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EXECUTIVE SUMMARY 
 
 
 
Problem statement 
The United States Department of Defense’s NAVSTAR (Navigation by Timing And Ranging) GPS (Global 
Positioning System) is nowadays the most widely used satellite system for navigation purposes. Already in the early 
stages of its development it has been recognized that its potential applications were enormous. Insufficient 
knowledge on the atmosphere above the receiver has always been one of the main limitations to the accuracy of the 
GPS system. The present study focuses on modeling the atmospheric effects on the GPS signal and eventually 
applying it to path delay forecasting. It is intended to evaluate the prediction feasibility and to determine the 
maximum extrapolation time for a given precision to achieve, thus answering the question: for a given error 
threshold how long can one predict a path delay at an arbitrary location without information at this site? 
 
Work carried out 
First, a detailed description of the American Global Positioning System is covered. GPS is built around three 
segments. The space segment is a constellation of 21 operational and 3 spare satellites that emit on two frequencies, 

 and . The United States armed forces manage the space vehicles and the 
ground control segment. The user segment gathers all receivers, both military and civilian. Intentional degradation 
of the GPS accuracy by the U.S. Department of Defense does influence the computation of path delays from the 
signal. By differential measurements, these effects can be mitigated. The errors induced by the outer layer of the 
atmosphere, the ionosphere can be removed to a great extent by linearly combining the GPS observables derived 
from both carrier phase measurements. Only the troposphere, spanning from the mean sea level to approximately 35 
kilometers and where almost 90% of the atmospheric water vapor is concentrated, remains a major source of error. 

MHz 42.15751 =L MHz 60.12272 =L

 
Secondly an overview of the least-squares collocation technique also known as Kriging algorithm is presented. It is 
an efficient method for analyzing path delay computation problems. It has been first developed by geophysicists to 
interpolate and extrapolate data while minimizing possible errors. The mathematical and statistical methods 
deployed to study the refractivity field in the lower atmosphere, and thus the tropospheric path delay, are 
thoroughly treated. By opposition to the classical least-squares technique, signal and noise components are clearly 
separated and are assumed to be uncorrelated. The eventual knowledge of the physical processes taking place in the 
system to study is summarized in a functional model. To enable efficient data processing, this functional model is 
linearized. 
 
In a third part a functional model for this Zenith Path Delays is conceived. Fermat’s principle allows connecting the 
refractive index of a given atmospheric layer to the signal path. In atmospheric sciences, the refractivity is generally 
used instead of the refractive index. The different formulations for the refractivity field are taken into account. The 
Essen and Froome formula provides the relation between the refractivity and the three atmospheric fields, namely 
the atmospheric pressure p, the partial water vapor pressure e or its related relative humidity and the temperature T.  
 
Spatial and temporal models for the three meteorological fields are derived which are then inserted in the Essen and 
Froome formula. This expression is then integrated along the GPS signal path and mapped to zenith at the GPS 
receiver’s location, thus yielding to a compact Zenith Path Delay formula that depends on the reference pressure 

, the reference humidity , the reference temperature T , the temperature at tropopause , the 

tropospheric temperature gradient or lapse rate γ , the GPS receiver’s altitude , the tropopause height , the 
upper limit of integration

refp refe ref 1T

1z0z
z′ , the pressure scale height  and the humidity scale height . pH eH

 
The last part concentrates on testing and validating the Zenith Path Delay (ZPD) model developed previously. The 
least-squares collocation technique requires the calculation of a design matrix A, which entries are all partial 
derivatives of the functional model with respect to each model parameter. The ZPD can be split into a Zenith Dry 
Delay (ZDD) and a Zenith Wet Delay (ZWD). Hence the ZPD partial derivative with respect to one parameter is the 
sum of the partial derivatives of the ZDD and ZWD with respect to the same parameter.  
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These ZPD partial derivatives are computed and then tested on the default parameter values. Both show very 
different patterns as one varies the GPS receiver’s altitude .0z 1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  do not 
depend on . It is thus expected that they would introduce rank deficiencies in the design matrix, hindering the 
inversion of the normal matrix N. Constrains on seven parameters of the ZPD model have been applied in order to 
make possible the pseudo-inversion of the design matrix A. 

0z

 
The ZPD model is then implemented in the software package COMEDIE: Collocation of Meteorological Data for 
Interpolation and Estimation of Tropospheric Path Delays developed at the Geodesy and Geodynamics Lab at the 
Swiss Federal Institute of Technology at Zurich.  
 
Further the ZPD model is validated on a regional campaign in Switzerland starting on Monday 22 May 2000 at 
00:00:00 UTC and ending on Tuesday 30 May 2000 at 00:00:00 UTC. GPS data delivered by the Swiss Federal 
Office of Topography for this observation window and for eleven AGNES GPS permanent stations at Andermatt, 
Davos, EPF Lausanne, ETH Zurich, FHBB Muttenz, Jungfraujoch, Locarno-Monti, Neuchatel, Payerne, Pfänder 
and Zimmerwald has been used. 
 
The differences between the COMEDIE ZPD estimates and the AGNES ZPD observations are evaluated when 
possible. Good agreements between estimates and observations are noted at all stations except Jungfraujoch and 
Locarno-Monti. This is probably due to the lack of data from stations at similar high altitudes for the former and 
due to its location South of the Swiss Alps for the latter. The Alps mountains represent a climatic barrier stopping 
wet and cold air masses arriving from a North-western direction. Hence Locarno-Monti has a very different climate 
than the rest of the AGNES stations surveyed. Further there appears to be no correlation between average, standard 
deviation and RMS of the ZPD differences with the altitude of the GPS receiver. 
 
ZPD forecasts are performed at all eleven AGNES stations at disposals. The extrapolation starts on Saturday 27 
May 2000 at 00:00:00 UTC and ends on Tuesday 30 May 2000 at 00:00:00 UTC. In the first 12 hours of the 
extrapolation time window some damped oscillations of the ZPD forecast are observed. Afterwards, the ZPD 
estimates seem to gradually stabilize around the ZPD value given by the functional model. 
 
Conclusions 
COMEDIE forecast-AGNES observation ZPD differences are computed and their average, standard deviation and 
RMS are evaluated. For half of the AGNES stations surveyed it is possible to yield to a meaningful forecast during 
9 hours after the last data were available. Both the standard deviation and RMS of the ZPD differences are less than 
1 centimeter during the first 12 hours of the forecast. This implies that one can conduct a satisfactory prediction of 
the Zenith Path Delay twelve hours in advance! The ZPD extrapolation error evolves at an approximate velocity of 
half a millimeter per hour. 
 
Navigation, i.e. the determination of one’s position as function of time is the primary purpose of the NAVSTAR 
Global Positioning System. The 1-cm error in ZPD estimate implies nearly as much as 2.50 cm vertical error in the 
user’s position. One cannot evaluate the horizontal position error due to the ZPD error with a single ZPD 
measurement at one’s location. Multiple observations at different sites are required. 
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1 Path delays in GPS signal 
The Earth’s atmosphere strongly influences any signal incoming from space, as is the case with navigation 
satellites. In a first part, the NAVSTAR Global Positioning System is reviewed while the GPS observables are 
derived in a second part. The signal processing is then presented. It is intended to prove that the main residual error 
source is the troposphere. 

1.1 NAVSTAR GPS 

1.1.1 History 
Starting in the 1960s, satellites were recognized as promising means of navigation guidance. At the beginning of the 
1970s, the United States Department of Defense (DoD) needed to replace its ageing first generation space based 
navigation platforms constructed on the Defense Mapping agency (DMA) TRANSIT experiment. It required an all-
weather, global satellite navigation system with unlimited number of suitably equipped users, which signal could be 
received independently of time and place. The NAVSTAR (NAvigation System by Timing And Ranging) GPS 
(Global Positioning System) was conceived in mid-1973 as a multi-service program.  
 
In December 1973, the U.S. Air Force managed NAVSTAR GPS Joint Program Office (JPO) was directed by the 
DoD to “establish, develop, test, acquire and deploy a space borne positioning system” as mentioned by [Hofmann-
Wellenhof, 1997]. 

1.1.2 Segments and functionalities 
The system is built up around three segments: the space segment enveloping all satellites forming the constellation, 
the ground control segment maintaining the operational status of all the space vehicles (SV) and the user segment 
consisting of the receivers community. 

1.1.2.1 Space segment 
The GPS satellites are evolving on a Medium Earth Orbit (MEO) at an altitude of approximately 10,858 nautical 
miles (NM) or 20200 km. Their orbit period is estimated to be 11 hours 57 minutes and 57.27 seconds. Hence each 
satellite rounds the Earth about twice a sidereal day. 
 
As of November 2001, the constellation consists of 24 operational satellites, homogeneously distributed on six 
evenly spaced planes (A to F), inclined at 55º with respect to the Earth’s equator as well as 4 spares as can be seen 
on Figure 1. It provides global coverage with a minimum of fours space vehicles (SV) and up to eight satellites 
simultaneously visible above 15° elevation. Six generations of NAVSTAR GPS satellites are to date in orbit and 
reflect the evolution of military technologies. The GPS SVs are classified in Blocks and differentiated by their 
Pseudo Random Noise (PRN) code and Space Vehicle Number (SVN). 

Above: 
Figure 1. 
GPS constellation 

 
Right side:  

Figure 2. Block IIF 
GPS vehicle. 

 
Source:  
[NAVSTAR-JPO, 2001] 
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The eleven Block I/IA satellites were launched from 22 February 1978 onwards until 9 October 1985. The last 
Block IA satellite, SVN11/PRN03 was deactivated on 14 April 1994 at 21:00 UT (Universal Time). The actual SV 
configuration consists of Block II/IIA and IIR SVs.  
 
The eight Block II satellites, SVN 13 to 21, incorporate a denial system that restricts full signal reception to only 
certain DoD-approved users. Conversely to Block I satellites, Block II satellites employ two cesium (Cs) and two 
rubidium (Rb) atomic clocks as frequency standards. They were lunched into space between 14 February 1989 and 
6 November 1997. 
 
The 15 Block IIA satellites carry advanced (therefore the “A”) radio systems, allowing a mutual communication 
capability. The first Block IIA satellite, SVN21/PRN23 was placed on 26 November 1990 on its E4 orbital plane. 
Their life expectancy was extended of 2 years to 10.68 years. The SVs were designed to implement both the 
Selective Availability (SA) and Anti-Spoofing (AS) capabilities to provide the adequate signal security. It is here 
referred to 1.1.4. for further explanation. 
 
The Replenishment or Replacement Block IIR satellites, SVN 41 to 62 have their own on-board Hydrogen maser, 
one order of magnitude more precise than the conventionally used Cs and Rb atomic clocks aboard former blocks 
(c.f. [Fromm, 1998]). The first Block IIR satellite, SVN43/PRN13 was launched by the Space Shuttle on 23 July 
1997 from Vandenberg AFB and activated on 31 January 1998. To date, six Block IIR satellites are on orbit. After 
[NATO, 2001], the last launch took place on 30 January 2001. 
 
The United States Air Force intends to purchase (contract signed in 1996) 33 Follow-on Block IIF satellites (c.f. 
Figure 2), although 24 are operationally required, to ensure both military and civil navigation. All SVs are designed 
with a lifetime of more than ten years and should be launched between 2001 and 2004 with the Evolved Expandable 
Launch Vehicle (EELV) as booster on a launch-on-need basis to cut costs. The Block IIF satellites are intended to 
have an 11.5 years design life. It is referred to Table 1 for more details on the current GPS constellation. 

SVN # PRN # Mission # Launch Date Slot Operational Month Clock
Date Operational

17 17 II-5 11-Dec-1989 D3 11-Jan-1990 132.6 Rb
18 18 II-6 24-Jan-1990 E4 14-Feb-1990 127.5 Rb
21 21 II-8 2-Aug-1990 E2 31-Aug-1990 125 Cs
15 15 II-9 1-Oct-1990 D5 20-Oct-1990 123.3 Cs
23 23 IIA-10 26-Nov-1990 E5 10-Dec-1990 121.3 Cs
24 24 IIA-11 3-Jul-1991 D1 30-Aug-1991 112 Cs
25 25 IIA-12 23-Feb-1992 A2 4-Mar-1992 106.2 Cs
26 26 IIA-14 23-Jul-1992 F2 23-Jul-1992 102.2 Rb
27 27 IIA-15 9-Sep-1992 A4 30-Sep-1992 100 Cs
32 1 IIA-16 22-Nov-1992 F4 11-Dec-1992 97.6 Cs
29 29 IIA-17 18-Dec-1992 F5 5-Jan-1993 96.8 Rb
22 22 IIA-18 2-Feb-1993 B1 4-Apr-1993 93.8 Rb
31 31 IIA-19 30-Mar-1993 C3 13-Apr-1993 93.5 Cs
37 7 IIA-20 13-May-1993 C4 12-Jun-1993 91.6 Rb
39 9 IIA-21 26-Jun-1993 A1 21-Jul-1993 90.3 Cs
35 5 IIA-22 30-Aug-1993 B4 20-Jul-1993 88.3 Cs
34 4 IIA-23 26-Oct-1993 D4 1-Dec-1993 85.9 Rb
36 6 IIA-24 10-Mar-1994 C1 24-Mar-1994 82 Cs
33 3 IIA-25 28-Mar-1993 C2 9-Apr-1996 57.7 Cs
40 10 IIA-26 16-Jul-1996 E3 15-Aug-1996 53.5 Cs
30 30 IIA-27 12-Sep-1996 B2 1-Oct-1996 51.9 Rb
38 8 IIA-28 6-Nov-1997 A3 18-Dec-1997 37.4 Rb
43 13 IIR-2 22-Jul-1997 F3 31-Jan-1998 36 Rb
46 11 IIR-3 6-Oct-1999 D2 3-Jan-2000 12.9 Rb
51 20 IIR-4 10-May-2000 E1 1-Jun-2000 7.9 Rb
44 28 IIR-5 16-Jul-2000 B5 17-Aug-2000 5.4 Rb
41 14 IIR-6 10-Nov-2000 F1 10-Dec-2000 1.6 Rb
54 2 IIR-7 30-Jan-2001 B3 - - Cs
Table 1. GPS SVs status as of 16 November 2001 after [NAVCEN, 2001a] and [NAVCEN, 2001b]. 
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The Initial Operational Capability (IOC) was attained in July 1993 and declared by DoD on 8 December 1993 when 
24 GPS space vehicles (Blocks I, II and IIA) were set in operation, available for navigation purposes and delivering 
full Standard Positioning Service (SPS). 

 
The Full Operational Capability (FOC) was achieved in March 1994, when 24 Block II and IIA satellites were fully 
operational in the desired orbital planes and tested for operational military performances. The Office of the 
Assistant Secretary of Defense declared the FOC on 17 July 1995 (c.f. [DOD, 1995]). 

1.1.2.2 Ground Control Segment 
The ground control segment is divided into three parts: the Master Control Station (MCS), the Monitor Stations 
(MS) and the Ground Control Stations (GCS). Its operational task is the tracking of all the SVs for orbit and clock 
determination, the prediction of time synchronization and the upload of data message to the satellites. It is also 
responsible for implementing the Selective Availability on the broadcast signal. 

1.1.2.3 User segment 
Because NAVSTAR GPS is a Department of Defense program, two kinds of users should be distinguished: military 
and civilian users. The military users are the real or “true” users as invoked by the DoD. Civilian users are denied 
access to the full possibilities of the system when Selective Availability (SA) is deployed. However, SA has been 
turned following a Presidential Directive signed by President W. Clinton on 2 May 2000 at 04:07 Zulu, c.f. 1.1.4.1. 

1.1.3 GPS signal 
The important part for the user is surely the GPS signal broadcasted by the satellite constellation. The receiver 
needs to know in which spatial and temporal reference systems it should consider the transmitted information. Then 
the signal should be separated in its different components and analyzed. 

1.1.3.1 Reference Systems 
The equation of motion of the satellite on its orbit and of the receiver for dynamic positioning should be exactly 
computed. Therefore both a spatial co-ordinates system and a time system must be defined. 
 
The World Geodetic System 1984 (WGS-84) is the system of reference for GPS measurements. It is defined by an 
important number (more than 100) of terrestrial reference stations. Belonging to WGS-84 is a geocentric 
equipotential ellipsoid of revolution. Its major and minor axes are defined by the fact that all reference stations must 
be located on the surface of the ellipsoid. Thus the height of a receiver can be deduced by knowing its height in the 
WGS-84 system and differentiating it with the satellite altitude, also given in the WGS-84 reference system. 
Transformations between the WGS-84 and other references systems are given in [NIMA, 1997]. 

 
The space vehicles are all equipped with a variable number of atomic clocks, defining a time standard. The 
Universal Time Coordinated (UTC) is based on the atomic second. However to reduce variations with the Universal 
Time (UT), an integer number of seconds was inserted at peculiar time epochs. The United States Naval 
Observatory (USNO) maintains the GPS time (see [USNO, 2001]) and it decided to relate it to UTC. Thus the GPS 
time is narrowly linked to UTC and it is counted in weeks, days, minutes, etc. It was set to zero on 6 January 1980 
at 00.00 UTC. Thus the epoch 2000 of the Julian calendar corresponds to the GPS week 1042. Hence a rollover 
happened on midnight 21 to 22 August 1999. For further information regarding the rollover, refer to [USAF, 1999]. 

1.1.3.2 Ephemeris and calendar 
There are three kinds of data that are available to determine the pseudoranges and phase differences. All differ in 
accuracy and their utilization depends on the required precision as well as the processing time at disposal. These are 
the almanac data, the broadcast ephemeris and the precise ephemeris. As far as cinematic applications such as 
atmospheric sounding are concerned, only the last two are of interest. 

1.1.3.3 Signal components 
It will be here referred to the official GPS signal description contained in the GPS Interface Control Document 
ICD-GPS-200, Revision C (see [DoD-USCG, 1993]). 
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1.1.3.3.1 Frequency standards 
Due to military requirements, the actual carrier broadcast is spread over a large signal spectrum. Thus it is less 
subject to intentional or unintentional jamming. This is known as the Code Division Multiple Access (CDMA) and 
is a form of multiplexing where the transmitter encodes the signal using a characteristic pseudo-random sequence, 
as defined by [Tiemeyer, 1999]. This sequence is known from the receiver who then can use it to decode the 
received signal. Each random sequence corresponds to a different communication channel.  
 
The key to the GPS accuracy is concealed in the control of all signal components by atomic clocks. The actual 
block II satellites are equipped with four on-board atomic clocks: two Rubidium (Rb) and two Cesium (Cs). Its 
long-term stability is approximately a few parts in 10-13. However the up-to date Block IIR SVs deploy as well a 
hydrogen maser. According to [Fromm, 1998], it produces “a state of the art ultra-stable atomic frequency standard 
based on a sapphire loaded miniature microwave cavity” and has an accuracy of a few parts in 10-14 to 10-15. These 
highly accurate frequency standards are the heart of the GPS system and they produce a fundamental L-band 
frequency 

MHz 23.100 =f       (1.1) 

From this two signals are derived. The L1 and L2 carriers are generated by multiplying the fundamental frequency 
by respectively 154 and 120, yielding to 

MHz 1227.60      and      MHz 1575.42 21 == LL     (1.2) 

The need for two different signals originates from the necessity to eliminate the refraction effects of the ionosphere 
during the signal processing (c.f. 1.4.1., ionosphere-free pseudoranges), as it is the biggest error source. 
 
A further L3 frequency is also extracted from the fundamental frequency, but is strictly reserved for military usage. 
By Presidential Directive, it is intended to generate an L5 frequency for civilian users, which will be implemented in 
Block IIF space vehicles. 

1.1.3.3.2 Codes 
The wave carriers L1 and L2 are biphase-modulated by codes, in order to broadcast information. This is achieved by 
addition of a code, a two-state time dependent sequence of 1 and –1, corresponding to binary values of 1 and 0. This 
code shifts the carrier phase by 180º whenever a change in code occurs. Tapped Feedback Shift Registers (TFSR) 
are used to generate the Pseudo Random Noise (PRN) sequence in the code. This technique is referred to as spread 
spectrum technique and limits the interference from other signals, c.f. [Forssell, 1991]. 
 
The outputs of two 10-bits TFSR (G1 and G2 codes) are binary added to form the linear Coarse/Acquisition code 
(C/A-code) or Controlled Access code with a frequency of  

MHz 023.1
10

0
/

== ff
AC

     (1.3) 

It is available to all users and officially designated as the Standard Positioning Service (SPS). It is modulated on the 
L1 carrier and intentionally not on L2. This allows the JPO (Joint Program Office, see 1.1.1.) to control the 
information broadcast by the Space Vehicle. 
 
The Precise code (P-code) or Protected code is generated in the same manner as the C/A-code at the original L-band 
fundamental frequency of 

MHz 23.100 == ff
P

     (1.4) 

but with a different bit sequence. The whole P-code lasts ca. 266.4 days. Its chip length is of about 30 meters 
intervals and each interval corresponds to a unique SV, thus defining its PRN number. Therefore, all satellites are 
identified through their PRN number. The P-code is available only to authorized users, i.e. U.S. military and is 
designated the Precise Positioning Service (PPS). Until the FOC (Full Operational Capability, c.f. 1.2.1.2) was 
achieved, they have unlimited access to PPS. The P-code is modulated on both the L1 and L2 carriers. 
 
A Military code (M-code) will be allocated on the new civilian L5 carrier1 as was approved during the World Radio 
Communications Conference on March 20002. It was decided to set L5 carrier frequency as 

                                                           
1 This is NOT the same L5 frequency as mentionend in 1.4.3. 
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MHz 00.11765 =L      (1. 5) 

It will be implemented on the first six Block IIR-M space vehicles and on the currently under development Block 
IIF SVs. It is intended to reach the IOC in 2012 and the FOC in 2014 according to [NATO, 2001]. 
 
Both the C/A-code and the P-code are not classified. However, in order to protect the transmitted signals from 
voluntary adverse spoofing, the P-code is encrypted by the Anti-Spoofing function (refer to 1.1.4.2.) to form the Y-
code. The Y-code is defined as modulo two (mod-2) of the P-code with addition of the highly secret W-code. 
However, the P-code remains the main code of the GPS signal. 

1.1.3.3.3 Navigation message 
The navigation message is maybe the most important part of the signal for the users community. It contains all 
necessary information about the satellite, such as its health status, GPS time, etc. Principally no information 
concerning the receiver’s position are transmitted but only raw data regarding the SV itself. Its frequency is 

MHz 1050
204600

6−⋅== ff
MN

     (1. 6) 

It has a total length of 1500 bits spread homogeneously over 5 subframes, containing each 10 words of 30 bits. The 
first two word (TLM and HOW) are generated by the SV itself, while the eight others are created by the Ground 
Control Segment and uploaded to the satellite.  
 
The TLM contains a synchronization pattern and basic diagnostic messages on the SV’s health status. After [Fridez 
et al., 2001], the “HOW contains among others the so-called Z-count which gives the number of 1.5 s intervals 
since the beginning of the current GPS week. This number and the P-code give the reading of the satellite clock at 
signal transmission time. The first subframe contains various flags and the polynomial coefficients which define the 
satellite clock correction3”.  
 
The redundant processors-controlled data flux being of 50 bit per second, the word is broadcasted in 0.6 second and 
the full digital navigation message transmitted in 30 seconds. It is modulated with the PRN code sequence. 

1.1.4 Accuracy denial 
It exists principally two methods to prevent civilian users to have full access to the system’s capability: Selective 
Availability (SA) and Anti-Spoofing (SA). Bias errors result from the application of the SA and are discussed 
hereunder. 

1.1.4.1 Selective Availability 
The navigation accuracy using the SPS is normally of approximately 15 to 40 meters in positioning and tenth of 
centimeters per second for velocity measurements. The final aim of SA is the accuracy denial. It consists of two 
processes: the delta process, which disturbs the satellite atomic clocks and the epsilon process that manipulates the 
ephemeris. The δ-process corresponds to the intended disturbance of the fundamental frequency of the SV clock. 
The ε -process corresponds to a partial truncation of the transmitted navigation message that is an ephemeris data 
manipulation. 
 
According to the GPS SPS specifications [DoD-USCG, 1993] the U.S. Department of Defense decided to degrade 
the signal to 100 meters horizontally and 156 meters vertically. This implies a velocity error of 0  at a 95% 
probability level and a transfer time of 340 nanoseconds in the UTC system. The National Research Council (NRC) 
along with the U.S. National Academy of Public Administration recommended in November 1995 to a presidential 
committee that SA should be reduced to zero after some years. On 24 March 1996, a Presidential Decision 
Directive (PDD) was released, declaring its intention to “discontinue the use of GPS Selective Availability within a 
decade, in a manner that allows adequate time and resources for […] the U.S. armed forces to prepare fully for 
operation without SA”, c.f. [NSC, 1996]. Indeed, this was achieved on 2 May 2000 at 04:07 Zulu following a PDD 
signed by President W. Clinton, c.f. [NSC, 2000]. 

-1sm 3. ⋅

 
 

                                                           
2 C.f. [WRC-2000, 2000]. 
3 It is referred to eq. (1.78) in 1.3.2. 
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1.1.4.2 Anti-Spoofing 
GPS was designed to include the possibility for the JPO (Joint Program Office) to install an encryption to the P-
code to deny access to all but the allowed users. This is motivated by keeping adversaries from sending out false 
signals with the proper GPS markings and thus causing the users to miscalculate their position and more 
particularly misleading military receivers. It is accomplished by building the modulo two sum of the P-code and the 
L1 and L2 carriers and adding the encrypted W-code. The Y-code is generated in that way.  

 
When the Anti-Spoofing (AS) is functioning, the unknown Y-code replaces the P-code on the L1 and L2 carriers. It 
should be noted that Anti-Spoofing has no variable influences, in opposition to SA. Further, when AS was activated 
on 31 January 1994, it was not meant to hinder the use of the P-code by unauthorized users, but it led exactly to 
this. 
 
Finally, SA and AS are the major means for the U.S. DoD to control NAVSTAR GPS. Civilian users are still under 
the risk of a complete and sudden signal access denial. 

1.1.5 L1 and L2 frequency modeling 
It is intended to derive here a simple model for the GPS signal. Assume that the original carrier waves have a sine 
form: 

( ) ( ) 2,1  ,  cos =⋅⋅= jtfatS jjL j
     (1.7) 

According to [Kayton, 1997] the 0’s and 1’s sequence of the navigation message is converted to a 0º and 180º phase 
shift. As this is simply a change in the sign of the carrier, “an equivalent representation is an amplitude modulation 
of 1± ”. 
 
Label the different time dependent codes as stated in the following table: 
 

GPS code Symbol 
Coarse/Acquisition - C/A-code ( )tC A  

Precise code – P-code ( )tP  
W-code  ( )tW  

Navigation Message or Data stream ( )tDi  

Table 2. GPS codes. 

Both L1 and L2 carriers are modulated by the P-code. As mentioned earlier, the C/A-code is incorporated solely on 
L1 with a 90º shift in its phase. This technique is named phase quadrature. Then the modulated carrier signals take 
the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )tftDtWtPatS

tftDtCtftDtWtPatS

iL

iAiL

⋅⋅⋅⋅⋅=














 +⋅⋅⋅+⋅⋅⋅⋅⋅=

22

111

cos
2

coscos

2

1

π
  (1.8) 

where the index i stands for the i-th GPS SV. Using now the relationship 

( ) bababa sinsincoscoscos ⋅−⋅=+     (1.9) 

This yields to the classic equations for the modulated carriers 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tftDtWtPatS

tftNtCatftDtWtPatS

iL

MAiL

⋅⋅⋅⋅⋅=

⋅⋅⋅⋅+⋅⋅⋅⋅⋅=

22

1111

cos

sincos

2

1   (1.10) 

Due to this complex modulation, both carriers are spread over a large phase spectrum, therefore being extremely 
resistant to jamming. This fact is important for the integrity of the transmitted information. For more details on the 
GPS signal see, e.g. [Forssell, 1991]. 
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1.2 GPS Observables 
A GPS receiver measure the time needed for the signal to travel through the atmosphere. It synchronizes its simple 
crystal clock with the atomic clocks of the space vehicle with assistance of the Telemetry word. Further its 
reconstructs the original signal from the same algorithm as those employed by the satellite. Hence, by accurate 
comparison of the received signal with the receiver-generated signal, the phase difference corresponding to the 
travel time can be computed. 
 
The observables are ranges computed from these phase differences. As these measurements are affected by clock 
errors on both sides (SV and receiver), one rather speaks of pseudoranges and distinguishes two kinds: code 
pseudorange and phase pseudorange. 

1.2.1 Code Pseudoranges 
At a fixed instant of time the knowledge of three coordinates is required to determine the position of a vehicle. 
Conventionally these are the latitude, the longitude and the elevation angle. In the ideal case the position is 
determined from the distance  measured between the receiver k and the space vehicle : i

kρ i

( ) ( )τtt i
k

i
k −−= rrρ       (1.11) 

where  is the signal traveling time, r  the position of the receiver k at the signal reception time t and  
the position of the satellite i  at the signal emission time. The geometric distance for electromagnetic (EM) signals 
traveling in vacuum at the speed of light c is given by 

τ ( )tk ( )τ−tir

τρ ⋅= ci
k       (1.12) 

Now let τtt sat −=:  be the time of signal emission by the SV in GPS time and t  be the signal reception time 
also in GPS time. Hence read the time difference  between the satellite atomic clock(s) time and the receiver 
time at reception of the signal 

trec =:
t∆

τttt recsat =−=∆      (1.13) 

This can also be expressed as 

δtttt GPSrecsat ∆+∆=−=∆      (1.14) 

This time difference is affected by both the satellite atomic clocks error  and the receiver’s crystal clock error 
. Therefore, the time error induced by the errors of the clocks with respect to the GPS time is given by 

satδ

recδ

i
krecsat δδδδδ −=−=∆       (1.15) 

Combining (1.13), (1.14) and (1.15) yields to 
i

kGPSGPS δδtδtτ −+∆=∆+∆=      (1.16) 

Hence the observed quantities are affected by errors, e.g. time-related errors. The observed pseudorange (PR) from 
the space vehicle and the receiver k is given by multiplying the speed of light c with the travel time  for the EM 
wave and adding a global error term : 

i τ
ε

( ) i
k

i
k PR

i
kGPSPR

i
k

i
k εδtcετcPR +∆+∆⋅=+⋅=    (1.17) 

where (1.16) has been used. Further it holds 

( ) ( ){ } i
kPR

i
k

i
k εδτtδtcPR ++−−+⋅=     (1.18) 

Using expression (1.12) for the geometric distance, eq. (1.18) can be rewritten as 

i
k

i
k PR

i
k

i
kPR

i
k

i
k

i
k εεcPR +∆+=+∆⋅+= ρρδρ    (1.19) 

where  
i
k

i
k c δρ ∆⋅=∆       (1.20) 
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is the error in geometric distance. Equation (1.19) is the so-called code pseudorange. It is obviously not linear. The 
effects of the atmosphere are contained along other errors in the global error term . i

kPRε

1.2.2 Phase Pseudoranges 
The instantaneous circular frequency f is defined as the time derivative in the GPS time frame of the phase 

dt
df ϕ=        (1.21) 

Thus the phase generated by the L1 and L2 signals is given by 

( ) tdtf
t

t

′′= ∫
0

ϕ       (1.22) 

As the four atomic clocks of the SV generate ultra-stable frequencies, assume that f=const. For convenience, put 
( ) 00 =tϕ . Thus (1.22) becomes 

( ) 




 −⋅=−⋅=

c
ρ

tftf τϕ      (1.23) 

Using the method derived by [Hofmann-Wellenhof, 1997], the beat phase beatΦ  is defined as 

( ) ( ) [ ]00
rectrecsatsatsatrecsatbeat tf

c
ρftftt ϕϕϕϕ +⋅−−⋅−⋅−=−=Φ   (1.24) 

where recϕ  is the phase of the received signal, satϕ  is the phase of the reconstructed reference carrier by the 

receiver and  is the phase of the signal at epoch .  satrec, x,o
x =ϕ 00 =t

 
The variations in frequency from the fundamental carrier frequency  can be neglected, as it is most of the time of 
an order of magnitude of a tenth of Hertz. Further, using (1.15) as in the case of the code pseudorange, one has 

0f

δf
c
ρfbeat ∆⋅−⋅−=Φ      (1.25) 

where the definition of the frequency  

λcTπf == 2        (1.26) 

in cycles per second has been used. T is the period in seconds and λ the wavelength in meters per cycle. 
 
Assume now that the receiver can track continuously a SV in the constellation. It then measures the instantaneous 
fractional beat phase in cycles from a given epoch t  to the current epoch t in GPS time: 0

( ) Nt t
tbeatbeat +∆Φ=Φ
0

     (1.27) 

where N is an integer corresponding to the number of cycles between the SV and the receiver since time . The 
tracking continuity implies that N is constant in time for a short period of time as is the case between two 
observations. As done before, set 

0t

( ) 00 =Φ tbeat  without loss of generality. Thus define the observed phase 
pseudorange by  

( )tbeat∆Φ−=Φ :       (1.28) 

and by inserting (1.25) and (1.27) in (1.28), one obtains  

Nδf
c
ρf +∆⋅+⋅=Φ      (1.29) 

Combining eq. (1.26) and eq. (1.29), yields to 

Nδ
λ
c

λ
ρ +∆⋅+=Φ      (1.30) 
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Finally the equation for the measured phase pseudorange between the space vehicle and the receiver k is given by i

( ) i
Fk

i
k

FF

i
ki

k Nδδ
λ
c

λ
ρ

+−⋅+=Φ      (1.31) 

where for both the L2,1=F 1 and L2 carriers and  the integer ambiguity number. Multiplying eq. (1.31) by the 
wavelength of the carrier  gives the received phase 

i
FkN

Fλ

i
Fk

i
k

i
kF

i
k

i
k ncρλL +∆⋅+=⋅Φ= δ:      (1.32) 

where  is the unknown integer number of cycles: the so-called initial phase ambiguity. i
Fkn

1.2.3 Biases and error modelization 
Both the code and phase pseudoranges are affected by systematic errors or biases and random noises. These errors 
fall into three separate categories, namely the satellite related errors, propagation medium related errors and receiver 
related errors. 

 
Some of these systematic errors can be modeled and thus give rise to additional terms in the observation equations 
(1.19) and (1.31) and/or (1.32). These will be explained in the rest of this study. Other effects can be eliminated by 
proceeding with an adequate combination of the observables.  
 
The satellite related errors are the clock and orbital errors. As mentioned earlier, the clock errors are for instance the 
drift of the atomic clocks aboard each GPS SV. The orbital errors are essentially the oscillatory motion of the SV 
along its assigned orbit as well as its tendency of de-orbiting as it evolves in Medium Earth Orbit (MEO). 
 
The presence of the atmosphere between the GPS satellite and the receiver induces propagation errors in the signal. 
These are classified accordingly to the different layers of the atmosphere. Only the ionosphere and the troposphere 
play a major role. This topic will be approached later in chapter 3 in further details. 
 
The receiver related errors are made of the clock error, the antenna phase center variation and multipath. As is the 
case for the SV, the ground receiver shows also a drift of its crystal clock. The antenna phase center is the point to 
which the measurement is referred and does usually not correspond to the geometric antenna center. The antenna 
center variation results from this difference and is specific for each tracked satellite. This error can be accurately 
corrected. 
 
Multipath is caused by the multiple reflections of the signal along its path, i.e. the interference between direct and 
reflected signals. This is thus a frequency dependent effect. Hence phase PRs are more affected than code PRs. It is 
particularly important in a mountainous or urban environment where the presence of mountains or buildings in the 
direct vicinity of the receiver represent an important treat to the measurement accuracy. By specific protection of 
the receiver’s antenna the impact of multipath on the measurement can be greatly reduced. For further details refer 
to [Geiger, 1988]. 
 
The different major types of GPS errors are summarized in Table 3 below: 
 

Class Name 
Space vehicle Clock bias 

 Orbital errors 
Signal propagation Ionospheric refraction 

 Tropospheric refraction 
Receiver Antenna phase center variation 

 Clock bias 
 Multipath 

Table 3. Systematic errors in the GPS signal 
 
Consider now the signal propagation errors. These are implicitly contained in the formulation of equations (1.19), 
(1.31) and (1.32). 
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On one hand, one distinguishes the ionospheric refraction and on the other hand the tropospheric refraction. These 
two atmospheric layers induce the most errors in the signal and are characterized each by a specific error term. 
Errors emanating from the other layers of the atmosphere are put into the global error terms (c.f. hereunder). 
 
The ionosphere is a dispersive medium for microwave signals. Hence the refractive index is frequency dependent 
for GPS signals. Let  be the effect of the ionosphere on the first carrier Li

kI 1. As will be shown in 1.3.1., the 
ionospheric effect is in second order inversely proportional to the square of the carrier frequency. Hence the effect 
of the ionosphere on the second carrier L2 is 

i
kI

f
f ⋅2
2

2
1       (1.33) 

The ionosphere delays the GPS code pseudorange and advances the carrier phases. The effect of the ionosphere has 
the same absolute value for code and phase measurements but with opposite signs. 
 
The troposphere is the neutral non-ionized part of the Earth’s atmosphere and also its lower layer. By opposition to 
the ionospheric refractive index, the tropospheric refractive index does not depend on the frequency. Hence the 
troposphere effect is the same on the code and phase pseudoranges. Let denote it by . itropo

k∆
 
With the above consideration and equations (1.19), (1.31) and (1.32), one finally obtains 

i
k

i
k

PR
itropo

k
i
k

i
k

i
k

i
k

PR
itropo

k
i
k

i
k

i
k

i
k

εI
f
fcPR

εIcPR

~

~

2
2

2
1

2

1

+∆+⋅+∆⋅+=

+∆++∆⋅+=

δρ

δρ
   (1.34a,b) 

for the code pseudorange. For the phase pseudorange it holds 

i
k

i
k

L
itropo

k
i
k

i
k

i
k

i
k

i
k

L
itropo

k
i
k

i
k

i
k

i
k

i
k

εI
f
fncρL

εIncρL

~~

~~

2
2

2
1

222

111

+∆+⋅−⋅+∆⋅+=

+∆+−⋅+∆⋅+=

λδ

λδ
   (1.35a,b) 

Where the effects of both the ionosphere and the troposphere are stated explicitly. The other error terms from Table 
3 are respectively contained in i

kPRε
~  for the code PRs and in i

kPRε
~~  for the phase PRs. The phase pseudorange are as 

sensitive to the effects of the atmosphere as the code pseudorange. However, GPS has been designed so that the 
former are usually used for high accuracy measurements. 

1.3 Single and double differences 

1.3.1 Ionospheric refraction 
The ionosphere stretches between approximately 50 km and 1000 km above the surface of the Earth. It is a 
dispersive medium for both GPS carriers L1 and L2. In a first step it is intended to derive the modified Rayleigh 
equation for group velocities and in a second step the ionospheric error. 

