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SUMMARY 
 
It is possible to eliminate the occurrence of limit cycles in a continuously ideally stirred tank reactor 
(CISTR), in which an irreversible exothermic reaction A(l) → P(l) takes place. This can be done through the 
application of a traditional feedback process controller, which regulates the extent of cooling. Controlling 
the throughput is possible, however nevertheless or the reactor temperature or the conversion can be 
preserved, not both. 
 
 
Problem Analyses 
 
Due to the interaction between the heat withdrawal and the heat generation in the CISTR, dynamical 
instability can appear. The resulting oscillating behaviour is generally unwanted and must therefore be 
eliminated. The scope of this report is to determine whether a process controller can fulfil this assignment. 
In addition, a second objective of this report is to acquire knowledge with respect to the dynamical 
behaviour in relation with the controller and phenomenon like the presumed delay. 
 
 
Solving Method 
 
The key to success is the use of the bifurcation program LOCBIF. This software package has numerical 
routines, which can contribute to the construction of distinct stability maps. These stability maps provide 
full information with regards to the static and dynamical behaviour of a particular process. Through a 
formulated mathematical model, describing the actual physical process and the intervening process 
controller, the dynamical behaviour is examined for several distinguished parameters. These parameters 
can be both process parameters, like the cooling capacity or throughput, as well as controller parameters 
like the proportional gain or the integral time. Three different control methods have been selected: coolant 
temperature control, coolant flowrate control and throughput control. All three types are investigated on 
their dynamical behaviour for both proportional and for proportional-integral control. For every specific 
case, the sensitivity of relevant parameters like the cooling capacity and the presumed delay is 
considered. 
 
 
Results 
 
Changes in continuous process operation are due to internal changes (limit cycles) and external changes 
(disturbances). A process, which exhibits distinct dynamical unstable behaviour, can be controlled through 
increasing the proportional gain. In many cases, limit cycles shrink and stability is acquired. However, 
precaution must always be taken for the processes in which multiplicity exists. Controllers with large 
proportional gain values can unmistakably manipulate a process variable (like the coolant flowrate) too far 
away from the desired set point. Consequently, transition can be inevitable. Therefore, the choice of the 
magnitude of the controller parameters has to be done deliberately. In case of controlling the extent of 
cooling, this is certainly possible. Nevertheless, in spite of an appropriate controller configuration, large 
disturbances in particular if also the system is dynamical unstable, transition remains apparent. In case of 
controlling the throughput, the restriction appears that the deviancy is in view of reactor design is limited. 
Therefore, large proportional gain values, which are required to eradicate both limit cycles as 
perturbations, are often not feasible. Moreover, in case of flowrate control, the risk of extinction or runaway 
is to be concerned with due to multiplicity. The implementation of the integral action in the mathematical 
controller model results in the offset being eliminated. To increase the physical realism of the 
mathematical model, the presumed delay is introduced. Small delay cannot destabilise a proper controlled 
process. Conversely, large delay provokes dynamical instability. Traditional control configuration tuning 
methods like the Ziegler and Nichols technique are not appropriate to deal with dynamical instabilities. 
Large cooling capacity, in general has a positive effect on the stability of a process in particular in 
combination with a suitable proportional gain. 
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OVERVIEW 
 
Table 1 Suitable base case controller configuration to eliminate limit cycles and preserve stability. 
Description Coolant 

temperature 
control 

Coolant flowrate 
control 

Throughput 
control 

Presumed delay τd = 30 [s] τd = 30 [s] τd = 30 [s] 
Perturbation  ∆T = 20 [K] ∆T = 20 [K] ∆T = 2 [K] 
Inlet coolant temperature - Tcool,0 = 303 [K] - 
Proportional gain Kc = 5 [-] Kc = 0.0003 [m3 s-1 K-1] Kc = 0.01 [m3 s-1 K-1] 
Integral time τI = 600 [s] τI = 600 [s] τI = 600 [s] 
Desired base case reactor 
temperature 

T = 468 [K] T = 468 [K] ΦV = 0.012 [m3 s-1] T = 468 
[K] with ζ = 0.48 [-] 

Required conversion  ζ = 0.68 [-] ζ = 0.68 [-] ΦV = 0.002 [m3 s-1] ζ = 0.72 
with T = 454 [K] 
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VOORWOORD 
 
Een voorwoord in een afstudeerverslag is doorgaans bedoeld om o.a. de afstudeercommissie, het 
afstudeerbedrijf en de mentor te bedanken. Het bedanken komt straks uitgebreid aan bod, maar eerst zou 
ik van de gelegenheid gebruik willen maken om eens te verwoorden waarom ik pas op 34 jarige leeftijd 
afstudeer. De primaire oorzaak ligt voor mij zeker bij het feit dat ik een visuele handicap heb. Mensen 
vragen altijd: “Wat kan je nou wel of niet zien?” Dat is lastig. Leg maar eens uit aan een persoon die 
gewoon alles kan zien wat 10% zicht is waarbij constant alles heen en weer beweegt zonder perspectief 
en ook nog eens wazig. “Draai een verrekijker maar eens om want dan krijg je een idee”, zeg ik meestal. 
Mijn handicap zie ik niet als een excuus voor het feit dat dit studeren zo’n enorm lang traject werd, wel 
een belangrijke oorzaak. 
Toen ik een klein jongetje was adviseerden medici mijn ouders om mij naar een school voor slechtzienden 
te sturen. Gelukkig zagen mijn vader en moeder in dat ik dat niet wilde en ging ik naar een normale 
basisschool. Al vanaf de basisschool werd mij meerdere malen dringend verzocht ander onderwijs te 
nemen. Daarom maar naar de HAVO in plaats van het VWO, waar ik koos voor wis-, natuur- en 
scheikunde en economie. Er werd mij op het hart gedrukt dat het geen verstandige keuze was om al deze 
β-vakken te kiezen. Talen, tekenen e.d. was het advies. Ik liet als compromis economie vallen voor 
biologie. Zonder doubleren haalde ik de eindstreep. Op de HTS werd mijn handicap steeds meer een 
probleem. Ik bleef voor de tweede maal zitten. Het advies was om te stoppen. Maar ik wilde toch verder 
en dat was zeer ongebruikelijk. Dankzij de docenten Bronkhorst en van der Meij mocht ik blijven. Door 
een nieuw medicijn en in combinatie met een bril met kijker kon ik weer de lessen volgen. Wederom ging 
alles daarna op rolletjes. Mijn stages bij de Akzo, de afdeling procesontwikkeling en techniek bij de 
Gemeentewaterleidingen Amsterdam o.l.v. Eric Baars en de Heidemij-Arcadis ingenieursbureau waren 
uiterst succesvol. Voor mijn afstuderen haalde ik 2 maal een 9 en een 10. Toen ik het beste 
afstudeerverslag had van regio Amsterdam en omstreken en mee deed met de afstudeerprijsvraag van de 
ingenieursvereniging NIRIA en 4e werd van Nederland begon ik toch in te zien dat je met een handicap en 
wilskracht een heel eind kan komen. Iedereen adviseerde mij om door te gaan voor de hoofdprijs te weten 
de Universiteit. Deze stap nam ik in 1991 zonder echt goed na te denken of ik dat nou wel wilde. Nu ik dit 
voorwoord een week voor mijn afstudeerpraatje schrijf maakt het mij allemaal niet zoveel meer uit. Toch 
heb ik eerlijkheidshalve mijzelf wel duizend keer afgevraagd waarom ik dit ben gaan doen. Een heel 
belangrijk argument is voor mij dat ik volgens de vele oogartsen de enige ben met zo’n handicap die zover 
is gekomen. Als ik zou stoppen kunnen de ooit toekomstige studenten met dergelijke handicaps te horen 
krijgen dat zelfs die hardnekkige Onno Kramer uiteindelijk afhaakte. Nee, dat nooit. Ik wil niet op mijn 
geweten hebben dat anderen daarom wellicht negatief advies zouden kunnen krijgen. Een ander 
argument is dat ik vind dat je iets moet afmaken waar je aan begint. Wat heb ik dan gedaan al die tijd? In 
mijn studieperiode zit een gat van 6 jaar waarvan ik 1½  jaar heb gewerkt bij Gelink Adviesbureau als IT’r. 
Veel gesport: wedstrijdroeien, buitenlandse wedstrijden (topsport), marathons lopen. Zeker 5 jaar heb ik 
besteed aan mijn muzikale carrière (veel optredens etc.). De kans is groot dat de beurs die ik heb 
aangevraagd wordt toegewezen zodat ik naar Sevilla kan gaan om mijn muzikale kennis te verfijnen. In 
deze tussenperiode van weinig studeren, moest ik erachter komen hoe ik in deze wereld sta. De door mijn 
ouders met de paplepel ingegoten normen en waarden, klaar staan voor anderen e.d. is voor mij de rode 
draad in mijn leven. Toen ik besloot de draad weer op te pakken en begon met de literatuuropdracht bij 
professor Kuipers en deze afsloot met een 9 kwam het geloof weer terug. Professor Versteeg liet met het 
vak Inleiding procesontwikkeling en ontwerp zien dat je twee uiterste bij elkaar kan brengen: van 
fundamenteel wetenschappelijk tot met je schoenen in de mest-praktijk. Chemie is dus niet stoffig en saai. 
Niet geheel toevallig zitten deze twee heren in mijn afstudeercommissie. De eerder goedgekeurde 
afstudeeropdracht bij de GW-Amsterdam-Kiwa werd niet meer geaccepteerd. Mij werd een alternatieve 
opdracht aangeboden bij Edwin van Elk werkzaam bij Procede Twente B.V. Zo gezegd, zo gedaan. De 
commissie moest nog een vierde lid bevatten en dat werd Wim Brilman. Het avontuur was lang en ik heb 
naast de chemische technologie heel veel geleerd, én, ben benaderd voor een baan bij, DSM, AKZO en 
Arcadis. Dus het doorzetten heeft toch nut gehad. Het lijkt er een beetje op dat ik mijzelf aan het 
verdedigen ben met dit voorwoord. Ten dele is dat ook waar, omdat ik zo vaak met onbegrip en 
kortzichtigheid ben geconfronteerd. Als je probeert om ‘normaal’ te functioneren vergeten men dat alles 
mij meer moeite kost en dat terwijl ik best weinig om hulp vraag. 
En nu het bedanken van de mensen die mij hebben begeleid. Ik wil Geert Versteeg bedanken voor het 
laten zien dat je onder andere met gezond verstand en een goede planning zelfs de meest saaie en 
moeilijke opdrachten leuk en interessant kunt maken. Hans Kuipers wil ik bedanken voor de positieve 
ondersteuning die hij aan mij heeft gegeven. Wim Brilman bedank ik voor zijn altijd vriendelijk doch zeer 
kritische feedback. Edwin heeft meerdere malen bewezen niet alleen superhandig te zijn met computers 
maar ook zijn enorme kennis en inzicht hierin te kunnen vertalen. Een ding vraag ik mij eigenlijk al een 
hele tijd af: “Waarom houd je niet van sporten maar loop je wel van  Oost naar West Engeland? Dat moet 
je na 7 december maar eens uitleggen”. Edwin heel erg bedankt.  
 
Dit verslag draag ik volledig op aan mijn ouders, omdat zij mij altijd onvoorwaardelijk hebben gesteund en 
altijd in mij hebben geloofd. 

Onno Kramer 
 Amsterdam,  november 2001 
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Chapter I 
 

1 INTRODUCTION 
 
This report is part of the research into the stability of process-operation of gas-liquid reactors performed at 
the research group ‘Industrial process development and design’ of the University of Twente. In gas-liquid 
reactors, it appears that at specific conditions sustained temperature oscillations, which are called limit 
cycles, occur. In plant operation, these conditions have to be avoided, because they may adversely affect 
product quality, catalyst stability and downstream operations and can lead both to serious difficulty in 
process control and unsafe reactor operations. In some extraordinary cases67 limit cycles are useful, 
namely when they serve as a driving force for a second reactor in series. 
 
It is known from literature that limit cycles do not only occur in gas-liquid reactors, but in many 
distinguished processes. The phenomenon of limit cycles is very similar for these processes despite the 
different reaction mechanisms, values of system variables, process parameters and conceivably control-
method. Due to these similarities, it was decided to study the relatively simple case of limit cycle in a 
CISTR. The results and obtained knowledge of this study can subsequently be used to study processes 
that are more complicated. 
 
To be able to study limit cycles, a mathematical description is required. The mathematical description of 
the system of a controlled reactor contains two or more differential equations, which cannot be solved 
satisfactory through traditional analytical or graphical methods. With the introduction of the software 
package LOCBIF, a new approaching strategy seems to exist. 
 
LOCBIF was already used in other fields than the chemical industry and science. It is capable of 
interpreting mathematical problems involving differential equations far more easily than existing methods 
could, by supplying stability maps. Thereby it made it possible to study problems which could not be 
studied before because of the mathematically complexity. The first results were very promising. The 
construction of a stability map by van Elk et.al.22 of the system of a reactor with LOCBIF showed good 
agreement with the results obtained by method developed by Heiszwolf and Fortuin36 and Vleeschhouwer 
and Fortuin77. But moreover LOCBIF did this in a much more efficient way. 
 
Although the results were very promising, more investigation had to be done to prove the applicability and 
reliability of LOCBIF. Van Elk investigated a system with proportional control, but did not account for 
integral control and delay, of which the latter improves the simulation of the real physical process.  
 
In the present report, these aspects are investigated. Thereby, next to the control of the coolant 
temperature, also the control of the coolant flowrate and the throughput is investigated with LOCBIF. 
 
As a consequence, the following research objectives can be formulated:  
 

• Can limit cycles be predicted for certain reactor design and specific circumstances? 
• If they can be predicted, can they be prevented? 
• If they can be prevented, can they be prevented by applying a certain process controller? 
• If the controller is not configured adequately, what are the consequences for the operating 

process? 
 
The resulting outcome of the research is presented in two main parts. The first part discusses the theory 
of the reactor system described by mathematical equations. Thereafter, the current status of research is 
presented, which is the starting point of the simulations done in the second part. 
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Chapter II 
 

2 MODEL OF A COOLED CISTR 
 

2.1 Introduction 
 
Although this report is part of the research to the stability of process-operation of gas-liquid reactors, due 
to the coincidence of the phenomenon of limit cycles, a relatively simple case of limit cycle in a cooled 
CISTR with first order irreversible exothermic reaction is considered. In this chapter, the apparent mass 
and heat balance will be postulated. 
 

2.2 The mass and heat balance of the reaction mixture 
 
Consider the reactor shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1   Schematic drawing of a cooled or heated CISTR. 
 
A simple irreversible exothermic reaction 1 takes place in the reactor. 
 

)()( l

k

l PA
R

→  Reaction: 1 
 
With the following overall reaction rate expression for reaction 1: 
 

][][ 0 AekAkrr RT
E

RA

act−
==−=  (1) 

 
A liquid enters the reactor with a flow rate of ΦV [m3 s-1] and a temperature T0 [K]. This feed flow contains 
component A with concentration [A]0. The tank is considered to be ideally mixed, which implies that the 
temperature and concentration of the effluent is equal to the temperature and concentration of the liquid in 
the tank ΦV, T, [A] and [P]. The reactor is cooled by a coolant that for example flows through a jacket 
around the reactor or flows through a construction of cooling pipes. 
 
The dynamic behaviour of a first-order reaction system in a continuously ideally stirred tank reactor 
(CISTR) can be described with a process model consisting of two differential equations based on a 
material balance and an energy balance. The mathematical model of the process consists of mass and 
energy balances and introducing appropriate constitutive equations. For a complete mathematical 
derivation, the reader is referred to Appendix 1. 
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The general form of the non-stationary transient mass and energy balance for the CISTR is represented 
by state equations 2 and 3: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

 
• Both equations 2 and 3 contain non-linear functions of T. 
• Equations 2 and 3 are coupled, in the sense, that it not possible to solve one equation 

independently of the other. 
 
Commonly, dimensionless numbers have been introduced to simplify the set of equations (2 and 3) and 
making it more generally applicable. The Uppal et.al. notation75 is commonly applied in this field of 
research in which the following specific numbers and dimensionless variables are essential: 
 
Average residence time: 

V

R
R

V
Φ

=τ  (4) 

Conversion: 

0][
][1

A
A−=ζ  (5) 

The number of transport units which in the literature often is called the Stanton number St’: 

pV C
UANTU
ρΦ

=  (6) 

Adiabatic temperature rise: 

0][A
C
HT

P

R
ad ρ

∆−
=∆  (7) 

 
The adiabatic temperature rise or adiabatic factor is the extent of adiabatic temperature change if it is 
assumed that the reaction goes to completion i.e. ζ=1, The mass balance 2 and heat balance 3 can be 
rewritten into respectively equation 8 and 9 implementing equations: 4, 5, 6 and 7,  
 

R

RT
Eact

ek
dt
d

τ
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−
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( ) ( ) ( )ζ
τ
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=
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10
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E
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cool act

ekT
TTNTUTT

dt
dT

 (9) 

 
The steady state solution of the CISTR can be found if the left-hand side of equation 2 or 8 and 3 are set 
equal to zero i.e. d[A]/dt or dζ/dt = 0 and dT/dt = 0. 
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2.3 Modelling of the Cooling 
 

2.3.1 Coolant heat balance 
 
In the literature of process-control, the assumption can be made that the temperature of the cooling fluid 
can be described, using the CISTR concept resulting in one extra differential equation (equation 12). 
 

( ) )(0,,,, coolcoolcoolcoolVcoolPcool
cool

coolcoolPcool TTUATTC
dt

dTVC −+−Φ= ρρ  (12) 

 
The left term in equation 12 represents the accumulation term in the cooling apparatus with volume Vcool. 
The middle term is the difference in heat per unit of time by coolant convection and the right term is the 
transferred heat per unit of time from the reactor. In expression 12 the same assumptions are used for the 
heat balance of the reaction mixture (Appendix 1). In the steady state situation equation 12 becomes in 
terms of the coolant flowrate: 
 

( )
( )0,,

,
coolcoolcoolPcool

cool
coolV TTC

TTUA
−

−
=Φ

ρ
 (13) 

 
The coolant flowrate can also be determined using equations 2, 3 and 12 resulting in:  
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 (14) 

 
Correlations 13 and 14 can henceforth be used to determine the required extent of flowrate in the steady 
state situation, or to determine the required extent in case of changed process state. 
Aris et.al.2 and Ogunnaike et.al.60 formulated the number of transport units for the coolant, similar to 
equation 6 considering the cooled CISTR:  
 

coolVcoolPcool
cool C

UANTU
,, Φ

=
ρ

 (15) 



 

  5 

 

2.3.2 Coolant temperature expression 
 
When modelling the cooling of the reactor one should chose an expression for the coolant temperature, 
while the latter is not constant. To acquire a value for Tcool, several methods have been described in the 
literature. 
 

1. Average temperature value assumption 
 

The simplest expression for Tcool is the mean of the inlet and outlet cooling fluid temperature: 
 

 
2

1,0, coolcooli
coolcool

TT
TT

+
==  (16) 

 
 

2. Logarithmic temperature mean 
 

According to Westerterp80 and Roffel68 an expression for Tcool is the logarithmic temperature mean: 
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−−−
=−=∆

1,

0,
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log,log

ln
cool

cool

coolcool
cool

TT
TT

TTTT
TTT  (17) 

 
Approximation 1 is preferred because of its mathematical simplicity and is a good approximation when 
Tcool,0 ≈ T cool,1 . Expression 17 is used when high accuracy is required. 
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Chapter III 
 

3 BEHAVIOUR OF THE MODEL 
 

3.1 Introduction 
 
In the following chapter, the static and dynamic behaviour of a cooled CISTR will be discussed. Firstly, the 
static behaviour is examined, including the concept of multiplicity. Thereafter, various types of dynamic 
behaviour including the phenomenon limit cycles will be studied. 
 

3.2 Static behaviour of the cooled CISTR 
 
The static thermal behaviour of a cooled CISTR in which an irreversible exothermic reaction A → P takes 
place can be presented schematically by Figure 3. The heat of reaction is removed by a coolant medium, 
which flows through a jacket around the reactor (Figure 2). 
 
The curve that describes the amount of heat released by the exothermic reaction is a sigmoidal or S-
shape function of the temperature T in the reactor (curve A in Figure 3). On the other hand, the heat 
removed by the coolant is a linear function of the temperature T (curve B in Figure 3). When more than 
one intersection of the energy and mass balance curves appears, there is more than one set of conditions 
that satisfies both the energy and mass balance and consequently there will be multiple steady states at 
which the reactor can be operated. This is called multiplicity. 
 
When the CISTR is at steady state i.e. nothing is changed, the heat produced by the reaction should be 
equal to the heat removed by the coolant. This requirement yields the steady states P1, P2 and P3 at the 
intersection of curves A and B in Figure 3. Steady states P1 and P3 are called stable 34, whereas P2 is 
unstable. To understand the concept of stability, steady state P2 will be considered. Assume that the 
reactor is started at temperature T2 and corresponding concentration [A]2. Consider the temperature of the 
feed Ti increases. This will cause an increase in the temperature of the reacting mixture T2’. At T2’ the heat 
released by the reaction Q2’ is more than the heat removed by the coolant, Q2’’ consequently leading to 
higher temperatures in the reactor and consequently to increased rates of reaction. Increased rates of 
reaction produce larger amounts of heat released by the exothermic reaction, which in turn lead to higher 
temperatures, and so on. Therefore, an increase in Ti takes the reactor temperature away from steady 
state P2 and the temperature will eventually reach the value of steady state P3. Similarly, if Ti were to 
decrease, the temperature of the reactor would take off from P2 and end up at P1. By contrast, if the 
reactor is operating at steady state condition P3 or P1 and the operation of the reactor is perturbed, it 
would return naturally back to point P1 or P3 from which it started. Sometimes one would like to operate 
the CISTR at the middle unstable steady state e.g. the upper-temperature steady state P3 may be very 
high, causing unsafe conditions, destroying the catalyst for a catalytic reactor and degrading the product 
P. In such a particular case, a controller is required to ensure the stability of the operation at the middle 
steady state P2. It is of practical importance to carry out a stability analyse to determine which of the 
steady states can be realised i.e. stable and which are unstable; any infinitesimal disturbance will move 
the reactor away from such an unstable steady state. 
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A →→→→ P 

 
 

Figure 2 CISTR with cooling jacket. Figure 3 The thermal behaviour of an irreversible, exothermic 
reaction A → P in a CISTR under non-isothermal 
conditions (three steady states). 

 

3.3 Dynamic behaviour of the cooled CISTR 
 
Through creating a chart of a chemical process like Figure 3, one can determine whether a process is 
operated in a statically stable region. Disadvantage of Figure 3 is that no information is supplied regarding 
the dynamics of the process. Therefore, it is uncertain whether a statically stable steady state is also 
dynamically stable. If a steady state is statically and dynamically stable, the process can be operated in 
this steady state (preferably at high conversion). It will return to the steady state after a sufficiently small 
perturbation. If a steady state is only statically stable, the process can only be operated in the 
neighbourhood of the steady state. Then, several situations can be distinct: These will be discussed 
below: 
 

3.3.1 Stable self-regulating process 
 
Consider the behaviour of a process variable, such as temperature, concentration or flowrate, shown in 
Figure 4. Notice that at time t = t0 the process variable is disturbed by some external factors, but that as 
time progresses its value returns to the initial value and stays there. One can say that the process (Figure 
4a and b) is stable or self-regulating and needs no external intervention for its stabilisation. It is clear that 
no control mechanism is needed to force the process variable to return to its initial value. If the process of 
returning back to its initial value evolves smoothly, it is called asymptotic damping (Figure 4a). On the 
other hand, the process variable can, if it returns to its initial value, also exhibit considerable oscillations, 
which is often called a spiral point (Figure 4b). 
 

  
Figure 4a Asymptotic damping of a 

stable system after a 
perturbation. (See also 
Table 6). Type 1. Area Ia. 

Figure 4b Oscillating response (spiral 
point) of a stable system 
after a disturbance. Type 2. 
Area Ib. 
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3.3.2 Unstable process 
 
In contrast to the behaviour described above, it is probable that the process variable does not return to its 
initial value after it has been disturbed by external influences (Figure 4c-i). Processes whose variables 
follow this pattern are called unstable processes and require external control for the stabilisation of their 
behaviour. If the response of a process is unstable, the distinction can be made between run away e.g. if 
too less superfluous reaction heat is removed (Figure 4f and g), or extinguishes e.g. if the cooling is too 
strong (Figure 4h and i). 
 

  
Figure 4f Response of an unstable 

system i.e. Ignition or 
runaway. Type 5+6. Area III. 

Figure 4g Response of an oscillating 
unstable system causing 
runaway. Type 5+6. Area III. 

 
In Figure 4f and h the process variable changes equally until the maximum or minimum value has been 
reached. If the response of the process however, is oscillatory (Figure 4g and i) in which the amplitude is 
increasing, eventually the process state transverse to another equilibrium state. Therefore, the amplitude 
of the peaks is decisive and can cause transition i.e. run away (Figure 4g) or extinction (Figure 4i). 
 

  
Figure 4h Unstable system. Extinction. 

Type 5+6. Area III. 
Figure 4i At first the response shows 

limit cycles; nevertheless, the 
overshoot causes eventually 
extinction. Type 5+6. Area III. 

 
Finally, due to the distinguishing characteristic of the kinetic rate term in state equations 2 and 3, and to 
the introduction of model extensions i.e. extra differential equations, initially, the response can be in the 
opposite direction to where it eventually ends up. This is called inverse response (Figure 4g). 
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3.3.3 Limit cycles 
 
Next to being stable or unstable as described above, another dynamic mode is possible. Figure 4c-e 
shows the phenomenon of self-sustained oscillations. Because this phenomenon occurs in principle 
spontaneously (Figure 4d), a constrained perturbation is not inevitable to acquire these limit cycles (Figure 
4c). Therefore: “The occurrence of limit cycles is not exclusively dependent of a disturbance.” 
Additionally, the pattern of the limit cycles can vary. The process variable can expose a symmetric 
sinusoid curve (Figure 4c) or an asymmetric curve (Figure 4e). The symmetry increases in case the 
process state is located towards the transition between dynamic stability and instability. 
 

   
Figure 4c Stable self sustained 

oscillations (limit cycles) after 
a perturbation. Close to Hopf 
(§4.5.3). Type 3. Area II. 

Figure 4d Limit cycles, which occur 
naturally without a 
perturbation. Type 3. Area 
II. 

Figure 4e Asymptotic oscillations (limit 
cycles). Unstable system. 
Type 3. Area II. 

 
The process will start oscillating forever in a limit cycle around the statically stable operating point at a 
fixed frequency and fixed amplitude (Figure 5). The following example will illustrate the phenomenon limit 
cycles more.  
 

   
Figure 5a Self-sustained reactor 

temperature oscillations   
(limit cycles). 

Figure 5b Conversion limit cycles. Figure 5c Limit cycle around a static 
stable but dynamic unstable 
steady state. Composition of 
Figure 4a and b. 

 
Assume that the CISTR conditions are represented by point 1. Here T and ζ are higher than corresponds 
to the stable operating point (dotted in Figure 5), which can be derived if the ODE system 2 and 3 is 
solved (steady state P3 in Figure 3). Therefore, the reaction rate is too high; the reaction mixture is heated 
up, the temperature increases and simultaneously ζ is reduced. When point 2 is reached, rA has been 
reduced already in such an extent that the reaction mixture starts to be cooled by the cold feed, however 
rA is still so high that the consumption of reactant A is still higher than the supply of fresh A with the feed. 
In point 3 ζ reaches a minimum, rA is now so low that build-up of A in the reaction mixture, which is still 
being cooled by the cold feed and the cooling equipment, starts again. When point 4 is reached sufficient 
A has been built up to increase the reaction rate in such an extent that the reaction heat evolution is now 
so high that the cooling of the reaction mixture stops and the heating up is renewed again. The build-up of 
A continues until point 1 is reached, then the whole cycle starts again. 
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Chapter IV 
 

4 THEORETICAL PREDICTION OF LIMIT 
CYCLES 

 

4.1 Introduction 
 
The stability of a process is important for both uncontrolled and controlled processes. Disturbances can 
adversely affect the stability of a process and accordingly result in decreased performance or in worst-
case scenario imply malfunctioning. Therefore, since long one has attempted to predict the process 
stability theoretically. In this chapter, the bifurcation theory which provides the theoretical background to 
predict limit cycles, and its application by means of software package LOCBIF, is presented. This yields 
the basis to construct and interpret stability maps. 
 

4.2 Linearised perturbation method 
 
One approach to predict the process-stability is the linearised perturbation method. It has been developed 
by Himmelblau and Bischoff37 68 and offers a simple, analytical approach to analyse stability using 
linearised versions of differential equations. It can solve up to two differential equations. In this report, the 
mathematical description of the problem demands more than just two differential equations. Whereas the 
underlying theory is beyond the scope of this report, its outcome is useful for the understanding of the 
report and will therefore be presented in §4.5.5 Table 6. 
 

4.3 Bifurcation theory 
 
Although only in simple cases, the analytical method mentioned above could provide some useful 
information pertaining to the stability of a process. Advanced methods are required in case more complex 
systems are involved. In reactor dynamics, it is particularly important to find if multiple stationary points 
exist or if sustained oscillations (limit cycles) can arise. The bifurcation theory contains distinct curves, 
which provide useful information about the boundary between stability and instability. 
 
The bifurcation theory of time-depended differential equations have found application in many fields of 
research, including chemical reactor engineering, mathematical biochemistry and combustion. The 
bifurcation theory provides several methods in which static and dynamical behaviour of processes can be 
analysed. The exact definition of bifurcation has been given by Kuznetsov48: 
 

“Bifurcation has been defined as the appearance of topological phase portraits under variation of 
parameters. A bifurcation is a change of the topological type of the system as its parameters pass 
through a bifurcation.” 

 
A bifurcation analysis is aimed at locating the set of parameter values for which multiple steady states will 
occur. According to Kuznetsov48 a bifurcation point i.e. critical value, is a point at which two branches of a 
curve coalesce as a parameter is varied (point B in Figure 6). Consider function ƒ(x,λ) in which x is a 
scalar variable and λ is a parameter. Figure 6 shows curves AB, BC and BD for which: 
 

0),( =λxf  (18) 
 
is satisfied. In case λ is increased along AB, there is only one value of x for a given λ that will satisfy 
equation 18. However, if λ is continued to be increased along AB, a bifurcation point λ* is reached beyond 
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D

Bx* 

A C

x

λ
λ*

which there are two values of x that satisfy equation 18 for a given value of λ. Consequently, the system 
contains multiple solutions i.e. multiplicity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Bifurcation diagram. 
 
In a bifurcation diagram in fact a curve, which represents the dynamical behaviour of a system (e.g. 
reactor temperature), is examined in relation which a distinguished parameter (e.g. cooling capacity). The 
bifurcation diagram classifies in a very condensed way all possible modes of behaviour of the system and 
transitions between them i.e. bifurcations, under parameter variation. It is desirable to obtain the 
bifurcation diagram as a result of the qualitative analyses of a given dynamical system. The bifurcation 
diagram, which is a called a stability map, can provide important information about the behaviour of the 
system being studied. This stability map will be discussed elaborately in paragraph 4.5. 
 
Suitable methods are available e.g. bifurcation software package LOCBIF (see §4.4). Creating stability 
maps using LOCBIF does require neither special scientific skills, nor knowledge of complex non-linear 
mathematics or numerical methods. The only condition is that the engineer is capable of describing the 
dynamic behaviour of the reaction system using a set of differential and algebraic equations e.g. mass and 
energy balances 2 and 3. 
 

4.4 LOCBIF 
 
This chapter reviews the general features of the LOCBIF bifurcation program. The review is limited to the 
parts of LOCBIF that are relevant for the analysis of the dynamic and static behaviour of CISTRs. For 
other LOCBIF features, the reader is referred to the LOCBIF manual45. LOCBIF has been developed at 
the Institute of Mathematical Problems of Biology of the Russian Academy of Sciences in the Moscow 
Region in 1992. A. Khibnik and E. Nokolaev45 developed the numerical algorithms. LOCBIF has no special 
system requirements and runs on any modern PC system. 
 
LOCBIF is a very useful tool, which has the numerical routines to explore the existence and stability of 
equilibria in dynamic models and to generate stability maps with limited effort. Once familiar with LOCBIF, 
it is straightforward to create a LOCBIF input file and analyse the dynamic and static behaviour of a typical 
system instead of producing a complete perturbation analyses which is very profoundly and therefore 
laboriously. Another advantage is that the linearising of the differential equations, needed for the process 
controller, can be skipped. The mathematical equations describing a particular process can directly be 
implemented in a LOCBIF source code called RHS (right hand side). 
 
A dynamical system described with one ore more differential equations can be programmed in a LOCBIF 
source, in a specific Right Hand Side source code. This subject is discussed comprehensively in the 
LOCBIF manual45. In Appendix 7, LOCBIF “right hand side’ source codes are included and in Appendix 6 
the accompanying nomenclature. 
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TIME variable declaration 
PHASE variable declaration 
PAR parameter declaration 
FUN function declaration 
COMMON variable declaration 
function definition(s) 
RHS definition(s) 
INIT initial values computations 

LOCBIF is a scientific tool for bifurcation analysis of systems of differential equations, which depend upon 
parameters. It helps to explore interactively the existence and stability of equilibria (steady states) of 
dynamical models. LOCBIF supports systems of up to 10 differential equations. 
 
LOCBIF is based on continuation procedures for relevant local bifurcation curves up to co dimension 
three. This means that LOCBIF can calculate bifurcation curves in a multi-dimensional space and can do it 
very fast thanks to the efficient continuation algorithms. LOCBIF plots two-dimensional projections of the 
bifurcation curves during the computations. The numerical background of the LOCBIF continuation 
methods is discussed extensively in the LOCBIF manual. 
 
Besides calculation of bifurcation curves, LOCBIF can also solve the differential equations with respect to 
time, like any other ODE solver e.g. Maple. This option is very useful to check the predicted dynamic 
behaviour or to find stable steady state solutions. Four different LOCBIF versions exist, but for the 
application of interest here, LBEP.EXE is the only LOCBIF version needed. 
 
