot separate header and payload on its own, we need two
descriptors instead of one to store one packet on the host. But the descriptor is not the

4.4. PERFORMANCE RESULTS 91

problem itself as descriptor lists have a very small footprint and they can be reused as far
as the data is consumed by the application or the TCP stack in case of header information.
But what takes more time is the overhead initiated by each DMA transfer because the PCI
bus has to be allocated and arbitrated for each transfer. As we do not want to use Jumbo
Frames we have to use 6 DMA descriptors to store one memory page to the host which
introduces the double amount of receive interrupts.

The hardware designers were aware of this bottleneck for Gigabit/s networks with
small MTUs and have incorporated hardware support for interrupt coalescing into their
adapters. The Hamachi chipset uses a very advanced coalescing engine which allows to
issue interrupts after the reception of a specified number of packets or alternatively after
a certain time has passed.

The combination of these two values allow to gain control over the number of inter-
rupts generated by the adapter. As while blasting for a zero-copy transfer it does not make
sense to issue an interrupt for less than an entire 4 KByte packet, which means more than
6 DMAs transfers, we set the coalescing in multiples of 6. Of course this does not make
sense for latency sensitive communication phases like barriers or phases where less traffic
is on the net. There the latency is wasted and bounded only by the timeout time set to
the coalescing engine when less than 6 packets arrive. We therefore devised an adaptive
scheme of setting the coalescing values. The driver inherently sets the value to a small
number permitting best latency when less traffic is handled over the adapter. This allows
to profit from very good latencies while still using the coalescing technique to reduce
interrupts during high bandwidth blast transfers.

4.4 Performance Results

4.4.1 Performance Limitation in PCI based PCs

The two Gigabit/s networking technologies introduced earlier are able to provide at least
a Gigabit/s transfer rate over the physical network wires. Therefore — in theory — a
1000BaseSX Ethernet allows transfer rates of about 125 MByte/s less protocol overhead.

The external PCI bus in current commodity PCs runs at 33 MHz with a 32 bit data path
permitting data transfer rates of up to 132 MByte/s in theory. The maximal performance
in practice can reach 126 MByte/s, as we measured for large burst transfers between a
PCI card and the main memory of the PC.

The performance for a memory to memory copy by a Pentium II CPU is at 92 MByte/s
for the Intel 440 BX chipset operating an SDRAM based memory system clocked with
100 MHz. Therefore we can predict a theoretical performance limit of 100 MByte/s for
a zero-copy implementation, 50 MByte/s for a one-copy implementation and 33 MByte/s
for a two-copy protocol stack.

As workstation main memory bandwidth has been and is expected to continue increas-

92 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

ing more slowly than the point-to-point bandwidth of communication networks, copying
between system and application buffers is and will be the major bottleneck in end-to-end
communication over high-speed networks.

4.4.2 Measured Best Case Performance (Gains of Speculation)

Spec. Defragmentation
with ZeroCopy FBufs

Spec. Defragmentation
with ZeroCopy Remapping

Linux 2.2 Standard

0 10 20 30 40 50 60 70 80
Transfer Rate [MByte/s]

TCP/IP Performance of Gigabit Ethernet

464646ZeroCopy FBufs
with Copying Driver

1
co

py
0

co
py

757575

424242

656565

Pentium II 400MHz
32 bit PCI, BX440

Figure 4.5: Throughput of large data transfers over Gigabit Ethernet. In
combination with a zero-copy interface (FBufs) the throughput is increased
from 42 MByte/s to 75 MByte/s. If the zero-copy embedding as well as the
speculative defragmentation is used alone the performance does not increase
much, since data is still copied in the driver for packet defragmentation or
in the upper layer of the system between user and kernel space. Only the
combination of the two techniques enables the higher speeds of true zero-
copy communication from 35% to 60% of a true Gigabit/s. The figures
characterize the performance on two 400 MHz Pentium II PCs with an Intel
440 BX chipset and a 32 bit/33 MHz PCI-bus.

Regular distributed applications executing on top of the standard Linux 2.2 kernel
achieve a transfer rate of about 42 MByte/s for large transfers across a Gigabit Ethernet
(see Figure 4.5). The effect of the performance increase has two tightly linked factors:
(a) use of the zero-copy OS techniques and (b) use of the speculative defragmentation.
With an OS support for zero-copy alone (e.g. remapping with copy on write (COW))
the performance is still disappointingly low and after all did not improve much, as with
Ethernet there is still the defragmenting copy. About the same performance is achieved
with the speculative defragmentation alone (without a zero-copy embedding into the OS).
In both cases the bandwidth increases to 46 MByte/s as our current implementation of the
speculative defragmenter attempts to receive three packets in a row and therefore reduces
the interrupt load on the receiver by delaying the generation of an interrupt until at least
three packets have been received or a timeout is reached. The limit of three packets

4.4. PERFORMANCE RESULTS 93

is considerably lower than the very large transfers considered in previous work about
blast protocols. This improves the minimal length for half of peak speed (half-length)
considerably but still fails to deliver good bandwidth for the asymptotical case of large
transfers.

To achieve the performance leap we have to combine both technologies to eliminate
the last copy. After integration of our defragmenting driver into the zero-copy OS envi-
ronment, the performance of the TCP/IP stack is increased to 65 MByte/s for fast transfers
in a “page remapping” environment and 75 MByte/s in a “fast buffers” environment. The
“page remapping” approach is slightly slower than the “fast buffers” approach since ex-
pensive memory mapping operations are performed during the transfer in the first case
and during startup in the second case.

4.4.3 Performance of Fallback (Penalties when Speculation Fails)

A first “backward compatibility” fallback scenario measures the performance of a sender
that dumps fragmented 4 KByte TCP packets to an unprepared standard Linux receiver.
As mentioned before, we use standardized IP-fragmentation and so every receiving pro-
tocol stack is able to handle such a stream without any problems at normal speed (see
Figure 4.6). Actually the performance of this fallback scenario is higher than the stan-
dard protocol stack; the negligible improvement is probably removing a bottleneck in the
standard sender fragmenting in the driver rather than in the TCP/IP protocol stack.

0 10 20 30 40 50 60 70 80
Transfer Rate [MByte/s]

Compatibility case
Zero-Copy Sender
Standard Receiver

Linux 2.2 Operation
Standard Sender
Standard Receiver

TCP/IP Performance of Gigabit Ethernet

454545

424242

353535
Fallback worst case
Standard Sender
Zero-Copy Receiver

Figure 4.6: TCP throughput across a Gigabit Ethernet for two fallback sce-
narios. There is no penalty for handling sender fragmented packets at an
unprepared receiver in normal receive mode. Only if a standard sender is
interrupting a burst into a zero-copy receiver, cleanup and resynchronization
after each packet is needed. This case should be infrequent and remains un-
optimized, but it still performs at 35 MByte/s which is not much slower than
the standard implementation at 42 MByte/s.

94 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

The more interesting fallback case is when speculation in the driver fails entirely and a
fallback into the cleanup code at the receiver is required. The maximum cost of this worst
case is depicted with a standard sender transmitting to a receiver in zero-copy mode.
The overhead of the cleanup code reduces the performance from 42 MByte/s to about
35 MByte/s. If the device driver detects that a packet not belonging to the current stream
was received as zero-copy packet, two actions need to be taken: (1) The reception of
more packets must be stopped, the descriptor lists reinitialized and the reception of pack-
ets restarted, (2) the scattered fragments must be copied from the zero-copy buffers and
passed on to the regular IP-stack. This explains the small performance reduction.

Packets Failed Bandwidth
interfered ZC-Packets [MB/s]

0 2 75
100 15 73

10000 28 63

Table 4.1: Effect of interferences on a transfer with the ttcp benchmark
sending 100’000 zero-copy packets containing 4096 Byte. The bandwidth
is still much better even if the zero-copy transfer is highly interrupted.

For well speculated or pre-scheduled communication, the cleanup scenario is already
highly unlikely. By an appropriate network control architecture that coordinates the
senders and receivers in a cluster (see Section 4.5) the probability of such occurrences
can be reduced substantially. Table 4.1 shows the bandwidths achieved with infrequently
interrupted zero-copy transfers. As depicted in the Table small the transfer bandwidth
even if interfered is still much better. This proves that different transfers and concurrent
protocols like ARP or ICMP can be handled without much influence on the fast zero-copy
transfer.

With a simple packet filter through a match CAM register in the NICs (as proposed
and described in Section 4.6) which would separate any burst streams from all the other
traffic the miss rate could be further reduced and the average achieved bandwidth would
more or less match the maximal achievable bandwidth.

4.4.4 Rates of Success in Real Applications

Table 4.2 shows the packet-arrival traces of two applications running on our cluster. The
first trace is taken from a distributed Oracle database executing query 7 of a TPC-D work-
load (distributed across multiple nodes of cluster by a SQL parallelizer) and the second
trace is the execution of an OpenMP SOR code using the TreadMarks DSM system (dis-
tributed shared memory). Both applications have been traced for their communication
patterns that show different results.

4.4. PERFORMANCE RESULTS 95

Application trace Oracle running TPC-D TreadMarks running SOR
Master Host 1 Host 2 Master Host 1 Host 2

Ethernet total 129835 67524 62311 68182 51095 50731
frames large (data) 90725 45877 44848 44004 30707 30419

small (control) 39110 21647 17463 24178 20388 20312
Without Network Architecture
Zero-copy potential 26505 12611 13894 14670 10231 10135
packets successful 12745 12611 13894 14458 10225 10133

success rate 48% 100% 100% 99% �99% �99%
With Network Architecture
Zero-copy potential 26505 12611 13894 14670 10231 10135
packets successful 26028 12591 13894 14458 10225 10133

success rate 98% �99% 100% 99% �99% �99%

Table 4.2: Study about the rate of success for speculative transfers based on
application traces (numbers signify received frames/packets) without and with a
driver level control architecture. The TreadMarks application prevents interfer-
ences of fast transfers whereas the TPC-D benchmark needs a control architec-
ture to guarantee a predication rate that makes speculation worthwhile.

In the Oracle case with TPC-D workload, two bursts containing results from queries
are simultaneously communicated back to the master at the end of the distributed queries.
This leads to many interferences (see Figure 4.7), which need to be separated by a net-
work control architecture. In the next section discusses such a control architecture which
prevents stream interferences. The result with this control architecture shows that the
mis-speculations mostly disappear which proves that the scheduling on driver level works
fine.

In the TreadMarks example, entire pages are distributed over the network at the be-
ginning of the parallel section and sent back to the master at the end. The structure of the
calculations or the middleware properly serializes and schedules the transfers so that the
speculation does work perfectly (see Figure 4.7).

4.4.5 Execution Times of Application Programs

In an investigation of performance improvement that goes beyond small micro-benchmarks
we looked into measuring standard benchmarks (like the NAS Parallel Benchmark [10])
on top of our new communication infrastructure as well as into full speed runs with the
applications used for the traces in the previous section. Unfortunately we consistently ran
into performance bottlenecks within the communication middleware for any meaningful
application. NAS uses MPI, which needs a modification and a major rewrite to support

96 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

Time

Master Host1 Host2 Master Host1 Host2

Time

Treadmarks WorkloadOracleTPC−D Workload

Data Transfer Control Transfer

Figure 4.7: The Oracle workload leads to zero-copy packet interferences
while in TreadMarks an inherent scheduling prevents this.

zero-copy communications. An MPI benefiting from our new software architecture is still
under construction.

The TPC-D data mining benchmark under ORACLE 8.0 results in nice traces and
useful hints about traffic patterns, but we can not get that middleware to generate data at
speeds higher than 1.4 MByte/s [149]. With such low communication demands Gigabit
Ethernet does not matter at all and the execution times compared to Fast Ethernet remain
the same.

The TreadMarks system can take some advantage of the lower CPU utilization and
the higher bandwidth. Table 4.3 shows an overall improvement of the SOR example used
in the last section of 4.1% (7.5% with 16 KByte pages) with Gigabit Ethernet and 5.1%
(8.5% with 16 KByte pages) with zero-copy Gigabit Ethernet. The disappointing mag-
nitude of the improvement can be explained by a communication protocol that is highly
sensitiveness to latency and so a higher bandwidth does not result in better performance.
With larger pages the improvement is a bit better as more data has to be communicated.
Without a cleanup of the TreadMarks communication code, the gains of zero-copy com-
munication also remain marginal because the middleware requires with many internal data
copies. This looks pretty much like a chicken and egg problem as all current middlewares
still rely heavily on copying semantics internally. Without a widespread Gigabit commu-
nication infrastructure in place, there is no trend in commercial software that makes use
of such facilities.

As an additional application code we investigated our own data streaming tool Dolly
[131, 132]. Dolly allows to distribute data streams (disk images) to a large number of
machines in a cluster of PCs. Instead of network multicast Dolly uses a simple multi-
drop chain of TCP connections. Using a logical network topology eliminates the server-
bottleneck and renders a data distribution performance that is nearly independent of the
number of participating nodes. Chains keep the implementation simple and reliable. The

4.4. PERFORMANCE RESULTS 97

Packet Size Number of Execution Times [s]
[KByte] Pages Fast Ethernet Gig-Ethernet ZC-Gig-Ethernet

4 21218 41.4 39.7 (-4.1%) 39.3 (-5.1%)
16 5509 40.0 37.1 (-7.3%) 36.6 (-8.5%)

Table 4.3: Execution time improvements for a TreadMarks SOR code run-
ning on 3 PCs, communicating with two page sizes over different networks.
Just a small performance improvement can be measured as the application
is very much latency sensitive. With larger pages the improvement is higher
even if more data has to be communicated.

tool is used for distributing hard disk partitions to all nodes in widespread clusters of
PCs for fast operating system installation, application software upgrades or distributing
datasets for later parallel processing. In [131] we also include a performance prediction
model for Dolly on different hardware and calculate the maximum achievable bandwidth
of such a data distribution system by a simple analytical model. The model takes into ac-
count the limiting resources inside the nodes and predicts a maximal streaming bandwidth
for a given network topology. The prediction is based on the flow of the data streams in
the nodes and their usage of the resources. These limiting resources could be either the
memory subsystem, the I/O bus (which is used for disk and network I/O), the attached
hard disk drives or the CPU utilization.

While the absolute figure for the use of our advanced zero-copy communication archi-
tecture with real applications remains quite disappointing (see Table 4.4), the presence of
a model in study [131] explains a performance improvement of 40% very accurately. The
limiting factor on current PCs is the memory system utilization and so the fewer copies
result in significant performance improvements and shorter down-times for maintenance
in our clusters.

Dolly Streaming [MB/s] Fast Ethernet Gig-Ethernet ZC-Gig-Ethernet

Modeled 11.1 11.1 (+0%) 14.7 (+32%)
Measured 8.8 9.0 (+2%) 12.2 (+39%)

Table 4.4: Predicted and measured bandwidths for a data distribution over
a logical multi-drop chain. As the CPU is the bottleneck, not the network,
there is just a performance improvement when the communication copies
can be eliminated. This is reflected by the model as well as by the measured
performance.

98 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

One−Copy Communication

Zero−Copy Communication

Network

D
M

A
D

M
A

C
op

y
C

op
y

C
op

y

T−connector

System
buffer

System
buffer

User
buffer

System
buffer

SCSI

D
M

A

C
op

y

T−connector

D
M

A

M
ap

M
ap

User
buffer

System
buffer

SCSI

D
M

A
D

M
A

Network

Figure 4.8: Schematic data flow of an active node running the Dolly client.

For a partition cast over a logical multi-drop chain the model predicts the same band-
width for Fast Ethernet and Gigabit Ethernet, as it identifies the CPU and memory system
of the nodes as the main bottleneck; the network is faster. If the zero-copy stack is used,
i.e. the communication copies are eliminated (see Figure 4.8), the improvement due the
reduced load on CPU and memories is reflected by the model as well as by the measured
streaming performance. While the transition from Fast Ethernet to Gigabit Ethernet result
in a marginal performance gain of 2%, there is a quite an impressive leap in performance
of 39% by using Gigabit Ethernet with our new zero-copy stack based on speculative de-
fragmentation. Since the streams of a multi-drop chain are quite static and well controlled
there are close to no mis-predictions in the defragmentation process.

4.4.6 Benefit on Modern Machines

The whole development and measurements of the hardware assisted defragmentation
was done on Pentium II 400 MHz PCs with a limited memory bandwidth and a limited
32 bit/33 MHz PCI I/O-bus. A look at our work in the year 2002 shows a totally different
picture. For a new evaluation of the bandwidth and CPU utilization we use expensive Intel
Pentium III based server systems with an improved ServerWorks Serverset III LE mem-
ory system and a much better 64 Bit/66 MHz PCI I/O-bus implementation. The memory
copy bandwidth of such a machine lies at 300 MByte/s (compared to the 90 MByte/s on
the old machines). We also use a newer Linux 2.4 version with an improved one copy
TCP/IP stack and a much better and fine grained interrupt handling.

The much improved memory bandwidth (improvement of 3 years) already implies that
it should be possible to communicate at the full bandwidth provided that the hardware can

4.4. PERFORMANCE RESULTS 99

handle this. Figure 4.9 shows that the performance achievement in bandwidth of the opti-
mized driver with speculative defragmentation is not as significant as on cheaper machines
anymore (only 6%). While the original stack implementation achieves 109 MByte/s the
zero-copy stack achieves 115 MByte/s which is the peak bandwidth that can be achieved
given the protocol overheads.

1
co

py
0

co
pySpec. Defragmentation

with ZeroCopy FBufs

Linux 2.4 Standard

CPU Utilization [%]

Pentium III 1 GHz
64 bit PCI, ServerWorks

Transfer Rate [MByte/s]

0 50 100

109109109

115115115

0 20 40 60 80 100

100%100%100%

30%30%30%

120

70%70%70%ApplicationApplication

Figure 4.9: Throughput and CPU utilization of large data transfers over
Gigabit Ethernet without optimization and in combination with speculative
defragmentation and a zero-copy interface (FBufs) . The throughput is not
much improved (from 109 to 115 MByte/s) as the saturation of the network
is achieved. But the zero-copy stack has a much better CPU utilization of
30% compared to 100% on the original stack. The figures characterize the
performance on two 1 GHz Pentium III PCs with an ServerWorks Server-
set III LE chipset and a 64 bit/66 MHz PCI I/O-bus.

However absolute speeds are only part of the performance. Comparing the CPU uti-
lization during the transfer show a totally different picture again. Even if the network can
be saturated by the original stack the CPU is heavily involved to copy and fragment the
data as to well as compute the checksum. In the stack with speculative defragmentation in
hardware this overhead is eliminated which results in a low CPU utilization of just 30%
on a receiver. This is introduced by the receive interrupts, buffer management, TCP/IP
processing.

The overlapping of communication with computation is a method of increasing effi-
ciency and shortening the overall communication time in applications. One of the major
goals in the design of parallel processing machines and algorithms is to reduce the effects
of the overhead introduced when a given problem is parallelized. A key contributor to
overhead is communication time. Many architectures therefore try to reduce this over-
head by minimizing the actual time for communication, including latency and bandwidth.
Another approach is to hide communication by overlapping it with computation. Ef-

100 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

fective use of communication hiding through overlapping communication/computation
techniques can help to get the waiting time down but only if there are enough machine
resources to perform communication and the computation in parallel. This is not the case
with an original Linux stack as the copying utilizes the CPU to 100% and would elongate
the computation phase if done in parallel.

The low receiver and even lower sender CPU utilization of the speculative stack on
the other hand means that the spare cycles of the CPU can be used in the application for
computation once an application is optimized for that. This allows a real overlapping
of the communication and computation phases which makes these very high bandwidth
transfers over Gigabit Ethernet even cheaper and more effective as they can be handled
concurrently to the computation to a certain extent.

4.5 Improving the Success Rate for Speculation

The problem with a speculative solution are multiple concurrent blast transfers to the same
receiver which result in interleaved streams, garbling the zero-copy frames and reducing
the performance due to frequent miss-speculation about the next packet. To prevent inter-
fering packets, we implemented a transparent admission control architecture on the Ether-
net driver level that promotes only one of the incoming transfer streams to a so called fast
mode. Unlike in blast facilities, this control architecture does not necessarily involve new
protocols, that differ from regular IP or an explicit scheduling of such transfers through a
special API.

4.5.1 Admission Control for Fast Transfers

To achieve an exclusive allocation of a host-to-host channel we have successfully im-
plemented a distributed admission control mechanism at the driver level with specially
tagged Ethernet packets that are handled directly by Ethernet driver.

A sender requests a zero-copy burst with a Fast Req packet to the receiver which is
answered by a Fast Ack or a Fast NAck packet. Although the round trip time of such
a request is about 30 µs, only the invocation of the faster protocol is delayed and not
the data transfer. The transfer can be started immediately with low priority and as soon
as an acknowledgment arrives, the zero-copy mode can be turned on (in our software
implementation this simply means that the packets are sent as three specially fragmented
IP packets of 4096 Bytes in total, as described in Section 4.3.7).

In the rejection case of a Fast NAck the fast transfer is either delayed or continued
throttled to a low bandwidth in order to reduce interference with the ongoing zero-copy
transfer of another sender. The non-acknowledge may contain the expected duration of the
current fast transfer and thereby giving out a hint on when the channel may be deallocated
by the fast transfer in progress. For low priority or regular transfers we use the standard

4.5. IMPROVING THE SUCCESS RATE FOR SPECULATION 101

Speculation Success Rates Oracle running TPC-D TreadMarks running SOR
Master Host 1 Host 2 Master Host 1 Host 2

Without Network Architecture 48% 100% 100% 99% �99% �99%
With Network Architecture 98% �99% 100% 99% �99% �99%

Table 4.5: Study about the rate of success for speculative transfers based
on application traces without and with a driver level control architecture.
The control architecture guarantees a predication rate that makes speculation
worthwhile.

flow control algorithm of TCP to slow down the bandwidth by delayed acknowledgments.
We can show in the performance analysis that such low priority data-streams do not

affect the bandwidth of a fast transfer in progress even in the software solution where a
re-synchronization of the descriptors has to be done for each packet which interferes a
fast transfer. However it may not be a good idea to forbid extrinsic traffic at all as some
of these packets may remain essential to guarantee deadlock free operation.

4.5.2 Implicit versus Explicit Allocation of Fast Transfers

Using the protocol described above, it is also possible to hide the entire network control
architecture with slow/fast transfers from the user program and to implicitly optimize
the end-user communication performance with standard TCP/IP sockets. The operating
system or the middleware knows the size of a transfer when the corresponding system call
is called. If the transfer is potentially large enough for a fast transmission, fast transfers
can be automatically requested and set up so that certain data transfers benefit from a
highly increased bandwidth.

As an alternative, the selection of the transfer mechanisms can be put under applica-
tion control through an API. An application would only transfer the data if the fast channel
were free and would otherwise try to reschedule its transfers and try to use another fast
channel that is available at the time. For this option we implemented an ioctl-call
which sends requests and returns the answers of the receivers, so that fast transfers can al-
ternatively be put under user control. However user control is optional and the availability
of an automatic implicit scheduling gives our solution a fully transparent API.

As for many large parallel applications the communication pattern of large transfers
is quite regular and scheduling is done by the programmer anyway, i.e. sending MPI
messages, so this mode of resource allocation in the network interface may deliver the
best results.

The performance results of Table 4.2 are summarized in Table 4.5. The Oracle work-
load achieves nearly 100% success rate with the control architecture versus the achieved
48% without.

102 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

4.6 Enhanced Hardware Support for Speculative Zero-Copy

In Section 4.3.3 we showed that, based on speculation techniques, it is possible to im-
plement a good zero-copy TCP/IP protocol stack with the simple hardware support avail-
able in today’s Ethernet network interfaces. The speculative technique required extensive
cleanup operations to guarantee correctness in the unlikely event that the defragmenter
makes wrong guesses about the packet order. Speculation misses automatically raise the
question of better prediction hardware to improve the accuracy of the guesses. We there-
fore propose three simple extensions to the NIC hardware that could greatly simplify
the implementation of a zero-copy defragmenter, while preserving the compatibility with
standard Ethernet IP protocols and the simplicity of off-the-shelf Ethernet hardware.

4.6.1 A Control Path Between Checksumming- and DMA-Logic

Many networking adapters do already protocol detection to help with the checksumming
of the payload but this detection information can not be used to control the transfer of
the frames to the host. As a first improvement to today’s Ethernet NICs we propose to
introduce an additional control-path between the checksumming logic with its protocol-
matching engine and the DMA-Logic. This makes the protocol information available
to the DMA-Logic and allows to reliably separate the headers from the payload data. In
Section 4.3.3 we showed that this does not induce a totally different stack implementation,
but for clients using the separation it would greatly improve the rate of success even if the
support does not work for all the frames (e.g. with different TCP options).

4.6.2 Multiple Descriptor Lists for Receive

Communication at Gigabit/s speeds requires that incoming data is placed automatically
into the memory of the receiving processor. At Gigabit/s speeds there is no time to take
an interrupt after every incoming packet or to do a complete protocol interpretation in
hardware. For zero-copy the difficult part is to deposit incoming, possibly fragmented
payload directly into its final destination in memory. The previous work with ATM or
VIA [157, 47] suggests that this is done on a per virtual channel or per connection basis.
All known solutions require lots of dedicated hardware, a co-processor or copies to solve
the problems.

Based on our strategy of speculative support we propose to divide the available de-
scriptors into a small number of separate lists to deposit different kinds of incoming data
segments directly. We suggest one list for transmitting and at least two descriptor lists
for receiving, one that is usable to handle fast data transfers in a speculative manner with
zero-copy and a second one that can handle the packets of all other traffic including all
unexpected packets in a conventional manner. The small increase from currently two to

4.6. ENHANCED HARDWARE SUPPORT FOR SPECULATIVE ZERO-COPY 103

so
ur

ce
 a

dd
r

ty
pe

ve
rs

io
n

he
ad

er
 le

ng
th

T
O

S

pr
ot

oc
ol

he
ad

er
 c

he
ck

su
m

so
ur

ce
 IP

 a
dd

r

to
ta

l l
en

, i
d,

 fl
ag

s.
.

00000000...1110100100000000...1111011100001000000000000100010100101000.....00000110.....10000011...010110101000000110...

xxxxxxxx...xxxxxxxxxxxxxxxx...xxxxxxxx00001000000000000100010100101000x...x00000110x...x10000011...01011010xxxxxxxxxxxxx

xxxxxxxx...xxxxxxxxxxxxxxxx...xxxxxxxx00001000000000000100010100101000x...x00000110x...x10000011...01011010xxxxxxxxxxxxx

de
st

 IP
 a

dd
r

de
st

in
at

io
n

ad
dr

Packet
MCAM1
MCAM2

Ethernet header IP header (no options)

Figure 4.10: The bit stream of every incoming packet is matched against a
content addressable match register (match cam) to detect packets to be han-
dled by the zero-copy defragmenter. Matching against an “x” (don’t care)
in the match register is implemented with a second mask register. Multiple
match register pairs provide associativity to match more than one protocol
family. The match registers are mapped into the control space of the NIC
and can easily be written by the drivers.

three descriptor lists satisfies our requirements for a minimal change to the current adapter
design.

4.6.3 Content Addressable Protocol Match Registers

The goals of using standard Ethernet switches in cluster computing is to work with mass
market standard equipment for the interconnects and the switches and therefore the stan-
dard Ethernet and IP protocols must be followed as closely as possible. Messages that are
handled in a zero-copy manner must be tagged appropriately. Zero-copy messages could
be tagged at the Ethernet frame level, with a modified protocol ID, but this could cause
problems with smart switches. We decided to use the Type-of-Service bits within the IP
header.

As a third enhancement we propose to implement a stream detection-logic with a
simple matching register to separate special zero-copy transfers from ordinary traffic.

As mentioned many networking adapters do already support a static protocol detection
to help with the checksumming of the payload. But this information is not made available
to control the transfer of the frames to the host and the built in detection not programmable
to a specific data stream.

To keep our protocol detection hardware as flexible and as simple as possible, we
suggest to include a user programmable Match CAM (Content Addressable Memory)
register of about 256 bit length for every descriptor list. The first 256 bits of any incoming
packet are then matched against those registers and the match is evaluated. The CAM

104 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

CKS
RX

CKS

RX FIFOT
ra

ns
iv

er

E
th

er
ne

t

Frame
Memory

TX FIFO

TX
buff. DMA

P
C

I

H
os

t

Dual TX

buff. DMA
Dual RX

MCAM (1) MCAM (2)

MCAM (3)

Figure 4.11: Schematic flow of the packets through a typical Gigabit Eth-
ernet adapter. The gray bars indicate three possible locations (1), (2) or (3)
for the proposed protocol match cam mechanism. We recommend the lo-
cation (1) at the beginning of the RX FIFO since it provides the matching
information as early as possible.

properties of the match register are tailored to interpretation of protocols modified in the
future and of entire protocol families. The bits should be mask-able with a “don’t care”-
option and it would make sense to provide some modest associativity (e.g. 2way or 4way)
for matches. An Example of a packet match is given in Figure 4.10.

The best location of this protocol matching hardware strongly depends on the VLSI
implementation of the Gigabit Ethernet interface, as shown in Figure 4.11. In the most
simple FIFO based designs the match operation against the first 256 bits of an incoming
packet can take place at the head of the FIFO (1) while the data and the match results are
propagated to the end of the queue. In the more advanced design with mandatory buffering
into a staging store (like e.g. in the Hamachi chipset) the protocol match could also be
evaluated when the packet is transferred into the internal staging SRAM (2) and again the
result of the match would be stored with the packet. As a third option the match could be
performed just before the DMA scheduler selects a packet for the transfer over the PCI bus
into the host (3). The third option is probably too late since the DMA schedule needs to
decide based on the availability of descriptors to transfer or not to transfer a packet to host
memory. The preference of VLSI designers for early evaluation eliminates many speed
path limitations, but can potentially cause coherence problems when the match registers
are changed on the fly during network operations.

Match CAMs were extensively used in the iWarp parallel computers to detect and
separate messages of different protocol families in its high speed interconnect. Its imple-
mentation in the iWarp VLSI component [67] consumed less than 2000 gates. Matching
registers for protocol detection are already present in many NICs although they usually
control only some checksumming logic and not the descriptor selection for DMA.

4.7. FUTURE PERSPECTIVE 105

0

20

40

60

80

100

Efficiency of Ethernet Implementations over Time
C

om
m

un
ic

at
io

n
Ef

fic
ie

nc
y

[%
]

Optimized Special Purpose
Protocols (Blasts, U-Net)

Problem solved with
better Bus and Memory

Optimized General Purpose
Protocol (TCP/IP with Spec.Defrag.).)

Initial Performance

10BaseT
Ethernet

1000BaseSX
Gigabit Ethernet

10GBaseSX
10Gig Ethernet

100BaseT
Fast Ethernet

1986

1989

1991

1995

1996
1997

1998

1999

2001

2003

?

?

Figure 4.12: The hardware versus software efficiency ratios for different
Ethernet implementations over time.

4.7 Future Perspective

Before speculating about the future and the necessity of speculative driver implementation
I want to look into the past and the development of the Ethernet technology and its effec-
tiveness. Ethernet has a long history with an evolution of media from thick coaxial cables
to thin coaxial cables, unshielded twisted pairs and fiber optics. It has a similar evolution
from initial speeds on 1 MBit/s at Xerox Parc, to 10, 100, 1000 and 10’000 MBit/s in the
current market place. Figure 4.12 shows the hardware versus software efficiency ratios
for different Ethernet implementations over time. Because of the ups and downs in the
efficiency we call this view the Ethernet roller coaster. Researcher work hard to pull us
up to 100% efficiency like the coaster that is pulled up to the top of the first hill at the
beginning of the ride. But often the same technologies are not fancy enough to reach the
same 100% efficiency potential of the next generation interconnects. This is the same
with the roller coaster where the conversion of potential energy to kinetic energy is what
drives the roller coaster, and all of the kinetic energy you need for the ride is present once
the coaster descends the first hill. But the momentum cannot be large enough to climb the
same high on a second hill again.

