
ETH Library

JXTA over Bluetooth

Master Thesis

Author(s):
Käppeli, Daniel

Publication date:
2003

Permanent link:
https://doi.org/10.3929/ethz-a-004595748

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004595748
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Information and
Communication Systems
Research Group

JXTA

over

Bluetooth

Daniel Käppeli

Diploma Thesis

May 5, 2003 – September 4, 2003

Supervising Professor: Prof. Gustavo Alonso
Supervising Assistant: Andreas Frei

Contents

Preface 1

1 Introduction 3
1.1 Motivation . 3
1.2 Messaging System . 3
1.3 Demo Application . 4
1.4 Definitions . 4

2 Bluetooth 6
2.1 Basic Concepts . 7

2.1.1 Stack Overview . 9
2.2 Device and Service Discovery . 10
2.3 Security . 11
2.4 A Brief Wireless Technology Comparison 11
2.5 Java Bluetooth Stack . 12

2.5.1 Stack Evaluation . 13
2.5.2 Rococo’s Impronto Developer Kit For Linux 13

3 Messaging System 16
3.1 Overview . 16

3.1.1 Alternatives . 16
3.1.2 Proprietary Development vs JXTA 16
3.1.3 Proprietary Development vs JXME 17
3.1.4 Controllability . 17

3.2 Architecture . 17
3.2.1 Connection Establishment 18
3.2.2 Connection Management 18
3.2.3 Data Processing . 19

3.3 Messages . 20
3.3.1 Message Format . 21

3.4 Addressing Devices . 23

4 Benchmarking 25
4.1 Motivation . 25
4.2 Stack Architectures . 25
4.3 Test Environment . 27
4.4 Results . 28

i

5 Sample Application BAD2 32
5.1 What is BAD2 . 32
5.2 Appointment Protocol . 33

6 Future Work 36
6.1 Scatternet . 36

6.1.1 Routing . 36
6.1.2 Device Discovery . 37

6.2 Security . 37
6.3 Reliability . 37
6.4 Multicast Groups . 38
6.5 Interconnection with JXTA/JXME 38

A Objectives 39

B Installing and Configuring BlueZ 41
B.1 News . 41
B.2 Configuration on Linux/RedHat 41
B.3 Installation . 41

B.3.1 iPAQ H3970 . 41
B.3.2 Installing BlueZ on RedHat 7.3 42
B.3.3 Installing BlueZ on RedHat 9 44

B.4 Start hcid and sdpd at Boot Time 46
B.5 Environment Variables . 46
B.6 Set the user-friendly name . 47

B.6.1 Adapting the HCID configuration file 47
B.6.2 Using the hciconfig tool 47

C TCP Over Bluetooth 48
C.1 TCP over Bluetooth . 48
C.2 Network Access . 48
C.3 Resources . 50

D Installing and Configuring Impronto v1.1 51
D.1 Impronto v1.1 for Linux . 51
D.2 Impronto v1.1 for ARM . 52
D.3 Java Bluetooth Programming Hints 56
D.4 Environment Variables . 60

E Developing Java Bluetooth Applications 61
E.1 Using Multiple Bluetooth Devices 61

E.1.1 Developing with Eclipse 61

F Enabling Bluetooth Security 63

G Benchmarks 64
G.1 Configuration . 64
G.2 Data Ascertainment . 64

ii

H Compiling CLDC Personal Basis Profile 70
H.1 Installing J2ME Personal Basis Profile 70
H.2 Compiling J2ME Personal Basis Profile 71

I Mail about Proxyless JXME 72

Bibliograhpy 74

List of Figures 76

List of Tables 77

Listings 78

iii

Preface

Abstract

This thesis is concerned with the development and implementation of an ad-hoc
messaging system which uses Bluetooth channels to communicate. The imple-
mented messaging system is completely written in Java and allows each device
with a JSR-82 compliant Bluetooth stack to be a part of it. The messaging
system is designed to support ad-hoc environments where participating devices
join and leave very often. There is no network infrastructure required.
Additionally an application was developed to demonstrate the messaging

system. These application is a small appointments book where groups can
automatically find dates for meetings.

Chapter Overview

Chapter one includes a general motivation behind this thesis and a gives brief
overview of the topic. Chapter two gives a general introduction to the Blue-
tooth Wireless Technology and discusses the Bluetooth stacks used in this the-
sis. Since there are several methods to setup Bluetooth enabled networks, some
benchmarking efforts were made along with their performance analysis. These
results are summarized in chapter three. Chapter four introduces the imple-
mented messaging system and its principles and concepts. The developed demo
application (BAD2) is introduced and explained in chapter five. BAD2 is an
implementation of a rudimentary diary where several participants can make
new appointments almost without any human interaction. Chapter six gives an
overview of the future tasks.
Appendix A shows the objectives of this thesis as stated by the supervisor of

this thesis. Appendix B is a BlueZ installation guide that shows the necessary
steps to install and configure the BlueZ Bluetooth stack. Appendix C explains
how to set up a TCP/IP network on top of the BlueZ stack. Appendix D
shows how to install Rococo’s Impronto Developer Kit for Linux. Appendix E
gives some hints about programming Java Bluetooth applications using Eclipse.
Appendix F shows how to enable the Bluetooth security features using the
implemented messaging system. Appendix G gives some additional information
about the benchmarking. Appendix H contains instructions on building and
installing J2ME’s Personal Basis Profile. Appendix I contains an E-mail written
by Kuldip Singh Pabla that offers an opportunity to integrate the implemented

1

2

messaging system in the JXTA project.

Acknowledgment

First of all I am highly grateful to Doris who for the last few weeks has managed
our household without any help from my part. Doris has given the much needed
support during my studies, especially during the last four months. I am also
grateful to my parents, sister, and brother for their silent support all these
years.
I am grateful to all people who supported me in writing this thesis. I

am especially thankful go to all people who proof read this thesis and gave
helpful ideas. I am highly obliged to Andreas Frei who is the supervisor of this
project and who gave always the much needed support. I am also grateful to
Prof. Gustavo Alonso and his entire team.
Last but not least I thank Leo for patiently and promptly answering all my

questions.

Chapter 1

Introduction

1.1 Motivation

Nowadays devices are getting smaller and their interconnections are getting
more complex. Computers are becoming wearable and follow the humans to all
possible places. One medium to interconnect such small and mobile devices is
Bluetooth. Bluetooth is suitable for Personal Area Network (PAN) communi-
cation.
Another trend is the development of event-oriented-messaging systems. The

vision of this thesis is to bring together these two technologies, namely Blue-
tooth and messaging systems. The goal is to create a messaging system which
allows such small and mobile devices to talk to each other in an ad-hoc envi-
ronment. A messaging system, which allows also limited devices to be a part of
such a communication system, has been designed. The implemented messaging
system does not require any additional infrastructure such as a Network Access
Point (NAP).
Bluetooth competes against Infrared (IrDA) and Wireless Local Area Net-

work (WLAN) in terms of PAN networking. Since IrDA connections are limited
to two devices with a direct line of sight, IrDA is unqualified to build such a
messaging system. Bluetooth Wireless Technology is nowadays in widespread
use and many different devices contain built-in Bluetooth units such as Hand-
helds, Mobile and Smart Phones, laptop computers, etc. Usually such devices
do not have a WLAN interface and to integrate them in a network the Bluetooth
technology is a key factor.
The team leaded by Prof. Gustavo Alonso (ETH Zurich) has expert knowl-

edge in dealing with LAN and WLAN based messaging and event systems
(please refer to [4]). So it is obvious to launch a project analyzing Bluetooth as
an alternative technology.

1.2 Messaging System

The goal of this diploma thesis is to develop a multi-hop messaging system
where the participating devices are connected with a Bluetooth channel. The
objectives of this thesis is given in Appendix A.

3

CHAPTER 1. INTRODUCTION 4

Before we decided to implement a new messaging system other alternatives
were analyzed and technical know-how have been acquired. Such alternatives
are existing peer-to-peer messaging systems such as JXTA and JXME.
There are also some different methods to establish a Bluetooth based connec-

tion. To compare the performance of these methods some benchmarking tests
were executed, the results are summarized in Chapter 4. During a two-month
period of technical research, all these different alternatives were analyzed. At
the end of the day a decision was made to implement our own dedicated messag-
ing system based on a Java Bluetooth stack. The reasons for this are illustrated
in Chapter 3.
The messaging system provides message exchange within a Bluetooth pi-

conet. The messages, which are generated and transmitted, are compatible to
the messages defined in the JXME project. So it is possible to interconnect
these two systems in the future.

1.3 Demo Application

Based on the above described messaging system a demo application was devel-
oped. This demo application is called BAD2 (Bluetooth Ad-hoc Distributed
Diary). BAD2 is a rudimentary appointment calendar and the core feature
of it is its mechanism to insert appointments. Within a group of people it is
often troublesome to make a new appointment where everybody has a free slot.
BAD2 finds such a slot and fixes up an appointment. This date and the corre-
sponding task are automatically inserted in the diaries of all participants. The
details of BAD2 are given in Chapter 5.

1.4 Definitions

This section contains some definitions most of them are explained also later on
in the corresponding chapters.
The nodes participating in the implemented messaging system have three

names corresponding to the layer of abstraction being looked at. The lowest
level comprises of masters and slaves. These roles are located on the Blue-
tooth’s connection level. A more abstract sight of a Bluetooth network depicts
some devices offering services (servers) and some others consuming the services
(clients). The highest level peers and rendez-vous peers are depicted. These
devices offers and consumes a special service that is related to the implemented
messaging system.

Master: Simple Bluetooth networks have a star topology. The Bluetooth de-
vice in the center of such a star topology is called a master. The master
is the “manager” of such a simple network. Details are described in Sec-
tion 2.1.

Slave: A slave is a Bluetooth device that is connected to a master. It is located
at the periphery of a Bluetooth network. Please refer to Section 2.1 to
get more information.

CHAPTER 1. INTRODUCTION 5

Server: A server is a Bluetooth device offering a service to other Bluetooth
devices.

Client: A client is a Bluetooth device consuming another device’s service.

Peer: A peer is a host that is a part of the peer-to-peer system. In our im-
plementation of a messaging system each peer has to be connected to a
rendez-vous peer.

Rendez-Vous Peer: A rendez-vous peer is interconnecting different peers to
a peer-to-peer system. Basically each device can be a rendez-vous peer.

The definitions above and their corresponding layers are illustrated in Fig-
ure 1.1. In principle the defined layers are independent of each other but some
configurations offer huge advantages. The configuration showed in Figure 1.1
provides such an advantage and also describes the implemented messaging sys-
tem (see Section 3.2.1).

Figure 1.1: Illustration of the Terminology at Different layers

�����������

�����������
	�
 � ����

���������������������

 ��!"!"��#$�&% ��!

'(��)*)�+*,"�.-/���10�% #��

243*5 �6�*�
�7
 3 ���

��
 3 ���

8 ���9*��:�;=<?>*@ 5

A �����

A �����

B7C=D��E�F�"�"�HG

'(��)*)�+*,"�.-�I�)*�F�*J

Chapter 2

Bluetooth

The history of Bluetooth dates back to 1994 when Ericsson launched an initia-
tive to study a low-power, low-cost radio interface between mobile phones and
their accessories. In 1998 they came out with the first Bluetooth chip and in the
same year the Bluetooth Special Interest Group (SIG) was founded by Ericsson,
IBM, Intel, Nokia and Toshiba. The SIG published the Bluetooth specification
version 1.0 in 1999 [3], specification 1.1 in 2001 [2], and specification 1.2’s release
is announced for autumn 2003 [5].
The goal of Bluetooth developers was to replace cable as a communication

medium. The wireless Bluetooth technology is much more flexible than the
up to now used cable and infrared communication. It has been developed to
allow ad-hoc short range communication between different kinds of devices.
Bluetooth uses a very low transmission power of about 2.5 mW, which allows
operations over distances up to 10 m. The Bluetooth specification allows the
transmission power to increase up to 100 mW, which enables the device to op-
erate over distances up to 100 m [16]. Table 2.1 shows the respective maximum
output power versus the distance range.

Table 2.1: Bluetooth Radio Power Classes [11]

Power Class Max Output Power Range

Class 1 100 mW 100 meters+
Class 2 2.5 mW 10 meters
Class 3 1 mW 1 meter

Another aim of Bluetooth is to keep the price as low as possible. The vision
that the developers have is to produce a Bluetooth chip which costs around
$5 USD only. Currently such a chip costs around $20 USD [1] and Ericsson
plans to produce chips that will cost around $10 USD.

6

CHAPTER 2. BLUETOOTH 7

2.1 Basic Concepts

Each Bluetooth device has its own unique 48 bit IEEE MAC Bluetooth device
address (BD ADDR), which identifies it unambiguously to other devices. Usu-
ally the BD ADDR is divided into six parts separated by a colon where each
part consists of two hexadecimal digits.
To avoid collisions between different senders (interference) and for security

reasons, a frequency hopping mechanism is implemented. Hence the frequency
of transmission changes 1600 times per second. The base band is divided into 79
different channels that are used in a pseudo random sequence by the frequency
hopping algorithm. Each pair of two connected devices needs a “synchronous”
clock and a common hopping sequence. The device giving the frequency hop-
ping sequence and its clock is called the master and the other device beeing
connected to is called slave. The master assigns time slices to its slaves which
they can use to send data. By default the device initializing the connection
establishment process is the master device. Bluetooth stacks such as BlueZ
(see Section 2.5.2) also offer the possibility to configure devices to be always
master. A master can have up to seven connected slaves, such a network is
called a piconet (see Figure 2.1).

Figure 2.1: Piconet Overview

���������
	��

����������

�
� �����

��� �����

��� �����

��� �����

It is possible to combine multiple piconets to a so called scatternet. To build
a scatternet one device has to be a member of two piconets. Such an intercon-

CHAPTER 2. BLUETOOTH 8

necting device may be a master of one piconet and slave of another or it can
be a slave in both nets. However it cannot be master of both nets, since in this
configuration both nets would have the same clock, same hopping sequence, and
the same master, which is by definition a single piconet. Figure 2.2 illustrates
a scatternet having an interconnecting master/slave device.

Figure 2.2: Scatternet Overview

�����������
	��
��

�����������

��� ����������� ���!���

��� �����

�
� �����

��� �����

�"� �#���

�"� �����

Setting up scatternets is a new topic even though the principle is already
known since years. Before setting up scatternets two preconditions must be
satisfied.

• The used hardware and firmware must be scatternet enabled.

• The Bluetooth stack has to provide the necessary support.

It is very difficult to determine which devices and stacks are scatternet enabled.
For this thesis the BlueZ Bluetooth stack has been utilized since it supports
scatternets1. BlueZ is an open source project and can be installed on Linux

1as read on the posted messages in the corresponding news groups

CHAPTER 2. BLUETOOTH 9

driven hosts.
The next topic is to verify the Bluetooth device because the hardware and

firmware also need to be scatternet enabled. A lot of commercial products, such
as PDAs, laptop computers and Bluetooth dongles, have chips manufactured by
Cambridge Silicon Radio (CSR). In using CSR based devices the critical factor
is the firmware installed on the device. A firmware of version number 16.4 and
more supports the building of scatternets. The firmware version 16.4 was re-
leased in November 2002 [8] and we found the first devices in the market in July
2003. We didn’t find any information about the chip sets of other manufactur-
ers such as Ericsson, Silicon Wave, and Broadcom but it was reported2 that
some Ericsson modules (Ericsson ROK 101 007) also support scatternets. The
conclusion reached is that building scatternets is certainly feasible but being a
“brand new” technology it has not been analyzed in this thesis.

2.1.1 Stack Overview

This section will give a brief overview of the Bluetooth protocol stack. This
overview is not all-embracing and only details the topics that are relevant in
reference to this work. The complete stack is described in [2]. The Bluetooth
specification specifies the functionality, instructions, and the corresponding in-
struction set that a Bluetooth chip must offer. The specification also contains
software layers and protocols such as L2CAP3, RFCOMM4, Service Discov-
ery (SDP), and Device Discovery. Figure 2.3 illustrates the simplified Blue-
tooth stack and its layers. The layers shown below the Host Controller Inter-
face (HCI), Baseband and Bluetooth Radio, are implemented in the hardware,
whereas the layers above this interface are implemented in the software.

Figure 2.3: Bluetooth Protocol Stack Overview

������� � �	��
�� ��

����������� �����

������� �

��� �"!#�$������%�&('
��� ��!#�)(�*
+'+,� &('

-���.	&(/��(��0

1)� 2

The layers below the HCI (Radio Baseband, Link Controller, and Link Man-
ager) format the over-air transmission, handle error detection and re-transmission,

2Matthias Ringwald, Distributed Systems Group, ETH Zurich, July 2003
3Logical Link Control and Adaptation Protocol
4This name is composed of Radio Frequency (RF) and COM according the well-known

COM port

CHAPTER 2. BLUETOOTH 10

as well as manage the links between different devices [11]. To learn more about
these layers please refer to [2].
The first software layer is the L2CAP layer. L2CAP has to care about

managing the different connections and channels as well as generating data
packets out of data streams and vice versa.
The RFCOMM and the SDP base on the L2CAP layer. RFCOMM is a

serial connection over the air.

“RFCOMM emulates full 9-pin RS232 serial communication over
an L2CAP channel. It is based on the TS 07.10 standard for software
emulation of the RS232 hardware interface.” [11]

Service Discovery Protocol (SDP) is a service that allows to find services
offered by the remote device. SDP does not offer any opportunity of data
transmission to any applications.

