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Abstract

English

In this work, we indroduce a property for automorphism groups of locally finite trees,

which we call the Independence Property and which, for closed groups, is equivalent

to Property (P) introduced in [Tits]. Using this, we proceed to the classification of all

continuous unitary irreducible representations of closed non compact locally 2-transitive

(cf. [B; M]) automorphism groups of locally finite homogeneous or semi-homogeneous

trees which have the Independence Property. Further we treat the case of the locally

finite homogeneous tree where we show that all closed edge transitive automorphism

groups which have the Independence Property are locally transitive Universal Groups

(cf. [B; M]). At last we give two necessary and sufficient conditions for a locally transive

Universal Group to be topologically finitely generated (cf. [Mozes]).

Deutsch

In dieser Arbeit führen wir die "unabhängigkeits Eigenschaft" (Independence Property)

für Automorphismengruppen von lokal endlichen Bäumen ein, die, falls die Automor-

phismengruppe geschlossen ist, äquivalent zur Eigenschaft (P) in [Tits] ist. Ferner geben

wir eine Klassifizierung sämtlicher stetiger unitärer irreduktibler Darstellungen von

geschlossenen nicht kompakten lokal 2-transitiven (s. [B; M]) Automorphismengruppen

mit unabhängigkeits Eigenschaft von lokal endlichen homogenen oder semi-homogenen

Bäumen. Den Fall der lokal endlichen homogenen Bäumen behandelnd, zeigen wir, dass

alle geschlossenen Automorphismengruppen mit unabhängigkeits Eigenschaft und tran¬

sitiver Aktion auf den Kanten des Baumes lokal transitive Universal-Gruppen (s. [B; M])

sind. Wir geben auch für lokal transitive Universal-Gruppen zwei äquivalente Bedin¬

gungen um topologisch endlich erzeugt zu sein (s. [Mozes]).
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Introduction

The group aut (T) of all automorphisms of a locally finite tree is locally compact. In

this work we study a large class of closed automorphism groups G with praticular focus

on their continuous unitary representations.

In Chapter one we introduce the independence property of an automorphism group of

some tree. For closed groups, this property is indeed equivalent to the Property (P)

introduced by J. Tits in [Tits] (4.2, p. 197).

Considering a continuous unitary representation n of a closed automorphism group G

of a locally finite tree T, it turns out that there exists a non trivial vector which is

invariant under the action of the subgroup of automorphisms fixing some finite subtree.

Among all the finite subtrees for which there exists such invariant non trivial vector,

one takes the set Mn of complete subtrees which are minimal for the inclusion. If the set

Mn contains a subtree which has more than one edge, then we call the representation n

super cuspidal. The representation n is called special, if Mn contains a subtree which

has only one edge, and is called spherical if Mn contains a subtree which has only one

vertex.

In the first part of the second chapter we discuss the existence of super cuspidal rep¬

resentations in the case where the group has the independence property. Generalizing

Ol'shanski's basic idea (cf. [Ol'sh]) to any closed tree-automorphism group G with the

independence property, we find that G has a super cuspidal representation if G does

not fix any point at the boundary of the tree T and admits no G-invariant non trivial

proper subtree.

In the second part of the second chapter we proceed to the complete classification of

the continuous unitary representations of a closed non compact automorphism group G

with the independence property and acting transitively on the boundary of the tree T,

which in this case is automatically homogeneous or semi-homogeneous. In particular we

see that an irreducible continuous unitary representations of such a group is of exactly
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2 INTRODUCTION

one of the three types: super cuspidal, special or spherical. This is a generalization

of the classifications given in [Ol'sh] and [F-T; N], as it covers the case of a great

variety of closed automorphism groups of the homogeneous or semi-homogeneous tree,

in particular of the so called Universal Group U(F) of the homogeneous tree of degree

d > 3 in [B; M] with P a transitive permutation group on {1,..., d}.

The third chapter treats of the Universal Group U(F). We shall see that all closed

edge transitive groups with the Independence Property are (locally transitive) Universal

Groups.

In [Mozes], Shahar Mozes, discussing irreducible uniform lattices T in aut (Ti) x aut (T2),

with Ti, T2 homogeneous trees, is interested in those subgroups U(F) which arise as clo¬

sure of projections of such lattices T. As these must be topologically finitely generated,

he stated without proof that, if P is a transitive permutation group on {1,..., d} and

Pi = Stabil) is non-trivial, then U(F)(x) is topologically finitely generated if and only

if the stabilizer group Pi is perfect and equal to its normalizer. In the second part of

Chapter 3, we shall prove that, if P is a transitive permutation group on {1,..., d} and

Pi = Stab^(l) is non-trivial, the following conditions are equivalent:

1. The subgroup U(F)(x) is topologically finitely generated.

2. The stabilizer group Pi is perfect and equal to its normalizer.

3. For every real positive number M, the group U(F) has finitely many equivalence

classes of super cuspidal representations with formal degree less than M.



Chapter 1

Trees and their Automorphisms

For the beginning, we want to give some notations and definitions concerning trees and

their automorphisms. In particular we shall introduce what we call the independence

property of a group of automorphisms of a tree. For closed groups, this property is

equivalent to the Property (P) introduced by J. Tits in [Tits] (4.2, p. 197).

1.1 Definitions and Notations

For the definitions of graphs, trees and automorphisms, we refer to the book [Serre] or

to its English translation [Serre 2] by J.-P. Serre. We just recall here the essential and

introduce some notation.

A graph T = (X, Y) consists a set set of vertices X and a set of edges Y and the

maps (o,t) : Y — X x X, e i— (o(e),t(e)) and Y — Y, e i— ë satisfying ë= e,ë/e

and o(e) = tie). The vertex o(e) is called the origine and the vertex t(e) is called

the terminus of the edge e. A path is a sequence of edges (e^gj, finite of length n

(le I = {1,..., n} for some positive natural number n), infinite (le I is the set N of

natural numbers) or doubly infinite (le I is the set Z of relative numbers), such that

t(et) = o(et+i) for each % E I with % + 1 E I. We call chain a path (e^gj without

backtracking, i.e. such that et ^ ëî+i for each i E I with i + l£/. A graph is connected,

if any two vertices can be joined by a finite path, le such that x is the original vertex

of the first edge and y the terminal vertex of the last edge of the path. On the set of

vertices of a connected graph exists a natural distance d(x, y) between two vertices x

and y, which is the length of the shortest path (chain) linking x to y. A cycle is a path

3



4 CHAPTER 1. TREES AND THEIR AUTOMORPHISMS

ei,..., efe such that for each i, e% ^ et+\ and o(ei) = t(ek). A tree is a connected, non

empty graph without cycle. We call degree or index of a vertex a; and write d(x) the

cardinality of the set o~1(x) = t~1(x). A graph is locally finite if any of its vertices is of

finite index.

A morphism g of the graph Ti = (Xi,Yi) to T2 = (X2,Y2) is a map g = gx x

gy : X\ x Yi — X2 x Y2 such that for every edge e of T\, (gx(o(e)),gx(t(e))) =

(o((/y(e)), t((/y(e))) and gy(e) = gy(e). By abuse we shall write gx = g and gy = g.

The graph V = (X', Y') is a subgraph of the graph T = (X, F) if the inclusion maps

I'CI and Y' Ç.Y form a morphism of graphs and if Y' = Y', where Y' = {ë \ e E Y'}.

We write V Ç T.

A connected graph T = (X, Y) has a bipartite structure if there exist two subsets

XX,X2EX such that I = IiUl2 and o(Y) x t(F) Ç {Xx x X2) U (X2 x Xx).

An automorphism of a graph T = (X, Y) is a morphism of T to T which is bijective on

the sets X and Y. We write aut (r) for the group of all automorphisms of T and we

take as convention that aut (r) acts from the left on the sets X and Y.

We consider now a tree T = (X, Y). A subtree of T is a connected subgraph of the tree

T.

A vertex of a (sub-)tree S is called a /eof or end of S if it is the terminal vertex of at

most one edge in S; this edge is then also called a terminal edge of S. The subtree S

of T is complete if all its vertices which are not leaves of S have no adjacent vertices

outside of S. We call interior of the complete subtree S the subtree S° obtained by

removing all leaves and their adjacent edges of S.