LOCBIF supports about 15 different curves, however only four of them are of direct interest for our 
application i.e: the equilibrium curve, the fold curve, the Hopf curve and the orbit curve. 
Some restrictions regarding the LOCBIF program: 
 

• LOCBIF cannot deal with integral equations or partial 
differential equations. 

• Maximum number of differential equations, which can be 
implemented. 

• Very limited possibilities to extend the RHS with 
mathematical disparities. 

• Occasionally, LOCBIF has noticeable troubles finding an 
initial point. 

LOCBIF rhs 1  Structure of ODEs specification in LOCBIF. 
 

4.5 Stability map 
 
A stability map characterises the dynamic behaviour of a system, as a function of important system 
parameters like the cooling capacity or the temperature of the coolant. A stability map can be very 
convenient to determine quickly whether or not a particular system proceeds to instability. Such a stability 
map is composed of equilibrium curves and/or Hopf and/or Fold curves and must be checked by means of 
orbit curves. For a good understanding of these stability maps, firstly the main ideas of the above 
mentioned curves are discussed after which an example of constructing a stability map will be given. 
 

4.5.1 Equilibrium curve 
 
The equilibrium curve is for chemical reactors also known as the S-curve (Q-T in Figure 3 here T-Tcool) 
and represents the solution to: 
 

0),( =pxf  (19) 
 
All parameters in equation 19 but p1 are fixed. This is the steady state solution of the ODE system as a 
function of one active parameter. The curve can for example describe the steady state solution 
(concentrations and temperature(s)) of a reactor system as a function of the coolant temperature. 
 

4.5.2 Fold bifurcation curve 
  
According to Kuznetsov48 this bifurcation has many names i.e. limit point, saddle node bifurcation and 
turning point. The fold bifurcation curve represents the boundary between static stability and static 
instability as a function of two active parameters and is defined by: 
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0),(

1 =
=

px
pxf

λ
 (20) 

 
In equation 20 all parameters but p1 and p2 are fixed. The fold curve is characterised by one zero 
Eigenvalue λ1. The projection of a fold bifurcation defines a curve on which a pair of equilibrium points 
appears or disappears when parameters are changed in such a way to cross this curve transversally. 
The curve can for example define the border between static stable and static unstable steady states of a 
reactor system as a function of the coolant temperature and the cooling capacity. 
 

4.5.3 Hopf bifurcation curve 
 
The Hopf bifurcation curve represents the border between dynamic stability and dynamic instability as a 
function of two active parameters and is defined by: 
 

0),(),(
0),(

21 =+
=

pxpx
pxf

λλ
 (21) 

 
In equation 21 all parameters but p1 and p2 are fixed. The Hopf curve is characterised by two equal 
Eigenvalues of opposite sign. This can be achieved in two different ways: 
 

),(),( 21 pxpx λλ −=  (22) 
)0(),(2,1 >±= ωωλ ipx  (23) 

 
Neutral saddle, real Eigenvalues (equation 22) and Andronov-Hopf bifurcation, imaginary Eigenvalues pair 
(equation 23). The last situation is of special interest and will result in an oscillating system. The period of 
the oscillation being about t = 2π/ω. The Hopf bifurcation can for example define the border between 
dynamic stability and dynamic instability of a reactor system as a function of the coolant temperature and 
the cooling capacity. 
 

4.5.4 Orbit curve 
 
Whereas a stability map contains the above equilibrium, Fold and the Hopf curves it does not contain orbit 
curves, because it represents the solution of the ODE system with respect to time and no parameters are 
active except the time, so that all system parameters and an initial condition have to be specified. Orbit 
curves are useful to investigate or to verify the dynamical behaviour and stability of a particular chosen 
point. 
 

),( pxfx =
•

 (24) 
 
All parameters p in equation 24 are fixed. The computation of the curve means numerical integration of 
the system in time. 
 

4.5.5 Constructing the stability map 
 
The distinct curves explained above can be drawn in a bifurcation diagram often called stability map, 
consisting of several equilibrium curves (dT/dt = 0 and dζ/dt = 0) (in which an active bifurcation parameter 
is varied), Fold curve (border between static stability and static instability) and the Hopf curve (border 
between dynamic stability and dynamic instability). The behaviour of the considered system is different 
(stable/unstable) at both sides of the bifurcation curves. A bifurcation diagram can provide useful 
information about the stability and is therefore called a stability map. 
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Primarily the stability maps have a rather complex structure. Therefore, the following explicating stability 
map is constructed. The example provides a clear perceptive of the influence of process parameters like 
cooling capacity or coolant temperature and becomes comprehensible but moreover, in a certain 
particular case, the actual problem of limit cycles becomes clear. In the stability map, the coolant 
temperature Tcool is drawn on the abscissa and the active reactor temperature T on the ordinate. The 
axes-scale is in accordance with the figures printed in the article by van Elk et.al.22 resulting in Figure 7 in 
which ⊕  represents a particular process value (in this report the base case). 
 

• Initially, one equilibrium curve is drawn for one particular active parameter value (cooling capacity) 
(Figure 7a). 

• To examine the influence of the cooling capacity on the process, a number of equilibrium curves is 
appended (Figure 7b). 

• The Fold curve is plotted, in which the boundary between static stability and instability becomes 
visible (Figure 7c). The base case ⊕  is drawn which apparently is located in the static stable 
region i.e. no multiplicity in this particular case. 

• The Hopf curve is plotted, in which the boundary between dynamic stability and instability can be 
determined (Figure 7d). The base case ⊕  is located between the Fold and Hopf curve. 
Consequently, its dynamical behaviour is unstable: sustained oscillations i.e. limit cycles. 

• In Figure 7e the Treactor = Tcool curve has been added. It is obvious that the reactor temperature 
should be larger than the coolant temperature. The equilibrium curve corresponding the cooling 
capacity for exclusively the reactor wall i.e. no cooling device, is drawn. 

• Figure 7f portrays clearly the distinct regions. In subsequent stability maps, these coloured 
regions will be indicated with I, II or III. Although perhaps more regions can be identified, merely 
the most relevant regions will be considered.  

 

   
Figure 7a Equilibrium curve through 

base case value. ⊕  
represents the base case. 

Figure 7b Additional equilibrium 
curves for varying values of 
cooling capacities. 

Figure 7c Addition Fold curve, 
transition between static 
stability (right) and unstable 
(left). 

   
Figure 7d Addition Hopf curve, 

transition between dynamic 
stability and unstable. 

Figure 7e Addition T = Tcool curve and 
equilibrium curve 
concerning no cooling 
pipes. 

Figure 7f Indicating regions. ••••   region 
I: stable. ••••  region II: limit 
cycle. ••••  region III: instability. 

 
Due to the complex structure of a stability map, it is not clear at once whether a region indicates stability or 
instability. Therefore, a particular case has to be verified through producing some curves. In case 
multiplicity is involved, a region II can seemingly point towards dynamical instability, which would imply 
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limit cycles. However, sometimes the existence of static instability ‘overrules’ the existence of a limit cycle, 
which means transition and no sustained oscillations. In many articles, this process is a result of a strong 
attracter, which forces a process towards transition. Summarising: the labelling procedure of a particular 
process regarding dynamical behaviour and stability must be carried out with caution. A check with orbit 
curves is indispensable. 
 
The stability map is divided in marked regions: 
 
Region I: The dynamical behaviour of the system is considered as stable. After a constrained 

disturbance, the process variable returns to its steady state value (Figure 4a and b). 
Region II: In the area enclosed between the Fold and Hopf curve, the system is dynamically unstable 

i.e. limit cycles can exhibit (Figure 4c-e). 
Region III: The system is statically unstable due to multiplicity (extinguish or runaway) (Figure 4f and i). 
 
Table 6 Various types of behaviour based on linearised perturbation analyses (Himmelblau et.al. 37). 
Behaviour after perturbation Area Figure 4 
Asymptotic damping Ia (point stable) a 
Spiral point Ib (point stable) b 
Stable oscillations, close from Hopf (§4.5.3) II (limit cycle) c and e 
Asymptotic oscillations, far from Hopf II (limit cycle) d 
Transition III (static unstable) f and g 
Transition III (static unstable) h and i 

 

4.5.6 Classification of the stability maps 
 
In the literature22, in general stability maps can be found in which the reactor temperature is plotted 
against one or more important process variables. A common plot is the T-Tcool stability map in which the 
reactor designer adequately can determine the stable and unstable regions. However, in case of process 
control, which involves extra mathematical correlations, this type of stability map is not suitable anymore 
to determine stability. This is because too many relevant variables have to be analysed simultaneously. 
For proportional-integral control, the process engineer is in particular interested in the relationship 
between the proportional gain and the cooling capacity, or the proportional gain and the integral time. If 
additionally delay is studied, the T-Tcool stability map is certainly not useful. Therefore, the following 
stability map classification is proposed: 
 

1. Reactor designer stability map 
2. Reactor controller stability map 

 
 
1. Reactor designer stability map 
 
In this type of stability map, the reactor temperature is always drawn on the y-axis. At the x-axis one 
important process variable, like the coolant temperature is drawn by means of equilibrium curves. The 
latter is done, several times in relation with another process parameter, e.g. the cooling capacity, to study 
the effect. Through changing the process variables and parameters, the reactor designer can determine 
the reactor temperature and the conversion with respect to the behaviour and furthermore the stability.  
 
 
2. Reactor controller stability map 
 
The reactor control engineer is mainly interested in how to solve and/or prevent unwanted unstable 
reactor behaviour. Through creating reactor controller stability maps, one can very easy determine for 
instance the new controller configuration. Therefore, the reactor temperature is not drawn on the axes, but 
in general one of the crucial process parameters (UA) or the controller parameters (Kc and τI). The reactor 
controller stability map consist no equilibrium, Fold or orbit curves, merely Hopf curves, in which the stable 
and unstable region clearly can be located and indicated. 
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4.5.7 Interpreting stability map 
 
 
Reactor designer stability map 
 
The same stability map will be considered as in §4.5.5. The regions I, II and II indicating respectively 
stability, limit cycles and instability have been marked (Figure 8a). The reactor engineer is for instance 
interested in the dynamical behaviour of the process for Tcool = 450 [K] for three different cooling 
capacities. These points have additionally been drawn in (Figure 8a) and examined for their dynamical 
behaviour through orbit curves. 
 
Table 7 Data regarding the examined points in stability map Figure 8a. 

Point Coolant 
temperature 
Tcool [K]  

Cooling 
capacity 
UA [kW K-1] 

Perturbation 
∆∆∆∆T 

Orbit curve stst reactor 
temperature 
T [K] 

stst 
conversion 
ζζζζ [-] 

Region Behaviour 

1 450 35 +20 Figure 9a 510 0.94 I Stable 
1 450 35 -20 Figure 9b 510 0.94 I Stable 
2 450 38 0 Figure 10a 505 0.92 II Limit cycles 
2 445 38 0 Figure 10b 499 0.90 II Limit cycles 
3 420 25 +10 Figure 11a 509 0.94 II Limit cycles 
3 420 25 -10 Figure 11b 401 004 I Transition 

 
The steady state values, derived from the equations 2 and 3 (or 8 and 9) have been displayed in Table 7. 
As initial point, the steady state value will be taken. If necessary, a perturbation is constrained. 
 

   
Figure 8a Reactor designer stability 

map. Point 1 is located above 
the Hopf curve in region I. 

Figure 9a Orbit curve for a disturbance 
∆T = 20 [K] becomes a spiral 
point. 

Figure 9b Orbit curve for a disturbance 
∆T = -20 [K]. Point 1 returns 
to its steady state (spiral 
point). 

 
P1 Point 1 in Figure 8a, is located in region I. From Figure 9a and Figure 9b it can be seen that after 

a step disturbance the system returns to P1.  
 

   
Figure 8b Reactor designer stability 

map. Point 2 is located 
beneath the Hopf curve in 
region II. 

Figure 10a Orbit curve. Point 2 in 
Figure 8a is located beneath 
the Hopf curve in region II 
accordingly limit cycles. 

Figure 10b Lowering the coolant 
temperature 5 [K] results in 
strong limit cycles. 
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P2 Point P2 in Figure 8a is located just beneath the Hopf curve in region II. Figure 10a demonstrate 
that limit cycles emerge from the steady state without a perturbation. If the coolant temperature is 
slightly decreased ∆Tcool = -5 [K], Figure 10b shows that limit cycles appear strongly. 

 

   
Figure 8c Reactor designer stability 

map. Point 3 is located above 
the Hopf curve in region I, 
however with multiplicity.  

Figure 11a Orbit curve. Point 3 in Figure 
8a is located above the Hopf 
curve in region II. ∆T = +10 [K] 
limit cycles. 

Figure 11b Point 3 in Figure 8a. 
Disturbance ∆T = -10 [K] 
results in T = 401 [K], ζ=0.04 
reaction extinguishes due to 
the existence of multiplicity. 

 
P3 Point P3 in Figure 8a is as point P1 located above the Hopf curve within region I. Therefore, 

stability is to be expected. Nonetheless, after a disturbance ∆T = 10 [K], the temperature will 
slightly decrease and then pursue the limit cycle which becomes clear in Figure 11a. After a 
disturbance ∆T = -10 [K] the temperature will decrease to the lowest steady state i.e. the reaction 
extinguishes (Figure 11b). Point P3 with UA = 25 [kJ s-1 K-1] exhibits multiplicity and is very 
receptive for disturbances. Even a small deviation from the steady state of 10 [K] forces the 
system to the lowest steady state. 

 
Although the regions in a reactor designer stability map perhaps point towards a stable dynamical 
behaviour, disturbances can force a system towards a dynamical unstable region or even in case of 
multiplicity to a lower or higher steady state vale. By means of creating orbit curves, the latter must be 
verified. 
In the reactor designer stability map in a 2D plot, more than two variables are varied. Therefore, it will be 
clear that the reactor designer stability maps are in fact 2D-presemntation of 3D phenomena and is 
therefore sometimes difficult to interpret. In Figure 8 T, Tcool, and UA have been varied. Moreover, the 
complexity is become worse, if also more ordinary differential equations are added to the mathematical 
model. 
 
 
Reactor controller stability map 
 
In reactor controller stability maps, exclusively the Hopf curves are drawn. Equilibrium curves and Fold 
curves like in reactor designer stability maps are excluded. Subsequently, the acquired plots remains well 
ordered and clear to interpret. Moreover, in cases like the delay or integral time are considered, no Fold 
curves exist. The latter are described mathematically by differential equation in which in the infinity (in the 
steady state) the time aspect is eliminated and static instability is then not anymore concerned with. The 
Fold curve is then merely a dot (solely one steady state solution of the ODE-system) and does therefore 
not make any useful contribution to the stability map. Another explanation is that the equilibrium curves do 
not diverge for varying integral times or delay and therefore no Fold curve exists. The advantage of the 
reactor controller stability maps is the simplicity, ordered structure and easy to interpret the dynamical 
behaviour. Once the Hopf curve has been drawn, the regions with respect to (in)stability have only to be 
marked. In most cases, one or two orbit curves for both sides of the Hopf curve provide enough 
information about the actual stability. 
 
Consider the following example. The reactor engineer is for instance interested in the dynamical behaviour 
of a particular process in relation with the delay.  Therefore, a reactor controller stability map is created 
with a Hopf curve for parameters Kc and τd. In Figure 12, the asymptotic values are visible. Beyond a 
certain delay τd > 108 [s] apparently the process cannot anymore become stable. If τd → 0 the minimum 
proportional gain can be found, whose value precisely should preserve stability in case delay is not 
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concerned with. It is obvious that delay makes a process less stable because the controller can be too late 
with correcting a certain disturbance. Therefore, the right-hand side of the Hopf curve is region II (or III if 
multiplicity is involved) and the left-hand side is region I. Large Kc values can eliminate limit cycles and 
preserve stability. 
 

   
Figure 12a Reactor designer stability map. 

At the left-hand side, the 
system behaves stable, at the 
right-hand side unstable. Two 
orbit curves are needed to 
verify the behaviour. 

Figure 12b Orbit curve. Point 1, 
behaves stable after a 
disturbance  ∆T = +20 [K], 
spiral point. 

Figure 12c Point 2 behaves unstable 
(limit cycles) from the initial 
steady state. Beyond the 
asymptotic delay, instability is 
inevitable. 

 
Point 1 shows that after a disturbance, the controller (Kc = 2) is robust enough to reduce the limit cycles, 
even with a delay τd = 60 [s]. The same Kc = 2 with a delay τd = 110 [s], which is slightly larger than the 
asymptotic value τd = 108 [s] implies definitely an unstable process. Suppose a delay τd = 80 [s], the 
engineer can effortlessly read from Figure 12a that Kc = 3 signifies no more limit cycles. 
 

4.6 Theoretical prevention and elimination of limit cycles 
 
According to Westerterp et.al.80 the heat capacity of the reactor and in particular in relatively small 
reactors, has to be taken into account if limit cycles are to be considered. Westerterp postulated in general 
that limit cycles will not occur if, in a high conversion reactor, a combination of the following factors 
coincide: 
 

• A weak temperature dependence of the reaction rate (E/R low). 
• A low reactant concentration in the feed (∆Tad) low. 
• A low heat effect (∆Tad) low. 
• A high reactor temperature (Ts high). 
• A not too high conversion (1-ζs relatively large). 
• A long residence time (τR high). 
• A preferable small reactor (A/VR large). 
• Good heat transfer coefficient or heat capacity (UA large). 

 
In case more advanced processes are considered, these points are conversely not sufficient enough to 
solve a limit cycle appearance and more knowledge about the process is required. 
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Chapter V 
 

5 PROCESS CONTROL 
 

5.1 Introduction 
 
During the process of a chemical reactor, several requirements such as safety, production specifications, 
operational constrains and economics must be satisfied, in the presence possible external disturbances. 
These requirements dictate the need for continuous monitoring of the operation of a chemical reactor and 
external intervention i.e. control, to guarantee achieving the operational objectives. This is accomplished 
through a rational arrangement of measuring devices, valves, controllers, computers etc., which 
constitutes the control system. There are three general classes of needs, which a control system is 
required to satisfy: 
 

1. Suppressing the influence of external disturbances 
2. Ensuring the stability of a chemical process 
3. Optimising the performance of a chemical process 

5.2 Feedback controllers 
 
In every control configuration, the controller is the active element that receives the information from the 
measurements and takes appropriate control actions to adjust the values of the manipulated variables. 
Consider the generalised process shown in Figure 13. It has an output y, a potential disturbance d also 
known as process load and an available manipulated variable m. The disturbance changes in an 
unpredictable manner and the control objective is to keep the value of the output y at desired levels. 
A feedback control action can take the following steps: 
 

1. Measure the value of the output using the appropriate measuring device. Let ym be the value 
indicated by the measuring device. 

2. Compare the indicated value ym to the desired value ysp (set point) of the output. Let the deviation 
(error) be εεεε = ysp – ym. 

3. The value of the deviation εεεε is supplied to the main controller. The controller in turn changes the 
value of the manipulated variable m in such a way as to reduce the magnitude of the deviation εεεε. 
Usually, the controller does not affect the manipulated variable directly but through another device 
known as the final control element. 

 
The system in Figure 13 is known as feedback-controlled or closed loop system and pictorially 
summarises the foregoing three steps. 

Figure 13 Process and corresponding feedback loop. Ysp = set point or desired value εεεε = error d = disturbance m = measured 
value c = controlled value. 
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The controller comes between the measuring device and the final control element. Its function is to receive 
the measured output signal ym(t) and after comparing it with the set point ysp to produce the actuating 
signal c(t) in such a way as to return the output to the desired value ysp. Therefore, the input to the 
controller is the error εεεε(t) = ysp – ym(t), while its output is c(t). The various types of continuous feedback 
controllers differ in the way they relate εεεε(t) to c(t). Four basic types of feedback controllers can be 
distinguished: 
 

1. Proportional (P controller) 
2. Proportional integral (PI controller) 
3. Proportional derivative (PD controller) 
4. Proportional Integral derivative (PID controller) 

 
Due to the scope of this report, exclusively the proportional and the integral action will be examined.  
 

5.2.1 Proportional control 
 
The principle of the P-controller is the proportional correction of the error. The response has a high 
maximum deviation and there is a significant time of oscillation. The period of this oscillation is moderate. 
For a sustained change in load, the controller variable is not returned to its original value i.e. the desired 
value, but attains a new equilibrium value termed the control point. The difference between desired value 
and control point is called the offset or droop. Its actuating output is proportional to the error: 
 

sc ctKtc += )()( ε  (25) 
 
In equation 25 parameter Kc is called the proportional gain of the controller and cs = controller bias signal 
i.e. its actuating signal when ε = 0. A proportional controller is described by the value of its proportional 
gain Kc or equivalently by its proportional band PB, where PB=100/Kc.. The proportional band 
characterises the range over which the error must change in order to drive the actuating signal of the 
controller over its full range. Usually (1 ≤ PB ≤ 50). The larger the gain Kc or equivalently, the smaller the 
proportional band, the higher the sensitivity of controller’s actuating signal to deviations ε will be. 
Define the deviation c’(t) of the actuating signal by 
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5.2.2 Proportional-Integral control 
 
Considerable improvements in the quality of the resulting control can be obtained if a different control law 
is used known as proportional-integral control or proportional-plus-reset controller where the proportional 
and the integral action are combined. Its actuating signal is related to the error by equation 27: 
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 (27) 

 
where τI is the integral time constant or reset time often expressed in minutes. The reset time is the time 
needed by the controller to repeat the initial proportional acting change in its output. The reset time is an 
adjustable parameter and is usually varied in the range (0.1 ≤ τI ≤ 50 [min]). The integral action causes the 
controller output c(t) to change as long as an error exists in the process output. Therefore, such a 
controller can eliminate even small errors. The maximum deviation of the controlled variable is determined 
by the settings of both Kc and τI, The integral term of a PI controller causes its output to continue changing 
as long as there is a non-zero error. Often the errors cannot be quickly eliminated and given enough time 
they produce larger and larger values of the integral term, which in turn keeps increasing the control action 
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until it is saturated (e.g. the valve completely open or closed). This condition is called integral windup. 
Then, even if the error returns to zero, the control action will remain saturated. A PI controller needs 
special provisions to cope with integral windup. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 Response of PI controller to unit step change in error. 
 

5.2.3 Offset 
 
The question arises: Why does proportional feedback control result in steady state offset unequal to zero? 
The proportional controller operates according Equation 26 so that in the transient state, while things are 
still changing, the rate at which the process input is being changed is given by: 
 

dt
tdK

dt
tdc

c
)()(' ε=  (28) 

 
It is obvious that at steady state, all the derivates will vanish, however is it possible for dεεεε(t)/dt to be zero 
without εεεε(t) itself being zero? The answer, of course, as soon as εεεε(t) becomes constant, whether at zero, 
or at a nonzero value, steady state is achieved. Observe from equation 26 that for εεεε(t) to be zero, c’(t) 
must be zero. From the process model it is obvious that c’(t) will never be zero for non-zero set-point or 
non-zero disturbance i.e. there will always be a discrepancy i.e. steady state offset. 
 

Offset = (new set point) – (ultimate value of the response) 
 
The offset is the characteristic effect of proportional control. It decreases as Kc becomes larger and 
theoretically: offset → 0 if Kc → ∞. 
 
Another question arises: Why does PI control not result in steady state offset? For the PI controller, control 
action is determined according to equation 27. Under transient conditions, the rate at which c’(t) changes 
is given by equation 29 by differentiating equation 27. 
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Regardless of controller parameters, or the specific process in question, whenever steady state is 
achieved, all the derivatives in equation 29 will vanish and εεεε(t) will always be zero i.e. no steady state 
offset. Therefore, integral action eliminates any offset. 
 

Proportional 
 

Proportional  
+ Integral 

Time 

P0 

P 

1 

0 

Kc 

 Integral 



 

  22 

5.2.4 Comparison P and PI controller 
 
The advantage of the PI-controller is the offset removing characteristic. However, the disadvantages of PI 
control are that it gives rise to a higher maximum deviation, a longer response time and a longer period of 
oscillation than with proportional action only. This type of control action is therefore used when the above 
can be tolerated and offset is undesirable. It is however a very frequently used combination. 
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Figure 15 Response of controlled variable to step disturbance in load. 
 

5.3 Disturbances 
 
Changes in continuous process operation can generally be divided into the following categories: 
 

1. Dynamic operations 
2. Internal changes 
3. External changes 

 
 
Dynamic operations 
 
Dynamic operations take place when the process is not operated under constant conditions e.g. during 
start-up or switchover to other conditions. 
 
 
Internal disturbances 
 
Due to changes in one or more state variables like T and or ζ, without any external disturbances, the 
process can become dynamical unstable (limit cycles). Drastic internal changes can be caused by failures 
in process equipment or control instrumentation in which the state variable change. In addition a process 
can become gradually dynamical unstable by the slow change of conditions of a continuous process by 
fouling, poisoning of catalyst, coke depositing in furnace tubes etc. Henson et.al. 35. 
 
 
External disturbances 
 
For this type of change, continuous operation is disturbed by external influences. In many cases, it is a 
matter of disturbances, which enter the process by feed, heating, catalyst flows etc. Here disturbances 
mean relatively small changes in process conditions without malfunctioning of process apparatus and 
control instruments. 
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Process behaviour 
 
Because all disturbances from internal and external causes are undesirable at constant operation, the 
process has to be corrected (process control to be examined in chapter 5). These disturbances or 
perturbations cause changes in the dynamical behaviour of a process. 
 

5.4 Concept of dead time 
 
Whenever an input variable of a system changes, there is a time interval during which no effect is 
observed on the outputs of the system. This time interval is called dead time or delay. This response 
poses a difficult problem for a feedback controller, because its next move depends on the response of the 
process to its most recent move. The presence of dead time can easily destabilise the dynamic behaviour 
of a controlled system to an external perturbation. 
 
 
 
 
 
 
Figure 16 Process with dead time. 
 

)()( dinout ttyty −=  (30) 
 
When a time-delay element is present in a feedback control loop, the following obvious control problems 
arise: 
 

• With a delay, control action will be based on delayed, hence obsolete process information that is 
usually not representative of the current situation within the process. 

• If the process has an input delay, then the effect of the control action will not be immediately felt 
by the process, compounding the problem even further. 

 
Virtually all physical processes will involve some dead time between the input and the output. The passing 
through the core of a measuring device, the controlling process, the transfer of heat from a heating device 
to the reactor etc., will take time.  
To avoid the use of complex mathematical descriptions of every process, which contributes to delay and 
due to the lack of physical information regarding dead time, the following overall equation can be used: 
 

d
d

d yy
dt

dy
−=τ  (31) 

 
In equation 31, all the different kind of delay is allowed for by means of the parameter τd. 
 

5.5 Process capacity 
 
Capacity is where a process stores variable amounts of mass or energy. If the flowrate of mass or energy 
into and out of a process are not equal, then their difference accumulates within the capacity of the 
process1 i.e. the process act as a buffer. If a variable x is a measure of that accumulation, the following 
general differential equation can be formulated: 
 

                                                      
1  Liquid level is an indication of the variable volume of liquid stored in the capacity of a tank, temperature is a measure of the 

energy contained in the heat capacity of a mass of material and stream composition is also indicative of a particular species 
accumulating in a mixed vessel such as a reactor or mass transfer process. 

f(t) 
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time 

Process 

y(t) y = t - td 
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outindt
dx Φ−Φ=τ  (32) 

 

5.5.1 Process time constant 
 
In equation 32 Φin and Φout are inflow and outflow respectively and τ the time constant of the capacity in 
the same units as time. The time constant of a process is a measure of the time necessary for the process 
to adjust to a change in its input. The smaller the value of τ, the steeper the initial response of the system. 
Consequently, capacity plays a certain role in the dynamical behaviour and stability of a process, which 
will be examined in next sections. According to Stephanopoulos74 the CISTR can be observed as a multi 
capacity process of mass and energy. By dividing differential equations 2 and 3 with ρ CP ΦV, equations 
33 and 34 are obtained. 
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It is obvious that in this particular case the time constant represents the average residence time τR of the 
CISTR according to: 
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If one takes into account also the heat capacity of the equipment present in the reactor (i.e. stirrer etc.) the 
equation can be extended to  
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5.5.2 Cooling time constant 
 
If equation 12 is divided by ρcool CP,cool ΦV,cool, than equation 36 is obtained: 
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In which τcool is: 
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V
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In fact, τcool is partially composed of the time constant of the coolant and additionally partially composed of 
the physical properties of the equipment. Analogue to equation 35 one can write the coolant time constant 
correlation 38 according: 
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5.6 Controller tuning 
 
Generally, when a set point changes, the response of the process deviates and the controller tries to bring 
the output again close to the desired set point (Figure 15). The distinguished controllers have different 
effects on the response of the controlled process. The following questions arise: 
 

• What type of feedback controller should be used to control the process? 
• What are the best values for the adjustable parameters of the selected controller? 
• What performance criteria should be used for the selection and the tuning of the chosen 

controller? 
 

5.6.1 Performance criteria 
 
Even though specific details of what is considered acceptable performance can be interpreted throughout 
a different perspective, some general principles can be applied universally. An effective close loop system 
is expected to be stable and to be capable of causing the system output ultimately to attain its desired set 
point value. In addition, the approach of this system output to the desired set point should be neither too 
sluggish, nor too oscillatory. A careful examination of criteria by which closed-loop system performance 
may be assessed in general: 
 

• Stability criteria 
• Steady state criteria 
• Dynamic response criteria 

 
Of these, the first two are very easy to specify. The only reasonable specification is that the system must 
be stable. Also the key steady state criteria is that there be little or no steady state offset i.e. the error is 
brought close to zero at steady state. The third class of criteria specifies how the system responds under 
closed-loop control. The evaluation of the dynamic performance of a closed loop system is based on the 
following types of commonly used performance criteria: 
 

• Overshoot Keep the maximum deviation (error) of the response as small as possible. 
• Rise time Check the time needed to reach the desired value for the first time. 
• Settling time  Return to the desired level of operation as soon a possible (or within ±5%). 
• Decay ratio  Verify if the ration between the first and the second peak is approximately 4:1. 
• Windup Minimize the integral of the errors until the process has settled to its desired set 

point and prevent integral windup. 
 
All of the mentioned characteristics above could be used by the designer as the basic criteria for selecting 
the controller and the values of its adjusted parameters. It must be emphasised, though, that one simple 
characteristic does not suffice to describe the desired dynamic response. Usually, more satisfied 
objectives are required i.e. minimum overshoot, minimum settling time etc. Unfortunately, controller 
designs based on multiple criteria lead to conflicting response characteristics. 
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5.6.2 Methods of adjusting feedback controller settings 
 
Many procedures exist for estimating optimum settings for controllers: 
 
1. Ratio-overshoot method (Stephanopoulos74) 

One of the usual bases employed is that the system response should have a decay of ¼ i.e. the ratio 
of overshoot of the first peak to the overshoot of the second peak is 4:1 (Figure 17). There is no direct 
mathematical justification for this but it is a compromise between a rapid initial response and a short 
response time. The response time is the time required for the absolute value of the system response 
to come within a small-specified amount of the final value of the response. 

2. Ziegler and Nichols method (Ziegler et.al. 81) 
This method is often applied and will be discussed in the next paragraph. 

3. Process response methods 
Common methods are e.g. the Loop tuning method by Erickson et.al.25, the Cohen Coon method11, 
the Integral relation method by Murrill56 and many more which are not suitable for the propose of this 
report due to the fact that a process response is practically obtained. 

4. Remainder tuning methods 
Other tuning methods are the Nyquist stability criteria74 and non-linear process control methods35. 
Many more methods are available in the literature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 System response with ¼ decay ratio.14 25 74 60. 
 

5.6.3 Ziegler and Nichols method 
 
This method is characterised by finding the gain at which the system is marginally stable and the 
frequency of oscillation at this point. From these two parameters, the controller parameters are calculated. 
The Ziegler Nichols tuning technique81 is intended to produce a closed-loop damping ration of 1:4. 
It goes through the following steps: 
 

1. Bring the system to the desired operational level i.e. design condition. 
2. Using proportional control only (or with maximum τI) and with the feedback loop closed, introduce 

a set point change and vary the proportional gain until the system oscillates continuously i.e. limit 
cycle. The frequency of continuous oscillation is the crossover frequency ω∞. Let M be the 
amplitude ratio of the system’s response at the crossover frequency. 

3. Compute the following two quantities: 
The ultimate gain or proportional gain for sustained oscillations: 
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 MKU
1=  (39) 

 
The ultimate period of sustained cycling [minutes]: 
 

 
∞

=
ω

π2
UP  (40) 

 
4. Using the values of KU and PU, Ziegler Nichols recommended the following settings for feedback 

controllers: 
 
Table 8 Ziegler Nichols controller settings. 
Control action Controller settings 
 Kc τI [min] 
P KU / 2 - 
PI KU / 2.2 τU / 1.2 

 
The settings above reveal the rationale of the Ziegler Nichols methodology. 
 

1 For proportional control alone, a gain margin equal to 2 is recommended. 
2 For PI control, a lower proportional gain is advised because the presence of the integral 

control mode introduces additional phase lag in all frequencies with destabilizing effects on 
the system. Therefore, lower Kc maintains approximately the same gain margin. 

 

5.6.4 Controller configuration 
 
The remaining question is, which one to select first: Kc or τI? According to Stephanopoulos74 in general the 
proportional gain is selected first, in such way that the controller has the necessary strength to repress 
disturbances. Afterwards a suitable integral time is chosen for offset elimination. Together Kc and τI must 
satisfy the control performance criteria e.g. the ¼ decay ratio. 
 
