
ETH Library

The implementation of the CPS
scenario

Report

Author(s):
Hausheer, David; Pandey, Jayesh; Stiller, Burkhard

Publication date:
2002-08

Permanent link:
https://doi.org/10.3929/ethz-a-004605707

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 150

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004605707
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

TIK-Report
Nr. 150, August 2002

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

David Hausheer, Jayesh Pandey,
Burkhard Stiller

The Implementation of the CPS Scenario

David Hausheer, Jayesh Pandey, Burkhard Stiller:
The Implementation of the CPS Scenario
August 2002
Version 1
TIK-Report Nr. 150

Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (ETH) Zurich

Institut für Technische Informatik und Kommunikationsnetze,
Eidgenössische Technische Hochschule Zürich

Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzerland

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 1 of 41

Market Managed Multi-service Internet

M3I
European Fifth Framework Project IST-1999-11429

Deliverable 15.3 Part II
The Implementation of the CPS Scenario

The M3I Consortium

Hewlett-Packard Ltd, Bristol UK (Coordinator)
BT Research, Ipswich UK
Eidgenössische Technische Hochschule, Zürich, CH
Darmstadt University of Technology, Darmstadt D
Telenor, Oslo N
Athens University of Economics and Business, Athens GR
Forschungszentrum Telekommunikation Wien, A

© Copyright 2002, the Members of the M3I Consortium

For more information on this document or the M3I project,
please contact:

Hewlett-Packard Ltd,
European Projects Office,
Filton Road,
Stoke Gifford,
BRISTOL BS34 8QZ,
UK
Phone: (+44) 117-312-8631
Fax: (+44) 117-312-9285
E-mail: sandy_johnstone@hp.com

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 2 of 41 Version 1.0

Document Control

Title: The Implementation of the CPS Scenario

Type: Integration and Implementation Documentation

Editor: Burkhard Stiller ETH Zürich, TIK

E-mail: stiller@tik.ee.ethz.ch

Origin: ETH Zürich, TIK

Doc ID: WP6-CAS-CPS-Impl-1.0

AMENDMENT HISTORY

Legal Notices
The information in this document is subject to change without notice.
The Members of the M3I Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members
of the M3I Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Version Date Author Description/Comments

V 1.0 February 8, 2002 David Hausheer, Jayesh Pan-
dey, Burkhard Stiller

Final version

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 3 of 41

Table of Content

1 Introduction ..5

2 CPS Fine Design and Implementation ...5
2.1 Overview ... 5

2.2 Development Environment .. 7

2.3 Package Structure .. 7

2.4 Component Type Classes ... 8
2.4.1 Fluid ... 8
2.4.2 CPSMediation .. 9
2.4.3 CPSConnector ... 9
2.4.4 UDPCPSTariffWriter .. 9
2.4.5 CPSBilling .. 11

2.5 Data Type Classes .. 11
2.5.1 FlowDataEntry ... 11
2.5.2 CPSMediationRecord .. 12
2.5.3 CPSCustomer .. 12
2.5.4 CPSSessionFragment ... 13
2.5.5 CPSSessionCharacterisation .. 13
2.5.6 CPSTariff ... 13

2.6 Data Flows .. 14

2.7 User Interface ... 15

2.8 Connection Setup ... 15

3 Networking Environment ..16
3.1 Overview Testbed ... 16

3.2 DiffServ Environment .. 17

3.3 Component Location ... 17

4 Experiment Setup ..18
4.1 Traffic Generation ... 18

4.1.1 Requirements .. 18
4.1.2 Tools Evaluation .. 18
4.1.3 Traffic Pattern .. 19

4.2 DBS Configuration .. 20

4.3 Experiment Parameters and Timescales .. 21

4.4 Threshold Calculation ... 22

4.5 Experiment Invocation Process (Running the Scenario) .. 24

5 Experiment Results ...26
5.1 The Relevance of the Traffic Pattern .. 27

5.2 Parameter Tuning ... 29
5.2.1 Varying the Charging Interval .. 29
5.2.2 Varying the CPS Thresholds ... 30

6 Summary and Conclusions ..31

7 Future Work ...32
7.1 Comparison of CPS with ECN .. 32

8 Reference ...32

9 Abbreviations ...34

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 4 of 41 Version 1.0

10 Acknowledgements ...35

11 Appendix ..35
11.1 Initialization Design (User End) ... 35

11.2 Installation and Operating Issues .. 39
11.2.1 CPSManager ... 39
11.2.2 CPSCreator ... 39
11.2.3 CSDaemon .. 40
11.2.4 CSServerThread .. 40
11.2.5 NeMaCServer .. 40
11.2.6 NeMaCDaemon ... 40
11.2.7 NeMaCServerThread ... 41

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 5 of 41

1 Introduction
Pricing schemes form the essential part of a business model for Internet Service Providers
(ISP). A pricing scheme applied to the transport of data in an IP network needs to cope with
a number of issues of the IP technology utilized as well as with ISP’s economic
requirements and goals.

The Cumulus Pricing Scheme (CPS) [7] proposes a paradigm shift and argues that the
problem of Internet pricing is not a matter of complexity, but instead a problem of mapping
multiple and multi-dimensional time-scales. The developed scheme shows a simple,
transparent, market-managed, and feasible Internet pricing scheme1.

CPS is a flat rate scheme founding on SLA contracts between customers and ISP, whereby
the customer may be an ISP. It provides individual and dynamic adaption of flat rates on
long-time scales due to SLA contract violations or renegotiations. The compliance of the
contract is motivated and supported by a feedback mechanism, the Cumulus Points (CP),
and the liberty for deviations on short-time scales, due to statistical metering and average
CP accumulation mechanisms [13], [14], [15]. With respect to the contract and its technical
parameters, CPS offers in its basic concept no dedicated metric to be applied solely,
although the volume and the bandwidth a user may utilize during communications states a
well-known example.

The CPS scenario has been developed, implemented, and experienced with. Since CPS
determines a new idea, additional conceptional and theoretical topics are under detailed
investigation. This concerns mainly the process of gathering knowledge and experiences in
contract metrics, i.e. contract terminology and contract negotiation. Furthermore, heuristics
are collected with the intention to define appropriate stimuli and parameter for a simulation
initialization and a detailed scenario definition.

This document presents the fine design and implementation of the CPS scenario and
presents those details on how it can be embedded into the Charging and Accounting
System (CAS) [17] developed within the M3I project. After that an overview on the
networking environment is given on which experiments have been running. The experiment
setup and component configuration is described step by step. Finally, results from these
experiments are presented and discussed.

2 CPS Fine Design and Implementation
The fine design of the Cumulus Pricing Scheme (CPS) scenario for the M3I project follows
the design dimensions outlined in [16]. The following section gives an overview on how
CPS can be embedded in the CAS architecture. After that the development environment for
the CPS implementation is presented and the implementation is described in detail.

2.1 Overview

The Charging and Accounting System (CAS) [17] developed within the M3I project provides
a generic and modular charging system in support of various pricing schemes applicable to
different communication technologies [12], [15]. Figure 1 gives an overview on how the

1.In M3I terminology [10], the developed scheme is determined by all features of a tariff scheme.
However, for comparisons with “traditional” Internet “pricing work”, the older and less precise term has
been utilized. Pricing Mechanisms, as described in [6], are applicable.

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 6 of 41 Version 1.0

CPS scenario can be adapted to the CAS. It is important to note that the CAS doesn’t have
to be changed for that purpose, it is scenario independent.

In a few words the CAS simply provides two components, each of which with an
appropriate database. They are able to account and charge for any service. It is up to the
designer of a particular scenario, what the CAS is actually accounting and charging for. For
this purpose the respective components need to be instantiated accordingly.

In the CPS scenario the CAS needs to account for traffic flows, e.g., in terms of volume or
bandwidth, and charge for the consumption of it over a certain time duration (charging
interval). This charging period is also termed a session, since in the CPS scenario the
duration of all sessions are of equal size during the entire contract, e.g., a week or a month,
and this dimension is usually much longer than the duration of a single flow.

To adapt the CPS scenario to the CAS, basically components termed with a preceding
“CPS” had to be implemented. There are on one hand data type components describing the
structure of the data that is handled by the system. E.g., two components
CPSSessionFragment and CPSSessionCharacterization provide the data structures used
by the CAS to store the data elements in the databases. In the CPS scenario this may
encompass volume or bandwidth data of the traffic measured and information about whom
the traffic belongs to and how it needs to be charged, described by, e.g., user id, contract id,
service id, and session id.

On the other hand, there are components that need to produce and process this data, e.g.,
the CPSConnector component that connects the CAS to the mediation component. It is
responsible for the combination of session information provided by the CPSCustomer
component with the flow data provided by the CPSMediation component.

Fluid

Charge

Calculation

CPSConnector

Accounting Accounting

Database
Charging

Database

Configuration

Files
CPSBilling

CAS

SNMP NeTraMet

CPSMediationRecord

CPSTariff
CPSSession

Fragment

CPSSession

Characterization

CPSMediation

FlowDataEntry

CPSCustomer

Figure 1: Overview on the CPS Scenario Embedded in the CAS

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 7 of 41

The real CPS related mechanisms are implemented in the CPSTariff component that
provides the thresholds and reaction rules, and in the CPSBilling component which serves
as an interface to the customer specifying the red or green cumulus points a customer
receives for a specific usage of the service and the accumulation of them over time.

2.2 Development Environment

This section briefly describes the technology used for implementing and running the CPS
scenario. Later on in Section 3.3 it is shown where different components have been placed
in the networking environment in order to run the experiments.