For an edge e of T we let Te be the unique maximal subtree of T having e as terminal

edge.

We say that two infinite chains (e»)jeN and (/»)»gN on T are equivalent, if they have

infinite intersection, this means, that there exist n, K E N such that e^ = fk+n for

all k > K. It is easy to see that this defines indeed an equivalence relation on the

set of infinite chains on T. We call boundary of the tree T and write T(oo), the set

of equivalence classes of this equivalence relation. The elements of the boundary are

sometimes called leaves or ends of T and can be seen as an extension of the above

definition of leaves of a (sub-) tree. For a fixed vertex x of T, there corresponds to

each end e of T a unique infinite chain (et)tefi E e starting at x, i.e. with o(e0) = x. If

we write Te(oo) the boundary of the subtree Te
,
seen as subset of T(oo), the familly
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{Te(oo) | e E Y} is a base of topology for which T(oo) is compact.

If g is an automorphism and (e^gN an infinite chain of the tree T, then g(e%)%^ : =

(fife^îgN is also an infinite chain of T. This defines an action of aut (T) on the infinite

chains of T which, as it is easily seen, preserves the equivalence relation on infinite

chains, and hence induces a natural action on the boundary of T.

We now discuss briefly some properties of the group of automorphisms aut (T) of T.

An automorphism g E aut (T) is called a rotation if g fixes some vertex x (i.e. gx = x)

and an inversion if there exists an edge e such that ge = ë. Suppose g is neither a

rotation nor an inversion, then for every vertex x we have d(x, gx) > 1. Let Xo be a

vertex such as d(x0, gx0) = n is minimal and let e\,e2,... ,en be the chain linking x0 to

gx0. We construct the doubly infinite path 7 = (ek)kez by setting ek+in = gl£k for all

k E {1,..., n} and I ETL. It is easily seen that this path is a chain which is (/-stable.

The automorphism g is called translation of step n along the path 7.

We have therefore the following proposition which is quite classical (See for example

[Tits]).

Proposition 1. Every automorphism of a tree is either a rotation, an inversion or a

translation.

For a subgroup G of aut (T) and for every subtree S, we write the S-fixing group

G(S) = {g E G I gx = x, for all vertices x of S}

and the S-stabilizing group

G(S) = {g E G I gS = S}.

In particular, if S is contains only one edge e, we write G(e) = G(S) as well as G(e) =

G(S), and if S contains only one vertex x, we write G(x) = G(S)(= G(x)).

Since a tree is connected and has no cycles, two (distict) vertices can be linked by

exactly one finite chain and their distance is the length of this chain. The set of vertices

X endowed with this distance is a discrete metric space.

From now on and for the rest of this work, we suppose all our trees locally finite if not

indicated otherwise. The image by an automorphism of a chain is again a chain, and

automorphisms can be seen as isometries on the space of vertices. In fact aut (T) is

isomorphic to the group of isometries on the metric space X, and via this isomorphism
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the topology of uniform convergence on the compact (i.e. finite) subsets of X makes

aut (T) a topological group under which the action on X is equicontinuous. If G is

a closed subgroup of aut(T), the G(S) are open for all finite subtrees S and the set

{G(S) | S is a finite subtree of T} is a base of neighbourhoods of the identity. Since

G(S) is equicontinuous as set of isometries, and since each of its orbit is finite in X,

the subgroup G(S) is compact. Therefore G is locally compact. Moreover the maximal

compact subgroups of G are of the form G(x), for some vertex x, or G(e), for some edge

e. If G acts transitively on the vertices then G(x) is maximal compact, for every vertex

x, and if G acts transitively on the set {{e, ë} \ e E Y} then G(e) is maximal compact,

for every edge e

Lemma 2. If a closed subgroup G of aut (T) contains no translations, then G is either

compact or fixes a point of the boundary of T.

Proof. Cf. [F-T; N] Theorem 8.1, page 20. D

Definition 3. A tree is homogeneous of degree d or d-regular if all its vertices have

same index d.

A tree is semi-homogeneous of degree (r, s) if the degree function d : X — N takes

exactly two values r and s, and the level sets d~l(r) and d~1(s) give a bipartite structure

on T.

Proposition 4. Suppose that the boundary of the tree T has at least three elements.

Let G be a closed non compact subgroup of aut (T). Suppose G acts transitively on the

boundary ofT. Then G(x) acts transitively on the boundary of T for every vertex x.

Moreover, if the above holds, the tree T is homogeneous or semi homogeneous and G

has at most two orbits on X. The group G acts transitively on the set of vertices ofT if

and only if G contains for every edge ofT an inversion, otherwise the G-orbits on the

vertices are {z \ d(x, z) is even} and {z \ d(x, z) is odd} for some vertex x.

Proof. By Lemma 2 we can suppose that G contains a translation. Let r E G be a

translation along the doubly infinite chain 7, let 1 bea vertex of 7, and let e E T(oo).

Since G(x) is open in G and has countable index, T(oo) = G e = |J«gN KG(x) e where

{ht I 1 E N} is a complete set of coset representatives and G(x) e the G(a;)-orbit of e.

Since the boundary T(oo) is complete metrizable, and htG(x) e is compact, htG(x) e

has an interior point. Therefore the orbit G(x) e has an interior point and hence is

open.
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Let now e' and e" be the two ends of the chain 7. Since G(x) e' and G(x) e" are open,

there are two edges ê and e" of 7 such that Të/(oo) Ç G(x) e' and Te«(oo) Ç G(x) e".

Suppose r moves x in direction to e' and let e G T(oo) \ {e', e"}. If e is the edge of the

infinite chain starting at x and corresponding to e such that o(e) is a vertex of 7 but

t{e) is not, then there exists a natural number n such that rrae is an edge of Të/, which

means that rne E Të>(oo) Ç G(x) e'. Therefore T(oo) \ {e"} Ç G(a;) • e'. Similarily we

have also T(oo) \ {e'} Ç G (a;) • e". Since the boundary of T has at least three elements,

T(oo) \ {e'} and T(oo) \ {e"} intersect. Hence G (a;) acts transitively on the boundary

for every vertex x of 7. Moreover G(x) acts also for every n transitively on the sets

Sx,n = {y E X \ d(x, y) = n}.

Since the boundary of T has at least three elements, T has at least one vertex with index

greater than 2, and one of such has to be a vertex of the doubly infinite path 7. Now take

the vertex a; of 7 at distance 1 of this vertex. Then all vertices at distance 1 of a; have

the index greater than 2. If y is a vertex at distance n of x, then Sx>n = G(x) • y Ç G • x.

Therefore the G-orbit of x is G • x = {x} U \JteE Sx>% where E is a set of positive

numbers. Let k = minP and take y E Sx>k. Then y E G x; furthermore G(y) is a

conjugate of G(x) in G, hence G(y) acts also transitively on the boundary and on the

sets Sy>n = {z E X \ d(y,z) = n}. This means that every element having distance k

from y belongs to G • x. It follows that E must contain all multiples of k. But k is at

most 2. Indeed, suppose that k > 1. Let y be a vertex at distance k oî x and z a vertex

at distance k from y and 2 from x. Then z E G(y) x E G x and therefore k = 2 and

finally G • a; = {z | d(x, z) is even}. Let z E {z \ d(x, z) is odd}, then there exists g E G

such that d{g~lx, z) = 1 and therefore d(x, gz) = 1 and since G(x) is transitive on Sx>i,

{z I d(x, z) is odd} is the second orbit of G.

Finally, if k = 1 then G acts transitively on the vertices of T which has to be ho¬

mogeneous. Let e be an edge and g E G with go(e) = t(e), then, since G(t(e)) acts

transitively on t~1(t(e)), there exists h E G(t(e)) with hge = ë, i.e. hg is an inversion

of e. Inversely, if G contains an inversion for some edge e, then clearly k = 1 and G acts

transitively on the vertices of T. D

Observe that, if the boundary of T has only two elements, the above proposition is false.