“The SDP is not designed to interface to an existing higher layer
protocol, but instead addresses a specific requirement of Bluetooth
operation: finding out what services are available on a connected de-
vice. The SDP layer acts like a service database. The local applica-
tion is responsible for registering available services on the database
and keeping records up to date. Remote devices may query the
database to find out what services are available and how to connect
to them.” [11]

2.2 Device and Service Discovery

To be able to create connections to other devices, one needs to know which de-
vices are within the range of one’s Bluetooth device. To discover those devices,
a so-called inquiry process is executed. Since the inquiry is a non-deterministic
process it is possible that devices within the scanning range may not be de-
tected. Also all devices, having a firmware less than version number 16.4, that
are already connected and playing the role of a slave, are not discovered by
the inquiry. After the inquiry the devices in the neighborhood are known but
there is no knowledge about the services they offer. To find out what services
are offered by these devices, a service discovery process is executed. Each local
application deploys its services by registering them with the local SDDB (Ser-
vice Discovery Database). A remote device searching for services will establish
a L2CAP connection with the SDDB and will ask the attributes of the offered
services. At the end of the service discovery the resulting information is used
to create a connection. Services are basically identified by a UUID (Universally
Unique Identifier).

“A UUID is an Universally Unique Identifier that is guaranteed
to be unique across all space and all time. UUIDs can be inde-
pendently created in a distributed fashion. No central registry of
assigned UUIDs is required. A UUID is a 128-bit value.” [2]

CHAPTER 2. BLUETOOTH 11

2.3 Security

Bluetooth has three integrated security mechanisms namely authorization, au-
thentication, and encryption. The applied security can be divided into three
levels: none, authentication, and encryption where authentication requires au-
thorization, and encryption requires an authentication.
After the inquiry process has been terminated a device may start estab-

lishing a connection. We have to differ the connection establishment between
two different cases. The first case describes two devices which have already
been connected and the second case devices that have not yet been connected.
Basically the authenication is based on the link key (Klink). The link key is a
shared secret that is only known by the two devices having a connection. Every
device needs some memory to store the link keys. In general each connection
between any two devices has its own and randomly calculated link key. The
first time the two devices are connected a so-called initialization key (Kinit)
is generated based on a PIN (Personal Identification Number). This process
is called pairing. After the pairing, the authentication process is started and
this process is the same for all connection establishments. The authentication
process is based on a challenge/response mechanism. To verify the link key
or the initial key in case the connection is established the the first time, the
verifier sends a random number to the claimant. Both devices apply the link
key to this random number and compare the results. If both have the same
result then the claimant is verified. After the initial key has been verified a link
key is generated and semi-permanently stored on these two devices.
The link between two devices may be encrypted. By default there is no

encryption applied. To enable encyption any device can request it at any point
of time during the connection. Encryption has to be requested each time a
new connection is established. Authentication is a precondition for encryption.
For each session a new key is generated based on the link key and a random
number.
Having very small devices without any memory resources the security con-

cept is vulnerable. Such devices have a hard coded PIN code which don’t resist
brute force attacks. Another vulnerability is the very limited memory they have.
Often such a device is able to store only one single link key. Devices without
the necessary memory to store the different link keys, can use their own private
unit key (Kunit) instead of a randomly generated link key. Each device ever
been connected to this small device (A) has the same link key that corresponds
to A’s unit key. At the end of the day each device ever been connected to A is
able to eavesdrop A’s network traffic.

2.4 A Brief Wireless Technology Comparison

Often Bluetooth is compared to other wireless technologies such as Wireless
Local Area Network (WLAN) and Infrared Data Association (IrDA). Table 2.2
gives a short overview of the different technologies, their advantages and disad-
vantages.

CHAPTER 2. BLUETOOTH 12

Table 2.2: Brief Comparison of IrDA, Bluetooth, and WLAN

Topic IR[20] Bluetooth WLAN[16]

Range 1 m 10 m 300 m
Bandwidth 4 Mbps 1.1 Mbps 11 Mbps
Power Consumption low low high
Device’s Size small small large
Circumference of Transm. 30◦ cone omni-directional omni-direct.
Device Discovery — yes —
Service Discovery — yes —
Security — yes yes
Price $1 USD $20 USD[20] n/a

2.5 Java Bluetooth Stack

To develop Java based Bluetooth applications, a Java enabled Bluetooth stack
is necessary. Since the Bluetooth specification does not care about the inter-
faces provided by the stacks there is no standardized API neither in Java nor
in any other programming language. This jeopardizes the “Write Once Run
Everywhere” principle of Java which is indeed one of the most important ones.
In the years 2001 and 2002 the Java Community Process5 (JCP) designed the
JSR-826 (Java Standard Request) that defined such a Java Bluetooth API that
is also called Java API for Bluetooth Wireless Technology7 (JABWT). How-
ever, there exist also a couple of Java Bluetooth stacks that do not fulfill JSR-82
such as Harald8, JBlueZ9, etc. Stacks not fulfilling the JSR-82 have not been
analyzed in this thesis since the author is convinced that the number of devices
fulfilling JSR-82 will rapidly increase within the next few years. Because the
Java Bluetooth API is an optional package of J2ME (Java 2 Micro Edition)
there will be many more JSR-82 enabled JVMs in devices as PDAs and Smart
Phones in the future. At present that is Aug-2003, there are no such devices in
the market but a few cell phone manufacturers such as Nokia, Motorola, and
Ericsson have announced mobile phones that implement JSR-82. Those phones
will be in the market in the third quarter of 2003.
Analyzing the stacks that are in the market at the moment (Aug-2003) there

are two types of Java/Bluetooth stacks. Most of the available Java stacks are
based on a native Bluetooth stack and simply wrap the native stack’s function-
ality within a Java interface, e.g. Rococo’s Impronto, JBlueZ, BlueJava, etc.
On the other hand there are pure Java stacks that are completely implemented
in Java, e.g. Harald, Atinav, Esmertec’s Jbed, etc. Many of these products
are described as “platform independent” and “totally implemented in Java”

5http://jcp.org
6http://jcp.org/en/jsr/detail?id=082
7http://www.jabwt.com
8http://www.control.lth.se/∼johane/harald
9http://jbluez.sourceforge.net

CHAPTER 2. BLUETOOTH 13

but they also bring along their own dedicated JVM. These stacks target OEMs
of those products that are Bluetooth enabled and need to be equipped with a
JVM. These stacks cannot be applied to Sun’s VMs.

2.5.1 Stack Evaluation

The most important criteria in selecting a stack, is its compatibility with the
JSR-82 standard. Because this makes the developed code independent of the
underlaying system and it can be widespreadly used, “Write Once Run Every-
where”. Other important criteria are price and availability. The availability
is another important critera, many vendors sell their products only to OEMs
(Original Equipment Manufacturer) such as Atinav10 and Esmertec11. Some
other stacks, which come along with their own dedicated hardware such as
Zuccotto12, can cost around $3000 USD. There are also a few open source
projects to develop an implementation of JSR-82 on SourceForge13, but none
of them equaled an usable status. Either they are still at the planning stage or
the projects have never released any software. At the end of the day we have
decided to use Rococo’s14 Impronto Developer Kit for Linux which fulfills the
JSR-82 standard and is free for private use and universities. Otherwise it costs
around � 2500 EUR. Table 2.3 gives a brief overview of the analyzed stacks.

2.5.2 Rococo’s Impronto Developer Kit For Linux

Rococo’s Impronto Developer Kit for Linux is a Java wrapper that sets up on
top of the BlueZ Bluetooth stack. To see how to install Impronto Developer
Kit on a Linux box please refer to the Appendix D.

“Impronto for Linux can be utilized as an optional package with
many profiles as it is based on the smallest subset of Java configu-
rations, CLDC (Connected Limited Device Configuration). CLDC
is a subset of the CDC (Connected Device Configuration)” [17]

To execute a Java Bluetooth application the delivered JAR file (idev bluez.-
jar) and the directory containing the license (LinuxLicense.txt) have to be
included in the classpath. After installing Impronto the JAR file can be found in
the following directory: /usr/share/java. The license is delivered separately
by E-mail. To execute a Java/Bluetooth application the classpath must be
defined as described above and the library /usr/lib/libimpronto.so has to
be included in the library path of the host system (see Appendix D for more
details).

10http://www.atinav.com
11http://www.esmertec.com
12http://www.zuccotto.com
13http://www.sourceforge.net
14http://www.rococosoft.com

CHAPTER 2. BLUETOOTH 14

BlueZ

BlueZ is the official Linux Bluetooth stack that is written in C/C++. Figure 2.4
gives an overview of the parts of the BlueZ Bluetooth stack relevant to this
thesis. This stack supports a huge number of devices that are in today’s market.

Figure 2.4: Fragment of the BlueZ Bluetooth Protocol Stack Overview [9]

��� �������
	�������������������������

�������! "�������#�

$ ����� ���#��� �&%'�)(*(

�,+.-, /���0����� 1.2��43�5657���������

8�'�9 � :�� $ �

;<:����>= $ �#'�� ?>���@�����A= $ ��'��

;B=
�
C��D9 E����

;,�.1,F
C��D9 E����

�G�4=<
C4�H9 E����

 ,�B���!1BC
C��D9 E����

I.9 �&J@�����
C��D9 E����

To install BlueZ, the kernel of the target system must be patched and recompiled
(please refer to Appendix B to get the detailed installation guide). BlueZ is
compatible with most commercial Bluetooth modules. A list of compatible
devices can be downloaded from Marcel Holtmann’s web page [6].

“In general all devices with a CSR, Broadcom or AVM chip will
work fine. Others will work too, as long as they are compatible to
the H:2 specification15.” [7]

15see [2], Part H:2: HCI USB Transport Layer

C
H

A
P

T
E

R
2
.

B
L
U

E
T

O
O

T
H

15

T
a
b
le
2
.3
:
B
ri
ef
C
om

p
ar
is
on

of
D
iff
er
en
t
S
ta
ck
s

Product JSR-82 J2SE
J2ME Pure

ARM v5
OEM

Price
CLDC CDC Java only

Rococo Impronto v1.1 • • • • no • no free
Rococo Impronto v1.0 • • — • no — no free
Atinav • • • • yes n/a yes n/a
Zuccotto • • • • n/a n/a no $2995 USD
Esmertec’s jbed • • • • yes n/a yes n/a
Harald — • — — no — no free

Chapter 3

Messaging System

3.1 Overview

The messaging system we implemented is able to operate in an ad-hoc environ-
ment without any network infrastructure. Such a system is qualified to build
the transport layer for event systems as described in [4]. This section gives an
overview of the different alternatives available as well as of our implementation
of such a message system.

3.1.1 Alternatives

Before we decided to implement our own dedicated messaging system other al-
ternative solutions were analyzed. These alternatives include JXTA and JXME,
where JXME is a small footprint implementation of JXTA. The following sec-
tions point out the reasons to implement a new messaging system.
JXTA and JXME are both based on HTTP which requires TCP/IP. The-

oretically it is possible to setup TCP/IP over a Bluetooth channel (see Sec-
tion 4.2) but there are some general problems in it which we could not resolve,
namely routing and bridging [21]. Each connection established using BNEP cre-
ates a virtual network interface. These different interfaces need to be connected
to each other and to other interfaces such as wired or wireless LAN. Bridging is
typically used to interconnect subnets of the same network and routing is used
to interconnect different networks. To use routing to interlink these network
interfaces one needs a huge configuration effort since each interface and the
corresponding the routing tables have to be configured. However the usage of
bridging is simpler in terms of configuration but caused serious crashes on the
used RedHat 9 systems. The installation and configuration is documented in
Appendix C.

3.1.2 Proprietary Development vs JXTA

JXTA is a full featured peer-to-peer software based on TCP/IP and uses XML
to transmit data. To learn more about JXTA see [14]. JXTA has high memory
and CPU requirements and is therefore inapplicable to small devices such as

16

CHAPTER 3. MESSAGING SYSTEM 17

Personal Digital Assistants (PDA) and Smart Phones. JXTA is not the way to
go to integrate these small devices in a messaging system.

3.1.3 Proprietary Development vs JXME

JXME is a small footprint implementation of JXTA. It is designed to operate
on very limited devices such as PDAs and Smart Phones with a Java 2 Micro
Edition (J2ME) platform. The main handicap of JXME is its need to have
a JXTA proxy, which makes an ad-hoc usage of JXME impossible since this
requires a JXTA proxy server and TCP/IP network infrastructure. Two devices
that are places next to each other do not communicate directly. To allow such
a direct communication both devices need a HTTP server. This is too heavy
weight for such a small device. These HTTP servers are required since such a
message system communicates asynchronously.

3.1.4 Controllability

Comparing TCP/IP over Bluetooth to L2CAP or RFCOMM, TCP/IP has an-
other disadvantage, the controllability. Using L2CAP or RFCOMM it possible
to use the service and device discovery mechanisms offered by Bluetooth which
are lost using TCP/IP. The JSR-82 interface includes mechanisms to take in-
fluence to the process of connection establishment. One can think about imple-
menting filter that blocks the connection to given devices based on the device’s
name or address, or based on the offered services.
Hence a decision was made to implement a new system that allows message

exchange within a system of small and ad-hoc inter-networking devices. The
following chapter will give an overview of the implemented system which is
inspired by the JXME system.

3.2 Architecture

The architecture of the system is designed to support message distribution
within a piconet. During the phase of research and design, there was no a
scatternet enabled device available, so it was not possible to analyze it. A
piconet is composed of maximum eight active Bluetooth devices, where there
is one master and up to seven slaves (see Section 2.1).
A node participating in the messaging system is called a peer. There are

two different kinds of peers: the rendez-vous and regular peers. Each peer must
have a direct connection to a rendez-vous peer. Basically there are two types of
rendez-vous peers: Threaded and non-threaded rendez-vous peers. A threaded
rendez-vous peers, which search automatically for regular peers and establish
connections to them. Whereas having a non-threaded peer the application using
the messaging system has to initiate the process of connection establishment
by calling the peernetwork’s connect() method.
The architecture of the messaging system can be divided into three parts:

connection establishment, connection management, and data processing. The

CHAPTER 3. MESSAGING SYSTEM 18

parts connection management and data processing are the same for all peer
types, the connection establishment depends on the type of peer chosen.

3.2.1 Connection Establishment

In a piconet obviously the master node should also be a rendez-vous peer. The
simplest way to give the master role to a device is by letting it initiate the
connection establishment. In other words this device has to pass through the
device and service discovery procedures, followed by establishing the connection.
An alternative way to reach this arrangement is to change the HCI daemon’s
configuration file (see Appendix B), which requires super user privileges. The
HCI daemon must be restarted after having modified the configuration.
To avoid frequent reconfiguration the master of the piconet should initiate

all connections. The master should also be a rendez-vous peer interconnecting
the adjacent peers. The master has to take care about inquiry and service
discovery while the regular peers simply need to deploy a well known service.
In other words the rendez-vous peer invites interested peers. In terms of Blue-
tooth: Each regular peer is a server and the rendez-vous peer is a client since it
consumes the services offered by the peers. The Bluetooth Java API identifies
services by an UUID (see [10]). The UUID value of our messaging system ser-
vice is UUID generated by the following seed: 8800. In addition to the service
the underlaying transport protocol is important. We use RFCOMM connec-
tions (see Chapter 2). Based on these RFCOMM connections input and output
streams are created to provide data transmission. The establishment of connec-
tions is done by the following classes BTEndpointClient and BTEndpointServer
of the package ch.ethz.iks.jxme.bluetooth.impl (see Figure 3.1). Connections
are not related to the class that created them (BTEndpointClient or BTEnd-
pointServer). After the establishment process a connection is stored in a con-
nection pool managing all of them. Two nodes are connected by exactly one
connection. Starting a rendez-vous peer there are two possibilities to create
connections. Automatically by starting a dedicated thread or manually by call-
ing the peer’s (BTPeerNetwork) connect() method. The automated process
expects a timeout value specifying the time to wait between two inquiry pro-
cesses and must not be started by calling the connect() method. Applying the
non-automated procedure the call to the method connect() is blocking until the
inquiry and service discovery processes are completed. This can take around
half a minute or even longer.
When a connection is established an associated reading thread will be cre-

ated and started. Its task is to listen on this given connection for incoming
data.

3.2.2 Connection Management

All connections and the corresponding reading threads are managed by the
connection pool using a wrapper class (BTReadThreadConnectionHandle). The
connection pool offers access to the connections by an identifier (see Section 3.4).
Broken connections will be removed automatically from the connection pool.