We disregard the early prototypes at Xerox and let the roller coaster start in 1986.
10BaseT hardware interfaces were released and an initial 30% of the hardware bandwidth

106 CHAPTER 4. ZERO COPY CONCEPTS FOR COMMODITY HARDWARE

could be matched by the software implementations of the drivers, the communication
stacks and APIs or the hardware interface of the used machines. As discussed in Sec-
tion 4.2 researchers came up with the idea of special purpose protocols for blast transfers
and introduced their non standard APIs to push the efficiency up to nearly 100%. But by
1991 the problem appeared to be definitely solved by better memory systems and buses
in the machines and the protocols did not find their way into systems.

The next speed improvement was introduced in 1995 with 100BaseT where again
not the full hardware performance could be made available to the user. At this time the
Beowulf project was already well known and clustering of machines was a hot topic.
Therefore special purpose interfaces like U-Net were proposed which allowed to access
the hardware from user space. Even if this leads to security problems, such interfaces are
used in Beowulf clusters as security is not a prime issue in this field. On top of the user
level interface different low overhead protocols were implemented to achieve a very good
efficiency over Fast Ethernet. In 1997 the efficiency problem was again solved by faster
machines.

The same story happened with 1000BaseSX also known as Gigabit Ethernet in 1998.
For the first time the network bandwidth even exceeded the memory copy bandwidth of
the machines introducing an even harder pressure on researchers to come up with solu-
tions that allow to sustain the promised bandwidths in application transfers. Of course
blast transfer protocols or user level interfaces would work with this technology too. But
here we came up with speculation techniques applied to communication system software.
With this approach we are able to eliminate the copies and improve the efficiency of Giga-
bit Ethernet while preserving the general purpose interface and even the TCP/IP protocol
and its readily available implementation underneath. Of course also our optimized per-
formance can meanwhile be matched by expensive machines using a better PCI I/O-bus
and a faster memory system.

The interesting question now is what the roller coaster will do further on its way. The
efficiency of 10 Gigabit Ethernet (10GBaseSX) will definitely start again at an unsatis-
factory level before it might be improved by better hardware support. We hope that our
proposed techniques which allow the operation of general purpose APIs and protocols
will find their way into optimized operating system implementations as well as adapter
card hardware. We do not believe that the full 10GigE performance can be matched by
better memory systems and buses so quickly. Therefore the demand for better implemen-
tations of general purpose APIs providing the promised hardware performance to the user
application is bigger than ever. We think that we can accommodate this demand with our
solution.

5
Zero Copy Concepts for

Distributed Object
Middleware

The steady decline in the price performance ratio of computing systems and the avail-
ability of high-speed networks are responsible for the rapid development and the recent
popularity of distributed computing systems. As the size and complexity of application
software systems is increasing, object oriented systems have attracted a great deal of at-
tention. Both distributed processing and object oriented technology offer several benefits.
Distributed systems provide concurrency in execution and performance improvement in
addition to other benefits such as physical distribution, enhanced reliability and scalabil-
ity. The advantages of object oriented systems, that include design flexibility and software
reuse, are well known. Distributed Object Computing is a very popular paradigm because
it combines the advantages of distributed processing with those of object oriented tech-
nology.

Although heterogeneity in distributed systems is natural, most distributed systems are
built with only a limited heterogeneity. For example, at least some subsets of the nodes in
every distributed system is likely to be similar especially in our high performance cluster
computing environment. A number of inter-communicating components in an application
is often implemented using the same programming languages on top of the same operating
system. The components that are diverse can use an Object Request Broker (ORB) like it
is defined by the Common Object Request Broker Architecture Specification (CORBA),
whereas components that are built using the same programming language and operating
systems can use a ”flyover”and bypass a number of standard CORBA operations and
therefore save in terms of middleware overheads.

This chapter tries to address the issue of typically mediocre communication perfor-
mance introduced through a CORBA ORB by proposing and implementing techniques
for improving the performance of CORBA compliant middleware systems that exploit
a limited heterogeneity in high performance computing systems. Zero-copy is the key
technology that can be used to improve the bandwidth for inter-ORB communication.

107

108 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

5.1 Achieving High Performance in Middleware

The use of CORBA as a communication middleware helps the application developer to
achieve flexibility and portability by automating many common development tasks such
as managing object location, parameter marshaling, and object activation. CORBA is
an improvement over conventional procedural RPC middleware since it supports object-
oriented language features (such as encapsulation, interface inheritance, parameterized
types, and exception handling) at the cost of additional overheads.

There is much literature describing research about benchmarking high-performance
CORBA ORBs. As part of The ACE ORB (TAO) project [135] the latency and through-
put performance of a number of ORBs, including VisiBroker from Visigenic, Orbix from
IONA, and SunSoft’s IIOP reference implementation was measured [65, 66]. The perfor-
mance optimization of an IIOP implementation provided deeper insight into the imple-
mentation and allowed to evaluate different approaches.

The Internet Inter-ORB Protocol (IIOP) enables heterogeneous CORBA-compliant
ORBs to interoperate over TCP/IP networks. The IIOP uses the Common Data Repre-
sentation (CDR) transfer syntax to map CORBA Interface Definition Language (IDL)
data types into a bi-canonical wire format. Due to the excessive marshaling/demarshaling
overhead, data copying, and high-levels of function call overhead, conventional imple-
mentations of IIOP stacks yield poor performance over high-speed networks. To meet
the demands of emerging distributed high performance computing and multimedia appli-
cations, CORBA-compliant ORBs must support both interoperable and highly efficient
IIOP implementations.

5.1.1 Performance Optimizations

There are two main fields of optimizations in Object Request Brokers. In [66] the authors
discuss a fully interoperable IIOP implementations and require that fine grained typed
data has to be marshaled according to the rules in the specification. They pinpoint the key
sources of overhead in the SunSoft IIOP implementation, which is the standard reference
implementation of IIOP written in C++, by measuring its performance for transferring
richly-typed data over a high speed network. They identify improvements and bene-
fits that result from systematic protocol optimizations of the SunSoft IIOP stack. These
optimizations include: optimizing for the common case; eliminating obvious waste; re-
placing general purpose methods with specialized, efficient ones; precomputing values, if
possible; storing redundant state to speed up expensive operations; passing information
between layers; and optimizing for the cache.

A second field of research for optimization targets applications running on hosts with
limited heterogeneity, namely clusters of PCs, where non-typed or sparsely-typed and
large amounts of similar data have to be communicated from one host to another. This is
the type of performance optimization we focus on in this thesis.

5.1. ACHIEVING HIGH PERFORMANCE IN MIDDLEWARE 109

In [3] the authors give three performance optimization techniques that perform bypass
operations. The first technique prevents data conversion between the native data types
used by system components and the standard data format specified in CORBA. The sec-
ond technique saves communication time by removing the padding bytes used in between
two data elements in a CORBA message that is exchanged between the nodes hosting
the client and the server. The third technique shrinks the message sent by the client by
compressing the message header thus reducing the communication overhead.

The first technique bypasses data conversion operations whereas the last two bypass
the transmission of certain bytes in the messages exchanged between a client and its
server. The degree of performance improvement depends, however, on the nature of
the application workload. For the multimedia and high performance applications huge
amounts of data have to be moved from one host to another and the last two optimizations
have a very marginal effect on the performance, because only a few bytes in the headers
can be spared. We therefore concentrate our efforts to bypassing of the conversion which
again is one of the main overhead in todays ORBs. Getting rid of the expensive copying
operations in the marshaling/demarshaling can improve system performance significantly.

We will therefore try to put the system under a zero-copy regime. Again the aim is to
hide the optimization techniques and incorporated them into the middleware so that the
interface stays transparent to the application program.

5.1.2 Optimization Incorporation

The technique of bypassing a marshaling routine requires the modification of the message
buffer contents as well as a modification of the data path through the ORB for achieving
a more efficient data communication. CORBA defines a number of standard interfaces
for the ORB. These interfaces are used at the client side to dispatch requests to servers.
The contents of the client buffer are received in an input buffer on the server side ORB
interface. The performance improvements require changes at both buffering stages, the
output buffer at the sender and the input buffer at the receiver.

There are two approaches for incorporating the optimization techniques in an open
source ORB: (a) Interceptor programming and (b) Modification of source code. In the
subsequent paragraph we describe advantages and disadvantages of both options and ar-
gue for the modification of source code in our case.

Interceptors are approach to change the standard behavior of an ORB by providing a
flexible means for having custom code called by the ORB at specific points during op-
eration invocations. By using interceptors one can interact with a CORBA transaction,
monitor and log method calls, or define simple access control policies. There are several
points at which interceptors can be invoked during the processing of a CORBA transac-
tion. Interceptors are objects of particular classes, which are called at specific points dur-
ing the processing of a CORBA transaction. By defining subclasses of interceptor classes

110 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

and registering instances with the ORB, one can insert ones own code into the invocation
path. This allows access to the processing of the request itself and provides a powerful
way of observing and/or modifying requests. On the other hand, it requires more detailed
knowledge about ORB data structures than necessary for writing application level code.

A CORBA ORB is typically implemented as a run-time library linked into both client
and server applications. If there is direct access to the source code of the ORB library,
the routines that perform marshaling/demarshaling on the data structures can be changed
or rewritten. There are a small number of Open Source CORBA ORBs available today
such as MICO, omniORB, Orbacus or jacORB. These packages provide the user with the
source code of the whole ORB implementation, which can be altered and recompiled,
thus allowing a change in the formation of the output data at the sender side and its
interpretation at the receiver side. We use this approach in performance enhancement
strategy for this chapter.

Experimental investigations on our cluster of Pentium II PC’s connected by a Fast Eth-
ernet and a Gigabit Ethernet running under Linux indicate that performance optimization
techniques can lead to a significant improvement in system performance.

5.2 Limited Heterogeneity

CORBA has proven its worth in low speed networks that do not demand high system
performance. It provides a flexible solution for a heterogeneous environment, which is a
characteristic of many distributed systems. But at the same time the overhead incurred
in providing interoperability by most middleware products adversely affects the band-
width and latency of the system that is crucial for many parallel, embedded and real-time
systems.

When a conventional implementation of CORBA is applied to such systems, middle-
ware overheads can degrade performance to such an extent that the high hardware band-
widths of a parallel system is only partially occupied or the real time system specifications
are violated [135]. As a result e.g. many telecommunication products are developed using
proprietary middleware. Further CORBA middleware is known to be a cause of limited
scalability in a number of general purpose distributed systems [2].

Heterogeneity is natural in many distributed systems. Adding new components to an
existing system in terms of added functionality or system resources often leads to diver-
sity in hardware, operating systems, and programming languages used in implementing
these components. Middleware provides the inter-operability that is necessary for these
diverse components to inter-communicate with one another. Using such a middleware
product, it is possible for a component of the application to communicate with another
component that is implemented in a different programming language and is running on
top of a different platform. The Common Object Request Broker Architecture is a stan-
dard for distributed object middleware with a rapid growth of interest. But many concepts

5.2. LIMITED HETEROGENEITY 111

are similar to other solutions and optimized implementation techniques can be equally be
applied to these standards as well.

Although heterogeneity in distributed systems is natural, most distributed systems are
characterized by limited heterogeneity. For example a subset of the nodes in the system
are likely to be similar especially in our cluster environment, where we even count on
totally equal systems. Also most of the inter-communicating objects are implemented us-
ing the same programming languages on top of the same operating system. Improving the
performance of CORBA compliant middleware systems that exploit limited heterogeneity
in systems is especially in clustered environments vitally important.

5.2.1 Standard Data Path Bypassing

Detailed profiling and examination of runtime code generated for the IDL stubs and
skeletons by MICO revealed that the CORBA overhead mainly stems from the follow-
ing sources: data copying, request demultiplexing and memory allocation [134]. Since
we focus on large data transfers where demultiplexing and memory allocation is not a
limiting factor the data copying overhead is most interesting for us.

There are different approaches how expensive data handling can be bypassed. In
Section 5.1.2 we already explained two ways to incorporate that well known bypass into
an ORB. The following sections explains three totally different ways on how to implement
such a bypass.

The knowledge of all those previously known techniques is required but still not suf-
ficient for the implementation of a zero-copy data path in an ORB.

5.2.2 Integration of MPI in CORBA

A first option to optimize bulk data handling in CORBA programs would be to inte-
grate a full blown message passing interface library into an ORB. This route is taken by
PARDIS [86]. PARDIS is an environment providing support for building parallel dis-
tributed applications. It employs the key idea of CORBA — interoperability through
meta-language interfaces — to implement application-level interaction of heterogeneous
parallel components in a distributed environment. Addressing interoperability at this
level allows the programmer to build meta-applications from independently developed
and tested components. This approach allows for a high level of component reusability
and does not require the components to be reimplemented. Further, it allows PARDIS to
take advantage of application-level information, such as distribution of data structures in
a data-parallel program.

PARDIS builds on CORBA in that it allows the programmer to construct meta applica-
tions without concern for component location, heterogeneity of component resources, or
data translation and marshaling in communication between them. However, PARDIS ex-
tends the CORBA object model by introducing SPMD objects representing data-parallel

112 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

computations; these objects are implemented as a collaboration of computing threads ca-
pable of directly interacting with PARDIS Object Request Broker (ORB) — the entity
responsible for brokering requests between clients and servers. This capability ensures
request delivery to all the computing threads of a parallel application and allows the ORB
to transfer distributed arguments directly (if possible in parallel) between the client and
the server. PARDIS uses a simple activation model for threads. Single objects are al-
ways associated with just one computing thread and they are also supported and can be
collocated with SPMD objects. In addition, PARDIS contains programming support for
concurrency by allowing non-blocking invocation returning distributed or non-distributed
futures, and allowing asynchronous processing on the server’s side.

5.2.3 Legacy Code Wrapping

Another approach to use a component architecture in high performance distributed com-
puting is to simply wrap MPI-based legacy code into CORBA components. The authors of
[96] describes a generator for wrapping high performance legacy codes as Java/CORBA
components for use in a distributed component-based problem solving environment for a
molecular dynamic simulations. Performance comparisons for a few problem solving en-
vironments for molecular dynamic simulations that compare between runs of the CORBA
object and the original legacy code on a cluster of workstations and on a parallel computer
showed similar performance results.

As CORBA cannot replace the MPI communication layer due to architectural and per-
formance constraints the necessary parallelism was added to a CORBA object by running
a whole MPI runtime environment inside the object to manage the intra-communication
within the parallel CORBA object, and using CORBA to manage the inter-communication
among objects. The advantage is that users can use existing CORBA implementations
without any modification to CORBA IDL compilers, as is done in other projects with
a similar objective, such as PARDIS [86] and Cobra [127]. Nevertheless with wrapped
legacy codes it remains unclear if the advantages of object orientation are included in the
system.

5.2.4 Bypass of Marshaling/Demarshaling

The original idea behind this optimization started with the observation that when calls are
local (i.e. inside the same machine) the extra data copying that is involved by marshaling
and demarshaling can be skipped. This improves the ORB latency several times. The idea
can also be applied to inter-node communication in a homogeneous system. The standard
path for the code of the object communication would be: the client calls a stub and passes
the parameters on the stack; the code of the stub marshals the parameters from the stack
into a shared memory area; the server skeleton demarshals the parameters from shared

5.3. THE UNDERLYING COMMUNICATION UNFRASTRUCTURE 113

memory onto the stack; and passes the control to the implementation; and then the other
way back.

By bypassing the marshaling also the data copying within the middleware can be by-
passed. With compiler support, one could even have the application push the parameters
directly into the stack in a shared memory area and have the implementation work directly
from there, but we don’t want to use special compilers. The alternative is using a set of
macros and/or inline functions, possibly in combination with a function stub.

For remote communication with the same architecture on client and server, certain
types, especially octets which are just 8-bit bytes, do not have to be marshaled and de-
marshaled at all. The negotiation of the architecture and the typeset between the client
and server is specified by the GIOP (General InterORB Protocol) protocol already. We
will look into this approach and an implementation later in this chapter.

5.3 The Underlying Communication Unfrastructure

A messaging subsystem is part of all parallel or distributed systems and transfers data
from one process or thread to another. In the most general setting, such a transfer can
be achieved by a wide spectrum of hardware mechanisms starting with mechanisms for
shared memory interprocess communication between two time-shared tasks executing on
the same processor using the same memory system to a message based communication
operation between two separate processors and separate memory systems across an inter-
connecting network.

Even if CORBA mainly implements a synchronized client server paradigm that al-
lows remote object invocation, the techniques used inside the middleware are mainly the
exchange of messages. We therefore look deeper into the services of what a much more
general purpose message passing environment provides to gain hints with what techniques
buffering can be eliminated in such systems. We then study the resulting techniques and
try to integrate them into the ORB design to optimize CORBA middleware.

For message passing communication there exist a variety of options to organize the
transfers of control and data. In the simplest case of a data transfer, the transfer is initiated
by the sender node and the original location of the data is in the local memory of sender
node. The sender then invokes a send operation to transfer a message to the destination
node. This destination node invokes a receive operation to retrieve the message and to
store it into local memory at the receiver. In the simple message passing model for each
message transfer a send call must conceptionally match a single corresponding receive
call.

The originator of the transfer is not restricted to the sender node. With appropriate
hardware or software support a destination node may initiate the transfer and fetch some
data out of the sender’s memory, or vice versa the sender might deposit some data into
the receiver’s memory and even complete the whole data transfer without the receiver’s

114 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

participation. The difference between a classic send/receive and a fetch/deposit transfer
is in the synchronization and the control transfer provided along with the data transfer.

Most descriptions of message passing systems are purely based on the mechanics of
data transfers and miss the important point of the synchronization that goes along with
every data transfer. A data transfer can take place under a variety of synchronization
assumptions and the programmer must be well aware of the control transfer semantics to
write correct parallel programs that are free of data races and free of deadlock.

5.3.1 Message Passing Models

Every message passing library comes with a set of assumptions and rules to write correct
programs. Such a set of a assumptions is called a message passing model. The two most
common models of message passing are the rendez-vous model and the postal model.

In the rendez-vous model every data transfer must use a two-way handshake to ensure
a proper meeting between the two communicating processors for any data exchanged.
The model requires total control over the communication schedule in the distributed com-
putation. The simplicity and the rigor of the model made it popular for theoretical work.
In its strict form the classic rendezvous model deals with atomic sends and receives.

The postal model of message passing incorporates buffering into the basic message
passing services and provides a one way synchronization with each data transfer. Its def-
inition and use is simple and highly appealing to programmers. The receiver can receive
the data immediately or at a later time. If the receiver does not claim the data immedi-
ately, it must be stored in the network or a temporary location until the receiver is ready to
accept the data. The presence of a temporary buffer (mailbox) and the features of the well
known postal system to delay and store an almost unlimited amount mail in transit results
in the intuitive name. The consequences of a one way synchronization are obvious: No
receive operation can complete before the corresponding data (i.e. the matching message)
has been sent. But conversely the send can terminate regardless whether a receive is ever
invoked or not. Buffering must take care of the situation of a send with a receive at a later
time.

5.3.2 Control and Data Transfer Messages

The basic message passing models can be defined with a single type of messages. For the
extension of this basic models to the deposit model a precise distinction between control
and data messages is required [144].

All messages can be classified based on their content, their length and their purpose
and are separated into two classes: control messages and data messages:

5.3. THE UNDERLYING COMMUNICATION UNFRASTRUCTURE 115

Control messages are linked to synchronization The transmission or reception of such
a messages does not move any data, but propagates a logical assertion between the
sender and the receiver. The meaning of such an assertion is, that some data block
is ready to be transferred, that some buffer is available to receive more data or that
some previous data message was or was not transferred successfully to its desti-
nation. In the latter case the reception of a positive or negative acknowledgment
automatically initiates retransmission or flags an error in a communication system
that supports reliable transfers.

All implicit messages generated by the lower protocol layers of a message passing
stack are classified as control messages. Even synchronization primitives such as
barriers are best viewed as a collection of combined control messages, regardless
of whether a barrier is transmitted over a regular data communication channel or
whether it is performed by special purpose hardware.

The sole purpose of control messages is to communicate program state and implied
assertions between processors in a parallel or a distributed system.

Data messages contain user data As the amount of data moved by a logical message
typically exceed the hardware buffers along the communication path the proper
handling of data messages involves some local memory accesses at the sender and
the receiver side to retrieve or store the data.

Data messages require do be delivered from user space of one process at the origi-
nator node to the user space of another process at the destination node.

5.3.3 Decoupling Synchronization and Data Transfers

The separation of synchronization and data transfer is the key to communication perfor-
mance in parallel computers [145]. Fully decoupled and independent synchronization
generates many opportunities for improvement and optimization of both the synchroniza-
tion and the data transfer component of a communication system. Optimizations include
simple and fast communication hardware as well as simple and well-structured system
software. The biggest difference is caused by delegating buffer management to the ap-
plication or if a middleware establishes the communication to this software in between.
Looking at the structure of CORBA applications this means that the buffers are allo-
cated and managed by the application or the stub and skeleton code generated through the
toolkit of the according ORB.

For scientific applications written in parallelizable languages high performance paral-
lelizing compilers are aware of the global information about the communication pattern.
That eases the code generation for buffer management in compiler generated parallel pro-
grams. Based on the same knowledge the compiler can insert additional synchronization
primitives until the generated code qualifies as a well-synchronized program. Once the

116 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

program is well-synchronized its data transfers no longer require buffering and the buffer-
ing mechanism are eliminated.

As with CORBA in many scenarios the buffer management is handled by the middle-
ware it becomes possible to optimize this buffer management in the middleware imple-
mentation. This does not effect the user application while allowing much faster communi-
cation. Instead of using parallelizing compilers which have knowledge about the commu-
nication pattern of a user application we rely on the knowledge that we as a programmer
have about the communication pattern of the ORB. To avoid changes the application in-
terface and the synchronized client server messaging model of CORBA we introduce a
decoupling of synchronization and data transfer within the IIOP communication system
of the ORB.

5.3.4 Decoupling Increases Performance

According to [145] there are four ways in which the separation between control and data
transfers can simplify message passing systems and improve performance. This is again
seen in the environment of parallelizing compilers and supercomputer hardware and we
have to apply the same technique to distributed systems and clusters.

Decoupled message passing uses this separation to:

Target data directly to its final destination Synchronization is required prior to data trans-
fers if we want to target the data directly to its final destination (which is always
desirable to avoid copying).

Put buffers under user control In communication systems without system buffers, all
data transfers are fully under user control (desirable to avoid copying). Therefore
we cannot rely on any synchronization provided by data transfers. A separate syn-
chronization mechanism and/or a global synchronization concept is required.

Eliminate the need for buffering If synchronization and data transfers are coupled, a
combined control and data message may involve buffering and costly storage man-
agement operations, since these are necessary for data transfers to complete. With
prior synchronization we can be sure that there is no buffering and eliminate all the
housekeeping overhead for buffering in the message passing system.

Combine control messages into global communication primitives If synchronization and
data transfers are decoupled, control-only messages can be combined into cheaper
global operations like hardware barriers. This algorithmic optimization reduces the
message complexity of many flow control protocols from O�P� to O�log�P��. P is
the number of processors.

5.4. CONNECTING CLIENT AND SERVER 117

Message passing models with decoupled synchronization and data transfers can sim-
plify the design of message passing libraries and permit the exploration of novel mecha-
nisms for data transfers and new communication optimizations.

Applying these optimizations to a CORBA ORB will allow us to optimize the buffers
within the ORB to that effect that the buffering can be eliminated. That means the data
is stored directly into the destination buffers. As optimal support for synchronization is
mainly a question of latency and special purpose hardware and is not an issue in CORBA
applications we cannot address the hardware issue working with commodity systems.

5.3.5 Direct Deposit Messaging

In the Direct Deposit messaging system [145] decoupled synchronization is used and all
messages are taken directly from memory (user space) at the sender and are automatically
directed to their final destination in the memory at the receiving end. While direct deposit
is not coherent shared memory it resolves the issue of addressing the data at a fine gran-
ularity and permits transfers of a collection of data elements directly from their source
locations to their final locations. If temporary data structures or buffers are used, they
are under middleware, compiler or user control and synchronization messages are gener-
ated separately. Like all receive-less communication mechanisms, direct deposit dumps
its data blindly and cannot establish any synchronization properties with its data trans-
fers. There exists a possibility of live data being overwritten and the receive mechanisms
can not address the problem. A decoupled form of synchronization is needed for correct
execution and for data consistency across the processing nodes.

The synchronization model does not determine how the address information is spec-
ified for the transfer; it merely specifies that the final address for the transferred data is
known at the time of the actual data transfer across the network. Multiple solutions to the
problem of the address translation remain possible.

A further dimension in the space of addressing modes is whether the addresses asso-
ciated with the data are physical, global virtual, or local virtual. Most advance network
adapters that allow direct deposit via DMA require that all memory pages involved in this
process are pinned into physical memory beforehand.

We will use the term direct deposit in this chapter synonymically with zero-copy trans-
fers with decoupled synchronization. This implementation technique is exactly what we
intend to introduce into a CORBA ORB.

5.4 Connecting Client and Server

Much of the initial success of CORBA was due to the early standardization of its object
invocation protocol, the General Inter-ORB Protocol (GIOP). The Internet Inter-ORB

118 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

Protocol (IIOP) is generally a mapping for GIOP over TCP/IP. This lead to the most
widespread deployment in the TCP/IP environment.

Although GIOP was originally envisaged as a protocol for communication between
CORBA ORBs from different vendors, each vendor would internally use its own propri-
etary protocol between two objects managed by the same ORB. Today, GIOP is a widely
deployed protocol and is increasingly being used in areas beyond CORBA. As an example
the Java Remote Method Invocation (Java RMI) technology runs over Internet Inter-ORB
Protocol (”RMI-IIOP”) [146]. This capability was introduced to the Java 2 platform and
was developed by Sun and IBM.

Although GIOP is a well-designed and widely implemented protocol, it is not always
implemented efficiently. This is particularly true in the case of commercially successful
GIOP-based ORBs which, according to the literature [68], are all significantly slower
than research ORBs such as TAO [135], omniORB [97], or GOPI [30]. The main reason
for this performance deficit is that the commercial vendors, quite understandably, have
traditionally focused on full capability and reliability rather than on performance.

There is an increasing demand for GIOP-based ORB technology in more demanding
areas such as interactive, multimedia and mobile systems and to deploy ever larger and
more complex distributed applications. In such environments high performance becomes
crucial. The authors of [31] discuss an efficiently implementation of the GIOP protocol
in the context of the GOPI high performance research ORB.

5.4.1 The GIOP Protocol

The OMG’s GIOP specification [112] comprise three distinct standards [133]. First, a
messaging standard defines packet headers, protocols for remote communication, and
requirements on the underlying transport service. Second, the Common Data Representa-
tion (CDR) standard defines on-the-wire encodings for primitive and structured data-types
in messages. Finally third, the specification defines the structure and content of Interoper-
able Object References (IORs) which act as location transparent object identifiers. In this
section, we focus exclusively on the messaging standard and its optimal implementation.
The IOR part of the specification are not discussed further because issues relating to their
implementation are not addressed in this dissertation.

5.4.2 Common Data Representation

In order to provide interoperability in a heterogeneous environment, CORBA has de-
fined a standard or neutral way to transfer data, a so called bi-canonical, on-the-wire
data representation named Common Data Representation (CDR). This is because differ-
ent computing nodes may represent various data types using different internal or native
data representation. This allows the decoupling of knowledge about architecture. GIOP
defines a CDR that determines the binary layout of IDL data types for transmission. This

5.4. CONNECTING CLIENT AND SERVER 119

data is aligned on its natural boundaries within a GIOP message. The CDR represents all
data types available in IDL. This means, that IDL developers do not have to worry about
marshaling any of their own data types.

5.4.3 Marshaling

Differences exist in the byte ordering of words on different machine architectures. These
architectural inconsistencies result in multiple machine data addressing domains. Specif-
ically, different architectures have different views of the most and least significant bytes.
Therefore the data must undergo some sort of transformation process before transmis-
sion. Sending the data as is would cause erroneous results if the sender and receiver had
different byte ordering.

Most machines are byte-addressed and provide access for bytes, halfwords, words,
and double words. Typically, there are two ways that a machine orders bytes within
words: big endian and little endian. GIOP allows to tag a message with a flag to indicate
endianness and then allowing the sender to send the message in its native endianness.

GIOP further specifies primitive data types that are encoded in multiples of octets.
This means that data types always use the same number of octets to represent their values.
Complex types, such as structures, are built from the primitive types.

5.4.4 CDR and Streams

When a client invokes a distributed operation on a server, it transfers the operation data
it is sending to the server as an octet stream. The CORBA specification defines an octet
stream as “an abstract notion that typically corresponds to a memory buffer that is to
be sent to another process or machine over some IPC mechanism or network transport.”
An octet is an 8-bit value that undergoes no marshaling, either by the client or by the
server. An octet stream is a sequence of these octets that is arbitrarily long and that has
a well-defined beginning. An octet does not undergo conversion from one byte order to
another; the transmitter and receiver leave it as is. All data must undergo marshaling
before insertion into the octet stream.

Operation data that has been streamed no longer has a relationship to its original data
type; it is simply a sequence of octets. For its content to be understood, a standard set
of transforming rules must be applied to this sequences of octets. CORBA defines these
rules in the CDR transfer syntax for the formatting of the OMG IDL data types in the
octet stream.

There are two kinds of streams: messages and encapsulations. The message is GIOP’s
basic unit for information exchange, while the encapsulation is an octet stream into which
the marshaling of IDL data structures may occur separate from any message.

The representation of encapsulated data structures occurs as an octet sequence; in IDL,
the data type sequence<octet> allows a marshaled octet sequence to be added into

120 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

another encapsulation or message. The encapsulation allows the premarshaling of com-
plex constants such as type codes, thereby saving the overhead of having them marshaled
at runtime. It also can contain other encapsulations and can handle these without demar-
shaling them. This is particularly interesting when focusing on zero-copy optimizations.
As discussed earlier with zero-copy optimizations we concentrate on large data blocks
that have to be transfered. These superbly match with sequences of octets.

The encoding of a sequence starts with its length, encoded as an unsigned long.
The elements of the sequence follow, encoded as their type. In the following an un-
bounded sequence of octets is defined and created. This is the type we will study and
optimize in our implementation:

typedef sequence<octet> octetSeq;

octetSeq mySeq;

Setting the length to 5, and filling it with the values 1 through 5 produces the following
stream:

0x00 0x00 0x00 0x05 0x01 0x02 0x03 0x04 0x05

5.4.5 Transport Requirements

The design of GIOP does not rely on a specific transport protocol. Instead, it allows the
use of a wide range of transports facilities. However we concentrate on TCP/IP because
of its popularity and its specification as the baseline transport protocol for GIOP. GIOP
fits naturally into TCP/IP because it makes several assumptions about its transport layer.
These are:

Connection-oriented Transport GIOP uses connection IDs to map requests to replies
in communications between client and servers. The definition and lifetime of these
IDs is within the scope of the connection. Once the connection terminates, the IDs
are no longer valid. GIOP therefore depends on connection-oriented transport such
as TCP. So a sent datagram does not require acknowledgment.

Reliable Transport GIOP does not have the facilities to check for packet ordering, bad
packets, lost packets, or duplicate packets. It therefore relies on the transport pro-
tocol.

Stream of Byte Transport There can be no arbitrary message size limitations enforced.
The transport protocol may not require GIOP to fragment or byte-align the data.
The fragmentation of large messages is handled by the transport layer.

Connection Loss Notification When a disorderly connection loss occurs, e.g. when a
client crashes, the transport layer must give the server some reasonable notification
of this event.

5.4. CONNECTING CLIENT AND SERVER 121

Connection Initiation Model The transport layer’s model for initiating connections has
a mapping onto the general connection model of TCP/IP. The server is not the con-
nection initiator. Instead it waits, prepared to accept a request from a client to con-
nect. In TCP/IP terms, it listens for connections. A client must know the address of
the server before it can initiate a connection.

5.4.6 GIOP Messages

Once a connection is established the client and server may begin sending GIOP mes-
sages between each other. In the most recent form, the GIOP messaging standard de-
fines an object request protocol that incorporates eight message types: Request, Reply,
LocateRequest, LocateReply, CancelRequest, CloseConnection, MessageError and Frag-
ment. Figure 5.1 lists these messages and their relationship with the client and server.
Each message must have a GIOP header that identifies the message and its byte ordering.