1.3.1.1 Modified Rayleigh Equation 
First consider a single EM wave of wavelength  propagating through the 3-dimensional space λ 3. Its phase 
velocity is defined by  

( )
k
kωv ph =:       (1.36) 

where  is the circular frequency in [ ] and k the norm of the wave vector k in [ ]. There are 
further two symmetries for waves: a periodicity in space and a periodicity in time: 

( )kω 1srad −⋅ 1mrad −⋅
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πk
πTω

2
2

=⋅
=⋅

λ
     (1.37a,b) 

where T is the period in seconds and  the wavelength in meters. Inserting (1.37a,b) in (1.36) gives λ

( ) f
Tk

kωvph ⋅=== λλ:      (1.38) 

This is the propagation velocity for both L1 and L2 carriers. For a group waves with slightly different frequencies, 
the group velocity is of significance. It defined as 

( )
dk

kdωvgr =:       (1.39) 

and is a gauge for the propagation of the resulting energy. Only this velocity is important for GPS PRs 
measurements. Using the fact that 

kcfkfπω ⋅=⋅⋅=⋅= λ2     (1.40) 

It can be expressed as a function of the wavelength by deriving (1.40) with respect to  λ

( ) 2: λ
dλ
df

dk
kdωvgr ⋅−==      (1.41) 

Building the derivative of the phase velocity with respect to the wavelength yields to 

dλ
dfλf

dλ
dv ph ⋅+=      (1.42) 

Hence 

λ
f

dλ
dv

λdλ
df ph −⋅= 1      (1.43) 

Inserting eq. (1.43) in eq. (1.41) gives 

λf
dλ

dv
λv ph

gr ⋅+⋅−=      (1.44) 

Combining eq. (1.44) with eq. (1.38) one obtains 

dλ
dv

λvv ph
phgr ⋅−=      (1.45) 

i.e. the known Rayleigh equation which contains the dispersion effects. For a non-dispersive medium such as the 
troposphere for GPS signals, it reduces to 

phgr vcv ==       (1.46) 

Further introduce the refractive index n for refractive media. Hence the propagation velocity is given by 

n
cv =        (1.47) 

using the phase and group velocity concepts, one has in a similar way 

gr
gr

ph
ph n

cv
n
cv ==    and        (1.48a,b) 

Differentiate eq. (1.48a) with respect to the wavelength 
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2
1

ph

phph

nd
dn

c
d

dv
⋅








−⋅=

λλ
      (1.49) 

Inserting this into the Rayleigh equation (1.45) gives 

gr
ph

ph

ph
gr n

cv
nd

dn
cv

!

2
1 =+⋅⋅⋅=

λ
λ      (1.50) 

where eq (1.48b) has been set. Now, insert eq. (1.48a) into eq. (1.50) and obtain 












⋅+⋅=⋅+=

dλ
dn

n
λ

ndλ
dn

n
λ

nn
ph

phph

ph

phphgr
1111

2    (1.51) 

Inverting this gives 

1

1
−












⋅+⋅=

dλ
dn

n
λnn ph

ph
phgr     (1.52) 

Proceed with a Taylor expansion for the term in square brackets accordingly to 

[ ] ( 21 11 εOεε +−=+ − )     (1.53) 

Eq. (1.52) is thus reduced in first order to 

dλ
dn

λn
dλ

dn

n
λnn ph

ph
ph

ph
phgr ⋅−=












⋅−⋅≈ 1     (1.54) 

Express it as a function of the frequency. Therefore derive the wavelength 

f
cλ =        (1.55) 

with respect to the frequency  

2f
c

df
dλ −=       (1.56) 

and insert it into eq. (1.54) 






 −⋅⋅−=⋅⋅−= 2c

f
df

dn
f
cn

d
df

df
dn

f
cnn ph

ph
ph

phgr λ
    (1.57) 

Finally one has 

df
dn

fnn ph
phgr ⋅+=      (1.58) 

Eq. (1.58) is the so-called modified Rayleigh equation. 

1.3.1.2 Ionospheric path delay 
According to [Davies, 1990] the index of refraction n for an ionized gas is derived from the Appleton-Hartree 
equations. It is given by the formula of dispersion 

22
2 11 







 ⋅⋅
⋅

−=









−=

f
eC

mπ
n

ω
ωn

e

e

p
     (1.59) 
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where e is the electron charge,  the electron mass,  the electron density, f the frequency and C  [Hzem en 3.40= 2] a 
constant. Following [Seeber, 1993], the refraction coefficient accounting for the propagation of phases can be 
written as a power series 

�++++= 4
4

3
3

2
21

f
c

f
c

f
c

n ph     (1.60) 

Where the expansion coefficients  do not depend on the frequency but on the electron density along 
the signal path. Proceeding with the expansion of eq. (1.55) up to the second order, one finds 

�,4,3,2 , =ici

eph nCc
f
cn ⋅−=+≅ 22

2        where1     (1.61) 

Differentiating Eq. (1.61) with respect to the frequency yields to 

3
22

f
c

df
ndph ⋅−=       (1.62) 

Inserting eq. (1.62) into eq. (1.58) gives 

2
2

3
2

2
2 121

f
c

f
cf

f
cngr −≅







 ⋅−⋅++=     (1.63) 

Hence the effect of the ionosphere on the group and phase velocities is nearly equal in magnitude but with opposite 
signs. Using eq. (1.61) and noting that it always holds 0>en , one can deduce that the group refractive index is 
bigger than the phase refractive index. Hence, it follows that 

phgr vv <       (1.64) 

in the ionosphere. This has important consequences on the GPS signal propagation trough this layer of the 
atmosphere, namely the code pseudoranges are delayed while the phase pseudoranges are advanced i.e. they are 
respectively measured too long and too short with respect to the geometric range . i

kρ

 

The Fermat’s principle states that the measured range s is given by the integral over the whole ray path of the 
refractive index n, i.e. it holds 

( )∫ ′′=
pahray

sdsns       (1.65) 

Furthermore the geometric path is given by the direct line or line of sight (LOS) between the space vehicle i and the 
receiver k. Thus  that is ( ) 1=sn

∫ ′=
linestraight

sds0       (1.66) 

The influence of the ionospheric refraction is determined by the difference between the observed range and the 
geometric distance between SV and receiver. Hence one has 

( ) ∫∫ −=∆= 0dsdssnI iiono
k

i
k      (1.67) 

For the phase refractive index and with eq. (1.61) if follows that 

∫∫∫ −+=−







+=∆ ∫∫ 02

2
02

21 dsdsds
f
cdsds

f
ciiono

kph    (1.68) 
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It is here referred to Figure 3 hereunder. In a first approximation integrate along a straight line, for instance the 
geometric path. Hence  and the difference of the two last integrals on the right hand side (RHS) of eq. 
(1.68) vanishes, i.e. 

0dsds =

      (1.69) ∫≈∆ ds
f
ciiono

kph 2
2
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Figure 3. Signal bending and slant path delay 

In a similar way, using eq. (1.63) it holds 

∫−≈∆ ds
f
ciiono

kgr 2
2      (1.70) 

Using the fact that  and eq. (1.61), one obtains ( )0sff ≠

∫=∆ 02, dsn
f
C

e
iiono

kgrph �      (1.71) 

where the minus sign is for the phase ionospheric delay and the plus sign for the group ionospheric delay. Introduce 
now the notion of total electron content (TEC). It is defined as 

∫= 0: dsnTEC e       (1.72) 

and corresponds to the amount of electrons present in a cylindrical column with base area 1 m2 stretching above the 
receiver up to the altitude of the GPS satellite. It is usually given in units of 10 e16 -/m2. Inserting eq. (1.72) in eq. 
(1.71) gives the phase respectively group ionospheric delay in meters 

iiono
kgr

iiono
kph TEC

f
C ∆−=⋅−=∆ 2     (1.73) 

Usually the notion of Total Vertical Electron Content (TVEC) or Total Overhead Electron Content is rather used 
instead of the TEC. As the TEC depends on the position of the space vehicle and is computed in line of sight, it is 
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necessary to project it along the zenith direction in order to obtain a reference measure. Hence, for arbitrary LOS, 
the zenith angle of the satellite must be taken into account. 

( ) 2cos
χ

f
TVECCfI j

iono ⋅
′

⋅=∆=
ϑ

    (1.74) 

where  





=−
=+

=
ph, j
gr, j

j         1
        1

χ      (1.75) 

and  is the zenith angle of a infinitesimal volume element at altitude z. For code pseudorange measurements the 
formulation of equations (1.74) and (1.75) with respect to the group velocities sets the benchmark. 

θ′

1.3.2 Clock Errors 
As mentioned earlier, the SV’s clocks show a tendency to drift over a long period of time. Although the ‘Delta-V 
repositioning” maneuver which is performed once a year for each space vehicle is associated with an evacuation of 
the atomic clock’s beam tubes, a residual error remains and must be modeled before partial removal.  
 
A model derived by [Jorgensen, 1986], for geodetic uses, is presented here. The relativistic time correction term is 
given by 

krel EAeGt sin~ ⋅⋅=∆      (1.76) 

where e is the orbit eccentricity, A is the orbit’s ellipse semi-major axis and  is the eccentric anomaly at time t . 
Further, it holds 

kE k

c
G

η2~ −
=       (1.77) 

where η  is the Earth’s universal gravitational parameter. Thus the clock error of 1.2.1 is given by 

( ) ( ) relcrreccrrec tttattaa ∆+−⋅+−⋅+=∆ 2
210δ     (1.78) 

where the three polynomial coefficients are taken from the navigation message,  is the received time by the SV 
and  is the atomic clock data reference time in seconds. 

rect

crt
 
Further, this kind of correction is often not totally adequate and one wants to remove totally all the clock-related 
errors from the measurements. This is achieved by forming so-called single and then double differences. 

1.3.3 Single difference 
Consider the observation equation for the measured phase pseudorange Φ, which expression in cycles (1.31) was 
derived in 1.2.2. 

( ) ( ) ( ) Ntcρt +∆⋅+=Φ δ
λλ

t     (1.79) 

where λ is the wavelength, N is the ambiguity phase number and  the geometric range between the SV and the 
ground-based receiver. Split the bias term into two parts, one for the unknown receiver-related biases the other for 
the known SV-related errors [via equation (1.78)]. It holds with eq. (1.23) 

( )tρ

( ) ( ) ( )tδtδδ recsat −=∆ t      (1.80) 

Using now the definition of the frequency  

λ
cf =        (1.81) 

and (1.80), equation (1.79) becomes 

( ) ( ) ( ) ( )tfNtft recsat δ
λ

ρδ ⋅−+=⋅−Φ t     (1.82) 
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Consider now two different receivers k and lat two separate locations for instance but not necessarily on the ground 
and let – as usual - i be the SV number. Then it holds 

( ) ( ) ( ) ( ) lkxtfNttft
xrec

ii
x

t
xi

sat
ii

x ,, =⋅−+=⋅−Φ δ
λ

ρδ   (1.83) 

The clock errors related to the receiver being independent of the SV, these carry no subscript i. Build the difference 
now of (1.83) for each of the station. 

( ) ( ) ( ) ( )[ ] ( ) ( )  tt 



 −⋅−−+−⋅=Φ−Φ

lreckrec
ii

l
i
k

i
l

i
k

i
l

i
k ttfNN

λ
1tt δδρρ   (1.84) 

This is the phase pseudorange single difference. Similarly, using eq. (1.32) yields to 

( ) ( ) ( )tLtLtL i
Fl

i
Fk

i
Fkl −=:      (1.85) 

One should note that the SV-related clock errors have been removed thus eliminating errors due to clock dithering 
(c.f. [Rocken and Meertens, 1991]). However, the receiver-related clock errors remain. It is often suitable to remove 
them from the computation and thus completely eliminate clock errors. This is provided by performing the double 
differences. 

From now onwards, to simplify the expressions, use the following conventions 

( ) ( ) ( ) ( ) ( ) ( ) i
l

i
k

i
kl

i
l

i
k

i
kl

i
l

i
k

i
kl NNNPRYtYtYtY −=−=Φ=−= :                  tt:t                     ,      ,  : ρρρ  (1.86) 

1.3.4 Double difference 
Consider two different SV labeled i and j. Setting (1.84) in (1.86) yields 

( ) ( ) ( ) jimtfN
t

t kl
mm

kl

m
klm

kl ,   ,  =⋅−+=Φ δ
λ

ρ
    (1.87) 

Assume both stations are tracking different SV but on the same frequency, that is  and the wavelength is 

the same for both receivers . Thus form the difference of (1.87) for each satellite 

ji ff =

λλλ ji ≡=

( ) ( ) ( ) ( ) ( )[ ]  1: j
kl

i
kl

j
kl

i
kl

j
kl

i
kl

ij
kl NNtρtρ

λ
ttt −+−⋅=Φ−Φ=Φ    (1.88) 

It is the phase pseudorange double difference. This equation shows no dependency of any kind on clock errors and 
is therefore widely used in combination with the ionosphere-free code pseudorange linear combination. However 
the carrier ambiguities  are still there. It is possible to resolve these ambiguities by using filtering 
techniques. It is here referred to 1.5. 

jixN x
kl , , =

 
Now do the same for eq. (1.32) and get 

ijtropo
kl

ij
kl

ij
kl

ij
kl

ij
kl

ijtropo
kl

ij
kl

ij
kl

ij
kl

ij
kl

I
f
f

nλρL

InλρL

   
22

2

2
1

222

   
1111

∆+−⋅+=

∆+−⋅+=
    (1.89) 

In a similar way for the code pseudoranges (1.19) one obtains the code pseudoranges double differences 

ijtropo
kl

ij
kl

ij
kl

ij
kl

ijtropo
kl

ij
kl

ij
kl

ij
kl

I
f
f

ρPR

IρPR

∆+⋅+=

∆++=

2
2

2
1

2

1

 

 
     (1.90) 

Again, no terms corresponding to the receiver and SV clock errors appear in the equations (1.89) and (1.90). It has 
been assumed that the receiver clock errors are known with enough accuracy in order to compute the geometric 
range with sufficient precision. 



Chapter 1. Path delays in GPS signals 
__________________________________________________________________________________________________________________________________________________________________________________________ 

17

1.4 Linear combinations 
Various errors influence the observed pseudoranges. In order to constrain their impact on the signal accuracy, it is 
often useful to form linear combinations (LC) of the code and phase pseudoranges. The most widely used are 
presented hereunder. 

1.4.1 Ionosphere free LC L3 
Various derivation of the ionosphere-free pseudoranges exist, e.g. in [Botton, 1997], but all lead to the same aim, 
the cancellation of the ionospheric refraction from the measurements.  
 
The ionospheric refraction  is given by eq. (1.74) and eq. (1.75). The measured code pseudorange to satellite i 
has been modeled in 1.2.1., eq. (1.19) as 

iono∆

i
k

i
k PR

i
k

i
kPR

i
k

i
k

i
k εεcPR +∆+=+∆⋅+= ρρδρ    (1.91) 

where  is the clock error and i
kδ∆ i

kPRε  the global error balance. Thus replacing i
kPRε  by the corresponding 

ionospheric delay (ignore for the moment the other error sources) and letting aside the subscripts i and k, one 
obtains: 

( ) 2,1, =∆+∆⋅+= FcPR F
ionoF λδρ     (1.92) 

The standard procedure is to form now a linear combination of code pseudoranges, defined as 
2

2
1

1
2,1 PRmPRmPR ⋅+⋅=      (1.93) 

where  and m  are both integers that will be later determined. Setting (1.92) into (1.93) and reminding that one 
wants to eliminate the ionospheric refraction yields to  

 1m 2

( ) ( ) 0
!

2211 =∆⋅+∆⋅ fmfm ionoiono      (1.94) 

As the ionospheric refraction delays are nearly always not zero, one can divide by the first term: 

( )
( ) 11

2
2

1
mf

f
m iono

iono
⋅

∆
∆

−=      (1.95) 

One can set the arbitrary coefficient  equal to 1 without loss of generality. Thus using the relationship (1.74) 
where the dependency of the ionospheric path delay on the frequency clearly appears, one has 

 1m

( )
( )

1  and  
!

12
1

2
2

1

2
2 =−=

∆
∆

−= m
f
f

f
f

m iono

iono
    (1.96) 

The ionosphere-free code pseudorange linear combination becomes then  

1
2

1

2
212,1 PR

f
f

PRPR ⋅−=      (1.97) 

In a similar way an ionosphere-free phase pseudorange formula can be derived except that there is now the 
ambiguity N to take into account. The carrier phase pseudoranges were expressed by eq. (1.31) in 1.2.2 for a single 
measurement as  

Nδ
λ
c

λ
ρ +∆⋅+=Φ      (1.98) 

Thus subtracting the ionosphere refraction term, its yields for each carrier to  

( ) 2,1, =∆−+∆⋅+=Φ FfNδ
λ
c

λ
ρ

F
iono

F
FF

F    (1.99) 

Using the definition of the frequency of a wave, λcf =  one gets 
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( ) 2,1  ,R =∆−+∆⋅+=Φ FfNf
λ F

iono
FF

F
F δ     (1.100) 

Proceeding as for the ionosphere-free code pseudorange, a linear combination of phase pseudorange is obtained 

22112,1 Φ⋅+Φ⋅=Φ uu      (1.101) 

where  and u  are both arbitrary coefficients. Set then (1.100) in (1.101) 1u 2

[ ] ZNuNufufu
λ
u

λ
u

−⋅+⋅+∆⋅⋅+⋅⋅+







+⋅=Φ 22112211

2

2

1

1
2,1 1

R δ   (1.102) 

where Z is the quantity that must be set to zero 

( ) ( ) 0:
!

2
2

2
1

1

1 =∆⋅−∆⋅= f
λ
u

f
λ
u

Z ionoiono     (1.103) 

The arbitrary coefficient  can be set equal to 1 for commonality but without any loss of generality, and it holds 1u

( )
( )

1  and  1
2

1
2 =

∆
∆

⋅−= u
f
f

λ
λ

u
iono

iono

1

2      (1.104) 

The velocity of light can be expressed with respect to the frequency by using the definition of f, and using 
equation (1.74), one has 

fλc ⋅=

1  and  1
1

2
2

1

2
2

2

1
2 =−=⋅−= u

f
f

f
f

f
f

u      (1.105) 

Thus one obtains the classical ionosphere-free phase pseudorange linear combination 

2
1

2
12,1 Φ−Φ=Φ

f
f

     (1.106) 

This model of ionosphere-free pseudorange is widely use in the dual frequency receivers in order to remove all 
delays due to the presence of the ionosphere in the atmosphere. 
 
Another linear combination for the ionosphere-free phase pseudorange has been computed by [Spilker, 1978]. It is 
derived from the known dispersive behavior of the ionospheric electron plasma. Define the new ‘combined’ carrier 
as 

2
2

2
1

2
2

21
2

1
3 :

ff
LfLf

L
−

⋅−⋅
=      (1.107) 

where  and  are defined by eq. (1.32). Hence it holds with the conventions introduced before 1L 2L

322
2

2
1

2
2

12
2

2
1

2
1

2,1    Φ≡Φ⋅
−

−Φ⋅
−

=Φ
ff

f
ff

f
    (1.108) 

It is sometimes known as 3Φ  where the index 3 simply designates a linear combination of both carrier frequencies 
L1 and L2. Hence, inserting the known frequencies of the carriers (1.2), equation (1.107) can be approximated as 

212,1 5.15.2 Φ⋅−Φ⋅≈Φ      (1.109) 

Further, the linear combination of the code pseudoranges yields to 

[   1
2

2
21

2
12

2
2

1
3 PRfPRf

ff
PR ⋅−⋅

−
= ]     (1.110) 

Looking at eq. (1.107) and eq. (1.101), one can see that of all the layers of the atmosphere, only residuals generated 
by the troposphere induce a large delay in the transmitted signal. This will be the main topic of Chapter 3. 
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Take now into account the double difference phase pseudorange (1.89) and continue to neglect the effect of the 
troposphere. It then holds 

ijijij BρL 3klkl3kl +=       (1.111) 

where the ionosphere free bias  is given by ijB3kl

[ ij
kl

ij
kl

ij nλfnλf
ff

B 22
2

211
2

12
2

2
1

3kl
1 ⋅⋅−⋅⋅⋅
−

= ]    (1.112) 

Equation (1.112) cannot be expressed as a linear function of the integer ambiguity , i.e. ijn3kl

ijij nλconstB 3kl33kl ⋅⋅≠      (1.113) 

where the wavelength of the combined carrier is  

21
3 λλ

cλ
+

=       (1.114) 

If the wide lane combination L5 (c.f. 1.4.3.) is known, it is possible to write the ionsophere free bias as 

ijijij n
λ
cn

ff
f

cB 1kl
3

5kl2
2

2
1

2
3kl ⋅+⋅

−
⋅=      (1.115) 

where the first term on the right hand side is known and the so-called narrow lane ambiguity  is unknown. ijn1kl

1.4.2 Geometry free LC L4 
The coefficients of the linear combination 

∈⋅+⋅= 2122114 ,   , ααLαLαL      (1.116) 

are chosen in such a way that the geometric range  vanishes from the expression. Hence it holds i
kρ

214 : LLL −=       (1.117) 

The same is done with the code pseudoranges 

214 PRPRPR −=      (1.118) 

combining eq. (1.35a,b) with eq. (1.117) yields to 

i
kI

f
f

nλnλL ⋅









−+⋅−⋅= 1

2
2

2
1

22114      (1.119) 

and is a function of only the ionospheric path delay and the initial phase ambiguities. The main advantage of this 
combination is that the clock errors on both sides (SV and receiver) as well as the geometric range do not appear 
explicitly. However, the major issue with that linear combination consists in the fact that the resulting bias B4 is not 
an integer any more. 

1.4.3 Wide lane LC L5 
The wide lane linear combination is used to fix eventual cycle slips and to resolve the ambiguity. Cycle slips occur 
when the receiver loses phase lock on the GPS satellite signal. It is defined as 

2
2

2
1

2211
5 :

ff
LfLf

L
−

⋅−⋅
=      (1.120) 

Neglecting the influence of both the ionosphere and the troposphere, one has 

( ) ij
kl

ij
kl

ij
kl

ij
kl

ij
kl

ij
kl nλρnn

ff
cρL 5521

21
5 ⋅+=−⋅

−
+=    (1.121) 
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Because the wavelength  is approximately four times longer than the wavelength of the L5λ 1 and L2 carriers, the L5 
linear combination is called wide lane. The wide lane ambiguity of eq. (1.121) is given by 

ij
kl

ij
kl

ij
kl nnn 215 −=       (1.122) 

For further details on the wide lane LC, refer to [Cocard and Geiger, 1992]. 

1.4.4 Melbourne-Wübbena LC L6 
The idea of [Melbourne, 1985] and [Wübbena, 1985] is to linearly combine both the carrier phase and the P-code in 
order to eliminate the effects of the ionosphere and troposphere along the geometry and clock errors. The 
Melbourne-Wübbena linear combination L6 is defined as 

[ ] [ 2211
21

2211
21

6
11: PRfPRf

ff
LfLf

ff
L ⋅−⋅⋅

+
−⋅−⋅⋅

−
= ]   (1.123) 

After [Fridez et al., 2001], one obtains for double difference observations 

ij
kl

ij
kl nλL 666 ⋅=       (1.124) 

Although the advantages of this linear combination are clear, the systematic errors are here not constrained but vary 
proportionally to the wavelength. Hence a linear combination with a large wavelength does automatically have a 
strong ionospheric sensitivity. 
 
The code and phase PRs linear combinations presented above are summarized along their wavelengths in Table 4 
hereunder: 
 

LC Designation Equation Wavelength [cm] 
L1 Basic carrier (1.2) 19.04 
L2 Basic carrier (1.2) 24.45 
L3 Ionosphere free LC (1.107) 10.70 
L4 Geometry free LC (1.119) ∞  
L5 Wide lane LC (1.120) 86.20 
L6 Melbourne-Wübbena LC (1.123) 86.20 

Table 4. Code and phase linear combinations, after [Fridez et al., 2001] 
 
The four last linear combinations of Table 4 allow for the elimination or partial removal of most of the GPS errors 
presented in Table 3. However, the remaining combined errors are increasing very rapidly with time. Hence, linear 
combinations are not entirely satisfactory but are commonly used while processing the GPS signal. 

1.5 Ambiguity resolution 
The ambiguity resolution consists in determining the number of integer cycles done by the phase when the signal 
arrives to the GPS receiver. It is a major task of the receiver to find these and to remove it. Indeed a small slip in 
phase, i.e. a small variation of the ambiguity term N would introduce a large uncertainty in the code pseudorange. N 
depends on both the tracked SV and the time at which the signal is emitted. 
 
Unfortunately the Global Positioning System does not provide more than two basic carrier frequencies. Hence 
specific strategies were developed to solve the ambiguity issue. The main approaches are presented hereunder. 

1.5.1 Combination of phase and code PRs 
The procedure first formulated by [Remondi, 1990], where the ambiguities are resolved by combining the dual 
carrier frequencies code and phase pseudoranges, is presented here. 
 

Reminding the navigation solution, i.e. the observables are the code and phase pseudoranges given by equations 
(1.11) and (1.23) where the subscript i indicates the tracked satellite, is the global error term and N is the 

ambiguity number. The range  is measured simultaneously on both frequency channels and is thus the same for 
both . Therefore no label i will be applied on it in the following. Multiplying  by the wavelength allows 

iPRε

iρ

21  and LL ρ
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to express it in terms of cycles4. Using the relationship (1.81) between frequency and wavelength and introducing 
the ionosphere contribution to the pseudoranges, equation (1.74) 

( ) const
θ

TVECCχA
f
Af j

iono ≡
′

⋅⋅==∆
 cos

:      where
2

    (1.125) 

one has for (1.19) and (1.31) expressed in cycles of  21  and LL

2,1  ,           

2,1  ,   

=∆⋅++⋅=

=∆⋅++−⋅=Φ

Fδf
f
κf

c
RPR

FδfN
f
κf

c
ρ

F
F

FF

FF
F

FF

   (1.126a,b) 

where the constant kappa is defined as 

c
Aκ =:       (1.127) 

Substracting (1.126a) and (1.126b) yields to  

2,1F  ,  2 =+−=−Φ F
F

FF N
f
κPR      (1.128) 

Difference (1.128) for each carrier  21  and LL
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12

2121
112 NN
ff

κPRPR −+
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
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
−⋅=+−Φ−Φ    (1.129) 

Let the difference of phase pseudoranges in (1.129) be labeled by a capital delta, indicating a difference. This is 
similarly done each time such difference of the same parameters for each carrier arises. The code pseudoranges PR 
are the sole exception. Thus (1.129) is reformulated as  

N
ff

κPRPR ∆+
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
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112     (1.130) 

It is intended to express the relative ambiguity ∆  in terms of the known parameters. Divide (1.126b) by the 
corresponding carrier frequency and subtract for each carrier yields 
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Recombining this, using the perfect square laws and dividing by 21 ff + , one has 
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Substitute (1.132) into (1.130) gives  

[ ] wNPRPR
ff
ffNNN ≡+⋅

+
−−Φ−Φ=−= 21

21

21
21215    (1.133) 

Thus the difference in ambiguity parameters can be measured. Note that eq. (1.133) is the wide lane ambiguity and 
is therefore independent of the baseline length and of the ionospheric effects. Although all modeled systematic 
effects completely cancel out, the multipath effect5 remains and strongly affects the wide lane ambiguity. 
 

                                                           
4 C.f. equation (1.19). 
5 Multipath can intrinsecly not be modeled due to its physical origin. It can solely be reduced for instance by 
protecting the receiver antenna from multiple reflections of the incoming space signal. 
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Further, [Hofmann-Wellenhof, 1997] shows that it is possible to determine the ambiguity parameter for each carrier 
by adequately combining equations (1.133) and (1.126a). These again demonstrate the important accuracy of the 
phase pseudoranges. Multiply (1.126a) with 2,1 , =FFλ  and divide for both carriers. This gives 

[ ] [ ] 1122
2

1
2

2
2

1
2

21122 NfNfffff
c

ff ⋅−⋅+−⋅∆+−⋅=Φ⋅−Φ⋅ δρ   (1.134) 

Inserting eq. (1.133), i.e. eq. (1.122) into eq. (1.134) yields to 
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Finally, one has 
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It should be remarked, that the true range  contains no subscripts, and is therefore the same for both carriers. This 
is due to the fact that the receiver tracks the same space vehicle simultaneously on both the  carriers. The 
technique presented above is well adapted for example for instantaneous ambiguity resolutions such as in 
navigation applications. 

ρ

21  and LL

1.5.2 SEARCH algorithm 
At least four GPS space vehicles are required to determine the exact location of the ground-based receiver. If one 
redundant satellite is available, the ambiguity can then be numerically resolved by proceeding with a least square 
adjustment. Thus, these are estimated as float numbers. For short baselines (less than 10 km) and for long 
observation windows (about an hour), these float numbers are approximately integers. 
 
This least square search technique has been developed by R. Hatch. As a consequence of the linearization of the 
observation equations (1.19) and (1.31), the knowledge of the approximate position of the ground receiver is 
required. This can be obtained from a code range solution. The search range is limited to a cube of radius 3 . 
Assume that the GPS receiver is tracking simultaneously more than four SVs of the constellation. The satellites are 
divided in two groups, the first containing fours SVs. Based on these four SVs, which are assumed to have 
acceptable Position Dilution of Precision (PDOP), the possible ambiguities are determined using the method 
presented in 1.5.1. Consider now eq. (1.89) and move the ambiguities to the LHS as is they were known. One has 

σ⋅

( ) ( ) ( ) noisetNtntL ij
kl

ij
Fkl

ij
FklF

ij
FklF

ij
Fkl +=−Φ⋅=⋅− ρλλ   (1.137) 

As far as the first group of satellites is concerned, one obtains three equations of the form of eq. (1.129). From this, 
the corresponding 3  design matrix is build. The three unknown receiver coordinates are obtained by linearizing 

 and inverting the design matrix. By slightly varying the ambiguities a full set of solutions can be computed. 
The incorrect solutions are eliminated by running a least square adjustment with the information of the second 
group of SVs. Hence the solution with the smallest squared residual has to be chosen. This gives the selection 
criterion for selection of the right ambiguity. For more details, it is referred here to [Hatch, 1989 and 1991]. 

3×
( )tij

klρ

1.5.3 FARA algorithm 
The Fast Ambiguity Resolution Approach (FARA) uses “statistical information from the initial adjustment to the 
select the search range, information of the variance/covariance matrix to reject ambiguity sets that are not 
acceptable from a statistical point of view and to apply statistical hypothesis testing to select the correct set of 
integer ambiguities”, according to [Hofmann-Wellenhof, 1997]. The main advantage of this technique is that it does 
only need data on the double difference phase pseudorange. Thus the knowledge of just few observables is required. 
Along the high processing velocity, this makes the FARA technique very attractive. For a complete review of the 
FARA algorithm refer to [Frei and Schubernigg, 1992] and [Chen and Lachapelle, 1994]. 
 
 
 
 
 



Chapter 1. Path delays in GPS signals 
__________________________________________________________________________________________________________________________________________________________________________________________ 

23

1.6 Summary and conclusions 
Retake the phase pseudorange of eq. (1.35a), between SV i and GPS receiver k,  
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k εIncρL +∆+−⋅+∆⋅+= λδ    (1.138) 

and the systematic errors in the GPS signal summarized in Table 3. One could as well consider eq. (1.35b). Assume 
that other systematic errors are negligible when compared to these. The orbital errors are strongly diminished when 
inserting the precise orbits delivered by the International GPS Service (IGS) into the signal processing. Thus term 
(1) on the right hand side of eq. (1.138) can be determined very accurately.  
 
By computing double differences of the incoming SV signal, the clock biases of the satellite and of the receiver 
(term (2)) are removed. Proceeding with the ambiguity resolution, for instance using the FARA algorithm, term (3) 
can be resolved up to 99%. Forming the ionosphere free linear combination eliminates the ionospheric refraction 
effects (term (4)). The antenna phase center and multipath are constrained by specific protection of the receiver 
(main errors in term (6)).  
 
Finally one can see that the major residual error source left is the troposphere (term (5)). Therefore the rest of this 
study will concentrate on modeling the influence of the troposphere on the GPS signal. 
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2 Least-squares collocation, prediction  

and extrapolation 
This chapter concentrates on the mathematical and statistical methods that will be used to study the refractivity field 
in the lower atmosphere and thus the tropospheric path delay. Although the algorithms presented require heavy 
computation power, these are efficient for data post-processing. For real-time or nearly real-time evaluation of path 
delays, other techniques such as Kalman filters might prove to be more adequate. 

2.1 Motivation 
As stressed in the previous chapter, the tropospheric refraction is the main error source in the GPS signal that 
cannot be efficiently removed. This hinders achieving centimeter and eventually millimeter precision in GPS 
positioning. 
 
In this study, it is therefore intended to develop models for partly eliminating the influence of the troposphere on the 
GPS signal. Three possible strategies can be adopted: the estimation of the total path delay, the modelization of the 
troposphere and the direct measurement of the delay induced by the atmosphere. These are summarized in Figure 4 
on next page. 
 
The estimation strategy is based on the assumption that the influence of the troposphere can be determined solely 
form GPS measurements. This impact of the troposphere in the GPS signal is accounted by estimating different 
correction terms that are then introduced in GPS software. The atmosphere is supposed to change so slowly that the 
corrections are taken as constants over short time windows. Look at Bernese, version 4.2, for a practical example. 
Refer to [Fridez et al., 2001] for further details. This strategy allows modeling the refraction field of the atmosphere 
in three dimensions. There are mostly two techniques that can be combined: parameter estimation in functional 
models and estimation based on tomographic departures. 
 
The modelization strategy is based in meteorological models to compute the four-dimensional refractivity field of 
the atmosphere. This is then integrated along the signal path to deliver finally the path delay (PD). According to 
[Geiger et al., 1995], one should differentiate between the standard model, the physical and the stochastic models. 
 
The standard model makes repeated use of assumptions on the refraction field and on the atmosphere in order to 
keep the computation as simple as possible. The path integrals are computed numerically and result in an expression 
of path delays as function of time and eventually the coordinates of the observation point. It is accounted for the 
International Standard Atmosphere6 (ISA) by introducing meteorological data into the computation. The major 
formulas currently in use in GPS software are derived as stretched above. The known Saastamoinen formula often 
acts as reference for the hydrostatic slant path delay. A similar result has been deduced by Helen Hopfield. These 
differ from each other mainly by the choice of the so-called mapping function. Marini is considered as a pioneer in 
that field. 
 
The physical models are better adapted to a realistic description of the physical phenomena taking place in the 
troposphere than the standard model where no local variability of the refractivity field is taken into account. As 
stated by [Hirter, 1998], the solutions of the exact partial differential equations (PDEs) and equations of state should 
lead to deterministic statements. These are based on extensive measurements of all dynamical variables. The 
solutions are characterized by instabilities and non-linearity. These models are currently used in weather forecasting 
and prove to be too complicated to implement during such a study. Hence there will not be further considered as 
such. 
 
The stochastic models are derived from pure statistics based on the assumed behavior of the troposphere. Two 
categories are discerned: the stochastic PDEs and the correlation models. Stochastic PDEs are introduced to counter 
for inaccurate measurements or non-satisfactory information on the state of the atmosphere for a given location and 
a given period of time. Another approach consists in studying the correlation and covariance functions of stochastic 
relations derived from physical models of the atmosphere. The Collocation method or Kriging technique presented 
in the next paragraphs is a good representative of such models. It allows for computation of slant path delays via 
integration of the atmospheric refractivity field. 

                                                           
6 For the exact definition, refer to [Lertes, 2000]. 
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Figure 4. Strategies to determine the atmospheric slant path delay. After [Geiger et al., 1995]. 
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The measurements are used to verify the accuracy of the models and techniques developed. Discrete time series are 
delivered by radiosonde or measurements on-board airborne platforms. The refractive index can be computed from 
measurements of temperature, relative humidity and atmospheric pressure. However this is valid only in small areas 
around the observation point. It is not possible without interpolation and extrapolation to conduct any global study 
of the refractivity field. Thus the domain of validity of the models will be investigated solely at specific locations. 

2.2 Collocation fundamental equation – stochastic modeling 
The collocation method is an extension of the classical least-squares technique on adjustment problems which is 
given by  

vAxl +=       (2.2.1) 

where l is the measurement, A is the design matrix, x is the vector of unknowns and v is the residual parameter. 
 
According to [Christensen, 1991], the “methods of Kriging or best linear unbiased prediction were developed in 
France by Matheron7, who was originally inspired by the contributions of D.G. Krige to geostatistics. […]. The 
French work was performed independently of Goldberger8 who first derived the general best linear unbiased 
predictors for linear models”. However, one should mention the fundamental work of [Krarup, 1969] who set the 
modern basis of collocation theory. 
 
The collocation method presents many advantages. Maybe the most important one concerns its application domain. 
Indeed, conversely to classical functional formulations (e.g. Hermite, Lagrange,…) there is no need for regular 
lattices. The inhomogeneous distribution of data is taken into account in the collocation algorithm through the 
covariance function. However this often implies that very large matrices must be inverted, slowing considerably the 
computation. 

In the collocation technique, the observation vector or measurement l is split into two parts: a functional part and a 
stochastic part. The functional part consist in a non-random parameter vector x and a design matrix A expressing 
the effect of the parameters on the measurement. It represents the systematic or parametric part of l. In the current 
study, the troposphere models define the design matrix A.  
 
The stochastic part is build around a random measuring error or (white) noise n and a signal s at the measurement 
points (colored noise). Hence the least-squares collocation can be formulated as 

nsAxl ++=       (2.2.2) 
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Figure 5. Least-squares collocation principle. 