Indeed consider a chain on which we number the vertices so that the vertex k and k+l

are adjacent. To each vertex whose number is a multiple of n > 1 we ad one edge. The

boundary of this tree T has only two elements and the automorphism group aut (T) is

non compact since it contains a translation of step n. One sees easily, that if n is odd
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and n > 3 then for every vertex x of degree 2, the stabilizer group G(x) is trivial, and

if moreover n > 5, the group G has more than two orbits.

We also observe that a group satisfying the hypothesis of the above proposition acts

minimaly.

Definition 5. An automorphism group G is said locally n-transitive if for every vertex

x of the tree T, the stabilizer G(x) ofx acts transitively on the set {y E X \ d(x, y) = n}.

If n = I, we say just that G is locally transitive.

Obviously a locally n-transitive automorphism group is also locally A;-transitive for every

k < n.

Proposition 6. Any locally transitive closed subgroup G is unimodular.

Proof. At first, we notice that by the transitivity of the action of G(x) on t~1(x), we

have for every vertex x of T and every edge e of t~1(x),

G(x)= [J heG(e),

where h£ E G(x) with he(e) = e.

Thus, if m (P) denotes the left Haar measure of a subset E of G,

m(G(x))= J2 m(/ieG(e)) = |r1(a;)|m(G(e)).
e&^ix)

It follows from the equality G(e) = G(e), that for every vertex x of T and every edges

e,e' E t~l(x) Uo~l(x),

m (G(e)) = |F^m {G{x)) = m (G(g/)) '

and by induction on the distance between two edges, one sees that m (G(e)) = m (G(e'))

for every edges e, e' of T.

Let now g E G and e an edge of T. Obviously we have G(ge) = gG(e)g~1. Let lg

denote the characteristic function of the subset E of G and A the modular function of

G. Then

m (G(e)) = m {G{ge)) = / lG{ge){h)dh= / lG{e){g 1hg)dh

lG{e){hg) dh = AQT1) f lG{e){h) dh

= AQT1)m(G(e)).

Thus A(g) = 1 and the group G is therefore unimodular. D
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Refer also to the unimodularity critérium of Bass-Kulkarni in [B; K].

Observe that, if the hypothesis of the above proposition is not satisfied, the group needs

not be unimodular, as the example of the stabilizer of a boundary point shows (cf.

[Nebbia]).

Recall that, for a locally compact group G and a compact subgroup K of G, the pair

(G,K^j is called a Gel'fand pair, if the convolution algebra C00(G)^ of complex valued

K-hi-invariant functions (i.e. functions / satisfying f(kgk') = fig) for all k, k' E K)

with compact support on G is commutative.

Proposition 7. Suppose that the boundary of the tree T has at least three elements. Let

G be a closed non compact subgroup of aut (T) which acts transitively on the boundary

ofT. Then (G, G(x)) is a Gel'fand pair for every vertex x.

Proof. By Proposition 4, G(x) acts transitively on the boundary of the tree T, and

since for each g E G, d(x,gx) = d{x,g~lx), there exists k E G(x) with kgx = g~lx,

i.e. gkgx = x. Therefore there exists k' E G(x) such that k' = gkg, and hence

g~l E G(x)gG(x).

This means that for every G(a;)-bi-invariant function /, we have fig-1) = fig)- Hence

for fi, f2 E Coo(G)^ we have

fi*f2(h)= [ Mg)f2ig-lh)dg= f Mg)f2{ih-lg)-l)dg
Jg Jg

h(hg)f2ig-l)dg = [ Mg-lh-l)f2ig)dg
g Jg

= I f2(g)fi(g-1h-1) dg = f2* hih~l) = f2 * Mh)
Jg

for every h E G. D

1.2 Groups with the Independence Property

Consider a locally finite tree T (i.e. every vertex of T has finite index).

First we notice the following obvious fact.

Lemma 8. If S\ and S2 are two subtrees ofT such that the union of their sets of vertices

is the set of all vertices ofT, then for all automorphism group G, the elements ofGiSi)

and GiS2) commute.
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Definition 9. We say that the group G has the independence property if for every edge

e of the tree T we have the equality

G(e)=G(Te)G(Te).

The group aut (T) of all automorphisms has of course the independence property. We

shall further see in Chapter 3 a large class of groups as the universal group which has

also this property.

If the subtree S has at least one edge, we define for each vertex x of S, the subtree

Fs,x = UeTe where e runs along the set of edges of S having x as their terminal vertex.

Lemma 10. A group G of automorphisms of a tree T has the independence property if

and only if for every finite subtree S with at least one edge, the equality

GiS) = Y[GiFs,x),
X

with x running along the set of vertices of S, holds.

Proof. Suppose that G has the independence property. We shall prove inductively on

the number N of vertices of S that G(S) = Y[x G(FstX)-

For N = 2 it is the independence property. Let N > 2 and suppose that G is S'-

independent for all subtrees S' with N — I vertices. Take a subtree S with N vertices

and h E G(S). Take also a terminal edge /; since h E Gif), there exist h\ E GiTf) and

h2 E GiTf) with h = h\h2. If S' denotes the subtree obtained from S by cutting off the

edge /, then h2 = h^h E G(Tf)G(S) Ç G(S) Ç G(S"). Write X' the set of vertices of

S'. By induction hypothesis h2 = Yiyex' hy ^0T some hy E G(Fs>,y). But we can easily

see that for all y E X' \ {o(/)}, Tj is a subtree of Fs>,y, so hy E GiTf) for all these y,

and therefore h0(f) E GiTf) too. Finally

h = hh2 E GiTf) J] (GiFs,,y) n GiTf)) = G{Fsm) \[ GiFs,y)
yex> yex>

= \\G(Fs>y), with y over all vertices of S.

y

D

If G is closed in aut (T), we notice that, using an approximation argument, it is possible

to prove such a statement for infinite subtrees S. Therefore one sees that for closed

groups the independence property is equivalent to Property (P) by J. Tits as stated
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in [Tits] (4.2, p. 197), just by taking for S all chains G of length at least one. The

Property (*) introduced in [Nebbia] (p. 346) however, is somewhat more restrictive,

since it implies that the fixing group of a subtree A is equal the fixing group of the

minimal complete subtree containing A — it would have been enough to require this

condition for the complete subtrees only.

For a complete subtree S with at least one edge, and for each vertex x of S, we have

Fs,x = T, if x is not a leaf, and Fs,x = Te, if x is the terminal vertex of the terminal

edge e of S. Thus we have the following proposition:

Proposition 11. The group G has the independence property if and only if for every

finite complete subtree S of T we have

G(S) = l[G(Te)
e

where e is to be taken among all terminal edges of S.

Lemma 12. Suppose the automorphism group G of T = (X,Y) has the independence

property. Let x E X be a vertex ofT and for each edge eofT write Xe Ç X the set of

vertices of the subtree Te. IfO Ç X is a G(x)-orbit, then for each e E o~1(x), OC\Xe is

a G(Te)-orbit. If further Gix) acts transitively on o~lix), then O = \_\e&0-itx\ O ^ ^e-

Proof. It is enough to show that GiTe) acts transitively on O C\Xe. Take two vertices y

and y' in O f)Xe. Since the edge e is common to the geodesic segments joining x = oie)

with y respectively joining o(e) to y', an automorphism h E Gix) such that hy = y',

fixes e. By the independence property of G, there exists he E GiTe) and he E GiTe)

with h = hehe, and therefore hey = hh~1y = hy = y'. D

We write G+ for the subgroup of G generated by the edge-fixing automorphisms.

Definition 13. We say that G acts minimaly on T, if there is no G-invariant proper-

subtree and no element of the boundary ofT fixed by G.

If the tree T is homogeneous or semi-homogeneous the group aut (T) acts minimaly on

T. We shall also see in Chapter 3, that the universal group U(F) does so. But for

example the stabilizer of a horicycle does not acts minimaly on T.

Proposition 14. Assume that G has the independence property and acts minimaly on

T. Then the following statements are equivalent.
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1. G+ ^ {id}.

2. GiTe) j£ {id}, for every edge e.

If these conditions are satisfied, then G(S) ^ {id} for every finite subtree S of T and

therefore, G is not discrete.

