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Abstract.

In this paper we study the generating function of classes of graphs and hypergraphs. For a class of
labeled graphs C we denote by fc(n) the number of structures of size n. For € definable in Monadic
Second Order Logic with unary and binary relation symbols only, E. Specker and C. Blatter showed
in 1981 that for every m € N, fc(n) satisfies a linear recurrence relation fe(n) = Zj’:’”‘l agm) fe(n—j),
over Zm, and hence is ultimately periodic for each m. To show this they introduced what we call the
Specker-index of C and first showed the theorem to hold for any C of finite Specker-index, and then
showed that every C definable in Monadic Second Order Logic is indeed of finite Specker-index. E.
Fischer showed in 2002 that the Specker-Blatter Theorem does not hold for quaternary relations.

In this paper we show how the Specker-Blatter Theorem is related to Schiitzenberger’s Theorem and
the Myhill-Nerode criterion for the characterization of regular languages, and discuss in detail how the
behavior of this generating function depends on the choice of constant and relation symbols allowed in
the definition of C. Among the main results we have the following:

— We consider n-ary relations of degree at most d, where each element a is related to at most d
other elements by any of the relations. We show that the Specker-Blatter Theorem holds for those,
irrespective of the arity of the relations involved.

— Every C definable in Monadic Second Order Logic with (modular) Counting (CMSOL) is of finite
Specker-index. This covers many new cases, for which such a recurrence relation was not known
before.

— There are continuum many C of finite Specker-index. Hence, contrary to the Myhill-Nerode char-
acterization of regular languages, the recognizable classes of graphs cannot be characterized by the
finiteness of the Specker-index.

1 Introduction and main results

Counting objects of a specified kind belongs to the oldest activities in mathematics. In particular,
counting the number of (labeled or unlabeled) graphs satisfying a given property is a classic un-
dertaking in combinatorial theory. The first deep results for counting unlabeled graphs are due to
J.H. Redfield (1927) and to G. Polya (1937), but were only popularized after 1960. F. Harary, E.M.
Palmer and R.C. Read unified these early results, as witnessed in the still enjoyable [HP73].

It is unfortunate that a remarkable theorem by E. Specker and C. Blatter on counting la-
beled graphs (and more generally, labeled binary relational structures), first announced in 1981, cf.
[BS81,BS84,Spe88], has not found the attention it deserves, both for the beauty of the result and
the ingenuity in its proof.

E. Specker and C. Blatter look at the function f¢(n) which counts the number of labeled
relational structures of size n with k relations Ry,..., Ry, which belong to a class C. We shall



call this function the density function for C. It is required that C be definable in Monadic Second
Order Logic and that the relations are all unary or binary relations. The theorem says that under
these hypotheses the function f¢(n) satisfies a linear recurrence relation modulo m for every m €
Z. Special cases of this theorem have been studied extensively, cf. [HP73,Ges84,Wil90] and the
references therein. However, the possibility of using a formal logical classification as a means to
collect many special cases seems to have mostly escaped notice in this case.

In the present paper, we shall discuss both the Specker-Blatter theorem, and its variations and
limits of generalizabilty. We first set up our framework of logic. For the reader not familiar with
logic, we recommend consulting [EF95]. We also give numerous examples in Appendix E, which in
turn provide combinatorial corollaries to the Specker-Blatter Theorem. Proving directly the linear
recurrence relations over every modulus m for all the given examples would have been a nearly
impossible undertaking. We should also note that counting structures up to isomorphism is a very
different task, cf. [HP73]. From Proposition 11 below one can easily deduce that the Specker-Blatter
Theorem does not hold in this setting.

1.1 Counting labeled structures

Let R = {R1,..., Re} be aset of relation symbols where each R; is of arity p(i). Let C be a class
of relational R-structures. For an R-structure % with universe A we denote the interpretation of R;
by R;(A). We denote by fz(n) the number of structures in C over the labeled set 4, = {1,...,n},
i.e.,

Je(n) = {(R1(An),- .. Re(An)) : (An, Ri(An), ... Re(An)) €CY .

The notion of R-isomorphism is the expected one: Two structures 2, B are isomorphic, if there is
a bijection between their respective universes which preserves relations in both directions.

Proviso: When we speak of a class of structures C, we always assume that C is closed under
R-isomorphisms. However, we count two isomorphic but differently labeled structures as two
different members of C.

1.2 Logical formalisms

First Order Logic FOL(R), Monadic Second Order Logic M.SOL(R), and Counting Monadic Sec-
ond Order Logic C MSOL(R) are defined as usual, cf. [EF95]. A class of R-structures C is is called

FOL(R)-definable if there exists an FOL(R) formula ¢ with no free (non-quantified) variables such

that % € C if and only if A |= ¢ for every 2. Definability for MSOL(R) and CMSOL(R) is defined
analoguously.
We shall also look at two variations' of CMSOL(R), and analogously for FOL and MSOL.

The first variation is denoted by CM SO L (R), where the set of relation symbols is extended by
an infinite set of constant symbols ¢;,i € N. In a labeled structure over {1,...,n} the constant

¢yt < mis interpreted as i. If ¢ € MSOL;.,(R) and ¢ is the constant occurring in ¢ with largest
index, then the universe of a model of ¢ has to contain the set {1,...,k}.

The second variation is denoted by CMSOL,,4(R), where the set of relation symbols is aug-
mented by a binary relation symbol R. which is interpreted on {1,...,n} as the natural order
1<2<C--<n.

! In [Cou90] another version, M SOLs is considered, where one allows also quantification over sets of edges. The
Specker-Blatter Theorem does not hold in this case, as the class CBIPEQ of complete bipartite graphs Ky, , is
definable in MSOL, and fcsrpeg(2n) =1 (*7)

nt:



Example 1 Let R consist of one binary relation symbol R.

1. C =0ORD, the class of all linear orders, satisfies forp(n) = n!. ORD is FOL(R)-definable.

2. In FOLy,p we can look at the above property and additionally require by a formula ¢y that the
elements 1,...  k € [n] indeed occupy the first k positions of the order defined by R, preserving
their natural order. It is easily seen that forpae,(n) = (n — k)!. In FOL,.q we can express
even more stringent compatibilities of the order with the natural order of {1,... ,n}.

3. ForC=GRAPHS, the class of simple graphs (without loops or multiple edges), farapus(n) =
2(). GRAPHS is FOL(R)-definable.

4. The class REG, of simple regular graphs where every vertex has degree r is 'O L-definable (for
any fized r). Details are given in Appendiz E.2.

5. The class CON N of all connected graphs is not FOL(R)-definable, but it is M SO L(R)-definable
using a universal quantifier over set variables. Counting labeled connected graphs is treated in
[HP73, Chapter 1] and in [Wil90, Chapter 3]. Details are given in Appendiz F.1.

6. Let C = BIPFEQ be the class of simple bipartite graphs with m elements on each side (hence
n = 2m). BIPEQ is not CMSOL(R)-definable. However, the class BIP of bipartite graphs
with unspecified number of vertices on each side is MSOL-definable. Again this is treated in
[HP73, Chapter 1]. Details are given in Appendiz E.5.

7. Let C = EVENDEG be the class of simple graphs where each vertex has an even degree.
EVENDEG is not MSOL-definable, but it is C MSOL-definable. fyvpnpra(n) =202, of
[HP73, page 11].

Let C = FULFER be the class of simple connected graphs in EVENDEG. FULFER is not
M SO L-definable, but it is CMSO L-definable. In [HP73, page 7] a recurrence formula for the
number of labeled eulerian graphs is given. Details are given in Appendiz F.7.

