Master Thesis

Bestimmung der Bioverfügbarkeit von Kupfer und Zink in Böden mit der Methode DGT (diffusive gradients in thin films)

Author(s):
Köhler, Sandra

Publication Date:
2002

Permanent Link:
https://doi.org/10.3929/ethz-a-004537608

Rights / License:
In Copyright - Non-Commercial Use Permitted
Bestimmung der Bioverfügbarkeit von Kupfer und Zink in Böden mit der Methode DGT (Diffusive Gradients in Thin Films)

Sandra Köhler
Diplomarbeit am Institut für terrestrische Ökologie,
ETH Zürich

Leitung: Prof. Dr. Rainer Schulin
Betreuung: Dr. Bernd Nowack

Sommersemester 2002
Inhaltsverzeichnis

Dank .. 1
Abkürzungsverzeichnis .. 2
Zusammenfassung ... 3
Abstract .. 5

1 Einleitung .. 7
 1.1 Ausgangslage... 7
 1.2 Fragestellung .. 7
 1.3 Hypothesen ... 8
 1.4 Versuche ... 8

2 Grundlagen zur DGT-Technik ... 9
 2.1 Funktionsprinzip ... 9
 2.2 Berechnung von C_{DGT} ... 10
 2.3 Nachlieferungskinetik von Schwermetallen aus der Festphase in die Bodenlösung 11
 2.3.1 Die drei Schlüsselbeziehungen von DGT .. 11
 2.3.2 DIFS – DGT Induced Fluxes in Sediment ... 12
 2.3.3 Nachlieferungskinetik: die drei Fälle .. 14

3 Methoden und Materialien ... 15
 3.1 Verwendete Böden ... 15
 3.1.1 Das Zelle-Baum-Projekt .. 15
 3.1.2 Verwendeter Boden innerhalb des Zelle-Baum-Projektes 16
 3.2 Herstellung der DGTs ... 16
 3.2.1 Diffusionsgel .. 16
 3.2.2 Chelex-Gel ... 16
 3.2.3 Zusammensetzen der DGT .. 17
 3.2.4 Bestimmung der Schwermetallkonzentration beim DGT 17
 3.2.5 Vorversuche ... 17
 3.3 Versuch Zeitreihe DGT ... 17
 3.3.1 Böden und Messbedingungen .. 17
 3.3.2 Exposition: Dauer und Ort ... 18
 3.3.3 Wassergehalt .. 19
 3.3.4 Temperatur ... 19
 3.3.5 Bodenlösung ... 19
 3.3.6 Totalgehalt Schwermetalle ... 20
 3.3.7 DIFS ... 20
 3.4 Versuch Bestimmung Bioverfügbarkeit mit DGT ... 20
 3.4.1 Boden ... 20
 3.4.2 Pflanzen ... 20
 3.4.3 Wachstumsbedingungen ... 21
 3.4.4 Bestimmung der Schwermetallkonzentration in den Pflanzen 22
 3.4.5 DGT .. 22
 3.4.6 Totalgehalt Schwermetalle ... 22
 3.4.7 Löslicher Gehalt Schwermetalle ... 22
Dank

Ich bedanke mich bei Rainer Schulin für die Möglichkeit, meine Diplomarbeit im Bereich Bodenschutz schreiben zu können.
Bernd Nowack hat mir genügend Freiraum gelassen, um die Fragestellung auszusuchen, die mich am Meisten interessierte. Er nahm sich immer sofort Zeit, wenn ein Problem auf-tauchte. Seine kompetenten Ratschläge halfen meistens weiter. Herzlichen Dank!
Im Labor konnte ich auf die Hilfe von Anna Grünwald zählen. Vielen Dank für das Erklären der Geräte und die Mithilfe beim letzten Versuch.
Mein Dank gilt Werner Attinger für seine Hilfe bei der Probenahme, Martin Keller für die Her-stellung von Form, Stanzer und Halterungen, Kathrin Wenger für die Ratschläge beim Topf-versuch, Andreas Birkefeld für die Lösung der Computerprobleme und Susan Tandy für die Korrektur des Abstract.
Ich bedanke mich bei allen MitarbeiterInnen des Fachbereichs Bodenschutz und des ITÖ, die mir in irgendeiner Weise bei meiner Arbeit geholfen haben und dazu beigetragen haben, dass ich mich am Institut wohl gefühlt habe.
Abkürzungsverzeichnis

A \quad cm^2 \quad Exponierte Gelfläche
C \quad mg L^{-1} \quad Konzentration
C_{DGT} \quad mg L^{-1} \quad Zeitlich gemittelte Konzentration an der Oberfläche des DGT
C_E \quad mg L^{-1} \quad Effektive Konzentration
C_e \quad mg L^{-1} \quad Konzentration im Eluent
C_s \quad mol g^{-1} \quad An Festphase adsorbierte Konzentration
C_{soln} \quad mg L^{-1} \quad Konzentration in der Bodenlösung
C^0 \quad mol cm^{-3} \quad Konzentration in der Bodenlösung zum Zeitpunkt 0
D \quad cm^2 s^{-1} \quad Diffusionskoeffizient
D_d \quad cm^2 s^{-1} \quad Diffusionskoeffizient Diffusionsschicht
D_b \quad cm^2 s^{-1} \quad Diffusionskoeffizient Boden
F \quad mg cm^{-2} s^{-1} \quad Stofffluss
f_d \quad - \quad Porosität Diffusionsschicht
f_s \quad - \quad Porosität Boden
f_e \quad - \quad Elutionsfaktor
\Delta g \quad cm \quad Dicke der Diffusionsschicht
K_d \quad cm^3 g^{-1} \quad Verteilungskoeffizient sorbierte zu gelöster Metallmenge
k_b \quad s^{-1} \quad Desorptionsrate
k_r \quad s^{-1} \quad Adsorptionsrate
M \quad mg \quad Im Chelex akkumulierte Metallmasse
P_c \quad g cm^{-3} \quad Partikelkonzentration, Verhältnis Partikelmasse zu Porenwasservolumen in einem bestimmten Bodenvolumen
q^2 \quad - \quad Totuosität
R \quad - \quad Quotient C_{DGT} C_{soln}^{-1}, Index der Fähigkeit der Festphase, die Metallkonzentration in der Bodenlösung konstant zu halten
T \quad s \quad Expositionszeit von DGT
T_c \quad s \quad Response Time bei Nachlieferung aus der Festphase
t \quad s \quad Zeit
V_e \quad cm^3 \quad Volumen des Eluent
Zusammenfassung

Kupfer und Zink führen bei hohen Belastungen im Boden zu verringertem Pflanzenwachstum und via Nahrungskette zu einer Gefährdung von Tieren. Wie viele Schwermetalle eine Pflanze aufnimmt, hängt von verschiedenen Bodeneigenschaften ab. Wichtig sind die Konzentration in der Bodenlösung und die aus der Festphase nachgelieferten Schwermetalle. DGT (Diffusive Gradients in Thin Films) misst beides. DGT wird in dieser Arbeit verwendet, um die Nachlieferungskinetik und die Bioverfügbarkeit von Kupfer und Zink zu messen.

Im Versuch zur Bestimmung der Nachlieferungskinetik wurden mehrere DGT an der gleichen Stelle verschieden lange exponiert und damit den zeitlichen Verlauf von C_{DGT} bestimmt. C_{DGT} wurde in Relation zur Konzentration in der gesamten Bodenlösung gesetzt, damit das Ausmass der Nachlieferung quantifiziert werden konnte. Die Nachlieferungskinetik von Kupfer und Zink wurde im Zelle-Baum-Projekt direkt im Feld und mit ungestörten und homogenisierten Proben im Labor untersucht. Ein vieter Boden wurde frisch mit Schwermetallen gemischt.

bereits vor zwei Jahren Schwermetalle beigemischt wurden. Zink wird während der Alterung in eine weniger verfügbare Form gebracht.

DGT ermöglichte interessante Messungen zur Nachlieferungskinetik. Zur Abschätzung der Bioverfügbarkeit war DGT weniger geeignet.

Abstract

Copper and zinc inhibit plant growth at high concentration in soils and endanger the health of animals via the food chain. The amount of heavy metals taken up by a plant depends on different soil properties. Among these the concentration of heavy metals in the soil solution and the resupply from the solid phase are the most important. DGT (diffusive gradients in thin films) measures both. In this work DGT is applied to determine resupply kinetics and bioavailability of copper and zinc in contaminated soils.

DGT is built up in three layers which are held together. A filter, being the first layer, has direct contact to soil and prevents soil particles from adsorbing to the diffusion layer. This diffusion layer consists of a polyacrylic-hydrogel with known diffusion properties. The third layer consists of the metal binding Chelex. When exposed to soils, a concentration gradient is established through these three layers that drives the metal flux from the soil solution to the Chelex layer. The depletion of soil solution leads to desorption of metals from the solid phase. After exposure of DGT the metals fixed in the Chelex are eluted by an acid and measured. Thanks to the known properties of the diffusion path the average concentration on the surface of DGT \((C_{DGT}) \) can be calculated.

In an experiment to measure resupply kinetics several DGTs were exposed on the same spot for different periods of time. With these results the course of \(C_{DGT} \) with time was analysed. \(C_{DGT} \) was compared to the concentration in the soil solution to quantify the amount of resupply. The resupply kinetics of copper and zinc were measured in the Cell-to-Tree project in four ways: directly in the field, with undisturbed and homogenized samples in the lab and with the same soil that was freshly polluted.

In an experiment to measure bioavailability, ryegrass \((Lolium perenne)\) was grown in pots with soils of the Cell-to-Tree project with different amounts of heavy metals added. After harvesting the content of copper and zinc in the plants was compared to total content in the soil, the soluble content and the measurement by DGT. The expressiveness of these data was checked by ryegrass that was grown in the field and on undisturbed and homogenized soils in the lab.

The experiment for measuring the resupply kinetics showed, that DGT can be applied in the field and on undisturbed soil on the condition that the soil has a high water content and that there is good contact between DGT and soil, i.e. soil surface must be even. Heterogeneity must be considered. The concentration of zinc in the soil solution varied on a small scale, but copper was rather stable.

In the field the resupply kinetics of copper and zinc was characterized by a small pool of rapidly available metals. This pool was depleted after 24 hours. On the scale of seven days the resupply was controlled by a large pool with slow desorption rate. \(C_{DGT} \) of copper was stabilised at 25% of the dissolved fraction and zinc was stabilised at 3%. In the homogenized soil there wasn’t a rapidly available pool. On the larger scale the resupply was very similar.

The interpretation of the results from the freshly polluted soil was difficult because the soil had not yet reached a steady state. The concentration of copper in the soil solution increased slowly after mixing the heavy metals in. There was no rapidly available pool. Zinc dissolved immediately. The concentration in the soil solution reached a steady state after about 50 days. DGT showed in the long term that zinc was more available than in soils that had been mixed with heavy metals two years ago. Therefore zinc changed into a less available form with time.
The results of the experiment that measured the bioavailability of copper and zinc to ryegrass showed that the relationship between the metal content in the plant and measurement with DGT was significant but not as good as with total or soluble content. These results from the pot experiment were hardly comparable with the results from ryegrass grown in the field and on undisturbed or homogenized soils in the lab. On the one hand the copper content in the plants grown on freshly contaminated soils were quite low due to the small availability of copper after mixing. The copper contents of plants grown on soils that had been contaminated two years ago were all much greater. On the other hand heavy metal content in undisturbed soils decreased with depth. The question arose, where could a representative measurement of DGT be made.

DGT provided interesting results of resupply kinetics but was less suitable to assess bioavailability.

A big disadvantage of DGT is the dependence of its results upon gel properties (thickness of the diffusion layer, exposed area), upon experimental settings (exposure time, water content) and upon the user (pressing DGT on the soil). These single factors can hardly be examined independently. Comparisons with literature are difficult.
1 Einleitung

1.1 Ausgangslage

1.2 Fragestellung

In dieser Arbeit soll DGT zur Bestimmung der Bioverfügbarkeit von Kupfer und Zink in Böden des Zelle-Baum-Projektes an der WSL angewendet werden. Die Resultate werden mit den obengenannten Studien verglichen. Es wird zusätzlich geprüft, ob DGT auch bei nicht homogenisierten Bodenproben und im Freiland zuverlässige Resultate liefert.

Es stehen folgende Fragestellungen im Vordergrund:

1. Ist die Nachlieferungskinetik von Kupfer und Zink von der Festphase in die Lösung metallenspezifisch und abhängig vom Bodentyp?
2. Wie hat sich die Bioverfügbarkeit von Kupfer und Zink in den Zelle-Baum-Böden im Laufe der letzten zwei Jahre verändert?
3. Sind aussagekräftige Messresultate auch bei Anwendung von DGT auf natürlich ge-lagerten Böden ohne vorheriges Homogenisieren möglich?
4. Spiegeln die DGT-Messungen die Belastungen der Pflanzen mit Kupfer und Zink wider?

1.3 Hypothesen
Zu jeder Frage wurde eine Hypothese formuliert, die überprüft werden soll:
1. Die Nachlieferung von Kupfer und Zink von der Bodenmatrix in die Lösung wird in
den mit Filterstaub versetzten Zelle-Baum-Böden nur durch die Desorptionsrate limi-
tiert. Das Reservoir in der Festphase wäre bei höherer Desorptionsrate genügend
hoch, um in der Bodenlösung eine konstante Konzentration beizubehalten.
2. Die Bioverfügbarkeit von Kupfer in den Zelle-Baum-Böden nahm in den letzten zwei
Jahren zu, da dieses im Filterstaub als Messing vorliegt, das sich nur langsam auflö-
st.
Die Bioverfügbarkeit von Zink in den Zelle-Baum-Böden nahm in den letzten zwei
Jahren ab, da dieses im Filterstaub als Oxid vorliegt, somit vorerst schnell in Lösung
geht, langfristig aber stark an die Matrix gebunden wird.
3. DGT-Messungen sind mit homogenisierten oder ungestörten Böden möglich, an-
wendbar im Labor oder in situ. Homogenisierte Böden liefern Durchschnittswerte mit
geringer Streuung, wie sie für Vergleichsmessungen benötigt werden. Messungen
von ungestörten Böden im Labor bei konstanter Temperatur und Feuchte geben zu-
sätzlich Hinweise auf die räumliche Heterogenität, jene von ungestörten Böden im
Feld lassen zeitliche Schwankungen erkennen.
4. Es gibt einen Zusammenhang zwischen der durch eine Pflanze aufgenommenen
Menge Kupfer und Zink und der DGT-Messung des Bodens. Diese Relation kann zur
Abschätzung der Belastung dieser Pflanzenart auf belasteten Böden herangezogen
werden.

1.4 Versuche
Zur Beantwortung der Fragestellung und der Prüfung der Hypothesen werden zwei Versuche
durchgeführt.
Der Versuch Zeitreihe, bei dem DGTs auf den einzelnen Böden verschieden lange exponiert
werden und gleichzeitig die Konzentration in der Bodenlösung bestimmt wird, soll die Fragen
1-3 beantworten.
Zu Frage 4 wird der Versuch Bestimmung Bioverfügbarkeit mit DGT durchgeführt. Dabei
wachsen Pflanzen auf vier Böden, die sich nur in ihrem Schwermetallgehalt unterscheiden.
Nach der Ernte wird geprüft, ob ein Zusammenhang besteht zwischen dem Schwermetall-
gehalt in der Pflanze und den DGT-Messungen dieser Böden. Die Übertragbarkeit der Labor-
messungen auf Pflanzen, die auf ungestörten Böden und draussen wachsen, wird mit
Kontrollversuchen überprüft.
2 Grundlagen zur DGT-Technik

2.1 Funktionsprinzip

DGT basiert auf dem 1. Gesetz von Fick über die Diffusion. Ihmzufolge werden Stoffe entgegen eines räumlichen Konzentrationsgradienten $dC \cdot dz^{-1}$ in Bewegung gesetzt, um ihn auszugleichen. Der Stofffluss F ist je nach Eigenschaften des Mediums (u.a. Temperatur, Viskosität) unterschiedlich gross, was mit dem Diffusionskoeffizienten D ausgedrückt wird.

$$F(t) = D \cdot dC \cdot dz^{-1} \quad (1)$$

DGT erzeugt diesen Konzentrationsgradienten durch die Abfolge von zwei Gels:

Zum Boden hin wird die Diffusionsschicht in der Regel durch einen Filter ergänzt, damit keine Partikel am Gel adsorbieren können. Dieser Cellulose-Acetat-Filter mit Porengröße 0.45 µm hat die selben Diffusionseigenschaften wie das Polyacryl-Gel. Seine Dicke wird zur Diffusionsschicht addiert (Davison und Zhang, 1995).

Die Gels werden so in einen Halter gelegt, dass das Chelex-Gel keinen direkten Bodenkontakt hat (Abb. 1) und die Schwermetalle die Fixierungsschicht nur durch die Diffusionsschicht erreichen können. Es resultiert ein Konzentrationsgradient vom Chelex durch die Diffusionsschicht zur Bodenlösung hin (Abb. 2), der die Stoffdiffusion ins Gel hinein in Gang setzt. DGT misst den zeitlich gemittelten Stofffluss ins Gel für eine bestimmte Expositionsduer.
Nach der gewünschten Expositionsduauer wird das Chelex-Gel in Salpetersäure gelegt, wodurch die Metalle zu einem grossen Teil wieder in Lösung gehen und gemessen werden können.

2.2 Berechnung von C_{DGT}

Aus der Konzentration dieses Eluenten (C_e) lässt sich in zwei Schritten die während der Expositionszeit durchschnittlich herrschende Konzentration an der Geloberfläche (C_{DGT}) ausrechnen.

Zuerst berechnet man die durch das Gel akkumulierte Metallmasse M. Man muss dabei berücksichtigen, dass nur ein bestimmter Teil der akkumulierten Metallmasse tatsächlich durch die Salpetersäure zurückgelöst und gemessen werden kann. Davison und Zhang (1995) fanden dafür den Wert von 0.8, den sogenannte Elutionsfaktor f_e.

$$M = C_e \cdot V_e \cdot f_e$$ \hspace{1cm} (2)

Dabei bezeichnet V_e das Volumen des Eluenten, also die zugegebene Menge Salpetersäure plus das Volumen des Chelex-Gels, da man annimmt, dass sich die Schwermetalle gleichmässig in beiden Komponenten verteilen.

Die Metallmasse M ist umso grösser, je grösser der diffusive Stofffluss $F(t)$, je länger die Exposition des Gels (T) und je grösser die exponierte Gelfläche A ist:

$$M = F(t) \cdot T \cdot A$$ \hspace{1cm} (3)
F(t) kann entsprechend des 1. Gesetzes von Fick (Gleichung 1) und der bekannten Eigen-
schaften des Diffusionsgels (Dicke \(\Delta g \), Diffusionskoeffizient D, Konzentration am Chelex-Gel
= 0) ausgedrückt werden. Daraus ergibt sich:

\[
M = (D \cdot C_{\text{DGT}} \cdot \Delta g^{-1}) \cdot T \cdot A \tag{4}
\]

Durch Umformung von Gleichung 4 lässt sich \(C_{\text{DGT}} \) berechnen:

\[
C_{\text{DGT}} = M \cdot \Delta g \cdot (D \cdot T \cdot A)^{-1} \tag{5}
\]

\(C_{\text{DGT}} \) erlaubt primär eine Aussage über die Metallkonzentration an der Geloberfläche. Durch
geeignete Messungen erlangt man weitere Informationen.

**2.3 Nachlieferungskinetik von Schwermetallen aus der Festphase
in die Bodenlösung**

Durch den Metalltransport ins Chelex-Gel und deren dortige Fixierung wird die Konzentration
an der Geloberfläche erniedrigt. Dies wiederum löst die Nachlieferung aus der Umgebung
des DGTs aus. Der Bedarf von DGT ist zu gross, als dass er allein durch Diffusion durch die
Bodenlösung gedeckt werden könnte (Zhang et al., 1998). Es sind zwei Prozesse denkbar,
mit Hilfe derer die Metallkonzentration an der Geloberfläche aufrecht erhalten werden kann:
ein Durchmischen der Bodenlösung oder eine Nachlieferung aus der Festphase. Konvektiver
Transport kann unter Laborbedingungen ausgeschlossen werden. Die Nachlieferung aus der
Festphase ist demnach der relevante Prozess. Ist sie zu langsam, bildet sich eine Ver-
armungszone an der Geloberfläche. Grund dafür ist eine kleinere Desorptionsrate und/oder
ein kleiner Anteil an adsorbierten Metallen an der Festphase.

2.3.1 Die drei Schlüsselbeziehungen von DGT

Mit den in Harper et al. (1998) erwähnten drei Schlüsselbeziehungen von DGT lassen sich
zusätzliche Aussagen über die Nachlieferungskinetik von Schwermetallen aus der Festphase
in die Bodenlösung ableiten.

1. Misst man gleichzeitig die Konzentration in der Bodenlösung \(C_{\text{soln}} \) und vergleicht
 diese mit \(C_{\text{DGT}} \), so sieht man, wie stark die lokale Verarmung der Bodenlösung durch
 DGT ist.
 Abb. 2 zeigt im Fall i) die Situation, in der die Nachlieferung schnell genug ist, um den
 DGT-Bedarf zu decken, d.h. \(C_{\text{DGT}} = C_{\text{soln}} \).
 Im Fall ii) kommt es zu einer Verarmungszone vor dem DGT, d.h. \(C_{\text{DGT}} < C_{\text{soln}} \).
 Dieser Zusammenhang lässt sich mit R beschreiben:

\[
R = C_{\text{DGT}} \cdot C_{\text{soln}}^{-1} \tag{6}
\]

\(R \) kann Werte zwischen 0 und 1 annehmen, wobei 1 genügend schnelle
Nachlieferung bedeutet.

3. Der Stofffluss und die akkumulierte Masse sind proportional zum Konzentrationsgradienten durch das Gel, bzw. umgekehrt proportional zu Δg. Mit der Verwendung von verschiedenen dicken Diffusionsschichten kann geprüft werden, welche Metallmenge maximal nachgeliefert werden kann, ohne dass es zu einer Verarmungszone um das DGT kommt.

2.3.2 DIFS – DGT Induced Fluxes in Sediment

Es erleichtert die Interpretation von DGT-Messungen, in dem es aus experimentellen Daten Parameter zur Metallnachlieferung aus der Festphase berechnet. Obwohl für Sedimente entwickelt, zeigte Ernstberger et al. (2002) die Anwendbarkeit bei gesättigten Böden. Grundlage ist das in Abb. 3 gezeigte Modell der relevanten Kompartimente und Prozesse im Boden bei der Anwendung von DGT:

Dabei werden folgende Annahmen getroffen:

1. Stoffe werden nur mittels Diffusion transportiert.
2. Es gibt einen Diffusionskoeffizienten pro Metall.
3. Der Einfluss der Ionenstärke auf den Diffusionskoeffizienten wird nicht berücksichtigt.
5. Die Desorption der Metalle von der Festphase wird alleine durch die Reduktion der Metallkonzentration in der Bodenlösung aufgrund des DGT-Bedarfs ausgelöst. Es gibt keine andere aktive Remobilisierung von Metallen, beispielsweise durch Abbau von organischer Substanz.
6. Der Boden ist räumlich homogen bezüglich Porosität, Partikelzusammensetzung, Konzentrationen und Reaktionen.