Programming language: Since the CAS is completely written in Java to be able to
distribute it over several machines, the CPS scenario had to be developed using same
language. For the implementation of CPS, Java 2 has been used as part of JDK 1.2 [23].
Java is available for many platforms. The code is therefore portable and has successfully
been tested on FreeBSD, Solaris and Windows.

Database: The CAS needs to be connected to a SQL-capable database, which it uses to
store the Accounting and Charging records. As proposed in [17], the MySQL database [24]
was chosen for this purpose.

Operating System: As mentioned above, the implementation can be ported to many
different platforms. For the experiments described later in Section 4, a FreeBSD / Solaris
testbed was used, but the Java code could also be running on a Windows machine. The
networking environment used for the experiments is described more detailed in Section 2.8.

Other Tools: In order to provide a real and complete environment to run the CPS
scenario quite a few other components needed to be obtained and installed in the testbed.
The traffic measurements on the meter hosts are done by NeTraMet [26]. NeMaC [26] is
used as the meter manager and Fluid [21] serves as a Java interface to the meter. Fluid has
slightly been changed; this component is described more detailed in Section 2.4.1. Further
on Fluid uses the SNMPv2 Java class library from AdventNet [22] to communicate with the
meter over the SNMP protocol. Finally, to run the experiments, DBS [20] was chosen as the
traffic generator, as it fulfilled most of the requirements. An overview on various evaluated
traffic generation tools is given in Section 4.1.

2.3 Package Structure

To obtain a clear view on the organization of the software implemented, the package
structure and inheritance relations of the Java source code is presented in Figure 2.
Afterwards, detailed class descriptions are discussed in Section 2.4 and Section 2.5.

For the CPS scenario a new package org.m3i.examples.ethz.CPSdemo was created and
embedded in the overall package structure used in the M3I project. Most of these Java
classes extend or implement other components of the M3I structure. Apart from these
another three classes have been added to the new package. The CPSCustomer class has
been created to provide the session information used in the CAS. It can easily be replaced
later by the customer support component, which is not part of the CAS yet. The
CPSMediation class is used to create and manage Fluid objects and transforms the flow
data into mediation records. Finally, Fluid has also been added to the new package.

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 8 of 41 Version 1.0

2.4 Component Type Classes

As in the CAS, the relevant classes of the CPS scenario can be grouped into two major
groups. On one hand there are data type classes that are representing the structure of the
data which gets passed around. On the other hand there are component type classes that
are handling this data. This section presents these component classes while the next
section will present the data classes. A short description of these classes and their
functionality will be given in each case. This includes a description of each method and its
purpose. However, this description will not contain any details about passed parameters
and also fields of classes will not be shown. For more detailed information please have a
look at the code itself.

2.4.1 Fluid

Fluid is a Java interface to NeTraMet [26] and was made within the scope of [21]. It uses
the SNMPv2 Java class library from AdventNet [22] to connect to and read from the
NeTraMet meter using the rulefiles uploaded to NeTraMet by NeMaC [26]. Using the
architecture design described in [28], Fluid is the meter reader, NeMaC the meter manager
and NeTraMet the meter. NeTraMet records the traffic data, e.g., the volume, of every
single packet going through a specific network interface and combines them into flows and
aggregates them over time. In doing so, it follows the policy defined in the rulefile provided
by the manager. Periodically, Fluid collects the flow data, using the SNMP protocol and the
Flow Meter MIB [28].

CollectingCasModule

Accounting

ChargeCalculation

SessionFragment

SessionCharacterisation

Connector

MediationRecord

CPSConnector

CPSBilling

CPSSessionCharacterisation

CPSSessionFragment

CPSTariff

CPSMediationRecord Fluid

UDPCPSTariffWriter

m
3

i

Tariff

o
rg

p
ri

c
e

ta
ri

ff

c
h

a
rg

e
_

a
c

c
s

e
s

s
io

n
m

e
d

ia
ti

o
n

e
x

a
m

p
le

s

e
th

z

org.m3i.examples.ethz.CPSdemo

CPSCustomer

CPSMediation

Figure 2: CPS Scenario Package Structure

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 9 of 41

Fluid originally provided a Java applet interface and some additional methods that has been
removed in this version. Some other methods have been added to provide the interface to
the CPSMediation class. These new methods are shown in Table 1.

Herein the rest of the functionality provided by Fluid is described shortly. To connect Fluid to
the meter, the specific hostname, SNMP portnumber and the correct community name and
ruleset number need to be provided. The init method starts the SNMP API and loads the
MIB files corresponding to the Flow Meter MIB [28]. The method dothemainquery, which is
periodically invoked by the getNextData method, creates a session with the meter, and
does synchronous and asynchronous queries to it to receive the flow data information. This
information is then handed over to the CPSMediation class.

2.4.2 CPSMediation

The CPSMediation class instantiates a Fluid object for every meter host to collect the
measured flow data by that host. As NeTraMet only provides the aggregated data over time
the previous values need to be stored and to produce mediation records the difference
between two entries is used.

From time to time this internal storage of flow data needs to be cleaned up. Therefore the
timeout value of every flow is periodically checked using the method removeExpiredFlows.
The main methods are described in Table 2.

2.4.3 CPSConnector

As the CPSConnector class inherits from the generic connector class
org.m3i.mediation.Connector, it needs to implement several methods of that class. These
methods are not described within this document. The CPSConnector class is mainly used
to connect the CAS to the mediation component, i.e. the CPSMediation class. First, the
mediation class needs to be started as a thread to collect the flow data. Then the
CPSConnector class basically transfers the mediation records created by the
CPSMediation class, to the accounting component to record it in the accounting database.
Apart from that the CPSConnector class appends the necessary session information to the
mediation records. This information is provided by the CPSCustomer class described
below. The session information of the current customers is compared with the actual flow
information and then appended to those records. The main methods for these purposes are
shown in Table 3.

2.4.4 UDPCPSTariffWriter

This class is used to provide the ChargeCalculation component with the tariff information
stored in a CPSTariff data object. The UDPCPSTariffWriter class reads the according data
from a file and creates a CPSTariff object using them. Later on, an interface to the contract

Method name Purpose

getMeterUptime Returns the time since the respective meter has been started.

getMeterTimeout Returns the timeout for that meter after which a flow expires.

getNextData Using this method the Fluid class can be asked to do the next data query and return
collected flows in a hashtable.

Table 1: Methods of the Fluid Class (in Addition to the Original Fluid Class)

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 10 of 41 Version 1.0

database, which is not part of the CAS yet, could be appended to retrieve the tariff and
contract information from there. This may not be required if the charge calculation is
provided with an interface to the customer database, so that CP threshold values
corresponding to a specific contract ID can directly be received from there.

Method name Purpose

run Overrides the run method of java.lang.Thread. Invokes the getNextDataFrom-
Readers and removeExpiredFlows methods periodically using the pollingIn-
terval parameter.

removeExpiredFlows Checks the internal hashtable for any expired flows, i.e. flow entries that
exceeded the timeout parameter of the reader, and deletes them.

getMediationRecords Provided interface to the CPSConnector class. Returns all the Mediation-
Records present in the internal buffer and removes them locally.

getNextDataFromRead-
ers

Asks all the readers, i.e. Fluid objects to get the next flow data from their
meters and submit them in a hashtable of FlowDataEntries. Checks for any
flows that have previously been present and if so, invokes the createMedia-
tionRecord method.

createMediationRecord Creates a CPSMediationRecord out of two consecutive FlowDataEntries, i.e.
calculates the number of bytes since last time and the resulting current aver-
age bandwidth for this flow.

Table 2: Methods of the CPSMediation Class

Method name Purpose

initConnector Inits the CPSConnector class setting the names of the meter hosts and the
polling frequency.

getAllAvailableData This method should return all available MediationRecords together, but it is
not implemented yet, as the Accounting class doesn’t need it.

getNextData Returns the next MediationRecord. This is the interface to the Accounting
class. If all current MediationRecords have been submitted new data is
requested from the CPSMediation class and the checkSessions method is
invoked.

getNextRecord Searches for the customer a MediationRecord belongs to and completes it
with the according customer data and session information. If no customer
could be found, the record is discarded.

checkSessions Checks for any expired sessions based on the customer information,
increments the session counter and informs the ChargeCalculation com-
ponent about it using the createDummyMediationRecord method.

createDummyMediation-
Record

Creates a MediationRecord containing only the customer data and session
information and marks the record as last.

addCustomer Interface to add a new CPSCustomer to the CPSConnector class. This
enables the connector to sort out the MediationRecords and complete
them with the necessary customer information.

removeCustomer Removes the customer information from the connector.

Table 3: Methods of the CPSConnector Class

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 11 of 41

The CPS tariff writer uses the methods provided by the classes of the
org.m3i.price.mech.comms package to send the tariff information to the ChargeCalculation
as an XML or binary document using the UDP protocol. As there were some bugs in the
XML version of the TariffWriter, this part of the CPS scenario is not working yet but may be
corrected in a future version. The main methods are shown in Table 4.

2.4.5 CPSBilling

This is a simple class inheriting from the CollectingCasModule. It collects the charging
records from the charging database and stores them periodically in a HTML document. This
document serves as a simple billing interface to the customer and is shortly described in
Section 2.7. It could easily be changed or extended later. After the collection the charging
record is assumed to be ‘billed’ and the field of the charging record inside the database is
set accordingly. If the cumulated charging records have less or more CPs than mentioned
in the reaction threshold, the reaction rule is called and a contract re-negotiation needs to
take place. However, this feature has not been implemented yet. All of this is done in the
‘collectAndProcessRecords’ method. A short overview on the methods is shown in
Figure 5.