                                                           
7 It is referred to [Matheron, 1965 and 1969]. 
8 Refer to [Goldberger, 1962]. 
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Eq. (2.2.2) is sometimes also called trend function. In the words of [Moritz, 1989] “if we consider the determination 
of the parameter x as adjustment, the removal of the noise as filtering, and the computation of the of s at points 
other than the measuring points as prediction, we may say that the present model combines adjustment, filtering 
and prediction”. Refer now to Figure 5 on the previous page where  is a random quantity: ( )xζζ =
 
It is now intended to derive the solution of eq. (2.2.2) using a minimization criterion for the white and colored 
noises as is usually done in the least-squares technique. For m measurements, one can rewrite eq. (2.2.2) as 

[ ] 0l
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
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+      (2.2.3) 

where Mat(m×m,∈I ) is the identity matrix and l Mat(m×1,∈ ). Define the matrix Mat(m×2m,∈B ) as  

[ IIB = ]       (2.2.4) 

and combine the signal and noise in the residual parameter Mat(2m×m,∈v ) 
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Hence, one as  

0lBvAx =−+       (2.2.6) 

As is usually done for least-squares, one expects the following minimization condition 
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) and using eq. (2.2.8a,b), one has 
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Using eq. (2.2.13a), the vector v is given by 

λBPvλBPv TT 1         0 −=⇒=+−     (2.2.14) 

Inserting (2.2.14) in (2.2.13c) gives 

0lλBBPAx =−+ − T1      (2.2.15) 

Hence, the Lagrange multiplier vector is 

[ ] [ AxlBBPλ −=
−− 11 T ]

]

]

     (2.2.16) 

Taking (2.2.13b) into account yields to 

[ ] [ AxlBBPAλA0 −==
−− 11

)16.2.2(
TTT     (2.2.17) 

That is 

[ ] [ ] AxBBPAlBBPA
1111 −−−− = TTTT     (2.2.18) 

Thus the unknown vector x is 

[ ] [ ] lBBPAABBPAx ⋅⋅



=

−−
−−− 11

111 TTTT     (2.2.19) 

This can be rewritten by computing each term separately. Using the definition of P, one has 
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Hence 
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Insert eq. (2.2.21) in eq. (2.2.19) and get 

[ ] lDAADAx 111 −−− ⋅= TT      (2.2.22) 

while with eq. (2.2.16) one has 
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Consider now eq. (2.2.14) 
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With the definition of v, one has 
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Finally, the solution of eq. (2.2.2) can be summarized as 



Chapter 2. Least-squares collocation, prediction and extrapolation 
__________________________________________________________________________________________________________________________________________________________________________________________ 
30
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According to [Kruse, 2000], these equations describe the ‘parameter solutions for the functional model x, and signal 
and noise for every observation’. It should be noted that the covariance matrices for signal and noise are given by 

{ } { }T
nn

T
ss EE nnCssC == :  and   :      (2.2.28) 

Further one can assume according to [Wei, 1986] that the signal is a Gaussian random variable. Hence it is 
normally distributed, i.e. 

(  ,0 ssN Cs )∼       (2.2.29) 

In any case, this strongly holds for the noise. Therefore the noise n is assumed to be a random variable following a 
normal distribution 

(  ,0 nnN Cn )∼       (2.2.30) 

Using the propogation law for covariance functions, it follows that the observations themselves are assumed to be 
normally distributed. Using the notation introduced above, one has 

(  DAxl ,N )∼       (2.2.31) 

2.3 Interpolation vs. extrapolation 
The interpolation and extrapolation of valued of interest at points where no measurements are available is done in 
the same manner as introduced above. It is given by the so-called prediction of the collocation. The reader is kindly 
advised to refer to Figure 4. Regarding the interpolated value l’, one has 

sxAl ′+′=′       (2.3.1) 

where the interpolated signal is expressed as a function of the covariance matrix between the signals  and  at 

the points  and . 
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Hence the interpolated values are given by 

[ AxlDCxAl −+′=′ −
′

1
ss       (2.3.3) 

The extrapolated values  are obtained in an analogous way to the interpolated ones. l ′′

sxAl ′′+′′=′′       (2.3.4) 

where the extrapolated signal s  is given by ′′
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ssss ]

]

     (2.3.5) 

Finally, one obtains for the extrapolated values of interest 

[ AxlDCxAl ss −+′′=′′ −
′′

1       (2.3.6) 

Compare the signals respectively for the measurement points, the interpolation and the extrapolation. The three of 
them are linear combinations of the vector k defined by 

[ AxlDk −= −1: ]       (2.3.7) 

that is they are –as expected- linear combinations of the measurements themselves! Note that k is constant. 
Therefore one only needs to compute it once and one can obtain the signals for all possible predictions. 
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Collocation accuracy 
The achievable accuracy of the least-squares collocation method plays an important role in the determination of the 
error in the Zenith Total Delay (ZTD). Therefore the subject of this paragraph is the computation of the error 
covariance matrices for the different parts of the measurement. 

2.3.1 Conventions 
Define the following help matrices from the solution (2.2.27a) and (2.2.27c): 

[ ] lGxDAADAG =⇒⋅= −−−     : 111 TT    (2.4.1a,b) 

hence 

[ ] [ ] [ ]AGlDCLLllAGlDCAxlDCs −=⇒=−=−= −−
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− 11
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1 :     ssss

b

ss  (2.4.2a,b) 

For the predicted signal, e.g. the interpolated signal, one has 
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Let denote the expectation value by the symbol E. Random errors such as the (white) noise n have per definition 
zero expectation value. According to [Moritz, 1989], this holds as well for the signal s. I.e., one has 
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{ } 0

0
=
=

s
n
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E

     (2.4.4a,b) 

2.3.2 Collocation covariance matrix  llC
Following [Wirth, 1990], it holds 

{ } Axl =E       (2.4.5) 

whereby 

nsxAnsAxl ++=++=      (2.4.6) 

where the following convention is adopted: denote the true values by an over bar. Introduce the pure stochastic part 
z of the measurement. 

nsAxlz +=−=:      (2.4.7a,b) 

where  is the functional part of the measurement. The covariance matrix of l is defined Ax
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Using eq. (2.4.5), one gets 
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Inserting eq. (2.4.7b), it follows that 
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However, one knows that signal and noise are uncorrelated. Therefore, one has with eq. (2.4.4a,b) 
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2.3.3 Unknown parameters error covariance matrix xxQ  
As usual, it holds for the vector of the unknowns, 

{ } xx =E      (2.4.13) 

Consider now eq. (2.4.4b) 

{ } { } ( ){ } { }zxLAzAxLLls0 EEEE
aab

+=+===
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It follows that 

0x 0LA ≠=        if            (2.4.15) 

Furthermore, 
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  (2.4.16) 

Combining eq. (2.4.7a) with eq. (2.4.4a,b), it holds 

{ } 0z =E      (2.4.17) 

Therefore, combining eq. (2.4.16) with (2.4.17) yields to 

IGA =       (2.4.18) 

The true error ε is given by building the difference between the true value x x  and the estimated value x 

( nsGzGzGxGAxGlxxxε +⋅−=−=−−=−=−=
)47.2()18.4.2()6.4.2().1.4.2(

:
ba

x )   (2.4.19) 

Thus 

( ) ( ) TTTTT
xx GnsnsGGzzGεε ⋅+⋅+⋅=⋅=⋅    (2.4.20) 

The error covariance matrix for the unknows is then 

( ) { } T
ll

T
zz

T
xxxxxx E GGCGGCεεεεQ

)9.4.2()20.4.2(
,cov: ==⋅==    (2.4.21) 

Further 

( ) T
d

T
ssnnxx GDGGCCGQ

)27.2.2()20.4.2(
=⋅+⋅=    (2.4.22) 

Inserting the definition of G into eq. (2.4.21) 

[ ] [ 









 ⋅=

−−−−−− 111111
)1.4.2(

ADAADDDAADAQ TTT
a

xx ]

]

  (2.4.23) 

And taking in to account the fact that 

IDDDD == −− 11      (2.4.24) 

It follows that 

[ 11 −−= ADAQ T
xx      (2.4.25) 

2.3.4 Signal error covariance matrix ssQ  
For the signal, one has 

( nsLszLszLxLAsLlsssε +⋅−=−=−−=−=−=
)47.2()15.4.2()6.4.2()2.4.2( ba

s )  (2.4.26) 

and 

[ ] [ ] [ ] [ ] TTTTTTTTTTT
ss LzzLLzsszLssLzszLszLszLsεε ⋅+⋅−⋅−⋅=−⋅−=−⋅−=⋅  (2.4.27) 
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Hence the error covariance matrix of the signal is 

( ) ( ) T
zz

T
sz

T
zsss

T
ssssss E LLCLCLCCεεεεQ +−−=⋅== ,cov:   (2.4.28) 

Let compute each term separately. 

{ } ( ){ } { } { } { } { } ss
TTTTTT

a
T

sz EEEEEE ′=⋅=⋅+⋅=⋅+⋅=+⋅=⋅= CssnsssnsssnsszsC
)7.4.2(

 (2.4.29) 

because 

{ } 0=⋅ TE ns       (2.4.30) 

as signal and noise are assumed to be uncorrelated. Hence with eq. (2.4.29), it holds 
T
ssszs sCCC ==       (2.4.31) 

Therefore with eq. (2.4.9) 
T

ll
T

ss
T
ssssss LLCLCLCCQ +−−=     (2.4.32) 

Using eq. (2.4.7b), it holds 

DCCC
)27.2.2()7.4.2( d

nnss

b

zz =+=      (2.4.33) 

Thus eq.(2.4.32) becomes 
TT

ss
T
ssssss LDLLCLCCQ +−−=      (2.4.34) 

Now compute the L terms. According to eq. (2.4.2b), one has 

[ AGlDCL −= −1
ss ]      (2.4.35) 

Transpose eq. (2.4.35) 

[ ] T
ss

TTT CDAGlL 1−−=      (2.4.36) 

as D is a diagonal matrix. Using the definition of G, eq. (2.4.1a) and multipling term by term, one has 

( ) ( )
[ ] T

ss

a

T
ss

TTT
ss

TTT

CAGID

CDAADAAIDCDAADAADDL

−=





 −=



 −=

−

−−−−−−−−−

1
)1.4.2(

111111111

 

  (2.4.37) 

This yields to 
T

ss
T
ss LCLC =       (2.4.38) 

Furthermore 

[ ] [ ] [ ] T
ssss

T
ssss

T CAGlDCCAGIDDAGlDCLDL 2111
)37/35.4.2(

−=−−= −−−   (2.4.39) 

One can see that I-AG is idempotent, i.e. 

[ ] [ ][ ] AGIAIG2AGIAGAG2AGIAGlAGlAGl −=+−=+−=−−=−
)18.4.2(

2  (2.4.40) 

Thus 

[ ] T
ss

b
T
ssss

T LCCAGlDCLDL
)2.4.2(

1 =−= −     (2.4.41) 

Inserting eq. (2.4.38 ) and eq. (2.4.41) in eq. (2.4.34) gives 

[ ] T
ssssss

T
ssss

T
ss

T
ss

T
ssssss CAGlDCCLCCLCLCLCCQ −−=−=+−−= −1

)35.4.2(
  (2.4.42) 

Insert the defintion of G, eq. (2.4.1a) 
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( )
( )

T
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T
xxss

T
ssssss

T
ss

TT
ss

T
ssssss

T
ss

TT
ssssss

CDAAQDCCDCC

CDAADAADCCDCC
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111
(2.4.25)

11111

1111

       

       

−−−

−−−−−

−−−−

+−=

+−=





 −−=

  (2.4.43a,b,c) 

Thus 
T
ss

T
xxss

T
ssssssss CDAAQDCCDCCQ 111 −−− +−=    (2.4.44) 

2.3.5 Prediction error covariance matrix  ll ′′Q
It is now intended to concentrate on the prediction errors generated by extrapolation and interpolation. One follows 
the considerations of [Hirter, 1998]. Remind that the predicted measurement is given by eq. (2-3.1) 

sxAl ′+′=′       (2.4.45) 

The error in the prediction is then 

sxAsxAllε ′−′−′+′=′−′=′ :l      (2.4.46) 

Further use the help matrices G and L  defined in eq. (2.4.1b) and in eq. (2.4.3b). Hence ′

lLGlAsxAε ′−′−′+′=′l       (2.4.47) 

Recall that for a measurement it holds 

nsAxl ++=       (2.4.48) 

Eq. (2.4.47) becomes then 

( ) ( nsLxALnsGAGAxAsxAε )+′−′−+′−′−′+′=′l    (2.4.49) 

Use eq. (2.4.15) and (2.4.18) applied to the prediction, i.e. 

0AL
IGA

=′
=′

      (2.4.50) 

and obtain 

( )( ) ( nsKsnsLGAsε )+−′=+′+′−′=′l     (2.4.51) 

where the matrix  is defined as K

( LGAK ′)+′=:       (2.4.52) 

The error covariance matrix of the interpolated measurement is thus 

( ) { }( ){ }2cov: lll,lQ EEll −=′′=′′      (2.4.53) 

This can be expressed as a function of the prediction error 

( ) ( )[ ] ( )[ ]{ }T
llll E nsKsnsKsεεQ +−′⋅+−′== ′′′′ ,cov    (2.4.54) 

Multiplying term-by-term and executing the expectation value yields to 
TT

ns
T

ss
T

ns
T

ssssll KDKKCKCKCKCCQ +−−−−= ′′′′′′′′    (2.4.55) 

where eq. (2.4.12) has been used. Again, recall that one has assumed that noise and signal are uncorrelated, i.e. 

0C =′ns       (2.4.56) 

This gives 
TT

ss
T

ssssll KDKKCKCCQ +−−= ′′′′′′     (2.4.57) 
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As was done before, compute each term separately. It holds 

( ) LDAQALDAADAALGAK xx ′+′=′+′=′+′= −−−− 1
)25.4.2(

111
)1.4.2()52.4.2(

TTT
a

  (2.4.58) 

Multiplying from the right with C  gives T
ss′

T
ss

T
ss

T
xx

T
ss ′′

−
′ ′+′= CLCDAQAKC 1      (2.4.59) 

and from left and transposing 

( ) T
ss

T
xxss

T
ss

TT
xxss

T
ss LCAAQDCLCDAQACKC ′+′=′+′= ′

−
′′

−
′′

11   (2.4.60) 

while taking into consideration the fact that Q  is a diagonal matrix. This yields to xx

( ) ( TTTT LAGDLGAKDK ′+′′+′=
)52.4.2( )

)

    (2.4.61) 

Expanding it yields to 
TTTTTTT LDLLGDAADGLAGDGAKDK ′′+′′+′′+′′=    (2.4.62) 

Use the definitions of , D and G and obtain L′

( )

( ) DDAADAADCC

AGDDCCDAGIDCDL

1111
(2.4.1a)

11
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       −−−−
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−
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−
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TT
ssss

ssssss

b

    (2.4.63) 

This gives 

( ) TT
ssss AADAADCCDL

111 
−−−

′′ −=′     (2.4.64) 

Further, build the transpose of G and multiply with  TA′

( ) TT
a

TT AADAADAG ′=′ −−− 111
)1.4.2(

     (2.4.65) 

Multiply eq. (2.4.62) with eq. (2.4.63) 

( ) ( ) ( ) TTTT
ss

TT
ss

TT AADAADAADAADCAADAADCAGDL ′−′=′′
−−−−−−

′
−−−

′
111111111   (2.4.66) 

Note that for the second term on the right hand side (RHS) of eq. (2.4.66) it holds 

( ) IADAADA =
−−− 111 TT      (2.4.67) 

Insert eq. (2.4.67) in eq. (2.4.66) 

( ) ( ) 0AADAADCAADAADCAGDL =′−′=′′
−−−

′
−−−

′
TT

ss
TT

ss
TT 111111   (2.4.68) 

This holds under transposition. Hence 

( ) ( ) ( 11111111
)1.4.2( −−−−−−−− =









= ADAADAADDDAADAGDG TTTT

a
T   (2.4.69) 

Identify with eq. (2.4.25) 

xx
T QGDG =      (2.4.70) 

Combine eq. (2.4.66), (2.4.68), (2.4.69) and (2.4.62) 
TT

xx
T LDLAQAKDK ′′+′′=     (2.4.71) 

With the current definition, remark that it holds 

ssss CC =′′      (2.4.72) 
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Combine eq. (2.4.59), (2.4.60), (2.4.71) and (2.4.72) with eq. (2.4.57) 
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 (2.4.73) 

Reorganize the right hand side of eq. (2.4.73) 
T
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xxss
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TT

ss
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ssssll AQAAAQDCCDAQALDLLCCLCQ ′′+′−′−′′+′−′−= −
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−
′′′′

11   (2.4.74) 

Remind the definition of , eq. (2.4.2b), and repeat the steps from eq. (2.4.35) to eq. (2.4.41) this time for the 
predicted measurement and obtain 

L′
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    (2.4.75a,b,c) 

Insert eq. (2.4.75b,c) in eq. (2.4.74) and obtain 
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Use eq. (2.4.75a) 
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From eq. (2.4.18), one knows that 
1−= GA       (2.4.78) 

and with eq. (2.4.25) get 

[ ] ( ) 1111       −−−− =⇒=== DAQGAGDGDGADAQ T
xx

TTT
xx   (2.4.79) 

Insert eq. (2.4.79) in the third term on the RHS of eq. (2.4.77) and get 
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This can be rewritten as 
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111   (2.4.81) 

2.4.6 Accuracy summary 
For simplicity, the accuracy results for the measurements l, the unknown parameters x, the signal s and the 
prediction  are summarized hereunder: l′
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 (2.4.82a,b,c,d) 

As stressed by [Moritz, 1989], the error covariance matrices for the unknowns x, the signal and the prediction can 
be a-priori computed. No explicit measurements are required to perform this. Only the covariance matrices from 
both signal and noise as well as the position of the measurements in the matrices A and (or ) are required. 
This is a common fact from both the least-squares theory and the least-squares collocation technique. 

A′ A ′′

2.5 The covariance function Φ  
The error covariance matrices from the above paragraph allow for a computation of the accuracy with which the 
measurements and the prediction are performed. On the other hand the covariance function Φ , respectively the 



Chapter 2. Least-squares collocation, prediction and extrapolation 
__________________________________________________________________________________________________________________________________________________________________________________________ 

37

covariance matrix C  gives the covariance between two signals s  and  at two different points and . The 
influence of the measurements on the predicted values is determined by the covariance function. Hence, the strength 
of the smoothing on the prediction is controlled by Φ . The covariance function is not exactly known and its shape 
is based on the assumptions taken. 

ss i js

iP

iP jP

r∂
Φ∂

2

2

0

<
0r=

 
Independently of its exact formulation, the covariance function Φ  has the following properties: 
 

i. It reaches its maximum at the origin, i.e. when , jP=
ii. Its norm decreases with the distance, 

iii. It vanishes at infinity. 
 
This can be expressed in a more mathematical way as 

( ) 00
r

0
r

=
∂
Φ∂=Φ

=

!
  and      i.e.    max     (2.5.1) 

0
r

0r

<
∂
Φ∂

=

        (2.5.2) 

( ) rr
r

==Φ
+∞→

r  ,  0lim       (2.5.3) 

This topic will be studied in details in the next chapter. Meanwhile another approach to the extrapolation is taken 
into consideration hereunder. 

2.6 Summary and conclusions 
The least-squares collocation method or Kriging technique is an efficient mathematical tool first developed by 
geophysicists to interpolate and extrapolate data while minimizing possible errors. Its apparent resemblance to 
least-squares is limited. Indeed, by opposition to the classical least-squares technique, signal and noise components 
are clearly separated and are assumed to be uncorrelated. The eventual knowledge of the physical processes taking 
place in the system to study are summarized in a functional model. To enable efficient data processing, this 
functional model is linearized. 
 
One of the major advantage of the collocation technique consists in the ability to predict data at other locations and 
other times from a given observation data set. The smoothness of the extrapolation is insured by the correlation 
function, which vanishes at infinity. The errors are computed through error covariance matrices both for the signal 
and for the unknown parameters vector. Indeed, it is possible starting from a priori values to determine adjusted 
parameters, which is an additional advantage of Kriging. 
 
However, the least-squares collocation method is complicated to implement and require an important computation 
time, thus limiting its general usage. 
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3.Path delays and atmosphere modeling 
3.1. Motivation 

That atmosphere is classified into different layers with respect to their altitude above ground. Only some of them 
play an important role regarding the behavior of the GPS signal carriers. 
 
As already stated in 1.3.1.2., the ionosphere is a dispersive medium with respect to radio waves with frequencies up 
to 15 GHz. Hence the delay induced by the ionosphere or, for short, the ionospheric delay is frequency dependent. 
However it can be fully removed if dual frequency GPS receivers of the same network are deployed. Using the 
known dispersion relations for the ionosphere, the phase pseudoranges (PR) of both L1 and L2 carriers are linearly 
combined according to the method presented in 1.4.1. Hence ionosphere-free PRs are obtained.  
 
The neutral atmosphere comprises both the stratosphere and the troposphere. The water vapor (WV) introduces a 
significant delay because it is the only atmospheric constituent in sufficient quantity that possesses a dipole 
moment. This dipole moment is generated by an asymmetric charge distribution in the water molecule. The 
hydrogen bond between water molecules of liquid water greatly diminishes the effect of the dipole moment on the 
GPS signal. Therefore the presence of cloud and ice therein does not actively affect the GPS measurements. 
 
The majority of the atmospheric WV is located in the lower part of the atmosphere: the troposphere. Different 
studies have empirically shown that it is reasonable to assume that 90% of the atmospheric WV can be found 
between sea level and an average altitude of 5000 meters. Therefore, the stratospheric delay is always neglected by 
comparison to the tropospheric delay. Concluding, the troposphere is the only layer that causes important delays to 
the GPS signal. 
 
Reminding some results from the first chapter, GPS SVs transmit in the microwave frequency range. The Time of 
Arrival (TOA) of the GPS signal is delayed because of the refractive bending and slowing of the signal due to the 
presence of the atmosphere between satellite and ground-based receiver. Thus a shift in the phase of the L1 and L2 
carrier waves is observed and can be accurately determined. Conventionally this phase shift is stated in the 
additional distance traveled by the signal or excess path and is often denoted as the Total Delay (TD) or slant path 
delay as it is compared with the geometric path. This geometric path corresponds to the path the signal would 
follow if there were no atmosphere. Hence the models established as standards in the last years are presented 
hereunder. 

3.2. Classical models 
As the neutral atmosphere is a non-dispersive medium, the delays cannot be calibrated and estimated in the same 
way as for the ionosphere. Different models were developed in order to estimate this tropospheric delay. It is 
intended here to present only the most significant models for the current study. 

3.2.1. Path delay and tropospheric delay 
The increase in the travel path length L or path delay (PD) is given by 

( ) GdssnL
L

−=∆ ∫      (3.2.1.1) 

where G is the straight-line distance between the SV and the receiver and n is the refractive index of the air. The 
path delay for a given atmospheric layer is defined with respect to the refractive index n of the air as  

( ) layer
layer dsns ∆≡−=∆ ∫ 1     (3.2.1.2) 

where the integral is performed along the geometric path. Generally, the refractivity N is used instead of the 
refractive index. The dimensionless refractivity is given by 

( 110: 6 −⋅= nN )       (3.2.1.3) 

Accordingly to paragraph 3.1., concentrate now on the troposphere. Inserting (3.2.1.3) in (3.2.1.2) yields to the 
classical formulation of the tropospheric delay 
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( ) (εφε troptroptrop dsN ∆≅∆=⋅=∆ ∫− ,10 6 )     (3.2.1.4) 

 where ε is the elevation angle and φ is the direction of the path as seen from the GPS receiver’s location. The last 
equality was proven by [Elósegui et al., 1999]. According to [Bevis et al., 1992], the path delay is then 

GSdsNGSL trop −+⋅=−+∆=∆ ∫−610     (3.2.1.5) 

where S is the geometric path length along the ray. The S-G term corresponds to bending of the signal path. 
 
The troposphere is a mixture of gas and WV. As stated above, the WV is the only constituent that has a dipole 
moment. [Hopfield, 1969] showed that the dipole component of the refractivity has an intensity of approximately 20 
times the non-dipole component. Therefore it is possible to treat the “dry” and “wet” components of the refractivity 
separately. In practice one should not use the label of dry component but rather of hydrostatic component. It is 
introduced here only for the reader to get used to that widely used notation. Thus 

trop
w

trop
h

trop NNN +=      (3.2.1.6) 

where  is the hydrostatic component of the refractivity and  is the wet component of the refractivity. All 
the gases except WV generate the hydrostatic component of the refractivity, which in turn is responsible for the wet 
component. Hence, with (3.2.1.4), one has for the tropospheric path delay 

trop
hN trop

wN

∫∫ ⋅+⋅=∆+∆=∆ −− dsNdsN trop
w

trop
h

trop
w

trop
h

trop 66 10  10    (3.2.1.7) 

About 90% of the tropospheric delay is produced by the hydrostatic part that can be very accurately modeled. 
Conversely, this is not the case for the highly variable wet component. 

3.2.2. Refractivity modeling 
As can be seen from eq. (3.2.1.5), the refractivity plays a major role in the accurate determination of the path delay. 
Starting in the early 1950s and with the rapid development of radio transmissions and their broad public usage 
increasing, many scientists developed models for the refractivity. 

3.2.2.1.Essen and Froome formula 
In 1951, L. Essen and K.D. Froome used a microwave interferometer to study the refractive indices of the air and its 
principal constituents. Using the method of Pound (1947), they set both cavities of the interferometer in resonance. 
They evacuated them and replaced the vacuum by the gas to study at different temperatures. The refractive index of 
air is then obtained by an extrapolation formula. 
 
Hereby they have taken the following assumptions: the refractive index varies proportionally to the density (1), the 
dry air or hydrostatic air follows the ideal gas law for any temperature (2) and the water vapor follows a simple 
Debye equation (3). 
 
Indeed, the water vapor is a polar gas with an electric dipole moment and therefore obeys Debye’s equation (1929) 
of the form 





 +⋅′=− 21

T
B

T
Apε       (3.2.2.1) 

where  is the dielectric constant,  is the pressure the water vapor would exert on the system if assumption (2) 
holds and T is the temperature in the cavity. The A term represents the contribution of the atomic and electronic 
polarization to ε  while the B term represents the contribution of the dipole moment to . For refractivity 
measurements, [Barell and Sears, 1939] proved that both constants are given by  

ε p′

ε

( )
9913.0

10005.0725.1 4

=
×±= −

B
A      (3.2.2.2a,b) 

where B was experimentally determined only on average. Barell and Sears also proved that 

( )ppp ⋅×+⋅=′ −5104.21       (3.2.2.3) 
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where p is the atmospheric pressure. Thus, combining eq. (3.2.2.1) to (3.2.2.3) and the optical dispersion formula 
applied to different mixture of gases, Essen and Froome showed that it holds for the refractive index of air 

( ) �+⋅




 +⋅+⋅+⋅=×− 3

216
,

5748126.8640.17749.103101 p
TTT

p
T
pn pt    (3.2.2.4) 

and 

321 pppp ++=       (3.2.2.5) 

where  is the pressure of the air,  is the partial pressure of ,  is the water vapor partial pressure, all 
three in in Hectopascal and T is the temperature in Kelvin. Eq. (3.2.2.4) holds for the following conditions as stated 
by [Essen and Froome, 1951] 

1p 2p 2CO 3p

i. CTC °+≤≤°− 6020  
ii. Unsaturated water vapor pressure hPa 133.3Hg mm 1003 ≈≤p  

iii. All wavelength  m 10 7  -3×>λ
 
Furthermore, one can neglect the effect of carbon dioxide for most purposes since it the percentage in open air is 
less than 0.03 by volume. Hence one can set 

02 =p       (3.2.2.6) 

Generally the partial pressure of water vapor is labeled by e and the atmospheric pressure by p. Using these 
conventions, setting eq. (3.2.2.6) in eq. (3.2.2.4) and neglecting higher order temperature terms, one obtains 

( ) ( ) ( ) e
TT

ep
T

neTpN ⋅




 +⋅+−⋅=×−= 5748168.6464.77101,, 6   (3.2.2.7) 

This is the classical Essen and Froome formula. Both the atmospheric pressure p and the water vapor pressure e are 
in hectopascal [hPa] and the atmospheric temperature T is in Kelvin [K]. The coefficients and their units are 
summarized in Table 5 below. 
 

Coefficient Unit 
77.64 -1hPaK ⋅  
64.68 -1hPaK ⋅  
5748 K  

Table 5. Essen and Froome formula: coefficients. 

The first term is the so-called hydrostatic refractivity or dry refractivity and the second term is labeled as the wet 
refractivity. For further details, refer to [Essen and Froome, 1951]. 
 
The refractivity N, given by the Essen and Froome formula is plotted on Figure 6 on next page as function of the 
temperature T in the range K 325K 200 ≤≤ T  and the pressure p in the range hPa 1000hPa 0 ≤≤ p . A pressure of 
0 hPa is encountered in outer space. It is assumed that the GPS space vehicles are evolving in an environment with 
little pressure. For European latitudes the partial water vapor pressure varies between 5 hPa in summer and 15 hPa 
in winter. Therefore a mean value of e  has been chosen. It is referred to appendix A for further 
computations. 

hPa 10=

 
On Figure 6, the linear dependence of the refractivity on the pressure and its inverse proportionality to the 
temperature can be clearly seen. The hydrostatic refractivity  is plotted on Figure 7 on next page. It shows the 

same features as the refractivity N of Figure 6. On the contrary, the wet refractivity , plotted as a function of T 
and e, does not depend on the atmospheric pressure. This is a major property of the wet refractivity. 

dryN

wetN

3.2.2.2.Smith and Weintraub formula 
In 1953, E.K. Smith and S. Weintraub suggested the relationship 

2
51073.36.77

T
e

T
pN ⋅×+⋅=      (3.2.2.8) 
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Figure 6. Essen and Froome formula. Refractivity for e=10 hPa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7. Essen and Froome formula. Dry refractivity for p=1000 hPa. 
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where p is the total atmospheric pressure in hectopascal, T the surface temperature in Kelvin and  the partial water 
vapor pressure in hectopascal. Equation (3.2.2.8) is accurate to about 0.5%. For further details, refer to [Smith and 
Weintraub, 1953]. 

e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Essen and Froome formula. Wet refractivity. 

3.2.2.3.Thayer model 
In 1974, G. Thayer showed that the refractivity was directly proportional to the atmospheric surface pressure p in 
hectopascal and inversely proportional to the surface temperature T in Kelvin. 
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⋅+⋅


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
⋅=

T
ek

T
ek

T
pkN h    (3.2.2.9) 

where  is the pressure of the dry air in hectopascal, and  and  are respectively the compressibility factors 
of the dry or “hydrostatic” air and atmospheric water vapor. The three constants are summarized in Table 6 
hereunder: 

hp hZ wvZ

 
Constant Value Error Unit 

1k  77.604 0.014 -1hPaK ⋅  
2k  64.79 0.08 -1hPaK ⋅  
3k  510776.3 ×  510004.0 ×  -12 hPaK ⋅  

Table 6. Thayer model coefficients 

After [Davis et al., 1985] the accuracy of the Thayer model is about 0.02%. For the derivation of eq. (3.2.2.9), refer 
to [Thayer, 1974]. 
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3.2.3. Hopfield model 
In the late 1960s, the British scientist Dr. Helen Hopfield based her study of the atmosphere in numerous 
experiments around the globe and gained then a profound understanding of the atmospheric mass movements. From 
1969 onwards she devised three successively improved models for the atmospheric refractivity. 

3.2.3.1.Normal Hopfield model 
She assumed that the troposphere could be separated into isotropic layers. Thus she empirically derived a model for 
the hydrostatic refractivity 

( ) ( )
4

0 






 −
⋅=

h

htrop
h

trop
h z

zz
NzN      (3.2.3.1) 

where z is the altitude above the surface and  is the thickness of the troposphere, given in meters by hz

[ 15.27372.14840136 ]−⋅+= Tzh      (3.2.3.2) 

where T is the surface temperature in Kelvins. Setting (3.2.3.1) in (3.2.1.7) for the hydrostatic delay and integrating, 
one obtains 

( ) h
trop
h

trop
h zNN ⋅⋅=

−
0

5
10 6

    (3.2.3.3) 

This is the hydrostatic refractivity of the normal Hopfield model. For further details, refer to [Hopfield, 1969]. 

3.2.3.2.Enhanced Hopfield model 
Both the hydrostatic and wet delays are often not “measured” at the same elevation angle as one single receiver 
tracks many SVs at the same time and as these are evolving along their assigned orbits. It is therefore convenient to 
define a reference direction: the zenith direction. Hence the path delay is projected on the zenith axis, which is 
normal to the tangent plane of the GPS receiver. This projection or elevation angle dependency is described by so-
called mapping functions m. For further details regarding these, it is referred to paragraph 3.2.5. With equation 
(3.2.1.7) and by analogy to (3.2.3.3), one has  

( ) ( ) ( ) ( )[ ]εε ww
trop
whh

trop
h

trop mzNmzN ⋅⋅+⋅⋅⋅=∆
−

00
5

10 6
   (3.2.3.4) 

where ε is the elevation angle,  and  are respectively the hydrostatic and wet Hopfield mapping functions, 
 is from equation (3.2.3.2) and  is the mean scale height for water vapor (c.f. eq. (3.3.2.25) and paragraph 

3.3.3.4). The first term is usually called the hydrostatic delay and the second term the wet delay. The Hopfield 
mapping functions are given by 

hm wm

hz wz
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Thus, the hydrostatic component of the tropospheric delay is  
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     (3.2.3.6) 

Furthermore insert for instance the formula of [Essen and Froome, 1951] for the hydrostatic refractivity, i.e. the first 
term in eq. (3.2.2.7): 

( ) 1-hPaK 64.77        , 0 ⋅=⋅= a
T
paN trop

h     (3.2.3.7) 

where p is the surface atmospheric pressure in hectopascal [hPa] and T the surface temperature in Kelvin [K] in eq. 
(3.2.3.6). These are obtained form ground meteorological data. Combining (3.2.3.2.), (3.2.3.6) and (3.2.3.7) yields 
to 

( ) [ ]  64.77
25.6sin

15.27372.14840136
5

10
2

6

T
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h ⋅⋅
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−⋅+⋅=∆
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ε
ε   (3.2.3.8) 
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where  is expressed in meters. Eq. (3.2.3.8) is plotted on Figure 9 below. By opposition to the Saastamoinen 
model, eq. (3.2.4.5), there is no divergence at very low elevation angles. 

trop
h∆

3.2.3.3.Modified Hopfield model 
Some years later, Dr. Helen Hopfield modified her model by taking into account the curvature of the atmosphere, 
thus using the modulus of the position vector r rather the altitude z of the considered volume element. Considering 
eq. (3.2.3.1) but introducing the radius of the Earth , one has ER
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0 
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
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
−
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h Rr
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NrN      (3.2.3.9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Enhanced Hopfield model. Hydrostatic Path Delay  in meters. ( εT ,HPD )
where hEh zRr +=  and zRr E +=  are respectively the total height of the troposphere, where zero is set at the 
geocenter of the Earth, and the position vector. Thus the modified hydrostatic component of the tropospheric delay 
is given by 

( ) ( )
( )dr
r
rN

h

E

r

R

trop
htrop

h ∫⋅=∆ −

ϑ
ϑ

cos
10 6      (3.2.3.10) 

where ϑ  is the zenith angle and depends on the location r. Consider the zenith angle 0ϑ  at the observation station 
where the GPS receiver is located, and apply the cosine law. One has 
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( ) [ ] 2
1

0
222 sin1cos ϑϑ ERr

r
r −⋅=      (3.2.3.11) 

Combining (3.2.3.9), (3.2.3.10) and (3.2.3.11), one obtains 
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This is the corresponding formula for the hydrostatic component of the tropospheric delay of the modified Hopfield 
model. It is sometimes useful to express the zenith angle ϑ  with respect to the elevation angle ε. It holds 

εϑ −= �90       (3.2.3.13) 

A complete derivation of the computations can be found for example in [Hofmann-Wellenhof, 1997]. 

3.2.4. Saastamoinen model  
The Canadian meteorologist J. Saastamoinen derived in 1971 and 1972 a model for the tropospheric delay from the 
gas laws. He used the law of Goldstone and Dale for the pressure distribution in the atmosphere and assumed a 
hydrostatic equilibrium. Hence the atmospheric refractivity is proportional to the ground pressure. He started from 
the path delay in eq. (3.2.1.1) 

( ) trop

pathradio
trop dsns ∆≡−=∆ ∫

 

1     (3.2.4.1) 

and he mapped this delay along the zenith direction. As referred to Figure 3, the simplest mapping function relating 
any elevation angle with the zenith is given by the secant of the zenith angle ϑ . Thus one has 

( ) dsn
pathradio

trop ϑsec1
 

⋅−=∆ ∫     (3.2.4.2) 

[Saastamoinen, 1972] showed that the path delay can be expressed as a function of the available surface 
meteorological data where he used the [Essen and Froome, 1951] formula for the tropospheric refractivity, eq. 
(3.2.2.7) 

( )
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6 37190092.12624.77110
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T
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nN trop +−=−⋅=    (3.2.4.3) 

where p is the total surface pressure, e the partial water vapor pressure, both in hectopascal and T is the absolute 
temperature in Kelvin. Reminding the relationship between refractive index and refractivity, equation (3.2.1.3), and 
for applied computations, the numerical form of equation (3.2.4.1) is  
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where δ  is a small correction term depending on the altitude of the observation point. [Saastamoinen, 1971 and 
1972] computed this for different locations. One can formulate this as function of the sine of the elevation angle 
with (3.2.3.13) and obtains 
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in meters, since 

εtan
1tan   and     

sin
1

cos
1sec === ϑ

εϑ
ϑ     (3.2.4.6) 

Eq. (3.2.4.5) is the known Saastamoinen formula for the tropospheric delay. Note that the total delay (TD) and the 
tropospheric delay are nearly similar. For further details refer to [Saastamoinen, 1971 and 1972]. The path delay of 
Eq. (3.2.4.6) is plotted at zenith on Figure 10 on next page, as function of the temperature T and the atmospheric 
pressure p. For a standard ground pressure of , it is of the order of magnitude of  for  hPa 25.1013=p m 2.40TD ≈Z
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Figure 10. Saastamoinen formula. Zenith Path Delay  in meters. ( Tp,ZPD )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Saastamoinen formula. Zenith Path Delay  in meters. ( εe,ZPD )
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a partial water vapor pressure of e . It matches with independent measurements obtained with water vapor 
radiometers (WVR). The linearity of the Zenith Total Delay (ZTD) with the pressure can be clearly seen. The term 
in eq. (3.2.4.5) containing the inverse proportionality to the temperature is strongly constrained. It contributes to the 
ZTD to only 10 cm. 

hPa 10=

 
The ZTD as function of the partial water vapor pressure and of the elevation angle for 10 deg 90deg ≤≤ ε  is 
plotted on Figure 11 on previous page. As can be guessed from eq. (3.2.4.5), the ZTD increases approximately as 
ε1  at very low elevation angle and thus diverges for . Therefore a cut-off angle of 10 degrees is 

generally set. Hence the ZTD has been computed for 10
deg 0=ε

90deg deg  ≤≤ ε . The ZTD varies slowly with the water 
vapor partial pressure which term contributes to about 5% to the total delay. 

3.2.5. Mapping function 
The role of a mapping function is to describe the dependency of the total delay on different geodetic and 
meteorological parameters. These are generally the observation station coordinates, where the GPS receivers are 
located, the surface temperature, the surface atmospheric pressure, the relative humidity and the water vapor partial 
pressure. 