Wichtige Parameter von DIFS sind R (siehe Gleichung 6), Kd und Tc, von denen jeweils zwei Werte in die Software eingegeben werden müssen, worauf der dritte iterativ berechnet wird. Kd bezeichnet den Verteilungskoeffizienten zwischen sorbierter und gelöster Metallkonzentration (Cs, bzw. Csoln).

\[K_d = \frac{C_s}{C_{soln}} = P_c^{-1} \times k_r \times k_b^{-1} \]

(7)

Pc ist die Partikelkonzentration. Man erhält sie, indem man für ein bestimmtes Bodenvolumen die Masse der Festphase durch das Volumen des Porenwassers dividiert. kr und kb sind die Adsorptions-, bzw. Desorptionsrate. Sie können auch als Response Zeit ausgedrückt werden, die vergeht, bis das System 63% des Gleichgewichtszustandes erreicht hat:

\[T_c = (k_r + k_b)^{-1} \]

(8)

Die Resultate von DIFS sind R und die Masse M als Funktion der Zeit und die gelöste und sorbierte Konzentration (Csoln, bzw. Cs) als Funktion der Zeit und des Abstandes vom DGT.
2.3.3 Nachlieferungskinetik: die drei Fälle

Harper et al. (2000) unterscheiden je nach zeitlichem Verlauf von R, und der Höhe der Werte von K_d und T_c drei verschiedene Nachlieferungstypen:

1. Gepufferter Fall
 Im gepufferten Fall ist die Nachlieferung genügend schnell, um die Konzentration der Bodenlösung vor dem DGT auf mindestens 95% der Anfangskonzentration zu stabilisieren. Typisch für diesen Fall sind ein konstantes, hohes R, ein tiefes T_c und ein hohes K_d (d.h. eine schnelle Nachlieferung bei einem Reservoir, das sich nicht erschöpft).

2. Diffusiver Fall
 Der diffusive Fall ist charakterisiert durch die starke Verarmung der Bodenlösung. Die Nachlieferung aus der Festphase wird durch ein sehr hohes T_c verunmöglicht. Die Größe von K_d ist dabei irrelevant. R sinkt mit der Zeit nach einem anfänglichen Peak auf ein Niveau, das reiner Diffusion entspricht.

3. Partieller Fall
 Der partielle Fall nimmt eine Zwischenstellung zwischen gepuffertem und diffusivem Fall ein. Man unterscheidet:
 3.1 Gleichgewicht
 Im Gleichgewichtszustand steigt die akkumulierte Masse linear mit der Zeit, jedoch auf einem tieferen Niveau als beim gepufferten Fall. R erreicht schnell einen konstanten Wert. Typisch sind ein hohes K_d, und ein mittleres T_c.
 3.2 Kein Gleichgewicht
 Der Unterschied zum Gleichgewichtsfall besteht darin, dass das etwa gleich hohe T_c aufgrund des hier kleinen K_d zu einer signifikanten Verkleinerung des sorbierten Metall-Reservoirs führt. R erreicht keinen konstanten Wert, sondern sinkt mit der Zeit.
3 Methoden und Materialien

3.1 Verwendete Böden

3.1.1 Das Zelle-Baum-Projekt

Ziel des Projektes ist die Analyse der Effekte auf Zellen, Organe, Organismen und Ökosysteme, die beim Wachstum von Bäumen auf toxischen Böden (Schwermetalle und saurer Regen) verursacht werden. Man erhofft sich dadurch, die Möglichkeiten einer Phytosanierung mit Bäumen abschätzen zu können.

<table>
<thead>
<tr>
<th>Element</th>
<th>Gehalt [g kg⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>627.7</td>
</tr>
<tr>
<td>Cu</td>
<td>44.8</td>
</tr>
<tr>
<td>Pb</td>
<td>11.8</td>
</tr>
<tr>
<td>Cl</td>
<td>6.4</td>
</tr>
<tr>
<td>Al</td>
<td>0.6</td>
</tr>
<tr>
<td>Cd</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Insgesamt ergeben sich folgende Behandlungen:

- Kontrolle
- Schwermetallbelastung
- Saurer Regen
 - Schwermetallbelastung und saurer Regen mit jeweils neutralen oder sauren Unterboden.

Die zwei sogenannten Aussenplots sind nicht überdacht, sonst aber identisch mit den Open-Top-Chambers. Sie bestehen aus Kontrolle und Schwermetallbelastung.

20 Feldplots fokussieren auf die Reaktionen von Schadinsekten. Im Gegensatz zu den Open-Top-Chambers sind sie nicht überdacht und in alle wurde der saure Unterboden aus Eiken eingefüllt.

3.1.2 Verwendeter Boden innerhalb des Zelle-Baum-Projektes

Die Untersuchungen und Probenahmen erfolgten ausschließlich in den zwei Aussenplots, jeweils im Bereich des sauren Unterbodens.

Tab. 2 zeigt wichtige Bodeneigenschaften des Oberbodens.

<table>
<thead>
<tr>
<th>Textur [%]</th>
<th>Corg [%]</th>
<th>CO₃⁻</th>
<th>pH</th>
<th>Kationenaustauschkapazität [mmolc kg⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>Schluff</td>
<td>Ton</td>
<td>Na</td>
<td>K</td>
</tr>
<tr>
<td>35.5</td>
<td>49.4</td>
<td>15.1</td>
<td>1.51</td>
<td>0.0</td>
</tr>
</tbody>
</table>

3.2 Herstellung der DGTs

Glas- und Plastikwaren wurden vor Gebrauch mit ~0.1 M HNO₃ ausgespült. Im Anhang B befindet sich eine Liste der verwendeten Chemikalien.

3.2.1 Diffusionsgel

Für 2 ml Gellösung wurden 1 ml 30% (w/v) Acrylamid-Lösung mit 0.3 ml DGT-Gel Crosslinker (2%) und 0.7 ml Wasser gemischt, so dass sich eine Lösung mit 15% Acrylamid und 0.3% Crosslinker ergab. Die Zugabe von 14 µl frischem 10% (w/v) Ammoniumperoxodisulfat und 4 µl N,N,N',N'-Tetramethylethylendiamin (TEMED) löst die Polymerisation des Gels aus.

Die Gellösung wurde gut gemischt und sofort in eine Plexiglasform gespritzt mit den Massen 7 cm * 4 cm * 0.4 mm. Es dauerte ca. 45 Minuten im 43°C warmen Ofen, bis das Gel vollständig auspolymerisiert war.

Die Gelplatte wurde für mindestens 24 Stunden in Wasser gelegt, wo sie um Faktor 1.6 aufquoll und die Dicke 0.64 mm erreichte (Abschätzung siehe Anhang C).

Die Gels wurden in einer 0.01 M NaNO₃-Lösung bei Raumtemperatur aufbewahrt. Gemäss Zhang und Davison (1999) müssen die Gels für mindestens 24 Stunden in 0.01 M NaNO₃-Lösung gelagert werden, um reproduzierbare Ergebnisse zu erhalten.

3.2.2 Chelex-Gel

Die Herstellung des Chelex-Gels erfolgte analog. Bevor man die Gelösung in die Plexiglasform spritzte, mischte man Chelex 100 (Na⁺-Form, 200-400 mesh) bei und rührte gut, um eine homogene Suspension zu erhalten. Die Menge von 0.12 g bei 80°C getrockneten Chelex pro 2 ml Gellösung führte zu einem mit Chelexkugeln dicht gepackten Gels.

Die Verwendung von feuchtem Chelex war unmöglich, da die abgewogene Menge je nach Feuchtigkeit varieren würde. Zu viel Chelex führte zu einem Gel, das schlecht auspolymerisierte und schnell riess.

Das weitere Vorgehen entsprach wieder jenem des Diffusionsgels mit dem einzigen Unterschied, dass die Lagerung des Gels in einer mit Wasser gefüllten PE-Flasche im Kühlshrank erfolgte.

Der Quellfaktor des Chelex-Gel betrug 1.15 (Abschätzung siehe Anhang C).
3.2.3 Zusammensetzen der DGT

Die Gels wurden anhand eines einfachen Stanzers aus Plexiglas in Rondellen mit 2.5 cm Durchmesser geschnitten. Um die Anordnung Chelex-Gel – Diffusionsgel – Filter zu fixieren, wurden die drei Schichten in einen Filterhalter gelegt. Dessen Vorderseite war so abgeschnitten, dass das Gel mit einer Fläche von 3.8 cm² exponiert war. Die Rückseite war mit Araldit verklebt, damit keine Bodenlösung von hinten direkt auf die Chelex-Gelschicht gelangen konnte (Abb. 4). Diese Anordnung entspricht vom Wirkungsprinzip her den patentierten „DGT units“.

Abb. 4: DGT

3.2.4 Bestimmung der Schwermetallkonzentration beim DGT

Nach der Exposition wurde das DGT geöffnet und das Chelex-Gel sorgfältig entnommen. Es wurde zusammen mit 1 ml 1 M HNO₃ in ein 1.5 ml Zentrifugenröhrchen gegeben. Die Schwermetalle wurden während mindestens 24 Stunden rückgelöst, bevor deren Konzentration gemessen werden konnte (siehe Kapitel 3.5). Mit den Gleichungen (2) und (5) liess sich C_{DGT} berechnen. Dabei waren \(f_e = 0.8 \), \(V_e = 1.226 \) ml, \(\Delta g = 0.074 \) cm, und \(A = 3.8 \) cm² (Abschätzungen siehe Anhang C).

3.2.5 Vorversuche

Zum Ausprobieren von DGT und der Saugkerzen sowie der Festlegung der Analytikmethode wurde die von Zhang (2000) empfohlenen Vorversuche durchgeführt. In einem Topf wurden 250 g Feinerde und 0.925 g Dornacher Filterstaub gemischt und befeuchtet. Als sich bei den Versuchen herausstellte, dass sich die Konzentration von Kupfer und Zink in der Bodenlösung des ganz frisch mit Filterstaub versetzten Bodens wesentlich von derjenigen der älteren Böden unterschied, wurde der Boden weiter feucht gehalten und die Bodenlösung weiterhin beprobt.

3.3 Versuch Zeitreihe DGT

3.3.1 Böden und Messbedingungen

Es wurden drei Böden untersucht: Seit zwei Jahren mit Schwermetallen belasteter Boden (S2), frisch mit Schwermetallen gemischter (S0) und als Kontrolle der gleiche Boden ohne Schwermetalle (K2).
Dabei bezeichnet S2 die Böden des Zelle-Baum-Projektes, die im Jahr 2000 mit schwermetallhaltigem Filterstaub (3.7 g Filterstaub kg⁻¹ Boden) gemischt, in die Aussenplots eingefüllt und bepflanzt wurden. Für den frischen Boden S0 wurde der gleiche Boden aus Birr, der unbepflanzt in einem Schuppen an der WSL gelagert war, bei 40°C getrocknet, auf 2 mm gesiebt und 3.7 g Filterstaub kg⁻¹ Boden beigemischt. Während eines Monates wurde er in feuchtem Zustand gelagert, anschliessend getrocknet und gesiebt.

Die Messbedingungen wurden erstens variiert zwischen Messungen im Feld (F) und im Labor (L) und zweitens zwischen ungestört (u) und homogenisiert (Feinerde, h).

Die Messungen im Feld wurden in den Aussenplot des Zelle-Baum-Projektes durchgeführt. Für Messungen von ungestörtem Boden im Labor (S2uL und K2uL) wurden Humaxproben mit einem Durchmesser von 5 cm und einer Länge von ~8.5 cm Länge gestochen. Für die Messungen von homogenisiertem, 2-jährigem Boden im Labor (S2hL und K2hL) wurde in den Aussenplot des Zelle-Baum-Projektes eine Sackprobe genommen, bei 40°C getrocknet und auf 2 mm gesiebt.

Mit den verschiedenen Böden und Messbedingungen ergaben sich sieben mögliche Kombinationen, die in Tab. 3 aufgelistet sind. Im Folgenden werden für die schwermetallhaltigen Böden die Kurznamen Feld, Humax, Homogen und Frisch verwendet.

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurzname</th>
<th>Boden</th>
<th>Fraktion</th>
<th>Messsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2uF</td>
<td>Feld</td>
<td>Schwermetallhaltig, 2-jährig</td>
<td>Natürliche Lagerung</td>
<td>Aussenplot Zelle-Baum</td>
</tr>
<tr>
<td>K2uF</td>
<td>Kontrolle, 2-jährig</td>
<td>Natürliche Lagerung</td>
<td>Aussenplot Zelle-Baum</td>
<td></td>
</tr>
<tr>
<td>S2uL</td>
<td>Humax</td>
<td>Schwermetallhaltig, 2-jährig</td>
<td>Humaxsäule aus Aussenplot</td>
<td>Labor, Klimakammer</td>
</tr>
<tr>
<td>K2uL</td>
<td>Kontrolle, 2-jährig</td>
<td>Humaxsäule aus Aussenplot</td>
<td>Labor, Klimakammer</td>
<td></td>
</tr>
<tr>
<td>S2hL</td>
<td>Homogen</td>
<td>Schwermetallhaltig, 2-jährig</td>
<td>Feinerde aus Aussenplot</td>
<td>Klimakammer</td>
</tr>
<tr>
<td>K2hL</td>
<td>Kontrolle, 2-jährig</td>
<td>Feinerde aus Aussenplot</td>
<td>Klimakammer</td>
<td></td>
</tr>
<tr>
<td>S0hL</td>
<td>Frisch</td>
<td>Schwermetallhaltig, frisch</td>
<td>Feinerde aus Lagerschuppen</td>
<td>Klimakammer</td>
</tr>
</tbody>
</table>

3.3.2 Exposition: Dauer und Ort

Ein Kontrollversuch überprüfte beim frisch mit Schwermetallen versetzten Boden, ob mit dem sequentiellen Verfahren die gleichen Ergebnisse erzielt werden, wie wenn die DGT für lange Zeiten ununterbrochen exponiert waren.
In den Aussenplots wurde an einem beschatteten Ort eine ca. 5 cm tiefe, möglichst ebene Mulde ausgegraben und die DGT mit geringen Abstand zueinander angeordnet. Bei den Humaxsäulen wurde je ein DGT auf die oben flach abgeschnittenen Bodensäulen angedrückt. Die Feinerde wurde zu je 250 g in Töpfe gefüllt, in denen drei bis vier DGT angeordnet werden konnten.

3.3.3 Wassergehalt

Bei den Versuchen Humax1 und Humax2 wurde die Saugspannung -100 hPa eingestellt, das Gewicht notiert und während des Versuches die Evaporation durch Wasserzugabe kompensiert. Beim Versuch Humax3 wurde der Boden zuerst einen Tag bei 30°C getrocknet, anschliessend aufgesättigt und nach einem Tag mit der Messung begonnen. Die Töpfe mit der Feinerde wurden nahe Sättigung gehalten. Sie wurden zugedeckt, um die Evaporation zu minimieren.

3.3.4 Temperatur

3.3.5 Bodenlösung

In den Aussenplots wurden die Saugkerzen ca. 5 cm neben den DGT eingebracht. Bei den Humaxsäulen wurde eine separate Säule verwendet, um die DGT-Messung durch die Än-
derung des Wassergehaltes nicht zu beeinflussen. In den Töpfen mit Feinerde wurde die
Saugkerze horizontal mit ca. 1.5 cm Abstand zu den DGT eingegraben.
Für die Berechnung von R wurde die durchschnittlich während der Expositionszeit vor-
liegende Bodenlösungskonzentration ausgerechnet.

3.3.6 Totalgehalt Schwermetalle

Zur Überprüfung, ob unterschiedliche im Gel akkumulierte Metallmengen auf einen unter-
schiedlichen Metallgehalt im Boden zurückzuführen sind, wurde nach der Exposition des
DGT an dieser Stelle ca. 1–2 g Boden entnommen und bei 40˚C getrocknet. Anstelle des
Siebens, das bei dieser geringer Probemenge unmöglich war, wurde die Probe mit einem
Metallöffel von Wurzeln und größerem Material befreit.
Die Bestimmung des Totalgehaltes nach VBBo erfolgte im Wesentlichen gemäß Methode
HNO₃-Ex, „Totalgehalte“: Extraktion von Schwermetallen mit Salpetersäure (1:10), nach FAL
et al. (1996). Entsprechend der kleineren Probemengen wurde auch weniger 2 M HNO₃
beigegeben.

3.3.7 DIFS

Für Böden mit kleiner Streuung wurde mit DIFS iterativ Tᵣ und Kᵣ bestimmt, für welche die
gemessenen Mittelwerte am besten zum simulierten zeitlichen Kurvenverlauf von R und M
apassten. Die Abschätzung der übrigen Eingabeparameter wird im Anhang D beschrieben.

3.4 Versuch Bestimmung Bioverfügbarkeit mit DGT

3.4.1 Boden

Der Boden aus Birr, der unbepflanzt in einem Schuppen an der WSL gelagert war, wurde bei
40˚C getrocknet und auf 2 mm gesiebt.
Für die Konzentrationsreihe wurden folgende Mengen des Dornacher Filterstaubes eingemischt:

- Feinerde ohne zusätzliche Schwermetalle
- Feinerde mit 1.37 g Filterstaub kg⁻¹ Boden, → ca. 1000 mg kg⁻¹ Zn
- Feinerde mit 2.74 g Filterstaub kg⁻¹ Boden, → ca. 2000 mg kg⁻¹ Zn
- Feinerde mit 4.11 g Filterstaub kg⁻¹ Boden, → ca. 3000 mg kg⁻¹ Zn

Während eines Monates wurden die Böden in feuchtem Zustand gelagert, anschliessend ge-
trocknet, gesiebt und für die Experimente abgewogen. Je 1 kg Boden wurde in einen Topf
von ca. 12 cm Durchmesser gefüllt. Pro Boden gab es drei Wiederholungen.
Als Vergleichsmessungen wurden erstens Pflanzen in den Aussenplot in den Aussenplot gesät, zweitens in die
bei den Zeitreihen verwendeten Humaxsäulen und drittens in Humaxsäulen, die mit 150 g
 auf 2 mm gesiebter Feinerde aus den Aussenplots gefüllt wurden.

3.4.2 Pflanzen

Angesät wurde Englisches Raygras (Lolium perenne), ein in der Landwirtschaft weit verbreitetes Futtergras. Raygras ist relativ tolerant gegenüber Kupfer und Zink, aber kein Hyper-
akkumulator (Sauvé et al., 1996; Monnet et al., 2001; Pichtel und Salt, 1998).
In den Töpfen mit 1 kg Boden wurden 200 mg Samen eingesät und leicht untergegraben.
Bei den Aussenplots wurden 200 mg Samen in eine Fläche von ca. 10 cm * 10 cm eingesät.
Bei den Humaxsäulen wurde die Saatmenge entsprechend ihrer geringeren Fläche auf 50 mg reduziert.

3.4.3 Wachstumsbedinungen

Die Töpfe und die Humaxsäulen wurden in die Klimakammer gestellt. Diese simuliert 16 Stunden Tag bei 23° C. Die Luftfeuchtigkeit beträgt 30%. Die Nacht dauert acht Stunden bei 16°C. Die Übergänge Tag/Nacht und Nacht/Tag dauern eine halbe Stunde.

Die Töpfe wurden nach der Einsaat aufgesättigt und das Gewicht notiert. Im Folgenden wurde alle 1-2 Tage gegossen und der gravimetrische Wassergehalt bei ca. 60% des Sättigungswassergehaltes gehalten. Insbesondere gegen Ende des Versuches war die Evapotranspiration jedoch so gross, dass der Wassergehalt zeitweise auf 20% fiel.

Die Töpfe und die Humaxsäulen wurden mit einer Nährösung gegossen, die eine ähnliche Zusammensetzung wie Regenwasser aufweist und im Zelle-Baum-Projekt zur Anwendung kommt (Tab. 4, Tab. 5). Einzig das Zink wurde nicht beigemischt. Aufgrund der geringen Stoffkonzentrationen wurde eine um Faktor 10'000 konzentrierte Stammlösung hergestellt und verdünnt.

Tab. 4: Konzentration der Elemente im Regenwasser (Mitteilung Peter Bleuler, WSL)

<table>
<thead>
<tr>
<th>Element</th>
<th>mg L⁻¹</th>
<th>µMol L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.10</td>
<td>3.20</td>
</tr>
<tr>
<td>Na</td>
<td>0.10</td>
<td>4.30</td>
</tr>
<tr>
<td>K</td>
<td>0.30</td>
<td>7.70</td>
</tr>
<tr>
<td>Ca</td>
<td>0.20</td>
<td>5.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td>1.20</td>
</tr>
<tr>
<td>Zn</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>Cl</td>
<td>0.60</td>
<td>28.00</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.30</td>
<td>3.20</td>
</tr>
<tr>
<td>N</td>
<td>2.00</td>
<td>142.79</td>
</tr>
</tbody>
</table>

Tab. 5: Zugegebene Spezies zur Herstellung des Regenwassers (Mitteilung Peter Bleuler, WSL)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>µg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH₂PO₄</td>
<td>435</td>
</tr>
<tr>
<td>KHSO₄</td>
<td>436</td>
</tr>
<tr>
<td>NaCl</td>
<td>252</td>
</tr>
<tr>
<td>KCl</td>
<td>97</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>735</td>
</tr>
<tr>
<td>MgCl</td>
<td>114</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>20</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>5714</td>
</tr>
</tbody>
</table>

3.4.4 Bestimmung der Schwermetallkonzentration in den Pflanzen

Nach 5 Wochen wurde das Raygras ca. 1 cm über dem Boden abgeschnitten, in den Aus- senplots aufgrund des geringen Wachstums erst nach 8 Wochen. Das Trockengewicht wur- de nach 24 Stunden im 40˚C warmen Ofen bestimmt. Sofern genügend Pflanzenmaterial vorhanden war, wurde es gemahlen. Bei geringer Probemenge wurde das Raygras mit einem Skalpell in ca. 2 mm grosse Stücke geschnitten.

Die Schwermetallgehalte der in den grossen Töpfen gezogenen Pflanzen wurde mit Röntgenfluoreszenz (RFA) gemessen. Das Vorgehen richtete sich nach der Anleitung von Scheinost (2002). Einzig die Pelletsgrösse wurde halbiert (2 g gemahlene Pflanzen und 0.45 g Wachs).

Bei geringer Pflanzenmenge kam der Mikrowellenaufschluss zum Zug. Dabei wurde 300 mg Pflanzenmaterial (bzw. so viel Probe wie vorhanden) in Teflongefässe eingewogen und 2 ml Wasser, 5 ml 65% HNO₃ und 2 ml H₂O₂ zugegeben. Mittels Druck- und Temperatursensor wurde überprüft, dass während des ca. 60 Minuten dauernden Aufschlusses 175˚C und 15 bar nicht überschritten wurden. Nach dem Abkühlen wurde die Probe auf ein bestimmtes Volumen (meist 25 ml) aufgefüllt und darin die Schwermetalle gemessen.

3.4.5 DGT

Nach der Pflanzenernte wurden die Töpfe und Humaxsäulen aufgesättigt. Einen Tag konnte die Bodenlösung equilibrieren. Auf den Aussenplots fand die Pflanzenernte nach einer Regenperiode statt, so dass der Boden genügend feucht war.

Pro Topf mit homogenisierter Feinerde wurden zwei DGT auf der Bodenoberfläche ex- poniert. Im Aussenplot wurden auf den kontaminierten Flächen je zwei, auf den Kontroll- flächen je ein DGT auf der Oberfläche exponiert. Bei den Humaxsäulen mit ungestörtem Boden wurden insgesamt je drei DGT in 0, 3 und 6 cm Tiefe exponiert. Bei den Humax- säulen mit homogenisiertem Boden wurden je zwei DGT in 0 und 3 cm Tiefe exponiert. Die Expositionsduauer betrug je 24 Stunden.

3.4.6 Totalgehalt Schwermetalle

Gleiches Vorgehen wie im Kapitel 3.3.6 beschrieben.