CHAPTER 3. MESSAGING SYSTEM 19

Figure 3.1: UML Diagram illustrating a PeerNetwork

������� � � ��� 	
�� � � �
������� � � ��� 	
�� � � �
� � � � � � � � � 	 � � � 	 � � � � � �
� � � � � � � � � � � � 	 � � � 	 � � � � � �
� � ��� � � � � � � � � � 	 � � � � � �
� � � � � � �
� � � � � ��� � � � � � � � 	 � � � � � �
� � � � � � 	 � �
� � � � � � 	 � �
� � � � 	 � � �
� � � � 	 � � � � � � � � � �
� � ��� � � � � !� " � #!� � $ � � � �
� " %'& � � (*) � � � � � � 	 � � � � � �
� � %+� $ � � � � � � � 	 � � � 	 � � � � � �
� � %+� $ � � � � � � � � � � 	 � � � 	 � � � � � �
� � %+� $ � � � � � � � � � � � 	 � � � � � �
� � � � � , � �
������� � � ��� 	
�� � � �
� � � � � �
� 	 � - � �
� � � � � �

. � %'- � � %+� � 	 � 	 � � � /
0'1+2�3!3�4 563�7 8:9*4 ;

����<!� � - � � � 	 � � � � � 	 � �
����<!� � - � � � 	 � � � � � 	 � �
� � � � � � 	 � �
� � $ � � � � � � � � $ � � � � � �
� � = " � � > � � %+- � � 	 � � � �
� � � $ � � � #!� � � � , � � %'- � � 	 � � � �
� � � $ � � � � � � � � � $ � � � � � �

0'1'?+@�A�B�9�C @�7 DFE C 3�@�7

� � � � � � 	 � �
� " � � �

061+?'@�A*B�9�C @�7 G'3�4 H*3�4

����<!� � - � � � 	 � �
� � � � � � � � � 	 � � � 	 � � � � � �
� � � � � � � � � 	 � � � � �
� � � � � � � � � � � � 	 � � � 	 � � � � � �
� � � � � ��� � � �
� � � � � � 	 � �
� � � � 	 � � � � � � � � � �
� � 	 ��� � � � � � � � 	 � � � � � �
� � 	 � � � � � � 	 � � � � �
� � 	 I � � � 	 �) � � � � �
� � ��� � � � � !� " � #!� � $ � � � �
� " %+& � � (*) � � � � � � 	 � � � � � �
- � � � � � � <�$ � � 	 � �
� � %+� $ � � � � � � � 	 � � � 	 � � � � � �
� � %+� $ � � � � � � � 	 � � � � �
� � %+� $ � � � � � � � � � � 	 � � � 	 � � � � � �
� � � ��� " � 	 � � � � 	 � �
� � � ��� � � � � � � � �
� � � � � �
� 	 � - � �

. � %'- � � %+� � 	 � 	 � � � /
0'1+?'@�A�B�9�C @�7

� � � � 	 � � � � � � � � � �
� � � ��� � � � � � � � �
� � � ��� " � 	 � � � � 	 � �

. � � 	 � �) � � � /
J!K+L L 3�7 K�M�L L C ;�N L L O P�Q 3 L L R E S�3�7 9*9�7 K+L L T ?'@�A�B�9�C @�7

� � ��� � � � � � � � � � 	 � � � � � �
� � � � � � �
� � � � � � 	 � �
� � � � � � 	 � �
� � � � 	 � � �
� � ��� � � � � �� " � #!� � $ � � � �
� � %+� $ � � � � � � � � � � � 	 � � � � � �
� � � � � , � �
� � � � � �
� � � � � �

. � � 	 � �) � � � /
J�K+L L 3�7 K�M�L L C ;�N L L O P�Q 3 L L Q N!U L L T 2*3!3�4 5'3�7 8:9�4 ;

V � � � - � � � 	

W X X Y

V � � � $ � �

W X X Y

V � � � � � 	W X X Y

Every time a connection is added or removed to the connection pool, a corre-
sponding event is generated (ConnectionEvent). A client application can reg-
ister its implementation of the corresponding listener’s interface (IConnectLis-
tener resp. IDisconnectListener defined in the package ch.ethz.iks.jxme.bluetooth)
to be notified.

3.2.3 Data Processing

Incoming data is processed by the reading thread extracting messages out of
the data stream. That raw data is stored within a queue. A parser thread
processes these data to create a message objects (IMessage). These objects are
then stored in another message queue. The thread operating on this second
queue has to notify all registered listeners (IMessageListeners) about the new
message. Any customer application may implement it’s own message listener
and register it to the peer network. The processing of incoming messages is
illustrated in Figure 3.2.
Outgoing data is transmitted immediately. The send method blocks until

the message is transmitted. The outgoing data flow is illustrated in Figure 3.3.

CHAPTER 3. MESSAGING SYSTEM 20

Figure 3.2: Data Processing of Incoming Data

���������������������������
���������������������������
���������������������������
���������������������������

�
	�	�� � ������ �
� � ��	�	�� � ���� � �����

���������������
���������������
������������� �
������������� �

! ! ! �����"�������"���������"�#�����#���"�����"���"�������

! ! ! �������������#���"���"���"���"�����
$�%'&�&
(�$') * %�&,+

$�%'&�&
(�$') * %�&.-

/ &'0"1�2 3'(�465.(�3�3�1�7
(�3
8 9": 9<;>=

0�1�2 3�(�465.('3'3'1�7
(�3
8 9": 9<;>=

5.('3'3'1�7
($�%'&�3 / 5.(�2

3.3 Messages

A message is composed of any number of elements. A message is a container
for such elements. Each element has a name, some data, a namespace, and a
MIME type (Multi-Purpose Internet Mail Extensions). The messages delivered
to a client application are defined according to the interface IMessage of the
package ch.ethz.iks.jxme.msg and the corresponding elements IElement defined
in the same package (see Figure 3.4).

Figure 3.3: Data Processing of Outgoing Data

?
@�@�A B C�?�D�B E�F

G�H�H"G�G�H�H"G�H�G�G�H�G#H"G�G�H�H�G�G#H�G�H"G�H�H"G�I I I
J�K'L�L
M�J'N O K�L

P.M'Q'Q'R�S
M�T�UVK�W�X�J�M�U

CHAPTER 3. MESSAGING SYSTEM 21

Listing 3.1: Sample Message

1 jxmg 0 02 11 temperature 07 address 03
2 jxel 3 0 06 sender 12 009988776655
3 jxel 3 0 08 receiver 12 112233445566
4 jxel 2 1 12 TestMimetype 08 sensor10 2 4C

3.3.1 Message Format

The format of the messages is based on the message format defined in the
JXME project [15]. The specified format is a binary format because parsing
XML messages is very CPU power and memory intensive. Listing 3.1 illustrates
how such a message can look like. Real messages do not contain any line
numbers, any spaces, or any line breaks. These have been added to make the
message code more readable. A message consists of a header (see Listing 3.1,
line 1) and an arbitrary number of elements (see Listing 3.1, lines 2 – 4). The
header includes information about the message version, namespaces, and the
number of elements contained in this message. To see detailed information
about the message’s header see Table 3.2. The body of a message contains
any number of elements storing the message’s data. Each element is assigned
to a namespace and a MIME type, has a name, and a payload section. The
namespaces used in the elements are defined in the header of the message. Inside
an element namespaces are referenced by a number representing the position
of its declaration in the message’s header. 0 and 1 are special namespaces (see
Table 3.1) whereas 0 refers to empty namespace (no namespace defined) and 1

Figure 3.4: UML Diagram of a Message and its Elements

��� � ��� � � � 	
��� � ��� � � � 	
��� � ��� � � � 	
��� � ��� � � � 	
��� � ��� � � � 	

 � � �� � � � 	

 � � ��� ��� � � � � � 	

 � � ��� ��� � 	

 � � ��� ��� ��� � � � � 	
� � ��� � � �
 � 	
� � � � � � 	
� � � � � � 	

 � � ��� � � � 	
� � ����� ��� � � �
 � 	

� � ��� � � ��� � � � � � � �
!#" $�%&$�'�(

 � � �� � � � 	

 � � ��� ��� �)� � � � 	

 � � ��� ��� � 	

 � � ��� ��� ��� � � � � 	
� � ��� � � �
 � 	
� � ����� ��� � � �
 � 	

 � � ��� � � � 	
� � � � � � 	

� � � � � � * � � �
+�,.- - $�(,/�- - 0 1�2�- - 3 4 %&$ - - % 2�5#- - 6 !#" $�%7$�'�(

�.� 8 8 �
 � � 	
�.� 8 8 �
 � � 	
�.� 8 8 �
 � � 	
� � � � � � � ��� ��� ��� � � � 8 � 	

 � � ��� � ��� � � � 	

 � � ��� � ��� � � � 	

 � � ��� � ��� � � 9�� : � � � 	

 � � ��� � � � 	
8 � � ��� � ��� � � � 	
8 � � ��� � ��� � � � 	
� � ����� ��� � � �
 � 	
� � � � �)��� 8 8 �
 � � 	
� � � � �)��� 8 8 �
 � � 	

� � �#� � � ��� � � � � � � �
;<$ 2�2�=�5 $

 � � ��� � ��� � � � 	

 � � ��� � ��� � � � 	

 � � ��� � ��� � � 9�� : � � � 	

 � � ��� � � � 	
8 � � ��� � �.� � � � 	
8 � � ��� � �.� � � � 	
� � ����� ��� � � �
 � 	
� � � � �)�.� 8 8 �
 � � 	

� � � � � � * � � �
+�,�- - $�(,�/- - 0 1�2�- - 3 4 %&$ - - % 2�5#- - 6 ;<$ 2�2�=�5 $

CHAPTER 3. MESSAGING SYSTEM 22

Table 3.1: Predefined Namespaces

Number Namespace

0 empty namespace
1 ”jxta”
2 first user defined namespace
...

...
n last user defined namespace

refers to the “jxta” namespace. These predefined namespaces are well known
and therefore not defined in the header section of a message. User defined
namespaces start with number 2 and will increase following the position they
are defined in the header of the message. Each element can also have a MIME
type. The default MIME type (“application/octet-stream”) is indicated by
the number 0. User defined MIME types are indicated by setting the MIME
type flag to 1. If the MIME type identifier is set to 1 the declaration of the
MIME type must follow to this flag. A MIME type is defined by its name’s
length encoded as a short integer (short, 2 bytes) and its name as an array
of characters (char[]). The details of the element’s format having the default
MIME type is described in Table 3.3 and user defined MIME type in Table 3.4.
Compare also line 2 and 3 to line 4 of Listing 3.1.

Table 3.2: Description of the Message Header of Listing 3.1, line 1 [18]

Header Part Length Java Type Description

jxmg 4 bytes char[] message header identifier
0 1 byte byte message version
02 2 bytes short number of namespaces
11 2 bytes short length of namespace 2 in bytes
temperature — char[] namespace 2
07 2 bytes short length of namespace 3 in bytes
address — char [] namespace 3

The described message format complies with JXME’s message format. We
have defined an additional header during this project (see Figure 3.5). This
header contains information about sender, receiver, the length, and the type
of the message (unicast or mulitcast). The advantage of such an additional
header is the fact that a message must not be parsed to be forwarded only. In
the future it will be possible to add more data units to the header such as check
sums, etc.

CHAPTER 3. MESSAGING SYSTEM 23

Table 3.3: Description of a Message Element having the Default MIME
Type (see Listing 3.1, line 2)

Element Part Length Java Type Description

jxel 4 bytes char[] element header identifier
3 1 byte byte identifier of the namespace
0 1 byte byte identifier of the mime type
06 2 bytes short length of element’s name
sender — char[] name of this element
12 4 bytes int length of element’s data block
009988776655 — char[] element’s payload

Table 3.4: Description of a message element having a user defined mime
type (see Listing 3.1, line 4)

Element Part Length Java Type Description

jxel 4 bytes char[] element header identifier
3 1 byte byte identifier of the namespace
1 1 bytes byte identifier of the mime type
12 2 bytes short length of mime type’s name
testMimeType — short name of the mime type
08 2 bytes short length of element’s name
sensor10 — char[] name of this element
02 4 bytes int length of element’s data block
4C — char [] element’s payload

Figure 3.5: Message Header��������� 	
������� �������� ���������
����������������� ���"! #����%$���&'& �)(

��������! #��*�%$ +-, .)(/��)021 ���%$��2, 	�(
�"�*�)�3���3�4/���021����-$ �-&5& .)(

6 7 �*8 9 7 1
8 ��0 :2��;
<=8 7 :

3.4 Addressing Devices

Each Bluetooth device has an unique MAC address but this address is neither
handsome nor handy. There is another more user-friendly possibility to identify
Bluetooth devices, the so called user-friendly name. The user-friendly name has
a length of 248 bytes and is UTF-8 encoded [2]. See Appendix B how to set
the user-friendly name using the BlueZ Bluetooth stack. It is the system ad-

CHAPTER 3. MESSAGING SYSTEM 24

Listing 3.2: Code Snippet of Class BTConnectionHandle

1 public String getIdentifier() {
2 try {
3 return remoteDevice.getFriendlyName(true);
4 } catch (IOException e) {
5 LOG.fatal("..." , e);
6 }
7 return remoteDevice.getBluetoothAddress();
8 }

ministrator’s task to specify the device’s unique name. It has to be taken into
consideration that a system may have more than one connected Bluetooth de-
vices whereas each of them needs to have its own unique name. By default each
BlueZ driven device’s name is ”BlueZ(x)”, where x is the number specifying the
device’s HCI. This number is given by the BlueZ software and is according to
the order BlueZ is initializing the Bluetooth devices. The range of x is limited
between zero and the number of Bluetooth devices minus one.
Using the JSR-82 API the device addresses are specified by a hexadeci-

mal string (java.lang.String) of 12 characters (0..9A..F) without any separating
colons or spaces. To get the Java compatible Bluetooth address out of a real
device’s address one simply removes the separating colons.
The messaging system is able to identify connections either by Bluetooth

device address or user-friendly name but not both of them simultaneously. The
default policy is using the user-friendly name and if this is not available the
Bluetooth device address is used instead. This identifier can be changed by
editing the source code of the class BTConnectionHandle in the package ch.-
ethz.iks.jxme.bluetooth.impl or by programming a new implementation of the
interface IConnetionHandle in the package ch.ethz.iks.jxme.bluetooth.impl. To
change the policy from user-friendly name to the Bluetooth address comment
line 2–6 of listing 3.2.
The connections are stored in a connection pool which is implemented by a

hash table (java.util.Hashtable). The key of the key-value pair is the identifier
(here the user-friendly name) and the value is the connection itself. If there are
two devices – both of them having the same identifier – the existing connection
is overwritten by the newer one.
The all-zero address and a null value representing the address are re-

served broadcast addresses. In other words to send a broadcast, call the send
method (send(String id, IMessage data)) of class BTPeerNetwork in package
ch.ethz.iks.jxme.bluetooth.impl setting the parameter Sting id to null or to
“000000000000”. The all-zero address is also defined as broadcast address in
the Bluetooth Specification (see [2], page 51). This doesn’t cause any problems
since the Java API does not offer any methods to send mulitcasts out of Java.
Sending messages to the broadcast address the messaging system worries about
the distribution of the message and not the Bluetooth module as one might
expect.

Chapter 4

Benchmarking

4.1 Motivation

During technical research we have found different architectures that allow Java
applications to communicate over a Bluetooth channel namely TCP/IP over
Bluetooth and Bluetooth RFCOMM connections (see also Section 3.1.1). We
feared that TCP/IP slows down the performance of such a connection. To
measure the loss of performance a benchmark environment was implemented.
This benchmark environment consists of two interconnected devices, where one
of them is a simple echo server that immediately returns any incoming data.
The second device sends a predefined amount of data to the echo server and
measures the time needed until it receives back the sent data. If the amount of
data is very small, these tests behave like a ping measuring the round trip time.
However by sending large amounts of data the bandwidth can be measured.

4.2 Stack Architectures

Since data transmission is the L2CAP’s task the protocol stacks are identical
up to this layer. The higher levels indeed are totally different. Looking at the
TCP/IP stack (see Figure 4.1(a)) on top of L2CAP is the BNEP layer (Blue-
tooth Network Encapsulation Protocol) that implements the PAN profile (Per-
sona Area Network). BNEP encapsulates the data packages of other network
protocols such as IPv4, IPv6, and IPX and redirect these packages to the under-
laying L2CAP layer [19]. On a Linux driven system each BNEP connection is
represented by a virtual network interface. Such an interface can be configured
like any other real existing network device, using tools such as ifconfig. A
detailed description of setting up a BNEP based TCP/IP network is shown in
Appendix C. On top of BNEP resides the TCP/IP layer which functionality
is used by the test framework. Incidentally there is also an alternative way to
set up TCP/IP over Bluetooth, that has not been analyzed in this thesis. It is
possible to set up PPP (Point-To-Point Protocol) over RFCOMM and TCP/IP
on top of PPP using the Bluetooth’s Dial Up Network Profile (DUN).
On the other hand, Rococo’s Java API allows accessing the RFCOMM

layer which is on top of the L2CAP layer. The corresponding protocol stack

25

CHAPTER 4. BENCHMARKING 26

���������
	����������	��

���������

���! "�

�#�$��%'& �

(��*)+�

��, -*���.��-+�/	/�10 0 ��	
��, -���23�1-*��4���	
�5�����6����-87

(a) TCP/IP Stack

9�:�;�<5=�>�?�@�:�A�B�>DC

E�F�G"H$I

J!=�G!KML6L

JNB*O�B�O�B+P/Q�?*R+?