ServerServerClientsClients

Request

LocateRequest

CancelRequest

Reply

LocateReply

CloseConnection

MessageError

Fragment

Figure 5.1: GIOP Messaging

The eight messages are sufficient to accomplish the most complex of distributed tasks.
They fall into two categories:

Administrative messages These are the LocateRequest and LocateReply messages used
to find objects, Cancel Request and CloseConnection used to handle requests that
are taking too long to execute or that are no longer desired and MessageError, sued
for error handling.

Object Invocation These messages are Request, Reply, and Fragment, which are used
to request an operation on an object and to allow the object to reply.

GIOP is a client-server protocol. Request messages, which carry all the information
necessary to invoke a remote object, are sent by clients, and Reply messages, which are

122 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

sent in response to Request messages, are sent by servers. Client and server roles (respec-
tively) are similarly assigned to the LocateRequest and LocateReply messages; this pair
is used to query the current location of an object. It is permissible to multiplex requests
on connections; i.e. one can issue new Request (or LocateRequest) messages on a given
connection before replies to previously issued requests on the same connection have been
received.

The remaining four messages are self-standing rather than paired. CancelRequest, a
client-side message, is used to advise servers that a reply is no longer required for the
(still pending) request whose identifier is specified in the message. CloseConnection is a
server-side message used to advise the client not to send further requests on the connection
on which the CloseConnection message was received, as this connection is about to be
closed. Finally, MessageError and Fragment messages can be sent by either clients or
servers. The former is sent in response to any message with a bad header, and the latter
is used to support multi-fragment messages. Fragment messages follow an incomplete
preceding message (of type Request, Reply, LocateRequest, LocateReply or Fragment)
which has its following fragment bit set. The last Fragment message in a multi-fragment
message has its following fragment bit unset.

Magic Number GIOP version Flags Message type Message size

0x00 0x04 0x06 0x07 0x08 0x0c

Figure 5.2: GIOP Message header

All GIOP message types employ a fixed-sized message header (Figure 5.2). The
magic field in this header is used to identify messages as GIOP messages, the version field
specifies the GIOP protocol version and the message type field identifies the message’s
type (i.e. as one of the eight possible types described above). The flags field includes a
bit to specify whether the sender is running on a little or a big-endian architecture and
also a following fragment bit to specify whether or not this message is complete or only
a fragment. The message size field contains the length of the whole message in octets,
excluding the 12 octets of the fixed-sized message header itself.

Service context RequestID Response expected

0x00 0xM

Reserved Object key Operation

0xM+1 0xN

Requesting principal

0xN+1 0xP

Figure 5.3: GIOP Request header

5.4. CONNECTING CLIENT AND SERVER 123

In addition to the fixed-sized message header, all message types except CloseConnec-
tion, MessageError and Fragment additionally employ a message specific header situated
between the message header and the payload (Figure 5.3).

For example, the Request message’s specific header comprises the following sequence
of fields:

� an unsigned long l followed by a list of l service contexts (l is 0 for an empty ser-
vice context list); service contexts contain auxiliary information (e.g. a transaction
or security identifier or priority information) that may need to be passed to an oper-
ation invocation; they are each encoded as an unsigned long m followed by m octets
of data;

� an unsigned long containing a unique request identifier; this is used to match Re-
quests with their corresponding replies and to identify Requests in CancelRequest
messages;

� an octet interpreted as a boolean that specifies whether or not a response to this
Request is expected;

� three octets that are currently unused but serve to pad the previous field so that the
following field is appropriately aligned;

� an unsigned long l followed by l octets representing the object key; this is the unique
identifier of the target object;

� an unsigned long l followed by l� 1 octets representing the operation string, fol-
lowed by a null octet; the operation string identifies the target operation name (this
is assumed to refer to an operation supported by the target object);

� an unsigned long l followed by l octets representing the requesting principal (l is 0
for empty requesting principals); this field identifies the requesting object (e.g. for
security or accounting purposes).

The fields comprising the message-specific headers of the other message types are
largely subsets of the above set of fields. More specifically, the fields of the remaining
message types are as follows. Reply: service context, request identifier and reply status
(the latter is an unsigned long); LocateRequest: request identifier and object key; Lo-
cateReply: request identifier and reply status; CancelRequest: request identifier (of the
request to be canceled). In the LocateReply case, if the reply status field indicates suc-
cess, the message payload is assumed to contain a marshaled IOR that specifies the current
location of the queried object.

Note finally that the CancelRequest and LocateReply messages employ fixed length
message specific headers whereas the Request, Reply and LocateRequest headers are of

124 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

Client Server

GIOP::Request

GIOP::Reply

Connection termination

Connection Establishment
Connection Establishment

Request Preparation

Requests Transmission Requests processing
Method call
Preparation of Reply

Handling of Reply
Connection termination

TCP-Packet
(without data)

GIOP-Packett t

Figure 5.4: Remote method invocation with IIOP

variable length because they include variable length fields (i.e. one or more of: service
context, object key, operation string or requesting principal fields).

5.4.7 The IIOP Protocol

The Internet Inter-ORB Protocol (IIOP) is the most widely known of the standards from
the Object Management Group (OMG).

GIOP defines a protocol that is independent of any particular set of network protocols,
such as IPX or TCP/IP. Given the explosive growth of the Internet, the most common
networking protocols have become TCP and IP. IIOP is the protocol adopted by the OMG
that must be supported by CORBA-compliant networked ORBs, either as a native protocol
or through half bridges. Essentially, IIOP is just a mapping of GIOP onto the Internet’s
TCP transport layer. Mappings onto other transport layers may be defined in the future.

An ORB may support optional ESIOPs (Environment-Specific IOPs) as its preferred
ORB protocol. DCE-Common IOP (DCI-CIOP) is the first such protocol that has been
publicly specified. It uses a subset of DCE-RPC facilities and reuses parts of GIOP.

IIOP compliance requires that agents that are capable of accepting object requests
or providing locations for objects publish there TCP/IP addresses in IORs. Any client
needing the published object’s services initiate a connection with the object, using the
address specified in its IOR. The agent may accept or reject connection requests.

As explained GIOP is insufficient for enabling client-server interaction. IIOP is the
glue that binds GIOP and TCP/IP. An examination of TCP/IP shows that it falls short
in several areas. The first is in providing a consistent language that allows clients and
servers to speak. The second is in defining a standard method to allow clients to discover
services. By discovery is meant not dynamic discovery in the sense of finding objects
through the naming service, but rather what information must be in a handle or reference

5.5. MICO AS A SOFTWARE PLATFORM FOR ZERO-COPY 125

in order for clients and servers to communicate. For a client to communicate with an
object, it must have a reference to it. This object reference in IIOP is the IOR, which
contains a host address and a port number. A client wanting to invoke on the object can
send a Request message to the host and port listed in the IOR. The object that is the target
of the invocation lives within a server process in the host machine. The server listens at
the port for requests and, when they come in, dispatches them to the object. This scenario
requires that the server is always running and actively listening on the port for requests.

IIOP was mainly created to address the particulars of the TCP/IP protocols. Specif-
ically it provides host addresses through IP addresses and machine process addresses
through port numbers. IIOP was kept very thin, providing only what GIOP needs in or-
der to establish a connection. Figure 5.4 shows the communication introduced between
a client and a server by calling a method of a CORBA object. First the connection is
established by according to the data in the IOR provided to the IIOP, then the request and
reply is handled by the GIOP and afterwards the connection is terminated again.

5.5 MICO as a Software Platform for Zero-Copy

This section first measures the performance of the MICO ORB and then gives a detailed
analysis where the overhead inside the middleware occured.

5.5.1 MICO our Software Platform

To study the performance of CORBA and implement our optimizations we used one of the
large and sophisticated open source projects around. The acronym MICO [130] expands
to MICO Is CORBA. The intention of this project is to provide a freely available and fully
compliant implementation of the CORBA standard.

MICO has become quite popular as an open source project and is widely used for
different purposes. As a major milestone, MICO has been branded as CORBA compliant
by the OpenGroup, thus demonstrating that open source can indeed produce industrial
strength software. The goal is to keep MICO compliant to the latest CORBA standard.
The sources of MICO are placed under the GNU-copyright notice.

MICO is implemented in C++ and includes many features as: IDL to C++ mapping,
Dynamic Invocation Interface (DII), Dynamic Skeleton Interface (DSI) , IIOP as native
protocol (ORB prepared for multi-protocol support) , Portable Object Adapter (POA)
, Objects by Value (OBV) , CORBA Components (CCM) , Interceptors , Support for
secure communication and authentication using SSL and many CORBA Services like
Interoperable Naming service, Trading service , Event service.

126 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

5.5.2 Shortcomings and State of the Art in CORBA Middleware

At this point we first show the bandwidth performance of an unoptimized socket API
as well as the bandwidth achieved by MICO. We therefore use the TTCP benchmark
described in Section 5.7.1 as well a corresponding CORBA version introduced in Sec-
tion 5.7.2. The hardware platform (see Section 5.7.3) consists of the same cluster nodes
used in Chapter 4. Figure 5.5 summarizes the TTCP benchmark performance results for
the benchmarks over Gigabit Ethernet. The single measurement results show very lit-
tle variation. It is clear that the CORBA-based TTCP implementation ran considerably
slower than the raw TCP version programmed in C especially on Gigabit Ethernet but
even on Fast Ethernet. The CORBA performance for all tests is poor and lays around
50 MBit/s even if the raw TCP socket version without zero-copy can achieve 330 MBit/s.
The potential for a zero-copy optimization is therefore huge.

0

50

100

150

200

250

300

350

400

4K 16K 64K 256K 1M 4M 16M

Block Size [MByte]

Tr
an

sf
er

 R
at

e
[M

B
it/

s]

Original TCP

Original CORBA

Figure 5.5: Bandwidths measured with TTCP for sockets and CORBA.
Both tests were run without zero-copy optimizations.

Since the data that is sent is untyped the CORBA presentation layer would not need
to perform complex marshaling to handle byte-ordering differences between sender and
receiver. But although marshaling is not required, the CORBA implementations incurred
significant data copying overhead.

We instrumented the ORB source code and used the UNIX execution profiler prof
to pinpoint the sources of this overhead. The C++ compiler was directed to instrument the
source code with monitoring instructions and prof was then used to measure the amount
of time spent in functions during program execution.

The functions where the most time was spent when sending and receiving 16 MByte
while using 4 KByte data buffers and 64 KByte socket queues where the read and write

5.5. MICO AS A SOFTWARE PLATFORM FOR ZERO-COPY 127

system calls. They accounted for more than 98% of the execution time in the raw TCP
C-implementations of TTCP.

Although the data was transmitted as 4096 separate 4 KByte buffers the receiver often
read much smaller chunks of around 1-2 KByte. This illustrates the fragmentation and
reassembly performed by the TCP/IP stack for the Ethernet (whose MTU is 1500 Bytes).

The read and write system calls had quite an influence on the execution of the CORBA
implementations as well. Unlike the C versions, however, these implementations spent
70% percent of their time performing other tasks, such as copying and/or inspecting data
(memcpy, strcpy, and strlen), checking for activity on other I/O handles (poll),
and manipulating signal handlers (sigaction).

The highest cost tasks involved data copying and data inspection. Even if the copy
could have been a contiguous block copy, MICO uses a very general unoptimized copy
loop that is able to handle many different types. Even if the copy is performed only once
it dominates the overhead. And note that there is another copy in the standard TCP/IP
stack which is the main reason for the read() and write() overhead.

Another source of overhead is the memory allocation of the IDL skeletons. These
are generated automatically by a CORBA IDL compiler and normally do not know how
the user-supplied upcall will use the parameters passed to it from the request message.
Thus, they use conservative memory management techniques that dynamically allocate
and release copies of messages before and after an upcall, respectively. These memory
management policies are important in some circumstances (e.g., if an upcall is used in a
multi-threaded application). However, this strategy needlessly increases processing over-
head for streaming applications like TTCP that consume their data immediately without
modifying it.

The MICO implementation of CORBA is based on C++ where a modified version
of the STL (Standard Template Library) builds the foundation for the handling of data
structures. The analysis of MICO includes the ORB itself as well as the IDL-generated
stub and skeleton for the test application. In the analysis we focus on the intern handling
of the data parameters passed by a CORBA method invocation.

As mentioned before we used a step by step instrumentation of the MICO source code
to generate debug output.

There are two facts that made the analysis awkward and delicate. There is first the
deep inheritance hierarchies used in the ORB implementation. This often leads to many
possible candidates of implementations for a method call under study. Secondly the au-
thors excessively use the operator overloading technique. Functionality made available
by overloaded methods made it very difficult to find the real implementation in the code
as the method calls hide behind the normal language syntax.

In [66] a similar analysis is done for Orbix and ORBeline. The authors found the
same performance bottlenecks but had even higher performance variations between Orbix
and ORBeline. They found that this results from differences in the message fragmenta-

128 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

tion/reassembly implementations of the tested ORBs, as well as the design of their socket
event handling. ORBeline copies data approximately 3 more times than Orbix on the
sender and receiver for sequences.

5.5.3 Data Structure Analysis

All the datatypes that can be defined in CORBA Interface Description Language (IDL) are
represented by a C++-class in MICO. To internally identify these types MICO allocates a
key to them which consists of an integer value called Type Identifier (TID).

Of main interest for this chapter is the CORBA type sequence<octet>. An octet
is an 8-bit value that undergoes no marshaling, neither by the client nor by the server.
A sequence of these octets is called an octet stream. It is arbitrarily long and has a well-
defined beginning. A sequence of octets does not undergo conversion from one byte order
to another either; the transmitter and receiver leave it as is. A second interesting point in
the semantic of streams is that CORBA defines an access method that allows for se-
quence<octet> to be accessed directly via a pointer to a memory buffer with variable
size. This data type therefore perfectly fits the needs for direct deposit handling. In the
following we use the octet streams as the base for the implementation of an optimized
direct deposit ORB.

In MICO sequence<octet> is mapped to the C++-class SequenceTmpl <Oc-

tet, MICO TID OCTET> using the generic template SequenceTmpl<> which is
used for all types of CORBA sequences. SequenceTmpl<> describes the records of
a sequence by using the STL vector<>-type. This solution is very elegant and quite
efficient for complex and heavily typed data structures. But for the handling of octet
streams which are just streams of Bytes such processings lead to a large overhead.

5.5.4 Data Path Analysis

The data path of a static CORBA method invocation within the MICO ORB is depicted
schematically in Figure 5.6.

Say that a client wants to communicate with a server. Therefore it allocates its data
and passes it per reference through the compiler generated object stub and through
the StaticRequest invoke interface to the IIOPProxy layer in the ORB. This
is the protocol layer which implements the Internet InterORB Protocol. From there the
data is passed further to the GIOPRequest class that generates a GIOP request message
by marshaling the data in the TCSeqOctet class. Then the GIOPConn class initiates
a connection to the server and the GIOP request message can be sent using the TCP-
Transport implementation.

The server waits for messages to receive and uses the TCPTransport implemen-
tation to read the request into the IIOPServer. This uses the GIOPRequest class
which demarshals the request by using TCSeqOctet again. This demarshaling routine

5.5. MICO AS A SOFTWARE PLATFORM FOR ZERO-COPY 129

allocates the parameter data in the ORB and passes it per reference up to the Static-
MethodDispatcher which calls the compiler generated object skeleton. The
skeleton maps the call to the requested server object method that implements the user
functionality.

object_implapplication

StaticMethodDispatcher

object_skel

StaticRequest

object_stub

Client Server

IIOPServer
callback

IIOPProxy
invoke

invoke invoke

methodmethod

main method

get_in_args
GIOPRequest

output
GIOPConn

set_out_args
GIOPRequest GIOPConn

do_read

demarshal
TCSeqOctet

marshal
TCSeqOctet TCPTransport

read
TCPTransport
write

data

data

data
request request

data

data

data

Object
Object reference

Call by value

Network transmission
Call by reference

ORB
Network

Figure 5.6: Data path through the MICO ORB.

The problem that is introduced by the marshaling routine are the data copies (de-
picted by black arrows in Figure 5.6). The marshaling and demarshaling is handled
by the StaticTypeInfo class. This class defines the virtual methods marshal
(DataEncoder &, StaticValueType) and demarshal(DataDecoder &,

StaticValueType). For each of the CORBA parameter types there exist a con-
crete subclass of StaticTypeInfo that implements marshal(DataEncoder &,

StaticValueType) and demarshal(DataDecoder &,StaticValueType).
These subclasses of StaticTypeInfo are instantiated by the ORB on ORB startup.

The appropriate subclass is selected by the TID of the data type that has to be marshaled
or demarshaled respectively.

The marshaling and demarshaling routines in the StaticTypeInfo subclasses im-
plement their functionality by taking the StaticValueType parameter data and copy-
ing it to a CORBA-request buffer allocated by the DataEncoder or the DataDecoder
using an unoptimized loop and block wise memcpy(). The IIOPProxy then uses the
GIOPRequest class to generate a GIOP-message of the type ’Request’. When the re-
quest message is ready in the IIOPProxy the next step is to initiate a connection which
is done by the GIOPConn class and then send the message via the TCPTransport
layer.

130 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

On the server the data is received by the do read method of the server side GIOP-
Conn class. This method is called by a callback function which is installed for all
new connection. The method do read runs until all the data for a GIOP-request mes-
sage is received and stored in a buffer and then passed up by a further callback in the
IIOPServer. The IIOPServer calls the demarshaling for the received GIOP-request
and searches the specified object implementation in the StaticMethodDispatcher.
Finally the unpacked parameters can be passed up to the requested method implemented
by the application programmer. This method is wrapped by the server skeleton code
which is a base class of the object implementation.

5.6 Modifications of MICO for Zero-Copy

5.6.1 A New Datatype: Sequence of ZC OCTET

As already stated in Section 5.5 we focus on the CORBA-type sequence<octet>

with its internal representation SequenceTmpl <Octet, MICO TID OCTET> as a
basis for the implementation of a data type optimized for direct deposit. To compare an
optimized stream version and parallelly allow the standard types we introduced a new type
ZC Octet which depicts a modified Octet type. The representation of this new type
is identical to the standard Octet, both types are mapped to the C++-type unsigned
char. Together with the introduction of a MICO TID ZC OCTET as new type identifier
it becomes possible to instantiate objects of the type SequenceTmpl <ZC Octet,

MICO TID ZC OCTET>. The methods of this object type are further modified to support
zero-copy direct deposit.

As the internal data representation of SequenceTmpl<> is an STL vector<>

which is not suitable for direct deposit we had to find ways to store the data as un-
typed data directly in a memory buffer. We therefore extended the definition of the Se-
quenceTmpl<> class by such a buffer. A pointer to a reserved memory block as well as
a pointer that depicts the used page aligned area in this buffer and a long value that stores
the effective buffer size was introduced in the class.

To implement the desired functionality of the direct deposit sequences we further
added a case statement into the template class which allows to separate the direct de-
posit case from the standard case by using the template argument TID. This distinction
of cases had to be implemented for different methods:

� SequenceTmpl()

Standard Case: Empty

Direct Deposit: Initialization of buf, buf aligned and size

5.6. MODIFICATIONS OF MICO FOR ZERO-COPY 131

� ˜SequenceTmpl()

Standard Case: Empty

Direct Deposit: Deallocation of allocated memory in buf if not yet released.

� length(MICO ULong)

Standard Case: Setting of the length argument of the vector.

Direct Deposit: Deallocation of allocated memory in buf and newly allocate a
large enough buffer for buf with malloc(). Then the buf aligned has
to be set appropriately as well as the size argument. This is not optimal
for the performance of such a call but can be modified in further optimization
steps. Another aspect of this is that we expect the user to set the length of a
sequence just once at the beginning when he allocates the memory.

� length()

Standard Case: Return of the size of vector.

Direct Deposit: Return of size.

� operator[](MICO ULong)

Standard Case: Return of the pointer to vector[].

Direct Deposit: Return of buf aligned.

To allow an exchange of readily received data blocks between two SequenceTmpl<>
without needing a copy we additionally introduced the following method:

� copy buffer(SequenceTmpl<>)

Standard Case: Empty

Direct Deposit: Setting of buf, buf aligned and size to the values of the
passed parameter SequenceTmpl<>.

With this specializations of the SequenceTmpl<>methods we can enable MICO to
internally handle direct deposit data. These methods on the other hand are exposed to the
application developer too which enables to handle zero-copy data correctly in the applica-
tion. What is especially useful is the length(MICO ULong) method which is used for
the initialization of a data block of a certain length and operator[](MICO ULong)

to access a data block of interest.
Finally the IDL compiler has to be modified to support the new ZC Octet type.

As discussed at the beginning we wanted to use both the standard and optimized octets

132 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

parallelly why we introduced this new type. We therefore have to advice the IDL compiler
to generate ZC Octet stubs and ZC Octet skeletons. These look the same
as the standard sequence stubs and skeletons but just introduce the ZC prefix and the
appropriate MICO TID.

5.6.2 Direct Deposit Sender

As MICO chooses to statically instantiate methods for marshaling and demarshaling ac-
cording to the TID of the used CORBA data type it was necessary for SequenceTmpl
<ZC Octet, MICO TID ZC OCTET> to implement a concrete subclass TCSeqZC-
Octet of StaticTypeInfo. This class provides the method marshal(DataEn-

coder &, StaticValueType) which is called by the IIOPProxy to generate a
CORBA-request.

In the case of a direct deposit the data are not marshaled but just passed further to
the TCPTransport layer (see Figure 5.7). On the other hand a GIOPRequest header is
generated which contains the size of the data block to be sent that is needed by the receiver
to correctly receive the GIOPRequest message. Here the separation of the control transfer
takes place. While the GIOPRequest message header can be sent by the IIOPProxy the
data is sent to the TCPTransport layer directly by the marshaling routine marshal
(DataEncoder &, StaticValueType).

object_implapplication

StaticMethodDispatcher

object_skel

StaticRequest

object_stub

ORB

Client Server

IIOPServer
callback

IIOPProxy
invoke

invoke invoke

methodmethod

main method

get_in_args
GIOPRequest

output
GIOPConn

set_out_args
GIOPRequest GIOPConn

do_read

TCPTransport
read

TCPTransport
write

Object
Object reference

Call by value

Network transmission
Call by reference

data

data

data

data

data

request request

data

data

data

data

demarshalmarshal
TCSeqZCOctet TCSeqZCOctet

Network

Control

Data

Figure 5.7: Data path through the optimized MICO ORB. The data copies
are replaced by object references and a separation of control and data trans-
fer is introduced.

5.6. MODIFICATIONS OF MICO FOR ZERO-COPY 133

To allow the receiver to allocate a large enough memory buffer for a direct deposit
transfer even in the case of a delayed CORBA-request the marshaling routine sends an
additional Zero-Copy header before sending the data (Figure 5.8. This header is page
aligned and has the exact size of a memory page. The only data field that it contains is
the size of the following zero-copy data block. An optional implementation optimiza-
tion could combine the GIOPRequest header and the Zero-Copy header into this memory
page.

As the Zero-Copy header is aligned and of the size of a memory page it synchronizes
a speculative zero-copy receiver therefore preventing garbling of the first packet (see Sec-
tion 4.3.7).

The Zero-Copy header is especially useful when using two dedicated connections over
two different networks as described in Section 5.6.4. As this sort of headers are not sup-
ported by the IIOP protocol this type of extention implements an ESIOP, an Environment-
Specific IOP as explained in more detail in Section 5.4.7.

5.6.3 Direct Deposit Receiver

The receiver side communication of MICO has a totally different structure than the sender
side. It relies on callbacks why it was not possible to integrate the data reception directly
in the TCSeqZCOctet demarshaling routine similar to the sender. Instead of using the
demarshaling routine we took the do read()method in the GIOPConn class and added
a case statement that separates the normal case form a direct deposit receive callback.

In the case of a direct deposit request the initialization supplies a memory page buffer
for the Zero-Copy header. After receiving this header the receiver reads the size of the
following direct deposit block and allocates an appropriately sized and aligned buffer.
While receiving the data block it is directly mapped to this buffer. Afterwards a pointer is
set to this buffer allowing the demarshaling routine to directly access the data and pass it
further without copying and do read() terminates.

After the CORBA-request (without direct deposit data blocks) has been received by
do read() the demarshaling and method upcall is triggered via the IIOPServer by
a further callback. While the rest of the CORBA-request is handled normally, the call
of demarshal (DataDecoder &, StaticValueType) uses the new copy

buffer (SequenceTmpl<>) method for the direct deposit data. This allows to
just set the pointers to the data in the data structures that are the passed to the method call.
With this a passing per reference becomes feasible and copying is not used anymore.

5.6.4 Separate High-Bandwidth Connection

To prevent the garbling of messages as described in Section 4.3.7 from the outset we
implemented a solution in MICO that uses two available networks concurrently for the
communication (Figure 5.8).

134 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

ApplicationApplication

ORBORB

GIOPGIOP--Header RequestHeader Request--Header RequestHeader Request--BodyBody

Object :: method (Object :: method (parapara , , zc_parazc_para))

CORBACORBA--MethodcallMethodcall

GIOP Request MessageGIOP Request Message

ClientClient

ApplicationApplication

ORBORB

ServerServer

ZCZC--Header RequestHeader Request--BodyBody

Figure 5.8: The optimized ORB uses separation of control and data trans-
fer. Control transfer and standard GIOP messages are handled by a standard
IIOP connection while zero-copy data is sent over a special zero-copy con-
nection.

The standard IIOP-connection is maintained as is. The connection is established for
each request like in the unoptimized case and all the standard IIOP messages are
further sent over this network. But for GIOPRequests which contain data containing
direct deposit aware parameters this parameters are separated.

An additional gigabit-connection for direct deposit is established concurrently to the
standard IIOP-connection for requests transferring zero-copy streams. For the TCP-
Transport layer this just means that the socket option SO ZERO COPY is set to allow
zero-copy data passing with the zero-copy sockets. This connection is established
exclusively for method parameters specifying direct deposit behavior.

The fist connection that is established is always the standard IIOP-connection that
just uses the IP-address specified by the object IOR. To find a second adapter we use
the ZC Resolver class which resolves the IP address of an available Gigabit Ethernet
Adapter in the specified host. These addresses are then used to establish the additional
gigabit-connection.

The helper class ZC Resolver was introduced for the mapping between Fast- and
Gigabit Ethernet adapters. The only method it exports is Address get zc address

(const Address) which accepts an IP address as parameter and returns the IP ad-
dress of the Gigabit Ethernet adapter of the specified machine.

This additional direct deposit connection is administered by the IIOPProxy and
IIOPServer in the IIOP layer. MICO provides caching facilities that keep connections
up to minimize the connection setup time. Gigabit connections profit from this caching
too.

5.7. PERFORMANCE EVALUATION 135

To anytime distinguish between different connections, standard and direct deposit,
the list of by MICO supported protocols was enhanced. The protocols are local (local
connection within an ORB for optimized interprocess communication), unix (for UNIX
sockets), inet (for TCP/IP sockets) and inet-dgram (for UDP/IP sockets). This list
was expanded by inet-zc depicting a zero-copy TCP/IP socket. By explicitly setting
the protocol inet-zc to an address it becomes possible to force the utilization of direct
deposit transfers as long as the adapter supports it.

5.7 Performance Evaluation

5.7.1 TTCP - TCP Performance Benchmark

The data for the experiments was produced and consumed by an extended version of
the widely available TCP protocol benchmarking tool TTCP [154]. This tool measures
the end-to-end data transfer throughput in MBit/s from a transmitter process to a remote
receiver process. The flow of user data is unidirectional, with the transmitter flooding
the receiver with a user-specified number of data buffers. Various sender and receiver
parameters may be selected at run-time. These parameters include the number of data
buffers transmitted, the size of data buffers, and the size of the socket transmit and receive
queues.

The following versions of TTCP were implemented and benchmarked:

Raw TCP version This is the standard TTCP program implemented in C. It uses C
socket calls to transfer and receive data via TCP/IP.

Zero-Copy TCP version This version replaces the default socket interface by the zero-
copy sockets described in Chapter 4. This is more or less done by specifying a
zero-copy socket option and data buffer aligning.

CORBA version This version replaces all C socket calls in TTCP with stubs and skele-
tons generated from a pair of CORBA IDL specifications. The IDL specification
uses a sequence parameter for the data buffer.

We ran several series of tests that transferred several amounts of user data ranging
from 4 KByte to 16 MByte in aligned 4 KByte buffers represented by a memory page. As
the zero-copy implementation provides its optimization to 4 KByte pages only, the data
buffers were run in 4 KByte increments. Each test was run at least 10 times to account
for performance variation due to transient load on the networks and hosts. The variance
between runs was very low since the tests were conducted on otherwise unused networks.

136 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

5.7.2 CORBA Implementation of TTCP

The CORBA implementations were developed using a single threaded version of MICO 2.3.
Extending TTCP to use CORBA required several modifications to the original C-socket
code. All socket calls were replaced with stubs and skeletons generated from a pair of
CORBA interface definitions. The IDL interface uses a sequence of octets to transmit the
data as follows:

typedef sequence<octet> Buffer;

interface ttcp

{

void send(in Buffer data);

void send_inout(inout Buffer data);

oneway void send_oneway(in Buffer data);

void prep_timer();

void do_stats();

};

The data buffers exchanged between the sender and receiver in TTCP are treated as
a stream of untyped bytes. The send operation uses oneway semantics since the TTCP
benchmarks measure the performance of uni-directional data transfer. This behavior is
consistent with the flow of communication in electronic medical imaging applications and
video distribution. Additionally a ping-pong test as well as a standard twoway function
which block until the function returns was implemented.

The client side of the original TTCP was modified to bind to a TTCP server by an
object reference to the object implementation of TTCP. Once the object references were
obtained, data buffers of the appropriate size were initialized and then transmitted by
calling the IDL-generated send stubs.

The server-side was modified to create an object implementation for TTCP. CORBA
IDL compilers generate skeletons that translate IDL interface definitions into C++ base
classes. Each IDL operation is mapped to a corresponding C++ pure virtual method.
Programmers then define C++ derived classes that override these virtual methods to im-
plement application specific functionality.

5.7.3 Hardware Platform

The experiments in this section were conducted using our first generation CoPs cluster.
The machines are identical to that of Chapter 4, we use off-the-shelf 400 MHz Pentium II
PCs, running Linux 2.2, connected via Gigabit Ethernet by fiber optic cables. Our Gigabit
Ethernet test bed comprises a SmartSwitch 8600 manufactured by Cabletron and GNIC-
II Gigabit Ethernet interface cards manufactured by PacketEngines. For parts of the test

5.7. PERFORMANCE EVALUATION 137

we use our optimized de-/fragmenting driver with speculation. This allows us to test real
zero-copy TCP communication with middleware across all layers.

5.7.4 Experimental Setup

Figure 5.9 shows the network configuration we use in our cluster. Each machine hosts
three Ethernet adapters. The eth0 is the system and maintenance network that is used
for NFS access, login and remote machine control. A separate Ethernet was used for
the measurement of the IIOP-requests and the CORBA method invocations. The direct
deposit transfers are send over a switched Gigabit Ethernet network. The machine is
further described in Section 5.7.3.

Switch
100 MBit/s full duplex
1000 MBit/s full duplex

S/UTP

NFS − Server

3Com
3C905B
100 Base T

Dec
DE500−XA
100 Base T

Hamachi
GNIC−II
1000 Base SX

3Com
3C905B
100 Base T

Dec
DE500−XA
100 Base T

Hamachi
GNIC−II
1000 Base SX

Fiber

S/UTP

S/UTPFiber

S/UTP

S/UTP

eth0 eth1 eth2 eth0 eth1 eth2

Workstation 1 Workstation 2

Figure 5.9: As our measurement platform we used machines equipped with
three networking interfaces: a service network, a separate Fast Ethernet net-
work used for IIOP transfers as well as a Gigabit Ethernet network for zero-
copy transfers.

For the measurement of the direct deposit support we used the original Linux 2.2
TCP/IP stack and the standard network card drivers. The measurements using zero-copy
TCP we run our zero-copy optimized stack with the speculatively defragmenting hamachi
driver. The test application were the three version of TTCP described in Section 5.7.1.

The CORBA based measurements were done with the CORBA TTCP and the opti-
mized ORB as discussed. For the measurements that shall not profit from the optimiza-
tions the interface just specified the standard sequence<octet> type instead of the
optimized sequence<ZC octet>.