Proof. That statement 2. implies statement 1. is clear.

Conversely if we show that for every edge e, the group G(e) is trivial if and only if GiTe)

is trivial, then supposing that G+ ^ {id}, take an edge e with G(e) ^ {id} and let e be

any edge. As G(e) = G(e) and G(e) = G(e), one can suppose that T£ is a subtree of Te,

thus

G(e) D GiTe) D GiTe) ^ {id}

and GiTe) and GiTe) are non-trivial.

We show now that for every edge e, the group G(e) is trivial if and only if GiTe) is

trivial. The direct sense is trivial, so we show the reciprocal sense. If the tree T is

homogeneous of degree 2, then G(e) and GiTe) are trivial anyway. So we suppose that

T has at least one vertex of degree greater than 2.

Let e be an edge of T and suppose that GiTe) = {id}. Then G(e) = GiTe), by the

independence property of G. If we show that there exists a translation g E G along a

doubly infinite chain G which is contained in Te, then the subtree Tge = gTe would be

a subtree of Te and therefore we would have

G(e) = GiTe) Ç GigTe) = gGiTe)g~l = {id} .

The group G is supposed acting minimaly on T, so, by Lemma 2, there exists a transla¬

tion h\ E G along a doubly-infinite chain G\. Now we see that for every vertex x of the

chain, the orbit G • x has a nontrivial intersection with the set of vertices of the interior

of Te (This is the subtree Te without the edges e and ë and the vertex o(e)). Indeed,

otherwise the minimal subtree of T containing G • x would be G-invariant and a subtree

of Te and hence a proper G- invariant subtree of T, which is contrary to our hypothesis.

Therefore there exists h2 E G such that the chain h2Gi has at least one vertex in the

interior of Te. The automorphism h2hih2l is a translation along h2G.

Let e, e' E T(oo) be the ends of the chain h2Gi. Then at least one of them, say e, is

in Te(oo). The end e' is not G-invariant, as well as the set {e, e'}, otherwise the chain
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h2Ci would be G-invariant and T must be homogeneous of degree 2, contrary to our

supposition at the beginning. Hence there exists /13 E G with /i3e' ^ {e, e'}, i.e. with

e' <£ {h%lt, /i^~V}. Consider the set M of the vertices of the chain h2Ci which are the

closest to the chain h^lh2Ci. Since t' is not an end of h^lh2Ci, there are only a finite

number of vertices of Te in M. This means that there exists a relative number n such

that ih2hih2l)nM is completely included in the set of vertices of the interior of Te. But

then, the chain G = ih2hih21)nih^1h2Ci) is also completely contained in the interior

of Te and the automorphism g = ih2hih2^^ah^xh2hih2^hzih2hih2x)~n is a translation

along G. D

Proposition 15. Suppose the boundary of the tree T has at least three elements. Let

G be a closed non compact automorphism group of T with the independence property.

Then G acts transitively on the boundary if and only if G acts locally 2-transitively on

T.

Moreover, if the above holds, the tree T is homogeneous or semi homogeneous and G

has at most two orbits on X. The group G acts transitively on the set of vertices ofT if

and only if G contains for every edge of T an inversion, otherwise the G-orbits on the

vertices are {z \ dix, z) is even} and {z \ dix, z) is odd} for some vertex x.

Proof. Let us write Gix) the permutation group on t~xix) induced by the stabilizer

Gix) of x. By Proposition 4 it is enough to show that for every vertex x, Gix) acts

transitively on the boundary if and only if for every vertex x, Gix) is 2-transitive.

Write for every edge e, G(e) respectively GiTe) the group of permutations on t_1(t(e))
induced by the stabilizer G(e) respectively GiTe). Then, if G has the independence

property, we have the equality G(e) = GiTe) and G(t(e)) is 2-transitive if and only if

G(t(e)) is transitive and G(e) is transitive on t_1(t(e)) \ {e}.

Suppose now that Gix) is 2-transitive for every vertex x. Fix now a vertex x. We show

that Gix) acts transitively on the boundary of T. Let e and e' be two ends of T and

take the unique infinite chains 76e and 7' E e' starting from x. We show by induction

that for every natural number n E N, there exists gn E Gix) such that gnl{p) = 7'(n):

for n = 0, by transitivity of Gix), there exists go E Gix) with #07(0) = 7'(0). If

we have gn E Gix) such that gnj(n) = j'in), then by transitivity of G(T7/(„)) on

t_1(t(y(n))) \ {e}, there exists h E G(Ty(ra)) with gn+x := hgnjin+l) = Y(n+ 1). By

closedness of Gix), we have the transitivity of the action of Gix) on the boundary.

The inverse statement is immediate. D
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Chapter 2

Unitary Continuous Representations

of Tree-Automorphism Groups

In this chapter we shall use the independence property to discuss the existence of some

irreducible unitary continuous representations of closed tree-automorphism groups.

We shall further give a complete classification of all unitary continuous representations

of the closed automorphism groups which have the independence property and act tran¬

sitively on the boundary of the tree. Using Proposition 15, we see that such groups acts

in fact on the homogeneous or semi-homogeneous tree. The classification presented here

is a generalization of these given by G. I. Ol'shanski in [Ol'sh] and by Alessandro Figa-

Talamanca and Claudio Nebbia in [F-T; N]. Ol'shanski considers only the group aut (T)

for T homogeneous and semi-homogeneous, and in [F-T; N] only the homogeneous tree

is treated and in the case of the supercuspidal representations, only aut (T) is consid¬

ered. Our classification applies to all closed non compact automorphism groups which

have the independence property and act transitively on the boundary (or equivalently:

which are locally 2-transitive) of the homogeneous or semi-homogeneous tree.

2.1 Definitions and Notations

Recall that the set of vertices of a tree has a natural metric and that aut (T), the group of

all automorphisms of T acting on this space by isometries, with the topology of uniform

convergence on compacts, is a locally compact topological group. Any closed subgroup

of aut (T) is also locally compact and admits therefore a left invariant Haar measure dg.

15
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We shall write miE) for the measure of every measurable subset E of G.

Let G be a closed subgroup of aut (T) and let S be a complete finite subtree of T.

Set Q(S) = G(S)/G(S) (which is in fact a group of automorphisms of S) and ps :

G(S) — Q(S) the canonical projection. Consider the maximal proper complete subtrees

Si,...,Sn of S. One has G(S) Ç G(St) Ç G(S). We set At := ps(G(St)). If S is neither

a point nor an edge, the Aj's commute and satisfy A, n EL=^ A = {^}- Since the inner

automorphisms of the group Q(S) interchange the Aj's, the group N := A\ x • • • x An

is a normal subgroup of Q(S).

Definition 16. We call the complete subtree S non degenerate if A% ^ {id}, for all i,

or, which is equivalent, if G(Si) ^ G(S) for all St 's.

Definition 17. A unitary representation (co,K,) ofQ(S) is said to be non degenerate if

it has no non zero At-mvariant vectors for all i.

Let (it, H) be a unitary, continuous representation of G, that is, the map g i— {-ir(g)v, w)

is continuous for every v,w E H. From now on, all representations will be assumed

unitary and continuous, nevertheless we'll call them just "representations". We write

HK for the subspace of PJ-invariant vectors, and 7^°°) = IJk^^' wnere K runs over

the set of open compact subgroups of G. Since {G(S) \ S Ç T finite complete} is a base

for the filter of neighbourhoods of id E G, we know that

n{QO) = \JnG{s\
s

where the union is over all complete finite subtrees S of T, is a subspace of H. Moreover

H^00"1 is dense in H by continuity of the representation n.

Definition 18. Let A^ be the set of complete finite subtrees S for which H0^ is non

trivial. This set is non empty, G-mvariant and is ordered by inclusion. Let Mn be the

set of minimal elements of A^

We call the irreducible representation (it, H)

1. super cuspidal if there exists an element of Mn which is neither a point nor an

edge;

2. special if there exists an element of Mn which is an edge;

3. spherical if there exists an element of Mn which has exactly one vertex.
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2.2 Super Cuspidal Representations

Theorem 1. Let G be a closed automorphism group of a locally finite tree T with the

independence property.