E*S T�CML�?�T8?�U�:�>
E�S T1C�G!B�T8</>/B1V V :�>
W5?�;�:XW
?�T8Y

(b) RFCOMM Stack

Figure 4.1: Overview of RFCOMM and TCP/IP Stack

is illustrated in Figure 4.1(b). The L2CAP and the RFCOMM layers are part
of the BlueZ Bluetooth stack that is described in detail in Section 2.5.2. On
top of the BlueZ stack is Rococo’s Impronto located which offers the stack’s
functionality to Java driven applications.
Basically the test framework’s architecture is very simple. The interface to

the core testing system is an input stream (java.io.InputStream) and an output
stream (java.io.OutputStream). This architecture is illustrated in Figure 4.2.
This design guaranties that the overhead produced by the test framework is
always the same. The test framework consists of a server (benchmark.Server-

Figure 4.2: Architecture Overview of Benchmark Environment

Z�[+*]6^�_�`ba+_�`

c�d*a+d1egf]�e�h i�j�k�l/^5lm`b_�d�n
cbd*a+d�egf]�e oMk�l/j�k8lm^�lm`�_pd�n

q!r�sto�u6u v.wtZ�x

s!y f _�i8l

c/d8a+d�egf]�e�h i�jpk8l/^
l/`/_�d�n
cbd*a+d�egf]�e o�k8l/j�k8lm^�lm`b_�d�n

v"w!Z�x q!r�s!oMu6u

CHAPTER 4. BENCHMARKING 27

Routine) and a client component (benchmark.ClientRoutine). The constructor
of these classes requires an input and output stream, as well as some test data
(byte[]) to be transmitted. To implement a test case a class has to be imple-
mented which creates an input and an output stream and passes those to the
test routine. The server routine simply reads all the incoming data from the
input stream and writes them immediately to the given output stream. The
client routine is a bit more complicated because it has to measure the round
trip time. Before the first byte is transmitted the current system time (tstart)
is captured and after the reception of the last byte the system time is captured
again (tstop). The resulting time t is the difference between the start and the
end time (see Equation 4.1).

t = tstop − tstart (4.1)

This time t is composed of the delay from the client to the echo server (tdelay1
)

and vice versa (tdelay2
), and the time needed to transmit the data ttrans (see

Equation 4.2). Figure 4.3 illustrates Equation 4.2.

t = ttrans + tdelay1
+ tdelay2

(4.2)

On the client side the number of iterations is passed as another argument to
the method run(), which invokes the benchmark routine. This method returns
an array of long integers containing the duration of each transmission (t, see
Equation 4.1) in milliseconds.

Figure 4.3: Illustration of the measured time

��� ���

� �	��
 ���� ���	��
 ����� � � �����

������� �!�#"%$��&"

')(� �&* �

4.3 Test Environment

The distance between the two devices was maintained to one meter in all test
cases. Transmission through walls or over distances of 10 meters and more may
cause a loss in performance. The configurations of the used machines are given
by Table G.1 in Appendix G. To avoid errors during the measurement, all other
applications were closed and no cron job was executing on the test systems.

CHAPTER 4. BENCHMARKING 28

To be able to compare the performance of TCP/IP and RFCOMM, we im-
plemented two different clients and servers. To test the RFCOMM connection
the classes BTClient and BTServer of the package benchmark have been im-
plemented. These classes crate an RFCOMM connection to each other. The
establishment of the TCP/IP connection is done by the classes TCPClient and
TCPServer. The concrete implementations of the client and server classes has
to pass input and output streams to the ServerRoutine and the ClientRoutine.
The dependencies are illustrated in Figure 4.4. It is obvious to see that the tests
themselfs are always executed by the classes ServerRoutine and ClientRoutine.

��� ��� � ��� 	�
��� �����

� � �
���� ������� � ��
�� �

� ����� �

��� � "!$#�%'&)($#�� !*

+��-,.�-� � *!$# / +)�-� � "!"#

(a) Client Side

02143 5�1�3 6*748�9 : ;�14< =

3 8�;�< =

>@?"ACB.?"A�D'E)F"GIH J*?

K)L-M.>@?*ACB.?"A N K�>O?*ACB.?"A

(b) Server Side

Figure 4.4: Dependency Graph of the Benchmark Environment

4.4 Results

All measurements were repeated 20 times and the amount of data transmitted
varied between the rang of 8 bytes and 128 kB. The recorded data is listed in
Appendix G.
TCP/IP is found to be not significantly slower than RFCOMM and having

a look at the standard deviation of these two data series TCP/IP seems to have
lesser fluctuations as well (see Figure 4.6). Figure 4.5 illustrates the measured
periods of time the transmission took.
The time needed to send and receive the data increases slowly up to a data

volume of 512 bytes, and is then approximately doubled each time the amount
of data is doubled. This is because the default package size is 768 bytes [17].
Up to 512 bytes one single package only needs to be transmitted. The result
is approved by the virtual round trip time per byte. In both series this time
is smaller than 0.05 ms when the amount of data is larger than 512 bytes (see
Figure 4.7). The resulting jitter of ±0.01 ms can be explained by the missing
efficiency during the transmission, when the packets are not completely filled or
due to the precision of measurement. The lower bound of the round trip time
per byte is 0.03 ms using both technologies.

CHAPTER 4. BENCHMARKING 29

��� ��� ��� �
	���� � �
� � �
�� � � �
� �
���� � � ��� ��� ����� � �
� ��� � �� � 	�� � ��� �
�
���
���
���
���
�
���
�
���
�
���
�
���
�
���
�
���
�

���
�������
���! " #$

%

(a) Average transmission time (8 bytes – 8 kB)

&�' () *�' (+
,�' (*
-�' ()�,
&'
.

/�.
.
) .
.�.
) /
.�.
,
.
.�.
,
/
.�.
+
.
.�.
+
/
.�.
-
.
.�.
-
/
.�.

0�1 2�3�4�4
5�2!67 8

9:

(b) Average transmission time (8 kB – 128 kB)

Figure 4.5: Measured time [ms] by given amount of data

CHAPTER 4. BENCHMARKING 30

��� ��� ��� �
	���� � �
� � ���� � � � � ������ � � � � ��� �� � � � � ��� � �� � 	�� � �����

�

�

���

���

�

�

�
�

�
�

	
�

	
�

�
�

�
�

�
�

�
�

�����������

���! " #

(a) Standard Deviation (8 bytes – 8 kB)

$�%�& ' (
)�&�' %�*�&�' $�)
+�&�'

,

-�,

$�,�,

$�-�,

)�,�,

)�-�,

(�,�,

(�-�,

*�,�,

*�-�,

-�,�,

-�-�,

.�/�02143�3

5
046 7 8 6

(b) Standard Deviation (8 kB – 128 kB)

Figure 4.6: Comparison of the Standard Deviation

CHAPTER 4. BENCHMARKING 31

��� � � ��� ��	
� � � � � � � ��� � � � � �� ��� � � � � �� ��� � � � �
�

���
�

� �
�

���
�

���
	

	��

��� �������� ���� ��
�

(a) Average Round Trip Time (8 bytes – 512 bytes)

 �! "�# $ % &�' !)(# "�(# *�(# +�(# ! ,�(# - "�(# ,�*
(# ! ".+�(#
/

/10 /�!
/10 /�"
/10 /�-
/10 /�*
/10 /�
/10 /�,
/10 /�2
/10 /�+
/10 /�3
/�0 !
/10 !�!

4�5 6�7)8�89 6�:; <
=>

(b) Average Round Trip Time (512 bytes – 128 kB)

Figure 4.7: Comparison of the average round trip time per byte

Chapter 5

Sample Application BAD2

5.1 What is BAD2

BAD2 (Bluetooth Ad-hoc Distributed Diary) is a very simple computer based
diary. It allows a group of up to eight people to make an appointment nearly
without any human interaction. Before making such a new appointment BAD2
will check all the different appointment books of the participants and finds a
date where nobody is occupied yet and — if there exists such a date — adds
this appointment into the diaries of all participants. A diary is managing tasks
whereas each task is composed of a title and date when the task takes place.
The granularity of the diary is currently at level of days so a person can only
participate one task per day. Each task has a moderator whereas a moderator
is the speaker or the person moderating the meeting.
The user interface (UI) is designed to be displayed on small devices such as

iPAQs. The dimension of the windows is 240x300 pixels that matches perfectly
to the iPAQ’s display (240x320 pixels). A height of 300 pixels fits to the iPAQ’s
screen in such a way that the menu bar is still visible. The UI is implemented
in Java’s Abstract Window Toolkit (AWT) to make it quick.
BAD2 is built on top of the implemented message system (see Chapter 3).

To make a new appointment all participants – but the moderator – must start
a regular peer. This can be done by starting BAD2, press the “Add” button
and after wards the “Connect” button. The moderator needs to start a rendez-
vous peer that is interconnecting all participants. To start a rendez-vous peer
the moderator also needs to start BAD2 and to press the “Add” button. The
difference is that the moderator has to select “My Task” before clicking the
“Connect” button. At this point the connect procedure is initiated. The mod-
erator’s device will search all participants and establish a connection to each
of them. If the connections have been established, the moderator defines a
new task. After defining the new task the moderator presses the “Synchronize”
button to start the synchronization process. This is provided by sending a
multicast message to all participants that includes information about the task
such as the name and the range of time it should take place. Invoked by this
initial message each of the different participants will transmit the dates within
the specified range that they are occupied. In the current implementation it is

32

CHAPTER 5. SAMPLE APPLICATION BAD2 33

the rendez-vous peer’s task to determine the first date that everybody is unoc-
cupied. Basically each device is able to determine such a date by itself but in
this application it is done by the rendez-vous peer. If the moderator’s device
found such a date it sends out the task’s date to the connected participants
that insert it in their local diaries.
BAD2 consists of three screens: the schedule, the connection, and the task

screen. The schedule screen (see Figure 5.1(a)) displays all appointments in
the diary. Clicking the schedule screen’s “Add” button the connection screen
(see Figure 5.1(b)) appears. This screen shows the connections the host device
actually maintains. This screen will be empty until at least one connection is
established. If the user is not a moderator he has simply to click the “Connect”
button and to wait. If the user is a moderator he has to select “It’s my task” and
then also to click the “Connect” button. If the device and service discovery pro-
cedure is terminated the “Synchronize” button becomes enabled. Clicking the
“Synchronize” button, the task screen (see Figure 5.1(c)) appears. This screen
collects the information necessary about the new task that is to be created,
such as its name and the range in time it will take place. The dates that are
entered to the application must conform the following format: dd-MMM-yyyy.
After clicking “OK” the synchronization process will be executed. After a few
seconds the new task is going to be inserted in the schedules of all participants.

(a) Schedule Screen (b) Connection Screen (c) Task Screen

Figure 5.1: These Screen Shots Show the Different Screens of the BAD2’s
User Interface.

5.2 Appointment Protocol

The core feature of BAD2 is its ability to find dates for appointments. This
section explains the algorithm implemented. The principle of this mechanism
is very simple. Each participating device propagates the dates it is occupied.
In this matter each node can build a list of all appointments of all the other
participants. In our implementation only the moderator’s device will build such

CHAPTER 5. SAMPLE APPLICATION BAD2 34

Figure 5.2: Message Sequence Diagram
���������	��
�����	� ���	�����

� ��� ��� ��� �������! � ���"#�

$��&%('��! *)+ ,$

-/.,)0�,132�� �,4�"��#5����3�

�6������7

� �*� ��� �8� �������! � ,�!"��

$9��%&'��, �): ,$

-;.,)��!102�� �!4*"���5��#�3�

a list. This device searches the first possible date where nobody has another
appointment and will propagate this date to all participants.
The synchronization process is initialized after the moderator clicked the

“OK” button on the task screen (see 5.1(c)). This screen appears only on the
moderator’s device. The message sequence diagram is illustrated in Figure 5.2.
The very first message is sent by the moderator’s rendez-vous peer to all con-
nected peers (see Table 5.1). This message contains information like the task’s
name, its range in time to take place, and additionally also the number of par-
ticipating devices. Invoked by the receipt of this message each peer returns a
notification (see Table 5.2). This notification is composed of the following ele-
ments: an element notification without any data, and it’s tasks. The name field
of such a task’s element contains “taskx” and its payload data that contains
the date of the task in milliseconds since 1-Jan-1970 (see Java API, Section
java.util.Date). All transmitted dates are encoded this way. After receiving a
notification of each participating peer the moderator’s peer determines the date
the new task will take place. After doing this it sends out an acknowledgment
(see Table 5.3) to the peers informing them about the determined date. All
peers — inclusive the one of the moderator — adds this task to their local
schedule.

Table 5.1: Example of an Initial Message

Element Data

numberOfPeers 3
task example task
fromDate 15-Aug-2003 [in ms]
toDate 30-Aug-2003 [in ms]

CHAPTER 5. SAMPLE APPLICATION BAD2 35

Table 5.2: Example of a Notification Message

Element Data

notification —
task1 17-Aug-2003 [in ms]
task2 21-Aug-2003 [in ms]
...

...
taskn 30-Aug-2003 [in ms]

Table 5.3: Example of an Acknowledgment

Element Data

acknowledgment —
task 18-Aug-2003 [in ms]

Chapter 6

Future Work

Since the time to write a diploma thesis is limited to four months, there was
no time to have a look at all possible tasks and skills. This chapter gives an
overview of the tasks that should be considered in future work.

6.1 Scatternet

At the moment the messaging system supports piconets. That means the mes-
saging system is limited to eight participating devices. During the next few
months and years the number of scatternet enabled devices will increase rapidly.
So there will be a need to adapt the messaging system to scatternet’s topol-
ogy. The following tasks have to be checked to enable scatternet support to the
messaging system.

6.1.1 Routing

At the moment the routing mechanism is very rudimentary and it is based on
the piconets star topology. In a piconet there are up to seven active slaves, each
of them connected to the same master. In other words each slave has exactly
one connection interconnecting it to its master. That means each device having
more than one connection is by definition a master. This is exactly what the
routing algorithm is based on. Each device having more than one connection
must forward messages to all interconnected devices. This strategy fits perfectly
to the underlaying piconet topology.
A scatternet network is a general, cyclic graph. Applying the described

routing mechanism to scatternets is dangerous and is going to cause a never-
ending message storm since in a scatternet there are at least two interconnected
devices having more than one connection. These to devices would send the
message to each other (Ping-Pong). It is proposed to implement a “smarter”
routing algorithm such as flooding (see [21], p 353–354) or any other routing
algorithm (see [21] pp 355 or [22]). Keep in mind that this message system is a
very dynamic network and the participating devices might often join and leave
the network.

36

CHAPTER 6. FUTURE WORK 37

6.1.2 Device Discovery

At the moment the messaging system is able to propagate broadcast messages
over the given piconet and send unicast messages to adjacent nodes. A device
has zero-knowledge about non-adjacent nodes. To support sending unicast mes-
sages all over a scatternet the sending device must have knowledge about nodes
connected somewhere to this network. Also intermediate nodes that route mes-
sages from the source to the destination must have knowledge about the entire
network. Therefore it is necessary to add a device discovery mechanism dis-
covering devices that have joined and leaved the network. An important point
is the detection of disappearing devices. A leaving node may destroy or divide
such an ad-hoc network. If the master of a piconet is turned off the complete
network will break down. A scatternet may be divided in two autonomous and
non-connected parts if a interconnecting master/slave or slave/slave node leaves
the network.

6.2 Security

Bluetooth offers three mechanisms of security: authorization, authentication,
and encryption. Authorization takes place during the first time two devices es-
tablish a connection, the so called pairing (see Section 2.3). The authentication
process is started each time a connection is established but the very first time.
Encryption can be used to secure the communication between two adjoining
and connected nodes. At the moment there are neither authentication nor en-
cryption enabled (to enable encryption and authentication see Appendix F).
It might be necessary to have endpoint encryption rather than link encryp-
tion. Currently there are no mechanisms supporting endpoint encryption, so
the top level application has to care about. Another issue is gaining access
to the messaging system. At the moment everybody can gain access to the
messaging system, there are no user names, passwords, or other authentication
mechanisms but the Bluetooth security options.

6.3 Reliability

In the current state the transmission of messages is not reliable. It is assigned to
higher level applications to make the communication reliable. The RFCOMM
connection used does itself not guarantee any reliability.

“Data frames do not require any response in the RFCOMM proto-
col, and are thus unacknowledged.

Therefore, RFCOMMmust require L2CAP to provide channels with
maximum reliability, to ensure that all frames are delivered in order,
and without duplicates. Should an L2CAP channel fail to provide
this, RFCOMM expects a link loss notification, which should be
handled by RFCOMM” [2], page 422

CHAPTER 6. FUTURE WORK 38

6.4 Multicast Groups

The current system processes every incoming message and delivers it to the ap-
plication level. To make the system more efficient it is advisable to implement
filters. These filters should forward a message if needed but only process the
message if the current user was registered to that group the message was ad-
dressed to. Such a filtering mechanism should allow the top level application to
define rules that are applied to the incoming messages by the messaging system.

6.5 Interconnection with JXTA/JXME

In the current state the implemented system is not able to cooperate with
JXTA peer-to-peer networking software. The message format defined in this
implementation is fully compatible to the message format defined in JXME. To
compare the message formats see Section 3.3.1, [15], [18], and analyze also the
following classes of the JXME source code: Message.java and Element.java in
the package net.jxta.j2me.
There are a few different ways to achieve compatibility with JXTA. The

first one is to implement a proxy having a TCP/IP enabled and a Bluetooth
network interface. This proxy picks up the incoming messages from the Blue-
tooth interface and pushes them to the TCP/IP interface and vice versa. Since
JXME uses a polling mechanism and the Bluetooth messaging system uses a
push mechanism the proxy needs to poll the JXTA rendez-vous server for get-
ting new messages. After receiving such a message the proxy has to push it
to the Bluetooth device. Such a proxy can also be a device having limited
resources e.g. a J2ME CLDC VM.
The second possibility is to implement a dedicated JXTA proxy. This is a

ordinary JXTA node having a Bluetooth endpoint implementation and serving
as proxy for mobile devices. This solution has not been analyzed in detail in
this thesis.
The last possibility is to join Kuldip Singh Pabla’s project “Proxyless JXME”

(see Appendix I). The main problem using JXME is that each participating
device needs a HTTP connection to a full featured JXTA node. Based on this
fact it is impossible to build ad-hoc networking groups without having any
network infrastructure. Two neighboring JXME nodes can only communicate
using network and JXTA infrastructure whereas the location context is lost.
The project of Kuldip tries to eliminate this drawback. The project presented
here and the corresponding UDP implementation of Andreas Frei can be used
as a prototype for such a system.

