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Abstract

We consider interpolation of a stationary random field that has been ob-
served on a lattice. Exact expressions for the mean square error of the best
linear unbiased estimator are given in the frequency domain. Morevoer, we
derive asymptotic expansions of the average mean square error when the sam-
pling rate tends to zero and to infinity respectively. This allows us to determine
the optimal lattices for interpolation. In the low-rate sampling case, or equiv-
alently for rough processes, the optimal lattice is the one which solves the
packing problem, whereas in the high-rate sampling case, or equivalently for
smooth surfaces, the optimal lattice is the one which solves the dual packing
problem. In addition, we compare the best linear unbiased interpolation with
cardinal interpolation.
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11H31.

Key words and phrases. Cardinal interpolation, kriging, lattice theory, multichan-
nel signal processing, packing problems, sampling, spectral representation.

1 Introduction.

In classical sampling and interpolation theory, the objective is to discretize and store a
time signal in such a way that the signal can be estimated as accurately as possible, even
at instants for which no sample was stored (Unser, 2000). The classical method is to
sample the signal at regular intervals and to interpolate by summation of shifted and
scaled sin(x)/x functions. The interpolation error of this method is zero if the signal is a
realization of a stationary, band-limited stochastic process and the sampling frequency is
sufficiently high.

In this presentation, we consider the analogous problem in multidimensional signal
processing, where a signal with spatial and/or spectral and/or temporal resolution is to
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be discretized, stored, and reconstructed. Applications include computer vision and image
processing (Jähne, 2000; Thévenaz, Blu and Unser, 2000), remote sensing (Jimenez and
Landgrebe, 1998), medical imaging (Stark, 1993), and experimental design (Hamprecht,
Thiel and van Gunsteren, 2002; Hamprecht and Agrell, 2003). From a geometrical point of
view, it is intuitively clear that the multidimensional signal should be sampled as uniformly
as possible, in order to gain as much information as possible about the signal everywhere
in the relevant region. No part of the region should lie very far from the closest sample
point, since this would cause a relatively large uncertainty in the estimate of the signal in
that part.

The problem of placing points uniformly in a multidimensional space has been studied
extensively in other applications and the solution is often to use a lattice. Which lattice to
use depends on which criterion is used to measure uniformity: the packing problem aims
at maximizing the distance between the closest pair of lattice points, the covering problem
aims at minimizing the maximum distance between a (nonlattice) point in space and its
closest lattice point, the quantizer problem aims at minimizing the moment of inertia of
the Voronoi region (defined in the next section), etc. In one dimension, the only lattice
(disregarding rescaling) is the set of integers and in two dimensions, the hexagonal lattice
is most uniform (according to all common optimality criteria). In higher dimensions, the
best known lattices for various criteria are listed in Conway and Sloane (1999) and its
references. None of these criteria, however, is immediately applicable to sampling and
interpolation.

If each dimension is sampled at regular intervals independently of each other, the
resulting multidimensional sampling pattern is the cubic lattice. It has been recommended
for sampling based on complexity considerations (Jähne, 2000), but its performance in
terms of estimation error is unfortunately poor. The cubic lattice has the property that it
contains quite deep “holes” in between the lattice points, from which the distance to any
lattice point is much higher than the corresponding distance in other lattices. Hence, the
samples would not support an accurate representation of the signal near such “holes.” This
undesirable property becomes more prominent with increasing dimension (Hamprecht and
Agrell, 2003).

We assume that the multidimensional signal is a realization of a stationary random
field and that its (multidimensional) covariance function is known. It is not required to
be band-limited in any direction. If one has to estimate also the covariance function, then
uniform sampling schemes perform poorly (Stein, 1999, Sec. 6.6). The present article is
complimentary to earlier efforts that have focused on finding an optimal sampling scheme
on a finite domain (Sacks, Welch, Mitchell and Wynn, 1989; Johnson, Moore and Ylvisaker,
1990; Lim, Sacks, Studden and Welch, 2002). In Johnson et al. (1990), a different kind
of asymptotics is considered, whereas Lim et al. (2002) introduces numerical procedures.
The former paper (Johnson et al., 1990) also notes the “obvious connection” with lattice
theory, without investigating it further.

In Section 2, we introduce notation, define basic concepts, and summarize Fourier
analysis on lattices. In Section 3, the best linear unbiased estimator for interpolation
of the signal is derived and its average error variance is calculated, as a function of the
covariance function and lattice. It is concluded that the optimal lattice type depends on
the sampling rate. In Sections 4–5, we show that the best sampling lattice for very low
rate is the solution of the packing problem and for very high rate, the dual of the same
lattice. Finally, in Section 6 we give some numerical examples to illustrate our results.
The proofs of all Theorems are given in the Appendix.
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2 Preliminaries

2.1 Stationary random fields

We consider a zero-mean stationary random field (Z(x);x ∈ Rd) with finite second mo-
ments. We denote its covariance function by

R(x) = E[Z(y)Z(y + x)]. (1)

If Z is mean square continuous, then, by Bochner’s theorem (see, e.g., Gihman and Sko-
rohod, 1974, Ch. 4, Sec. 2, Theorem 2), R is the Fourier transform of a finite, positive
measure, the spectral measure. In addition, we assume that this spectral measure has a
density f . This means that

R(x) =
1

(2π)d

∫
Rd
f(ω) exp(iωT x)dω. (2)

A sufficient condition for this is ∫
Rd
|R(x)|dx <∞, (3)

and then the spectral density can be obtained as

f(ω) =
∫

Rd
R(x) exp(−iωT x)dx. (4)

For D ⊂ Rd, we denote the subspace of L2(Ω,P) spanned by the random variables
(Z(x),x ∈ D) by HZ(D). Instead of HZ(Rd), we simply write HZ . By standard results
(see e.g., Gihman and Skorohod, 1974, Ch. 4, Sec. 5, esp. Theorem 3), there is an isometric
correspondence between HZ and the subspace of L2(Rd, (2π)−df(ω)dω) containing all
functions ψ satisfying ψ(−ω) = ψ(ω). Under this correspondence, Z(x) ↔ exp(ixT ω),
and HZ(D) corresponds to the subspace spanned by the functions exp(ixT ω),x ∈ D.

2.2 Lattices

The standard reference for lattices is Conway and Sloane (1999). A d-dimensional lattice
Λ(B) is a subset of Rd of the form {u = BT w : w ∈ Zn} where the so-called generator
matrix B is an n× d matrix with linearly independent rows. This means that the lattice
consists of all integer linear combinations of the row vectors of B. B is often square, but
in some cases a representation with n > d may be preferable. For d > 1, the generator
matrix is not unique. For instance, two possible generator matrices for the hexagonal
lattice in d = 2 dimensions are

B1 =

[
2 0
1

√
3

]
, B2 =

[
1 −

√
3

1
√

3

]
. (5)

In a three-dimensional coordinate system, a rescaled version of the same lattice may be
represented without square roots, as with

B3 =

[
1 1 0
1 0 1

]
. (6)
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The Voronoi region of a lattice point is the set of all vectors in Rd that are at least as
close to this point as to any other lattice point:

Ω(B,u) def=
{
x ∈ Rd : ‖x− u‖ ≤ ‖x− u′‖ ∀u′ ∈ Λ(B)

}
(7)

It is easy to see that all Voronoi regions are translations of Ω(B) def= Ω(B,0) and that
they are convex polytopes that tile the space Rd (modulo the overlap at the boundaries).

In the frequency domain, an important role is played by the dual lattice of Λ(B),
scaled by 2π. It consists of all points λ ∈ Rd such that λT u is an integer multiple of 2π
for any u ∈ Λ(B). A possible choice of the generator matrix A for the dual lattice is, if
B is square, A = 2π(B−T ). We will always use the notation B and A for the generators
of two dual lattices scaled by 2π. If u is in Λ(B), then the function ω → exp(iuT ω) is
periodic with periods λ ∈ Λ(A):

exp(iuT (ω + λ)) = exp(iuT ω) exp(iuT λ) = exp(iuT ω) (8)

because uT λ is an integer multiple of 2π. Moreover, these functions are orthonormal in
L2(Ω(A), dω/vol(Ω(A))) by the following lemma.