8. Let C = FQCLIQUE be the class of simple graphs which consist of two disjoint cliques of the
same size. Then we have fpgcrique(2n) = %(2:) and frgeriQue(2n+1)=0. EQCLIQUE
is not even CMSOL(R)-definable, but it is definable in Second Order Logic SOL, when we
allow quantification also over binary relations.

We can modify C = FQCLIQUE by adding another binary relation symbol Ry and expressing
in FOL(Ry) that Ry is a bijection between the two cliques. We denote the resulting class of
structures by C = FQCLIQUFE}. fEQCLIQUEl(Qn) = n'% (2:) and fEQCLIQUE1 (2n + 1) =0.

A further modification is C = FQCLIQU FE,, which is FOL,.q4(R, R1)-definable. We require
additionally that the bijection Ry is such that the first elements (in the order R ) of the cliques
are matched, and if (v1,v2) € Ry then the R.- successors (suc(vy), suc(vg)) € Ry. This makes
the matching unique (if it exists), and we have frocrioue(n) = fEqoriQue,(n). Similarly, we
can look at FQ,,CLIQUFE, EQ,,CLIQUFE; and FQ,,C LIQU F5 respectively, where we require
m equal size cliques instead of two. Here we also have frg,.crioue(n) = frQ.cLioue,(n).

The non-definability statements are all relatively easy, using Ehrenfeucht-Fraissé Games, cf. [EF95].

1.3 The Specker-Blatter Theorem

The following remarkable theorem due to E. Specker and C. Blatter was announced in [BS81], and
proven in [BS84,Spe88]:

Theorem 2. For any C definable in Monadic Second Order Logic with unary and binary relation
symbols only, the function fe satisfies a linear recurrence relation fe(n) = Z;l:l a;m)fc(n -7)

(mod m), for every m € N, and hence is ultimately periodic for each m.



The case of ternary relation symbols, and more generally of arity k& > 3, was left open in [BS84,Spe88].
The question as to whether Theorem 2 holds for these appears, together with other questions con-
cerning this theorem, in the list of open problems in Finite Model Theory, [Mak00, Problem 3.5].
Counterexamples for quaternary relations were first found by E. Fischer, cf. [Fis02].

Theorem 3. For every prime p there exists a class of structures C, which is definable in first order
logic by a formula ¢r,,, with one binary relation symbol K and one quaternary relation symbol R,
such that fe, is not ultimately periodic modulo p.

From this theorem the existence of such classes are easily deduced also for every non-prime num-
ber m (just take p to be a prime divisor of m). The proof of the theorem is based on the class
EQ,CLIQUEFE from Example 8 above, and, for completeness, is outlined in Appendix B.

1.4 Improvements and variations

The purpose of this paper is to explore variations and extensions of the Specker-Blatter Theorem
and its relationship to Schiitzenberger’s characterization of regular languages.

First, we study the case of unary relations symbols. We shall see in Section 3 that for unary
relations Theorems 2 and 5 can be strengthened using Schiitzenberger’s approach to regular lan-
guages.

Theorem 4. For any C definable in Counting Monadic Second Order Logic with an order,
CMSOL,.4(R), where R contains only unary relations, the function f¢ satisfies a linear recurrence
relation fe(n) = Z;l:l a;fc(n— j) over the integers Z, and in particular satisfies the same relation
for every modulus m.

Next we extend the Specker-Blatter Theorem to allow C'MSOL, rather then MSOL.

Theorem 5. For any C definable in Counting Monadic Second Order Logic (CMSOL ) with unary
and binary relation symbols only, the function fe satisfies a linear recurrence relation fe(n) =

Z;l:l a;m)fc(n —J) (mod m), for every m € N.

The proof is given in Appendix D.

Theorem 5 covers cases not covered by the Specker-Blatter Theorem (Theorem 2). Although
EVEN is not MSOL-definable, it is C'M SO L-definable, and its function satisfies fpyven(n +
1) = farapms(n). However, it seems not very obvious that the function frrrpg satisfies modular
recurrence relations. Many more examples are discussed in Appendix E, especially in E.7.

Finally, we study the case of relations of bounded degree. For any element ¢ € A, we define the
degree of a to be the number of elements b # a for which there exists a relation R € R and some
a € R(A) such that both @ and b appear in @ (possibly with other members of A as well). We say
that R is of bounded degree d if every a € A has degree at most d. We say that an R-structure is
connected, if for any A’ C A there is a relation R(A) with R € R and some a € R(A) containing
both an element from A’ and an element from A — A’. We say that a function f(n) satisfies a
trivial modular recurrence if there exist functions ¢g(n), h(n) with g(n) tending to infinity such that
f(n) = g(n)!-h(n); this is equivalent to saying that for every m there exists Ny, such thatif n > N,
then g(n) =0 (mod m). Clearly, frgcrigug, (n) satisfies a trivial modular recurrence.

For bounded degree models we prove the following.

Theorem 6. For any C definable in Counting Monadic Second Order Logic CMSOL, with all
relations in all members of C being of bounded degree d, the function fe¢ satisfies a linear recurrence
relation fe(n) = Z;l:l a;m)fc(n — j) (mod m), for every m € N. Furthermore, if all the models in

C are connected, then fc =0 (mod m) for m € N large enough.



The proof is sketched in Section 4 and completed in Appendix C.

2 Variations and counterexamples

2.1 Why modular recurrence?

Theorem 2 provides linear recurrence relations modulo m for every m € N. Theorem 4 provides
a uniform linear recurrence relation over Z. We show that even for ¢ € FOL(R) with one binary
relation symbol only, A uniform linear recurrence over Z does not hold. We begin with the following
well known lemma, cf. [LN83].

Lemma 7 Let f : Z — Z be a function which satisfies a linear recurrence relation f(n + 1) =
Zf:o a; f(n — 1) over Z. Then there is a constant ¢ € Z such that f(n) < 2.

Hence, for the following C, fc(n) does not satisfy a linear recurrence over Z: The class of all binary
relations over any finite set, for which fe(n) = 2”27 and the class of all linear orders over any finite
set, for which fe(n) = nl.

2.2 Trivial recurrence relations

We say that a function f(n) satisfies a trivial modular recurrence if there are functions g(n), h(n)
with g(n) tending to infinity such that f(n) = g(n)!-h(n). We call this a trivial recurrence, because
it is equivalent to the statement that for every m € N and large enough n, f(n) = 0 (mod m).
The most obvious example is the number of labeled linear orderings, given by f,.4(n) = n! and
g(n) = f(n). Clearly, also fpgcriqur, (n) satisfies a trivial modular recurrence. For the class of all
graphs the recurrences are non-trivial. More generally, for a set of relation symbols R with k; many

j-ary relation symbols, the set of all labeled structures on n elements is given by fz(n) = 225 ks
which is only divisible by 2. It follows immediately that

Observation 8 IfC is a class of R-structures, and C its complement, then at least one of fz(n)
or fz(n) does not satisfy the trivial modular recurrence relations.

2.3 Existential second order logic is too strong

In the following, we let p be a prime number, and state some lemmas and definitions; in particular,
we show that FQ,CLIQULE is a graph property for which the number of models is not periodic
modulo p. It is not CMSOL definable, but in Appendix B we construct first order properties that
are related to it.

We denote by b,(n) = frg,cLiQuEe(n) = fEQ,cLIQUE,(n) the number of graphs with [n] as a
set of vertices which are disjoint unions of exactly p same-size cliques, that is, b,(n) = fEQcp(n).

As an example for p = 2, note that by(2k + 1) = 0 and b3(2k) = %(g) for every k.

Proposition 9 For every n which is not a power of p, we have b,(n) =0 (mod p), and for every
n which is a power of p we have by(n) =1 (mod p). In particular, b,(n) is not ultimately periodic
modulo p.

The proof is given in Appendix A.