3.4.7 Löslicher Gehalt Schwermetalle

Nur bei den Böden der Konzentrationsreihe wurde der lösliche Gehalt gemäss VBBo nach Methode NaNO₃-Ex, Extraktion von löslichen Metallen mit Natrumnitrat (1:2.5) (FAL et al., 1996) bestimmt. Aus jedem Topf wurden 20 g Feinerde analysiert.
3.5 Analytik

4 Resultate und Diskussion

4.1 Blank DGT

4.1.1 Kupfer

Tab. 6: Kupfergehalt der einzelnen Chemikalien, die zur Herstellung und zur Verwendung des Chelex-Gels benutzt werden

<table>
<thead>
<tr>
<th>Arbeitsschritt</th>
<th>Cu [µg L⁻¹]</th>
<th>Menge der Substanz pro Gelplatte [ml]</th>
<th>Cu pro Gelplatte [ng]</th>
<th>eluierbares Cu pro Gel [ng]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giessen Acrylamid 30%</td>
<td>8.26</td>
<td>1.000</td>
<td>8.26</td>
<td></td>
</tr>
<tr>
<td>Cross-linker</td>
<td>n.b.</td>
<td>0.300</td>
<td>n.b.</td>
<td></td>
</tr>
<tr>
<td>Wasser</td>
<td>0</td>
<td>0.700</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NH₄-Peroxodisulfat 10%</td>
<td>20.06</td>
<td>0.014</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>n.b.</td>
<td>0.004</td>
<td>n.b.</td>
<td></td>
</tr>
<tr>
<td>Chelex (0.12 g in 10 ml HNO₃)</td>
<td>2.65</td>
<td>26.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.04</td>
<td>2.74 ¹)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cu [µg L⁻¹]</th>
<th>Menge Quellwasser [ml]</th>
<th>Cu im Quellwasser [ng]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quellen/ Lagerung Wasser Vorratsschale</td>
<td>6.91</td>
<td>200</td>
</tr>
<tr>
<td>Wasser PE-Flasche, 1. Messung</td>
<td>11.52</td>
<td>80</td>
</tr>
<tr>
<td>Wasser PE-Flasche, 2. Messung</td>
<td>14.44</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cu [µg L⁻¹]</th>
<th>Menge der Substanz pro Gel [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwermetall- 1 M HNO₃</td>
<td>0.84</td>
</tr>
<tr>
<td>Rücklösung Wasser für Verdünnungen</td>
<td>0</td>
</tr>
</tbody>
</table>

Total eluierbares Cu pro Gel >2.74

¹) Annahmen: 1 Gel nach dem Quellen 0.226 ml Quellfaktor 1.15 Gussvolumen 0.197 ml Elutionsfaktor 0.8

²) In Giessen/Cheix enthalten
Es ist nicht anzunehmen, dass der speziell für DGT entwickelte Cross-linker stark kupferhaltig ist. TEMED kann aufgrund der Reinheitsgarantie und der geringen Menge als Kupferquelle ausgeschlossen werden. Aufgrund der Chemikalien kann von einem tiefen Blank ausgegangen werden. Tab. 7 zeigt jedoch, dass mit durchschnittlich 63.2 ng deutlich mehr Kupfer als durch die Chemikalien erklärbaren 2.74 ng in einem Gel akkumuliert wurden. Das Kupfer gelangte demnach zu grossen Teilen via Arbeitsgeräte oder während des Quellen/Lagerung ins Gel. Zur Beurteilung, in welchem Schritt Schwermetalle in das Chelex-Gel gelangen, wurden deren zwei ohne vorheriges Quellen in Säure eluiert. Tab. 7 zeigt, dass etwa die Hälfte des Kupfers durch den Arbeitsschritt Giessen in das Gel gelangen. Die genaue Quelle bleibt unbekannt.

Tab. 7: Messungen Blank (Chelex-Gel ohne Exposition auf Boden)

<table>
<thead>
<tr>
<th>Cu [µg L⁻¹]</th>
<th>eluierbares Cu pro Gel [ng] ¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Quellen²)</td>
<td>21.2</td>
</tr>
<tr>
<td>Ohne Quellen²)</td>
<td>32.5</td>
</tr>
<tr>
<td>Blank nach 1 Woche Quellen</td>
<td>51.5</td>
</tr>
<tr>
<td>Blank nach 1 Woche Quellen</td>
<td>40.8</td>
</tr>
<tr>
<td>Blank Feld</td>
<td>44.1</td>
</tr>
<tr>
<td>Blank Frisch</td>
<td>38.2</td>
</tr>
<tr>
<td>Blank Humax</td>
<td>88.2</td>
</tr>
<tr>
<td>Blank Homogen</td>
<td>46.5</td>
</tr>
<tr>
<td>Mittelwert Blank</td>
<td>51.5</td>
</tr>
<tr>
<td>Standardabw. Blank</td>
<td>18.5</td>
</tr>
</tbody>
</table>

¹) Annahme: 1 Gel nach dem Quellen: 0.226 ml
²) Quellfaktor berücksichtigt

In der Annahme, dass der Blank unabhängig vom Versuch um einen Durchschnittswert schwankt, wurde bei allen Messungen ein Blank von 43.6 µg L⁻¹ subtrahiert. Dies ist der Mittelwert der ersten vier Messungen in Tab. 7. Von den beiden späteren Messungen muss Blank Humax als Ausreisser angesehen werden. Bei den Messungen der Kontrollböden ergab sich nach Abzug des Blank mehrmals eine geringe negative Akkumulation. Es wird angenommen, dass 43.6 µg L⁻¹ in etwa dem wahren Wert entspricht. Gemäss Mitteilung von Hao Zhang beträgt der Blank ihrer Gels <0.5 ng Cu pro Gel (Gelvolumen 0.15 ml im Vergleich zu den hier verwendeten Gel von 0.226 ml).

4.1.2 Zink

Für Zink wurden die gleichen Überlegungen wie in Kapitel 4.1.1 für Kupfer angestellt. Aufgrund der Beschränkung des Analysebereiches der Flammen-AAS auf Konzentrationen >100 µg L⁻¹ Zink war die Überprüfungbarkeit der Chemikalien eingeschränkt. Die Messwerte befinden sich im Anhang E.

Für Zink ergaben sich ein Blank von durchschnittlich 141.5 µg L⁻¹ im Eluent, bzw. 173.5 ng pro Gel. Der Wert liegt unter der Analyseempfindlichkeit der AAS (der Eluent wurde zuerst mit Faktor 10 verdünnt, um genügend Probemenge zur Analyse zu erhalten).
Obwohl höher als beim Kupfer, ist hier der Blank weniger relevant, da die Kontrollböden der Zeitreihen wegen der Empfindlichkeit der AAS nicht analysiert wurden und die kontamierten Böden aufgrund des stark zinkhaltigen Filterstaubes zu DGT-Aufnahmen führten, die im Allgemeinen deutlich über dem Blank lagen (meist um Faktor 10-50 höher). Einzig beim Versuch der Bestimmung der Bioverfügbarkeit mit DGT lagen die Werte des unbelasteten Bodens nur um Faktor 3-5 über dem Blank.

Bei allen Messungen wurde ein Blank von 100 µg L⁻¹ subtrahiert. Dieser Wert bezieht sich auf die erste Messung des Blank, erst spätere führten zum etwas höheren Durchschnittswert von 141.5 µg L⁻¹.

Gemaß Mitteilung von Hao Zhang beträgt der Blank ihrer Gels 0.5–5 ng Zn pro Gel.

4.2 Versuch Zeitreihe DGT

4.2.1 Variabilität der Kupfer- und Zinkkonzentration in der Bodenlösung

Für die Interpretation der Messwerte der verschiedenen lange exponierten DGT ist R ein wichtiger Parameter. Als Quotient von C\text{DGT} und der Konzentration in der Bodenlösung ist die genaue Bestimmung der letzteren entscheidend, selbst wenn die Variabilität von C\text{DGT} noch grösser ist.

Die Bodenlösung wurde während der jeweils einwöchigen Messperiode fünf bis sechsmal beprobt. Tab. 8 und Tab. 9 zeigen die Messwerte.

Tab. 8: Kupferkonzentrationen [µg L⁻¹] in der Bodenlösung der verschiedenen Böden während des Versuches Zeitreihe zu verschiedenen Zeitpunkten

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Feld</th>
<th>Humax1</th>
<th>Humax3</th>
<th>Homogen</th>
<th>Frisch1</th>
<th>Frisch2</th>
<th>Frisch3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>255.3</td>
<td>157.3</td>
<td>159.6</td>
<td>214.4</td>
<td>93.3</td>
<td>101.1</td>
<td>93.4</td>
</tr>
<tr>
<td>4 h</td>
<td>233.4</td>
<td>n.b.</td>
<td>n.b.</td>
<td>91.8</td>
<td>104.7</td>
<td>74.8</td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>258.9</td>
<td>149.7</td>
<td>165.2</td>
<td>212.0</td>
<td>97.0</td>
<td>102.3</td>
<td>90.3</td>
</tr>
<tr>
<td>24 h</td>
<td>255.4</td>
<td>146.7</td>
<td>156.2</td>
<td>189.1</td>
<td>90.6</td>
<td>102.1</td>
<td>77.3</td>
</tr>
<tr>
<td>72 h</td>
<td>272.2</td>
<td>129.2</td>
<td>490.8</td>
<td>261.8</td>
<td>96.2</td>
<td>89.1</td>
<td>79.1</td>
</tr>
<tr>
<td>168 h</td>
<td>296.0</td>
<td>127.4</td>
<td>206.2</td>
<td>649.5</td>
<td>121.5</td>
<td>n.b.</td>
<td>109.7</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>261.9</td>
<td>142.1</td>
<td>235.6</td>
<td>305.4</td>
<td>98.4</td>
<td>99.9</td>
<td>87.4</td>
</tr>
<tr>
<td>Standardabw. [%]</td>
<td>8.0</td>
<td>9.3</td>
<td>61.1</td>
<td>11.8</td>
<td>6.2</td>
<td>15.1</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9: Zinkkonzentrationen [mg L⁻¹] in der Bodenlösung der verschiedenen Böden während des Versuches Zeitreihe zu verschiedenen Zeitpunkten

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Feld</th>
<th>Humax1</th>
<th>Humax3</th>
<th>Homogen</th>
<th>Frisch1</th>
<th>Frisch2</th>
<th>Frisch3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>4.81</td>
<td>4.33</td>
<td>13.74</td>
<td>2.56</td>
<td>3.26</td>
<td>4.22</td>
<td>3.45</td>
</tr>
<tr>
<td>4 h</td>
<td>4.09</td>
<td>n.b.</td>
<td>n.b.</td>
<td>2.51</td>
<td>3.67</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>3.95</td>
<td>5.79</td>
<td>11.37</td>
<td>2.05</td>
<td>2.38</td>
<td>3.66</td>
<td>3.40</td>
</tr>
<tr>
<td>24 h</td>
<td>3.87</td>
<td>n.b.</td>
<td>13.54</td>
<td>2.14</td>
<td>2.81</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>72 h</td>
<td>4.47</td>
<td>7.10</td>
<td>16.33</td>
<td>1.70</td>
<td>2.32</td>
<td>1.78</td>
<td>2.10</td>
</tr>
<tr>
<td>168 h</td>
<td>3.79</td>
<td>6.16</td>
<td>9.80</td>
<td>1.73</td>
<td>2.04</td>
<td>n.b.</td>
<td>2.70</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>4.16</td>
<td>5.85</td>
<td>12.96</td>
<td>2.03</td>
<td>2.48</td>
<td>3.23</td>
<td>2.92</td>
</tr>
<tr>
<td>Standardabw. [%]</td>
<td>9.6</td>
<td>19.7</td>
<td>19.2</td>
<td>17.2</td>
<td>16.5</td>
<td>29.4</td>
<td>17.1</td>
</tr>
</tbody>
</table>
Zeitliche Heterogenität

Gemäß Tab. 8 betrugen die Schwankungen der Kupferkonzentration in der Bodenlösung während sieben Tagen zwischen 6.2% und 15.1%, unabhängig von den Messbedingungen. Erwähnenswert sind in den Versuchen Humax3 und Homogen je ein Ausreisser, die fast dreimal so hohe Kupferkonzentrationen aufwiesen wie der Durchschnitt der übrigen Messwerte und die relative Standardabweichung in die Höhe schnellen ließen. Der eine Ausreisser steht im Zusammenhang mit einem deutlich tieferen pH-Wert von 4.3 im Vergleich mit den übrigen Messungen, die alle zwischen pH 6 und 7.7 lagen. Beim zweiten Ausreisser könnte eine Rolle gespielt haben, dass, weil es sich um eine Messung am Ende des Versuches handelte, eine grössere Probemenge genommen wurde und demnach durch die Saugkerze feiner Poren entwässert wurden, die aufgrund der höheren Kontaktfläche zum Boden mehr Schwermetalle aufwiesen.

Zink wies eine Standardabweichung von 9.5-29.6% auf. Einzig bei Frisch2 nahm die Konzentration im Laufe des Experiments signifikant ab. Ernstberger et al. (2002) fanden für Zink eine signifikante Abnahme von 25% nach 19.5 d; Signifikanz wurde ab 5 Tagen erreicht. Andere Faktoren überdecken diese zeitabhängigen Effekte.

Räumliche Heterogenität

Die räumliche Heterogenität wurde in den frisch mit Schwermetallen versetzten Böden und im Aussenplot des Zelle-Baum-Projektes beurteilt, da dort Daten mehrerer Saugkerzen vorlagen.

Bei den Töpfen mit der homogenisierten Feinerde unterschied sich die Konzentration in der Bodenlösung sowohl für Kupfer als auch für Zink nicht signifikant zwischen den Töpfen (Kupfer: P-Wert = 0.148, Zink: P-Wert = 0.187). Das Homogenisieren des Bodens beim Sieben reduzierte Schwankungen der Schwermetallkonzentration in der Bodenlösung wirkungsvoll.

Bei der Messung der Bodenlösung in den Aussenplots ergaben sich deutliche räumliche Unterschiede, obwohl zwei Saugkerzen A und B nur in ca. 10 cm Abstand voneinander vergraben wurden (Tab. 10). Die Zinkgehalte schwankten um bis zu Faktor 6.7, die Kupfergehalte waren mit Faktor 1.6 ausgeglichener, wobei die Unterschiede signifikant waren (Kupfer: P-Wert = 0.011, Zink: P-Wert <0.001).
Tab. 10: Kupfer- und Zinkkonzentrationen der Bodenlösung des Zelle-Baum-Aussenplots, gemessen zu den gleichen Zeitpunkten in 10 cm Abstand zueinander

<table>
<thead>
<tr>
<th>Datum</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>21.06.2002</td>
<td>217.8</td>
<td>209.8</td>
</tr>
<tr>
<td>25.06.2002</td>
<td>221.0</td>
<td>169.4</td>
</tr>
<tr>
<td>26.06.2002</td>
<td>215.0</td>
<td>156.2</td>
</tr>
<tr>
<td>01.07.2002</td>
<td>216.4</td>
<td>154.1</td>
</tr>
<tr>
<td>19.07.2002</td>
<td>190.7</td>
<td>121.7</td>
</tr>
</tbody>
</table>

Der vertikale Gradient im Schwermetallgehalt aufgrund des oberflächlichen Aufbringens des Filterstaubes macht es nötig, die Saugkerze in der gleichen Tiefe wie die DGT horizontal zu vergraben.

Problematisch waren die Messungen bei Humax. Die Saugkerze wurde in einem separaten Humax vergraben und aufgrund des Platzes zudem vertikal.

Abhängigkeit vom Boden-pH

![Diagramm](image)

Abb. 5 zeigt, dass die Zinkkonzentration in der Bodenlösung pH-abhängig ist. Die Konzentration nimmt bis pH 6.8 stark ab und stabilisiert sich bei höherem pH auf einen Gehalt von rund 2 mg L⁻¹.

Die beiden homogenisierten Böden wiesen eine kleine Streuung auf. Ihr pH lag recht hoch. Die ungestörten Böden hatten eine grosse Streuung. Ob diese durch den tieferen pH verursacht wird, der die Löslichkeit innerhalb eines kleinen pH-Bereiches stark ändert oder durch die Heterogenität des Bodens, ist nicht eruierbar.

Entwicklung der Kupfer- und Zinkkonzentration in der Bodenlösung nach Zugabe des Filterstaubes

![Graph](link)

Abb. 6: Entwicklung der Kupferkonzentration in der Bodenlösung nach Zugabe des Filterstaubes

![Graph](link)

Abb. 7: Entwicklung der Zinkkonzentration in der Bodenlösung nach Zugabe des Filterstaubes

Unter Berücksichtigung der pH-Unterschiede liegen die Werte der zweijährigen Böden auf einem Niveau, das nach ca. 50 Tagen erreicht wird. Im Vergleich mit den mit Sauvé et al. (2000) für die jeweiligen Totalgehalte und pH erwarteten Werte lagen die beobachteten Konzentrationen der zweijährigen Böden um Faktor 2 – 3.5 höher (Tab. 11).

Tab. 11: Mit Sauvé et al. (2000) abgeschätzte Zinkkonzentrationen in der Bodenlösung im Vergleich zu den Mittelwerten der Versuche

<table>
<thead>
<tr>
<th>Versuch</th>
<th>pH</th>
<th>Totalgehalt [mg kg⁻¹]</th>
<th>Corg [%]</th>
<th>Csoln Sauvé [mg L⁻¹]</th>
<th>Csoln beobachtet [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorversuch</td>
<td>7.0</td>
<td>2390</td>
<td>1.5</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>Feld</td>
<td>6.6</td>
<td>2540</td>
<td>1.5</td>
<td>1.51</td>
<td>4.16</td>
</tr>
<tr>
<td>Humax1</td>
<td>6.4</td>
<td>4340</td>
<td>1.5</td>
<td>3.39</td>
<td>5.85</td>
</tr>
<tr>
<td>Humax3</td>
<td>5.8</td>
<td>4110</td>
<td>1.5</td>
<td>6.38</td>
<td>12.96</td>
</tr>
<tr>
<td>Homogen</td>
<td>7.4</td>
<td>2620</td>
<td>1.5</td>
<td>0.57</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Schlussbemerkung

4.2.2 Kontrollböden: DGT bei tiefen Schwermetalkonzentrationen

4.2.3 Nachlieferungskinetik von Kupfer und Zink in belasteten Böden

Versuch Feld

![Graphik](image)

Abb. 8: Entwicklung von R und M auf dem Boden Feld während sieben Tagen Exposition von DGT, vier Wiederholungen

- **Kupfer**
 Das hohe R während des ersten Tages zeigt, dass der Boden eine grosse Fraktion an schnell verfügbarem Kupfer umfasst. Nach einem Tag ist dieser Pool erschöpft. Das bis am Schluss des Versuches recht konstante R zwischen 0.15 und 0.3 zeigt, dass ein zweites, grosses Kupferreservoir vorhanden ist, welches den DGT-Bedarf zwar nicht decken kann, aber die Bodenlösung auf ein konstantes Niveau puffert (Typ partielles Gleichgewicht). Kleinräumige Unterschiede in der Kupfernachlieferung sind mit DGT erkennbar. Es gibt Stellen mit höhere Verfügbarkeit.

- **Zink**
 Das Gel nahm absolut mehr Zink als Kupfer auf. Dank R sieht man, dass die höheren Werte in M durch die höheren Konzentrationen in der Bodenlösung verursacht sind. Die Zinknachlieferungsrate aus der Festphase ist geringer als jene von Kupfer, und zwar zu allen Zeitpunkten. Der Pool an schnell verfügbarem Zink ist in weniger als einem Tag erschöpft. Anschliessend wird nur sehr wenig Zink aus der Festphase nachgeliefert. Der hohe Totalgehalt

Versuch Humax

Mit den gleichen Humaxsäulen fanden nacheinander drei Versuche statt.
Humax1: -100 hPa Saugspannung, Labor
Humax2: -100 hPa Saugspannung, Klimakammer
Humax3: Sättigung, Klimakammer

Ein gleiches Kurvenmuster in Abb. 9 - Abb. 11 entspricht der gleichen Humaxsäule.

Humax1

![Diagramm](image-url)

Abb. 9: Entwicklung von R und M auf dem Boden Humax1 während sieben Tagen Exposition von DGT, drei Wiederholungen
• Kupfer
Humax1 liefert bezüglich M und R nach sieben Tagen praktisch identische Ergebnisse wie Feld, wo wahrscheinlich ähnliche Versuchsbedingungen geherrscht haben. Der Peak an sehr leicht verfügbarem Kupfer ist weniger ausgeprägt.

• Zink
Bei Zink zeigen nicht alle Wiederholungen das gleiche Verhalten. Bei Zweien fehlt ein schnell verfügbarer Pool, die Nachlieferung ist sehr langsam. Wiederholung - - nimmt deutlich mehr Zink auf.

Humax2

Abb. 10: Entwicklung von R und M auf dem Boden Humax2 während sieben Tagen Exposition von DGT, drei Wiederholungen

Wiederholung - - nahm während der gesamten Exposition sehr wenig Metalle auf. Wahrscheinlich war der Boden nicht eben und der Kontakt ungenügend. Bei Zink war es bei Humax1 und Humax3 die Wiederholung, die am meistens akkumulierte.

Die um durchschnittlich 3°C tiefere Temperatur der Klimakammer und die entsprechend 8% tieferen Diffusionskoeffizienten haben angesichts der allgemein grossen Streuung keinen Einfluss auf die Resultate.
- Kupfer
Kupfer ist unter diesen Versuchsbedingungen sowohl kurz- als auch langfristig weniger verfügbar als bei Feld und Humax1.

- Zink
Das R, das sich auf 0.07 – 0.09 einpendelt, zeigt eine konstante Nachlieferung auf tiefem Niveau an. Schnell verfügbare Pools wie bei Feld und Humax1 fehlen.

Humax3

Abb. 11: Entwicklung von R und M auf dem Boden Humax3 während sieben Tagen Exposition von DGT, drei Wiederholungen

Humax3 unterschied sich durch die doppelt so hohen Zinkkonzentrationen in der Bodenlösung (Tab. 9) von Humax1 und Humax2, wodurch M höher ausfiel. Ursache der höheren Konzentration könnte die fehlende Verdünnung sein, die ev. bei Humax1 und Humax2 durch die täglich zugegebenen 1-2 ml zur Einstellung von -100 hPa Saugspannung zustande kam. Hooda et al. (1999) gaben bei ihren Versuchen ebenfalls Wasser zu, um Evaporationsverluste auszugleichen, machen aber keine Angaben über die Mengen und die Höhe des Effektes. Humax3 wurde aufgesättigt und abgedeckt, so dass der Wassergehalt während der sieben Tage konstant blieb.
• Kupfer
Die Streuung bei Kupfer ist beträchtlich.
Ein R von 1.63 der Wiederholung -x- nach acht Stunden ist theoretisch unmöglich. Es würde bedeuten, dass die durchschnittliche Konzentration an der DGT-Oberfläche um Faktor 1.63 höher ist als die durchschnittliche Konzentration in der gesamten Bodenlösung. In der Praxis kommen mehrere Ursachen in Frage: eine Verschmutzung des Gels mit Kupfer (Zink zeigt zum gleichen Zeitpunkt keine gesteigerte Aufnahme) oder Heterogenität der Bodenlösung.
Die Bodenlösungsmessungen in der separaten Humaxsäule sind wahrscheinlich trotz identischen Versuchsbedingungen nicht repräsentativ für die drei Humaxsäulen mit den DGT. Das R nach sieben Tagen liegt im Bereich der übrigen Versuche.

• Zink
Mit Ausnahme der Wiederholung -x- trifft das ebenfalls für Zink zu. -x- nahm innerhalb von sieben Tagen 10, bzw. 20 Mal mehr Zink auf als die anderen beiden Wiederholungen, jedoch nur das 1.5-, bzw. 3-fache an Kupfer. Die konstante Höhe von R bei 0.5 schliesst eine Verschmutzung eines einzelnen Gels aus. Wieso Zink in dieser Humaxsäule so viel besser verfügbar sein soll als in allen anderen, ist nicht nachvollziehbar. Der Totalgehalt ist nicht höher.