3.2.5.1.Marini mapping functions 
In 1972, J.W. Marini basing his model on the work of Helen Hopfield, assumed that one could separate the 
atmosphere in different layers where the refractive index was approximately constant, c.f. [Marini, 1972]. Further 
he supposed that the troposphere was horizontally stratified. As stated above, the basic mapping function is just 
given by  

( ) εm cosec:
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1 ==
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ε      (3.2.5.1) 

J.W. Marini expands this in a truncature of a continuous fraction with the sine of the elevation angle as parameter. 
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where ε varies from the horizon or 0º to the zenith or 90º and a,b,c,… are dimensionless coefficients. This mapping 
function known as the Marini function constitutes the basis for almost all later derived tropospheric models. 
Actually, using only the two first terms a and b in (3.2.5.1), Marini has found great agreement with ray traces of a 
model atmosphere to better than 3%, after [Niell, 1996]. In 1973, C.W. Murray and J.W. Marini included a 
correction term for the variation of gravity with latitude and height. 
 
[Davis et al., 1985] based his research on Marini and Murray’s work. He introduced the third coefficient c and also 
normalized the Marini function to the zenith. Therefore he changed the second parameter b to a tangent to ensure 
that the mapping function takes the value 1 at zenith. 
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A sub-centimeter accuracy in Zenith TD (ZTD) was thus ensured down to elevation angles of 5º. The parameters a 
and b linearly depend on the surface meteorological data (usually the surface pressure, the relative humidity and 
ground temperature) and on the height of the troposphere. 

3.2.5.2.Herring mapping function 
In 1992 T.A. Herring from Delft University in the Netherlands, c.f. [Herring, 1992], developed a model by 
integrating radiosonde data from continental United States (CONUS) stations in the mapping function. He 
introduced for the first time a dependency of the mapping function on the geographic coordinates of the observation 
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site as well as the surface temperature. This was aimed at compensating for the varying upper air layer temperatures 
at different latitudes. 
 
He obtained for elevation angles down to 3º and latitudes between 27º and 65º North 
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where the three coefficients depend linearly on the cosine of the latitude ϕ, on the height h above the WGS-84 
geoid and on the surface temperature T in Kelvin of the station. For the hydrostatic component of the refractivity, 
these are given by 
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For the wet component of the refractivity, one has 
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3.2.5.3.Niell mapping function 
A few years later, 1996 to be exact, A.E. Niell from the Massachusetts Institute of Technology (MIT) detected 
many limitations in the mapping functions of Herring. The only real variable in both (3.2.5.4), (3.2.5.5) and 
(3.2.5.6) is the surface temperature T. All the other parameters are fixed by the location of the observation station. 
This does not take into account the temporal variability of the temperature due to the variation of troposphere 
thickness with time. The temperature strongly varies from sea level up to circa 2000 meters and then gradually 
becomes constant, indicating the presence of a boundary layer. This phenomenon limits the accuracy of the former 
mapping functions. A.E. Niell corrected this. For further details, refer to [Niell, 1996]. 
 
His mapping function is formed by a combination of a 3-terms Marini function and a normalization to unity at 
zenith, as was done by Herring. However the coefficients are profoundly modified. These are linearly interpolated 
from nine sets of radiosonde profiles.  
 
He assumed that “(1) the Southern and Northern hemispheres are antisymmetric in time; that is, the seasonal 
behavior is the same, (2) the equatorial region is described by the 15º north latitude profile, and (3) the polar regions 
are described by the 75º north latitude profiles. Then the nine sets of coefficients provide mapping functions near 
the two extrema of the annual variation spanning all latitudes”. Thus mapping functions for any latitude and epoch 
are obtained by linear interpolation (in latitude) of the sets of coefficients. 
 
Regarding the mapping function, the coefficients are modeled at each latitude iλ as sinusoids in time with period of 
a year (in UT time). For complete information on this modeling, refer to [Emardson et al., 1998a to d]. The 
coefficients are then given by 
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where  is the phase given by the time at Day of Year (DOY) 28, starting from January 0.0, in UT days. The 
average and amplitude coefficients are given in Table 7. An analytic height correction was introduced in the model 

0T
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where H is the height of the observation station above the WGS-84 geoid, the mapping function m is the one of 
(3.2.5.3) and the coefficients (ht = height) are also given in Table 7. Thus one obtains a hydrostatic 
mapping function of type 
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The error in height being relatively small, the Niell model assumes a single height correction for all latitudes. 
Further the wet mapping function has no temporal dependence. The wet mapping function of Niell is thus given by 
equation (3.2.5.4) and the height correction is also applied. 
 
Finally, one has for the hydrostatic mapping function coefficients the results of Table 7 hereunder: 
 

 latitude  
coefficients 45º 60º 

avga  3102465.1 −⋅  3102196.1 −⋅  

avgb  3109288.2 −⋅  3109022.2 −⋅  

avgc  3107217.63 −⋅  3108242.63 −⋅  

ampa  5106523.2 −⋅  5104000.3 −⋅  

ampb  5100160.3 −⋅  5102562.7 −⋅  

ampc  5103497.4 −⋅  5107953.84 −⋅  

hta  51053.2 −⋅  51053.2 −⋅  
htb  31049.5 −⋅  31049.5 −⋅  
htc  31014.1 −⋅  31014.1 −⋅  

Table 7. Niell hydrostatic mapping function coefficients 

Combining the parameter values of Table 7, eqs. (3.2.5.7), (3.2.5.8) and (3.2.5.9) and linearly extrapolating for any 
given latitude (with the given coefficients of Table 7 for European stations), the hydrostatic mapping function of 
Niell is fully defined. 
 
For the wet mapping function, it holds Table 8 below. 
 

 latitude  
coefficients 45º 60º 

wa  4108118.5 −⋅  4109725.5 −⋅  
wb  31045727.1 −⋅  31050074.1 −⋅  
wc  210390893.4 −⋅  210462698.4 −⋅  

Table 8. Niell wet mapping function coefficients 

As it was already done for the hydrostatic mapping function coefficients, the wet mapping function of Niell is 
obtained by linear extrapolation. 
 
The Niell mapping function presents huge advantages compared to other mapping functions. First of all it is totally 
independent of any surface meteorological data, thus being very robust with variations in experiment design and 
abrupt changes in the meteorological conditions. The sudden changes cannot be modeled very accurately. Secondly, 
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it holds up to low elevation angles: up to 3 degree. Hence the mapping functions biases are quasi-negligible. This 
was not the case for all mapping functions presented until then, except the Herring mapping function. 
Further, the troposphere becomes azimuthally asymmetric at very low elevation angles. Niell proved that his model 
could augment the accuracy of the Zenith Tropospheric Delay (ZTD) above the observation site and yield to a GPS 
signal sensitivity in ZTD in the centimeter range. To date, the Niell mapping function is without doubt one of the 
most precise functions for determining the hydrostatic delay in the GPS signal. 
 
The choice of the mapping function depends essentially on the information one has at disposal. Indeed, if no ground 
meteorological data is available for the location of the GPS receivers, the Niell mapping functions seems to be well 
adapted. However, this is rarely the case and thus other mapping functions are used, e.g. the Herring mapping 
functions. As new mapping functions might be proposed, this decision will become more difficult and might reveal 
itself as not the most judicious. 

3.3. Atmosphere modeling 
The major issue for the determination of the tropospheric path delay and more generally path delays remains the 
availability or not of ground meteorological data. Usually one understands under meteorological data a set of 
temperature measurements, atmospheric pressure and partial water vapor pressure or its related relative humidity 
observations. Hereunder a spatial and temporal model is presented for each of the meteorological observables. 

3.3.1. Temperature field 

3.3.1.1.General description 
The atmosphere is separated into four main regions depending on their altitude above the mean sea level (MSL). 
The temperature profile of these layers is summarized on Figure 12. The marks on the left side of Figure 12 
represent the amount of gases left above that height. 
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Figure 12. Temperature profile as function of altitude. After [Rödel, 2000]. 

The lowest layer is the so-called troposphere. It stretches from the MSL to approximately 8 to 10 km depending of 
the latitude of the observation site. The sole exceptions are the poles where a temperature inversion already takes 
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place at 2 to 3 km above ground level (AGL). As stated in paragraph 3.1, the troposphere contains the majority of 
the atmospheric water vapor. There, the temperature decreases with the altitude with an approximate constant rate 
varying between  and m 100 / C 5.0 °− m 100 / C 1°− . The adiabatic expansion of the hydrostatic and humidity 
fields, i.e. the compression or expansion of the air masses are the main processes for the formation of a temperature 
profile in the troposphere. Beneath those, radiative processes also take place. 
 
The second lowest layer is the tropopause where the temperature is nearly constant with increasing altitude. 
Climbing from the MSL upwards, the temperature minimum is attained between 8 km and 10 km in Northern 
latitudes and between 17 km and 18 km in the tropics. This temperature minimum marks the beginning of the 
tropopause. According to the International Standard Atmosphere (ISA) model, c.f. [Lertes, 2000] regulated by the 
International Civil Aviation Organization (ICAO), the tropopause shows a temperature minimum of –56.51°C. The 
physical processes are characterized by low heating due to solar radiation and slight cooling through thermal 
radiation. 
 
In the stratosphere, which stretches between 18 km and 55 km MSL, the mixing ratios of these two effects are 
inverted. The radiation cooling through the water vapor in the upper troposphere and in the tropopause as well as 
the absorption of solar radiation in the upper stratosphere lead to a convection layer with little thermal exchanges. 
Therefore, the thermal profile of the stratosphere is determined by radiation equilibrium between heating through 
solarization and cooling through radiation in the infrared (IR) spectral range. The lower stratosphere can be seen as 
an isothermal layer while the upper stratosphere can be modeled with a constant and positive temperature gradient. 
The upper stratosphere starts at about 32 km MSL. 
 
The stratopause marks a temperature inversion at an altitude MSL of approximately 55 km. The further upper layer 
is the mesosphere. It shows a similar behavior to the troposphere as far as the temperature is concerned. Above it 
comes the mesopause, i.e. between 75 km and 80 km MSL. There the atmosphere is heated by absorption of the 
solar ultraviolet (UV) radiation by the hydrogen molecules H2. The temperature increases strongly with altitude in 
the fourth layer, the thermosphere. It shows strong diurnal variations in temperature and reaches 1200°C-1500°C. 
At the same time, the ion density strongly decreases. 

3.3.1.2.Temperature model 
The main issue as far as the temperature profile is concerned is the determination of the temperature gradients for 
all infinitesimal atmospheric layers. This is the topic of the coming paragraphs. 

3.3.1.2.1.Temperature profile 
Retaking the observation form the previous paragraph and referring to Figure 12, one can model the altitude 
dependence of temperature as either a linear function or a constant. Hence, it is of the type 

( )




>
≤≤⋅+

=
 z                 ,  T

 z         , 

11

100

z
zzzT

zT
γ

     (3.3.1.1) 

where z is the altitude MSL,  is the altitude of the reference point MSL and  is the altitude of the tropopause. 
Eq. (3.3.1.1) can be extended to the upper layers of the atmosphere by inserting different layers with linear 
temperature profile. Now one has to compute the temperature gradient . 

0z 1z

γ

3.3.1.2.2.Hydrostatic air gradient 
The first law of thermodynamic states  

δWδQdU +=       (3.3.1.2) 

where U is the internal energy of the gas, Q the heating rate or simply heating and W is the work applied to the 
system. Now for a closed system it holds 

dVpδW ⋅−=       (3.3.1.3) 

Thus, introducing eq. (3.3.1.3) in eq. (3.3.1.2) gives 

dVpδQdU ⋅−=      (3.3.1.4) 

Assume that the dry air is an ideal gas. Then the internal energy is only a function of the temperature T: 

dTCndU V ⋅⋅=       (3.3.1.5) 
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where n is the number of mol of the gas in the system and 

V
V T

UC 






∂
∂=:       (3.3.1.6) 

is the heat capacity at constant volume. Because C  is an extensive variable, and hence depends on the mass M of 
the system, one often deals with the heat capacity per unit mass or specific heat capacity: 

V

M
Cc V

V =:      (3.3.1.7) 

Inserting eq. (3.3.1.5) in eq. (3.3.1.4) yields to 

dTCndVpδQ V ⋅⋅+⋅=      (3.3.1.8) 

The ideal gas law is 

TRnVp ⋅⋅=⋅      (3.3.1.9) 

where 
1-1 KmolJ  314510.8 −⋅⋅=R     (3.3.1.10) 

is the universal gas constant. Build the differential of eq. (3.3.1.9) for n =1 mol 

dTRdpVdVp ⋅=⋅+⋅      (3.3.1.11) 

Combine eq. (3.3.1.8) and eq. (3.3.1.11) again for n =1 mol, 

( ) dTCRdpVQ V ⋅++⋅−=δ     (3.3.1.12) 

The specific heat at constant pressure is defined as 

p
p T

HC 






∂
∂=:      (3.3.1.13) 

where 

VpUH ⋅+=:      (3.3.1.14) 

is the enthalpy of the gas. Similarly to eq. (3.3.1.7), one defines the specific heat at constant temperature as 

M
C

c p
p =:      (3.3.1.15) 

 Further, it holds 

RCC Vp +=      (3.3.1.16) 

Insert eq. (3.3.1.16) in eq. (3.3.1.12)  

dTCdpVQ p ⋅+⋅−=δ      (3.3.1.17) 

Now use the ideal gas law, eq. (3.3.1.9) to obtain 

dTCdp
p

RTQ p ⋅+⋅−=δ      (3.3.1.18) 

An adiabatic process is defined as a process where there is no exchange of heat with the environment. Thus it holds 

0=Qδ       (3.3.1.19) 

Assume that the processes that take place in the troposphere are adiabatic. One has then with eq. (3.3.1.18), 

dTCdp
p

RT
p ⋅+⋅−=

!
0      (3.3.1.20) 

Furthermore, the barometric formula (c.f. paragraph 3.3.2.) states that 
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dz
RT
Mg

p
dp ⋅−=       (3.3.1.21) 

Insert eq. (3.3.1.21) in eq. (3.3.1.20). This yields to 

dTCdzMg p ⋅+⋅=0      (3.3.1.22) 

That is 

pp c
g

C
Mg

dz
dT −=−=

)14.1.3.3(
     (3.3.1.23) 

This adiabatic temperature gradient is often labeled as 

adiadz
dT






=Γ :       (3.3.1.24) 

3.3.1.2.3.True temperature gradient 
However it exists water vapor in the air. This water vapor is concentrated mostly in the troposphere. Hence defined 
a true temperature gradient to take into account the effects of the water vapor on the temperature variations with 
altitude. 

truedz
dT






=:γ       (3.3.1.25) 

Assume now that there is no condensation taking place. Then replace the specific heat at constant pressure  by 
the weighed specific heats for wet and hydrostatic air. Define the specific humidity as 

pc

hw

ws
ρρ

ρ
+

=:       (3.3.1.26) 

where  is the density and the indices w stand for wet and h for hydrostatic, i.e. for respectively the contribution of 
the water vapor and of the dry air. Inserting eq. (3.3.1.26) in eq. (3.3.1.23), it holds then for humid air 

ρ

( )scsc
g

dz
dT

hpwponcondensatinowet −⋅+⋅
−=







1,, 

    (3.3.1.27) 

If the atmospheric water vapor condensates, then eq. (3.3.1.27) does not hold. In order to derive the humid adiabatic 
temperature gradient, one has to consider again the first law of thermodynamics, the energy conservation law. 
Insert eq. (3.3.1.21) in eq. (3.3.1.18) for n =1 mol, 

dzMgdTCQ p ⋅+⋅=δ      (3.3.1.28) 

Because the saturation of air with water vapor is only a question of absolute humidity, i.e. of water vapor content 
per unit volume, express all quantities as a function of the volume V. Thus using the ideal gas law, multiply the 
right hand side (RHS) of eq. (3.3.1.28) with 

RT
p

V
n =      (3.3.1.29) 

Hence the left hand side (LHS) of eq. (3.3.1.28) is the heating per volume unit. This yields to 

dz
TR

pgMdT
TR
pC

Q p ⋅
⋅

⋅⋅+⋅
⋅
⋅

=δ     (3.3.1.30) 

As condensation has been assumed, there is a phase transfer of gaseous water vapor into liquid water (droplets) for 
saturated air as it cools down. Labeling the vaporization latent heat per water mass unit by , one has vapL

satwvap dLQ ,ρδ ⋅−=      (3.3.1.31) 
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The minus sign stands for the decrease in the amount of water vapor molecules present in the air. The index sat 
stands for the saturated air9. Equating (3.3.1.30) and (3.3.1.31) yields to 

dz
TR

pgMdT
TR
pC

dT
dT

d
L psatw

vap ⋅
⋅

⋅⋅+⋅
⋅
⋅

=⋅⋅− ,ρ
   (3.3.1.32) 

Reorganizing eq. (3.3.1.32), 

dT
d

LTRpC

gpM
dz
dT

satw
vapponcondensatiwithwet , 

ρ
⋅⋅⋅+⋅

⋅⋅−=




    (3.3.1.33) 

This is the humid adiabatic temperature gradient. In contains the hydrostatic adiabatic temperature gradient as limit 
for 

0, =
dT

d satwρ
     (3.3.1.34) 

3.3.1.2.4.Adopted temperature model 
Combining the results of the three previous paragraphs, and using the Heavyside function defined as 

( )




<
≥

=Θ
0          ,  0
0          ,  1

:
z
z

z      (3.3.1.35) 

one has for the altitude dependence of the temperature 

( ) [ ] ( )[ ] ( 1110 1 zzTzzzTzT )−Θ⋅+−Θ−⋅⋅+= γ    (3.3.1.36) 

For numerical applications, the following expression, 

( ) ( )[ ]
2
1arctan1

11 +−⋅≈−Θ zz
π

zz     (3.3.1.37) 

is a good approximation of the Heavyside function. In order to take into account the local variations of temperature 
with the direction, one can insert a two dimensional horizontal gradient in eq. (3.3.1.36). This gives 

( ) [ ] ( )[ ] ( ) ( ) ( 001110 1,, yybxxazzTzzzTzyxT TT )−⋅+−⋅+−Θ⋅+−Θ−⋅⋅+= γ   (3.3.1.38) 

where the index 0 labels the reference point. Another indexing will be introduced later. Furthermore assume that the 
temperature varies slowly with time but nonetheless varies. Hence add also a time gradient. This yields to the four 
dimensional (4D) temperature model: 

( ) ( ) [ ] ( )[ ]
( ) ( ) (
( )11

000

10

                                    
                                    

1,,,,

zzT
ttcyybxxa

zzzTtzyxTtT

TTT

−Θ⋅+
−⋅+−⋅+−⋅+ )

−Θ−⋅⋅+== γx
  (3.3.1.39) 

where the index T in the three coefficients is set to differentiate them from simple constants. 

3.3.2. Pressure model 
Consider an infinitesimal volume element dV of unit area. Then dV=dz. Refer to Figure 13 left on next page. 
According to Newton’s law of mechanics, it holds 

dzgdp ⋅⋅−= ρ       (3.3.2.1) 

for the pressure differential dp. ρ  is the air density and g is the gravity constant. The universal gas law states 

m
TRp ⋅=

ρ
      (3.3.2.2) 

                                                           
9 Do not confound it with the index for the GPS satellites ! 
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dzg ⋅⋅ρ

dzz +

z

where p is the pressure in , R is the universal gas constant 
defined in eq. (3.3.1.10), T is the temperature in K, 

2mN −⋅
ρ  is the density 

in  and m is the molecular mass of the considered gas, in 

. 

3mkg −⋅
1mol−⋅kg

 
Following [Hopfield, 1969], assume one can separate the wet air from 
the hydrostatic air. Then one has two relative gas constants: 

w
w

h
h m

RR
m
RR == :    and    :   (3.3.2.3a,b) 

Further, it holds 
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w
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R
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  (3.3.2.4)  

Extract now

With the sp
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the specific

Insert eq. (

and introdu

According 

Recombine

This gives 

where the t
Figure 13. Pressure of a
volume element. 
 the density for wet air from the partial water vapor pressure and the universal gas law. 

TR
e

w
w ⋅

=ρ       (3.3.2.5) 

ecific humidity from eq. (3.3.1.26), one has 

hw
ws ρρρ

ρ
ρ +== :   e      wher:     (3.3.2.6a,b) 

he air is mostly dry, i.e. , and using (3.3.2.3a) to express the unity hmm ≈

1=⋅ m
R
Rh       (3.3.2.7) 

 humidity becomes 

wh
hww

R
mRm

R
Rs ρ
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




⋅

⋅=⋅⋅=⋅= 1     (3.3.2.8) 

3.3.2.2) in eq. (3.3.2.8) 

p
TR

R
R

p
TRs ww

w

hwh ⋅⋅⋅=⋅⋅= ρρ      (3.3.2.9) 

ce eq. (3.3.2.5) 

p
e

R
Rs

w

h ⋅=       (3.3.2.10) 

to [Höflinger, 1993], and inserting , , hR wR hρ  and wρ  in the universal gas law gives for the pressure 

( sRTp h ⋅ )+⋅⋅⋅= 608.01ρ      (3.3.2.11) 

 eq. (3.3.2.11) by introducing the virtual temperature defined by 

( sTTv ⋅ )+⋅= 608.01:       (3.3.2.12) 

a modified gas law: 

vh TRp ⋅=
ρ

      (3.3.2.13) 

otal density is given by eq. (3.3.2.6.b). From eq. (3.3.2.13) get 

vh TR
p
⋅

=ρ       (3.3.2.14) 
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and insert this eq. (3.3.2.1) to obtain 

dz
TR

gpdp
vh

⋅
⋅

⋅−=      (3.3.2.15) 

Take now the model for the temperature as a function of the altitude, eq. (3.3.1.1). There are two cases to consider. 
First assume that the virtual temperature is constant, i.e.  and integrate eq. (3.3.2.15) ( )zTT vv ≠

zd
TR

g
p

dp z

z vh

z

z ⋅
−= ∫∫ 11

′      (3.3.2.16) 

This results in 
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Thus one has 
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Assume now that the virtual temperature depends on the altitude z, i.e. T . Again integrate eq. (3.3.2.15) ( )zTvv =

( )∫∫ ′
′

⋅−=
1

0

1
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z vh
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z zT
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R
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p
dp     (3.3.2.19) 

and use the harmonic mean for the virtual temperature, defined as 
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 z

vv zT
zd
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Approximate eq. (3.3.2.19) with eq. (3.3.2.20), 
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This leads to 
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    (3.3.2.22) 

Now define a scale height  by pH

1
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RH      (3.3.2.23) 

Insert eq. (3.3.2.23) in eq. (3.3.2.22) and index it with p for pressure 

( ) ( ) ( )






 −−⋅=

PH
zzzpzp 01

01 exp     (3.3.2.24) 

Note that in general the scale height10, usually labeled as  is defined in the following way 0z

( ) 00

!

0
zcdzzc

area
mbletotal ense ⋅== ∫

+∞
    (3.3.2.25) 

                                                           
10 This notation is not used here in order to prevent any confusion with the ground altitude MSL, i.e. with the GPS’s 
receiver altitude. 
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where  is the concentration at altitude z of the quantity of interest. Thus the scale height is ( )zc

( )∫
+∞

⋅=
00

0
1 dzzc
c

z      (3.3.2.26) 

As was done with eq. (3.3.1.36) for the temperature dependence on altitude, one can introduce a 2D horizontal 
gradient as well as a temporal gradient in both eq. (3.3.2.18) and eq. (3.3.2.24) in order to obtain a 4D pressure 
model. Hence one obtains 

( ) ( ) ( ) ( ) ( )[ ]
( )

PH
zz

ppp ettcyybxxaptzyxptp
0

0000,,,,
−

−
⋅−⋅+−⋅+−⋅+==x  (3.3.2.27) 

where the index 0 indicates the GPS’s receiver position,  is the pressure scaling height and a, b and c are the 
gradient coefficients. 

PH

3.3.3. Atmospheric humidity model 
The atmospheric humidity e is the most volatile of the three quantities considered. Indeed its high temporal and 
spatial variability often limits the accuracy of the meteorological models. It is intended here to derive a basic model 
for e. 

3.3.3.1.Clausius-Clapeyron equation 
From thermodynamics it is known that for a reversible process it holds 

( )
dt
dV

T
p

dt
dU

T
TVS

dt
d ⋅+⋅= 1,      (3.3.3.1) 

where S is the entropy of the system. Further it holds 

( )
dt
dV

V
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dt
dT

T
STVS
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d ⋅

∂
∂+⋅

∂
∂=,      (3.3.3.2) 

Using the chain rule and comparing term by term eq. (3.3.3.1) with eq. (3.3.3.2), one has 
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     (3.3.3.3a,b) 

where the temperature T and the volume V are independent variables. Combine both equations to build the second 
order partial differential of the entropy by first proceeding with (3.3.3.3a), 

TV
U

TTV
S

∂∂
∂⋅=

∂∂
∂ 22 1      (3.3.3.4) 

However one can first proceed with eq. (3.3.3.3b). This gives 
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22 11     (3.3.3.5) 

Using Schwarz’s law to equate eq. 3.3.3.4) and eq. (3.3.3.5) yields to 

p
T
pT

V
U −

∂
∂⋅=

∂
∂      (3.3.3.6) 

Eq. (3.3.3.3.6) holds for any system: for liquids and for gases or for a mixture of both as it is in the case of humid 
air. Especially for an ideal gas it holds 

0=
∂
∂

V
U        (3.3.3.7) 

However the mixture of hydrostatic air and water vapor is not an ideal gas. During a phase transformation from gas 
to liquid, nothing changes except the relative amount of each component. Therefore it holds 
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( ) 10    , 1 ≤≤⋅−+⋅= τττ vw UUU      (3.3.3.8) 

where  is the internal energy of the system at the beginning of the phase change where there is only water vapor 
and U  is the internal energy of the system at the end of the phase change where there the water vapor is entirely 
present in under liquid form (pure water). In a similar way one has with the corresponding quantities for the volume 
V 

vU

w

( ) 10    , 1 ≤≤⋅−+⋅= τττ vw VVV      (3.3.3.9) 

Combine eq. (3.3.3.8) and eq. (3.3.3.9) to get 
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τ
     (3.3.3.10) 

Define the enthalpy of vaporization as  vL

( wvwvwvv VVpUUHHL )−⋅+−=−=:     (3.3.3.11) 

where the definition of the enthalpy, eq. (3.3.1.14) has been used. Combine eq. (3.3.3.6), eq. (3.3.3.10) and eq. 
(3.3.3.11) to obtain 
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   (3.3.3.12) 

Again using eq. (3.3.3.11), it follows 

wv

v

VV
L

T
pT

−
=

∂
∂⋅       (3.3.3.13) 

According to [Bohren and Albrecht, 1998], on should note that the pressure p here is just the saturation vapor 
pressure  and that  for pure water. Hence one has ordinary derivatives in eq. (3.3.3.13) instead of 
partial derivatives. Thus eq. (3.3.3.13) becomes 

se ( )Tee ss =

wv

vs

VV
L

TdT
de

−
⋅= 1      (3.3.3.14) 

It is of interest to work with intensive variables such as the specific quantities. Hence divide the RHS of eq. 
(3.3.3.14) by the total mass of water to obtain 

wv
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vv
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TdT
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−
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where 

M
Vv

M
Ll v

v ==      and            (3.3.3.16a,b) 

Eq. (3.3.3.16a) is the enthalpy of vaporization per mass unit and eq. (3.3.3.16b) is the specific volume, sometimes 
called inverse density. Eq. (3.3.3.15) is the Clausius-Clapeyron equation. 

3.3.3.2.Temperature dependence of the enthalpy of vaporization 
Recall that the enthalpy is defined by eq. (3.3.1.14) as 

VpUH ⋅+=:       (3.3.3.17) 

and the enthalpy of vaporization  was defined by eq. (3.3.3.11) as vL

( wvwvwvv VVpUUHHL )−⋅+−=−=:     (3.3.3.18) 

as the enthalpy difference between gaseous (vapor) and liquid phase at their common equilibrium pressure, which 
depends only on the temperature T. Hence  depends also only on the temperature T. Differentiate eq. (3.3.3.18) 
with respect to T, 

vL



Chapter 3. Path delays and atmosphere modeling   
__________________________________________________________________________________________________________________________________________________________________________________________ 
60

pwpv
wvv CC

T
H

T
H

T
L −=

∂
∂−

∂
∂=

∂
∂      (3.3.3.19) 

where the definition of the heat capacity at constant pressure has been used. Because  depends also only on the 
temperature, one has ordinary derivatives in eq. (3.3.3.19). Therefore 

vL

constCC
dT
dL

pwpv
v =−=      (3.3.3.20) 

The specific heats decrease monotically and very slowly with the temperature. Hence by assuming , one 
introduce only a small error into the computation. Integrate eq. (3.3.3.20) 

( )TCC pp ≠

( ) ( ) ( 00 TTCCLTL pwpvvv −⋅−+= )     (3.3.3.21) 

where  is the reference temperature. Again multiply the RHS by 0T M1  to obtain 

( ) ( ) ( 00 TTcclTl pwpvvv −⋅−+= )      (3.3.3.22) 

This is the enthalpy of vaporization of water. It is linear in the temperature. According to [Bohren and Albrecht, 
1998], eq. (3.3.3.22) agrees up to 1% with measurements in the range C30C20 °+≤≤°− T  for a reference 
temperature T . C00 °=

3.3.3.3.Temperature dependence of the saturation vapor pressure 
Assume that the specific volume of vapor is much larger than the specific volume of liquid, i.e. it is such that 

wv vv >>       (3.3.3.23) 

Retake the Clausius-Clapeyron equation, eq. (3.3.3.15) and use the previous assumption 

v

vs

v
l

TdT
de ⋅≈ 1       (3.3.3.24) 

Furthermore water vapor can be considered as an ideal gas to a good approximation. Using the ideal gas law, it 
follows that 

v
vs v

TRe ⋅=       (3.3.3.25) 

Combine eq. (3.3.3.24) and eq. (3.3.3.25) 

2
1

TR
l

dT
de

e v

vs

s ⋅
=⋅      (3.3.3.26) 

Insert eq. (3.3.3.22) in eq. (3.3.3.26) 

( )
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TR
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dT
de

e v

pvpw

v

pvpwvs

s ⋅
−

−
⋅

⋅−+
=⋅ 2

001     (3.3.3.27) 

Integrating eq. (3.3.3.27) yields to 
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s

s  (3.3.3.28) 

where the constants of integration (reference temperature) for the enthalpy of vaporization and for the saturation 
vapor pressure have been assumed identical. For T , the constants in eq. (3.3.3.28) are given by Table 9. C00 °=
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Constant Value Unit 
0T  273.15 K 

0vl  6105.2 ×  -1kgJ ⋅  

pwc  4200 -1-1 KkgJ ⋅⋅  

pvc  1850 -1-1 KkgJ ⋅⋅
-1-1

 

vR  461.763 KmolJ ⋅⋅  
s0e  6.107 hPa 

Table 9. Saturation vapor pressure: constants 

With the values of Table 9, eq. (3.3.3.28) becomes 







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
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000
ln09.51114.6804ln

T
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TTe
e

s

s     (3.3.3.29) 

This can be further simplified if one assumes that  is independent of the temperature. Take this fact into account 
and integrate eq. (3.3.3.26). This yields to 

vl
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⋅
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ss expexp

0
0     (3.3.3.30) 

With the values of Table 9, eq. (3.3.3.30) becomes 

Te
e

s

s 03.541482.19ln
0

−=





     (3.3.3.31) 

The saturation water vapor pressure from eq. (3.3.3.29) and eq. (3.3.3.31) are compared and plotted on Figure 14 on 
next page as a function of the atmospheric temperature in the range K 325K 200 ≤≤ T , i.e. 

C 15.52C 15.73 °≤≤°− T . One can see that eq. (3.3.3.31), in red on Figure 14, although much simpler than eq. 
(3.3.3.29), in green, does not deviate much form the more exact curve. Hence consider only eq. (3.3.3.31) in the 
following. 
 
It is intended now to develop the link between the saturation water vapor pressure and the water vapor pressure as a 
function of the temperature in the atmosphere and then as a function of the three dimensional position in space and, 
of course, of the time t. 

3.3.3.4.Water vapor pressure model 
The relative humidity, expressed in %, is defined as 

e
erH s⋅= 100:      (3.3.3.32) 

where  is the saturation water vapor pressure and  is the water vapor pressure, both at temperature T. Insert eq. 
(3.3.3.30) in eq. (3.3.3.32), 

se e

( ) ( ) TR
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ss
v

v

v

v

eeerHTerHTe
1

0
0

100100

⋅−
⋅ ⋅⋅⋅=⋅=     (3.3.3.33) 

In numerical form, eq. (3.3.3.33) is 

( )






 −⋅⋅⋅=

T
TrHTe 03.541482.19exp107.6

100
    (3.3.3.34) 

Following [Troller et al., 2001 & 2002] linearize the exponent w.r.t. the altitude z and recall the temperature model 
of paragraph 3.3.1.2.4. Remind that γ  is negative in the troposphere. Thus with eq. (3.3.3.34) one has 

( ) ( )
( )

eH
zz

ezeze
0

0

−−

⋅=      (3.3.3.35) 
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Figure 14. Saturation water vapor pressure as a function of the temperature in the atmosphere, e . . s ( )T
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where the scaling height  is different from the one for the pressure model! This is the one-dimensional model for 
the variation of the water vapor pressure with the altitude. It depends on the surroundings of the observation point: 
plain, mountain, sea… However a model with global validity is required. Therefore introduce a horizontal gradient 
as well as a temporal gradient. Finally this leads to the following 4D functional model for the water vapor pressure: 

where the scaling height  is different from the one for the pressure model! This is the one-dimensional model for 
the variation of the water vapor pressure with the altitude. It depends on the surroundings of the observation point: 
plain, mountain, sea… However a model with global validity is required. Therefore introduce a horizontal gradient 
as well as a temporal gradient. Finally this leads to the following 4D functional model for the water vapor pressure: 

eHeH

( ) ( ) ( ) ( ) ( )[ ]
( )

( ) ( ) ( ) ( ) ( )[ ]
( )

eH
zz

eee ettcyybxxaetzyxete
0

0000,,,,
−

−
⋅−⋅+−⋅+−⋅+==x   (3.3.3.36) 

3.3.4. Summary 
Two kinds of functional models for the atmospheric temperature T, the atmospheric pressure p and the water vapor 
pressure e have been derived in the previous paragraphs. The first set depends only on the altitude z. It is 
 

( ) [ ] ( )[ ] ( 1110 1 zzTzzzTzT −Θ⋅+−Θ−⋅⋅+= γ    (3.3.4.1) )

( ) ( ) ( )










 −−⋅=

pH
zzzpzp 0

0 exp      (3.3.4.2) 

( ) ( ) ( )






 −−⋅=

eH
zzzeze 0

0 exp      (3.3.4.3) 

The second set consists in 4D functional models with an explicit dependence on space and time: 



Chapter 3. Path delays and atmosphere modeling   
__________________________________________________________________________________________________________________________________________________________________________________________ 

63

( ) ( ) [ ] ( )[ ]
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( ) ( ) ( ) ( ) ( ) ( )[ ]
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eee ettcyybxxazetzyxete
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⋅−⋅+−⋅+−⋅+==x   (3.3.4.6) 

3.4. Path delays modeling 
In the following, a model for the path delay of the GPS signal is derived. It takes into account the altitude of the 
different atmospheric layers. 

3.4.1. Motivation 
As discussed previously, the atmosphere can be separated into different layers of constant refractive index. 
Experimentally, the main variations of path delays are observed along the radial axis, i.e. in the zenith direction. 
Hence assume that the atmosphere shows an azimuthal symmetry around the ground receiver location. The 
atmosphere might be inclined with respect ot the normal palne to the zenith direction. 
 
According to Chapter 1, the troposphere represents the main concern for the evaluation of path delays. In order to 
accurately take it into account, the two sets of models presented above will be introduced in the computation. 
Referring to paragraph 3.3.1. and especially Figure 12, only 1% of the gaseous atmosphere is situated above 35 km 
MSL. The mass ratio is set as the selective criterion. Therefore a two layer model can be assumed to sufficiently 
and accurately represent the reality.  
 
Label the GPS space vehicle’s location by P′  and the ground receiver’s location by  with respective altitude 0P z′  
and . It is referred to Figure 15 on next page. The altitude of the tropopause is . The zenith angle of the ground 
receiver is . Consider an infinitesimal path element ds of the GPS signal path, stretching to point P. Let  be the 
zenith angle of P, i.e. at altitude z. 

0z 1z

0θ θ

 
Retaking the computation of paragraph 3.2.1, the path delay is given by 

( )[ ]dssnL
P

P∫
′

−=∆
0

1      (3.4.1.1) 

This can be projected along the zenith direction for each point P along the signal path. Hence eq. (3.4.1.1) becomes 

( )[ ] dsθznL
z

z∫
′

⋅−=∆
0

sec1      (3.4.1.2) 

The zenith angle  depends on the refractive index n. One intends to find an expression for sec  so that eq. 
(3.4.1.2) is integrable. The secant and cosecant are defined as 

θ θ

x
x

x
x

sin
1:secco     and     

cos
1:sec ==     (3.4.1.3a,b) 

The refraction law gives 

constθznθzn =⋅⋅=⋅⋅ 000 sinsin      (3.4.1.4) 

It is useful to define the following quantity 

00
:

zn
zny

⋅
⋅=       (3.4.1.5) 

Combining eq. (3.4.1.4) and eq. (3.4.1.5) yields to 
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Figure 15. GPS signal path through the atmosphere 
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Thus 
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With eq. (3.4.1.3a), one has 

( )[ ] 2
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For small values of x, the Taylor expansion of ( ) ∈+ sx s   , 1 , is 
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Using the definition of the refractivity, it holds 
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 (3.4.1.10) 
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According to [CCIR, 1986], it holds 3500 ≤≤ N  and  for Switzerland. Hence one can assume with 
eq. (3.4.1.10) that 

3150 ≈N

1
0

≈
n
n

     (3.4.1.9) 

Therefore one has with eq. (3.4.1.8) and eq. (3.4.1.9) 

( ) ( 0
55

0
32

0 secsec1
2
1secsec θyOθyyθyθ ⋅+⋅−⋅⋅−⋅= )  (3.4.1.10) 

Eq. (3.4.1.11) further implies that 

( 0
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11 zz
zz

zy −⋅+=≈ )     (3.4.1.11) 

Similarly 

( ) ( 0
0

2 21 zz
z

yy −⋅≈−⋅ )     (3.4.1.12) 

Combining eq. (3.4.1.12), eq. (3.4.1.13) and eq. (3.4.1.14) gives 
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Using the fact that 

0
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One has 
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This implies that the atmosphere is considered as isotropic. Insert eq. (3.4.1.17) in eq. (3.4.1.2), 
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Regroup eq. (3.4.1.18) 
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Develop eq. (3.4.1.19) and taking the temperature models (3.3.3.37) or (3.3.3.40) into account, one has 
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Eq. (3.4.1.18) holds under the assumption that the atmosphere is isotropic. 
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3.4.2. Mathematical background 
In order to evaluate the four integrals of eq. (3.4.1.20), forming the path delay, some mathematical theorems and 
laws are required. Thus a short mathematical background is provided hereunder. 
 