Lemma 1 If B and A are the generators of two lattices that are dual to each other up to
a scaling by 2π, then

1
vol(Ω(A))

∫
Ω(A)

exp(iuT ω)dω =

{
1 (u = 0)
0 (u ∈ Λ(B) \ {0}). (9)

Proof: We introduce the fundamental parallellotope of the lattice Λ(A):

Ω̃(A) def=
{
ω ∈ Rd : ω = AT w with w ∈ [0, 1)d

}
. (10)

Like the Voronoi regions, the translates of Ω̃(A) by elements of the lattice Λ(A) form a
tiling of the space Rd. Moreover, vol(Ω(A)) = vol(Ω̃(A)) =

√
(det(AAT )) or, for square

A, vol(Ω(A)) = |det(A)|. The integral over Ω(A) of periodic functions is the same as the
integral over Ω̃(A). Hence by a change of variables from ω = AT w to w we obtain

1
vol(Ω(A))

∫
Ω(A)

exp(iuT ω)dω =
∫
[0,1)d

exp(iuT AT w)dw. (11)

By the definition of the dual lattice, uT AT is an integer vector times 2π, and thus the
claim follows from the basic properties of the complex exponential. tu

Finally, like in the case of the cubic lattice, it can be shown that the functions
(exp(iuT ω) : u ∈ Λ(B)) for any lattice form an orthonormal basis of the space of periodic
functions with periods in Λ(A), that is, they are complete. In particular, any periodic
integrable function g of ω whose periods belong to a lattice Λ(A) can be represented as a
linear combination (Fourier series) of the functions (exp(iuT ω);u ∈ Λ(B)):

g(ω) =
∑

u∈Λ(B)

c(u) exp(iuT ω). (12)

The sum converges in L2(Ω(A), vol(Ω(A))−1dω), and the coefficients are given by

c(u) =
1

vol(Ω(A))

∫
Ω(A)

g(ω) exp(−iuT ω)dω. (13)
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3 The interpolation error

Let Ẑ(x) be the best linear unbiased estimator of Z(x) based on observations (Z(u);u ∈
Λ(B)) on a lattice. Here, “best” is understood in the sense of minimizing the mean square
error E[(Z(x)− Ẑ(x))2]. By Hilbert space geometry, Ẑ(x) is the orthogonal projection of
Z(x) on the subspace of HZ(Λ(B)). It is much easier to determine first the element ψx in
L2(Rd, (2π)−df(ω)dω) that corresponds to Ẑ(x) under the isometry introduced in Section
2. This is done in the following theorem, generalizing a result by Stein (1999, pp. 98–99)
for cubic lattices.

Theorem 1 Under the isometry Z(x) ↔ exp(iωT x) between HZ and L2(Rd, (2π)−df(ω)dω),
the best linear unbiased estimator Ẑ(x) based on observations (Z(u);u ∈ Λ(B)) corre-
sponds to the function

ψx(ω) =
∑

λ∈Λ(A) exp(ixT (ω + λ))f(ω + λ)∑
λ∈Λ(A) f(ω + λ)

. (14)

The proof is given in the Appendix.
In most cases, we can obtain a more explicit representation of Ẑ(x) in the space

domain. The function ψx is periodic with period belonging to Λ(A) and can thus be
expanded into a Fourier series, compare (12). Moreover, it is easily seen that the Fourier
coefficients (13) of ψx are of the form c(x− u) where

c(x− u) =
1

vol(Ω(A))

∫
Ω(A)

∑
λ∈Λ(A) exp(i(x− u)T (ω + λ))f(ω + λ)∑

λ∈Λ(A) f(ω + λ)
dω. (15)

Introducing

f∗(ω) =
f(ω)∑

λ∈Λ(A) f(ω + λ)
(16)

and using the periodicity of the denominator, we can also write

c(x− u) =
1

vol(Ω(A))

∫
Rd

exp(i(x− u)T ω)f∗(ω)dω. (17)

Since exp(iuT ω) corresponds to Z(u) under the isometry betweenHZ and L2(Rd, (2π)−df(ω)dω),
one expects from the Fourier series

ψx(ω) =
∑

u∈Λ(B)

c(x− u) exp(iuT ω) (18)

that also
Ẑ(x) =

∑
u∈Λ(B)

c(x− u)Z(u). (19)

However, (18) converges in L2(Ω(A), dω) and not necessarily in L2(Rd, (2π)−df(ω)dω).
A sufficient condition for this to hold is for instance that

∑
λ∈Λ(A) f(ω + λ) is bounded.

The difference between the two L2-spaces also shows up in cases where the set {ω ∈
Ω(A);

∑
λ∈Λ(A) f(ω + λ) = 0} is not empty. For Theorem 1, it is irrelevant how we define

ψx on this set. However, for the Fourier coefficients in (17) this can make a difference:
These coefficients and the representation (19) are then not unique.

Theorem 1 can be used to compute the mean square error for a fixed x

σ2(x,Λ(B)) def= E[(Z(x)− Ẑ(x))2] (20)
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and the average mean square error over x ∈ Ω(B)

σ2(ave,Λ(B)) def=
1

vol(Ω(B))

∫
Ω(B)

σ2(x,Λ(B))dx. (21)

Theorem 2 The following expressions hold:

σ2(x,Λ(B)) =
1

(2π)d

∫
Rd
f∗(ω)

∑
λ∈Λ(A)\{0}

(1− exp(ixT λ)f(ω + λ)dω, (22)

σ2(ave,Λ(B)) =
1

(2π)d

∫
Rd
f(ω)(1− f∗(ω))dω (23)

= R(0)− 1
(2π)d

∫
Ω(A)

∑
λ∈Λ(A) f

2(ω + λ)∑
λ∈Λ(A) f(ω + λ)

dω. (24)

where f∗ is defined in (16) and a value “0/0” should be interpreted as zero. In particular,
we have

σ2(ave,Λ(B)) ≤ sup
x
σ2(x,Λ(B)) ≤ 2σ2(ave,Λ(B)). (25)

Equations (17), (22) and (23) are already in Petersen and Middleton (1962, Sec. VI).
The following bounds for the average mean square error which follow from Theorem 2 are
new to our knowledge.

Theorem 3 For any spectral density we have

σ2(ave,Λ(B)) ≤ 2
1

(2π)d

∫
Rd\Ω(A)

f(ω)dω. (26)

If the spectral density is isotropic and decreasing in ‖ω‖, then in addition

σ2(ave,Λ(B)) ≥ 1
(2π)d

∫
Rd\Ω(A)

f(ω)dω. (27)

As a simple example for Theorem 2 we consider a spectral density f which is constant
on a region D ⊂ Rd and zero outside of D. Then the integrand on the right hand side of
(24) is equal to the nonzero value of f if ω+λ ∈ D for some λ ∈ Λ(A) and zero otherwise.
This implies that

σ2(ave,Λ(B))
R(0)

= 1− vol({ω ∈ Ω(A)|(ω + λ) ∈ D for some λ ∈ Λ(A)})
vol(D)

. (28)

For a similar example, we look at the case where f is zero outside of Ω(A). Then
by Theorem 3, σ2(ave,Λ(B)) is zero, and therefore σ2(x,Λ(B)) is also zero for any x
(this can also be seen directly from (22)). In other words, we can recover all values Z(x)
without error from the values of Z on the lattice Λ(B). This is the well-known spatial
version of Nyquist’s sampling theorem (Nyquist, 1928) due to Petersen and Middleton
(1962). Moreover, we can compute the coefficients (17) explicitly. By Theorem 1, the
function ψx corresponding to Ẑ(x) (or more precisely, one possible choice of this function)
is

ψx(ω) = exp(ixT (ω mod Λ(A))) (29)

where we define ω mod Λ(A) to be ω − λ with λ ∈ Λ(A) such that ω − λ ∈ Ω(A). Thus
the coefficients (17) in the representation (19) are

c(x− u) =
1

vol(Ω(A))

∫
Ω(A)

exp(i(x− u)T ω)dω, (30)
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independently of f . For the cubic lattice, c(x−u) is of course the product of the well known
sin(x)/x functions. We call interpolation with these coefficients cardinal interpolation.