Versuch Homogen
Beim Versuch Homogen streuten die Resultate im Vergleich zu Feld und Humax am wenigsten.
• Kupfer
Vergleicht man das Verhalten von Kupfer mit Feld und Humax1 stellt man Parallelen fest: Der anfängliche Peak ist vorhanden, das schnell verfügbare Kupferreservoir erschöpft sich nach einem Tag. R von Homogen erreicht 0.3 nach drei Tagen und 0.08 nach sieben Tagen und liegt dann tiefer als bei den anderen Versuchen. Das deutet darauf hin, dass nach Erschöpfung des schnell verfügbaren Pools keine weiteren mit schnellen Desorptionsraten zur Verfügung stehen, oder dass diese sehr klein sind und schnell erschöpfen. Interessant wären Messwerte für eine Expositionszeit länger als sieben Tage, um zu sehen, auf welchem Niveau sich R einpendelt. Ein R von 0.08 bei sieben Tagen zeigt, dass sich das System dem diffusiven Fall annähert. Für den diffusiven Fall betrüge R 0.015 (Eingabe Parameter DIFS im Anhang D).

• Zink
Die Verfügbarkeit von Zink ist beim Versuch Homogen kleiner als bei Feld. Zum Einen äußert sich das bei der halb so hohen Konzentration in der Bodenlösung (Tab. 9), zum Anderen ist bei Feld ein Pool mit schnell verfügbarem Zink vorhanden, der das R anfänglich hoch hält. Bei Homogen fehlt dieser Pool.
Die R-Werte nach sieben Tagen sind identisch. Langfristig unterscheiden sich die Böden nicht in ihrer Zinkverfügbarkeit und ihrer Zinkreservoirs.
Abb. 12: Entwicklung von R und M auf dem Boden Homogen während sieben Tagen Exposition von DGT, drei Wiederholungen

Versuch Frisch

Die Streuungen bei Frisch sind gross (Abb. 13). Dies fällt insbesondere im Vergleich mit dem Versuch Homogen auf. Dort schien, dass die Streuung im Vergleich zu den anderen 2- jährigen Böden durch Homogenisieren verringert werden konnte. Möglicherweise liegt der Grund der grossen Streuung darin, dass der Boden noch kein Gleichgewichtszustand erreicht hat, wie dies anhand der Bodenlösung gezeigt wurde (Kapitel 4.2.1). Der Filterstaub kann nach einem Monat noch in partikulärer Form vorliegen. Liegt das DGT direkt bei einem Partikel, löst sich dieser aufgrund des DGT-Bedarfes schnell auf und liefert eine beträchtliche Menge Schwermetalle zum Chelex-Gel nach. Die Totalgehalte variieren unterhalb der DGT nur um 12.6% bei Kupfer und 10.3% bei Zink und scheiden als Grund aus. Die Vergleichswerte der DGT, die ununterbrochen während 8, 24, 72 und 168 Stunden exponiert waren, streuen ebenfalls stark zwischen keiner Aufnahme und sehr starker Akkumulation. Ein Vergleich ununterbrochene Exposition nach Ernstberger et al. (2002) vs. sequentielle Exposition gemäss der hier angewandten Methode lässt sich nicht anstellen. R von Kupfer und Zink liegen zu allen Zeiten zwischen 0 und 0.4. Es muss einen Nachlieferungsprozess geben, der konstant Kupfer und Zink freisetzt, vermutlich unabhängig vom
DGT-Bedarf. Es könnte sich dabei um Prozesse im Zusammenhang mit der Auflösung des Filterstaubes handeln.

Auffallend ist das Verhältnis von 1:40 zwischen akkumuliertem Kupfer und Zink im Vergleich zu den Versuchen mit den zweijährigen Böden Feld und Homogen, bei denen es je 1:2.5 betrug. Zwei Gründe sind dafür verantwortlich: Erstens liegt das Verhältnis Kupfer zu Zink in der Bodenlösung bei 1:30 (zum Vergleich: Feld: 1:6.7, Homogen: 1:16), weil erst wenig Kupfer gelöst ist (siehe Kapitel 4.2.1). Zweitens liegt R Zn nach sieben Tagen mit bis zu 0.4 wesentlich höher als bei Feld und Homogen, wo der Wert auf ca. 0.03 fiel und wo ab drei Tagen keine nennenswerte Zinkakkumulation stattfand.

Abb. 13: Entwicklung von R und M auf dem Boden Frisch während sieben Tagen Exposition von DGT, drei Wiederholungen (durchgezogenen Kurven) und Vergleichsmessungen mit ununterbrochener Exposition während 8, 24, 72 oder 168 Stunden (Punkte)
4.2.4 DIFS

Anwendung auf die Nachlieferungskinetik von Kupfer beim Versuch Feld

Abb. 14 zeigt die Ergebnisse von DIFS. Das oberste Graphikpaar generierte DIFS bei Eingabe des R zum Zeitpunkt 168 h und einem K_d von 1500 cm³·g⁻¹, welches mit der Formel von Sauvé et al. (2000) abgeschätzt wurde. Es resultiert ein T_c von 1100 s. Mit Gleichungen (7) und (8) lassen sich $k_b = 0.24E-6$ s⁻¹ und $k_f = 0.91E-3$ s⁻¹ berechnen. Die Desorptionsrate ist deutlich kleiner als die Adsorptionsrate. Die zeitliche Entwicklung von R wird für die Werte...
ab einem Tag sehr gut wiedergegeben. Die akkumulierte Metallmasse wird leicht über-
enschätzt, ist jedoch entsprechend der Streuung der Messwerte mit ihnen vereinbar.
Beim zweiten Graphikpaar wurde diejenige Kombination von R, K_d und T_c gewählt, welche
die akkumulierte Metallmasse am Besten beschreibt, dies auf Kosten der Güte der
Übereinstimmung bei R. T_c mit 2100 s, k_b mit 0.13E-6 s⁻¹ und k_f = 0.48E-3 s⁻¹ liegen in der
gleichen Größenordnung wie oben. Ob man DIFS an die Daten von R oder M anpasst, ist
damit arbiträr.
Die obengenannten Werte für K_d, T_c, k_b und k_f entsprechen einer langsamen Nachlieferung
aus der Festphase, bei der sich das Reservoir an Kupfer nicht erschöpft. Die anfänglichen
Spitzen in R lassen sich damit nicht erklären. Dazu geeigneter sind die Resultate des dritten
Graphikpaares: Ein mit einem T_c von 30 s charakterisierbarer Kupferpool geringer Grösse
(K_d = 20 cm³ g⁻¹) sorgt für eine hohe anfängliche Verfügbarkeit. T_c, bzw. k_b = 0.65E-3 s⁻¹ und
k_f = 0.033 s⁻¹ zeigen, dass Desorption und Adsorption um Größenordnungen schneller ab-
laufen als bei den zwei anderen Graphikpaaren und das Gleichgewicht stärker auf der De-
sorptionsseite liegt. R sinkt nach dem anfänglichen Peak schnell. Das Reservoir erschöpft
sich. Es müssen weitere Pools vorhanden sein, um die gemessenen Werte in R und M zu
erzielen.
DIFS bestätigt die in Kapitel 4.2.3 gemachten Aussagen bezüglich Nachlieferungskinetik und
liefert Parameter, die für Vergleiche herangezogen werden können.

Anwendung auf die Nachlieferungskinetik von Kupfer beim Versuch Homogen
Die Nachlieferungskinetik von Kupfer liess sich nicht mit DIFS beschreiben (Abb. 15). Ver-
schiedene Kombinationen von R, K_d und T_c erklären nur die Lage von ein bis zwei Mess-
punkten. Zusammengesetzt sind sie widersprüchlich. DIFS kann nur eine Nachlieferungs-
kinetik mit einer exponentiellen Reduktion von R beschreiben. Die Messwerte von Homogen
fallen durch dieses Raster: die Werte nach 4, 8 und 168 Stunden von R sind im Vergleich mit
jenen nach 24 und 72 Stunden zu tief.
Abb. 15: DIFS-Modellierung der Kupfernachlieferungskinetik auf Basis der Messwerte des Versuches Homogen, jeweils links die Modellierung von R, rechts von M für jeweils die gleichen K_d- und T_c-Werte (Messwerte: arithmetisches Mittel ± Standardabweichung, Eingabeparameter DIFS siehe Anhang D)

Kritik DIFS

DIFS erleichtert die Interpretation von DGT-Messungen. Aussagen über die Metallnachlieferung können mit dem Verteilungskoeffizienten K_d, der Response Zeit T_c, der Adsorptionsraten k_f und Desorptionsrate k_b beschrieben und verglichen werden. Die Anwendung auf die Versuche Feld und Homogen haben die Grenzen von DIFS und Schwierigkeiten in der Handhabung aufgezeigt.

• Das DIFS zugrunde liegende Einpool-Modell konnte weder Feld noch Homogen gerecht werden. Vielmehr scheint es mehrere Reservoir unterschiedlicher Größe mit verschiedenen Desorptionsraten je nach Bindungsstelle und Spezies zu geben. Zur Untersuchung, wie diese zusammenspielen, müsste DIFS auf mindestens ein Zweipool-Modell ausgebaut werden, was gemäß Mitteilung von William Davison geplant ist.

• Ein DIFS-Eingabeparameter ist die anfängliche Konzentration in der Bodenlösung C0. Sie muss gemäß Harper et al. (2000) und Davison (2002) in mol cm⁻³ eingegeben werden. Beim Versuch Homogen betrug die Kupferkonzentration in der Bodenlösung 220 µg L⁻¹, was 3.46 nmol cm⁻³ entspricht. DIFS akzeptiert so tiefe Werte nicht. Mitautorin Hao Zhang teilte mit, dass diese Einheit bedeutsungslos sei und sie immer 1 (normalisiert) als 100% eingeben. Als Variante kann mmol cm⁻³, µmol cm⁻³ oder nmol cm⁻³ eingegeben werden. Das ist möglich, denn für die Berechnung des Verteilungskoeffizienten Kd spielt die absolute Höhe von C0 keine Rolle. Die Werte von M, Csoln und Cₚ in der Ausgabedatei stützen sich auf jeden Fall auf ein C0 in mol cm⁻³ ab und müssen unbedingt korrigiert werden, um die Vergleichbarkeit mit den DGT-Messwerten zu erreichen. Ansonsten erhält man die in Harper et al. (2000) gezeigten Graphiken mit nicht nachvollziehbaren Einheiten.

• DIFS ist ein eindimensionales Modell. Das DGT nimmt aus zwei Dimensionen Metalle auf. Harper et al. (1998) führen aus, dass bei einer schnellen Nachlieferung nach 24 Stunden die Verarmungszone etwa 2 mm umfasst. Das eindimensionale Modell unterscheidet sich in diesem Fall nicht vom zweidimensionalen. Bei langsamer Nachlieferung und längerer Gelexposition dehnt sich die Verarmungszone weiter aus. DIFS lieferte für Feld bei einem Kd von 1500 cm³ g⁻¹ und einem Tc von 1100 s die in Abb. 16 gezeigte Verarmung der Bodenlösung als Funktion des Abstandes vom DGT. Die Verarmungszone bleibt ab einer Stunde Expositionszeit praktisch identisch und liegt innerhalb der 2 mm, bei welchen das eindimensionale Modell gültig ist.

![Diagramm](image.png)
Abb. 16: C_{soh} nach 168 Stunden Exposition in Abhängigkeit vom Abstand zum DGT. Resultat aus DIFS für Feld, Kd = 1500 cm³ g⁻¹, Tc = 1100 s

Die Gelhalterung verhindert die Metalldiffusion von der Seite her nicht. In diesem zweidimensionalen Fall akkumuliert das Gel mehr Metalle als im eindimensionalen, als Folge wird R überschätzt. Davison (2002) nennt für den diffusiven Fall Korrekturfaktoren. Ihnen zufolge muss R um bis zu Faktor 2.5 korrigiert werden. Weil die Korrekturfaktoren nur für einzelne Geldicken, Diffusionskoeffizienten und Expositionszeiten gegeben sind und sich nur auf die patentierten „DGT units“ beziehen, konnte trotz annähernd diffusiven Bedingungen die eigenen Messwerte nicht korrigiert werden.

Um Messwerte möglichst nahe des eindimensionalen Falles zu erhalten, sollte der Gelhalter wie folgt aussehen: Die exponierte Gelfläche sollte möglichst gross sein, um Randeffekte zu verkleinern. Optimal ist, wenn das Gel im Halter einige Millimeter tief versenkt liegt. Allerdings muss dann der Boden weich (sehr nass) sein, damit der Kontakt zum Gel gewährleistet ist.

- Harper et al. (1998) untersuchten die Sensitivität von R bezüglich Änderungen des Diffusionskoeffizienten, der Tortuosität und der Partikelkonzentration. Sie liegt unter 1% bei einer 1%-Änderung eines der drei Parameter. Für kleine T_c und grosse K_d ist die Sensitivität von R noch kleiner, oft unter 0.1%.

Diese Resultate müssen aus drei Gründen angezweifelt werden:

Drittens muss bei der Bestimmung der drei Parameter darauf geachtet werden, dass sie die Verhältnisse direkt unter dem DGT wiedergeben. Allein durch das Andrücken des DGT weichen diese wesentlich vom umgebenden Boden ab.

Die mit DIFS berechneten Werte für R, K_d und T_c müssen mit Vorsicht interpretiert werden. Mehr als Größenordnungen können sie nicht liefern.
4.2.5 Ursachen der Variabilität der im Chelex-Gel akkumulierten Metallmasse

Abb. 17 und Abb. 18 zeigen, wie unterschiedlich die akkumulierte Metallmasse im Chelex bezüglich Versuchsbedingungen und Wiederholungen ist.

![Graphik zur akkumulierten Metallmasse](image)

Abb. 17: In den DGT akkumuliertes Kupfer nach sieben Tage Exposition, mit jeweils drei Wiederholungen.

![Graphik zur akkumulierten Metallmasse](image)

Abb. 18: In den DGT akkumuliertes Zink (logarithmische Skala) nach sieben Tage Exposition, mit jeweils drei Wiederholungen.

Stärke der Streuung

werden. Sieben Tage sind eher eine zu kurze Zeit zur Untersuchung der Nachlieferungskinetik.

Welches sind die Gründe, die zu Streuungen der DGT-Messungen führen?

- Unterschiedlicher Kontakt zu Filterstaubpartikel, die sich erst aufgrund des DGT-Bedarfs auflösen.
- Unterschiedliche Konzentration der Bodenlösung: Nach Theorie ist M das zeitliche Integral des Metallflusses zum Chelex-Gel hin (Ernstberger et al., 2002). Nach Gleichung (1) ist der Fluss abhängig vom Konzentrationsgradienten durch das Dif-fusionsgel und damit von der Konzentration in der Bodenlösung.

Die Daten der Versuche liefern keinen signifikanten Zusammenhang zwischen M und C_{soil}. Grund dafür könnten die in Kapitel 4.2.1 gemachte Überlegungen sein (u.a. nicht repräsentativer Messort der Bodenlösung, unterschiedlicher Wassergehalt und damit Kontaktfläche des DGT zu wasserführenden Poren) oder die allgemein starke Streuung in den Wiederholungen, denen andere Ursachen zugrunde liegen.

- R ist unabhängig von C_{soil} und besser geeignet für Vergleiche zwischen Böden.
- Unterschiede im Totalgehalt aufgrund ungenügender Mischung:

![Diagramm](image)

Abb. 19: Abhängigkeit der während sieben Tagen im DGT akkumulierten Kupfer- und Zinkmenge M vom Totalgehalt

Die akkumulierte Kupfermenge hängt nur schwach, die Zinkmenge überhaupt nicht vom Totalgehalt des Bodens unterhalb des DGT ab.
Abb. 19 zeigt, dass der Totalgehalt des Zelle-Baum-Bodens sehr heterogen ist. Kupfer variiert um Faktor 2.9, Zink um 3.6. Dabei ist die an einer bestimmten Stelle vorhandene Filterstaubmenge das entscheidende Kriterium für die Totalgehalte von Kupfer und Zink. R² der linearen Regression zwischen Totalgehalt Kupfer und Totalgehalt Zink beträgt bei den zweijährigen Böden 0.868 (n = 35, Abb. 20). Bei den frisch mit Filterstaub gemischten Böden ist der Zusammenhang noch stärker (R² = 0.969, n = 25).

\[y = 0.220x - 78.0 \]
\[R^2 = 0.868 \]

![Diagramm zu Abb. 20: Zusammenhang zwischen dem Totalgehalt an Zink und Kupfer aller zweijähriger, filterstaubhaltigen Böden der Versuche Zeitreihe und Bestimmung Bioverfügbarkeit](image)

- Verunreinigungen des Chelex durch adsorbierte Bodenpartikel: Sie können entdeckt werden, wenn ein Gel für eine einzelne Zeiteinheit eine deutlich höhere Metallakkumulation aufweist.

- Chelexanordnung: Li et al. (2002a) weisen darauf hin, dass physikalisches Mischen des metallfixierenden Chelex in das Polyacrylamid-Hydrogel nicht ideal ist und daher den Annahmen der DGT-Theorie widersprechen. Erstens können die Chelexkugelchen ungleichmässig im Gel verteilt sein. Zweitens sollten die Kügelchen direkt an der Oberfläche zum Diffusionsgel anliegen, da sonst das \(\Delta g \) für die Berechnungen von C\textsubscript{DGT} unterschätzt wird. Beides kann mit der Verwendung möglichst kleiner Chelexkugelchen optimiert werden. Dass das Gel mit der falschen Seite zur Diffusions schicht zu Liegen kommt, kann beim selber hergestellten Chelex-Gel ausgeschlossen werden. Beim Herauslösen aus der Form rollt es sich immer auf die gleiche Seite ein. Als Alternative wurden bereits erfolgreich eine Whatman P81 Cellulose-Phosphat Membran (Li et al., 2002a) und ein PAM-PAA Hydrogel (Li et al., 2002b) getestet, bei denen die Metallbindungsstellen aufgrund ihrer chemischen Einlagerung in das zugrunde liegende Gerüst regelmässig verteilt sind.

- Unterschiede in den Diffusionseigenschaften: Nach sieben Tagen Exposition auf dem Boden mit -100 hPa Saugspannung hatte der Durchmesser des Diffusionsgels von 2.5 cm auf durchschnittlich 2.1 cm abgenommen. Der Filter war trocken. Bei den Versuchen bei Wassersättigung blieb das Gel unverändert. Wie stark dieser Effekt die Diffusionseigenschaften verändert, kann nicht abgeschätzt werden. Hooda et al. (1999) wendeten DGT während eines Tages auf Böden bei 27% (w/w) Wassergehalt
an und stellten keine Veränderung des Gels fest. Das Austrocknen des Diffusionsgels
beschränkt die Anwendbarkeit von DGT bei ungesättigten Böden auf kurze Exposi-
tionszeiten.

- Kontakt zu Kupfer- oder Zinkquellen und grobe Messfehler: Zusätzliche Kontamina-
tionen durch eines der beiden Metalle oder grobe Fehler bei der Messung können
entdeckt werden, wenn das Chelex-Gel ein von allen anderen Messungen ab-
weichendes Verhältnis $\log_{10} M_{\text{Cu}} : \log_{10} M_{\text{Zn}}$ aufweist. Abb. 21 zeigt, dass die
Aufnahme von Kupfer und Zink in einem konstanten, vom Boden vorgegebenen Ver-
hältnis steht ($P < 0.001$).

![Diagramm](image.png)

Abb. 21: Verhältnis der akkumulierten Kupfermenge zur Zinkmenge in einem Gel

- Unterschiedliche Spezierung: Kupfer bildet eine Vielfalt an organischen Komplexen
unterschiedlicher Grösse und Diffusionsgeschwindigkeiten. Aufgrund von Konformi-
tätsänderungen sind die Diffusionseigenschaften von Humin- und Fulvosäuren
abhängig von pH, Ionenstärke und ihrer Konzentration (Zhang und Davison, 1999).
Die Diffusionsschicht verlangsamt den Transport von Huminstoffen leicht. Anderer-
seits überschätzt DGT vermutlich den Anteil an anorganischem Kupfer (Zhang und
Davison, 2001). DGT hat zu enge Poren für grosse organische Komplexe (Twiss und
Moffett, 2002).

Bei gleicher Metallmenge, aber unterschiedlicher Spezierung akkumuliert DGT unter-
schiedlich viel.

Schlussbemerkung

Die grosse Streuung der Messungen macht Wiederholungen unerlässlich. Unterschiede kön-
nen den einzelnen Faktoren nicht zugeordnet werden. Die meisten Faktoren sind schwer zu
kontrollieren. Die starke Abhängigkeit der akkumulierten Metallmasse von den genauen
Messbedingungen erschwert Vergleiche zwischen verschiedenen Anwendern. Eine
Standardisierung ist schwierig.
4.3 Versuch Bestimmung Bioverfügbarkeit mit DGT

4.3.1 Biomassezuwachs und Toxizitätseffekte bei verschieden stark belasteten Böden

Abb. 22 zeigt die Trockensubstanz von Raygras, das fünf Wochen in Töpfen mit 1 kg Boden gewachsen war. Die Trockensubstanz unterscheidet sich signifikant zwischen den Töpfen mit unterschiedlichem Metallgehalt (P <0.01). Einzig die Unterschiede zwischen 2.74 und 4.11 g Filterstaub werden nicht signifikant (P = 0.726).

![Graphik](image)

Abb. 22: Trockensubstanz von Raygras nach 5 Wochen Wachstum in Abhängigkeit der zugegebenen Filterstaubmenge

Reduziertes Wachstum war nicht der einzige beobachtete Toxizitätseffekt: Pflanzen auf schwermetallbelasteten Böden waren weniger grün und hatten eine höhere Nekromasse.

4.3.2 Eignung von DGT, Totalgehalt und löslichem Gehalt zur Abschätzung der Schwermetallaufnahme durch Raygras

Unterschiede im Kupfergehalt von Raygras, das auf den verschieden stark belasteten Böden gewachsen ist, sind signifikant (P <0.001). Mit 7.5 – 17.5 mg Cu kg⁻¹ TS unterscheiden sich die Kupfergehalte absolut wenig voneinander. Aten und Gupta (1996) fanden in Raygras Kupfergehalte von 9 - 41 mg kg⁻¹ auf verschieden stark kontaminierten Böden. Bei einem Boden aus Dornach, der ja mit dem gleichen Filterstaub belastet ist, betrug die Konzentration in den Pflanzen 29 mg kg⁻¹ bei einem Totalgehalt von 794 mg kg⁻¹ im Boden.

Die Zinkgehalte in Raygras unterscheiden sich signifikant zwischen den verschieden stark belasteten Böden (P < 0.001). Die absoluten Gehalte variieren zwischen 30 und 373 mg Zn kg⁻¹ TS. Zink ist in der Pflanze wesentlich mobiler als Kupfer (Alloway, 1999). Gemäss Monnet et al. (2001) liegt die Verteilung von Zink zwischen Wurzel und Spross bei ca. 6:1.
Abbildung 23: Abhängigkeit des Kupfer- und Zinkgehaltes in Raygras vom Totalgehalt, dem löslichen Gehalt und der effektiven Konzentration C_E
In Abb. 23 sieht man, in welchem Belastungsbereich die Versuche angesetzt waren. Der Kupfergehalt der drei mit Filterstaub versetzten Böden liegt über dem Prüfwert der VBBBo (1998) für Futterpflanzenbau, der bei 150 mg kg\(^{-1}\) festgelegt wurde. Bei diesen Totalgehalten muss mit einer Gefährdung von Pflanzen und/oder Tieren gerechnet werden. Beim Zink liegt der Sanierungswert für Landwirtschaft bei 2000 mg kg\(^{-1}\). Er wird bei den Töpfen mit 2.74 und 4.11 g Filterstaub kg\(^{-1}\) Boden überschritten.

Entsprechend der Zusammensetzung des Filterstaubes liegen die Belastungen durch Kupfer und Zink in unterschiedlichen Bereichen. Nach Alloway (1999) werden Kupfer und Zink mit dem gleichen Mechanismus aufgenommen und wirken als Antagonisten, wobei die Aufnahme von der jeweiligen Aktivität in der Bodenlösung abhängt. Die höhere Belastung durch Zink kann so die Kupferbelastung konkurrieren und mit ein Grund sein, wieso sich die Kupfergehalte im Raygras absolut so wenig unterscheiden.