Law 1. For all ∈a  and ] + [∞∈ ,0x , it holds 
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e      (3.4.2.1) 

Law 2. For all ∈a , ] + [∞∈ ,0x  and 1>n , it holds 
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Combining Law 1 and Law 2, one obtains the following 

Corollary 1. In the specific case of n=2, for all ∈a , ] + [∞∈ ,0x  one has 
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Law 3. (Binomial theorem) For all ∈xba ,,  and ∈n , it holds 
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Law 4. For all ∈n { }0\ , ∈a  and [ )+∞∈ ,0x , it holds 
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a
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a
xdxex axnax

n
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Two specific cases are derived from Law 4, namely 

Corollary 2. (n=2) For all ∈a  and [ )+∞∈ ,0x , it holds 
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Corollary 3. (n=1) For all ∈a  and [ )+∞∈ ,0x , it holds 

( 12 −⋅=⋅∫ ax
a
edxex

ax
ax )     (3.4.2.7) 

3.4.3. Integration 
Insert the Essen and Froome formula, eq. (3.2.2.7) of paragraph 3.2.2.1, i.e. 
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 +⋅+−⋅=×−= 5748168.6464.77101,, 6   (3.4.3.1) 
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into eq. (3.4.1.20) and use the atmospheric models of paragraph 3.3. In a first step, consider the simplest set of 
models where only altitude and ground data dependence appears, i.e. 

( ) [ ] ( )[ ] ( 1110 1 zzTzzzTzT )−Θ⋅+−Θ−⋅⋅+= γ    (3.4.3.2) 

( ) ( )










 −−⋅=

pH
zzpzp 0

0 exp      (3.4.3.3) 
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According to the chosen models, eq. (3.3.4.1) to eq. (3.3.4.3), in eq. (3.4.3.2), T  is the reference temperature while 
in eq. (3.4.3.3) resp. eq. (3.4.3.4),  and e  are the pressure and the humidity at the GPS receiver’s location! The 
procedure now consists in inserting eq. (3.4.3.1) in the different terms of eq. (3.4.1.20) and evaluating each of them. 
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3.4.4. Integration of I1 
The first integral of eq. (3.4.1.20), , is 1I
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Insert eq. (3.4.3.1) in eq. (3.4.4.1) 
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3.4.4.1.Computation of I11 
11I  is defined as 
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Proceed with the following variable transformation 

zγT u: ⋅+= 0       (3.4.4.1.2) 

that is 

du
γ

dz
γ

T uz ⋅=−= 1      and        0      (3.4.4.1.3a,b) 

Insert eq. (3.4.4.1.2) and eq. (3.4.4.1.3) in eq. (3.4.4.1.1), 
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Regroup 

du
u

eepCI
zγT

zγT

Hγ
 u

C

Hγ
 T

p
p ∫

⋅+

⋅+

⋅
−

=

⋅ ⋅⋅⋅⋅=
10

00
111

0

:

01111
1   

��� ���� ��
γ

    (3.4.4.1.5) 

Use now Law 1 of paragraph 3.4.2 to evaluate the integral of eq. (3.4.4.1.5) 
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Use the Binomial law, Law 4 
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For simplicity, define the following series 
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Thus eq. (3.4.4.1.7) reduces to 
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3.4.4.2.Computation of I12 
12I  is defined as 
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Use the same variable transformation as before, i.e. eq. (3.4.4.1.2). This leads to 
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Developing the integral yields to 
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i.e., 
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Again use law 1 to evaluate the integral 
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Rewrite eq. (3.4.4.2.5) using the Binomial law, law 4 
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It is useful to define the series 
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Thus eq. (3.4.4.2.7) simplifies to 
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3.4.4.3. Computation of I13 

13I  has been defined as 
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Proceed with the variable transformation of eq. (3.4.4.1.2), i.e. 

zγT u ⋅+= 0:       (3.4.4.3.2) 

that is 
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γ
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Insert eq. (3.4.4.3.1) in eq. (3.4.4.3.2) and obtain 
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i.e., 
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Use Law 2 or Corollary 1 to compute the integral 
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Note that  is linearly proportional to , that is using eq. (3.4.4.2.4), 13I 12I
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II −=      (3.4.4.3.7) 

Therefore,  is completely known. Thus introducing the previous results for , one has 13I 12I
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3.4.4.4.Summary of I1 
Sampling eq. (3.4.4.2), eq. (3.4.4.1.9), eq. (3.4.4.2.8) and eq. (3.4.4.3.8), it follows that 
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This means that  is a function of 1I

( )ep HHzzTTepII ,,,,,,,,,    101000011 γθ=    (3.4.4.4.2) 

3.4.5. Integration of I2 
The second integral of eq. (3.4.1.20), , is 2I
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Follow the same idea as was done in paragraph 3.4.4., and introduce the Essen and Froome formula, eq. (3.4.3.1) in 
eq. (3.4.5.1) 
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3.4.5.1.Computation of I21 
21I  is defined as 
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The integral on the right hand side of eq. (3.4.5.1.1) is a simple integral. It can be directly integrated. One has 
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3.4.5.2.Computation of I22 
22I  is defined as 
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that is 
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Eq. (3.4.5.2.2) is also a simple integral, namely 
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3.4.5.3.Computation of I23 
23I  is defined as 
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i.e. 
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and integrate 
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3.4.5.4.Summary of I2 
Insert eq. (3.4.5.1.2), eq. (3.4.5.2.3) and eq. (3.4.5.3.3) in eq. (3.4.5.2). This results in 
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Thus  is a function of 2I
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( )ep HHzzzTepII ,,,,,,,,    10100022 ′= θ     (3.4.5.4.2) 

The difference in the variables between  and  lies in the fact that depends on 1I 2I 2I z′  while  does not. 
Conversely  depends on T  and  while  does not. 
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3.4.6. Integration of I3 
The third integral of eq. (3.4.1.20), , is 3I
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Insert the Essen and Froome formula, eq. (3.4.3.1) in eq. (3.4.6.1) 
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3.4.6.1.Computation of I31 
31I  is defined as 
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Rewrite in a simpler form 
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Retake the variable transformation used till then 

zγT u: ⋅+= 0       (3.4.6.1.3) 

that is 
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Insert eq. (3.4.6.1.3) and eq. (3.4.6.1.3) in eq. (3.4.6.1.1) and obtain 
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It follows that 
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The first integral on the right hand side of eq. (3.4.6.1.6) can be directly computed while one needs Law 1 and Law 
3 to perform the second integral. This yields to 
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 (3.4.6.1.7) 

Remark that the series in the second term on the RHS of eq. (3.4.6.1.7) is nothing else than ! Hence eq. 
(3.4.6.1.7) can be written simply as 
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3.4.6.2.Computation of I32 
32I  is defined as 
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Proceed with the now known variable transformation, eq. (3.4.6.1.3), 
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Separate Eq. (3.4.6.2.3) in two terms 
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Compute directly the first integral and use Law 1 and Law 3 to perform the second. 
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Note that the series of eq. (3.4.6.2.5) is just ! Further, rewrite  in order to simplify the expression. 12S 32I

( ) ( )



























+





⋅+
⋅+⋅+














−⋅⋅⋅−= ⋅

⋅+−
⋅

⋅+−

12
00

10
032132 ln

0010

S
zγT
zγTTeeHCI ee H

zT
H

zT

e
γ

γ
γ

γ

γ   (3.4.6.2.6) 

3.4.6.3.Computation of I33 
33I  is defined as 
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i.e. 
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Proceed with the now known variable transformation, eq. (3.4.6.1.3), 
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Separate the integral in two terms 
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Use Law 1 and Law 3 to perform the first integral and use Law 2 for n=2, i.e. Corollary 1 to compute the second. 
This gives 
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  (3.4.6.3.5) 

Note that the series is again . Thus Eq. (3.4.6.3.5) can be simplified to 12S
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3.4.6.4.Summary of I3 
Insert eq. (3.4.6.1.8), eq. (3.4.6.2.6) and eq. (3.4.6.3.6) in eq. (3.4.6.2). This yields to 
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 (3.4.6.4.1) 

Hence  depends on the following variables 3I

( )ep HHzzγTepII ,,,,,,,,    10100033 θ=     (3.4.6.4.2) 

Therefore,  and  have exactly the same variables. This was to be expected. 3I 1I

3.4.7. Integration of I4 
The fourth integral of eq. (3.4.1.20), , is 4I
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Insert the Essen and Froome formula, eq. (3.4.3.1) in eq. (3.4.7.1) 
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3.4.7.1.Computation of I41 
41I  is defined as 

dze
T

zpe
z

θθI
z

z

H
z

C

H
z

pp ∫
′ −

=

− ⋅⋅⋅⋅⋅⋅⋅−=
1

41

0

1

0

:

6

0

0
2

0
41 64.7710tansec :

������ ������� ��

  (3.4.7.1.1) 

that is 
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Integrate eq. (3.4.7.1.2) by part or use Corollary 3 to compute the integral 
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Eq. (3.4.7.1.3) can be rewritten as 
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3.4.7.2.Computation of I42 
42I  is defined as 
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i.e. 
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Eq. (3.4.7.2.2) can be either integrated by part or evaluated by using Corollary 3. This gives 
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In turn, this can be rewritten as 
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3.4.7.3.Computation of I43 
43I  is defined as 
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That is 
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Remark that the integral in eq. (3.4.7.3.2) is just  up to a constant. Using the results from the previous 
paragraph, one obtains directly  
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3.4.7.4.Summary of I4 
Insert eq. (3.4.7.1.4), eq. (3.4.7.2.4) and eq. (3.4.7.3.3) in eq. (3.4.7.2). This yields to 

( )

( )













⋅





+

′
−⋅





+⋅⋅⋅−














⋅





+

′
−⋅





+⋅⋅⋅+
















⋅










+

′
−⋅










+⋅⋅⋅−=

′−−

′−−

′−−

ee

ee

pp

H
z

e

H
z

e
e

H
z

e

H
z

e
e

H
z

p

H
z

p
p

e
H
ze

H
zH

T
eC

e
H
ze

H
zH

T
eC

e
H
ze

H
zH

T
pCI

11     

11     

11 

1

1

1

12
2

1

0
43

12

1

0
42

12

1

0
414

  (3.4.7.4.1) 

One can see that  depends on the following variables 4I

( )ep HHzzzTepII ,,,,,,,,    10100044 ′= θ     (3.4.7.4.2) 

Remark that  and  are functions of the same variables. 2I 4I

3.4.8. Integration summary 
Retake eq. (3.4.1.20) and insert the results from paragraphs 3.4.3 to 3.4.7. The path delay is thus 
P.T.O.
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(3.4.8.1)

3.4.9. Path delay variables and zenith path delay 
Combining eq. (3.4.4.4.2), eq. (3.4.5.4.2), eq. (3.4.6.4.2) and eq. (3.4.7.4.2), one can conclude that the path delay of 
eq. (3.4.8.1) depends on the following variables 

( )ep HHzzzγTTepθPDPD ,,,,,,,,,, 1010000 ′=    (3.4.9.1) 

However, the above formulation implies that the path delay depends on the temperature T . One should note that 
with the chosen temperature model, eq. (3.3.4.1), T  is the temperature at the altitude of reference and not the 
temperature at the GPS receiver’s location, i.e. at altitude ! That is 

0

0

0z

( )00 zTT ≠       (3.4.9.2) 

Indeed, it holds 
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( ) 000 zzTTT ref ⋅−== γ       (3.4.9.3) 

However, with the adopted pressure model, eq. (3.3.4.2), it holds 

pH
z

ref epp
0

0

−

⋅=       (3.4.9.4) 

and with the adopted atmospheric humidity model, eq. (3.3.4.3), one has 

pH
z

ref eee
0

0

−

⋅=       (3.4.9.5) 

Hence the path delay depends on the variables 

( )eprefrefref HHzzzγTTepPDPD ,,,,,,,,,, 1010 ′= θ     (3.4.9.6) 

A GPS receiver tracks simultaneously up to 12 GPS satellites at the same time. However for positioning only 4 GPS 
space vehicles (SV) are required. Usually the GPS receiver computes the path delays for each SV and then projects 
them to zenith with the mapping functions of paragraph 3.2.5. Hence only path delays projected to zenith are of 
interest. Therefore consider the special case where 

00 =θ deg at zenith     (3.4.9.7) 

It holds then 

 0tan          and          1sec 00 == θθ     (3.4.9.8) 

Insert eq. (3.4.9.5) in eq. (3.4.1.20). Remark that  and  vanish, i.e. 3I 4I

0         and         0 43 == II     (3.4.9.9) 

because the corresponding mapping function itself vanishes. Furthermore the coefficients of  are 1I
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and of  are 2I

pH
z

eC
0

64.7710 6
21 ⋅⋅= −      (3.4.9.13) 

eH
z

e.C
0

961210 6
22 ⋅⋅= −      (3.4.9.14) 

eH
z

eC
0

68.64574810 6
23 ⋅⋅⋅= −     (3.4.9.15) 

Instead of directly inserting this in eq. (3.4.8.1), one intends to rewrite eq. (3.4.8.1) in such a form that its physical 
origin is clear. Remind the Essen and Froome formula. It is composed of three terms respectively proportional to 

Tp , Te  and 2Te . The term proportional to Tp  does not depend on the water vapor content of the atmosphere 
and thus depends only on the so-called hydrostatic air. Conversely, the two other terms depend on the water vapor 
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present in the atmosphere and thus contribute to the so-called ‘wet’ path delay. Some scientists rather consider the 
term ( ) Tep −  in the formula of Essen and Froome, eq. (3.2.2.7) and call it the ‘dry’ refractivity. 
In the present case where the path delay is evaluated at zenith, the path delay is known as the Zenith Path Delay 
(ZPD) or Zenith Total Delay (ZTD)11. It is split in two terms corresponding to the contributions of the ‘dry’ air and 
of the ‘wet’ air to the path delay, i.e. 

ZWDZDDZPD +=:      (3.4.9.16) 

Thus define the Zenith Hydrostatic Delay (ZHD) as 

( ) ( 00: 021011 = )+== θIθIZHD     (3.4.9.17) 

and the Zenith Wet Delay (ZWD) as 

( ) ( ) ( ) ( 00
96.12
68.6400

96.12
68.64: 023022013012 =+=⋅+=+=⋅= θIθIθIθIZWD )   (3.4.9.18) 

The Zenith Dry Delay (ZDD) is then defined as 

( ) ( ) ( ) ( 0
96.12
64.7700

96.12
64.770: 022021012011 =⋅+=+=⋅+== θIθIθIθIZDD )   (3.4.9.19) 

Combine eq. (3.4.9.7) to eq. (3.4.9.12) and eq. (3.4.8.1) to obtain for the ZHD 
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The Zenith Wet Delay is 
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(3.4.9.21) 

Insert for the GPS receiver’s temperature, pressure and relative humidity respectively eq. (3.4.9.3), eq. (3.4.9.4) and 
eq. (3.4.9.5) in eq. (3.4.9.21). It holds 

 

                                                           
11 Do not confond the Zenith Total Delay with the Zenith Tropospheric Delay that takes only the influence of the 
lower part of the atmosphere, namely the troposphere, into account. 
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   (3.4.9.22) 

 
Combine eq. (3.4.9.19), eq. (3.4.9.20) and eq. (3.4.9.22) to compute the ZDD 
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Recall that eq. (3.4.9.16) holds, i.e. 

ZWDZDDZTD +=:      (3.4.9.24) 

With eq. (3.4.4.1.8) and eq. (3.4.9.3), the series  is thus 11S
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i.e. with Law 3 
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and with eq. (3.4.4.2.7) and eq. (3.4.9.3), the series  is  12  S
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With the Binomial law, Law 3, eq. (3.4.9.27) can be rewritten as 
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Hence the ZHD is a function of 

( )prefref HzzzγTTpZHDZHD ,,,,,,, 101 ′=     (3.4.9.29) 

the ZWD depends on 

( )erefref HzzzγTTeZWDZWD ,,,,,,, 101 ′=     (3.4.9.30) 

and the ZDD on 

( )eprefrefref HHzzzγTTepZDDZDD ,,,,,,,,, 101 ′=    (3.4.9.31) 

Therefore the ZTD is a function of 

( )eprefrefref HHzzzγTTepZTDZTD ,,,,,,,,, 101 ′=    (3.4.9.32) 

3.5. Summary 
The path delay (PD) calculations are based on the Fermat’s principle. The PD is given by the integral of the 
refractivity along the signal path through the atmosphere. The standard models of Essen and Froome (1951), Smith 
and Weintraub (1953) and Thayer (1974) compute the refractivity as function of the atmospheric temperature T, the 
atmospheric pressure p, and the partial water vapor e. Both the Hopfield and Saastamoinen models provide direct 
formulas for the path delay that can be used for comparison. 
 
Three distinct models have been derived for the atmospheric variables T, p and e. They are split into two sets, the 
first one being only one-dimensional (1D) with the altitude z as position variable. The second set is four-
dimensional (4D), depending on the horizontal position, altitude and time. 
 
The temperature model takes into account the possible condensation of water vapor. It represents a linear decrease 
of the temperature from the GPS’s receiver altitude up to the tropopause. From the tropopause up to the upper limit 
of integration, generally in the lower stratosphere, the temperature is assumed to be constant. 
 
The atmospheric pressure model consists in an exponential law based on the known barometric formula. It contains 
a scaling height. The partial water vapor pressure follows also an exponential law, derived from the Clausius-
Clapeyron equation. It takes into account the vaporization through the saturation water vapor. 
 
The path delay is computed via the integration of the refractivity through the spherical symmetric atmosphere 
between the GPS’s receiver location and the GPS space vehicle. The refractivity is modeled with the Essen and 
Froome formula where the temperature model, pressure model and the partial water vapor model previously 
generated have been inserted. 
 
The resulting path delay is calculated at zenith and then split in two terms in order to ease its physical interpretation. 
The Zenith Path Delay (ZPD) – also called the Zenith Total Delay (ZTD) - is made up of a dry term, the Zenith Dry 
Delay (ZDD) and of a wet term, the Zenith Wet Delay (ZWD). The Zenith Hydrostatic Delay (ZHD) has also been 
computed, as it is often a quantity of interest. The relationship between the ZPD, ZPD, ZHD, ZHD, ZWD and the 
Essen and Froome formula is outlined on Figure 16 on next page. 
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Figure 16. ZPD, ZHD, ZDD and ZWD relationship with the Essen and Froome formula 

 
The three zenith delays depend on a set of 10 parameters: the reference pressure, the reference humidity, the 
reference temperature, the temperature at the tropopause, the tropospheric temperature gradient (lapse rate), the 
GPS’s receiver altitude, the tropopause height, the upper limit of integration, the pressure scale height and the 
humidity scale height. 
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4.Test and evaluation 
The path delay (PD) models of Chapter 3 are used to generate path delay charts and predictions over the Swiss 
territory. In a first step these PD models are tested on reference values for each of the ten parameters in order to 
evaluate their plausibility. In a second step the partial derivatives that fill the design matrix of the system are 
computed and tested. Finally the model is implemented in collocation software and evaluated on a Swiss regional 
campaign. 

4.1. Zenith Path Delay testing 
The Zenith Hydrostatic Delay (ZHD), the Zenith Dry Delay (ZDD) and Zenith Wet Delay (ZWD) have been 
derived in Chapter 3. These are eq. (3.4.9.20), eq. (3.4.9.23) and eq. (3.4.9.22). They are tested here on reference 
values for the different parameters. 

4.1.1. Parameter reference values 
The International Standard Atmosphere (ISA) defines reference equations and values for the behavior of the 
different layers of the atmosphere. For detailed information on ISA refer to [Lertes, 2000]. The reference pressure, 
humidity and temperature at MSL are set by ISA. It is the same of the temperature at tropopause and of the lapse 
rate. 
 
The GPS receiver’s location has been chosen at the Zimmerwald Observatory, a few miles South of the Swiss 
capital of Berne. This site presents many advantages. Among others it is assumed to be the best determined point in 
Switzerland with an altitude of 905 m Mean Sea Level (MSL). It is also part of the International GPS Service (IGS) 
and harbors a permanent GPS reference station. 
 
The tropopause height varies usually between 8000 m and 12000 m for European latitudes. According to [Troller et 
al., 2002], the tropopause is situated at around 11000 m MSL over the Swiss territory, although seasonal variations 
are observed.  
 
The upper limit of integration was set at 15000 m MSL as increasing it during preliminary studies didn’t improved 
significantly the results. It is referred to paragraph 1.4.5. The pressure scale height normally stretches between 8000 
m and 11000 m MSL. In Switzerland, it is known to vary few and observations have shown that it is centered on 
9000 m MSL. The humidity scale height spans over the 1500 m to 5000 m MSL range. It depends strongly on the 
location. It was arbitrary set at 3000 m MSL. 
 
These ten parameters are summarized in Table 10 hereunder: 
 

              Parameters  
Symbol Value Unit [SI] Identification Remark 

refp  1013.25 hPa Reference pressure ISA reference value 

refe  10 hPa Reference humidity ISA reference value 

refT  288.15 K Reference temperature C15°=refT  at MSL (0 m) 
as ISA reference value 

1T  216.64 K Temperature at tropopause C51.561 °−=T  at  m 110001 =z
as ISA reference value 

γ  -301501.6 ⋅−  -1mK ⋅  Tropospheric temperature gradient 
(Lapse rate) 

ISA reference value 

0z  905 m  GPS’s receiver altitude Zimmerwald altitude MSL 

1z  11000 m  Tropopause height w.r.t. MSL 
z′  15000 m  Upper limit of integration w.r.t. MSL 

pH  9000 m  Pressure scale height w.r.t. MSL 

eH  3000 m  Humidity scale height w.r.t. MSL 

Table 10. Parameters reference values. 
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4.1.2. Path Delay results 
The Zenith Hydrostatic Delay (ZHD), Zenith Dry Delay (ZDD), Zenith Wet Delay (ZWD), and Zenith Path Delay 
(ZPD) have been computed for the parameter values of Table 10. As summarized in Table 11, the following results 
were obtained. 
 

Symbol Value Unit [SI] Identification 
ZHD 2.0445 m  Zenith Hydrostatic Delay 
ZDD 2.0384 m  Zenith Dry Delay 
ZWD 0.1240 m  Zenith Wet Delay 
ZPD 2.1624 m  Zenith Path Delay 

Table 11. Zenith Delays evaluated at Zimmerwald with parameter reference values. 

The values obtained for the ZHD, ZDD, ZWD and ZPD are in good agreement with observations made at 
Zimmerwald. Indeed the ZHD was expected to be around 2 meters. The ZDD should be slightly less than the ZHD 
as the term corresponding to the first Te  term in the Essen and Froome formula, eq. (3.2.2.7), has been subtracted. 
 
The Zenith Wet Delay is generally observed in the centimeter range for European latitudes. Independent studies 
such as the Geodesy and Geodynamics Lab at the Swiss Federal Institute of Technology and the Federal Office of 
Topography’s COMEDIE (Collocation of Meteorological Data for Interpolation and Estimation of Tropospheric 
Path delays) have found ZWD in the 20-25 centimeters range for the Zimmerwald site. For further information on 
COMEDIE, refer to [Troller et al, 2001]. 
 
The Zenith Path Delay should be slightly more than the Zenith Hydrostatic Delay while being less than the sum of 
the ZHD and ZWD. According to the International GPS Service’s Geoforschungszentrum Postdam (GFZ Postdam), 
Germany, the ZPD observed at Zimmerwald are in the 2.15-2.20 meters range for the year 2001. For full data, refer 
to [Gendt, 2002]. 
 
It is now of interest to study the variations of the Zenith Delays with respect to some of the parameters of Table 10. 

4.1.3. Path Delays as function of  0z

The ZHD, ZDD, ZWD and ZPD have been computed for the parameter reference values of Table 10. The whole 
Swiss territory is comprised between 195 meters MSL and 4554 meters MSL. The lowest point is located in Tessin 
near the city of Locarno, the highest point is the Monte Rosa, South of Zermatt in Wallis. Therefore, the GPS’s 
receiver altitude  has been varied over the range. 0z

metersin    50000 0 ≤≤ z      (4.1.3.1) 
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Figure 17. ZHD and ZPD as function of the GPS receiver’s altitude MSL  0z
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The ZHD and ZPD are plotted together on Figure 17 on the previous page. 
 
As expected, both the ZPD and ZHD decrease with . Indeed, the higher one locates the GPS receiver, the shorter 
is the atmosphere thickness, and the less distance should the signal travel through the atmosphere. Further, the 
higher the less water vapor there is left above the GPS receiver’s location. Indeed, the water vapor is mostly found 
in lower altitudes. 

0z

 
The variation of the ZPD with  is similar to the variation of the ZHD. This can be explained as follows. The main 
difference between the ZHD and ZPD originates from the partial water vapor terms, the e-terms, in the Essen and 
Froome formula. Refer to Figure 16. Thus the difference is due to the presence of water vapor in the atmosphere. 
However, one should remark that the pressure in the first term of the Essen and Froome formula is the total 
atmospheric pressure and hence partly accounts for the humidity of the atmosphere. 

0z

 
The ZHD and ZDD should have a similar behavior with respect to . Thence their difference is plotted on Figure 
18. 

0z
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Figure 18. ZHD and ZDD difference as function of the GPS receiver’s altitude MSL  0z

The difference is in the millimeter range thus confirming the matching between both quantities. It diminishes with 
the altitude of the GPS receiver as the GPS signal has fewer atmospheric layers to cross. At that point, one should 
concentrate on the water vapor present in the air. The ZWD as function of  is plotted on Figure 19 on next page. 0z
 
The majority of the atmospheric water vapor is situated in the lower troposphere. Indeed up to 50% is commonly 
encountered at altitude less than 4000 meters MSL. Compare with the data of Table 13. The ZWD is proportional to 
the partial water vapor pressure and thus a very good measure of the water vapor content of the atmosphere. It is 
used as basic observable in GPS Meteorology. Refer to [Rocken et al., 1993], [Niell, 1996], [Businger et al., 1996], 
[Rocken et al., 1997], and [Davis et al. 1998] for a review of the main features of GPS Meteorology. 
 
In the next paragraph, one is interested in varying the upper limit of integration z′  in order to determine whether or 
not one should consider the lower and mid-stratosphere. 
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Figure 19. ZWD as function of the GPS receiver’s altitude MSL  0z

4.1.4. Path Delays as function of z′  
As was done in the previous paragraph for the GPS receiver’s altitude , vary the upper limit of integration 0z z′ . 
Referring to Table 10, the tropopause height has been a priori set to meters MSL. Therefore the lower 
limit for 

01100z1 =
z′  is 11000 meters MSL. As can be seen on Figure 12, the temperature of the atmosphere remains 

approximately stable and constant up to 35000 meters MSL. This will be the maximum limit for z′ . Thus one let 
z′  vary in the altitude range of 

metersin    3500011000 ≤′≤ z     (4.1.4.1) 

The ZHD and ZPD are plotted on Figure 20 hereunder. 
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Figure 20. ZHD and ZPD as function of the upper limit of integration z′  for  MSL m 9050 =z
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It can be seen on Figure 20 that both the ZHD and the ZPD increase with the upper limit of integration. Apparently 
they seem to grow at the same rate. This is due to the fact that the third and fourth terms of the ZWD, i.e. the 
seventh and height terms of the ZPD are small and vary few with z′ . This is also observed on Figure 22. The 
decision to take 15000 meters MSL as default value for the upper limit of integration is motivated by the fact that 
more than 90% of the atmospheric water vapor is below that altitude and nearly 80% of path delay is induced by 
layers spanned between the mean sea level and that altitude. This problem will be approached in more details later. 
 
The ZHD and ZDD are compared on Figure 21. Their difference decreases of 0.3 millimeters if the upper limit of 
integration is increased. This means that there is less influence of the water vapor above the stratopause. This is in 
good agreement with the presence of the WV mostly in the lower atmosphere, namely the troposphere. 
 
The ZWD as function of z′  is plotted on Figure 22, also on next page. It increases with z′  in the range of eq. 
(4.1.4.1) only of 6.5 mm, that is only by approximately 5%. This implies that the ZWD is already stable at 11000 
meters MSL. Indeed, as it is a direct measure of the WV content of the atmosphere, it is proportional to . Most 
of the WV is below that altitude. Therefore the ZWD shouldn’t be very sensitive to variations of the upper limit of 
integration. 
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Figure 21. ZHD and ZDD difference as function of the upper limit of integration z′  in the stratosphere  
and for  MSL m 9050 =z

As mentioned above, one is interested in determining the relative influence of the upper limit of integration z′  on 
the different path delays at zenith. The relative change of the ZHD, ZDD, ZWD and ZPD with z′  is plotted on 
Figure 23 on next page. The reference (100%) value is set at 35000 meters MSL. The 90% limit for the ZPD is 
achieved at about 20420 meters for all zenith delays and for ZHD and ZDD at approximately 20750 meters. At that 
altitude, one has already nearly 100% of the wet delay. As one could foresee, the 90% ZWD limit is much lower. It 
is at 8870 meters MSL. On the other side, at a threshold altitude of 15000 meters, just 79% of the ZHD and ZDD 
are obtained while 80% of the ZPD is achieved. However, one has already 98.5% of the ZWD! For this reason, it 
has been decided to set the default value of the upper limit of integration at 15000 meters MSL. Note that the ZHD 
and ZDD are almost superposed. 
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Figure 22. ZWD as function of the upper limit of integration z′  in the stratosphere  
and for  MSL m 9050 =z
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The results obtained are summarized in Table 12 hereunder. The 80 % and 90% level are explicitely stated as these 
often are good indicators for the spatial distribtion of the path delay sources. 
 

Criterion  Observable   
 ZHD ZDD ZWD ZPD 

80% level 15480 m 15140 m  6530 m12 15490 m 
90% level 20740 m 20760 m 8870 m13 20420 m 

15000 m MSL 78.79 % 78.74 % 98.66 % 79.66 % 

 

Table 12. 80% and 90% level for path delays as function of altitude, and 15000 m MSL threshold 

4.1.5. Path Delays as function of  1z

On one side one wants to know the influence of the tropopause on the various path delays at zenith, and on the other 
the influence of the upper limit of integration in the troposphere. Therefore the evolution of PDs as function of the 
upper limit of integration  (identical to the tropopause height if 1z 110008000 1 ≤≤ z  meters MSL) is investigated 
in this paragraph.  
 
From Table 10, one knows that the default altitude for the GPS receiver is the altitude of Zimmerwald, i.e. at 905 
meters MSL. Hence the lower limit for the variation of  is taken at 1000 meters MSL. The upper limit is set at the 
default value for the tropopause height. Thus one has 

1z

metersin     110001000 1 ≤≤ z     (4.1.5.1) 

The ZHD and ZPD are plotted together on Figure 24. At European latitudes, the tropopause is usually observed at 
an altitude varying between 8000 meters MSL and 12000 meters MSL. With respect to this fact, one is interested 
only in the right part of Figure 24, starting with a tropopause height  of 8000 meters MSL. The ZHD and ZPD  1z
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Upper limit of integration [m]

Ze
ni

th
 D

el
ay

 [m
]

ZPD
ZHD

Figure 24. ZHD and ZPD as function of the upper limit of integration  in the troposphere and for 
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12To obtain this value, refer to paragraph 4.1.5, Figure 27. 
13 Analogous to 12. 
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Figure 25. ZHD and ZDD difference as function of upper limit of integration  in the troposphere and for 
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have a like wise attitude toward . The slight offset of the ZPD is due to the water vapor present in the atmosphere 1z
 
As it was the case for the GPS receiver’s altitude , the ZHD and ZDD should perform in the same way with 
respect to . Refer to Figure 25 above. Their increase seems to be of a logarithm type although it is not solely due 
to that. Both the  and  series generate this offset as can be guessed when comparing eq. (3.4.9.20) and eq. 
(3.4.9.23). 

0z

1z

11S 12S

 
The Zenith Wet Delay as function of the tropopause height  is sketched on Figure 26. It increases rapidly for low 
values of  and then seems to stabilize itself. The 10 centimeters threshold is reached at 7970 meters MSL. This 
appears reasonable as one usually measures ZWD of that magnitude in the field while the tropopause is observed 
near its approximate lower limit of 8000 meters MSL. 

1z

1z

 
As follow-on of Figure 23, the relative change of the ZHD, ZDD, ZWD and ZPD with the tropopause height is 
investigated with Figure 27 on next page. The value of the observable with a default tropopause height of   meters 
MSL and a maximum upper limit of integration of   meters MSL serves as reference for the scaling. 
 
The 50% threshold for all path delays is achieved at around 7750 meters MSL for the ZPD while the ZHD is 
slightly lower. However, the ZDD, which does not contain any humidity terms, is reached 300 meters below. On 
the other hand, half of the ZWD is already taken into account at altitudes above 3500 meters MSL! This indeed 
very low for a mountainous country such as Switzerland where high peaks are usually above 4000 meters.  
 
The percentage of path delays generated for the default tropopause height of 11000 meters MSL is also stated in 
Table 13. At that height one has approximately computed 65% of the Zenith Total Delay. Hence one absolutely 
needs a two-step temperature model as this shows that the influence of the lower stratosphere is not negligible! 
 

Criterion  Observable   
 ZHD ZDD ZWD ZPD 

50% level 7730 m 7440 m  3340 m 7750 m 
11000 m MSL 65.48 % 66.77 % 94.92 % 65.39 % 

 Table 13. 50% level for path delays as function of altitude, and 11000 m MSL threshold 
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Figure 26. ZWD as function of the upper limit of integration  in the troposphere and for  1z MSL m 9050 =z
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4.1.6. Path Delays as function of  pH

The pressure scale height  is an important parameter. The ZHD, ZDD and ZPD are very sensitive to its 
variation. According to observations from the Swiss network of automatic stations ANETZ operated by the Swiss 
Meteorological Institute (SMA - Schweizer Meteorologische Anstalt), the pressure scale height is located on 
average at about 9000 meters MSL for Switzerland. Therefore this has been chosen as the default value. Refer to 
[Troller et al, 2001] for further details on ANETZ. 

pH

 
Meteorological observations show that the pressure scale height is normally situated between 7000 meters MSL and 
12000 meters MSL for European latitudes, depending on the season. Thus, it has been varied over the range 

metersin    120007000 ≤≤ pH      (4.1.6.1) 

The ZHD and ZPD are plotted on Figure 28 on next page. Their increase is homogeneous over the whole pressure 
scale height range. Indeed they grow at exactly the same rate. This is absolutely normal! Indeed one should note 
that the Zenith Wet Delay does not depend on the pressure and thus on . This fact is again explicitly stated on 
Figure 29. The difference between the ZHD and ZDD is constant. It corresponds exactly to the second term of the 
Essen and Froome formula, which is a constant with respect to . The ZWD does not depend on . It is 
therefore not plotted. 

pH

pH pH

4.1.7. Path Delays as function of  eH

As was done in the previous paragraph above for the pressure scale height, one computes now the path delays as 
function of the partial water vapor scale height – or humidity scale height for short - . Observations from the 
ANETZ network show that it varies between  

eH

metersin    60001000 ≤≤ eH     (4.1.7.1) 

It is always lower as . This is due to the fact that the humidity is expressed in terms of partial water vapor 
pressure. The latter is less than the sum of all partial pressures, according to Dalton’s law, and thus less than the 
total pressure.  

pH

 
The ZDD and ZPD are plotted on Figure 30 on next page. 
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Figure 28. ZHD and ZPD as function of the pressure scale height  and for  pH MSL m 9050 =z
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Figure 29. ZHD and ZDD difference as function of the pressure scale height  and for  pH MSL m 9050 =z
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Figure 30. ZDD and ZPD as function of the humidity scale height  and for  eH MSL m 9050 =z
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Figure 31. ZWD as function of the humidity scale height  and for  eH MSL m 9050 =z

As can be seen on Figure 30, the ZDD diminishes as the humidity scale height increases while it is the opposite for 
the ZPD! Indeed the path delay due to the atmospheric water vapor, i.e. the ZWD of Figure 31, increases with . 
The ZDD corresponds to the two first terms of the Essen and Froome formula, c.f. Figure 16, and hence to the 
difference between the atmospheric pressure and the first partial water vapor pressure term. This e-term being 
negative, it let the ZDD decreases with . On the other hand, the ZWD is directly proportional to an exponential 
of the inverse of  and thus increases with it. Therefore the ZPD increases with . Note that the ZHD does not 
depend on . 

eH

eH

eH eH

eH

4.1.8. Path Delay testing summary 
The Zenith Hydrostatic Delay (ZHD), the Zenith Dry Delay (ZDD) and Zenith Wet Delay (ZWD) have been 
derived in Chapter 3 via eq. (3.4.9.20), eq. (3.4.9.23) and eq. (3.4.9.22). They have been tested on reference values 
for the ten different parameters. These reference values are summarized in Table 10. From a point of view of the 
order of magnitude, the results obtained are in good agreement with observations made by the Automated GPS 
Network Switzerland (AGNES) operated by the Swiss Federal Office of Topography (L+T). 
 
In view of these encouraging results, the partial derivatives of the ZDD and ZWD with respect to the parameters of 
Table 10 are computed and evaluated in the coming paragraph. 

4.2. Partial derivatives testing 
The path delay partial derivatives were computed in Appendix B following a step-by-step approach. The main 
results are restated here. It is referred to Appendix B for more details. 
 
