New explorations with DEEP of the metallicities of gas and stars at intermediate redshifts

Author(s):
Koo, David C.

Publication Date:
2003

Permanent Link:
https://doi.org/10.3929/ethz-a-004584615

Rights / License:
In Copyright - Non-Commercial Use Permitted
New Explorations with DEEP of the Metallicities of Gas and Stars at Intermediate Redshifts

David C. Koo
UCO/Lick Observatory
University of California, Santa Cruz
19 Aug 2003 ETH Zurich
Outline

1) What is DEEP, DEEP1, & DEEP2?
2) Fe/H OF OLD STARS at $z \sim 0.9$
3) O/H of EMISSION GAS at $z \sim 0.75$
4) SUMMARY & FUTURE
The DEEP Collaboration

UC Berkeley: M. Davis (PI), A. Coil, M. Cooper, D. Madgwick, B. Gerke, J. Newman, R. Yan

Caltech: R. Ellis, C. Steidel, C. Conselice, G. Smith, T. Treu

U Hawaii: N. Kaiser, G. Luppino

Also: L. Lin (Taiwan), A. Connolly (Pitt), P. Eisenhardt (JPL), D. Finkbeiner (SDSS), L. Simard (HIA), N. Vogt (NMSU), G. Wirth (Keck)

Supported by: NSF, NASA, UCO/Lick, CARA, Sun, Quantum
DEEP1 and DEEP2

• **DEEP1**: pilot survey for DEEP2, 1995-2001
 - Keck LRIS, HIRES, NIRSPEC, ESI spectra & HST V, I imaging
 - Targets: Groth Survey Strip (GSS) & SA 68
 - 600 redshifts in GSS to I~23.5 at z = 0.2 to 3.0
 - Kinematics, structure, luminosity & colors, SFR, abundances, etc.

• **DEEP2 1-Hour Survey (1HS)**: 90 Keck nights, 2002-2005
 - DEIMOS, R=5000 & CFHT B, R, I imaging
 - Targets: 3 fields 0.5x2 deg & Special one of 0.25x2 deg Extended Groth Strip which will have SIRTF, GALEX, and CFHT Legacy
 - 50,000 redshifts to R = 24.1 & using photo-z for z = 0.7 - 1.4
 - DEEP1 + large survey science: clustering, environment, densities, lensing...

• **DEEP2 3-Hour Survey (3HS)**: 30 Keck nights, 2002-2005
 - LRIS blue spectra of ~1000 galaxies to I~25, z ~ 1.4-2 in 1HS & GOODS
 - High S/N DEIMOS spectra of E/S0 galaxies in GOODS-N
 - Other (TBD)
DEEP2 1HS basics

• **4 Fields:** 14 17 +52 30 (includes Groth Survey Strip)
 16 52 +34 55 (zone of very low extinction)
 23 30 +00 00 (on deep SDSS strip)
 02 30 +00 00 (on deep SDSS strip)

• **Field dimensions:** 30’ by 120’ (15’ ¥ 120’ for Groth field)

• **Primary Redshift Range:** z=0.75-1.4, pre-selected using BRI photometry to eliminate objects with z<0.75

• **Magnitude limit:** R < 24.1 (CFHT B,R and I are available)

• **Grating and Spectra:** 1200 l/mm: ~6500-9100 Å
 [OII] 3727Å doublet visible for 0.7<z<1.4

• **Resolution:** 1.0” slit: FWHM=1.7Å ¥ 68 km/s
DEEP2 1HS vs Local Redshift Surveys

Volume ($h^{-3} \text{ Mpc}^3$)

Number of Galaxies

- CFA+SSRS
- PSCZ
- LCRS
- DEEP2
- 2dF
- SDSS
The advantage of high spectral resolution

- Improved **internal velocity** measurements with higher-resolution DEIMOS data

Resolved [OII] doublet with 220 km/s separation
1) DEIMOS was commissioned in mid-2002 and is FULLY OPERATIONAL

2) DEEP2 1HS: First Light JULY 2002
 3HS: Data in GOODS-N in Spring 03

3) Keck NIGHTS: 17 (10 clear) in 2002 w DEIMOS ; (54 Allocated) 18 in Spring 2003 w DEIMOS
 6 in Spring 2003 w LRIS-B (3HS)
 13 in Fall 2003 w DEIMOS

REMAINING 66 NIGHTS TBD THROUGH 2005

4) REDSHIFTs: 1HS: 30% collected
 2002 data (10%) yielded 5,000+ z’s with 1,600+ at z > 1
Galaxies exist in large numbers beyond $z = 1$.