The example FQCLIQUF is definable in Second Order Logic with existential quantification
over one binary relation. But b,(n) = fgg,cLiQuE(n) = fEQ,cLIQUE,(n) is not periodic modulo
p. Hence we obtain, using Proposition 9, the following.

Proposition 10 FQ,C'LIQUE is definable in Existential Second Order Logic but fgq,cLiQue s
not periodic modulo p, and hence does not satisfy a linear recurrence relation modulo p.



2.4 Using the labels

Labeled structures have additional structure which can not be exploited in defining classes of
models in CMSOL(R). The additional structure consists of the labels. We can import them into
our language as additional constants (with fixed interpretation) as in CM SO L,(R) or, assuming
the labels are linearly ordered, as a linear order with a fixed interpretation, as in CMSOL,,4(R).
Theorem 4 states that, when we restrict R to unary predicates, adding the linear order still gives
us even a uniform recurrence relation. There are ¢ € FOL,,q(R) with binary relation symbols only,
such that even the non-uniform linear recurrences over Z, do not hold. Here we use £Q,C'LIQU F,
from Example 8, with Proposition 9.

Proposition 11 EQ,C'LIQUE; is FOL,.q-definable, using the order. However JEQ,CcLIQUE 15
not ultimately periodic modulo p. Therefore frq,crLiQuE, does not satisfy a linear recurrence rela-
tion modulo p.

In fact, it is not too hard to formulate in FOL,,.q4 a property with one binary relation symbol
that has the same density function as £Q,CLIQUFE.

On the other hand, using the labels as constants does not change the situation, Theorem 5 also
holds for CM SO Ly,p. This is proven using standard reduction techniques, and the proof is omitted.

Proposition 12 For ¢ € CMSOL(R) (resp. MSOLap(R), FOLyp(R)), where the arities of
the relation symbols in R are bounded by r and there are k labels used in ¢, there exists 1 €

MSOL(S) (resp. MSOL(S), FOL(S)) for suitable S with the arities of S bounded by r such that
fo(n) = fyp(n — k)

We finally note that in the presence of a fixed order, the modular counting quantifiers are
definable in MSOL,,4. They are, however, not definable in FOL,,.4. This was already observed in
[Cou90].

Proposition 13 For every ¢ € CMSOL,,.4(R) there is an equivalent » € MSOL,,.q4(R).

3 Generating functions for formal languages

The Specker-Blatter Theorem has an important precursor in formal language theory: Schiitzenberger’s
Theorem characterizing regular languages in terms of the properties of the power series of their
generating function. The property in question is N-rationality, which implies rationality. For details
the reader should consult [BR84] and for constructive versions [BDFRO1].

3.1 Generating functions

We put Theorem 2 into a more general context and study the (ordinary) generating function
FP(X) =" f7(n) X" Using [LN83, Theorem 8.40 in chapter 8], Theorem 5 (and hence Theo-
rem 2) can now be rephrased as

Theorem 14 Let C be definable in CMSOL(R), where R consists of unary and binary relation
symbols only. For every m € N, I7"(X) = > 7 fZ"(n) X" satisfies a linear recurrence relation

over L, fP(n+ k) = S50 a? f(n — i), and hence it is rational with F3*(X) = fl(())(())’ where
H(X)=1- S5, ap X and G(X) = 252 (20 () - S5 a0 () X7



3.2 Regular languages

If we restrict R to consist only of unary relation symbols R = U = Uy, Us, ..., Uy, but allow a fixed
linear order on the universe, then the corresponding structures can be viewed as words over an
alphabet with 2% letters. We assume that the reader is familiar with the basics of formal language
theory, as given in [HUR0,BR84].

From Proposition 13 we know that every CM SO L,,4(U) formula is equivalent to an M.SOL,,4(U)
formula. Combining this with the M.SO L-characerization of regular languages we get

Theorem 15. A language C is CM SO L,,.q-definable if and only if it is regular.

M.P. Schiitzenberger introduced generating functions into the study of formal languages, cf. [?].
In the light of Corollary 15, his theorem is equivalent to the following:

Theorem 16 Let C be definable in CMSOL,,q(U), where U consists of unary relation symbols
only. Then Fp(X) = Y 7 fe(n)X™ is rational, and hence satisfies over Z a linear recurrence

relation fe(n + k) = g;é al fe(n —1).

Theorem 4 is now proved.

4 Myhill-Nerode and Specker index

Specker’s proof of Theorem 2 is based on the analysis of an equivalence relation induced by a class
of structures C. It is reminiscent of the Myhill-Nerode congruence relation for words, cf. [HU80], but
generalized to graph grammars, and to general structures. Note however, that the Myhill-Nerode
congruence is, strictly speaking, not a special case of the Specker equivalence. What one gets is the
syntactic congruence relation for formal languages.

4.1 The Myhill-Nerode Theorem

Let C be a set of words over a fixed alphabet. We say that two words v, w over the same alphabet are
M N (C)-equivalent iff for every word u the concatenations vu, wu satisfy vu € C iff wu € C. This
equivalence relation was introduced by J. Myhill and A. Nerode, cf. [HURO0]. The Myhill-Nerode
index of C is the number of equivalence classes of M N (C)-equivalence.

Theorem 17 (Myhill and Nerode) A language C is regular iff C has a finite Myhill-Nerode
indez.

4.2 Substitution of structures

A pointed R-structure is a pair (2, a), with 2 an R-structure and a an element of the universe A
of A. In (U, a), we speak of the structure 2 and the contezt a.

The terminology is borrowed from the terminology used in dealing with tree automata, cf.
[GS97].

Given two pointed structures (2, a) and (B,b) we form a new pointed structure (€,¢) =

Subst((AU, a), (B, b)) defined as follows:

— The universe of €is AU B — {a}.
— The context ¢ is given by b, i.e., ¢ = b.



— For R € R of arity r, R” is defined by R® = (RAN (A~ {a})")URPUI where for every relation
in R4 which contains a, I contains all possibilities for replacing these occurrences of a with a
member of B.

We similarly define Subst((, a), B) for a structure 9B that is not pointed, in which case the resulting
structure € is also not pointed.

Let C be a class of, possibly pointed, R-structures. We define an equivalence relation between
R-structures:

— We say that 2l; and 2l are equivalent, denoted 2l; ~g,c) 2z, If for every pointed structure
(&, s) we have that Subst((&,s),2) € C if and only if Subst((S,s),y) € C.

— The Specker index of C is the number of equivalence classes of ~gyc).
Specker’s proof in [Spe88] of Theorem 2 has a purely combinatorial part:

Lemma 18 (Specker’s Lemma) Let C be a class of R-structures of finite Specker index with all
the relation symbols in R at most binary. Then fc(n) satisfies modular linear recurrence relations
for every m € N.

4.3 Classes of finite Specker index

Proposition 19 The class FQsCLIQUFE has an infinite Specker index.

Proof. We show that for all 7,5 € N, 1 < ¢ < j, the pairs of cliques (C;,C;) are inequivalent with
respect to ~g,(pg,crrque)- The key observation is that substituting a clique in a clique gives again
a clique. Hence we can make C;y; UC; into C4; U Cy4; substituting a Cj_;. a

It is an easy exercise to show the same for the class of graphs which contain a hamiltonian cycle.
Again, these graphs are not C'M SO L-definable. So far, all the classes of infinite Specker index were
not definable in CMSOL. This is no accident. Specker noted that all M.SOL-definable classes of

R-structures (with all relations at most binary) have a finite Specker index. We shall see that this

can be extended to CMSOL.

Theorem 20 IfC is a class of R-structures (with no restrictions on the arity) which is CMSOL-
definable, then C has a finite Specker index.

The proof is given in Appendix D. It uses a form of the Feferman-Vaught Theorem for CMSOL
due to Courcelle, [Cou90].