In case a system is not exclusively concerned with external disturbances but additionally is concerned with 
dynamical instability, the mentioned tuning methods have to be interpreted with caution and it is not 
certain if these methods are still valid. Inevitably, a more robust control action is needed i.e. Kc has to 
increase. This might have sincere consequences for the e.g. Ziegler Nichols controller settings. Therefore, 
the following strategy is suggested to acquire stability through searching and optimising controller 
configuration parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 Strategy to acquire stability through searching and optimising controller parameters. 
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Chapter VI 
 

6 STARTING POINT OF RESEARCH 
 

6.1 Introduction 
 
In this chapter, the current level of research of limit cycles is examined. Therefore, two distinctive reactor 
designer stability maps and one reactor controller stability map will be considered conjoined with 
accompanying orbit curves. To apply the theory, a certain system has to be chosen. In this report, a 
system previously studied by Van Elk et.al.22, is selected. Primarily, in the next paragraph, this system will 
be quantified. Subsequently, a method to study the stability will be presented. Then, the resulting stability 
maps will elaborately be presented and discussed. 
 

6.2 Base case definition 
 
Despite that the numerical values are taken from the article presented by Van Elk, the system studied in 
this report does differ from the system studied by van Elk. He studied the stability and dynamic behaviour 
of gas-liquid reactors extensively. Adopting a rigorous gas-liquid reactor model, he demonstrated the 
possible existence of dynamic instability (limit cycles) in gas-liquid processes. Since limit cycles can 
already emerge in a system that can be described with merely two differential equations i.e. mass and 
energy balance, some adaptations can be been made to simplify the model. Primarily, non-relevant 
aspects with regards to limit cycles have been removed from the model. The simplest case will be 
considered because more detailed issues, through adding more mathematical equations to the model, can 
be concerned with afterwards. 
 
The first simplification for the base case model is that the reactor of interest in this report is a 
homogeneous liquid phase reactor. Therefore, all the parameters needed for the description of two-phase 
reactors and mass transfer (like hold-up and the Hatta number) can be ignored. Because van Elk used a 
pseudo-first order reaction constant approximation, therefore the same constant k0 can be used for the 
first order reaction of the present case. It is assumed that the liquid is completely saturated with 
component A. As a result the concentration of reactant A, can be considered as constant and accordingly 
be included in the value of k0 (Appendix 3).  
The simplified model based on van Elk will be called the “base case”. The required values of the 
parameters are listed in Table 9.  
 
Table 9  Main system parameters (van Elk et.al. 22). 
Parameter Symbol Value Unit 
System conditions 
 
Liquid flow rate Φv 0.005 [m3 s-1] 
Reactor volume VR 5 [m3] 

[A]0 5000 [mol m-3] Feed concentration 
[P]0 0 [mol m-3] 

Feed temperature T0 303 [K] 
Important base case variables 
 
Heat transfer coefficient × (transfer) area or cooling capacity UA 55 [kJ s-1 K-1] 
Reactor temperature T 468 [K] 
Coolant temperature Tcool 441 [K] 
Fixed parameters 
 
Density ρ 800 [Kg m-3] 
Heat capacity CP 2 [kJ kg-1 K-1] 
Reaction enthalpy ∆HR -160 [kJ mol-1] 
Activation energy Eact 90 [kJ mol-1] 
Arrhenius frequency factor k0 2.505 × 107 [s-1] 
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Additional data 
 
Density coolant ρcool 1000 [Kg m-3] 
Heat capacity coolant CP,cool 4.2 [kJ kg-1 K-1] 
Feed temperature coolant Tcool,0 303, 400, 435 [K] 

 
If the mass and heat balance are solved for the steady state situation using the values portrayed in Table 
9, a small dissimilarity can be noticed: T = 466 [K] instead of T = 468 [K]. Because the latter should imply 
an initial perturbation of ∆T = 2 [K], if necessary the exact numerical solution of the mass and heat 
balance is used for the simulations in this report. In Appendix 3, the magnitude concerning the base case 
values presented in Table 9 has been evaluated. 
 

6.3 Stability of the base case 
 
The following stability naps will be considered: 
 
Table 10 Base case stability maps. 
Stability map Reference 
T versus Tcool varying UA Figure 19 
T versus Tcool varying ΦV Figure 20 
Tcool versus UA varying ΦV Figure 21 

 
Although, in fact Figure 21, which will be discussed later, is sufficient to prove the unstable character of 
the base case, likewise, the traditional stability maps Figure 19 (and Figure 20) will be presented. Similar 
stability maps like Figure 19 have been printed in the article by van Elk et.al.22. To be able to compare the 
stability maps of this report easily, the axes-scale is as much as possible in accordance with the figures 
printed in the article. 
 

6.3.1 Reactor designer stability maps 
 
The following stability maps (theory discussed in §4.5) will be considered: Reactor temperature versus 
coolant temperature for initially (UA variation) and afterwards (ΦV variation). The mathematical base case 
model discussed in §2.2 states: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

 
 
Reactor temperature versus coolant temperature (UA variation) 
 
The first base case designer stability map is created (Figure 19) in which the coolant temperature is drawn 
on the abscissa and the active reactor temperature on the ordinate. The stability map consists of 
equilibrium curves (dT/dt = 0 and dζ/dt = 0) as a function of one active parameter, which is in this case the 
coolant temperature. Several equilibrium curves have been plotted, for various values of UA with the 
intention that the influence of the cooling capability becomes more comprehensible. Additionally the Fold 
and Hopf curves are included as a function of two active parameters, which are the coolant temperature 
and the cooling capacity UA. Eventually the stability map is divided into marked regions. This marking 
process, of the particular regions in the stability map, is sometimes easy and sometimes vague due to the 
existence of multiplicity. Then it is a matter of trial and error. However, through creating orbit curves, the 
dynamical behaviour can be determined or verified. 
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Figure 19 Reactor designer stability map for the base case model considering the irreversible exothermic reaction A → P in a 

cooled CISTR. The steady state temperature is plotted as function of the coolant temperature in which the cooling 
capacity is varied. The symbol ⊕  points towards the base case value. The LOCBIF source LOCBIF rhs 2 is included 
in Appendix 7. The base case is located in a region II which points towards dynamical instability. 

 
Discussion of the reactor designer stability map: 
 

• In Figure 19 a dotted line T=Tcool has been drawn which indicate that the reactor temperature 
cannot decrease beneath the coolant temperature curve. 

• LOCBIF provides the bifurcation maximum and minimum values of the cooling capacity and the 
coolant temperature in the Hopf and Fold curve. In case: UA > 45 [kJ s-1 K-1] and Tcool = Tcool (base 
case) or Tcool > 434 [K] and UA = UA (base case), no multiplicity will occur. 

• In Figure 19 the transition from the region in which multiplicity occurs and the region with one 
operation point is marked with an arrow. ─►. 

• Absolutely no limit cycles exists in Figure 19 provided that UA > 105 [kJ s-1 K-1] (Hopf maximum) 
irrespective of the coolant temperature. 

• It is obvious that the relevant base case, symbolised with ⊕ , is located in region II in which 
undesired limit cycles can emerge. 

 
 
Reactor temperature versus coolant temperature (ΦΦΦΦV variation)  
 
In the following designer stability map, instead of the cooling capacity, the throughput is considered.  
Firstly, the equilibrium curves are drawn as a function of one active bifurcation parameter Tcool for 
increasing flowrate values. Subsequently, the Fold and Hopf curves are added as a function of two active 
parameters Tcool and ΦV. 
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Figure 20 Reactor designer stability map of the base case model considering the irreversible exothermic reaction A → P in a 

cooled CISTR. The steady state temperature is plotted as function of the coolant temperature in which the flowrate 
value is varied. For ΦV > 0.006 [m3 s-1] (Fold maximum) the equilibrium curve exhibit multiplicity which means that 
extinction is also possible. 

 
Discussion of the reactor designer stability map: 
 

• If the dotted line T=Tcool in Figure 20 is taken as the reference point and the flowrate is increased 
to ΦV = 0.0014 [m3 s-1], the Hopf curve is intercepted at Tcool = 434 [K] which is according to 
LOCBIF a Hopf maximum. Up to this flowrate, the system is stable. Larger flowrate values imply 
dynamical instability. 

• If the flowrate is increased, the equilibrium curves increase virtually counter clockwise up to ΦV = 
0.006 [m3 s-1] from where multiplicity is involved. 

• If ΦV > 0.007 [m3 s-1] the system is unstable because the reaction extinguishes. Apparently too 
much heat is withdrawn from the CISTR. 

• LOCBIF provides the Fold and Hopf maximum and minimum values. According to LOCBIF two 
multiplicity transitions exist close to one another (Tcool = 439 [K]) i.e. no multiplicity stands for a 
flowrate ΦV < 0.006 [m3 s-1]. The existence of multiplicity can be clarified by the fact that in case the 
flowrate is considerably increased, this implies that on the one hand, the reaction increases due to 
the supply of fresh feed, on the other hand the reactor is also cooled by the cold feed inlet. If for 
instance too much cold feed enters the reactor, it can conversely remove too much reaction heat 
causing the reaction to slow down and eventually extinguish. 

• LOCBIF also found the minimum Fold in which certainly no limit cycles occur: Tcool > 464 [K]. The 
base case indicated with symbol ⊕  is obviously also in this stability map located in region II in 
which certainly limit cycles exhibit. 

 

6.3.2 Reactor controller stability maps 
 
In reactor controller stability maps, not the reactor temperature but a process controller parameter is 
concerned with. Because in this chapter the process controller is not present, the stability map is adapted  
and examined for as well UA, Tcool as ΦV. 
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Figure 21 The stability map concerning the base case. Select one particular flowrate. The inside of the loops (Hopf curves) point 

towards limit cycles, the left hand side of the curves indicate multiplicity and the right hand side means stability. 
 
Discussion of the stability map: 
 

• In Figure 21 the Hopf curves have been drawn for active LOCBIF parameters UA and Tcool.  
• The stability map provides in one plot, useful process information with regards to as well the 

cooling capacity, coolant temperature as well as the throughput. 
• The inside of all the loops point towards limit cycles, the left hand side of the curves indicate 

multiplicity, often this means instability and the right hand side means stability. 
• A stable operating point can easily be located. For instance, consider the base case with a fixed 

UA and ΦV, Tcool shifts to region I in case Tcool > 464 [K]. 
 

6.4 Overview 
 
Table 11  Base case relevant stability values (no control). Static and dynamical behaviour. 
System variable  
Dimension 

Cooling capacity 
variation 
 

Coolant temperature 
variation 

Throughput 
variation 

Behaviour 

15 < UA < 45 55 55 Multiplicity 
45 < UA < 78 55 55 Limit cycles 

Cooling capacity 
[kJ s-1 K-1] 

UA > 78 55 55 Stability 
441 410 < Tcool < 434 441 Multiplicity 
441 434 < Tcool < 464 441 Limit cycles 

Coolant temperature 
[K] 

441 Tcool > 464 441 Stability 
0.005 0.005 0 < ΦV < 0.0014 Stability 
0.005 0.005 0.0014 < ΦV < 0.006 Limit cycles 

Throughput 
[m3 s-1] 

0.005 0.005 ΦV > 0.007 Instability 
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6.5 Base case limit cycles 
 
Primarily, the orbit curve for the base case reactor temperature is created with LOCBIF, which results in 
Figure 22a and the orbit curve pertaining to the conversion in Figure 22b. 
The mathematical steady state solution of the mass and heat balance (ODE 2 and 3) has been chosen as 
initial point, which is represented by the dotted line. The abscissa of Figure 22a and Figure 22b are 
identical. The figures conversely can be combined to phase plot Figure 22c in which the principle of the 
phenomenon limit cycle can be elucidated. No perturbation is necessary to initiate the self-sustained 
oscillations. The system variables (conversion and the reactor temperature) will cycle around the steady 
state point however the steady state itself will never be reached. 
 

 

  

Figure 22a Orbit curve for the exothermic reaction A → P in a 
CISTR. The initial condition is the steady state 
situation. The limit cycles occur consistently with a 
temperature deviation ∆T = 284 [K] in a cycle time   
∆t ≈ 34 [min]. 

Figure 22b Orbit curve for the base case definition in case limit 
cycles emerge. The conversion deviation due to 
the limit cycles appears to be ∆ζ ≈ 0.6 every         
∆t ≈ 34 [min]. 

 

Table 12  The base case value (from Table 9). 
 
 
 
 
 
 

 
 
 
 
 
 
 

Variable Value Dimension 
UA 55 [kJ s-1 K-1] 
Tcool 441 [K] 
ΦV 0.005 [m3 s-1] 
Tstst 466 [K] 
ζstst 0.68 [-] 

Figure 22c After approximately t = 8 [min], the maximum 
conversion has been reached i.e. ζ ≈ 0.98 and 
decreases to ζ ≈ 0.40 and so on. Subsequently, the 
system is proverbially dragged into the limit cycle. 
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Chapter VII 
 

7 STRUCTURE AND OBJECTIVES OF PART II 
 
Part II, will have the following elements in every chapter. 
 
It will make the difference in two kinds of stability-maps: 

1. Reactor designer stability maps: These are indispensable when designing a new reactor. In this 
case reactor- and coolant-temperature, cooling capacity, coolant flowrate and throughput 
dependence of the process stability are indispensable parameters for the designer to develop a 
new reactor. Due to the number of relevant parameters and their dependence, this kind of stability 
maps have a complex nature and are often difficult to interpret. 

 
2. Reactor controller stability maps: These are useful simplifications of the reactor designer stability 

maps which focus on a particular case in which reactor- and coolant-temperature, cooling 
capacity, coolant flowrate and throughput are already fixed (no degrees of freedom) and stability 
only can be attained by applying process control. 

 
The reactor controller stability maps are an extension of the use of data generated with LOCBIF and are a 
major improvement in handling stability data and obtaining a profound idea of stability-dependence of the 
base case (or any other existing or hypothetical possible reactor). 
 
Therefore the objectives of part two are: 

1. Providing indispensable information for the design of a new reactor 
2. Providing a practical tool to configure the controller in which reactor stability can be guaranteed 

 
The base case model will initially be examined with respect to its dynamical behaviour in the absence of a 
controller. Subsequently the control system is implemented in the model. The control method can be 
subdivided into the proportional and the proportional-integral control action. Although the derivative control 
action is widely used in the process control, this type of control is not suitable for the use in particular 
bifurcation software packages and will therefore not be considered. Three different control methods have 
been selected and investigated on its influence on the dynamical behaviour. The system can be controlled 
adjusting the temperature of the cooling fluid, adjusting the coolant flowrate or the throughput. 
The next step is to analyse every situation for sensitivity of relevant parameters respectively 
 

1. The cooling capacity UA 
2. The proportional gain Kc 
3. The integral time τI 
4. The presumed delay τd 

 
For as well the control of cooling temperature as coolant flowrate and throughput, the following will be 
presented: 
 

1. Mathematical system will be given 
2. Reactor designer stability maps will be given 
3. Reactor controller stability maps will be given (to monitor the improvement of the base case due to 

process control) 
4. Conclusion concerning the being of the base case (this being changes as a result of applied 

process control) 



 

  35 

Chapter VIII 
 

8 PRELIMINARY CONSIDERATION 
CONTROLLABILITY 

 

8.1 Controlling the coolant temperature 
 
In paragraph 5.2 the default controller correlation has been given. In case of coolant temperature control 
the controller correlation becomes: 
 

( )TTKTT spcspcoolcool −+= ,  (41) 
 
This mathematical description is easy to comprehend. If the process is disturbed and the reactor 
temperature should for instance rise, it is obvious that the coolant temperature has to be decrease to 
return the reactor temperature to its steady state (set point) value. The magnitude of the proportional gain 
amounts to Kc ≈ 1 [-]. 
 

8.2 Controlling the coolant flowrate 
 
In case of flowrate control, a reactor temperature increase has the consequence that the coolant flowrate 
has to be enlarged to increase the heat transfer from the reactor. Therefore, to maintain positive Kc 
values, the controller equation becomes: 
 

( )TTK spcspcoolVcoolV −−Φ=Φ ,,,  (42) 
 
The proportional gain Kc in equation 42 is not dimensionless as in equation 41. The magnitude of the 
proportional gain value states Kc ≈ 0.0001 [m3 s-1 K-1] 
 

8.3 Controlling the throughput 
 
In case of throughput control, there are two possibilities available: Suppose the reactor temperature 
increases, on the one hand increasing the throughput means quenching with the cold feed, but on the 
other hand increasing the reactant concentration in which subsequently more heat will be produced due to 
the increased conversion. 
 

( )TTK spcspVV −+Φ=Φ ,  (43a) 
 

( )TTK spcspVV −−Φ=Φ ,  (43b) 
 
Both controller equations are possible. Nevertheless, it is uncertain which one can provide stability. If the 
proportional gain is too large, the reaction can run away or extinguishes dependent on the Kc sign. This 
will be clear in the following chapter. 
The proportional gain value in equation 43 roughly is Kc ≈ 0.001 [m3 s-1 K-1] which is slightly larger than in 
case of coolant flowrate control. 
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Chapter IX 
 

9 PROPORTIONAL CONTROL 
 
In this section, the effect of the proportional controller on the stability of the cooled CISTR with irreversible 
exothermic reaction is studied. 
 

9.1 Reactor designer stability maps 
 
The following stability maps will be examined: 
 
Table 13 Stability maps P-controlled coolant temperature. 
Stability map Reference 
T versus Tcool Figure 23 
T versus UA Figure 24 

 
Table 14 Stability maps P-controlled coolant flowrate. 
Stability map Tcool,0 = 303 [K] Tcool,0 = 400 [K] Tcool,0 = 435 [K] 
T versus ΦV,cool Figure 28 

0 – 0.005 [m3 s-1] 
Figure 41 
0 – 0.02 [m3 s-1] 

Figure 42 
0 – 0.1 [m3 s-1] 

T versus Tcool Figure 43 - - 
T versus UA Figure 44 Figure 45 Figure 49 

 
Table 15 Stability maps P-controlled throughput. 
Stability map Reference 
T versus ΦV 
(Kc ≥ 0) 

Figure 50 

T versus ΦV 
(Kc ≤ 0) 

Figure 54 

T versus UA Figure 67 
 

9.1.1 Controlling the coolant temperature 
 
In the industry, the concept of master-slave control is often applied74 71 55 59. The main and deciding 
process variable (master) is often the yield of the reaction. Although eventually this quantity is deciding for 
the complete process, the determination of the magnitude is often very dilatory and therefore in general 
not the active manipulated controller variable, which preserves stability. Mostly, a CISTR with exothermic 
reaction is controlled through adjusting the degree of cooling (slave) which response is considerably 
faster. The coolant temperature in heat balance 3 expresses together with the cooling capacity the extent 
of cooling. The value of the cooling capacity UA is mostly fixed and determined during the design of the 
process. Commonly, cooling is realised through the application of cooling pipes or a cooling jacket. The 
coolant is pumped into the cooling device in which heat is transferred from the reactor content through the 
wall towards the coolant. To describe the temperature of the cooling fluid accurate, information is needed 
about the flowrate pattern and mixing behaviour, which in many cases is not available or incomplete. 
According to Ratto et.al.64 and Uppal et.al.75 the assumption is made that the coolant temperature is 
constant and can be constrained virtually instantaneously. This assumption is permitted in case the 
coolant flowrate is considerably large i.e. the average residence time of a coolant particle τcoolant is rather 
short compared to the average residence time τR of a particle in the CISTR: 
 

coolantR ττ >>  (44) 
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1. Reactor temperature versus cooling temperature 

 
 
Mathematical model 
 
Equations 2, 3 and 41 mathematically describe the proportional controlled base case in which the coolant 
temperature is manipulated. 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( )TTKTT spcspcoolcool −+= ,  (41) 
 
A designer stability map is created (Figure 23) in which the coolant temperature (set point) and the 
proportional gain are the active LOCBIF bifurcation parameters.  
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Figure 23 Reactor designer stability map of the coolant temperature proportional controlled base case model. The steady state 

reactor temperature is plotted as function of the coolant temperature (set point) in which the gain value Kc is varied.   
If Kc > 0.9 no limit cycles will exhibit. The LOCBIF source LOCBIF rhs 3 is included in Appendix 7. 

 
Discussion of the reactor designer stability map: 
 

• In case the proportional gain is increased, the equilibrium curves rotate clockwise and switch from 
region II towards stable region I in case Kc > 0.9. 

• Considered the base case coolant temperature, multiplicity does not occur over the examined 
range (410 ≤ Tcool < 470 [K]), which means that static instability will not take place, merely 
dynamical instability i.e. the occurrence of limit cycles. 
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• In Figure 23 the dotted line T=Tcool has been drawn which indicating the lowest possible reactor 
temperature. 

• Also previous stability map (Figure 19) demonstrated that in case Tcool > 469 [K] no limit cycles 
can appear. With regard to stability map (Figure 23) no limit cycles will emerge in case Tcool < 430 
[K] and Tcool > 469 [K] which are the acquired Hopf maximum values.  

 
Table 16 Hopf maximum of Figure 23. 
Variable Value Dimension 
Kc (max) 0.9 [-] 
Tcool (min) 430 [K] 
Tcool (max) 469 [K] 

 
 

2. Reactor temperature versus cooling capacity 
 
In this section, it will be demonstrated that increasing cooling capacity improves the stability of the 
process.  
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Figure 24 Reactor designer stability map of the proportional controlled base case model. The steady state reactor temperature 

is plotted as function of the cooling capacity in which the gain value Kc is varied. The base case shifts from region II to 
stable region I for Kc > 0.9. 

 
Discussion of the reactor designer stability map: 
 

• The subsequent stability map Figure 24, with active LOCBIF bifurcation parameters: UA and Kc, 
confirm that if UA > 78 [kJ s-1 K-1] in view of the base case coolant temperature Tcool = 441 [K], 
absolutely no limit cycles will occur. Compare this fact with the results retrieved from stability map 
Figure 19 in which for any arbitrarily Tcool a cooling capacity UA > 105 [kJ s-1 K-1] will prevent limit 
cycles completely. 

• A significantly large cooling capacity improves the overall stability of the process. This has been 
confirmed by Westerterp et.al.80 (§4.6). 

• Figure 23 and Figure 24 confirm that no limit cycles will occur if Kc > 0.9 (Figure 27). 
Nevertheless, too large UA forces the reactor temperature towards the coolant temperature 
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because the heat removal becomes significant. Therefore, a considerable cooling capacity 
combined with a suitable proportional gain can maintain sufficient stability. In this report it is not 
addressed whether or not a considerable cooling capacity is practically achievable. However, if 
the implementation of a suitable controller is conceivable, less cooling area A is needed which can 
yield a cost reduction. The choice of UA and Kc is up to the reactor designer and controller. 
Appendix 3 provides information about the required cooling pipes in case this cooling device is 
applied. 

• For the reactor designer, the stability map shows for one particular Kc in what extent the process 
can be changed and what the consequences are for the stability. Take for instance Kc = 1 which 
means stability. If the cooling capacity is decreased to for example 40 [kJ s-1 K-1] then the process 
is located in a dynamical unstable region. 

 
 
Orbit curves 
 
Orbit curves have been made for three increasing proportional gain values. Figure 25 shows that a relative 
small Kc value hardly has any effect on the appearing limit cycles. Increasing Kc slightly dims the 
overshoot (Figure 26) and finally increasing Kc will eradicate the limit cycles (Figure 27). The orbit 
simulations demonstrated that actually for a Kc = 0.9 the limit cycle is converted into a spiral point 
(consistent with Figure 27) which means stability. 
 
Table 17  Data regarding orbit curves for increasing Kc. 
Proportional gain 
Kc [-] 

Average reactor temperature 
T [K] 

Average conversion 
ζζζζ [-] 

Figure 

0.5 467 0.680 Figure 25 
0.8 467 0.686 Figure 26 
0.9 468 0.688 Figure 27 

 

   
Figure 25 Small Kc values do not affect 

the emerging limit cycles 
tremendously compared to 
not controlled base case 
according Figure 22. 

Figure 26 The proportional gain is not 
robust enough in which limit 
cycles still emerge. 

Figure 27 Kc = 0.9 determined from 
Figure 23 can hardly 
eliminate limit cycles. 

 
Moreover, the average conversion (Table 17) is slightly increased in case Kc rises. Figure 25 with the 
strongest limit cycles has a conversion approximately 1% lesser than the conversion of Figure 27.It is not 
clear if this is the result of inaccuracy of the LOCBIF simulations or this is due to the strong oscillations. 
 
 
Summarising 
 
A considerable large cooling capacity can contribute to the decline of limit cycles. In case UA > 78 [kJ s-1 
K-1] no limit cycles will emerge at all for the base case. Nevertheless, very large UA values push the 
reactor temperature towards the coolant temperature. Therefore, a considerable cooling capacity 
combined with a suitable proportional gain is required to preserve a stable system.  
A proportional controller, which affects the coolant temperature, assuming that the coolant temperature 
can be instantaneously constrained, can easily eliminate limit cycles. In this particular situation, it counts 
that the height of Kc determines the stability. The stability maps provide the information that for the specific 
base case situation a proportional gain: Kc > 0.9 is suitable to eliminate the self-sustained oscillations. For 
any other cooling capacity a Kc = 5.7 is enough for an absolute stable base case. 
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9.1.2 Controlling the coolant flowrate 
 
In many industrial processes, reactors in which exothermic chemical reactions take place are cooled 
continuously. The produced heat is removed from the reactor through for instance a cooling jacket or 
through a composition of cooling pipes. This section is concerned with the question if limit cycles can be 
prevented by applying a controller, which manipulates the cooling fluid flowrate. Although various 
procedures exist in which a reactor can be cooled e.g. cooling water, pressurised steam, reflux vaporiser 
etc., the objective of this report is to study the fundamental principles of the cooling effect on the CISTR 
stability, not the practical applied method. This implies that matters as ∆Hvap, are not concerned with if for 
instance heated water under pressure is assumed as cooling fluid. 
The coolant heat balance 12, which describes the coolant flowrate as function of the coolant temperature 
will be implemented in the existing mathematical base case model. The use of the cooling differential 
equation is justified if the coolant temperature is considered constant in the cooling device. If a liquid with 
no vapour is used in combination with a recycle stream, the latter assumption is justified. A major recycle 
stream means that a cooling fluid particle, which carries transferred heat, can be transported and replaced 
by the cold coolant feed in a very short time. If the recycle stream is large enough, a less significant 
temperature profile is then acquired, which has the advantage that the temperature of the coolant can be 
assumed equal. Stephanopoulos74 reports that a recycle stream improves the heat transfer in general. 
Furthermore, according to Shinskey71 the dynamical system response is improved, after the process 
controller has intervened. This is due to the faster coolant substitution i.e. less delay. Additionally Roffel68 
argued that the use of a recycle stream is practically indispensable. This is because if the coolant velocity 
becomes too small, heavy fouling can emerge. (In Appendix 5 more about the size of the recycle stream). 
The logarithmic temperature mean (expression 17) could be introduced to improve the model accuracy. 
Despite this improvement, ∆Tlog will not be considered in this report due to the implicit character of 
equation 17 which is not solvable in the bifurcation package LOCBIF. 
 
 
Mathematical model 
 
The base case mass and heat balance and the coolant temperature balance represented by respectively 
equations 2, 3, 12 and 42 describe the proportional controlled base case according: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( ) )(0,,,, coolcoolcoolcoolVcoolPcool
cool

coolcoolPcool TTUATTC
dt

dTVC −+−Φ= ρρ  (12) 

( )TTK spcspcoolVcoolV −−Φ=Φ ,,,  (42) 
 
Using the base case values printed in Table 9 the steady state coolant flowrate (set point) can be 
calculated with correlations 13 and 14. 
Moreover, there is one degree of freedom in the system model which is the inlet coolant temperature 
Tcool,0. To acquire knowledge regarding the influence of the inlet coolant temperature, three distinct values 
have been chosen: (Table 18). These values have been chosen arbitrary and vary from ‘cold’ to ‘average’ 
and ‘high’ in which for the latter no multiplicity is possible. 
Several reactor designer stability maps can provide useful information about the stability of this case. The 
active LOCBIF parameters are: the coolant flowrate (set point) and the proportional gain Kc. 
It is however, possible that the controller calculates negative coolant flowrate values, which in fact means 
that heat is generated (perpetual mobile). Therefore, restrictions have been implemented In the LOCBIF 
models (ΦV,cool ≥ 0). Practically this should mean that the coolant throughput supply is halted temporarily. 
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Table 18 Coolant flowrate. 
Tcool,0 [K] ΦΦΦΦV,cool [m3 s-1] 
303 0.00241 
400 0.00811 
435 0.05540 
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Figure 28 Reactor designer stability map. Proportional controlled coolant flowrate. Tcool,0 = 303 [K]. Active LOCBIF bifurcation 

parameters: ΦV,cool (set point). Kc > 0.00025 [m3 s-1 K-1] (Hopf maximum) means more stability. Fold maximum Kc > 
0.000067 [m3 s-1 K-1]. 

 
Discussion of the reactor designer stability map: 
 

• The equilibrium curves in stability map (Figure 28) rotate counter clockwise if the proportional gain 
is increased. The existence of multiplicity in the stability map (Figure 28) is conspicuous. 

• In case Kc > 0.000067 [m3 s-1 K-1] i.e. Fold maximum, the hazard for multiplicity near the base 
case situation is reduced. Nevertheless, still extinction is possible although Figure 28 does not 
provide that information. 

• If Kc > 0.00025 [m3 s-1 K-1] i.e. Hopf maximum, the equilibrium curves traverse region I instead of 
region II which implies that stability is possible. Through the following orbit curves, this will be 
demonstrated. 

• The marking process i.e. region I, II and III in Figure 28 must be interpreted with caution. Because 
extinction is always possible in the system is large disturbed. Then, region I indicates actually a 
region III. In case a region is indicated as region I this implies that stability is possible, even if the 
process it slightly disturbed, however it must be considered with caution.  

 
Orbit curves 
 
Orbit curves have been created for increasing Kc values for both the reactor temperature and the coolant 
flowrate. Concerning the first orbit curve (Figure 29) no controller action is applied and a strong limit cycle 
system should be expected due to the fast temperature rise (like Figure 22). Nevertheless, due to the 
existence of multiplicity, the reactor temperature is in fact attracted towards a higher steady state value 
after the first peak and the limit cycles disappear. Figure 32 is the accompanying coolant flow flowrate 
curve, which shows that the coolant flowrate remains at the same value, which is obvious because the 
controller does not intervene. 
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Figure 29 Kc = 0 [m3 s-1 K-1].            

∆T = 0 [K] transition to 
higher steady state. 

Figure 30 Kc = 0.00006 [m3 s-1 K-1] 
derived from equation 13. 
∆T = 0 [K] extinction. 

Figure 31 Kc = 0.00019 [m3 s-1 K-1]. 
∆T = 0 [K]. Instability and 
extinction. 

 

   
Figure 32 Kc = 0 [m3 s-1 K-1]. ∆T = 0 

[K] Coolant flow is not 
adjusted. 

Figure 33 Kc = 0.00006 [m3 s-1 K-1] 
derived from equation 13. 
∆T = 0 [K] extinction. 

Figure 34 Kc = 0.00019 [m3 s-1 K-1]. 
∆T = 0 [K]. Instability and 
extinction. 

 
Using equation 13 a first approximation can be made to determine the proportional gain: Kc = 0.00006 [m3 
s-1 K-1]. Figure 30 clearly shows that with this Kc the proportional controller is not robust enough to restrict 
the evolving limit cycles. After the first peak, which in fact is a limit cycle, transition towards another steady 
state is inevitable causing i.e. extinction. In the stability map Figure 28, for this particular Kc value, the 
multiple steady states are visible. The latter can be explained because the flowrate manipulation is not 
accurate. The initial temperature rise has to be repressed through increasing the coolant flowrate. This 
has the consequence that the reactor temperature drops distinguished. To halt the temperature decline, 
the proportional gain of Figure 30 and Figure 33 is not robust enough resulting in extinction i.e. too much 
heat has removed from the system. If Kc is increased, Figure 31 shows that still the proportional gain is not 
powerful enough to suppress the self-sustained oscillations (Figure 34). After approximately two hours, the 
overshoot is considerably enlarged and the temperature is again attracted to a lower steady state i.e. 
extinction towards the feed temperature. Again increasing Kc means stability, nonetheless small 
temperature limit cycles emerge and considerable for the manipulated coolant flowrate (Figure 35). If for 
the same Kc value a disturbance is constrained, due to the large overshoot extinction is inevitable (Figure 
36 and Figure 39).  
 

   
Figure 35 Kc = 0.0002 [m3 s-1 K-1].   

∆T = 0 [K]. Limit cycles. 
Figure 36 Kc = 0.0002 [m3 s-1 K-1].    

∆T = +10 [K]. Extinction T 
→ T0. 

Figure 37 Kc = 0.00025 [m3 s-1 K-1]. 
∆T = +10 [K]. Spiral point. 
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Figure 38 Kc = 0.0002 [m3 s-1 K-1]    

∆T = 0 [K]. Limit cycles. 
Figure 39 Kc = 0.0002 [m3 s-1 K-1].    

∆T = +10 [K]. Extinction T 
→ T0. 

Figure 40 Kc = 0.00025 [m3 s-1 K-1]. 
∆T = +10 [K]. Spiral point. 

 
A proportional gain larger than the Hopf maximum accomplishes a stable system after a step disturbance 
(Figure 37). The controlled coolant flowrate varies however extraordinary (Figure 40) and besides has to 
be halted for a particular period. Proportional controlling the coolant flowrate can provide a stable process. 
However, the severe coolant flowrate variation is disputed. Consider a recycle stream which is applied 
with a recycle flow which is 10 times the throughput (Appendix 5), the maximum fluid velocity after t ≈ 4 
[min] (Figure 40) becomes vcool =1.2 [m s-1] which is permitted. 
 
The next stability map (Figure 41) with a less cooler inlet coolant temperature Tcool,0 = 400 [K] is basically 
similar to the Figure 28. The main difference is the range on the abscissa, which is obvious because in 
case the coolant temperature is higher, the temperature difference is smaller; consequently, more coolant 
throughput is required to transfer the surplus heat. 
 