2.5 Data Type Classes

The previous section presented the different component classes the CPS scenario is build
of. However, these are not the only classes which are of importance. An abstract view on
the CPS scenario embedded in the CAS structure is that it handles large amounts of
different data. Following the object oriented approach and the predefined structure in the
CAS this data is represented by different data classes. Moreover, they include some
functionality related to this data. Different data type classes which were created for that
purpose are presented in this section.

2.5.1 FlowDataEntry

The FlowDataEntry class was taken over from [21]. It is part of Fluid’s netramet package
and is used by the Fluid class to store the flow information retrieved by the meter. It was

Method name Purpose

sendTariff Reads in the tariff file, creates a CPSTariff object and tries to send it to the charge calcu-
lation component.

main Creates a new TariffWriter and invokes the sendTariff method.

Table 4: Methods of the UDPCPSTariffWriter Class

Method name Purpose

saveAsHTML Stores the billing information, i.e. the assigned cumulus points in a HTML
document to provide a simple user interface accessible by any HTML
browser.

collectAndProcess-
Records

Retrieves session characterizations from charging data bases.

main Starts the CPSBilling.

Table 5: Methods of the CPSBilling Class

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 12 of 41 Version 1.0

slightly extended to provide some additional information. Since CPSMediationRecords
contain almost the same information, these data fields are described in Section 2.5.2 more
detailed.

2.5.2 CPSMediationRecord

The CPSMediationRecord class extends the abstract class MediationRecord and
implements all the required methods. It is used by various component classes to create a
mediation record. Data fields describing the mediation record are shown in Table 6.

2.5.3 CPSCustomer

The CPSCustomer class has been created to provide the session information used in the
CAS. It is used by the CPSConnector to append the necessary session information to the
mediation records. The session information of the current customers is compared with the
actual flow information and then appended to those records. This class could easily be

Variable name Description

flowDataToOctets,
flowDataFromOctets

Number of bytes for this flow since last query (for both directions)

flowDataToPDUs,
flowDataFromPDUs

Number of packets for this flow since last query (for both directions)

flowDataToBandwidth,
flowDataFromBandwidth

Average bandwidth for this flow (for both directions)

flowDataToECTPDUs,
flowDataFromECTPDUs

ECN ECT packets (for both directions)

flowDataToCEPDUs,
flowDataFromCEPDUs

ECN CE packets (for both directions)

flowDataDSCP Diffserv codepoint field of the IP header

flowDataSourcePeerAddress IP address of the source host

flowDataSourceTransAddress TCP/UDP port of the source host

flowDataDestPeerAddress IP address of the destination host

flowDataDestTransAddress TCP/UDP port of the destination host

isFirst First record of a session

isLast Last record of a session

customerId Customer number

contractId Contract number (used for the tariff)

serviceId Service number (reservated for later use)

sessionId Session counter

recordSource Hostname of the meter host

flowId Flow number provided by the meter

Table 6: Variables of the CPSMediationRecord Class

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 13 of 41

replaced later by the customer support component, which is not part of the CAS yet. The

methods of this class are shown in Table 7.

2.5.4 CPSSessionFragment

The CPSSessionFragment class contains mainly the same information as a mediation
record. It extends the SessionFragment class and implements therefore the method
initFromMediationRecord to initialize the attributes. It contains both the flow data and the
session information and is used by the accounting compontent to create a new record in the
accounting database.

2.5.5 CPSSessionCharacterisation

The CPSSessionCharacterization class collects all session fragments belonging to a
session that have been pulled from the accounting database by the charge calculation. It
extends the SessionCharacterisation class and therefore implements the
initFromFragments method which calculates the total resource usage accumulating session
fragments. This class is used by the charge calculation to create charging records. The
mainly provided data fields are shown in Table 8. Fields providing ECN, DSCP and the like
need to be added here in future according to the respective design.

2.5.6 CPSTariff

In the Cumulus Pricing Scheme, which is described in [7] more detailed, the user is not
directly charged for usage, he just pays a flat rate fee. But there is a set of thresholds which
limit the consumption for over- and also underusage. The user is given red or green points
if her service usage exceeds a certain CP threshold value mentioned in the user contract.
These cumulus points can also be accumulated over time. If they exceed a certain level,
the reaction rule will be applied, e.g., the contract will be redefined. The CPSTariff class
extends the Tariff class from the M3I project. It is used to carry the information about

Method name Purpose

sessionHasExpired Check if the current session for this customer has expired.

startFirstSession Start the session for the first time.

startNextSession Start the next session. The sessionStartTime is incremented by the sessionDura-
tionTime.

Table 7: Methods of the CPSCustomer Class

Variable name Purpose

totalUpVolume,
totalDownVolume

Total number of bytes for the session in either directions.

totalUpPackets,
totalDownPackets

Total number of packets for the session in either directions.

averageUpBandwidth,
averageDownBandwidth

Average bandwidth during the session in either directions.

Table 8: Variables of the CPSSessionCharacterisation Class

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 14 of 41 Version 1.0

predefined service contracts, threshold values and reaction rules. The charge calculation
gets these informations from the UDPCPSTariffWriter component and uses it to charge for
the service usage. The main method that is provided to calculate the cumulus points is
getChargeAdvice which is invoked by the charge calculation. It compares the service usage
over a session with the CP threshold values and assigns the appropriate cumulus points.

2.6 Data Flows

In the last two sections component type classes and data type classes used to implement
the CPS scenario in the CAS have been explained in detail. However, for a more clear view
about what exactly happens in the implementation it is sometimes useful to have a closer
and more specific look on data flows themselves. Therefore in this section it is recapitulated
where and how data is processed using the down-top approach. In Figure 3 this data flow is
shown.

First of all, real traffic needs to be flowing through a physical network interface. There are
several possibilities to achieve this as described later in Section 4.1. In the CPS
experiments DBS is used to generate traffic as already mentioned above. The generated
traffic is then measured by NeTraMet which combines the traffic, i.e. the single packets into
flows based on rules that have been provided by NeMaC. Then, periodically, using the
SNMPv2 protocol the meter reader, i.e. Fluid reads out traffic flows which are currently
present on the meter host. This encompasses, e.g., the number of accumulated bytes,
packets or even ECN bits for a flow specified by its source and destination address. Since
differential numbers instead of accumulated numbers need to be calculated for further
processing, the flow data is then transformed by the CPSMediation class into mediation
records using the difference of two consecutive flow entries. Until here the data processing
is completely independent from the rest of the application, since the CPSMediation class is

NeTraMet

Fluid

CPSMediation

CPSMediationRecord

Accounting

ChargeCalculation

CPSBilling

CPSSessionFragment

CPSSessionCharacterisation

CPSTariff

CPSConnectorCPSCustomer

DBS

FlowDataEntry

SNMPv2

Traffic

Session Data

e.g. ContractId

ServiceId, UserId

Tariff Data

e.g. Thresholds

Flow Data

e.g. Volume,

Bandwidth

Figure 3: Data Flow in the CPS Scenario

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 15 of 41

running as a thread on its own. However, it must be considered that the internal data buffer
of the CPSMediation class is not infinite and can therefore overflow if the data is not
collected continuously.

The CPSConnector class fetches mediation records from the CPSMediation component
and appends the session information to those records that belong to a certain customer.
Records for which there are no appropriate owners are discarded. The CPSConnector
class can also generate mediation records itself. For instance, a dummy record is
generated to terminate a session if it exceeds the session duration. In the Accounting class
records provided by the CPSConnector are transformed into CPSSessionFragments and
stored in the accounting database. From there, the charge calculation collects all session
fragments belonging to a session that has a start point and an end point and creates a
CPSSessionCharacterisation. Moreover it calculates the charge for the service usage
during that session applying the CPS tariff used for the appropriate service contract. The
result is stored in the charging database, from where the CPSBilling class gets the billing
information and creates a CPS billing interface using them.

2.7 User Interface

As described above, a simple user interface is created by the CPSBilling class to
communicate the charge to the customer in terms of assigned cumulus points for every
session and accumulated over time. The CPSBilling collects charging records from the
charging database and stores them periodically in a HTML document. This document
serves as a simple interface to the customer and can easily be represented in a HTML
browser as shown in Figure 4. It could simply be changed or extended in future.

2.8 Connection Setup

Apart from the above described implementation components, there has also been some
effort on the design and implementation of a user interface for the connection setup, i.e. the
setup of a user session. Since this part was not used in the current CPS experiments, it was
placed in the appendix, Section 11.

Simple CPS Billing Interface

StorageTimeStamp AverageUpBandwidth CPs Total CPs

2002-01-21 15:47:04.0 197595.7675448029 1

2002-01-21 15:47:34.0 185428.48754475053 1

2002-01-21 15:48:14.0 191021.6035427978 2

2002-01-21 15:48:54.0 148503.2971595294 0

2002-01-21 15:49:24.0 187590.54303988442 0

2002-01-21 15:50:04.0 152440.97013856962 -2

2002-01-21 15:50:35.0 204693.99932172845 0

2002-01-21 15:51:15.0 196400.47806267627 1

2002-01-21 15:51:55.0 145766.50656698222 -1

2002-01-21 15:52:25.0 219921.79398807883 1

2002-01-21 15:53:05.0 211564.9615473468 3
Figure 4: CPS User Interface

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 16 of 41 Version 1.0

3 Networking Environment
The develompent and testing of software for the M3I project and especially the CPS
implementation is supported by a small testnetwork. The following section aims to give a
small and understandable overview of the applied computer infrastructure.