Appendix A

Objectives

���������
	���������������������������! �"#���$��%�����&'"#��(
)�*,+.-/�102�
���3���4�#��	657"3����%

8:9<;>=@?$A:9$BDC�EFA>G ?$HJILKENM@MO?$H G
P ?$QRG A>AJB SUTOV�ENGXWFYRYRZ
[A>=@?NB \>TO8U?$MU9<?$]#^O?$_`WFYRYRZ
a`bcb G b 9d?$AR9
B a A>=@_d?
E b3e _d?$G

�f�g�����h"i���$���

j Ak=>?$_�l>?$;U9<G QR?mAon1?$G 9`pq?$_d=>?$Ak=>G ?�r�?$_
KEF9<?gG]L]�?$_tsUH ?$G A@?$_�;>A@=k=>G ?huv?$_dA@?m9<w$;>A@Q�;@A:9<?m_d?$G A>ENA>=>?m_
lxEy9 b 9<EN_ds4wm;>QR?$A@zR]L]�?$A1T [b pq?$_d=@?$A{8Uw$?mAxEN_dG ?$A�]�KzNQRH G |<l}=@G ?iA@zU|�l�^>G bt~ zN_3s:;>_cw$?$]�;>A>=@?$A>s:^xEN_
p�EN_d?$A1T1V}G 9�=@?$_tEFH H QR?mQR?$ARp#KEN_�9<G QN?$ALuv?$_dA@?m9<w$;@A>Q�9<_d?m9<?mA�EN^O?$_�EN;>|<l���_dzR^>H ?$]L?`=>?$_ ~ ?$_c9<?$G H 9<?$A�8:�R�
b 9<?m]L?tG AL=>?$ALu�zR_ b |�l>?mG AJTU�t]�=>G ? b ?�8R� b 9<?$]�?`wm;�?$A:9dsNzRM>MO?$H A�QRG ^U9q? bv~ ?m_ b |<l>G ?$=@?$A>? a A b KEF9<w$?tp�G ?
�`^R�<?ms:9c�c�`_dG ?$AR9<G ?$_�9<?�;>A>=gI�zR]�MOzRA>?mA:9<?mALV}G =>=@H ?mp�EN_d?���wFT P TU�qzN_d^xEU�R�3V jc� �UV}? bcb ENQR?<�d�`_dG ?$AR9<G ?$_�9<?
V}G =@=>H ?mp�EN_c?`zU=@?$_ [_d?mG QRA>G b �d�3_dG ?$AR9<G ?$_c9<?38:� b 9<?$]�?NT P H ;>?m9<zUzN9dl b M>G ?$H 9q=xEN^O?$G ~ ?$_d]�?$l>_�9�?$G A>?tp�G |�l:�
9<G QR?t��zRH H ?�G]���?$_ b zNAxENH a _d?
Ei�t?m9�p�zN_ds���� a � � T a H b z�G A�=>?m_��t]�QR?$^@;>A>Q�G A�=@?$_ b G |�lL=>?m_�V}?$A b |�l
EN;U��l�KENH 9
T j]�pq?$G 9d?$_d?$A b |<l>?$G A>?$A [_c?$G QRA@G b �d�3_dG ?mA:9dG ?$_c9<?}8:� b 9<?$]�?�?$G A>?4QR;@9<?}�oENl>Hq�mK;>_ ~ ?$_�9<?$G H 9<?
8:� b 9<?m]L?iw$; b ?$G AJ�Up�z�sN?$G A>?i=xEN;>?m_dlxEF��9<?$A4uv?m_d^>G A@=>;>A>QN?$A ~ zR_dlxEFA>=>?$A b G A>=JT

-,��(N��"# {�

C`G ? a ;@��Q:EN^O?k=@G ? b ?$_}C`G M@H zR]LEN_d^O?$G 9�^O? b 9<?$lR9�=xEF_dG A�?mG A�]#;>H 9<G l@zRM [~ ?$A:9��d8:� b 9<?$]��mK;@_�V}zR^>G H ?
r`?$_yKEF9d?�^>E b G ?m_d?$A>=7EF;@� P H ;>?m9<zUzF9<l�EF;@��w$;>^xEF;>?$AJT�C`G ?�]LzN^>G H ? j A@��_<E b 9<_c;>sR9<;>_#^O? b 9d?$l:9g=xEN^O?$G�EF; b
��? bdb zN;>_d|$?$A�EN_d]�?$A7r`?$_ KEF9<?$A{ptG ?LG � a3�`b ^>G b w$;���? bdb zR;>_d|m?$A7_d?$G |�l@?$_d?$A7r`?$_ KEF9d?$A{p�G ?���EFM@9<zNM b
zU=>?$_�C`? b sR9<zNMkV�E b |�l@G A>?$A1T
C�E b]#;>H 9dG l>zNM [~ ?$AR9c�c8:� b 9<?$] b zRH H�EF;@���F�` a �x?$G A>?$]2��?$?$_�9<zL��?m?$_ e _<EF]L?mpqzR_cs4EF;@��^xEN;@?$AJT

¡1¢}£�¤¦¥�§©¨gª�¥�«R¬yJ>¬F®7«:¯y°#«U±�¬y«:¯F²
j A.;@A b ?$_c?$_ a =U��l>zU| j AU��_dE b 9<_c;>sR9<;>_$�q^O? b 9d?$l>?$A@=³EN; b G�� at�`b �v��EFM@9<zNM b ;>A>=�C`? b sR9<zRM�r`?$_yKEF9<?mAJ�
~ ?$_��mK;>QN?$AgENH H ?�r`?$_
KEF9<?iK;>^O?$_�?$G A@?$A P H ;>?m9dzUzN9<l a =xENM@9d?$_$TR�F�` a =>?m´xA@G ?$_c9 ~ ?m_ b |<l>G ?$=@?$A>?t��_dzN9dzRsNzRH H ?
;>AR9<?$_tENA>=@?$_d?$]2=xE b [A>=>MOzRG A:9t��_dzF9<zRsNzNH Hµ�Up�?mH |�l@? b ;>] P H ;>?m9dz@zF9<l}?m_cpq?$G 9<?$_�9tpq?$_d=@?$A b zRH H�T

¶·¥�ª�¬F±�®�x¸º¹3»1«U²O¬$¼�½J¾�¿m¬y«U§
À ?$_ds1KzR]�]LH G |<l>? [~ ?mA:9c�c8:� b 9<?$]�?�^>E b G ?$_d?$A7EF;@� ~ ?m_c9<?$G H 9<?$AÁ8R� b 9<?$]�?$A�pq?$H |<l>?4��K;>_ b 9�EF9<G b |<l>?4;>A@=
]�?$G b 9tw$; ~ ?m_dH�KE bcb G QR?#�t?m9dwmp�?m_dsN?gsNzNA>w$G M@G ?$_c9tpt;@_d=>?$A1T j A�EN=U��l>zU|h�t?m9dwmpq?$_dsN?$A�p�zL]�zR^>G H ?hr`?$_yKEy9<?
�d?$=>?$_tnO?$G 9q=>?$A}8R9�ENA@=>zR_c9qpq?$|<l b ?$H A}s1KzRA>A@?$A b G A@=�A>?$;>?�I`zRA@w$?$M@9<?`A�KzN9<G Q#;@] [_d?mG QRA@G bdb ?N� [~ ?$AR9 b �
=>?$A�G A:9d?$_d? bdb G ?$_c9d?$A4I�zRA b ;>]�?$AR9<?$A�w$;>_�u�?$_c�mK;>QR;@A>Qhw$; b 9<?$H H ?$AJTUC`G ?t��_dzU=>;>w$?$AR9<?mA4=>?$_ [_d?$G QNA>G bdb ?N�

39

APPENDIX A. OBJECTIVES 40

��� �������
	 � ��
�����
���
��	 � ��� ��������� ��������������������������! �"#������$�����%���&�
�����('������)��� �*�����+���,� �
-."������ �0/
����&1
������	 � ��
���32&4"��
�����,'+���
�"�����,����� �$��� ��5����6#���75�����4��5����
�987�����"�����)����9�����;:;����-�4��5��
��5<�=6#�*���
���>�
���?���������@6A�(��� �!�B46#)%�����%���<C����D46A�7���(������
���E1E���F� ���F�������=6#	 �!��� ���@GH�+-I�%6A���%��
2�����J6#�
-������
'+���
�"�����,"+�����3�����, �	 ��� �����H/C����D46A�%�����K4"A�%� 5
��LM��)%���J��� ������NDO@P!�RQF�)%��� �%��2��%�
��46#������	 �S���T�
� ����
�U�������%�F�����#����)%���)%2#���&1
����������;LM����
���$�$��� ���U�
�)0������� ���2��U��"��V�;���
	 � �������U�����W'+���
�)��� �&����5���	 6#��5#���E1D:3�����)0�
� ���������

X ���+�)������� ���Y� �Z�����9[\��� �%���	 ��� �%�
��5R���
�Z:3�����%��� 	 ����5R��� �������!�U�������%�!� ����"�	 �+� �����]1������"#	 	J�����
��� �^�U��������/'�_+���%���`�����aL7�)%2#��	 ��LM����
���E�;LS��)%�����96#�
-� J	 ��� ������/bC���� 46A�%���c-.����2��%� "#��� �����$���
�d6A�
-
8�����"#���)����(����)%��������?CJ��� 46D�%���!����LM��� �%�����7LM����
���!2#6A���E1

ebf+gKhAiUjlk
mAnEoIgKp\qBf+r�ets.uKf�vDw&w=vDi3xUyzuKs{vDoIiKw=|~}F�&f+g*v����&�Kr�v]f
j
X 6A�9�����aL7�)02#��	 �%������������/�'�_+���%�����"#	 	7Lb46#�
������d�����������HL7�)02�	 �
��5�������� ���
���Z� �
��*���"#���������6#�
'+)%��	 �
��7	{6#�+-I���
��5��0�%�����%�0�FLM����
���!������� �<P\4"#5�	 �)0�
2#��� �%�������
�?CJ����������?6A������
	 "#����E1

���@�t���(�@�;���$�

X � �$'+)0�
	 �������"#��$����� X � �
	 "���6#��*��� �F����4�
�%���@��)%�l6A�
-M�
���l�����aL7�)02#��	 �%���\�;��"#�%"A�H_+�*���E�E��� �b�=6A���+/
5����B4"��� 5����!�3����)%����6#�2��F�
���������������)0����������� X "�2����$�����%6A�%� "��E1

X 6#�*���&����%���F��)0����� ���7"#�%���=6#)%��-."�	 5������
���>'+)0�
���96t���
�%6#�$�����&�

���&� -04������� �@�J�=6A	 � �D46A�S����� X "�2����$�����06A�� "��&�
�"]LS"#��	��3"+���<6A	 �76A��)%�?�M����)%�����

�=�*� -04���S:3"�	 	 ���D46#����� 5�2#��� �S�����7�F�
� �7�K���H�%�7�����!�M����)%����6#�2�� ��5
�

�=�*� -04������� �@�J�=6A	 � �D46A�S�����,:3"#	 	 ���D46#���
� 5�2#��� �S������5��������	 	 �%����QF�
-."���������
��5����&1

Appendix B

Installing and Configuring
BlueZ

BlueZ is the official Bluetooth stack for Linux which is included in the official
kernel’s source code. To install BlueZ on a computer it is necessary to recompile
the kernel. The following sections give the support necessary to install BlueZ
on a Linux computer and on a Linux driven iPAQ.

B.1 News

Users of BlueZ and developers of Java Bluetooth applications discuss their problems
in the following news groups. If you have a problem check the mail archives or post a
new message.

• BlueZ Users: http://bluez.sourceforge.net/mlist.html

• JABWT Mailing list: http://groups.yahoo.com/group/JABWT/

B.2 Configuration on Linux/RedHat

Use the following tools to start and configure BlueZ. The Usage of this tools is also
described in the following sections.

• hciconfig hci0 up (or hcid, which reads /etc/bluetooth/hci.conf)

• hcitool dev (to check if device is online)

• hcitool inq (to find other devices

• hcitool scan (to find other devices and their services)

B.3 Installation

B.3.1 iPAQ H3970

To install BlueZ on a Linux driven iPAQ execute the following instructions.

• install the bootgpe2-v0.7-rc1-h3900.jffs2

• wget wget http://familiar.handhelds.org/releases/v0.7/base/armv4l/-

bluetooth-uart-modules 2.4.19-rmk6-pxa1-hh11 ipaqpxa.ipk

• ipkg install task-bluez (as root)

41

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 42

Links

http://handhelds.org/pipermail/ipaq/2003-January/016527.html

B.3.2 Acer Bluetooth on IBM A31/ RedHat 7.3

Remove old bluetooth from kernel

To install BlueZ on a kernel older than 2.4.20 you have to rebuild the kernel without
any Bluetooth features which your kernel offers.

• cd /usr/src/linux

• make xconfig

• delete from Bluetooth all modules

• delete from USB Support the moduleUSB Bluetooth Support (Experimen-
tal)

• make dep

• make clean

• make bzImage

• cd /boot

• cp /usr/src/linux/arch/i386/boot/bzImage vmlinux-2.4.18-10 1

• rm vmlinuz

• ln -s /boot/vmlinux-2.4.18-10 1 vmlinuz

• rm /lib/modules/"your kernel version"/kernel/drivers/usb/bluetooth.o

• rmmod bluetooth

• reboot

BlueZ Kernel

The new Bluetooth kernel module can be downloaded from the BlueZ homepage [13].

• tar -xzvf bluez-kernel-2.3.tar.gz

• cd bluez-kernel-2.3

• ./configure

• make

• make install (as root)

• vi create dev (Listing B.1 shows the source code of the script to be created
and executed)

• chmod a+x create dev

• ./create dev (as root)

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 43

Listing B.1: Shell script to create the devices (create dev)

1 #!/bin/sh
2 #
3 # Create Bluetooth devices in /dev
4 #
5 #
6
7 VHCI MAJOR=10
8 VHCI MINOR=250
9
10 RFCOMM MAJOR=216
11
12 #
13 # Create device for VHCI
14 #
15 if [! −c /dev/vhci]; then
16 mknod /dev/vhci c ${VHCI MAJOR} ${VHCI MINOR}
17 chmod 664 /dev/vhci
18 fi
19
20 #
21 # Create devices for RFCOMM
22 #
23 for i in ‘seq 0 255‘
24 do
25 if [! −c /dev/rfcomm$i]; then
26 mknod −m 666 /dev/rfcomm$i c ${RFCOMM MAJOR} $i
27 fi
28 done

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 44

BlueZ Libs

The BlueZ libs have to be downloaded from the BlueZ project web page [13].

• tar -xzvf bluez-libs-2.2.tar.gz

• cd bluez-libs-2.2

• ./configure

• make

• make install (as root)

BlueZ Utils

The BlueZ utils have to be downloaded from the BlueZ project web page [13].

• tar -xzvf bluez-utils-2.1.tar.gz

• cd bluez-utils-2.1

• ./configure

• make

• make install (as root)

Modules

Add the following lines to the module’s configuration file (/etc/modules.conf). To
edit this file super user privileges are required.

alias net-pf-31 bluez

alias bt-proto-0 l2cap

alias bt-proto-3 rfcomm

Links

• http://bluez.sourceforge.net

• http://www.holtmann.org/linux/bluetooth/

• http://www-106.ibm.com/developerworks/wireless/library/wi-handblue/

• http://www.harbaum.org/till/palm/bluetooth/index.html, how to setup mod-
ules on the laptop

B.3.3 Installing BlueZ on RedHat 9

These instructions have been successfully tested on the following systems:

IBM T30 IBM R32 AMD Athlon 1400
Acer BT-500 • • •
MSI Dongle • • •
IBM Daughter Card • — —

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 45

If you have downloaded your kernel from www.kernel.org you have to patch your kernel
before you can start installing BlueZ. If you have a RedHat distribution (version 9 or
newer) ignore the patch instruction. To patch your kernel you have to download the
corresponding patch file1. To patch the kernel type the following commands:

• cd /usr/src/”your kernel”

• patch -p1 <”path to the patch file” (as root)

Using the original RedHat kernel start here!

• cd /usr/src/linux-2.4.20-8

• make xconfig

• select from Bluetooth Support all modules (y)

• select from Bluetooth → Bluetooth Device Drivers the entry HCI USB Driver

• make clean

• make dep

• make bzImage

• cd /boot

• cp /usr/src/linux-2.4.20-8/arch/i386/boot/bzImage \-
vmlinux-2.4.20-8 1

• rm vmlinuz

• ln -s /boot/vmlinux-2.4.20-8 1 vmlinuz

• reboot

• vi create dev (Listing B.1 shows the source code of the script to be created
and executed)

• chmod a+x create dev

• ./create dev

BlueZ Libs

The BlueZ libs have to be downloaded from the BlueZ project web page [13].

• tar -xzvf bluez-libs-2.2.tar.gz

• cd bluez-libs-2.2

• ./configure

• make

• make install (as root)

1http://www.holtmann.org/linux/kernel/

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 46

BlueZ Utils

The BlueZ utils have to be downloaded from the BlueZ project web page [13].

