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The Specker�Blatter Theorem Revisited�

Generating Functions for

De�nable Classes of Structures
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Haifa� Israel
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Combinatorics related algorithms and complexity� Generating functions�
Automata� logic and computability� Graph theory�

Abstract�

In this paper we study the generating function of classes of graphs and hypergraphs� For a class of
labeled graphs C we denote by fC�n� the number of structures of size n� For C de�nable in Monadic
Second Order Logic with unary and binary relation symbols only� E� Specker and C� Blatter showed
in ���� that for every m � N� fC�n� satis�es a linear recurrence relation fC�n� 	

Pdm
j�� a

�m�
j fC�n� j��

over Zm� and hence is ultimately periodic for each m� To show this they introduced what we call the
Specker�index of C and �rst showed the theorem to hold for any C of �nite Specker�index� and then
showed that every C de�nable in Monadic Second Order Logic is indeed of �nite Specker�index� E�
Fischer showed in 
��
 that the Specker�Blatter Theorem does not hold for quaternary relations�
In this paper we show how the Specker�Blatter Theorem is related to Sch�utzenbergers Theorem and
the Myhill�Nerode criterion for the characterization of regular languages� and discuss in detail how the
behavior of this generating function depends on the choice of constant and relation symbols allowed in
the de�nition of C� Among the main results we have the following�

� We consider n�ary relations of degree at most d� where each element a is related to at most d
other elements by any of the relations� We show that the Specker�Blatter Theorem holds for those�
irrespective of the arity of the relations involved�

� Every C de�nable in Monadic Second Order Logic with �modular� Counting �CMSOL� is of �nite
Specker�index� This covers many new cases� for which such a recurrence relation was not known
before�

� There are continuum many C of �nite Specker�index� Hence� contrary to the Myhill�Nerode char�
acterization of regular languages� the recognizable classes of graphs cannot be characterized by the
�niteness of the Specker�index�

� Introduction and main results

Counting objects of a speci�ed kind belongs to the oldest activities in mathematics� In particular�
counting the number of �labeled or unlabeled� graphs satisfying a given property is a classic un�
dertaking in combinatorial theory� The �rst deep results for counting unlabeled graphs are due to
J�H� Red�eld ����	� and to G� Polya ���
	�� but were only popularized after ����� F� Harary� E�M�
Palmer and R�C� Read uni�ed these early results� as witnessed in the still enjoyable HP	
��

It is unfortunate that a remarkable theorem by E� Specker and C� Blatter on counting la�
beled graphs �and more generally� labeled binary relational structures�� �rst announced in ����� cf�
BS���BS���Spe���� has not found the attention it deserves� both for the beauty of the result and
the ingenuity in its proof�

E� Specker and C� Blatter look at the function fC�n� which counts the number of labeled
relational structures of size n with k relations R�� � � � � Rk� which belong to a class C� We shall



call this function the density function for C� It is required that C be de�nable in Monadic Second
Order Logic and that the relations are all unary or binary relations� The theorem says that under
these hypotheses the function fC�n� satis�es a linear recurrence relation modulo m for every m �
Z� Special cases of this theorem have been studied extensively� cf� HP	
�Ges���Wil��� and the
references therein� However� the possibility of using a formal logical classi�cation as a means to
collect many special cases seems to have mostly escaped notice in this case�

In the present paper� we shall discuss both the Specker�Blatter theorem� and its variations and
limits of generalizabilty� We �rst set up our framework of logic� For the reader not familiar with
logic� we recommend consulting EF���� We also give numerous examples in Appendix E� which in
turn provide combinatorial corollaries to the Specker�Blatter Theorem� Proving directly the linear
recurrence relations over every modulus m for all the given examples would have been a nearly
impossible undertaking� We should also note that counting structures up to isomorphism is a very
di�erent task� cf� HP	
�� From Proposition �� below one can easily deduce that the Specker�Blatter
Theorem does not hold in this setting�

��� Counting labeled structures

Let �R � fR�� � � � � R�g be a set of relation symbols where each Ri is of arity ��i�� Let C be a class
of relational �R�structures� For an �R�structure A with universe A we denote the interpretation of Ri

by Ri�A�� We denote by fC�n� the number of structures in C over the labeled set An � f�� � � � � ng�
i�e��

fC�n� �j f�R��An�� � � � � R��An�� � hAn� R��An�� � � � � R��An�i � Cg j �

The notion of �R�isomorphism is the expected one� Two structures A�B are isomorphic� if there is
a bijection between their respective universes which preserves relations in both directions�

Proviso� When we speak of a class of structures C� we always assume that C is closed under
�R�isomorphisms� However� we count two isomorphic but di�erently labeled structures as two
di�erent members of C�

��� Logical formalisms

First Order Logic FOL� �R�� Monadic Second Order Logic MSOL� �R�� and Counting Monadic Sec�
ond Order Logic CMSOL� �R� are de�ned as usual� cf� EF���� A class of �R�structures C is is called
FOL� �R��de�nable if there exists an FOL� �R� formula � with no free �non�quanti�ed� variables such
that A � C if and only if A j� � for every A� De�nability for MSOL� �R� and CMSOL� �R� is de�ned
analoguously�

We shall also look at two variations� of CMSOL� �R�� and analogously for FOL and MSOL�
The �rst variation is denoted by CMSOLlab� �R�� where the set of relation symbols is extended by
an in�nite set of constant symbols ci� i � N� In a labeled structure over f�� � � � � ng the constant
ci� i � n is interpreted as i� If � �MSOLlab� �R� and ck is the constant occurring in � with largest
index� then the universe of a model of � has to contain the set f�� � � � � kg�

The second variation is denoted by CMSOLord� �R�� where the set of relation symbols is aug�
mented by a binary relation symbol R� which is interpreted on f�� � � � � ng as the natural order
� � � � � � �� n�

� In �Cou��� another version� MSOL� is considered� where one allows also quanti�cation over sets of edges� The
Specker�Blatter Theorem does not hold in this case� as the class CBIPEQ of complete bipartite graphs Kn�n is
de�nable in MSOL� and fCBIPEQ�
n� 	 �

�

��n
n

�
�

�



Example � Let �R consist of one binary relation symbol R�

�� C � ORD� the class of all linear orders� satis�es fORD�n� � n�� ORD is FOL�R��de�nable�
�� In FOLlab we can look at the above property and additionally require by a formula �k that the

elements �� � � � � k � n� indeed occupy the �rst k positions of the order de�ned by R� preserving
their natural order� It is easily seen that fORD��k�n� � �n � k��� In FOLord we can express
even more stringent compatibilities of the order with the natural order of f�� � � � � ng�

�� For C � GRAPHS� the class of simple graphs �without loops or multiple edges	� fGRAPHS�n� �

��n��� GRAPHS is FOL�R��de�nable�

� The class REGr of simple regular graphs where every vertex has degree r is FOL�de�nable �for

any �xed r	� Details are given in Appendix E���
�� The class CONN of all connected graphs is not FOL�R��de�nable� but it isMSOL�R��de�nable

using a universal quanti�er over set variables� Counting labeled connected graphs is treated in
�HP�� Chapter �� and in �Wil��� Chapter ��� Details are given in Appendix E���

�� Let C � BIPEQ be the class of simple bipartite graphs with m elements on each side �hence
n � �m	� BIPEQ is not CMSOL�R��de�nable� However� the class BIP of bipartite graphs
with unspeci�ed number of vertices on each side is MSOL�de�nable� Again this is treated in
�HP�� Chapter ��� Details are given in Appendix E���

� Let C � EVENDEG be the class of simple graphs where each vertex has an even degree�

EVENDEG is not MSOL�de�nable� but it is CMSOL�de�nable� fEV ENDEG�n� � ��n��
� �� cf�

�HP�� page ����
Let C � EULER be the class of simple connected graphs in EVENDEG� EULER is not
MSOL�de�nable� but it is CMSOL�de�nable� In �HP�� page � a recurrence formula for the
number of labeled eulerian graphs is given� Details are given in Appendix E��

�� Let C � EQCLIQUE be the class of simple graphs which consist of two disjoint cliques of the
same size� Then we have fEQCLIQUE��n� � �

�

��n
n

�
and fEQCLIQUE��n� �� � �� EQCLIQUE

is not even CMSOL�R��de�nable� but it is de�nable in Second Order Logic SOL� when we
allow quanti�cation also over binary relations�
We can modify C � EQCLIQUE by adding another binary relation symbol R� and expressing
in FOL�R�� that R� is a bijection between the two cliques� We denote the resulting class of
structures by C � EQCLIQUE�� fEQCLIQUE���n� � n���

��n
n

�
and fEQCLIQUE���n� �� � ��

A further modi�cation is C � EQCLIQUE�� which is FOLord�R�R���de�nable� We require
additionally that the bijection R� is such that the �rst elements �in the order R�	 of the cliques
are matched� and if �v�� v�� � R� then the R�� successors �suc�v��� suc�v��� � R�� This makes
the matching unique �if it exists	� and we have fEQCLIQUE�n� � fEQCLIQUE��n�� Similarly� we
can look at EQmCLIQUE� EQmCLIQUE� and EQmCLIQUE� respectively� where we require
m equal size cliques instead of two� Here we also have fEQmCLIQUE�n� � fEQmCLIQUE��n��

The non�de�nability statements are all relatively easy� using Ehrenfeucht�Fra��ss�e Games� cf� EF����

��� The Specker�Blatter Theorem

The following remarkable theorem due to E� Specker and C� Blatter was announced in BS���� and
proven in BS���Spe����

Theorem �� For any C de�nable in Monadic Second Order Logic with unary and binary relation

symbols only� the function fC satis�es a linear recurrence relation fC�n� �
Pdm

j�� a
�m�
j fC�n � j�

�mod m�� for every m � N� and hence is ultimately periodic for each m�






The case of ternary relation symbols� and more generally of arity k � 
� was left open in BS���Spe����
The question as to whether Theorem � holds for these appears� together with other questions con�
cerning this theorem� in the list of open problems in Finite Model Theory� Mak��� Problem 
����
Counterexamples for quaternary relations were �rst found by E� Fischer� cf� Fis����

Theorem �� For every prime p there exists a class of structures Cp which is de�nable in �rst order
logic by a formula �Imp� with one binary relation symbol E and one quaternary relation symbol R�
such that fCp is not ultimately periodic modulo p�

From this theorem the existence of such classes are easily deduced also for every non�prime num�
ber m �just take p to be a prime divisor of m�� The proof of the theorem is based on the class
EQpCLIQUE from Example � above� and� for completeness� is outlined in Appendix B�

��� Improvements and variations

The purpose of this paper is to explore variations and extensions of the Specker�Blatter Theorem
and its relationship to Sch�utzenberger�s characterization of regular languages�

First� we study the case of unary relations symbols� We shall see in Section 
 that for unary
relations Theorems � and � can be strengthened using Sch�utzenberger�s approach to regular lan�
guages�

Theorem �� For any C de�nable in Counting Monadic Second Order Logic with an order�
CMSOLord� �R�� where �R contains only unary relations� the function fC satis�es a linear recurrence
relation fC�n� �

Pd
j�� ajfC�n� j� over the integers Z� and in particular satis�es the same relation

for every modulus m�

Next we extend the Specker�Blatter Theorem to allow CMSOL� rather then MSOL�

Theorem �� For any C de�nable in Counting Monadic Second Order Logic �CMSOL	 with unary
and binary relation symbols only� the function fC satis�es a linear recurrence relation fC�n� �Pdm

j�� a
�m�
j fC�n � j� �mod m�� for every m � N�

The proof is given in Appendix D�
Theorem � covers cases not covered by the Specker�Blatter Theorem �Theorem ��� Although

EVEN is not MSOL�de�nable� it is CMSOL�de�nable� and its function satis�es fEVEN �n �
�� � fGRAPHS�n�� However� it seems not very obvious that the function fEULER satis�es modular
recurrence relations� Many more examples are discussed in Appendix E� especially in E�	�

Finally� we study the case of relations of bounded degree� For any element a � A� we de�ne the
degree of a to be the number of elements b �� a for which there exists a relation R � �R and some
�a � R�A� such that both a and b appear in �a �possibly with other members of A as well�� We say
that R is of bounded degree d if every a � A has degree at most d� We say that an �R�structure is
connected� if for any A� � A there is a relation R�A� with R � �R and some �a � R�A� containing
both an element from A� and an element from A � A�� We say that a function f�n� satis�es a
trivial modular recurrence if there exist functions g�n�� h�n� with g�n� tending to in�nity such that
f�n� � g�n�� �h�n�� this is equivalent to saying that for every m there exists Nm such that if n � Nm

then g�n� � � �mod m�� Clearly� fEQCLIQUE��n� satis�es a trivial modular recurrence�
For bounded degree models we prove the following�

Theorem �� For any C de�nable in Counting Monadic Second Order Logic CMSOL� with all
relations in all members of C being of bounded degree d� the function fC satis�es a linear recurrence

relation fC�n� �
Pdm

j�� a
�m�
j fC�n� j� �mod m�� for every m � N� Furthermore� if all the models in

C are connected� then fC � � �mod m� for m � N large enough�

�



The proof is sketched in Section � and completed in Appendix C�

� Variations and counterexamples

��� Why modular recurrence	

Theorem � provides linear recurrence relations modulo m for every m � N� Theorem � provides
a uniform linear recurrence relation over Z� We show that even for � � FOL�R� with one binary
relation symbol only� A uniform linear recurrence overZdoes not hold� We begin with the following
well known lemma� cf� LN�
��

Lemma 
 Let f � Z� Zbe a function which satis�es a linear recurrence relation f�n � �� �Pk
i�� aif�n� i� over Z� Then there is a constant c �Zsuch that f�n� � �cn�

Hence� for the following C� fC�n� does not satisfy a linear recurrence over Z� The class of all binary
relations over any �nite set� for which fC�n� � �n

�
� and the class of all linear orders over any �nite

set� for which fC�n� � n��

��� Trivial recurrence relations

We say that a function f�n� satis�es a trivial modular recurrence if there are functions g�n�� h�n�
with g�n� tending to in�nity such that f�n� � g�n�� �h�n�� We call this a trivial recurrence� because
it is equivalent to the statement that for every m � N and large enough n� f�n� � � �mod m��
The most obvious example is the number of labeled linear orderings� given by ford�n� � n� and
g�n� � f�n�� Clearly� also fEQCLIQUE��n� satis�es a trivial modular recurrence� For the class of all
graphs the recurrences are non�trivial� More generally� for a set of relation symbols �R with kj many

j�ary relation symbols� the set of all labeled structures on n elements is given by f �R�n� � �
P

j kjn
j

which is only divisible by �� It follows immediately that

Observation � If C is a class of �R�structures� and �C its complement� then at least one of fC�n�
or f �C�n� does not satisfy the trivial modular recurrence relations�

��� Existential second order logic is too strong

In the following� we let p be a prime number� and state some lemmas and de�nitions� in particular�
we show that EQpCLIQUE is a graph property for which the number of models is not periodic
modulo p� It is not CMSOL de�nable� but in Appendix B we construct �rst order properties that
are related to it�

We denote by bp�n� � fEQpCLIQUE�n� � fEQpCLIQUE��n� the number of graphs with n� as a
set of vertices which are disjoint unions of exactly p same�size cliques� that is� bp�n� � fEQCp

�n��

As an example for p � �� note that b���k� �� � � and b���k� � �
�

�
k
�

�
for every k�

Proposition � For every n which is not a power of p� we have bp�n� � � �mod p�� and for every
n which is a power of p we have bp�n� � � �mod p�� In particular� bp�n� is not ultimately periodic
modulo p�

The proof is given in Appendix A�
The example EQCLIQUE is de�nable in Second Order Logic with existential quanti�cation

over one binary relation� But bp�n� � fEQpCLIQUE�n� � fEQpCLIQUE��n� is not periodic modulo
p� Hence we obtain� using Proposition �� the following�

Proposition � EQpCLIQUE is de�nable in Existential Second Order Logic but fEQpCLIQUE is
not periodic modulo p� and hence does not satisfy a linear recurrence relation modulo p�

�



��� Using the labels

Labeled structures have additional structure which can not be exploited in de�ning classes of
models in CMSOL� �R�� The additional structure consists of the labels� We can import them into
our language as additional constants �with �xed interpretation� as in CMSOLlab� �R� or� assuming
the labels are linearly ordered� as a linear order with a �xed interpretation� as in CMSOLord� �R��
Theorem � states that� when we restrict �R to unary predicates� adding the linear order still gives
us even a uniform recurrence relation� There are � � FOLord�R� with binary relation symbols only�
such that even the non�uniform linear recurrences overZp do not hold� Here we use EQpCLIQUE�

from Example �� with Proposition ��

Proposition �� EQpCLIQUE� is FOLord�de�nable� using the order� However fEQpCLIQUE is
not ultimately periodic modulo p� Therefore fEQpCLIQUE� does not satisfy a linear recurrence rela�
tion modulo p�

In fact� it is not too hard to formulate in FOLord a property with one binary relation symbol
that has the same density function as EQpCLIQUE�

On the other hand� using the labels as constants does not change the situation� Theorem � also
holds for CMSOLlab� This is proven using standard reduction techniques� and the proof is omitted�

Proposition �� For � � CMSOLlab� �R� �resp� MSOLlab� �R�� FOLlab� �R�	� where the arities of
the relation symbols in �R are bounded by r and there are k labels used in �� there exists � �
MSOL� �S� �resp� MSOL��S�� FOL� �S�	 for suitable �S with the arities of �S bounded by r such that
f��n� � f��n� k�

We �nally note that in the presence of a �xed order� the modular counting quanti�ers are
de�nable in MSOLord� They are� however� not de�nable in FOLord� This was already observed in
Cou����

Proposition �� For every � � CMSOLord� �R� there is an equivalent � �MSOLord� �R��

� Generating functions for formal languages

The Specker�Blatter Theorem has an important precursor in formal language theory� Sch�utzenberger�s
Theorem characterizing regular languages in terms of the properties of the power series of their
generating function� The property in question is N�rationality� which implies rationality� For details
the reader should consult BR��� and for constructive versions BDFR����

��� Generating functions

We put Theorem � into a more general context and study the �ordinary� generating function
Fm
C �X� �

P�
n�� f

m
C �n�Xn Using LN�
� Theorem ���� in chapter ��� Theorem � �and hence Theo�

rem �� can now be rephrased as

Theorem �� Let C be de�nable in CMSOL� �R�� where �R consists of unary and binary relation
symbols only� For every m � N� Fm

C �X� �
P�

n�� f
m
C �n�Xn satis�es a linear recurrence relation

over Zm� fmC �n � k� �
Pk��

i�� a
m
i f

m
C �n � i�� and hence it is rational with Fm

C �X� � G�X�
H�X�� where

H�X� � ��
Pk

i�� a
m
k�iX

i and G�X� �
Pk��

j��

�
fmC �j��

Pj��
i�� a

m
k�i�jf

m
C �i�

�
Xj�

�



��� Regular languages

If we restrict �R to consist only of unary relation symbols �R � �U � U�� U�� � � � � Uk� but allow a �xed
linear order on the universe� then the corresponding structures can be viewed as words over an
alphabet with �k letters� We assume that the reader is familiar with the basics of formal language
theory� as given in HU���BR����

From Proposition �
 we know that every CMSOLord� �U� formula is equivalent to anMSOLord� �U�
formula� Combining this with the MSOL�characerization of regular languages we get

Theorem ��� A language C is CMSOLord�de�nable if and only if it is regular�

M�P� Sch�utzenberger introduced generating functions into the study of formal languages� cf� 	��
In the light of Corollary ��� his theorem is equivalent to the following�

Theorem �� Let C be de�nable in CMSOLord� �U�� where �U consists of unary relation symbols
only� Then FC�X� �

P�
n�� fC�n�Xn is rational� and hence satis�es over Za linear recurrence

relation fC�n � k� �
Pk��

k�� a
m
i fC�n � i��

Theorem � is now proved�

� Myhill�Nerode and Specker index

Specker�s proof of Theorem � is based on the analysis of an equivalence relation induced by a class
of structures C� It is reminiscent of the Myhill�Nerode congruence relation for words� cf� HU���� but
generalized to graph grammars� and to general structures� Note however� that the Myhill�Nerode
congruence is� strictly speaking� not a special case of the Specker equivalence� What one gets is the
syntactic congruence relation for formal languages�

��� The Myhill�Nerode Theorem

Let C be a set of words over a �xed alphabet� We say that two words v� w over the same alphabet are
MN�C��equivalent i� for every word u the concatenations vu� wu satisfy vu � C i� wu � C� This
equivalence relation was introduced by J� Myhill and A� Nerode� cf� HU���� The Myhill�Nerode
index of C is the number of equivalence classes of MN�C��equivalence�

Theorem �
 �Myhill and Nerode� A language C is regular i� C has a �nite Myhill�Nerode
index�

��� Substitution of structures

A pointed �R�structure is a pair �A� a�� with A an �R�structure and a an element of the universe A
of A� In �A� a�� we speak of the structure A and the context a�

The terminology is borrowed from the terminology used in dealing with tree automata� cf�
GS�	��

Given two pointed structures �A� a� and �B� b� we form a new pointed structure �C� c� �
Subst��A� a�� �B� b�� de�ned as follows�

� The universe of C is A �B � fag�
� The context c is given by b� i�e�� c � b�

	



� For R � �R of arity r� RC is de�ned by RC � �RA	 �A�fag�r��RB�I where for every relation
in RA which contains a� I contains all possibilities for replacing these occurrences of a with a
member of B�

We similarly de�ne Subst��A� a��B� for a structureB that is not pointed� in which case the resulting
structure C is also not pointed�

Let C be a class of� possibly pointed� �R�structures� We de�ne an equivalence relation between
�R�structures�

� We say that A� and A� are equivalent� denoted A� 
Su�C� A�� If for every pointed structure
�S� s� we have that Subst��S� s��A�� � C if and only if Subst��S� s��A�� � C�

� The Specker index of C is the number of equivalence classes of 
Su�C��

Specker�s proof in Spe��� of Theorem � has a purely combinatorial part�

Lemma �� �Specker�s Lemma� Let C be a class of �R�structures of �nite Specker index with all
the relation symbols in �R at most binary� Then fC�n� satis�es modular linear recurrence relations
for every m � N�

��� Classes of �nite Specker index

Proposition �� The class EQ�CLIQUE has an in�nite Specker index�

Proof� We show that for all i� j � N� � � i � j� the pairs of cliques hCi� Cji are inequivalent with
respect to 
Su�EQ�CLIQUE�� The key observation is that substituting a clique in a clique gives again
a clique� Hence we can make Ci�j t Cj into Ci�j t Ci�j substituting a Cj�i� �

It is an easy exercise to show the same for the class of graphs which contain a hamiltonian cycle�
Again� these graphs are not CMSOL�de�nable� So far� all the classes of in�nite Specker index were
not de�nable in CMSOL� This is no accident� Specker noted that all MSOL�de�nable classes of
�R�structures �with all relations at most binary� have a �nite Specker index� We shall see that this
can be extended to CMSOL�

Theorem � If C is a class of �R�structures �with no restrictions on the arity	 which is CMSOL�
de�nable� then C has a �nite Specker index�

The proof is given in Appendix D� It uses a form of the Feferman�Vaught Theorem for CMSOL

due to Courcelle� Cou����
Without logic� the underlying principle for establishing a �nite Specker index of a class C is the

following�

De�nition �� Let C be a class of graphs and F be a binary operation on �R�structures which is
isomorphism invariant� We say that A� and A� are F�C��equivalent if for every B� F�A��B� �
C i� F�A��B� � C�
C has a �nite F �index if the number of F�C��equivalence classes is �nite�

Proposition �� A class of �R�structures C has a �nite F �index i� there are � � N and classes
of �R�structures Ki

j �� � j � �� � � i � �	 such that F�A��A�� � C i� there exists j such that

A� � K
�
j and A� � K

�
j �

�



Proof� If C is of �nite F �index � then we can choose for K�
j the equivalence classes and for each

j � �

K�
j � fA � Str� �R� � F�A��A� � C for A� � K�

jg

Conversely� if the K�
j are all disjoint� the pairs �A�A�� with A � K�

j �A
� � K�

j are all in the same
equivalence class� But without loss of generality� but possibly increasing �� we can assume that the
the K�

j are all disjoint� �

Corollary �� If C�� C� are classes of �nite F �index� so are all their boolean combinations�

Proof� Take the coarsest common re�nement of the F�C���equivalence and the F�C���equivalence
relations� �

We also have

Corollary �� If C is a class of �R�structures such that F�A�B� � C i� both A�B � C then the
F�C��index of C is at most ��

��� A continuum of classes of �nite index

As there are only countably many regular languages over a �xed alphabet� the Myhill�Nerode
theorem implies that there are only countably many languages with �nite MN �index� in contrast
to this� for general relational structures there are plenty of classes of graphs which are of �nite
Specker index�

De�nition �� Let Cn denote the cycle of size n� i�e� a regular connected graph of degree � with n

vertices� Let A � N be any set of natural numbers and Cycle�A� � fCn � n � Ag�

Proposition �� �Specker� Cycle�A� has Specker index at most ��

Proof� All binary structures with three or more vertices fall into two classes� the class of graphs
G for which Subst��A� a�� G� � C if and only if A has a single element a �this equals the class
Cycle�A��� and the class of graphs G for which Subst��A� a�� G� � C never occurs �which contains
all binary structures which are not graphs� and all graphs with at least three elements which are
not in Cycle�A��� Binary structures with less than three vertices which are not graphs also fall
into the second class above� while the three possible graphs with less then three vertices may form
classes by themselves �depending on A�� �

Corollary �
 �Specker� There is a continuum of classes �of graphs� of �R�structures	 of �nite
Specker index which are not CMSOL�de�nable�

Proof� Clearly� there is a continuum of classes of the type Cycle�A�� and hence a continuum of
classes that are not de�nable in CMSOL �or even in second order logic� SOL��
Now fCycle�A��n� � � if n �� A and fCycle�A��n� � �n � ��� otherwise� Hence it satis�es trivial

recurrences� Using Observation � we know that the complement �Cycle�A� does satisfy a non�trivial
recurrence relation� �

This shows that� in contrast to the Myhill�Nerode Theorem� no characterization of the classes
of �nite Specker index in terms of their de�nability in CMSOL� or any other logic with countably
many formulas� is possible� However� it makes sense to ask whether among the classes of graphs
de�nable in� say� Second Order Logic� the classes of �nite Specker index can be characterized�

�



But CMSOL will not su�ce� as one can easily �nd an A such that Cycle�A� is not CMSOL�
de�nable� but de�nable in Second Order Logic� A could be chosen as� e�g�� the set of primes� or
the set of squares� Candidates for such characterization could be classes of graphs generated by
some graph grammars� possibly di�erent from the usual HR�grammars �Hyperedge replacement
grammars� and VR�grammars �Vertex replacement grammars� which can be characterized in terms
of MSOL�transductions� cf� Cou����
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A Counting modulo p

In the following� we let p be a prime number� and state some lemmas and de�nitions� in particular�
we show that EQpCLIQUE is a graph property for which the number of models is not periodic
modulo p� It is not CMSOL de�nable� but later we construct �rst order properties that are related
to it�

To help us count modulo p� we make extensive use of the following simple lemma� Similar
methods have been extensively used before� at least as early as in the ��	� combinatorial proof of
Fermat�s congruence theorem by J� Petersen� given in Ges��� page ��	��

Lemma �� Suppose that F is a family of structures over n� � f�� � � � � n� �g which is preserved
under permutations of n� �e�g� a family de�ned by a �rst order expression over some language	�
Let � � n� � n� be a permutation such that � �� Id but �p � Id� We let � operate on F in the
natural manner�

Let F � � F be a family of structures such that � preserves membership in F �� and which contains
all structures that are invariant with respect to �� Then jF �j � jFj �mod p��

Proof� By the above de�nitions� � de�nes a permutation over F � which preserves F �� Decomposing
this permutation to disjoint orbits� it is not hard to see that every member of F which is not
invariant under � is in an orbit of size p �using the information that p is prime�� in particular
F � F � is a disjoint union of such orbits� and so its size is divisible by p�

We denote by bp�n� � fEQpCLIQUE�n� � fEQpCLIQUE��n� the number of graphs with n� as a
set of vertices which are disjoint unions of exactly p same�size cliques� that is� bp�n� � fEQCp�n��

As an example for p � �� note that b���k� �� � � and b���k� � �
�

�
k
�

�
for every k�

Congruence classes of binomial coe�cients and related functions have received a lot of attention
in the literature� starting with Lucas�s famous result Luc	��� For an accessible proof� cf� Fin�	��

Theorem �� �Lucas� Let p be prime and

r � rmp
m � � � �� r�p� r��� � ri � p�

k � kmp
m � � � �� k�p� k��� � ki � p�

then �
r

k

�
�

mY
i��

�
ri

ki

�
�mod p�

We now investigate the congruences of bp�n� modulo p�

Lemma � For every k � �� bp�pk� � bp�k� �mod p��

Proof� We de�ne � � pk� � pk� by ��pi� j� � ��pi� j � �� for � � i � k and � � j � p� �� and
��pi� p� �� � ��pi� for � � i � k �so � is composed of k disjoint orbits of size p��

We now use Lemma ��� We �rst note that all graphs for which any clique contains more than
one member� but not all members� of fpi� � � � � pi� p� �g for some i� are not invariant with respect
to �� We also note that all graphs for which some clique contains all members of fpi� � � � � pi�p��g�
but only one member of fpj� � � � � pj� p� �g for some other j� are not invariant with respect to ��

We let F � be the family of all other graphs which are disjoint union of p same�size cliques� It is
not hard to see that F � contains two types of graphs� those for which every fpi� � � � � pi� p� �g is
contained in one of the cliques� whose number is bp�k�� and those for which every fpi� � � � � pi�p��g
contains exactly one member from each clique� whose number �p��k�� is divisible by p if k � ��

��



To prove Proposition � we proceed by induction on n� where the basis is n � p �for which
bp�n� � �� and every n which is not divisible by p �for which bp�n� � ��� the induction step follows
from Lemma 
��

B An FOL sentence without modular recurrence

In this section we give a proof of Theorem 
� and follow closely Fis���� The basic idea is to �nd for
every prime number p an FOL�de�nable class C such that fC�n� � fEQpCLIQUE�n� �mod p�� It is
easy to �nd an FOL formula that states that a graph is a disjoint union of p cliques� we now need
to show how to equate the cliques in a way that will preserve the number of models modulo p�

B�� Comparing sizes in a modulo�preserving manner

We recall that the naive way to ensure �with a �rst order property� that the sizes of p sets
A�� � � � � Ap�� are all equal �by adding a binary relation and stating that it is a perfect match�
ing between each pair of these sets�� leads to a property with a trivial linear recurrence relation�
We thus have to �nd another method� We start with one that does not ensure that the sets are
equal� and later show how to iterate it in a manner that indeed provides a good substitute for the
notion of a perfect matching�

De�nition �� A preserving p�matching between A�� � � � � Ap�� is a set consisting of �
p

Pp��
i�� jAij

vertex disjoint p�cliques on
Sp��
i�� Ai� such that every clique is either fully contained in one of the

Ai�s� or contains exactly one vertex from each Ai�

Note that for p � �� every perfect matching on A� � A� �in the usual graph�theoretic sense�
is a preserving ��matching� The enumeration of preserving p�matchings modulo p is given by the
following�

Lemma �� If jA�j �� � � � �� jAp��j �mod p� then the number of preserving p�matchings is � mod�
ulo p� Otherwise� there are no preserving p�matchings at all�

Proof� The proof of the second part �where the jAij are not all equivalent modulo p� is simple� The
proof of the �rst part is done by induction on

Pp��
i�� jAij�

The base case is where all jAij are equal to some k � p� It is clear that in this case a preserving
matching consists of k cliques such that each of them contains exactly one vertex from each Ai�
Denoting Ai � fvi��� � � � � vi�k��g� de�ne � by ��vi�j� � vi���j for every � � j � k � � and � � i �

p � �� and ��vp���j� � v��j for every � � j � k � �� Since k � p� for every clique with vertices
fv��j� � � � � � vp���jp��g there exist i �� i� such that ji � ji� � from this it is not hard to show that the
matching is not invariant with respect to � unless for every such clique� ji � ji�� for every i��� Thus
there exists only one preserving p�matching which is invariant with respect to �� and using Lemma
�� the base case is proven�

For the induction step� let i� be such that jAi� j � p� and let v�� � � � � vp�� be p vertices in Ai� �
In this case we de�ne � by ��vj� � vj�� for � � j � p � �� ��vp��� � v�� and ��u� � u for every
u �� fv�� � � � � vp � �g� It is clear that the only invariant preserving p�matchings are those for which
fv�� � � � � vp��g is one of the p�cliques� and using Lemma �� the induction step follows�

To fully equate the sizes of the sets A�� � � � � Ap��� we use the following notion of a matching
between the sets�

��



De�nition �� Given disjoint sets A�� � � � � Ap��� an iterative p�matching between these sets is
a sequence of graphs fMigi�� � M��M�� � � � where each has its own vertex set� satisfying the
following�

� If Ai �  for every i then M� � �
� Otherwise� M� is a preserving p�matching between A�� � � � � Ap���
� De�ning by A�

i the set of p�cliques of M� inside Ai for every i� M��M�� � � � is an iterative
p�matching between A�

�� � � � � A
�
p���

The above sequences may look in�nite� but one can see that if A�� � � � � Ap�� are all �nite� then
the number of non�empty elements in an iterative p�matching is also �nite� We shall also use the
following alternative de�nition of iterative matchings�

De�nition �� Given disjoint sets A�� � � � � Ap��� a graphic iterative p�matching between these sets

is a sequence of graphs fMigi�� � M��M�� � � � which all have
Sp��
i�� Ai as a vertex set� satisfying

the following�

� Each Mi consists of isolated vertices and vertex disjoint copies of the complete p�partite graph
with p color classes of size pi�

� Each of the p�partite graphs in Mi is either fully contained in one of the A��s� or is such that
each of its color classes is fully contained in a di�erent Ai�

� For i � �� each color class of a p�partite graph in Mi consists of all vertices of one of the
p�partite graphs in Mi�� which are fully contained in one of A�� � � � � Ap��� moreover� for each
of the p�partite graphs of Mi�� with the above property there exists a complete p�partite graph
in Mi containing its vertices in this manner�

It easily follows that M� in a graphic iterative matching is a preserving p�matching between
A�� � � � � Ap��� like M� in an iterative matching� It is not very hard to see that the correspon�
dence de�ned below is in fact a one to one and onto correspondence between all possible iterative
matchings and all possible graphic iterative matchings between A�� � � � � Ap���

De�nition �� Given a graphic iterative matching fMigi�� we construct the corresponding iterative
matching fMigi�� as follows�

� M� is M��
� For every i we let A�

i be the set of p�cliques of M� that are fully contained in Ai� We then
construct M �

��M
�
�� � � � by de�ning M �

j to have an edge between u �
Sp��
i�� A

�
i and v �

Sp��
i�� A

�
i

if and only if Mj has an edge between the corresponding cliques� It is not hard to see that
M �

��M
�
�� � � � is a graphic iterative p�matching between A�

�� � � � � A
�
p��� we then de�neM��M�� � � �

as the iterative matching corresponding to M��M�� � � � inductively�

Henceforth� we use the term �iterative matchings� for both point of views� We now show how
iterative matchings are useful for equating sets in the modulo p setting�

Lemma �� If jAij are all equal� then the number of iterative p�matchings between A�� � � � � Ap�� is
� modulo p� Otherwise� there are no such matchings�

Proof� The proof is by induction on
Pp��

i�� jAij� The case where this sum is zero is clear �in this
case Ai �  for every i and indeed there exists exactly one possible iterative p�matching�� as well
as all cases where the jAij are not all equivalent modulo p �in which there is no possibility for
constructing even the �rst preserving p�matching M���

�




In any other case the number of ways to construct M� is � modulo p by Lemma 
�� For each
such construction� if we construct the appropriate A�

�� � � � � A
�
p�� as per the de�nition above� it is

easy to see that
Pp��

i�� jA
�
ij �

Pp��
i�� jAij� as well as that jA�

ij are all equal if and only if jAij are all
equal� The latter occurs since if we denote by r the number of cliques in M� not fully contained in
any of the Ai� we get jA�

ij � jAij�r
p

for every i�
If jAij are all equal� then by the induction hypothesis for each choice of M� the number of

choices for M��M�� � � � is � modulo p� and thus their sum over all choices of M� is � modulo p� If
jAij are not all equal� then by the induction hypothesis there exists no good choice of M��M�� � � �

for any choice of M�� completing the proof�

We end this section with a simple lemma which is not directly related to counting� but is used
in the following�

Lemma �
 For every iterative matching between A�� � � � � Ap�� �by Lemma �� we need only con�

sider sets with equal sizes	� every vertex in
Sp��
i�� Ai is eventually matched �a vertex in Ai is con�

sidered eventually matched if it has a neighbor outside of Ai in some Mk� when we consider the
graphic version fMigi�� of the iterative matching	�

Proof� In this case it is better to look at fMigi�� which corresponds to fMigi��� and note that a
vertex v � Ai is eventually matched if and only if it is either contained in a clique of M� which is
not internal to Ai� or contained in a clique of M� which is internal to Ai but which is eventually
matched by M��M�� � � � � the proof is then completed by an easy induction on jA�j�

B�� Constructing the �rst order property

We now construct a �rst order property that in essence counts bp�n� times the number of possible
iterative matchings between the p sets of size n

p
� by Lemma 
� this is equivalent modulo p to bp�n��

We look at structures hn�� E� Ri where E is a binary relation and R is a quaternary �arity
four� relation� The property will state that E is a union of p vertex�disjoint cliques and that R is a
representation �we prove later that it is unique� of an iterative p�matching between the cliques in
E� Instead of de�ning the property all at once we de�ne it as the conjunction of several properties
de�ned below� All the properties are �rst order� and whenever proving this part is clear we omit
all further mention thereof� In the presentation we also de�ne and use some relations that can be
expressed using �rst order expressions over E and R�

De�nition �� Property Clp�E� states that E is a non�directed simple graph which is the disjoint
union of exactly p cliques�

In the sequel we denote by A�� � � � � Ap�� the p cliques� We note however that the labeling of
these cliques is arbitrary� and make sure that all the logical constructions below are invariant with
respect to permuting the labels A�� � � � � Ap��� note that in particular the de�nition of a preserving
p�matching is such a construction�

De�nition �� Property Edgp�R� states that if �e�� e�� o�� o�� is in R then e� �� e�� and also
�e�� e�� o�� o�� and �e�� e�� o�� o�� and �e�� e�� o�� o�� are in R� We say in this case that the edge
�e�� e�� has �o�� o�� as an origin� We say that �e�� e�� has an origin if there exist �o�� o�� for which
�e�� e�� o�� o�� � R� Note that there is the possibility that o� � o��

In the sequel we shall usually refer by the term  edge� to an �e�� e�� that has an origin according
to R� and only refer indirectly �e�g� by the de�nition of A�� � � � � Ap��� to the graph E�

��



De�nition � If �e�� e�� which has an origin satis�es �e�� e�� �� E �that is� it is an edge between
Ai and Aj for some i �� j	 then we say that �e�� e�� is a bridge� Otherwise we say that �e�� e�� is
internal to the clique that contains e� and e� �which is one of A�� � � � � Ap��	�

We use the de�nition of bridge and internal edges to de�ne the property of R representing an
iterative p�matching fMigi��� while distinguishing which edge belongs to which Mi will result from
the above de�nition of an origin� First we deal with M��

De�nition �� Property Basep�E�R� states the following�

� If �e�� e�� has some �o� o� as an origin� then for every �o�� o�� it has �o�� o�� as an origin if and
only if o� � o��

� For every o� the set of edges having �o� o� as an origin is a preserving p�matching between
A�� � � � � Ap���

The reason for requiring that an edge has either no origin of the type �o� o� or has all of them is
to ensure that there is only one way to represent M� using R� We shall now require a representation
of Mi�� given that we already have the representations of M� � � � �Mi�

The following de�nition makes use of the notion of connected components� which is not �rst
order de�nable� However� whenever this is mentioned� it can be replaced with the �rst order notion
of all vertices having distance no more than two from a given vertex� since we prove later that for
any �o�� o�� the set of edges having it as an origin forms a disjoint union of isolated vertices and
complete p�partite graphs� so in particular all the connected components have diameter at most ��
We shall also prove that each such component is either internal to one of A�� � � � � Ap��� or brings
together a component of Mi from every Ai� This will be proven by induction� the basis o� � o� is
relatively easy using the property Basep�E�R��

De�nition �� Property Nextp�E�R� states the following�

� If �e�� e�� has �o�� o�� with o� �� o� as an origin� then for every �o��� o
�
�� it has �o��� o

�
�� as an

origin if and only if �o�� o�� and �o��� o
�
�� have the same origin �i�e� if there exists �r�� r�� such

that �o�� o�� r�� r�� � R and �o��� o
�
�� r�� r�� � R	�

� For every o� �� o�� we look at the set of connected components of the set of edges having the
same origin as �o�� o��� apart from those which are isolated vertices and those which are not
internal to one of A�� � � � � Ap��� denote them by C�� � � � � Cl� We also denote by G the graph
resulting from the set of edges having �o�� o�� as an origin�
� G consists of isolated vertices and vertex disjoint copies of complete p�partite graphs� each
of which has p members of C�� � � � � Cl as its color classes�

� Each of the complete p�partite graphs in G is either fully contained in one of A�� � � � � Ap���
or is such that each of its color classes is fully contained in a di�erent Ai�

� Each of C�� � � � � Cl intersects one of the complete p�partite graphs of G�

To justify the use of the notion of complete p�partite graphs in the de�nition of a �rst order
property� note that the following property of a vertex v� is �rst order� and that it is equivalent to
the property that the connected component containing v� is a complete p�partite graph� �There
exists v�� � � � � vp�� such that fv�� � � � � vp��g is a clique� that every vertex with distance 
 or less
from v� is adjacent to exactly p� � of the vertices fv�� � � � � vp��g� and that every two such vertices
are adjacent to each other if and only if they are not adjacent to the same p � � members of
fv�� � � � � vp��g��

��



To �nalize the de�nition of our �rst order property� we make sure that vertex pairs incident
with bridge edges are  out of the game�� to avoid multiplicities in counting that may result from
assigning them arbitrary origins�

De�nition �� Property Clearp�E�R� states that for every �o�� o��� no edges that are incident with
a bridge edge having �o�� o�� as an origin may have any origin� except possibly the edges which are
internal to the connected components of the graph of edges having �o�� o�� as an origin�

We now state and prove the concrete form of Theorem ��

Theorem �� Let Imp�E�R� � Clp�E��Edgp�R��Basep�E�R��Nextp�E�R��Clearp�E�R�� De�
note by fImp�n� the number of structures hn�� E� Ri satisfying Imp� Then fImp�n� � bp�n� �mod p��
and so it is not ultimately periodic modulo p�

To prove it we consider an E which satis�es Clp�E�� and de�ne a way to encode an iterative
matching between the cliques A�� � � � � Ap�� of E� as a relation R for which Imp is satis�ed� Then
we prove that such encodings are the only instances which satisfy Imp for any given E�

De�nition �� Suppose that fMigi�� is an iterative matching �we use the graphic de�nition	 be�
tween the cliques of E� We de�ne an R which is the encoding of fMigi�� as follows�

� Every edge of M� is an edge according to R that has every �o� o� and no other pair as an origin�

� For i � �� we let every edge of Mi have every edge of Mi�� and no other pair as an origin�

� No other combinations of edges with origins exist apart from those constructed above�

It is not extremely hard to prove the following�

Claim� An encoding of an iterative matching satis�es Imp� Moreover� for any two distinct iterative
matchings� the corresponding encodings are also distinct� �

Suppose now that we are given a structure hn�� E� Ri that satis�es Imp� To prove that it is an
encoding of some iterative matching we �rst de�ne inductively the graphs fMigi�� and then prove
that they form the matching which hn�� E� Ri encodes�

De�nition �� Given a structure hn�� E� Ri satisfying Imp we de�ne a sequence fMigi�� � M��M�� � � �

of graphs on n� inductively as follows�

� M� consists of all the edges having any �o� o� as an origin�

� Mi for i � � consists of all the edges having any edge from Mi�� as an origin�

Lemma �
 The following holds for the above de�ned graphs�

� Every edge in M� has every �o� o� and no other pair as an origin� and every edge in Mi has
every edge in Mi�� and no other pair as an origin�

� There is no edge in Mi 	Mj for any i � j�

� M� is a preserving matching between the p cliques of E�

� fMigi�� is an iterative matching between the p cliques of E �in particular� the connected com�
ponents of each Mi are isolated vertices and complete p�partite graphs	�

� There are no other edges with origins �according to R	 apart from those in
S
i��Mi�

��



Proof� The �rst two items follow by induction from hn�� E�Ri satisfying the �rst item of Basep
and the �rst item of Nextp� The third item follows from the second item of Basep� The fourth
item follows by induction from the above together with the second item in Nextp �with all its sub�
items�� Finally� the �fth item follows from hn�� E�Ri satisfying Clearp� when used in conjunction
with Lemma 
	�

Lemma �	 directly provides the �nal component required for the proof of Theorem ���

Consequence �� For every hn�� E� Ri satisfying Imp� the relation R is an encoding of an iterative
matching between the p cliques of E� �

Proof �Proof of Theorem 

�	� Claim B�� and Consequence �� imply that the number of structures
hn�� E� Ri equals bp�n� times the number of possible iterative matchings between p sets of size n

p
�

and by Lemma 
� the latter number is � modulo p�

Finally� we note that it is possible to formulate a property similar to Imp that uses only a single
quaternary relation R� by using �R�u� u� v� v�� to represent �E�u� v�� and changing the formulation
of the property accordingly�

C Structures of bounded degree

De�nition �� �� Given a structure A � hA�RA
� � � � � � R

A
k i� u � A is called a neighbor of v � A if

there exists a relation RA
i and some �a � RA

i containing both u and v�
�� We de�ne the Gaifman graph Gaif�A� of a structure A as the graph with the vertex set A and

the neighbor relation de�ned above�
�� The degree of a vertex v � A in A is the number of its neighbors� The degree of A is de�ned as

the maximum over the degrees of its vertices� It is the degree of its Gaifman graph Gaif�A��

� A structure A is connected if its Gaifman graph Gaif�A� is connected�

De�nition � For an MSOL class C� denote by f
�d�
C �n� the number of structures over n� that are

in C and whose degree is at most d�

The DU �index of a class of structures is the F �index for the case that F is the disjoint union
of two structures�

Theorem �� If C is a class of �R�structures which has a �nite DU �index� then f
�d�
C �n� is ultimately

periodic modulo m� hence� trivially� f
�d�
C �n� satis�es for every m � N a linear recurrence relation

modulo m�
Furthermore� if all structures of C are connected� then this modular linear recurrence is trivial�

Lemma �� If A 
Du�C� B� then for every C we have

C t A 
Du�C� C tB�

Proof� Easy� using the associativity of the disjoint union�

To prove Theorem �� we de�ne orbits for permutation groups rather than for single permuta�
tions�

�	



De�nition �� Given a permutation group G that acts on A �and in the natural manner acts on
models over the universe A	� the orbit in G of a model A with the universe A is the set OrbG�A� �
f��A� � � � Gg�

For A� � A we denote by SA� the group of all permutations for which ��u� � u for every u �� A��
The following lemma is useful for showing linear congruences modulo m�

Lemma �� Given A� if a vertex v � A � A� has exactly d neighbors in A�� then jOrbSA� �A�j is

divisible by
�jA�j
d

�
�

Proof� Let N be the set of all neighbors of v which are in A�� and let G � SA� be the subgroup
f���� � �� � SN � �� � SA��Ng� in other words� G is the subgroup of the permutations in SA�

that in addition send all members of N to members of N � It is not hard to see that jOrbSA� �A�j ��jA�j
jN j

�
jOrbG�A�j�

The following simple observation is used to enable us to require in advance that all structure in
C have a degree bounded by d�

Observation �� We denote by Cd the class of all members of C that in addition have bounded
degree d� If C has a �nite DU �index then so does Cd� �

In the following we �x m and d� Instead of C we look at Cd� which by Observation �� also has
a �nite DU �index� We now note that there is only one equivalence class containing any structures

whose maximum degree is larger than d� which is the class N
�d�
C � fA � �B�BtA� �j� Cd�g In order

to show that f
�d�
C �n� is ultimately periodic modulo m� we show a linear recurrence relation modulo

m on the vector function �fE�n��E where E ranges over all other equivalence classes with respect to
Cd�

Let C � md�� We note that for every t � N and � � d� � d� m divides
�
tC
d�

�
� This with Lemma

�� allows us to prove the following�

Lemma �� Let D �� N� be an equivalence class for �� that includes the requirement of the maxi�
mum degree not being larger than d� Then

fD�n� �
X
E

aD�E�m��nmodC�fE�Cb
n� �

C
c� �mod m��

for some �xed appropriate aD�E�m��nmodC��

Proof� Let t � bn��
C
c� We look at the set of structures in D with the universe n�� and look at their

orbits with respect to S�tC	� If a model A has a vertex v � n� � tC� with neighbors in tC�� let
us denote the number of its neighbors by d�� Clearly � � d� � d� and by Lemma �� the size of
OrbS�tC�

�A� is divisible by
�
tC
d�

�
� and therefore it is divisible by m� Therefore� fD�n� is equivalent

modulo m to the number of structures in D with the universe n� that in addition have no vertices
in n�� tC� with neighbors in tC��

We now note that any such structure can be uniquely written as BtC where B is any structure
with the universe n� tC�� and C is any structure over the universe tC�� We also note using Lemma
�� that the question as to whether A is in D depends only on the equivalence class of C and on B
�whose universe size is bounded by the constant C�� By summing over all possible B we get the

required linear recurrence relation �cases where C � N
�d�
C do not enter this sum because that would

necessarily imply A � N
�d�
C �� D��

��



Proof �Proof of Theorem ���	� We use Lemma ��� Since there is only a �nite number of possible
values modulo m to the �nite dimensional vector �fE�n��E � the linear recurrence relation in Lemma
�� implies ultimate periodicity for n�s which are multiples of C� From this the ultimate periodicity
for other values of n follows� since the value of �fE�n��E for an n which is not a multiple of C is
linearly related modulo m to the value at the nearest multiple of C�

Finally� if all structures are connected we use Lemma ��� Given A� connectedness implies that
there exists a vertex v � A� that has neighbors in A� A�� Denoting the number of such neighbors
by dv� we note that jOrbS�

A
�A�j is divisible by

�jA�j
dv

�
� and since � � dv � d �using jA�j � tC� it is

also divisible by m� This makes the total number of models divisible by m �remember that the set

of all models with A � n� is a disjoint union of such orbits�� so f
�d�
C �n� ultimately vanishes modulo

m�

D Specker index and CMSOL

Although Theorem � is stated for classes of structures de�nable in some logic� logic is only used to
verify the hypothesis of Specker�s Lemma� ��� In this Appendix we develop the machinery which
serves this purpose� The crucial property needed to prove Theorem �� is a reduction property
which says that both for the disjoint union A tB and for the substitution Subst��A� a��B� the
truth value of a sentence � � CMSOL� �R� depends only on the truth values of the sentences of
the same quanti�er rank in the structures A and B� respectively hA� ai and B� For the case of
MSOL this follows either from the Feferman�Vaught Theorem for disjoint unions together with
some reduction techniques� or using Ehrenfeucht�Fra��ss�e games� The latter is used in Spe���� We
shall use the former� as it is easier to adapt for CMSOL�

D�� Quanti�er rank

We de�ne the quanti�er rank qr��� of a formula � of CMSOL� �R� inductively as usual� For quanti�er
free formulas � we have qr��� � �� For boolean operations we take the maximum of the quanti�er
ranks� Finally� qr��U�� � qr��x�� � qr�Cp�qx�� � qr��� � �� We denote by CMSOLq� �R� �x� �U� the
set of CMSOL� �R��formulas with free variables �x and �U which are of quanti�er rank at most q�
When there are no free variables we write CMSOLq� �R��

We write A 
q

CMSOL B for two �R�structures A and B if they satisfy the same CMSOLq� �R��
sentences�

The following is folklore� cf� EF����

Proposition �
 There are� up to logical equivalence� only �nitely many formulas in CMSOLq� �R� �x� �U��
In particular� the equivalence relation A 
q

CMSOL B is of �nite index�

D�� A Feferman�Vaught Theorem for CMSOL

We are now interested in how the truth of a sentence in CMSOL in the disjoint union of two
structures AtB depends on the truth of other properties expressible in CMSOL which hold in A
and B separately�

Theorem �� �Courcelle�

�� For every formula � � CMSOLq�	� one can compute in polynomial time a sequence of formulas

h�A� � � � � � �
A
m� �

B
� � � � � � �

B
mi � CMSOLq�	��m

��



and a boolean function B� � f�� �g�m� f�� �g such that

A tB j� �

if and only if

B��bA� � � � � b
A
m� b

B
� � � � � b

B
m� � �

where bAj � � i� A j� �Aj and bBj � � i� B j� �Bj �

A detailed proof is found in Cou��� Lemma ���� page �����

D�� Quanti�er free transductions and CMSOL

FOL�reductions are widely used in descriptive complexity theory� cf� EF���� They are also called
transductions� cf� Cou���� Quanti�er free �R�transductions are FOL� �R��reductions with the de�ning
formulas quanti�er free� They are called scalar� when the de�ning formula for the universe has one
free variable only�

Lemma �� Let 
� be a quanti�er free scalar �R�transduction� Assume A��A� are �R�structures and
A� 


q

CMSOL
A�� Then 
��A�� 


q

CMSOL

��A���

Lemma � Subst��A� a�� �B� b�� can be obtained from the disjoint union of �A� a� and �B� b�� by
a quanti�er free transduction�

Proof �Sketch of proof�	� The universe of the structure is C � �A t B� � fag� For each relation
symbol R � �R we put

RC � RAjA�fag � R
B � f�a�� b� � �a�� a� � RA� b � Bg

This is clearly expressible as a quanti�er free transduction from the disjoint union�

Proposition �� Assume A��A��B��B� are �R�structures and with context a�� a�� b�� b�� respec�
tively� and

�A�� a�� 

q
CMSOL �A�� a�� and �B�� b�� 


q
CMSOL �B�� b���

Then Subst��A�� a��� �B�� b��� 

q

CMSOL Subst��A�� a��� �B�� b����

Proof� Use Theorem ��� Lemma �� and Lemma ���

D�� Finite index theorem for CMSOL

Now we can state and prove the Finite Index Theorem�

Theorem �� Let C be de�ned by an CMSOL� �R��sentence � of quanti�er rank q� Then C has a
�nite Specker index� which is bounded by the number of inequivalent CMSOLq� �R��sentences� This
number is �nite by Proposition ��

Proof� We have to show that the equivalence relation A 
q
CMSOL B is a re�nement of A 
C B�

But this follows from Proposition ���

��



E Detailed discussion of examples

In this appendix we list examples with their de�nability properties and give their density functions
or generating functions� as far as we could �nd them in the literature� The non�de�nability results
are fairly standard in logic� cf� EF���Cou�	�� and we state them bona �de� For the density and
generating function� our main sources are HP	
�Wil���� Additional related results may be found in
I� Gessel�s seminal work Ges���� where many explicit formulas are given for various graph classes
of bounded degree�

E�� Connected graphs

The class CONN is not FOL�R��de�nable� but it is MSOL�R��de�nable using a universal quanti�er
over set variables� We just say that every subset of vertices which is closed under the edge relation
has to be the set of all vertices�

Counting labeled connected graphs is treated in HP	
� Chapters � and 	� and in Wil��� Chapter

�� For CONN HP	
� page 	� gives the following recurrence�

fCONN�n� � ��n�� �
�

n

n��X
k��

k

�
n

k

�
��n�k� �fCONN�k��

E�� Regular graphs

The class REGr of simple regular graphs where every vertex has degree r is FOL�de�nable �for
�xed r�� The formulas says that every vertex has exactly r di�erent neighbors� The formula grows
with r� Regularity without specifying the degree is not FOL�de�nable� actually not even CMSOL�
de�nable�

Counting the number of labeled regular graphs is treated completely in HP	
� Chapter 	��
However� the formula is very complicated�

For cubic graphs� the function is explicitly given in HP	
� page �	�� as fR���n� �� � � and

fR���n� �
��n��

�n

X
j�k

����j��k � �j���j

�
k � j����k� j���n� k��
��k

X
i

����ij�

�j � �i��i�

E�� Trees and acyclic digraphs

Trees are �undirected� connected acyclic graphs� They are not FOL�de�nable but MSOL�de�nable�
Acyclicity is expressed by saying there is no subset of size at least three such that the induced graph
on it is ��regular and connected� Labeled trees were among the �rst objects to be counted� cf�HP	
�
Theorem ��	����

Theorem �� �A� Cayley ����� The number of labeled trees on n vertices is Tn � nn���

Here the modular linear recurrences can be given explicitly� We have T� � T� � �� T
 � 
� T� � ���
T� � ���� � � � � and Tn � n �mod �� for n � 
�

For the number of trees of outdegree bounded by k we get the following corollary of Theorem
��

Corollary �� The number of labeled trees of outdegree at most k is� for every m � Z� ultimately
constant �mod m��

��



In HP	
� Chapter 
� there is a wealth of results on counting various labeled trees and tree�like
structures� It is worth noting that the notion of k�tree� and more generally the property of a graph
of having tree�width at most k are MSOL�de�nable� cf� Cou�	�

E�� Directed acyclic graphs

If we look at trees as directed graphs where there is exactly one node with indegree � and all others
have indegree �� the orientation is unique� hence counting those gives the same function�

Directed acyclic graphs �DAG�s� my have vertices with arbitrary indegree and do not have to
be connected� DAG�s are again MSOL�de�nable� but not FOL�de�nable� Let an�m be the number
of labeled acyclic digraphs with exactly m vertices of indegree �� The HP	
� Theorem ������ give

an�m �
n�mX
k��

��m � ��k�m�n�m�k�

�
n

m

�
an�m�k �

E�� Bipartite graphs

Bipartite graphs are MSOL�de�nable� and so are connected bipartite graphs� We say that there is
partition of the vertex set into two independent sets �and add the statement for connectedness�� Let
�n be the number of labeled bipartite graphs� In Wil��� Page 	���� we �nd that the exponential
generating function associated with �n satis�es the following identity�

�X
n��

�n
xn

n�

��

�
X
n��

�X
k

�
n

k

�
�k�n�k�

�
xn

n�

From HP	
� Page �	� we also get

�n �
�

�

n��X
k��

�
n

k

�
�k�n�k��

E�� k�colored graphs

k�colored graphs are MSOL�de�nable with a formula depending on k� We say that there is a
partition of the vertices into k independent sets� Let �kn denote the number of k�colored labeled
graphs with n vertices� The case of bipartite graphs is a special case� �n � ��n� The formula for
betan is generalized in HP	
� Page �	��

�kn �
�

k

n��X
k��

�
n

k

�
�k�n�k��k��n

E�
 Even and eulerian graphs

Let C � EVENDEG the class of simple graphs where each vertex has even degree� EVENDEG

is not MSOL�de�nable but CMSOL�de�nable�

fEVENDEG�n� � ��n��
� �� cf� HP	
� page ����

��



Let C � EULER the class of simple connected graphs in EVENDEG�EULER is not MSOL�
de�nable� but CMSOL�de�nable� In HP	
� page 	� �stacs the following recurrence for fEULER�n��

fEULER�n� � ��n��
� � �

�

n

n��X
k��

k

�
n

k

�
��n�k��

� �fEULER�k��

is given� The number of labeled r�regular eulerian graphs is also CMSOL�de�nable� To �nd an
explicit formula of its density function seems very hard� However� our Theorem � gives

Corollary �� The number of labeled r�regular eulerian graphs is� for every m � Z� ultimately
constant �mod m��

E�� Planar graphs

Planar graphs are MSOL�de�nable� To see this one can use Kuratowski�s Theorem characterizing
planar graphs with topological minors� cf� Die���� We have not found any formula countin the num�
ber of labeled planar graphs in the literature� But the Specker�Blatter Theorem and its variations
can be applied�

A special kind of planar graphs are the rectangular grids GRIDS� which look like rectangular
checker boards� with the north�south and east�west neighborhood relation� Partial rectangular grids
PGRIDS are subgraphs of rectangular grids� It is easy to see that both GRIDS and PGRIDS have
�nite Specker index� but GRIDS are MSOL�de�nable while PGRIDS are not CMSOL�de�nable�
cf� Cou�	�Rot����

E�� Perfect graphs

A graph is perfect of the for every induced subgraph �including the graph itself� the chromatics
number equals the clique number� On the face of it� this does not seem MSOL� or CMSOL�
de�nable� However� it was conjectured by Berge�� Bol��� Chapter V���

Conjecture � �Strong perfect graph conjecture	� A graph G is perfect i� neither G nor its complement
graph contains contains an odd cycle of size at least ��

If the conjecture is true� this gives as a MSOL�de�nition of perfect graphs� However� the Specker
index for perfect graphs is much smaller than one would get using the MSOL�de�nition�

Proposition �� Let G and H be graphs� and a is a vertex of G�
Then Subst�G� a�H� is perfect i� both G and H are perfect�

Proof� One direction follows from the de�nition� the other direction is by now classic� cf� Bol���
Chapter V��� Theorem ����

Using Proposition �� we get

Corollary �
 The Specker index of perfect graphs is ��

� It was recently announced as proven by M� Cudnovski and R� Seymour
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