$\# L > L^* \& z > 1$
Sample Keck Spectra (LRIS) & HST Images (WFPC2) from DEEP
Gas in distant galaxies have lower [O/H] & change is greater for fainter galx.

Gas O/H vs Luminosity

Local galaxies

Distant galaxies $z = 0.6-0.8$

LBG $z \sim 3$

Kobulnicky et al 2003

Phillips et al 2003
Galaxies at $z \sim 0.7$ with OIII 4363 deviate strongly from bulk of galaxies.
Fundamental plane to $z \sim 1$

Gebhardt et al. 2003

$0.75 < z < 1.0$

$0.3 < z < 0.75$

$SB \sim 2$ mag @ $z = 1$
Surface Brightness Residuals vs z

$Z_f = 1.3$ Model

DATA

$Z_f = 3$ Model

Fit to Field

Gebhardt et al. 2003
Luminosity evolves, but color does not change.
Drizzled SF Model in Color vs Lum Evolution

Formation $z = 1.9$

Age = 10 Gyr
$	au_0$ = 5 Gyr
f_{mass} = 7%

Gyr since $z = 1.9$

2.5 Solar
Solar

MS1054 Cl $z = 0.83$

Flat U-B with 2.5\odot + drizzle of SF

DATA

Gebhardt et al. 2003
Color vs Redshift

Raw R-I

Rest U-B

DEEP2 (10%)
5500 z’s

Weiner et al. 2003, Willmer et al. 2003

Color bimodality
Color vs Luminosity Selection to Match SDSS
O II 3727 in Red Galaxies

DEEP2/SDSS Coadded Spectra

DEEP2: 206 Galaxies, z~0.9
SDSS: LRG, 276 Galaxies, z~0.2

Normalized Spectrum

Wavelength (Å)

3701 3950 4200

K&H

H II

O II

Konidaris et al. 2003
H delta (~ Age) vs Redshift

Schiavon et al. 2003
Age & Metallicity of Red Galaxies

\[\text{AGE} = 1.5 \text{Gy} \]

\[[\text{Fe/H}] = -1.3, -0.7, -0.4, 0.0, +0.2 \]

Ages: 14, 8, 5, 2.8, 2.2, 1.5, 1.0 Gyr

+5% of 0.8 Gyr, [Fe/H] = +0.2

\[<z> \sim 0.84 \]

No [OII] 3727

[Fe/H] +0.2
DEEP Summary

• DEIMOS on Keck is working and performing superbly
• DEEP1 is done with DEEP2 solidly underway
 • 1HS of 50,000 galaxies is 30% done; with 10%, already 1600+ at $z > 1$
 • 3HS has started in the GOODS-N field for E/S0 & “desert” galaxies
• Internal kinematics distinguishes DEEP2
• Red Galaxies at $z \sim 1$ show:
 • Very red rest-frame colors ($U-B \sim 0.4+$)
 • Significant Luminosity Evolution of ~ 1.5 mag by $z \sim 1$ (FP, LF, & size-L)
 • Young ages of 1-2 Gyr ($H\beta$) with super-solar Fe/H $\sim +0.2$ dex
 • Evidence for “drizzling” of continued star formation (OII)
• Strong Emission Lines at $z \sim 0.7$ show:
 • O/H vs Luminosity relation suggesting evolution (lower O/H at given L)
 • Lower luminosity galaxies show more evolution
 • Vast fraction of O/H are moderate to high $\sim 1/4$ to 1 Solar
 • But some very luminous $\sim L^*$ galaxies show $O/H \sim 1/10$ Solar