• tar -xzvf bluez-utils-2.1.tar.gz

• cd bluez-utils-2.1

• ./configure

• make

• make install (as root)

Modules

Add the following lines to the module’s configuration file (/etc/modules.conf). To
be able to edit this file super user privileges are required.

alias net-pf-31 bluez

alias bt-proto-0 l2cap

alias bt-proto-3 rfcomm

B.4 Start hcid and sdpd at Boot Time

It is possible to start and stop the HCI daemon and the SDP daemon when the system
is started resp. is shut down. The corresponding start and stop scripts are stored in the
script folder (/etc/rc.d/init.d) during the installation of BlueZ. To start and stop
these daemons a link has to be inserted pointing to this script in the corresponding
run level’s folder.

• cd /etc/rc.d/rc5.d

• ln -s ../init.d/bluetooth S99bluetooth (as root)

• ln -s ../init.d/bluetooth K01bluetooth (as root)

B.5 Environment Variables

Since most of the Bluetooth utilities are stored in /sbin or /usr/sbin, it is useful to
make sure that these directories are included in the PATH environment variable of your
system. If these directories are not already in in the system path you might execute
following instructions to add them permanently to the system’s path.

• cd /etc/profile.d

• create as root a new text file called path.sh containing the following line:

export PATH=$PATH:/sbin:/usr/sbin

• chmod 755 path.sh

• after restarting the XServer (Log out and press ALT + CTRL + BACKSPACE)
these directories are included in the PATH environment variable.

APPENDIX B. INSTALLING AND CONFIGURING BLUEZ 47

B.6 Set the user-friendly name

The messaging system identifies devices by its user-friendly name. By convention a
user-friendly name is composed of the host name and the HCI device number, sepa-
rated by a colon, e.g. wlab5:1.
To set a devices user-friendly name apply one of the described methods. To see your de-
vice’s name type the following command in a shell: hciconfig -a hciX name, whereas
X is your device’s number.

B.6.1 Adapting the HCID configuration file

The device’s name can be configured in the HCI daemon’s configuration file.

• open the file /etc/bluetooth/hcid.conf in an editor (as root)

• search the following line: name "BlueZ (%d)";

• comment this line by adding a “#” in front of this line

• add the following line: name ”<your host’s name>:%d”;

• before these changes become operative the HCI daemon has to be restarted

– killall hcid (as root)

– /sbin/hcid (as root)

• If there is one Bluetooth device connected to your computer its name iswlabX:0.
If you have five devices your devices friendly their names are wlabX:0, ..., and
wlabX:4

B.6.2 Using the hciconfig tool

Using the hciconfig command the user-friendly name may be set or modified at
run time without restarting the HCI daemon. Since you are directly interacting with
hardware super user privileges are required.

• hciconfig -a hciX name "your device’s name" (as root)

• The parameter -a hciX is optional. If it is not specified the command is applied
to the default device which is hci0.

Appendix C

TCP Over Bluetooth

The following sections give an overview of how to set up a TCP/IP network using
Bluetooth network infrastructure. All instructions of this section require an installed
BlueZ Bluetooth stack. Make sure that BlueZ is installed on your system otherwise
check Appendix B how to install BlueZ on your computer. A kernel version 2.4.20
or newer is required. All trials failed to install the components necessary using older
kernels.

C.1 TCP over Bluetooth

Installation

Make sure that the following BlueZ modules are installed on your computer:

• BlueZ Utils

• BlueZ Libs

• BlueZ SDP

• BlueZ PAN

This howto shows you how to configure an Bluetooth Network Access Point (NAP)
and a Personal Area Network User (PANU) accessing the NAP. At the end the author
was able to send some pings into the ETH LAN. This howto creates a private LAN
(192.168.0.x) and allows the members of this private LAN to use the NAPs Internet
connection.

C.2 Network Access

Start the Network Access Point (NAP)

1. Start the HCI Daemon /sbin/hcid (as root)

2. Check the HCI Daemon by typing hcitool dev. The expected result is the
Bluetooth address of your Bluetooth device.

3. Start the Service Discovery Daemon: /usr/sbin/sdpd

4. Now you can start the PAN Daemon using the following command:
pand --listen --role NAP

5. Now see Section C.2 how to start the client! Continue here after wards.

48

APPENDIX C. TCP OVER BLUETOOTH 49

6. Check the kernel log file for the following line:
... New connection from 00:11:22:33:44:55 bnep0
This indicates the successful establishment of a connection.

7. Configure the bnep0 interface:
/sbin/ifconfig bnep0 192.168.0.1

8. Now we have to adapt the routing behavior of the NAP:

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -P FORWARD DROP

iptables -A FORWARD -i bnep0 -o wlan0 -j ACCEPT

iptables -A FORWARD -i wlan0 -o bnep0 -m state --state \-

ESTABLISHED,RELATED -j ACCEPT

iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE

9. Now you should be able to ping the connected host
ping 192.168.0.2

Prepare the PAN User (PANU)

Create the interface’s configuration file ’ifcfg-bnep0’ in the following folder:
/etc/sysconfig/network-scripts/

DEVICE=bnep0

BOOTPROTO=static

IPADDR=192.168.0.x

NETMASK=255.255.255.0

ONBOOT=no

where 1 < x < 254

Start the PAN User (PANU)

1. Start the HCI Daemon
/sbin/hcid

2. To check the HCI Daemon type
hcitool dev

The expected result is the Bluetooth address of your Bluetooth device.

3. Start the Service Discovery Daemon
/usr/sbin/sdpd

4. Try to establish a connection typing:
pand --role PANU --search --service NAP --persist

5. check the kernel log file for the following line:
... New connection from 99:88:77:66:55:44 bnep0
This indicates the successful establishment of a connection.

6. The bnep0 interface is configured automatically using ifcfg-bnep0 script.

APPENDIX C. TCP OVER BLUETOOTH 50

7. The last step is to configure the routing table. Each connection will be routed
through the Bluetooth connection.
/sbin/route add default gw 192.168.0.1 (as root)

8. Now you should be able to ping any host.

C.3 Resources

• BlueZ: Please refer “How To PAN1”

• Linux: Please refer [12], pp 768

1http://bluez.sourceforge.net/contrib/HOWTO-PAN

Appendix D

Installing and Configuring
Impronto Developer Kit For
Linux

Guide how to install and configure Impronto Developer Kit For Linux v1.1. There
exists two versions of Rococo’s Impronto Developer Kit for Linux depending on the
processor architecture it is compiled for (x86 or ARM). This is necessary because of
Impronto brings along some native code.

D.1 Impronto v1.1 for Linux (x86)

• make sure that you have a kernel of version 2.4.20

• make sure that BlueZ and the following components are installed on your com-
puter (see Appendix B)

– BlueZ-SDP 1.2

– BlueZ-Utils 2.3

– BlueZ-Libs 2.4

• make sure that the following libraries are installed on your computer:

– libbluetooth.so.1

– libsdp.so.2

• make sure that Java is installed on your computer (1.3.1 or later)

• to build the examples you need also Ant1

• copy the impronto-1.1-15.i386.rpm to your computer

– /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/\-
impronto-1.1-15.i386.rpm

• to install Rococos Bluetooth Development Kit type the following command:
rpm -ivh --nodeps impronto-1.1-15.i386.rpm

• the install routine creates the following files and directories:

1http://ant.apache.org/

51

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 52

– /usr/share/doc/impronto-1.1/ containing user guide.pdf, examples and
JavaDocs

– /usr/share/java/idev bluez.jar

– /usr/lib/libimpronto.so

• copy the LinuxLicense.txt into the folder /usr/share/java. This folder
must be included in the classpath to run any applications!

– /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/\-
LinuxLicense.txt

• Before developing your own Java Bluetooth Applications check the programming
hints (see Section D.3)

Verify your installation

Test Service Inquiry and Discovery

• to verify the installation build and run the examples:

cd /usr/share/doc/impronto-1.1/examples/browser

ant -f build-example.xml

java -cp /usr/share/java: \-

/usr/share/java/idev_bluez.jar:classes \-

com.rococosoft.impronto.examples.browser.Browser

Testing L2CAP Connections (HelloWorld)

• see Section D.2: Testing L2CAP Connection

Testing RFCOMM Connections (Simple Chat)

• see Section D.2: Testing RFCOMM Connections

D.2 Impronto v1.1 for ARM

Installation

• Make sure that there is a JVM installed on your iPAQ (see the corresponding
tutorial 2 written by Andreas Frei)

• Make sure that BlueZ is installed on your iPAQ (see Appendix B)

• Copy the following files to the iPAQ (e.g. into the root-folder /root):

– /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/\-
impronto 1.1 arm.ipk

– /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/\-
LinuxLicense.txt

2http://ik4.inf.ethz.ch:8999/projects/Wiki.jsp?page=Af ipaq opiejava

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 53

• Install the impronto 1.1 arm.ipk package:
cd /root

ipkg install -force-depends impronto 1.1 arm.ipk

Make sure that the following libraries are installed on your iPAQ: libbluetooth
and libsdp.

• During the installation the following files are created:

– /usr/lib/libimpronto.so - The ARM native library

– /usr/share/idev bluez.jar - The Java runtime library

• When you are running Java Bluetooth application you need to ensure that the
file LinuxLicense.txt is included in the classpath. A program call may look
like this:
java -Djava.library.path=/usr/lib -cp /usr/share/idev bluez.jar:\-
<directory including LinuxLicense.txt>:\-
<directory including your classes> my.prog.Start

• Before developing your own Java Bluetooth applications check the programming
hints (see Section D.3)

Testing L2CAP Connection (HelloWorld)

The test application consists of a client and a server. The client and the server must
run on two different machines. The client looks for a server and establishes a L2CAP
connection to the server. The server sends a “hello world” to client, that’s it. It is
assumed that you already have installed Rococo’s Bluetooth Development Kit on a
desktop computer otherwise see Section D.1.

iPAQ as server

• on the iPAQ:

– Copy the following files to the iPAQ (e.g. into the root folder /root):

• /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/hello.jar

– make sure that the LinuxLicense.txt is on your iPAQ (e.g. into the root
folder /root)

– type the following command

cd /root

java -Djava.library.path=/usr/lib \-

-cp /usr/share/idev_bluez.jar:/root/hello.jar:. \-

ch.ethz.inf.iks.dk.bluetooth.helloWorld.HelloServer

It is expected that the server runs without any exception or other output.

• on your desktop computer:

– make sure that BlueZ is installed on your computer (see Appendix B)

– make sure that Java is installed on your computer (version 1.3.1 or later)

– make sure that Rococos Bluetooth Development Kit for Linux is installed
on your computer (see Section D.1)

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 54

– make sure that the LinuxLicense.txt is in your home (<your home>)

• /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/\-
LinuxLicense.txt

– copy the file hello.jar into your home

• /afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/hello.jar

– type the following command

cd <your home>

java -Djava.library.path=/usr/lib \-

-cp /usr/share/java/idev_bluez.jar:\-

<your home>/hello.jar:<your home> \-

ch.ethz.inf.iks.dk.bluetooth.helloWorld.HelloClient

– expected output:

Searching for Devices...

New Device discovered : 0002C7178A54

Service Name : HelloServer

Connection url :btl2cap://0002C7178A54:1001;\-

authenticate=false;encrypt=false;master=true

Connect to: btl2cap://0002C7178A54:1001;authenticate=false;\-

encrypt=false;master=true

SERVICE_SEARCH_COMPLETED

waiting for a message

Hello World

received the message

iPAQ as client

• on your desktop computer:

– same procedure as above but type the following command on your desktop:

cd <your home>

java -Djava.library.path=/usr/lib \-

-cp /usr/share/java/idev_bluez.jar:\-

<your home>/hello.jar:<your home> \-

ch.ethz.inf.iks.dk.bluetooth.helloWorld.HelloServer

– It is expected that the server runs without any exception or other output.

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 55

• on the iPAQ

– same procedure as above but type the following command on your iPAQ:

cd /root

java -Djava.library.path=/usr/lib \-

-cp /usr/share/idev_bluez.jar:/root/hello.jar:. \-

ch.ethz.inf.iks.dk.bluetooth.helloWorld.HelloClient

– expected output:

Searching for Devices...

New Device discovered : 0002C7178A54

Service Name : HelloServer

Connection url :btl2cap://0002C7178A54:1001;\-

authenticate=false;encrypt=false;master=true

Connect to: btl2cap://0002C7178A54:1001;authenticate=false;\-

encrypt=false;master=true

SERVICE_SEARCH_COMPLETED

waiting for a message

Hello World

received the message

Testing RFCOMM Connections (Simple Chat)

• get the file chat.jar from:
/afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/chat.jar

• start the chat server:

– on a desktop computer:
java -Djava.library.path=/usr/lib -cp ./chat.jar:.:\-
/usr/share/java/idev bluez.jar ChatServer

– on a iPAQ:
java -Djava.library.path=/usr/lib -cp /root/chat.jar:.:\-
/usr/share/idev bluez.jar ChatServer

• Expected output: none

• start the chat client:

– on a desktop computer:
java -Djava.library.path=/usr/lib -cp ./chat.jar:.:\-
/usr/share/java/idev bluez.jar ChatClient

– an a iPAQ:
java -Djava.library.path=/usr/lib -cp /root/chat.jar:.:\-
/usr/share/idev bluez.jar ChatClient

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 56

• expected output:

Searching for Devices...

New Device discovered : 0002C7178A54

Service Name : ChatServer

Connection url :btspp://0002C7178A54:2;authenticate=false;\-

encrypt=false;master=true

SERVICE_SEARCH_COMPLETED

now you can start chatting!

D.3 Java Bluetooth Programming Hints

Starting any program cause a “ServiceRegistrationException”

• Exception:

Exception in thread "main" javax.bluetooth.BluetoothState\-

Exception: Device initialization failed; errno=19

at com.rococosoft.impronto.impl.LocalDeviceImpl.<init>

at aL.a(Unknown Source)

at com.rococosoft.impronto.ImprontoLocalDevice.\-

getImprontoLocalDevice(Unknown Source)

at javax.bluetooth.LocalDevice.<init>(Unknown Source)

at javax.bluetooth.LocalDevice.getLocalDevice

at javax.microedition.io.protocol.btspp.\-

ProtocolHandler.open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

...

• Reason: There is no Bluetooth device connected to your computer.

• Solution:

– Make sure that your Bluetooth device is connected properly to your com-
puter.

– Make sure that the HCI daemon is running.

– Publishing Bluetooth Services: Make sure that the SDP daemon is running.

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 57

Starting any program a “ServiceRegistrationException” is thrown

• Exception:

Exception in thread "main" javax.bluetooth.\-

BluetoothStateException: the device is not connectable

at com.rococosoft.impronto.ImprontoLocalDevice.\-

a(Unknown Source)

at t.acceptAndOpen(Unknown Source)

...

• Reason: HCI daemon is not started.

• Solution: Start the HCI daemon typing: hcid (as root)

Starting a program offering a service a “ServiceRegistrationEx-
ception” is thrown

• Exception:

Exception in thread "main" javax.bluetooth.\-

ServiceRegistrationException: registerRecord: -111

at aA.update(Unknown Source)

at com.rococosoft.impronto.impl.ServiceDatabaseImpl.\-

updateRecord(Unknown Source)

at R.updateRecord(Unknown Source)

at com.rococosoft.impronto.ImprontoLocalDevice.\-

a(Unknown Source)

at t.registerServiceRecord(Unknown Source)

at t.acceptAndOpen(Unknown Source)

...

• Reason: The SDP daemon is not started.

• Solution: Start the SDP daemon typing: /usr/sbin/sdpd (as root)

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 58

The library “libimpronto.so” is not in the library path of Java

• Exception:

Exception in thread "main" java.lang.UnsatisfiedLinkError: \-

no impronto in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:143)

at java.lang.Runtime.loadLibrary0(Runtime.java:788)

at java.lang.System.loadLibrary(System.java:832)

at com.rococosoft.impronto.impl.LocalDeviceImpl.\-

<clinit>(Unknown Source)

at aL.a(Unknown Source)

at com.rococosoft.impronto.ImprontoLocalDevice.\-

getImprontoLocalDevice(Unknown Source)

at javax.bluetooth.LocalDevice.<init>(Unknown Source)

at javax.bluetooth.LocalDevice.\-

getLocalDevice(Unknown Source)

at javax.microedition.io.protocol.btspp.ProtocolHandler.\-

open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

at javax.microedition.io.Connector.open(Unknown Source)

...

• Reason: The JSR-82 implementation of Rococosoft calls some functions of a na-
tive code library. Make sure that the directory that contains the libimpronto.so
is within the environment variable LD LIBRARY PATH.

• Solution: Add the following option to the statement starting your Java ap-
plication -Djava.library.path=/usr/lib. You can also set an environment
variable containing the library path. To do this add the following shell script
lib.sh to /etc/profile.d directory

export LD_LIBRARY_PATH="/usr/lib:$LD_LIBRARY_PATH"

after restarting your XServer the LD LIBRARY PATH is set correctly.

The file “LinuxLicense.txt” is not included in the classpath

• Exeption:

Exception in thread "main" javax.bluetooth.\-

BluetoothStateException: License not found

at com.rococosoft.impronto.impl.LocalDeviceImpl.\-

<init>(Unknown Source)

at aL.a(Unknown Source)

at com.rococosoft.impronto.ImprontoLocalDevice.\-

getImprontoLocalDevice(Unknown Source)

at javax.bluetooth.LocalDevice.<init>(Unknown Source)

at javax.bluetooth.LocalDevice.\-

getLocalDevice(Unknown Source)

...