410

420

430

440

450

460

470

480

490

500

510

0.000 0.005 0.010 0.015 0.020

Coolant flowrate (set point) [m3/s]

Re
ac

to
r t

em
pe

ra
tu

re
 [K

]

Fold

Hopf

Tcool

Kc=1

Kc=0.1

Kc=0.01

Kc=0.005

Kc=0.001

Kc=0.0005

Kc=0.0002

Kc=0.0001

Kc=0.000075

Kc=0.00005

Kc=0.000025

Kc=0.00001

Kc=0.000001

Kc=0

Fold

Fold

Hopf

Hopf
�����������������������
�����������������������Equilibrium

I

Base case

II

III

Tcool

Kc

III

Kc

I
III

 
Figure 41 Reactor designer stability map. Proportional control on coolant flowrate. Tcool,0 = 400 [K]. Active parameters: ΦV,cool 

(set point) and Kc. Hopf maximum Kc > 0.00078 [m3 s-1 K-1]. Fold maximum Kc > 0.00026 [m3 s-1 K-1]. 
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Discussion of the reactor designer stability map: 
 

• The equilibrium curves in Figure 41 rotate likewise counter clockwise if the proportional gain is 
increased. The existence of multiplicity in Figure 28 is evident. 

• In case Kc > 0.00026 [m3 s-1 K-1] i.e. Fold maximum, multiplicity is less dangerous because the 
controller cooling is stronger and prevent too large overshoot caused by the limit dynamical 
instability. If Kc > 0.00078 [m3 s-1 K-1] i.e. Hopf maximum, region II in which limit cycles emerge, is 
excluded. The gain is apparently large enough to restrict the limit cycles. Nevertheless, large 
external disturbances can always cause the transition towards the lower steady state. 

• The equilibrium curves intersect regions I and III. Once again, region I implies that the controller 
can stabilise the process accurately, although extinction remains thinkable possibility in case of 
large perturbations. Region III refers to extinction. 
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Figure 42 Reactor designer stability map. Proportional control on coolant flowrate. Tcool,0 = 435 [K]. Active bifurcation 

parameters: ΦV,cool (set point) and Kc. Hopf maximum Kc > 0.012 [m3 s-1 K-1]. No multiplicity is involed. 
 
Discussion of the reactor designer stability map: 
 

• If the inlet coolant temperature is enlarged to Tcool,0 = 435 [K], multiplicity near the base case value 
which has formerly been found in (Figure 19), is not an issue according to Figure 42.  
Nevertheless, due to the relatively small temperature difference between the reactor temperature 
and the coolant temperature, a considerable coolant throughput is needed to cool the reactor i.e. 
about 20 times larger than Figure 28 Tcool,0 = 303 [K]. Despite the advantage that multiplicity is 
less prominent, too large fluid velocity in the cooling apparatus can be an impediment. 

• Differential equation 12 describes the dynamical behaviour of the coolant temperature in which 
the assumption has been made that the temperature difference between the coolant inlet and exit 
is negligible. This assumption is merely acceptable if a recycle stream is involved in which the 
recycle flow is several times the throughput. If due to the minor temperature difference a large 
coolant throughput is needed and additionally a substantial recycle stream is required, the coolant 
velocity can practically be too large. 

• Finally, LOCBIF noticed the Hopf maximum Kc = 0.012 [m3 s-1 K-1], which means that larger values 
involve stability and no hazard of extinction is possible because no multiplicity is involved. 
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Table 19 Proportional gain values P-control coolant flowrate. 
Description Tcool,0 = 303 [K] Tcool,0 = 400 [K] Tcool,0 = 435 [K] 
Fold maximum Kc > 0.00067 [m3 s-1 K-1] Kc > 0.00026 [m3 s-1 K-1] Not existing: no multiplicity 
Hopf maximum Kc > 0.00025 [m3 s-1 K-1] Kc > 0.00078 [m3 s-1 K-1] Kc > 0.012 [m3 s-1 K-1] 

 
 
Summarising 
 
On the one hand, a low inlet coolant temperature has the advantage that superfluous heat can be 
withdrawn from the reactor very easy and that coolant fluid velocities are not too large. The disadvantage 
is that multiplicity in case of improper proportional control can be inevitable, in particular, if the process is 
considerable disturbed. On the other hand, a rather high inlet coolant temperature has the advantage that 
multiplicity is less dangerous, but in combination with a recycle stream, too large coolant fluid velocities 
can be a hindrance. Therefore, the choice of reactor designer for Tcool,0, Depends greatly on the safety of 
the process and in second place on economic aspects e.g. reproduction of heat. 
 
 
Comparison coolant temperature and coolant flowrate control  (T0=303 K) 
 
In previous paragraph, the stability map (Figure 23) for coolant temperature control has been drawn with 
active parameters Tcool and Kc. In this chapter, in which coolant flowrate is concerned with, the same 
stability map is drawn to investigate the effect of the introduction of the extra differential equation 36. The 
implementation implies that multiplicity is probable. The latter is not the case in case the coolant 
temperature proportional is controlled.  
 

410

420

430

440

450

460

470

480

490

500

510

410 420 430 440 450 460 470

Coolant temperature (set point) [K]

Re
ac

to
r t

em
pe

ra
tu

re
 [K

]

Fold

Hopf

T=Tcool

Kc=1

Kc=0.1

Kc=0.01

Kc=0.005

Kc=0.001

Kc=0.0005

Kc=0.0002

Kc=0.0001

Kc=0.000075

Kc=0.00005

Kc=0.00001

Kc=0.000025

Kc=0.000001

Kc=0

Fold

Fold

Hopf

Hopf

�������������������������
Equilibrium

Base case

III

Kc

III

I

III

III

I Kc

 
Figure 43 Reactor designer stability map. Proportional control on coolant flowrate. Tcool,0 = 303 [K]. Active LOCBIF bifurcation 

parameters: Tcool (set point) and Kc. Hopf maximum Kc > 0.00025 [m3 s-1 K-1]. Fold maximum Kc > 0.000079 [m3 s-1 
K-1]. Compare this stability map with Figure 19. The LOCBIF source LOCBIF rhs 5 is included in Appendix 7. 
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Discussion of the reactor designer stability map: 
 

• Figure 43 show clearly that for Kc < 0.000079 [m3 s-1 K-1] more steady state solutions are possible. 
• The main difference between Figure 23 and Figure 43 is the shape or trajectory of the drawn 

equilibrium curves. In case of coolant temperature control, increasing the proportional gain causes 
the equilibrium curves to move towards the stable region and prevents the occurrence of limit 
cycles. In case of coolant flowrate control, the risk for multiplicity is always a point of concern, 
despite a dynamically stable behaviour. The stable and unstable regions in Figure 23 are very 
clear in contrast to Figure 43 in which, due to multiplicity, these regions are more complicated to 
interpret. 

• According to Figure 23 the (Hopf) maximum Tcool = 469 [K]. Beyond this coolant temperature, 
instability is impossible. According Figure 43 this maximum is considerable higher: Tcool = 477 [K]. 
Again, this can be explained through the fact that, in case of coolant temperature control 
multiplicity can cause instability, which is not possible if the coolant temperature is controlled i.e. 
only limit cycles. 

 
 
Reactor temperature versus coolant capacity (T0=303 K) 
 
In previous chapters, it has been found that the cooling capacity, in combination with a suitable 
proportional gain, has a stabilising effect on the dynamical behaviour of the concerned base case process.  
The following stability maps, in which the coolant inlet temperature is varied, respectively Figure 44, 
Figure 45 and Figure 49 will be examined. 
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Figure 44 Reactor designertability map. Proportional control on coolant flowrate. Tcool,0 = 303 [K]. Active parameters: UA and Kc. 

Hopf maximum Kc > 0.00025 [m3 s-1 K-1]. Fold maximum Kc > 0.000079 [m3 s-1 K-1]. UAmax = 78 [kJ s-1 K-1]. 
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Discussion of the reactor designer stability map: 
 

• In Figure 44 the equilibrium curves rotate counter clockwise if the proportional gain is increased. 
In this stability map the existence of multiplicity is visible. 

• In case Kc > 0.00025 [m3 s-1 K-1] a dynamically stable system is possible. Nevertheless, extinction 
is still probable if the appropriate proportional gain is not used. 

• Suppose that the reactor designer decides to change the set point reactor temperature, through 
following the equilibrium curves the consequences regarding the stability can be determined. 

• In case UA > 79 [kJ s-1 K-1] stability is more certain, although in case of large disturbances, 
extinction still is a risk, besides the disadvantage of the economical aspects of the application of 
large cooling capacity. A suitable combination of UA and Kc is required. 

 
Table 20 Survey stability P-control coolant flowrate. Tcool,0 = 303 [K]. 
Cooling capacity [kJ s-1 K-1] Dynamical behaviour Explanation 
0 ≤ UA < 15 Not existing  UA of the reactor > 0 
15 ≤ UA < 65 Dangerous region Multiplicity can disturb the stability 
65 ≤ UA < 78 Moderate safe region Stability if Kc > Kc (Hopf) 
UA > 78 Stable region, no limit cycles Stability if Kc > Kc (Hopf) 

 
 
Reactor temperature versus cooling capacity (T0=400 K) 
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Figure 45 Reactor designer stability map. Proportional control on coolant flowrate. Tcool,0 = 400 [K]. Active parameters: UA and 

Kc. Hopf maximum Kc > 0.00078 [m3 s-1 K-1]. Fold maximum Kc > 0.00026 [m3 s-1 K-1]. UAmax = 79 [kJ s-1 K-1]. 
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Discussion of the reactor designer stability map: 
 

• Like, Figure 44 the equilibrium curves in Figure 45 rotate counter clockwise if the proportional gain 
is increased. In case Kc > 0.00078 [m3 s-1 K-1] a dynamically stable system is possible. 

• In Figure 45 in case Kc > 0.00026 [m3 s-1 K-1] (Fold maximum) it seems that the cooling capacity is 
limited UAmin ≈ 22 [kJ s-1 K-1]. For the base case temperature T = 468 [K] this is the minimum 
attainable cooling capacity. 

• Apparently, as the inlet coolant temperature is increased the minimum cooling capacity shifts 
upwards. 

• In case UA > 79 [kJ s-1 K-1] stability is more certain, although in case of large disturbances, 
extinction still can emerge. 

 
Table 21 Survey stability P-control coolant flowrate. Tcool,0 = 400 [K]. 
Cooling capacity [kJ s-1 K-1] Dynamical behaviour Explanation 
0 ≤ UA < 15 Not existing  UA of the reactor > 0 
15 ≤ UA < 22 Not existing Minimum Hopf UA for base case 
22 ≤ UA < 56 Dangerous region Multiplicity can disturb the stability 
56 ≤ UA < 78 Moderate safe region Stability if Kc > Kc (Hopf) 
UA > 78 Stable region, no limit cycles Stability if Kc > Kc (Hopf) 

 
 
Orbit curves 
 
The influence of UA on the stability is demonstrated through of the following orbit curves with equal Kc 
value and varying UA values. In Figure 46, UA = 45 [kJ s-1 K-1] the proportional gain is not powerful 
enough resulting in exhibiting limit cycles. If the cooling capacity is increased to the base case value, the 
cooling capacity is considerably large i.e. much more heat can be transferred, however the overshoot 
cannot be restrained, which causes the reaction to extinguish. (Figure 47). If the cooling capacity is even 
larger, the overshoot can be shortened, in which the transition towards the lower steady state is excluded 
(Figure 48). 
 

   
Figure 46 Tcool,0 = 400 [K], Kc = 0.001 

[m3 s-1 K-1], UA = 45 [kJ s-1 
K-1], ∆T = +10 [K]. Limit 
cycles. 

Figure 47 Tcool,0 = 400 [K], Kc = 0.001 
[m3 s-1 K-1], UA = 55 [kJ s-1 
K-1], ∆T = +10 [K]. Extinction 
T → T0. 

Figure 48 Tcool,0 = 400 [K], Kc = 0.001 
[m3 s-1 K-1], UA = 95 [kJ s-1 
K-1], ∆T = +10 [K]. Stable 
system. 
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Reactor temperature versus cooling capacity (T0=435 K) 
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Figure 49 Reactor designer stability map. Proportional control on coolant flowrate. Tcool,0 = 435 [K]. Active parameters: UA and 

Kc. Hopf maximum Kc > 0.012 [m3 s-1 K-1]. UAmax = 83 [kJ s-1 K-1]. 
 
Discussion of the reactor designer stability map: 
 

• In Figure 49 for the base case temperature the minimum cooling capacity is UAmin ≈ 46 [kJ s-1 K-1]. 
This means that for lower UA values, the reactor temperature increases distinctive, no matter the 
proportional gain and strong limit cycles occur. 

• In Figure 49 it is evident that multiplicity near the base case value is not anymore concerned. 
Increasing the proportional gain again rotates counter clockwise the equilibrium curves. In case Kc 
> 0.012 [m3 s-1 K-1] the system behaves dynamically stable. 

• In case UA > 83 [kJ s-1 K-1] stability is guaranteed. 
 
Table 22 Survey stability P-control coolant flowrate. Tcool,0 = 435 [K]. 
Cooling capacity [kJ s-1 K-1] Dynamical behaviour Explanation 
0 ≤ UA < 15 Not existing  UA of the reactor > 0 
15 ≤ UA < 46 Not existing Minimum Hopf UA for base case 
46 ≤ UA < 82 Moderate safe region Stability if Kc > Kc (Hopf) 
UA > 82 Stable region, no limit cycles Stability if Kc > Kc (Hopf) 

 
Table 20, Table 21 and Table 22 provide a survey of the dynamical behaviour for several cooling inlet 
temperatures. A system that appears to be stable can become unstable after a considerable perturbation. 
Therefore, these tables have to be examined with caution. 
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9.1.3 Controlling the throughput 
 
In the process industry where one aims to operate at maximum yield, where primarily the process 
conditions based on process design are in general fixed, it is not likely that tremendous changes in 
flowrate are permitted. In case slight changes (i.e. in between a range of a few per cent) are allowable, it 
can be interesting to study if the residence time or throughput control can contribute to the possibilities of 
eliminating limit cycles. 
 
 
Mathematical model 
 
Equations 2 and 3 are similar regarding coolant temperature control, except the controller correlation 43: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( )TTK spcspVV −±Φ=Φ ,  (43) 
 
Both the possibilities will be examined i.e.: Kc > 0 and Kc < 0. 
 
 
Comparison coolant temperature and flowrate control 
 
The main difference between coolant temperature control and flowrate control is explained by the fact that 
changing the coolant temperature affects directly the heat balance, which has, due to the fact that the 
balances are coupled, indirectly consequences for the conversion. Flowrate alteration affects both directly 
the heat and mass balance. It changes the existing situation in the CISTR whereas the coolant 
temperature can be seen more as an external parameter. Cooling a reactor by decreasing the coolant 
temperature mainly implies a larger driving force to heat transfer. Controlling a reactor for instance by 
increasing the flowrate will on the one hand decrease the reactor temperature due to the supply of cold 
feed flow, but on the other hand it will increase the reactor temperature due to the increasing heat 
production by the chemical reaction. Thereby, flowrate control is more complicated due to the existence of 
multiplicity, which is not the case for coolant temperature control regarding the base case. This role of 
multiplicity will be demonstrated in a later stadium in this chapter. Although the mathematical description 
does not differ, the impact on the reactor temperature and conversion is considerably different. 
 
 
Positive Kc value 
 
The controller equation becomes: 
 

( )TTK spcspVV −+Φ=Φ ,  (43a) 
 
A reactor designer stability map is created (Figure 50) applying positive proportional gain values (Kc > 0). 
The active bifurcation parameters are: the flowrate (set point) and the proportional gain. 
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Figure 50 Reactor designer stability map proportional controlled flowrate (Kc > 0). The considered base case model exhibiting 

limit cycles cannot be controlled satisfactorily due to unstable regions in the vicinity of the base case. The region II 
in fact is a III region because too large Kc values can cause the reaction to extinct, however for low Kc values limit 
cycles exhibit. Hopf maximum Kc = 0.000125 [m3 s-1 K-1]. 

 
Discussion of the reactor designer stability map: 
 

• In case the proportional gain is increased, the equilibrium curves rotate a little clockwise. 
• In view of the controlled flowrate, multiplicity is of significance over the entire range (0 ≤ ΦV < 0.01 

[m3 s-1]), which is clearly visible in the stability map because of the equilibrium curves. 
• The equilibrium curves alter due to the increased proportional gain nevertheless cannot prevent 

the process to behave unstable. No region I can be observed. 
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Orbit curves 
 
Considered positive Kc values the following orbit curves have been drawn to demonstrate that for Kc > 0 
throughput control is not applicable. 
 
 

   
Figure 51 Kc = 0.00007 [m3 s-1 K-1].   

The proportional controller 
can’t eradicate the evolving 
limit cycles. 

Figure 52 Kc = 0.00007 [m3 s-1 K-1].     
The flowrate varies 
exceedingly which is 
presumable unwanted. 

Figure 53 In case the controller gain is 
slightly increased towards Kc 
= 0.00008 [m3 s-1 K-1] the 
reaction extinguishes. 

 
Using the steady state solution of the mass and heat balance 2 and 3, a proportional gain can be 
estimated: Kc = 0.00007 [m3 s-1 K-1]. Apparently, this value is too small to elucidate the limit cycles, which 
is confirmed through Figure 51. A larger Kc however cannot achieve the desired steady state; actually, a 
steady state with a much lower conversion is reached (Tcool) (Figure 53). Figure 52 displays the eminent 
variation of the throughput, which is in industrial process unacceptable. 
 
The question arises: “Why can’t the process be controlled?” In case a disturbance occurs, due to external 
factors or due to the self-sustained oscillations, the proportional controller determines the corrected 
flowrate, which should adapt the process towards the set point. On the one hand, a large Kc value is 
required to repress the evolving limit cycles causing overshoot. On the other hand, small Kc values are 
inevitable to regulate the process mildly and not to disrupt the actual process. Too rigorous flowrate 
variations, however causes the process to jump (attract) to other steady state situations. In case too less 
heat is withdrawn runaway occurs and if the throughput is too large the reaction extinguishes called  the 
blow-out velocity (Fogler26). 
Based on stability map (Figure 50) and displayed orbit curves one can conclude that it is dissuadable to 
control the base case applying a proportional controller with positive values for Kc. 
 
 
Negative Kc value 
 
Using the steady state solution of the mass and heat balance 2 and 3, a proportional gain can be 
estimated:  Kc = -0.0007 [m3 s-1 K-1]. Therefore, due to the negative sign equation 43 changes into: 
 

( )TTK spcspVV −−Φ=Φ ,  (43b) 
 
A new stability map (like Figure 50 for Kc > 0) is created for Kc < 0 (Figure 67). 
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Figure 54 Reactor designer stability map. Proportional controlled flowrate (Kc < 0). Hopf maximum Kc = 0.000125 [m3 s-1 K-1]. 

The region marked II is actually a region III because the limit cycles can cause extinction or runaway but is marked 
with II because the base case exhibits limit cycles in case no controller is interfering. 

 
Discussion of the reactor designer stability map: 
 

• The Hopf and Fold curves are similar like Figure 50. 
• The equilibrium curves rotate counter clockwise in case the proportional gain is increased. 
• A particular small region marked I is found which implies that the process may behave stable. The 

consequences are that the desired set point T = 468 [K] cannot be maintained, through following 
the equilibrium curves. If however, it is not allowed to change this temperature, one has to accept 
a lower conversion. ζ = 0.47 instead of ζ = 0.69. 

 
Orbit curves 
 
For region I in Figure 54 the dynamical behaviour is studied. A proportional gain Kc = 0.000124 [m3 s-1 K-1] 
slightly smaller than the Hopf maximum value Kc = 0.000125 [m3 s-1 K-1] clearly shows limit cycles (Figure 
55). The maximum Hopf Kc value (Figure 56) shows that the process behaves stable after a step 
disturbance of ∆T = 10 [K] through a spiral point, nevertheless with higher temperature and conversion. 
Conversely, Kc is not large enough to maintain the set point steady state. Increasing Kc results in the first 
place runaway (Figure 57) and subsequently realises stability (Figure 58). Very large Kc values with a 
positive temperature disturbance preserve the stability and the desired set point (Figure 59). However, in 
case the disturbance is negative, it is apparent that Kc causes the temperature to drop to the coolant 
temperature (Figure 60). 
 



 

  54 

   
Figure 55  Kc = 0.000124 [m3 s-1 K-1] 

and ∆T = 10 [K]. A limit 
cycle evolves around a 
different steady state. 

Figure 56 Kc = 0.000125 [m3 s-1 K-1]  
and ∆T = 10 [K]. The system 
is stable (spiral point) but 
jumps to a higher steady state 
i.e. T → 524 [K]. ζ = 0.92. 

Figure 57 Kc = 0.00139 [m3 s-1 K-1]    
and ∆T = 10 [K]. Slightly 
higher Kc values cause 
runaway. T → 774 [K]. 

 

   
Figure 58 Kc = 0.00140 [m3 s-1 K-1]. 

Step disturbance ∆T = 10 [K]. 
The process behaves stable. 
However with a lower 
conversion ζ = 0.47 instead 
of ζ = 0.69. 

Figure 59  Kc = 0.01 [m3 s-1 K-1].               
If ∆T = 10 [K] stable system, 
nevertheless the set point T 
can be maintained, not the 
conversion. 

Figure 60 Kc = 0.01 [m3 s-1 K-1].        
Step disturbance ∆T = -10 
[K]. The process behaves 
unstable. The temperature 
drops to the coolant 
temperature due to the too 
rigorous control. 

 
Figure 60 demonstrated another complication. It is remarkable that a disturbance ∆T = +10 [K] (Figure 59) 
can be controlled, however it makes the system to extinguish in case ∆T = -10 [K] as is illustrated in 
Figure 60. The sign of the offset is evidently decisive. In case the offset > 0 the reaction appears to 
extinguish (T → Tcool) i.e. the controllers manipulates with the wrong sign, the same phenomenon as in 
case Kc > 0. If the sign is reverse, the controller will decrease the flowrate causing temperature drop 
eventually until the coolant temperature is reached (extinction). Because ΦV → 0 the controller cannot 
anymore manipulate (multiply) the flowrate and the reactor is actually halted. 
 
Modification: 

• Downwards approaching temperature disturbance i.e. offset < 0: sign > 0. 
• Upwards approaching temperature disturbance i.e. offset > 0: sign < 0. 

 
Disadvantage of this trick is the virtually endless converging process around the set point. Nonetheless, 
an adaptation in the LOCBIF source achieves Figure 60 to become like Figure 59. 
The problems caused by the sign of the offset can be solved using a gimmick but is not a very 
scientifically solution. A controller with knowledge of the process in which the Kc value is fitted to the 
particular situations e.g. (Kc < 0 / Kc > 0) or (Kc robust / Kc gentle) can help to improve the controlling 
procedure. In this case, non-linear process control could be an option. 
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Conversion versus reactor temperature 
 
If not the reactor temperature but the base case conversion has to be remained, the proportional controller 
equation becomes: 
 

( )ζζ −−Φ=Φ spcspVV K,  (45) 
 
The controller changes the flowrate to acquire a base case conversion ζ = 0.68 which has the corollary 
that the reactor temperature decreases and finally another steady state is reached.  
 
 
Orbit curves 
 
Orbit curves will be created applying controller equation 45. Due to proportional control, steady state offset 
however is inevitable. 
 
Table 23 Stability maps P-control throughput. 
Proportional 
gain 
Kc [m3 s-1] 

Final 
conversion 
ζζζζ [-] 

Final reactor 
temperature 
T [K] 

Final 
flowrate 
ΦΦΦΦV [m3 s-1] 

Dynamical 
behaviour 

Reference 

5 × 10-6  ζaverage → 0.84 Taverage → 464 0.0027 Limit cycles Figure 61, Figure 62 
6 × 10-6 0.72 454 0.0021 Spiral point Figure 63, Figure 64 
10 × 10-6 0.91 444 0.0003 Asymptotic damping Figure 65, Figure 66 

 
Figure 61 demonstrates that the proportional controller is not powerful enough to eradicate emerging limit 
cycles. Both conversion and temperature (Figure 62) still exhibits sustained oscillations. Increasing Kc 
implies stability (Figure 63 and Figure 64) nevertheless with an offset. The conversion finally becomes ζ = 
0.72 [-] with an accompanying temperature T = 454 [K]. 
 

   
Figure 61 Kc = 5 × 10-6 [m3 s-1]. Figure 62 Kc = 6 × 10-6 [m3 s-1]. Figure 63 Kc = 1 × 10-5 [m3 s-1]. 

   
Figure 64 Kc = 5 × 10-6 [m3 s-1]. Figure 65 Kc = 6 × 10-6 [m3 s-1]. Figure 66 Kc = 1 × 10-5 [m3 s-1]. 
 
If throughput control is applied, the reactor designer and controller have to decide which process variable 
(temperature or conversion) is decisive.  

0.0
0.2
0.4
0.6
0.8
1.0

0 3600 7200 10800

Time [s]

C
on

ve
rs

io
n 

[-
]

400

500

600

700

0 3600 7200 10800

Time [K]

Te
m

pe
ra

tu
re

 [K
]

0.0
0.2
0.4
0.6
0.8
1.0

0 3600 7200 10800

Time [s]

C
on

ve
rs

io
n 

[-
]

400

500

600

700

0 3600 7200 10800

Time [s]

Te
m

pe
ra

tu
re

 [K
]

400

500

600

700

0 3600 7200 10800

Time [s]

Te
m

pe
ra

tu
re

 [K
]

0.0
0.2
0.4
0.6
0.8
1.0

0 3600 7200 10800

Time [s]

C
on

ve
rs

io
n



 

  56 

 
Reactor temperature versus cooling capacity 
 
A significant large cooling capacity can have a positive effect on the stability of the process. The study to 
the not controlled base case resulted in a stable region, in which no limit cycles exhibit, in case UA > 78 
[kJ s-1 K-1] viewed in Figure 24. Hence the effect of the cooling capacity is examined for the base case + 
proportional controller on the flowrate. A stability map is created regarding active parameters, which are 
the proportional gain and the cooling capacity resulting in Figure 67. 
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Figure 67 Reactor designer stability map. Proportional controlled flowrate. Hopf maximum UA > 84 [kJ s-1 K-1]. Fold maximum Kc 

= 1.05 ×10-4 and Fold minimum Kc = 2.2 ×10-4 [m3 s-1 K-1].  
 
Discussion of the reactor designer stability map: 
 

• The 3D effect is here clearly visible, therefore, 
• In case the proportional gain is increased, the equilibrium curves at first rotate clockwise until Kc = 

0.00838 [m3 s-1 K-1] then the equilibrium curves are indented and resemble a parabolic shape. It is 
apparent to perceive in Figure 67 that more than one steady state solution is possible and 
definitely with respect to the base case. 

• Multiplicity is of significance over the entire examined range. Therefore, the region marked with I 
must be considered with the knowledge that runaway or extinction is probable in case an external 
disturbance is eminent. In case the simulation is started from the base case steady state situation, 
the system behaves stable. 

• In the contrary, to the stability maps formerly created in, (e.g. Tcool control) in which the stable 
region could be marked clearly, is in case of flowrate control due to the prominent existing of 
multiplicity much more complicated. A specific chosen Kc could mean that a point is stable 
throughout the perspective of the base case, however can make a system to become unstable in 
case a external disturbance is imposed. 

• LOCBIF found the Hopf maximum for UA = 73 [kJ s-1 K-1], which is almost the same value UA = 
75 [kJ s-1 K-1] as for coolant temperature control (Figure 24) which has formerly been found. 



 

  57 

 
Orbit curves 
 
If the cooling capacity UA = 73 [kJ s-1 K-1] derived from the Hopf maximum value. Limit cycles appear in 
case no controller is correcting (Figure 68). In case Kc is increased the limit cycles are visibly shrinking 
(Figure 69). For slightly larger Kc values limit cycles, vanish (Figure 70). 
 

   
Figure 68 UA = 73 [kJ s-1 K-1]           

Kc = 0 [m3 s-1 K-1].            
∆T = 10 [K]. Limit cycles.   
ζ = 0.50, T = 452 [K]. 

Figure 69 UA = 73 [kJ s-1 K-1]              
Kc = 3 ×××× 10-5  [m3 s-1 K-1].   
∆T = 10 [K]. Fading limit 
cycles. ζ = 0.52, T = 452 [K]. 

Figure 70 UA = 73 [kJ s-1 K-1].             
Kc = 3.1 ×××× 10-5  [m3 s-1 K-1]. 
∆T = 10 [K]. Spiral point.     
ζ = 0.53, T = 451 [K]. 

 
With the base case cooling capacity UA  = 55 [kJ s-1 K-1], stability can be acquired if Kc > 0.002 [m3 s-1 K-1] 
although with lower conversion. The choice of the proportional gain must be done with caution in 
consideration of instability. 
 
 
Summarising 
 
Based on the stability map and orbit curves it can be noted that proportional control is possible. 
Nevertheless, suitable choice of the proportional gain is necessary to avoid unstable situations. The 
acquired Kc values through the bifurcation software program LOCBIF can merely indicate that Kc must be 
strong enough to exclude the self-sustained limit cycles but cannot be too large to prevent instability due 
to the existence of multiplicity. The choice has to be made to, or to preserve the reactor temperature or the 
conversion. In case the proportional controller is applied which regulated the throughput, both cannot 
simultaneously be maintained. An advanced controller with knowledge of the process device is therefore 
recommended. With regards to the cooling capacity, larger UA values have a stabilising effect. The 
LOCBIF source LOCBIF rhs 7 is included in Appendix 7. 
 

9.2 Reactor controller stability map 
 
The following stability maps will be examined: 
 
Table 24 Reactor controller stability maps P-control. 
Stability map Reference 
Kc versus UA Controlling Tcool Figure 71 
Kc versus UA Controlling ΦV,cool Figure 72 
Kc versus UA Controlling ΦV Figure 73 
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9.2.1 Controlling the coolant temperature 
 
Mathematical model 
 
The mathematical model with regards to the coolant temperature P-controlled base case states: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( )TTKTT spcspcoolcool −+= ,  (41) 
 
A very distinct stability map can be created using active LOCBIF bifurcation parameters UA and Kc 
resulting in Figure 71.  
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Figure 71 The reactor controller stability map of the proportional controlled base case model. To obtain a stable process, a 

larger proportional gain has to be chosen in case UA decreases. UAmax (Hopf) = 78 [kJ s-1 K-1] and Kc, max = 5.7 [-]. 
 
Discussion of the reactor controller stability map: 
 

• The same Hopf maximum can be found values as for the reactor designer stability map Figure 24. 
• The stability map shows that Kc decreases when the cool capacity increases. 
• The dotted line represents the UA pertaining to the reactor with no cooling pipes. Through Figure 

71, the maximum required proportional controller gain could accordingly be derived. If Kc = 5.7, 
the base case will never exhibit limit cycles no matter the extent of cooling capacity, provided that 
the coolant temperature can be controlled instantaneously, which in practise is not completely the 
case. Nevertheless, for this particular dealing scenario it is wise to choose a Kc as large as 
possible. 

• By means of increasing the cooling capacity, less proportional gain is required to prohibit limit 
cycles. 

• The reactor controller stability map is a very useful tool to determine an appropriate Kc value in 
case for instance the cooling capacity is changed. Therefore, a particular UA value is chosen, e.g. 
UA = 40 [kJ s-1 K-1], to acquire a stable process, Kc = 1.8 to shift from region II to stable region I.  
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9.2.2 Controlling the coolant flowrate 
 
Mathematical model 
 
The mathematical model with regards to the coolant flowrate P-controlled base case states: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( ) )(0,,,, coolcoolcoolcoolVcoolPcool
cool

coolcoolPcool TTUATTC
dt

dTVC −+−Φ= ρρ  (12) 

( )TTK spcspcoolVcoolV −−Φ=Φ ,,,  (42) 
 
For coolant flowrate control, the following reactor controller stability map is created, similar as for coolant 
temperature control (Figure 71). 
 

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

10 30 50 70 90 110
Cooling capacity [kJ/s/K]

Pr
op

or
tio

na
l g

ai
n 

[m
3/

s/
K]

III I

Tcool,0 = 303 [K] Tcool,0 = 400 [K] Tcool,0 = 435 [K]

Hopf
maximum

Base
case

No pipes
 

Figure 72 The reactor controller stability map. Hopf curves using active bifurcation parameters UA and Kc for various coolant 
inlet temperatures. For each Hopf curve, the process is stable at the right-hand side and unstable at the left-hand 
side. 

 
Discussion of the reactor controller stability map: 
 

• Although In the stability map Figure 72 different axes are used, compared to Figure 71, The 
stability map shows again that Kc decreases when the cool capacity increases. 

• The stable region I is clearly appearing, besides for every Tcool,0 the minimum and the maximum 
cooling capacity. 

• The introduction of the coolant differential equation, which implies multiplicity, is clearly visible. For 
Tcool,0 = 435 [K], one can see that multiplicity is not anymore existing with regards to the base 
case. 

• The stability map demonstrates that the maximum UA Hopf value is dependent of the inlet coolant 
temperature. 
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9.2.3 Controlling the throughput 
 
Mathematical model 
 
The mathematical model with regards to the proportional controlled throughput base case states: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( )TTK spcspVV −−Φ=Φ ,  (43b) 
 
The subsequent reactor controller stability map is drawn to investigate the influence the relationship 
between the cooling capacity and the proportional gain with respect to the stability. 
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Figure 73 Reactor controller stability map. Proportional controlled throughput. Hopf maximum UA > 73 [kJ s-1 K-1] and Kc = 

0.00084 [m3 s-1 K-1]. In case the cooling capacity UA > 78 [kJ s-1 K-1] or Kc > 0.002 [m3 s-1 K-1] stability is certain, 
nevertheless with lower conversion. 

 
Discussion of the reactor controller stability map: 
 

• Analogous to previous stability maps (Figure 71 and Figure 72), Figure 73 the clearly 
demonstrates the problem with multiplicity. 

• The same Hopf maximum values have been acquired as for reactor designer stability map Figure 
67 in which the latter is rather complicated to interpret. 

• A clear stable region I is however located on the right hand side of the Hopf curve, however with 
lower conversion. 