Often, cardinal interpolation is applied even for random fields whose spectra do not
vanish outside Ω(A). The advantage is that in contrast to the best linear unbiased es-
timator, it does not require the knowledge (or estimation) of the covariance function or
the spectrum. The disadvantages are that its coefficients decay slowly and that it is less
precise than the best linear unbiased estimator. Denote by σ2

c (x,Λ(B)) the mean square
error for cardinal interpolation. Then we have for a general spectral density (which need
not vanish outside Ω(A))

σ2
c (x,Λ(B)) =

1
(2π)d

∫
Rd
| exp(ixT ω)− exp(ixT (ω mod Λ(A)))|2f(ω)dω

=
1

(2π)d

∑
λ∈Λ(A)

∫
Ω(A)

| exp(ixT (ω + λ))− exp(ixT ω)|2f(ω + λ)dω

=
1

(2π)d

∑
λ∈Λ(A)

|1− exp(ixT λ)|2
∫
Ω(A)

f(ω + λ)dω.

In one dimension, these expressions have been derived in Brown (1978). Because |1 −
exp(ix)|2 = 2(1 − cos(x)), by Lemma 1 the average interpolation error with cardinal
interpolation is

σ2
c (ave,Λ(B)) = 2

1
(2π)d

∫
Rd\Ω(A)

f(ω)dω. (31)

which is the upper bound from Theorem 3. By the lower bound of the same theorem, for
isotropic and decreasing spectral densities, the average mean square error with cardinal
interpolation is larger by at most a factor of two compared with the optimal interpolation.

In the next two sections we determine the lattice that minimizes σ2(ave,Λ(B)) among
all lattices with equal volume vol(Ω(B)). Note that 1/vol(Ω(B)) is the sampling rate,
that is, the limit of the number of points in Λ(B) ∩D divided by vol(D) as the domain
D is extended in all directions. We are not able to solve this problem in full generality,
but we will derive the solution for the two limiting cases where the sampling rate tends to
zero and to infinity respectively for certain classes of random fields.

Alternatively, we could try to minimize the worst case mean square error supx σ
2(x,Λ(B)),

but this is an even more difficult problem. Note, however, that if Λ0 minimizes the average
mean square error, then by (25) for any other lattice Λ with the same sampling rate

sup
x
σ2(x,Λ0) ≤ 2 sup

x
σ2(x,Λ). (32)

Hence if we choose the lattice with minimal average mean square error, the loss we will
incur with respect to worst case mean square error is bounded.

4 The optimal lattice for low-rate sampling

In this section, we study the case where the sampling rate tends to zero. More precisely,
we look at the behavior of σ2(ave,Λ(βB)) as β tends to infinity for a fixed lattice Λ(B)
and a fixed covariance R0(x). This implies that the dependence between any two observed
values is small and thus the sampled realizations of Z look rough. Instead of rescaling
the lattice, we can equivalently rescale the covariance function, that is, we will consider
σ2(ave,Λ(B)) for covariance functions of the form R(x) = R0(βx) with β increasing to
infinity.
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Without loss of generality, we assume that R(0) = 1. We first derive expressions
for Ẑ(x) and for σ2(ave,Λ(B)) in the space domain. More precisely, we determine the
coefficients c(x − u) in the representation (19) directly. The orthogonality condition
E[(Z(x)− Ẑ(x))Z(u)] = 0 leads to the system of equations

R(x− u) =
∑

u′∈Λ(B)

R(u− u′)c(x− u) (u ∈ Λ(B)). (33)

This can be written formally with infinite matrices RΛ(B)(u,u′) = R(u−u′) and infinite
vectors rΛ(B),x(u) = R(x−u) and cΛ(B),x(u) = c(x−u) as RΛ(B)cΛ(B),x = rΛ(B),x. We
are going to show that this equation has a well-defined solution which moreover gives the
correct coefficients for Ẑ(x) if we assume that (3) holds and that

ε
def=

∑
u∈Λ(B)\{0}

|R(u)| < 1. (34)

Since we assume R(0) = 1, we can write RΛ(B) = IΛ(B)−∆Λ(B) where IΛ(B) is an infinite
identity matrix and ∆Λ(B)(u,u′) = ∆(u− u′) where

∆(u) def=

{
0 (u = 0)
−R(u) (u ∈ Λ(B) \ {0}). (35)

Then formally

R−1
Λ(B) = (IΛ(B) −∆Λ(B))

−1 =
∞∑

k=0

∆k
Λ(B). (36)

The elements of the matrix powers ∆k
Λ(B) are of the form ∆k(ui − uj) where we denote

by ∆k(u) the k-fold discrete convolution of ∆

∆k(u) def=


∑

u′∈Λ(B) ∆k−1(u− u′)∆(u′) (k ≥ 1)
1 (k = 0 and u = 0)
0 (k = 0 and u ∈ Λ(B) \ {0}).

(37)

By assumption (34) and an induction argument, we see that∑
u∈Λ(B)

|∆k(u)| ≤ εk. (38)

Thus the sum
∑∞

k=0 ∆k
Λ(B) converges, and we will show in the next theorem rigorously

that we in this way indeed obtain the best interpolation Ẑ(x) and its mean square error.
In order to formulate the result, it is convenient to introduce a short notation for the

continuous convolution of the covariance function

R∗2(x) def=
∫

Rd
R(y)R(x− y)dy =

∫
Rd
R(y)R(x + y)dy. (39)

The equality above follows from the symmetry of the covariance function R(−x) = R(x).

Theorem 4 If R(0) = 1 and assumptions (3) and (34) hold, then the best linear unbiased
estimator and its mean square error are given by

Ẑ(x) =
∑

u∈Λ(B)

 ∑
u′∈Λ(B)

∞∑
k=0

∆k(u− u′)R(x− u′)

Z(u) (40)

σ2(ave,Λ(B)) = 1− 1
vol(Ω(B))

∞∑
k=0

∑
u∈Λ(B)

∆k(u)R∗2(u). (41)
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The proof is given in the Appendix.
Heuristically, the contribution of the terms in the expression (41) becomes smaller as

k increases, cf. (38). Moreover, because in the sparse sampling case R∗2(0) is much larger
than R∗2(u) for u ∈ Λ(B) \ {0}, for a fixed k the term with u = 0 has to be considered
separately. Retaining thus the terms with k = 0 and k = 1 as well as the term with k = 2
and u = 0, we obtain the approximation

σ2(ave,Λ(B)) ≈ 1− R∗2(0)
vol(Ω(B))

1 +
∑

u∈Λ(B)\{0}
R2(u)−

∑
u∈Λ(B)\{0}

R(u)
R∗2(u)
R∗2(0)

 . (42)

By (38) and the Cauchy-Schwarz inequality for R∗2(u), the error in this approximation
can be bounded by

R∗2(0)
vol(Ω(B))

(
ε2 max

u∈Λ(B)\{0}

R∗2(u)
R∗2(0)

+
ε3

1− ε
)

)
. (43)

The first two terms in (42) do not depend on the lattice. The third and fourth term do,
but they are still too complicated for optimization. If we assume R to be isotropic and
monotonically decreasing with distance, the largest summands are those where ||u|| is
minimal, and if R decays quickly these largest summands dominate the sum of all other
terms. The following theorem contains a precise statement. We denote by ρ = ρ(B)
half the minimum distance between two points of the lattice, i.e., the packing radius, by
τ = τ(B) the number of lattice points at distance 2ρ, i.e., the kissing number, and by e
an arbitrary unit vector.