1. (a) If (n, H) is a super cuspidal representation of G, then

i. the group G acts transitively on Mn;

n. all coefficients of n with vectors m H^00"1 have compact support;

m. if S E Mn and lo is the representation of Q(S) defined by the action of

G(S) on 7iG^s\ then lo is irreducible, non degenerate and n is equivalent

to the representation ind-,^ (to ops) induced to G by lo o ps.

(b) If S is a finite complete non degenerate subtree ofT and lo a non degenerate

irreducible representation ofQ(S), then the representation

T(S, lo) := ind~(s) (to o ps)

induced on G by lo is irreducible and super-cuspidal.

Moreover, the representation T(S, lo) is equivalent to another such representa¬

tion T(S', lo') if and only if there exists g E G with S' = gS and lo' corresponds

to lo via the isomorphism Q(S) — Q(S') induced by g.

(c) If G is unimodular, then the formal degree ofT(S,u) is equal to

dim a;

m (G(S)

where m ( G(S) ) is the measure of G(S).

2. If G acts minimaly and if G+ is not trivial, then G has a super cuspidal represen¬

tation.

3. If G acts transitively on the boundary ofT, i.e. if G is locally 2-transitive, then

there exists for every complete finite subtree S, with at least one vertex which is

not a leaf, a super cuspidal representation ti with S E Mn.

Proof of the Theorem

The following fact, due to G. I. Ol'shanski (see [Ol'sh]), is of great importance in the

proof of this theorem:
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Lemma 19. Suppose that G has the independence property. Let U be a complete finite

subtree ofT with at least one vertex which is not a leaf and let V be a complete subtree

not containing U. Then there exists a proper complete subtree WofU such that

G(W) ç G(V)G(U).

Proof. Since U is not contained in V, one can take a leaf x of U which is not in V; now

pick the adjacent vertex y in U. The tree U is complete and y is one of its vertices which

are not leaves, therefore all edges of T with y as terminal vertex are in U. Moreover

for one of those edges e, the tree V is contained in Te, because V is complete. Let

W = Te Pi U; this is a complete finite subtree containing the edge e. As G has the

independence property, by Proposition 11, we have G(W) = G(Te) Yif G(Tf) where /

are all terminal edges of W which are terminal edges of U. For these edges one has

U Ç Tf, so G(Tf) Ç G(U); on the other hand, G(Te) Ç G(V), since V Ç Te. It follows

that G(W) Ç G(V)G(U). D

From now on and for the rest of this section, let us suppose that G is a closed subgroup

of aut (T) having the independence property.

Lemma 20. Let S and S' be complete subtrees, where S is finite and contains at least

one vertex which is not a leaf. If f is a G(S)-right-invariant and G(S')-left-invariant

complex function on G such that JG(U) f(gk)dk is defined and equals zero for all complete

proper subtrees U of S and for all g EG, then it is supported m

{9EG\gSÇS'}.

Proof. If g E G satisfies gS $Z S', ie S $Z g~xS', then by Lemma 19 we can take a

complete proper subtree U of S such that G(U) Ç G(g~xS')G(S) = g~xG(S')gG(S).

Therefore gG(U) Ç G(S')gG(S) and thus for all h E G(U), f(g) = f(gh). Hence

/(0) = M&m) h{u) f(9k)dk = 0. D

For finite complete subtrees S, let H(S) denote the subspace of L2(G) consisting of

all G(5')-right-invariant functions satisfying JG(s/) f(gk)dk = 0, for all proper complete

subtrees S' of S and for all g E G. This subspace is closed and invariant under the

action of the left-regular representation. Thus let Ts denote the unitary continuous

representation of G obtained by restricting the left-regular representation to H(S).

From now on S will denote a finite complete subtree with at least one vertex which is

not a leaf.
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Lemma 20 gives the following corollaries.

Proposition 21. The subspace H(S)G('S"1 of G'(S)-bi-invariant functions m L2(G) has

finite dimension.

Proposition 22. // (n, H) is a super cuspidal representation, then for all u,v E H^00"1

the coefficient g i— (u, Tr(g)v) has compact support.

Which proves the statement l.(a)n. of Theorem 1.

Lemma 23. If (tt,'H) is a super cuspidal representation of G, then G acts transitively

on Mn.

Proof. Since n is super cuspidal, there exists S E Mn whose vertices are not all leaves.

Take U E M^ and pick u E HG(-U\ v E HG(-S\ both non zero, and set f(g) = (u,7v(g)v)

for all g E G. Then / E H(S)G('U\ is continuous and non trivial because v is cyclic. It

follows that 0 t^ supp (f) Ç {g e G \ gS Ç U} and there exists g E G such that gS Ç U.

Therefore the vertices of U are also not all leaves. Now we can set f'(g) = (v, Tr(g)u) for

all g E G and obtain a non trivial continuous function supported in {g E G \ gU Ç S}.

Hence there exists h EG with hU Ç S. Because g and h are automorphisms and S and

U are finite, this implies that gS = U and hU = S. D

This proves statement l.(a)i.

Lemma 24. Every non trivial Ts(G)-invariant closed subspace oftH(S) contains a non

trivial G(S)-bi-mvariant function.

Proof. Suppose that M is a non-trivial closed Ts(G)-invariant subspace of H(S) and

take u E M and g E G such that u(g) ^ 0. The function v = JG(s,Ts(kg~x)udk is

G(5')-bi-invariant and, since M is closed and TS'(G)-invariant, v E M. Moreover

Jg{s) Jg{s)

= m(G(S))u(g) ^ 0, iev^0.

D

Proposition 21 and Lemma 24 imply that the representation (Ts,T~C(S)) is a finite sum

of irreducible representations. By Lemma 20, H(S) does not contain nonzero G(S')-

invariant vectors if S' is a proper complete subtree of S. Therefore Ts is finite sum of

super cuspidal representations.
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Lemma 25. Let (ir,T~C) be a super cuspidal representation of G and S E Mn. Then n

is equivalent to a sub-representation ofTs-

Proof. Fix f E nG{s) \{0}. The linear operator U : H{oo) -»• H(S) defined by U(n)(g) =

(rj,7r(g)Ç) for all g E G is continuous and intertwining n and Ts; consequently its

continuous extension on H is an intertwining operator and is, by Schur's lemma, a

positive multiple of an isometry. D

Therefore we have the following corollary.

Proposition 26. The representation Ts is the finite direct sum of all super cuspidal

representation n having S E Mn.

Lemma 27. // (to, K) is an irreducible non-degenerate representation of Q(S) then

lo o ps is equivalent to a sub-representation of G(S) defined by the action of Ts(G(S))
overH(S)G^.

Proof. The subspace H(S)G('S"1 is clearly G(5')-invariant. Now fix £ E K \ {0}. The

linear operator U : K — H(S)G('S\ where Un(g) = (n, to °Ps(g)Q, if g G G(S), and

Urj(g) = 0, if g E G \ G(S), for ail n E K is continuous and interlacing lo o ps and

Ts.

Now we consider an irreducible non degenerate representation (lo,K) of Q(S). By

Lemma 27 we can suppose that (to o ps, K) is a sub-representation of Ts\q,ss restricted

to H(S)G('S\ Recall that the induced representation T(S,lo) of lo o ps acts as the

left-regular representation on the Hubert space £ of functions / : G — K, satisfying

f(gh) = lo o ps(h~x)f(g), for every h E G(S) and g E G, and fG ||/(<7)|| dg < oo. The

scalar product is given by

(/i, /2) = / (h(g), f2(g)) dg (with/i, f2 e C)
•J Or

and moreover

Il/l|2 = /ll/(^)ll2^= E Il/^)ll2m(0(^))

where g E g. Therefore, if £' designs the closed and non-trivial subspace of £ formed

by the functions supported in G(S), the subspace

0 T(S,to)(g)£'

9&G/G(S)
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is dense in £. Recall that we consider /Casa subspace of H(S)G('S\

For / E T(S,Lo)(g)£' (g E G) we see, that for all k E G(S) following equalities hold:

Ts(gk)(f(gk)) = Ts(g)oTs(k)(f(gk))

= Ts(g)(uoPs(k)(f(gk)))
= Ts(g)(f(g)).