The dependency of the different partial derivatives of the Zenith Dry Delay and of the Zenith Wet Delay with 
respect to the ten parameters is summarized in Table 14. 
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    Parameters        

Function refp  refe  refT  1T  γ  0z  1z  z′  pH  eH  Eq. Nr. 
ZDD × × × × × × × × × × (3.4.9.23) 
ZWD  × × × × × × ×  × (3.4.9.22) 

refpZDD ∂∂    × × × × × × ×  (B.4.1.1) 

refeZDD ∂∂    ×  × × × ×  × (B.4.2.1) 

refTZDD ∂∂  × × ×  × × ×  × × (B.4.3.2) 

1TZDD ∂∂  × ×  ×   × × × × (B.4.4.2) 
γZDD ∂∂  × × ×  × × ×  × × (B.4.5.3) 

0zZDD ∂∂  × × ×  × ×   × × (B.4.6.5) 

1zZDD ∂∂  × × ×  ×  ×  × × (B.4.7.4) 
zZDD ′∂∂     ×    × × × (B.4.8.3) 

pHZDD ∂∂  ×  × × × × ×  ×  (B.4.9.5) 

eHZDD ∂∂   × × × × × × ×  × (B.4.10.5) 

refpZWD ∂∂             
refeZWD ∂∂    × × × × × ×  × (B.5.1.1) 

refTZWD ∂∂   × ×  × × ×   × (B.5.2.3) 

1TZWD ∂∂   ×  ×   × ×  × (B.5.3.3) 
γZWD ∂∂   × × × × × ×   × (B.5.4.6) 

0zZWD ∂∂   × ×  × ×    × (B.5.5.5) 

1zZWD ∂∂   × × × ×  ×   × (B.5.6.4) 
zZWD ′∂∂   ×  ×    ×  × (B.5.7.2) 

pHZWD ∂∂             
eHZWD ∂∂   × × × × × ×   × (B.5.8.6) 

Table 14. Parameter dependencies of the partial derivatives 

Due to the linearity of the derivation operations, the partial derivative of the Zenith Path Delay with respect to one 
of the ten parameters is just the sum of the partial derivatives of the ZDD and ZWD with respect to that very same 
parameter. Therefore one has to add the results for the ZDD and ZWD and one obtains the behavior of the ZPD. 
 
The units of the partial derivatives of the ZPD are given in Table 15. These are the same for the ZWD. 
 

Partial derivative Unit 
refpZPD ∂∂  1hPam −⋅  

refeZPD ∂∂  1hPam −⋅  

refTZPD ∂∂  1Km −⋅  

1TZPD ∂∂  1Km −⋅  
γZPD ∂∂  12 Km −⋅  
0zZPD ∂∂  No unit 

1zZPD ∂∂  No unit 
zZPD ′∂∂  No unit 

pHZPD ∂∂  No unit 

eHZPD ∂∂  No unit 

Table 15. Units of the ZPD’s partial derivatives 
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4.2.1. ZDD partial derivatives results 
For the default parameter values of Table 10, one has obtained the results of Table 16 for the ZDD partial 
derivatives. Note that in the second column, the results are stated for  meters MSL, i.e. for a GPS receiver 
located at Zimmerwald, while in the last column the results are given for  meters MSL, i.e. for a GPS 
receiver located at the Mean Sea Level. 

9050 =z
z 00 =

 
Partial derivative Value  

 9050 =z  m MSL 00 =z  m MSL 

refpZDD ∂∂  1-3 hPam 102.01775 −⋅⋅  1-3 hPam 102521.2 −⋅⋅  

refeZDD ∂∂  1-4 hPam 1009196.6 −⋅⋅  1-4 hPam 1021766.8 −⋅⋅−  

refTZDD ∂∂  1-3 Km 106.69976 −⋅⋅−  1-3 Km 1052478.7 −⋅⋅−  

1TZDD ∂∂  1-3 Km 101.59549 −⋅⋅−  1-3 Km 1059549.1 −⋅⋅−  
γZDD ∂∂  12 Km 22.9908 −⋅−  12 Km 5765.81 −⋅−  
0zZDD ∂∂  -4102.50007 ⋅−  -41070319.2 ⋅−  
1zZDD ∂∂  -71082723.1 ⋅−  -71082723.1 ⋅−  

zZDD ′∂∂  -51086108.6 ⋅  -51086108.6 ⋅  
pHZDD ∂∂  -4101.64685 ⋅  -4101.65993 ⋅  

eHZDD ∂∂  -6102.29156 ⋅−  -61039344.2 ⋅−  

Table 16. ZDD partial derivatives results for  m MSL and  m MSL 9050 =z 00 =z

Remark that 1TZDD ∂∂ , 1zZDD ∂∂  and zZDD ′∂∂  remain unchanged as one varies  as they do not depend on 
the GPS receiver’s altitude. This can be clearly seen in Table 14 on the previous page. The values are relatively 
low. As this might present a singularity during the inversion of the design matrix A, it is required to study the 
dependence on  of each of the partial derivatives. 

0z

0z

4.2.2. ZDD partial derivatives as function of  0z

Each of the ten ZDD partial derivatives have been evaluated for the GPS receiver’s altitude varying in the range 

metersin     50000 0 ≤≤ z      (4.2.2.1) 

The ZDD partial derivatives with respect to the reference pressure and reference humidity are plotted on Figure 32. 
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Figure 32. refpZDD ∂∂  and refeZDD ∂∂  as function of the GPS receiver’s altitude  0z
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Figure 33. refTZDD ∂∂  and 0zZDD ∂∂  as function of the GPS receiver’s altitude  0z

Although the pressure p and the partial water vapor pressure e decrease with the altitude and with the GPS 
receiver’s altitude, both partial derivatives of Figure 32 show an opposite behavior with respect to . This is due to 
the fact that both series  and  react differently to variations of . Indeed,  is bigger than  and also 
negative. It decreases sharply with  and thus let 

0z

11S 12S 0z 12S 11S

0z refeZDD ∂∂  increase while this is not the case for 

refpZDD ∂∂ . C.f. eq. (B.4.1.1) and eq. (B.4.2.1). 
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 Figure 34. γZDD ∂∂  as function of the GPS receiver’s altitude  0z
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Figure 33 represents the bearing of refTZDD ∂∂  and 0zZDD ∂∂  as function of . Both have a very small 
curvature and thus increase almost linearly with the GPS receiver’s altitude, although the former grows faster. Their 
amplitudes stretch over a restrained range of order of magnitude of 10  respectively 10 . 

0z

-13 Km ⋅− 4−
refTZDD ∂∂  is 

approximately 40 times larger than 0zZDD ∂∂ . 
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Figure 35. pHZDD ∂∂  and eHZDD ∂∂  as function of the GPS receiver’s altitude  0z
 
Figure 34 gives the variation of γZDD ∂∂  with . It has the largest amplitude of all partial derivatives and is 
rather sensible to . This convex curve reaches its minimum for  meters MSL. It therefore should not 
hinder the inversion of the design matrix. 

0z

0z 29400 =z

 

pHZDD ∂∂  and eHZDD ∂∂  as function of the GPS receiver’s altitude  are plotted on Figure 35. The former is 

nearly 300 times larger than the latter while showing an opposite behavior with respect to . There seems to be an 
axis of symmetry but a careful approach demonstrates that it is not the case. The order of magnitude of 

0z

0z

eHZDD ∂∂  

is 10  and thus very small. This is of concern for the inversion of the design matrix A. 7−

 
Remark that 1TZDD ∂∂ , 1zZDD ∂∂  and zZDD ′∂∂  do not depend on the GPS receiver’s altitude  and 
therefore are constants with respect to this parameter. As a matter of fact, there are not plotted here for this very 
reason. Their values can be obtained from Table 16. 

0z

 
Finally the relative change of the ZDD partial derivatives with  discussed above is plotted on Figure 36. 0z
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Figure 36. Relative change of ZDD partial derivatives as function of the GPS receiver’s altitude  0z

The partial derivatives reference values (100%) have been taken at the mean sea level, i.e. at 0 meters MSL. The 
GPS receiver’s default altitude is still  meters MSL. 9050 =z γ∂∂ZDD  has it own scale on the right hand side of 
Figure 36 as it relatively increases with  up to 2940 meters MSL. When referring to Figure 34, one should take 
great care with the sign of the function of consideration. 

0z

 
It is now intended to study the variations of the different Zenith Wet Delay partial derivatives with . 0z

4.2.3. ZWD partial derivatives results 
For the default parameter values of Table 10, one has obtained the results of Table 17 for the ZWD partial 
derivatives. As was done for the ZDD, the results in the second column are stated for  meters MSL, i.e. for 
a GPS receiver located at Zimmerwald, while in the last column the results are given for  meters MSL, i.e. 
for a GPS receiver located at the Mean Sea Level. 

9050 =z

0 =z 0

 
Partial derivative Value  

 9050 =z  m MSL 00 =z  m MSL 

refeZWD ∂∂  1-2 hPam 1013547.1 −⋅⋅  1-2 hPam 104745.1 −⋅⋅  

refTZWD ∂∂  1-2 Km 1006688.7 −⋅⋅  1-2 Km 1037776.9 −⋅⋅  

1TZWD ∂∂  1-3 Km 1005193.4 −⋅⋅−  1-5 Km 1005193.4 −⋅⋅−  
γZWD ∂∂  12 Km 339.30033 −⋅−  12 Km 4514.0110 −⋅−  
0zZWD ∂∂  -51028161.3 ⋅−  -51025318.4 ⋅−  
1zZWD ∂∂  -111083412.1 ⋅  -111083412.1 ⋅  

zZWD ′∂∂  -71013632.5 ⋅  -71013632.5 ⋅  
eHZWD ∂∂  -51025515.5 ⋅  -51041825.5 ⋅  

Table 17. ZWD partial derivatives results for  m MSL and  m MSL 9050 =z 00 =z
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Remark that 1TZWD ∂∂ , 1zZWD ∂∂  and zZWD ′∂∂  remain unchanged as one varies  as they do not depend on 
the GPS receiver’s altitude. The same partial derivatives for the ZDD showed a similar behavior. This can be 
clearly seen in Table 14. The values of the different ZWD partial derivatives are generally low with 

0z

γZWD ∂∂  as 
sole exception. Following the procedure used for the ZDD partial derivatives, study now the dependence on  of 
each of the partial derivatives. 

0z

4.2.4. ZWD partial derivatives as function of  0z

First of all note that the ZWD does depend neither on  nor on . Refer to Table 14. There are hence two 
partial derivatives less to compute than for the ZDD. Each of the 8 ZWD partial derivatives have been evaluated for 
the GPS receiver’s altitude varying in the range 

refp pH

metersin     50000 0 ≤≤ z      (4.2.2.1) 

The ZWD partial derivatives with respect to the reference humidity and reference temperature are plotted on Figure 
37. 
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Figure 37. refeZWD ∂∂  and refTZWD ∂∂  as function of the GPS receiver’s altitude  0z

The behavior of refeZWD ∂∂  and refTZWD ∂∂  is identical with respect to the GPS receiver’s altitude . The 

amplitude of the former is one time and half larger than the latter. Both decrease with  and tend to zero for large 
. However 

0z

0z

0z refTZWD ∂∂  tends certainly to zero for values of  less than 11000 meters MSL. Indeed, at 

 meters MSL, i.e. at tropopause height, the temperature becomes constant and thus 
0z

110001 == z0z refTZWD ∂∂  

vanishes. In the case of refeZWD ∂∂ , it becomes a constant equal to .  -14 m 1030475 ⋅ − hPa⋅.4
 
Figure 38 represents the bearing of eHZWD ∂∂  and 0zZWD ∂∂  with the GPS receiver’s altitude . 0z
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Figure 38. eHZWD ∂∂  and 0zZWD ∂∂  as function of the GPS receiver’s altitude  0z

 
While eHZWD ∂∂  is positive and decreases with , 0z 0zZWD ∂∂  is negative and increases. But both tend to zero 
for large values of . This is due to the fact that the integration path becomes shorter and eventually vanishes. 
Both partial derivatives have amplitudes of similar order of magnitude.  

0z

 
The variation of the ZWD partial derivatives with respect to the tropospheric temperature gradient  is plotted on 
Figure 39 on next page. It is negative and decreases as the GPS receiver’s altitude  increases. As one could 
expect, the maximum amplitude is encountered at the Mean Sea Level (MSL) as the integration path is maximum at 
that altitude and the atmospheric water vapor is mainly located in the troposphere. 

γ

0z

γZWD ∂∂  has a completely 
different aspect than γZDD ∂∂ . It is probably due to the fact that it contains only terms proportional to e  and is 

not a function of the reference pressure . In order to check this, 
ref

refp γZHD ∂∂  is plotted on Figure 40, also on next 
page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P.T.O.
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Figure 39. γZWD ∂∂  as function of the GPS receiver’s altitude  0z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-39

-37

-35

-33

-31

-29

-27

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

GPS receiver's altitude MSL [m]

dZ
H

D
/d

ga
m

m
a 

[m
^2

/K
]

dZHD/dgamma

Figure 40. γZHD ∂∂  as function of the GPS receiver’s altitude  0z
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Figure 41. Relative change of the ZWD partial derivatives as function of the GPS receiver’ s altitude 

The relative change of the ZWD partial derivatives is spread in two amplitude groups. eHZWD ∂∂  and γZWD ∂∂  
are less sensitive to a small shift in  at low altitudes than the three others which are concentrated in the same 
bundle. Due to the fact that their variation is almost identical, singularities in the inversion of the design matrix A 
should be expected with high probability. 

0z

1TZWD ∂∂ , 1zZWD ∂∂  and zZWD ′∂∂  are not plotted on Figure 41 as 
they do not depend on . 0z

4.2.5. ZPD partial derivatives results 
Recall that the Zenith Path Delay (ZPD) is just the sum of the ZDD and the ZWD, according to eq. (3.4.9.16). 
Hence one just has to sum the contributions of both the dry and wet part of the zenith delay partial derivatives. For 
all ten parameters of Table 10, the results of Table 18 have been obtained. 
 

Partial derivative Value  
 9050 =z  m MSL 00 =z  m MSL 

refpZPD ∂∂  1-3 hPam 102.01775 −⋅⋅  1-3 hPam 102521.2 −⋅⋅  

refeZPD ∂∂  1-2 hPam 1007455.1 −⋅⋅  1-2 hPam 1039232.1 −⋅⋅−  

refTZPD ∂∂  1-3 Km 106.69976 −⋅⋅−  1-3 Km 1052478.7 −⋅⋅−  

1TZPD ∂∂  1-3 Km 101.63601 −⋅⋅−  1-3 Km 101.63601 −⋅⋅−  
γZPD ∂∂  12 Km 26.3924 −⋅−  12 Km 0841.22 −⋅−  
0zZPD ∂∂  -4102.82823 ⋅−  -4101285.3 ⋅−  
1zZPD ∂∂  -71082704.1 ⋅−  -71082704.1 ⋅−  

zZPD ′∂∂  -51091244.6 ⋅  -51091244.6 ⋅  
pHZPD ∂∂  -4101.64685 ⋅  -4101.65993 ⋅  

eHZPD ∂∂  -5100260.5 ⋅−  -5101789.5 ⋅  

Table 18. ZPD partial derivatives results for  m MSL and  m MSL 9050 =z 00 =z
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Remark that 1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  remain unchanged as one varies the GPS receiver’s altitude 
. This is a real hindrance to a smooth inversion of the design matrix A. Indeed A is filled with all partial 

derivatives as the system is linearized. The influence of the ZWD on the ZPD partial derivatives is clearly marked 
when one derives with respect to e , T , T , , , 

0z

ref ref 1 γ 0z z′  and .  eH
 
The ZPD partial derivatives are now computed as a function of the GPS receiver’s altitude . 0z

4.2.6. ZPD partial derivatives results as function of  0z

Each of the ten ZPD partial derivatives have been evaluated for the GPS receiver’s altitude varying in the range 

metersin     50000 0 ≤≤ z      (4.2.6.1) 

The ZPD partial derivatives with respect to the reference pressure and reference humidity are plotted on Figure 42. 
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Figure 42. refeZPD ∂∂  and refpZPD ∂∂  as function of the GPS receiver’s altitude  0z

Both decrease as the GPS receiver’s altitude  increase. However, 0z refeZPD ∂∂  is almost five times larger than 

refpZPD ∂∂ . The former also has a well-marked curvature while it is the opposite for the latter. Compare with 

Figure 32 and note that refeZDD ∂∂  adopted a completely different pattern. This demonstrates the influence of the 
atmospheric water vapor on the GPS signal: it induces a non-negligible path delay, i.e. a non-negligible retardation. 
 
Consider now the derivatives of the ZPD with respect to the reference temperature and the tropospheric temperature 
gradient. They are plotted on Figure 43 on next page. The ZWD shifts downwards the ZPD. Thus γZPD ∂∂  is a 
convex curve with minimum for  meters MSL. 26700 =z refTZPD ∂∂  is almost proportional to GPS receiver’s 

altitude and therefore increases almost linearly with . It shows the same pattern as 0z refTZDD ∂∂ . 
 
The attitude of pHZPD ∂∂  and eHZPD ∂∂  toward the GPS receiver’s altitude  is sketched on Figure 43 on 

next page. For low valued of , both decrease slowly. They then diminish more rapidly until their decrease rate  
0z

0z
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Figure 43. γZPD ∂∂  and refTZPD ∂∂  as function of the GPS receiver’s altitude  0z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.30E-04

1.35E-04

1.40E-04

1.45E-04

1.50E-04

1.55E-04

1.60E-04

1.65E-04

1.70E-04

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

GPS receiver's altitude MSL [m]

dZ
PD

/d
H

p 
[n

o 
un

it]

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

5.00E-05

5.50E-05

dZ
PD

/d
H

e 
[n

o 
un

it]

dZPD/dHp
dZPD/dHe
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Figure 45. 0zZPD ∂∂  and zZPD ′∂∂  as function of the GPS receiver’s altitude  0z
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stabilizes. This was already the case for pHZDD ∂∂  as the ZWD does not depend on the humidity reference scale. 

However eHZPD ∂∂  behaves differently than eHZDD ∂∂ . This is due to proportional relationship that links 

eHZWD ∂∂  with the humidity scale height.  
 
The dependence of the ZPD on the GPS receiver’s altitude  and on the upper limit of integration is represented 

on Figure 45 on the previous page. 
0z

0zZPD ∂∂  increases with  but not largely. Its amplitude is still in the 10  
range! This is indeed quite small. 

0z 4−

zZPD ′∂∂  as well as 1TZPD ∂∂  and 1zZPD ∂∂ , that are plotted on Figure 46, 
do not depend on the GPS receiver’s altitude . Therefore they do not vary with . 0z 0z 1zZPD ∂∂  is 400 times 

smaller than zZPD ′∂∂ . It is also 10  times smaller than 4
1TZPD ∂∂ !  

 
It is now intended to study the relative change of the ZPD partial derivatives. These are plotted on Figure 47. 
hereunder. 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

10

20

30

40

50

60

70

80

90

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

GPS receiver's altitude MSL [m]

ZP
D

 p
ar

tia
l d

er
iv

at
iv

e 
[%

] -
 e

xc
ep

t 
dZ

PD
_d

ga
m

m
a

100

105

110

115

120

125

130

135

dZ
PD

_d
ga

m
m

a 
[%

]

dZPD/dHe
dZPD/dHp
dZPD/dz0
dZPD/dT_ref
dZPD/dp_ref
dZPD/de_ref
dZPD/dgamma

Figure 47. Relative change of ZPD partial derivatives as function of the GPS receiver’s altitude  0z

The partial derivatives reference values (100%) have been taken at the mean sea level, i.e. at 0 meters MSL. The 
GPS receiver’s default altitude is still  meters MSL. 9050 =z γZPD ∂∂  is still a convex curve with large 
amplitude. Hence it should not represent a problem while inverting the design matrix A.  
 
This is also the case for refeZPD ∂∂ , pHZPD ∂∂  and eHZPD ∂∂ . Although the latter two show a similar 
behavior, and because their curvature is opposite to the other partial derivatives, is seems probable that they would 
induce only small singularities that may be hindered. This is however not the case of 0zZPD ∂∂ , refpZPD ∂∂  and 

refTZPD ∂∂ . These three partial derivatives showing an almost identical pattern are expected to generate problems 
during the inversion of A. 
 
Note that 1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  have not been plotted on Figure 47, as they do not depend on . 0z
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4.2.7. Partial derivatives summary 
The partial derivatives of the Zenith Dry Delay (ZDD) and of the Zenith Wet Delay (ZWD) with respect to ten 
parameters of Table 10 have been integrally derived in Appendix B. The parameter dependency of the partial 
derivatives is summarized in Table 14. The ZDD and ZWD partial derivatives show very different patterns as one 
varies the GPS receiver’s altitude . 0z
 
The Zenith Path Delay (ZPD) is just the sum of the ZDD and ZWD. Hence its partial derivative with respect to one 
parameter is the sum of the partial derivatives of the ZDD and ZWD with respect to the same parameter. 

1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  do not depend on . It is thus expected that they would introduce 
singularities in the design matrix, hindering its inversion. This is the source of concern as one intends to perform 
collocations with the system. It should be however possible to constrain A in such a way so that one can go around 
this problem. 

0z

4.3. Swiss regional campaign 
The Zenith Path Delay (ZPD) model developed in Chapter 3 has been tested in the previous paragraph. It is now 
intended to validate it on a virtual regional campaign in Switzerland. But first a few words are attributed to the 
software development. 

4.3.1. COMEDIE software 
The software package COMEDIE: Collocation of Meteorological Data for Interpolation and Estimation of 
Tropospheric Path Delays has been developed by Dipl. Ing. Marc Troller, Dr. Marc Cocard and Dr. Alain Geiger at 
the Geodynamics and Geodesy Lab. (GGL) at the Swiss Federal Institute of Technology Zurich (ETHZ). It is based 
on the work of [Eckert et al., 1992] and [Hirter, 1998]. The current version is release 1.1 as of 18 January 2002. 

4.3.1.1.Software structure 
The main computation routines are written in C while the data import/extraction and structure scripts are written in 
PERL. For the purpose of this study, the calculation routines are centered around two sub-programs, namely 
m_colcprep.c and m_Interpol.c. Those have been expanded by the author in order to insert the Zenith Path Delay 
(ZPD) model developed in Chapter 3. These are printed in Appendix C. 
 
The m_model.c program manages the functional models implemented. To each model corresponds one case. The 
serial number 1000 has been attributed to the ZPD model. An external routine called m_herschke.c has been written 
by the author and corresponds to the ZPD functional model: it contains eq. (3.4.9.22) and eq. (3.4.9.23) for the 
Zenith Wet Delay and Zenith Dry Delay.  
 
External option files serve as user interface. Indeed the choice of the model to use as well as the options are stated 
in the input_main file and the colloc_input file. The options chosen will be described in details in the coming 
paragraphs. 
 
For further details on the COMEDIE software, it is referred to [Troller et al., 2002]. 

4.3.1.2.Covariance function 
As already stated in paragraph 2.5, the choice of the covariance function is important. It gives the dependency of 
different computations points on each other. Imagine one has the AGNES GPS network at his disposal. At the GPS 
stations locations, one obtains information on the ZPD above the GPS receiver. However one is interested in 
knowing the ZPD at a different position and a different (future) time. It is thus required to make assumptions on the 
correlation between the four dimensional points. This is achieved in providing a covariance function. 
 
Two different covariance functions ( t,x )Φ  have been used for the ZPD collocation. These functions must obey eq. 
(4.3.1.2.1) to eq. (4.3.1.2.3), i.e. 

( ) 0
x

0
x

0
0x0x

<
∂

Φ∂=
∂
Φ∂=Φ

==
2

2!
  and      i.e.    max     (4.3.1.2.1) 
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x  ,  0lim      (4.3.1.2.3) 

It describes the covariance between two signals and depends on the location of both points i and j. It reaches its 
maximum when the displacement is nil and it decreases if the displacement increases. 
 
Therefore the first covariance function considered is 
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It contains five parameters: 0σ , , ,  and . As usually one has a lack of information in the higher 
regions, c.f. paragraph 4.3.2., another covariance function has been considered. A damping factor is implemented to 
take this fact into account. Thus the second covariance function is 
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  (4.3.1.2.5) 

It contains one parameter more than the first covariance function, namely . Do not confound this with the altitude 
of the GPS receiver. It is here an altitude of reference. 

0z

4.3.2. AGNES GPS stations 
The GPS data was delivered by the Swiss Federal Office of Topography (www.swisstopo.ch), located at Wabern 
near Bern, the Swiss capital, and by the Geodesy and Geodynamics Lab (GGL) at the Swiss Federal Institute of 
Technology, Zurich. Eleven permanent stations from the Automated GPS Network Switzerland (AGNES) have 
been taken into consideration for the computation. These are summarized in Table 19 hereunder. Their coordinates 
in the World Geodetic System 1984 (WGS84) are also stated. 
 

Station ID  Northing   Easting  Altitude Name 
 [deg] [min] [sec] [deg] [min] [sec] [m]  

ANDE 46 39 11.86 08 36 57.18 2366.388 Andermatt 
DAVO 46 48 46.49 09 50 36.65 1645.582 Davos 
EPFL 46 31 17.27 06 34 04.42 460.487 EPF14 Lausanne 
ETHZ 47 24 25.44 08 30 37.91 594.832 ETH15 Zurich 
FHBB 47 32 01.91 07 38 18.97 377.734 FHBB16 Muttenz 
JUJO 46 32 50.95 07 59 05.65 3634.584 Jungfraujoch 

LOMO 46 32 50.95 07 59 05.65 438.011 Locarno - Monti 
NEUC 46 59 37.78 06 56 25.73 504.674 Neuchatel 
PAYE 46 48 43.70 06 56 38.183 548.707 Payerne 
PFAN 47 30 55.17 09 47 04.78 1090.266 Pfänder 
ZIMM 46 52 37.54 07 27 54.98 956.338 Zimmerwald 

Table 19. AGNES permanent stations used 

The AGNES stations are also plotted on Figure 48 on next page. As of January 1, 2002, all 29 GPS stations are 
fully operational. The stations represented with red triangles were already in service before 2002 or were installed 
during fiscal year 2001 and 2002 (FY01-02) by the Swiss Federal Office of Topography (L+T). Of all stations 

                                                           
14 EPF: Ecole Polytechnique Fédérale – Swiss Federal Institute of Technology 
15 ETH: Eidgenössische Technische Hochschule – Swiss Federal Institute of Technology 
16 FachHochschule Beider Basel 
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shown on Figure 48, only the GPS stations in green were used during this study. This decision is motivated by the 
significance of those and by the reduction of data quantity that must be processed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 48. AGNES permanent stations used, after [L+T, 2002] 
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Figure 49. Height distribution in WGS84 of the AGNES stations 
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With respect to the models developed in Chapter 3, the vertical coordinate or height of the GPS station has the 
major influence on the collocation procedure. Hence the altitude distribution with respect to the World Geodetic 
System 1984 of the AGNES stations of Table 19 is plotted on Figure 49. Remark that most stations are located at an 
altitude below 1000 meters. 
 
The AGNES stations of ANDE, ETHZ, JUJO, LOMO and DAVO are plotted on Figure 50 below, clockwise from 
the upper left corner. 
 
For further technical information and a detailed description of AGNES, the interested reader should refer to 
[Brockmann et al., 2001 & 2002]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 50. ANDE, ETHZ, JUJO, LOMO and DAVO AGNES GPS stations. Clockwise from the 
upper left corner. © 2002 L+T. 

4.3.3. AGNES station collocation 
In a first step the collocation technique is applied to the eleven AGNES permanent GPS of Table 19. The 
collocation itself yields to a set of estimated parameters that are recursively determined. These are then reinserted in 
the computation in order to proceed with the prediction. The data is then processed and evaluated. 
 
The different assumptions taken as well as the options chosen are described in the coming paragraphs. 

4.3.3.1.Observation window 
It has been decided to proceed with a survey of the eleven AGNES GPS stations of Table 19. It has been 
continuously observed during a time period starting on Monday 22 May 2000 at 00:00:00 UTC and ending on 
Tuesday 30 May 2000 at 00:00:00 UTC. The time counter has been set to zero at the start of the observation 
window. The time lag is two hours. 

4.3.3.2.Collocation parameters and covariance 
Numerical instabilities were experienced during the implementation of the ZPD functional model. Therefore, of the 
ten original parameters of eq. (3.4.9.22) and eq. (3.4.9.23), seven have been constrained. Indeed, their 
determinations via collocation yield to important errors masking the significance of the result. Hence they have 
been blocked around their default value. These are stated in Table 20 on next page. 
 
 
 
 
 
 
 

P.T.O.



Chapter 4. Test and evaluation   
__________________________________________________________________________________________________________________________________________________________________________________________ 
114

  Parameters  
Symbol Value Unit [SI] Identification 

1T  216.64 K Temperature at tropopause 
γ  -301501.6 ⋅−  -1mK ⋅  Tropospheric temperature gradient 

(Lapse rate) 
0z  905 m  GPS’s receiver altitude 

1z  11000 m  Tropopause height 
z′  15000 m  Upper limit of integration 

pH  9000 m  Pressure scale height 

eH  3000 m  Humidity scale height 

Table 20. ZPD parameters constrained. 

Thus only ,  and T  were let free to vary. One can shadow this assumption by asking why constrain so 
many parameters and thus limit so much the model ? The answer is well known to scientists working in an 
entrepreneurial environment. Due to the important time investment that the levering of the numerical instabilities 
implies, to the time limitations imposed on that study and the fact that the author is not a professional programmer, 
it has been decided to let this issue for further study. 

refp refe ref

 
According to eq. (4.3.1.2.4), the a-priori covariance parameters for the first covariance function introduced 
previously were set as stated in Table 21 below. 
 

 Parameters  
Symbol Value Unit 

0σ  2 No unit 

0x∆  100 km 

0y∆  100 km 

0z∆  1 km 

0t∆  6 hrs 

Table 21. A-priori covariance parameters 

These have been determined by judicious guessing, and fine tuned by trial and error. One should note that the 
collocation technique intrinsically allows for an approximate knowledge of the parameters. Indeed these are re-
determined as by-products as part of the collocation procedure. 

4.3.3.3.ZPD estimates 
Assume one wants to know the ZPD for instance at Andermatt (ANDE), during the whole survey period without 
knowing anything about the atmosphere above the station and with no observations being made. From the eleven 
AGNES permanent GPS stations from which data is available, one has been set aside. Here it is Andermatt. The 
data from the ten other stations has been introduced in the COMEDIE software, which generates an estimation of 
the ZPD at a given point, here ANDE. This is then compared to observations that have been actually performed at 
ANDE. One proceeds alternatively for the other stations in the same way. This enables to test the quality of the 
solution and thus validate the ZPD model and COMEDIE software. 
 
The ZPD estimates for the eleven stations are plotted on Figure 51 to 61. The stations are designed by their four-
digit code (refer to the first column of Table 19). 
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Figure 51. COMEDIE ZPD estimates at ANDE 
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Figure 52. COMEDIE ZPD estimates at DAVO 
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Figure 53. COMEDIE ZPD estimates at EPFL 
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Figure 54. COMEDIE ZPD estimates at ETHZ 
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Figure 55. COMEDIE ZPD estimates at FHBB 
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Figure 56. COMEDIE ZPD estimates at JUJO 
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Figure 57. COMEDIE ZPD estimates at LOMO 
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Figure 58. COMEDIE ZPD estimates at NEUC 
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Figure 59. COMEDIE ZPD estimates at PAYE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.08

2.10

2.12

2.14

2.16

2.18

2.20

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

time [hrs]

Ze
ni

th
 P

at
h 

D
el

ay
 (Z

PD
) [

m
]

AGNES
COMEDIE

Figure 60. COMEDIE ZPD estimates at PFAN 
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Figure 61. COMEDIE ZPD estimates at ZIMM 

The ZPD estimates obtained with COMEDIE are plotted with green squares while a red line represents the AGNES 
observations. 
 
It should be first noted that half of the plots are not continuous in time. Indeed it has not been possible to obtain 
continuously GPS data during the observation window. This is probably due to faulty GPS space vehicles, 
malfunctioning GPS receivers and leaky data transfer. This is clearly observed at ETHZ (figure 54), Jungfraujoch 
(Figure 56), Locarno-Monti (Figure 57), Payerne (Figure 59) and Pfänder (figure 60). 
 
The data density is asymmetric. Observations have been performed at the AGNES permanent GPS stations with a 
time leg of two hours. To be exact, it is observed every 30 seconds and then averaged on a period of two hours in 
order to improve reliability of the data. However, it has been interpolated hourly. Thus one obtains more estimates 
than actual observations, c.f. Figure 60 between  hours and  hours. This corresponds to the 
period between Tuesday 23 May 2000 at 23:00 hours UTC and Sunday 29 May 2000 at 01:00 hours UTC. The 
possibility to choose the time interval for the prediction is one of the numerous advantages of the collocation 
technique. 

00.471 =t 00.1692 =t

 
Fortunately, the general aspect of both AGNES and COMEDIE are similar. The Zenith Path Delay is usually found 
to be between 2.10 meters and 2.42 meters. There is no large disagreement between estimates and observation with 
the exception of the Jungfraujoch (JUJO).  
 
Indeed, JUJO is by far the highest station and one has a lack of data at equivalent altitudes to cross-validate the 
solution. One should note that the GPS signal has fewer atmosphere to cross at JUJO than at the other AGNES 
stations. Further it is established that the atmospheric water vapor (WV) causes most of the ZPD. This WV is 
located in the lower troposphere. The humidity scaling height has been set at 3000 meters. However, comparing 
with the information of Table 19, one can see that JUJO is above the scaling height!  
 
Further, the collocation estimates obtained with COMEDIE are discontinuous. Refer to Figure 56. The COMEDIE 
solution is stacked in time segments of 12 hours length. This stacking has been voluntarily performed in order to 
ease the computations. For the final solution, each block is added to a global estimates file. The discontinuities 
might be explained by strong and different RHS and LHS gradients at the beginning and end of a time stack. 
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The Locarno-Monti (LOMO) station, Figure 57, presents some peculiar behavior. The COMEDIE solution seems to 
be offset with the actual AGNES observations, that vary stronger and faster. This is a known phenomenon already 
observed during previous campaigns. It is due to two main factors. First, LOMO is situated in Tessin, South of the 
Alps mountain arc and has its own microclimate. Indeed, the Alps are a mountainous barrier that stops cold and wet 
fronts arriving from a Northwest direction to continue on their way East. Thus LOMO is located in a warmer and 
dryer area than the rest of the AGNES stations used during this study. Second the geometry of the AGNES network 
is of importance. As can be seen on Figure 48, LOMO is set aside of the rest of the stations. Hence it is nearly 
impossible to correlate its ZPD estimates with results from other parts of the AGNES network. It is assumed that 
the COMEDIE solution would strongly improve if one would insert the Stabio (STAB) and San Bernardino 
(SANB) AGNES stations in the computation. This is one reason why the Swiss Federal Office of Topography has 
installed the latter two stations during FY01-02. 
 
One intends now to evaluate the exact quality of matching between the COMEDIE Zenith Path Delay estimates and 
the AGNES ZPD observations. 

4.3.3.4.COMEDIE quality assessment 
A short reminder of the statistic formulas used is given hereunder. 
 

Definition 1. (Standard deviation) The standard deviation of a sample of n measurements  is defined as  ix
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     (4.3.3.4.1) 

Definition 2. (RMS) The Root Mean Square of a sample of n measurements and n observations s  ix true
ix  i

defined as 

( )2
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1: true
ii
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xx
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RMS −⋅= ∑
=

     (4.3.3.4.2) 

The COMEDIE ZPD estimates AGNES observations differences are plotted for all AGNES GPS stations of Table 
19 on Figure 62 to 72. 
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Figure 62. COMEDIE-AGNES ZPD differences at ANDE 
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Figure 63. COMEDIE-AGNES ZPD differences at DAVO 
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Figure 64. COMEDIE-AGNES ZPD differences at EPFL 
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Figure 65. COMEDIE-AGNES ZPD differences at ETHZ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
time [hrs]

ZP
D

 d
iff

er
en

ce
: C

O
M

ED
IE

-A
G

N
ES

 [m
m

]

ZPD diff.

Figure 66. COMEDIE-AGNES ZPD differences at FHBB 
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Figure 67. COMEDIE-AGNES ZPD differences at JUJO 
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Figure 68. COMEDIE-AGNES ZPD differences at LOMO 
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Figure 69. COMEDIE-AGNES ZPD differences at NEUC 
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Figure 70. COMEDIE-AGNES ZPD differences at PAYE 
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Figure 71. COMEDIE-AGNES ZPD differences at PFAN 
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Figure 72. COMEDIE-AGNES ZPD differences at ZIMM 
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The COMEDIE-AGNES differences can be considered as ZPD residuals. They are a measure of the error between 
prediction and observation. In order to evaluate their accuracy, the Root Mean Square (RMS) and standard 
deviation have been computed for each AGNES station during the whole observation window and when data was 
available. The minimum, maximum and average ZPD residuals are also stated in Table 22 below. 
 
The following statistics have been obtained: 
 

AGNES Station   Statistical measure   

ID Minimum 
[mm] 

Maximum 
[mm] 

Average 
[mm] 

RMS 
[mm] 

Stand. Deviation 
[mm] 

ANDE -24.68 20.82 -5.54 10.24 8.59 
DAVO -23.52 28.85 0.61 9.90 9.88 
EPFL -26.53 33.57 4.30 12.28 11.49 
ETHZ -17.57 30.35 5.04 11.07 9.84 
FHBB -20.25 35.03 -0.28 10.18 10.18 
JUJO -12.18 63.15 24.05 28.13 14.35 

LOMO -66.60 39.31 -18.31 33.62 28.12 
NEUC -14.58 22.06 1.89 7.39 7.14 
PAYE -9.89 8.14 -2.89 4.82 3.84 
PFAN -15.16 12.87 -2.39 7.83 7.45 
ZIMM -15.01 26.04 5.08 9.82 8.39 

Table 22. COMEDIE-AGNES ZPD residuals statistics 

Large discrepancies between the different AGNES stations used can be observed. Indeed the most Southeastern 
stations do have larger COMEDIE-AGNES ZPD difference variations. For instance, it is the case of Locarno-Monti 
(LOMO). This is supposedly due to the presence of the Alps mountains acting as climatic barrier. Further the wet 
air masses generally arrive over the zone of interest from the West and take time to cross the Swiss territory. This is 
taken into account via the signal part. The Jungfraujoch (JUJO) station has the largest mean difference. Due to lack 
of data from GPS stations at similar altitude, one should act with caution as far as the interpretation of the results 
from LOMO and JUJO is concerned. 
 
The mean Root Mean Square (RMS) of all eleven AGNES stations is 13.85 mm and thus just above 1 centimeter. 
This is good when compared to other techniques of ZPD estimation. The RMS is a fairly constant value with, again, 
the exception of JUJO and LOMO. The standard deviation of JUJO is only 14.35 mm while it RMS is 28.13 mm, 
almost two times larger! This implies that the reliability of the JUJO ZPD estimates is low. One should consider 
discarding JUJO from further evaluations. 
 
The mean standard deviation of the eleven AGNES GPS stations is evaluated at 10.84 mm. This is almost 3 mm 
less than the average RMS. Payerne (PAYE) has the lowest sigma level. This was already the case with the RMS. 
Thus the PAYE location seems to deliver good and reliable ZPD estimates. However one should remark that it has 
been observed only during the first four days. 
 