Theorem 5 Consider a sequence of isotropic covariance functions R(x) = R0(β||x||)
depending on a parameter β ≥ 1 and assume that R0 is monotonically decreasing and
satisfies

C1 exp(−rp) ≤ R0(r) ≤ C2 exp(−rp) (44)

for some constants 0 < C1 < C2 <∞ and p > 0. Then

σ2(ave,Λ(B)) ≈ 1− R∗2(0)
vol(Ω(B))

(
1 + τR2(2ρe)− τR(2ρe)

R∗2(2ρe)
R∗2(0)

)
(45)

where the error is of lower order as β →∞.

Note that in (45), the two last terms go in opposite directions because both R and R∗2

are positive. In order to find out which term dominates, we need to analyze the behavior
of R∗2. As β increases, the maxima of R(x)R(x+u) become more and more pronounced.
Thus we obtain the leading term of the convolution by a Laplace approximation argu-
ment, see, e.g., de Bruijn (1958, Ch. 4). This technique restricts the integration for the
convolution to a neighborhood where the integrand is maximal and replaces the integrand
there by a simpler function.

It turns out that the location of the maxima of R(x)R(x+u) and also the asymptotic
behavior of the convolution depends on the value of p in the assumption (44). Although
Laplace approximations are well known, we could not find a result in the literature that
applies directly to our problem. Therefore we give the proofs of the following two theorems
in the Appendix.
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Theorem 6 If the assumptions of Theorem 5 hold for p ≥ 1, then

σ2(ave,Λ(B)) ≈ 1− R∗2(0)
vol(Ω(B))

+
τ

vol(Ω(B))
R(2ρe)R∗2(2ρe) (46)

where the error is of lower order as β →∞.

For p < 1, the two last terms in (45) are in general of the same order as will be shown
in the next Theorem. Hence we need a more precise analysis of the convolution, which in
turn requires a slightly more precise assumption on the function R0 for large arguments.

Theorem 7 If the assumptions of Theorem 5 hold for 0 < p < 1 and if (44) is strength-
ened to

R0(r)
C exp(−rp)

→ 1 (r →∞) (47)

for a constant 0 < C <∞, then

σ2(ave,Λ(B)) ≈ 1− R∗2(0)
vol(Ω(B))

+
τ

vol(Ω(B))
R2(2ρe)

(
2
∫

Rd
R(x)dx−R∗2(0)

)
(48)

where the error is of lower order as β →∞.

As a corollary, the lattice Λ(B) minimizing σ2(ave,Λ(B)) for given vol(Ω(B)) is in all
cases considered the one maximizing the packing radius ρ(B). In situations covered by
Theorem 6 this follows from the monotonicity of R∗2 and in situations covered by Theorem
7 it follows because

2
∫

Rd
R(x)dx−R∗2(0) = β−d

∫
Rd

(2R0(||x||)−R2
0(||x||))dx (49)

and the last integral is strictly positive. When there are several lattices with the same
maximal packing radius, we should take the one with minimal value of τ(B).

5 The optimal lattice for high-rate sampling

In this section, we study the case where the sampling rate tends to infinity, that is the
behavior of σ2(ave,Λ(βB)) as β tends to zero. This means that the dependence between
sampled values is strong and thus the sampled realizations of Z look smooth. As in the
previous section, we will fix the lattice and rescale the covariance function. Equivalently, in
the frequency domain the spectral density function takes the form f(ω) = β−df0(||ω||/β)
and thus the mass accumulates at the origin. In order to simplify notation, we will use
the parameter α = 1/β which tends to infinity.

We rewrite (23) in the equivalent form

σ2(ave,Λ(B)) =
1

(2π)d

∫
Rd
r(Λ(A),ω)dω (50)

where

r(Λ(A),ω) =
f(ω)

∑
λ∈Λ(A)\{0} f(ω + λ)∑

λ∈Λ(A) f(ω + λ)
. (51)

Like in the previous section, it turns out that for β increasing to infinity, the peaks of the
function r(Λ(A),ω) become sharper and thus we can use Laplace approximations once

10



again. We first explain the result heuristically. Since for any two positive real numbers a
and b, ab = max(a, b) ·min(a, b) and max(a, b) ≤ a+ b ≤ 2 max(a, b), the following bounds
on r(Λ(A),ω) hold

1
2

min(f(ω),
∑

λ∈Λ(A)\{0}
f(ω + λ)) ≤ r(Λ(A),ω) ≤ min(f(ω),

∑
λ∈Λ(A)\{0}

f(ω + λ)). (52)

If f is isotropic, monotone and decays quickly, the infinite sum
∑

λ∈Λ(A)\{0} f(ω + λ) is
approximately equal to the largest summand which is the one where ||ω + λ|| is minimal,
cf. the proof of Theorem 5. Together with the bounds (52) this implies that r(Λ(A),ω) is
maximal for ω = λ̂/2 for any λ̂ that belongs to the set Ψ(A) of shortest nonzero vectors
in Λ(A). Moreover, near such a point r(Λ(A),ω) can be approximated as

r(Λ(A),ω) ≈ q(λ̂,ω) def=
f(ω)f(λ̂− ω)
f(ω) + f(λ̂− ω)

, (53)

and the contribution from other points to the integral is negligible. This suggests that

σ2(ave,Λ(B)) ≈ 1
(2π)d

∫
Rd

∑
λ̂∈Ψ(A)

q(λ̂,ω)dω =
τ

(2π)d

∫
Rd
q(2ρe,ω)dω (54)

where ρ = ρ(A) and τ = τ(A) are the packing radius and the kissing number respectively
of the dual lattice, and e is an arbitrary unit vector in Rd. The integral on the right hand
side of (54) depends essentially only on the values of f(ω) for ω near ρe. Since we assume
f to be isotropic and monotone, σ2(ave,Λ(B)) will be minimal if ρ is maximal, that is,
the optimal lattice B for high-rate sampling is the dual of the one solving the packing
problem.

We now state a rigorous result which is proved in the Appendix.

Theorem 8 Consider a sequence of isotropic spectral density functions f(ω) = f0(α||ω||)
depending on a parameter α ≥ 1 and assume that for some p > 0 and some 0 < C <∞

f0(r)
C exp(−rp)

→ 1 (r →∞). (55)

Then for α→∞, the error in the approximation (54) is of lower order and

σ2(ave,Λ(B))
exp(−(αρ)p)(αρ)−p(d+1)/2

→ C
τ

4
ρd(2π/p)(d+1)/2. (56)

It is interesting to compare cardinal interpolation with optimal interpolation in the
high-rate sampling case. If the sampling rate goes to infinity, the mean square error
of cardinal interpolation also converges to zero, and one might conjecture that in this
situation the two interpolation methods are actually equivalent, meaning that the ratio of
the mean square errors converges to one. Cardinal interpolation is optimal for band-limited
fields, and if the spectral mass accumulates at the origin, the field is almost band-limited.
However, the results of Stein (1999) point out that the high frequency behavior of f is
crucial for the interpolation error in the high rate sampling case, and the conjecture is
actually false. To show this, we first approximate (31) with

σ2
c (ave,Λ(B)) ≈ 2τ(A)

1
(2π)d

∫
ω1>ρ

f(ω)dω, (57)

which is the union-bound approximation commonly used in digital communications for
high signal-to-noise ratios (Conway and Sloane, 1999, pp. 69–70). By analogous arguments
as used in the proof of Theorem 8 we can show the following theorem.
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Theorem 9 Under the assumptions of Theorem 8,

σ2
c (ave,Λ(B))

exp(−(αρ)p)(αρ)−p(d+1)/2
→ Cτρd(2π)(d−1)/2p−(d+1)/2 (58)

as α→∞, and hence
σ2(ave,Λ(B))
σ2

c (ave,Λ(B))
→ π

4
< 1. (59)

The optimal lattice for cardinal interpolation is again the lattice solving the dual
packing problem. It is somewhat surprising that the asymptotic loss of cardinal over
optimal interpolation is independent of the dimension and of the parameter p, that is, of
the shape of the spectral density.