Therefore we can define the function

Uf = m(yG(S))(Ts(g)(f(g))),
which is obviously an element of the subspace of G((/5,)-left-invariant functions

H(S)G{9S) = Ts(g)H(S)G{s).

Since the Haar measure is left-invariant,

\\Uf\\l = m (g(S)) J \Ts(gk)(f(gk))(h)\2dh

[g(S)) Jj(f(gk))((gk)-Xh)\2dh
miG(5)) [ \(f(gk))(h)\2dh

= m

G

= m(G(S))\\f(gk)\\l

Hence the function k i— ||/(A;)||2 is supported and constant on gG(S), so

= / \\f(h)%dh= / \\f(h)%dh
Jg Jg{s)

= m(G(S))\\f(g)\\l

and finally

\\Uf\\2= 11/11 •

The linear map

U: 0 T(S,Lo)(g)£'^H(S)

9&G/G(S)

is an isometry, extensible to £ and interlacing T(S, lo) and Ts, since, if / E T(S, to)(g)C,

then T(S,Lo)(h)f E T(S, lo)(hg)£', and so

U(T(S, Lo)(h)f) = Ts(hg) ((T(S, u)(h)f) (hg)^
= Ts(h)Ts(g)(f(g))=Ts(h)Uf.
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We now show that T(S, lo) is irreducible. Let A4 be a closed G-invariant subspace of

£. The pre-image of H^)0^ by U is £', hence by Lemma 23, A4 has a non-trivial

element (f> of £'. Moreover cf>(id) ^ 0 because ||</>(z<i)||2 = ||</>(A;)||2 for all k E G(S). As

(lo o ps(k))(id) = (T(S, Lo)(k)f)(id) for all k E G(S) and for every f E Mn£', the set

Kl = {f(id) | / E A4 Pi £'} is a non-trivial G(5')-invariant subspace of fC. But lo o ps is

irreducible, so /C' = fC. It then follows that for each g E £', there exists / E A4 f) £'

with g (id) = f(id). Moreover

g(k) = loo ps(k~x)g(id) = lo o ps(k~x)f(id) = f(k)

for all k E G(S), le g = f. Consequently £' Ç A4, hence A4 = £ because A4 is closed

and G-invariant and ^ eG,G(-s-}T(S,Lo)(g)£' is dense in £.

We have shown the following lemma:

Lemma 28. If to is a non degenerate irreducible representation ofQ(S), then the rep¬

resentation

T(S, lo) = ind~(s) (to o ps)

is equivalent to an irreducible sub-representation ofTs, therefore T(S,lo) is super cusp¬

idal.

Next lemma proves the statement l.(a)in.

Lemma 29. Let (it, H) be a super cuspidal representation of G, S E Mn and lo the

representation of Q(S) defined by the action of G(S) on HG(-S\ then to is irreducible

non degenerate and ti is equivalent to T(S,to).

Proof. Let A4 be a non-trivial, closed and Q(-S')-invariant subspace of HG(-S\ Take a

non zero vector v of Ti0^ and a non zero vector u of A4. Consider the function / : g i—

(v,7i(g)u). It's a non trivial element of H(S)G(-S\ hence, by Lemma 20, it is supported

by G(S). Therefore there exists g E G(S) with (v,lo o ps(g)u) = (v,7r(g)u) = f(g) ^ 0.

But A4 being Q(-S')-invariant, Lo(ps(g))u E A4. It follows that the orthogonal space of

A4 in nG{s) is trivial, le M = HG{S).

The representation lo is obviously non degenerate.

Since lo o ps is equivalent to a sub-representation of the reduction to G(S) of the repre¬

sentation ind-,^ (to o ps) = T(S, lo), it follows from Lemma 25 and Lemma 28 that n is

equivalent to the representation indg,^ (to ops). D
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For an irreducible non degenerate representation (to,K) of Q(S), let, for £ E K, be

fz(g) = lo o ps(g~x)C if <7 £ G(.S') and /^((jf) = 0 if g E G \ G(S). Then f^ is an element

of H, the Hubert space on which T(S, lo) acts, and we have for all n E K,, the scalar

product

(fv,T(S,u)(g)ft) = [ {fv(h),k(g-xh))dh
•J Or

= I (Lo(h-x)n,Lo(h-xg)i)dh
Jg{s)

= m(G(S))(r],u(g)0,
if g E G(S), and = 0 if g ^ G(S). Therefore every coefficient of a; is a coefficient of

T(S, lo) and with the preceding we have following lemma.

Lemma 30. Let (to, K) and (lo', K!) be two irreducible non degenerate representations

of Q(S) respectively Q(S'). Then T(S,lo) and T(S',lo') are equivalent if and only if

there exists g E G such that S' = gS and lo' corresponds to lo via the isomorphism

G(S) — G(S') induced by g.

Lemma 31. If S is a non degenerate subtree which is neither a point nor an edge, then

Q(S) has a non degenerate irreducible unitary representation.

Proof. Let 7r» be an irreducible not one dimensional representation of At and set n =

7Ti ® ... ® 7T„ and lo = indA|x xi„ M) ^nen n nas no non-zero ^-invariant vectors

and, using the formula for the restriction to Ai x
...

x An oî lo, one sees that lo is

non-degenerate. D

For each edge e we write G(Te) the group of permutations on t~x(t(e)) induced by the

stabilizer G(Te). The following lemma is an immediate consequence of the definition of

non degenerate subtrees:

Lemma 32. If for every edge e ot T, the permutation group G(Te) is not trivial, then

every complete subtree which is neither a point nor an edge is non degenerate.

Lemma 33. Let x be a vertex and S the minimal complete subtree of T containing

all vertices adjacent to x. If the stabilizer G(x) acts 2-transitively on the leaves of the

subtree S, then Q(S) has a non degenerate irreducible unitary representation.

Proof. If we identifie the leaves of S with the elements of the set of numbers {1,..., d},

where d is the degree of x, then Q = Q(S) is a 2-transitive permutation group of
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{1,..., d}. We define for every g E Q define the d x d-matrix Pg = (<^,fl(,j))^=i, where

5k,i is the Kronecker symbol. The map g i— Pg is a unitary representation of Q onto the

space Mdti(C) of d x 1-matrices. Write e3 = (ö%>3)=1 the d x 1-matrix with only zeros

except at the line j where is the number 1. The subspace C • (%2l=1 et) is Q-invariant.

Let A4 be the orthogonal complement of C • (El=ies)- Then A4 is also Q-invariant.

But A4 is also irreducible, since A4Q(-1') = C • (ei — ^-j- J2l=2 e») is of dimension one and

the vector ei — -j-^ J2t=2 e* *s cyclic- D

The statement l.(b) follows therefore from Lemma 28 and Lemma 30 and the statement

2. follows from statement l.(b) and Lemma 31. The statement 3. follows from 2. and

Lemma 33.

Now, assume furthermore that G is unimodular. Take £ E K,, such that ||£|| = 1, and

let /^ be as before. One has, if dT{s,u>) designs the formal degree of T(S, lo),

1 -m(G(S))2 = -^—(f,,f,)2
dr{s,u) ^ ' dT(s,u)

= I \(h,T(S,a;)(g)ft)\2dg
G

m (G(SJ"
3

' '

\(h,T(S,a;)(g)ft)\2dg
m(G(S)) Jg(S)

m(G(S))3-^—
V / dim a;

and finally

d
dim a;

T(S,u>)

m(G(S)

We have now proved the theorem.

2.3 Classification of the Representations

In Proposition 15 we have seen that, if on a locally finite tree a closed non compact group

acts transitively on the boundary, then the tree is homogeneous or semi-homogeneous

and the action of the group on the vertices of the tree is either transitive or has two

orbits. We shall now give a classification of the continuous unitary representations of

a closed non compact locally 2-transitive automorphism group with the independence



2.3. CLASSIFICATION OF THE REPRESENTATIONS 25

property of a homogeneous or a semi-homogeneous tree. This classification applies on a

larger class of groups than the classifications known before (cf. [Ol'sh] and [F-T; N]).