 
 
Summarising 
 
Proportional controlling the throughput is possible. Disadvantage is that or the reactor temperature or the 
conversion must be chosen as a set point. Both contemporaneous is not possible because due to the 
existence of multiplicity the process is forced to one steady state situation. Due to the dynamical unstable 
situation of the base case, a certain proportional gain has to be chosen to resist the limit cycles. And here 
the problem arises, that too large Kc values cause inevitable transition towards other steady states and in 
particular if the process is also disturbed. Therefore, if only one reactant is involved, like the base case, 
controlling the throughput is not a suitable controlling method if both the reactor temperature as well the 
conversion must be maintained. 
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Chapter X 
 

10 PROPORTIONAL-INTEGRAL CONTROL 
 
In this section, it is considered to what extent the proportional + integral controller affects the stability of 
the cooled CISTR with exothermic reaction. 
 

10.1 Reactor designer stability maps 
 
The integral action merely eliminates the offset in which eventually a particular process variable coincides 
with the controller set point. Therefore, the equilibrium, Fold and Hopf curves remain unchanged.  
Therefore, the reactor designer stability maps of proportional control and proportional-integral control are 
similar. 
 

10.2 Reactor controller stability maps 
 
The following reactor controller stability maps will be examined: 
 
Table 25 Stability maps PI-control coolant temperature. 
Stability map Reference 
KC versus τI Figure 74 
KC versus UA Figure 79 

 
Table 26 Stability maps PI-control coolant flowrate. 
Stability map Tcool,0 = 303 [K] Tcool,0 = 400 [K] Tcool,0 = 435 [K] 
Kc versus τI Figure 80a Figure 80b Figure 80c 
KC versus UA Figure 82 Figure 83 Figure 84 
Kc versus τcool Figure 113 Figure 114 Figure 115 

 
Table 27 Stability maps PI-control throughput. 
Stability map Reference 
Kc versus τI Figure 85 
Kc versus UA Figure 86 

 

10.2.1 Controlling the coolant temperature 
 
The mathematical notation by means of equations 8, 9 and 46 is: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT
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RRVPRP TTUAAekVHTTC
dt
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−−∆−+−Φ=
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The first interesting issue is to find out in what way the integral time τI is related with the proportional gain 
Kc. Therefore a stability map is created with the proportional gain at the ordinate and the integral time at 
the abscissa (Figure 74). 
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Figure 74 Reactor controller stability map with Hopf curve in 

which the active parameters are Kc and τI. Kc(τI → 0) 
= 1.35 and Kc(τI → ∞) = 0.9. 

 
Discussion of the reactor controller stability map: 
 

• Kc is apparently not very dependent on the magnitude of τI. In case τI → 0, Kc = 1.35 and when τI 
→ ∞, Kc = 0.9 which is in fact the Kc for the solely proportional controlled base case. 

• In Figure 74 the Hopf curve is plotted indicating the transition between dynamically stable and 
unstable. 

• Figure 74 demonstrates that increasing the integral time, in fact slightly improves the stability. 
 
 
Orbit curves 
 
The following step is to examine the dynamic behaviour for one selected proportional gain Kc = 1 and 
varying integral time. Figure 75a with an integral time τI = 60 [s] displays that limit cycles emerge. In case 
a proportional controlled has exclusively been applied Kc = 0.9 was sufficient to eliminate limit cycles. 
Evidently, small integral times imply larger Kc values to provide stability. Figure 75a-e show that increasing 
the integral time is causing the originating of the limit cycles is to be postponed. If τI = 600 [s] no limit 
cycles will arise according to Figure 75f. 
 

   
Figure 75a Kc = 1 ττττI = 60 [s]. Figure 75b Kc = 1 ττττI = 120 [s]. Figure 75c Kc = 1 ττττI = 180 [s]. 
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Figure 75d Kc = 1 ττττI = 240 [s]. Figure 75e Kc = 1 ττττI = 300 [s]. Figure 75f Kc = 1 ττττI = 600 [s]. 
 
In previous sections it has been found that Kc = 0.9 could narrowly preserve stability. Figure 76a-c 
demonstrate that τI have to be increased to acquire a stable system. 
In fact: (PI)(P)

I ∞→
=

τcc KK . 

 

   
Figure 76a Kc = 0.9 ττττI = 60 [s]. Figure 76b Kc = 0.9 ττττI = 600 [s]. Figure 76c Kc = 0.9 ττττI = 3600 [s]. 
 
For the next case the proportional gain is selected which provides stability for every chosen integral time 
Kc = 1.35 (value derived from Figure 74). Figure 77a demonstrates that the limit cycles vanish after a 
temperature disturbance ∆T = 20 [K], although despite the long lasting spiral point. Decreasing the integral 
time will not change the stability in general (Figure 77b), primarily the oscillation time will be decreased. A 
large Kc accomplishes the desired steady state value within a few minutes and not too large overshoot 
(Figure 78). 
 

   
Figure 77a Kc = 1.35, ττττI = 60 [s] 

derived from Figure 74. 
Constrained temperature 
disturbance ∆T = 20 [K]. 

Figure 77b Kc = 1.35, ττττI = 5 [s]    
derived from Figure 74. 
Constrained temperature 
disturbance ∆T = 20 [K]. 

Figure 78 Kc = 4 τI = 60 [s]. 
Constrained temperature 
disturbance ∆T = 20 [K]. 
Ratio a/b = 4/1 discussed 
in §5.6.2 (Figure 17). 

The LOCBIF source LOCBIF rhs 4 is included in Appendix 7. 
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Proportional gain versus cooling capacity 
 
In previous section in which exclusively the proportional gain has been considered, the cooling capacity, in 
combination with a suitable proportional gain, had a stabilising effect on the process stability (Figure 71). 
Regarding the PI-controller, the cooling capacity still has this positive consequence alomst irrespective of 
the integral action. Figure 79 represents the stability map with applied active parameters UA and Kc in 
relation with several values of the integral time. 
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Figure 79 Reactor controller stability map of the proportional-integral controlled base case model. If the cooling capacity 

decreases, a larger Kc value has to be chosen. The integral time constant has a minor influence. If τI → ∞ the stability 
map matches with the proportional controlled base case showed in Figure 71. 

 
Discussion of the reactor controller stability map: 
 

• The Hop curves are similar to the curves for proportional control only (Figure 71). In case the 
cooling capacity decreases, a larger proportional gain must be selected to preserve stability. 

• The integral time constant has little influence on the stability. Kc is mainly decisive. 
• The reactor controller can easily determine or a suitable combination of UA and Kc in which 

stability is guaranteed.  
 
 
Summarising 
 
In case the base case is proportional-integral controlled through regulating the coolant temperature, the 
integral action has the advantage that the offset is eliminated, however short integral times has to be 
avoided because then the process behaves less stable. The controller stability maps Kc-UA can be used 
to effortless determine a stable process.  
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10.2.2 Controlling the coolant flowrate 
 
Equations 2, 3, 36 and 47 mathematically describe the proportional + integral controlled base case. 
 

( ) ][][][][
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dt
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( ) ( ) ( )cool
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In Table 19 the proportional gain values regarding the P-control have been printed. These values are 
again obtained if (τI → ∞) is taken in the Hopf curves of Figure 80a,b and Figure 80c. 
 

  
Figure 80a,b Reactor controller stability map with Hopf curves 

for Tcool,0 = 303 [K] and Tcool,0 = 400 [K]. 
Proportional gain versus integral time. For each 
Hopf curve the upper area I refers to stability and 
the lowest region II to instability. 

Figure 80c Reactor controller stability map with Hopf curves for 
Tcool,0 = 435 [K]. Proportional gain versus integral 
time. 

 

 
Discussion of the reactor controller stability maps: 
 

• For each Hopf curve the upper region points towards a stable region I and the lower region means 
instability. Moreover, due to the existence of multiplicity, transition to another steady state remains 
present, in particular if the process is considerably disturbed. Therefore, the stable regions always 
have to be interpreted with caution. 

• The stability maps show that for short integral times, for instance if the process response has to 
be fast, the proportional gain must be selected considerably larger to maintain stability. 

• If τI > 300 [s] the problem of integral windup almost not anymore exists. 
• If τI → ∞ the same values are obtained: 

For Tcool,0 = 303 [K]: Kc > 0.00025 [m3 s-1 K-1] retrieved from Figure 28, 
For Tcool,0 = 400 [K]: Kc > 0.00078 [m3 s-1 K-1] retrieved from Figure 41, 
For Tcool,0 = 435 [K]: Kc > 0.012 [m3 s-1 K-1] retrieved from Figure 42. 
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Orbit curves 
 
The following orbit curves demonstrate the influence of the integral time on the stability for a particular 
proportional gain (Hopf maximum value). 
 

   
Figure 81a Tcool,0 = 303 [K], Kc = 

0.00025 [m3 s-1 K-1],       
ττττI = 60 [s]  ∆T = +10 [K]. 
Limit cycles. 

Figure 81b Tcool,0 = 303 [K], Kc = 
0.00025 [m3 s-1 K-1],       
ττττI = 600 [s]  ∆T = +10 [K]. 
Spiral point. 

Figure 81c Tcool,0 = 303 [K], Kc = 
0.00025 [m3 s-1 K-1],       
ττττI = 3600 [s]  ∆T = +10 
[K]. Stable spiral point.  

 
That a large integral time improves the stability can be confirmed through the orbit curves Figure 81a-c. 
Small τI make the system unstable in which substantial limit cycles emerge. A larger integral time makes 
the process more stable (Ratto et.al.66) (Figure 81b) and a very large τI (Figure 81c) is similar to Figure 36 
in which merely proportional control is concerned. The LOCBIF source LOCBIF rhs 6 is included in 
Appendix 7. 
 
Proportional gain versus cooling capacity 
 
In previous chapters, it has been found that the cooling capacity, in combination with a suitable 
proportional gain, has a stabilising effect on the dynamical behaviour of the concerned base case process. 
In the following stability maps, the cooling capacity has been drawn at the abscissa and the proportional 
gain at the ordinate for various integral times. 
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Figure 82 Reactor controller stability map. Hopf curves with bifurcation parameters: Proportional gain and the cooling capacity 

for Tcool,0 = 303 [K]. For each Hopf curve the stable region I is located at the right hand side and the unstable at the 
left hand side. 

 

400

500

600

700

0 3600 7200 10800
Time [s]

Te
m

pe
ra

tu
re

 [K
]

400

500

600

700

0 3600 7200 10800
Time [s]

Te
m

pe
ra

tu
re

 [K
]

400

500

600

700

0 3600 7200 10800
Time [s]

Te
m

pe
ra

tu
re

 [K
]



 

  67 

Discussion of the reactor controller stability maps: 
 

• Figure 82 (Tcool,0 = 303 [K]) proves that the cooling capacity has a stabilising effect on the 
dynamical behaviour of the process. In case a larger integral time is chosen, the stability is even 
increased. This is also the case for Figure 83 (Tcool,0 = 400 [K]) and Figure 84 (Tcool,0 = 435 [K]). 

• Typical for the considered stability maps is the fact that beneath a specific cooling capacity, the 
proportional gain increases severely. This can be explained through the fact that the controller 
ought to increase the coolant flowrate in case less heat can be transferred through the wall. 

• In Figure 82 (Tcool,0 = 303 [K]) Kc ↑  if UA < 40 [kJ s-1 K-1]. UAmin ≈ UAvessel = 15 [kJ s-1 K-1]. 
In Figure 83 (Tcool,0 = 400 [K]) Kc ↑  if UA < 50 [kJ s-1 K-1]. UAmin ≈ 30 [kJ s-1 K-1]. 
In Figure 84 (Tcool,0 = 435 [K]) Kc ↑  if  UA < 60 [kJ s-1 K-1]. UAmin ≈ 50 [kJ s-1 K-1]. 

• The stability maps as function of the inlet coolant temperature confirm that the stable region 
increases for a low inlet coolant temperature. This is due to the larger temperature driving force in 
the coolant differential equation. In situations in which the cooling capacity could decline, the 
lowest inlet coolant temperature provides the best stability. Although still large perturbations can 
cause extinction. 
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Figure 83 Reactor controller stability map. Hopf curves with bifurcation parameters: Proportional gain and the cooling capacity 

for Tcool,0 = 400 [K]. For each Hopf curve the stable region I is located at the right hand side and the unstable at the 
left hand side. 
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Figure 84 Reactor controller stability map. Hopf curves with bifurcation parameters: Proportional gain and the cooling capacity 

for Tcool,0 = 435 [K]. For each Hopf curve the stable region I is located at the right hand side and the unstable at the 
left hand side. 

 
Summarising 
 
In case the base case is proportional-integral controlled through regulating the coolant flowrate, like with 
coolant temperature control, the same integral action has the advantage that the offset is eliminated, 
however short integral times has to be avoided because the process behaves then less stable. The 
controller stability maps Kc-UA can be used to determine effortless a stable process. A low inlet coolant 
temperature implies that instability is less prominent. However again, large external disturbances can 
force the process to a lower steady state. 
 

10.2.3 Controlling the throughput 
 
Mathematical model 
 
Equations 2, 3 and 48 describe the proportional + integral controlled base case. 
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In the previous section, the influence of a proportional controller is examined. It was found that controlling 
through regulating the flowrate is possible, however, a suitable Kc is necessary and a lower conversion is 
inevitable. 
An integral action causes the controller output to change as long as an error exists in the process output. 
In the vicinity of the constrained set point, the integral action eliminates the offset. However, in case Kc 
has not been chosen properly or the offset becomes substantial, the integral action can make the process 
even more unstable i.e. integral wind-up. 
In previous section, it was also found that the way a considered disturbance is introduced in the model is 
of concern. In case a higher temperature perturbation is imposed i.e. offset < 0 the P-controller could 
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stabilise the system. However, if the temperature was lower than the set point, the controller could 
regulate in the wrong direction. The applied trick in which the sign is reversed caused the process variable 
the virtually endless revolve around the set point. It could be expected that, due to the offset removing 
ability off the I-action, the wobbling effect would decline. Unfortunately, this is not the case according to 
several simulations. 
The next step is to examine the relation between the proportional gain and the integral time by creating a 
suitable stability map in which Kc at the ordinate was viewed versus τI at the abscissa. 
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Figure 85 Process controller stability map with Hopf curves. The proportional gain versus integral time is asymptotic shaped in 

which Kc ↓0.0002 [m3 s-1 K-1] and τI.↑740 [s]. 
 
Discussion of the reactor controller stability maps: 
 

• The same pattern arises for this particular stability map: smaller integral time means larger 
proportional gain values. 

• At both sides of the Hopf curve, the system behaves unstable. Compared to Figure 73 in which Kc 
has been drawn against UA, it became clear that for Kc > 0.000 [m3 s-1 K-1] stability is possible, 
although with lower conversion. LOCBIF did not generate such curve or maximum value. 

• LOCBIF could not find any solutions for small integral time i.e. τI.< 740 [s]. 
• According to the attained Hopf curve, Kc = 0.0002 [m3 s-1 K-1] if τI.→ ∞ which also will be 

confirmed in case Kc is drawn against τd (Figure 95). Because both sides of the curve are 
indicated as III, this value is not relevant anymore. 

• Figure 85 demonstrates once again that a larger integral time has an increasing stabilising effect. 
Nevertheless, merely the integral action cannot provide absolute stability i.e. region I. 

• Still the same disadvantage stands for that or the reactor temperature or the conversion has to be 
chosen. 

 
The proportional gain must be robust enough to be able to adjust the flowrate into the right direction i.e. 
set point after both a external disturbance and both to restrain the evolving limit cycles. This has the 
disadvantageous effect that even a slight correction has a tremendous effect on the system. The latter is 
with respect to the obligation that the throughput variation must be in between a few percent not any more 
valid.  
The stabilising effect of a large integral time can be explained as follows: apparently, large integral times 
make this process executing more smoothly. Consider a small integral time and a large proportional gain. 
After a disturbance, the controller determines the new e.g. higher flowrate and because the integral time is 
small, in a very short time the flowrate is adjusted. The fresh supported cold feed lowers the reactor 
temperature (decreased reaction rate) resulting in fast blow out and subsequently lower conversion. If the 
progress of this process is too hasty, extinction is the unwanted and inevitable result. The LOCBIF source 
LOCBIF rhs 8 is included in Appendix 7. 
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Proportional gain versus cooling capacity 
 
In the previous section in which merely proportional gain was concerned, LOCBIF had severe problems 
finding a solution (Figure 73). Adding the integral action does not improve this solving process. 
Based on previous chapters an increasing cooling capacity can have a stabilising effect on the process, 
however too large UA can cause extinction T towards Tcool or T0 which can be explained by the fact that a 
tremendous amount of heat quickly can be removed from the system which implies fast temperature drop 
and consequently reaction extinction. 
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Figure 86 Reactor controller stability map. Hopf curve: proportional gain versus cooling capacity. 
 
Discussion of the reactor controller stability map: 
 

• In view of the base case, once more the existence of multiplicity is confirmed. A large Kc value is 
needed to stay away from region III.  

• The same maximum Hopf value is found as for P-control (Figure 73) Kc = 0.00084 [m3 s-1 K-1]. 
Nevertheless the maximum Hopf value with regards to the cooling capacity is considerably lower 
UA = 60 [kJ s-1 K-1] compared to the previously found UA = 73 [kJ s-1 K-1]. 

• Although region I means stability. The same disadvantage of the lower conversion for one 
particular reactor temperature is involved. 

 
Summarising 
 
If the base case is proportional-integral controlled through regulating the throughput, no stable system can 
be obtained for small integral time values. Still the same disadvantage stand for that or the reactor 
temperature or the conversion has to be chosen. In general, controlling the throughput is compared to 
regulating the extent of cooling not preferable. 
 

10.3 Alternatives 
 
In previous section, the influence of the cooling capacity is examined. Additionally, the study to the effects 
on the stability of the feed temperature and the coolant temperature can perhaps contribute to the search 
for stability. In case the coolant temperature is decreased from Tcool = 441 [K] toward Tcool = 438 [K] the 
stability map like Figure 54 changes sincere in which the stable region I is slightly increased. Decreasing 
Tcool = 441 [K] beneath Tcool = 435 [K] which represents the transition to the region exhibiting multiplicity 
(Figure 19), deteriorate the stability. Increasing Tcool > 441 [K] diminish the stable region. The effect of the 
feed temperature on the process is minor. Decreasing T0 to environmental temperature slightly increases 
the stable region. In fact the complete stability map are translated upwards in view of the abscissa. Finally, 
the introduction of a recycle stream can be useful, because the cooling effect of the fresh feed supply can 
be repressed which has its effect on the controller equation. (Fogler26 76). 
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Chapter XI 
 

11 CONTROLLED SYSTEM WITH DELAY 
 
In this chapter, the effect of delay on the overall stability (explained in paragraph 5.4) is to be considered. 
Due to the ease of LOCBIF, a presumed delay correlation can effortless be implemented to an existing 
mathematical model. 
 
The following reactor controller stability maps will be examined: 
 
Table 28 Stability maps delay 
Stability map Reference 
Kc versus ττττd Proportional control Proportional-integral control 
Coolant temperature Figure 88 Figure 103 
Coolant flowrate Figure 94a (Tcool,0 = 303 [K]) 

Figure 94b (Tcool,0 = 400 [K]) 
Figure 94c (Tcool,0 = 435 [K]) 

Figure 106 (Tcool,0 = 303 [K]) 
 
 

Throughput Figure 95 Figure 107 
Stability map Reference 
Process capacity Proportional control 
Kc versus τR Figure 108 
Kc versus τcool Figure 110 
Kc versus τcool Figure 113 (Tcool,0 = 303 [K]) 

Figure 114 (Tcool,0 = 400 [K]) 
Figure 115 (Tcool,0 = 435 [K]) 

 

11.1 Proportional control 
 

11.1.1 Controlling the coolant temperature 
 
Mathematical model 
 
The mathematical system consist of the following equations: 
 

( ) ][][][][
00 AekVAA

dt
AdV RT

E

RVR

act−
−−Φ=  (2) 

( ) ( ) ( )cool
RT

E

RRVPRP TTUAAekVHTTC
dt
dTVC

act

−−∆−+−Φ=
−

][00ρρ  (3) 

( )dspcspcoolcool TTKTT −+= ,  (41) 

d
d

d TT
dt

dT
−=τ  (49) 

 
The overall value of τd will be estimated, considering the following partial τd ‘s: 

• Measuring device and transmitter. According to Roffel68 and Ding et.al.17, the delay caused by the 
measuring device varies commonly between 5-10 [s] for liquid reactors and 10-30 [s] for gas-liquid 
reactors. According to Marlin53 the typical dynamical response is generally about 0-5 [s]. 

• Heat transfer through pipes. The delay caused by heat transfer process is relatively small due to 
the assumption that the heat transfer coefficient for the steel cooling pipes is high and is probably 
5-10 [s]. The delay by the controller device is assumed to be 0-5 [s]. 
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• Control valve and activator response time. The valve response time according to Shinskey71 is 
practically 0-5 [s]. According to Marlin53 the final control element response time is 1-4 [s] and for 
signal conversion about 0.5 – 1.0 [s]. 

• Coolant residence time. The cooling fluid is rapidly pumped through the cooling pipes or jacket 
and is estimated 0-5 [s] based on §2.3.2 and calculation made in Appendix 3. 

• Dead zone. Additionally, industrial reactors often are concerned with the existence of a dead zone 
in the reactor, in which apparently nothing happens. For this case i.e. the CISTR, it is assumed 
that no dead zone exists. 

 
Consequently, the value of the presumed delay can be composed from the points mentioned above. 
Roughly 10 < τd < 60 [s]. In the succeeding paragraphs τd ≈ 30 [s] is presupposed. It is not necessary to 
determine the exact magnitude of τd, primarily due to the lack in information. Furthermore, the purpose of 
the introduction of delay is to obtain qualitative comprehension about the effect on the dynamical 
behaviour. To determine the effect of the delay on the dynamical behaviour several orbit curves have 
been created. 
 
 
Orbit curves 
 
Primarily, the proportional gain is taken Kc = 0. Figure 87 demonstrates that in case the delay is increased, 
the appearance of the oscillations change i.e. the peaks of the measured temperature Td are dimmed and 
stretched in which the maximum amplitude emerges later in time than the maximum of the actual reactor 
temperature (Figure 89). For very large delay (Figure 87f) the measured reactor temperature is almost 
completely diminished i.e. ( ) TT

dtd =∞→
. 

 

   
Figure 87a The measured (delayed) 

reactor temperature.         
Kc = 0, ττττd = 5 [s]. 

Figure 87b Kc = 0, ττττd = 30 [s]. Figure 87c Kc = 0, ττττd = 60 [s]. 

 

   
Figure 87d Kc = 0, ττττd = 120 [s]. Figure 87e Kc = 0, ττττd = 600 [s]. Figure 87f Kc = 0, ττττd = 3600 [s]. 

Td→468 [K]. 
 
According Equation 49 it is presumed that the reactor temperature is delayed in time. If instead of the 
reactor temperature, conversely the coolant temperature is delayed in time according equation 50 the 
same results have been obtained. Moreover, the fundamental principle of delay remains the same. 
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The following reactor controller stability map is created using active LOCBIF bifurcation parameters τd and 
the proportional gain Kc. 
 
 
Reactor controller stability map 
 

  
Figure 88 Reactor controller stability map Hopf curves active 

parameters Kc and τd. If τd > 108 [s] limit cycles will 
certainly appear. 

Figure 89 Orbit curves of the delayed (measured) reactor 
temperature base case Kc = 0. The LOCBIF rhs 13 is 
included in Appendix 7. 

 
Discussion of the reactor controller stability map: 
 

• The stability map (Figure 88) unmistakably confirms that in case the apparent delay is increasing 
the proportional gain has to be taken considerably larger to preserve stability i.e. no limit cycles. 

• If τd > 108 [s] which is apparently an asymptotic value, limit cycles will certainly exhibit, no matter 
the magnitude of Kc, unless the initial point is exactly the steady state, than the temperature 
remains unaffected. The critical value has been confirmed by Giona and Paladino29. 

• From Figure 88 the minimum proportional gain can be derived Kc(τd →0) = 0.9, the same value 
which has been found in preceding stability maps (e.g. Figure 23 and Figure 24). 

 
Orbit curves 
 
For the subsequent orbit curves, the minimum proportional gain is taken which would provide precise 
stability in case the base case is considered without presumed delay. 
 

   
Figure 90a Kc = 0.9. ττττd = 10 [s]. Figure 90b Kc = 0.9. ττττd = 60 [s]. Figure 90c Kc = 0.9. ττττd = 120 [s]. 
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A relatively short delay cannot provoke a stable, minimal controlled system to become unstable, according 
to Figure 90a. Increased delay makes the process less stable i.e. limit cycles will exhibit (Figure 90b) 
which are originated earlier in case delay is further increased (Figure 90c). In case a very high 
proportional gain is selected Kc > 100 and a long delay is presumed τd = 120 [s] the system will be 
absolutely unstable i.e. limit cycles will occur. This is because this particular base case coolant 
temperature multiplicity is not in question. Therefore, extinction or runaway will not take place. The most 
unstable situation to fall into is the occurrence of limit cycles. 
Stability map (Figure 88) shows that an estimated delay τd < 60 [s] has no dramatically effect on the 
stability of the process i.e. the proportional gain has only to be slightly increased. For a significantly longer 
delay τd, the proportional gain has to be considerably larger to avoid limit cycles. If the non-ideal aspect 
can be translated into a delay τd ≈ 60 [s] a proportional gain Kc = 1.3 would be sufficient to eliminate limit 
cycles. In this particular case, the larger Kc, the more stability is acquired. In next chapter on the other 
hand, it will be shown that in other cases too large Kc causes conversely instability, especially if multiplicity 
is considered. Another noticeably effect is the fact that the oscillation frequency increases in case Kc is 
increased. 
 
 
Summarising 
 
Consequently, delay makes a process less stable. In case the non-ideal presumed delay equation is 
implemented in the model, the proportional gain has to be increased to remove limit cycles. However, too 
large delay cannot be controlled properly to prevent instability. 
 

11.1.2 Controlling the coolant flowrate 
 
Mathematical model 
 
The delay is mathematically described with equation 49 and appended to the mathematical models of the 
proportional controlled coolant flowrate. 
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d TT
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Orbit curves 
 
Lets consider the proportionally controlled base case, which behaves narrowly dynamically stable. If the 
delay is implemented, primarily limit cycles emerge (Figure 91a and b), which eventually causes extinction 
for a slightly larger delay (Figure 91c). A very small different initial condition can drastically affect the 
behaviour of a system. This has been confirmed by Doherty and Ottino21. 
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Figure 91a Tcool,0 = 303 [K], Kc = 

0.0002 [m3 s-1 K-1], ττττd = 1 
[s]. Small limit cycles. 

Figure 91b Tcool,0 = 303 [K], Kc = 
0.0002 [m3 s-1 K-1], ττττd = 9 
[s] limit cycles. 

Figure 91c Tcool,0 = 303 [K], Kc = 
0.0002 [m3 s-1 K-1], ττττd = 10 
[s]. Extinction. 

 
For the following orbit curves, the non-ideal behaviour has been arbitrarily chosen and presumed to be τd 
≈ 30 [s]. The choice of the proportional gain is rather complicated. In Figure 92a, Kc is evidently not large 
enough causing extinction. In Figure 92b Kc is however, more robust though still limit cycles emerge. In 
Figure 92c Kc is too strong, in which the combination with delay eventually leads to the lower steady state 
i.e. extinction. This is due to the too late intervention of the controller. 
 

   
Figure 92a Tcool,0 = 303 [K], τd = 30 

[s], Kc = 0.0001 [m3 s-1 K-

1],. Extinction 

Figure 92b Tcool,0 = 303 [K], τd = 30 
[s], Kc = 0.001 [m3 s-1 K-

1], limit cycles. 

Figure 92c Tcool,0 = 303 [K], τd = 30 
[s], Kc = 0.01 [m3 s-1 K-1], 
Extinction. 

 
In Figure 93a the Kc value is sufficient enough to preserve stability after a disturbance. The disadvantage 
is that the stability is very unsteady and additionally the settling time is considerably long and the coolant 
flowrate varies enormously to eventually obtain a stable system (Figure 93b and c). 
 

   
Figure 93a Tcool,0 = 303 [K], τd = 30  

[s], Kc = 0.0006 [m3 s-1 K-

1], Stable system. ∆T = 
+10 [K]. 

Figure 93b The Coolant flowrate 
fluctuates fairly. The 
valve actually has to be 
halted for several 
periods. 

Figure 93c Coolant fluid velocity 
supposed the recycle 
stream = 10 × 
throughput (equation 84) 
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Reactor controller stability map 
 
The following reactor controller stability maps have been constructed using active parameters Kc and the 
delay τd. These stability maps provide useful information with regard to the stability of the system. In 
Figure 94a,b the Hopf curves have been plotted for respectively Tcool,0 = 303 [K] and Tcool,0 = 400 [K].  
 

  
Figure 94a,b Reactor controller stability map. Hopf curves for 

Tcool,0 = 303 [K] and Tcool,0 = 400 [K]. Proportional 
gain versus delay. The process is stable at the 
left-hand side of each Hopf curve and unstable 
at the right-hand side. 

Figure 94c Reactor controller stability map. Hopf curves for 
Tcool,0 = 435 [K]. Proportional gain versus delay. The 
process is stable at the left-hand side of each Hopf 
curve and unstable at the right-hand side. The 
LOCBIF source LOCBIF rhs 15 is included in 
Appendix 7. 

 
Discussion of the reactor controller stability map: 
 

• In case delay is implemented in the model with respect to the proportional controlled coolant 
flowrate, a proportional gain can be found in between a particular range, in which a stable process 
without limit cycles can be acquired. 

• The area at the left hand side of each Hopf curve encloses the stable region I, at the right hand 
side the unstable region III. For Tcool,0 = 303 [K] this results to Figure 94c. 

• In Table 29 the range is printed in which stability is concerned. The Kc regarding Figure 93, in 
which the system appears to be stable, matches with the results in Table 29. 

• The delay is less dangerous for larger inlet coolant temperatures. 
 
Table 29 P-control coolant flowrate. Presumed delay τd = 30 [s]. 
Inlet coolant temperature Tcool,0 [K] Kc (min) Kc (max) 
303 0.00036 0.00065 
400 0.00088 0.0046 
435 0.011 0.25 

 
 
Summarising 
 
In case of proportional controlled coolant flowrate, delay makes a process less stable. In case the non-
ideal presumed delay added to the mathematical model, the proportional gain has to be increased to 
remove limit cycles. However, too large delay means extinction and subsequently the lower steady state. 
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11.1.3 Controlling the throughput 
 
Mathematical model 
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Reactor controller stability map 
 
The following reactor controller stability map has been constructed using active parameters Kc and the 
delay τd. 
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Figure 95 Reactor controller stability map. Proportional controlled throughput with delay. The maximum delay is τd = 458 [s]. 
 
Discussion of the reactor controller stability map: 
 

• Figure 95 consists more than one Hopf curve, which confirm the appearance of multiplicity. 
• Kc > 0.00014 [m3 s-1 K-1] indicates the transition from region II to region III. 
• Larger delay implies larger Kc values. Asymptotic value: τd = 458 [s]. Nonetheless, because 

throughput control is difficult and transition is always to be concerned with, this value is not as 
useful as in case of coolant temperature control, because at the left hand side no region I can be 
found. 

• In the previous section through Figure 73, a Kc > 0.002 [m3 s-1 K-1] is pointed out to acquire a 
stable process. Figure 95 does not confirm this. This can be due to the fact that LOCBIF 
sometime has problems with finding an initial point. This is probable because of the occurrence of 
multiplicity. 
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Orbit curves 
 
To study the effect of delay, several orbits curves are produced with LOCBIF. Again, the proportional gain 
has been chosen Kc = 0.002 [m3 s-1 K-1] for all the to examine situations. In Figure 96 a delay τd = 30 [s] 
cannot provoke a system become unstable after an external temperature disturbance. In Figure 97 the 
flowrate fluctuates in the first minute and becomes quickly stabilised, however the flowrate fluctuations are 
too large. The initial error (constrained temperature disturbance) causes a flowrate deviation of –75%. The 
controller corrects primarily in the right direction but oscillates sincerely resulting in a overshoot of +18% 
and accordingly –82%, 56% etc and is finally after about 1 hour at the desired steady state, which 
adversely is not the base case steady state situation i.e. a steady state with higher temperature although 
with lower conversion. In Figure 98 the delay is slightly increased to τd = 32 [s] and causes the system to 
runaway. 
 

   
Figure 96 Kc = 0.002 [m3 s-1 K-1]       

∆T = 10 [K], τd = 30 [s], 
Stability. Higher steady 
state. 

Figure 97 Kc = 0.002 [m3 s-1 K-1]          
∆T = 10 [K], τd = 30 [s],          
A higher stable steady state is 
reached τR = 350 [s] ζ = 0.47 
and T = 472 [K]. 

Figure 98 Kc = 0.002 [m3 s-1 K-1]           ∆T 
= 10 [K], τd = 32 [s]. 
Runaway. 

 
In Figure 99 the delay is again increased to τd = 60 [s] but no disturbance is constrained. The system 
remains scarcely stable. The flowrate causes the jump to a higher steady state with lower conversion 
(Figure 100). 
 

  
Figure 99 Kc = 0.002 [m3 s-1 K-1]          

∆T = 0 [K] delay = 60 [s]. The 
system is considered stable. 

Figure 100 Kc = 0.002 [m3 s-1 K-1]            
∆T = 0 [K] delay = 60 [s].         
A higher steady state however 
is reached τR = 350 [s] ζ = 0.47 
and T = 472 [K]. 

 
In case in Figure 99 is simulated with a disturbance, runaway pursues (Figure 101) caused by the flowrate 
fluctuations (Figure 102). 
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Figure 101 Kc = 0.002 [m3 s-1 K-1]           

∆T = 10 [K] delay = 60 [s]. 
Runaway. The LOCBIF 
source LOCBIF rhs 17 is 
included in Appendix 7. 

 

Figure 102 Kc = 0.002 [m3 s-1 K-1]            
∆T = 10 [K] delay = 60 [s]. 
Flowrate varies suchlike that 
the process cannot be 
controlled reliable. 