In der Schweiz wird der lösliche Gehalt als Indikator für die bioverfügbare Schwermetallfraktion verwendet (VBBBo, 1998). Trotz neutralem pH des Zelle-Baum-Bodens übersteigen einige Kupfermesswerte der Töpfe mit 2.74 und 4.11 g Filterstaub den Prüfwert für Futterpflanzenbau von 0.7 mg kg\(^{-1}\). Beim Zink wird der Richtwert von 0.5 mg kg\(^{-1}\) bei allen mit Filterstaub versetzten Böden überschritten, der Sanierungswert von 5 mg kg\(^{-1}\) nirgends. Der lösliche Gehalt beschreibt den Zinkgehalt in Raygras sehr gut (R\(^2\) = 0.899). Schlechter geeignet ist der lösliche Gehalt beim Kupfer (R\(^2\) = 0.599). Aten und Gupta (1996) fanden ein Bestimmtheitsmass zwischen dem Kupfergehalt in Raygras und log löslicher Gehalt von R\(^2\) = 0.92, bei Zink R\(^2\) = 0.63. Bei dieser Untersuchung wurden Werte aus 13 verschiedenen Böden verglichen. Daraus folgt, dass die Verfügbarkeit von Zink in einem Bodentyp gut mit dem löslichen Gehalt beschrieben werden kann, aber dass sich dieser Zusammenhang nicht auf andere Bodentypen übertragen lässt. Bei Kupfer hingegen ist der Zusammenhang zwischen Pflanzengehalt und löslichem Gehalt weniger bodenabhängig.

Sauvé et al. (1996), Hooda et al. (1999) und Davison et al. (2000) vermuten, dass die geeignetste Methode zur Abschätzung der Bioverfügbarkeit von Schwermetallen sowohl die in der Bodenlösung vorhandenen Schwermetalle misst, als auch die Faktoren, die die Pufferung der Schwermetalle in der Lösung beeinflussen. DGT erfüllt diese Kriterien. DGT ist in Abb. 23 die am wenigsten geeignete der drei Methoden. Der Zusammenhang zwischen C\(_E\) und dem Pflanzengehalt ist zwar für Kupfer und Zink signifikant (für beide P <0.001), aber das Bestimmtheitsmass ist tiefer als beim totalen und löslichen Gehalt: Für Kupfer beträgt R\(^2\) 0.472, für Zink 0.430.

Bei Kupfer ist die Regression deutlich schlechter als bei Zhang et al. (2001), (R\(^2\) = 0.95). Dort wurden der Gehalt in Lepidium heterophyllum (er umfasste 2 Grössenordnungen) und C\(_E\) logarithmiert und der Mittelwert aus den 2-3 Wiederholungen für die Regression verwendet. Wurden die Daten des tiefen Konzentrationsbereiches nicht transformiert, dann lag R\(^2\) bei

Bei Kupfer war eine Logarithmierung des Pflanzengehaltes nicht angebracht, weil die Werte innerhalb von Faktor 2 liegen. Die DGT-Messungen unterscheiden sich um zwei Größenordnungen. Bei der Regression Kupfer in der Pflanze vs. log C_E ist $R^2 = 0.682$. Bei Zink wird R^2 weder bei Logarithmierung des Pflanzengehaltes noch von C_E verbessert. Zhang et al. (2002) fanden, das C_E die Bioverfügbarkeit von Zink besser beschreibt als Totalgehalt, gelöste Fraktion oder CaCl$_2$-extrahierbare Fraktion.

4.3.3 Eignung von Laborversuchen zur Abschätzung der Schwermetallaufnahme von Raygras auf ungestörten Böden und im Freiland

Anwendung auf zweijährigen, homogenisierten Zelle-Baum-Boden

![Abb. 24: Raygras auf homogenisiertem Zelle-Baum-Boden nach fünf Wochen Wachstum (Erntezeitpunkt): links Boden mit Schwermetallen, rechts Kontrolle](image)

Die Trockensubstanz der drei Kontrollen betrug 1.068 ± 0.031 g und war somit 5.8 Mal kleiner als die Kontrolle bei den Töpfen, was in etwa den unterschiedlichen Bodenvolumina entspricht. Die Biomasse beim belasteten Boden betrug 0.189 g ± 0.047 g. Das Ernte war
gegenüber der Kontrolle um 82% reduziert, deutlich stärker als bei den Topfversuchen, bei denen die Reduktion maximal 42% betrug. Zhang et al. (2001) beobachteten bei Lepidium heterophyllum ab einer C_E von 2 mg Cu L$^{-1}$ deutliche Ertragsminderungen. Das reduzierte Wachstum geht mit deutlich höheren Schwermetallgehalten in den Pflanzen einher.

Abb. 25 zeigt, dass dadurch die Messwerte ausserhalb des „Kalibrationsbereiches“ des Topfversuches liegen. Die Messwerte der effektiven Konzentration C_E liegen beim Kupfer in der Verlängerung der „Kalibration“. Bei Zink streuen die Messwerte stärker um diese Verlängerung.

Der in Kapitel 4.3.2 gefundene Zusammenhang lässt eine Abschätzung der Pflanzenbelastung bei Homogen aus C_E zu. Die Zeit seit der Einmischung des Filterstaubes spielt keine Rolle. Damit zusammenhängende Effekte auf die Bioverfügbarkeit von Kupfer und Zink sind in C_E berücksichtigt.
Beim Totalgehalt gibt es weder beim Kupfer noch beim Zink einen Zusammenhang zur Konzentration in der Pflanze. Trotz ähnlichem Totalgehalt unterscheidet sich die in der Pflanze akkumulierte Schwermetallmenge um Faktor 1.5 zwischen den drei Wiederholungen.

Anwendung auf zweijährigen, ungestörten Zelle-Baum-Boden, Laborversuch

Abbildung 26: Totalgehalt von Kupfer und Zink in Abhängigkeit von der Bodentiefe

Abbildung 27: CE von Kupfer und Zink in Abhängigkeit von der Tiefe

Die Trockensubstanz der drei Kontrollen betrug 0.171 ± 0.018 g, diejenige der belasteten Humaxsäulen 0.086 ± 0.050 g, deutlich weniger als bei den Proben, die im gleichen Boden-
volumen, aber in Feinerde wuchsen. Die Humaxsäulen waren durch das Austrocknen beim Zeitreihenversuch Humax3 und beim Andrücken der DGT wahrscheinlich verdichtet worden und deshalb schlechter durchwurzelbar.

![Graphen und Diagramme](attachment:graph.png)

CE charakterisiert den Kupfergehalt der Pflanzen recht gut, der Totalgehalt nur ungenau. Der Zinkgehalt in den Pflanzen wird mit CE und Totalgehalt um Faktor 1.5-3 unterschätzt. Der pH ist eine signifikante Variable bei der Zinkakkumulation in Pflanzen (Efroymson et al., 2001). In Abb. 5 ist ersichtlich, dass der pH der Humaxsäulen tiefer ist als im Boden Frisch, dem wie beim Boden des Topfversuches gut einen Monat vor dem Experiment Filterstaub

53
beigemischt wurde. Der tiefere pH der Humaxsäulen führt zu einem höheren Anteil an gelöstem Zink. Der Totalgehalt kann die pH-abhängige Löslichkeit der Schwermetalle und damit deren Verfügbarkeit nicht abbilden und unterschätzt Schwermetallgehalte in Pflanzen, die bei tiefem pH gewachsen sind als die Referenz.

Anwendung auf zweijährigen, ungestörten Zelle-Baum-Boden, Feldversuch

Trotz acht Wochen Wachstum (übrige Versuche fünf Wochen) wuchsen die Pflanzen in den Aussenplots schlecht. Bei der Kontrolle beträgt die Trockensubstanz $0.026 \pm 0.007 \text{g}$, bei den Pflanzen auf schwermetallhaltigen Böden $0.091 \pm 0.096 \text{g}$. Bei der Kontrolle haben wahrscheinlich Beschattung durch die Baumbeplantzung der Aussenplots, Konkurrenz durch andere Unterwuchspflanzen und Herbivoren eine Rolle gespielt. Toxizitätseffekte durch die hohe Akkumulation von Kupfer und Zink haben das Wachstum auf den belasteten Flächen

reduziert. Gemäß Monnet et al. (2001) wird bei einer Zinkkonzentration von 1.4-1.6 mg kg$^{-1}$ in den Raygrasblättern die Netto-Photosyntheserate um 50% reduziert. Die Pflanzen im Feld wiesen z.T. noch höhere Gehalte auf. Gewöhnlich nehmen Pflanzen in Feldversuchen weniger Schwermetalle auf als in Treibhausversuchen, da sie bis in schwächer belastete Bodenschichten wurzeln (Alloway, 1999). Die Pflanzen im Aussenplot waren noch zu klein, um sich diese tieferen Schichten zu erschliessen.

Schlussbemerkung

![Diagramm zur Abhängigkeit des Kupfergehaltes in Raygras von der effektiven Konzentration C$_E$](image)

Abb. 30: Abhängigkeit des Kupfergehaltes in Raygras von der effektiven Konzentration C$_E$, Zusammenstellung aller Versuche

\[y = 0,004x + 11,04 \]
Abb. 31: Abhängigkeit des Zinkgehaltes in Raygras von der effektiven Konzentration C_E, Zusammenstellung aller Versuche.

Die Grafik zeigt die Abhängigkeit des Zinkgehaltes in der Pflanze von der effektiven Konzentration C_E in mg L$^{-1}$. Die Datenpunkte sind nach drei verschiedenen Versuchsreihen (Konzentrationsreihe, Homogen, Humax, Feld) getrennt. Die lineare Regression der Zinkgehalte in der Pflanze auf die effektive Konzentration ist durch die Gleichung y = 34,05x + 132,9 gegeben.
5 Schlussfolgerungen

5.1 Nachlieferungskinetik von Kupfer und Zink

Die in Kapitel 1.3 aufgestellte Hypothese, wonach bei den Zelle-Baum-Böden die Nachlieferung durch die Desorptionsrate limitiert wird und der Metallpool nicht erschöpft, kann für Kupfer und Zink beibehalten werden.

5.2 Veränderung der Bioverfügbarkeit von Kupfer und Zink in den Böden des Zelle-Baum-Projektes während der letzten zwei Jahre

Die DGT nahmen während sieben Tagen weniger Kupfer auf als bei 2-jährigen Böden.

Die DGT nahmen bei Frisch sehr viel Zink auf. Im Vergleich zum 2-jährigen Boden war die Verarmung der Bodenlösung weniger ausgeprägt, weil vermutlich immer neues Zink vom Filterstaub in Lösung ging. Beim frischen Boden war die Nachlieferungskinetik durch die vorhandene Menge an Filterstaub bestimmt und nicht durch die Desorption von an der Festphase gebundenem Zink.

Die Zunahme der Bioverfügbarkeit von Kupfer und die Abnahme beim Zink zwei Jahre nach der Filterstaubeinmischung wurden bei den Hypothesen vermutet.

Diese Ergebnisse müssen bei Versuchen mit Böden frisch untergemischten Schwermetallen beachtet werden, beispielsweise indem der Boden vor den Experimenten mindestens ein halbes Jahr in feuchtem Zustand gelagert wird.

5.3 Anwendungsbedingungen für DGT

Die Streuung aller Messresultate ist leider sehr gross. Man kann nicht sagen, ob sich die teilweise unterschiedlichen Nachlieferungskinetiken der 2-jährigen Böden nur aufgrund der Messungenaugkeit von CDGT ergeben, oder ob die Bodenbehandlungen zur Erreichung bestimmter Messbedingungen, z. Bsp. Trocknen und Sieben, Aussättigen, die Nachlieferungskinetik oder die Bezugsgröße C_{soil} beeinflussen.

Die Wiederholungen bei Feld und Humax spiegeln die räumlichen Unterschiede in der Verfügbarkeit wider, denn in der Regel nimmt ein einzelnes DGT im Vergleich zu den anderem zu allen Zeitabschnitten im gleichen Verhältnis Metalle auf.

der Messung der Bodenlösung war es genau umgekehrt: Homogen streute stark, Frisch sehr wenig.

5.4 DGT zur Abschätzung der Bioverfügbarkeit von Kupfer und Zink

6 Ausblick

In die Berechnung von \(M \), \(C_{DGT} \) und \(C_E \) fließen das Volumen des Chelex-Gels und die Dicke der Diffusionsschicht ein. Sie wurde mit Quellfaktoren abgeschätzt. Ihr systematischer Fehler ist unbekannt, für Literaturvergleiche sollte dieser möglichst klein sein. Mit einer Messung am Mikroskop könnte man die mit Quellfaktoren abgeschätzten Gelabmessungen überprüfen. Eine Sensitivitätsanalyse schätzt deren Einfluss auf \(M \), \(C_{DGT} \) und \(C_E \) ab.

Für gute R-Werte müssen DGT und die Methode zur Messung der Konzentration in der Bodenlösung die gleichen Spezies beproben. Für die Soil Moisture Samplers muss noch untersucht werden, welche Fraktion sie erfassen.

Aufgrund der in Kapitel 4.2.5 gemachten Überlegungen gibt es zahlreiche Faktoren, welche die Messung beeinflussen und Reproduzierbarkeit und Vergleiche mit der Literatur erschweren. Der Einfluss einzelner Faktoren, beispielsweise die Kontaktfläche zum Boden und Diffusions-eigenschaften verschiedener Spezies, sollte überprüft werden. Diese Versuche sollten mit Böden durchgeführt werden, denen Schwermetalle in gelöster Form zugegeben worden sind. Böden mit Schwermetallzugabe in partikulärer Form sind wahrscheinlich nicht geeignet für DGT, solange sie keinen Gleichgewichtszustand erreicht haben.

Der Vergleich der Nachlieferungskinetik verschiedener Schwermetalle und einzelner Böden zeigte widersprüchliche Ergebnisse. Es wäre interessant zu sehen, wie einzelne Faktoren, z.B. pH, KAK, organische Substanz oder Textur, die Nachlieferungskinetik beeinflussen. Die Untersuchungen könnten auf weitere Schwermetalle ausgeweitet werden.
7 Literaturverzeichnis

BUWAL (Hrsg.) (1997): Herleitung von Prüf- und Sanierungswerten für anorganische Schadstoffe im Boden, Umwelt-Materialien Nr. 83, Bern

FAL, RAC, FAW (Hrsg.) (1996): Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten

Flühler, H., Roth, K. (2000): Bodenphysik, Physik der ungesättigten Zone, Zürich

62

Li, W., Zhao, H., Teasdale, P.R., John, R., Zhang, H. (2002a): Application of a cellulose phosphate ion exchange membrane as a binding phase in the diffusive gradients in thin films technique for measurements of trace metals. Analytica Chimica Acta 464:331-339

Zhang, H., Davison, W., Knight, B., McGrath, S.P. (1998): In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT. Environmental Science & Technology 32:704-710

Anhang

Anhang A: Diffusionskoeffizienten DGT ... I
Anhang B: Liste der Chemikalien und Materialien .. II
Anhang C: Gelabmessungen: A, ∆g und V_Chelex .. III
Anhang D: Eingabeparameter DIFS .. IV
Anhang E: Blank Zink .. V
Anhang F: Kupfer- und Zinkkonzentration sowie pH der Bodenlösung VI
Anhang G1: Daten K2uF .. IX
Anhang G2: Daten K2uL .. XI
Anhang G3: Daten K2hL .. XIII
Anhang G4: Daten S2uF (Feld) .. XV
Anhang G5a: Daten S2uL1 (Humax1) ... XVI
Anhang G5b: Daten S2uL2 (Humax2) ... XVII
Anhang G5c: Daten S2uL3 (Humax3) ... XVIII
Anhang G6: Daten S2hL (Homogen) ... XIX
Anhang G7: Daten S0hL (Frisch) ... XX
Anhang H1: Daten Topfversuch Bioverfügbarkeit .. XXII
Anhang H2: Daten Pflanzenversuch Homogen, Humax und Feld XXIII
<table>
<thead>
<tr>
<th>Temperatur °C</th>
<th>D_{Cu} 10^{-6} cm2 sec$^{-1}$</th>
<th>D_{Zn} 10^{-6} cm2 sec$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.99</td>
<td>3.89</td>
</tr>
<tr>
<td>11</td>
<td>4.12</td>
<td>4.02</td>
</tr>
<tr>
<td>12</td>
<td>4.26</td>
<td>4.15</td>
</tr>
<tr>
<td>13</td>
<td>4.39</td>
<td>4.29</td>
</tr>
<tr>
<td>14</td>
<td>4.53</td>
<td>4.42</td>
</tr>
<tr>
<td>15</td>
<td>4.68</td>
<td>4.56</td>
</tr>
<tr>
<td>16</td>
<td>4.82</td>
<td>4.70</td>
</tr>
<tr>
<td>17</td>
<td>4.97</td>
<td>4.85</td>
</tr>
<tr>
<td>18</td>
<td>5.12</td>
<td>4.99</td>
</tr>
<tr>
<td>19</td>
<td>5.27</td>
<td>5.14</td>
</tr>
<tr>
<td>20</td>
<td>5.42</td>
<td>5.29</td>
</tr>
<tr>
<td>21</td>
<td>5.58</td>
<td>5.44</td>
</tr>
<tr>
<td>22</td>
<td>5.74</td>
<td>5.60</td>
</tr>
<tr>
<td>23</td>
<td>5.90</td>
<td>5.76</td>
</tr>
<tr>
<td>24</td>
<td>6.06</td>
<td>5.92</td>
</tr>
<tr>
<td>25</td>
<td>6.23</td>
<td>6.08</td>
</tr>
<tr>
<td>26</td>
<td>6.40</td>
<td>6.24</td>
</tr>
<tr>
<td>27</td>
<td>6.57</td>
<td>6.41</td>
</tr>
<tr>
<td>28</td>
<td>6.74</td>
<td>6.58</td>
</tr>
<tr>
<td>29</td>
<td>6.92</td>
<td>6.75</td>
</tr>
<tr>
<td>30</td>
<td>7.10</td>
<td>6.92</td>
</tr>
</tbody>
</table>

Zhang, H. Diffusion coefficients of metal ions in DGT gel at different temperatures from 1 to 35 °C. In: DGT Research Ltd, Lancaster
Anhang B: Liste der Chemikalien und Materialien

Chemikalien DGT

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Marke</th>
<th>Artikel Nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid für Molekularbiologie</td>
<td>Fluka</td>
<td>01696</td>
</tr>
<tr>
<td>Ammonium Peroxodisulfat, puriss.p.a. ACS; ≥98 % (RT)</td>
<td>Fluka</td>
<td>09915</td>
</tr>
<tr>
<td>Chelex® 100, Na⁺-Form, 200-400 mesh</td>
<td>Fluka</td>
<td>95621</td>
</tr>
<tr>
<td>DGT Gel Cross-linker, 2% Aqueous Solution</td>
<td>DGT Research Ltd</td>
<td>1</td>
</tr>
<tr>
<td>N,N,N',N'-Tetramethylethylenediamin (TEMED) für Elektrophorese</td>
<td>Fluka</td>
<td>87689</td>
</tr>
<tr>
<td>Natriumnitrat zur Analyse</td>
<td>Merck</td>
<td>1.07289</td>
</tr>
<tr>
<td>Titrisol® Salpetersäure 1 M</td>
<td>Merck</td>
<td>1.09966</td>
</tr>
<tr>
<td>Palladium-Modifier</td>
<td>Merck</td>
<td>1.06537.0500</td>
</tr>
</tbody>
</table>

Materialien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Marke</th>
<th>Artikel Nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Moisture Samplers: Rhizon Flex</td>
<td>Eijkelkamp</td>
<td>19.21.25</td>
</tr>
<tr>
<td>Soil Moisture Samplers: Syringe Set</td>
<td>Eijkelkamp</td>
<td>19.21.04</td>
</tr>
<tr>
<td>Cellulose Acetat Filter, Porengrösse 0.45 µm</td>
<td>Sartorius</td>
<td>11106--25------N</td>
</tr>
</tbody>
</table>
Anhang C: Gelabmessungen: A, \(\Delta g \) und \(V_{\text{Chelex}} \)

- **Exponierte Gelfläche A:**
 - Radius: 1.1 cm
 - Fläche: 3.80 cm²

- **Dicke Diffusionsschicht \(\Delta g \):**
 - Dicke Diffusionsgelschicht:
 - Quellfaktor Gel Zhang (2000)\(^1\): 1.6
 - Form: 0.04 cm
 - Geldicke nach Quellung: 0.064 cm
 - Filterdicke: Zhang et al. (1998): 0.01 cm
 - \(\Delta g \): Diffusionsgelschicht + Filterdicke: 0.074 cm

 \(^1\) Eigene Messungen (n= 2): Quellfaktor 1.54 ± 0.04

- **Volumen Chelex-Gel:**
 - Abschätzung der Chelex-Geldicke nach der Quellung mit der Annahme, dass das Gel in alle Richtungen gleich stark aufquillt

<table>
<thead>
<tr>
<th>Form</th>
<th>Nach Quellung</th>
<th>Quellfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>7 cm</td>
<td>7.8 cm</td>
</tr>
<tr>
<td>Breite</td>
<td>4 cm</td>
<td>4.8 cm</td>
</tr>
<tr>
<td>Dicke</td>
<td>0.4 mm</td>
<td>geschätzt: 0.46 mm</td>
</tr>
</tbody>
</table>

 - Radius Gel: 1.25 cm
 - Gelfläche: 4.91 cm²
 - Volumen: 4.91 cm² * 0.046 cm = 0.226 cm³

Zhang, H., Davison, W., Knight, B., McGrath, S.P. (1998): In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT. Environmental Science & Technology 32:704-710
Anhang D: Eingabeparameter DIFS

S2hL (Homogen), Kupfer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Berechnung/Abschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 R</td>
<td>-</td>
<td>aus Daten, Mittelwert nach 168 Stunden</td>
</tr>
<tr>
<td>2 T_c</td>
<td>s</td>
<td>gesuchte Größe</td>
</tr>
<tr>
<td>3 K_d</td>
<td>cm^3 g^-1</td>
<td>2500 Sauvé et al. (2000): (\log_{10} K_d, Cu = 0.21 \times \text{pH} + 0.51 \times \log C_{org} + 1.75), mit pH 7.42 und C_{org} 1.5 %</td>
</tr>
<tr>
<td>4 P_c</td>
<td>g cm^-3</td>
<td>2.5 250 g Boden, ca. 100 ml Wasser bei Sättigung</td>
</tr>
<tr>
<td>5 D_a</td>
<td>cm^2 s^-1</td>
<td>5.58E-6 Davison (2002): (D_a = D_d \times q^{-2}), Boudreau (1996): (q^2 = 1 – \ln (f_s^2)), (f_s = 0.5)</td>
</tr>
<tr>
<td>6 f_d</td>
<td>-</td>
<td>Wert aus Davison (2002)</td>
</tr>
<tr>
<td>7 C_0</td>
<td>mol cm^-3</td>
<td>1 Resultate müssen mit wahrem Wert 3.46 nmol cm^-3 korrigiert werden</td>
</tr>
<tr>
<td>8 T</td>
<td>h</td>
<td>168</td>
</tr>
<tr>
<td>9 (\Delta g)</td>
<td>cm</td>
<td>0.074</td>
</tr>
<tr>
<td>10-13</td>
<td></td>
<td>Default</td>
</tr>
</tbody>
</table>