3.1 Overview Testbed

An overview on the testbed is given in Figure 5. Actually the test network consists of five
PCs and a Solaris workstation. Three PCs are used as routers (RA, RB and RC2) and they
are enabled for DiffServ using the AltQ software. The remaining PCs (HA, HB3) and the
Solaris workstation (HC) are used as normal hosts, whereas each one provides two IP-
interfaces, i.e. two IP-addresses for the test-experiments, so that a virtual net of six hosts
and three routers can be simulated, that span together totally six subnets. The existence of
two IP-addresses per host leads also to the routing policy of this testbed. Traffic forwarding
to a destination interface ending with 1 is specified clockwise and traffic to the 2
counterclockwise, respectively.

2.RA, RB and RC stand for router A, B and C respectively.
3.HA, HB and HC stand for host A, B and C respectively.

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 17 of 41

3.2 DiffServ Environment

As mentioned above the three routers are capable to handle traffic according to the DiffServ
mechanisms. This is achieved by using AltQ which is available for FreeBSD, the operating
system currently installed on these routers. A detailed description of the AltQ configuration
is not given in this document, as these DiffServ mechanisms have not yet been considered
in detail for running experiments with CPS. However, experiments reading out the DiffServ
codepoint have been successful, as both NeTraMet and the CPS implementation are
capable of handling this data field. On the other hand, no problems have been encountered
yet in charging for traffic of different levels of service classes.

3.3 Component Location

This section provides a detailed overview on various components of the test network and
the CPS scenario described in Section 2 and shows where they are located in the network
to perform the experiments described later. As already mentioned, most of the components
of the CAS and the CPS implementation can be distributed when it is necessary to achieve

RA RB

RC

HA1

HA2

192.168.5.1

192.168.5.0/29 192.168.4.0/29

192.168.3.0/29

192.168.5.2 192.168.4.2

192.168.4.1

192.168.3.2192.168.3.1 192.168.2.0/29
192.168.1.0/29

HB2

HB1
192.168.1.2

192.168.1.1

192.168.2.1

192.168.2.2

192.168.2.3
192.168.1.3

HC1

HC2 HC3

129.132.57.32/27

129.132.57.37

129.132.57.33

129.132.57.34

RA

HA1

192.168.4.0/29

Router

Host

Subnet

Legend

Figure 5: Overview on the Testbed used for the CPS Experiments

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 18 of 41 Version 1.0

a better performance. However, in the CPS experiments the option of, e.g., distributing the
CAS is not used to keep the setup simple. Therefore most of the components are located
on one machine, i.e. router RC and only the traffic measurements are performed on other
machines, i.e. router RA or RB. The location of these various components is shown in

Table 9.

4 Experiment Setup
In this section the set up of a real environment to run the following experiments with the
CPS scenario is described in step-by-step mode. First a closer look into possibilities for
generating the necessary traffic is taken. Secondly, it is shown how all testbed components
are configured and in which sequence they need to be started to run experiments.

4.1 Traffic Generation

There exist many possibilities to generate network traffic. In search of a good tool for traffic
generation quite a few options were evaluated. First, requirements are presented that the
tool should be able to meet. Then an overview is given on various tools that have been
evaluated for such purpose. Finally, the traffic pattern is discussed that should be generated
by the tool.

4.1.1 Requirements

First of all, within a real environment, traffic flowing through physical network interfaces and
real protocol stacks needed to be generated. So rather than a tool for network simulation, a
software needed to be found that generates real traffic flowing through physically
distributed components. Since it was important to have a traffic pattern which is changing
over time, in order to cause the generation of cumulus points, the traffic generator should
further be able to generate varying traffic, reading the data, e.g., out of a configuration file.
Finally, both TCP and UDP traffic should be generated by the tool.

4.1.2 Tools Evaluation

Three different traffic generators were evaluated to find out which one fulfills best the above
requirements. An overview on the evaluation is shown in Table 10.

RA RB RC HA HB HC

OS FreeBSD
4.2

FreeBSD
4.2

FreeBSD
4.2

FreeBSD
4.1.1

FreeBSD
4.2

SunOS
5.7

DiffServ AltQ AltQ AltQ

Java jdk1.2.2 jdk1.2.2 jdk1.2.2 jdk1.1.8 jdk1.1.8 jdk1.2.2

Database mySQL

Traffic Meter NeTraMet NeTraMet NeMaC

Traffic Genera-
tor

dbsc dbsd dbsd

Table 9: Development Environment and Component Location on the Testbed

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 19 of 41

With Iperf [18], it was not possible to specify a varying traffic pattern, since only a constant

traffic flow could be generated. Therefore Mgen [19] was tested as well which was able to
do so. However, some problems were encountered especially which larger configuration
files, i.e. data with above 100’000 samples. It was just taking too long to fill the data buffer
using that big data files. Only DBS [20] finally fulfilled all requirements. However, it will not
be possible to set the ECN field used for further experiments as described later in
Section 7.1.

4.1.3 Traffic Pattern

As it was now possible to generate specific traffic patterns, there were again several
possibilities to generate traffic. The simplest thing would have been to use randomly
generated traffic, e.g., normal distributed traffic described by the mean value and the
standard deviation. However, this is artifically generated traffic and doesn’t really create a
real environment. Therefore some real traffic was sampled using one of the routers
between the ETH and the TIK Institute. The pattern of this traffic is shown in Figure 6. It
consists of 172800 data samples during 10 working days (2 weeks), i.e. one sample every
5 seconds. Based on that traffic pattern it was now possible to create an environment that
was quite close to a real one. While extrapolating that pattern over time, one would even be
able to generate real traffic over a longer timescale. The sampled traffic data will further be
analysed in Section 4.4 to specify the according CP thresholds. In Section 5 the results of a
comparison between using artifical traffic and real traffic will be shown.

Iperf Mgen DBS

Can it specify the traffic pattern? No Yes Yes

Can it handle large traffic data files? n/a No Yes

Can it send TCP packets? Yes No Yes

Can it send UDP packets? Yes Yes Yes

Can it set the DSCP / TOS field? No Yes No

Can it set the ECN field? No No No

Table 10: Comparison of the Evaluated Traffic Generation Tools

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 20 of 41 Version 1.0

4.2 DBS Configuration

To generate the traffic according to the pattern shown in Figure 6, an appropriate
configuration file needed to be created for DBS. To realize a certain traffic bandwidth during
a sampling/sending interval according to the sampled data, there were two different
possibilities:

a) defining the number of packets all of an equal size and

b) defining the size of a single packet to be sent within that interval.

Both options seemed to be reasonable, however, the second possibility had the
disadvantage of the limited packet size for IP packets. The smallest possible size of a
packet would be 60 byte (18 byte payload in UDP) and the highest 1514 byte (1472 byte
payload). For the CPS experiments it was therefore decided to use a constant packet size
of 100 bytes (58 byte payload) and use the number of packets as a variable parameter. The
determination of the sending interval is discussed later in Section 4.3.

The resulting configuration file for DBS, that is shown in Figure 7, was create by a shell
script using the sampled data as input. It creates a flow from the sender to the receiver
following the specified pattern.

0 2 4 6 8 10 12 14 16 18

x 10
4

0

100

200

300

400

500

600

700

800

900

Figure 6: Traffic Pattern Sampled from an ETH Router

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 21 of 41

4.3 Experiment Parameters and Timescales

It is important to consider that since CPS is a charging mechanism on the longer timescale
the experiments with this scenario would also absorb a long time. Therefore it is more

Fullname
Param
eter

Description

Sending Inter-
val

TSn Time interval of sending the next packet(s) by the traffic generator, i.e. the
granularity of the traffic. Within this interval the bandwidth of the traffic is con-
stant.

Sampling Inter-
val

TSm Time interval of sampling the traffic data by the meter, i.e. the granularity of
the meter.

Session Dura-
tion / Charging
Interval

TS Duration of a session, i.e. the time interval of charging for a session.

Contract Dura-
tion / Experi-
ment Duration

TC Duration of the contract period, i.e. the duration of the whole experiment.

Thresholds Thresholds determined in the tariff for assigning the cumulus points.

Experiment
Timefactor

f Factor between the real timescale and the experiment timescale.

Accounting Fre-
quency

TA Time interval of collecting mediation records used for the Accounting class in
the CAS.

Charging Fre-
quency

TCh Time interval of collecting session fragments used for the ChargeCalculation
class in the CAS.

Billing
Frequency

TB Time interval of collecting session characterisations used for the CPSBilling
class.

Table 11: Parameters used for the CPS Experiments

{
sender {

hostname = HA2;
port = 12300;
mem_align = 58;
pattern {
3074.000, 58, 0.05, 0.0;
6844.000, 58, 0.05, 0.0;
...
1160.00, 58, 0.05, 0.0;
}

}
receiver {

hostname = HB1;
port = 12301;
mem_align = 58;
pattern { 58, 58, 0.05, 0.0}

}

Figure 7: DBS Configuration File for the Traffic Generation

θn

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 22 of 41 Version 1.0

convenient to scale the time a little bit. When talking about scaling the time it is important to
note that the traffic volume needs also to be scaled, since it is not possible to just sending
the same traffic volume in a shorter time because of the limited physical bandwidth.
However, it is no problem to scale the volume, if the granularity of the traffic load can be
kept the same. Using the granularity described in the previous section, i.e. 100 bytes per
packet, was suitable for the experiments.