 

 
Summarising 
 
In previous sections is became clear that controlling the throughput had the disadvantage that it is not 
possible to preserve the base case situation. Due to the dynamical instability, on the one hand, a large Kc 
is necessary, however on the other hand, large Kc cause in particular after a disturbance a considerable 
overshoot causing often transition. Even if transition does not occur, the flowrate fluctuation is sincere and 
one cannot preserve the commitment to keep the flowrate deviation between only a few percent. The 
introduction of delay principally deteriorates the stability in general.  
  

11.2 Proportional-integral control 
 

11.2.1 Controlling the coolant temperature 
 
 
Mathematical model 
 
The mathematical system consist of the following equations: 
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Reactor controller stability map 
 
A stability map is created (Figure 103) similar to the proportional controlled base case model (Figure 88).  
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Figure 103 Reactor controller stability map with Hopf curves for increasing integral time vales. The dotted line (τI → ∞) is similar 

to the proportional controlled base case model Figure 88. If τd > 108 [s] limit cycles will certainly appear regardless 
the extent of delay. At the left-hand side of one particular Hopf curve the behaviour is dynamically stable and ate the 
right-hand side ergo unstable. The LOCBIF source LOCBIF rhs 14 is included in Appendix 7. 

 
Discussion of the reactor controller stability map: 
 

• In the actual stability map, Hopf curves are drawn for increasing values of the integral time. The 
dotted line (τI → ∞) is similar to the Hopf curve in Figure 88 and coincides with the ordinate for the 
formerly found value Kc = 0.9. 

• To determine the stable and unstable regions in Figure 103, one has to select a particular Hopf 
curve in accordance with a specific integral time. The region on the left hand side is the stable 
region and on the right hand side the region in which limit cycles occur. 

• In case the delay is increased, the Kc value rises severely to preserve stability. For (τI → ∞) the 
same delay τd =108 [s] is found (Figure 88) if merely P-controller is considered. For smaller 
integral times, the asymptotic value decreases. 

• Figure 103 proves that the integral action n combination with delay can adversely affect the 
stability. The shorter the integral time, the higher the proportional gain. An arbitrary integral time 
constant is chosen e.g. τI = 60 [s]. 

 
 
Orbit curves 
 
Through Figure 74 it was determined that Kc = 1.35 is robust enough to preserve stability. Introducing an 
estimated delay τd = 10 [s] disrupts the stability and causes limit cycles (Figure 104a). Decreasing the 
integral time close to the assumed delay, nevertheless larger, causes limit cycles (Figure 104b). In case 
the delay exceeds the integral time, the system becomes seriously unstable (Figure 104c). Therefore, it is 
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essential to acquire an integral time considerably larger than the assumed delay. Several simulations 
indicate that approximately τI ≥ 10 × τd has good results, because the integral time amply overlaps the 
delay. Subsequently a proportional gain can be selected in which the overshoot is optimal i.e. ratio a/b = 
4/1, (§5.6.2). The main conclusion is that large Kc values are needed to eliminate the self-sustained 
oscillations. However, too large Kc values in combination with delay can provoke instability. The 
advantage of the integral action is the fact that the offset is removed. It is desired that the offset is 
decreased as soon as possible i.e. small τI. However, if the assumed delay exceeds the integral time, a 
very unstable process is definitely resulting. 
 

   

Figure 104a Orbit curve. Kc = 1.35, τI 
= 60 [s], ττττd = 10 [s]. 
Dynamical behaviour: 
limit cycles. 

Figure 104b Orbit curve. Kc = 1.35, τI = 
10 [s], ττττd = 5 [s]. 
Dynamical behaviour: limit 
cycles. 

Figure 104c Orbit curve. Kc = 1.35, τI = 
10 [s], ττττd = 20 [s]. 
Dynamical behaviour: run 
away i.e. integral windup. 

 
 
Summarising 
 
Delay can be the cause of instability during a process, which operates at stable steady state. The 
proportional gain is decisive for its stability. In case of coolant temperature control in which no delay is 
involved, the integral time has a minor effect on the stability of the process. If delay however is taken into 
account, it is crucial that the integral time is considerably larger than the delay. Otherwise, instability is 
inevitable. 
 
 

11.2.2 Controlling the coolant flowrate 
 
 
Mathematical model 
 
The PI-controlled coolant flowrate with delay is mathematical described with: 
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Orbit curves 
 
The destabilising effect of delay will be demonstrated through the following orbit curves. Lets consider the 
proportional-integral controlled base case, which primarily behaves dynamical stable. After an external 
disturbance, a small delay τd = 1 [s] cannot disturb the stable situation (Figure 105a). A larger delay τd = 
10 [s] disorders the process which exhibits limit cycles (Figure 105b). Larger delay eventually causes 
extinction (Figure 105c). 
 

   
Figure 105a Tcool,0 = 303 [K], Kc = 

0.00025 [m3 s-1 K-1], τI = 
600 [s], ∆T = +10 [K],    
ττττd = 1 [s] 

Figure 105b Tcool,0 = 303 [K], Kc = 
0.00025 [m3 s-1 K-1], τI = 
600 [s], ∆T = +10 [K],    
ττττd = 10 [s]. 

Figure 105c Tcool,0 = 303 [K], Kc = 
0.00025 [m3 s-1 K-1], τI = 
600 [s], ∆T = +10 [K],    
ττττd = 30 [s]. 

 
 
Reactor controller stability map 
 
For the stability map (Figure 106), active LOCBIF bifurcation parameters Kc and the delay are used. Due 
to the fact that LOCBIF couldn’t find a (initial) solution, the stability map is exclusively created for Tcool,0 = 
303 [K]. The principles remain the same for Tcool,0 = 400 [K] and Tcool,0 = 435 [K]. 
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Figure 106 Reactor controller stability map with Hopf curves for Tcool,0 = 303 [K]. Proportional gain versus delay. The LOCBIF 

source LOCBIF rhs 16 is included in Appendix 7. The left-hand side of each Hopf curve for one particular inlet 
coolant temperature indicates stability and vice versa the right hand side instability. 
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Discussion of the reactor controller stability map: 
 

• The area at the left-hand side of each Hopf curve encloses the stable region I, at the right-hand 
side the unstable region III. 

• The figure shows that for smaller integral time, a considerably larger proportional gain is needed. 
• The dotted line matches Figure 94 for merely proportional control. 
• For particular small integral times, a considerable large proportional gain is required to maintain 

stability. 
• Beyond a particular value, instability is inevitable. 

 
 
Summarising 
 
In case of the integral action is considered combined with delay instability can be the consequence. Large 
integral time values increase the stable region. 
 

11.2.3 Controlling the throughput 
 
 
Mathematical model 
 
The mathematical notation with regards to the PI-controlled throughput with delay: 
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Reactor controller stability map 
 
For the stability map, Kc has been drawn versus τd.  
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Figure 107 Reactor controller stability map. Proportional + integral control flowrate with delay. The LOCBIF source LOCBIF rhs 

18 is included in Appendix 7. 
 
Discussion of the reactor controller stability map: 
 

• The implementation of delay in the model resulting in the stability map Figure 107 shows that for 
small integral time the proportional gain increases dramatically from which can be concluded that 
the integral time should be larger than the delay with respect to stability. 

• Increasing the integral time results in shifting the Hopf curve to the right. In fact τI.→ ∞ the curves 
matches the lower curve of Figure 95 (Kc = 0.00014 [m3 s-1 K-1]). Therefore, the upper Hopf curve 
in Figure 95, for varying integral times, cannot be found with LOCBIF. This is due to the existence 
of multiplicity. LOCBIF requires suitable initial numerical values, which are sometime not 
obtainable. 

• The asymptotic delay value for Kc → ∞ states τd = 192 [s]. In case τd > 192 [s] LOCBIF provides 
no solutions for Figure 107. One can expect, despite the lack in Figure 107, that at the right-hand 
side for considerably large delay, the process behaves unstable. 

• In exclusively P-control (Figure 95), an asymptotic value: τd = 458 [s] has been found. For PI-
control, the asymptotic value is τd = 192 [s] has been found, whereas for τI.→ ∞ the asymptotic τd 
= 458 [s] should be expected. 

• Apparently, the combination of delay and integral time together with multiplicity can sometimes 
give some simulation problems. This is perhaps due to the appearing of more asymptotic Hopf 
curves (maximum values), which might interfere with other Hopf, curves. It could be so that the 
asymptotic value of one predominate the other. Therefore, another asymptotic value will be found. 

 
 
Summarising 
 
Controlling the throughput, using PI-action, combined with presumed delay confirms the formerly 
presented conclusion: which is that throughput control compared to cooling control is not a suitable 
method to eliminate limit cycles and preserve stability with the same reactor temperature and conversion. 
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11.3 Process capacity 
 
The process capacity is explained in paragraph 5.5. 
 

11.3.1 Process time constant 
 
 
Mathematical model 
 
The mathematical model for the CISTR states: 
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In which the process time constant becomes: 
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Reactor controller stability map 
 
If the reactor controller is interested in the influence of process equipment on the dynamical behaviour of a 
process, a plot like Figure 108 can be constructed. 
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Figure 108 Reactor controller stability map with Hopf curve. The proportional gain has to be increased slightly to preserve 

stability, if the influence of the CISTR equipment is taken into account. 
 
Discussion of the reactor controller stability map: 
 

• If exclusively the base case is considered, the particular time constant is equal to the average 
residence time of the CISTR. τR = VR/ΦV = 1000 [s] 

• If the external elements are concerned with through equation 35, a slower responding process is 
to be expected e.g. heating up of the CISTR wall etc. Consequently, a larger proportional gain is 
then required to maintain stability. 
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• If the process time is increased as Hopf bifurcation parameter, Figure 108 confirms the increase 
of Kc. Nevertheless, if the time constant is composed of reactor wall, cooling equipment, stirrer 
etc., its maximum value states approximately τR ≈ 1200 [s] compared with τR = 1000 [s], which 
means according to Figure 108 that Kc should be increased with 9%. Therefore, the influence of 
process equipment moderate affects the value of the proportional gain. 

 

11.3.2 Cooling time constant 
 
In §5.5.2 the coolant differential equation 36 has been postulated in which τcool represents the cooling time 
constant.  
 
 
Mathematical model 
 
The mathematical model states: 
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In which the cooling time constant becomes: 
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Equation 38 clearly demonstrate that τcool increases if the physical properties of the equipment is 
concerned with. A larger τcool implies that the response of the process becomes slower. The latter can 
perhaps affect the behaviour of the system. According to Roffel68 through the lack of information, the 
physical meaning of equation 38 is difficult to determine. Therefore, analysing exclusively the parameter 
τcool can provide some information with respect to the dynamical behaviour of the process. 
Based on the data printed in Appendix 3 (Table 38) and equation 38 the value of the cooling time constant 
can be estimated. It is presumed that the cooling equipment has been constructed from stainless steel. 
The results from Table 30 confirm the capability of the cooling equipment to store energy which is obvious 
considering that if the reactor temperature increases it takes time to bring the cooling equipment to the 
same temperature as the reactor contents resulting in a slower response to changes. 
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Figure 109 Coolant time constant versus inlet coolant temperature. 
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Table 30 Time constants coolant. Results (dotted lines in Figure 110). 
Time constant coolant Tcool,0 = 303 [K] Tcool,0 = 400 [K] Tcool,0 = 435 [K] 
τcool(no pipes) 117 35 5 
τcool(with pipes) 205 61 9 

 
 
Reactor controller stability map proportional control 
 
If coolant flowrate proportional control is considered, the following stability map can be drawn. In Figure 
110 the proportional gain is drawn against the cooling time constant. 
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Figure 110 Reactor controller stability map. Influence cooling time constant for various inlet coolant temperatures. 
 
Discussion of the reactor controller stability map: 
 

• The magnitude of the cooling time constant becomes considerably relevant in case 
For Tcool,0 = 303 [K]  τcool > 650 [s] 
For Tcool,0 = 400 [K] τcool > 250 [s] 
For Tcool,0 = 435 [K] τcool > 0 [s]. 

• The latter can be explained by the fact that due to the minor temperature difference between the 
cooling set point and the coolant inlet temperature even the slightest disturbance has a 
tremendous effect. 
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Orbit curves 
 
The cooling time constant in fact causes a particular delay. Figure 111 and Figure 112 prove that the 
cooling device can cause instability. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Reactor controller stability map proportional-integral control 
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Figure 113 Reactor controller stability map. The influence of the coolant time constant.Tcool,0 = 303 [K]. 
 
Discussion of the reactor controller stability map: 
 

• The values have been retrieved from Table 30 results (dotted lines in Figure 113, Figure 114 and 
Figure 115). 

• If the τI → ∞ the curves from Figure 110 are again acquired (proportional control only). 
• The figures demonstrate that in case a small integral time is chosen, the coolant time constant 

becomes more crucial. 
 

  
Figure 111 Orbit curve. Kc = 0.00025 

[m3 s-1 K-1], Tcool,0 = 303 [K], 
∆T = 10 [K], ΦV,cool (set 
point) = 5.6 ×××× 10-3 [m3 s-1]. 
τcool = 56 [s]. 

Figure 112 Orbit curve. Kc = 0.00025   
[m3 s-1 K-1], Tcool,0 = 303 [K], 
∆T = 10 [K], ΦV,cool (set    
point) = 2.6 ×××× 10-3 [m3 s-1].  
τcool = 98 [s] 
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Figure 114 Reactor controller stability map. The influence of the coolant time constant.Tcool,0 = 400 [K]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 115 Reactor controller stability map. The influence of the coolant time constant.Tcool,0 = 435 [K]. 
 
 
Summarising 
 
In fact, the process time constant acts as a certain delay. If of a particular process the mathematical 
description is available, the process engineer can easily modify the time constant of the actual differential 
equations, in which the influence of process equipment can be examined. With respect to the base case, if 
the base case is adequately controlled i.e. not too low Kc and τI, in which a low inlet coolant temperature is 
chosen, the process capacity does not affect the overall stability.  
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Chapter XII 
 

12 CONTROLLER CONFIGURATION TUNING 
 
In this chapter, a suitable controller configuration is searched for the base case to eliminate limit cycles 
and preserve stability. Therefore the reactor temperature is disturbed ∆T = 20 [K] and an arbitrary chosen 
delay τd = 30 [s] is concerned with to improve the physical realism. Firstly, the Ziegler Nichols controller 
tuning method (explained in §5.6.3) is examined. Accordingly, the proportional gain and the integral time 
are varied to study the effect on the process stability. Finally, the important issues and strategy regarding 
stability control is to be considered (presented in (§5.6.4). 
 

12.1 Controlling the coolant temperature 
 

12.1.1 Ziegler Nichols tuning method 
 
If the Ziegler Nichols methodology is applied for proportional control only, the self-sustained oscillations 
have been acquired (Figure 116a). According to the method the integral time is set to infinite τI → ∞. A 
proportional gain KU = 0.96 is obtained and an ultimate period of sustained cycling PU = 16 [min]. The 
contradiction appears due to the fact that limit cycles system exhibit even if Kc = 0. Therefore, a 
proportional gain is searched for the transition between limit cycles and spiral point. The resolved Ziegler 
Nichols controller-tuning configuration becomes: 
 
Kc = 0.43 [-] and τI = 760 [s]. 
 
According to Figure 116b this configuration is not robust enough to eliminate limit cycles. In this particular 
case the Ziegler Nichols tuning method is not suitable to provide a stable system. Apparently, this tuning 
method does not take into account dynamically instabilities like limit cycles and is developed for static 
instability problems only. 
 

  
Figure 116a KU = 0.98 [-], τI → ∞ [s], ∆T 

= +20 [K], τd = 30 [s], PU = 
15.2 [min]. 

Figure 116b Kc = 0.43 [-] τI = 760 [s]., 
∆T = +20 [K], τd = 30 [s]. 
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12.1.2 Controller parameter variation 
 
The following directives can provide a reasonably appropriate controller configuration, which preserves 
stability: 
 

• The generally accepted ¼-decay criteria (§5.6.2) is qualitatively applied to determine a 
proportional gain, which minimises the settling time i.e. time needed for the response to settle 
within ±5% of the desired value. 

• Because delay can be the occasion of instability during a process, the integral time must be 
considerably larger than the delay. 

• Overshoot cannot be avoided, however peaks, which are too strong, are undesirable. 
• The frequency of oscillation cannot be too high due the practical limitations of the actual process 

controller. 
 
Table 31 Results various controller parameters. Step disturbance ∆T =20 [K], delay τd = 30 [s]. 
Proportional gain Integral time 
 τI = 60 [s] τI = 600 [s] τI = 3600 [s] 
Kc  = 1 [-] Figure 117 Figure 118 Figure 119 
Kc  = 5 [-] Figure 120 Figure 121 Figure 122 
Kc  = 10 [-] Figure 123 Figure 124 Figure 125 
Kc  = 100 [-] Figure 126 Figure 127 Figure 128 

 
Figure 117-Figure 119 show visibly that the proportional gain Kc = 1 [-] is not robust enough to reduce the 
self-sustained oscillations. 
 

   
Figure 117 Kc = 1, τI = 60. Figure 118 Kc = 1, τI = 600. Figure 119 Kc = 1, τI = 3600 [s]. 
 
In case the proportional gain is increased to Kc = 5 [-] the limit cycles can be repressed. However, a small 
integral time results in a long settling time (Figure 120). An integral time τI = 600 [s] conversely offers 
rapidly a stable system with a small settling time and without too excessive overshoot (Figure 121). Larger 
integral time has no improvement effect on the stability (Figure 122).  
 

   
Figure 120 Kc = 5, τI = 60 [s]. Figure 121 Kc = 5, τI = 600 [s]. Figure 122 Kc = 5, τI = 3600 [s]. 
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A larger proportional gain Kc  = 10 [-] Figure 123- Figure 125, decreased the settling time. Although this 
improvement, it is not recommended tot chose a too large proportional gain due to the fact that the in case 
the assumed delay τd = 30 [s] has been underestimated, the stability of the process could be at risk.  
 

   
Figure 123 Kc = 10, τI = 60 [s]. Figure 124 Kc = 10, τI = 600 [s]. Figure 125 Kc = 10, τI = 3600 [s]. 
 
Further increasing the proportional gain (Figure 126-Figure 128) however decreases the settling time 
nevertheless raises the oscillation frequency. A process controller has a practical limited response time 
after an exhibiting disturbance, therefore too large Kc are unlikely. 
 
 
Literature 
 
The literature raises several directives to acquire controller parameters. 
According to Shinskey72 τI > 4 τd. to achieve a self-regulating process, hence τI > 120 [s]. 
 

UA
Cm PR

I =τ  (52) 

 
According to Perry59 the magnitude of the integral time can be estimated using correlation 52, 
consequently: τI ≈ 160 [s]. These values are clearly too small to acquire stability. An integral time τI = 600 
[s] however is more appropriate value for this particular base case. 
 

   
Figure 126 Kc = 100, τI = 60 [s]. Figure 127 Kc = 100, τI = 600 [s]. Figure 128 Kc = 100, τI = 3600 [s]. 
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12.2 Controlling the coolant flowrate  
 

12.2.1 Ziegler Nichols tuning method 
 
A proportional gain KU = 0.00052 [m3 s-1 K-1] is acquired and an ultimate period of sustained cycling PU = 9 
[min] (Figure 129). Therefore, the Ziegler Nichols controller-tuning configuration becomes: 
 
Kc = 0.00023 [m3 s-1 K-1]  and  τI = 444 [s]. 
 
This configuration is not robust enough to eliminate limit cycles (Figure 130), although the provoked 
disturbance can be removed. Apparently, the Ziegler Nichols tuning method is suitable to provide a stable 
system in which external disturbances can be eliminated. Nevertheless does not take into account the 
internal disturbances like exhibiting limit cycles. Therefore, the Ziegler Nichols tuning method has to be 
applied with caution. 
 

  
Figure 129 KU = 0.00051908 [m3 s-1 K-1], 

τI → ∞ [s], PU = 9 [min]. 
Figure 130 Kc = 0.000234 [m3 s-1 K-1]   

τI = 444 [s]. 
 

12.2.2 Controller parameter variation 
 
To acquire a suitable controller configuration, the distinct parameters are varied and evaluated on basis of 
its dynamical behaviour. 
 
Table 32 Results various controller parameters. Presumed delay τd = 30 [s]. 
Proportional gain, perturbation Integral time 
 τI = 60 [s] τI = 600 [s] τI = 3600 [s] 
Kc  = 0.00020 [m3 s-1 K-1] ∆T =20 [K] Figure 131 Figure 132 Figure 133 
Kc  = 0.00025 [m3 s-1 K-1] ∆T =20 [K] Figure 134 Figure 135 Figure 136 
Kc  = 0.00030 [m3 s-1 K-1] ∆T =20 [K] Figure 137 Figure 138 Figure 139 
Kc  = 0.00050 [m3 s-1 K-1] ∆T =20 [K] Figure 140 Figure 141 Figure 142 

 
Figure 131 and Figure 132 show clearly that the proportional gain Kc = 0.0002 [m3 s-1 K-1] is not robust 
enough to reduce the self-sustained oscillations. In case of Figure 133 the integral time is too large 
resulting in extinction. 
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Figure 131 Kc = 0.0002 [m3 s-1 K-1],     

τI = 60 [s]. 
Figure 132 Kc = 0.0002 [m3 s-1 K-1],      

τI = 600 [s]. 
Figure 133 Kc = 0.0002 [m3 s-1 K-1],     

τI = 3600 [s]. 
 
In case the proportional gain is increased to Kc = 0.00025 [m3 s-1 K-1], the overshoot is reduced. However, 
limit cycles still emerge (Figure 134 and Figure 135). An integral time τI = 3600 [s] again is too large 
(Figure 136). 
 

   
Figure 134 Kc = 0.00025 [m3 s-1 K-1],    

τI = 60 [s]. 
Figure 135 Kc = 0.00025 [m3 s-1 K-1],    

τI = 600 [s]. 
Figure 136 Kc = 0.00025 [m3 s-1 K-1],    

τI = 3600 [s]. 
 
 
A larger proportional gain Kc = 0.0003 [m3 s-1 K-1],  (Figure 137 and Figure 138) is robust enough to 
eliminate the constrained disturbance and the self-sustained oscillations i.e. spiral point. However if the 
integral; time becomes too long instability is inevitable (Figure 139). 
 

   
Figure 137 Kc = 0.0003 [m3 s-1 K-1],     

τI = 60 [s]. 
Figure 138 Kc = 0.0003 [m3 s-1 K-1],      

τI = 600 [s], 
Figure 139 Kc = 0.0003 [m3 s-1 K-1],     

τI = 3600 [s]. 
 
Further increasing the proportional gain to Kc = 0.0005 [m3 s-1 K-1], can preserve stability for a small 
integral time (Figure 140) however for larger integral times (Figure 141 and Figure 142) the reaction 
irrevocably extinguishes. 
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Figure 140 Kc = 0.0005 [m3 s-1 K-1],     
τI = 60 [s]. 

Figure 141 Kc = 0.0005 [m3 s-1 K-1],      
τI = 600 [s]. 

Figure 142 Kc = 0.0005 [m3 s-1 K-1],     
τI = 3600 [s]. 

 
In case of coolant temperature control, a larger integral time implies more stability. Due to the extra 
cooling equation 36 multiplicity is concerned, which can cause the reaction to extinguish. 
The best controller configuration regarding the PI-control coolant flowrate has been given in Figure 138 
i.e. Kc = 0.0003 [m3 s-1 K-1], τI = 600 [s]. 
The constrained disturbance has a tremendous effect on the controlled coolant flowrate. However due to 
the considerable cold coolant inlet temperature, the maximum fluid velocity will not become critical. In 
case of a recycle stream (10×) vcool < 2 [m s-1]. 
Considered the best controller configuration Kc = 0.0003 [m3 s-1 K-1], τI = 600 [s] (Figure 138) the 
dynamical behaviour of the coolant flowrate is portrayed in Figure 143. Despite the large overshoot, in 
case of steady state and minor disturbances, the coolant flowrate will vary much less. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 143 Kc = 0.0003 [m3 s-1 K-1], τI = 600 [s], ∆T = +20 [K], τd = 30 [s]. 
 

12.3 Controlling the throughput 
 

12.3.1 Ziegler Nichols tuning method 
 
A proportional gain KU = 0.00012 [m3 s-1 K-1] and an ultimate period of sustained cycling PU = 52 [min] is 
acquired (Figure 144). According to the Ziegler Nichols method the controller-tuning configuration 
becomes: 
 
Kc = 0.000054 [m3 s-1 K-1]  and  τI = 2600 [s]. 
 
In previous chapters, it has been obvious that the Ziegler Nichols method was not suitable to determine 
appropriate controller setting. In addition, for throughput control, this method is not applicable (Figure 
145). 
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Figure 144 KU = 0.00012 [m3 s-1 K-1],   

τI → ∞ [s], ∆T = +20 [K],    
τd = 30 [s], PU = 52 [min]. 

Figure 145 Kc = 0.000054 [m3 s-1 K-1]   
τI = 2600 [s], ∆T = +20 [K], 
τd = 30 [s]. 

 

12.3.2 Controller parameter variation 
 
Consider a constrained disturbance in the reactor temperature ∆T and a presupposed delay of τd = 30 [s]. 
The proportional gain and the integral time are varied to study the effect on the stability. 
 
Table 33 Results various controller parameters. Presumed delay τd = 30 [s]. 
Proportional gain, perturbation Integral time 
 τI = 60 [s] τI = 600 [s] τI = 3600 [s] 
Kc  = 0.0001 [m3 s-1 K-1] ∆T =20 [K] Figure 146 Figure 147 Figure 148 
Kc  = 0.001 [m3 s-1 K-1] ∆T =20 [K] Figure 149 Figure 150 Figure 151 
Kc  = 0.01 [m3 s-1 K-1] ∆T =20 [K] Figure 152 Figure 153 Figure 154 
Kc  = 0.1 [m3 s-1 K-1] ∆T =20 [K] Figure 155 Figure 156 Figure 157 
Kc  = 0.01 [m3 s-1 K-1] ∆T =2 [K] Figure 158 Figure 159 Figure 160 

 
Figure 146, Figure 147 and Figure 148 show visibly that the proportional gain Kc = 0.0001 [m3 s-1 K-1] is 
not robust enough to reduce the self-sustained oscillations. Actually, the temperature perturbation causes 
the reaction immediately to runaway. 
 

   
Figure 146 Kc = 0.0001 [m3 s-1 K-1],     

τI = 60 [s]. 
Figure 147 Kc = 0.0001 [m3 s-1 K-1],      

τI = 600 [s]. 
Figure 148 Kc = 0.0001 [m3 s-1 K-1],     

τI = 3600 [s]. 
 
In case the proportional gain is increased with a factor 10 to Kc = 0.001 [m3 s-1 K-1] (Figure 149) initially the 
controller corrects the flowrate in the right direction towards the base case value, however cannot avoid 
runaway directly after the first peak. Increasing the integral time has a considerable stabilising effect 
(Figure 150). Actually, after a reasonable short time the reaction is stabilised with the desired reactor 
temperature T = 468 [K] however with a poorer conversion ζ = 0.48 [-] which is 25% lower than the 
required base case conversion ζ = 0.68 [-]. The lower conversion is due to the fact easily another steady 
state is reached corresponding with a throughput ΦV = 0.001 [m3 s-1] which is 5 times lower than the base 
case value. An integral τI = 3600 [s] is conversely too large and causes once more runaway (Figure 151). 
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Figure 149 Kc = 0.001 [m3 s-1 K-1],       

τI = 60 [s]. 
Figure 150 Kc = 0.001 [m3 s-1 K-1],        

τI = 600 [s]. ζ = 0.48,        
ΦV = 0.012 [m3 s-1]. 

Figure 151 Kc = 0.001 [m3 s-1 K-1],       
τI = 3600 [s]. 

 
Increasing Kc 10 times to Kc = 0.01 [m3 s-1 K-1] however with a short integral time implies substantial 
instability (Figure 152). A larger integral time conversely preserves stability, unfortunately again with a 
lower conversion (Figure 153). Larger integral times do not change anything in view of the stability (Figure 
154). These figures prove that the integral time should not be too small i.e. the influence of the delay can 
be reduced by choosing a considerably larger integral time, which overlaps abundantly the delay. Because 
a change in the flowrate, caused by the proportional gain, affects directly the dynamical behaviour of the 
system, the integral time spreads the large peaks in which risk for transition to other steady states is 
decreased. 
 

   
Figure 152 Kc = 0.01 [m3 s-1 K-1],         

τI = 60 [s]. 
Figure 153 Kc = 0.01 [m3 s-1 K-1],          

τI = 600 [s], ζ = 0.48. 
Figure 154 Kc = 0.01 [m3 s-1 K-1],         

τI = 3600 [s], ζ = 0.48. 
 
Further increasing the proportional gain (Figure 155) once more causes runaway, although it takes more 
time to reach that critical situation. Increasing the integral time provides stability although with high 
oscillation frequencies, which are practically unlikely to realise i.e. opening and closing the throughput 
valve (Figure 156). Further increasing the integral time has no effect on the stability (Figure 157). 
 

   
Figure 155 Kc = 0.1 [m3 s-1 K-1],             

τI = 60 [s]. 
Figure 156 Kc = 0.1 [m3 s-1 K-1],              

τI = 600 [s, ζ = 0.48. 
Figure 157 Kc = 0.1 [m3 s-1 K-1],           

τI = 3600 [s], ζ = 0.48. 
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The previous cases, demonstrate that a considerable disturbance on the one hand can cause instability in 
the reactor and on the other hand imply stability however corresponding with a lower conversion i.e. the 
base case situation can not be preserved. 
If the actual disturbance is decreased ∆T = +2 [K], the steady state temperature can be remained. (Figure 
158, Figure 159 and Figure 160). Unfortunately, due to the unstable operating point the conversion is only 
temporarily close to the base case steady state value and is irrevocable attracted to the closest steady 
state, i.e. the steady state corresponding with lower throughput and consequently lower conversion. 
 

   
Figure 158 Kc = 0.01 [m3 s-1 K-1],         

τI = 60 [s] ∆T = +2 [K]. 
Figure 159 Kc = 0.01 [m3 s-1 K-1],           

τI = 600 [s] ∆T = +2 [K]. 
Figure 160 Kc = 0.01 [m3 s-1 K-1],         

τI = 3600 [s] ∆T = +2 [K]. 
 
Figure 159 and Figure 160 show that the reactor temperature can be remained at base case temperature 
however with a lower conversion. 
 
Finally, if the two possible steady state situation in which or the reactor temperature or the conversion is 
maintained are compared: 
 
Production = ΦV × [A]0 × ζ = 0.005 × 5000 × 0.68 = 17 [m3 s-1] 
Production = ΦV × [A]0 × ζ = 0.012 × 5000 × 0.48 = 28 [m3 s-1] 
 
It is apparent that the controller, which uses the reactor temperature as set point, has the largest 
production, although it is not certain if the larger flowrate is allowed. Besides, in case of conversion as set 
point the reactor temperature is higher. In view of safety, the latter is perhaps not allowed. Nevertheless, it 
is not the scope of this report to decide which choice must be made. 
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12.4 Base case controller configuration 
 
To obtain a suitable controller configuration, on the one hand a robust proportional controller gain is 
needed to restrain evolving limit cycles, however in addition, too large Kc can cause a certain overshoot, 
which can cause unwanted or even dangerous situations. If multiplicity is concerned with, transition is 
inevitable like if the throughput control. 
The integral time has to be chosen in such a way that the assumed delay is inferior. A too large integral 
time has hardly any improvement towards the stability. 
The conventional controller tuning methods like the Ziegler Nichols method are not adequate to adopt for 
processes with distinct dynamically unstable behaviour like the base case. 
 
Consider the base case situation, with an initial temperature disturbance of ∆T = 20 [K] and a presumed 
delay τd = 30 [s] to improve the physical realism, the following controller configuration preserved a stable 
process: 
 
 
Table 34 Suitable PI-controller settings coolant temperature control 
Description Value 
Presumed delay τd = 30 [s] 
Perturbation  ∆T = 20 [K] 
Proportional gain Kc = 5 [-] 
Integral time τI = 600 [s] 
Desired base case reactor temperature T = 468 [K] 
Required conversion  ζ = 0.68 [-] 

 
 
Table 35 Suitable PI-controller settings coolant flowrate control 
Description Value 
Inlet coolant temperature Tcool,0 = 303 [K] 
Presumed delay τd = 30 [s] 
Perturbation  ∆T = 20 [K] 
Proportional gain Kc = 0.0003 [m3 s-1 K-1] 
Integral time τI = 600 [s] 
Desired base case reactor temperature T = 468 [K] 
Required conversion  ζ = 0.68 [-] 

 
 
Table 36 The best achievable PI-controller settings throughput control 
Description Value 
Presumed delay τd = 30 [s] 
Perturbation  ∆T = 2 [K] 
Proportional gain Kc = 0.01 [m3 s-1 K-1] 
Integral time τI = 600 [s] 
Desired base case reactor temperature T = 468 [K] 
Required conversion  ζ = 0.48 [-] 
Throughput ΦV = 0.012 [m3 s-1] 

 
 
It is obvious that these values have no practical significant importance, merely give a qualitative 
impression of the magnitude. 
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Chapter XIII 
 

13 THE EFFECT OF FOULING ON THE BASE 
CASE STABILITY 

 

13.1 Introduction 
 
In existing industrial processes, reactor vessels with exothermic chemical reaction are cooled 
continuously. Simultaneously, the cooling apparatus is contaminated called fouling (Foust27). As a 
consequence of fouling the cooling capacity can decrease during the process. Consider the UA reduction 
per time. 
 

fUA
dt

dUA −=  (53) 

 
In correlation 53, f stands for the fouling factor i.e. the amount of reduction of the cooling capacity per unit 
of time. An arbitrary chosen f is to be assumed.  
 

Figure 161 Presuppose that every hour 1% of the cooling 
capacity is reduced. According equation 53                 
f = -(1-0.99)/3600 = -2.8 × 10-6 [s-1]. 