In order to determine the possible correlation between average, standard deviation and RMS of the COMEDIE-
AGNES ZPD differences with the altitude of the GPS stations, these have been plotted on Figures 73 to 75. 
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Figure 73. Average COMEDIE-AGNES ZPD difference as function of the GPS stations altitude 
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Figure 74. Standard deviation of COMEDIE-AGNES ZPD difference as function of the GPS stations altitude 
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Figure 75. RMS of COMEDIE-AGNES ZPD difference as function of the GPS stations altitude 

If one discards the JUJO and LOMO GPS stations, there appear to be no correlation between altitudes of the GPS 
receivers and average, RMS and standard deviation of the COMEDIE-AGNES ZPD differences. Note that 
variations of approximately 2 cm on the network are expected. The RMS and standard deviations are below 15 mm 
while the average varies between ± 5 mm. Therefore the results obtained and plotted on Figures 73 to 75 lead to the 
conclusion that the functional model used is relatively accurate. 

4.3.3.5.AGNES stations ZPD forecasts 
In the previous paragraph, it has been seen that one could gain important knowledge about an AGNES permanent 
GPS station without knowing anything about it except its location. This was a first success. It is now intended to 
investigate whether or not one can also predict the ZPD at this very same station for a future epoch. The certainty 
and accuracy of the forecast are also determined. 
 
The observation window is again starting on Monday 22 May 2000 at 00:00:00 UTC and ending on Tuesday 30 
May 2000 at 00:00:00 UTC. The time counter has been set to zero at the start of the observation window. The time 
lag is two hours.  
 
The collocation is performed between Monday 22 May 2000, 00:00:00 UTC and Friday 26 May 2000, 00:00:00 
UTC. The parameters determined in the last 12 hours17, i.e. between Thursday 25 May 2000 12:00:00 UTC and 
Friday 26 May 2000, 00:00:00 UTC, are inserted in the extrapolation algorithm to produce ZPD estimates 
(forecasts) between Friday 26 May 2000, 00:00:00 UTC and Tuesday 30 May 2000, 00:00:00 UTC. The time 
threshold is thus on Friday 26 May 2000 at 00:00:00 UTC for the transition period (blue vertical line on the figures) 
and on Saturday 27 may 2000 at 00:00:00 UTC for the extrapolation (pink vertical line on the figures). This 
corresponds respectively to 96.00 hours and 108.00 hours since the time counter starts. The extrapolation time step 
is approximately 1 minute (exactly 0.017 hours). 
 
The ZPD forecasts for all eleven AGNES stations of Table 19 are plotted on Figures 76 to 86. As the collocation 
procedure is the same one as in paragraph 4.3.3.3, the results are similar in the time period stretching from Monday 
22 May 2000 at 00:00:00 UTC to Friday 26 May 2000 at 00:00:00 UTC. In the first 12 hours of the extrapolation 
time window (t = 108.00-120.00 hours), some damped oscillations of the ZPD forecast are observed. Afterwards, 
the ZPD estimates seem to gradually stabilize around a nearly constant value. However, the ZPD values obtained 
from observations made at the AGNES station continue to strongly vary. There are hence large discrepancies 
between the ZPD forecast and the future ZPD observation. Note that JUJO provides as before no meaningful results 
due to lack of data from other AGNES stations at similar altitude. 

                                                           
17 The parameters are determined over a central period of 12 hours and with the injection of data from 12 hours 
before and after it. Therefore they correspond to a 36 hours time period but with validity only for the central period. 
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Figure 76. COMEDIE ZPD forecast at ANDE 
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Figure 77. COMEDIE ZPD forecast at DAVO 
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Figure 78. COMEDIE ZPD forecast at EPFL 
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Figure 79. COMEDIE ZPD forecast at ETHZ  
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Figure 80. COMEDIE ZPD forecast at FHBB 
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Figure 81. COMEDIE ZPD forecast at JUJO 
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Figure 82. COMEDIE ZPD forecast at LOMO 
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Figure 83. COMEDIE ZPD forecast at NEUC 
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Figure 84. COMEDIE ZPD forecast at PAYE 
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Figure 85. COMEDIE ZPD forecast at PFAN 
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Figure 86. COMEDIE ZPD forecast at ZIMM 

4.3.3.6.AGNES stations ZPD forecasts quality assessment 
In order to evaluate the quality and certainty of the ZPD forecast, the COMEDIE-AGNES ZPD differences are 
computed for the first few hours after the start of the extrapolation. The time leg for comparison is determined by 
the AGNES ZPD observations frequency as one has fewer observations than ZPD estimates from COMEDIE. Thus 
one can compare data only every two hours. 
 
The COMEDIE ZPD forecasts and AGNES ZPD observations allow gaining an approximate knowledge on the 
certainty of the prediction that has been made. One discerns two groups of stations. The classification is derived 
from the amplitude of the ZPD forecasts differences. Note that it has not been possible to evaluate those differences 
at Pfänder (PFAN) as it could not be observed during that time period. The two groups are plotted on Figures 87 
and 88. 
 
According to Figures 87 and 88, the results are surprisingly good. Indeed the variations are all centered in a stream 
of radius 40 mm. Remark that LOMO diverges during the whole transition and extrapolation time window. From t 
= 118.00 hours onwards, the COMEDIE forecast-AGNES observation ZPD differences tend to increase rapidly. 
Table 23 gives the number of hours during which the 1-centimeter accuracy level is maintained.  
 

Time [hrs] Time length 
extrapolation [hrs] AGNES station 

113 5 ETHZ, NEUC, ZIMM 
115 7 DAVO 
117 9 ETHZ, FHBB 
119 11 ANDE 

- - JUJO, LOMO, PAYE, PFAN 

Table 23. Time response for 1cm accuracy level 

One can see that for half of the AGNES stations surveyed it is possible to yield to a meaningful forecast during 9 
hours after the last data were available. The average, standard deviation and RMS of the differences are plotted as 
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function of the extrapolation time on Figures 89 to 95. The time counter is set to zero at 96.00 hours. The 
extrapolation time threshold is again set at 108.00 hours and represented by a pink vertical line. For clarity purposes 
two groups are distinguished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

96 98 100 102 104 106 108 110 112 114 116 118 120 122
time [hrs]

ZP
D

 d
iff

er
en

ce
 [m

m
]: 

C
O

M
ED

IE
 fo

re
ca

st
 -A

G
N

ES
 o

bs
er

va
tio

n 

ANDE
DAVO
ETHZ
PAYE
PFAN
ZIMM

Figure 87. ZPD differences between COMEDIE forecasts and AGNES observations, Group 1 
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Figure 88. ZPD differences between COMEDIE forecasts and AGNES observations, Group 2 

The mean of the average ZPD differences, standard deviation and RMS is plotted in a red dashed line.  
 
The averages of the ZPD differences seem to converge against zero, as one can see on Figures 89 and 91. The 
influence of the last collocation diminishes rapidly with the extrapolation time. Indeed the longer one extrapolates 
the less information one has from the signal share. The ZPD is then fully given by the functional model. Hence 
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Figure 89. Average of COMEDIE ZPD forecast – AGNES ZPD observation  
as function of the extrapolation time 
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 Figure 90. Average of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time. Group 1 
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Figure 91. Average of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time. Group 2 
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as function of the extrapolation time
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Figure 93. RMS of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time 
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Figure 94. RMS of COMEDIE ZPD forecast – AGNES ZPD observation 

as function of the extrapolation time. Group 1
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Figure 95. RMS of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time. Group2 

should one intend to know the convergence value of the ZPD, he or she should compute the value of the ZPD of the 
functional model using the last set of parameters determined by the collocation just before starting the 
extrapolation. Note that JUJO and LOMO are offset. The reason for this behavior is probably the one assumed until 
then: lack of data at similar altitude (JUJO) and in the same region (LOMO) due to the presence of a microclimate 
(presence of the Alps mountains as climatic barrier). 
 
It can be noted on Figure 92 that the standard deviation increases with the extrapolation time and thus the quality of 
the prediction itself. Except for Davos (DAVO) and Andermatt (ANDE), it is less than 1 centimeter during the first 
6 hours of the extrapolation. It seems to diverge for long extrapolation periods, i.e. for predictions far in the future. 
 
The RMS of Figures 93 to 95 has a similar behavior to the standard deviation. However the amplitude of the RMS 
is larger than of the standard deviation. It is less than 1 centimeter for all AGNES stations of consideration, during 
the first 6 hours of the forecast except for LOMO. It does not diverge for all AGNES stations surveyed, for instance 
ANDE. As Andermatt is quite isolated and relatively high compared to the rest of the network, this might explain 
the - somewhat - unexpected behavior. This needs however to be further investigated. On the other hand, EPFL 
grows rapidly and does not seem to increase slower with the extrapolation time. It shows that one cannot predict 
with accuracy over a long time. 
 
The mean of the average, standard deviation and RMS of the ZPD differences are calculated. The statistical results 
are summarized in Table 24 hereunder: 
 

Time [hrs] Extrapolation 
time [hrs] 

 Statistical quantity  

  Average [mm] Standard deviation 
[mm] 

RMS [mm] 

108.00 0 -0.13 2.21 8.67 
114.00 6 -1.79 4.13 10.24 
120.00 12 -1.34 9.49 14.00 
126.00 18 -3.10 11.94 15.55 
132.00 24 -0.73 13.17 15.84 

Table 24. COMEDIE forecast-AGNES observation residuals statistics 
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According to Table 24, the average standard deviation for all 11 AGNES stations of Table 19 during the first 6 
hours of the forecast is 4.13 mm. However, the RMS for the very same time period has already reached the 1-
centimeter threshold. On the other hand, the average is still inferior to the 1 cm threshold during the first 12 hours 
of the prediction. This implies that one can perform a satisfactory prediction of the Zenith Path Delay twelve hours 
in advance! 
 
Furthermore it has been proceeded with a linear regression of the mean of the standard deviation of the COMEDIE 
forecast-AGNES observation ZPD differences. The equation gives the approximate numerical extrapolation error 
law. It enables to determine the average growth rate of extrapolation error. The same has been performed for the 
envelope, i.e. for the maximal value of the standard deviation as it is plotted on Figure 92. The time t is stated in 
hours since the beginning of the extrapolation. For the linear regression of the mean of the standard deviation, this 
yields to  

2454.24953.0 +⋅= tmeanσ     (4.3.3.6.1) 

with an R-squared ( )2R  value of 

9523.02 =meanR      (4.3.3.6.2) 

The R-squared value measures the proportion of the total variance in σ that can be explained by time shifts. Thus 
the mean extrapolation error growth rate (EGR) is 

-1hrmm 4953.0 ⋅=GRpolation Emean extra     (4.3.3.6.3) 

The offset at the start of the extrapolation i.e. at t  hours (on Friday 26 May 2000 at 00:00:00 UTC) since 
the beginning of the observation window is 2.2454 millimeters. It not equal to zero as the standard deviation at 

 hours

00.108=

00.0=t 18 is computed from data for the time period between 00.1−=t  hours and t  hours. The 
computation of the standard deviation at t  hours is considered as the weak point of this error analysis. 

00.1=
00.0=

 
As far as the linear regression of the maximum of the standard deviation is concerned, one obtains 

8987.45891.0max +⋅= tσ      (4.3.3.6.4) 

and an R-squared value of 

9931.02
max =R      (4.3.3.6.5) 

Therefore the maximum extrapolation error growth rate is 
-1hrmm 5891.0 ⋅=GRpolation Emax. extra     (4.3.3.6.6) 

which is almost 20 % larger than the average extrapolation error growth rate! 

4.3.3.7.AGNES stations ZPD forecasts operational quality assessment 
It is now intended to answer the following question: “What is the extrapolation error of the ZPD difference between 
COMEDIE forecast and AGNES observation for a given survey time ?” For instance, one observes ZPDs at one 
AGNES station, say Zimmerwald (ZIMM). For one reason or other, one cannot further survey at ZIMM. And one is 
interested to know what error should be expected if one measures in 15.00 hours from now.  
 
Conversely to paragraph 4.3.3.6. where the statistics are computed over an extrapolation time period stretching 
from  hours to  in hours, this time, t varies in 6.00 hours steps. This can be schematically 
represented as on Figure 96 on next page. The main advantage to this operational quality assessment is that one can 
directly compare the extrapolation error with the error one obtains when surveying 15.00 hours later. Should one 
take the extrapolation error from the previous paragraph, one would compare the ‘survey’ error with an error 
determined over an extrapolation period possibly stretching far away from the time of interest, thus making no real 
sense. 

00.0=t thresholdtt =

 
Hence one obtains the four following time periods of Table 25. 
 
                                                           
18 In the extrapolation time system where the time is reinitialized at the point where no observation data is available. 
In the present study, this means that t  hours at  hours. 00.0=ionextrapolat 00.108=obst
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Time period number Time [hrs]  Extrapolation time [hrs] 
 Start End  

1 108.00 114.00 6 
2 114.00 120.00 12 
3 120.00 126.00 18 
4 126.00 132.00 24 

Table 25. Extrapolation time period for operational purposes 

The average, standard deviation and RMS of the COMEDIE forecast-AGNES observation ZPD differences have 
been computed for the extrapolation time periods of Table 25. These are plotted on Figures 97 to 103. 
 

Extrapolation time [hrs] 

ZPD forecast quality assessment

ZPD forecast operational quality assessment

Average, 
σ , RMS 

24186 120
Extrapolation time [hrs] 

Average, 
σ , RMS 

24186 120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 96. ZPD forecast quality assessment principles. 
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Figure 97. Average of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time for operational purposes 
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Figure 98. Average of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time for operational purposes. Group 1 
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Figure 99. Average of COMEDIE ZPD forecast – AGNES ZPD observation
as function of the extrapolation time for operational purposes. Group 2 
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Figure 100. Standard deviation of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time for operational purposes 
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Figure 101. RMS of COMEDIE ZPD forecast – AGNES ZPD observation
as function of the extrapolation time for operational purposes
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Figure 102. RMS of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time for operational purposes. Group 1 
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Figure 103. RMS of COMEDIE ZPD forecast – AGNES ZPD observation 
as function of the extrapolation time for operational purposes. Group 2 
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Compare the average of the COMEDIE ZPD forecast –AGNES ZPD observation of Figures 89 and 97. For 
operational purposes, the average is slightly larger than for prediction purposes, although the variations during the 
first six hours of extrapolation are similar. The volatility of the average significantly increases for an extrapolation 
of more than 12 hours. Especially the outcomes for a one-day forecast are very different.  
 
The spread of the outcome for the first group of AGNES GPS permanent stations is as much as 2 centimeters for 
operational purposes while being only of 8 mm for prediction purposes. From a statistical point of view, the average 
should however converge to zero for large extrapolation time on Figure 89, due to the perfect adequacy between 
forecast and observation. This might not be the case, i.e. presence of an offset, if the starting average is far out 
centered or if there are systematic effects inducing a residual error. 
 
On Figure 97, the averages are equivalent from a statistical point of view. They are distributed over a larger domain. 
If one builds the statistics over a year observation, one should see seasonal variations. It is here not the case due to 
the limited and arbitrary observation window chosen. 
 
The average shows a flatter timely development on Figure 89 than on Figure 97. This suggests that the forecast is 
worse when one considers future operations. That fact is corroborated on Figures 90 and 98 for the first group of 
stations. The general pattern of the prediction time series for both purposes at LOMO and JUJO are similar. 
However variations of up to 4 cm against 1.2 cm previously are established. Thus one has lower confidence in the 
accuracy of the forecast at LOMO and JUJO for operational purposes. 
 
The standard deviations of the ZPD differences vary faster and more frequently on Figure 100 than on Figure 92. 
This is due to the computation procedure applied. While the behavior of the standard deviations during the first 12 
hours of extrapolation is comparable, it is not the case later. The mean sigma appears to stabilize itself between 18 
and 24 hours prediction time. It will stabilize at a higher value in the second case than in the first. The observed 
sharp bend on Figure 100 is assumed to be there by mere chance. One cannot absolutely conclude about its origin.  
 
Usually the RMS is larger than the standard deviation. In the way it is defined, the RMS forms some kind of 
deviation from the true value, while the variance is the deviation squared to the mean. Hence RMSs have generally 
larger variations than sigmas. This can be seen on Figures 93 and 101. As shown on Figures 101 and 103, LOMO 
and JUJO have the largest RMS. In the case of LOMO, this might be reduced by the introduction in the study of 
data from the Stabio (STAB) and San Bernardino (SANB) AGNES GPS permanent stations in Tessin. However, 
JUJO is still the highest permanent station among the whole AGNES network. It is therefore not possible to greatly 
reduce the shortcomings of the collocation at this site. It will be the same for all GPS receiver’s locations situated at 
high altitudes such as at the top of mountains (e.g. Monte Rosa in Wallis). 
 
As was done before, the mean of the average, standard deviation and RMS of the ZPD differences are calculated. 
The statistical results are summarized in Table 26 hereunder: 
 

Time [hrs] Extrapolation 
time [hrs] 

 Statistical quantity  

  Average [mm] Standard deviation 
[mm] 

RMS [mm] 

108.00 0 -0.13 2.21 8.67 
114.00 6 -1.79 4.13 10.24 
120.00 12 -0.15 8.81 16.62 
126.00 18 7.35 12.48 17.73 
132.00 24 6.37 13.29 14.08 

Table 26. COMEDIE forecast-AGNES observation residuals statistics for operational purposes 

The first two rows of Table 24 and 26 are identical. This was to be expected as they are derived from the same 
computation. According to Table 26, the average standard deviation for the 11 AGNES GPS stations at 12 hours 
after the start of the extrapolation is of 8.81 mm. Therefore, the 1-centimeter threshold for the forecast accuracy is 
again reached at 12 hours. This means that one can predict the ZPD for 12 hours in advance with an accuracy of 
less than 1 centimeter! 
 
Now proceed with a linear regression of the mean of the standard deviation of the COMEDIE forecast-AGNES 
observation ZPD differences. This yields to the following results. The standard deviation as function of the 
extrapolation time is 
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6772.16669.0 +⋅= tmeanσ     (4.3.3.7.1) 
and the R-squared value is 

6710.02 =R      (4.3.3.7.2) 

Therefore the mean extrapolation error growth rate for operational purposes or mean operational extrapolation EGR 
is 

-1hrmm 6669.0 . ⋅=ion EGRextrapolatmean op    (4.3.3.7.3) 

The mean op. extrapolation EGR is 35 % larger than the mean extrapolation EGR. The offset since the start of the 
extrapolation window is 1.6772 millimeters and thus approximately 25% less than for prediction purposes, c.f. eq. 
(4.3.3.6.1). Hence eq. (4.3.3.7.1) grows faster than eq. (4.3.3.6.1).  
 
As far as the linear regression of the maximum of the standard deviation is concerned, one obtains 

0583.40233.1max +⋅= tσ      (4.3.3.7.4) 

with an 2R -value of 

5344.02 =R      (4.3.3.7.5) 

Thence the maximum operational extrapolation error growth rate is 
-1hrmm 0233.1 .. ⋅=ion EGRextrapolat opmax    (4.3.3.7.6) 

which is as much as 53 % larger than the mean op. extrapolation EGR and 73% bigger than the equivalent quantity 
of eq. (4.3.3.6.6) ! Therefore the extrapolation error increases maximal of 12.28 mm every twelve hours but only of 
8.00 mm on average. 

4.3.3.8.ZPD forecast and positioning 
The primary purpose of the NAVSTAR GPS is navigation. Hence, it is possible to relate the ZPD error to the 
positioning error. Indeed, according to [Geiger, 1987] the error in altitude along the zenith of the GPS receiver is 
equal to 2.7 times the ZPD error. That is 

δZPDδz ⋅= 7.2      (4.3.3.8.1) 

where  is the Zenith Path Delay error for a given extrapolation time. The horizontal position error is given by δZPD

ωεδδZPDδy
ωεδδZPDδx

sinsin4
cossin4

⋅⋅⋅=
⋅⋅⋅=

   (4.3.3.8.2a,b) 

where  is the elevation angle ( ε  at zenith) and ω  is the azimuth angle.  represents the influence of 
slanted atmospheric layers and is defined as 

ε °= 90 δδZPD

∫ ⋅
∂
∂= dzz

z
NZPD :δδ     (4.3.3.8.3) 

where N is the refractivity. Those slanted atmospheric layers induce horizontal gradients in the Path Delay. They 
however do not affect the horizontal position if one considers Zenith Path Delays and assumes that the atmosphere 
consists in a superposition of horizontal layers. Note that according to [Geiger, 1987]  and δ  are almost 
thousand times smaller than .  

δx y
δz

 
The ZPD extrapolation error is stated in Table 24 for a 6 hours, 12 hours, 18 hours and a one day forecast. This 
yields to a maximum of 

cm 56.2=δz  vertical error   (4.3.3.8.4) 

for a 12 hours forecast. 

4.4. Summary 
In a first step the Zenith Hydrostatic Delay (ZHD), the Zenith Dry Delay (ZDD) and Zenith Wet Delay (ZWD) 
models derived in Chapter 3, i.e. eq. (3.4.9.20), eq. (3.4.9.23) and eq. (3.4.9.22) have been tested on reference 
values for the different parameters. Variations in each of the parameters of Table 10 have been studied. From a 
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point of view of the order of magnitude, the results obtained are in good agreement with observations made from 
the Automated GPS Network Switzerland (AGNES). 
 
The least square collocation technique or Kriging algorithm is based around a design matrix A, which entries are all 
partial derivatives of the functional models with respect to each model parameter. These partial derivatives are 
computed in Appendix B and then tested on the parameters of Table 10. The ZDD and ZWD partial derivatives 
show very different patterns as one varies the GPS receiver’s altitude . 0z
 
The Zenith Path Delay (ZPD) is just the sum of the ZDD and ZWD. Hence its partial derivative with respect to one 
parameter is the sum of the partial derivatives of the ZDD and ZWD with respect to the same parameter. 

1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  do not depend on . It is thus expected that they would introduce 
singularities in the design matrix, hindering its pseudo-inversion. This is the source of concern as one intends to 
perform collocations with the system. Constrains on seven parameters of the ZPD model have been applied in order 
to make possible the inversion of the normal matrix N.  

0z

 
The ZPD model has been implemented in the software package COMEDIE: Collocation of Meteorological Data for 
Interpolation and Estimation of Tropospheric Path Delays. It has then been validated on a virtual regional campaign 
in Switzerland starting on Monday 22 May 2000 at 00:00:00 UTC and ending on Tuesday 30 May 2000 at 00:00:00 
UTC. GPS data for this observation window and for eleven AGNES GPS permanent stations at Andermatt, Davos, 
EPF Lausanne, ETH Zurich, FHBB Muttenz, Jungfraujoch, Locarno-Monti, Neuchatel, Payerne, Pfänder and 
Zimmerwald has been used. 
 
Zenith Path Delays have been estimated at the eleven AGNES stations using the model of Chapter 3 and the 
COMEDIE software package. The differences between the COMEDIE ZPD estimates and the AGNES ZPD 
observations are evaluated when possible. Good agreements between estimates and observations are noted at all 
stations except Jungfraujoch and Locarno-Monti. This is probably due to the lack of data from stations at similar 
high altitudes for the former and due to the location South of the Swiss Alps mountains for the latter. The Alps 
mountainous chain represent a climatic barrier separating Tessin from the other parts of Switzerland. Further there 
appears to be no correlation between average, standard deviation and RMS of the ZPD differences with the altitude 
of the GPS receiver. 
 
ZPD forecasts are performed at all eleven AGNES stations at disposals. The extrapolation starts on Saturday 27 
May 2000 at 00:00:00 UTC and ends on Tuesday 30 May 2000 at 00:00:00 UTC. In the first 12 hours of the 
extrapolation time window some damped oscillations of the ZPD forecast are observed. Afterwards, the ZPD 
estimates seem to gradually stabilize around the ZPD value given by the functional model.  
 
COMEDIE forecast-AGNES observation ZPD differences are computed and their average, standard deviation and 
RMS are calculated. For half of the AGNES stations surveyed it is possible to yield to a meaningful forecast during 
9 hours after the last data were available. Both the standard deviation and RMS of the ZPD differences are less than 
1 centimeter during the first 12 hours of the forecast. This implies that one can conduct a satisfactory prediction of 
the Zenith Path Delay twelve hours in advance! The ZPD extrapolation error evolves at an approximate velocity of 
half a millimeter per hour. 
 
The evaluation has again been performed for operational ends. Anew both the standard deviation and RMS of the 
ZPD differences are less than 1 centimeter at 12 hours after the beginning of the forecast. Therefore one can 
undertake a good prevision for twelve hours in the future. The ZPD extrapolation error during operations evolves at 
an approximate velocity of two thirds of millimeter per hour. 
 
Navigation, i.e. the determination of one’s position as function of time is the primary purpose of the NAVSTAR 
Global Positioning System. The 1-cm error in ZPD estimate implies nearly as much as 2.50 cm vertical error in the 
user’s position. One cannot evaluate the horizontal position error due to the ZPD error with a single ZPD 
measurement at one’s location. Multiple observations at different sites are required. 
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5.Conclusions 
5.1. Work summary 

Insufficient knowledge on the atmosphere above the receiver has always been one of the main limitations to the 
accuracy of the United States Department of Defense’s NAVSTAR (Navigation by Timing And Ranging) GPS 
(Global Positioning System). GPS is nowadays the most widely used satellite system for navigation purposes. The 
present study focused on modeling the atmospheric effects on the GPS signal and eventually applying it to path 
delay forecasting. 
 
The L-band radio signals emitted by GPS satellites are slowed and bent as they cross the different layers of the 
Earth’s atmosphere: the ionosphere and the neutral atmosphere (troposphere and stratosphre). By linearly 
combining the two GPS observables on both  and  carrier frequencies, the errors induced by the ionosphere 
can be removed to great extent. Double differences are then formed and thus the atomic clock ditherings are 
removed from the solution. Finally the carrier ambiguity is resolved. The major error remaining is purely due to 
atmospheric effects. 

1L 2L

 
The total path delay induced by the presence of the atmosphere is computed from the phase differences observed in 
the phase pseudorange. This delay is then usually mapped to the zenith direction at the ground-based GPS 
receiver’s location using so-called mapping functions. It therefore corresponds to a Zenith Path Delay. 
 
A functional model for this Zenith Path Delays has been developed. Fermat’s principle allows connecting the 
refractive index of a given atmospheric layer to the signal path. In atmospheric sciences, the refractivity is generally 
used instead of the refractive index. The Essen and Froome formula provides the relation between the refractivity 
and the three atmospheric fields, namely the atmospheric pressure p, the partial water vapor pressure e or its related 
relative humidity and the temperature T. The formula is split in three terms proportional to ( ) Tep − , Te  and 

2Te . While the first term corresponds to the dry atmosphere, the two latter generate the wet refractivity. Four-
dimensional models for those fields have been conceived. 
 
The spatial and temporal meteorological fields are inserted in the Essen and Froome formula, which is then 
integrated along the GPS satellite signal path. The analytical integration and the projection along the zenith 
direction delivers an expression of the Zenith Path Delay (ZPD) as function of ten parameters: the reference 
pressure , the reference humidity , the reference temperature T , the temperature at tropopause T , the 

tropospheric temperature gradient or lapse rate γ , the GPS receiver’s altitude , the tropopause height , the 
upper limit of integration

refp refe ref 1

1z0z
z′ , the pressure scale height  and the humidity scale height . pH eH

 
The least-squares collocation technique or Kriging algorithm requires the calculation of a design matrix A, which 
entries are all partial derivatives of the functional models with respect to each model parameter. These partial 
derivatives are computed and then tested on the default parameter values. The ZPD can be split into a Zenith Dry 
Delay (ZDD) and a Zenith Wet Delay (ZWD). Hence the ZPD partial derivative with respect to one parameter is the 
sum of the partial derivatives of the ZDD and ZWD with respect to the same parameter. Both partial derivatives 
show very different patterns as one varies the GPS receiver’s altitude .0z 1TZPD ∂∂ , 1zZPD ∂∂  and zZPD ′∂∂  
do not depend on . It is thus expected that they would introduce rank deficiencies in the design matrix, hindering 
the inversion of the normal matrix N. This is the source of concern as one intends to perform collocations with the 
system. Constrains on seven parameters of the ZPD model have been applied in order to make possible the pseudo-
inversion of the design matrix A. 

0z

 
The ZPD model has been implemented in the software package COMEDIE: Collocation of Meteorological Data for 
Interpolation and Estimation of Tropospheric Path Delays developed at the Geodesy and Geodynamics Lab at the 
Swiss Federal Institute of Technology at Zurich. It has then been validated on a regional campaign in Switzerland 
starting on Monday 22 May 2000 at 00:00:00 UTC and ending on Tuesday 30 May 2000 at 00:00:00 UTC. GPS 
data delivered by the Swiss Federal Office of Topography for this observation window and for eleven AGNES GPS 
permanent stations at Andermatt, Davos, EPF Lausanne, ETH Zurich, FHBB Muttenz, Jungfraujoch, Locarno-
Monti, Neuchatel, Payerne, Pfänder and Zimmerwald has been used. 
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Zenith Path Delays have been estimated at the eleven AGNES stations using the ZPD model developed and the 
COMEDIE software package. The differences between the COMEDIE ZPD estimates and the AGNES ZPD 
observations are evaluated when possible. Good agreements between estimates and observations are noted at all 
stations except Jungfraujoch and Locarno-Monti. This is probably due to the lack of data from stations at similar 
high altitudes for the former and due to its location South of the Swiss Alps for the latter. The Alps mountains 
represent a climatic barrier stopping wet and cold air masses arriving from a North-western direction. Hence 
Locarno-Monti has a very different climate than the rest of the AGNES stations surveyed. Further there appears to 
be no correlation between average, standard deviation and RMS of the ZPD differences with the altitude of the GPS 
receiver. 
 
ZPD forecasts are performed at all eleven AGNES stations at disposals. The extrapolation starts on Saturday 27 
May 2000 at 00:00:00 UTC and ends on Tuesday 30 May 2000 at 00:00:00 UTC. In the first 12 hours of the 
extrapolation time window some damped oscillations of the ZPD forecast are observed. Afterwards, the ZPD 
estimates seem to gradually stabilize around the ZPD value given by the functional model. 
 
COMEDIE forecast-AGNES observation ZPD differences are computed and their average, standard deviation and 
RMS are evaluated. For half of the AGNES stations surveyed it is possible to yield to a meaningful forecast during 
9 hours after the last data were available. Both the standard deviation and RMS of the ZPD differences are less than 
1 centimeter during the first 12 hours of the forecast. This implies that one can conduct a satisfactory prediction of 
the Zenith Path Delay twelve hours in advance! The ZPD extrapolation error evolves at an approximate velocity of 
half a millimeter per hour. 
 
The evaluation has again been performed for operational ends. Anew both the standard deviation and RMS of the 
ZPD differences are less than 1 centimeter at 12 hours after the beginning of the forecast. Therefore one can 
undertake a good prevision for twelve hours in the future. The ZPD extrapolation error during operations evolves at 
an approximate velocity of two thirds of millimeter per hour. 
 
Navigation, i.e. the determination of one’s position as function of time is the primary purpose of the NAVSTAR 
Global Positioning System. The 1-cm error in ZPD estimate implies nearly as much as 2.50 cm vertical error in the 
user’s position. One cannot evaluate the horizontal position error due to the ZPD error with a single ZPD 
measurement at one’s location. Multiple observations at different sites are required. 

5.2. Recommendations 
For practical purposes, the path delay has been analytically computed in the GPS space vehicle direction and then 
evaluated along the zenith axis. Further the atmosphere above the area of interest has been stacked in horizontal 
layers assumed as isotropic. For increased accuracy, one should proceed with computations taking the inclination of 
the atmospheric layers into account. The refractivity should also be integrated directly along the GPS receiver-space 
vehicle axis without being mapped to zenith. Thence one would obtain so-called slant path delays that take the 
elevation of the GPS space vehicle in consideration. 
 
Seven out of the ten model parameters have been constrained around their default values in order to make possible 
the pseudo-inversion of design matrix and the inversion of the normal matrix. One should further investigate which 
parameters can be evaluated via collocation and which must be constrained.  
 
The ZPD model presented in this study is one-dimensional as it depends explicitly only on the GPS receiver’s 
altitude with respect to the mean sea level. Slant path delays do show an explicit dependence on the three 
dimensional position of the GPS receiver and should therefore deliver better results. The time aspect of the ZPD has 
been introduced solely through the covariance function. Letting the model parameters depend on time and on 
position would increase the sensibility of the slant path delay to atmospheric variations and thus improve the model 
accuracy. 
 
ZPD estimates have been computed at just eleven AGNES stations. To date, the full AGNES network consists of 29 
GPS permanent stations. Inserting data from the full AGNES ground receiver constellation would improve the 
reliability of the statistics that have been derived. Using such information over a year’s period would put seasonal 
effects to light. 
 
AGNES-derived path delays were available only for two hours time periods. A higher data processing rate would 
allow for more frequent ZPD estimates or ZPD forecasts and AGNES observations comparisons. This would enable 
better determination of the time threshold for the 1-centimeter precision. As of 1 March 2002, AGNES produces 
hourly path delays. 
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Appendices 
Appendix A. Essen and Froome formula 
The Essen and Froome formula, eq. (3.2.2.7), is given by 

( ) ( ) ( ) e
TT

ep
T

neTpN ⋅




 +⋅+−⋅=×−= 5748168.6464.77101,, 6   (A.1) 

The refractivity N has been computed as function of the partial water vapor pressure e and of the temperature T in 
the range 

K 325TK 200 ≤≤      (A.2) 

The partial water vapor pressure varies between 5 hPa in summer and 15 hPa in winter at European latitudes. Hence 
eq. (A.1) has been evaluated for e=0 hPa, 5 hPa, 10 hPa and 15 hPa. The case e=0 hPa has been taken into 
consideration regardless of its physical meaning, as it represents the idealized situation where the atmosphere 
contains no water vapor, i.e. is absolutely dry. It is plotted on Figure A.1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1. Essen and Froome Formula.  for e=0 hPa ( TpN , )
For e=0 hPa and p=0 hPa, the refractivity is constant and equal to zero. For a non-vanishing pressure, it varies as 
the inverse of the temperature of the atmosphere. The variations are in the range 0-400 with the maximum 
refractivity being reached at minimum temperature and maximum atmospheric pressure. According to the 
International Radio Consultative Committee of the International Telecommunication Union, c.f. [CCIR, 1986], the 
average value of the radio refractivity at the surface of the Earth is N=325 for an average mid-latitude atmospheric 
profile. This is hardly achieved without any atmospheric humidity. Therefore consider the case where e . hPa 0≠
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Figure A.2. Essen and Froome Formula.  for e=5 hPa ( TpN , )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.3. Essen and Froome Formula.  for e=10 hPa( TpN , )
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Figure A.4. Essen and Froome Formula.  for e=5 hPa ( TpN , )
As can bee seen on Figures A.2, A.3 and A.4, the general shape of the refractivity remains the same. However its 
amplitude increases by a fourth. Differences are mostly noted for low values of N, i.e. when p=0 hPa. The isolines 
present node and saddle point-like shapes reflecting the curvature of the refractivity surface. 
 
Referring to [CCIR, 1986], the average value of the radio refractivity at the surface of the Earth is N=315. This is in 
good agreement with the results obtained from eq. (A.1) for e=10 hPa and a surface temperature of T=15°C and 
atmospheric pressure of p=1000 hPa. Furthermore, the atmospheric water vapor pressure is mostly centered around 
10 hPa at all seasons in Switzerland. Therefore Figure A.3 is chosen as reference for further consideration. 
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Appendix B. Zenith path delay partial derivatives 
Accordingly to paragraph 2.2, it is compulsory to compute the partial derivatives of the path delay along the zenith 
direction in order to fill the design matrix A of the system. 

B.1. Introduction 
Recall the main results of paragraph 3.4. The Zenith Path Delay (ZPD) can be split in a ‘dry’ term, the Zenith Dry 
Delay (ZDD) and a ‘wet’ term, the Zenith Wet Delay (ZWD). Eq. (3.4.9.16) states 

ZWDZDDZPD +=:      (B.1.1) 

Further the ZPD is a function of 

( )eprefrefref HHzzzγTTepZPDZPD ,,,,,,,,, 101 ′=     (B.1.2) 

and the ZDD depends on 

( )eprefrefref HHzzzγTTepZDDZDD ,,,,,,,,, 101 ′=     (B.1.3) 

while the ZWD is a function of 

( )erefref HzzzγTTeZWDZWD ,,,,,,, 101 ′=      (B.1.4) 

From paragraph 2.2, it is known that the ZPD measurements l are of the form 

nsAxl ++=        (B.1.5) 

where n the noise part, s the signal part and A is the design matrix, derived from the linearization of l. Hence A is 
given by 

x
lA

∂
∂=       (B.1.6) 

where x is the parameters vector. Combine eq. (B.1.2) and eq. (B.1.6) to obtain 

{ }eprefrefref
T HHzzzγTTep ,,,,,,,,, 101 ′=x      (B.1.7) 

It is more convenient to compute the partial derivatives of the ZDD and ZWD than to consider the ZPD as a sole 
entity. Such a move makes sense as the system is linearized. 

B.2. Mathematical background 
It is intended here to provide a short summary of the mathematical laws that are used to compute the different 
partial derivatives. 

Convention 1. Let denote the simple derivative of a smooth derivable function u on  by , i.e. u′ 

( ) ] [ ∈+∞∞−∈=
∂
∂=′ ixxuu

x
uu ii  , , ,   here         w     (B.2.1) 

Law B.1. (Natural logarithm). Let u be a smooth derivable function on . Then the derivative of the 
natural logarithm is 

( )
u
u

x
u ′

=
∂

∂ ln       (B.2.2) 

Law B. 2. (Series differential). Let u be a smooth derivable function on  and S an uniformly [a,b ]
converging series on the same interval.Then the series S can be derived termwise and it  
holds 

( ) ( )∑∑
≥≥

′=
′












1n1n

xuxu nn      (B.2.3) 
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From Law B.2. follows the 
 
Corollary B. 1. (Series with constant coefficients). Let u be a smooth derivable function on   [ ]a,b 

and S a series with constant coefficients, uniformly converging on the same interval. 
Then the series S can be derived termwise and it holds 

∑∑
≥

−

≥

⋅⋅=
′











⋅

1n

1

1n

n
n

n
n xanxa     (B.2.4) 

Law B. 3. (Exponential) Let u be a smooth derivable function on . Then the exponential of u can be 
Taylor developed as 

( ) ( )[ ] ( )[ ]∑∑
≥≥

+==

10
!

1
!

n

n

n

n
xu

n
xu

n
xue    (B.2.5) 

B.3. Help functions 
The partial derivatives with respect to the parameters of eq. (B.1.3) are computed in the following. 