Without logic, the underlying principle for establishing a finite Specker index of a class C is the
following:

Definition 21 Let C be a class of graphs and F be a binary operation on R-structures which is
isomorphism invariant. We say that 2y and Ay are F(C)-equivalent if for every B, F(, B) €
C iff F(U1,B) €C.

C has a finite F-index if the number of F(C)-equivalence classes is finite.

Prqposition 22 A class of R-structures C has a finite F-index iff there are « € N and classes
of R-structures K (0 < j < «,0 <4 < 1) such that F(R4o,%1) € C iff there exists j such that
Ao € K? and A, € K}.



Proof. If C is of finite F-index « then we can choose for IC;J the equivalence classes and for each
JS o
1 Py 0
K;={%e Str(R): F(AU,A) € C for A € K7}
Conversely, if the IC;J are all disjoint, the pairs (2,2') with 2 € IC%Q[’ € IC;J are all in the same

equivalence class. But without loss of generality, but possibly increasing «, we can assume that the
the IC;J are all disjoint. a

Corollary 23 IfCy,Cy are classes of finite F-index, so are all their boolean combinations.

Proof. Take the coarsest common refinement of the F(Cp)-equivalence and the F(C;)-equivalence
relations. ]

We also have

Corollary 24 If C is a class of R-structures such that F(,B) € C iff both A,B € C then the
F(C)-index of C is at most 2.

4.4 A continuum of classes of finite index

As there are only countably many regular languages over a fixed alphabet, the Myhill-Nerode
theorem implies that there are only countably many languages with finite M N-index. in contrast
to this, for general relational structures there are plenty of classes of graphs which are of finite
Specker index.

Definition 25 Let C,, denote the cycle of size n, i.e. a regular connected graph of degree 2 with n
vertices. Let A C N be any set of natural numbers and Cycle(A) ={C,, :n € A}.

Proposition 26 (Specker) Cycle(A) has Specker index at most 5.

Proof. All binary structures with three or more vertices fall into two classes, the class of graphs
G for which Subst((%,a),G) € C if and only if % has a single element a (this equals the class
Cycle(A)), and the class of graphs G for which Subst((%, a),G) € C never occurs (which contains
all binary structures which are not graphs, and all graphs with at least three elements which are
not in C'ycle(A)). Binary structures with less than three vertices which are not graphs also fall
into the second class above, while the three possible graphs with less then three vertices may form
classes by themselves (depending on A). ]

Corollary 27 (Specker) There is a continuum of classes (of graphs, of R-structures) of finite
Specker index which are not CM SO L-definable.

Proof. Clearly, there is a continuum of classes of the type C'ycle(A), and hence a continuum of
classes that are not definable in CMSOL (or even in second order logic, SOL).

Now foyere(ay(n) = 0if n &€ A and foyeea)(n) = (n — 1)! otherwise. Hence it satisfies trivial
recurrences. Using Observation 8 we know that the complement Cycie(A) does satisfy a non-trivial
recurrence relation. O

This shows that, in contrast to the Myhill-Nerode Theorem, no characterization of the classes
of finite Specker index in terms of their definability in CMSOL, or any other logic with countably
many formulas, is possible. However, it makes sense to ask whether among the classes of graphs
definable in, say, Second Order Logic, the classes of finite Specker index can be characterized.



But CMSOL will not suffice, as one can easily find an A such that Cycle(A) is not CMSOL-
definable, but definable in Second Order Logic. A could be chosen as, e.g., the set of primes, or

the set of squares. Candidates for such characterization could be classes of graphs generated by

some graph grammars, possibly different from the usual HR-grammars (Hyperedge replacement

grammars) and VR-grammars (Vertex replacement grammars, which can be characterized in terms
of M SO L-transductions, cf. [Cou94].
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A  Counting modulo p

In the following, we let p be a prime number, and state some lemmas and definitions; in particular,
we show that FQ,CLIQULE is a graph property for which the number of models is not periodic
modulo p. It is not CMSOL definable, but later we construct first order properties that are related
to it.

To help us count modulo p, we make extensive use of the following simple lemma. Similar
methods have been extensively used before, at least as early as in the 1872 combinatorial proof of
Fermat’s congruence theorem by J. Petersen, given in [Ges84, page 157].

Lemma 28 Suppose that F is a family of structures over [n] = {0,...,n — 1} which is preserved
under permutations of [n] (e.g. a family defined by a first order expression over some language).
Let o : [n] — [n] be a permutation such that o # 1d but o? = 1d. We let o operate on F in the
natural manner.

Let F' C F be a family of structures such that o preserves membership in F', and which contains
all structures that are invariant with respect to o. Then |F'| = |F| (mod p).

Proof. By the above definitions, o defines a permutation over F, which preserves F'. Decomposing
this permutation to disjoint orbits, it is not hard to see that every member of F which is not
invariant under ¢ is in an orbit of size p (using the information that p is prime); in particular
F — F'is a disjoint union of such orbits, and so its size is divisible by p.

We denote by b,(n) = frg,cLiQuEe(n) = fEQ,cLIQUE,(n) the number of graphs with [n] as a
set of vertices which are disjoint unions of exactly p same-size cliques, that is, b,(n) = fEQcp(n).

As an example for p = 2, note that by(2k + 1) = 0 and b3(2k) = %(g) for every k.
Congruence classes of binomial coefficients and related functions have received a lot of attention
in the literature, starting with Lucas’s famous result [Luc78]. For an accessible proof, cf, [Find7].

Theorem 29 (Lucas) Let p be prime and

r=rpp” 4.+ rip+ro(0 <y < p)
k=knp™+ ...+ kip+ ko(0 < k; < p)

() =11 () o

We now investigate the congruences of b,(n) modulo p.

Lemma 30 For every k > 1, b,(pk) = b,(k) (mod p).

then

Proof. We define o : [pk] — [pk] by o(pi+j)=c(pi+j+1)for0<i<kand 0<j<p-—1,and
o(pi+p—1)=oc(pt) for 0 <i < k (so o is composed of k disjoint orbits of size p).

We now use Lemma 28. We first note that all graphs for which any clique contains more than
one member, but not all members, of {pi, ... pi+ p— 1} for some 7, are not invariant with respect
to 0. We also note that all graphs for which some clique contains all members of {pi, ..., pi+p—1},
but only one member of {pj,...,pj+ p — 1} for some other j, are not invariant with respect to o.

We let F’ be the family of all other graphs which are disjoint union of p same-size cliques. It is
not hard to see that F’ contains two types of graphs: those for which every {pi,... , pi+p—1}is
contained in one of the cliques, whose number is b,(k), and those for which every {pi,...,pi+p—1}
contains exactly one member from each clique, whose number (p!)*~' is divisible by p if & > 1.
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To prove Proposition 9 we proceed by induction on n, where the basis is n = p (for which
by(n) = 1) and every n which is not divisible by p (for which b,(n) = 0); the induction step follows
from Lemma 30.

B An FOL sentence without modular recurrence

In this section we give a proof of Theorem 3, and follow closely [Fis02]. The basic idea is to find for
every prime number p an FOL-definable class C such that fc(n) = feq,cLique(n) (mod p). It is
easy to find an FOL formula that states that a graph is a disjoint union of p cliques; we now need
to show how to equate the cliques in a way that will preserve the number of models modulo p.

B.1 Comparing sizes in a modulo-preserving manner

We recall that the naive way to ensure (with a first order property) that the sizes of p sets
Ag, ..., Ap_q are all equal (by adding a binary relation and stating that it is a perfect match-
ing between each pair of these sets), leads to a property with a trivial linear recurrence relation.
We thus have to find another method. We start with one that does not ensure that the sets are
equal, and later show how to iterate it in a manner that indeed provides a good substitute for the
notion of a perfect matching.