Again we ran several series of tests that transferred several amounts of user data rang-
ing from 4 KByte to 16 MByte in aligned 4 KByte buffers represented by a memory
page. As the zero-copy implementation provides its optimization to 4 KByte pages only,

138 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

the data buffers were run in 4 KByte increments. Each test was run at least 10 times to
account for performance variation due to transient load on the networks and hosts. The
variance between runs was very low since the tests were conducted on otherwise unused
networks.

5.7.5 Performance Results of MICO With Zero-Copy

Figure 5.10 illustrates the results of measuring two versions of the TTCP benchmark
implemented on top of two different versions of CORBA.

0

100

200

300

400

500

600

700

4K 16K 64K 256K 1M 4M 16M
Block Size [MByte]

Tr
an

sf
er

 R
at

e
[M

B
it/

s]

Zero-Copy TCP
Original TCP

Optimization for TCP sockets

0

100

200

300

400

500

600

700

4K 16K 64K 256K 1M 4M 16M
Block Size [MByte]

Tr
an

sf
er

 R
at

e
[M

B
it/

s]

Zero-Copy CORBA
with Zero-Copy TCP
Zero-Copy CORBA
with copying TCP
Original CORBA

Optimization for CORBA

Figure 5.10: Bandwidths measured with TTCP for raw TCP-sockets and
for CORBA. The left chart shows the performance gain for the zero-copy
socket interface, the right chart the gain of the zero-copy optimization in the
MICO ORB. The optimized ORB is able to sustain the same bandwidths as
the simple TCP-socket benchmark.

A first point that is shown nicely again in the chart is that the zero-copy TCP stack per-
forms much better then the original copying stack. The large performance gain for small
messages are achieved by the optimized latency and the small read and write overhead
which allows to achieve very good throughput already by transmitting single pages.

But the contribution of this chapter is shown in the ’Optimized CORBA’ measure-
ment which nicely matches the C-socket version of TTCP. That proves that the optimized
ORB handles the ZC Octets correctly by just passing it through the ORB while not
introducing much overhead.

A third aspect is shown in the ’Zero-Copy CORBA’ measurement which uses both
the optimized CORBA ORB and the zero-copy TCP/IP stack. For large blocks our ORB
achieves 550 MBit/s throughput while the application still fully complies tho the CORBA
standard.

5.7. PERFORMANCE EVALUATION 139

0

100

200

300

400

500

600

700

4K 16K 64K 256K 1M 4M 16M

Block Size [MByte]

Tr
an

sf
er

 R
at

e
[M

B
it/

s]
in - Parameter
oneway - Method
inout - Parameter

Figure 5.11: CORBA direct deposit transfers using different parameter
types.

A further series of measurements shown in Figure 5.11 examines the different param-
eter and method types in, inout and oneway.

in parameter Standard twoway CORBA-method declaration with parameter type in.

oneway method CORBA-oneway-method declaration with parameter type in.

inout parameter Standard twoway CORBA-method declaration with parameter type
inout.

Until now we used the CORBA standard twoway to do method invocations meaning
that a two way communication takes place and a call is blocking until the server responds.
The data buffers exchanged between the sender and receiver in TTCP are treated as a
stream of untyped bytes and the send operation uses a oneway semantics. Since the TTCP
benchmarks measure the performance of uni-directional data transfer we test oneway se-
mantics with CORBA too. This is possible for methods that do not return any parameter
or function value which is consistent to the behavior of the flow of communication in elec-
tronic medical imaging applications and video distribution. Even if the oneway method is
not 100% reliable in the sense that the client does not know if the server accepted a call
and the called method is available the communication of the GIOPRequest takes place
over a reliable TCP transport layer meaning that no data gets lost on the way to the server.
Additionally a ping-pong test which blocks until the function returns was implemented.

The result shows a slightly better performance for the onewaymethods which is clear
as the overhead of the acknowledgment is ignored. But the curves still look very similar

140 CHAPTER 5. ZERO COPY CONCEPTS FOR DISTRIBUTED OBJECT MIDDLEWARE

as the overhead for large blocks can nearly be neglected. But still the oneway method can
be used for non blocking calls which does not further improve the network performance
but can improve the overall performance of an application as the computation can further
proceed.

The twoway ping-pong method using inout parameters achieves 50% of the perfor-
mance as expected because the resulting bandwidth just considers one transfer. As the
same amount of data is transfered back, the result could be doubled to get the bandwidth
that is achieved on the network. For smaller packets it makes sense that this doubled
bandwidth is slightly better than what can be achieved by a uni-directional transfer.

5.7.6 Benefit of Zero-Copy Middleware

The performance results achieved with zero-copy CORBA look very promising. It was
the goal of this chapter to optimize a CORBA ORB for direct deposit operation. As
shown in the results our optimized MICO-ORB nicely matches the C-socket performance.
That proves that the optimized ORB handles the ZC Octets correctly by just passing it
through the ORB while not introducing much overhead.

It is astonishing that the optimized ORB can keep up with the much improved per-
formance when using the zero-copy TCP stack. This is very encouraging and proves that
our argumentation about zero-copy as the most essential technique to optimize system
software for efficiency is true.

The results described in Section 5.7.5 show the success of separating control and data
transfers in the ORB. The higher level conceptional contribution that was the intent of
this chapter shows that the concepts really work. It was namely possible to prove that
it is indeed possible to use CORBA middleware on top of a standard socket application
programming interface and still adhere to the zero-copy regime. For large blocks our ORB
achieves 550 MBit/s throughput while the application still fully complies tho the CORBA
standard. That means that the programmer just defines the interface and generates the
stubs and skeletons which map the server implementation. This stands in relation to the
50 MBit/s that are achieved by a copying ORB and the standard TCP/IP stack. This means
that a performance gain of 1000% could have been achieved by introducing zero-copy.

Of course the separation of control and data transfer introduces some latency for small
amounts of parameter data. We therefore loose some of the benefit. But still a problem
for the effective transfer of small parameter sizes is the latency imported by using the
ORB itself that was not much improved in our implementation. These overheads are
introduced by interpreting the object reference, connection establishment as well as IIOP
related overhead. They largely dominate so that the effective size of the small parameters
did not show any difference in time for a method call. But as we are focusing on high
bandwidth networks transporting huge amounts of data this is negligible. And still the
optimized ORB is much faster than the original MICO.

6
Modeling Distributed Objects

for Parallel Processing

A growing interest in distributed technologies for high performance distributed computing
is driven primarily by the popularization of the Internet. This results in new challenges for
software developers of distributed applications that must deal with complex issues, such
as remote communication, partial failures and concurrency management.

With the advent of clusters, the focus of system architecture in Parallel- and Dis-
tributed Computing has shifted away from unique massively parallel supercomputers to-
wards smaller and more cost effective systems built entirely with personal computer parts.
This trend leads to the overwhelming popularity of Clusters of PCs to run traditional su-
percomputer application codes. A closer look at this trend reveals a continuing evolution
towards even more parallelism and towards a wider distribution e.g. on grid computing.
The better connectivity of most computers on the Internet will shortly permit a new view
of things suggesting that all those machines form a giant global computational grid.

This vision of a grid requires a set of new tools to program such systems. In the
last few years middleware has emerged as an important architecture for supporting rapid
development of distributed applications. Several programming environments that greatly
reduce the complexity of developing distributed software have been proposed and used.
These environments provide high-level facilities for developing distributed applications
without having to deal with low-level details, such as remote communication and object
location. They use object-oriented abstractions and software components to deal with
the complexity of the system and promote modularity and reusability. CORBA [112] is
an example of an object oriented environment supporting simple distributed objects and
components as well.

These environments however lack a general support for “one-to-many” communica-
tion primitives; such primitives greatly simplify the development of several types of high
performance applications that have requirements for parallel processing, collaborative
work, high availability, or fault tolerance.

There exist more traditional software systems for parallel programming (e.g. APIs
and middleware) as candidates for high performance distributed computing and they use

141

142 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

the same distributed computing platform technology as CORBA: multiple interconnected
computers cooperating on an application. But such systems have normally been devel-
oped in a way that remained disconnected from object-based and distributed object com-
puting e.g. with simple Message Passing Interface (MPI) [57] or Parallel Virtual Machine
(PVM) [147].

Lacking support for objects prevents parallel applications from taking advantage of the
large investment in distributed object software technologies and tools, and also makes it
difficult to add parallel parts to distributed CORBA applications. Therefore parallel pro-
grammers still require a lot of redundant learning about significantly overlapping tech-
nologies (e.g. typed message passing [58]). Similarly, CORBA applications that need
parallel subsystems require the CORBA-programmers to learn about low level message
passing for no good technical reason.

This chapter proposes some ideas on how to model distributed objects for parallel pro-
cessing. The optimized MICO ORB shall then be used to parallelize jobs and distribute
data without internal copies resulting in an efficient implementation that matches simple
message passing in performance. We observed that none of the current approaches is able
to completely satisfy the requirements given by the MPEG-Transcoder application de-
scribed in Chapter 7 and therefore introduce the design of a new service which we named
simply a CORBA Distributor Service. This type of service matches the application pat-
tern we aim at and allows transparent parallelization with decoupled clients and servers.
With an inherent load balancing service the CORBA Distributor Service serves as the
basic foundation to implement parallel applications on clusters of PCs with object and
component based technology that still adheres to the zero-copy principle by just using an
optimized ORB.

6.1 Parallelization with CORBA

Parallel applications are characterized by a set of processes operating in parallel, usually
on parts of a larger data set that is divided up among the participating processes. Data is
typically redistributed between a set of sending processes and a set of receiving processes,
which are often the same single set.

This pattern has been implemented in several CORBA-based environments by mod-
eling the data distribution as aggregate data arguments to a CORBA invocation. These
arguments are then divided up, collected, or redistributed between one or more clients
and one or more servers.

CORBA implements an inherent synchronous client/server paradigm (N:1) which has
generally been considered unsuitable for parallel programming due to the lack of peer-to-
peer semantics and difficulty in achieving distributed concurrency and/or data flow. So
what is needed is a parallelization paradigm (1:M) (see Figure 6.1).

A number of these issues have been mitigated by recent evolutions of CORBA such

6.2. REUSING CORBA PATTERNS FOR PARALLEL PROCESSING 143

ClientClient

send(G,msgsend(G,msg))

Server GroupServer Group

ServerServer
ClientsClients

send(srv,msgsend(srv,msg))

ClientClient

send(G,msgsend(G,msg))

Server GroupServer Group

ServerServer
ClientsClients

send(srv,msgsend(srv,msg))

Figure 6.1: CORBA implements an inherent synchronous client/server
paradigm (N:1). But for parallelization a (1:M) paradigm is needed.

as asynchronous method invocation [107] which is now part of the new CORBA 3 [114],
multithreading, and reactive/recursive ORB implementations (which can process a request
while waiting for a reply, all in a single thread). However, not all interactions can be
described in today’s CORBA model.

Several independent projects have demonstrated CORBA’s usefulness for parallel pro-
gramming generally by extending the interactions available and supporting some level of
data partitioning. This has typically resulted in some non-standard ORB extensions that
are neither portable nor interoperable. We intended to go another way and stay within
the standard CORBA specification for the ORB adding all required functionality to a new
CORBA service. The CORBA standardization process by the Object Management Group
(OMG) can then pick up our ideas and incorporate them into a new CORBA Common
Object Service (COS).

6.2 Reusing CORBA Patterns for Parallel Processing

When adopting a service approach, one might wonder whether an existing CORBA ser-
vice does already provide a suitable paradigm for object replication or call forwarding
and parallelization, or in more general terms if some IDL interfaces of an existing service
could be reused. Our evaluation of existing CORBA services as well as CORBA ORB
extensions has shown, that none of the services and standard extensions is able to meet all
the requirements to implement the functionality we were focusing on. Nevertheless some
of the COS services contain certain techniques that are interesting to be considered for
parallel processing. This following section of my thesis looks into some existing services
and into the criteria that are met or missed by previous solutions.

6.2.1 COS Event Service

A CORBA method call to a server object generates a synchronous request. The caller
passes its parameters and then blocks until the request has been processed and a return
value is returned. But there are scenarios that need a decoupled communication.

The COS Event Service [110] decouples the communication between suppliers and

144 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

consumers through so called Event Channels. Suppliers produce event data and con-
sumers process event data. Suppliers can generate events without knowing the identity of
the consumers. Conversely, consumers can receive events without knowing the identity
of the suppliers. This scenario is also known as the Publish&Subscribe paradigm.

An event channel is an intervening object that allows multiple suppliers to communi-
cate with multiple consumers asynchronously. An event channel is both a consumer and
a supplier of events, and can thus produce or consume events from another event channel.
Additionally the channel manages the registered suppliers and consumers.

The COS Event Service provides “one-to-many” communication that can be used
potentially for parallelization purposes. But the event service does not provide return
values. Two way communication can be achieved through reverse channels if needed.

Event data is communicated between suppliers and consumers by issuing standard
CORBA requests. Events by themselves are not CORBA objects because the CORBA
object model at the time of the specification of the COS Event Service did not support
passing objects-by-value. There are two approaches to initiating event communication
between suppliers and consumers. These two approaches are called the push model and
the pull model.

The push model allows a supplier of events to initiate the transfer of event data to
consumers. The pull model allows a consumer of events to request event data from a
supplier. In the push model, the supplier is taking the initiative; in the pull model, the
consumer is taking the initiative.

Event channels are standard CORBA objects that allow consumers and suppliers to
exchange events. Communication with an event channel is accomplished using standard
CORBA requests. An example configuration of the event service is illustrated in Fig-
ure 6.2.

push()push()

pull()pull()

SuppliersSuppliers
push()push()

pull()pull()

push()push()

pull()pull()

Event ChannelsEvent Channels
ConsumersConsumers

Event PropagationEvent Propagation

Figure 6.2: Event Service Example Configuration

The basic event service model only allows the sending of untyped data which is written
as of type ’any’. Hence, it provides a message-passing-like interface to event communi-
cation. The COS Event Service also provides a typed model that offers RPC-like com-
munication. Suppliers call operations on consumers (typed push model) or consumers
call operations on suppliers (typed pull model) using operations of an application-specific
IDL interface.

6.2. REUSING CORBA PATTERNS FOR PARALLEL PROCESSING 145

Replication with Event Channels

An event service provides a natural way for multicasting requests to replicated objects,
using the push model with one event channel: all the copies of a replicated object are
consumers of the channel, while clients supply event data on this channel (Figure 6.3).

ClientClient

push(msgpush(msg))

Server GroupServer Group

push(msgpush(msg))

push(msgpush(msg))

push(msgpush(msg))

EventEvent
ChannelChannel

Figure 6.3: Event Service for replication

In particular, the typed version of the event service provides for straightforward trans-
parent server replication: clients register with the event channel as suppliers and obtain a
reference to an object that supports the same interface as the replicated server; they can
then issue invocations on this interface directly. Clients do not need to know the number
or location of the copies, which can change at runtime.

Limitations of the Event Channel Approach

The COS Event Service achieves a decoupling of client and server through asynchronous
method calls. A referential decoupling is also achieved through the mediator role of a
channel.

Both the referential decoupling as well as the asynchronous method calls are require-
ments for parallelization. However the COS Event Service just provides a “best effort,
one-to-many” distribution semantic. But we need a decoupled “best effort, one-to-one”
delivery. Another problem is that the event service lacks load balancing functionality
since it is not needed in the domain of its normal operation.

Even using event channels for replication has some major limitations. There are no
group management facilities, nor guarantees concerning ordering, atomicity, or failures.
For instance, strict atomic delivery between all suppliers and all consumers would require
additional interfaces. Different qualities of service may be provided by different imple-
mentations, but their alternative use and exchange ability are not standardized in the event
service.

In addition, the model of the event service is not ideal for object replication. The
event service only supports one-way communication, i.e., operations on the replicated
server must have only in parameters. This restriction is very limited for many distributed
applications that require results from invocations. Return values may be transmitted using

146 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

a “reverse” event channel, but this requires clients and servers to be both consumers and
suppliers (see Figure 6.4).

Another fundamental problem with the design of the event service is that it is central-
ized. Although consumers and suppliers use different interfaces for pushing and pulling
event data to and from the channel, they have to invoke the same centralized object in
order to connect to an event channel. This event channel is a standard CORBA object,
which is a single point of failure in the event service architecture. There are several ways
for decentralizing an event service [52]. The solution that we consider the most promising
is also used in [53, 54] and consists in chaining event channels.

ClientClient

ServerServer
GroupGroup

Event Service asEvent Service as
Replication ServiceReplication Service

req.req.
sup.sup.

req.req.
cons.cons.

req.req.
cons.cons.

req.req.
sup.sup.

req.req.
cons.cons.

req.req.
sup.sup.

push()push()

pull()pull()

push()push()

push()push()

push()push()

push()push()

Figure 6.4: Two way communication via a reverse channel and chained
Event Channels used for decentralizing.

Rather than having a single event channel that diffuses messages to all copies of the
replicated object, one could introduce several event channels located on the client and on
the server site. A client is represented as a request-supplier and a response-consumer,
while a server is represented by a request-consumer and a response-supplier (Figure 6.4).
This model provides two-way communication with no single point of failure. Distinct
clients generate data using distinct request-suppliers and receive replies through distinct
response-consumers.

The request-supplier object performs multicast communication, possibly executing
some protocol with the request-consumers for guaranteeing atomicity and ordering of
messages. The response-consumer gathers multiple replies and returns them to the client
through a push or a pull mechanism.

This approach is fully CORBA compliant and does not modify the COS Event Service
specification. Also it does not introduce a single point of failure. Extra protocols are
however necessary between the channel objects for ensuring atomicity and ordering of
messages, and also for group membership.

6.2. REUSING CORBA PATTERNS FOR PARALLEL PROCESSING 147

6.2.2 COS Notification Service

The COS Notification Service [111] extends the existing COS Event Service and pre-
serves all of its semantics allowing for interoperability between basic event service clients
and notification service clients.

Countless projects had to stop using the basic standard COS Event Service because
the service lacked certain features which then had to be integrated in a proprietary way
killing any benefit of using a standard service.

Filtering and Quality of Service

There are two serious limitations of the event channel defined by the COS Event Service:
(1) it supports no event filtering capability, and (2) it has no ability to be configured to
support different qualities of service. A primary goal of the COS Notification Service is
to enhance the COS Event Service by introducing the concepts of filtering, and config-
urability according to various quality of service requirements. Clients of the notification
service can subscribe to specific events of interest by associating filter objects with the
proxies through which the clients communicate with event channels. These filter objects
encapsulate constraints which specify the events the consumer is interested in receiving,
enabling the channel to only deliver events to consumers which have expressed interest
in receiving them. Furthermore, the notification service enables each channel, each con-
nection, and each message to be configured to support the desired quality of service with
respect to delivery guarantee, event aging characteristics, and event prioritization.

In addition to these extentions the CORBA Notification Service additionally supports
event filtering on three fundamental types of events: untyped events contained within a
CORBA Any, typed events as defined by the COS Event Service, and structured events,
which are introduced in this specification. Structured events define a well-known data
structure which many different types of events can be mapped into in order to support
highly optimized event filtering.

Limitations of the Notification Approach

The COS Notification Service like the COS Event Service supports asynchronous ex-
change of event messages between clients and a referential supplier/consumer decoupling.
For the implementation of our solution the extensions of the notification service over the
event service do not bring any advantages. Even if the notification service provides many
kinds of quality settings the “one-to-many” delivery strategy remains the same. Therefore
also the notification service does not contain a load balancer.

148 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

6.2.3 Object Groups in Fault Tolerant CORBA

While CORBA simplifies the distribution of objects the standard environment lacks sup-
port for one-to-many- and many-to-many-communication primitives. Such primitives can
greatly simplify the development of several types of applications that have special re-
quirements for data parallelism.

One-to-many interactions can be provided by group communication. This allows to
manage Groups of Objects and provides primitives for sending messages to all members
of a group, with various reliability and ordering guarantees. A group constitutes a logical
addressing facility: messages can be issued to a group without having to know the number,
identity, or location of individual members. The notion of group has proven to be very
useful for providing high availability through replication: a set of replicas constitutes a
group, but are viewed by clients as a single entity in the system.

ClientClient

G.send(msgG.send(msg))

Server GroupServer Group

G1.send(msg)G1.send(msg)

G2.send(msg)G2.send(msg)

G3.send(msg)G3.send(msg)

Figure 6.5: Group Communication used in Fault Tolerant CORBA

The idea of adding group communication in an object-oriented middleware is not new.
When we started this work, at least two products (Electra [99, 100, 101] and Orbix+Isis
[81]) were available to support group communication in a CORBA-based environment.
And the OMG was already working on a Fault Tolerant CORBA specification which has
meanwhile been published as a standard in CORBA 2.5 and was integrated without major
changes into CORBA 3 [115].

The standard for Fault Tolerant CORBA aims at providing robust support for appli-
cations that require a high level of reliability, including applications that require more
reliability than can be provided by a single backup server.

Fault tolerance depends on entity redundancy, fault detection, and recovery. CORBA
provides fault tolerance by the replication of objects. This strategy allows great flexibility
in configuration management of the number of replicas, and of their assignment to differ-
ent hosts, compared to server replication. Replicated objects can invoke the methods of
other replicated objects without regard to the physical location of those objects.

6.2. REUSING CORBA PATTERNS FOR PARALLEL PROCESSING 149

Replication and Object Groups

To render an object fault-tolerant, several replicas of the object are created and managed
as an object group. While each individual replica of an object has its own object ref-
erence, an additional interoperable object group reference (IOGR) is introduced for the
object group as a whole. It is this object group reference that the replicated server pub-
lishes for use by the client objects. The client objects invoke methods on the server object
group, and the members of the server object group execute the methods and return their
responses to the clients, just like a conventional object. Because of the object group ab-
straction, the client objects are not aware that the server objects are replicated (replication
transparency) and are not aware of faults in the server replicas or of recovery from faults
(failure transparency).

Limitations of the Object Group Approach

As the replication relies on object groups that are depicted by an additional interoperable
object group reference (IOGR) an unreplicated client hosted by a legacy ORB can in fact
invoke methods of a replicated server, supported by the Fault Tolerance Infrastructure.
And also the object group references generated for replicated servers can be used by
legacy ORBs, although the full benefits of fault-tolerant operation are not achieved for an
unreplicated client.

But the interoperability is worse within a fault tolerant domain where all of the hosts
must use ORBs and fault tolerance infrastructures provided by the same vendor to ensure
interoperability and full fault tolerance within that domain. This defies the CORBA con-
cept. Consequently, the members of an object group must be hosted by ORBs from the
same vendor and Fault Tolerance Infrastructures from the same vendor.

However object groups are a very interesting concepts but not generally available at
this time yet. A change of the ORB would make it non-interoperable with other ORBs.
And again also the object groups within Fault Tolerant CORBA provide a “one-to-many”
distribution semantic while we need a decoupled “one-to-one” delivery for high perfor-
mance distributed computing.

6.2.4 Load Balancing Service

Until now, there has been no COS Load Balancing Service specified by the OMG. But
there is some native support in GIOP to support the re-direction necessary for load bal-
ancing in a robust and standard way. A special exception status (LocationForward), and
the LocateReply message, are the specific features that load-balanced ORBs can use.
They enable an ORB vendor to establish one or several machines as ”dispatchers”that
receive a client’s initial request, designate a lightly-loaded machine as a proper host for
the requested instance, and re-direct the client’s invocations to it (Figure 6.6). This load

150 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

balancing mechanism is standard, and works even on cross-vendor invocations.
CORBA, however, does not yet standardize interfaces that allow an object or server

implementation to work with the ORB on load balancing. An RFP issued by the OMG in
2001 will standardize these interfaces. This RFP seeks CORBA technology standardiza-
tion for load balancing and monitoring support for CORBA-based applications that oper-
ate on computing servers, server-farms (web), computing clusters, and high-performance
computing environments [76].

ClientsClients

subscribe()subscribe()

1. call()1. call()

Load Load
BalancingBalancing

ReplicatedReplicated
ServersServers

call forwardingcall forwarding

2.+ call()2.+ call()

Figure 6.6: Load Balancing Service serving as a request dispatcher.

The structure of the requirements for replica management - an essential feature of a
COS Load Balancing Service - is similar to those proposed in Fault Tolerant CORBA [115]
(and recently Data Parallel CORBA [113]). Several objects implementing the same in-
terface can be merged into a load balancing group. The canonical notion of such a load
balancing group module is just a subset of the IDL from the Fault Tolerant CORBA spec-
ification.

Call Forwarding

A client sends a request to the group and the request is transparently forwarded to a
server with enough capacity to process the call. This is done by the “LocationForward”
exception as discussed above. The request arriving to the group is therefore not processed
but just send back with a hint to an other object. The client ORB again sends the request
but now to the object reference that it got from the group.

Limitations of the Load Balancing Call Forwarding Approach

Unfortunately the forwarding mechanism is not particularly suitable for all load balancing
aspects as most ORB implementations cache the “LocationForward” hints and future re-
quests are directly send to the forwarding address. This is not the idea of a load balancing
service we require but makes sense to many applications that access the same data several
times or that rely on side effects like state information (sessions).

6.2. REUSING CORBA PATTERNS FOR PARALLEL PROCESSING 151

A COS Load Balancing Service also must specify mechanisms to tracking the load of
its group members. This information is indispensable for an adaptive load balancing.

So the load balancing service implements the balancing functionality which was miss-
ing in the COS Event- and the COS Notification Service. It also supports dynamic sub-
scribing and unsubscribing similar to event channels but unfortunately lacks the decou-
pling of client and servers.

6.2.5 Data Parallel CORBA

The Data Parallel CORBA specification [113] enables the same basic patterns of compu-
tation and communication manifested by high performance, scalable, parallel applications
and systems, but under a CORBA-based programming model.

Adding Parallel Objects

The concept of Parallel Objects is an additional approach for the implementation and
use of CORBA objects that enables the object implementer to take advantage of parallel
computing resources to achieve scalable, high performance.

Parallel objects (Figure 6.7) are objects whose requests may be carried out by one or
more singular objects, so called parts, probably, but not necessarily, running concurrently
in different execution contexts. Thus, the work to process a request to a parallel object is
carried out, in parallel, in multiple execution contexts. The implementation is such that
different aspects of the work on a single request may be done piece by piece in parallel.

ClientClient
call()call()

Singular ObjectSingular Object

Parallel ObjectParallel Object

Figure 6.7: Parallel Objects specified in Data Parallel CORBA. A parallel
object designates a group of several singular server objects.

The specification enables clients to use such objects transparently and efficiently,
whether or not the client ORB supports the new features. This is again similar in spirit
and structure to Fault Tolerant CORBA [115], which enables a replicated implementation
alternative to achieve higher availability, which is also transparent to clients.

152 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

Parallel objects embrace many of the concepts and techniques embodied in other
course-grained parallel programming APIs and systems. They are somewhat analogous
to process sets or process groups in these other systems. Parallel objects, whose imple-
mentation is a set of partial implementations executing in parallel, can be used by normal
CORBA clients, and can also make requests of normal CORBA objects. They can also
been cascaded in the sense that they can do requests on other parallel objects and also on
themselves.

Scalability of parallel objects is a run-time issue enabling reusability of scalable par-
allel implementations. The specification requires a parallel-capable ORB for running a
client to participate in making invocations on parallel objects.

Data Partitioning

The Data Parallel CORBA specification also defines interfaces and semantics for the par-
titioning and distribution of the data and requests involved in the use of parallel objects.
Since the implementation of parallel objects is generally distributed in a homogeneous
pattern across a set of parallel computing resources, this capability supports parallel im-
plementations. The used techniques embrace many of the concepts specifically defined in
the Data Reorganization Effort that has collected and consolidated best practices in this
area.

Limitations of the Parallel Objects Approach

A first limitation applies to parallel objects as it does to Fault Tolerant CORBA. They
both rely on object groups with dedicated object group references (IOGR). This needs a
redesign of the ORB and makes the system non-interoperable with other ORBs.

As a second limitation Data Parallel CORBA is restricted to using the parallel com-
puting resources in homogeneous, data parallel patterns, rather than some arbitrary forms
of work decomposition. This is similar to jobs that are parallelized by a parallelizing com-
piler like for High Performance Fortran. Such compilers e.g. divide loops into parts and
redistribute the data onto different processors to process these independent part-loops.

In contrast to this pattern we aim at a more general form of work decomposition.
Another point is that our data might not be available on its whole at the moment when
the first tasks can be started. Say a video processing application as designed in Chapter 7
continuously gets data to process from a frame grabber. In such a scenario it is not possible
to call a method with the whole chunk of data that is afterwards partitioned and parallelly
processed. We rely on decoupled parallel processes that can be started at anytime, if
possible in parallel.

6.3. WAYS TO INTEGRATE PARALLELISM INTO CORBA 153

6.3 Ways to Integrate Parallelism into CORBA

The CORBA object model defines an object as an entity with a well-defined interface that
may be remotely invoked using an object reference. An object reference is an “object
name that reliably denotes a particular object”. This means that the CORBA specification
without object group references (IOGR) does not permit an object reference to designate
a set of objects, and it does not provide ways for clients to invoke several objects at once
using an object reference. CORBA only deals with point-to-point remote invocations.

The absence of mechanism that permits the decoupled requests to groups of replicated
CORBA server objects complicates the design and implementation of many applications
that have requirements for parallel processing. During the last couple of years, several
systems have been developed to augment CORBA with groups which is somehow the base
technique to handle replicated objects. [51] classifies these systems according to three
main categories, each of which represents a different approach to group communication
in CORBA:

1. The integration approach integrates an existing group communication system
within an ORB.

2. The interception approach intercepts messages issued by an ORB and maps them
to a group communication toolkit.

3. The service approach provides group communication as a CORBA service beside
the ORB, and was chosen as the basis of this thesis.

We now describe these three approaches. We also discuss a variant of the service
approach, which consists in adapting the interfaces of an existing CORBA service – the
event service – rather than defining new interfaces for group communication.

6.3.1 Integration Approach

With the integration approach, the ORB functionality is enhanced by a group commu-
nication toolkit. The ORB directly deals with object groups and references to object
groups. CORBA requests are passed to the group communication toolkit that multicasts
them from clients to replicated servers, using proprietary mechanisms. The group toolkit
is “integrated” into the ORB.

Existing systems that use the integration approach (e.g. Pardis [86] but also prototype
implementation of Fault Tolerant CORBA). The basic idea is to extend the IDL language
mapping and to generate two types of functions from IDL definitions: (1) standard func-
tions that conform to the language mapping and (2) special functions with sequences of
values for out and inout parameters. The client uses the function with the signature that
corresponds to its needs. If the client is not aware of groups, it uses only standard func-
tions.

154 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

6.3.2 Interception Approach

With the interception approach, the ORB is not aware of replication. We have already
discussed in Section 5.1.2 how extensions for high performance can be incorporated into
an ORB. ORB requests formatted according to the IIOP protocol can be intercepted trans-
parently on client and server sides using low-level interception mechanisms provided by
CORBA Interceptors; they are then passed to a group communication toolkit that for-
wards them to the parallel processes. This approach does not require any modification to
the ORB, but relies on interception of requests and on a further toolkit implementing the
parallelizing functionality.

6.3.3 Service Approach

The service approach, which has been adopted and developed in the context of this chap-
ter, can provide explicit group and support for parallelism through a CORBA service.
Unlike the integration approach, a CORBA service is mostly specified in terms of IDL
interfaces, and does not depend on implementation language constructs. The ORB is
not aware of groups, and the service can be used with any compliant CORBA imple-
mentation. The service approach complies with the CORBA philosophy, by promoting
modularity and reusability. Parallelization support may be provided by adapting an ex-
isting CORBA service, or by defining a new service for object groups, as we did in this
thesis.

6.3.4 Evaluation of the Different Approaches

This section presents an informal comparison of the three different approaches based on
[51]. It should not be considered as an exhaustive survey of the pros and cons of each
approach.

The comparison focuses on several different aspects: transparency, ease of use, porta-
bility, CORBA compliance, performance, and simplicity. Table 6.1 summarizes how three
approaches fit these criteria. In the table, + (plus) means good, - (minus) means limited,
and blank means satisfactory.

Transparency

Transparency hides groups to the programmer, by giving the illusion that the invocations
are issued to single objects.

All integration approaches provide full client transparency. The invoker does not need
to know that the invokee is a group, although it could benefit from this knowledge.