B.3.1. Logarithm ( )10,,, zzTrefln γ  
Define the following function 

( ) 










⋅+
⋅+

=
0

1
10 ln:,,,ln

zT
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zzT
ref

ref
ref γ

γ
γ     (B.3.1.1) 

Its partial derivatives are 

B.3.1.1. ( ) refref TzzT ∂∂ 10,,,ln γ  

Use Law B.1. and eq. (B.3.1.1) to obtain 
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i.e. 

( ) ( )
( ) ( )10

1010 ,,,ln
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refrefref
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B.3.1.2. ( ) γγ ∂∂ 10,,,ln zzTref  
Use Law B.1. and eq. (B.3.1.1) to obtain 
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i.e. 
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B.3.1.3. ( ) 010,,,ln zzzTref ∂∂ γ  
Use Law B.1. and eq. (B.3.1.1) to obtain 
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i.e. 
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B.3.1.4. ( ) 110,,,ln zzzTref ∂∂ γ  
Use Law B.1. and eq. (B.3.1.1) to obtain 

( )
( ) 











⋅+
⋅+

⋅
⋅+

=










⋅+
⋅+

⋅






















⋅+
⋅+

∂
∂=

∂
∂

−

1

0

0

1

0

1

0

1

11

10,,,ln
zγT
zγT

zγTzγT
zγT

zγT
zγT

zz
zzγT

ref

ref

refref

ref

ref

refref γ   (B.3.1.4.1) 

i.e. 
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B.3.2. S11  
Recall that the series  has been defined by eq. (3.4.9.25) as 11S
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i.e. 

( )pref HzzγTSS ,,,, 101111 =     (B.3.2.2) 

Its partial derivatives are 
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(B.3.2.1.1) 

It follows that 
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B.3.2.2. γ∂∂ 11S  

Compute first this expression 
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It follows then 
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This can be simplified to 
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i.e. 
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and finally 
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B.3.2.3. 011 zS ∂∂  
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that is 
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B.3.2.4. 111 zS ∂∂  
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i.e. 
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B.3.2.5. pHS ∂∂ 11  
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i.e. 
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B.3.3. S12  
Recall that the series  has been defined by eq. (3.4.9.27) as 12S
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It differs from  only through one term, namely the first factor in eq. (B.3.3.1). Indeed  is replaced by . 

Therefore both series depends on the same variable, except for  and , i.e. 
11S eH pH

eH pH

( )eref HzzγTSS ,,,, 101212 =     (B.3.3.2) 

Their partial derivatives are similar. Hence retake the results from paragraph B.3.2. 
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B.3.3.2. γ∂∂ 12S  
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B.3.3.3. 012 zS ∂∂  
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B.3.3.4. 112 zS ∂∂  
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B.4. Zenith Dry Delay partial derivatives 
The partial derivatives of the ZDD with respect to the parameters of eq. (B.1.3) or eq. (B.1.7) are computed in the 
following. 

B.4.1. refpZDD ∂∂  

Note that the ZDD is linear in . Its partial derivative is then easy to compute. refp
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B.4.2. refeZDD ∂∂  

As remarked before, the ZDD is also linear in . Thus refe














−⋅⋅⋅⋅−












+











⋅+
⋅+

⋅⋅⋅⋅−=
∂

∂

−′−
−

⋅−

ee

e

ref

H
z

H
z

e

ref

refH

T

ref

eeH
T

S
zγT
zγT

e
γe

ZDD

1

1

6

12
0

16

164.7710  

ln164.7710 γ

   (B.4.2.1) 

B.4.3. refTZDD ∂∂  
To compute this partial derivative, use eq. (B.3.1.1.2). One has 
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Insert eq. (B.3.2.1.2) and eq. (B.3.3.1.1) in eq. (B.4.3.1). 
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B.4.4. 1TZDD ∂∂  
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that is 
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B.4.5. γZDD ∂∂  
It holds 
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Use eq. (B.3.1.2.2), (B.3.2.2.4) and eq. (B.3.3.2.1).  
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Rewrite it by inserting (B.3.2.2.4) and eq. (B.3.3.2.1) in eq. (B.4.5.1). 
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B.4.6. 0zZDD ∂∂  
Use eq. (B.3.1.3.2), (B.3.2.3.4) and eq. (B.3.3.3.1). It holds 
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That is 
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This reduces to 
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B.4.7. 1zZDD ∂∂  
Use eq. (B.3.1.4.2), (B.3.2.4.2) and eq. (B.3.3.4.1). It holds 
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This is 
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Eq. (B.4.7.2) can be rewritten as 
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B.4.8. zZDD ′∂∂  
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Use the fact that  does not depend on . 12S pH
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With eq. (B.3.2.5.2) it follows that 
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i.e. 
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B.4.10. eHZDD ∂∂  
Remark that is holds 
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Now use eq. (B.3.3.5.1) and the fact that  does not depend on . 11S eH
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i.e. 
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or simpler 
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B.5. Zenith Wet Delay partial derivatives 
The partial derivatives of the ZWD with respect to the parameters of eq. (B.1.3) or eq. (B.1.7) are computed in the 
following. 
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B.5.2. refTZWD ∂∂  
First compute this expression 
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It follows that 
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Introduce eq. (B.3.3.1.1.) in eq. (B.5.2.2)  
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B.5.4. γZWD ∂∂  
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With eq. (B.3.1.3.2) one has 
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Insert eq. (B.3.3.3.1) in eq. (B.5.5.2) 
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Eq. (B.5.5.3) reduces to 
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B.5.6. 1zZWD ∂∂  
With eq. (B.5.5.1) for  and eq. (B.3.1.4.2), it holds 1z
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and simplify eq. (B.5.6.2) 
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This can be simplified to 
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Insert eq. (B.3.3.5.1) in eq. (B.5.8.3) 
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B.6. Parameter dependencies of the partial derivatives 
In order to clarify which term computed above depends on which parameters, a summary of the parameter 
dependency of the different partial derivatives of the Zenith Dry Delay and of the Zenith Wet Delay is approached 
in Table B.1 hereunder. 
 

    Parameters        
Function refp  refe  refT  1T  γ  0z  1z  z′  pH  eH  Eq. Nr. 

ZDD × × × × × × × × × × (3.4.9.23) 
ZWD  × × × × × × ×  × (3.4.9.22) 

refpZDD ∂∂    × × × × × × ×  (B.4.1.1) 

refeZDD ∂∂    ×  × × × ×  × (B.4.2.1) 

refTZDD ∂∂  × × ×  × × ×  × × (B.4.3.2) 

1TZDD ∂∂  × ×  ×   × × × × (B.4.4.2) 
γZDD ∂∂  × × ×  × × ×  × × (B.4.5.3) 

0zZDD ∂∂  × × ×  × ×   × × (B.4.6.5) 

1zZDD ∂∂  × × ×  ×  ×  × × (B.4.7.4) 
zZDD ′∂∂     ×    × × × (B.4.8.3) 

pHZDD ∂∂  ×  × × × × ×  ×  (B.4.9.5) 

eHZDD ∂∂   × × × × × × ×  × (B.4.10.5) 

refpZWD ∂∂             
refeZWD ∂∂    × × × × × ×  × (B.5.1.1) 

refTZWD ∂∂   × ×  × × ×   × (B.5.2.3) 

1TZWD ∂∂   ×  ×   × ×  × (B.5.3.3) 
γZWD ∂∂   × × × × × ×   × (B.5.4.6) 

0zZWD ∂∂   × ×  × ×    × (B.5.5.5) 

1zZWD ∂∂   × × × ×  ×   × (B.5.6.4) 
zZWD ′∂∂   ×  ×    ×  × (B.5.7.2) 

pHZWD ∂∂             
eHZWD ∂∂   × × × × × ×   × (B.5.8.6) 

Table B.1. Parameter dependencies of the partial derivatives 
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Two rows have been added in order to explicitly show that the ZWD does not depend on  and on . The 
equation number has been introduced to ease fast referencing. 

refp pH



Appendix C. COMEDIE software   
__________________________________________________________________________________________________________________________________________________________________________________________ 

189

Appendix C. COMEDIE software 
Accordingly to paragraph 4.3.1, the different program parts are presented hereunder. The ZPD functional model is 
first introduced. Then the main programs that are the core of the COMEDIE software are visualized and finally a 
short introduction on the data input is provided. 

C.1. m_herschke 
The routine m_herschke.c contains the Zenith Dry Delay (ZDD) and Zenith Wet Delay (ZWD) functional models, 
i.e. eq. (3.4.9.23) and (3.4.9.22). 
 

 
/* 
* FILE:  m_herschke 
* 
* PROJECT: COMEDIE 
* 
* PURPOSE: ZPD model 
* 
* COPYRIGHT: © 2002 Geodesy and Geodynamics Lab, 
*   Swiss Federal Institute of Technology Zurich 
* 
* AUTHORS: Philippe Herschke 
* 
* HISTORY : dd-mm-yyyy  --  description 
*   07-02-2002  --  created 
*   15-02-2002  --  constrains applied to parameters 
*/ 
 
#ifndef M_HERSCHKE 
#define M_HERSCHKE 
 
/* -------------------------------------------------------------------------------------------- 
* param    0      1            2      3    4     5       6 
*               tref  gamma   z1    z'    t1   eref   He 
*/ 
double zwd_herschke(double *param, double h); 
 
 
/* -------------------------------------------------------------------------------------------- 
* param    0       1        2       3      
*               pref   eref    tref    gamma 
*/ 
double zpd_herschke(double *param, double h); 
 
#endif 
 

Table C.1. m_herschke.h library 

The corresponding main routine is 
 
 

/* 
* FILE:  m_herschke 
* 
* PROJECT: COMEDIE 
* 
* PURPOSE: ZPD and ZWD modeling 
* 
* COPYRIGHT: © 2002 Geodesy and Geodynamics Lab, 
*   Swiss Federal Institute of Technology Zurich 
* 
* AUTHOR: Philippe Herschke 
* 
* HISTORY: see corresponding header file 
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*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <common.h> 
 
/* -------------------------------------------------------------------------------------------------------------------------*/ 
double s_term(double x, double eps) 
{ 
  int i=1; 
  double x1 = x; 
  double x2 = 1; 
  double result = x; 
  double x3; 
 
  do 
    { 
      i++; 
      x1 *= x; 
      x2 *= i; 
      x3 = x1/x2/i; 
      result += x3; 
    } 
  while (fabs(x3)>eps); 
  return result; 
} 
 
/* --------------------------------------------------------------------------------------------------------------------------- 
 * param 0       1               2      3     4     5         6 
 *  tref    gamma     z1    z'     t1    eref     He 
 */ 
double zwd_herschke(double *param, double h) 
{ 
  double e0_div_gamma = param[5]/param[1]; 
  double div_gammaH = 1/param[1]/param[6]; 
  double t1 = param[0] + param[1]*param[2]; 
  double t = param[0] + param[1]*h; 
  double cte = 64.68 * e0_div_gamma * exp(param[0]*div_gammaH); 
 
  double s12, x; 
  double term1, term2, term3, term4; 
 
  s12=s_term(-t1*div_gammaH, 1.0e-10) - s_term(-t*div_gammaH, 1.0e-10); 
  x = log(t1/t) + s12; 
 
  term1 = -cte * x; 
  term2 =  cte * 5748.0 * (-exp(-t1*div_gammaH)/t1 + exp(-t*div_gammaH)/t - div_gammaH*x); 
 
  x = exp(-param[3]/param[6]) - exp(-param[2]/param[6]); 
 
  term3 = 64.68 * param[5]/param[4] * param[6] * x; 
  term4 = -term3*5748/param[4]; 
 
  return (term1 + term2 + term3 + term4)*1.0e-6; 
 
} 
 
/* ---------------------------------------------------------------------------------------------------------------------------  
 * param 0         1         2       3 
 *  pref     eref     tref    gamma 
 */ 
 
double zpd_herschke(double *param, double h) 
{ 
  
  double t1 = 216.64;   
  double z1 = 11000.0; 
  double z_prime = 15000.0; 
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  double Hp = 9000.0; 
  double He = 3000.0; 
  double gamma = -0.006501; 
  double pref_div_gamma = param[0]/gamma; 
  double eref_div_gamma = param[1]/gamma; 
  double div_gammaHp = 1/gamma/Hp; 
  double div_gammaHe = 1/gamma/He; 
  double div_t1 = 1/t1; 
  double div_t1_square = 1/t1/t1; 
 
//  double t1 = param[2] + gamma*z1; 
 
  double t = param[2] + gamma*h; 
 
  double cte = 64.68*eref_div_gamma*exp(param[2]*div_gammaHe); 
 
  double s11, s12, x11, x12, y12; 
  double term1, term2, term3, term4, term5, term6, term7, term8; 
 
  s11 = s_term(-t1*div_gammaHp, 1.0e-10) - s_term(-t*div_gammaHp, 1.0e-10); 
  x11 = log(t1/t) + s11; 
 
  s12 = s_term(-t1*div_gammaHe, 1.0e-10) - s_term(-t*div_gammaHe, 1.0e-10); 
  x12 = log(t1/t) + s12; 
  
  y12 = exp(-z_prime/He) - exp(-z1/He); 
  term1 =  77.64*pref_div_gamma*exp(param[2]*div_gammaHp)*x11; 
  term2 =  77.64*eref_div_gamma*exp(param[2]*div_gammaHe)*x12; 
  term3 =  77.64*param[0]*div_t1*Hp*(exp(-z1/Hp) - exp(-z_prime/Hp) ); 
  term4 =  77.64*param[1]*div_t1*He*y12; 
  term5 =  cte*x12; 
  term6 =  cte*5748.0*( -exp(-t1*div_gammaHe)/t1 + exp(-t*div_gammaHe)/t - div_gammaHe*x12 ); 
  term7 =  64.68* param[1]*div_t1* He*y12; 
  term8 =  5748.0*64.68*param[1]*div_t1_square*He*y12; 
 
  return (term1 - term2 + term3 - term4 - term5 + term6 + term7 - term8)*1.0e-6; 
 
} 

 

Table C.2. m_herschke.c routine for ZPD functional model 

C.2. m_model 
The m_model.c routine contains all fucntional model available in the COMEDIE software. The serial number 1000 
has been attributed to the ZPD model of Chapter 3. This calls the m_herschke.c routine. 
 

/* 
* FILE:  m_model.c 
* 
* PROJECT: COMEDIE 
* 
* PURPOSE: contains all functional models and partial derivatives 
* 
* COPYRIGHT: © 2002 Geodesy and Geodynamics Lab, 
*   Swiss Federal Institute of Technology Zurich 
* 
* AUTHORS: Cocard Marc 
*   Troller Marc 
*   Herschke Philippe (model serial # 1000) 
* 
* HISTORY: see corresponding header file 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
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#include <common.h> 
#include "m_general.h" 
#include "m_herschke.h" 
#include "m_point.h" 
#include "m_model.h" 
 
/* -------------------------------------------------------------------------- */ 
double heavy(double height, double maxheight) 
{ 
  int a = 1; 
  double value; 
   
  value = 1/PI*atan2(a*(height-maxheight), 1)+0.5; 
  return value; 
} 
 
 
/* -------------------------------------------------------------------------- */ 
struct Model * init_model(int type, int count, int sigma) 
{ 
  struct Model * model; 
  int i; 
 
  if ((model = (struct Model *)  malloc(sizeof(struct Model))) == NULL) return NULL; 
  memset(model, 0, sizeof(struct Model)); 
  model->type = type; 
  model->count = count; 
 
  if ((model->param = (double *) malloc(sizeof(double)*count)) == NULL) return NULL; 
  memset(model->param, 0, sizeof(double)*count); 
 
  if ((model->name = (char **) malloc(sizeof(char *)*count)) == NULL) return NULL; 
  memset(model->name, 0, sizeof(char *)*count); 
 
  if ( sigma) 
    {  
      if ((model->sigma = (double *) malloc(sizeof(double)*count)) == NULL) return NULL; 
      for (i=0; i<count; i++) model->sigma[i] = -99.9; 
    } 
  return model; 
} 
 
/* -------------------------------------------------------------------------- */ 
struct Model * copy_model(struct Model *old) 
{ 
  struct Model * model; 
  int i; 
   
  if ((model = init_model(old->type, old->count, old->sigma==NULL?0:1)) == NULL) 
  return NULL; 
  memcpy(model->param, old->param, sizeof(double)*old->count); 
  for (i=0; i<old->count; i++) 
    if (old->name[i] != NULL &&  
        (model->name[i]=strdup(old->name[i])) == NULL) return NULL; 
  if (old->sigma != NULL) memcpy(model->sigma, old->sigma, sizeof(double)*old->count); 
  return model; 
} 
 
/* -------------------------------------------------------------------------- */ 
void free_model(struct Model *model) 
{ 
  int i; 
  if (model->param != NULL) free(model->param); 
  if (model->name != NULL) 
    { 
      for (i=0; i<model->count; i++) 
        if (model->name[i] != NULL) free(model->name[i]); 
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      free(model->name); 
    } 
  if (model->sigma != NULL) free(model->sigma); 
  free(model); 
} 
 
/* -------------------------------------------------------------------------- */ 
int check_model(struct Model *model) 
{ 
extern char * pgnname; 
 
  /* here are the known model types with their corresponding dimension */ 
  const int known_model_type[]  = {  1, 2, 3, 100, 101, 200, 201, 202, 203, 300, 301, 1000}; 
  const int known_model_count[] = { 5, 6, 6,  2,     5,     2,     5,     6,     3,     2,     5,     3}; 
   
  int i; 
   
  for (i=0; i<sizeof(known_model_count)/sizeof(int); i++) 
    if (model->type == known_model_type[i]) 
      { 
        if (model->count == known_model_count[i]) return 0; 
        fprintf(stderr,"%s: ***ERROR: model %d requires %d parameters\n", 
                pgnname, model->type, known_model_count[i]); 
        return -1; 
      } 
    
  fprintf(stderr,"%s: ***ERROR: model type %d not supported\n", pgnname, model->type); 
  return -1; 
} 
/* -------------------------------------------------------------------------- */ 
int fillname_model(struct Model *model, char **measunit) 
{ 
  switch (model->type) 
    { 
    case 1: /* covariance without attenuation factor */ 
      {  
        if ((model->name[0] = strdup("sigma signal")) == NULL) return -1; 
        if ((model->name[1] = strdup("delta-x [km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("delta-y [km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("delta-height [km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("delta-time [hour]")) == NULL) return -1; 
        return 0; 
      } 
 
    case 2: /* covariance with attenuation factor */ 
      {  
        if ((model->name[0] = strdup("sigma signal")) == NULL) return -1; 
        if ((model->name[1] = strdup("delta-x [km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("delta-y [km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("delta-height [km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("delta-time [hour]")) == NULL) return -1; 
        if ((model->name[5] = strdup("attenuation factor")) == NULL) return -1; 
        return 0; 
      } 
 
   case 3: /* covariance with attenuation factor & Heavyside function */ 
      { 
        if ((model->name[0] = strdup("sigma signal")) == NULL) return -1; 
        if ((model->name[1] = strdup("delta-x [km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("delta-y [km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("delta-height [km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("delta-time [hour]")) == NULL) return -1; 
        if ((model->name[5] = strdup("attenuation factor")) == NULL) return -1; 
        return 0; 
      } 
 
    case 100 : /* pressure simple model */ 
      { 
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        if ((*measunit = strdup("hPa")) == NULL) return -1; 
        if ((model->name[0] = strdup("pressure at sea level [hPa]")) == NULL) return -1; 
        if ((model->name[1] = strdup("scaling height [m]")) == NULL) return -1; 
        return 0; 
      } 
    case 101 : /* pressure with horizontal gradients */ 
      { 
        if ((*measunit = strdup("hPa")) == NULL) return -1; 
        if ((model->name[0] = strdup("pressure at sea level [hPa]")) == NULL) return -1; 
        if ((model->name[1] = strdup("scaling height [m]")) == NULL) return -1; 
        if ((model->name[2] = strdup("horizontal gradient x-direction [hPa/100km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("horizontal gradient y-direction [hPa/100km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("time gradient [hPa/hour]")) == NULL) return -1; 
        return 0; 
      } 
    case 200 :  /* temperature simple model */ 
      { 
        if ((*measunit = strdup("oCel")) == NULL) return -1; 
        if ((model->name[0] = strdup("temperature at sea level [oCel]")) == NULL) return -1; 
        if ((model->name[1] = strdup("temperature gradient [oCel/km]")) == NULL) return -1; 
        return 0; 
       } 
    case 201 : /* temperature with horizontal gradients */ 
      { 
        if ((*measunit = strdup("oCel")) == NULL) return -1; 
        if ((model->name[0] = strdup("temperature at sea level [oCel]")) == NULL) return -1; 
        if ((model->name[1] = strdup("temperature gradient [oCel/km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("horizontal gradient x-direction [oCel/100km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("horizontal gradient y-direction [oCel/100km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("time gradient[oCel/hour]")) == NULL) return -1; 
        return 0; 
      } 
    case 202 : /* temperature with horizontal gradients - two functions */ 
      { 
        if ((*measunit = strdup("oCel")) == NULL) return -1; 
        if ((model->name[0] = strdup("temperature at sea level [oCel]")) == NULL) return -1; 
        if ((model->name[1] = strdup("temperature gradient [oCel/km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("horizontal gradient x-direction [oCel/100km]")) == NULL) return -1; 
        if ((model->name[3] = strdup("horizontal gradient y-direction [oCel/100km]")) == NULL) return -1; 
        if ((model->name[4] = strdup("time gradient[oCel/hour]")) == NULL) return -1; 
        if ((model->name[5] = strdup("constant temperature in the higher area [oCel]")) == NULL) return -1; 
        return 0; 
      } 
 
    case 203 : /* temperature without horizontal gradients - two functions */ 
      { 
        if ((*measunit = strdup("oCel")) == NULL) return -1; 
        if ((model->name[0] = strdup("temperature at sea level [oCel]")) == NULL) return -1; 
        if ((model->name[1] = strdup("temperature gradient [oCel/km]")) == NULL) return -1; 
        if ((model->name[2] = strdup("constant temperature in the higher area [oCel]")) == NULL) return -1; 
        return 0; 
      } 
 
    case 300 : /* humidity simple model */ 
      { 
        if ((*measunit = strdup("hPa")) == NULL) return -1; 
        if ((model->name[0] = strdup("humidity at sea level")) == NULL) return -1; 
        if ((model->name[1] = strdup("scaling height")) == NULL) return -1; 
        return 0; 
      } 
    case 301 : /* humidity with horizontal gradients */ 
      { 
        if ((*measunit = strdup("hPa")) == NULL) return -1; 
        if ((model->name[0] = strdup("humidity at sea level")) == NULL) return -1; 
        if ((model->name[1] = strdup("scaling height")) == NULL) return -1; 
        if ((model->name[2] = strdup("horizontal gradient x-direction")) == NULL) return -1; 
        if ((model->name[3] = strdup("horizontal gradient y-direction")) == NULL) return -1; 
        if ((model->name[4] = strdup("time gradient")) == NULL) return -1; 



Appendix C. COMEDIE software   
__________________________________________________________________________________________________________________________________________________________________________________________ 

195

        return 0; 
      } 
     
    case 1000 : /* zenith path delay (ZPD) */ 
      { 
        if ((*measunit = strdup("m")) == NULL) return -1; 
        if ((model->name[0] = strdup("reference pressure [hPa]")) == NULL) return -1; 
        if ((model->name[1] = strdup("reference humidity [hPa]")) == NULL) return -1; 
        if ((model->name[2] = strdup("reference temperature [K]")) == NULL) return -1; 
//      if ((model->name[3] = strdup("tropospheric temperature gradient [K/m]")) == NULL) return -1; 
        return 0; 
      } 
 
    } /* end switch */ 
   
  return -1;   /* model->type not supported */ 
} 
 
/* -------------------------------------------------------------------------- */ 
void write_model(FILE *fp, struct Model *model, int withsigma) 
{ 
  int i; 
  if (model != NULL) 
    { 
      fprintf(fp," %21d   type\n",model->type); 
      fprintf(fp," %21d   param count\n", model->count); 
      for (i=0; i<model->count; i++) 
        { 
          if (withsigma) fprintf(fp," %12.5f %8.2f", model->param[i], model->sigma[i]); 
          else  fprintf(fp," %21.5f", model->param[i]);    
 
          if (model->name[i] == NULL) fprintf(fp,"   parameter %2d\n", i+1); 
          else fprintf(fp,"   %s\n", model->name[i]);      
        } 
    } 
} 
 
/* -------------------------------------------------------------------------- */ 
struct Model * read_model(FILE *fp, int *linenr, int withsigma) 
{ 
  char line[MAXLINELENGTH]; 
  int type, count, i, offset; 
  struct Model *model; 
   
if (readnextline(fp, line, linenr) != 0 || sscanf(line,"%d", &type)  != 1) return NULL; 
  if (readnextline(fp, line, linenr) != 0 || sscanf(line,"%d", &count) != 1) return NULL; 
   
  if ((model=init_model(type, count, withsigma)) == NULL) return NULL; 
 
  for (i=0; i<count; i++) 
    { 
      if (readnextline(fp, line, linenr) != 0 ) return NULL; 
      if (sscanf(line,"%lf %n", &(model->param[i]), &offset) != 1) return NULL;  
    
      if (withsigma && sscanf(line+offset,"%lf", &(model->sigma[i])) != 1) return NULL; 
    } 
  return model; 
} 
 
/* -------------------------------------------------------------------------- */ 
int calc_covariance(struct Model *cov, struct Point *p1, struct Point *p2, double *covvalue) 
{ 
  /* CAUTION: correlation length unit is km resp. hours !!! Conversions directly performed in routine itself */ 
   
  double dx2, dy2, dh2, dt2; 
  double damping; 
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  dx2 = SQR((p1->xcoord - p2->xcoord)/1000.0/cov->param[1]); 
  dy2 = SQR((p1->ycoord - p2->ycoord)/1000.0/cov->param[2]); 
  dh2 = SQR((p1->height - p2->height)/1000.0/cov->param[3]); 
  dt2 = SQR((p1->mjd - p2->mjd)*24.0/cov->param[4]); 
   
  switch (cov->type) 
    { 
    case 1: /* without damping factor */ 
      {  
        (*covvalue) = SQR(cov->param[0])/(1 + dx2+dy2+dh2+dt2); 
        return 0; 
      } 
    case 2: /* with damping factor */ 
      {  
        damping=-(p1->height + p2->height)/2/cov->param[5]/1000; 
        damping=exp(damping); 
        (*covvalue) = SQR(cov->param[0])/(1 + (dx2+dy2+dh2+dt2)*damping); 
        return 0; 
      } 
    case 3: /* with damping factor & additional time-correlation (Heavyside function) */ 
      {  
        damping=-(p1->height + p2->height)/2/cov->param[5]/1000; 
        damping=exp(damping) 
        (*covvalue) = SQR(cov->param[0])/(1 + (dx2+dy2+dh2+dt2*heavy(p1->height, 5000))*damping); 
        return 0; 
      } 
    } 
  return -1; /* cov->type not supported */ 
} 
 
/* -------------------------------------------------------------------------- */ 
int calc_model(struct Model *model, struct Point *p, double *value, struct Point *refpoint) 
{ 
  switch (model->type) 
    { 
    case 100 : /* pressure simple model */ 
      { 
        *value = model->param[0]*exp(-p->height/model->param[1]); 
        return 0; 
      } 
 
    case 101 : /* pressure with horizontal gradients */ 
      { 
        *value = ( model->param[0]  
                     + model->param[2] * (p->xcoord-refpoint->xcoord)*1.0e-5 
                     + model->param[3] * (p->ycoord-refpoint->ycoord)*1.0e-5 
                     + model->param[4] * (p->mjd-refpoint->mjd) * 24.0) 
                     * exp(-p->height/model->param[1]); 
        return 0; 
      } 
 
    case 200 :  /* temperature simple model */ 
      { 
        *value = model->param[0] + model->param[1] * p->height * 1.0e-3; 
        return 0; 
      } 
 
    case 201 : /* temperature with horizontal gradients */ 
      { 
        *value = ( model->param[0]  
                     + model->param[2] * (p->xcoord - refpoint->xcoord)*1.0e-5 
                     + model->param[3] * (p->ycoord - refpoint->ycoord)*1.0e-5 
                     + model->param[4] * (p->mjd - refpoint->mjd) * 24.0 
                     + model->param[1] * p->height * 1.0e-3); 
        return 0; 
      } 
 
    case 202 : /* temperature with horizontal gradients - two functions */ 
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      { 
        *value = ( model->param[2] * (p->xcoord - refpoint->xcoord)*1.0e-5 
                     + model->param[3] * (p->ycoord - refpoint->ycoord)*1.0e-5  
                     + model->param[4] * (p->mjd - refpoint->mjd) * 24.0 
                     + (model->param[0] + model->param[1] * p->height *1.0e-3) 
                     * (1 - heavy(p->height, 11000)) 
                   + model->param[5] *heavy(p->height, 11000)); 
        return 0; 
 
      } 
       
    case 203 : /* temperature without horizontal gradients - two functions */ 
      { 
        *value = (( model->param[0] + model->param[1] * p->height +1.0e-3) 
                   * (1 - heavy(p->height, 11000)) 
                   + model->param[2] *heavy(p->height, 11000)); 
        return 0; 
      } 
 
    case 300 : /* humidity simple model */ 
      { 
        *value = model->param[0] * exp(-p->height/model->param[1]); 
        return 0; 
      } 
 
    case 301 : /* humidity with horizontal gradients */ 
      { 
        *value = ( model->param[0]  
                     + model->param[2] * (p->xcoord - refpoint->xcoord)*1.0e-5  
                     + model->param[3] * (p->ycoord - refpoint->ycoord)*1.0e-5  
                     + model->param[4] * (p->mjd - refpoint->mjd) *24.0 )  
                     * exp(-p->height/model->param[1]); 
        return 0; 
      } 
 
    case 1000 : /* zenith path delay (ZPD) model Herschke */ 
      { 
        /* compute zenith path delay */ 
         *value = zpd_herschke(model->param, p->height); 
         return 0; 
      } 
    } 
  return -1;  /* model->type not supported */ 
} 
 
/* -------------------------------------------------------------------------- */ 
int calc_derivation(struct Model *model, struct Point *p, double *deriv, struct  
Point *refpoint) 
{ 
  double *paramdummy; 
  double dparam; 
  double value0; 
  int i; 
 
  #define LN10 (log(10)) 
 
  switch(model->type) 
    { 
    case 100 : /* pressure simple model */ 
      { 
        deriv[0] = exp(-p->height/model->param[1]); 
        deriv[1] = model->param[0] * deriv[0] * p->height / SQR(model->param[1]); 
        return 0; 
      } 
 
    case 101 : /* pressure with horizontal gradients */ 
      { 
        deriv[0] = exp(-p->height/model->param[1]); 
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        deriv[1] = ( model->param[0]  
                       + model->param[2] * (p->xcoord - refpoint->xcoord) * 1.0e-5  
                       + model->param[3] * (p->ycoord - refpoint->ycoord) * 1.0e-5  
                       + model->param[4] * (p->mjd - refpoint->mjd) *24.0 )  
                       * deriv[0]*p->height/SQR(model->param[1]); 
        deriv[2] = (p->xcoord - refpoint->xcoord) * deriv[0] * 1.0e-5; 
        deriv[3] = (p->ycoord - refpoint->ycoord) * deriv[0] * 1.0e-5; 
        deriv[4] = (p->mjd - refpoint->mjd) * deriv[0] * 24.0; 
        return 0; 
      } 
 
    case 200 :  /* temperature simple model */ 
      { 
        deriv[0] = 1; 
        deriv[1] = p->height * 1.0e-3; 
        return 0; 
      } 
 
    case 201 : /* temperature with horizontal gradients */ 
      { 
        deriv[0] = 1; 
        deriv[1] = p->height * 1.0e-3; 
        deriv[2] = (p->xcoord - refpoint->xcoord)*1.0e-5; 
        deriv[3] = (p->ycoord - refpoint->ycoord)*1.0e-5; 
        deriv[4] = (p->mjd - refpoint->mjd) *24.0; 
        return 0; 
      } 
 
    case 202 : /* temperature with horizontal gradients - two functions */ 
      { 
        deriv[0] = 1 - heavy(p->height, 11000); 
        deriv[1] = (p->height - p->height * heavy(p->height, 11000)) * 1.0e-3; 
        deriv[2] = (p->xcoord - refpoint->xcoord)*1.0e-5; 
        deriv[3] = (p->ycoord - refpoint->ycoord)*1.0e-5; 
        deriv[4] = (p->mjd - refpoint->mjd) *24.0; 
        deriv[5] = heavy(p->height, 11000); 
        return 0; 
      } 
 
    case 203 : /* temperature with horizontal gradients - two functions */ 
      { 
        deriv[0] = 1 - heavy(p->height, 11000); 
        deriv[1] = (p->height - p->height * heavy(p->height, 11000)) * 1.0e-3; 
        deriv[2] = heavy(p->height, 11000); 
        return 0; 
      } 
 
    case 300 : /* humidity simple model */ 
      { 
        deriv[0] = exp(-p->height/model->param[1]); 
        deriv[1] = model->param[0]*deriv[0]*LN10*p->height/SQR(model->param[1]); 
        return 0; 
      } 
 
    case 301 : /* humidity with horizontal gradients */ 
      { 
        deriv[0] = exp(-p->height/model->param[1]); 
        deriv[1] = ( model->param[0] 
                       + model->param[2] * (p->xcoord - refpoint->xcoord) * 1.0e-5  
                       + model->param[3] * (p->ycoord - refpoint->ycoord) * 1.0e-5  
                       + model->param[4] * (p->mjd - refpoint->mjd) * 24.0  )  
                       * deriv[0]*p->height/SQR(model->param[1]); 
        deriv[2] = (p->xcoord - refpoint->xcoord) * deriv[0]*1.0e-5; 
        deriv[3] = (p->ycoord - refpoint->ycoord) * deriv[0]*1.0e-5; 
        deriv[4] = (p->mjd - refpoint->mjd) * deriv[0] *24.0; 
        return 0; 
      } 
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    case 1000 : /* zenith path delay (ZPD) */ 
      { 
        value0 = zpd_herschke(model->param, p->height); 
        paramdummy = (double *) malloc(model->count*sizeof(double)); 
        for (i=0; i<model->count; i++) 
          {             
            memcpy(paramdummy, model->param, model->count*sizeof(double)); 
            dparam = fabs(model->param[i]/1000); 
            paramdummy[i]+=dparam; 
            deriv[i] = (zpd_herschke(paramdummy, p->height) - value0)/dparam; 
          } 
        free(paramdummy); 
 
        return 0; 
      }       
 
    }                 /* end switch */ 
  return -1;      /* model->type not supported */ 
} 
 

Table C.3. m_model.c routine containing the COMEDIE functional models 

C.3. Collocation and prediction programs 
As these programs are extensive, it is not of interest to provide here an output of those. Instead it is referred to 
[Troller et al., 2002]. 

C.4. Input files 
There are two input files. The first, colloc_input is structured in blocks that call a functional model and a covariance 
function. In addition, the functional parameters are initialized with their default values. 
 

#-------------------------------------------------------------------------- 
   VERSION   1                 INPUT FILE M_COLCPREP 
#-------------------------------------------------------------------------- 
# 
# all blank lines and lines starting with a pound-sign (#)  
# are comment lines. 
# 
# The first non-comment line must start with the string "VERSION" 
# followed by the version number. 
#  
# The file may contain more than 1 model. All models must have 
# a unique identification number (greater than zero) in the  
# first input field. 
# 
# The char ">" is used as delimiter. Comment before ">" is  
# overread.  
 
############# UNITS ############### 
 
nr.     >  0 
name    >  text appears in output file 
funct.model.type   >  regular model number 
funct.model.number.of.parameters >  2 or 5 
funct.model.parameters  >  hPa, °C, m 
funct.model.sigma.a.priori  >  hPa, °C, m 
covariance.type   >  1 or 2 
covariance.number.of.parameters >  5 or 6 
covariance.parameters   >  no unit, km/[hPa °C], km/hPa, km/°C, h/[hPa, °C], km 
 
. 
. 
. 
 
########### ZENITH PATH DELAY MODELS ########### 
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nr.     >  1000 
name    >  zpd 
funct.model.type   >  1000 
funct.model.number.of.parameters >  3 
funct.model.parameters  >  1013.25   10.0   288.15 
funct.model.sigma.a.priori  > 
covariance.type   >  1 
covariance.number.of.parameters >  5 
covariance.parameters   >  2   100   100   1   6 
 

Table C.4. Example of colloc_input file 

The second, input_main determines the observation window for the data extraction as well as the time period for the 
collocation and for the prediction. 
 
 

#-------------------------------------------------------------------------------------------------------------- 
#                    GENERAL INPUTFILE FOR PROGRAM COMEDIE    
#-------------------------------------------------------------------------------------------------------------- 
 
block.keyword    >  GENERAL 
start.time     >  2000 05 22 00 00 00 
end.time     >  2000 05 30 00 00 00 
interval.for.1.collocation.(hour)   >  12 
project name    >  pd_estimation 
comedie main path    >  /home/logvert/herschke/daten/pathdelay/ 
working directory    >  work 
subdirectory.extracted.datafiles  >  extract 
subdirectory.collocated.files   >  colloc 
subdirectory.interpolated.files  >  interpol 
subdirectory.pathdelay.files   >  pathdelay 
subdirectory.per.station.pathdelay.files >  pd_station 
 
#-------------------------------------------------------------------------------------------------------------- 
 
block.keyword    >  DATAEXTRACT 
prefix.of.files    >  ext 
#----- AGNES ----- 
station.file     >  agnes.st 
offset.(before and after time interval.in hour >  12 
path.to.database    >  /home/logvert/herschke/COMEDIE/daten/pathdelay/work 
ZPD: std.dev.of.meas.values  >  0.50 
 
. 
. 
. 
 
#-------------------------------------------------------------------------------------------------------------- 
 
block.keyword    >  COLCPREP 
prefix.of.files    >  coll 
name.of.the.colcprep.optionfile  >  colloc_input 
ZPD model.nr.    >  1000 
 
. 
. 
. 
 
#-------------------------------------------------------------------------------------------------------------- 
 
block.keyword    >  INTERPOL 
prefix.of.files    >  ip 
file.of.interpolation.points   >  work/station.st 
variables.to.interpolate   >  zpd 
interpolation.start.time   >  2000 05 22 00 00 00 
interpolation.end.time   >  2000 05 30 00 00 00 



Appendix C. COMEDIE software   
__________________________________________________________________________________________________________________________________________________________________________________________ 

201

 
interpolation.interval.(hour)   >  0.017 
 
#-------------------------------------------------------------------------------------------------------------- 

 

Table C. 5. Example of input_main file for observation window and routine execution 
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