 
Consider the controlled base case process, operating at a stable point. From the moment t = 0 the 
process of fouling depletion according equation 53 is to be considered. The simulation starts using the 
default base case values, however with an initial temperature disturbance of ∆T = +10 [K]. The following 
systems will be considered: 
 

1. Coolant temperature proportional control 
2. Coolant temperature proportional-integral control 
3. Coolant flowrate proportional control 
4. Coolant flowrate proportional-integral control 
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13.2 Coolant temperature proportional control 
 
The process is proportional controlled (Kc = 0.95). It has been previously found through Figure 27 that the 
minimum required proportional gain to provide stability is Kc = 0.9. During the process, the cooling 
capacity declines as has been portrayed in Figure 161. Initially, Figure 162 confirms that the controller is 
suitable to eliminate the disturbance. Nevertheless, after approximately 6 hours, the system becomes 
unstable and exhibits undesired limit cycles. The example demonstrates that a controlled real process, 
which is marginal stable, can definitely become unstable in case the process variables change. 
 
 

1 Coolant temperature proportional-integral control 
 
Through Figure 74 it was determined that Kc = 1.35 is sufficient to preserve stability no matter the value of 
the integral time. Nonetheless, an arbitrary integral time constant is chosen τI = 60 [s]. The controller 
initially removes the constrained disturbance, but after approximately 7 hours, the system becomes 
unstable which has been shown in Figure 163. 
 

  
Figure 162 Tcool P-control. Initial step disturbance ∆T = 10 [K]. 

After approximately t = 6 [h], the process becomes 
unstable and exhibits large limit cycles. The LOCBIF 
source LOCBIF rhs 9 is included in Appendix 7. 

Figure 163 Tcool PI-control. Initial step disturbance ∆T = 10 [K]. 
After approximately t = 7 [h], the process becomes 
unstable. The LOCBIF source LOCBIF rhs 9 is 
included in Appendix 7. 

 
Because the offset is not removed in case a P-controller is applied which is clearly visible in Figure 162, 
the process becomes unstable more early according Figure 163. Correspondingly, in case of coolant 
temperature control, the advantage of the integral action is demonstrated. 
 

13.3 Coolant flowrate proportional control 
 
A proportional gain Kc = 0.00025 [m3 s-1 K-1] is selected (derived from Figure 37) at which narrowly a 
stable system is achieved. The proportional controller does not remove the offset which is confirmed in 
Figure 164a. After approximately 50 hours, the process becomes unstable and exhibits limit cycles. Due to 
the reduced cooling capacity, more heat has to be removed through the coolant flowrate, which will 
consequently increase (Figure 164b) whereas the coolant temperature decreases (Figure 164c). 
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13.4 Coolant flowrate proportional-integral control 
 
The same Kc = 0.00025 [m3 s-1 K-1] is selected at which a stable system is acquired. The integral action 
clearly removes the offset (Figure 165a).  Due to UA decline, the coolant flowrate has to be increased to 
remove the surplus heat Figure 165b although less compared to P-control only. After approximately 32 
hours, the system becomes unstable. In case of proportional control, only it took 50 hours before the 
system became unstable. The proportional + integral action (τI → 600 [s]) makes the system more quickly 
unstable compared the proportional control action exclusively (τI →∞). This can be derived from Figure 80 
in which Kc has been plotted against τI. 
 

  
Figure 164a Tcool,0 = 303 [K]. Initial step disturbance ∆T = 10 

[K]. The process becomes unstable after 
approximately t = 50 [h]. 

Figure 165a Tcool,0 = 303 [K], τI = 600 [s]. Initial step disturbance 
∆T = 10 [K]. The process becomes unstable after 
approximately after t = 32 [h]. 

 

  
Figure 164b ΦV,cool P-control. Initial step disturbance ∆T = 10 

[K]. The coolant flowrate increases due to UA 
decline. 

Figure 165b Tcool,0 = 303 [K], τI = 600 [s]. Initial step disturbance 
∆T = 10 [K]. The coolant flowrate increases less 
than P-control. 
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Figure 164c Tcool,0 = 303 [K]. Due to the increasing coolant 

flowrate the coolant temperature declines. The 
LOCBIF source LOCBIF rhs 11 is included in 
Appendix 7. The influence of the heat capacity of 
the tube wall is discussed by Roffel68. 

Figure 165c Tcool,0 = 303 [K]. Due to the increasing coolant  
flowrate the coolant temperature declines. The 
LOCBIF source LOCBIF rhs 12 is included in 
Appendix 7. 
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CONCLUSIONS 
 
Limit cycles which exhibit in a cooled CISTR with irreversible exothermic reaction A → P can completely 
be eliminated through the application of a proportional-integral controller. This can be achieved 
successfully if the PI-controller regulates the extent of cooling. 
The key to success is the software program LOCBIF in which distinct stability maps and orbit curves can 
be produced based on the mathematical descriptions. A stability map can give valuable information about 
the static and dynamical behaviour of a considered process. 
Throughput control is not a suitable control method due to the fact that adjusting the flowrate decreases 
the reactor temperature by the supply of cold feed but on the other hand increases the reaction rate due to 
the fresh reactant. To match both internal disturbances (self-sustained oscillations) and external 
disturbances (irregularities) the controller must be robust enough. Nevertheless, too drastic manipulation 
will on the contrary disrupt the dynamics of a process. If a dynamical unstable process is considered, like 
the base case, the proportional gain is certainly too large and can cause transition. An inevitable lower 
proportional gain means either the reactor temperature is chosen as set point with lower conversion, or 
the conversion is chosen with a higher reactor temperature. With respect to the base case with throughput 
control, no appropriate control configuration could be obtained.  
Cooling control implies practically the regulation of the temperature of a cooling fluid. In this report, two 
distinguished models have been examined. At first the instantaneously manipulation of the coolant 
temperature and secondly the implementation of a cooling differential equation which the latter describe 
the coolant temperature as function of the coolant flow. Considered the first model, it is relatively simple to 
elucidate limit cycles and preserve stability. In the worst case scenario, limit cycles emerge. Regarding the 
second model, suitable control can be achieved, although the configuration of the controller parameters 
must be tuned adequately. Inaccurate control can imply for instance too much heat withdrawal from the 
reactor causing extinction. 
To enlarge the physical realism, the apparent delay is introduced. Small delay cannot destabilise a proper 
controlled process. Conversely, large delay provokes dynamical instability and if multiplicity is involved 
even static instability (extinction or runaway). Beyond a certain delay, instability is inevitable in which no 
controller can provide a stable process. The simulated delay is apparently less dangerous for higher inlet 
coolant temperatures. In the contrary, the influence of process equipment on the stability of a process, 
which in fact represents a certain delay, is less affecting the stability for low coolant inlet temperatures. 
The integral time removes any offset and is therefore a welcome supplement. The conditions are that the 
integral time constant is considerable larger than the apparent delay. 
Traditional control configuration tuning methods like the Ziegler and Nichols technique are not appropriate 
to deal with dynamical instabilities. 
Large cooling capacity, in general has a positive effect on the stability of a process80. However too large 
UA values, which are practically not thinkable due to economic aspects, can contribute to a process in 
which too much heat is removed from the system if the controller manipulates too drastic. 
If a controller is accurate and can safely preserve stability, a larger proportional gain may imply less UA 
i.e. installed heat transfer area (cost reduction). 
In the literature in general, stability maps are composed in which one focuses on process variables such 
as the reactor temperature or conversion. In this report, such stability maps are called reactor designer 
stability maps. This is because the influence of important process parameters on the process stability can 
be analysed in the stability map. Due to the complex structure of the mathematical description and the fact 
that more than 2 variables are varied in a 2D plot, the curves in these stability maps become rather 
entangled and are therefore often difficult to interpret, in which the advantage of such maps in fact 
perishes. The directly study of particular process parameters such as proportional gain or cooling capacity 
through Hopf curves is less elaborate and often much more easy to interpret. Besides asymptotic limits 
can also be obtained. Additionally, stable and unstable regions can be indicated easier. Therefore, 
another stability map is introduced in this report, called the reactor controller stability map, in which easily 
one can determine the controller settings in which stability can be maintained or acquired, in particular 
after the process has been changed. 
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RECOMMENDATIONS 
 
Validation 
 
Although in this report it has been demonstrated that the base case, which exhibits limit cycles, can be 
controlled adequately, it is of crucial importance that the developed models will be validated for real 
physical existing processes. 
 
This report is part of the research to the stability of process-operation of gas-liquid reactors. The next and 
logical step in research is the extension of the model with respect to a two-phase reactor.23 22 78 26 
 
 
Model enhancement and extension 
 
In this report, throughput control for one reactant is not recommended. From literature17 19 38 76, it is know 
that in case more reactants are concerned with, which the latter is practically mostly the case, flowrate 
control of one or more inlet flowrate streams might contribute to stabilising a process.  
 
The application of n CISTRs in series with the same total volume n VR,i may be in advantage compared to 
the use of 1 CISTR. This has to be investigated. 46 55 26 68 67 
 
The volume in the CISTR can be modified by changing the liquid height in the reactor. Consequently, the 
heat transferred through the cooling pipes changes. Through regulating the height, flowrate control is 
perhaps possible25. 
 
In case of cooling control, the assumption is made that the coolant temperature is constant. In practise, 
this is not always the case. If the flow pattern though the cooling device (e.g. pipes) is taken into account, 
one can make the outgrowth probably more realistic. 60 59 4 37 55 26 68 
 
The accuracy regarding the coolant temperature can be improved in case the logarithmic mean 
temperature according equation 17, is implemented in the mathematical model. 80 68 
 
In the models, the assumption is made that the reactor is perfectly mixed. According to37 4 49 the stirrer 
affects both the conversion as the heat capacity. A more advanced description of this influence on the 
conversion and UA value can be an improvement to the model. 
 
 
Process control improvement 
 
Derivative control can make a control much more stable than a controller with merely proportional or 
proportional-integral action. Derivative control involves an extra integral equation. Unfortunately, 
implementation of derivative control action is not possible in LOCBIF, because this package is not adopted 
for the use of integral equations; conversely, the UNIX package AUTO has special features, which can 
handle integral equations. The PID controller can then be examined. 
 
In case of substantial deviation of essential system variables, feed forward control can be a suitable 
solution, or conceivably the combination of feed forward and feedback. 74 9 10 14 75 35 55 59 72 53 

 
All the considered controller tuning methods have been developed to deal with static instability. Methods74 
have to be acquired or developed to determine suitable controller parameters which preserve a both static 
as dynamical stable process. The new and advanced kind of process control is the non-linear process 
control which provides extraordinarily new features. 35 35 74 53 10 51 16 
 
The control objective of the controller is to keep the temperature T of the reacting mixture constant at a 
desired value. Possible disturbances to the reactor include the feed temperature T0 and the coolant 
temperature Tcool. The temperature in the reactor responds much faster to changes in T0 than to changes 
in Tcool, in case of a coolant flow control method. 74 
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NOMENCLATURE 
 
 
Symbol Description Dimension 
 
A Heat transfer or exchanger area [m2] 
As Surface area available for heat transfer per unit length [m2 m-1] 
c Controlled variable (equation 25) [.] 
c’(t) Output signal (equation 26) [.] 
CP Heat capacity [J Kg-1 K-1] 
CP,cool Heat capacity of cooling fluid [J Kg-1 K-1] 
Dimp Impeller diameter [m] 
Dpipe Pipe diameter / thickness [m] 
Dvessel Vessel diameter [m] 
E Total energy of reacting mixture [J] 
Eact Activation energy (equation 1) [J mol-1] 
f Fouling factor, rate of UA depletion (equation 53) [s-1] 
ƒ(x) Mathematical function description [-] 
g Gravitational acceleration [m s-2] 
Gc(s) Transfer function (for a controller) [-] 

subscriptH~  Partial molar enthalpies of component subscript (equations 61) [-] 

∆HR Reaction heat / enthalpy of reaction based on R [J mol-1] 
k0 Arrhenius pre-exponential factor or frequency factor (equation 1) [s-1] 
Kc Proportional control gain [-] or [m3 s-1 K-1] or [m3 s-1] 
Ke Estimated gain conversion parameter (equations 42 and 47) [m s-1 K-1] 
Ki Integral control gain [-] 
kR,m,n Reaction rate constant [m3(m+n-1) / mol(m+n-1) s] 
KU Ultimate gain of final control element [-] 
Kx Mass transfer coefficient of phase x [m s-1] 
Lpipe Pipe length in reactor [m] 
∆L2pipes Distance between two pipes in square vessel [m] 
M Ziegler Nichols amplitude ratio [-] 
nsubscript Number of moles (equation 55) [mole] 
Nimp Stirring speed [# s-1] 
NTU Number of transport units (equation 6) [-] 
NTUcool Number of transport units coolant (equation 15) [-] 
NuR Nusselt number reaction mixture  [-] 
Nucool Nusselt number coolant [-] 
pi Bifurcation parameter (equation 24) [-] 
P Potential energy [J] 
P Pressure [N m-2] [Pa] 
PrR Prandtl number reaction mixture [-] 
Prcool Prandtl number coolant [-] 
PU Ziegler Nichols ultimate period of sustained cycling [min] 
Q Amount of removed heat [J s-1] 
Qp Heat generation potential Perry et.al.59 [-] 
Qfeed Required heat to bring the feed to operation temperature (equation 65) [J s-1] 
Qreaction Heat produced by reaction (equation 66) [J s-1] 
Qtransfer Heat transferred through cooling/heating area (equation 67) [J s-1] 
Qcool Heat, which is removed by coolant (equation 68) [J s-1] 
R Ideal gas constant [J mol-1 K-1] 
ReR Reynolds number reaction mixture [-] 
Recool Reynolds number coolant [-] 
Ri Scale resistance [m2 K s J-1]) 
ri Reaction rate [m3(m+n-1) / mol(m+n-1) s] 
S Cross-section area [m2] 
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St’ Stanton number = NTU [-] 
t Simulation time variable [s] 
T Temperature [K] 
Tcool Coolant temperature [K] 
Tdelay Temperature after an apparent delay [K] 
T∞ Temperature of the fluid around the wall [K] 
∆Tad Adiabatic temperature difference  [K] 
∆Tlog Logarithmic temperature mean (equation 17) [K] 
td Time (delay or dead) [s] 
tU Ultimate period [s] 
UA Cooling capacity [J s-1 K-1] 
U Internal energy [J] 
U Overall heat transfer coefficient [J m-2 s-1 K-1] 
uG Gas velocity [m s-1] 
uL Average liquid velocity based on cross section [m s-1] 
Vcool Cooling fluid volume [m3] 
VR Reactor volume [m3] 
Vvessel Vessel volume [m3] 
x Mathematical variable (equation 32, 24) [-] 
Xi Conversion rate [s-1] 
 
 
Greek Description Dimension 
 
αααα Angle [-] 
αR Heat transfer coefficient reactor  [J m-2 s-1 K-1] 
αcool Heat transfer coefficient coolant [J m-2 s-1 K-1] 
δ Thickness of cooling pipe (equation 84) [m] 
δpipe Thickness of pipe in a cooled vessel (equation 84) [m] 
δvessel Thickness vessel wall [m] 
ε Hold-up [m3 m-3] 
εεεε Error or deviation [-] 
φ Time transformation [-] 
γ Parameters used for ecological-bifurcation model [-] 
η Liquid viscosity [kg m-1 s-1] 
ηcool Coolant viscosity [kg m-1 s-1] 
ηwall Viscosity at pipe wall [kg m-1 s-1] 
Θ Dimensionless temperature [-] 
θ Dimensionless time [-] 
λ Bifurcation active parameter (equation 18) [-] 
λ Thermal conductivity [J m-1 s-1 K-1] 
λR Thermal conductivity reaction mixture [J m-1 s-1 K-1] 
λpipe Thermal conductivity cooling coil / pipes [J m-1 s-1 K-1] 
λcool Thermal conductivity coolant [J m-1 s-1 K-1] 
σT Temperature sensibility E/RT2 Perry et.al.59 [K-1] 
τ Time constant in a process (equation 32) [s] 
τcoolant Average residence time of a coolant particle in cooling device [s] 
τcool Time constant of the cooling fluid (equation 38) [s] 
τR Average resident time (equation 4) [s] 
τdead Dead time constant [s] 
τd Presumed dead time [s] 
τD Derivative time constant [s] [min] 
τI Integral time constant / reset time [s] [min] 
τm Measuring time constant [s] 
τU Apparent time constant [s] 
ϕ Integral control state variable [K] 
ω∞ Ziegler Nichols crossover frequency [s-1] 
Φj Production rate [mol s-1] 
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Φv Volumetric flow rate [m3 s-1] 
Φv,cool Flowrate cooling fluid [m3 s-1] 
Ψ Place transformation [-] 
Ψ Ratio height and diameter vessel (equation 75) [-] 
ρ Fluid density [kg m-3] 
ρcool Density of cooling fluid [kg m-3] 
ζ Relative conversion [-] 
ξsubscript Absolute conversion [mol] 
 
 

 
 
 
 
 
 

Subscripts 
 
0 Inlet or fresh feed 
1, 2,… Reactor 1, 2,… 
a, b Component A, B 
ana Analytic solution 
act Activation 
bc Base case 
c Controller 
cool Coolant / cooling (media) 
conv Converted 
crit Critical 
d Dead time 
e External 
(g) Gas phase 
i Initial / species i / inlet 
(l) Liquid phase 
lm Linear median / mean 
log Logarithmic mean 
m Measured 
meas Measuring device 
min Minimum 
max Maximum 
num Numerical 
p Process 
pipes Cooling pipes 
s Specific / steady state 
sp Set point 
stst Steady state 
t Total 
u Ultimate 
 
 

Abbreviations 
 
ART Average residence time 
BR Batch reactor 
CISTR Continuously ideally stirred tank reactor 
CORR Corrective 
D Derivative 
G Gas 
HPR Heat production rate 
HWR Heat withdrawal rate 
I Integral 
IAE Integral of the absolute error 
ITAE Integral time absolute error 
L Liquid 
ODE Differential equations 
PDE Partial differential equations 
PFR Plug flow reactor 
P Proportional 
PI Proportional integral 
PID Proportional integral derivative 
PB Proportional band 
RCSM Reactor controller stability map 
RDSM Reactor designer stability map 
RHS Right hand side 
RT Residence time 
 

Symbols 
 
⊕  Base case 

 

 
 
LOCBIF List of symbols 
 
Printed in Appendix 6 at p123. 
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Linearisation68 25 37 74 60 
Laplace transforms25 60 53 68 74 
Routh criterium7 14 60 74 
Partial differential equations55 68 
Discretisation and continuisation68 
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APPENDICES 
 
 
Appendix 1. Derivation CISTR 
 
 
The continuously ideally stirred tank reactor 
 
A simple exothermic reaction 1 takes place in the Continuously Ideally Stirred Tank Reactor which has 
been displayed in Figure 1 at p2. A liquid enters the reactor with a flow rate of ΦV [m3 s-1] and a 
temperature T0 [K]. This feed flow contains component A with concentration [A]0. The tank is considered to 
be perfectly mixed, which implies that the temperature and concentration of the effluent is equal to the 
temperature and concentration of the liquid in the tank ΦV, T, [A] and [P]. The reactor is cooled by a 
coolant that for example flows through a jacket around the reactor or flows through a system of cooling 
pipes (see also Appendix 3).  
 
The fundamental dependent quantities for a reactor are: 
 

1 Total mass of the reacting mixture in tank 
2 Mass of chemical substance A in the reacting mixture 
3 Total energy of the reacting mixture in the tank 

 
Remarks: 
 

1 The mass of component P can be found from the total mass and the mass of component A. 
Therefore, it is not an independent fundamental quantity and therefore is superfluous. 

2 The momentum of the CISTR does not change under any operating conditions for the reactor 
and will be neglected. 

 
Assumptions (Westerterp et.al.80, Stephanopoulos74, Roffel68 and Marlin53): 
 

1. The liquid phase is ideally mixed and can be described as a CISTR. 
2. The irreversible, elementary first order chemical reaction states A → P. 
3. The potential and kinetic energies of the inlet and outlet streams are equal. 
4. The liquid in and out flowrate are assumed equal. 
5. The physical parameters are considered constant i.e. ∆ρ = 0 and ∆CP = 0. 
6. The CISTR is well insulated so that negligible heat is transferred to the surroundings 
7. The accumulation of energy in the reactor walls, agitator and cooling coil is negligible 

compared with the accumulation in the liquid. According to Westerterp et.al.80 this is 
permissible for large industrial reactor. 

8. According to Ogunnaike et.al.60 The coolant is at quasi-steady state. 
9. The shaft work done by the impeller of the stirring mechanism, has been neglected. 

 
The conservation principles on the three fundamental quantities will be applied: 
 
 
Total mass balance 
 

time
consumed or  generated

mass total

time
masstotalof

output

time
masstotalof

input

time
masstotalof

onaccumulati
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( ) ( ) ( ) 00 =Φ−Φ= VV
R

dt
Vd ρρρ

 (54) 

 
where: ρ0, ρ = densities of the inlet and outlet streams. 
 ΦV,0, ΦV, = volumetric flow rates of the inlet and outlet streams. 
 VR = volume of the reacting mixture in the tank. 
 
 
Mass balance on component A 
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reaction to due
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or 
 

( ) ( ) ( ) ( ) RVV
RA rVAA
dt

AVd
dt
nd

−Φ−Φ== ][][][
0  (55) 

 
where: r = rate of reaction per unit volume. 
 [A], [A]0 molar concentrations of vA in the inlet and outlet streams 
 nA = number of moles of A in the reacting mixture. 
 
In expression 55 r represents the overall chemical reaction rate (reaction 1) defined as: 
 

][][ 0 AekAkrr RT
E

RA

act−
==−=  (1) 

 
In equation 1, Eact is the activation energy and k0 the Arrhenius frequency factor. Expression 1 was 
considered by Arrhenius59 14 26. It represents the effect of temperature on the rate constants (of simple 
reactions) i.e. it symbolises the amount of energy in excess of the average energy level, which the 
reactants must have in order for the reaction to proceed. 
The specific state variables are [A] and VR. Algebraic manipulation on equation 55 leads to: 
 

( ) ( ) ( ) R
RT

E

VVR
RR VAekAA

dt
AdV

dt
dVA

dt
AVd act

][][][][][][
00

−
−Φ−Φ=+=  (56) 

 
this expression becomes: 
 

( ) ][][][][
00 AekAA

Vdt
Ad RT

E

R

V act−
−−Φ=  (57) 

 
 
Total energy balance 
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Extensive thermodynamic derivations can be found in Stephanopoulos74. 
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QThTh
dt
dH

VV −Φ−Φ= )()( 000,0 ρρ  (58) 

 
Where Q is the amount of heat removed. The amount of heat supplied by e.g. steam or removed by the 
coolant per unit time80 is given by following expressions: 
 

( )TTUAQ steamheat −=  (59) ( )coolcool TTUAQ −=  (60) 
 
In equation 60 U is the overall heat transfer coefficient and A represents the total area of heat transfer. 
Equations 54, 55 and 58 are not in their final and most convenient form for process control design studies. 
To bring them to such form the appropriate state variables will be identified. 
From the thermodynamics, it is known that the enthalpy of a liquid system is a function of the temperature 
and its composition:  
 

( ) ( ) QrVHHTTC
dt
dTCV RPAPVPR −−+−Φ= ~~

00,00, ρρ  (61) 

 

CP is the specific heat capacity of the reacting mixture and in equation 61 AH~  and PH~  are the partial 

molar enthalpies of A and P. Since RPA HHH ∆−=− ~~
 which represents the heat of reaction at 

temperature T and ρ = ρ0, CP = CP,0. 
 

( )
P

R
P

R
VR C

QrV
C
HTT

dt
dTV

ρρ
−

∆−
+−Φ= 00,  (62) 

 
From equation 62 the temperature T is the state variable that characterise the total energy of the system. 
Summarizing all the steps above in the mathematical modelling of a CISTR results in state variables [A] 
and T and state equations 63 and 64 according 
 

( ) ][][][][
00 AekAA

Vdt
Ad RT

E

R

V act−
−−
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( ) ( )
RP

coolRT
E

P

R

R
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TTUAAek

C
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dT act

ρρ
−

−
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−
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Heat classification 
 
Heat can be categorised in respectively: 
 
heat, which is needed to bring the feed to operation temperature 

( )0TTCQ VPfeed −Φ= ρ  (65) 
heat produced by reaction 

][0 AekVHQ RT
E

RRreaction

act−
∆=  (66) 

transferred heat 
( )cooltransfer TTUAQ −=  (67) 

heat, which is removed by coolant according: 
( )0,,, coolcoolcoolVcoolPcoolcool TTCQ −Φ= ρ  (68) 

heat production rate: 
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RR

RR
ad k

kTHPR
τ

τ
+

∆=
1

 (69) 

and heat withdrawal rate (derived from equations 2, 3, 10, 4, 6 and 7) 
( ) ( )coolTTNTUTTHWR −−−= 0  (70) 

 
 
Linearisation of the non-isothermal CISTR 
 
In process control applications, generally differential equations are linearised to examine its dynamic 
behaviour. The literature25 37 59 60 72 74 deals often with the linearisation of the non-linear CISTR model 
according the state equations 2 and 3. According to Stephanopoulos74 the linearised mass and energy 
balances could be perceived as a capacity in which energy can be stored. The response of [A] and T to 
inlet changes is second order. A CISTR is distinguished by the kinetic rate term, which denotes 
disappearance of component A. Such terms may produce not only overdamped but also underdamped 
and inverse response. 
 
 
Appendix 2. Literature 
 
Although many articles can be found regarding CISTRs, stability and process control, little information can 
be found with respect to limit cycles and process control. The information that can be gathered is 
concerned with proportional-integral control in which the coolant temperature is adjusted. Not taken into 
account is, instead of the coolant temperature, the coolant flowrate nor the derivative control action, 
assumed delay and the non-ideal process behaviour, which can seriously affect the process stability. 
Besides, the literature often focuses on complex mathematical models, which requires very profound 
background knowledge. Nevertheless, some articles are refereed which may contribute to understand the 
limit cycle and stability problem in CISTRs. 
 
 
Multiplicity and stability in CISTRs 
 
Roffel68 examined state equations 2 and 3 applying an information flow diagram in which the stable 
equilibrium points can be derived from specific trajectories. This method however is rather laborious in 
case model improvements are concerned. Bilous et.al.7 presented the first modern stability analyses of the 
equilibrium states in a CISTR with a single exothermic reaction. It has been shown that instabilities may 
exist in the three steady states. Analytical criteria have been for the determination of stability. The article 
provides much information about the dynamical behaviour of a CISTR. However, in case the model is 
extended, the methods become very complex. Doherty and Ottino21 explained in their article through 
chaos theory the sensitive dependence of solution of differential equations on initial conditions. Hoffman 
et.al.39 developed a model to determine steady state multiplicity in a gas-liquid CISTR with exothermic 
reaction. Pellegrini et.al.58 determined the region of asymptotic stability for, and the chaotic behaviour of a 
CISTR. Ding et.al.17 demonstrated through chlorination of liquid n-decane experimentally in an adiabatic 
continuously stirred tank reactor the existence of steady state multiplicity. They investigated the influences 
of a control scheme. Harold et.al.31 investigated experimentally the steady state multiplicity features of two 
parallel catalytic reactors. They found methods to determine all possible steady states. Ostermaier et.al.32 
compared the CISTR with the decanting reactor for its dynamical behaviour. Huang et.al. 43 studied the 
second order reaction with regards to multiplicity. Vleeschhouwer et.al.78 proposed an analytical 
perturbation analysis of a cobalt catalysed oxo reactor. They described the process with a pseudo 
homogeneous pseudo first order system, which can be described by merely two differential equations. 
Heiszwolf and Fortuin36 give a very clear example of a design procedure for stable operation of a first-
order system in a CISTR using an analytical perturbation method. Ray67 discussed the performance 
improvement of a chemical reaction by non-linear natural oscillations. Li and Horsthemke50 studied the 
product occupancy in heterogeneous catalyses in relation with multiple steady states and temporal 
oscillations. 
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Limit cycles theoretical results 
 
Aris and Amundson1, van Heerden34, Uppal et.al.75, Heemskerk and Dammers33, published the theoretical 
treatment of instabilities in continuously ideally stirred tank reactors based on the fundamental mass and 
energy balance. In these articles the appearance of self-sustained oscillations i.e. limit cycles have been 
theoretically demonstrated. Scott69 and Bilous et.al.7 considered the oscillations in simple models in 
chemical reactors and represented some experimental cases. Doedel and Heinemann18 used the 
bifurcation theory to investigate the oscillatory behaviour in a CISTR with consecutive A→B→C reaction. 
They used a continuation technique to compute response diagrams exhibiting stable and unstable 
periodic branches that contain multiple limit points. Finally, Westerterp et.al.80 mentioned the work on 
laboratory scale in which the existence of limit cycles have been demonstrated. 
 
 
Limit cycles experimental results 
 
Heemskerk et.al.33 described experimental investigations concerning limit cycle behaviour in a one-phase 
reaction system i.e. the acid-catalysed hydrolyses of 2,3-epoxypropanol-1b and showed a good 
agreement with theory based on the fundamental mass and energy balance. Hanckock et.al.30 analysed 
the instabilities in a CISTR with temperature fluctuations in one-phase and two-phase reactors reactor 
theoretically and carried out experiments e.g. the formation of methyl-chloride from methanol and 
hydrogen-chloride. They found the principle features of oscillatory behaviour. Bush5 discovered the 
consternation of practical engineering in commercial situations. Harold et.al.32 constructed maps with 
parameter regions with qualitatively different steady state and dynamical bifurcation diagrams. These 
maps could clearly describe the desirable regions of operation and point out the potential stability. They 
suggested to maintain a sufficiently small difference between the reactor temperature and the coolant 
temperature to avoid oscillatory behaviour. Huang et.al.42 did research on predicting the steady state and 
dynamical behaviour of fast gas-liquid reactions in a non-adiabatic CISTR. The models they developed 
were experimentally identified i.e. multiplicity in the chlorination of n-decane. Vleeschhouwer and Fortuin77 
have been concerned with the theoretical and experimental aspects with respect to stability in a CISTR. 
Uppal and Ray76 investigated theoretically the influence of the average residence time on the dynamical 
behaviour of a CISTR. Hjelmfelt and Ross38 used a proportional flow feedback method to stabilise 
unstable stationary states in experiments with chlorite-iodide reactions. Vleeschhouwer et al.78 
demonstrated that sustained temperature oscillations can occur in a commercial scale gas-liquid oxo-
reactor. 
 
 
Process control 
 
Kravaris et.al.47 proposed a robust non-linear feedback control scheme. This article is an improvement of 
the global input/output linearisation approach. The article is difficult to expand with differential equations. 
Ratto et.al.64 analysed the PI-controlled CISTR with fluctuating and uncertain parameters. In the article, 
they applied the Hopf bifurcation plot to determine the stability. Ratto66 made also a theoretical approach 
to the analyse of PI-controlled CISTRs with noice. Calvet et.al.10 presented a method to compute gains to 
design a PI-controller based on perturbations in non-linear systems. In the article, the influence of limit 
cycles was not considered. Daoutidis et.al.16 are concerned with a different approach of non-linear 
systems i.e. the state-space approach. Although the author proclaimed stability, the applied methods are 
rather laborious. Giona and Paladino29 developed a comprehensive bifurcation analyses and stability 
consideration of a  controlled CISTR in the presence of a νth order exothermic reaction. They studied the 
PI-control and introduced controller time delay. Paladino and Ratto65 developed a procedure for stability, 
robustness and sensitivity of real controlled CISTRs through bifurcation analyses. Paladino and Ratto 64 
also studied the controllability of start-ups in CISTRs under PI-control. 
 
 
Limit cycle control 
 
Limquerco et.al.51 proposed a non-linear output feedback control of an exothermic reaction in a CISTR. In 
case the system was perturbed, they found both ignition and extinction, however more interesting they 
measured limit cycles under certain conditions. The disadvantage of this article like the article of Uppal 
et.al.75 is the fact that instantaneous change of the coolant temperature is assumed. Interesting point of 
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the article is the non-linear approach. Dolnik et.al.19 studied numerical and experimental the chlorine 
dioxide-iodide reaction in a CISTR with feedback regulation of flow rate. The difference with this report is 
the existence of more than one reactant. 
 
 
Appendix 3. Value estimation 
 
Despite the fact that this report has a qualitative analytical character and the chosen base case, definition 
has been extracted from the article by van Elk et.al.22 it is indispensable to investigate the magnitudes of 
the base case parameters; consequently, the chosen values will be compared with regular values and 
validated. To examine parameters: UA, -∆HR, E, k0, ρ, VR, CP. 
 

Dpipe 

Hvessel 

Dvessel 
 

Figure 166 Theoretical cylindrical vessel containing cooled through n pipes. 
 
 
UA value estimation 
 
In this section, the value of product U and A will be considered. 
In the base case definition, the value UA = 55 [kJ s-1 K-1] has been chosen. To validate this magnitude, 
inevitably several calculations will be made. 
 
Assume a chemical reactor has to be cooled through n pipes. Consider a cylindrical vessel with volume 
Vvessel. The vessel contains a reacting substance with volume VR. Heat is transferred by the pipes and the 
reactor wall. The base case UA-value states UA = 55 [kJ s-1 K-1]. 
The reactor volume is the sum of the liquid volume and the volume of the cooling pipes: 
 

Rpipesvessel VVV +=  (71) 
 
In the first place, the number of pipes n is estimated. 
 
The total area regarding heat transfer states: 
 

vesselpipepipes HDnA π=  (72) 

22

4
2

4
2 pipevesselvesselvesselvessel DnHDDA πππ −+=  (73) 

vesselpipestotal AAA +=  (74) 
 
The ratio vessel height Hvessel and vessel diameter Dvessel is introduced: 
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vesselvessel DH Ψ=  (75) 
 
The volume of the vessel states: 
 

vesselvesselvessel HDV 2

4
π=  (76) 

 
The number of pipes in the vessel can be estimated combining equations 72, 73, 74, 75 and 76 under the 
assumption that Vvessel  ≈ VR. 
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 (77) 

 
• Subsequently the vessel height and diameter is derived. 