The interception approach enforces transparency. In contrast with the other approaches,
it does not allow to access group information or e.g. set a load balancing strategy.

6.3. WAYS TO INTEGRATE PARALLELISM INTO CORBA 155

Approaches Integration Interception Service

Transparency + +
Ease of Use + + +
Portability – +
CORBA Compliance – + +
Performance + + +
Simplicity – +

Table 6.1: Comparison of the different approaches how to integrate paral-
lelism into CORBA

The service approach can be configured with or without transparency. Transparency
is provided by overloading e.g. by the typed event service and is also provided by our
CORBA Distributor Service.

Ease of Use

Ease of use is an important consideration since it shortens program development time
and it can make the application more robust and reliable. It is the aim of this third part
of the thesis to simplify the development of parallel implementations by offering the use
of object oriented middleware to an application programmer but still rely on efficient
communication.

Transparent group support is easier to use, since it requires no explicit construct on the
client side. The client does not care whether its partner is a server object or a Distributor
Service.

The event service provides a familiar Publish&Subscribe programming model. Its
interfaces are already standardized and well-known, making them easy to use by many
programmers. Our Distributor Service combines the advantages of explicit group man-
agement and transparent invocations in a CORBA service.

Portability

The portability measures how independent a software component is from a specific ORB
or architecture.

It is clear that monolithic built-in functionality is clearly not portable to other architec-
tures. The integration approach adopted by Padico uses non-standard language-specific
constructs by an enhanced Interface Definition Language causing application code to be
also not portable.

With the service approach, both the Distributor Service and the application code using
the service are portable to any CORBA compliant architecture, assuming that the code
does not depend on implementation-specific ORB feature.

156 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

CORBA Compliance

A client or server program is said to be CORBA compliant if it conforms to the CORBA
specification. The integration approach is not fully compliant since it modifies and ex-
tends the CORBA specification. This has partly changed now as CORBA 3 defines Ob-
ject Groups. Using and implementing just these groups would keep the ORB compliant
but only to the CORBA 3 specification. The ORB core has to deal with references to
replicated objects, and the semantics of CORBA references are modified.

Both the interception and service approach are compliant (assuming that they do not
rely on implementation-specific ORB features). The interception approach is completely
decoupled from the ORB and only relies on IIOP constructs. The service is independent
of the ORB core since it is used only through IDL-defined interfaces, and does not make
assumptions about the underlying ORB implementation.

Performance

Systems that provide high-level abstractions are generally less efficient than low-level
systems. In the context of group communication, performance also depends directly on
the protocols.

The integration approach is probably the most efficient, since communication can be
optimized in the ORB itself. There is no indirection when invoking servers.

The efficiency of the interception approach depends both on the ORB (time required
for IIOP communication) and the underlying group communication toolkit.

The service approach uses the communication primitives of the ORB on which it
runs. Therefore, its efficiency depends directly on the underlying CORBA implementa-
tion. Two indirections are also required when a client invokes a group. As we are focusing
on bandwidth limited application this is not a problem.

Simplicity

We consider an approach to be simple and lightweight if it is adequate for the problem
and performs what it is meant to do, without overloading the system with unnecessary
features.

The current implementations of the integration and interception approaches make use
of external group communication toolkits like MPI. Most of these toolkits do not provide
adequate support for object groups as they deal with process groups, and software layers
must be added for interfacing them with the CORBA world.

In contrast, the service approach, as defined by our CORBA Distributor Service, is
lightweight and adequate for the problem. It provides only the required primitives and is
built as an independent, optional CORBA component.

6.4. DISTRIBUTOR SERVICE 157

6.4 Distributor Service

Because none of the existing CORBA services offer the right abstraction for parallel pro-
cessing we have elected to specify a new service for parallelization and data distribution
support in CORBA and named it CORBA Distributor Service in the hope that a similar
specification can be established as a CORBA common object service (COS).

CORBA’s open architecture allows us to easily define and implement new services.
The process of specifying a new service consists in isolating the requirements, choosing
the right abstractions, and specifying the interfaces for these abstractions. The OMG has
published guidelines for designing object services and their interfaces [108].

In the following sections I will discuss some of the details that were taken into con-
sideration while designing and implementing the distributor service. The complete IDL
specification of the proposed CORBA Distributor Service can be studied in Appendix D.

6.4.1 Design Requirements

The distributor service as an abstraction provides a Distributor Channel as its main in-
strument to decouple the servers from the client. Suppliers can generate deliveries and
deposit it on one side of the distributor channel. It is the task of the distributor service to
pass the delivery through the channel to a possible consumer (see Figure 6.8).

SuppliersSuppliers

call()call()

call()call()

Distributor Distributor
ChannelChannel

ConsumersConsumers

subscribe()subscribe()

Figure 6.8: The Distributor Channel passes a delivery asynchronously from
the supplier to one member of the consumer group.

The following list specifies the goals that our CORBA Distributor Service shall achieve
and its requirements:

1. Asynchronous method calls: The service asynchronously decouples the client
from the servers (Publish&Subscribe) like an Event Service and delivers the re-
quests as fast as possible to a possible consumer. The supplier of the service may
not be blocked.

158 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

2. Load balancing: An inherent Load Balancer assigns deliveries directly to one of
the consumers or partitions the parameter data collection and forwards them to mul-
tiple servers. The load balancing has information on the load of all consumers and
can inform the supplier if the load is too high.

3. Result forwarding: The results are passed further to a result consumer object
which can be the client again, but is not compelled to.

4. Deliver at most once: A delivery is passed with “best effort” semantic to exactly
one consumer. Multiple deliveries must be avoided. When a delivery cannot be
passed further the supplier has to be informed.

5. Dynamic subscription: Consumers as well as suppliers can subscribe and unsub-
scribe to/from a Distributor Channel during run-time without needing to inform
its counterparts on the opposite side of the channel. This introduces a referential
decoupling between supplier and consumer.

6. Transparency: The interface of the channel does not differ from the consumer
interface. The signature of a method call to a consumer by the channel is exactly
the same as the supplier call to the channel itself. The server interface is therefore
transparent to the service interface as with parallel objects. The client uses the
service transparently like it would use a single server object.

7. Cascading: Cascading of Distributor Services shall be allowed. This will mainly
be given through the transparency.

8. POA manager compliant: The Service should be designed in a way that it can be
hidden through a POA Manager. This would make the implementation even more
transparent.

9. Zero-copy aware: Last but not least the Zero-Copy regime should be integrated.
We intend to do that through object-by-reference calls with direct callback to the
data objects to access data.

6.4.2 Prerequisites

The CORBA Distributor Service is primarily built on top of an existing COS Event Ser-
vice [110] and not on a COS Notification Service. First the COS Notification Service is
much wider specified and therefore much more complex in its implementation. As dis-
cussed in Section 6.2.2 it does not offer any advantages to the distributor service. Another
reason that we chose the COS Event Service is that the used MICO distribution does not
contain a COS Notification Service.

6.4. DISTRIBUTOR SERVICE 159

The kernel of the event channel is enhanced by a simple load balancing service as
discussed in [76] and in [118]. Like this the service is able to consider the load of the
single consumers while delivering a request. A further change of the “one-to-many” to
a “one-to-one” delivery characteristic can also be incorporated by a small changes of the
event channel implementation.

6.4.3 Event Communication

As discussed earlier in this chapter CORBA method calls are normally synchronous. A
client calls a method of a known server and blocks until the server has processed the
method and delivers the result. The generated CORBA request needs an unique and exist-
ing server object to call. This tight coupling between the client and the server is in many
cases not wished or even not possible (see Figure 6.9(a)).

SuppliersSuppliers ConsumersConsumers

(a) CORBA method call

SuppliersSuppliers Distributor Distributor
ChannelChannel

ConsumersConsumers

ProxyProxy
SuppliersSuppliers

ProxyProxy
ConsumersConsumers

(b) Decoupled method calls

Figure 6.9: 6.9(a) shows coupled Suppliers and Consumers with standard
CORBA method calls, 6.9(b) shows decoupled Suppliers and Consumers
using proxy objects that communicate through a channel.

160 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

We therefore consider to use the channel technique as used in the COS Event Ser-
vice for a complete decoupling between supplier and consumer. The communication is
handled through a channel. Both the supplier and the consumer do not need to have ref-
erences of each other they only need a reference to the channel. This is called referential
decoupling.

The supplier then generates a request and passes this to the event channel. The respec-
tive method instantly returns without first waiting for the successful delivery of its request
to the consumer through the channel. This concept is called asynchronity. It is now the
channels task to distribute the request to one of the consumers.

Our channels do not support any quality of service facilities but as the notification
service shows they can easily be extended.

The suppliers use the channel through a so called ProxyConsumer-interface, the
consumer on the other hand uses the ProxySupplier-interface). This encapsulation
of the channel easily allows to cascade several channels.

The event service specifies two communication models how events are delivered be-
tween supplier and consumer; a Push model and a Pull model. We only use the push
model in the distributor service. There the supplier acts actively and pushes the re-
quests onto the ProxyPushConsumer-interface of the channels. The consumer (i.e.
the ProxyPushConsumer-interface of the channels) in passive until a request arrives
which triggers a call to the PushConsumer::push-method of the consumer.

6.4.4 Integrated Load Balancing

Load balancing is the process of distributing load generated by clients to several available
servers that are capable to process the requests. Load balancing is also used for application
that need to support high reliability and zero downtime. This is achieved by replicating
the servers and using them in parallel. If one of the servers fail the requests are just
dispatched to the remaining servers until the broken server is online again.

The distributor service implements a load balancing service to dispatch the requests
on a channel to the right server. The right means a server that implements the requested
method and whose load is appropriately low for the task to be executed efficiently.

The complete IDL of the implemented CORBA Load Balancing Service is presented
in Appendix C.

Balancing Granularity and Adaptivity

For a successful operation of a Load Balancing Service the granularity of the balancing
is mandatory. There are two possibilities how such a service can operate. Either all the
requests are handled individually or a client gets its definite server at its initialization and
forwards all future requests directly to this dedicated server.

6.4. DISTRIBUTOR SERVICE 161

The balancing granularity of the Distributor Service is based on an individual request
distribution. We prerequisite that the request contains its complete context information
which is needed to deliver a request successfully. Because of this constraints the servers
can act stateless.

The incidental computing overhead can be distributed adaptively or non-adaptively.
The non-adaptive or fix load balancing strategies decide where to deliver a request without
knowledge of the current process load on the compute servers and without feedback, e.g.
Round-Robin- or Random-strategies. An adaptive method on the other hand considers at
least an estimated load or even better decides on load information requested from and
delivered by the server, e.g. Least-Load-strategy.

Adaptive algorithms are especially requested by inhomogeneous system environments
where computers with different computing power or requests introducing different over-
head are processed. However in many cases it is difficult to define an appropriate load
metric. Another problem lies in the delay after which load information is available to the
service. As the load on a server does not increase just by having been selected to handle
a request but with the slightly delayed request processing start, this can introduce a scope
for potential wrong decisions.

Design Overview

The load balancing service of the CORBA Distributor Service works with Load Balanc-
ing Groups. Different CORBA objects which typically implement the same interface are
combined in such a group. The balancer then just chooses a member server of the ap-
propriate group. The Load Balancing Strategy implements the method that is used to do
the selection. Each member of the load balancing group is allocated to a non-ambiguous
Proxy Load Monitor. This proxy enables the server object to deliver load information to
the service (see Figure 6.10).

SuppliersSuppliers ConsumersConsumers

ProxyProxy--
LMLM

Load BalancingLoad Balancing

St
ra

te
gy

St
ra

te
gy

G
ro

up
G

ro
up

LoadLoad--InfoInfo CallsCalls ReferencesReferences

Figure 6.10: Overview of the Load Balancing Service

162 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

Load Balancing Groups

The Load Balancing Groups provide the load balancing functionality towards its clients.
A client contacts the group to get a server object reference. The load balancing group
can provide additional information about the group like about special situations like e.g.
not enough server capacity (NoMembersReady-exception) or missing server replicas
(NoMembers-exception).

An object reference returned by the Group::get_server-methods does not guar-
antee the existence of this referenced object. This means that a client has to be aware of
a CORBA::ObjectNotExist-exeption if that happens. An erroneous invalid object
reference can e.g. occur on a server crash. On the other hand a given reference should
always be used for a request processing to free temporarily locking (see Section 6.4.4).

The group itself does not control the state of a server directly. This monitoring task
must be solved externally. The group just provides the functionality to list all the servers
registered with Group::list.

This means that a client must pinpoint an invalid object reference and on occurrence
desubscribe such a failed server reference from the group (Group::remove_member).

Proxy Load Monitor

Intelligent, adaptive load balancing needs to know about the processing load of its group
members to dispatch a client request to the “right” server. This needed information can
either be pulled from all the servers or be pushed by these servers.

The Proxy Load Monitor decouples the load sampling from the application specific
task. By this existing servers can simply join a load balancing group. The server code does
not have to be changed. The load sampling has to be done by a specialized component.
In the case of more than one server on a single machine this load sampling can be done
by a single load monitor.

The implemented functionality in the distributor service does not allow service-based
load polling. Load information must explicitly be delivered by a server side daemon.
This decision was motivated by the observation that only a server itself is always best
informed about its load and the exact number of requests that it processes. A disadvantage
of this method is as already discussed in Section 6.4.4 a slight delay between the load
measurement and the arrival of the information at the load balancing group.

Another issues is the association of a load information message of a server to its
associated group member. With the polling method this is implicitly clear but not with the
push method. The group therefore delivers a ProxyLoadMonitor-object to the server
on subscribing to the group with add_member. This proxy can uniquely be assigned to
corresponding server. The proxy is deallocated together with the group member by the
Group::remove_member-methode. This means that on a re-subscription to a group
each time a new proxy load monitor will be allocated (see also Section 6.4.4).

6.4. DISTRIBUTOR SERVICE 163

Load Balancing Strategies

The Load Balancing Strategy is heavily dependent on the kind of application, on the
method how the load information is made available and on the access pattern of the clients.
The strategy is therefore not fixed into the load balancing group but can be changed even
on runtime. Two built-in strategies are exported by the service. They can be configured
via Property-objects:

Round-Robin Strategy Pure “Round-Robin” is the simplest an the best known
practice. It always selects the member from a group that was least re-
cently selected. This strategy accomplishes its requirement in many sys-
tems especially homogenous ones. The method is also simple because
it does not need load information.

The built-in Round-Robin strategy is not parameterized and therefore
does not support properties. It is selected by its name “RoundRobin”
with the Group::set _strategy-method.

Least-Load Strategy “Least-Load”-strategies are the simplest kind of dy-
namic load balancing. It selects the member form a group with the least
load.

This strategy has the late-update problematic discussed in Section 6.4.4.
The timely delay between balancing decision and load report has a lim-
ited risk of wrong decisions but these risks can be mitigated with the aid
of some additional rules. The following attributes serve for the solution
of the late-update problematic:

- “Default-load”-Property: The “Default-Load”-property defines
the load that may be allocated to a server at its initialization. The
value-field must be initialized with a default value.

- “Lock-until-info”-Property With this property a server is blocked
after it is selected until its load monitor delivers a load report. This
circumvents multiple following requests.

- “Per-balance-load”-Property Instead of blocking a selected server
object with the “Lock-until-info”-property the “Per-balance-load”-
property allows to add a fixed additional amount to the current load.
The value-field must contain this load value.

User Defined Strategies Besides the two built-in strategies the user of the
load balancer can provide its own strategy. The strategy can be set
via the group interface anytime. There are applications where it makes
sense to select the strategy depended on certain environmental variables
(e.g. time, overall-load etc.).

164 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

A user-defined strategy implements the CustomStrategy-interface
and can be activated with the Group::set_custom_strategy-
method. Some important points for the implementation of user-defined
strategies are:

- Each strategy must manage the association between members and
load information.

- It is essential that all strategies respect locking by CustomStrategy::
lock_member (see Section 6.4.4).

- The return value of CustomStrategy::next-method delivers
a reference of a registered, currently unlocked group member.

Member Locking

The implementation of the distributor service has shown that there is a need for temporary
locks of members of a load balancing group. This is e.g. essential during an initializa-
tion phase of a round-robin load balancer where the channel is already used to dispatch
requests while there first exists just one initial server. This server is inevitably always
selected which leads to an accumulation of pending requests that can not be redispatched
afterwards when more servers are available.

The Group::lock_member and Group::unlock_member functions allow to
short-time lock a member and not use it for load balancing until unlocked. In contrast
to the unsubscribing with Group::remove_member the proxy load monitor keeps its
validity.

6.4.5 Distributor Channels

The central component of the CORBA Distributor Service is the Distributor Channel.
Its job is to deliver load balanced requests by serving as a mediator between consumers
and suppliers. It is also responsible for the referential decoupling (Section 6.4.3 and
Figure 6.11).

The distributor channel hides an inherent instance of a load balancing group. On in-
stantiation of a channel via the channel factory (DistChannelFactory-interface) the
create_distchannel_with_group-method allows to explicitly assign a load bal-
ancing group (Section 6.4.4). Alternatively create_distchannel allocates its local
load balancing group. But the assignment of an external group has two main advantages:

1. The locality of the group is not bound to the locality of the distributor channel.

2. As long as the interface CosLoadBalancing::Group is kept the implementa-
tion can be changed arbitrarily.

6.4. DISTRIBUTOR SERVICE 165

SuppliersSuppliers Distributor Distributor
ChannelChannel

ConsumersConsumers

ProxyProxy
SuppliersSuppliers

ProxyProxy
ConsumersConsumers

Figure 6.11: Components of the Distributor Service.

The distributor channel does not provide any directly accessible functionalities but all
the administrative interfaces are provided to configure and initialize the channels:

DistChannelAdmin::ChannelAdmin
The DistChannelAdmin::ChannelAdmin-interface is used to ad-
minister the distributor channel. In contrast to an event channel the dis-
tributor channel provides a load balancer for a “one-to-one” distribution
characteristic. The strategy and further settings can be selected or ad-
justed by this interface.

DistChannelAdmin::ConsumerAdmin
This interface is merely used by the consumers. The method obtain
_push_supplier creates a ProxySupplier-object (Section 6.4.6).

DistChannelAdmin::SupplierAdmin
Analogous to the ConsumerAdmin-interface suppliers can create Proxy
PushConsumer-objects with the obtain_push_consumer-method
implemented by this interface.

6.4.6 Proxy Objects

Neither suppliers nor consumers communicate directly with the distributor channel (the
only exceptions are the three Admin-methods). Both supplier and consumer use an ap-
propriate Proxy-Object of its counterpart that they initialize over the Admin-interface.
The advantage of this indirection is that both parties can directly “see” the interfaces of
its counterparts through this proxy. The channel inside the service is completely transpar-
ent (compare with Figure 6.9(b)).

The interface between proxy and channel is dependent on the implementation and not
accessible to the programmer. It provides methods to register, connect and to lock proxies.
The proxy consumer provides methods to accept deliveries.

166 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

Both the ProxyPushConsumer- and the ProxyPushSupplier-interface sup-
port a disconnect_push-method. The call of this method disconnects the link be-
tween caller and proxy. For a supplier this means that it is not further able to push deliver-
ies until it is reconnected to the proxy again (connect_push_supplier) whereas for
a consumer the disconnect also invalidates the proxy load monitor. Internally the proxy is
removed from the load balancing group (Section 6.4.4). On a reconnect a new monitor is
allocated.

6.4.7 Asynchronous, Decoupled Delivery Communication

The most important reason for the choice of the COS Event Service IDL as the origin for
the CORBA Distributor Service is its decoupling characteristic. The referential decou-
pling is given by the proxies. The whole functionality of the call decoupling is therefore
hidden in the implementation of the proxy supplier interface.

push()
notify()

ProxyPushConsumerSupplier Channel ProxyPushSupplier

notify()

send_deferred()

push()

callback()

Consumer

_lock()

_unlock()

O
R

B
(s)

Figure 6.12: Call diagram showing the operating sequence of a consumer
method call initiated by a supplier.

Figure 6.12 shows the sequence of a method call as it is triggered by a supplier for
the delivery of a message to a consumer. The first three method calls forward the delivery
synchronously to the ProxyPushSupplier-object. This proxy object first temporarily
signs off with the channel (locking, see Section 6.4.8). Afterwards the proxy generates a
CORBA::Request-object which is sent via the “Dynamic Invocation Interface” (DII).
For the sending the non-blocking send_deferred-methode is used in contrast to the
normally used synchronous interface. CORBA does not specify secure asynchronous
method invocations with the static invocation interface where only a oneway method could
be used. But this method is specified as unreliable as it implements just a best effort
functionality.

6.4. DISTRIBUTOR SERVICE 167

The instant return of the deferred call allows the instant termination of the chain of
called methods back to the supplier while meanwhile the in the ORB deposited request is
passed further to the consumer with the PushConsumer::push-method.

One of the parameters that are passed with the send_deferred-method is a refer-
ence to the proxy itself. As the ProxyPullSupplier-class is among others derived
from CORBA::RequestCallback it can be installed as a callback object into the
ORB-loop. This callback is issued by the ORB as far as the request is processed by the
consumer or an error occurred. It deletes the lock and activates the consumer again.

6.4.8 Locking

The distributor channel automatically locks all the PushSupplier proxies which have is-
sued an asynchronous request per default. This means that such consumers are not al-
lowed for further deliveries (see Figure 6.12). This restrictive scheme is optional and can
be turned of. But numerous experiments with distributor channels in cooperation with the
transcoder application presented in Chapter 7 have shown that with very compute inten-
sive jobs it makes sense to not issue more than one task at a time. The locking further
allows some sort of synchronization of suppliers and consumers.

The locking mechanism of the distributor channel uses the locking functionality of the
load balancing service to easily provide the functionality (see Section 6.4.4).

6.4.9 POA Manager

The Portable Object Adapter [116] defined by the OMG, which is compulsory since the
CORBA 2.3 specification, was designed to meet several goals, mainly the portability of
the object adapter between different ORB products. It provides:

Policies
A POA based application can instantiate multiple distinct POAs. Poli-
cies allow configuring each of these POAs to match the application re-
quirements.

Transparent Activation
A POA can generate object references without really instantiate and ac-
tivate the object. The activation is done on arrival of the first requests.

Multi-Object-ID Servant
The POA allow a single servant to support multiple object identities
simultaneously.

POA Manager
Each POA object has an associated POAManager object which may be
associated with one or more POA objects. A POA manager encapsulates

168 CHAPTER 6. MODELING DISTRIBUTED OBJECTS FOR PARALLEL PROCESSING

the processing state of the POAs it is associated with. Using operations
on the POA manager, an application can cause requests for those POAs
to be queued or discarded, and can cause the POAs to be deactivated.

An interesting variant how the distributor service can be integrated into the ORB be-
havior would consist in providing a specialized portable object adapter that implements
the distributor service functionality. We would then have the standard object adapter for
standard objects and a dedicated “ balancing and forwarding distributor adapter” for ob-
jects that are members of a load balancing group. This approach would be even more
compliant with the CORBA way of programming and would encapsulate all the distribu-
tor facilities in a single object adapter component.

6.5 Experiences

With the implementation of a large part of the COS Load Balancing Service proposed by
[76] a simple but flexible and portable service could be provided for MICO. The load bal-
ancing strategy which is responsible for dispatching the requests to the “right” server can
be affected and even exchanged on the fly. Besides the two built-in characteristics, a sim-
ple round-robin and an adaptive least-load method, an own strategy can be implemented
and be used like a plug-in.

None of the existing CORBA Services could match our requirements for a paralleliz-
ing service which are:

� asynchronous, decoupled calls,

� request load balancing with load monitors

� deliver at most once,

� dynamic publish & subscribe,

� transparency.

We therefore designed and implemented the CORBA Distributor Service that com-
prises all these desired attributes. In the evaluation this Distributor Service showed its
potential impressively and performs very reliably.

The referential integrity of delivery suppliers and consumers even makes the service
convenient for applications outside its dedicated goal platform, the clusters of PCs. We
evaluated the architecture also for a small computational grid consisting of a large number
of inhomogeneous computing resources spread all over our computer science department.
The cascading facilities of the service made it possible to bind some weak machines
together into a respectful grouped computing resource by just adding another service.

In the next chapter we look deeper into an application that uses the CORBA Distrib-
utor Service to parallelize its jobs and scale beyond computing resources available in a
single server and still adheres to the zero-copy regime.

7
Zero-Copy Distributor

Framework Evaluation

To evaluate the effectiveness of the Zero-Copy Strategies in our TCP/IP implementation
and the CORBA middleware as well as the functionality of our Distributor Service we
use a framework for the design of an application. Our Distributor Framework is used
to implement an MPEG2-to-MPEG4 Transcoder that is cleanly modeled with distributed
objects.

The chapter first outlines the architecture of the Distributor Framework which solves
the following issues: (1) it first allows data to be read or deposited into the framework
from several sources, then (2) a processing module, that is pluggable into the application,
processes the data that lies in special data chunk buffers, and finally (3) the data can be
exported to or fetched from different destinations.

The distributor framework is designed to work in conjunction with our Distributor
Service presented in Chapter 6. The framework is used at three places. The first place is at
the data source which is represented by a first process that imports the data, preprocesses
it and makes it available to the processing modules. Then the data is sent to or fetched by a
second module that processes the data according to its specification. This step which can
be very compute intensive can be parallelized by the distributor service. The third process
where the framework is used is a collector that gathers the results and further exports it to
a consumer.

In a second part of this chapter the distributor framework is used to model a real-time
MPEG2-to-MPEG4 Transcoder by just introducing specialized data Input-, Processing-
and Output-modules. The video data streams that consists of a huge amount of images (or
video frames) that are either directly grabbed form a HDTV frame grabber or read from a
disk file or extracted from a DVD MPEG-2 stream is distributed by CORBA requests over
a Gigabit Ethernet using the Zero-Copy TCP/IP sockets of Chapter 4 and the optimized
Zero-Copy ORB introduced in Chapter 5. The distribution is implicitly handled by our
Distributor Service.

169

170 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

7.1 Distributor Framework

7.1.1 Architecture

The design of a Distributor Framework around our Distributor Service was developed in
several implementation and refactoring steps. The presented architecture took shape after
we analyzed our MPEG Transcoder application as well as two similar application patterns
that transmit huge amounts of data. The framework reduces all the logical conceptual
components of a parallel data processing pipeline into one single tool.

The aim of the distributor framework (see Figure 7.1) is to provide a component that
is capable of organizing three tasks in an application:

1. Data Input: The data import shall be allowed from many different sources, e.g.
disks, pipes or CORBA-requests, and it shall even be allowed to deposit the data
directly from outside.

2. Data Processing: The data processing component shall be pluggable and exchange-
able. The component works on special buffers that allow an efficient communica-
tion between the components (with the Import- and Export-module).

3. Data Export: Similar to the input module the data export provides several possi-
bilities. It also makes data available by CORBA objects references and allows to
fetch it from external processes.

The architecture of the distributor framework is based on a central scheduler-object
(Section 7.1.4). This scheduler object references an input-, a process- and an export-
module (Section 7.1.3) and is responsible that all these three modules are called and active
regularly.

O
bject R

equest B
roker (O

R
B

)
O

bject R
equest B

roker (O
R

B
)

ImportImport
ModuleModule

In-Queue

 Process Process
ModuleModule

ExportExport
ModuleModule

Out-Queue

SchedulerScheduler

InIn
ChunkChunk
PoolPool

OutOut
ChunkChunk
PoolPool

ContextContext

Figure 7.1: Overview of the components of the Distributor Framework.

To handle internal data communication between import- and process-module as well
as between process- and export-module they share a pool of data-buffer objects, so called
chunks. Chunks can be efficiently allocated and deallocated freely at discretion. A pool

7.1. DISTRIBUTOR FRAMEWORK 171

manager implements this efficient memory buffer management (Section 7.1.2). Process-
modules that allow an “in-place” processing of the data (like e.g. the ProcessNull-module
or the ProcessSort-module described in Section 7.3.3) the framework is optimized to al-
locate just one pool that will be shared to all the modules for efficiency reasons. With this
an inherent data copy can be prevented and a zero-copy architecture on the application
layer is possible.

The modules communicate the chunks via two separate FIFO-queues. Following our
zero-copy regime these queues do not store the chunks themselfs but only references to
data (IDs) that are queued and passed on. The queues serve as synchronization buffers
between the particular modules providing enough buffering to decouple the processing
steps.

To keep the interface of the pluggable modules simple, all the required parameters,
references, counters etc. are put together into a form of context-object which is referenced
by all the components. This also simplifies the configuration of the final application.

The only object of the framework implied and required by CORBA as encapsulation
is a scheduler. And therefore the scheduler is the only component which can be accessed
from outside via the ORB per default. All modules, queues and chunk-pools are handled
like standard C++-objects by the scheduler.

7.1.2 Chunk Pool

During the initialization phase the ChunkPool-object allocates all memory resources
needed. All these chunks in the pool are page aligned and each chunk is represented by
a unique chunk descriptor which contains an associated chunk-ID, the exact size and a
pointer to the buffer.

A chunk can be allocated with createChunk(int chunkID). The chunkID
must be unique. With this ID a pre-allocated chunk can then be taken from the pool by
getChunk very efficiently. When a chunk is not needed anymore it must be released
and returned to the pool with the recycling-method.

The chunks can be used to contain CORBA sequences of octets. But as
CORBA provides inherent memory management for its standard data types this feature
must be turned of to allow for our own management with zero-copy. If not turned off
the CORBA ORB would deallocate the buffer once the object is not referenced anymore
which would lead to unpredictable behavior of the chunk pool.

7.1.3 Module Interface

All the modules introduced in Section 7.1.1 are derived form the Module-interface. The
scheduler uses this interface to interact with the module-objects and presumes an imple-
mentation of the the following methods:

172 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

int Module::open()
After all the three modules (input-, process- and export-module) are created this
method is called. The module then initializes itself (memory allocation, connec-
tion establishment to other modules, open files, initialize libraries, subscribe to the
ORB or a potential distributor service etc.). The ORB-loop is not yet running at this
moment so requests cannot be triggered.

int Module::work pending()
Before the scheduler calls the run-method of a module it tests whether the module
is ready to perform tasks. Even if this method seems to be unimportant (run could
just return) it has a critical effect to the behavior of the scheduler (see Section 7.1.4).

int Module::run()
The run-method starts the module. Dependent on the module type other condi-
tions have to be checked.

int Module::close()
Shortly before termination of the transcoder the close-method is called. This
instructs the module to free all its resources, to close its connections and files, to
unsubscribe from channels and to terminate.

In Section 7.1.1 the scheduler was depicted as the only object which is connected
with the ORB. This must be relativized at this point: Even if the scheduler is the only
object whose referencing by the ORB is compulsory the module is not detained to connect
its own objects with the ORB to react on external events or to provide CORBA servant
facilities.

Import Module

The import-module is used to read the data into the chunks. It therefore allocates a new
chunk from the pool and stores the data in it. The data can be read form disk, directly
from a frame grabber, from a pipe or received by a zero-copy ORB request from another
module. The chunk is then passed to the process-module by putting the chunk-ID into the
inbound-queue of the framework. A call of the import-module (run-method) should at
least allocated one chunk and put it into the inbound-queue.

There are different possibilities how the import-module accesses the data. The sim-
plest is to just read the data from disk or a frame grabber. But the interesting mode is to
get an CORBA object reference and to access the data in the depicted object directly via
the zero-copy ORB. This makes the inter-framework communication over network very
efficient, in many times even more efficient than accessing a local object that might be
stored on disk.

7.1. DISTRIBUTOR FRAMEWORK 173

To summarize the tasks of the import-modules:

1. allocate a new chunk from the pool for incoming data (in-pool)

2. read the data and store it into the chunk

3. append the chunk-ID to the inbound-queue of the process-module

Process Module

The process-module gets chunk-IDs from the inbound-queue and accesses via the chunk-
pool the corresponding reference to the chunk descriptor that contains the data.

The process module can work with one single pool or two separate pools. This de-
pends on the type of processing the module is intended for. For process-modules that
just do “in-place” processing of the data (like e.g. the generic ProcessNull-module which
is just used to pass the data from the input-module further to the export-module) the
framework allows to allocate just one pool that is shared to all the modules for efficiency
reasons. In a video encoder the data cannot be processed “in-place” and the output must
be written into a new chunk of an out-pool. These chunks are forwarded to the export-
module by just adding the chunk-ID to the outbound-queue. When using two chunk-pools
the process-module is responsible for the deallocation of the in-chunk.