6 Some numerical results

If we have two lattices Λ(B1) and Λ(B2) such that vol(Ω(B1)) = vol(Ω(B2)) = 1 then we
can define the asymptotic relative efficiency of Λ(B2) with respect to Λ(B1) as follows:
For any β > 0, define β′ = β′(β) by the equation

σ2(ave, β′Λ(B2)) = σ2(ave, βΛ(B1)), (60)

assuming a solution exists. In words, we adjust the sampling rate for the second lattice
such that the average interpolation error is the same. The ratio of the sampling rates
is then (β′/β)−1/d. The high-rate asymptotic relative efficency of Λ(B2) with respect
to Λ(B1) is now defined as the limit of (β′/β)1/d as β → 0. Similarly, the low-rate
asymptotic relative efficency is defined as the limit of the same expression as β →∞. It is
easily seen that under the condition (55) of Theorem 8, the high-rate efficiency is equal to
(ρ(A1)/ρ(A2))d and under the condition (44) of Theorem 5, the low-rate efficiency is equal
to (ρ(B1)/ρ(B2))d. For d = 2, the asymptotic relative efficiency of the hexagonal with
respect to the square lattice is equal to 1.15 both in the high- and the low-rate sampling
limit since both lattices are self dual. For d = 3 the packing radius is maximized for
the face-centered cubic lattice. The dual of the face-centered cubic lattice is the body-
centered cubic lattice which therefore maximizes the dual packing radius. Hence in d = 3,
the optimal lattice depends on the sampling rate. The relative efficiency of these lattices
is equal to 1.09 and so the gains are not tremendous. However, the asymptotic relative
efficiency of the optimal lattice in d = 3 over the cubic lattice is 1.41 in both the low-
and high-rate case which is more substantial. In d = 8, where the so-called lattice E8,
see Conway and Sloane (1999), has a number of optimality properties, both the high- and
low-rate asymptotic relative efficiency of E8 over the cubic lattice is as high as 16.

Next, we give a few examples to illustrate the quality of our approximations for the
average mean square error. We restrict ourselves to the case d = 2 and we use the cubic and
the hexagonal lattice, scaled to have sampling rate equal to one. In the low-rate sampling
case, we compared a numerical approximation for σ2(ave,Λ(B)) with the approximations
(45) and the even simpler approximation

σ2(ave,Λ(B)) ≈ 1− R∗2(0)
vol(Ω(B))

(61)

which depends on the lattice only via the sampling rate. As covariance function we took
the so-called Matérn class

Rν(x) =
Kν(β||x||) (β||x||)ν

Γ(ν)2ν−1
(62)
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value lattice β = 0.5 β = 1 β = 1.5 β = 2 β = 2.5 β = 3
exact cubic .2137 .4074 .5670 .6880 .7743 .8338
exact hexagonal .2123 .4052 .5649 .6864 .7732 .8331
(61) any -5.283 -.5708 .3019 .6073 .7487 .8255
(45) cubic -.1423 .4567 .5720 .6864 .7732 .8334
(45) hexagonal 2.460 .8719 .6549 .7035 .7764 .8338

Table 1: Average mean square interpolation errors and their approximations for the ex-
ponential covariance.

value lattice β = 1 β = 2 β = 3 β = 4 β = 5 β = 6
exact cubic .00518 .3147 .6524 .803655 .874336 .9127335
exact hexagonal .00329 .3039 .6517 .803652 .874336 .9127335
(61) any -2.142 .2146 .6509 .803651 .874336 .9127335
(45) cubic -.829 .3135 .6524 .803655 .874336 .9127335
(45) hexagonal -.154 .3156 .6517 .803652 .874336 .9127335

Table 2: Average mean square interpolation errors and their approximations for the Gaus-
sian covariance.

where Kν is a modified Bessel funtion, see e.g. Stein (1999). For us, the main advantage
of this class is that the convolution belongs to the same class:

R∗2
ν (x) =

4πν2

(1 + 2ν)β2
R1+2ν(x). (63)

The shape parameter ν regulates the behavior of R at the origin. For ν = 0.5, the
Matérn covariance is simply the exponential covariance R(x) = exp(−β||x||). For ν →∞
with β =

√
2ν, the Matérn covariance converges to the Gaussian covariance R(x) =

exp(−(β||x||)2/2). We chose values of β in a range where the approximations change from
being meaningless to being perfect which depends on the value of the shape parameter ν.

In order to compute σ2(ave,Λ(B)), we need to discretize the averaging integral and we
have to consider the interpolation error based on observing Z at a finite number of lattice
points. By trial and error, we chose approximations in such a way that the resulting error
should be smaller than the precision in the tables below.

The results for the exponential and the Gaussian covariance are given in Tables 1 and
2. For ν = 1, the results were similar. We see that the approximations are excellent and
cover also a range of sampling rates where interpolation is still reasonable. The second
approximation (45) is always better than (61), and the hexagonal lattice is always better
than the cubic lattice. We conjecture that the hexagonal lattice is optimal for all sampling
rates because it is self-dual. Note however that in the exponential case, the approximation
(45) is larger for the hexagonal lattice than for the cubic lattice. The reason is that the
kissing number τ(B) which appears as a factor in the difference between (61) and (45) is
larger for the hexagonal lattice. Of course, for larger β’s, the larger packing radius of the
hexagonal lattice will dominate as predicted by our theory.

In the high-rate sampling case, we compared the function r(Λ(A),ω) (see (51)) whose
integral is equal to σ2(ave,Λ(B)) with its approximations

∑
λ̂∈Ψ(A) q(λ̂,ω) (see (54)) and

the function we obtain when we replace each term q(λ̂,ω) by its Laplace approximation,
compare (110). We considered the spectral densities f(ω) = exp(−(α||ω||)p) for various
values of p. Since the general behavior is similar, we show only the results for p =
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1 in Figures 1 and 2. The value of α where peaks at the points ω = λ̂/2 with λ̂ ∈
Ψ(A) start to appear and the approximations become accurate depends strongly on p.
For p = 2, this occurs around α = 2, whereas for p = 1/2 this occurs only around
α = 50. Note that if f(ω) = exp(−(α||ω||)2), then the covariance R(x) is proportional
to exp(−(||x||/(2α))2). Hence for the Gaussian covariance R(x) = exp(−||x||2/2), our
approximations cover sampling rates less or equal to 1/4 (corresponding to β = 2 in Table
2) and rates greater or equal than 8 (corresponding to the value α = 2 mentioned above).
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Figure 1: The function r (eq. 50, left) and its two approximations (middle and right)
in logarithmic scale for the cubic lattice and the exponential spectral density. The scale
parameter α is equal to 5 (upper row) and 10 (lower row).
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Figure 2: Same as Fig. 1 for the hexagonal lattice.
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sampling rate σ2(ave,Λ(βB)) Optimality criterion
∞ 0 none

large Theorem 8 dual packing radius
≈ 1 Theorem 2 numerical

small Theorem 5 packing radius
very small equation (61) none

0 R(0) none

Table 3: Summary of main results.

7 Summary and conclusions

If we consider lattices with sampling rate 1, i.e. vol(Ω(B)) = 1, and a fixed covariance R,
then we can ask for any sampling rate β−d, how large is the average interpolation error
σ2(ave,Λ(βB)) and which lattice minimizes this average interpolation error. The results
obtained in this paper can be summarized in the Table 7.