The time parameters in the CPS scenario that are subject to be scaled are listed in
Table 11. It is importent to note that the time cannot be scaled to much. Obviously the
bottleneck was between the flow meter and the meter reader, i.e. the sampling interval TSm
which could not be made smaller than around 0.5 seconds. So to achieve the same
granularity as the generated traffic, i.e. 5 seconds, the highest possible timefactor f would
be 10. This limitation is definitely depending on the delay between the meter and the
reader. Therefore better results could be achieved if the meter would be located on the
same host as the reader. However, this was only a problem for running the experiments but
not for the CPS scenario in a whole. Therefore it was not worth to further increase this
performance, although there would be possibilities to achieve this, e.g., through pipelining,
i.e. asynchronous requests. In the experiments the timefactor was just increased by
resampling the traffic measurements, i.e. loosing a little bit of granularity. The actual
timescales used for the experiments are shown in Section 5.

4.4 Threshold Calculation

A major effort was the choice of reasonable values for the CP thresholds. [8] is a good
tutorial on how to choose these thresholds based on the mean value and the standard
deviation of the traffic. However, it is assumed that the traffic is close to normal distribution.
Figure 8 shows the probability function of the sampled traffic pattern of Figure 6. Obviously
the assuption of normal distribution is no longer valid, at least for this level of granularity, i.e.
averaged values over 5 seconds. Only for average values over a longer timescale, the
probability function might migrate towards normal distribution, however, the procedure for
non-normal distribution described in [29] is better applicable. According to that, the absolute
thresholds can be calculated as follows.

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 23 of 41

Assume that the traffic is described by the probability density function and the

respective discrete probability distribution .

This distribution can be calculated by numerical integration of the respective histogram. Let

 describe the probability that the measured traffic is within the interval . This

yields absolute thresholds where describes the inverse probability

distribution function. The so calculated absolute thresholds are shown in Table 12. The

respective mean is 90.7 [kbits/s].

90 % 79.0 102.4

99 % 69.1 112.3

Table 12: Calcualted Thresholds for the Sampled Traffic

0 100 200 300 400 500 600 700 800 900
0

.002

.004

.006

.008

0.01

.012

.014

.016

.018

Figure 8: Probability Density Function of the Sampled Traffic Pattern

f x()

F x() f y() yd

x

∫ Prob measured traffic x≤{ }= =

ηn ϑ n– ϑn;[]

ϑ n± F
1– 1 ηn±

2
--------------- 
 = F

1–

η ϑ n– ϑn

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 24 of 41 Version 1.0

4.5 Experiment Invocation Process (Running the Scenario)

This section describes all the steps for running the CPS scenario. First, all components
need to be properly configured. Then the scenario needs to be started in the correct
sequence. To configure the components, the according configuration files have to be
adapted to the current experiment, i.e. the time parameters need to be set to reasonable
values and other variables must be configured correctly.

CAS Configuration: The provided configuration file acc.cfg.CPSdemo for the Accounting
and cc.cfg.CPSdemo for the ChargeCalculation need to be adapted. This especially
includees setting the right location of the databases, the input frequencies and the data type
classes. In addition to that the URL of the connection configuration file needs to be
indicated in acc.cfg.CPSdemo.

CPS Configuration: For the connector class the conn.cfg.CPSdemo needs to be adaped.
An example is shown in Figure 9. PollingFrequency is the periodtime in seconds of reading
out data from the meter. More than one meter host can be configured.

The file tariff.cfg is used to configure the CPSTariff class. N is the number of thresholds on
either side of the target mean value. M is the number of contracts provided. The bandwidth
thresholds are measured in bytes/s. An example of the tariff file is shown in Figure 10.

Finally, the bil.cfg.CPSdemo needs to be configured correctly to setup the connection to the
charging database used by the CPSBilling component and the according input frequency.

NeTraMet Configuration: To setup NeTraMet one needs to create an appropriate srl-file,
e.g., <hostname>.testbed.srl shown in Figure 11 and compile it into a rulefile using the srl
compiler which is included in [26]. After that NeMaC is invoked to send this file to NeTraMet
as described in the next section.

[org.m3i.mediation.Connector]
class=org.m3i.examples.ethz.CPSdemo.CPSConnector

[org.m3i.examples.ethz.CPSdemo.CPSConnector settings]
MeterHost=RA
MeterHost=RB
PollingFrequency=0.5

[org.m3i.examples.ethz.CPSdemo.CPSConnector default attributes]

Figure 9: Connector Configuration File used in the CPS scenario

N 2 M 5
contractId 4 160000 170000 181431 190000 200000
contractId 1 160000 170000 181431 190000 200000
contractId 2 160000 170000 181431 190000 200000
contractId 3 160000 170000 181431 190000 200000
contractId 0 160000 170000 181431 190000 200000

Figure 10: Tariff Configuration File used in the CPS scenario

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 25 of 41

Database Setup: Before all the components can be started, the database has to be
created used by the CAS for storing the accounting and charging records. The file
cas_26_06_01.sql contains to most actual version of the database structure compatible
with the current CAS version.

Component Invocation Procedure: Now the components can be started in the correct
sequence. For that purpose a shell script cpsrun.sh has been written that makes it easier to
start everything. Make sure that the path, classpath and all other variables are set correctly
for your environment. The script opens a new terminal for every process. First NeTraMet
needs to be started on the meter host and configured by NeMaC. Then the Accounting
component can be invoked to start the measurements and data storage. Now the traffic can
be generated. Therefore two DBS daemons, i.e. dbsd, have to be started, a sender and a
receiver according to the DBS configuration file, and one controller, i.e. dbsc. The charge
calculation and the billing component can be started at any point of this procedure. All the
provided options of the script are shown in Figure 12. The CPSManager and the
CSDaemon components as well as the NeMaCServer are not used in the CPS
experiments. For a simpler traffic pattern the dummy traffic components can also be started,
i.e. Iperf clients and servers.

NeMaC srl file RA.testbed.srl
#
@hausheer

SET 2;
FORMAT
FlowRuleSet FlowIndex SourcePeerType SourceTransType
SourcePeerAddress DestPeerAddress
SourceTransAddress DestTransAddress
ToPDUs FromPDUs ToOctets FromOctets
FirstTime LastTime DSCodePoint;

if SourcePeerType == IP save;
else ignore;

if SourceTransType == tcp || SourceTransType == udp {

 save SourcePeerType;
 save SourceTransType;
 save SourcePeerAddress;
 save SourceTransAddress;
 save DestPeerAddress;
 save DestTransAddress;
 save DSCodePoint;

 count;
}

Figure 11: NeMaC SRL File used in the CPS Scenario

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 26 of 41 Version 1.0

5 Experiment Results
This section discusses various detailed experiments that have been run on the testbed
using the CPS implementation described above. It is important to note that there are many
different possibilities to run these experiments and it is important to indicate initially which
kind of results are to be shown. Potential issues include:

1. Show the performance of the CPS implementation by, e.g., monitoring the usage of
memory, cpu or network bandwidth, addressing the potential bottlenecks and limitations
and show how scalable the system is,

2. Comparing the output of the CPS pricing mechanism, i.e. the assignment of cumulus
points using different kinds of traffic patterns as input,

3. Comparing CPS while varying the various experiment parameters and timescales
shown in Table 11 or

4. Comparing CPS with other pricing mechanisms, e.g., ECN based pricing.

Since the implementation determines a prototype and has not been optimized for maximum
scalability and performance, it is not useful with respect to topic (1.) to investigate on all
performance issues at the moment and this will be part of future work. However, since CPS
does not count on every single packet, but rather measures traffic only every now and then,
it can be stated that CPS is able to produce valuable results without too much effort in terms
of accounting and, therefore, the overall system performance is of less relevance on the
whole.

bash-2.04$./cpsrun.sh
usage: cpsrun.sh n
n:
 1: Running CPSManager on Host HA1
 2: Running CPSManager on Host HB1

 3: Running CSDaemon on Edge Router RA
 4: Running CSDaemon on Edge Router RB

 5: Running NeTraMet on RA
 6: Running NeTraMet on RB
 7: Running NeMaCServer on Charging Host (RC)

 8: Running the Charge Calculation (on RC)
 9: Running the Billing (on RC)
10: Running Tariff Writer (on RC) => not working yet!
11: Running Accounting (on RC)

12: Running Dummy Traffic Server on HA1
13: Running Dummy Traffic Server on HB1
14: Running Dummy Traffic Client on HA1
15: Running Dummy Traffic Client on HB1

16: Running NeMaC for RA on RC
17: Running NeMaC for RB on RC

18: Running DBS Controller on RC
19: Running DBS Daemon on HA2 (Sender)
20: Running DBS Daemon on HB1 (Receiver)

Figure 12: CPS Run Script Options

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 27 of 41

On the other hand, topic (2.) is of high relevance and some of these results will be
presented in Section 5.1. Also topic (3.) was interesting to look at and a few examples of
those experiments are shown later in Section 5.2.

For a comparing statement on the CPS concept and its detailed behavior, however, it would
be necessary to compare it with other scenarios, e.g., with a pricing based on ECN as
mentioned in topic (4.). Unfortunately, ECN is still a quite new technology with hardly any
support in terms of available implementations. Therefore, it was yet not possible to run CPS
and ECN experiments in parallel. But it is still an important motivation to do this in the
future. Some of the most important remaining steps are discussed in Section 7.1.

5.1 The Relevance of the Traffic Pattern

As already discussed above in Section 4.1.3 the traffic pattern used as input for the CPS
scenario is of high importance. While it does not make sence to run experiments based on
a constant traffic flow except for measuring performance related issues, only varying traffic
patterns were compared. In this experiment, both artificial traffic based on random numbers
and real traffic following a special traffic pattern was generated. The real traffic was
sampled from a real router as described previously in Section 4.1.3 and shown in Figure 6.
The artificial traffic was generated based on numbers chosen from a normal distribution.