To summarize the tasks of the process-modules:

1. get the next chunk-ID from the inbound-queue

2. ask the in-pool for the appropriate chunk descriptor that matches the ID

3. (only in the case of disjoint pools) allocate a chunk from the outbound-
pool

4. process the data, (when disjoint pools, the data must at least be copied
into an out-chunk)

5. append the chunk-ID to the outbound-queue of the export-module

6. (only in the case of disjoint pools) deallocate the in-chunks

Export Module

Analogous to the process-module the export-module gets the chunk-IDs from the outbound-
queue and looks up the chunk descriptor in the pool. Then it exports the data and releases
the chunk.

Similar to the import-module the export-module provides different possibilities to
make the data available. To export chunks efficiently the module wraps the chunk ob-
jects with a CORBA sequence and passes the object reference onto this object further to
another import-module. The data in the chunk object can then directly be accessed by
another process which might be another framework-instance.

174 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

To summarize the tasks of the export-modules:

1. get the next chunk-ID from the outbound-queue

2. ask the out-pool for the appropriate chunk descriptor that matches the
ID

3. export the data

4. deallocate the out-chunks in the out-pool

7.1.4 Activation of Objects and Scheduling

The main problem with the chosen architecture is the correct scheduling of CORBA-
objects and standard traditional C++-objects.

Basically all the objects must be able to act autonomously. This lead us to the idea
to implement a central event loop, that periodically activates all the objects. A non-
preemptive scheduler will do as the objects pass the control back to the scheduler loop
on termination. But this idea unfortunately does not fit with the CORBA model. With
CORBA-objects this is not possible because all CORBA based server objects need a
running ORB mandatoryly. If the ORB-loop would be stopped the requests cannot be
dispatched anymore to the registered objects. The ORB-loop is responsible to listen for
requests and invoke the requested operations.

On the other hand if an ORB-loop is started this loop is blocking (CORBA::ORB
::run) the process and waiting for requests. There is no possibility to trigger an external
scheduler regularly within the same process.

External Event-Loop Integration into the ORB Scheduler

To bind the ORB-components into the central scheduler loop of the distributor framework
(or the other way round) an integration of the framework-loop and the ORB-loop had to
be found. The same problem occurs when a CORBA system has to be integrated into a
graphical user interface framework (GUI) like an X11-event-loop.

We looked at MICO [130] and ORBit [128] and both ORBs offer mechanisms to
integrate external loops into the ORB scheduler. The MICO-ORB allows the registration
of objects of type CORBA::Dispatcher into the dispatcher loop. All these dispatchers
are called by the ORB-loop regularly to check pending events. On such events callbacks
are initiated.

Another possibility would be to poll the ORB for pending events and to start the ORB
with a non-blocking call that returns after the event processing. Here the question is
raised how many requests the ORB-loop will process until returning. The specification
says noting about what would happen if a an ORB gets requests continuously. It is not
clear if in such a case the ORB-loop would block anyway as no idle states occur.

7.2. COMPONENTS FOR AN MPEG TRANSCODER 175

The Scheduler as a CORBA-Object

As a third possibility we considered and finally chose for our distributor framework is to
encapsulate all framework-scheduling functions in a CORBA-object. This is depicted in
Figure 7.1. With this architecture, the ORB-loop does not need to be intercepted and the
modules can create CORBA-objects without problems. The framework-loop is contained
in the scheduler object and can be triggered and activated anytime by a simple CORBA-
request.

Admittedly the advantage of this concept raised another problem. While the framework-
loop is running and processing, the ORB is blocking out requests, because MICO is
designed as a single threaded ORB. This means that the scheduler has to interrupt it-
self periodically and pass the control back to the ORB-loop. We therefore provide a
work_pending-method in all the modules to release control. As far as the scheduler
detects all the modules to be in a “no-work-pending”-state, the control is released to the
ORB.

This “no-work-pending”-state can only be modified by an external event. In this case,
the scheduler is restarted by another CORBA-request. As the detection of such external
events is not in all cases deterministic our framework-scheduler is started periodically
by the portable object adapter using a special POA monitor. Another method would be
to use a COS Time Service that triggers such events or just insert a backup-loop in a
second process, that generates Scheduler::run-requests regularly. This solution with
a second process also solves the initial activation of the scheduler elegantly.

7.2 Components for an MPEG Transcoder

The performance requirements of compression and decompression in video streams is
highly asymmetric. While an MPEG stream can be decoded even with minimal comput-
ing power on a standard PC, the encoding is much more complex and highly compute
intensive. MPEG encoding is so compute intensive that it is often used as a CPU bench-
mark nowadays.

This asymmetry of processing power implies that a real-time MPEG encoder must
divide the job into chunks and distribute it onto a cluster of PCs to achieve the required
frame rate. An commercial moving picture uses a framerate of 24 or 30 frames per sec-
onds (fps).

The application we target with our zero-copy distributed processing platform is a real-
time MPEG Transcoder. In a departmental project streaming over the given networking
infrastructure has been studied at ETH during the 2002 Soccer World Championchip.
The outcome was that it is indeed possible to multicast some streams all over a modern
networking infrastructure and provide the community with moving pictures or fairly high
resolution newscasts. The problem accounted in this project was that the used MPEG-2

176 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

encoder hardware does not compress the data far enough to multicast several streams at
a time. MPEG-4 is the emerging new standard for Internet video and would solve this
by allowing to send approximately 8 streams with the same bandwidth that was used
for one single MPEG-2 stream. But when it comes to encode several streams with high
resolution (HDTV) for real-time broadcasting there is no hardware around that can do this
job. The experiment with the multicast of the soccer championship solved the problem
with dedicated hardware and by cutting the size of the video screen and the framerate. As
implementors of a scalable framework we offered the project to use our cluster for encode
these streams in parallel and simultaneously test our distributor framework in a field test.

Figure 7.2 shows an overview of the parallel MPEG Transcoder. This section de-
scribes the components used.

7.2.1 Parallel Encoder Design

The transcoder is organized into three physically distributed components. These com-
ponens are depicted in Figure 7.2 and will be introduced and specified in the following
sections. All the components are implemented in C++ and depend on MICO CORBA as
their communication middleware.

encode()

MPEG4 GOP
AAC

ParallelParallel
EncoderEncoder

DVDDVD

TV-Frames
Multimedia

Content
MPEG2

mp4 Stream

CollectorCollector

GOP-Concatenation
Stream Hinting

Streaming

Frame GrabberFrame Grabber encode()

Distributor Distributor
ServiceService

Load Balancing
Data Partitioning
Call Forwarding

Raw Group of
Pictures GOPs

Raw Audio

DataData
SourceSource

Collection of
I,B,P-Frames

pcm-Audio

Preprocessing
Decoding

Encoding

Figure 7.2: Overview of the MPEG Transcoder.

The discussed transcoder application deals with video streams exclusively. The appro-
priate audio streams were handled by a separate converter running on a separate single PC
since audio processing is much less expensive than video compression and in many cases
the audio streams even could directly be copied from the MPEG-2 stream (see [69, 70])
while it is transcoded to the MPEG4 container format.

7.2. COMPONENTS FOR AN MPEG TRANSCODER 177

7.2.2 MPEG Transcoding

The transcoding from MPEG-2 video streams to MPEG-4 occurs in two steps:

1. The MPEG-2 stream is fully decoded into an uncompressed neutral for-
mat (YV12 in our case)

2. The uncompressed stream is reencoded and compressed into the MPEG-
4 video format by a standard MPEG-4 encoder.

Some fundamentals of MPEG compression [89] are presented and summarized in
Appendix A.

As mentioned, we use frames in YV12-format as the neutral video format. YV12
uses a different color space than RGB. If an image is stored in RGB format it must first
be converted to YUV format.

The YUV format is downsampled slightly. All luminance information (Y) is retained;
there are 8 bits per pixel of luminance information. However, chrominance information
(U and V) is downsampled 2:1 in both the horizontal and vertical directions, which reduce
the information by a 4:1 ration. Thus, there are 2 bits per pixel of U information and 2 bits
per pixel of V information. This downsampling does not drastically affect quality because
the eye is more sensitive to luminance than to chrominance information. Downsampling
is a lossy step. The 24 bits per pixel of RGB information is reduced to 12 bits of YUV
information, which automatically gives 2:1 compression. YUV frames are the prefered
format for frame grabber input devices and can also be efficiently displayed in a viewer
by most graphic card chipsets in hardware. It is also the input format of choice for many
video encoders. (Section 7.2.7).

Like all video compression algorithms the advanced MPEG-4 compression scheme
works with motion compensation and in most cases encodes just the differences between
sequential frames. Therefore it can perform encoding efficiently only with sequences of
frames. There are three types of frames: intra-frames (I), forward predicted frames (P),
and bi-directional predicted frames (B). P- and B-frames are encoded relative to other
frames. Each sequence starts with an I-frame which is more or less a compressed jpeg
image. The following P-frames are encoded relative to the past reference frame which is
an I- or P-frame, the B-frames are encoded relative to the past and the future reference
frame. Motion vectors depict the translation of 16 � 16 pixel macro blocks and an error
term determines the difference. The search for the best motion vector (the one which
gives the smallest error term possible and still leads to good compression) is the heart of
any MPEG video encoder. The motion vector search is what makes encoders inherently
slower than decoders. As less I-frames or as more P- and B-frames respectively as better
the compression rate. But to minimize quality loss in the stream and to provide enough
“random access points” that allow to synchronize a stream again when data gets lost on
the way to the consumer, encoders normally place one I-frame each 20-30 frames. With
25 frames/s this leads to about one I-frame per second.

178 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

Format Resolution RGB Frame YV12 Chunk
[pixel@frames/s] [KBytes] [MByte]

QCIF 176 x 144 @ 15 76 0.57
CIF 352 x 288 @ 30 304 4.56
NTSC 720 x 480 @ 30 1037 15.55
HDTV 1920 x1080 @ 30 6221 93.31

Table 7.1: Single RGB frame sizes and YV12-Chunk sizes needed to store
one group of pictures (1 GOP/s) for different resolutions.

7.2.3 Partitioning of a Video Stream for Encoding

At the beginning of the transcode pipeline the raw data must be imported. Different roots
are available: YV12 coded data read form a hard disk or directly from a frame grabber or
MPEG-2 video streams read from a DVD. The decoding of MPEG-2 video streams can
be done by external tools like ’transcode’ (Section 7.2.7). The transcoder can read input
data both from files but also from named pipes.

The incoming YV12 stream first must be properly partitioned into chunks. The size
of these chunks mainly depends on the size of the frames and the other attributes given
by the MPEG encoder. The size of the video frames can be calculated by f rameSize �
3�2 �width � height. The MPEG encoder needs a sequence of such frames to be able
do encode a so called group of pictures (GOP). We normally work with one I-frame per
25 frames and 25 frames per second even if most US oriented standards use 30 (or 29.7)
frames/s. This “downsampling” leads to 1�6th less data. For chunk sizes with different
resolutions see Table 7.1.

7.2.4 Parallelization of MPEG-4 Encoding

The partitioned GOP data of a video stream can be passed further and distributed to the
different MPEG-4 encoders. The distribution shall be transparent to the user and the par-
titioner and further the call of the distributor must not block the system. Such a blocking
would lead to sequential execution and prevent all the targeted parallelism.

Another main issue in parallelizing is a fair and even distribution of the encoder tasks.
To achieve a real-time encoding of a live stream the compute cycles provided by the
servers should be optimally used. Even if we account for very efficient communication,
chunks should only be communicated once. At a full HDTV resolution we obtain a chunk
size of 93.31 MByte for one second of video and our 1 GHz Pentium III are able to
communicate 110 MByte/s using a Zero-Copy ORB.

The functionality of the parallelization is accomplished by our Distributor Service
(Section 6.4) which distributes incoming supplier deliveries to the registered consumers.

7.2. COMPONENTS FOR AN MPEG TRANSCODER 179

Format Raw Data MPEG4-compressed
Bit rate Storage Bit rate Storage

[MBits/s] [MByte/min] [MBits/s] [MByte/min]

QCIF 9.1 68 0.05-0.3 0.4-2.4
CIF 73.0 547 0.5-1 4-8
NTSC 248.8 1866 2-6 15-45
HDTV 1493.0 11197 15-30 113-225

Table 7.2: Bit rates and storage demands for different video formats raw
and compressed.

7.2.5 MPEG-4 Encoding

The YV12-frame sequences are encoded using the OpenDivX and XviD MPEG4 encoder
library (see Section 7.2.7). Each sequence must be absolutely independent from other
sequences. We therefore use a fix I-B-P-frame encoding schema. Whereas an adaptive
scheme could improve the compression efficiency some more this has no influence on
the quality. The incoming sequence does not contain any information regarding the order
of groups of pictures (GOP). Table 7.2 shows some bit rates and file sizes that would
be necessary for raw data as well as the bit rates and storage demand with the MPEG4-
compressed streams for different resolutions.

The MPEG-4 encoding results in one second video streams that arrive out of chrono-
logical order since the encoding might take different amount of times depending of the
frame complexity. Furthermore the encoding results are not of the same in size, therefore
the resulting chunks contain different amount of data. These resulting chunks must be
passed to a collector to sort the chunks and put them together into a consecutive stream.

7.2.6 Collector

The collector gathers the incoming chunk data. As the encoding time is dependent on the
complexity of the frames each sequence is therefore given a unique ID by the partitioner.
The collector can sort the chunks by ID and put them back into their original chronology.

An important problem which must be handled by the collector are lost chunks. It is
always possible in distributed applications that a single component can fail. The collector
therefore must recognize lost or delayed sequences reliably and take measures. For our
demonstrator application we want to stream video data in real-time. Therefore handling
lost data forces us to just means to drop such an errornous or missing chunk after a given
delay. But once the collector detects losses it can also unsubscribe a failing encoder
from our Distributor Service to prevent further sequences from failing or reinitialize the
partitioner to resubmit a lost chunk.

180 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

After the sorting the collector can export a contiguous MPEG-4 stream. But this
stream is a raw MPEG-4 video stream and it must be enclosed by a container format like
VOB, AVI, Quicktime or MP4 to be able to be played by a viewer or be streamed over
the network. The collector component must therefore encapsulate the MPEG-4 video
stream (and optionally an appropriate AAC-audio stream) into the MP4 container format
that includes synchronization as well as streaming hints. This format can then readily be
multicasted accross a network and played by many clients.

7.2.7 External Components

Several Open Source codes of tools and libraries were studied and used for the imple-
mentation of the transcoder. Besides Linux and MICO the following standard software
components were used.

transcode

transcode [117] is a text console video-stream processing tool. It supports elementary
video and audio frame transformations. Some example modules are included to enable
import of MPEG-1/2, Digital Video, and other formats. It also includes export modules
for writing to AVI files with DivX, OpenDivX, XviD, Digital Video or other codecs. A
set of tools is available to extract and decode the sources into raw video/audio streams for
import and to enable post-processing of AVI files.

transcode can be used as an application in a so called UNIX pipe without problems.
The command itself provides many command line options that can cover a broad spectrum
of video streaming operations.

The transcode framework itself is similar to our framework but uses another con-
tainer. The whole functionality is linked dynamically from shared-libraries on startup.
Each transcode instance consists of an import- and an export-module which can be com-
bined arbitrarily. But communicating over UNIX pipes leads to local copies and large
overheads and the framework is restricted to one host. However the modular architecture
of transcode influenced the design of our Distributor Framework largely.

MPEG4IP

MPEG4IP [98] provides an end-to-end system to explore MPEG-4 multimedia. The
package includes many existing open source packages and the ”glue”to integrate them
together. It is a tool for streaming video and audio that is standards-oriented and free
from proprietary protocols and extensions. The MPEG4IP source code is provided under
the Mozilla Public License.

Provided are an MPEG-4 AAC audio encoder, an MP3 encoder, two MPEG-4 video
encoders, an MP4 file creator and hinter, an IETF standards-based streaming server, and

7.3. IMPLEMENTATION OF A DISTRIBUTED MPEG TRANSCODER 181

an MPEG-4 player that can both stream and playback from local file. For the collector
of our transcoder uses the mp4 creator, hinter and the streaming server provided with
MPEG4IP.

The development is focused on the Linux platform, and has been ported to Windows,
Solaris, FreeBSD, BSD/OS and Mac OS X.

OpenDivX and XviD Codec

XviD is the latest Open Source MPEG-4 codec that is compliant to the ISO standard.
XviD is the first MPEG-4 encoder being developed under the open source model, much
like the LAME MP3 encoder, and gives surprisingly good results despite the early alpha
status. The compression rates achieved by the encoder are 8-10 times better than that of a
current MPEG-2 codecs.

XviD is based upon the efforts made in the Open Source project ”OpenDivX” initially
sponsored by DivX Networks Inc. Unfortunately they shut down the project and closed
the source with all the ideas and work spent by many coders from the net. But some of
the original contributors wanted to continue the work, collected the latest sources they
had and brought them together to continue with that work. Since the start-over, XviD is
developing very fast and is evolving into a very high quality codec.

7.3 Implementation of a Distributed MPEG Transcoder

This section discusses the implementation of our MPEG Transcoder regarding to the spec-
ification in Section 7.2. It uses our distributor framework introduced in Section 7.1 which
simplifies the implementation of the application significantly. The framework works with
import-, process- and export-modules that have to be implemented according to the job
they have to do. Using the framework therefore reduces the task to the development of
these modules. The framework itself relies on our new CORBA Distributor Service dis-
cussed in Section 6.4 to parallelize the jobs to a cluster of PCs. Figure 7.3 shows the
configuration we aim at.

7.3.1 Chunk Communication

Reading and writing data chunks to disk is a relatively simple and cheap form of com-
munication with the outside. This is much different with the import and export of video
chunks as they have to be encapsulated by CORBA objects, exported by the supplier and
gathered by a remote consumer.

As already described in Section 7.1.3 and stated in Section 7.2.4, the distribution
of raw video data that is needed for the encoding parallelization must be as efficient as
possible. It must be implemented without in-memory copies and optimized zero-copy

182 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

Object Request Broker (ORB)Object Request Broker (ORB)

ProcessProcess
NULLNULL

ModuleModule

SchedulerScheduler
ChunkChunk

ImportImport
RAWRAW

ModuleModule

ExportExport
ChunkChunk
ModuleModule

Single Chunk PoolSingle Chunk Pool
Distributor Distributor
Channel Channel II

IORIOR

YUVYUV--
FramesFrames

(a) Data import, preprocessing and partitioning

Object Request Broker (ORB)Object Request Broker (ORB)

ProcessProcess
MPEGMPEG--44
ModuleModule

SchedulerScheduler

In PoolIn Pool

ChunkChunk

ImportImport
ChunkChunk
ModuleModule

ExportExport
ChunkChunk
ModuleModule

Out PoolOut Pool
Distributor Distributor
Channel Channel IIII

IORIOR

IORIOR

Distributor Distributor
Channel Channel II

ChunkChunk

(b) (Parallel) MPEG-4 encoding

Object Request Broker (ORB)Object Request Broker (ORB)

ProcessProcess
SortSort

ModuleModule

SchedulerScheduler

ImportImport
ChunkChunk
ModuleModule

ExportExport
MP4MP4

ModuleModule

Single Chunk PoolSingle Chunk Pool

IORIOR

Distributor Distributor
Channel Channel IIII

ChunkChunk

mp4 mp4
StreamStream

(c) Sorting and MP4 stream export

Figure 7.3: The MPEG Transcoder requires the implementation of four
special purpose modules: ImportRAW-, ProcessMPEG4-, ProcessSort- and
ExportMP4-module. Additionally three standard modules provided by
the framework are used: ImportChunk-, ExportChunk- and ProcessNull-
module

7.3. IMPLEMENTATION OF A DISTRIBUTED MPEG TRANSCODER 183

communication for data chunks must be used. As we know the requests are not sent di-
rectly to the consumer but they are sent to a mediator which forwards the objects to its
definite destination. For large parameters this might be inefficient, that is why we imple-
mented a callback strategy. The export-module encapsulates the data chunks that have
to be exported by a CORBA object (VideoChunk-object) using zero-copy sequences
(introduced in Section 5.6.1) and just passes the appropriate object references further.
The CORBA objects are registered with the ORB so they can be accessed by their object
references from outside. Figure 7.4 depicts this strategy.

Object Request Broker (ORB)Object Request Broker (ORB)

ImportImport
ChunkChunk
ModuleModule

ExportExport
ChunkChunk
ModuleModule

IORIOR

ChunkChunk--TransferTransfer

Distributor Distributor
ChannelChannel

IORIOR

Out PoolOut Pool In PoolIn Pool
GetGet--RequestRequest

Figure 7.4: Chunk-transfer: The ExportChunk-module exports and dis-
tributes the IOR of the chunks that are encapsulated by CORBA-objects
via the Distributor Service. The ImportChunk-module receives this IOR, re-
quests the data directly from the ExportChunk-module and stores it into the
prepared chunk allocated from the in-pool.

This scheme allows the import-module as a consumer of our CORBA Distributor Ser-
vice to access the data chunks (VideoChunk-objects) directly inside the export-module
of the last framework instance and enables to copy the data form the remote chunk di-
rectly into the local chunk without any in-memory copies and without the detour over the
distributor service.

7.3.2 Import Modules

The architecture as depicted in Figure 7.3 requires the implementation of two import-
modules. The first module imports YV12 video data and is able to partition the data into
single frames or groups of pictures (GOP) (Section 7.2.3). The second module imports
chunks by accessing CORBA chunk objects as described in the last section. Each chunk
(or partition) gets an increasing unique ID that is needed for sorting the partitions again
after the processing. There is a third module that can be used to read the data directly
from a frame grabber to allow real-time MPEG-4 streaming.

184 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

ImportRAW Module

This module reads YV12-data from disk or from standard input (cin) and partitions it
into data chunks that are compatible with our zero-copy distributor framework.

ImportGrabber Module

Instead of reading the data from disk, this module makes a connection to a standard video
interface and accesses the YV12 data directly on the frame grabber interface card. It also
partitions the stream and stores it in the chunks provided by the framework.

ImportChunk Module

This module implements the DistComm::Consumer-interface of our proposed CORBA
Distributior Service (for interface definition see Appendix D). Each delivery contains the
IOR of a VideoChunk-object. This chunk is subsequently registered with the ORB and
can therefore be accessed via CORBA by the ExportChunk-module.

As the receiving of a delivery is an externally triggered event the module calls the
scheduler after a successful import.

7.3.3 Process Modules

The distributed MPEG Transcoder needs four process-modules that implement the prin-
cipal functionality of the video encoder. These modules get the data chunks, apply their
modification to the data and pass the result further to the export-module.

ProcessNull Module

The ProcessNull-module is the most simple of all process-modules. It just copies the data
from the inbound-chunk to the outbound-chunk. This is very inefficient since this would
introduce a local in-memory copy for no good reason. Therefore the module offers to use
just one single chunk-pool. With that optimization the data is not touched anymore and
only the chunk-ID is passed from the inbound-queue to the outbound-queue.

ProcessMPEG4 Module

The ProcessMPEG4-module transforms the groups of YV12-frames in the chunk into an
MPEG-4 video stream by using the XviD-library [164] as a successor of the successful
DivX-library (Section 7.2.7). The resulting streams are not necessarily of the same size
so the data chunks might not be fully used.

This is the module that needs the most computing power and is therefore a candidate
for replication in the parallel version.

7.3. IMPLEMENTATION OF A DISTRIBUTED MPEG TRANSCODER 185

ProcessSort Module

We have already discussed that the sequences encoded at different encoders might be
returned out of order. The collector’s task is to sort the chunks again which is exactly the
job of this modules. It is the only module that operates on the whole inbound-queue, all
the other modules use the queue as a FIFO queue and access only the first element.

The “lost chunk”-problem introduced in Section 7.2.6 is handled by the following
strategy: As long as the inbound-pool still contains free chunks, the collector waits as the
lost chunk could still appear. But if the inbound-pool is filled up some missed chunks have
to be dropped until the next chunk in row is found in the pool. Should the missing chunks
later reappear they are dropped anyway as the stream generation has already proceeded
further.

ProcessDVDDecode Module

The specification of our application includes the idea of MPEG2-to-MPEG4 transcoding
as required in the application of streaming DVD content over the net. This module allows
this by decoding the video object container (VOB) files of a DVD. The VOB file contains
the MPEG-2 video streams and several audio streams in different languages and formats
(mostly the compressed Dolby Digital or the lossless dts Digital Theater System surround
formats) as well as textual info for subtitles. The ProcessDVDDecode-module separates
the video stream and decodes the compressed MPEG-2 format into single YV12 frames
using libraries of the transcode framework [117].

7.3.4 Export Modules

Besides a module that exports the video chunks to our CORBA Distributor Service the
collector needs a module that concatenates the partial stream fragments. As the MPEG-4
stream fragments cannot just be concatenated without readjusting some information like
e.g. timing tracks a separate module is implemented. The resulting stream is just an
MPEG-4 video stream and cannot be played yet unless it is enclosed in a multimedia
container format like e.g. MP4. MP4 is a candidate for a new standard format for MPEG-
4 video. It is derived from Apples Quicktime format and is standardized in the MPEG-4
specification [70].

ExportRAW Module

This module reads the data chunks in the order given by the outbound-queue, concatenates
them and writes the data into a file or a UNIX pipe (cout).

186 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

ExportMultiFile Module

Instead of concatenating the chunk data this module creates a new file for each chunk.
The file names are derived from the given name plus the chunk-ID (e.g. “output-0197”).

ExportChunk Module

Upon initialization the ExportChunk-module creates another CORBA portable object
adapter (POA). The POA is configured with the USE_DEFAULT_SERVANT- and NON_
RETAIN-policy. All the chunks that have to be exported can therefore be represented by
a single VideoChunk-default-servant [72, 130].

For the generation of IORs we waive the inherent POA functionality and derive the
object-ID from the appropriate chunk-ID. The VideoChunk-default-servant can decide
by means of this IOR which of the chunks is referenced and delivers the data back.

ExportMP4 Module

This module finally implements the collector functionality as described in Section 7.2.6. It
mainly concatenates the MPEG-4 stream fragments into a contiguous stream and embeds
the stream into the MP4 container by using the MPEG4IP library [98] (Section 7.2.7) .
The stream hinting allows to directly broadcast the resulting mp4-file as a stream by a
video streaming server like e.g. Darwin [74].

7.3.5 trans command

The trans component is the unix wrapper around our parallel encoding framework and
can be started by using the trans command line tool. The many setting allow to con-
figure the framework, especially the modules that shall be used as described in the last
section. For a detailed description of the syntax and the options see the “manual page” in
Appendix B.

7.3.6 Example

These examples show how the transcoder is started up and put to work in the configuration
given by Figure 7.3.

As a prerequisite for using the framework in a distributed environemnt we need a
running COS Naming Service as well as our CORBA Distributor Service:

> ./imr create NameService poa ./nsd

IDL:omg.org/CosNaming/NamingContext:1.0#NameService

> ./distd &

7.3. IMPLEMENTATION OF A DISTRIBUTED MPEG TRANSCODER 187

First we start an import- and partitioning instance. In this example the data import
from the frame grabber device as well as the partitioning is provided by the ImportGrabber-
module (-ig) and we do neither need a process-module nor a second chunk pool. So we
configure the ProcessNull-module (-pn) and optimize the application to use just one
single chunk pool (--pools 1) to prevent copying. The export shall make the chunks
accessible for an encoder object that is why we configure the ExportChunk-module (-ec)
and give the name of the distributor channel we want to use (--outchannel toEnco-
derChannel). The YV12 stream does not contain any hints about the frame rate nor the
frame size this has to be given as an argument. We use an NTSC resolution of 720*480
pixels (-w720 -h480) and a frame rate of 25 frames/s (-r25). The partitioner shall
group 25 frames into one group of pictures (GOP) (-f25).

> ./trans \

-ig -pn -ec --pools 1 \

-w720 -h480 -r 25 -f 25 \

--outchannel toEncoderChannel

- -

For demonstration purposes we show here the start of just one single encoder instance.
But as the major goal is distributed execution in parallel the framework allows to start
many instances of the encoder on different hosts. The import is done by the ImportChunk-
module (-ic), the processing uses the ProcessMPEG4-module (-pe) and the export uses
the same module as the first framework instance, the ExportChunk-module that export to
a second channel of the distributor service (-ec). This time we have to specify the name
of both, the input- (--inchannel toEncodeChannel) as well as the output-channel
(--outchannel toSortChan- nel). And again the video settings must be given for
the encoder. Even if they can be accessed through the chunk-object and are therefore even
communicated between the frameworks but they are already needed at the initialization
state of the chunk-pools.

> ./trans \

-ic -pe -ec \

-w720 -h480 -r 25 -f 25 \

--inchannel toEncodeChannel \

--outchannel toSortChannel

- -

The collector instance finally imports the chunks again via the distributor service with
the ImportChunk-module (-ic), but this time form the ’toSortChannel’ (--inchannel
toSortChannel). The sorting task is done by the ProcessSort-module (-ps). Again
the ProcessSort-module can waive on a second chunk pool (--pools 1). The last mod-
ule, the ExportMP4-module (-es), then does the rest. It concatenates the MPEG-4 video

188 CHAPTER 7. ZERO-COPY DISTRIBUTOR FRAMEWORK EVALUATION

streams appropriately and embeds it into an MP4 container that contains further hints for
streaming. The output is store into a file (/tmp/starwars.mp4).

[] ./trans \

-ic -ps -es \

-w720 -h480 -r 25 -f 25

- /tmp/starwars.mp4

7.4 Evaluation of the Results

The design and implementation of a distributed MPEG Transcoder lead us to conceive a
framework for distributed and parallel data processing with CORBA. The result is a mod-
ular, extensible, intuitive and simple CORBA Distributor Service and a framework to use
the service. The software components are general enough to implement any distributed
parallel application that deals with large amounts of data in a CORBA environment.

The distribution and parallelization of the processing is achieved by using our CORBA
Distributor Service. This service schedules calls to different machines evenly by an inter-
nal load balancer and decouples the data supplier from the consumer.

The issue that lead to this application and framework development was the demon-
stration for optimal software efficiency using zero-copy implementations for all the mid-
dleware and underlying networking software. The framework deals with large amounts of
data that is distributed to different processing nodes over the network and zero-copy data
management is essential to achieve reasonable performance. Zero-copy can be achieved
by using a highly optimized CORBA ORB and wrapping data into CORBA sequences of
octets that can be communicated very efficiently. Our modified ORB relies on a zero-copy
TCP/IP stack that offers the standard socket API as its interface. Both these prerequisites
are introduced and discussed by this thesis.

Another issue that must be considered when optimizing software efficiency is raised
by the architecture of the distributor framework. Although the service is transparent to the
application implementor one must keep in mind that the calls including their parameters
are sent to a service which forward them to a target server that does the processing. For
large amounts of data such a scenario would introduce copies and way too much overhead.
The distributor framework therefore exports the wrapped data as CORBA objects and
passes just a CORBA object reference as a parameter to the call. This is similar to a local
call-by-reference passing just a pointer to a structure instead of copying the structure
itself. CORBA assures a global name space for those references and CORBA object
references act as the data pointers. They permit that the data can be accessed from the
outside directly from any processing module that needs to access the data. This is a form
of callback function that is hidden by the CORBA middleware.

7.4. EVALUATION OF THE RESULTS 189

As a technology demonstrator the MPEG Transcoder trans is written for this distrib-
utor framework and can therefore be implemented by just adding special purpose modules
to the framework base application. The overhead and complexity introduced by the par-
allelization and data distribution is completely hidden to the implementor. And so is the
overhead generally introduced by network communication via middleware. We already
showed a performance achievement of a factor of 10 for an optimized ORB communicat-
ing through a zero-copy operating system stack versus the original ORB. Therefore the
entire performance gain is posed to our application.

The resulting tool is a command line based application for transcoding MPEG-2 DVD
movies to the new MPEG-4 standard offering much better compression rates. The com-
pute intensive encoding operation can be sped up to real-time operation by just increasing
the compute power by adding some more PCs to a cluster and starting another encoder
task on these machines. The initialization of the entire software system, registering to
our new CORBA Distributor Service and the load balancing of jobs is done automatically
at run-time. The resulting high performance distributed processing application provides
MPEG-4 encoding in real-time for full HDTV resolution and full frame rate. Larger
clusters of commodity PCs can even transcode multi-channel streams containing several
parallel video streams.