Unfortunately, for these statements we need additional conditions on the decay of the
covariances or spectral densities respectively, and it would be interesting to formulate
and prove more general results. The approximations for the average interpolation error
are quite accurate for a large range of sampling rates, and the duality between low- and
high-rate sampling that we found is surprising.

A Proof of Theorems

Proof of Theorem 1: Because∫
Ω(A)

∑
λ∈Λ(A)

f(ω + λ)dω =
∫

Rd
f(ω)dω = (2π)dR(0), (64)

∑
λ∈Λ(A) f(ω + λ) is finite almost everywhere and thus ψx is well defined and bounded

by one. We have to show two things: First, the function ψx from (14) lies in HZ(Λ(B)),
and second (exp(iωT x)−ψx(ω)) is orthogonal to exp(iωT u) for any u ∈ Λ(B). The first
claim holds because ψx is periodic with period λ for any λ ∈ Λ(A). For the second claim,
we split the integration over Rd into integrations over all translates of Ω(A) and use the
periodicity of ψx(ω) and exp(iωT u). Then we obtain∫

Rd
ψx(ω) exp(−iωT u)f(ω)dω (65)

=
∑

λ∈Λ(A)

∫
Ω(A)

ψx(ω) exp(−iωT u)f(ω + λ)dω (66)

=
∑

λ∈Λ(A)

∫
Ω(A)

exp(ixT (ω + λ))f(ω + λ) exp(−iωT u)dω (67)

=
∫

Rd
exp(ixT ω) exp(−iωT u)f(ω)dω. (68)

tu

Proof of Theorem 2: Because Ẑ(x) is an orthogonal projection,

σ2(x,Λ(B)) = E[(Z(x)− Ẑ(x))2] = E[(Z(x)− Ẑ(x))Z(x)]. (69)
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Using Theorem 1, the mean square error is therefore equal to

1
(2π)d

∫
Rd

(exp(ixT ω)− ψx(ω)) exp(−ixT ω)f(ω)dω = (70)

1
(2π)d

∫
Rd

∑
λ∈Λ(A)(1− exp(ixT λ))f(ω + λ)∑

λ∈Λ(A) f(ω + λ)
f(ω)dω (71)

which is the first claim. For the second claim, we note that by Lemma 1, averaging
exp(ixT λ) over x ∈ Ω(B) gives zero for λ ∈ Λ(A) \ {0}. This also proves the second
inequality in (25) because supx |1− exp(ixT λ)| = 2. The first inequality in (25) is trivial.

Finally, (24) follows by splitting the integration over Rd into integrations over all trans-
lates of Ω(A) and using the periodicity of

∑
λ∈Λ(A) f(ω + λ). tu

Proof of Theorem 3: We use the expression (24) in the equivalent form

σ2(ave,Λ(B)) =
1

(2π)d

∫
Ω(A)

(
∑

λ∈Λ(A) f(ω + λ))2 −
∑

λ∈Λ(A) f
2(ω + λ)∑

λ∈Λ(A) f(ω + λ)
dω,

The proof follows from some simple algebraic manipulations. In order to simplify the
notation, let (ak; k = 0, 1, 2, . . .) be an arbitrary nonnegative and summable sequence.
Then we have ( ∞∑

k=0

ak

)2

= a2
0 + a0

∞∑
k=1

ak +
∞∑

k=0

ak

∞∑
k=1

ak. (72)

Therefore( ∞∑
k=0

ak

)2

−
∞∑

k=0

a2
k = 2

∞∑
k=0

ak

∞∑
k=1

ak −
( ∞∑

k=1

ak

)2

−
∞∑

k=1

a2
k ≤ 2

∞∑
k=0

ak

∞∑
k=1

ak. (73)

Substituting f(ω+λk) for ak, where {λ0,λ1, . . .} is an enumeration of Λ(A) with λ0 = 0,
the first claim follows.

For the second claim, we observe that

a0

∞∑
k=1

ak −
∞∑

k=1

a2
k =

∞∑
k=1

(a0 − ak)ak ≥ 0 (74)

if a0 ≥ ak for all k. By the definition of the Voronoi cell, ||ω||2 ≤ ||ω − λ||2 for all
ω ∈ Ω(A) and all λ ∈ Λ(A), and thus the second claim follows. tu

Proof of Theorem 4: First we note that (3) implies that∑
u∈Λ(B)

|R(x + u)| <∞ (75)

for almost all x ∈ Ω(B), cf. the argument following (64). Hence by (38) for almost all
x ∈ Ω(B)

∑
u∈Λ(B)

∣∣∣∣∣∣
∑

u′∈Λ(B)

∞∑
k=0

∆k(u− u′)R(x− u′)

∣∣∣∣∣∣ ≤ 1
1− ε

∑
u′∈Λ(B)

|R(x− u′)| <∞ (76)

(the exceptional set does not matter since we are interested in the average mean square
error). Therefore, the right hand side of (40) converges in HZ (and also almost surely), see
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e.g. Brockwell and Davis (1987, Prop. 3.1.1). To prove (40), we verify E[(Z(x)Ẑ(x))Z(v)] =
0, or equivalently (compare (33))

R(x− v) =
∑

u∈Λ(B)

 ∑
u′∈Λ(B)

∞∑
k=0

∆k(u− u′)R(x− u′)

R(u− v) (77)

for all v ∈ Λ(B). This is true because∑
u∈Λ(B)

∆k(u− u′)R(u− v) = ∆k(v − u′)−
∑

u∈Λ(B)

∆k(u− u′)∆(v − u)

= ∆k(v − u′)−∆k+1(v − u′).

Hence all terms cancel except the one with k = 0.
Moreover, we can also compute σ2(x,Λ(B)) = R(0)− E[Ẑ(x)Z(x)]. We obtain

σ2(x,Λ(B)) = 1−
∑

u∈Λ(B)

∑
u′∈Λ(B)

∞∑
k=0

∆k(u− u′)R(x− u′)R(x− u)

= 1−
∑

u∈Λ(B)

∑
u′∈Λ(B)

∞∑
k=0

∆k(u)R(x− u′)R(x− u′ + u).

The theorem follows now by averaging this expression over x ∈ Ω(B) and by noting that∑
u′∈Λ(B)

∫
Ω(B)

R(x− u′)R(x− u′ + u)dx =
∫

Rd
R(x)R(x + u)dx. (78)

tu

Proof of Theorem 5: First we show that the quantity ε in (34) is asymptotically
equal to τR(2ρe). We have

ε = R(2ρe)

τ +
∑

u∈Λ(B);||u||>2ρ

R(u)
R(2ρe)

 . (79)

By the assumption (44),

R(u)
R(2ρe)

≤ C2

C1
exp(−βp(||u||p − (2ρ)p)) (80)

converges to zero for any fixed u ∈ Λ(B) with ||u|| > 2ρ and it is for all β ≥ 1 upper-
bounded by a constant times exp(−||u||p). Hence by Lebesgue’s dominated convergence
theorem, the sum over all u ∈ Λ(B) with ||u|| > 2ρ converges also to zero provided that∑

u∈Λ(B) exp(−||u||p) is finite. This follows by adapting the argument on p. 71 in Gun-
ning (1962). By the definition of a lattice, any u ∈ Λ(B) has the form BT w with w ∈ Zd.
Denoting the smallest eigenvalue of the matrix BBT by λmin, we have

||u||2 = wT BBT w ≥ λmin||w||2 (81)

Moreover, for p ≥ 2 we have by Jensen’s inequality ||w||p ≥ d(p−2)/2(|w1|p + · · · + |wd|p),
whereas for p < 2 we obtain ||w||p ≥ (|w1|p + · · ·+ |wd|p) by summing the inequalities

wp
i

(w2
1 + · · ·+ w2

d)p/2
≥ w2

i

w2
1 + · · ·+ w2

d

. (82)
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Hence we conclude with c def= λ
p/2
min min(1, d(p−2)/2)

∑
u∈Λ(B)

exp(−||u||p) ≤
( ∞∑

w=−∞
exp(−c|w|p)

)d

<∞. (83)

The same argument shows that
∑

u∈Λ(B)\{0}R
2(u) is equal to τR2(2ρe) times a factor

that converges to one. Finally, as we will show below, R∗2 is also monotonically decreasing
and thus the same argument can be used once again to show that

∑
u∈Λ(B)\{0}R(u)R∗2(u)

is equal to τR(2ρe)R∗2(2ρe) times a factor that converges to one. Hence, (42) is asymp-
totically equivalent to (45), and the error term (43) is of lower order than (45).