Definition 31 A preserving p-matching between Ag,...,A,_1 is a set consisting of 21) Zf:_ol | Al

vertex disjoint p-cliques on Uf:_ol A;, such that every clique is either fully contained in one of the
A;’s, or contains exactly one vertex from each A;.

Note that for p = 2, every perfect matching on Ag U Ay (in the usual graph-theoretic sense)
is a preserving 2-matching. The enumeration of preserving p-matchings modulo p is given by the
following.

Lemma 32 If|Ag| =,...,=|A,-1| (mod p) then the number of preserving p-matchings is 1 mod-
ulo p. Otherwise, there are no preserving p-matchings at all.

Proof. The proof of the second part (where the |A;| are not all equivalent modulo p) is simple. The
proof of the first part is done by induction on Zf:_ol | A

The base case is where all |A;| are equal to some k < p. It is clear that in this case a preserving
matching consists of k£ cliques such that each of them contains exactly one vertex from each A;.
Denoting A; = {vi0,...,v 41}, define o by o(v; ;) = viy1; forevery 0 < j<k—1land 0<:i<
p—1, and o(v,_1;) = vo; for every 0 < j < k — 1. Since k < p, for every clique with vertices
{V0,jos -+ » Vp—1,j,_, } there exist ¢ £ ' such that j; = j;; from this it is not hard to show that the
matching is not invariant with respect to o unless for every such clique, j; = j;» for every ¢”. Thus
there exists only one preserving p-matching which is invariant with respect to o, and using Lemma
28 the base case is proven.

For the induction step, let iy be such that |A; | > p, and let vy, ..., v,_1 be p vertices in A;;.
In this case we define o by o(v;) = v;41 for 0 < j < p—1, 6(v,_1) = vy, and o(u) = u for every
w & {vg,...,v, — 1}. It is clear that the only invariant preserving p-matchings are those for which
{vo,...,v,_1} is one of the p-cliques, and using Lemma 28 the induction step follows.

To fully equate the sizes of the sets Ag,...,A,_1, we use the following notion of a matching
between the sets.

12



Definition 33 Given disjoint sets Ag,...,A,_1, an iterative p-matching between these sets is
a sequence of graphs {M;}i>0 = Mo, My, ... where each has its own vertex set, satisfying the
following.

— If A; =0 for every i then Mgy = (.

— Otherwise, Mg is a preserving p-matching between Aq, ..., Ap_1.

— Defining by Al the set of p-cliques of My inside A; for every i, My, My, ... is an iterative
p-matching between Ag, ..., Aj_.
The above sequences may look infinite, but one can see that if Ag,...,A,—1 are all finite, then

the number of non-empty elements in an iterative p-matching is also finite. We shall also use the
following alternative definition of iterative matchings.

Definition 34 Given disjoint sets Ao, ..., A,—1, a graphic iterative p-matching between these sets
is a sequence of graphs {M;};>0 = Mo, My, ... which all have Uf:_ol A; as a vertex set, satisfying
the following.

— Fach M; consists of isolated vertices and vertex disjoint copies of the complete p-partite graph
with p color classes of size p'.

— FEach of the p-partite graphs in M; is either fully contained in one of the Ay’s, or is such that
each of its color classes is fully contained in a different A;.

— For v > 1, each color class of a p-partite graph in M; consists of all vertices of one of the
p-partite graphs in M;_y which are fully contained in one of Ag, ..., A,_1; moreover, for each
of the p-partite graphs of M;_y with the above property there exists a complete p-partite graph
in M; containing its vertices in this manner.

It easily follows that My in a graphic iterative matching is a preserving p-matching between
Ag, ..., Ap_1, like Mg in an iterative matching. It is not very hard to see that the correspon-
dence defined below is in fact a one to one and onto correspondence between all possible iterative
matchings and all possible graphic iterative matchings between Ag,..., A, ;.

Definition 35 Given a graphic iterative matching {M;};>o we construct the corresponding iterative
matching {M;};>o as follows.

- Mo 18 Mo.

— For every i we let Al be the set of p-cliques of My that are fully contained in A;. We then
construct My, My, ... by defining M! to have an edge between u € Uz A% and v € |JiZ; Al
if and only if M; has an edge between the corresponding cliques. It is not hard to see that
My, My, ... is a graphic iterative p-matching between A, ..., A}, ; we then define My, My, ...
as the iterative matching corresponding to My, Ms, ... inductively.

Henceforth, we use the term “iterative matchings” for both point of views. We now show how
iterative matchings are useful for equating sets in the modulo p setting.

Lemma 36 If |A;| are all equal, then the number of iterative p-matchings between Ag, ..., Ap_q is
1 modulo p. Otherwise, there are no such matchings.

Proof. The proof is by induction on YYZ!|A;]. The case where this sum is zero is clear (in this
case A; = ) for every 7 and indeed there exists exactly one possible iterative p-matching), as well
as all cases where the |A;| are not all equivalent modulo p (in which there is no possibility for
constructing even the first preserving p-matching My).
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In any other case the number of ways to construct Mgy is 1 modulo p by Lemma 32. For each
such construction, if we construct the appropriate Aj, ... 714;—1 as per the definition above, it is
easy to see that Y071 AL < P21 Ay, as well as that |Al| are all equal if and only if |A;| are all
equal. The latter occurs since if we denote by r the number of cliques in Mg not fully contained in
any of the A;, we get |Al| = |A’;_r for every 1.

If |A;| are all equal, then by the induction hypothesis for each choice of Mgy the number of
choices for M1, My, ... is 1 modulo p, and thus their sum over all choices of Mg is 1 modulo p. If
|A;| are not all equal, then by the induction hypothesis there exists no good choice of My, My, ...
for any choice of My, completing the proof.

We end this section with a simple lemma which is not directly related to counting, but is used
in the following.

Lemma 37 For every iterative matching between Ag, ..., A,_y (by Lemma 36 we need only con-
sider sets with equal sizes), every vertex in Uf:_ol A; is eventually matched (a vertex in A; is con-
stdered eventually matched if it has a neighbor outside of A; in some My, when we consider the
graphic version {M;};>o of the iterative matching).

Proof. In this case it is better to look at {Mi}izo which corresponds to {Mz’}z’207 and note that a
vertex v € A; is eventually matched if and only if it is either contained in a clique of Mg which is
not internal to A;, or contained in a clique of Mgy which is internal to A; but which is eventually
matched by My, Mo, ...; the proof is then completed by an easy induction on |Ag|.

B.2 Constructing the first order property

We now construct a first order property that in essence counts b,(n) times the number of possible
iterative matchings between the p sets of size ”; by Lemma 36 this is equivalent modulo p to b,(n).

We look at structures ([n], F/, R) where F is a binary relation and R is a quaternary (arity
four) relation. The property will state that £ is a union of p vertex-disjoint cliques and that R is a
representation (we prove later that it is unique) of an iterative p-matching between the cliques in
FE. Instead of defining the property all at once we define it as the conjunction of several properties
defined below. All the properties are first order, and whenever proving this part is clear we omit
all further mention thereof. In the presentation we also define and use some relations that can be
expressed using first order expressions over F and R.

Definition 38 Property Cl,(L) states that I is a non-directed simple graph which is the disjoint
union of exactly p cliques.

In the sequel we denote by Ag,...,A,_; the p cliques. We note however that the labeling of
these cliques is arbitrary, and make sure that all the logical constructions below are invariant with
respect to permuting the labels Ag, ..., A,_1; note that in particular the definition of a preserving
p-matching is such a construction.