Table 13 shows the exact parameters used in these experiments. The mean value and
standard deviation of the sampled real traffic was calculated and the same parameters
were used to generate the random numbers for the artifical traffic. The thresholds were
calculated using the standard deviation of the real traffic averaged over the charging
interval. Also the same thresholds were used for both experiments. The charging interval
was intentionally set to a small value, i.e. 1 hour.

In Figure 13 the accumulated cumulus points over time are shown for both experiments.

While the artifical traffic doesn’t effect any cumulus points, the curve for the real traffic
obviously follows the actual situation, i.e. arises in times of a higher usage and falls in times
of lower usage. The reason why artifical traffic leads to such stable output is the absence of
a pattern that follows the real internet usage, which is usually higher during the day and
lower during the night. This is of course dependent on where the traffic is measured. The
traffic pattern for a private customer is usually different from the pattern of a business
customer or even the pattern between two internet providers.

Parameter Value (in real time)

Sampling Interval TSn 5 s

Charging Interval TS 3’600 s (1h)

Experiment Duration TC 864’000 s (10 d)

Mean value of the traffic 90.7 kbit/s

Standard deviation of the traffic 75.3 kbit/s

Standard deviation of the traffic average over TS 33.7 kbit/s

Thresholds [9.9 46.9 134.5 171.6] kbit/s

Table 13: Parameters used in Experiment 1

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 28 of 41 Version 1.0

For longer charging intervals than used in the experiments, e.g., 1 month, this different
behaviour of artifical and real traffic might be equalized a little bit, but still major differences
remain and can be extrapolated due to the customers behaviour, e.g., less internet usage
during holiday seasons, general growth of the internet etc.

Therefore it is very important that, apart from the mean value and the standard deviation of
the traffic, the specific traffic pattern should always be taken into account in a real case. The
sampling interval and the charging interval need to be specified carefully depending on
these figures.

0 1 2 3 4 5 6 7 8 9

x 10
5

−5

0

5

10

15

20

25
acc. CPs for real traffic
acc. CPs for artifical traffic

Figure 13: Accumulated Cumulus Points over Time

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 29 of 41

5.2 Parameter Tuning

There are several parameters that can be varyied as presented above in Section 4.3. For
the following experiments the parameters were specified as shown in Table 14.

The experiment timefactor f, the sending interval TSn and the experiment duration TC were
not changed during these experiments. For the parameters accounting frequency TA,
charging frequency TCh and billing frequency TB suitable values were chosen. They
shouldn’t be to small for performance reasons and also not too large, i.e. at least smaller
than the charging interval. The sampling interval was also not varyied during these
experiments, as these results were already shown in [30]. Therefore the only two remaining
degrees of freedom that were varyied are the charging intervals TS and the CPS
thresholds. These appropriate results were described in Section 5.2.1 and Section 5.2.2,
respectively.

5.2.1 Varying the Charging Interval

In Figure 14 the accumulated cumulus points for the different experiments using a varyied
charging interval TS were shown. It is obvious that for a smaller charging interval the
resulting curve is more “unstable”, i.e. follows the original traffic pattern.

Parameter Real Time Experiment Time

f 1 1/100

TSn 5 s 50 ms

TSm 50 s 0.5 s

TC 20 d = 1728000 s 4.8 h = 17280 s

TA 8.33 min = 500 s 5 s

TCh 8.33 min = 500 s 5 s

TB 33.33 min = 2000 s 20 s

Table 14: Parameter Settings in Experiment 1

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 30 of 41 Version 1.0

5.2.2 Varying the CPS Thresholds

For varyied CPS thresholds a similar behaviour can be observed. Figure 15 shows the
appropriate curves for different thresholds. The thresholds were calculated using the
averages over different durations as mentioned in the legend. For smaller averages the
thresholds become larger, due to a higher signal variance. The accumulated cumulus
points therefore become “unstable” for higher thresholds.

0 50 100 150 200 250

0

5

10

15

20

25
T

s
 = 1 h

T
s
 = 3 h

T
s
 = 6 h

T
s
 = 12 h

Figure 14: Accumulated Cumulus Points with Changing ChargingInterval

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 31 of 41

6 Summary and Conclusions
The design and prototypical implementation of the CPS scenario with the CAS of the M3I
project revealed that CPS could quite simply be adapted to the structure of the CAS
components. Due to its modular design and the simplicity of the CPS concept it was
possible to create together a highly scalable and configurable traffic charging scenario, as
all components components can easily be distributed and the traffic sampling and charging
intervals can be varied. Since the customer support component was not yet implemented in
the CAS, it was necessary to create a CPSCustomer class that provides the session
information which is important in the CPS scenario. However, this class could easily be
replaced, when the customer support component will be added to the CAS.

The experiments showed that the implementation code could sucessfully be tested on a
FreeBSD / Solaris testbed and even other platforms might be used due to the usage of
portable Java code.

It was hard to find a suitable traffic generator to run the simulation experiments. But finally,
the experiments performed verified the feasibility of the CPS concept for a real environment
and reached a good performance. The experiments showed the different behaviours of the
CPS mechanism using varyied technical parameters. However, for further comparisons it
would be necessary to run further experiments and compare them with other pricing
mechanisms, e.g., ECN-based pricing.

0 50 100 150 200 250
−5

0

5

10

15

20

25

30

35

40
ave. over 1 d
ave. over 1 h
ave. over 1 min

Figure 15: Accumulated Cumulus Points with Changing Thresholds

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 32 of 41 Version 1.0

7 Future Work

7.1 Comparison of CPS with ECN

The various experiments that have been performed showed that CPS pricing is highly
scalable in terms of the accounting effort with only few waste on the precision of
measurements. However, for a better statement about the technical effort, performance and
precision CPS needs to be compared with other scenarios, e.g., pricing based on ECN.
Hence our motivation is to compare CPS and ECN on a technical, functional and
economical level in detail and based on a real environment.

It is not trivial though to define a test case in order to compare CPS and ECN technically.
On the one hand it is difficult to avoid the problem of comparing apples and oranges. ECN
pricing is based on charges in the shorter time scale, whereas CPS charges on a longer
timescale. Other than in the ECN scenario, where a user agent makes the decisions on
behalf of the user, in CPS a real human user controls the traffic based on the price.
Therefore it is necessary to build a user model in order to simulate the reaction of the user
on the price.

On the other hand, as ECN is still a quite new technology, hardly any implementations
support ECN today. Altq supports ECN but only for experimental use. However, the problem
still remains, that ECN marks are set upon a artificially congested link. Among the
evaluated traffic generators, e.g., DBS, Mgen and Iperf, there was none that supports
setting the ECN bit in addition to the other requirements. Also NeTraMet that was used for
the flow measurements doesn’t support ECN in its current official version.

For all the above reasons it was decided to wait for more ECN-”enabled” tools in order to
setup a realistic test environment to run the comparison experiments.

8 Reference
[1] R. Andreassen (Edt.): Requirements Specifications, Part I Reference Model; M3I

Deliverable 1; Version 7, July 6, 2000.

[2] B. Briscoe (Edt.): Architecture, Part I Primitives & Compositions; M3I Deliverable 2;
Version 1, July 7, 2000.

[3] S.A. Cotton (edt.): Network Data Management – Usage (NDM-U) for IP-Based Ser-
vices; IPDR Specification Version 1.1, June 2000.

[4] ETSI: Internet Protocol (IP) based Networks; Parameters and Mechanisms for Charg-
ing; ETSI TR 101 734 V.1.1.1, Sophia Antipolis, France, September 1999.

[5] TU-T Q.825: Specification of TMN Applications at the Q3 Interface: Call Detail Record-
ing; Recommendation Q.825, Geneva Switzerland, 1998.

[6] M. Karsten (Edt.): Pricing Mechanisms Design (PM); M3I Deliverable 3, Version 1.0,
June 30, 2000.

[7] P. Reichl, P. Flury, J. Gerke, B. Stiller: How to Overcome the Feasibility Problem for
Tariffing Internet Services: The Cumulus Pricing Scheme; IEEE International Confer-
ence on Communications, Helsinki, Finland, June 11-15, 2001.

[8] P. Reichl, B. Stiller: Notes on Cumulus Pricing and Time-scale Aspects of Internet Tariff
Design; Computer Engineering and Networks Laboratory, ETH Zürich, Switzerland,
TIK Report No. 97, November 2000.

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 33 of 41

[9] P. Reichl, B. Stiller (Edt.): ISP Cost Model (ICOMO) Design; M3I Deliverable 8; Ver-
sion 2.0, December 18, 2000.

[10] B. Stiller (Edt.): Charging and Accounting (CAS) Design; M3I Deliverable 4,
Version 1.01, July 1, 2000.

[11] B. Stiller, G. Fankhauser, N. Weiler, B. Plattner: Charging and Accounting for Inte-
grated Internet Services - State of the Art, Problems, and Trends; The Internet Summit
(INET’98), Geneva, Switzerland, July 21-24, 1998, Session Commerce and Finance,
Track 3.

[12] B. Stiller, J. Gerke, P. Flury: Charging and Accounting System Design (CAS); M3I
Deliverable 4, Version 1.01, July 7, 2000.

[13] B. Stiller, J. Gerke, P. Reichl, P. Flury: The Cumulus Pricing Scheme and its Integra-
tion into a Generic and Modular Internet Charging System for Differentiated Services;
Computer Engineering and Networks Laboratory, ETH Zürich, Switzerland, TIK Report
No. 96, September 2000.