Theorem 2. Suppose the closed non compact automorphism group G has the inde¬

pendence property and acts transitively on the boundary of T, where T = (X, Y) is

a homogeneous tree of degree d > 3 or a semi-homogeneous tree of degree (r, s), with

r, s > 2 and r > 3 or s > 3.

Then a unitary continuous irreducible representation (n,'H) of G is of exactly one of the

three types: super cuspidal, special or spherical.

1. (a) If (n, H) is a super cuspidal representation of G, then

i. the group G acts transitively on Mn;

n. all coefficients of ti with vectors in H^00"1 have compact support;

in. if S E Mn and lo is the representation of Q(S) defined by the action of

G(S) on HG(-S\ then lo is irreducible, non degenerate and n is equivalent

to the representation ind-,^ (to ops) induced on G by lo.

(b) If S is a finite complete subtree which is neither a point nor an edge, then

there exists at least one non degenerate irreducible representation lo of Q(S),

and the representation

T(S, lo) := ind~(s) (lo o ps)

induced on G by lo is irreducible and super cuspidal, and S E MT^s>i0)

Moreover, the representation T(S, lo) is equivalent to another such representa¬

tion T(S', lo') if and only if there exists g E G with S' = gS and lo' corresponds

to lo via the isomorphism Q(S) — Q(S') induced by g.

(c) The formal degree ofT(S,u) is equal to

dim a;

m (G(S)

where m ( G(S) ) is the measure of G(S).

2. (a) If G acts transitively on X, there exist precisely two equivalence classes of

special representations (A_i, 7i(e)_i) and (\i,7i(e)i).

(b) IfG has two orbits on X, there exists precisely one equivalence class of special

representations (\i,7i(e)i).
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(c) The group G acts transitively on the sets MXl and MXl.

(d) The representations (X-i,H(e)) and (Xi,H(e)) are square mtegrable and de¬

fined as follows:

Let e be an edge ofT, set H(e) the subspace ofL2(G) consisting of the G(e)-

right-mvariant functions f satisfying jG,x) f(gk) dk = 0 for all g E G and

x E {o(e),t(e)}. Further let a be the linear involution on H(e) defined by

a(f)(9) = fi.99) where g is an inversion of the edge e, if there exist such m

G, or g = id otherwise (This involution does not depend on the choice of g).

Write H(e)K the eigenspace of a corresponding to the eigenvalue k E { — 1,1}

and XK the restriction on H(e)K of the left regular representation of G.

(a) If it is spherical, then following holds:

i. The set Mn corresponds to the set X of vertices ofT,

n. For every x E Mn andu E H0^ with \\u\\ = I, the function g i— tp%(g) =

(u, Tr(g)u) is a zonal spherical function with respect to the compact group

G(x);

(b) Let x be a vertex and a the degree of x.

i. If G acts transitively on X, the equivalence classes of spherical represen¬

tations it with x E Mn are in one to one correspondance with the interval

[—1,1] via the map n i— ^(g) where g E G such that d(gx, x) = 1.

n. If G has two orbits on X, the equivalence classes of spherical representa¬

tions it with x E Mn are in one to one correspondance with the interval

[— ^7r!g^-i)~ ' 1] ma ^ie maP n h^ ^(9) where d(gx, x) = 2.

111. The spherical representation corresponding to ^^(g) = I is the trivial

character.

w. If G acts transitively on X, the spherical representation corresponding to

tpir(g) = — 1 is the character g 1— (—\)d(x>gxï and writing tvx the spherical

representation corresponding to X E [—1,1] we have 7t_a = 7r_i ® tt\\g,

the inner tensor product of 7r_i and tt\.

(c) Let x,y be two vertices. Let a be the degree of x and b the degree of y. Let

Kx,\ be a spherical representation with x E MnxX and X = tpnxX(g) and let

be a spherical representation with y E Mn and ß = cpn ig) with g asTV
y,ß

above. Then ttx>x and irytß are equivalent if and only if

aib — 1)
,

a — b
\i = 77 7TA +

b(a
—

1) b(r + s — b — 1)
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2.3.1 Super Cuspidal Representations

If Mn contains a complete finite subtree S with at least two edges, then Theorem 1

applies immediately.

2.3.2 Special Representation

Let e be an edge of T. Recall that there exists an inversion g E G if and only if G

acts transitively on X. We write H(e) the set of G(e)-right-invariant L2-functions /

satisfying

f(gk)dk = 0

lG(x)

for all g E G and x E {o(e), t(e)}.

Lemma 34. Let S be a finite complete subtree and f a continuous G(e)-right-invariant

and G(S) -left-invariant function satisfying

f(gk)dk = 0

G(x)

for all g E G and x E {o(e), t(e)}. Then the function f is completely determined by the

values it takes on the set {g E G \ ge is an edge of S}. More precisely, if' g' EG is such

that g'e or g'ë is a terminal edge e' of S, then for every g E G such that ge is an edge

of Te' we have

(-l)n+x

where (a,b) = (\t~x(t(e'))\ , \t~x(t(e')) |); [q] is the integer part of the real number q,

g is an inversion of e if d(g't(e), gt(e)) is odd and the identity otherwise (observe

that if G does not contain any inversion, this distance is always even), and n =

min {d(g't(e), gt(e)), d(g't(e), go(e))}. In particular, f is square mtegrable.

Proof. Let / E H(e) be a G(5')-left-invariant function and take g E G be such that ge is

not an edge of S. Let e' be the terminal edge of S which is the closest to ge. By replacing

e by ë if necessary, we can take g' EG such that e' = g'e. Let e0 = e', e\,..., en+i be a

chain with en+i = ge or gë and pick for each i E {0,1,... ,n} a kt E G(t(et)) such that

k%e% = ët+i. Then ge = kn ... kog'ge, where g is an inversion of e if d(g't(e), gt(ej) is

odd and the identity otherwise.
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Let 0 < i < n. Since by Lemma 15 the permutation group G(x) is 2-transitive for every

vertex x, there exists for each e E t~x(t(et)) \{et} a he E G(TeJ Ç G(S) with h£ët+i = e

and hence for every 7 G G with 7e G {et, ët} we have

(|r1(t(e,))|-l)/(fc,7)= E tth£k%1)
e&~Ht{ex))\{ex}

1

111 (G(e*)) ee^(e))
JG^

1

-1

'-(e))
JG(£)

/(7^)^-/(7) = -/(7),
m (G(e0) 7g(x)

where a; G {o(e),t(e)}, and therefore by induction on n,

Il,=o(|* (He0)| -1)

The square integrability of / follows. D

As a corollary to this lemma the dimension in H(e) of the subspace of G(e)-left-invariant

functions is equal to the index [G(e) : G(e)].

Now consider the left-regular representation A of G in H(e), i.e. the representation

defined by X(g)f(j) := f(g~Xl) for every 7 G G. This representation is known to be

unitary.

Lemma 35. Every non-trivial closed X-invariant subspace oftH(e) contains a non-trivial

G(e)-left-invariant function.

Proof. Let M be a non-trivial closed A-invariant subspace of H(e) and let u E M and

g E G with u(g) ^ 0. The function / := JG(e) X(k)X(g~x)u dk is G(e)-left-invariant.

But / is also non-trivial, since f(id) = JG(e) X(kg~x)u(id) dk = JG(e) u(gk~x) dk =

m(G(e))u(g)^0. D

Therefore if G has two orbits on X, the representation (X,H(e)) is irreducible.

If G contains an inversion and hence an inversion of e, we consider on Tï(e) the linear

involution a defined by cr(f)(g) := f(gg) for every g E G, were g E G is an inversion of

e. This involution does not depend on the inversion g since, if g\ is an other inversion of

the edge e, the automorphism g7xg fixes e and we have f(gg) = f(ggigïxg) = f(ggi)-
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We write H(e)+ and H(e)~ the eigenspaces of a corresponding to the eigenvalues 1

respectively —1. These subspaces are closed in H(e) and A-invariant, which implies that

the restricted representations (X+,H(e)+) and (X~,H(e)~) are irreducible.