S2uF (Feld), Kupfer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Berechnung/Abschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 R</td>
<td>-</td>
<td>aus Daten, Mittelwert nach 168 Stunden</td>
</tr>
<tr>
<td>2 T_c</td>
<td>s</td>
<td>gesuchte Größe</td>
</tr>
<tr>
<td>3 K_d</td>
<td>cm^3 g^-1</td>
<td>1700 Sauvé et al. (2000): (\log_{10} K_d, Cu = 0.21 \times \text{pH} + 0.51 \times \log C_{org} + 1.75), mit pH 6.62 und C_{org} 1.5 %</td>
</tr>
<tr>
<td>4 P_c</td>
<td>g cm^-3</td>
<td>2.5 Wert von S2hL</td>
</tr>
<tr>
<td>5 D_a</td>
<td>cm^2 s^-1</td>
<td>5.42E-6 Davison (2002): (D_a = D_d \times q^{-2}), Boudreau (1996): (q^2 = 1 – \ln (f_s^2)), (f_s = 0.5)</td>
</tr>
<tr>
<td>6 f_d</td>
<td>-</td>
<td>Wert aus Davison (2002)</td>
</tr>
<tr>
<td>7 C_0</td>
<td>mol cm^-3</td>
<td>1 Resultate müssen mit wahrem Wert 4.02 nmol cm^-3 korrigiert werden</td>
</tr>
<tr>
<td>8 T</td>
<td>h</td>
<td>168</td>
</tr>
<tr>
<td>9 (\Delta g)</td>
<td>cm</td>
<td>0.074</td>
</tr>
<tr>
<td>10-13</td>
<td></td>
<td>Default</td>
</tr>
</tbody>
</table>

Reine Diffusion, Kupfer/Zink

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Berechnung/Abschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 R</td>
<td>-</td>
<td>gesuchte Größe</td>
</tr>
<tr>
<td>2 T_c</td>
<td>s</td>
<td>sehr langsam</td>
</tr>
<tr>
<td>3 K_d</td>
<td>cm^3 g^-1</td>
<td>1 sehr klein</td>
</tr>
<tr>
<td>4 P_c</td>
<td>g cm^-3</td>
<td>2.5 Wert von S2hL</td>
</tr>
<tr>
<td>5 D_a</td>
<td>cm^2 s^-1</td>
<td>5.58E-6/5.44E-6 Wert von S2hL/aus Anhang A, Durchschnittstemperatur 21°C</td>
</tr>
<tr>
<td>6 f_d</td>
<td>-</td>
<td>Wert aus Davison (2002)</td>
</tr>
<tr>
<td>7 C_0</td>
<td>mol cm^-3</td>
<td>1</td>
</tr>
<tr>
<td>8 T</td>
<td>h</td>
<td>168</td>
</tr>
<tr>
<td>9 (\Delta g)</td>
<td>cm</td>
<td>0.074</td>
</tr>
<tr>
<td>10-13</td>
<td></td>
<td>Default</td>
</tr>
</tbody>
</table>

Anhang E: Blank Zink

Zinkgehalt der einzelnen Chemikalien, die zur Herstellung und zur Verwendung des Chelex-Gels benutzt werden

<table>
<thead>
<tr>
<th>Arbeitsschritt</th>
<th>Zn [µg L⁻¹]</th>
<th>Menge der Substanz pro Gelplatte [ml]</th>
<th>Zn pro Gelplatte [ng]</th>
<th>eluierbares Zn pro Gel [ng]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giessen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylamid 30%</td>
<td>0</td>
<td>1.000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Cross-linker</td>
<td>n.b.</td>
<td>0.300</td>
<td>n.b.</td>
<td></td>
</tr>
<tr>
<td>Wasser</td>
<td>6.0</td>
<td>0.700</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>NH₄⁺Peroxodisulfat 10%</td>
<td>92.5</td>
<td>0.014</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>n.b.</td>
<td>0.004</td>
<td>n.b.</td>
<td></td>
</tr>
<tr>
<td>Chelex</td>
<td>n.b.</td>
<td></td>
<td>n.b.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Menge Quellwasser [ml]</th>
<th>Zn im Quellwasser [ng]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quellen¹</td>
<td>n.b. 200</td>
<td>n.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagerung</td>
<td>n.b. 80</td>
<td>n.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wasser PE-Flasche. 1. Messung</td>
<td>51 80</td>
<td>4080 unbekannt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Zn [µg L⁻¹]</th>
<th>Menge der Substanz pro Gel [ml]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwermetall- 1 M HNO₃</td>
<td>17.3</td>
<td>1</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>Rücklösung</td>
<td></td>
<td>Wasser für Verdünnungen</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total eluierbares Zn pro Gel >17.7

¹) Annahmen: 1 Gel nach der Quellung 0.226 ml
Quelfaktor 1.15
Gussvolumen 0.197 ml
Elutionsfaktor 0.8

Messungen Blank (Chelex-Gel ohne Exposition auf Boden)

<table>
<thead>
<tr>
<th></th>
<th>Zn [µg L⁻¹]</th>
<th>eluierbares Zn pro Gel [ng] ¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Frisch</td>
<td>100.0</td>
<td>122.6</td>
</tr>
<tr>
<td>Blank Homogen</td>
<td>183.0</td>
<td>224.4</td>
</tr>
<tr>
<td>Durchschnitt Blank</td>
<td>141.5</td>
<td>173.5</td>
</tr>
<tr>
<td>Standardabw. Blank</td>
<td>58.7</td>
<td>72.0</td>
</tr>
</tbody>
</table>

¹) Annahme: 0.226 ml
Anhang F: Kupfer- und Zinkkonzentration sowie pH der Bodenlösung

Kupfer- und Zinkkonzentration sowie pH aller Zeitreihenversuche

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Zeitpunkt/Datum</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [µg L⁻¹]</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2uF</td>
<td>0</td>
<td>255.3</td>
<td>4810</td>
<td>6.60</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>233.4</td>
<td>4090</td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>258.9</td>
<td>3955</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>24-72</td>
<td>255.4</td>
<td>3869</td>
<td>6.57</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>272.2</td>
<td>4468</td>
<td>6.53</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>296.0</td>
<td>3786</td>
<td>6.65</td>
</tr>
<tr>
<td>A</td>
<td>21.06.2002</td>
<td>217.8</td>
<td>8630</td>
<td>6.58</td>
</tr>
<tr>
<td></td>
<td>25.06.2002</td>
<td>221.0</td>
<td>10864</td>
<td>6.42</td>
</tr>
<tr>
<td></td>
<td>26.06.2002</td>
<td>215.0</td>
<td>11840</td>
<td>6.74</td>
</tr>
<tr>
<td></td>
<td>01.07.2002</td>
<td>216.4</td>
<td>9442</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>19.07.2002</td>
<td>190.7</td>
<td>12791</td>
<td>7.14</td>
</tr>
<tr>
<td>B</td>
<td>21.06.2002</td>
<td>209.8</td>
<td>2823</td>
<td>6.84</td>
</tr>
<tr>
<td></td>
<td>25.06.2002</td>
<td>169.4</td>
<td>3322</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>26.06.2002</td>
<td>156.2</td>
<td>1762</td>
<td>6.80</td>
</tr>
<tr>
<td></td>
<td>01.07.2002</td>
<td>154.1</td>
<td>2274</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>19.07.2002</td>
<td>121.7</td>
<td>2051</td>
<td>6.97</td>
</tr>
<tr>
<td>S2uL1</td>
<td>0</td>
<td>157.3</td>
<td>4328</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>149.7</td>
<td>5793</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>24-72</td>
<td>146.7</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>129.2</td>
<td>7103</td>
<td>6.34</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>127.4</td>
<td>6163</td>
<td>6.36</td>
</tr>
<tr>
<td>S2uL3</td>
<td>0</td>
<td>159.6</td>
<td>13735</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>165.2</td>
<td>11370</td>
<td>6.11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>156.2</td>
<td>13540</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>490.8</td>
<td>16326</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>206.2</td>
<td>9804</td>
<td>6.44</td>
</tr>
<tr>
<td>S2hL</td>
<td>0</td>
<td>214.4</td>
<td>2559</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>212.0</td>
<td>2051</td>
<td>7.31</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>189.1</td>
<td>2142</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>261.8</td>
<td>1696</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>649.5</td>
<td>1725</td>
<td>7.14</td>
</tr>
<tr>
<td>S0hL/1</td>
<td>0</td>
<td>93.3</td>
<td>3264</td>
<td>6.84</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>91.8</td>
<td>2513</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>97.0</td>
<td>2383</td>
<td>7.08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>90.6</td>
<td>2375</td>
<td>7.39</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>96.2</td>
<td>2316</td>
<td>7.53</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>121.5</td>
<td>2043</td>
<td>7.18</td>
</tr>
<tr>
<td>S0hL/2</td>
<td>0</td>
<td>101.1</td>
<td>4219</td>
<td>6.89</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>104.7</td>
<td>3665</td>
<td>7.13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>102.3</td>
<td>3662</td>
<td>7.02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>102.1</td>
<td>2812</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>89.1</td>
<td>1776</td>
<td>7.24</td>
</tr>
<tr>
<td>Versuch</td>
<td>Zeitpunkt/Datum</td>
<td>Cu [µg L⁻¹]</td>
<td>Zn [µg L⁻¹]</td>
<td>pH</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>S0hL/3</td>
<td>0</td>
<td>93.4</td>
<td>3447</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.8</td>
<td>2924</td>
<td>7.19</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>90.3</td>
<td>3399</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>77.3</td>
<td>2963</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>79.1</td>
<td>2102</td>
<td>7.28</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>109.7</td>
<td>2699</td>
<td>6.97</td>
</tr>
<tr>
<td>K2uF</td>
<td>0</td>
<td>26.18</td>
<td>14.7</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>26.97</td>
<td>9.3</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>31.63</td>
<td>8.1</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>24-72</td>
<td>29.75</td>
<td>7.5</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>22.94</td>
<td>7.3</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>27.56</td>
<td>9.3</td>
<td>n.b.</td>
</tr>
<tr>
<td>K2uL</td>
<td>0</td>
<td>22.98</td>
<td>20.7</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>22.64</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>13.60</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>20.22</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>K2hL</td>
<td>0</td>
<td>22.72</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18.35</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13.75</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>12.37</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>48.72</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

Zusammenhang zwischen pH der Bodenlösung und deren Kupferkonzentration
<table>
<thead>
<tr>
<th>Datum</th>
<th>Dauer seit Einmischung [d]</th>
<th>Cu [µg L$^{-1}$]</th>
<th>Zn [µg L$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.04.2002</td>
<td>0</td>
<td>29.0</td>
<td>5560</td>
</tr>
<tr>
<td>02.05.2002</td>
<td>2</td>
<td>26.5</td>
<td>4215</td>
</tr>
<tr>
<td>03.05.2002</td>
<td>3</td>
<td>39.1</td>
<td>5565</td>
</tr>
<tr>
<td>06.05.2002</td>
<td>6</td>
<td>35.8</td>
<td>3214</td>
</tr>
<tr>
<td>15.05.2002</td>
<td>15</td>
<td>55.7</td>
<td>2874</td>
</tr>
<tr>
<td>24.06.2002</td>
<td>55</td>
<td>75.7</td>
<td>2975</td>
</tr>
<tr>
<td>03.07.2002</td>
<td>64</td>
<td>105.9</td>
<td>3393</td>
</tr>
<tr>
<td>16.07.2002</td>
<td>77</td>
<td>86.2</td>
<td>3155</td>
</tr>
<tr>
<td>22.07.2002</td>
<td>83</td>
<td>87.4</td>
<td>2975</td>
</tr>
<tr>
<td>25.07.2002</td>
<td>86</td>
<td>162.7</td>
<td>2538</td>
</tr>
<tr>
<td>05.08.2002</td>
<td>97</td>
<td>115.8</td>
<td>2517</td>
</tr>
<tr>
<td>14.08.2002</td>
<td>106</td>
<td>112.2</td>
<td>2230</td>
</tr>
<tr>
<td>26.08.2002</td>
<td>118</td>
<td>228.3</td>
<td>2232</td>
</tr>
<tr>
<td>18.09.2002</td>
<td>141</td>
<td>91.6</td>
<td>2274</td>
</tr>
<tr>
<td>26.09.2002</td>
<td>149</td>
<td>97.1</td>
<td>2141</td>
</tr>
</tbody>
</table>
Anhang G1: Daten K2uF

DGT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>103.3</td>
<td>59.7</td>
<td>0.091</td>
<td>0.091</td>
<td>28.2</td>
<td>1.076</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>13</td>
<td>71.4</td>
<td>27.8</td>
<td>0.043</td>
<td>0.043</td>
<td>13.1</td>
<td>0.501</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>13</td>
<td>53.7</td>
<td>10.1</td>
<td>0.015</td>
<td>0.015</td>
<td>4.8</td>
<td>0.182</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>13</td>
<td>102.5</td>
<td>58.9</td>
<td>0.090</td>
<td>0.090</td>
<td>27.8</td>
<td>1.061</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>65.9</td>
<td>22.3</td>
<td>0.034</td>
<td>0.126</td>
<td>18.1</td>
<td>0.682</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>15</td>
<td>143.6</td>
<td>100.0</td>
<td>0.153</td>
<td>0.196</td>
<td>28.3</td>
<td>1.065</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>371.3</td>
<td>327.7</td>
<td>0.502</td>
<td>0.518</td>
<td>74.8</td>
<td>2.814</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>15</td>
<td>55.5</td>
<td>11.9</td>
<td>0.018</td>
<td>0.108</td>
<td>15.7</td>
<td>0.589</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>15</td>
<td>56.5</td>
<td>12.9</td>
<td>0.200</td>
<td>0.145</td>
<td>7.0</td>
<td>0.234</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>15</td>
<td>77.7</td>
<td>34.1</td>
<td>0.052</td>
<td>0.248</td>
<td>11.9</td>
<td>0.399</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>15</td>
<td>61.0</td>
<td>17.4</td>
<td>0.027</td>
<td>0.544</td>
<td>26.2</td>
<td>0.875</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>15</td>
<td>100.6</td>
<td>57.0</td>
<td>0.087</td>
<td>0.196</td>
<td>9.4</td>
<td>0.315</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>15</td>
<td>63.1</td>
<td>19.5</td>
<td>0.030</td>
<td>0.175</td>
<td>2.8</td>
<td>0.094</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>15</td>
<td>90.3</td>
<td>46.7</td>
<td>0.072</td>
<td>0.320</td>
<td>5.1</td>
<td>0.172</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>15</td>
<td>63.4</td>
<td>19.8</td>
<td>0.030</td>
<td>0.575</td>
<td>9.2</td>
<td>0.309</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>15</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>13</td>
<td>163.6</td>
<td>120.0</td>
<td>0.184</td>
<td>0.359</td>
<td>2.6</td>
<td>0.097</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>13</td>
<td>110.0</td>
<td>66.4</td>
<td>0.102</td>
<td>0.421</td>
<td>3.1</td>
<td>0.114</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>13</td>
<td>126.2</td>
<td>82.6</td>
<td>0.127</td>
<td>0.701</td>
<td>5.1</td>
<td>0.189</td>
</tr>
<tr>
<td>4</td>
<td>168</td>
<td>13</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>M Cu. aufs. [µg]</th>
<th>C_{DGT} Cu [µg L⁻¹]</th>
<th>R Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
</tr>
<tr>
<td>4</td>
<td>0.060</td>
<td>0.037</td>
<td>18.5</td>
</tr>
<tr>
<td>8</td>
<td>0.237</td>
<td>0.191</td>
<td>34.2</td>
</tr>
<tr>
<td>24</td>
<td>0.283</td>
<td>0.179</td>
<td>13.6</td>
</tr>
<tr>
<td>72</td>
<td>0.316</td>
<td>0.184</td>
<td>5.7</td>
</tr>
<tr>
<td>168</td>
<td>0.494</td>
<td>0.182</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>26.2</td>
</tr>
<tr>
<td>8</td>
<td>26.6</td>
</tr>
<tr>
<td>24</td>
<td>29.9</td>
</tr>
<tr>
<td>72</td>
<td>29.8</td>
</tr>
<tr>
<td>168</td>
<td>27.2</td>
</tr>
</tbody>
</table>
Entwicklung von R und M auf dem Boden K2uF während sieben Tagen Exposition, drei Wiederholungen
Anhang G2: Daten K2uL

DGT

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionsduer</th>
<th>Temperatur</th>
<th>Gemessenes Cu brutto</th>
<th>Gemessenes Cu netto</th>
<th>Masse Cu</th>
<th>Masse Cu aufsummiert</th>
<th>COGT Cu</th>
<th>R Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>°C</td>
<td>µg L⁻¹</td>
<td>µg L⁻¹</td>
<td>µg GeL⁻¹</td>
<td>µg</td>
<td>µg L⁻¹</td>
<td>-</td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>25</td>
<td>100.4</td>
<td>56.8</td>
<td>0.087</td>
<td>0.087</td>
<td>18.9</td>
<td>0.822</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>25</td>
<td>89.4</td>
<td>45.8</td>
<td>0.070</td>
<td>0.070</td>
<td>15.2</td>
<td>0.663</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>25</td>
<td>61.0</td>
<td>17.5</td>
<td>0.027</td>
<td>0.027</td>
<td>5.8</td>
<td>0.251</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>25</td>
<td>58.0</td>
<td>14.4</td>
<td>0.022</td>
<td>0.109</td>
<td>11.8</td>
<td>0.515</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>25</td>
<td>107.1</td>
<td>63.5</td>
<td>0.097</td>
<td>0.167</td>
<td>18.2</td>
<td>0.791</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>25</td>
<td>103.0</td>
<td>59.4</td>
<td>0.091</td>
<td>0.118</td>
<td>12.8</td>
<td>0.555</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>24</td>
<td>52.3</td>
<td>8.7</td>
<td>0.013</td>
<td>0.122</td>
<td>4.5</td>
<td>0.200</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>24</td>
<td>69.2</td>
<td>25.6</td>
<td>0.039</td>
<td>0.207</td>
<td>7.7</td>
<td>0.338</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>24</td>
<td>46.7</td>
<td>3.1</td>
<td>0.005</td>
<td>0.122</td>
<td>4.5</td>
<td>0.200</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>25</td>
<td>72.6</td>
<td>29.0</td>
<td>0.044</td>
<td>0.167</td>
<td>2.0</td>
<td>0.121</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>25</td>
<td>78.5</td>
<td>34.9</td>
<td>0.053</td>
<td>0.260</td>
<td>3.1</td>
<td>0.188</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>25</td>
<td>73.6</td>
<td>30.0</td>
<td>0.046</td>
<td>0.168</td>
<td>1.3</td>
<td>0.080</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>24</td>
<td>53.6</td>
<td>10.0</td>
<td>0.015</td>
<td>0.182</td>
<td>1.0</td>
<td>0.135</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>24</td>
<td>50.8</td>
<td>7.2</td>
<td>0.011</td>
<td>0.271</td>
<td>1.4</td>
<td>0.202</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>24</td>
<td>67.2</td>
<td>23.6</td>
<td>0.036</td>
<td>0.204</td>
<td>1.1</td>
<td>0.152</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>M Cu. aufs. [µg]</th>
<th>C_{DGT} Cu [µg L⁻¹]</th>
<th>R Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>s</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>0.061</td>
<td>0.031</td>
<td>13.3</td>
</tr>
<tr>
<td>8</td>
<td>0.131</td>
<td>0.032</td>
<td>14.3</td>
</tr>
<tr>
<td>24</td>
<td>0.150</td>
<td>0.049</td>
<td>5.6</td>
</tr>
<tr>
<td>72</td>
<td>0.198</td>
<td>0.053</td>
<td>2.2</td>
</tr>
<tr>
<td>168</td>
<td>0.219</td>
<td>0.046</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>23.0</td>
</tr>
<tr>
<td>8</td>
<td>23.0</td>
</tr>
<tr>
<td>24</td>
<td>22.8</td>
</tr>
<tr>
<td>72</td>
<td>16.7</td>
</tr>
<tr>
<td>168</td>
<td>7.1</td>
</tr>
</tbody>
</table>
Entwicklung von R und M auf dem Boden K2uL während sieben Tagen Exposition von DGT, drei Wiederholungen
Anhang G3: Daten K2hL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>23</td>
<td>55.3</td>
<td>11.7</td>
<td>0.018</td>
<td>0.018</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>23</td>
<td>70.0</td>
<td>26.4</td>
<td>0.040</td>
<td>0.040</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>48.2</td>
<td>4.6</td>
<td>0.007</td>
<td>0.007</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>58.0</td>
<td>14.4</td>
<td>0.022</td>
<td>0.040</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8</td>
<td>23</td>
<td>52.5</td>
<td>8.9</td>
<td>0.014</td>
<td>0.054</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>23</td>
<td>33.5</td>
<td>-10.2</td>
<td>0.000</td>
<td>0.007</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>24</td>
<td>21</td>
<td>61.5</td>
<td>17.9</td>
<td>0.027</td>
<td>0.067</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24</td>
<td>21</td>
<td>64.5</td>
<td>20.9</td>
<td>0.032</td>
<td>0.086</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24</td>
<td>21</td>
<td>59.8</td>
<td>16.2</td>
<td>0.025</td>
<td>0.016</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>72</td>
<td>21</td>
<td>128.8</td>
<td>85.2</td>
<td>0.131</td>
<td>0.198</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>72</td>
<td>21</td>
<td>165.3</td>
<td>121.7</td>
<td>0.186</td>
<td>0.272</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>72</td>
<td>21</td>
<td>173.4</td>
<td>129.8</td>
<td>0.199</td>
<td>0.215</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>168</td>
<td>21</td>
<td>99.0</td>
<td>55.4</td>
<td>0.085</td>
<td>0.283</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>168</td>
<td>21</td>
<td>594.8</td>
<td>551.2</td>
<td>0.845</td>
<td>1.117</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>168</td>
<td>21</td>
<td>92.0</td>
<td>48.4</td>
<td>0.074</td>
<td>0.289</td>
<td>1.7</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th>Zeit [min]</th>
<th>M Cu aufs. [µg]</th>
<th>C_DGT Cu [µg L⁻¹]</th>
<th>R Cu [µg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.022</td>
<td>0.017</td>
<td>5.0</td>
</tr>
<tr>
<td>8</td>
<td>0.034</td>
<td>0.024</td>
<td>3.9</td>
</tr>
<tr>
<td>24</td>
<td>0.062</td>
<td>0.028</td>
<td>2.5</td>
</tr>
<tr>
<td>72</td>
<td>0.234</td>
<td>0.037</td>
<td>3.1</td>
</tr>
<tr>
<td>168</td>
<td>0.568</td>
<td>0.475</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entscheidet dem zeitlichen gewichteten Mittelwert der Konzentrationen während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>22.7</td>
</tr>
<tr>
<td>8</td>
<td>20.5</td>
</tr>
<tr>
<td>24</td>
<td>16.0</td>
</tr>
<tr>
<td>72</td>
<td>14.6</td>
</tr>
<tr>
<td>168</td>
<td>23.7</td>
</tr>
</tbody>
</table>
Entwicklung von R und M auf dem Boden K2hL während sieben Tagen Exposition von DGT, drei Wiederholungen
<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionszeit</th>
<th>Temperatur °C</th>
<th>Gemessenes Cu brutto µg L⁻¹</th>
<th>Gemessenes Cu netto µg L⁻¹</th>
<th>Masse Cu aufsummiert µg</th>
<th>C_DGT Cu µg L⁻¹</th>
<th>R Cu µg L⁻¹</th>
<th>Gemessenes Zn brutto µg L⁻¹</th>
<th>Gemessenes Zn netto µg L⁻¹</th>
<th>Masse Zn aufsummiert µg</th>
<th>C_DGT Zn µg L⁻¹</th>
<th>R Zn µg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td></td>
<td>43.6</td>
<td>100</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>349.3</td>
<td>305.7</td>
<td>0.468</td>
<td>0.468</td>
<td>144.3</td>
<td>0.565</td>
<td>5492</td>
<td>5392</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>13</td>
<td>418.4</td>
<td>374.8</td>
<td>0.574</td>
<td>0.574</td>
<td>176.9</td>
<td>0.693</td>
<td>3593</td>
<td>3493</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>13</td>
<td>384.4</td>
<td>340.8</td>
<td>0.522</td>
<td>0.522</td>
<td>160.9</td>
<td>0.630</td>
<td>4442</td>
<td>4342</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>13</td>
<td>250.4</td>
<td>206.8</td>
<td>0.317</td>
<td>0.317</td>
<td>97.6</td>
<td>0.382</td>
<td>1241</td>
<td>1141</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>290.0</td>
<td>246.4</td>
<td>0.378</td>
<td>0.378</td>
<td>122.2</td>
<td>0.500</td>
<td>1464</td>
<td>1364</td>
<td>2.1</td>
<td>10.4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>15</td>
<td>492.2</td>
<td>448.6</td>
<td>0.687</td>
<td>1.262</td>
<td>182.3</td>
<td>0.746</td>
<td>1881</td>
<td>1781</td>
<td>2.7</td>
<td>8.1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>156.4</td>
<td>112.8</td>
<td>0.173</td>
<td>0.695</td>
<td>100.4</td>
<td>0.411</td>
<td>656</td>
<td>556</td>
<td>0.9</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>15</td>
<td>138.8</td>
<td>95.2</td>
<td>0.146</td>
<td>0.463</td>
<td>66.9</td>
<td>0.274</td>
<td>533</td>
<td>433</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>15</td>
<td>377.6</td>
<td>334.0</td>
<td>0.512</td>
<td>1.358</td>
<td>65.4</td>
<td>0.257</td>
<td>1601</td>
<td>1501</td>
<td>2.3</td>
<td>12.7</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>15</td>
<td>592.8</td>
<td>549.2</td>
<td>0.842</td>
<td>2.104</td>
<td>101.3</td>
<td>0.399</td>
<td>1734</td>
<td>1634</td>
<td>2.5</td>
<td>10.6</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>15</td>
<td>184.6</td>
<td>141.0</td>
<td>0.216</td>
<td>0.911</td>
<td>43.9</td>
<td>0.173</td>
<td>942</td>
<td>842</td>
<td>1.3</td>
<td>8.8</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>15</td>
<td>400.4</td>
<td>356.8</td>
<td>0.547</td>
<td>1.010</td>
<td>48.6</td>
<td>0.191</td>
<td>1650</td>
<td>1550</td>
<td>2.4</td>
<td>8.8</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>15</td>
<td>1818.0</td>
<td>1774.4</td>
<td>2.719</td>
<td>4.077</td>
<td>65.5</td>
<td>0.257</td>
<td>7926</td>
<td>7826</td>
<td>12.0</td>
<td>24.7</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>15</td>
<td>1870.0</td>
<td>1826.4</td>
<td>2.799</td>
<td>4.902</td>
<td>78.7</td>
<td>0.309</td>
<td>5459</td>
<td>5359</td>
<td>8.2</td>
<td>18.8</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>15</td>
<td>1568.0</td>
<td>1524.4</td>
<td>2.336</td>
<td>3.247</td>
<td>52.1</td>
<td>0.204</td>
<td>3441</td>
<td>3341</td>
<td>5.1</td>
<td>13.9</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>15</td>
<td>1328.0</td>
<td>1284.4</td>
<td>1.968</td>
<td>2.978</td>
<td>47.8</td>
<td>0.188</td>
<td>452</td>
<td>352</td>
<td>0.5</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>13</td>
<td>4783.5</td>
<td>4739.9</td>
<td>7.264</td>
<td>11.341</td>
<td>83.2</td>
<td>0.306</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>13</td>
<td>3358.8</td>
<td>3315.2</td>
<td>5.081</td>
<td>9.983</td>
<td>73.2</td>
<td>0.270</td>
<td>611</td>
<td>511</td>
<td>0.8</td>
<td>19.6</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>13</td>
<td>n.b.</td>
</tr>
<tr>
<td>4</td>
<td>168</td>
<td>13</td>
<td>1552.5</td>
<td>1508.9</td>
<td>2.312</td>
<td>5.290</td>
<td>38.8</td>
<td>0.143</td>
<td>2476</td>
<td>2376</td>
<td>3.6</td>
<td>9.0</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert. s = Standardabweichung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.71</td>
<td>0.111</td>
<td>144.9</td>
<td>34.2</td>
<td>0.568</td>
<td>0.134</td>
</tr>
<tr>
<td>8</td>
<td>0.816</td>
<td>0.336</td>
<td>118.0</td>
<td>48.6</td>
<td>0.483</td>
<td>0.199</td>
</tr>
<tr>
<td>24</td>
<td>1.346</td>
<td>0.540</td>
<td>64.8</td>
<td>26.0</td>
<td>0.255</td>
<td>0.102</td>
</tr>
<tr>
<td>72</td>
<td>3.801</td>
<td>0.871</td>
<td>61.0</td>
<td>14.0</td>
<td>0.239</td>
<td>0.055</td>
</tr>
<tr>
<td>168</td>
<td>7.465</td>
<td>3.825</td>
<td>65.1</td>
<td>23.3</td>
<td>0.240</td>
<td>0.086</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>255.3</td>
<td>4810</td>
</tr>
<tr>
<td>8</td>
<td>244.4</td>
<td>4450</td>
</tr>
<tr>
<td>24</td>
<td>254.1</td>
<td>4120</td>
</tr>
<tr>
<td>72</td>
<td>255.0</td>
<td>3953</td>
</tr>
<tr>
<td>168</td>
<td>271.6</td>
<td>4052</td>
</tr>
</tbody>
</table>
Anhang G5a: Daten S2uL1 (Humax1)