Definition 39 Property Edg,(R) states that if (ey,ez,01,00) is in R then ey # ez, and also
(e2,€1,01,02) and (e1,€ez,02,01) and (ez, €1,02,01) are in R. We say in this case that the edge
(€1, €2) has (01,02) as an origin. We say that (e, e3) has an origin if there exist (01, 09) for which
(€1, €2,01,02) € R. Note that there is the possibility that o; = 0.

In the sequel we shall usually refer by the term ‘edge’ to an (eg, e3) that has an origin according
to R, and only refer indirectly (e.g. by the definition of Ag,..., A, 1) to the graph F.
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Definition 40 If (e1,e2) which has an origin satisfies (e1,e3) ¢ E (that is, it is an edge between
A; and A; for some i@ # j) then we say that (ey,eq) is a bridge. Otherwise we say that (ey,ez) is
internal to the clique that contains ey and ey (which is one of Ag,..., Ay_1).

We use the definition of bridge and internal edges to define the property of R representing an
iterative p-matching {M;};>o0, while distinguishing which edge belongs to which M; will result from
the above definition of an origin. First we deal with Mj.

Definition 41 Property Base,(F, R) states the following.

— If (e1,€2) has some (0,0) as an origin, then for every (o1, 02) it has (o1, 02) as an origin if and
only if o1 = o0s.
— For every o, the set of edges having (0,0) as an origin is a preserving p-matching between

Aoy Apy.

The reason for requiring that an edge has either no origin of the type (o, 0) or has all of them is
to ensure that there is only one way to represent My using R. We shall now require a representation
of M;y; given that we already have the representations of My ..., M;.

The following definition makes use of the notion of connected components, which is not first
order definable. However, whenever this is mentioned, it can be replaced with the first order notion
of all vertices having distance no more than two from a given vertex, since we prove later that for
any (o1, 03) the set of edges having it as an origin forms a disjoint union of isolated vertices and
complete p-partite graphs, so in particular all the connected components have diameter at most 2.
We shall also prove that each such component is either internal to one of Ag,...,A,_1, or brings
together a component of M; from every A;. This will be proven by induction; the basis 01 = 03 is
relatively easy using the property Base, (L, R).

Definition 42 Property Next, (L, R) states the following.

— 1If (e1,e2) has (01,02) with oy # 02 as an origin, then for every (o}, o)) it has (o}, 0,) as an
origin if and only if (01,02) and (0, 0)) have the same origin (i.e. if there exists (ri,rqy) such
that (01, 02,71,72) € R and (0}, 04, 1r1,73) € R).

— For every o1 # o0y, we look at the set of connected components of the set of edges having the
same origin as (o1, 0z2), apart from those which are isolated vertices and those which are not
internal to one of Ag,...,Ap—1; denote them by C1,...,C;. We also denote by G the graph
resulting from the set of edges having (01, 02) as an origin.

o (G consists of isolated vertices and vertex disjoint copies of complete p-partite graphs, each
of which has p members of Cy,...,C as its color classes.

e Lach of the complete p-partite graphs in G is either fully contained in one of Ag,...,Ap_1,
or is such that each of its color classes is fully contained in a different A;.

o Fach of Cy,...,C) intersects one of the complete p-partite graphs of G.

To justify the use of the notion of complete p-partite graphs in the definition of a first order
property, note that the following property of a vertex vg is first order, and that it is equivalent to
the property that the connected component containing vy is a complete p-partite graph: “There
exists vy,...,vp—1 such that {vg,...,v,_1} is a clique, that every vertex with distance 3 or less
from wg is adjacent to exactly p — 1 of the vertices {vg,...,v,-1}, and that every two such vertices
are adjacent to each other if and only if they are not adjacent to the same p — 1 members of

{U07 s 7Up—1}”‘
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To finalize the definition of our first order property, we make sure that vertex pairs incident
with bridge edges are ‘out of the game’, to avoid multiplicities in counting that may result from
assigning them arbitrary origins.

Definition 43 Property Clear, (L, R) states that for every (01, 02), no edges that are incident with
a bridge edge having (01, 02) as an origin may have any origin, except possibly the edges which are
internal to the connected components of the graph of edges having (o1, 02) as an origin.

We now state and prove the concrete form of Theorem 5.

Theorem 44 Let Im,(F, R) = Cl,(F) AEdg,(R) ABase,(F, R) ANext,(E, R) A Clear,(F, R). De-
note by fim,(n) the number of structures ([n], £, R) satisfying Im,. Then fim,(n) = by(n) (mod p),
and so it is not ultimately periodic modulo p.

To prove it we consider an IV which satisfies Cl,(L), and define a way to encode an iterative
matching between the cliques Ag,...,A,_; of E, as a relation R for which Im, is satisfied. Then
we prove that such encodings are the only instances which satisfy Im, for any given £.

Definition 45 Suppose that {M;};>o is an iterative matching (we use the graphic definition) be-
tween the cliques of El. We define an R which is the encoding of {M;};>o as follows.

— FEvery edge of My is an edge according to R that has every (o,0) and no other pair as an origin.
— Fori > 1, we let every edge of M; have every edge of M;_ and no other pair as an origin.
— No other combinations of edges with origins exist apart from those constructed above.

It is not extremely hard to prove the following.

Claim. An encoding of an iterative matching satisfies Im,. Moreover, for any two distinct iterative
matchings, the corresponding encodings are also distinct. a

Suppose now that we are given a structure ([n], I/, R) that satisfies Im,. To prove that it is an
encoding of some iterative matching we first define inductively the graphs {M;};>¢ and then prove
that they form the matching which ([n], £/, R) encodes.

Definition 46 Given a structure ([n], I/, R) satisfying Im, we define a sequence {M;};>0 = Mo, My, . ..

of graphs on [n] inductively as follows.

— My consists of all the edges having any (o,0) as an origin.
— M; for i > 0 consists of all the edges having any edge from M;_1 as an origin.

Lemma 47 The following holds for the above defined graphs.

Fvery edge in My has every (o,0) and no other pair as an origin, and every edge in M; has
every edge in M;_1 and no other pair as an origin.
There is no edge in M; N M; for any i < j.

— My is a preserving matching between the p cliques of E.
— {M;};>0 is an iterative matching between the p cliques of I (in particular, the connected com-
ponents of each M; are isolated vertices and complete p-partite graphs).

There are no other edges with origins (according to R) apart from those in | J;, M;.
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Proof. The first two items follow by induction from ([n], &, R) satisfying the first item of Base,
and the first item of Next,. The third item follows from the second item of Base,. The fourth
item follows by induction from the above together with the second item in Next, (with all its sub-
items). Finally, the fifth item follows from ([n], &/, R) satisfying Clear,, when used in conjunction
with Lemma 37.

Lemma 47 directly provides the final component required for the proof of Theorem 44.

Consequence 48 For every ([n], E', R) satisfying Im,, the relation R is an encoding of an iterative
matching between the p cliques of E. a

Proof (Proof of Theorem 44:). Claim B.2 and Consequence 48 imply that the number of structures

([n], £, R) equals b,(n) times the number of possible iterative matchings between p sets of size 7;,

and by Lemma 36 the latter number is 1 modulo p.

Finally, we note that it is possible to formulate a property similar to Im, that uses only a single
quaternary relation R, by using “R(u, u,v,v)” to represent “F(u,v)” and changing the formulation
of the property accordingly.

C Structures of bounded degree

Definition 49 1. Given a structure 2 = (A, R{, ... 7R£>, u € A is called a neighbor of v € A if
there exists a relation R and some a € R# containing both u and v.

2. We define the Gaifman graph Gaif(2) of a structure 2 as the graph with the vertex set A and
the neighbor relation defined above.

3. The degree of a vertex v € A in U is the number of its neighbors. The degree of % is defined as
the mazimum over the degrees of its vertices. It is the degree of its Gaifman graph Gaif(2).