8
Conclusions

This dissertation dealt with novel software architectures providing efficient communica-
tion facilities over commodity Gigabit/s networks, in particular over Gigabit Ethernet. To
ease the development process of parallel applications on Clusters of PCs a modern com-
ponent and object oriented distributed object middleware platform is highly desirable.
The thesis deals also with efficient software support for such a framework preserving the
full communication speed of the lower software layers.

The principal intellectual contribution of this dissertation is its investigation of com-
munication software efficiency. We define this efficiency as the ratio between the band-
width that a hardware is able to deliver versus the bandwidth that is provided to the user
application by the software system.

This dissertation first shows that respecting the best possible granularity, the com-
munication in high speed computing platforms can be very efficient especially when us-
ing specialized hardware and optimized communication system software. We identify
preconditions and techniques to extend this level of efficiency to standard software and
commodity hardware in clusters. We further identify the main performance problem with
Gigabit Ethernet, namely that transport protocols are needed whose operating system im-
plementations introduce copies in the local memory system. As todays network band-
widths match the memory copy transfer performance, this memory copy turns out to be
the most expensive bottleneck in high bandwidth communication with Ethernet.

The dissertation therefore argues that many applications that are easily parallelizable
for clusters are limited by the communication bandwidth of the commodity networks and
it claims that Zero-Copy is the most essential principle to fill the gap between hardware
bandwidth and what is delivered by current software systems.

Since network bandwidths and memory copy transfer speeds are of the same magni-
tude in modern systems it is absolutely necessary to eliminate all in-memory copying and
to design the software for zero-copy communication to obtain the best possible perfor-
mance. All data that arrives in memory must be put to the right position when it is pulled
from the network device, even before it is requested by a receiver.

191

192 CHAPTER 8. CONCLUSIONS

Todays complex systems need to be constructed from many standard software com-
ponents involving different layers of middleware that ease the development and cut the
applications complexity into manageable parts. As a consequence we need a systematic
software implementation strategy that applies the zero-copy principle to all the involved
layers.

In our understanding a software implementation with zero-copy really means zero
data copies through all the involved layers between a user application and the hardware.
Partial so called ”zero-copy” solutions at the OS-layer do not qualify. This means that
no copy may occur in the communication system including the hardware drivers and the
network and transport protocols as well as by crossing the kernel-user boundary involving
the socket interface. Middleware that provides an easier and more homogeneous system
abstraction and some useful functionality to the application may not introduce any copies
as well.

Wherever a copy may occur, one copy is always one copy too much and looking at the
performance it will break the whole zero-copy principle. While additional copies can be
cheap the first copy is always the most costly one, considering that data might be readily
available in the cache after a first access in a system.

As the system software layer and the middleware layer have to be discussed separately
and can not be merged into one, the contribution of the thesis are represented in two
main sections: zero-copy with commodity communication hardware and zero-copy with
distributed object middleware. The contributions for both parts are summarized once
more in Sections 8.1 and Section 8.2.

As it is not easily possible to extend the simple message passing system to a devel-
opment environment for distributed object oriented programming without modification to
the message passing interface standard (MPI) we rather chose to start with the rich func-
tionality of CORBA and optimize it for better performance. We transparently utilize the
ORB functionality in a high performance system so that high bandwidth communication
can be handled efficiently. Distributed object middleware like CORBA as an alternative
to the MPI makes additional flexibility and the possibility for object oriented component
design methods as well as the usage of design patterns and frameworks available to the
developers.

In a third part the dissertation proposes ideas on how to use distributed objects for
high performance parallel processing. We observed that none of the currently available
CORBA components is able to completely satisfy the requirements given by the described
MPEG-Transcoder application and therefore we had to introduce the design of a new ser-
vice which we named Distributor Service. To allow fast development we further present
a Distributor Framework that is used to implement an MPEG2-to-MPEG4 Transcoder.
This contribution is discussed in Section 8.3.

8.1. EFFICIENT DEFRAGMENTATION WITH ETHERNET 193

8.1 Efficient Defragmentation with Ethernet

The small maximal packet size of standard Gigabit Ethernet prevents previously known
zero-copy protocol optimizations unless IP packets can be fragmented most efficiently at
the driver level without involving any additional data copies. Accurate fragmentation and
defragmentation of packets in hardware remains impossible with most existing commod-
ity Gigabit Ethernet network interface chips unless a speculative approach is taken.

With speculation techniques it becomes possible to implement true end-to-end zero-
copy TCP/IP based on some simple existing network adapters. A substantial fraction of
the peak bandwidth of a Gigabit Ethernet can be achieved for large transfers while pre-
serving the standardized socket API and the TCP/IP functionality. The study of the spec-
ulation hit rates within two applications (TreadMarks SOR and a Oracle TPC-D bench-
mark) shows that misses are quite rare and that they can be further reduced in the highly
regular Ethernets connecting the compute nodes of a Cluster of PCs.

Our speculative packet defragmenter for Gigabit Ethernet successfully relies on an
optimistic assumption about the precise packet format, the integrity and the correct or-
der of incoming packets using a conventional IP stack as fallback solution to deal with
speculation failure. The driver works with the simple DMA (direct memory access) hard-
ware of the network interface card to separate headers from data and to store the payload
directly into a memory page that can be re-mapped to the address space of the com-
municating application program. All checks whether the incoming packets are handled
correctly according to the protocol are deferred until a burst of several packets arrived. If
the speculation missed the correct order or layout, some cleanup code passes the received
frames to a conventional protocol stack for regular IP-processing.

The idea of speculation immediately raises the issues of improved hardware support
for better prediction or for better speculation about how to handle incoming packets most
efficiently. Two promising approaches are outlined, the first approach suggests a hardware
extension of the network interface using a few simple protocol match CAM (content ad-
dressable memory) registers that classify incoming packets into two different categories:
high speed zero-copy traffic and regular TCP/IP traffic. The match cam registers would
control the selection of DMA descriptors used to store the packets in memory from dif-
ferent (at least two) descriptor lists. The second approach uses a dedicated protocol for
admission control that guarantees exclusive access for one burst data stream.

Our implementation of a speculative Gigabit Ethernet driver with a speculative de-
fragmenter is embedded in an OS setting with well known zero-copy techniques like “fast
buffers” or “page remapping”. Together with those mechanisms a true zero-copy imple-
mentation of TCP/IP for Gigabit Ethernet has been achieved and measured. The imple-
mentation delivers 75 MByte/s transfers on 400 MHz Pentium PCs together with “fast
buffers” support — a substantial improvement over the 42 MByte/s seen in the standard
TCP/IP stack in Linux 2.2.

194 CHAPTER 8. CONCLUSIONS

The benefits of a zero-copy communication architecture are not limited to high peak
bandwidth numbers, but also include a much lower CPU utilization that will improve the
performance of many application. On more current machines running at 1 GHz and pro-
viding an enhanced 64 Bit/66 MHz PCI I/O-bus the bandwidth achieved is 115 MByte/s
while the CPU utilization stays at 30% compared to 100% with an unoptimized stack.
Our Dolly tool for data streaming and disk cloning over Gigabit Ethernet was measured
to perform 39% better with our zero-copy communication architecture than with a stan-
dard protocol stack.

A closer look at the success rates of speculation in the communication patterns of
different applications indicates that either some additional hardware support or an admis-
sion control mechanism should be used to handle the bulk transfers occurring in larger
applications. Still our approach of speculative processing in hardware linked to a fall-
back with cleanup in software seems to enable a set of new simple solutions to overcome
some old performance bottlenecks in network interfaces for high performance distributed
computing.

8.2 Throughput Efficient Middleware

Although heterogeneity in distributed systems is natural, most high performance dis-
tributed systems are characterized by some very limited heterogeneity. The components
that are diverse can use a CORBA ORB, whereas components that are built using the
same programming language and operating systems can use some simple software that
applies a ”flyover”and bypass most of the standard CORBA operations and hereby save a
lot of processing in terms of middleware overheads.

To achieve a zero-copy bypass for untyped data handled in CORBA applications we
propose to use some standard CORBA method calls and introduce a Separation of Control
and Data Transfers within the ORB. The separation of synchronization and data transfer
is the key insight that permits better communication performance in parallel computers.
The biggest speed improvements are caused by delegating buffer management to the ap-
plication or if a middleware establishes the communication to this software layer in be-
tween. Looking at the structure of CORBA applications this means that the buffers are
allocated and managed by the application or the stub and skeleton code generated through
the toolkit of the according ORB.

As usual for CORBA applications the buffer management is handled by the mid-
dleware and it becomes possible to optimize this buffer management in the middleware
implementation. This does not effect the user application while allowing for much faster
communication. Instead of using parallelizing compilers which have knowledge about
the communication pattern of a user application we rely on the knowledge that the pro-
grammer has an idea of the communication pattern generated in the ORB. Since we do
not want to change the application interface and the synchronized client server messaging

8.3. PARALLELIZATION FRAMEWORK FOR CORBA 195

model of CORBA we introduce a decoupling of synchronization and data transfer inside
the ORB, in th form of an IIOP communication with its partner.

The achieved performance results of this optimized ORB look very promising and
the goal to optimize a CORBA ORB for direct deposit zero-copy operation was fully
achieved. The throughput results on our optimized MICO ORB matches very well the
raw TCP/IP-socket performance. That proves that the optimized ORB handles the new
ZC Octet sequences correctly by just passing them through the ORB while not intro-
ducing much overhead.

It is astonishing that the optimized ORB still comes close to the maximal performance
of the much improved protocol stack using the zero-copy TCP. This demonstrates that our
argumentation that zero-copy is the most essential technique to optimize for efficiency is
true. The results also show the significant contribution of the idea to separate control and
data transfers in the ORB.

As a contribution at a higher, conceptual level we prove that it is indeed possible to use
CORBA middleware on top of a standard socket application programming interface and
still adhere to the zero-copy regime. This was achieved and successfully demonstrated in
a benchmark and an application. For large blocks our ORB achieves 550 MBit/s through-
put on 400 MHz Pentium II PCs while the application still fully complies tho the CORBA
standard. That means that the programmer work in the CORBA framework as he just de-
fines the interface and generates the stubs and skeletons which map the server implemen-
tation with an IDL compiler. Given an optimal zero-copy system he is then ready to run
his application efficiently on a distributed environment. The 550 MBit/s look extremely
well compared to the 50 MBit/s that are achieved by a copying ORB and the standard
TCP/IP stack. This means that a tenfold performance gain could have been achieved by
introducing zero-copy through all the layers.

8.3 Parallelization Framework for CORBA

CORBA implements an inherent synchronous client/server paradigm (N to one) which has
generally been considered unsuitable for parallel programming. The lack of peer-to-peer
semantics and difficulty in achieving distributed concurrency and/or data flow prevented
many applications. So what is needed is a parallelization paradigm (one to M) in addition
to the (N to one) pattern.

None of the existing CORBA Services could match our requirements for a paral-
lelizer service: neither asynchronous and decoupled calls, nor inherent load balancing,
nor deliver at most once, nor dynamic publish & subscribe. We therefore designed and
implemented the our own Distributor Service that could accommodate all these desired
concepts and functionalities. In the evaluation the distributor service showed an impres-
sive potential and performed very reliably.

With the implementation of a large part of a load balancing service inside the Dis-

196 CHAPTER 8. CONCLUSIONS

tributor service a simple but flexible and portable service could be provided for MICO.
The load balancer strategy which is responsible for dispatching the requests to the “right”
server can be modified or exchanged on the fly.

The referential integrity of delivery suppliers and delivery consumers makes the ser-
vice convenient for applications outside its dedicated target platform, the clusters of PCs.
We evaluated the architecture for a small computational grid consisting of a large number
of inhomogeneous computing resources spread all over our computer science department.
The facilities of the service made it even possible to utilize some weak machines together
as a respectable high performance computing resource by just adding this service to the
CORBA world of applications.

The design of a distributed MPEG-4 Transcoder confined this and lead us to design
a framework for parallel data processing with CORBA. The result is the modular, exten-
sible, intuitive and simple to use Distributor Framework. This framework can be used
to implement any distributed parallel application that deals with large amounts of data in
a CORBA environment. The parallelization of jobs is achieved by using the Distributor
Service which is the core component of the framework. The service schedules calls to
different machines by an inherent load balancer and decouples the data supplier from the
consumer.

The issue that triggered the development of this application and framework was the
application of the zero-copy principle to middleware. As the framework deals with large
amounts of data that has to be distributed to different processing nodes over the network
zero-copy is essential to achieve a reasonable performance. First zero-copy is achieved
by just using an optimized CORBA ORB and wrapping data into CORBA sequences of
octets that can be communicated very efficiently. Second the ORB relies on a zero-copy
TCP/IP stack that offers the standard socket API as its interface. Both prerequisites are
justified and discussed by this thesis.

Another issue must be looked at, while discussing the efficiency and usage of the
distributor service framework itself. Even if the service is transparent to the application
implementor it must be well known that the calls including their parameters are sent to
a service which forward them to a definite server. For large amounts of data such an in-
direction scenario would introduce much too much overhead. The distributor framework
therefore exports the wrapped data as CORBA objects and sends a CORBA object ref-
erence as a parameter to the call. This is similar to a local processing through call by
reference when just passing a pointer to a structure instead of copying the structure itself.
Through the CORBA object reference the data is accessed directly from outside by the
processing module that needs to access the data. This is a type of callback that is hidden
by the CORBA middleware.

As a technology demonstrator an MPEG-Transcoder trans is based on this distrib-
utor framework and can therefore be implemented by just adding some domain specific
modules or plugins to the framework. The overhead and complexity introduced by the

8.3. PARALLELIZATION FRAMEWORK FOR CORBA 197

parallelization and data distribution is completely hidden to the implementor. This is noth-
ing new when working with objects and components but we also hide the overhead that
generally would be introduced by network communication via middleware. We already
showed a performance achievement of a factor of 10 for an optimized ORB communi-
cating through a zero-copy operating system stack versus the original ORB. This tenfold
performance gain can fully be used by our application.

The resulting tool is a command line based application for transcoding MPEG-2 DVD
movies to the new MPEG-4 standard offering much better compression rates. The com-
pute intensive encoding operation can be parallelized by just increasing the compute
power by adding some more PCs to a cluster and starting another encoder task on these
machines. The initialization, registering to a distributor service and the load balancing
of jobs is adapted on run-time automatically. Like this real-time MPEG-4 encoding is
enabled for full HDTV resolution or for multi-channel streams containing several parallel
video streams.

A
MPEG-4 Compression

– An Introduction

The following short introduction of the MPEG compression algorithms [89, 48, 18] is just
intended to let the reader understand the field and is by no means complete.

MPEG-4 is a new standard for interactive multimedia creation, delivery, and playback
for the Internet. MPEG-1 had its impact to the delivery of full-motion, full-screen video
by CD-ROMs, MPEG-2 to the development of the DVD and MPEG-4 will have an impact
on video over the Internet.

MPEG-4 is an extensive set of key enabling technology specifications with audio and
video at its core. It was defined by the MPEG (Moving Picture Experts Group) commit-
tee, the working group within the International Organization for Standardization (ISO)
that specified the widely adopted standards known as MPEG-1 and MPEG-2. MPEG-4,
whose formal designation is ISO/IEC 14496, was finalized in October 1998 and became
an international standard in early 1999.

Scenes and Media Objects

The central concept defined by the MPEG-4 standard is the audio-visual object, which is
the foundation of the object-based representation. Such a representation is well suited for
interactive applications and gives direct access to the scene contents.

A video object may consist of one or more layers to support scalable coding. The
scalable syntax allows the reconstruction of video in a layered fashion starting from a
standalone base layer, and adding a number of enhancement layers. This allows appli-
cations to generate a single MPEG-4 video bitstream for a variety of bandwidths and/or
computational complexity requirements.

An MPEG-4 visual scene may consist of one or more video objects. Each video object
is characterized by temporal and spatial information in the form of shape, motion, and
texture. For certain applications video objects may not be desirable, because of either the
associated overhead or the difficulty of generating video objects. For those applications,
MPEG-4 video allows coding of rectangular frames which represent a degenerate case of

199

200 APPENDIX A. MPEG-4 COMPRESSION – AN INTRODUCTION

an arbitrarily shaped object.
An MPEG-4 visual bitstream provides a hierarchical description of a visual scene as

shown in Figure A.1. Each level of the hierarchy can be accessed in the bitstream by
special code values called start codes. The hierarchical levels that describe the scene most
directly are:

VO 1

2..NVS

VO 2..N

VOL 1 VOL2..N

GOV1 GOV2..N

VOP 1 VOP k VOPk+1.. VOP 1 VOP2..N

VS 1

Layer 1 (Base Layer) Layer 2 (Enhancement Layer)

Figure A.1: Logical structure of an MPEG-4 video bitstream

Visual Object Sequence (VS): A container object combines the complete MPEG-4 scene
which may contain any 2-D or 3-D natural or synthetic objects and their enhance-
ment layers.

Video Object (VO): A video object corresponds to a particular (2-D) object in the scene.
In the most simple case this can be a rectangular frame, or it can be an arbitrarily
shaped object corresponding to an object or background of the scene.

Video Object Layer (VOL): Each video object can be encoded in scalable (multilayer)
or non-scalable form (single layer), depending on the application, represented by
the video object layer (VOL). The VOL provides support for scalable coding. A
video object can be encoded using spatial or temporal scalability, going from coarse
to fine resolution. Depending on parameters such as available bandwidth and com-
putational power the desired resolution can be made available to the decoder.

Group of Video Object Planes (GOV): Each video object (VO) is sampled in time, each
time sample of a video object is a video object plane (VOP). Video object planes
can be grouped together to form a group of video object planes. GOVs can provide
points in the bitstream where video object planes are encoded independently from
each other, and can thus provide random access points into the bitstream.

201

Video Object Plane (VOP): A VOP is a time sample of a video object. VOPs can be
encoded independently of each other, or dependent on each other by using motion
compensation. A conventional video frame can be represented by a VOP with rect-
angular shape.

Motion Estimation and Error Compensation

Motion estimation and compensation are commonly used to compress video sequences by
exploiting temporal redundancies between frames. The approaches for motion compen-
sation in the MPEG-4 standard are similar to those used in other video coding standards.
The main difference is that the block-based techniques used in the other standards have
been adapted to the VOP structure used in MPEG-4. MPEG-4 provides three modes for
encoding an input VOP, as shown in Figure A.2, namely:

���
���
���
���
��
��
��
��
��

���
���
���
���
��
��
��
��
��

B
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

B
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

B
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

I

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

P

Backward Prediction

Forward Prediction

Figure A.2: Dependency of the different I-, B- and P-planes used in video
compression.

I-Planes: A VOP may be encoded independently of any other VOP. In this case the en-
coded VOP is called an Intra VOP.

P-Planes: A VOP may be predicted (using motion compensation) based on another pre-
viously decoded VOP. Such VOPs are called Predicted VOPs.

B-Planes: A VOP may be predicted based on past as well as future VOPs. Such VOPs are
called Bidirectional Interpolated VOPs. B-VOPs may only be interpolated based on
I-VOPs or P-VOPs.

Texture Coding

The texture information of a video object plane is present in the luminance, Y, and two
chrominance components, Cb, Cr, of the video signal. In the case of an I-VOP, the tex-
ture information resides directly in the luminance and chrominance components. In the

202 APPENDIX A. MPEG-4 COMPRESSION – AN INTRODUCTION

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

I−Frame

P−Frame

Motion Vector

Rotation
Compensation Frame
Prediction Error

Figure A.3: Motion Vectors are calculated on the base of macro blocks. The
rotation and pixel mutations are described by an error compensation matrix.

case of motion compensated VOPs the texture information represents the residual error
remaining after motion compensation (Figure A.3). For encoding the texture informa-
tion, the standard 8x8 block-based DCT is used. To encode an arbitrarily shaped VOP,
an 8x8 grid is superimposed on the VOP. Using this grid, 8x8 blocks that are internal to
VOP are encoded without modifications. Blocks that straddle the VOP are called bound-
ary blocks, and are treated differently from internal blocks. The transformed blocks are
quantized, and individual coefficient prediction can be used from neighboring blocks to
further reduce the entropy value of the coefficients. This is followed by a scanning of
the coefficients, to reduce to average run length between to coded coefficients. Then, the
coefficients are encoded by variable length encoding.

Discrete Cosine Transform (DCT) and Quantization

Internal video texture blocks and padded boundary blocks are encoded using a 2-D 8x8
block-based DCT. The DCT transform is followed by a quantization process.

The DCT coefficients are quantized as a lossy compression step. There are two types
of quantizations available. Both are essentially a division of the coefficient by a quantiza-
tion step size. The first method uses one of two available quantization matrices to modify
the quantization step size depending on the spatial frequency of the coefficient. The sec-
ond method uses the same quantization step size for all coefficients. MPEG-4 also allows
for a non-linear quantization of DC values.

B
trans Manpage

NAME

trans - A fully scalable parallel and distributed MPEG2-to-MPEG4 video
transcoder

SYNOPSIS

trans [-i�inMod�] [-p�proMod�] [-e�expMod�]
[-w�width�] [-h�height�] [-r�fps�] [-b�bitrate�] [-f�framesProJunk�]
[-s�stime�] [-v�verbosity�]
[- -nofinchunks�nofich�] [- -nofoutchunks�nofoch�]
[- -inchannel�ichname�] [- -outchannel�ochname�] [- -strategy�sty�]
[- -pools�nofp�]
[- -forcerun] [- -disablecmd] [- -help] �inFile� �outFile�

DESCRIPTION

trans allows the distributed transcoding of MPEG-2 streams or YV12-picture
streams to MPEG-4 video streams. Based on CORBA the main task of the
transcoding, the encoding itself, can be distributed to arbitrarily many compo-
nents. Prerequisite is a running CORBA Distributor Service that is registered
with the COS Naming Service.

The application is started as a command line tool that always needs its base
configuration parameters. These consist mainly of the configuration of the
functionality and import- and export-modules that an instance of trans shall
use as well as the video parameters.

COMMAND LINE OPTIONS

Module description:

-i
Defines the import-module that shall be used. Available are an ImportChunk-

203

204 APPENDIX B. TRANS MANPAGE

module (c), an ImportFile-module (f) as well as an ImportGrabber-
module that directly imports data from a frame grabber interface card.
On importing chunks the CORBA Distributor Service must be available.
(Default: f)

-p
Specifies the kind of chunk data processing. There is a ProcessNull-
module (n) that just passes the data further to the export-modules, a
ProcessMPEG4-module (e) that encodes the data with the help of an
XviD library and a ProcessSorting-module (s) that sorts the single scenes.
For DVD streaming there is an additional ProcessDVDDecode-module
(d) that decodes MPEG-2 streams. The ProcessNull- and the ProcessSort-
module need just one chunk pool. (Default: n)

-e
Defines the export of trans. Chunks can either be exported by the Dis-
tributor Service by using the ExportChunk-module (c), to one file with
the ExportFile- (f) or to a file per chunk with the ExportMultiFile-
module (m) and finally to an MP4 stream that already includes stream-
ing information by the ExportMP4-module (s). (Default: f)

Video parameters:

-w
Defines the the width of the frame in pixel. (Default: 720)

-h
Defines the height of the frames in pixel. (Default: 480)

-r
Sets the frame rate in frames/s. (Default: 23.98)

General settings:

-s
Defines the time in seconds from the start of the module until the “Backup
Loop” calls the scheduler for the first time (time to initialize all the
datastructures and connections). (Default: 5)

-v
Verbosity of debug info. (Default: 0)

- -forcerun
Defines the time interval in seconds within that the “Backup Loop” calls
the ’run’-method of the scheduler. (Default: 1)

205

- -disablecmd
The scheduler normally allows callbacks from the “Backup Loop” (e.g.
run or stop). This behaviour can be disabled by this option.
(Default: false)

Chunk-Pool parameters:

-f
Sets the the number of frames that are partitioned into one chunk. (De-
fault: 25)

- -pools
Defines the number of Chunk Pools that are used, either a single pool
(1) or and In- and and Out-pool (2). (Default: 2)

- -nofinchunks
Defines the number of default Chunks that shall be allocated in the In-
Pool. This number has a large influence on the amount of memory that
trans needs. (Default: 10)

- -nofoutchunks
Defines the number of default Chunks that shall be allocated in the Out-
Pool. This number also has a large influence on the amount of memory
that trans needs. (Default: 10)

Module specific parameters:

-b
Sets the bitrate of the MPEG4 encoder (in [KBit/s]). (Default: 500000)

- -inchannel
Defines the name of the Distributor Channel that the import-module
uses. (Default: transcoderChannel)

- -outchannel
Distributor Channel that the export-module uses. (Default: transcoder-
Channel). (Default: transcoderChannel)

- -strategy
Defines the strategy for a newly created Distributor Channel (In and
Out) as there are Round-Robin (rr) or Least-Load (ll). (Default: rr)

- -help
Shows the help information.

206 APPENDIX B. TRANS MANPAGE

Examples

The most simple call to trans can be used to just copy a file in a somehow a
bit complicated way:

> trans inFile outFile

With the assistance of the MultiFile-export a YV12-stream can be partitioned
into single frames. As there is no process-module needed (ProcessNull) one
chunk pool is enough:

> trans -em -w720 -h480 -f1 --pools 1 \

/tmp/starwars_720x480.yv12 /tmp/starwars

In the next example chunks of 25 frames each are exported to a Distributor
Service. The encoder (or eventually many of them) directly accesses these
exported chunks and encodes the data to MPEG4. After this the transformed
data is just written to a file, e.g. in a network filesystem (Caution: The Dis-
tributor Service must be running and be registered with the Naming Service.):

> trans -ec -w720 -h480 -f25 --pools 1 \

/tmp/starwars_720x480.yv12

> trans -ic -pe -em -w720 -h480 -f25 \

- /tmp/starwars

To combine these MPEG-4 part sequences a second channel is used. To com-
municate over disjoint distributor channels the names of the particular chan-
nel must be indicated. We use the same example as above but the part streams
are sent to a third component that sorts them. The ExportMP4-module con-
catenates the parts and packs the stream into an MP4 container file that can
directly be streamed. The following commands implement exactely the sce-
nario depicted in Figure 7.3:

> trans -ec -w720 -h480 -f25 --pools 1 \

/tmp/starwars_720x480.yv12

> trans -ic -pe -ec -w720 -h480 -f25 \

--outchannel toSortChannel - -

> trans -ic -ps -es -w720 -h480 -f25 --pools 1 \

--inchannel toSortChannel - /tmp/starwars.mp4

C
IDL - Load Balancing Service

This IDL is based on the IDL from [150] and [76]. The following list summarizes the
differences to these proposals:

- ObjectId corresponds to PortableServer::ObjectID

- The type MemberId was replaced with ObjectId

- Instead of a LoadAlert-Interface we use a ProxyLoadMonitor-
Interface

- Group: add_member returns a ProxyLoadMonitor object

- MemberData is not needed anymore. Each strategy must manage its
member data on its own

Group Factory Interface

The Group Factory manages the Load Balancing Groups. It mainly serves a generator of
groups. Each group is identified by a unique ID by the factory context.

typedef string GroupId;

typedef sequence<GroupId> GroupIdSeq;

exception GroupExists {};

exception GroupNotFound {};

interface GroupFactory {

Group create(in GroupId id) raises(GroupExists);

Group get(in GroupId id) raises(GroupNotFound);

GroupIdSeq list();

};

207

208 APPENDIX C. IDL - LOAD BALANCING SERVICE

ProxyLoadMonitor Interface

The Load Monitor component of a server keeps load information updated. On registrating
with a group each member gets such a Load Monitor object which is used to submit load
reports to the Load Balancing Service. For each re-subscribtion a new proxy is generated.
The group therefore allows to temporarily lock a client.

typedef unsigned long Load;

exception StrategyNotAdaptive {};

interface Strategy; // Forward declaration

interface ProxyLoadMonitor {

void push_load(in Load load) raises (StrategyNotAdaptive);

};

Group Interface

The group is the central element of the Load Balancing Service. Members register on a
group and the group manages the balancing strategy.

typedef sequence<Object> ObjectSeq;

typedef string PropertyName;

typedef any PropertyValue;

typedef CORBA::RepositoryId RepId;

typedef PortableServer::ObjectId ObjectId;

struct Property {

PropertyName name;

PropertyValue value;

};

typedef sequence<Property> PropertySeq;

struct PropertyError {

PropertyName name;

PropertyErrorCode code;

};

typedef sequence<PropertyError> PropertyErrorSeq;

enum PropertyErrorCode { BAD_PROPERTY, BAD_TYPE, BAD_VALUE };

exception MemberExists {};

exception MemberNotFound {};

exception StrategyNotFound {};

exception NoMembersReady {};

209

exception NoMembers {};

exception InvalidProperties {

PropertyErrorSeq error;

};

interface Strategy ; // Forward declaration

interface CustomStrategy ; // Forward declaration

interface Group {

GroupId id();

ProxyLoadMonitor add_member(in Object id)

raises(MemberExists);

void remove_member(in Object id) raises(MemberNotFound);

ObjectSeq list() raises(NoMembers);

void lock_member(in Object id)

raises(MemberNotFound, StrategyNotFound);

void unlock_member(in Object id)

raises(MemberNotFound, StrategyNotFound);

void set_builtin_strategy(in string name, in PropertySeq props)

raises(StrategyNotFound, InvalidProperties);

void set_custom_strategy(in CustomStrategy s);

Strategy get_strategy() raises(StrategyNotFound);

Object get_server()

raises(StrategyNotFound, NoMembersReady, NoMembers);

};

Strategy Interface

The Strategy-interface implements the reception of load reports of a group member. This
load reports allows a fair load balancing.

interface Strategy {

string name();

PropertySeq get_properties();

void set_properties(in PropertySeq props)

raises(InvalidProperties);

void push_load(in Object id, in Load load)

raises(StrategyNotAdaptive);

};

210 APPENDIX C. IDL - LOAD BALANCING SERVICE

CustomStrategy Interface

The Load Balancing Service offers the user to implement its own load balancing strat-
egy. To use such a strategy that implements the Strategy-interface some administration
functionality must be provided by them. These are afterwards accessed and used by the
load balancing group.

interface CustomStrategy : Strategy {

Object next() raises(NoMembers, NoMembersReady);

void set_members(in ObjectSeq members);

void lock_member(in Object id);

void unlock_member(in Object id);

};

D
IDL - Distributor Service

As our new CORBA Distributor Service is an extention of the COS Event Service [110],
its interface is very much alike the COS Event Service interface. The main differences
are listed in the following points:

- All “EventChannel”-designations were changed to “DistChannel”

- All “Pull”-methods were withdrawn

- The Load Balancing IDL definition from Appendix C is imported into
the Distributor Service IDL.

- The DistChannelFactory-interface newly possesses a second “create”-
method: create_distchannel_with_group.

- The distributor channel additionally provides an ChannelAdmin-interface.

- The ProxyPushSupplier-interface has a new method getProxyLoad-
Monitor.

Distributor Communication Module

The DistComm-module contains the Consumer- and Supplier- Interfaces.

module DistComm {

exception Disconnected {};

exception NoConsumers {};

exception NoConsumersReady {};

};

Push Consumer Interface

The PushConsumer-interface contains all methods, which a Supplier can call. The
ProxyPushConsumer-interface is derived from the PushConsumer-interface.

211

212 APPENDIX D. IDL - DISTRIBUTOR SERVICE

module DistComm {

interface PushConsumer {

void push (in any data)

raises(Disconnected, NoConsumers, NoConsumersReady);

void disconnect_push_consumer();

};

};

Push Supplier Interface

The PushSupplier-interface includes all the methods that a consumer can call. The
ProxyPushSupplier-interface is derived from the PushSupplier-interface.

module DistComm {

interface PushSupplier {

void disconnect_push_supplier();

};

};

Distributor Channel Administration Module

The DistChannelAdmin-interface contains the objects implementing the main func-
tionality of the Distributor Service, the Distributor Channels. But it also implements the
Interface for administering these channels and provides the Proxy-Interface definitions.
Some of these interfaces need the definition of the Load Balancing IDL (Appendix C).