It remains to show the monotonicity of the convolution. We can multiply R by a
constant such that it becomes an isotropic probability density on Rd. Then also R∗2 has
the same property. The Fourier transform of R, that is, the spectral density f , is also
isotropic and thus has the form f(ω) = φ(||ω||) with φ : [0,∞) → [0,∞). By the identity
(36) in Gneiting (1998), monotonicity of R implies that φ(||ω||) with ω ∈ Rd+2 is a pos-
itive definite function. Because the product of two positive definite functions is positive
definite, φ2(||ω||) is also positive definite on Rd+2. But φ2(||ω||) with ω ∈ Rd is the Fourier
transform of R∗2 and so by applying the identity (36) in Gneiting (1998) in the opposite
direction, it follows that R∗2 is monotonically decreasing. tu

Proof of Theorem 6:
The function ||x||p + ||u + x||p is minimal for x = −u/2 if p > 1 whereas for p = 1

it is minimal on the segment from 0 to −u. We first consider the case p > 1. We
let B denote the ball with center −u/2 and radius η||u|| where η will be chosen later:
B

def= {x ∈ Rd; ||x + u/2|| ≤ η||u||}. By the triangle inequality, we have for x ∈ B
||x|| ≤ ||u||(1

2 + η) and also ||x + u|| ≤ ||u||(1
2 + η). Thus on B

R(x)R(x + u) ≥ C2
1 exp(−21−p(1 + 2η)p(β||u||)p) (84)

and therefore by restricting the integration to B

R∗2(u) ≥ const.||u||d exp(−21−p(1 + 2η)p(β||u||)p). (85)

By a simple change of variables, R∗2(0) is equal to a constant times β−d and thus the
claim follows if we choose η such that 21−p(1 + 2η)p < 1, which is possible for p > 1.

Next, we consider the case p = 1. We may assume that u = (||u||, 0, . . . , 0)T and
we write x ∈ Rd as (x,yT )T with y ∈ Rd−1 . We will restrict the integration to the
strip B = {x ∈ Rd;−||u|| ≤ x ≤ 0}. By the triangle inequality, ||x|| ≤ |x| + ||y|| and
||x + u|| ≤ ||u|| − |x|+ ||y|| hold on B. This implies for x ∈ B

R(x)R(x + u) ≥ C2
1 exp(−β||u|| − 2β||y||) (86)

and therefore by restricting the integration to B

R∗2(u) ≥ C2
1 exp(−β||u||)||u||β1−d

∫
Rd−1

exp(−2||y||)dy. (87)

The expression on the right is bounded below by a constant times β||u||R(u)R∗2(0) and
the claim follows. tu
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Proof of Theorem 7: We use again a Laplace approximation argument. For p < 1,
the minima of ||x||p + ||x + u||p are at x = 0 and x = −u. We will assume that
u = (||u||, 0, . . . , 0)T and we introduce the half space H = {x ∈ Rd;x1 ≥ −||u||/2}. Using
the symmetry of R, we obtain after a change of variables

R∗2(u)
R(u)

= 2
∫

H

R(u + x)R(x)
R(u)

dx. (88)

Then we have a single maximum near x = 0, and we will replace the integral over H by
the integral over B where B denotes the ball with center 0 and radius ηβ−p where η will
be chosen later: B def= {x ∈ Rd; ||x|| ≤ ηβ−p}. On B, R(u + x)/R(u) is practically equal
to one for any u, leading to the approximations

R∗2(u)
R(u)

≈ 2
∫

B

R(u + x)R(x)
R(u)

dx ≈ 2
∫

B
R(x)dx ≈ 2

∫
Rd
R(x)dx. (89)

The theorem follows by combining (89) with (45).
The rest of the proof consists of controlling the errors due to the three approximations

in (89). For the first approximation, the key argument is to show that for some δ > 0,
constants C1 < C2 and all x ∈ H

R(u + x)R(x)
R(u)

≤ C2
2

C1
exp(βp(||u||p − ||u + x||p − ||x||p)) ≤ C2

2

C1
exp(−δβp||x||p). (90)

The first inequality holds because (47) implies (44). For the second inequality, note that
if x1 ≥ 0, then ||u + x|| ≥ ||u|| + x1 ≥ ||u|| and thus (90) holds for all δ ≤ 1. If
−||u||/2 ≤ x1 ≤ 0, then ||u + x|| ≥ ||u|| − |x1|. Hence it is sufficient to show that for all
0 ≤ r ≤ 1/2

(1− δ)rp + (1− r)p ≥ 1 (91)

(simply put r = |x1|/||u||). But by concavity of t→ tp, (1− t)p ≥ (1− t) for all 0 ≤ t ≤ 1
and tp ≥ t21−p for 0 ≤ t ≤ 1/2. Hence (91) and thus also (90) hold for 1 − δ = 2p−1.
Finally, (90) is sufficient to justify the first approximation in (89) since by a simple change
of variables and the definition of B∫

H\B
exp(−δβp||x||p)dx ≤ β−d

∫
||x||>ηβ1−p

exp(−δ||x||p)dx (92)

= o(β−d) = o

(∫
Rd
R(x)dx

)
.

This last argument can be repeated in order to justify the third approximation in (89).
Thus there remains the justification of the middle approximation. Because ||u||−||x|| ≤

||u + x|| ≤ ||u||+ ||x||, we have for ||x|| → 0 by the definition of the derivative

|||u||p − ||u + x||p| ≤ ||u||p(1− (1− ||x||/||u||)p) = p||u||p−1||x||+ o(||x||). (93)

This implies that for any c > p||u||p−1 and β sufficiently large, we have for all x ∈ B

exp(−cη) ≤ exp(βp(||u||p − ||u + x||p)) ≤ exp(cη). (94)

By the assumption (47), we therefore have also

exp(−cη) ≤ R(x + u)
R(u)

≤ exp(cη). (95)

19



Because η can be chosen arbitrarily small, this justifies the middle approximation in (89).
tu

Proof of Theorem 8: The proof consists of two steps. First, we are going to show
that there is a δ > 0 and an integrable function h(ω) such that for all α ≥ 1 and all
ω ∈ Rd ∣∣∣∣∣∣∣r(Λ(A),ω)−

∑
λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣∣ ≤ exp(−αp(ρ+ δ)p)h(ω). (96)

In a second step we are going to show that∫
Rd q(2ρe,ω)dω

exp(−(αρ)p)(αρ)−p(d+1)/2
→ Cρd

4

(
2π
p

)(d+1)/2

. (97)

From this, the theorem follows, compare (50) and (54).
For (96) we choose δ such that for any ω ∈ Rd, there exist at most two lattice points

λ ∈ Λ(A) such that ||ω−λ|| ≤ ρ+δ, and if two such points exist, they must have distance
2ρ in addition. For ||ω|| > ρ+ δ, we will use the bound∣∣∣∣∣∣∣r(Λ(A),ω)−

∑
λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣∣ ≤ (τ + 1)f(ω) (98)

which follows from (52) and the analogous bound

1
2

min(f(ω), f(ω − λ̂)) ≤ q(λ̂,ω) ≤ min(f(ω), f(ω − λ̂)). (99)