4. A structure A is connected if its Gaifman graph Gaif(2l) is connected.

Definition 50 For an MSOL class C, denote by fc(d)(n) the number of structures over [n] that are
in C and whose degree is at most d.

The DU-index of a class of structures is the F-index for the case that F is the disjoint union
of two structures.

Theorem 51 IfC is a class of R-structures which has a finite DU -indezx, then fc(d)(n) s ultimately

periodic modulo m, hence, trivially, fc(d)(n) satisfies for every m € N a linear recurrence relation
modulo m.
Furthermore, if all structures of C are connected, then this modular linear recurrence is trivial.

Lemma 52 If A ~p,c) B, then for every € we have
cu Q[NDu(C) ¢ U B.
Proof. Easy, using the associativity of the disjoint union.

To prove Theorem 51 we define orbits for permutation groups rather than for single permuta-
tions.
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Definition 53 Given a permutation group G that acts on A (and in the natural manner acts on
models over the universe A), the orbit in G' of a model 2 with the universe A is the set Orbg () =
{c():0 € G}

For A’ C A we denote by S4/ the group of all permutations for which o(u) = u for every u ¢ A’.
The following lemma is useful for showing linear congruences modulo m.

Lemma 54 Given 2, if a vertex v € A — A" has exactly d neighbors in A', then |Orbs , ()| is
divisible by ('i‘l/').

Proof. Let N be the set of all neighbors of v which are in A’, and let G C Sy4 be the subgroup
{0109 1 01 € SN N oy € Sq_n}; in other words, GG is the subgroup of the permutations in .Sy
that in addition send all members of N to members of N. It is not hard to see that [Orbs,, ()| =

(||§1v/||) [Orbe (24)].

The following simple observation is used to enable us to require in advance that all structure in

C have a degree bounded by d.

Observation 55 We denote by Cyq the class of all members of C that in addition have bounded
degree d. If C has a finite DU-index then so does Cq. a

In the following we fix m and d. Instead of C we look at C4, which by Observation 55 also has
a finite DU-index. We now note that there is only one equivalence class containing any structures

whose maximum degree is larger than d, which is the class Nc(d) ={A: Ve (BUA) = Cq)} In order

to show that fc(d)(n) is ultimately periodic modulo m, we show a linear recurrence relation modulo
m on the vector function (fg(n))e where £ ranges over all other equivalence classes with respect to
Cq.

Let C' = md!. We note that for every ¢t € N and 0 < d' < d, m divides (td(f). This with Lemma,
54 allows us to prove the following.

Lemma 56 Let D # Ny be an equivalence class for ¢, that includes the requirement of the maai-
mum degree not being larger than d. Then

n—1

o)

(mod m),

fD (n) = Z aD,E,m,(nmodC)fg (CL
&

Jor some fized appropriate ap g m (nmodc)-

Proof. Let t = |";'|. We look at the set of structures in D with the universe [n], and look at their
orbits with respect to Spyc. If a model & has a vertex v € [n] — [tC] with neighbors in [tC], let
us denote the number of its neighbors by d'. Clearly 0 < d’ < d, and by Lemma 54 the size of
Orbg, ¢, () is divisible by (td(f), and therefore it is divisible by m. Therefore, fp(n) is equivalent
modulo m to the number of structures in D with the universe [r] that in addition have no vertices
in [n] — [tC] with neighbors in [tC].

We now note that any such structure can be uniquely written as B U where 9B is any structure
with the universe [n —tC], and € is any structure over the universe [tC]. We also note using Lemma
52 that the question as to whether 2 is in D depends only on the equivalence class of € and on B
(whose universe size is bounded by the constant C'). By summing over all possible 8 we get the
required linear recurrence relation (cases where € € Nc(d) do not enter this sum because that would

necessarily imply %l € Nc(d) # D).
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Proof (Proof of Theorem 51:). We use Lemma 56: Since there is only a finite number of possible
values modulo m to the finite dimensional vector (fe(n))e, the linear recurrence relation in Lemma
56 implies ultimate periodicity for n’s which are multiples of C'. From this the ultimate periodicity
for other values of n follows, since the value of (fe(n))e for an n which is not a multiple of C'is
linearly related modulo m to the value at the nearest multiple of C.

Finally, if all structures are connected we use Lemma 54. Given %I, connectedness implies that
there exists a vertex v € A’ that has neighbors in A — A’. Denoting the number of such neighbors
by d,, we note that |Orb514 ()] is divisible by ('3;'), and since 1 < d, < d (using |A'| = tC) it is
also divisible by m. This makes the total number of models divisible by m (remember that the set
of all models with A = [n] is a disjoint union of such orbits), so fc(d)(n) ultimately vanishes modulo
m.

D Specker index and CMSOL

Although Theorem 2 is stated for classes of structures definable in some logic, logic is only used to
verify the hypothesis of Specker’s Lemma, 18. In this Appendix we develop the machinery which
serves this purpose. The crucial property needed to prove Theorem 20 is a reduction property
which says that both for the disjoint union 2 U B and for the substitution Subst((,a),B) the
truth value of a sentence ¢ € CMSOL(R) depends only on the truth values of the sentences of
the same quantifier rank in the structures 20 and 9B, respectively (U, a) and B. For the case of
MSOL this follows either from the Feferman-Vaught Theorem for disjoint unions together with
some reduction techniques, or using Ehrenfeucht-Fraissé games. The latter is used in [Spe88]. We

shall use the former, as it is easier to adapt for CMSOL.

D.1 Quantifier rank

We define the quantifier rank ¢r(¢) of a formula ¢ of C M SOL(R) inductively as usual: For quantifier
free formulas ¢ we have ¢r(¢) = 0. For boolean operations we take the maximum of the quantifier

ranks. Finally, ¢r(3U¢) = ¢r(3a¢) = qr(C, ,2¢) = qr(¢) + 1. We denote by CM SOL?(R, z,U) the

set of C MSOL(R)-formulas with free variables # and U which are of quantifier rank at most g.

When there are no free variables we write CMSOLY(R).

We write A ~& 1,507 B for two R-structures % and B if they satisfy the same CMSOL?(R)-
sentences.

The following is folklore, cf. [EF95].

Proposition 57 There are, up to logical equivalence, only finitely many formulas in CMSOLY(R, z,U).

In particular, the equivalence relation A ~{,,s5; B is of finite index.

D.2 A Feferman-Vaught Theorem for CM SOL

We are now interested in how the truth of a sentence in C'MSOL in the disjoint union of two
structures AU B depends on the truth of other properties expressible in C'MSOL which hold in 2
and B separately.

Theorem 58 (Courcelle)

1. For every formula ¢ € CMSOL?(T) one can compute in polynomial time a sequence of formulas

<¢1A7 .. 7¢7§17 /l/blB? R 7¢£> 6 CMSOLq(T)zm
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and a boolean function By : {0,1}*™ — {0,1} such that
AUDB = o

if and only if
By(bi, .02 08 6By =1

A : A B _ : B
where b7 =1 iff A | ¢ and b7 =1 iff B = 7.

A detailed proof is found in [Cou90, Lemma 4.5, page 46ff].

D.3 Quantifier free transductions and CM SOL

FOL-reductions are widely used in descriptive complexity theory, cf. [EF95]. They are also called
transductions, cf. [Cou94]. Quantifier free R-transductions are FOL(R)-reductions with the defining
formulas quantifier free. They are called scalar, when the defining formula for the universe has one
free variable only.

Lemma 59 Let @* be a quantifier free scalar R-transduction. Assume U1,y are R-structures and
U ~Earsor, Wz- Then (A1) ~Eorsor, P (Ua).

Lemma 60 Subst((A,a), (B, b)) can be obtained from the disjoint union of (A, a) and (B,b)) by

a quantifier free transduction.