 
The volume of n pipes states: 
 

vesselpipepipes HDnV 2

4
π=  (78) 

 
Combining expressions 71, 75, 76 and 78 provides the following cubic equation: 
 

021
3 =++ aDaD pipevessel  (79) 

 
Where: 
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 (80) 

 
The vessel diameter can be calculated with: 
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Due to the assumption Vvessel ≈ VR in equation 77, a slightly divergent value is obtained, using equation 73. 
However, merely a few recalculations is sufficient enough to eliminate this discrepancy. Better is to apply 
a solver e.g. Excel or Maple. 
Using equation 82 the volumetric percentage of all the pipes in the reactor can be acquired: 
 

%100%
2







=

vessel

pipe

D
D

nVol  (82) 

 
The specific area of the pipes becomes: 
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24
vessel

pipe
pipes D

D
na =  (83) 

 
Suppose the cooling fluid flows through pipes with thickness δpipe and with an average fluid velocity uL,  
 

( ) LpipepipecoolV uDn 22
, 4

δπ −=Φ  (84) 

 
Coulson et.al.14 15 summarised typical values for the overall heat transfer coefficient U for various types of 
heat exchanger and specific media. According to Westerterp et.al.80, a general applicable value for the 
overall heat transfer coefficient for a cold liquid is U ≈ 900 [J m-2 s-2 K-1]. 
The overall heat transfer coefficient value can additionally be verified using several calculation methods 
according to Perry et.al.59, Heiszwolf et.al.36, Coulson et.al.14 and Roffel68. 
 
Table 38 represents the essential calculations and results for the UA value estimation. 
 
Table 38 Example UA calculation value in cylindrical vessel.  
Description Calculation Result 
Reactor with volume Base case value[22] (ε = 0) VR = 5 [m3] 
Desired UA value Base case value22 UA = 55 × 103  [J s-1 K-1] 
Thickness of 1 pipe Assumed value Dpipe = 1” = 0.0254 [m] 
Thickness of pipe wall 10% pipe thickness δpipe = 0.00254 [m] 
Velocity cooling fluid Based on equation 84 uL = 1.7 [m s-1] 
Reynolds number reaction mixture Default equation14 36 59 68 ReR = 2 × 105  [-] 
Reynolds number cooling fluid Default equation14 36 59 68 Recool = 8 × 104  [-] turbulent 
Prandtl number reaction mixture Specific correlation14 36 59 68 PrR = 4 [-] 
Prandtl number cooling fluid Specific correlation14 36 59 68 Prcool = 3.4 [-] 
Nusselt number reaction mixture Specific correlation14 36 59 68 NuR = 106 [-] 
Nusselt number cooling fluid Specific correlation14 36 59 68 Nucool = 300 [-] 
Heat transfer coefficient reactor Specific correlation14 36 59 68 αR = 1740 [J m-2 s-1 K-1] 
Heat transfer coefficient coolant Specific correlation14 36 59 68 αcool = 5920 [J m-2 s-1 K-1] 
Overall Heat transfer coefficient Specific correlation14 15 36 59 68 80 U = 900 [J m-2 s-1 K-1] 
Ratio vessel height and diameter Assumed value (arbitrary chosen) Ψ = 1¼ [-] 
Total area for heat transfer UA / U Atotal = 61.1 [m2] 
Vessel diameter Equation 75 Dvessel = 1.75 [m] 
Vessel height Equation 76 (first approximation Vvessel  ≈ VR = 5 [m3]) Hvessel = 2.19 [m] 
Number of pipes in vessel Equation 77 n = 255 [-] 
Vessel volume Equation 71 Vvessel = 5.28 [m3] 
Volume of n pipes Equation 78 Vpipes = 0.23 [m3] 
Mass of n pipes m = ρ Vpipes m = 1770 [kg] 
Pipe volume percentage Equation 82 Vol% = 5.3 [%] 
Specific area pipes Equation 83 8.4 [m2 m-3] 
Total area n pipes Equation 72 Apipes = 44.5 [m2] 
Total area vessel Equation 73 Apipes = 16.6 [m2] 
UA contribution n pipes U Apipes UA = 40 × 103  [J s-1 K-1] 
UA contribution vessel U Avessel UA = 15 × 103  [J s-1 K-1] 
Total pipe length n Hvessel Lpipes,total = 558 [m] 
Flowrate cooling fluid Equation 84 ΦV,cool = 13 [m3 min-1] 
Residence time coolant V cool / ΦV,cool  1.3 [s] 
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The first calculation gives n = 263 for Vvessel = 5.29 [m3]. The solver results in n = 255 for Vvessel = 5.28 [m3]. 
Therefore, the number of pipes has no decisive effect on the vessel volume. The vessel requires 
approximately 250 pipes to cool the exothermic reaction. Consequently, 5% of the vessel is filled with 
pipes. Concisely, the base case value UA = 55 [kJ s-1 K-1] is allowable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
-∆∆∆∆HR value estimation 
 
According to Westerterp et.al.80 ∆HR is defined as the heat absorbed by the system when the reaction 
proceeds completely in the direction indicated by the arrow, at constant temperature and pressure. 
In Weast et.al.79 tables with values of the heat formation at ∆H (T = 25 [°C]) for various species have been 
given. On account of these tables the reaction enthalpy ∆HR = -1.6 × 105 [J mol-1] given in the base case 
definition van Elk et.al.22, can be deduced for instance organic-water mixtures. 
 
 
Eact value estimation 
 
According to Westerterp et.al.80 typical values of Arrhenius activation energy vary globally between 4 × 104 
≤ Eact < 3 ×105 [J mol-1]. The value Eact = 9 × 104 [J mol-1] which has been chosen in the base case 
definition is a common quantity for organic or organic-water mixtures compounds and therefore 
acceptable. 
 
 
k0 value estimation 
 
In the article by van Elk et.al.22 the value of the Arrhenius pre-exponential factor or frequency factor 
(equation 1) has been chosen based on a gas-liquid system in a kinetic controlled regime: k0 = 5 × 105 [s-

1]. According to the base case definition, no gas is present. Therefore the A-concentration  [A]L,bulk = 50.1 
[mol m-3] will be integrated in the base case k0 value i.e.: k0 = 50.1 × 5 × 105 = 2.505 × 107 [s-1] to obtain 
the same results published in the articles published by van Elk et.al. 
 
 
ρρρρ value estimation 
 
In the base case definition, the density states ρ = 800 [Kg m-3]. According to Coulson et.al.14, Fogler 
et.al.26 and Roffel68 this value is a common quantity for regular organic compound or organic-water 
mixtures. The density for stainless steel is assumed14 to be ρ = 7830 [Kg m-3]. 
 

 
Figure 167 The number of pipes in the 

vessel (Table 38) rises if the 
required UA value increases. No 
cooling pipes are needed if 
required UA < 15 [kJ s-1 K-1] due 
to the heat transfer through the 
vessel wall. 
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CP value estimation 
 
In the base case definition, a heat capacity CP = 2000 [J Kg-1 K-1] has been chosen. According to Perry[59 
regular value for liquids are on the order of 5 × 102 ≤ CP < 2 × 103, Therefore the chosen CP value is 
acceptable for the base case. The heat capacity for steel is assumed59 to be CP = 500 [J Kg-1 K-1]. 
 
 
VR value estimation 
 
The reactor volume discussed in van Elk et.al.22, has been set to VR = 10 [m3]. Additionally 50% of the 
reactor is filled with gas i.e. the hold-up ε = 0.5. According to the base case definition, no gas is present in 
the reactor i.e. ε = 0, consequently the current reactor volume becomes VR = 10 × (1 - 0.5) = 5 [m3]. 
 
 
Appendix 4. Shutting down the input flowrate 
 
In case the stability of the process cannot be maintained, due to e.g. control failure, the possibility of 
shutdown the feed can than be considered. If has been decided to close the feed flow i.e. not the drain, 
the state equations 2 and 3 of the CISTR change into respectively equations 85 and 86: 
 

][][][
0 AekVA

dt
AdV RT

E

RVR

act−
−Φ−=  (85) 

( ) ( )cool
RT

E

RRVPRP TTUAAekVHTC
dt
dTVC

act

−−∆−+Φ−=
−

][0ρρ  (86) 

 
The reaction will drain (t→τR) and the reaction will expire (Figure 168). Loss of production is not the only 
disadvantage of shutdown the reactor. The shutdown operation itself will waste energy and material stored 
in the process, which must be removed, and the subsequent start-up will require a similar amount of 
energy and material to be added to reach operating levels again. However, in case the temperature 
overshoot. More about this subject can be found in Shinskey71. 
 

  
Figure 168 The reactor temperature drops to 

T=385 [K] in case the input 
flowrate is halted (equation 86) 
and is mainly stabilised after         
t ≈ 500 [s].  

Figure 169 The conversion (equation 86) 
rises until the maximum value 
has been reached, which is 
obviously ζ(t = τR) → 1. 
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Appendix 5. Cooling capacity – coolant flowrate relationship 
 
 
Foust et.al.27 and Ogunnaike et.al.60 proposed an empirical relationship 87 in which the cooling capacity 
can be substituted by the cooling flowrate. 
 

( ) 2
,1

a
coolVaUA Φ=  (87) 

 
Table 39 Values empirical heat capacity relation. 
Parameter Value Dimension 
A1 1.2 × 105 [J s-1 K-1] 
A2 0.5 [-] 

 
Combination of equations 13 and 87 can be used to determine the recycle stream ratio. The base case 
cooling capacity UA = 55 [kJ s-1 K-1] corresponds with a recycle ration of approximately 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 170 Empirical relationship 87 between the cooling capacity and the coolant flowrate. 
 
More about this subject Aris et.al.2. 
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Appendix 6. LOCBIF Nomenclature 
 
 
LOCBIF Symbol Description Dimension 
 
A A Heat transfer or exchanger area [m2] 
cA [A] Concentration component A [mol m-3] 
cA0 [A]0 Concentration component A [mol m-3] 
Cp CP Heat capacity [J Kg-1 K-1] 
Cpe CP,cool Heat capacity of cooling fluid [J Kg-1 K-1] 
Delay τd Apparent delay  [s] 
Dpipe Dpipe Pipe diameter [m] 
Eact Eact Activation energy (equation 1) [J mol-1] 
fouling f Fouling factor, rate of UA depletion [s-1] 
g g Gravitational acceleration [m s-2] 
dH ∆HR Reaction heat / enthalpy of reaction based on R [J mol-1] 
k k0 Arrhenius pre-exponential factor or frequency factor [s-1] 
Kc Kc Proportional control gain [-] or [m3 s-1 K-1] 
kr kR,m,n Reaction rate constant [m3(m+n-1) / mol(m+n-1) s] 
Lpipe Lpipe Pipe length in reactor [m] 
NTU NTU Number of transport units [-] 
NTUe NTUcool Number of transport units coolant [-] 

phi ( )dtTTsp∫ −
1

0

  [K s] 

Qfeed Qfeed Required heat to bring the feed to operation temperature  [J s-1] 
Qreaction Qreaction Heat produced by reaction [J s-1] 
Qtransfer Qtransfer Heat transferred through cooling/heating area [J s-1] 
Qcool Qcool Heat, which is removed by coolant [J s-1] 
R R Ideal gas constant [J mol-1 K-1] 
Spiral mpipesCp,pipes Additional (cooling device) term in heat balance coolant flowrate [J K-1] 
t t Simulation time variable [s] 
T T Temperature [K] 
Te Tcool Coolant temperature [K] 
Tdelay Tdelay  Temperature after an apparent delay [K] 
thickness Dpipe Pipe thickness [m] 
dTad ∆Tad Adiabatic temperature difference  [K] 
td td Time (delay or dead) [s] 
UA UA Cooling capacity [J s-1 K-1] 
ve uL Average liquid velocity based on cross section [m s-1] 
Vcool Vcool Volume cooling fluid [m3] 
Vr VR Reactor volume [m3] 
Dpipe δ Thickness of cooling pipe [m] 
e ε Hold-up [m3 m-3] 
taue τcoolant Average residence time of a coolant particle in cooling device [s] 
taue τcool Time constant of the cooling fluid [s] 
tau τR Resident time [s] 
tauI τI Integral time constant / reset time [s] [min] 
F Φv Volumetric flow rate [m3 s-1] 
Fe Φv,cool Flowrate cooling fluid [m3 s-1] 
rho ρ Fluid density [kg m-3] 
rhoe ρcool Density of cooling fluid [kg m-3] 
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Appendix 7. LOCBIF Source codes 
 
 
 
 
 
 
 
 

LOCBIF rhs 2 Bifurcation sample base case. 

 
 
 
 
 
 
 
 

LOCBIF rhs 3 Base case + coolant temperature proportional control. 

 
 
 
 
 
 
 
 

LOCBIF rhs 4 Base case + coolant temperature proportional-integral control. 

 

 
 
 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 5 Base case + coolant flowrate proportional control. 

 
 
 
 
 
 
 
 
 

LOCBIF rhs 6 Base case + coolant flowrate proportional-integral control. 

 

PHASE zeta, T 
PAR UA,Tcool,F 
COMMON Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Tcool))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE zeta, T 
PAR UA,Tset,Teset,Kc 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te,offset 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
offset=Tset-T 
Te=Teset+Kc*offset 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret

PHASE zeta, T, phi 
PAR UA,Tset,Teset,Kc,taui 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
Te=Teset+Kc*((Tset-T)+phi/taui) 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
phi'=Tset-T 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE cA, T, Te 
PAR Tset,UA,Kc,Te0,Teset,recycle 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,ret 
FUN Qfeed,Qreaction,Qtransfer,Qcool,zeta,Feset,offset,Fe,ve,NTUe 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
Qcool=rhoe*Cpe*Fe*(Te0-Te) 
zeta=1-cA/cA0 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
offset=Tset-T 
Fe=(sgn(Feset-Kc*offset)+1)*(Feset-Kc*offset)/2 
ve=(1+recycle)*(Fe/n/(pi/4*(Dpipe^2-thickness^2))) 
NTUe=UA/(rhoe*Cpe*Fe) 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
Te'=Fe/Vcool*(Te0-Te)+UA/(spiraal+rhoe*Cpe*Vcool)*(T-Te) 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303 

Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255  
i 3 1415926536} t

PHASE cA, T, Te, phi 
PAR Tset,UA,Kc,Te0,Teset,recycle,taui 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,Kp,ret 
FUN Feset,Fe 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
Fe=Feset-Kc*((Tset-T)+phi/taui) 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=((rho*Cp*F*(T0-T))+((-dH)*k*exp(-E/R/T)*cA*Vr)-(UA*(T-Te)))/(rho*Cp*Vr) 
Te'=((UA*(T-Te))+(rhoe*Cpe*Fe*(Te0-Te)))/(spiraal+rhoe*Cpe*Vcool) 
phi'=(Tset-T) 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303  

Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255 
pi=3 1415926536} ret
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LOCBIF rhs 7 Base case + flowrate proportional control. 

 
 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 8 Base case + flowrate proportional-integral control. 

 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 9 Fouling effect at a coolant temperature proportional controlled base. 

 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 10 Fouling effect at a coolant temperature proportional-integral controlled base. 

PHASE zeta, T, UA 
PAR Tset,Teset,Kc 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te,fouling 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
Te=Teset+Kc*(Tset-T) 
fouling=-UA*(1-0.99)/3600 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
UA'=fouling 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE zeta, T, phi, UA 
PAR Tset,Teset,Kc,taui 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te,fouling 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
Te=Teset+Kc*((Tset-T)+phi/taui) 
fouling=-UA*(1-0.99)/3600 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
phi'=Tset-T 
UA'=fouling 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE cA, T 
PAR UA,Te,Tset,Fset,Kc 
COMMON Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,Qfeed,Qreaction,Qtransfer,zeta,offset,F,deviation 
tau=Vr/F 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
zeta=1-cA/cA0 
offset=Tset-T 
F=(sgn(Fset-Kc*(Tset-T))+1)*(Fset-Kc*(Tset-T))/2 
deviation=(Fset-F)/Fset*100 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
INIT={Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE cA, T, phi 
PAR UA,Te,Tset,Fset,Kc,taui 
COMMON Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,Qfeed,Qreaction,Qtransfer,zeta,offset,F,deviation 
tau=Vr/F 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
zeta=1-cA/cA0 
offset=Tset-T 
F=(sgn(Fset-Kc*((Tset-T)+phi/taui))+1)*(Fset-Kc*((Tset-T)+phi/taui))/2 
deviation=(Fset-F)/Fset*100 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
phi'=offset 
INIT={Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 
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LOCBIF rhs 11 Fouling effect at a coolant flowrate proportional controlled base. 

 
 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 12 Fouling effect at a coolant flowrate proportional-integral controlled base. 

 
 
 
 
 
 
 

 

LOCBIF rhs 13 Base case + coolant temperature proportional control with delay. 

 
 
 
 
 
 
 
 
 

LOCBIF rhs 14 Base case + coolant temperature proportional-integral control with delay. 

PHASE cA, T, Te, UA 
PAR Tset,Kc,Te0,Teset,recycle 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,ret 
FUN Qfeed,Qreaction,Qtransfer,Qcool,zeta,Feset,offset,Fe,ve,fouling 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
Qcool=rhoe*Cpe*Fe*(Te0-Te) 
zeta=1-cA/cA0 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
offset=Tset-T 
Fe=(sgn(Feset-Kc*offset)+1)*(Feset-Kc*offset)/2 
ve=(1+recycle)*(Fe/n/(pi/4*(Dpipe^2-thickness^2))) 
fouling=-UA*(1-0.99)/3600 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
Te'=Fe/Vcool*(Te0-Te)+UA/(spiraal+rhoe*Cpe*Vcool)*(T-Te) 
UA'=fouling 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303 
Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255 
pi=3.1415926536} ret 

PHASE cA, T, Te, phi, UA 
PAR Tset,Kc,Te0,Teset,recycle,taui 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,Kp,ret 
FUN Feset,Fe,fouling,ve 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
Fe=Feset-Kc*((Tset-T)+phi/taui) 
fouling=-UA*(1-0.99)/3600 
ve=(1+recycle)*(Fe/n/(pi/4*(Dpipe^2-thickness^2))) 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=((rho*Cp*F*(T0-T))+((-dH)*k*exp(-E/R/T)*cA*Vr)-(UA*(T-Te)))/(rho*Cp*Vr) 
Te'=((UA*(T-Te))+(rhoe*Cpe*Fe*(Te0-Te)))/(spiraal+rhoe*Cpe*Vcool) 
phi'=(Tset-T) 
UA'=fouling 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303 
Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255 
pi=3.1415926536} ret 

PHASE zeta, T, Td 
PAR UA,Tset,Teset,Kc,delay 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
Te=Teset+Kc*(Tset-Td) 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
Td'=(T-Td)/delay 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE zeta, T, phi, Td 
PAR UA,Tset,Teset,Kc,taui,delay 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,NTU,dTad,Te 
tau=Vr/F 
NTU=UA/(rho*Cp*F) 
dTad=-dH/(rho*Cp)*cA0 
Te=Teset+Kc*((Tset-Td)+phi/taui) 
zeta'=(1-zeta)*k*exp(-E/R/T)-zeta/tau 
T'=((T0-T)-NTU*(T-Te))/tau+dTad*(1-zeta)*k*exp(-E/R/T) 
phi'=Tset-Td 
Td'=(T-Td)/delay 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret
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LOCBIF rhs 15 Base case + coolant flowrate proportional control with delay. 

 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 16 Base case + coolant flowrate proportional-integral control with delay. 

 
 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 17 Base case + flowrate proportional control with delay. 

 
 
 
 
 
 
 
 
 
 
 
 
 

LOCBIF rhs 18 Base case + flowrate proportional-integral control with delay

PHASE cA, T, Te, Td 
PAR Tset,UA,Kc,Te0,Teset,recycle,delay 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,ret 
FUN Qfeed,Qreaction,Qtransfer,Qcool,zeta,Feset,offset,Fe,ve 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
Qcool=rhoe*Cpe*Fe*(Te0-Te) 
zeta=1-cA/cA0 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
offset=Tset-Td 
Fe=(sgn(Feset-Kc*offset)+1)*(Feset-Kc*offset)/2 
ve=(1+recycle)*(Fe/n/(pi/4*(Dpipe^2-thickness^2))) 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
Te'=Fe/Vcool*(Te0-Te)+UA/(spiraal+rhoe*Cpe*Vcool)*(T-Te) 
Td'=(T-Td)/delay 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303 

Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255 
pi=3 1415926536} ret

PHASE cA, T, Te, phi, Td 
PAR Tset,UA,Kc,Te0,Teset,recycle,taui,delay 
COMMON F,Vr,rho,cA0,Cp,dH,k,E,R,T0,Vcool,rhoe,Cpe,Dpipe,thickness,n,pi,spiraal,Kp,ret 
FUN offset,Feset,Fe 
offset=Tset-Td 
Feset=-UA*(Tset-Teset)/(rhoe*cpe*(Te0-Teset)) 
Fe=(sgn(Feset-Kc*(offset+phi/taui))+1)*(Feset-Kc*offset)/2 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=((rho*Cp*F*(T0-T))+((-dH)*k*exp(-E/R/T)*cA*Vr)-(UA*(T-Te)))/(rho*Cp*Vr) 
Te'=((UA*(T-Te))+(rhoe*Cpe*Fe*(Te0-Te)))/(spiraal+rhoe*Cpe*Vcool) 
phi'=(Tset-Td) 
Td'=(T-Td)/delay 
INIT={F=0.005 Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303 

Vcool=0.283 rhoe=1E3 Cpe=4200 spiraal=0 Dpipe=0.0254 thickness=0.00254 n=255 
pi=3.1415926536} ret 

PHASE cA, T, Td 
PAR UA,Te,Tset,Fset,Kc,delay 
COMMON Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,Qfeed,Qreaction,Qtransfer,zeta,offset,F,deviation 
tau=Vr/F 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
zeta=1-cA/cA0 
offset=Tset-T 
F=(sgn(Fset-Kc*(Tset-Td))+1)*(Fset-Kc*(Tset-Td))/2 
deviation=(Fset-F)/Fset*100 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
Td'=(T-Td)/delay 
INIT={Vr=5 rho=800 Cp=2000 cA0=5000 dH=-1.6E5 k=2.505E7 E=9E4 R=8.31441 T0=303} ret 

PHASE cA, T, phi, Td 
PAR UA,Te,Tset,Fset,Kc,taui,delay 
COMMON Vr,rho,cA0,Cp,dH,k,E,R,T0,ret 
FUN tau,Qfeed,Qreaction,Qtransfer,zeta,offset,F,deviation,dcA,dT 
tau=Vr/F 
Qfeed=rho*Cp*F*(T0-T) 
Qreaction=(-dH)*k*exp(-E/R/T)*cA*Vr 
Qtransfer=UA*(T-Te) 
zeta=1-cA/cA0 
offset=Tset-Td 
F=(sgn(Fset-Kc*((Tset-Td)+phi/taui))+1)*(Fset-Kc*((Tset-Td)+phi/taui))/2 
deviation=(Fset-F)/Fset*100 
dcA=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
dT=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
cA'=F/Vr*(cA0-cA)-k*exp(-E/R/T)*cA 
T'=(Qfeed+Qreaction-Qtransfer)/(rho*Cp*Vr) 
phi'=offset 
Td'=(T-Td)/delay 
INIT={Vr=5 rho=800 p=2000 A0=5000 dH=-1 6E5 k=2 505E7 E=9E4 R=8 31441 T0=303} ret
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Base case model:  Limit cycle system 
Source:    Van Elk et.al. [22, p4874] 
Mechanism:   Irreversible exothermic A(l) → P(l) 
Reactor:    Cooled CISTR 
Dynamical behaviour: Limit cycles 
Controllers:   None, P or PI 
Manipulated variables: Tcool, ΦV,cool or ΦV 
Active parameters:  UA, Kc, τI and τd 
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FAQ 
(Frequently Asked Questions) 
 

• What is a CISTR? 
!"This is the abbreviation of continuously ideally stirred tank reactor i.e. a chemical reactor 

frequently applied in the process industry. 
 

• What is a limit cycle? 
!"A limit cycle is the phenomenon of self-sustained oscillations of the temperature and 

concentration in a chemical reactor, permanently around an equilibrium point, which never 
reaches the particular steady state value. 

 
• What happens if a limit cycle occurs? 
!"In the worst case, the temperature can rise to extreme heights; consequently, the reaction can run 

away from the desired steady state, which can lead to dangerous situations. 
 

• Do limit cycles exhibit in the process industry? 
!"Yes, in the literature the existence of limit cycles has been demonstrated and described. It 

predominantly occurs in cooled CISTRs. 
 

• What is a stability map? 
!"In a stability map, the stable and unstable regions, in which limit cycles and multiplicity exhibit, can 

be indicated, based on a mathematical description. 
 

• When can a limit cycle appear? 
!"A limit cycle appears when the system conditions are such that they can be classified as unstable. 

This can be derived from a so-called stability map, which is divided into stable and unstable 
regions. 

 
• How can a limit cycle exhibit? 
!"In the worst case when the controller device fails and the temperature changes towards an 

unstable region in which limit cycles can arise. Conversely, when due to long time changes of 
operation conditions e.g. fouling of the heat transfer unit, the working point has been modified. 

 
• How long does a limit cycle oscillation take? 
!"The oscillations time varies from minutes to hours. In this report, in the most uncomplicated case, 

the time between two peaks is on the order of 30 minutes. 
 

• How can a limit cycle be prevented? 
!"Of course, when a reactor is perfectly designed and nothing goes wrong… 

 
• What does perturbation and bifurcation mean? 
!"Literally, perturbation means excitement or commotion. In fact, it means an alteration of a specific 

quantity. A bifurcation point is a point at which two branches of a curve coalesce as a parameter is 
varied i.e. a critical value. 

 
• How can a limit cycle be controlled? 
!"With a suitable control device and tremendous appropriate strategy plan. 

 
• Can a limit cycle be predicted? 
!"If the engineer is capable of making the preferred stability maps. The stable and unstable regions 

in such a stability map can provide the desired information considering the occurrence of limit 
cycles. 

 
• What is an orbit curve? 
!"In an orbit curve an important system variable (temperature, conversion) is plotted against the 

time, in most cases to investigate the dynamical behaviour of this particular system variable. 
 

• Waarom heb je geen motto voorin je verslag? 
!"“Een motto is een punt op een lijn.” (Onno Kramer 2001). 
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Notes 2 

GLOSSARY 
 
Automatic feedback control Feedback control in which a controller device monitors the controlled variable of interest and 

commands a manipulated variable in order to maintain a desired value of the controlled variable. 
Autothermal reaction A system, which is completely self-supporting in its thermal energy requirements. The essential 

feature of an autothermal reactor system is the feedback of reaction heat to raise the temperature and 
hence the reaction rate of the incoming reactant stream. 

Base case The mathematical base case model is a collection of mathematical relationships between process 
variables, which purports to describe the behaviour of the actual physical process. 

Bifurcation This means an alteration of a specific quantity. Bifurcation has been defined as the appearance of 
topologically phase portraits under variation of parameters. In fact, a bifurcation is a change of the 
topological type of the system as its parameters pass through a bifurcation i.e. critical value. 

Blowout velocity In case the throughput is too large, the cooling effect of the feed flow is causing the chemical reaction 
to extinguish because the average reactor temperature drops rapidly. 

Cascade control Control scheme where the manipulated variable output of one controller becomes the set-point of 
another controller. 

Closed loop See feedback control. 
CISTR Continuously ideally stirred tank reactor. 
Continuous process A process in which material passes in a continuous stream through the processing equipment. Once 

the process has established in a steady state operating state, the nature of the process does not 
depend on the length of time the process is operating. 

Controlled variable In a control loop, the variable of which is sensed to originate a feedback signal. 
Control state The current condition of the control entity e.g. process management, unit supervision or process 

control. The control state defines how the control entity will operate and how it will respond to 
command. 

Control strategy The control schemes are composed of descriptive information that identifies the process control types 
of objects i.e. equipment module control, loop, device, indicator and/or status. 

Control type Any of the control that directs, initiates and/or modifies the execution of procedural control and the 
utilisation of equipment entities. 

Damping ratio The ratio of the second peak to the first peak in the process variable response, only if the process 
variable response is underdamped. 

Dead time The interval of time between initiation of a input change or stimulus and the start of the resulting 
observable response. 

Derivative action Calculation of the controller manipulated variable is based on the rate of change of the process 
variable, also called rate action. 

Distance velocity lag See dead time. 
Disturbance Process influence that affects the process variable but is not manipulated by the controller. 
Droop See offset. 
Dynamic model Mathematic model that attempts to capture the output response of a system as it changes as a 

function of time. 
Equilibrium state This state refers to a system at rest. 
Equilibrium curve This curve is the steady state solution of the ODE system as a function of one active parameter 
Endothermic reaction A reaction which can maintain exclusively if heat continuously is supplied. 
Exothermic reaction A reaction which produces heat, increasing the reactor temperature, which in turn increases the rate 

of reaction. This positive feedback loop can result in a thermal runaway. 
Feedback control Control scheme that uses knowledge of the output to take corrective action. 
Feed-forward control Control scheme that eliminates or reduces the disturbance effect on the process variable by using a 

measurement of the disturbance to modify the manipulated variable. 
Fold curve The Fold bifurcation curve represents the border between static stability and static instability as a 

function of two active parameters 
Fundamental model A mathematic process model; based on fundamental concepts e.g. the conservation of mass and 

energy. 
Gain The ratio of the change in the steady state output to a step change in the input provided the output 

does not saturate. 
Heat capacity The product of the overall heat transfer coefficient U and the area A in which the heat is transferred 
Heat production rate The heat produced in a reactor by a chemical reaction. The HPR is a function of the properties of the 

reaction mixture. 
Heat withdrawal rate The total heat removal from a reactor is the sum of the heat removed by the cooling medium and the 

cold feed supply. The HWR depends on the residence time in the reactor 
Hopf curve The Hopf bifurcation curve represents the border between dynamic stability and dynamic instability as 

a function of two active parameters 
Input signal A signal applied to a device, element or system. 
Integral action The controller manipulated variable is based on the integrated error i.e.  the set-point minus the 

process variable. 
Integral time constant The reciprocal of the integral gain. 
Integral windup When a controller has integral action, a persistent error will cause the integral term to increase or 

decrease to a value of larger magnitude. 
Limit cycle Self sustained oscillation e.g. reactor temperature or conversion. 
Limit point Fold bifurcation. 
Line-out time See settling time. 
Linear system A system in which the time response to several simultaneous inputs is the sum of their independent 

time response. A linear system is generally represented by a set of linear differential equations. 
Local stability Using linearised models the stability at the steady state is determined. 
Loop A single-input, single output controller that monitors a transmitter and manipulates a physical quantity, 

usually a control valve, in order to force a process variable to the desired set-point. 
Manipulated variable A quantity varied by the controller in order to affect the controlled variable. 
Mathematical model A system of equations whose solution, given specific input data, is representative of the response of a 

process to a corresponding set of input. 
Non-linear A system that is not linear, see linear. 
Non-self regulating A process in which both inflow and outflow are independent of the controlled variable. 
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Offset The difference between the set-point and the actual value of the process variable when the system 
has reached steady state. 

Operating point The normal operating value for the system variable. 
Operating state The currents condition of the equipment entity e.g. process cell, unit or equipment module. The 

operating state defines how the entity will operate and how it will respond to command. 
Orbit curve In a orbit curve an important system variable is plotted against the time. In most cases to investigate 

the dynamical behaviour of this particular system variable. 
Output signal A signal delivered by a device, element or system. 
Overshoot The maximum execution beyond the final steady state value of outputs as result of an input change. 
Peak time The time from the set-point step change to the time of the first peak of an underdamped process 

variable response. 
Perturbation Translated: excitement or commotion. See bifurcation. 
PI-control Abbreviation for proportional plus integral control. A controller whose output is the sum of proportional 

action + integral action. 
PID-control Abbreviation for proportional plus integral plus derivative control. 
Process Physical or chemical change of matter or conversion of energy e.g. change in temperature or 

concentration. 
Process control The control entity that encompasses the basic discrete regulatory and equipment module procedural 

control elements. 
Process model An overall model of the process that describes the processing actions required to convert raw material 

into finished product. 
Process operation Process operations represent major processing activities, which usually result in a chemical or 

physical change in the material being processed. 
Process variable The measured variable of the controller variable that, along with the set-point, is used by the controller 

to calculate a value of the manipulated variable. 
Proportional action The controller manipulated variable is calculated as a constant, called the proportional gain, multiplied 

by the error, the set-point minus the process variable. 
Proportional gain The ratio of the change in the manipulated variable due to proportional action to the change in the 

error. 
Pure delay See dead time. 
Residence time The quotient of the reactor volume and the throughput i.e. the average time the species remain in the 

reactor. 
Response time See settling time. 
Ride hand side LOCBIF source code. 
Rise time The time required for the process variable to go from 0% to 90% of the steady state change. 
Runaway See exothermic reaction. 
Saddle node Fold bifurcation. 
Self regulating process This process has a steady state relationship between the controlled variable and either inflow or 

outflow. The output variables tend to a steady state after the input variables have reached constant 
values. 

Set-point An input variable which sets the desired value of the controller variable. 
Settling time The time from the set-point change to the time that the process variable response has settled within a 

certain percentage band of the final value, usually 2% - 5%. 
Stable system A system is considered to be stable if a bounded input signal always returns in an output signal that is 

also bounded. 
Stability map In a stability map, the stable and unstable regions, in which limit cycles exhibit, can be indicated 
State The current condition of the physical or control entity. The state also defines how the entity will 

operate and how it will respond to commands. 
Steady state The long-term output response of a system after it has been disturbed. 
Time constant In an expression for linear system time response, the time constant is the value τ in the response term 

e-τs. In a transfer function, the time constant is the value τ in the denominator 1+τs. For the output of a 
first order system whose input is a step signal, the time constant τ is the time to complete 63.2% of the 
total output change. 

Transfer function For a continuous time system, the transfer function is the ratio of the Laplace transform of the output 
variable to the Laplace form of the input variable, with all initial conditions assumed to be zero. 

Transportation lag See dead time. 
Underdamped The time response of the system to a step signal input has overshoot. 
 
 
 
 
 
 
 
 

“I have a small 
limit cycle problem, 
can you help me?” 