By (98) and our assumption on f , there is a constant C1 ≥ C such that

f(ω) ≤ C1 exp(−(α||ω||)p) = C1 exp(−||ω||p) exp(−(αp − 1)||ω||p) (100)
≤ C1 exp(−||ω||p) exp((ρ+ δ)p) exp(−αp(ρ+ δ)p). (101)

Hence (96) holds if we set

h(ω) = C1(τ + 1) exp((ρ+ δ)p) exp(−||ω||p) (||ω|| > ρ+ δ). (102)

For ||ω|| ≤ ρ+ δ, we use the bound∣∣∣∣∣∣∣r(Λ(A),ω)−
∑

λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣∣ ≤ 2
∑

λ∈Λ(A)\{0,ξ̂}

f(ω − λ), (103)

where ξ̂ is the point in Ψ(A) closest to ω. In order to see why this bound holds, denote
f(ω) by a, f(ω − ξ̂) by b and the sum of f(ω − λ) over all λ ∈ Λ(A) \ {0, ξ̂} by c. By
simple algebraic manipulations we find∣∣∣∣ a(b+ c)

a+ b+ c
− ab

a+ b

∣∣∣∣ = a2c

(a+ b)(a+ b+ c)
≤ c. (104)

From this and (99), (103) follows. If ||ω|| ≤ ρ + δ, then by the definition of ξ̂ and our
choice of δ, ||ω − λ|| > ρ+ δ for all Λ(A) \ {0, ξ̂}. Hence, arguing as above, we obtain in
this case∑

λ∈Λ(A)\{0,ξ̂}

f(ω−λ) ≤ C1 exp((ρ+ δ)p)
∑

λ∈Λ(A)

exp(−||ω + λ||p) exp(−αp(ρ+ δ)p) (105)
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and thus (96) holds if we set

h(ω) = 2C1 exp((ρ+ δ)p)
∑

λ∈Λ(A)

exp(−||ω + λ||p) (||ω|| ≤ ρ+ δ). (106)

It is easy to see that h is integrable because∫
||ω||≤ρ+δ

∑
λ∈Λ(A)

exp(−||ω + λ||p)dω ≤ (τ + 1)
∫
Ω(A)

∑
λ∈Λ(A)

exp(−||ω + λ||p)dω

= (τ + 1)
∫

Rd
exp(−||ω||p)dω, (107)

(by our choice of δ, there are τ + 1 Voronoi cells that intersect {ω; ||ω|| ≤ ρ+ δ}).
Finally, we turn to the proof of (97). Replacing ω by ω + ρe, we have∫

Rd
q(2ρe,ω)dω =

∫
Rd

f(ρe + ω)f(ρe− ω)
f(ρe + ω) + f(ρe− ω)

dω, (108)

and we will work with this symmetric form. Without loss of generality, we assume that
e = (1, 0, . . . , 0)T and we write ω ∈ Rd as (ω1, ξ

T )T with ξ ∈ Rd−1. By a Taylor expansion
of the function x → xp/2 at the point x = ρ2 we conclude that for any ε > 0 there is a
δ > 0 such that for |ω1| ≤ δ and ||ξ|| ≤ δ∣∣∣||ω + ρe||p − ρp − a1ω1 − a2||ξ||2

∣∣∣ ≤ ε(|ω1|+ ||ξ||2) (109)

where a1 = pρp−1 and a2 = pρp−2/2. By our assumption on f , we thus have the approxi-
mation

f(ρe + ω)f(ρe− ω)
f(ρe + ω) + f(ρe− ω)

≈ exp(−(αρ)p)
exp(−a2α

p||ξ||2)
2 cosh(αpa1ω1)

. (110)

Moreover, in a neighborhood of 0, we obtain upper and lower bounds if we multiply the
right hand side (110) by exp(±3εαp(||ξ||2 + |ω1|)). By similar arguments as above, the
integrals outside this neighborhood are asymptotically negligible and thus we can integrate
the upper and lower bounds over Rd. Then the integral is the product of two integrals, one
with respect to ω1 and one with respect to ξ. By well known properties of the multivariate
Gaussian density, the one with respect to ξ is equal to(

2π
2αp(a2 − 3ε)

)(d−1)/2

. (111)

After a change of variables u = exp(αpa1ω1), the integral with respect to ω1 is equal to

2
αpa1

∫ ∞

1

u3ε/a1

1 + u2
du. (112)

Using Lebesgue’s dominated convergence theorem, it is easy to see that this converges for
ε→ 0 to

2
αpa1

∫ ∞

1

1
1 + u2

du =
π

2αpa1
. (113)

The integration of the lower bound is similar. Thus by taking all the arguments together
and by letting ε go to zero, we obtain∫

Rd
q(2ρe,ω)dω ∼ exp(−(αρ)p)α−p(d+1)/2 1

4
(2π)(d+1)/2a−1

1 (2a2)−(d−1)/2. (114)

The claim now follows by inserting the values of a1 and a2. tu

21



Acknowledgments.

We thank Tilman Gneiting for showing us how to prove that the convolution of an isotropic
decreasing covariance is decreasing.

References

Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods, Springer Series in Statistics,
Springer, New York.

Brown, J. L. (1978). On mean-square aliasing error in the cardinal series expansion of random processes,
IEEE Transactions on Information Theory IT-24(2): 254–256.

Conway, J. H. and Sloane, N. J. A. (1999). Sphere Packings, Lattices and Groups, Vol.290 of Grundlehren
der Mathematischen Wissenschaften, 3rd edn, Springer, New York.

de Bruijn, N. G. (1958). Asymptotic Methods in Analysis, Vol. IV of Bibliotheca Mathematica, North
Holland, Amsterdam.

Gihman, I. I. and Skorohod, A. V. (1974). The Theory of Stochastic Processes I, Vol.210 of Grundlehren
der mathematischen Wissenschaften in Einzeldarstellungen, Springer, Berlin.

Gneiting, T. (1998). On α-symmetric multivariate characteristic functions, J. Multivar. Anal. 64(2): 131–
147.

Gunning, R. C. (1962). Lectures on Modular Forms, Princeton Univ. Press.

Hamprecht, F. A. and Agrell, E. (2003). Exploring a space of materials: Spatial sampling design and
subset selection, in J. N. Cawse (ed.), Experimental Design for Combinatorial and High Throughput
Materials Development, Wiley, New York, chapter 13.

Hamprecht, F. A., Thiel, W. and van Gunsteren, W. F. (2002). Chemical library subset selection algo-
rithms: a unified derivation using spatial statistics, Journal of Chemical Information and Computer
Science 42: 414–428.

Jähne, B. (2000). Representation of multidimensional signals, Computer Vision and Applications, Aca-
demic Press, San Diego, chapter 8.

Jimenez, L. O. and Landgrebe, D. A. (1998). Supervised classification in high-dimensional space: Geomet-
rical, statistical, and asymptotical properties of multivariate data, IEEE Trans. Syst. Man Cybern. C
28(1): 39–54.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs, J. Stat.
Plann. Inf. 26: 131–148.

Lim, Y. B., Sacks, J., Studden, W. J. and Welch, W. J. (2002). Design and analysis of computer
experiments when the output is highly correlated over the input space, The Canadian Journal of
Statistics 30: 109–126.

Nyquist, H. (1928). Certain topics in telegraph transmission theory, Trans. Amer. Inst. Elect. Eng. 47: 617–
644.

Petersen, D. P. and Middleton, D. (1962). Sampling and reconstruction of wave-number-limited functions
in N-dimensional Euclidean spaces, Inform. Contr. 5(4): 279–323.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer
experiments (with discussion), Stat. Sci. 4: 409–435.

Stark, H. (1993). Polar, spiral, and generalized sampling and interpolation, in R. J. Marks II (ed.),
Advanced Topics in Shannon Sampling and Interpolation Theory, Springer, New York, chapter 6.

Stein, M. L. (1999). Interpolation of Data: Some Theory for Kriging, Springer Series in Statistics, Springer,
New York.
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