DGT

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionsduer</th>
<th>Temperatur °C</th>
<th>Gemessenes Cu brutto µg L⁻¹</th>
<th>Gemessenes Cu netto µg L⁻¹</th>
<th>Masse Cu µg</th>
<th>aufsummiert</th>
<th>C\textsubscript{DGT} Cu µg L⁻¹</th>
<th>R Cu µg L⁻¹</th>
<th>Gemessenes Zn brutto µg L⁻¹</th>
<th>Gemessenes Zn netto µg L⁻¹</th>
<th>Masse Zn µg</th>
<th>aufsummiert</th>
<th>C\textsubscript{DGT} Zn µg L⁻¹</th>
<th>R Zn µg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>25</td>
<td>188.6</td>
<td>145.0</td>
<td>0.222</td>
<td>0.222</td>
<td>48.2</td>
<td>0.307</td>
<td>1660</td>
<td>1560</td>
<td>2.4</td>
<td>2.4</td>
<td>532</td>
<td>0.123</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>25</td>
<td>239.2</td>
<td>195.6</td>
<td>0.300</td>
<td>0.300</td>
<td>65.1</td>
<td>0.414</td>
<td>4403</td>
<td>4303</td>
<td>6.6</td>
<td>6.6</td>
<td>1467</td>
<td>0.339</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>25</td>
<td>194.8</td>
<td>151.2</td>
<td>0.232</td>
<td>0.232</td>
<td>50.3</td>
<td>0.320</td>
<td>1253</td>
<td>1153</td>
<td>1.8</td>
<td>1.8</td>
<td>393</td>
<td>0.091</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>25</td>
<td>227.6</td>
<td>184.0</td>
<td>0.282</td>
<td>0.504</td>
<td>54.7</td>
<td>0.356</td>
<td>1587</td>
<td>1487</td>
<td>2.3</td>
<td>4.7</td>
<td>519</td>
<td>0.103</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>25</td>
<td>245.6</td>
<td>202.0</td>
<td>0.310</td>
<td>0.609</td>
<td>66.1</td>
<td>0.431</td>
<td>2632</td>
<td>2532</td>
<td>3.9</td>
<td>10.5</td>
<td>1165</td>
<td>0.230</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>25</td>
<td>168.2</td>
<td>124.6</td>
<td>0.191</td>
<td>0.423</td>
<td>45.9</td>
<td>0.299</td>
<td>1276</td>
<td>1176</td>
<td>1.8</td>
<td>3.6</td>
<td>397</td>
<td>0.078</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>24</td>
<td>177.2</td>
<td>133.6</td>
<td>0.205</td>
<td>0.709</td>
<td>26.4</td>
<td>0.174</td>
<td>380</td>
<td>280</td>
<td>0.4</td>
<td>5.1</td>
<td>194</td>
<td>0.042</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>24</td>
<td>255.0</td>
<td>211.4</td>
<td>0.324</td>
<td>0.933</td>
<td>34.7</td>
<td>0.229</td>
<td>852</td>
<td>752</td>
<td>1.2</td>
<td>11.6</td>
<td>443</td>
<td>0.097</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>24</td>
<td>475.6</td>
<td>432.0</td>
<td>0.662</td>
<td>1.085</td>
<td>40.3</td>
<td>0.266</td>
<td>2548</td>
<td>2448</td>
<td>3.8</td>
<td>7.3</td>
<td>279</td>
<td>0.061</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>25</td>
<td>2190.0</td>
<td>2146.4</td>
<td>3.289</td>
<td>3.998</td>
<td>48.2</td>
<td>0.325</td>
<td>13855</td>
<td>13755</td>
<td>21.1</td>
<td>26.2</td>
<td>323</td>
<td>0.056</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>25</td>
<td>1979.0</td>
<td>1935.4</td>
<td>2.970</td>
<td>3.899</td>
<td>47.0</td>
<td>0.317</td>
<td>30465</td>
<td>30365</td>
<td>46.5</td>
<td>58.2</td>
<td>719</td>
<td>0.123</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>25</td>
<td>1422.0</td>
<td>1378.4</td>
<td>2.112</td>
<td>3.197</td>
<td>38.6</td>
<td>0.260</td>
<td>6250</td>
<td>6150</td>
<td>9.4</td>
<td>16.7</td>
<td>207</td>
<td>0.036</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>24</td>
<td>809.0</td>
<td>765.4</td>
<td>1.173</td>
<td>5.171</td>
<td>27.5</td>
<td>0.201</td>
<td>4971</td>
<td>4871</td>
<td>7.5</td>
<td>33.6</td>
<td>183</td>
<td>0.029</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>24</td>
<td>2610.0</td>
<td>2566.4</td>
<td>3.933</td>
<td>7.832</td>
<td>41.6</td>
<td>0.304</td>
<td>84300</td>
<td>84200</td>
<td>129.0</td>
<td>187.2</td>
<td>1018</td>
<td>0.162</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>24</td>
<td>1719.0</td>
<td>1675.4</td>
<td>2.568</td>
<td>5.765</td>
<td>30.6</td>
<td>0.224</td>
<td>17555</td>
<td>17455</td>
<td>26.7</td>
<td>43.5</td>
<td>237</td>
<td>0.038</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>M Cu. aufs. [µg]</th>
<th>C\textsubscript{DGT} Cu [µg L⁻¹]</th>
<th>R Cu</th>
<th>M Zn. aufs. [µg]</th>
<th>C\textsubscript{DGT} Zn [µg L⁻¹]</th>
<th>R Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.251</td>
<td>0.042</td>
<td>54.5</td>
<td>9.2</td>
<td>0.347</td>
<td>0.058</td>
</tr>
<tr>
<td>8</td>
<td>0.512</td>
<td>0.094</td>
<td>55.6</td>
<td>10.2</td>
<td>0.362</td>
<td>0.066</td>
</tr>
<tr>
<td>24</td>
<td>0.909</td>
<td>0.189</td>
<td>33.8</td>
<td>7.0</td>
<td>0.223</td>
<td>0.046</td>
</tr>
<tr>
<td>72</td>
<td>3.698</td>
<td>0.437</td>
<td>44.6</td>
<td>5.3</td>
<td>0.301</td>
<td>0.036</td>
</tr>
<tr>
<td>168</td>
<td>6.256</td>
<td>1.397</td>
<td>33.2</td>
<td>7.4</td>
<td>0.243</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>157.3</td>
<td>4328</td>
</tr>
<tr>
<td>8</td>
<td>153.5</td>
<td>5061</td>
</tr>
<tr>
<td>24</td>
<td>151.6</td>
<td>4583</td>
</tr>
<tr>
<td>72</td>
<td>148.3</td>
<td>5826</td>
</tr>
<tr>
<td>168</td>
<td>136.9</td>
<td>6287</td>
</tr>
</tbody>
</table>
Anhang G5b: Daten S2uL2 (Humax2)

DGT

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionszeit</th>
<th>Temperatur °C</th>
<th>Gemessenes Cu</th>
<th>Gemessenes Zn</th>
<th>Masse Cu</th>
<th>Masse Zn</th>
<th>CDGT Cu</th>
<th>R Cu</th>
<th>CDGT Zn</th>
<th>R Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>µg L⁻¹</td>
<td>µg L⁻¹</td>
<td>µg Gel⁻¹</td>
<td>µg µg L⁻¹</td>
<td>µg µg L⁻¹</td>
<td>µg µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.6</td>
<td>100</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>152.5</td>
<td>108.9</td>
<td>0.167</td>
<td>0.167</td>
<td>38.3</td>
<td>0.243</td>
<td>971</td>
<td>871</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td>120.6</td>
<td>77.0</td>
<td>0.118</td>
<td>0.118</td>
<td>27.0</td>
<td>0.172</td>
<td>668</td>
<td>568</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>23</td>
<td>109.0</td>
<td>65.4</td>
<td>0.100</td>
<td>0.267</td>
<td>30.6</td>
<td>0.199</td>
<td>681</td>
<td>581</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>45.2</td>
<td>1.6</td>
<td>0.002</td>
<td>0.002</td>
<td>0.3</td>
<td>0.002</td>
<td>425</td>
<td>325</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>23</td>
<td>159.7</td>
<td>116.1</td>
<td>0.178</td>
<td>0.296</td>
<td>33.9</td>
<td>0.221</td>
<td>1016</td>
<td>916</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>21</td>
<td>200.3</td>
<td>157.6</td>
<td>0.240</td>
<td>0.507</td>
<td>20.5</td>
<td>0.135</td>
<td>1400</td>
<td>1300</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>21</td>
<td>120.1</td>
<td>76.5</td>
<td>0.117</td>
<td>0.120</td>
<td>4.8</td>
<td>0.032</td>
<td>1103</td>
<td>1003</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>21</td>
<td>220.0</td>
<td>176.4</td>
<td>0.270</td>
<td>0.566</td>
<td>22.9</td>
<td>0.151</td>
<td>1420</td>
<td>1320</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>21</td>
<td>942.0</td>
<td>898.4</td>
<td>1.377</td>
<td>1.884</td>
<td>25.4</td>
<td>0.171</td>
<td>26230</td>
<td>26130</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>21</td>
<td>222.3</td>
<td>178.7</td>
<td>0.274</td>
<td>0.394</td>
<td>5.3</td>
<td>0.036</td>
<td>2246</td>
<td>2146</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>21</td>
<td>792.0</td>
<td>748.4</td>
<td>1.147</td>
<td>1.713</td>
<td>23.1</td>
<td>0.156</td>
<td>15765</td>
<td>15665</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>21</td>
<td>1011.5</td>
<td>967.9</td>
<td>1.483</td>
<td>3.367</td>
<td>19.4</td>
<td>0.142</td>
<td>34595</td>
<td>34495</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>21</td>
<td>182.3</td>
<td>138.7</td>
<td>0.213</td>
<td>0.606</td>
<td>3.5</td>
<td>0.026</td>
<td>1559</td>
<td>1459</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>21</td>
<td>1402.5</td>
<td>1358.9</td>
<td>2.083</td>
<td>3.796</td>
<td>21.9</td>
<td>0.160</td>
<td>49955</td>
<td>49855</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert. s = Standardabweichung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>0.093</td>
<td>0.09</td>
<td>21.2</td>
<td>20.6</td>
<td>0.135</td>
<td>0.131</td>
</tr>
<tr>
<td>8</td>
<td>0.186</td>
<td>0.17</td>
<td>21.3</td>
<td>19.0</td>
<td>0.139</td>
<td>0.124</td>
</tr>
<tr>
<td>24</td>
<td>0.395</td>
<td>0.25</td>
<td>16.0</td>
<td>10.0</td>
<td>0.105</td>
<td>0.066</td>
</tr>
<tr>
<td>72</td>
<td>1.328</td>
<td>0.82</td>
<td>17.9</td>
<td>11.0</td>
<td>0.121</td>
<td>0.074</td>
</tr>
<tr>
<td>168</td>
<td>2.587</td>
<td>1.74</td>
<td>14.9</td>
<td>10.0</td>
<td>0.109</td>
<td>0.073</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>157.3</td>
<td>4328</td>
</tr>
<tr>
<td>8</td>
<td>153.5</td>
<td>5061</td>
</tr>
<tr>
<td>24</td>
<td>151.6</td>
<td>4583</td>
</tr>
<tr>
<td>72</td>
<td>148.3</td>
<td>5826</td>
</tr>
<tr>
<td>168</td>
<td>136.9</td>
<td>6287</td>
</tr>
</tbody>
</table>
Anhang G5c: Daten S2uL3 (Humax3)

DGT

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionsdauer [h]</th>
<th>Temperatur [°C]</th>
<th>Gemessenes Cu brutto [µg L(^{-1})]</th>
<th>Gemessenes Cu netto [µg L(^{-1})]</th>
<th>Masse Cu [µg]</th>
<th>CGT Cu [µg L(^{-1})]</th>
<th>R Cu [µg L(^{-1})]</th>
<th>Gemessenes Zn brutto [µg L(^{-1})]</th>
<th>Gemessenes Zn netto [µg L(^{-1})]</th>
<th>Masse Zn [µg]</th>
<th>CGT Zn [µg L(^{-1})]</th>
<th>R Zn [µg L(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>0.15</td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>267.8</td>
<td>224.2</td>
<td>0.344</td>
<td>0.344</td>
<td>78.8</td>
<td>0.493</td>
<td>8277</td>
<td>8177</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td>347.0</td>
<td>303.4</td>
<td>0.46</td>
<td>0.466</td>
<td>106.6</td>
<td>0.668</td>
<td>23530</td>
<td>23430</td>
<td>35.9</td>
<td>35.9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>536.0</td>
<td>492.4</td>
<td>0.755</td>
<td>0.755</td>
<td>173.0</td>
<td>1.084</td>
<td>13900</td>
<td>13800</td>
<td>21.1</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23</td>
<td>412.4</td>
<td>368.8</td>
<td>0.565</td>
<td>0.565</td>
<td>104.1</td>
<td>0.641</td>
<td>3111</td>
<td>3011</td>
<td>4.6</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23</td>
<td>291.1</td>
<td>247.5</td>
<td>0.379</td>
<td>0.379</td>
<td>96.8</td>
<td>0.596</td>
<td>13015</td>
<td>12915</td>
<td>19.8</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23</td>
<td>1054.3</td>
<td>1010.7</td>
<td>1.549</td>
<td>2.304</td>
<td>264.0</td>
<td>1.626</td>
<td>4693</td>
<td>4593</td>
<td>7.0</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21</td>
<td>661.5</td>
<td>617.9</td>
<td>0.947</td>
<td>1.856</td>
<td>75.0</td>
<td>0.474</td>
<td>3886</td>
<td>3786</td>
<td>5.8</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21</td>
<td>1407.5</td>
<td>1363.9</td>
<td>2.090</td>
<td>2.934</td>
<td>118.5</td>
<td>0.749</td>
<td>62350</td>
<td>62250</td>
<td>95.4</td>
<td>620.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21</td>
<td>1104.6</td>
<td>1061.0</td>
<td>1.626</td>
<td>3.929</td>
<td>158.7</td>
<td>1.003</td>
<td>8082</td>
<td>7982</td>
<td>12.2</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21</td>
<td>829.2</td>
<td>785.6</td>
<td>1.204</td>
<td>3.060</td>
<td>41.2</td>
<td>0.153</td>
<td>10884</td>
<td>10784</td>
<td>16.5</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21</td>
<td>3444.0</td>
<td>3400.4</td>
<td>5.211</td>
<td>8.146</td>
<td>109.7</td>
<td>0.407</td>
<td>2E+05</td>
<td>231640</td>
<td>355.0</td>
<td>6989.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21</td>
<td>2279.2</td>
<td>2235.5</td>
<td>3.426</td>
<td>7.356</td>
<td>99.0</td>
<td>0.368</td>
<td>17592</td>
<td>17492</td>
<td>26.8</td>
<td>67.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21</td>
<td>951.2</td>
<td>907.6</td>
<td>1.391</td>
<td>4.451</td>
<td>25.7</td>
<td>0.082</td>
<td>8700</td>
<td>8600</td>
<td>13.2</td>
<td>52.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21</td>
<td>5816.0</td>
<td>5772.4</td>
<td>8.846</td>
<td>16.992</td>
<td>98.0</td>
<td>0.312</td>
<td>4E+05</td>
<td>398000</td>
<td>609.9</td>
<td>1116.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21</td>
<td>2674.0</td>
<td>2630.4</td>
<td>4.031</td>
<td>11.387</td>
<td>65.7</td>
<td>0.209</td>
<td>33016</td>
<td>32916</td>
<td>50.4</td>
<td>679.6</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th>Zeit [ms]</th>
<th>M Cu. aufs. [µg]</th>
<th>C(_{\text{DGT}}) Cu [µg L(^{-1})]</th>
<th>R Cu [µg L(^{-1})]</th>
<th>M Zn. aufs. [µg]</th>
<th>C(_{\text{DGT}}) Zn [µg L(^{-1})]</th>
<th>R Zn [µg L(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.521</td>
<td>0.211</td>
<td>119.4</td>
<td>48.4</td>
<td>0.748</td>
<td>0.303</td>
</tr>
<tr>
<td>8</td>
<td>1.352</td>
<td>0.825</td>
<td>155.0</td>
<td>94.5</td>
<td>0.954</td>
<td>0.582</td>
</tr>
<tr>
<td>24</td>
<td>2.907</td>
<td>1.037</td>
<td>117.4</td>
<td>41.9</td>
<td>0.742</td>
<td>0.265</td>
</tr>
<tr>
<td>72</td>
<td>6.187</td>
<td>2.737</td>
<td>83.3</td>
<td>36.9</td>
<td>0.309</td>
<td>0.137</td>
</tr>
<tr>
<td>168</td>
<td>10.94</td>
<td>6.282</td>
<td>63.1</td>
<td>36.3</td>
<td>0.201</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L(^{-1})]</th>
<th>Zn [mg L(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>159.6</td>
<td>13735</td>
</tr>
<tr>
<td>8</td>
<td>162.4</td>
<td>12553</td>
</tr>
<tr>
<td>24</td>
<td>158.3</td>
<td>13211</td>
</tr>
<tr>
<td>72</td>
<td>269.4</td>
<td>14188</td>
</tr>
<tr>
<td>168</td>
<td>314.6</td>
<td>13516</td>
</tr>
</tbody>
</table>
Anhang G6: Daten S2hL (Homogen)