[14] B. Stiller, J. Gerke, P. Reichl, P. Flury: Management of Differentiated Services Usage
by the Cumulus Pricing Scheme and a Generic Internet Charging System; IEEE/IFIP
Symposium on Integrated Network Management (IM’2001), Seattle, Washington,
U.S.A., May 14-17, 2001.

[15] B. Stiller, P. Reichl. J. Gerke, P. Flury: A Generic and Modular Internet Charging Sys-
tem for Differentiated Services and a Seamless Integration of the Cumulus Pricing
Scheme; Journal of Network and Systems Management, Vol. 3, No. 9, September
2001.

[16] P. Flury, B. Stiller: Cumulus Pricing Scheme (CPS); M3I Deliverable 7.2, Version 1.0,
December 30, 2000.

[17] B. Stiller, J. Gerke, H. Hasan, V. Darlagiannis, H. Daanen: CAS Implementation; M3I
Deliverable 13, Version 1.1, July 20, 2001.

[18] A. Tirumala, J. Ferguson: Iperf, The TCP/UDP Bandwidth Measurement Tool, version
1.2; available at URL http://dast.nlanr.net/Projects/Iperf/, May 2001.

[19] B. Adamson: The “Multi-Generator” (MGEN) Toolset, version 3.1; available at URL
http://manimac.itd.nrl.navy.mil/MGEN/, August 1999.

[20] Y. Murayama, S. Yamaguchi: Distributed Benchmark System (DBS): A Powerful Tool
for TCP Performance Evaluations, version 1.1.5; available at URL http://
www.kusa.ac.jp/~yukio-m/dbs/, November 1997.

[21] Siegfried Löffler: Fluid, A Java Interface to NeTraMet, version 1.10; available at URL
http://www.mathematik.uni-stuttgart.de/~floeff/diplom/fluid/, August 1997.

[22] AdventNet Inc.: The Java SNMPv2 class library; available at URL http://www.advent-
net.com/products/snmp/, September 2001.

[23] Sun Microsystems: Java (TM) 2 Platform, Standard Edition, version 1.2.2; available at
URL http://java.sun.com/products/1.2/, January 2001.

[24] MySQL AB: MySQL, version 3.22.32; available at URL http://www.mysql.com/, Janu-
ary 2001.

[25] The FreeBSD Project: FreeBSD, release 4.2; available at URL http://www.freebsd.org/
, November 2000.

[26] N. Brownlee: Network Traffic Meter (NeTraMet) & NeTraMet Manager/Collector
(NeMaC) version 4.3; available at URL http://www2.auckland.ac.nz/net/Accounting/
ntm.Release.note.html, February 2001.

[27] N. Brownlee: Traffic Flow Measurement: Meter MIB, rfc2720; October 1999.

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 34 of 41 Version 1.0

[28] N. Brownlee, C. Mills, G. Ruth: Traffic Flow Measurement: Architecture, rfc722; Octo-
ber 1999.

[29] P. Reichl: A Note on How to Choose Cumulus Thresholds; January 2002.

[30] P. Reichl, Burkhard Stiller: Edge Pricing in Space and Time: Theoretical and Practical
Aspects of the Cumulus Pricing Scheme; 17th International Teletraffic Congress ITC
2001.

9 Abbreviations
AAAC Authentication, Authorization, Accounting and Charging
CAS Charging and Accounting System
CDR Call Detail Record
CH Confoederatio Helvetica, Switzerland
CPS Cumulus Pricing Scheme
D Germany, Deutschland
DB Database
DBS Distributed Benchmark System
DiffServ Differentiated Services Internet Architecture
DSCP Differentiated Services Code Point
ECN Explicit Congestion Notification
EPC Enterprise Policy Control
ETH Eidgenössische Technische Hochschule Zürich
GR Greece, Hellas
HTML HyperText Markup Language
HP Hewlett Packard
ID Identifier
IPDR Internet Protocol Data Record
JDBC Java Database Connectivity
JDK Java Development Kit
N Norway, Norge
ISP Internet Service Provider
M3I Market Managed Multi-service Internet
QoS Quality-of-Service
RSVP Resource Reservation Protocol
SNMP Simple Network Management Protocol
SQL Structured Query Language
TCP Transmission Control Protocol
TIK Institut für Technische Informatik und Kommunikationsnetze
TUD Technische Universität Darmstadt
UDP User Datagram Protocol
UK United Kingdom
URL Uniform Resource Locator

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 35 of 41

WP Work Package
XML Extensible Markup Language

10 Acknowledgements
The main parts of this document have been developed and written by David Hausheer,
Jayesh Pandey, and Burkhard Stiller (ETH Zürich). Dedicated input on the calculation of
CPS thresholds in this experiment have been provided from Peter Reichl (FTW Wien).

The CPS scenario itself has been implemented by David Hausheer and Jayesh Pandey
(ETH Zürich). Various helpful comments were received from Jan Gerke, Hasan, Pascal
Kurtansky, and Burkhard Stiller (ETH Zürich).

Furthermore, many lively discussions within and outside the M3I project created input to the
work. Apart from the people already mentioned above, the following people provided
valuable ideas and contributions: Kennedy Cheng and Marcelo Pias (BT) about ECN,
Siegfried Löffler (Uni Stuttgart) with Fluid, Nevil Brownlee (University of Auckland) about
NeTraMet, Hongguang Ma (ETH Zürich) on the traffic analysis, Karoly Farkas (ETH Zürich)
with DBS, and Placi Flury about the testbed.

11 Appendix
As previously mentioned in Section 2.8, the design and implementation of the user interface
for the connection setup is presented here. The following section addresses the
components of such an interface and connections to other parts like AA-Server and
Enterprise Policy Control (EPC). After that a short description of the implementation is
given.

11.1 Initialization Design (User End)

Figure 16 shows the design of a user connection setup.

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 36 of 41 Version 1.0

Description
1. Contract Negotiation: This is part of the setup phase where the contract is signed

between the user and the ISP. This can be done in two way, the customer gives his
requirements or by using the Probe Phase.

2. The Enterprise Policy Control is used in the contract negotiation process.
3. The Contract Information is then stored in the Customer Database.
4. This is information is send to the ‘AAA’ server to update its internal Database. This has

to include the following data:

Contract id, All the Customers and corresponding Users of the Contract. It must also
contain some service information i.e. the Traffic classes allowed and the approximate
maximum bandwidth required.

The Contract may itseft contain more data, such as charging and pricing information.

Figure 16: Initialization Design (User End)

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 37 of 41

5. Initialization Phase: The user starts the CPS Connection Interface. The parameters for
the connection setup can be entered directly or loaded from a .connection file in the
users home directory. This may contain the following information: User Id, Customer Id,
Contract Id, Source and Destination addresses (IP address + Port), Date and Service
requirements.

6. Connection Request: The Connection Interface sends request to the Edge Router. This
includes the following information (currently BE:AF:EF correspond to numeric values as
service Id.):

7. The Connection Setup Deamon on the Edge Router passes the connection request to
its cache. If the request matches some entry in the cache, the request is granted via
path 8 or else path 7a is taken. The ‘AAA’ server is passed the user connection request.
The permission grant (/deny) is passed to the cache via 7b. The Cache then updates
the last entry.

8. The permission grant(/deny) information is passed to the Connection Setup Daemon.
Internally the Connection Setup Daemon passes this information to the Admission
Control which now can allow(/deny) the user traffic to flow.

9. The Permission Grant(/Deny) is send to the Connection Interface. The Connection can
now be used by the user.

10.The user connection request is send to the Metering Interface if permission has been
granted.

11. The EPC provides the Metering Interface with the sampling rate according to the
policies setup for that particular contract. Now the user traffic which flows through the
edge router is metered.

12.This is the user traffic flow. (NeTraMet copies the packets by entering into promicious
mode and then analyses the packet information.).

13.Represents the user data flow to the meter (just for representation)
14.Represents the user data flow out of the meter.(just for representation)
15.The data produced by the meter flows to the Mediation Interface. This would be in the

form of flow files. Snmp queries can be used to query the meter regarding the flow
status.

16.Flow of the Policy Information from EPC to the Data Collection/ Accounting Unit.
17.Flow of the Policy Information from EPC to the Charge Calculation Unit.
18.The Customer Information is provided to the Charge Calculation Unit.
19.The Feedback information from the Charging Database to update the EPC.
20.EPC along with the feedback input from the billing database may cause the user to

renegotiate the Contract according to the Reaction Rule.

<contract_id>:= number

<user_id>:= number

<customer_id>:= number

<date>:= <hour>:<minutes>:<seconds>:<day>:<month>:<year>

<source>:=<IP_address>:<port>

<destination>:=<IP_address>:<port>

<service>:=<BE:AF:EF>:<bandwidth>

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 38 of 41 Version 1.0

Description of Components
1. Configuration File: This is the default setup file which is loaded when the user runs the

CPS connection setup. This file contains some default parameters such as the user id,
customer id, source address. It may also contain information like contract id, destination
address and service parameters, which are stored from the last connection setup done
by the user.

2. Connection Interface: This interface deals with the connection setup procedure. It
initially loads the .connection file, the user can change whatever data he wants. It then
sends a request to the Setup Daemon on the Edge Router. It also accepts the
permission grant (/deny) from the Edge Router and displays it to the User.