#include ‘‘CosLoadBalancing.idl’’;

module DistChannelAdmin {

exception AlreadyConnected {};

};

213

Proxy Push Consumer Interface

This interface represents the Consumer-interface for the suppliers.

module DistChannelAdmin {

interface ProxyPushConsumer: DistComm::PushConsumer {

void connect_push_supplier(in DistComm::PushSupplier

push_supplier)

raises(AlreadyConnected);

};

};

Proxy Push Supplier Interface

Analogous this interface represents the Supplier-Interface for the consumers.

module DistChannelAdmin {

interface ProxyPushSupplier: DistComm::PushSupplier {

void connect_push_consumer(in DistComm::PushConsumer

push_consumer)

raises(AlreadyConnected);

CosLoadBalancing::ProxyLoadMonitor getProxyLoadMonitor();

};

};

Consumer Administration Interface

This interface can be accessed through the Distributor Channel. It is only intended for
delivery consumers.

module DistChannelAdmin {

interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier();

};

};

214 APPENDIX D. IDL - DISTRIBUTOR SERVICE

Supplier Administration Interface

This interface can also be accessed through the Distributor Channel. It is only intended
for delivery suppliers.

module DistChannelAdmin {

interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer();

};

};

Channel Administration Interface

This interface can be accessed through the Distributor Channel and serves for channel
administration. It can mainly define the load balancing strategies and settings.

All the methods are independent from the implementation of the used Load Balancing
Group. If the Load Balancing Service of Appendix C is used (default), the usage of this
method is the same as specified there.

module DistChannelAdmin {

interface ChannelAdmin {

void set_builtin_strategy(in string name,

in CosLoadBalancing::PropertySeq props)

raises(CosLoadBalancing::StrategyNotFound,

CosLoadBalancing::InvalidProperties);

void set_custom_strategy(

in CosLoadBalancing::CustomStrategy s);

CosLoadBalancing::Strategy get_strategy()

raises(CosLoadBalancing::StrategyNotFound);

};

};

Distributor Channel Interface

The Distributor Channel does not implement functionality that can be accessed from out-
side.

215

module DistChannelAdmin {

interface DistChannel {

ConsumerAdmin for_consumers();

SupplierAdmin for_suppliers();

ChannelAdmin for_admin();

void destroy();

};

};

SimpleDistChannelAdmin Modul

The SimpleDistChannelAdmin-module contains the Distributor-Channel-
Factory.

#include ‘‘LoadBalancing.idl’’;

module SimpleDistChannelAdmin {

exception GroupNotEmpty {};

};

Distributor Channel Factory Interface

The Distributor-Channel-Factory implements the methods used to create new
channels. A new channel can be initialized by an optional Load Balancing Group.

module SimpleDistChannelAdmin {

interface DistChannelFactory {

DistChannelAdmin::DistChannel create_distchannel ();

DistChannelAdmin::DistChannel

create_distchannel_with_group(

in CosLoadBalancing::Group group)

raises(GroupNotEmpty);

};

};

Bibliography

[1] IEEE Std 1596-1992. IEEE Standard for Scalable Coherent Interface (SCI). IEEE
Computer Society, August 1993.

[2] I. Abdul-Fatah and S. Majumdar. Performance Comparison of Architectures for
Client-Server Interactions in CORBA. In Proceedings of the IEEE 18th Interna-
tional Conference on Distributed Computing Systems (ICDCS’98), pages 2–11,
Amsterdam, 1998.

[3] I. Ahmad and S. Majumdar. Achieving High Performance on CORBA-Based Sys-
tems with Limited Heterogeneity. In Proc. IEEE International Symposium on Ob-
ject Oriented Real-Time Computing (ISORC 2001), pages 350–359, Magdeburg,
Germany, April 2001.

[4] Inc. Alteon WebSystems. Jumbo frames. http://www.alteon.com/products/
jumbo frames.html.

[5] C. Amza, A. Cox, S. Dwarkadas, C. Hyams, Z. Li, and W. Zwaenepoel. Tread-
Marks: Shared Memory Computing on Networks of Workstations. IEEE Com-
puter, 29(2):18–28, Feb 1996.

[6] D. P. Anderson and D. Ferrari. The DASH Project: An Overview. Technical Report
88/405, CS Div., EECS Dept., UC Berkeley, February 1988.

[7] E. W. Anderson and J. Pasquale. The performance of the container shipping i/o
system. In Symposium on Operating Systems Principles, page 229, 1995.

[8] T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team. ”a case for
networks of workstations: Now”. IEEE Micro, Feb 1996.

[9] Scali AS. ScaMPI User’s Guide, 1997. http://www.scali.com/html/scampi.html.

[10] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. NAS Parallel Benchmark. Technical Report RNR-94-007,
NASA Ames Research Center, March 1994.

[11] D. Becker and P. Merkey. The Beowulf Project. http://www.beowulf.org.

217

218 BIBLIOGRAPHY

[12] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V.
Packer. Beowulf: A parallel workstation for scientific computation. In Proceed-
ings of 1995 ICPP Workshop on Challenges for Parallel Processing, Oconomowc,
Wisconsin, U.S.A., August 1995. CRC Press.

[13] P. A. Bernstein. Middleware: A Model for Distributed Services. Communications
of the ACM, 39(2):86–97, February 1996.

[14] K. P. Birman. Building Secure and Reliable Network Applications. Manning Pub-
lications Co., 1996.

[15] A. D. Birrel and B. J. Nelson. Implementing remote procedure calls. ACM Trans-
action on Computer Systems, 2(1):39–59, February 1984.

[16] N. J. Boden, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W. Su. Myrinet - A Gigabit per Second Local Area Network. In IEEE Micro,
volume 15(1), pages 29–36, February 1995.

[17] Grady Booch. Object-Oriented Analysis and Design with Applications. Addison-
Wesley Pub Co, 2nd edition edition, February 1994.

[18] F. Bossen and T. Ebrahimi. A simple and efficient binary shape coding technique
based on bitmap representation. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’97), volume 4, pages 3129–
3132, Munich, Germany, April 1997.

[19] N. Brown and C. Kindel. Distributed Component Object Model Protocol –
DCOM/1.0. Technical report, Microsoft Corporation, 1996.

[20] J. Brustoloni and P. Steenkiste. Copy emulation in checksummed, multiple-packet
communication. In Proceedings of IEEE INFOCOM 1997, pages 1124–1132,
Kobe, Japan, April 1997.

[21] J. C. Brustoloni. Effects of Data Passing Semantics and Operating Systems Struc-
ture on Network I/O Performance. PhD thesis, School of Computer Science,
Carnegie Mellon, Sept 1997. Published as CMU Tech Report CMU-CS-97-176.

[22] J. C. Brustoloni and P. Steenkiste. Effects of buffering semantics on I/O perfor-
mance. In Proc. 2nd Symp. on Operating Systems Design and Implementation
(OSDI), pages 277–291, Seattle, WA, Oct 1996. USENIX.

[23] D. R. Butenhof. Programming With POSIX Threads. Addison-Wesley, 1997.

[24] K. Cameron, L. J. Clarke, and A. G. Smith. CRI/EPCC MPI for T3D.
In Conference paper, 1st European Cray T3D Workshop, EPFL, Sept 1995.
http://www.epcc.ed.ac.uk/t3dmpi/Product/Performance/index.html.

[25] J. B. Carter and W. Zwaenepoel. Optimistic Implementation of Bulk Data Trans-
fer Protocols. In Proceedings of the International Conference on Measurement

BIBLIOGRAPHY 219

and Modeling of Computer Systems, Sigmetrics, pages 61–69, Berkeley, CA, May
1989.

[26] J. Chase, D. Anderson, A. Gallatin, A. Lebeck, and K. Yocum. Network I/O with
Trapeze. In Proceedings of Hot Interconnects Symposium, Stanford, CA, August
1999.

[27] J. Chase, A. Gallatin, and K. Yocum. End System Optimizations for High-Speed
TCP. IEEE Communications Magazine, 39(4):68–74, 2001.

[28] H. K. Jerry Chu. Zero-Copy TCP in Solaris. In Proceedings of the USENIX 1996
Annual Technical Conference, pages 253–264, San Diego, CA, USA, Jan 1996.
The USENIX Association.

[29] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An Analysis of TCP processing
overhead. IEEE Communications Magazine, 27(6):23–29, Jun 1989.

[30] G. Coulson and S. Baichoo. A Configurable Multimedia Middleware Platform.
IEEE Multimedia, 6(1):62–76, Jan 1999.

[31] G. Coulson and S. Baichoo. Implementing the CORBA GIOP in a High-
Performance Object Request Broker Environment. ACM Distributed Computing
Journal, 14(2):113–126, April 2001. Springer Verlag Press.

[32] P. J. Courtois. Decomposability—queueing and computer system applications,
1977.

[33] P. J. Courtois. On time and space decomposition of complex structures. Commu-
nications of the ACM, 28(6), June 1985.

[34] Cray Research Inc. CRAY T3D Applications Programming Course and Cray T3D
Hardware Reference Manual, Nov 1993. TR-T3DAPPL.

[35] J. Crowcroft, I. Wakeman, Z. Wang, and D. Sirovica. Is Layering Harful? IEEE
Communications Magazine, 6(1):20–24, Jan 1992.

[36] J. D. Day and H. Zimmerman. The OSI Reference Model. In Proc of the IEEE,
volume 71, pages 1334–1340, Dec 1983.

[37] E. W. Dijkstra. The structure of the THE multi-programming system. Communi-
cations of the ACM, 11 1968.

[38] E. W. Dijkstra. Complexity controlled by hierarchical ordering of function and
variability. In N. Naur and B. Randell, editors, Software Engineering: Report on
a conference sponsored by the NATO Science Committee, pages 181–185. NATO
Scientific Affairs Division, JAN 1969.

[39] E. W. Dijkstra. Notes on structured programming. In Structured Programming.
Academic Press, 1969.

220 BIBLIOGRAPHY

[40] E. W. Dijkstra. Hierarchial ordering of sequential processes. Acta Informatica,
Springer Verlag (Heidelberg, FRG and NewYork NY, USA) Verlag, 1(2), OCT 1971.

[41] Dolphin Interconnect Solutions. PCI SCI Cluster Adapter Specification, 1996.

[42] J. Dongarra, R. Hemoel, A. Hey, and D. Walker. A proposal for a user-level,
message passing interface in a distributed memory environment. Technical Report
TM-12231, ORNL, 1993.

[43] P. Druschel. Operating System Support for High-speed Networking. PhD thesis,
University of Arizona, Aug 1994.

[44] P. Druschel and L. L. Peterson. FBufs: A High-Bandwidth Cross-Domain Transfer
Facility. In Proc. 14th ACM Symposium on Operating System Principles, pages
189–202, Asheville, NC, Dec 1993.

[45] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. Vmmc-2: Efficient
support for reliable, connection-oriented communication. In In Proceeding of Hot
Interconnects V, August 1997.

[46] C. Dubnicki, E. W. Felten, L. Iftode, and K. Li. Software Support for Virtual
Memory-Mapped Communication. In Proc. 10th Intl. Parallel Prof. Symp., pages
372–381, Honolulu, HI, April 1996. IEEE.

[47] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. Mer-
ritt, E. Gronke, and C. Dodd. The Virtual Interface Architecture. IEEE Micro,
18(2):66–76, March-April 1998.

[48] T. Ebrahimi and C. Horne. MPEG-4 Natural Video Coding - An Overview. Tech-
nical report, Swiss Federal Institute of Technology EPFL, 1999.

[49] K. Fall. A Peer-to-Peer I/O System in Support of I/O Intensive Workloads. PhD
thesis, University of California, San Diego, 1994.

[50] K. Fall and J. Pasquale. Exploiting In-Kernel Data Paths to Improve I/O Through-
put and CPU Availability. In Proc. of the USENIX Winter Technical Conference,
pages 327–334, San Diego, CA, Jan 1993.

[51] P. Felber, R. Guerraoui, and R. Guerraoui. Towards Reliable CORBA: Integration
vs. Service Approach. In Max Mühlhäuser, editor, Workshop Reader of the 10th
European Conference on Object-Oriented Programming (ECOOP’96, pages 199–
205, Linz, Austria, 1997. dpunkt Verlag.

[52] P. Felber, R. Guerraoui, and A. Schiper. Replicating Objects using the CORBA
Event Service. In Proc. of the 6th Workshop on Future Trends of Distributed Com-
puting Systems (FTDCS’097), pages 14–19. IEEE, Oct 1997.

[53] P. Felber, R. Guerraoui, and A. Schiper. The CORBA Object Group Service, 1997.

BIBLIOGRAPHY 221

[54] P. Felber, R. Guerraoui, and A. Schiper. The Implementation of a CORBA Object
Group Service. Theory and Practice of Object Systems, 4(2):93–105, 1998.

[55] J. Floyd, S.and Mahdavi, M. Mathis, , and M. Podolsky. An extension to the Selec-
tive Acknowledgement (SACK) Option for TCP, July 2000. RFC 2883, Proposed
Standard.

[56] S. Floyd. Congestion Control Principles, Sept 2000. RFC 2914.

[57] Message Passing Interface Forum. MPI: A message passing interface standard,
Version 1.0 . http://www.mpi-forum.org, May 1994.

[58] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. http://www.mpi-forum.org, July 1997.

[59] The OpenMP Forum. OpenMP C and C++ Application Program Interface, Version
1.0. http://www.openmp.org, October 1998.

[60] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1st edition, November 1998. ISBN:
1558604758.

[61] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP: TCP/IP at Near-Gigabit Speeds.
In Proceedings of Annual USENIX Technical Conference, Monterey, CA, June
1999. USENIX.

[62] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Object-Oriented Software. Addison Wesley, 1995.

[63] P. Geoffray. OPIOM: Off-Processor IO with Myrinet. In Proc. of 1st Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid), pages 261–268,
Brisbane, Australia, May 2001. IEEE.

[64] P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: High performance message
passing over a cluster of commodity SMPs. In In Proceedings of Super Computing
(SC99), Portland, USA, Nov 1999.

[65] A. S. Gokhale and D. C. Schmidt. Measuring and optimizing CORBA latency
and scalability over high-speed networks. IEEE Transactions on Computers,
47(4):391–413, 1998.

[66] A. S. Gokhale and D. C. Schmidt. Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance. In Proceedings of the HICSS conference, Maui,
Hawaii, January 1998.

[67] T. Gross and D. O’Hallaron. iWarp: Anatomy of a Parallel Computing System.
MIT Press, 1998.

[68] Distributed Systems Research Group. CORBA Comparison Project Extension, Fi-
nal Report. http://www.omg.org, June 1999.

222 BIBLIOGRAPHY

[69] Moving Pictures Expert Group. MPEG-2 Standard, 1998-2000. ISO/IEC 13818:1-
10.

[70] Moving Pictures Expert Group. MPEG-4 Standard, 1998-2000. ISO/IEC 14496.

[71] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitive Ap-
proach. Morgan Kaufmann Publishers, San Mateo, California, second edition,
1995.

[72] M. Henning and S. Vinoski. Advanced CORBA Programming with C++. Addison-
Wesley Professional Computing Series. Addison-Wesley Longman, Inc., 1999.

[73] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel. OpenMP for Networks of
SMPs. Journal of Parallel and Distributed Computing, 60(12):1512–1530, De-
cember 2000.

[74] Apple Inc. Darwin Streaming Server: Open Source QuickTime Streaming Server.
http://developer.apple.com/darwin/projects/streaming/.

[75] GigaNet Inc. http://www.giganet.com/.

[76] Tri-Pacific Software Inc. and VERTEL Corporation. Load Balancing and Monitor-
ing. http://www.omg.org/, 2001. orbos/2001-08-01.

[77] American National Standards Institute. ANSI NCITS 337-2000, Information Tech-
nology - Scheduled Transfer (ST). ANSI, Washington DC, 2000.

[78] Information Sciences Institute. DARPA Internet Program Protocol Specification
NIC RFC 791. In DDN Protocol Handbook, volume 2, pages 99–149. , Sep 1981.

[79] Information Sciences Institute. Transmission Control Protocol NIC RFC 793. In
DDN Protocol Handbook, volume 2, pages 179–198. , Sep 1981.

[80] InterProphet. SiliconTCPTM:a new way to do internet communications.
http://www.interprophet.com/, http://www.ethersan.com/.

[81] IONA and Isis. An Introduction to Orbix+Isis. IONA Technologies Ltd. and Isis
Distributed Systems, Inc., 1994.

[82] ITA. InfiniBand Architecture Specification Volume 1.0a. Infiniband Trade Associ-
ation, 1.0a edition, June 2001.

[83] V. Jacobson. Some design issues for high-speed networks. In Networkshop ’93,
page 21, Melbourne, Australia, Nov 1993.

[84] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance
RFC 1323. In DDN Protocol Handbook. , May 1992.

[85] J. Kay and J. Pasquale. The importance of non-data touching processing overheads
in TCP/IP. In Proc. ACM Communications Architectures and Protocols Conf. (SIG-
COMM), pages 259–268, San Francisco, CA, Sep 1993.

BIBLIOGRAPHY 223

[86] K. Keaheya and D. Gannon. PARDIS: A Parallel Approach to CORBA. In In
Proceedings of the 6th International Symposium of High Performance Distributed
Computation (HPDC), pages 31–39. IEEE, Aug 1997.

[87] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proc. 1994
Winter Conf., pages 115–131. USENIX, Jan 1994.

[88] C. A. Kent and J. G. Mogul. Fragmentation considered harmful. WRL Technical
Report 87/3, 1987.

[89] R. Koenen. Overview of the MPEG-4 Standard. Overview N3156, Moving Pictures
Expert Group, 1994. Maui Version.

[90] H. T. Kung, R. Sansom, S. Schlick, P. Steenkiste, M. Arnould, F. Bitz, F. Christian-
son, E. Cooper, O. Menzilcioglu, D. Ombres, and B. Zill. Network-Based Mul-
ticomputers: An Emerging Parallel Architecture. In Proc. Supercomputing ’91,
pages 664–673, Albuquerque, NM, Nov 1991. IEEE.

[91] Ch. Kurmann, F. Rauch, and T. Stricker. Speculative Defragmentation - Leading
Gigabit Ethernet to True Zero-Copy Communication. Cluster Computing: The
Journal of Networks, Software Tools and Applications, 4(1):7–18, March 2001.
”Short version available in Proceedings of the 9th International Symposium on
High Performance Distributed Computering HPDC, Pittsburgh, Pennsylvania, Au-
gust 1-4, 2000”.

[92] Ch. Kurmann and T. Stricker. Memory System Performance Charac-
terization with ECT memperf - Extended Copy Transfer Characterization.
http://www.cs.inf.ethz.ch/CoPs/ECT/.

[93] Ch. Kurmann and T. Stricker. Characterizing memory system performance for local
and remote accesses in high end SMPs, low end SMPs and clusters of SMPs. In
Proc. of 7th Workshop on Scalable Memory Multiprocessors held in conjunction
with ISCA98, Barcelona, Spain, June 1998. IEEE.

[94] S. Leffler, K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and
Implementation of the 4.3 BSD UNIX Operating System. Addison Wesley, 1989.

[95] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems, 7(4):321 – 359, November 1989.

[96] M. Li, O. F. Rana, M. S. Shields, and D. W. Walker. A Wrapper Generator
for Wrapping High Performance Legacy Codes as Java/CORBA Components.
In Proceedings of Supercomputing Conference SC2000, Dallas, TX, Nov 2000.
IEEE/ACM.

[97] S. Lo and S. Pope. The Implementation of a High Performance ORB over Multiple

224 BIBLIOGRAPHY

Network Transports. In Proceedings of the Middleware Conference ’98, pages
157–172, The Lake District, England, Sept 1998.

[98] D. Mackie and B. May. MPEG4IP: Open Source, Open Standards, Open Stream-
ing. http://mpeg4ip.sourceforge.net/.

[99] S. Maffeis. Electra—Making Distributed Programs Object-Oriented. In Proc. of
the Usenix Symposium on Experiences with Distributed and Multiprocessor Sys-
tems, pages 143–156, San Diego, CA, 1993.

[100] S. Maffeis. Adding group communication and fault-tolerance to CORBA. In
Proceedings of the Conference on Object-Oriented Technologies, pages 135–146,
Monterey, CA, June 1995. USENIX.

[101] S. Maffeis. Run-Time Support for Object-Oriented Distributed Programming. PhD
thesis, University of Zurich, Switzerland, Feb 1995.

[102] J. D. McCalpin. Sustainable memory bandwidth in current high performance com-
puters. Technical report, University of Delaware, 1995.

[103] F. W. Miller, P. Keleher, and S. K. Tripathi. General Data Streaming. In Proc. 19th
IEEE Real-Time Systems Symposium, pages 232–41, Madrid, Dec 1998. IEEE.

[104] R. Numrich, P. Springer, and J. Peterson. Measurement of Communication Rates
on the Cray T3D Interprocessor Network. In Proc. HPCN Europe ’94, Vol. II,
pages 150–157, Munich, April 1994. Springer Verlag. Lecture Notes in Computer
Science, Vol. 797.

[105] S. W. O’Malley, M. B. Abbot, N. C. Hutchinson, and L. L. Peterson. A Transparent
Blast Facility. Internetworking: Research and Experience, 1(2), Dec 1990.

[106] OMG. Discussion of the Object Management Architecture (OMA) Guide.
http://www.omg.org, 1997.

[107] OMG. Asynchronous Messaging. http://www.omg.org, May 1998. orbos/98-05-
05.

[108] OMG. CORBAservices: Common Object Services Specifiaction.
http://www.omg.org, Dez 1998. formal/98-12-09.

[109] OMG. RFI on Support for Aggregated Computing in CORBA.
http://www.omg.org, Jan 1999. orbos/99-01-04.

[110] OMG. Event Service Specification. http://www.omg.org/, 2000. formal/00-06-15.

[111] OMG. Notification Service Specification. http://www.omg.org/, 2000. formal/00-
06-20.

[112] OMG. The Common Object Request Broker: Architecture and Specification, Ver-
sion 2.4. http://www.omg.org/, Oct 2000. formal/00-10-33.

BIBLIOGRAPHY 225

[113] OMG. Data Parallel CORBA Specification. http://www.omg.org/, 2001. ptc/2001-
10-19.

[114] OMG. CORBA 3 Full Specification. http://www.omg.org/, 2002. formal/02-06-33.

[115] OMG. Fault Tolerant CORBA, Chapter 23 CORBA 3 Specification.
http://www.omg.org, Sept 2002. formal/02-06-33.

[116] OMG. The Portable Object Adapter, Chapter 11 CORBA Specification.
http://www.omg.org, Sept 2002. formal/02-06-33.

[117] T. Östreich. transcode: Linux Video Stream Processing Tool.
http://www.theorie.physik.uni-goettingen.de/ ostreich/transcode/.

[118] O. Othman, C. O’Ryan, and D. Schmidt. The Design of an Adaptive CORBA Load
Balancing Service. IEEE Distributed Systems Online, 2, Apr 2001.

[119] V. S. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A Unified I/O Buffering and
Caching System. In Proceedings of the Third Symposium on Operating Systems
Design and Implementation (OSDI ’99), pages 15–28, 1999.

[120] M. Pakin, S. Buchanan, M. Lauria, and A. Chien. The Fast Messages (FM) 2.0
streaming interface. In Proc. USENIX ’97, 1997.

[121] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages: Efficient, Portable Commu-
nication for Workstation Clusters and Massively-Parallel Processors. IEEE Con-
currency, 5(2):60–73, 1997.

[122] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Worksta-
tions: Illinois Fast Messages (FM) for Myrinet. In Proc. of the 1995 ACM/IEEE
Supercomputing Conference, San Diego, CA, Dec 1995.

[123] D. L. Parnas. On a buzzword: Hierarchical structure. In Proc. of IFIP Congr. 1974,
pages 336–339, Amsterdam, The Nederland, 1974. North-Holland Publ.

[124] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics Network
(QsNet): High-Performance Clustering Technology. IEEE MICRO, 22(1):46–57,
February 2002.

[125] P. Pietikainen. Hardware-Assisted Networking Using Scheduled Transfer Protocol
On Linux. Master’s thesis, University of Oulu, Finland, 2001.

[126] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit Ethernet Interface.
In Proceedings of IEEE INFOCOM ’01, pages 67–76, Anchorage, Alaska, USA,
April 2001.

[127] T. Priol and C. Ren. Cobra: A CORBA-compliant Programming Environment for
High-Performance Computing. In In Proceedings of Euro-Par 98, pages 1114–
1122, Southampton, UK, Sept 1998. LNCS, Springer Verlag.

226 BIBLIOGRAPHY

[128] The Gnome Project. ORBit: A CORBA 2.2-compliant Object Request Broker.
http://orbit-resource.sourceforge.net/.

[129] L. Prylli and B. Tourancheau. BIP: A New Protocol Designed for High Perfor-
mance Networking on Myrinet. Technical report, LHPC and INRIA ReMaP, ENS-
Lyon, 1997. http://lhpca.univ-lyon1.fr/.

[130] A. Puder and K. Römer. MICO: An Open Source CORBA Implementation. Morgan
Kaufmann Publishers, 3rd edition edition, March 2000. ISBN: 1558606661.

[131] F. Rauch, Ch. Kurmann, and T. Stricker. Partition Cast — Modelling and Op-
timizing the Distribution of Large Data Sets on PC Clusters. In Arndt Bode,
Thomas Ludwig, Wolfgang Karl, and Roland Wismüller, editors, Lecture Notes
in Computer Science 1900, Euro-Par 2000 Parallel Processing, 6th International
Euro-Par Conference Munich, Munich, Germany, Aug 2000. Springer. Also avail-
able as Technical Report 343, Department of Computer Science, ETH Zürich,
http://www.inf.ethz.ch/.

[132] F. Rauch, Ch. Kurmann, and T. Stricker. Optimizing the Distribution of Large
Data Sets in Theory and Practice. Concurrency and Computation: Practice and
Experience, 14(3):165–181, April 2002. John Wiley & Sons, Ltd.

[133] W. Ruh, T. Herron, and P. Klinker. IIOP Complete, Understanding CORBA and
Middleware Interoperability. Addison-Wesley, Oct 1999. ISBN 0-201-37925-2.

[134] D. C. Schmidt, T. Harrison, and E. Al-Shaer. Object-oriented components for
high-speed network programming. In Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems (COOTS), Monterey, CA, June 1995. USENIX.

[135] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design and Performance of
Real-Time Object Request Brokers. Computer Communications, 21(4):294–324,
April 1998.

[136] R. Seifert. Gigabit Ethernet: Technology and Applications for High-Speed LANs.
Addison-Wesley, May 1998. ISBN: 0201185539.

[137] P Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-bypass NIC-driven
Gigabit Ethernet Message Passing. In Proceedings of Supercomputing Conference
SC2001, Denver, Colorado, USA, November 2001. IEEE Computer Society.

[138] H. A. Simon and A. Ando. Aggregation of variables in dynamic systems. In
Econometrica 29, pages 876–893, 1961.

[139] T. Sterling, L. Salmon, D. J. Becker, and D. F. Savarese. How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters. MIT Press, May
1999.

[140] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M. Scott. Cashmere-2l: Software coherent shared memory

BIBLIOGRAPHY 227

on a clustered remote write network. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 170–183, October 1997.

[141] W. R. Stevens. TCP/IP Illustrated, Vol. 1 and Vol. 2. Addison Wesley, 1993.

[142] T. Stricker and T. Gross. Optimizing Memory System Performance for Communi-
cation in Parallel Computers. In Proc. 22nd Intl. Symp. on Computer Architecture,
pages 308–319, Portofino, Italy, June 1995. ACM/IEEE.

[143] T. Stricker and T. Gross. Global Address Space, Non-Uniform Bandwidth: A
Memory System Performance Characterization of Parallel Systems. In Pro-
ceedings of the ACM conference on High Performance Computer Architecture
(HPCA3), 1997.

[144] T. Stricker, J. Stichnoth, D. O’Hallaron, S. Hinrichs, and T. Gross. Decoupling
synchronization and data transfer in message passing systems of parallel comput-
ers. In Proc. Intl. Conf. on Supercomputing, pages 1–10, Barcelona, July 1995.
ACM.

[145] T. M. Stricker. Direct Deposit - When Message Passing meets Shared Memory.
PhD thesis, School of Computer Science Carnegie Mellon University Pittsburgh,
May 1996. CMU-CS-96-166, CMU-CS-00-133 (REV).

[146] Inc. Sun Microsystems. JavaTM RMI over IIOP. http://java.sun.com/products/rmi-
iiop/.

[147] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency, Practice and Experience, 2(4):315–340, 1990.

[148] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and Implemen-
tation. Prentice-Hall, Inc., second edition, 1999.

[149] M. Taufer. Personal communication. ETH Zurich, Sept 2000.

[150] IONA Technologies. Load Balancing RFP. http://www.omg.org/, 2001.
orbos/2001-08-05.

[151] H. Tezuka, A. Hori, and Y. Ishikawa. PM: A High-Performance Communication
Library for Multi-user Parallel Environments. Technical Report TR-96015, RWC,
Real World Computing Partnership, 1996.

[152] The OpenMP Forum. OpenMP Fortran Application Program Interface, Version
1.0. http://www.openmp.org, October 1997.

[153] John Hopkins University. Response against the Supporting Aggregate Computing
RFI. http://www.omg.org, July 1999. orbos/99-07-20.

[154] USNA. TTCP: A Test of TCP and UDP Performance, Dec 1984.

[155] The Specification for the Virutal Interface Architecture. http://www.viarch.org/.

228 BIBLIOGRAPHY

[156] T. von Eicken, A. Basu, and V Buch. Low Latency Communication Over ATM
Networks Using Active Messages. IEEE Micro, 15(1):46–53, Feb 1995.

[157] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. In Proceedings of 15th Sympo-
sium on Operating Systems Principles (SOSP-15), Cooper Mountain, CO, USA,
Dec 1995. ACM.

[158] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A
mechanism for integrated communication and computation. In Proc. 19th Intl.
Conf. on Computer Architecture (ISCA), pages 256–266, May 1992.

[159] P. Wegner. Concepts and paradigms of object-oriented programming. ACM SIG-
PLAN OOPS Messenger, 1(1):7–87, 1990.

[160] M. Welsh, A. Basu, and T. von Eicken. Low-Latency Communication over Fast
Ethernet. In Proceedings of EuroPar ’96, pages 187–194, Lyon, France, August
1996.

[161] M. Welsh, A. Basu, and T. von Eicken. ATM and Fast Ethernet Network Interfaces
for User-level Communication. In In Proceedings of High Performance Computer
Architecture HPCA 3, San Antonio, TX, February 1997.

[162] M. Welsh, A. Basu, and T. von Eicken. Incorporating Memory Management into
User-Level Network Interfaces. Technical Report TR97-1620, Cornell University,
August 1997.

[163] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java sys-
tem. In 2nd Conference on Object-Oriented Technologies & Systems (COOTS),
pages 219–232. USENIX Association, 1996.

[164] XviD: Open Source ISO MPEG-4 Video Codec. http://www.xvid.org/.

[165] W. Zwaenepoel. Protocols for large data transfers over local area networks. In
Proceedings of the 9th Data Communications Symposium, pages 22–32, Whistler
Moutain, British Columbia, Canada, 1985.

Curriculum Vitae

Christian Kurmann

December 5, 1970 Born in Luzern, Switzerland
Citizen of Switzerland
Son of Alois and Heidi Kurmann

1977–1986 Primary and Secundary School
Gossau SG, Switzerland

1986–1991 State College, Kantonsschule St.Gallen
St.Gallen, Switzerland

1991 Matura/Baccalaureate Typus C, Kantonsschule St.Gallen

1991–1996 Studies in Computer Science
Swiss Federal Institute of Technology ETH
Zurich, Switzerland

1993–1994 Internship at Control Design and Development Ltd
Peterborough, England

1996 Masters Diploma in Computer Science and Engineering,
ETH Zurich, Switzerland
Diploma thesis on “Compression Domain Volume Rendering
for Distributed Environments”

1996–2002 Research and teaching assistant in the
Parallel and Distributed Systems Group headed by
Prof. Thomas M. Stricker, Institute for Computer Systems,
Swiss Federal Institute of Technology ETH,
Zurich, Switzerland

229