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 59

• Reason: LinuxLicense.txt is not included in the classpath.

• Solution: make sure that LinuxLicense.txt is in the classpath. You can get it
from:
/afs/ethz.ch/inf/proj/wlab/bluetooth/impronto-1.1/LinuxLicense.txt

Having an “EOFException”

This error can occur having a L2CAP connection between a desktop computer and an
iPAQ.

• Exeption:

Exception in thread "main" java.io.EOFException

at com.rococosoft.impronto.impl.L2CAPConnectionImpl.\-

receive(Unknown Source)

at ch.ethz.inf.iks.dk.bluetooth.simpleChat.Client.\-

<init>(HelloClient.java:83)

at ch.ethz.inf.iks.dk.bluetooth.simpleChat.HelloClient.\-

main(HelloClient.java:15)

• Reason: Your computer is too fast. Probably the send statement running on
your desktop machine does look like this:

...

L2CAPConnection con = ...

...

con.send(data);

..

con.close();

• Solution: Insert a wait statement after the send command:

...

L2CAPConnection con = ...

...

con.send(data);

...

try {

synchronized (this) {

wait(100);

}

} catch (InterruptedException e) {

e.printStackTrace();

}

...

con.close();

APPENDIX D. INSTALLING AND CONFIGURING IMPRONTO V1.1 60

D.4 Environment Variables

Every Java Bluetooth application using Impronto needs to have access to the
libimpronto.so library. Therefore the folder containing this library must set in
a environment variable. This environment variable LD LIBRARY PATH can be set
on the shell that executes the program or passed as an argument invoking java
(-Djava.library.path). The first method is the preferred one because it can be
automated to take place at start time. The following instruction show how to set the
LD LIBRARY PATH at start time.

• cd /etc/profile.d

• create as root a new text file called lib.sh containing the following line:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib

• chmod 755 path.sh

• after restarting the XServer (Log out and press ALT + CTRL + BACKSPACE)
these directory is included in the LD LIBRARY PATH environment variable.

Appendix E

Developing Java Bluetooth
Applications

E.1 Using Multiple Bluetooth Devices

It is possible to connect multiple Bluetooth devices to a single computer. But a Java
Bluetooth application can only operate on one device. The device, which an application
uses, can be specified by setting an environment variable (bluez device). If this
variable is empty the default device hci0 is accessed by any application. Since it is
not possible to modify any environment variables out of a Java application that has to
be initialized before the application is started. Use the bash’s export statement to set
the bluez device variable.

E.1.1 Developing with Eclipse

Developing Java Bluetooth applications using Eclipse1 the variable bluez device has
to be initialized before Eclipse is launched. You can do this by setting the bluez device

in shell where Eclipse is going to be launched. Having multiple devices the Integrated
Development Environment (IDE) has to be launched once per used device since it is
not possible to modify environment variables out of Java programs.

Using Eclipse there are a few more pitfalls. Having more than one instance of
Eclipse operating on a single workspace can cause irreversible crashes. To avoid this
problem create the needed number of copies of your workspace, so each eclipse is able
to work on its own workspace. The drawback of this solution is that the source code
becomes replicated and changes in the sources are not propagated to the copies created.
This problem can be solved by linking the original workspace’s source code folder into
the copies of the workspace. Make sure that your sources are not located in the root
folder of your project’s folder which is located in the folder workspace. It is strongly
recommended to create sub folders in your project folder containing the source files such
as src or junit (check the documentation of Eclipse how to create such source folders).
Delete all of these source folders in the copied workspaces. Create symbolic links to
link the original workspace’s sources to its copies using the corresponding command
ln -s (root privileges are required). After having created these copies you can start
one instance of Eclipse per workspace. The workspace, that Eclipse is working on,
can be specified using the option -data while launching Eclipse. At the end of the
day you have got replicated workspaces whereas all of them have the same source files.

1http://www.eclipse.org

61

APPENDIX E. DEVELOPING JAVA BLUETOOTH APPLICATIONS 62

Listing E.1: Shell script to start Eclipse

1 export bluez device=hci1
2 eclipse −data ˜/myWorkspace

Listing E.1 contains a start script which launches Eclipse using the specified workspace
(myWorkspace in the users home folder) and Bluetooth device (hci1).

Appendix F

Enabling Bluetooth Security

Bluetooth offers three security mechanisms: Authorization, authentication and encryp-
tion. Rococo’s Java/Bluetooth stack offers authentication and encryption. Authoriza-
tion is applied by the underlaying BlueZ Bluetooth stack. Such a mechanism can be
requested by one of the two devices participating. To see the details of the security
mechanisms JABWT and Rococo’s DevKit for Linux offer, see [17] pages 53 – 56. The
described settings take place in the following classes of the messaging system imple-
mented:

ch.ethz.iks.jxme.bluetooth.impl.BTEndpointClient
and

ch.ethz.iks.jxme.bluetooth.impl.BTEndpointServer
Keep in mind that e.g. encryption requires authentication otherwise a BluetoothCon-
nectionException will be thrown [17].

Authentication is based on challenge/response mechanism that requires a com-
mon link key. This link key is generated during the first time a connection be-
tween two devices is established based on a PIN code. To set the PIN code edit
/etc/bluetooth/bluepin file. This setting becomes active after restarting the HCI
daemon.

BlueZ can be configured to ask the PIN establishing a connection. Thereto a so
called PIN helper is used. Check out the BlueZ documentation how to install and
configure such a PIN helper. BlueZ comes along with a graphical PIN helper which is
called bluepin and is located in the /bin folder. Using bluepin on RedHat 9 causes
errors. This bug has been fixed by Maxim Krasnyansky. A fixed release of bluepin
was released in July 2003. If you have any problems with bluepin download the newest
version from the BlueZ web page 1 and check the corresponding message in the mail
archive2.

1http://bluez.sourceforge.net/download/bluepin
2http://sourceforge.net/mailarchive/message.php?msg id=5687993

63

Appendix G

Benchmarks

This chapter contains some additional information about the benchmarks and the con-
figuration of systems that were used.

G.1 Configuration

The Bluetooth devices have been placed in a distance of 1 m. The configuration of
the involved computers is given in Table G.1. During the measurements the IBM T30
played the role of the server and AMD Athlon 1400 played the role of the client. Both
machine’s operating system was RedHat 9. The Bluetooth support was given by the
recompiled 2.4.20-8 kernel delivered by RedHat. This kernel is already patched and
could be used out of the box.

Table G.1: Configuration of the test systems

IBM T30 AMD Athlon 1400

Processor Intel P4 mobile 2.0 GHz AMD Athlon 1.4 GHz
RAM 512 MB 512 MB
Bluetooth Device IBM Daughter Card Acer BT-500
OS RedHat 9 RedHat 9
Kernel RedHat 2.4.20-8 RedHat 2.4.20-8
Java 1.4.1 1.4.1
Java BT Stack Impronto v1.1 Impronto v1.1
BlueZ Library v2.4 v2.4
BlueZ Utils v2.3 v2.3
BlueZ PAN v1.1 v1.1
BlueZ SDP v1.2 v1.2

G.2 Data Ascertainment

This section includes the raw data of the measurement and some figures that have not
been shown in Chapter 4. Table G.2 and Table G.3 are containing the raw data of the
measurements. The following figures illustrate the measured data.

64

APPENDIX G. BENCHMARKS 65

� � � � � � � � � 	 � � �
� � � � � � � � � � � � � � � � 	 ���
�

�
���
� � ���
� � ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���
�
� ���

�� � � � �� ��� � � � �� � �� � � � �� � ��� � � � �� � ��� � � � ���� ���� �� � ��� �� ��� �� ��� �� ��� �� � ��

� ��

(a) RFCOMM

! " # $ % & ' () * "
! "+" "
"�$ "
% "�& "
' "�("
) "�*
!

&+!,!
"
!+!,!
"
&+!,!
#,!+!,!
#,&+!,!
$,!+!,!
$,&+!,!
%,!+!,!
%,&+!,!
&,!+!,!

-/. 0 1 2
3
4
5/.
0 1 2
3
6 7
-8. 0 1 2�3
7
9
48. 0 1 2�3
9,6 78. 0 1 2�3
6;: .
7/: .
5<: .
-/: .
6 4/: .
=
7/: .
4
5/: .
6 7
-8: .

>@?BADCFEBG H I�J

K L
MN

(b) TCP/IP

Figure G.1: Measured time [ms] by given amount of data

A
P

P
E

N
D

IX
G

.
B

E
N

C
H

M
A

R
K

S
66

T
a
b
le
G
.2
:
R
F
C
O
M
M

D
ata

A
scertain

m
en
t

[ms] 8 bytes 64 bytes 128 bytes 256 bytes 512 bytes 1 kb 2 kb 4 kb 8 kb 16 kb 32 kb 64 kb 128 kb
34 34 53 50 58 52 75 130 205 1098 1050 1490 3730
35 33 53 53 47 52 81 88 171 839 1066 2092 3908
29 34 73 51 59 49 61 126 172 958 1119 2390 3889
30 50 55 49 55 44 53 97 230 951 1258 3057 3954
27 43 47 45 56 45 48 90 230 1673 1301 2658 4414
28 49 48 64 56 56 52 91 229 743 1186 2413 3847
29 33 45 65 52 68 71 135 241 692 1370 2629 4589
37 41 49 74 62 63 82 129 173 644 1242 2376 4861
35 38 57 70 62 47 70 384 180 670 1238 2316 4792
33 30 51 43 57 49 62 135 173 789 1171 2342 4567
34 35 56 52 51 48 52 126 179 915 999 2335 4448
27 28 54 56 58 54 60 125 235 694 988 2124 4441
30 37 56 44 54 51 55 90 248 701 1298 2013 4474
34 41 52 45 56 41 68 98 285 701 1231 2144 4465
31 35 59 50 57 48 53 90 246 1041 1196 2356 4492
34 46 49 47 56 54 49 102 245 613 1216 2381 4528
28 33 37 47 60 51 48 133 248 962 1210 2334 4491
35 34 41 46 57 46 70 121 242 570 1196 2345 4534
33 48 40 55 52 61 74 161 249 684 1279 2487 4471
36 49 41 57 61 51 83 126 251 666 1264 2389 6300
33 38 39 52 49 44 67 122 248 774 1360 2371 3900

Min 27 28 37 43 49 41 48 90 173 570 988 2013 3847
Max 37 49 59 74 62 68 83 384 285 1673 1370 2658 6300
Avg 32.00 38.52 50.24 53.10 55.95 51.14 63.52 128.52 222.86 827.52 1201.81 2335.33 4433.1
Std. Dev. 3.13 6.68 8.32 8.64 4.03 6.63 11.65 61.92 34.33 243.82 106.28 292.49 538.22
ms/byte 4.00 0.60 0.39 0.21 0.11 0.05 0.03 0.03 0.03 0.05 0.04 0.04 0.03

A
P

P
E

N
D

IX
G

.
B

E
N

C
H

M
A

R
K

S
67

T
a
b
le
G
.3
:
T
C
P
/I
P
D
at
a
A
sc
er
ta
in
m
en
t

[ms] 8 bytes 64 bytes 128 bytes 256 bytes 512 bytes 1 kb 2 kb 4 kb 8 kb 16 kb 32 kb 64 kb 128 kb
55 53 60 52 53 116 61 141 261 381 931 2287 4503
38 44 62 44 49 106 56 127 275 375 896 2151 4222
30 47 40 44 51 87 71 136 277 382 920 2129 4163
32 44 41 52 59 101 65 132 277 447 897 2097 4149
33 43 44 49 47 97 61 154 271 479 904 2142 4166
31 43 42 42 57 91 69 128 224 493 915 2163 4181
34 46 53 52 58 94 74 127 227 483 911 2149 4190
32 45 43 51 51 103 85 160 222 486 919 2160 4158
38 39 43 45 56 91 74 144 222 450 925 2248 4190
38 43 38 43 54 92 88 134 218 459 903 2142 4199
38 45 38 46 57 100 83 133 223 459 927 2207 4203
34 46 38 38 46 101 71 128 242 374 1000 2120 4168
32 43 41 38 57 88 75 127 238 464 1079 2198 4730
41 46 35 41 58 91 72 132 241 514 1134 2153 4337
32 48 34 40 49 100 99 127 250 518 1141 2186 4366
33 43 49 36 55 101 94 152 249 552 1161 2187 4810
30 37 36 34 53 104 80 131 219 526 1172 2154 4442
34 39 35 37 55 94 85 125 240 543 1065 2227 4391
40 50 39 41 61 94 76 139 234 492 1070 2326 4161
33 40 39 45 50 107 78 145 223 495 1067 2195 4172
38 42 43 49 48 95 77 134 222 497 1070 2330 4172

Min 30 37 34 34 46 87 56 125 218 374 896 2097 4149
Max 55 53 62 52 61 116 99 160 277 552 1172 2330 4810
Avg 35.52 44.10 42.52 43.76 53.52 97.76 75.90 136.00 240.71 469.95 1000.33 2188.14 4289.19
Std. Dev. 5.56 3.74 7.63 5.57 4.30 7.16 10.78 9.95 20.59 53.58 100.49 64.01 191.20
ms/byte 4.44 0.69 0.33 0.17 0.10 0.10 0.04 0.03 0.03 0.03 0.03 0.03 0.03

APPENDIX G. BENCHMARKS 68

��� � � �
�

�	� �
� � � �

 � ���
� � � �

� �
��� � � �

�

�
 � �
� � � �
 � � � � � � �
 � � � � � � � �
 � �

�
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

� ��
�

(a) RFCOMM

��� ! "$# %	&�� $! "$# ')()���$! ")# (�*�%��$! "�# *+' (��$! ")# '�, � (�, � &+, � �-, � ')%�, � .	(�, � %	&�, � '$(���,$�/
*�/�/
')/)/�/
')*)/�/
(/)/�/
(*)/�/
.	/)/�/
.	*)/�/
&	/)/�/
&	*)/�/
*	/)/�/

0�132 1

4 56
7

(b) TCP/IP

Figure G.2: High and low water marks

Figure G.3: Comparison of RFCOMM vs. TCP/IP

8�9 :$; <$= >	?�9 : ; < = @)A)89$: ; <)= A	B)>9$: ; <)= B+@ A9$: ; <)= @�C 9 A�C 9 ?DC 9 8�C 9 @)>�C 9 E	A�C 9 >	?�C 9 @)A)8�CF
B	F)F
@)F)F)F
@)B)F)F
A	F)F)F
A	B)F)F
E	F)F)F
E	B)F)F
?	F)F)F
?	B)F)F

G3H)I3JLKLKM�IONP QR
S

APPENDIX G. BENCHMARKS 69

Figure G.4: Comparison of the average transmission time

��� � � ��� �
	�� � � �
� �
��� � � ��� ��
��� � � ��� ��� �� � � ��� ��� � �� � 	�� � ��� � � ��� � ���� � ��	�� � �
��� �
�

��� �
�

�
� �

�� �

�
��� �
	

	�� �

��� �������
� �!

" #$
%

Figure G.5: Comparison of the Standard Deviations

&�' () *
+ , -�' () *�+ . /�&
' () *�+

/ 0�,
' () *�+

0�. /
' () *�+

.21 ' /�1 ' -�1 ' &�1 ' . ,�1 ' 3 /�1 ' ,
-�1 ' . /�&�1 '
4
0 4
. 4�4
. 0�4
/
4�4
/
0�4
3
4�4
3
0�4
-
4�4
-
0�4
0
4�4
0
0�4

5�6 7�8�9�9
: 7!; < = ;

Appendix H

Compiling CLDC Personal
Basis Profile

H.1 Installing J2ME Personal Basis Profile (binary,
Redhat 9)

This section describes how to install the precompiled Personal Basis Profile on a Linux
box. It has been tested on a RedHat 9 installation.

• Download the following files:

– /afs/ethz.ch/inf/proj/wlab/j2me/cdc-personal-basis/\-
cdc-personal-basis-i686.tar.gz

– /afs/ethz.ch/inf/proj/wlab/j2me/cdc-personal-basis/\-
microwindows-i686.tar.gz

• Untar and install these archives

tar -xzvf cdc-personal-basis-i686.tar.gz

tar -xzvf microwindows-i686.tar.gz

mv cdc /usr/local

mv microwin /usr/local

• Verify the installation running the HelloWorld sample:

cd /usr/local/cdc

./bin/cvm -Dawt.toolkit=java.awt.MWToolkit \-

-Djava.awt.graphicsenv=java.awt.MWGraphicsEnvironment \-

Xbootclasspath=./lib/basis.jar:./democlasses.zip \-

HelloWorld

70

APPENDIX H. COMPILING CLDC PERSONAL BASIS PROFILE 71

H.2 Compiling J2ME Personal Basis Profile (Red-
Hat 9)

• Before you can start installing J2ME Personal Profile you need to download and
build Microwindows (Sun Modified Edition)

– download Microwindows(modified)1

– mkdir /usr/local/mircowin

– cd /usr/local/microwin/

– save the file microwin-sun-11 jun 2002.tar.gz in the created folder

– tar -xzvf microwin-sun-11 jun 2002.tar.gz

• J2ME Personal Basis Profile

– download J2ME Personal Basis Profile2

– unzip j2me pb-1 0-fcs-src-b45-linux-i686-15 jul 2002.zip

– if you are using bash you have to edit basis/build/share/defs.mk and
replace the line containing SHELL=ksh -e by SHELL=bash -e

– cd basis/build/linux-i686

– make the Personal Basis Profile executing the following command:

make J2ME_CLASSLIB=basis AWT_IMPLEMENTATION=microwindows \-

JDK_HOME=/usr/java/j2sdk1.4.1_02/bin/ \-

CVM_GNU_TOOLS_PATH=/usr/bin \-

CVM_JVMDI=false CVM_DEBUG=false

– NOTE: I wasn’t able to build the Personal Basis Profile using j2sdk1.3.1
as recommended in the release notes and in the documentation. j2sdk1.4.1
worked perfectly fine.