DGT

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>Expositionsduer</th>
<th>Temperatur °C</th>
<th>Gemessenes Cu brutto µg L⁻¹</th>
<th>Gemessenes Cu netto µg L⁻¹</th>
<th>Masse Cu aufsummiert µg</th>
<th>CDGT Cu µg L⁻¹</th>
<th>R Cu µg L⁻¹</th>
<th>Gemessenes Zn brutto µg L⁻¹</th>
<th>Gemessenes Zn netto µg L⁻¹</th>
<th>Masse Zn aufsummiert µg</th>
<th>CDGT Zn µg L⁻¹</th>
<th>R Zn µg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>376.6</td>
<td>333.0</td>
<td>0.510</td>
<td>0.510</td>
<td>117.0</td>
<td>0.546</td>
<td>1256</td>
<td>1156</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td>281.5</td>
<td>237.9</td>
<td>0.365</td>
<td>0.365</td>
<td>83.6</td>
<td>0.390</td>
<td>913</td>
<td>813</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>265.0</td>
<td>221.4</td>
<td>0.339</td>
<td>0.339</td>
<td>77.8</td>
<td>0.363</td>
<td>1025</td>
<td>925</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
<td>339.3</td>
<td>295.7</td>
<td>0.453</td>
<td>0.463</td>
<td>110.4</td>
<td>0.518</td>
<td>1127</td>
<td>1027</td>
<td>1.6</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>337.0</td>
<td>293.4</td>
<td>0.450</td>
<td>0.414</td>
<td>93.3</td>
<td>0.438</td>
<td>981</td>
<td>881</td>
<td>1.4</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>23</td>
<td>254.3</td>
<td>210.7</td>
<td>0.323</td>
<td>0.362</td>
<td>75.9</td>
<td>0.356</td>
<td>893</td>
<td>793</td>
<td>1.2</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>21</td>
<td>1016.8</td>
<td>973.2</td>
<td>1.491</td>
<td>2.455</td>
<td>99.2</td>
<td>0.503</td>
<td>3434</td>
<td>3334</td>
<td>5.1</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>21</td>
<td>1141.0</td>
<td>1097.4</td>
<td>1.682</td>
<td>2.496</td>
<td>100.8</td>
<td>0.511</td>
<td>2894</td>
<td>2794</td>
<td>4.3</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>21</td>
<td>998.5</td>
<td>954.9</td>
<td>1.463</td>
<td>2.126</td>
<td>85.9</td>
<td>0.436</td>
<td>3551</td>
<td>3451</td>
<td>5.3</td>
<td>7.9</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>21</td>
<td>1243.5</td>
<td>1199.9</td>
<td>1.839</td>
<td>4.294</td>
<td>57.8</td>
<td>0.265</td>
<td>1150</td>
<td>1050</td>
<td>1.6</td>
<td>10.1</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>21</td>
<td>1579.0</td>
<td>1535.4</td>
<td>2.353</td>
<td>4.849</td>
<td>65.3</td>
<td>0.299</td>
<td>1298</td>
<td>1198</td>
<td>1.8</td>
<td>8.7</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>21</td>
<td>1849.0</td>
<td>1805.4</td>
<td>2.767</td>
<td>4.892</td>
<td>65.9</td>
<td>0.301</td>
<td>2703</td>
<td>2603</td>
<td>4.0</td>
<td>11.9</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>21</td>
<td>337.9</td>
<td>294.3</td>
<td>0.451</td>
<td>4.745</td>
<td>27.4</td>
<td>0.077</td>
<td>387</td>
<td>287</td>
<td>0.4</td>
<td>10.5</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>21</td>
<td>254.3</td>
<td>210.7</td>
<td>0.323</td>
<td>5.172</td>
<td>29.8</td>
<td>0.084</td>
<td>308</td>
<td>208</td>
<td>0.3</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>21</td>
<td>355.4</td>
<td>311.8</td>
<td>0.478</td>
<td>5.370</td>
<td>31.0</td>
<td>0.088</td>
<td>509</td>
<td>409</td>
<td>0.6</td>
<td>12.5</td>
</tr>
</tbody>
</table>

DGT Mittelwerte (m = Mittelwert, s = Standardabweichung)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.405</td>
<td>0.092</td>
<td>92.8</td>
<td>21.2</td>
<td>0.433</td>
<td>0.099</td>
</tr>
<tr>
<td>8</td>
<td>0.813</td>
<td>0.151</td>
<td>93.2</td>
<td>17.3</td>
<td>0.437</td>
<td>0.081</td>
</tr>
<tr>
<td>24</td>
<td>2.359</td>
<td>0.203</td>
<td>95.3</td>
<td>8.2</td>
<td>0.483</td>
<td>0.042</td>
</tr>
<tr>
<td>72</td>
<td>4.678</td>
<td>0.334</td>
<td>63.0</td>
<td>4.5</td>
<td>0.288</td>
<td>0.021</td>
</tr>
<tr>
<td>168</td>
<td>5.096</td>
<td>0.320</td>
<td>29.4</td>
<td>1.8</td>
<td>0.083</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>214.4</td>
<td>2559</td>
</tr>
<tr>
<td>8</td>
<td>213.2</td>
<td>2305</td>
</tr>
<tr>
<td>24</td>
<td>197.1</td>
<td>2196</td>
</tr>
<tr>
<td>72</td>
<td>218.6</td>
<td>2001</td>
</tr>
<tr>
<td>168</td>
<td>354.4</td>
<td>1835</td>
</tr>
</tbody>
</table>
Anhang G7: Daten S0hL (Frisch)

DGT. sequentielle Exposition

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h °C</td>
<td>µg L⁻¹</td>
<td>µg L⁻¹</td>
<td>µg Gel⁻¹</td>
<td>µg</td>
<td>µg</td>
<td>µg L⁻¹</td>
<td></td>
<td>µg</td>
<td>µg</td>
<td>µg Gel⁻¹</td>
<td>µg L⁻¹</td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>43.6</td>
<td>100</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>108.8</td>
<td>65.2</td>
<td>0.100</td>
<td>0.100</td>
<td>22.9</td>
<td>0.247</td>
<td>1013</td>
<td>1.4</td>
<td>1.4</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>23</td>
<td>75.6</td>
<td>32.0</td>
<td>0.049</td>
<td>0.049</td>
<td>11.2</td>
<td>0.109</td>
<td>1023</td>
<td>1.4</td>
<td>1.4</td>
<td>332</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>102.2</td>
<td>58.6</td>
<td>0.090</td>
<td>0.090</td>
<td>20.6</td>
<td>0.245</td>
<td>1128</td>
<td>1.6</td>
<td>1.6</td>
<td>370</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
<td>148.2</td>
<td>104.6</td>
<td>0.160</td>
<td>0.260</td>
<td>29.8</td>
<td>0.322</td>
<td>859</td>
<td>1.2</td>
<td>2.6</td>
<td>301</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>65.4</td>
<td>21.8</td>
<td>0.033</td>
<td>0.082</td>
<td>9.4</td>
<td>0.092</td>
<td>158</td>
<td>0.1</td>
<td>1.5</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>23</td>
<td>140.7</td>
<td>97.1</td>
<td>0.149</td>
<td>0.239</td>
<td>27.3</td>
<td>0.317</td>
<td>750</td>
<td>1.0</td>
<td>2.6</td>
<td>302</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>21</td>
<td>319.5</td>
<td>153.3</td>
<td>0.235</td>
<td>0.495</td>
<td>20.0</td>
<td>0.213</td>
<td>9522</td>
<td>14.4</td>
<td>17.0</td>
<td>704</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>21</td>
<td>270.0</td>
<td>226.4</td>
<td>0.347</td>
<td>0.429</td>
<td>17.3</td>
<td>0.169</td>
<td>7529</td>
<td>11.4</td>
<td>12.9</td>
<td>534</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>21</td>
<td>296.2</td>
<td>252.6</td>
<td>0.387</td>
<td>0.626</td>
<td>25.3</td>
<td>0.299</td>
<td>8268</td>
<td>12.5</td>
<td>15.1</td>
<td>625</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>21</td>
<td>713.5</td>
<td>669.9</td>
<td>1.027</td>
<td>1.522</td>
<td>20.5</td>
<td>0.219</td>
<td>26225</td>
<td>40.0</td>
<td>57.0</td>
<td>788</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>21</td>
<td>227.7</td>
<td>184.1</td>
<td>0.282</td>
<td>0.712</td>
<td>9.6</td>
<td>0.098</td>
<td>5065</td>
<td>7.6</td>
<td>20.5</td>
<td>283</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>21</td>
<td>563.2</td>
<td>519.6</td>
<td>0.796</td>
<td>1.422</td>
<td>19.1</td>
<td>0.238</td>
<td>8968</td>
<td>13.6</td>
<td>28.7</td>
<td>396</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>21</td>
<td>1266.5</td>
<td>1222.9</td>
<td>1.874</td>
<td>3.396</td>
<td>19.6</td>
<td>0.192</td>
<td>46895</td>
<td>71.7</td>
<td>128.8</td>
<td>762</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>21</td>
<td>143.9</td>
<td>100.3</td>
<td>0.154</td>
<td>0.865</td>
<td>5.0</td>
<td>0.054</td>
<td>1765</td>
<td>2.6</td>
<td>23.0</td>
<td>136</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>21</td>
<td>1667.5</td>
<td>1623.9</td>
<td>2.489</td>
<td>3.911</td>
<td>22.6</td>
<td>0.255</td>
<td>92125</td>
<td>141</td>
<td>169.7</td>
<td>1004</td>
</tr>
</tbody>
</table>

DGT Mittelwerte sequentielle Exposition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>4</td>
<td>0.080</td>
<td>0.027</td>
<td>18.2</td>
<td>6.2</td>
<td>0.200</td>
<td>0.079</td>
</tr>
<tr>
<td>8</td>
<td>0.194</td>
<td>0.097</td>
<td>22.2</td>
<td>11.1</td>
<td>0.244</td>
<td>0.132</td>
</tr>
<tr>
<td>24</td>
<td>0.517</td>
<td>0.100</td>
<td>20.9</td>
<td>4.0</td>
<td>0.227</td>
<td>0.066</td>
</tr>
<tr>
<td>72</td>
<td>1.218</td>
<td>0.442</td>
<td>16.4</td>
<td>5.9</td>
<td>0.185</td>
<td>0.076</td>
</tr>
<tr>
<td>168</td>
<td>2.724</td>
<td>1.630</td>
<td>15.7</td>
<td>9.4</td>
<td>0.167</td>
<td>0.103</td>
</tr>
</tbody>
</table>

DGT. ununterbrochene Exposition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>s</td>
<td>m</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>49.9</td>
<td>6.3</td>
<td>0.010</td>
<td>0.010</td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
<td>196.9</td>
<td>153.3</td>
<td>0.235</td>
<td>0.235</td>
<td>26.9</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>21</td>
<td>756.0</td>
<td>712.4</td>
<td>1.092</td>
<td>1.092</td>
<td>44.1</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>21</td>
<td>609.0</td>
<td>565.4</td>
<td>0.866</td>
<td>0.866</td>
<td>35.0</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>21</td>
<td>861.5</td>
<td>817.9</td>
<td>1.253</td>
<td>1.253</td>
<td>16.9</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>21</td>
<td>234.7</td>
<td>191.1</td>
<td>0.293</td>
<td>0.293</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>21</td>
<td>1827.5</td>
<td>1783.9</td>
<td>2.734</td>
<td>2.734</td>
<td>15.8</td>
</tr>
<tr>
<td>1</td>
<td>168</td>
<td>21</td>
<td>74.3</td>
<td>30.7</td>
<td>0.047</td>
<td>0.047</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Bodenlösung, die zur Berechnung von R verwendet wurde. Entspricht dem zeitlich gewichteten Mittelwert der Konzentrationen in der Bodenlösung während der Expositionszeit

<table>
<thead>
<tr>
<th>Expositionszeit [h]</th>
<th>Cu [µg L⁻¹]</th>
<th>Zn [mg L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Topf 1</td>
<td>Topf 2</td>
</tr>
<tr>
<td>4</td>
<td>92.6</td>
<td>102.9</td>
</tr>
<tr>
<td>8</td>
<td>92.6</td>
<td>102.7</td>
</tr>
<tr>
<td>24</td>
<td>93.9</td>
<td>102.4</td>
</tr>
<tr>
<td>72</td>
<td>93.6</td>
<td>97.9</td>
</tr>
<tr>
<td>168</td>
<td>102.3</td>
<td>82.9</td>
</tr>
</tbody>
</table>
Anhang H1: Daten Topfversuch Bioverfügbarkeit

<table>
<thead>
<tr>
<th>Filterstaubmenge</th>
<th>Filterstaubmenge</th>
<th>Cu Pflanze RFA</th>
<th>Cu Pflanze Aufschluss</th>
<th>Cu CE 1</th>
<th>Cu CE 2</th>
<th>Cu Totalgehalt 1</th>
<th>Cu Totalgehalt 2</th>
<th>Cu Lösl. Gehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g]</td>
<td>[mg kg⁻¹]</td>
<td>[mg kg⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td></td>
</tr>
<tr>
<td>0g/1</td>
<td>5.449</td>
<td>10.2</td>
<td>10.0</td>
<td>12.0</td>
<td>74.0</td>
<td>20.0</td>
<td>21.0</td>
<td>97.7</td>
</tr>
<tr>
<td>0g/2</td>
<td>6.729</td>
<td>7.5</td>
<td>7.8</td>
<td>11.2</td>
<td>13.0</td>
<td>0.0</td>
<td>21.0</td>
<td>78.3</td>
</tr>
<tr>
<td>0g/3</td>
<td>6.376</td>
<td>9.4</td>
<td>7.9</td>
<td>30.0</td>
<td>108.0</td>
<td>21.0</td>
<td>21.0</td>
<td>113.3</td>
</tr>
<tr>
<td>1.37g/1</td>
<td>4.426</td>
<td>11.2</td>
<td>12.2; 12.4</td>
<td>224.0</td>
<td>77.0</td>
<td>210.0</td>
<td>227.0</td>
<td>472.9</td>
</tr>
<tr>
<td>1.37g/2</td>
<td>5.069</td>
<td>12.3</td>
<td>12.2; 14.0</td>
<td>177.0</td>
<td>69.0</td>
<td>210.0</td>
<td>224.0</td>
<td>309.6</td>
</tr>
<tr>
<td>1.37g/3</td>
<td>4.504</td>
<td>12.1</td>
<td>11.7</td>
<td>165.0</td>
<td>1046.0</td>
<td>200.0</td>
<td>206.0</td>
<td>323.4</td>
</tr>
<tr>
<td>2.74g/1</td>
<td>3.212</td>
<td>15.1</td>
<td>14.8</td>
<td>229.0</td>
<td>310.0</td>
<td>440.0</td>
<td>406.0</td>
<td>788.5</td>
</tr>
<tr>
<td>2.74g/2</td>
<td>4.037</td>
<td>15.3</td>
<td>13.5; 14.3</td>
<td>817.0</td>
<td>192.0</td>
<td>386.0</td>
<td>380.0</td>
<td>587.6</td>
</tr>
<tr>
<td>2.74g/3</td>
<td>3.806</td>
<td>14.6</td>
<td>13.2</td>
<td>375.0</td>
<td>293.0</td>
<td>406.0</td>
<td>390.0</td>
<td>480.1</td>
</tr>
<tr>
<td>4.11g/1</td>
<td>3.117</td>
<td>15.6</td>
<td>16.4</td>
<td>706.0</td>
<td>1448.0</td>
<td>545.0</td>
<td>542.0</td>
<td>831.9</td>
</tr>
<tr>
<td>4.11g/2</td>
<td>3.689</td>
<td>14.9</td>
<td>17.6</td>
<td>1003.0</td>
<td>1300.0</td>
<td>506.0</td>
<td>506.0</td>
<td>898.4</td>
</tr>
<tr>
<td>4.11g/3</td>
<td>3.975</td>
<td>17.5</td>
<td>15.0; 18.6</td>
<td>1119.0</td>
<td>950.0</td>
<td>554.0</td>
<td>574.0</td>
<td>433.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filterstaubmenge</th>
<th>Zn Pflanze RFA</th>
<th>Zn Pflanze Aufschluss</th>
<th>Zn CE 1</th>
<th>Zn CE 2</th>
<th>Zn Totalgehalt 1</th>
<th>Zn Totalgehalt 2</th>
<th>Zn Lösl. Gehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g]</td>
<td>[mg kg⁻¹]</td>
<td>[mg kg⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
</tr>
<tr>
<td>0g/1</td>
<td>5.449</td>
<td>61.9</td>
<td>72.2</td>
<td>0.57</td>
<td>0.38</td>
<td>74.0</td>
<td>75.0</td>
</tr>
<tr>
<td>0g/2</td>
<td>6.729</td>
<td>30.5</td>
<td>30.0; 43.4</td>
<td>0.39</td>
<td>0.35</td>
<td>77.0</td>
<td>76.0</td>
</tr>
<tr>
<td>0g/3</td>
<td>6.376</td>
<td>29.8</td>
<td>34.0</td>
<td>0.38</td>
<td>0.22</td>
<td>75.0</td>
<td>78.0</td>
</tr>
<tr>
<td>1.37g/1</td>
<td>4.426</td>
<td>155.0</td>
<td>166.9; 171.0</td>
<td>0.98</td>
<td>0.53</td>
<td>1033.0</td>
<td>999.0</td>
</tr>
<tr>
<td>1.37g/2</td>
<td>5.069</td>
<td>153.7</td>
<td>161.7</td>
<td>1.22</td>
<td>0.63</td>
<td>1044.0</td>
<td>990.0</td>
</tr>
<tr>
<td>1.37g/3</td>
<td>4.504</td>
<td>176.6</td>
<td>175.0</td>
<td>0.80</td>
<td>1.14</td>
<td>1027.0</td>
<td>1013.0</td>
</tr>
<tr>
<td>2.74g/1</td>
<td>3.212</td>
<td>263.4</td>
<td>274.4</td>
<td>0.72</td>
<td>0.31</td>
<td>1965.0</td>
<td>2023.0</td>
</tr>
<tr>
<td>2.74g/2</td>
<td>4.037</td>
<td>236.8</td>
<td>241.9; 253.2</td>
<td>3.30</td>
<td>0.41</td>
<td>1970.0</td>
<td>1842.0</td>
</tr>
<tr>
<td>2.74g/3</td>
<td>3.806</td>
<td>250.4</td>
<td>252.7</td>
<td>1.16</td>
<td>2.19</td>
<td>2044.0</td>
<td>1821.0</td>
</tr>
<tr>
<td>4.11g/1</td>
<td>3.117</td>
<td>339.9</td>
<td>334.9</td>
<td>2.54</td>
<td>3.69</td>
<td>2717.0</td>
<td>2853.0</td>
</tr>
<tr>
<td>4.11g/2</td>
<td>3.689</td>
<td>298.9</td>
<td>315.2</td>
<td>7.57</td>
<td>7.63</td>
<td>2619.0</td>
<td>2848.0</td>
</tr>
<tr>
<td>4.11g/3</td>
<td>3.975</td>
<td>373.3</td>
<td>376.1; 388.2</td>
<td>5.19</td>
<td>3.20</td>
<td>2754.0</td>
<td>2770.0</td>
</tr>
</tbody>
</table>

XXII
Anhang H2: Daten Pflanzenversuch Homogen, Humax und Feld

<table>
<thead>
<tr>
<th></th>
<th>Trockensubstanz</th>
<th>Cu Pflanze</th>
<th>Cu CE 1</th>
<th>Cu CE 2</th>
<th>Cu CE 3</th>
<th>Cu Totalgehalt 1</th>
<th>Cu Totalgehalt 2</th>
<th>Cu Totalgehalt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[g]</td>
<td>[mg kg⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>1.089</td>
<td>9.3</td>
<td>250</td>
<td>165</td>
<td></td>
<td>20</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>1.032</td>
<td>7.8</td>
<td>120</td>
<td>15</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>1.082</td>
<td>8.1</td>
<td>173</td>
<td>47</td>
<td></td>
<td>21</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Homogen/1</td>
<td>0.137</td>
<td>31.2</td>
<td>6590</td>
<td>914</td>
<td></td>
<td>499</td>
<td>655</td>
<td>384</td>
</tr>
<tr>
<td>Homogen/2</td>
<td>0.230</td>
<td>20.1</td>
<td>3057</td>
<td>609</td>
<td></td>
<td>512</td>
<td>613</td>
<td>613</td>
</tr>
<tr>
<td>Homogen/3</td>
<td>0.201</td>
<td>21.4</td>
<td>1373</td>
<td>1522</td>
<td></td>
<td>469</td>
<td>691</td>
<td>572</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>0.159</td>
<td>6.1</td>
<td>17</td>
<td>41</td>
<td>27</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>0.191</td>
<td>4.2</td>
<td>287</td>
<td>13</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>0.163</td>
<td>9.4</td>
<td>105</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Humax/1</td>
<td>0.062</td>
<td>11.7</td>
<td>439</td>
<td>1389</td>
<td>259</td>
<td>1186</td>
<td>704</td>
<td>40</td>
</tr>
<tr>
<td>Humax/2</td>
<td>0.143</td>
<td>19.3</td>
<td>374</td>
<td>1843</td>
<td>132</td>
<td>852</td>
<td>661</td>
<td>28</td>
</tr>
<tr>
<td>Humax/3</td>
<td>0.053</td>
<td>18.9</td>
<td>936</td>
<td>823</td>
<td>2392</td>
<td>1163</td>
<td>1290</td>
<td>1664</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>0.022</td>
<td>14.3</td>
<td>0</td>
<td>0</td>
<td></td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>0.022</td>
<td>15.8</td>
<td>126</td>
<td></td>
<td></td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>0.034</td>
<td>10.9</td>
<td>16</td>
<td></td>
<td></td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Feld/1</td>
<td>0.203</td>
<td>30.5</td>
<td>408</td>
<td>9174</td>
<td></td>
<td>526</td>
<td>465</td>
<td>465</td>
</tr>
<tr>
<td>Feld/2</td>
<td>0.040</td>
<td>81.5</td>
<td>1630</td>
<td>695</td>
<td></td>
<td>739</td>
<td>742</td>
<td>742</td>
</tr>
<tr>
<td>Feld/3</td>
<td>0.032</td>
<td>123.9</td>
<td>1749</td>
<td>1364</td>
<td></td>
<td>1049</td>
<td>1133</td>
<td>1133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trockensubstanz</th>
<th>Zn Pflanze</th>
<th>Zn CE 1</th>
<th>Zn CE 2</th>
<th>Zn CE 3</th>
<th>Zn Totalgehalt 1</th>
<th>Zn Totalgehalt 2</th>
<th>Zn Totalgehalt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[g]</td>
<td>[mg kg⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[µg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
<td>[mg L⁻¹]</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>1.089</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>1.032</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>1.082</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Homogen/1</td>
<td>0.137</td>
<td>992</td>
<td>43.72</td>
<td>12.98</td>
<td></td>
<td>3289</td>
<td>3584</td>
<td>3584</td>
</tr>
<tr>
<td>Homogen/2</td>
<td>0.230</td>
<td>782</td>
<td>15.14</td>
<td>5.43</td>
<td></td>
<td>3156</td>
<td>3580</td>
<td>3580</td>
</tr>
<tr>
<td>Homogen/3</td>
<td>0.201</td>
<td>1133</td>
<td>5.00</td>
<td>20.48</td>
<td></td>
<td>2913</td>
<td>3924</td>
<td>3924</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>0.159</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>0.191</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td>72</td>
<td>71</td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>0.163</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>Humax/1</td>
<td>0.062</td>
<td>498</td>
<td>1.34</td>
<td>3.07</td>
<td>0.65</td>
<td>3998</td>
<td>3756</td>
<td>197</td>
</tr>
<tr>
<td>Humax/2</td>
<td>0.143</td>
<td>709</td>
<td>0.78</td>
<td>15.25</td>
<td>1.31</td>
<td>4320</td>
<td>4415</td>
<td>367</td>
</tr>
<tr>
<td>Humax/3</td>
<td>0.053</td>
<td>1036</td>
<td>2.58</td>
<td>5.61</td>
<td>7.74</td>
<td>5316</td>
<td>6310</td>
<td>6870</td>
</tr>
<tr>
<td>Kontrolle/1</td>
<td>0.022</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle/2</td>
<td>0.022</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle/3</td>
<td>0.034</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feld/1</td>
<td>0.203</td>
<td>825</td>
<td>3.41</td>
<td>11.83</td>
<td></td>
<td>3082</td>
<td>3095</td>
<td></td>
</tr>
<tr>
<td>Feld/2</td>
<td>0.040</td>
<td>1907</td>
<td>7.37</td>
<td>3.26</td>
<td></td>
<td>4237</td>
<td>4178</td>
<td></td>
</tr>
<tr>
<td>Feld/3</td>
<td>0.032</td>
<td>3198</td>
<td>8.79</td>
<td>7.79</td>
<td></td>
<td>5116</td>
<td>5314</td>
<td></td>
</tr>
</tbody>
</table>