Proof (Sketch of proof:). The universe of the structure is C' = (AU B) — {a}. For each relation
symbol R € R we put

RY = Ry (o, URP U{(d',b): (d,a) € R*, b€ B}
This is clearly expressible as a quantifier free transduction from the disjoint union.

Proposition 61 Assume Ay, Uz, By, By are R-structures and with context ai, aq, by, by, respec-
tively, and

(A1, 1) ~Gagsor (Up, az) and (By,b1) ~Lasor, (Ba,ba).

Then Subst((%ll, a1)7 (%17 bl)) NqCMSOL Subst((%lg, a2)7 (%27 bz))

Proof. Use Theorem 58, Lemma 59 and Lemma 60.

D.4 Finite index theorem for CMSOL

Now we can state and prove the Finite Index Theorem;

Theorem 62 Let C be defined by an CMSOL(R)-sentence ¢ of quantifier rank q. Then C has a

finite Specker index, which is bounded by the number of inequivalent C M SO L(R)-sentences. This
number is finite by Proposition 57.

Proof. We have to show that the equivalence relation 2 ~{,,¢,; B is a refinement of A ~¢ B.
But this follows from Proposition 61.
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E Detailed discussion of examples

In this appendix we list examples with their definability properties and give their density functions
or generating functions, as far as we could find them in the literature. The non-definability results
are fairly standard in logic, cf. [EF95,Cou97], and we state them bona fide. For the density and
generating function, our main sources are [HP73,Wil90]. Additional related results may be found in
I. Gessel’s seminal work [Ges84], where many explicit formulas are given for various graph classes
of bounded degree.

E.1 Connected graphs
The class CONN is not FOL(R)-definable, but it is MSOL(R)-definable using a universal quantifier

over set variables. We just say that every subset of vertices which is closed under the edge relation
has to be the set of all vertices.

Counting labeled connected graphs is treated in [HP73, Chapters 1 and 7] and in [Wil90, Chapter
3]. For CONN [HP73, page 7] gives the following recurrence:

foonn (n) = 2(3) i ”z—i k ( ) ") feonn ().

=1

E.2 Regular graphs

The class REG, of simple regular graphs where every vertex has degree r is F'OL-definable (for
fixed r). The formulas says that every vertex has exactly r different neighbors. The formula grows
with r. Regularity without specifying the degree is not F'O L-definable, actually not even CMSOL-
definable.

Counting the number of labeled regular graphs is treated completely in [HP73, Chapter 7].
However, the formula is very complicated.

For cubic graphs, the function is explicitly given in [HP73, page 175] as fRS(Qn +1)=0and

 (2n)! (1) (6k—2] 'ﬁf
fR3(2n)_ 6 ]2;(316—]) (Qk—j kZ ]—22

E.3 Trees and acyclic digraphs

Trees are (undirected) connected acyclic graphs. They are not F'O L-definable but M SO L-definable.
Acyclicity is expressed by saying there is no subset of size at least three such that the induced graph
on it is 2-regular and connected. Labeled trees were among the first objects to be counted, c¢f.[HP73,
Theorem 1.7.2].

Theorem 63 (A. Cayley 1889) The number of labeled trees on n vertices is T,, = n" 2.

Here the modular linear recurrences can be given explicitly: We have Ty =T, = 1, T5 = 3, Ty = 16,
Ts =125, ....and T, = n (mod 2) for n > 3.
For the number of trees of outdegree bounded by k we get the following corollary of Theorem

6:

Corollary 64 The number of labeled trees of outdegree at most k is, for every m € Z, ultimately
constant (mod m).

21



In [HP73, Chapter 3] there is a wealth of results on counting various labeled trees and tree-like
structures. It is worth noting that the notion of k-tree, and more generally the property of a graph
of having tree-width at most k are M SO L-definable, cf. [Cou97]

E.4 Directed acyclic graphs

If we look at trees as directed graphs where there is exactly one node with indegree 0 and all others
have indegree 1, the orientation is unique, hence counting those gives the same function.

Directed acyclic graphs (DAG’s) my have vertices with arbitrary indegree and do not have to
be connected. DAG’s are again M SO L-definable, but not F'OL-definable. Let a,, ,, be the number
of labeled acyclic digraphs with exactly m vertices of indegree 0. The [HP73, Theorem 1.6.4] give

n—

Uy = (2m _ 1)k2m(n—m—k) (n) P
m
k=1

E.5 Bipartite graphs

Bipartite graphs are M SO L-definable, and so are connected bipartite graphs. We say that there is
partition of the vertex set into two independent sets (and add the statement for connectedness). Let
B, be the number of labeled bipartite graphs. In [Wil90, Page 79ff]. we find that the exponential
generating function associated with 3, satisfies the following identity:

(; o g;;) - ; (Xk: (Z) 2k<n—k>) "

From [HP73, Page 17] we also get

E.6 k-colored graphs

k-colored graphs are M SO L-definable with a formula depending on k. We say that there is a
partition of the vertices into k independent sets. Let ¥ denote the number of k-colored labeled
graphs with n vertices. The case of bipartite graphs is a special case: 8, = v2. The formula for
beta,, is generalized in [HP73, Page 17]:

1 n
k_ ok(n—k) . k=1

E.7 Even and eulerian graphs

Let C = EVENDIEG the class of simple graphs where each vertex has even degree. FVENDEG
is not MSO L-definable but C'M SO L-definable.

fevenpee(n) =202 cf. [HPT3, page 11].
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Let C = FULFER the class of simple connected graphsin EVENDFEG. FULFR is not MSOL-
definable, but C'M SO L-definable. In [HP73, page 7] 5stacs the following recurrence for fuuLer(n):

JEULER (1) = 2("2") — inz_:k(Z)Q(n_;_l)fEULER(k)-

k=1

is given. The number of labeled r-regular eulerian graphs is also C'M SO L-definable. To find an
explicit formula of its density function seems very hard. However, our Theorem 6 gives

Corollary 65 The number of labeled r-reqular eulerian graphs is, for every m € Z, ultimately
constant (mod m).

E.8 Planar graphs

Planar graphs are M SO L-definable. To see this one can use Kuratowski’s Theorem characterizing
planar graphs with topological minors, cf. [Die90]. We have not found any formula countin the num-
ber of labeled planar graphs in the literature. But the Specker-Blatter Theorem and its variations
can be applied.

A special kind of planar graphs are the rectangular grids GRID.S, which look like rectangular
checker boards, with the north-south and east-west neighborhood relation. Partial rectangular grids
PGRIDS are subgraphs of rectangular grids. It is easy to see that both GRIDS and PGRIDS have
finite Specker index, but GRIDS are M SO L-definable while PGRIDS are not C'M SO L-definable,
cf. [Cou97,Rot98].

E.9 Perfect graphs

A graph is perfect of the for every induced subgraph (including the graph itself) the chromatics
number equals the clique number. On the face of it, this does not seem MSOL- or CMSOL-
definable. However, it was conjectured by Berge?, [Bol99, Chapter V.5]

Conjecture 1 (Strong perfect graph conjecture). A graph G is perfect iff neither G nor its complement
graph contains contains an odd cycle of size at least 5.

If the conjecture is true, this gives as a M SO L-definition of perfect graphs. However, the Specker
index for perfect graphs is much smaller than one would get using the M SO L-definition.

Proposition 66 Let G and H be graphs, and a is a vertex of G.
Then Subst(G,a, H) is perfect iff both G and H are perfect.

Proof. One direction follows from the definition, the other direction is by now classic, cf. [Bol99,
Chapter V.5, Theorem 19].

Using Proposition 22 we get

Corollary 67 The Specker index of perfect graphs is 2.

2 It was recently announced as proven by M. Cudnovski and R. Seymour
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