– to verify your installation run the HelloWorld sample:

cd basis/build/linux-i686/democlasses

../bin/cvm -Dawt.toolkit=java.awt.MWToolkit \-

-Djava.awt.graphicsenv=java.awt.MWGraphicsEnvironment \-

-Xbootclasspath=../lib/basis.jar HelloWorld

1http://experimentalstuff.sunlabs.com/Technologies/mwpbp/download.html
2http://wwws.sun.com/software/communitysource/j2me/pbp/download.html

Appendix I

Mail about Proxyless JXME

���������
	
��������������������
�
��	������� !����"������������
�
��	������� $#�%�&
���
	
�'#�%�&�(�&
��)�*+�
,�*����-��&�&
��.�)
��)
��%�)�/-�0(�&�%
�1(�%�&
��&�	�&�*32�&�%�����4
5

6�%�&�78� 9���*��
��(�����/�:;.�#�)���*�)$<
9���*��
��(�����/�:;.=">#�)���*�)
?"�"�">@

A�)
����� B�����CED�FG����*3H
I�I�JKD�LM�ND�O�>H-L3P�I�Q�I�I

��&+� ��/��
%��
)
�'6�%��
�$<�2�%��
�
?���/
2+"�"�">@

R�R+� A�)�/
���
*S9�)���(�(��
*��$<��
)�/
���
*�T
)
?�����������/-�"�"�">@

U
V1W�X�Y-Z�[�\
]�^

_�`
\�X�acb�d
Z'e�d�f-Z3Z�[�g-h�eijWM]'e�d�fSk�\�eKl�X
d�monqp
_�WrV
]'\�XKd�g-[�Xs]�d�f-Z�t�[3V�X
V�u�V�\�u�V�v
[�b�d
Z
w�x
wyb;Z�\�k�[�m-d
Z�lMiEz�u3V
]'\Gg-h�\
t�[3u�d3[�a-t�`
\�X
{�[3V�Y
[�\
]'\�X�Yst�d�h�h�\�|-d
Z�\�u�[3d�X
V�k�g-h�[�k�[�X
u�\�u�V�d�X-]Mi~}�V
l�[3e�d�f�^Sz'u�d�d'`
\�v
[3\Gg�Z�d�u�d�u�e�g-[�b�d
Z3z�X�b;Z�\
]�u
Z�f-t�u�f-Z�[���h�[
]�]
w�x
wyb;Z�\�k�[�m-d
Z�lyb�d
Z3]0k�\�h�h'Y
[�v
V
t�[
]'�G|-\
]�V
t�\�h�h�eGg�Z�d�a
e�h�[
]�]3nqp;���i

��f-Z�Z�[�X
u�h�e�^Sz'\�kcV�XKu�`
[Gg�Z�d
t�[
]�]'d�b$Y
[
]�V�{�X
V�X
{3\�b�f
h�h�b�h�[�Y
{�[K]0k�\�h�h�b�d�d�u�g�Z�V�X
u
g�Z�d�a
e�h�[
]�]3nqp;���G|-\
]�[�YKd�XSk�e3h�[�\
Z�X
V�X
{
]yb;Z�d�kcu�`
[Gg�Z�d�u�d�u�e�g-[iEz�m-d�f
h�YKh�V
l�[3u�d
V�X�v
V�u�[3e�d�fKu�dKt�d�X
u
Z�V�|
f
u�[3u�d3u�`
[Gg�Z�d�a
e�h�[
]�]3��a�k�[3[�b�b�d
Z�uG|-\
]�[�YKd�XKe�d�f-Z
[�a�g-[
Z�V�[�X-t�[Gm-V�u�`K��_K\�X�Y'�-�
wMi�_�`
[Kt�d�k�k�f�X
V�u�eGg-h�\�XKV
]'u�d3V�k�g-h�[�k�[�X
u3��_K\
]�m-[�h�h
\�X�YKu�`
\�u���]�m
`
[
Z�[3e�d�f-Z3t�d�X
u
Z�V�|
f
u�V�d�X-]�m-V�h�hG|-['`
V�{�`
h�e'f-]�[�b�f
hi

����f
h�Y
V�g

W�X�Y-Z�[�\
]3��Z�[�VGm�Z�d�u�[�

�
� U
V3��f
h�Y
[�[�gM^
�
� u�`
\�X-l�]yb�d
Z'e�d�f-Z'V�X
u�[
Z�[
]�u�^SzGY
V�Y�X���uKl�X
d�msu�`
\�u3u�`
[
Z�[Gm-\
]'\�h
Z�[�\�Y
e3\�X
� \�X�X
d�f�X-t�[�k�[�X
u3\�uKn�\�v
\���X
[3V�XKu�`
V
]GY
V
Z�[
t�u�V�d�X+i
� z'u�`
V�X-l'u�`
[3V�k�g-h�[�k�[�X
u�\�u�V�d�X'm-[3\
Z�[Gm-d
Z�l�V�X
{3d�XsZ�V�{�`
u'X
d�msV
]Gv
[
Z�e
� g�Z�[�h�V�k�V�X
\
Z�e3\�X�Yst�\�X'|-[3V�k�g�Z�d�v
[�YK\3h�d�ui
�
� zG`
\�v
[3u�dK]�\�e3u�`
\�u3\$k�\
]�u�[
Z3]�u�f�Y
[�X
u�^$��\�X
V�[�h3��\�[�g�g-[�h�V�^$V
]3t�f-Z�Z�[�X
u�h�e
� V�k�g-h�[�k�[�X
u�V�X
{3u�`
[G|-h�f
[�u�d�d�u�`s��a�k�[i�_�`
[
Z�[3\
Z�[K]�u�V�h�hK]�d�k�[3V�k�g-h�[�k�[�X
u�\�u�V�d�X
� m-d
Z�l'd�X
{�d�V�X
{3\�X�Yst�[
Z�u�\�V�X
h�e3\3h�d�u3d�b$Y
d
t�f�k�[�X
u�\�u�V�d�X+i
�
� �
X
u�V�hGm-[3{�[�u3u�`
[3V�k�g-h�[�k�[�X
u�\�u�V�d�XKu�d3\$k�d
Z�[K]�u�\�|-h�['v
[
Z�]�V�d�Xsz3t�d�f
h�YK{�V�v
[
� e�d�fs]�d�k�[3V�X�b�d
Z0k�\�u�V�d�XK\�|-d�f
u3u�`
[3V�X�b;Z�\
]�u
Z�f-t�u�f-Z�[i
�
���-��� ['Y
[
t�V�Y
[�YKu�d3u�\
l�[3d�v
[
Z'\�h�k�d
]�u3\�h�h3d�bSu�`
[$k�[�u�`
d�Y-]yb;Z�d�kcu�`
[K��a�k�[
� V�k�g-h�[�k�[�X
u�\�u�V�d�XK\�X�YSk�d�v
[�YKV�u3u�d3\�XKV�X
u�[
Z�b�\
t�[�^$u�`
V
]'\�h�h�d�m�]'u�d3V�k�g-h�[�k�[�X
u
� \�h�h3V�X
u�[
Z�b�\
t�[
]yb�d
ZGY
V�b�b�[
Z�[�X
u3u
Z�\�X-]qg-d
Z�u3h�\�e�[
Z�]�^E|-[
]�V�Y
[G|-h�f
[�u�d�d�u�`�^Em-['`
\�v
[
� V�k�g-h�[�k�[�X
u�[�YK\G�-�
w'}�\�e�[
Z�m
`
V
t�`s��f-]�u'f-]�[
]1k�f
h�u�V
t�\
]�u3V�XK\Gg�Z�V�v
\�u�[3}�\�X+i
�
� x � _�`
[G|-h�f
[�u�d�d�u�`KV�k�g-h�[�k�[�X
u�\�u�V�d�X3f-]�[
]'u�`
[KZ�d
t�d
t�d3h�\�e�[
Z'u�d'`
\�v
[3u�`
[Kn�������x
� \
]'\K]�u�\�X�Y
\
Z�Y$WMw�zyb�d
Z3t�d�k�k�f�X
V
t�\�u�V�d�X+i~��d
t�d
t�d3V�u
]�[�h�b$f-]�[
]'u�`
[G|-h�f
[���]�u�\
t�lMi
�

72

APPENDIX I. MAIL ABOUT PROXYLESS JXME 73

���������
	�	�����������
�� ����������	�������������������
�����!�����	������"
��$#
�
��%��'&�������������������������(�*)
�����������������������
�����+�����
����	����
�-,."������
���
������������/��
������0������������������	�������������������	���������/����0������������(�*)
���(���������������������
���
��������������"1	���	������2#
�
��3��'&����������������������/�������������������������
����)
���-465���)
���������7�	�����)1�2#8&��
������	������������������
/�0�	�����)1�9�
��������"
��������
����)
���
� ����:#<;����������
�����������������)
��)
���*=>����������@?A��)
��)
���9"
�����(�-������������"
���������
��0�	�����)1�������"1	������
�����������0 ����������0����������������0�	�����)B=
�
��C����
��������"
����������-4��
�����������+����������"
��	������
� &����
������������/���������������/�������
	�����	����������+D�E����$#F��	�0�����������������������	-,���������
���
����	������� ����	���������"
��������	�������:#
�
����������	��-,
�
��G���
	������
�
����H���������)1�����0��+5���"
�����1	������$I
���
����J���G���
	������-,
���
����C��(�K����	�����E
��������������/�����+����������������������"
������
�����0�������LNMPO�Q�G25�C�����"��������
���������
	������������������-46LNM�R(G2S�LNMPO�Q$#TGB��L�������U�����
����������������
���������������
���
�������
�����
��	�/���������4P	�������	��
�����
	���V���������LNMPO�Q����������
��������@?A��	�����������������)1	���E������-,
����	���������������+	����
�2#.C��(�W���������)1	������������-4�)����������0�����0���������	����������������>�����
������������
��������"
��������������-4>�������9�
����/2#8&�� ����������������������
��������������>G25�C2#
���
����X���
����, ������������������	�������������������(�����
��	�/-,>C9�
���9�
�������	����0��-4��
������
��������������"
��	�������������
��	�/�����0���������	�0������0K4Y��	N�
��	��B,>���������������������(���-�������������
������������	���0��K4P	��(�W�����
	9�
��	�/�����������+�����"
����-4Y���K4P	��(�W���������(���-����������-4�4Y��	����2#
���
����Z�����/����0K4Y��	N�
��	������������
	��������	���"���������
������LNMPO�Q�,
���
����V�H�����������)
���
����G���
	�������[�	������1	������$I
���
���
������J�� \��������
�����
�������������9)1	���D���������������
������	����������	��������0�, ����C��������	�����������������
��@?A�������
���
������������LNMPO�Q����4P	�������	��
�����
	����������)+�-4�"
���������������������������������	�����$#
����� O���!��� ����������	�����+�����������
������������	��-4Y��	�������/���������	������K4(������D�E����K4(��
������������������K4Y��	�������D�EY������������-,
�������
���������������9"
����������������	���������(�������������0��-=]G����������	�!��������������������������	��������
�������������^?_��������"
�������������
	��-4>������������������+�N�
���������`4P	��(������������	�����������������������
������"
�������������������4P	�������	��
�����
	��$#
�����
����� &�����	������������
��	�/����0����������������	�����������B,.�
��������/���������������LNMPO�Q�������������������
����������������������������/���������	����(�����-4>��������������������(�������������������	����������	*4Y�����K4Y��	
�����WaYLNMPO�Q�a���������2#TG2���������������
����	��������"������������0���LNMPO�Q��������������������(������
����������
����,.������	�������������
���K4(������D�E�������������������(���-������������$#8&�����������"����������
�����WaYLNMPO�Q�a��>���������(���-��������������
��������������	KaYLNMPO�Q�a
���������������������	9"
���������������:#8&�����	������������������	���������������������0�������������	������������	
�������������`4P	��(�����
��	�/-,."�����������������������K4Y����������(���������������$#
�����
��������������	��-,
�����
������G���
	������

Bibliography

[1] aboutIT. Bluetooth: Die Zukunft kabelloser Kommunikation.
http://www.aboutit.de/view.php?ziel=/01/25/07.html, July 2001.

[2] Bluetooth Special Interest Group (SIG). Specification of the Bluetooth System,
Version 1.1. Bluetooth Special Interest Group, 2001.

[3] Ericsson Inc. Bluetooth History.
http://www.ericsson.com/bluetooth/companyove/history-bl/, 2003.

[4] A. Frei, A. Popovici, and G. Alonso. Event based systems as adaptive middleware
platforms. In Workshop of the 17th Europeean Conference for Object-Oriented
Programming, July 2003.

[5] Heise News Ticker. Bluetooth 1.2 kommt.
http://www.heise.de/newsticker/data/jk-17.06.03-004/, 2003.

[6] M. Holtmann. Bluetooth hardware support for bluez
. http://www.holtmann.org/linux/bluetooth/devices.html, February 2002.

[7] M. Holtmann. BlueZ User Mailing List.
http://sourceforge.net/mailarchive/message.php?msg id=5846139, August 2003.

[8] M. Holtmann. CSR BlueCore specific information.
http://www.holtmann.org/linux/bluetooth/csr.html, June 2003.

[9] M. Holtmann. Von Pinguinen mit blauen Zhnen. 2003.

[10] Internet Engineering Task Force (IETF). A UUID URN Namespace.
http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-00.txt,
October 2002.

[11] D. Klammer, G. McNutt, B. Senese, and J. Bray. Bluetooth Application Devel-
oper’s Guide: The Short Range Interconnect Solution. Syngress Publishing Inc.,
first edition, 2002.

[12] M. Kofler. Linux: Installation, Konfiguration, Anwendung. Addison-Wesley, 2002.

[13] Open Source. Project BlueZ web site. http://bluez.sourceforge.net, 2000.

[14] Open Source. Project JXTA web site. http://www.jxta.org, 2001.

[15] Open Source. Project JXME web site. http://jxme.jxta.org/servlets/ProjectHome,
2002.

[16] J. Oraskari. Bluetooth versus WLAN IEEE 802.11x.

[17] Rococo Software. User Guide: Impronto Developer Kit For Linux, 2001-2003.

[18] B. Siddiqui. JXTA4J2ME Implementation Architecture, November 2002.

74

BIBLIOGRAPHY 75

[19] J. Stuphorn. Was ist Bluetooth.
http://www.holtmann.org/lecture/bluetooth/bt slides 021031.pdf, October 2002.

[20] D. Suvak. Irda and bluetooth: A complementary comparison. 2000.

[21] A. S. Tannenbaum. Computer Networks. Prentice Hall, Inc., third edition, 1996.

[22] R. Wattenhofer. Lecture: Mobile Computing, 2003.

List of Figures

1.1 Illustration of the Terminology at Different layers 5

2.1 Piconet Overview . 7
2.2 Scatternet Overview . 8
2.3 Bluetooth Protocol Stack Overview 9
2.4 Fragment of the BlueZ Bluetooth Protocol Stack Overview . . . 14

3.1 UML Diagram illustrating a PeerNetwork 19
3.2 Data Processing of Incoming Data 20
3.3 Data Processing of Outgoing Data 20
3.4 UML Diagram of a Message and its Elements 21
3.5 Message Header . 23

4.1 Overview of RFCOMM and TCP/IP Stack 26
4.2 Architecture Overview of Benchmark Environment 26
4.3 Illustration of the measured time 27
4.4 Dependency Graph of the Benchmark Environment 28
4.5 Measured time by given amount of data 29
4.6 Comparison of the Standard Deviation 30
4.7 Comparison of the average round trip time per byte 31

5.1 BAD2 User Interface . 33
5.2 Message Sequence Diagram . 34

G.1 Measured time by given amount of data 65
G.2 High and low water marks . 68
G.3 Comparison of RFCOMM vs. TCP/IP 68
G.4 Comparison of the average transmission time 69
G.5 Comparison of the Standard Deviations 69

76

List of Tables

2.1 Bluetooth Radio Power Classes 6
2.2 Brief Comparison of IrDA, Bluetooth, and WLAN 12
2.3 Brief Comparison of Different Stacks 15

3.1 Predefined Namespaces . 22
3.2 Description of the Message Header 22
3.3 Description of a Message Element 23
3.4 Description of a Message Element (user defined mime type) . . . 23

5.1 Example of an Initial Message . 34
5.2 Example of a Notification Message 35
5.3 Example of an Acknowledgment 35

G.1 Configuration of the test systems 64
G.2 RFCOMM Data Ascertainment 66
G.3 TCP/IP Data Ascertainment . 67

77

Listings

3.1 Sample Message . 21
3.2 Code Snippet of Class BTConnectionHandle 24
B.1 Shell script to create the devices (create dev) 43
E.1 Shell script to start Eclipse . 62

78