3. Admission Control: This interface prevents the user from sending data to the network
without having the permission to do so. It also contributes to the setup phase by
checking the user request and passing it to the connection daemon only if the service
request can be guaranteed, for example if bandwidth can be accomodated.

4. Connection Setup Daemon: This deamon listens to the user connection requests. It
passes the request for authentication and authorization to the cache. It also accepts the
permission grant (/deny) from the cache and pass it to the user and the Addmission
Control. On connection grant it passes the user request to the Metering Interface.

5. Contract Control: This entity is responsible for the contract negotiation phase and also
renegotiation. It gets Policy Information from EPC. The Contracts are stored in the
customer database.The Contract may contain Contract id, all the Customers and
corresponding Users of the Contract, service information i.e. the Traffic classes allowed
and the approximate maximum bandwidth required, and also the charging and pricing
information.

6. Cache: This is used for optimization. It would contain the user request / grant
information. On a user request it checks if it is in the cache, it found it immediately sends
a grant reply back. If not found it passes the information to the AA server.

7. AA Server: This is the authentication and the authorization server. It gets the user
request and grants(/denies) it on the basis of its database of contract information. The
information about the contract must contain at least that which are mentioned above.

8. Metering Interface: This interface connects to the metering entity. It gets policy
information from EPC and the user information from the setup daemon on the Edge
Router. On getting the user information and corresponding sampling rate from EPC, it
starts to query the meter for user data. It write a simple rule file (.srl) compiles it to a rule
file for NeMaC, which is the meter Manager and Meter Reader. It then starts NeMaC.
When it recieves new requests it merges the rule file, starts a new instance of NeMaC
with this rule file and then kills the earlier instance. Thus there is no loss of data due to
the overlap of times. For each meter a different instance of this program is created
which starts NeMaC for that particular meter. The flow information is stored as flow file(
but it is not used right now). SNMP requests are made to the meter to get the flow
information from it.

9. Enterprise Policy Control: This has all the Policy information corresponding to the
contracts. It affects the Data Collection/ Accounting and the Charge Calculation entities.
The Charging Database may have some effect on EPC and cause contract
renegotiation.

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 39 of 41

11.2 Installation and Operating Issues

In this part each of the class file is explained in detail, and consists of three parts each. In
the first part the class is explained in detail, in the next part way to run it explained and
finally any bug or future work possible is explained. All the files are in the
org.m3i.examples.ethz.CPSdemo package.

11.2.1 CPSManager

This class is adapted from the Flow Manager used in flowdemo package. It creates a frame
where the user can see the existing sessions and also add new sessions or delete them. It
is passes the edge router to which it has to connect. On a create new session call, it starts
an instance of CPSCreator. On end a session it calls the sendDisconnectRequest. In this
request, the session to be removed is taken, and the flow information corresponding to this
is send to the edge router for further action, and the session table is updated. This request
is similar to the one send by CPSCreator explained below, just that it is tagged with “2” to
denote deletion of session instead of “1” which is for creation of a session.

This is run at the by the end user (client) when he wants to use CPS (or the ISP service in
general case). He runs the: java org.m3i.examples.ethz.CPSdemo.CPSManager <edge-
router>, where <edge-router> is the immediate next edge router for the diffserv boundry.

The button corresponding to Session Information is not yet completed. It can be used to
display the complete session information which is already stored in the Vector cpsv. By
looking at the time stamp corresponding to flow start, and the current time stamp, the total
up time can be displayed to the user. Also currently the List shows the complete session
information pushed into the Vector, instead this information could be parsed and a better
display is possible. Also on quit, it does no send a delete request for the remaining sessions
this could be added.

11.2.2 CPSCreator

This class is instantiated and called when the user wants to start a new session. This has a
function similar to that of Flow Creator. It gets the edge router from the parent, i.e. the CPS
manager. The user can fill in the information required for setting the connection, i.e.
Contract Id, User Id, Customer Id, Source and Destination address, Service Type and
Bandwidth required. When the connectionRequestEvent function is called, a socket
connection is established with the edge router at port 1025. A daemon is running at this port
which accepts this socket request. A string message is send which is of the format:
<contractID> <userID> <customerID> <time> <sourceIP> <sourcePort> <destIP>
<destPort> <serviceType> <rate>. A tag “1” is added to it to signify its a create session
message. This string is added to the Vector cpsv of the parent. After this it waits for an
incoming message from the Daemon, if its a “OK” message it opens a dialog showing that
the user can now start using the service, else a deny dialog is displayed.

This class is automatically initialized by the CPSManager, no user intervention required.
Just he has to fill in the details and press the “send connection request” button.

The button for “save” and the interface ‘5’ of the initialization design has not been
implemented as yet. A config file may be produced on save which stores the information put
in by the user. When the user uses this the next time, the values stored in the config file
could be displayed. Currently all the fields are accepted as strings and no error checking is
present.

The Implementation of the CPS Scenario Fifth Framework Project 11429

© Copyright 2002, the Members of the M3I Consortium

Page 40 of 41 Version 1.0

11.2.3 CSDaemon

This class just accepts incoming socket connections at port 1025 and creates a new
CSServerThread. It gets the charging router address from the user input.

This is run at the edge router where Addmission Control and ‘AA’ functions are to be
implemented. Command: java org.m3i.examples.ethz.CPSdemo.CSDaemon <charging-
router>, which is the place where all the CAS is installed.

No possible extensions.

11.2.4 CSServerThread

This thread is started by the CSDaemon parent. This establishes a socket connection to the
user host. It gets the input from this host, if its a session start request it passes it to the ‘AA’
server for authentication and authorization. It gets the message from ‘AA’ and passes this to
the user. If the message is ‘OK’ then it passes the user connection request information to a
daemon on the charging router at port 1026. The class is direclty used, no intervention is
required.

Several possibilities for extension here. The interface to ‘AA’ server has been left blank.
Currently there is no addmission control. Two parts may be added here. First on analysing
the user request and looking at it bandwidth requirement, the edge router itself can decide
wether or not to send user request to ‘AA’ server. Also a cache may be put between the
Daemon and ‘AA’ for easy lookup. To prevent access by any user to the network we can
user a software patch for the kernel called ip-tables. This can be programmed to drop all
incoming packet except the choosen ones(by their ip, header info.) This can be modified
runtime by the Addmission Control module. Also a login/password sequence may be
added.

11.2.5 NeMaCServer

This file runs on the Charging Host. This class creates instances of NeMaCDaemon
corresponding to each of the metered hosts. It also accepts incoming socket connections
on port 1026 and according to their source passes it to the corresponding NeMaCDaemon.

This runs on the Charging Host where NeMaC is installed. It is passed the address of the
hosts where the meter is running. It can be run by the command : java
org.m3i.examples.ethz.CPSdemo.NeMaCServer <meter-host-list> <PATH>, path
corresponds to the place where srl and NeMaC are installed.

Currently only there hosts can be given to the server. Just one more parameter n. To assign
the incoming sockets to the NeMaCDaemons, socket.getInetAddress is used but this does
not give address of the originating point but to intermediate router, bridge. This has been
patched up in the code by stating that RA_RC would correspond to RA, and so on. The way
out would be that the edge router sends its address with the message itself.

11.2.6 NeMaCDaemon

This is instantiated by the NeMaCServer corresponding to the meter - host name. This has
2 Vector objects to store session information, and one Process object to store last NeMaC
process id. It starts new NeMaC Server Thread objects. Used by NeMaCServer itself.

Fifth Framework Project 11429 The Implementation of the CPS Scenario

© Copyright 2002, the Members of the M3I Consortium

Version 1.0 Page 41 of 41

11.2.7 NeMaCServerThread

This class connects to the incoming socket provided by its parent class. It extracts from it
the various parameters send in the user request like contract id, user id, source and
destination address etc. It stores this information in the parent Vector cmrs. It also
generates a string of the form shown below, and puts it into a Vector sessions :
SourcePeerAddress == "+sourceIP+" && SourceTransAddress == "+sourcePort+" &&
DestPeerAddress == "+destIP+" && DestTransAddress == "+destPort+". This is used to
create a rule file. Next part is writing a srl file. A srl file is created with the file name <meter-
host>.testbed.srl. The fouth line is the SETstatement, describing the rule set number. Next
is the FORMAT statement, which tells NeTraMet what details to write down in the flow files
produced. After that we have a statement : if SourcePeerType == IP save; else ignore; here
if the packets received by NeTraMet are IP then they are copied else ignored. Next
statement says that if the packets are of tcp or udp type only the save them. Next statement
is the main filter to identify flows by their 4 address parameters which are known. Only
these packets are counted. The filter statement is generated using the Vector sessions,
which was described above. If there is more than one session then an or symbol (||) is put
between two such statements. The file creation process is done whenever the Vector
sessions is updated by new session or delete session. Next this file is compiled to a rule file
with the name <meter-host>.testbed.rules. The thread waits till the file is compiled. Now
NeMaC(meter manager) is started. The parametes passed to the NeMaC are : -c
<sampling-time> the rate at which NeMaC should query the meter for new data. -r <rule-file
name> name of the rule file ie. meter-host.testbed.rules. The meter-host name, the snmp
community name and the owner of this meter. This process is started and its processID is
stored in the parent variable process, and the earlier process is now terminated. A <meter-
host>.session file is also written to communicate with the CAS connector the ongoing
sessions. No user intervention required.

There is no need for format statement as the flow files produced by NeMaC are not used. If
possible there may be some other way to communicate with the connector the ongoing
sessions, may be using RMI objects. Earlier different instances of NeMaC were used for
each session, but this was inefficient and also due to the SET field there was a limitation of
only 10 possible rule files to be uploaded.