Lemma 36. The representations (X+,H(e)+) and (X~,H(e)~) are mequwalent.

Proof. The formula given in Lemma 34 shows that if g is an inversion of the edge e and

/ is a G(e)-left-invariant function, then X+(g)f = f if / G H(ei)+ and X~(g)f = —f if

/ G H(ei)~. Suppose there exists an unitary operator T : H(ei)+ — H(e2)~ interlacing

A+ and A~. Then, if / G H(ei)+ is a non trivial function, Tf = TX+(g)f = X~(g)Tf =

—Tf and hence Tf = 0 which contradicts the injectivity of T. D

Let (n, 7i) be a continuous unitary irreducible representation of G. Suppose Mn contains

a subtree with exactly one edge e. If v is a 7r(G(e)) -invariant vector and g E G, then

ir(g)v is 7r(G(g'e))-invariant, hence ge E An. Since G(o(e)) and G(t(e)) are conjugated

in G the edge ge is also minimal and thus element of Mn. Therefore, since G(e) = G(e),

the set Mn contains all edges of T.

Fix now an edge e of T. Let u E 7iG^ and v E H°° two non trivial vectors. Then

the function g i— fv>u(g) := (v,7r(g)u) is continuous G(e)-right-invariant and G(5')-left-

invariant for some complete finite subtree S and satisfies

/ f(gk)dk = 0

Jg(x)

for all g G G and a; G {o(e),t(e)}. Therefore / G 7i(e) and the representation

TT is square integrable. For fixed non trivial G(e)-invariant vector u E H, the set

Vu{v E H | fv>u E 'H(e)} is stable under the action of n and contains 7i°° and hence

is dense in H. The linear operator Tu : Vu — H(e),v \-^ fv>u is closed. Indeed, if

w„ -^- v, we have Tvn(g) = fVn,u(g) —> (v,Tï(g)u) =: /^^ by continuity of the scalar

product. Moreover, if ||Tw„ — /||2 -^ 0 for some / G 7i(e), then Tw„ — / allmost

everywhere and hence in H(e) the / = fv>u =:Tv. We have also T7r(g)v(j) = fTx{g)v,u =

(<n(g)v,ii("i)u,=)(v,ii(g-x"i)u) = fv,u(g~xj) = X(g)fV}U(j) for all g,j E G It follows

that T is a non-zero multiple of an isometry (cf. for example [Gaal], p. 160, proposi¬

tion 10) and therefore the representation (n, Ti) is equivalent to a subrepresentation of

(A, «(e)).
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2.3.3 Spherical Representations

Fix a vertex x of T. Without limiting the generality we write r the index of the vertex

x and hence all vertices at even distance to x and s the index of the vertices at odd

distance to x. If r = s, we write d = r = s. We also set k, = 1 if G acts transitively on

X and k = 2 otherwise.

In the following, dg represents the left invariant Haar measure m (.) with m (G(x)) = 1.

We write C00(G)^ the space of continuous complex valued functions / with compact

support which are G(a;)-bi-invariant, i.e. which satisfy f(kgk') = f(g) for all k, k' E

G(x). This space endowed with the convolution product (fi,f2) i— /i * f2 defined by

/i * Î2(h) = JG fi(g)f2(h~xg) dg is an algebra.

By proposition 7, (G,G(xj) is a Gel'fand pair. Therefore the convolution algebra

Coo(G)^ is commutative. By Proposition 6 the group G is unimodular.

A continuous complex valued function tp on G is a spherical function if it is G(a;)-bi-

invariant and such that the map / i— x(f) = jG f(g)LP(g~1) dg is a non trivial character

of the convolution algebra C00(G)^.

We write also L*(G)^ the space of the (classes of) complex valued integrable G(a;)-bi-

invariant functions on G. This space is also a commutative convolution algebra.

In [Far], page 320, we have Theorem 1.5:

Lemma 37. Let tp be a bounded spherical function. Then the map f i— x(f) =

IG f{g)LP{g~l) dg is a character of~Lx(G)\ and all characters of~Lx(G)^ are of this form.

A complex valued function tp on G is positive definite if for every choice of c\,..., cn E C

and gi,... ,gn E G we have Y^3=i ^^((^(jr"1) > 0. For such a function we have of

course tp(g~x) = <p(g)-

By Proposition II.1 and Theorem III.2 in [Far], pages 323 and 331, we have following

result:

Lemma 38. 1. For each positive definite spherical function tp, there exists an irre¬

ducible unitary representation (jT^jT-Cp) accepting a G(x)-invariant vector u such

that ip(g) = (u, iTv(g)u) for all g EG.

2. Let (n,H) be a unitary representation accepting a cyclic G(x)-invariant vector u'

such that ip(g) = (u', -ir(g)u') for all g E G, then there exists a unitary isomorphism
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U : Hv — H such that Uo-jrv(g) = ir(g)oU for all g E G and Uu = v!. In particular

the representation (n, Ti) is irréductible.

We have also Theorem ULI in [Far], page 330:

Lemma 39. If (G, K) is a Gel'fandpair and (it, H) an irreducible unitary representation

of G, then HK is of dimension at most one.

Therefore for each spherical representation (it, H) corresponds exactly one positive defi¬

nite spherical function </v This function cpn is the matrix coefficient (u,7r(g)u) = ^plï(g)

with u E H0^ and ||w|| = 1. Conversely, every positive definite spherical function is a

matrix coefficient of a spherical representation. In particular different sherical functions

are coefficients of inequivalent representations.

In order to study the spherical representations n of G with x E Mn we are therefore

interested in studying the bounded positive definite spherical functions of the Gel'fand

pair (G, G(xj).

Since G(x) acts transitively on all spheres Sx>n = {z E X \ d(x, z) = n} for every radius

n, the convolution algebra C00(G)^ can be identified to the set C00(kN) of complex

functions with finite support on k,N via the isomorphism / i— / defined by f(g) =

f(d(x,gx)) for all g EG For the integral we have

I f{g) dg = m (G(x)) J] f(d(x, z)) = m (G(x)) J] \Sx,r\ f(r).
z£G x rSfvN

The convolution of two G(x)-bi-invariant functions fi and f2 is therefore

fi*f2(g)= Yl h{d(x,z))f2(d(gx,z)).
zGG x

Observe that for every g E G, G(x)gG(x) = {g' E G \ d(x,g'x) = d(x,gx)}. Therefore

if we set for i E kN,

4>i = 7~ AG(x)gtG(x),

where g% E G with d(x, g%x) = 1, we have for every m,n E kN, with m > n > 0,

4>n * 4>m(g) = 4>m * 4>n(g)
\^X,m '

'

>Jgx,n\

This gives

d-\f
1

,

^A d-2

_d- 1 ( 1
x

s~^ a-*
x

(Pn*(pm- —-- \td_ YyVrn-n
+ 2^ M_ jAn+l-fc

(Pm-n+2k + Çm+r,
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if G acts transitively on X.

r — 1

4>n * 4>m =
r \((r-l)(s-l)y

:<f>-n Ym—n

+ £
s-2

ttK{(r-l)(s-l))
r -2

+

+

(r-l)((r-l)(s-l))
s-2

~<Pm+n-2 + <Pm+

+l_l(Pm-n+Al-2

H_l Ym—n-\-il

(r-l)(s-l)

otherwise, and hence

4>l * 4>m =
01 if m = 0

\(j)m-\ + ^-j-(t>m+i if m > 1

if G acts transitively on X and

02 if m = 0

;^y(/)m_2 + ^TJ^m + ^(/W^ if m > 2

otherwise. This means that 4>o and (pK generate C00(G)^.

4>2 * 4>m =

Let x be a character of C00(G)^, then the suite (pt(X)) := (x(<W) is determined as

soon as we know x(^k) = A, since x(0o) = 1- We have

'po(A) = 1

Pi(A) = A

MX) = ^îAp„_i(A) - ^îp„_2(A), n > 2

if G acts transitively on X and

'po(A) = 1

p2(A) = A

>(A) = r(;;_1!^i^2)Pn-2(A) - (^îyprî)Pn-4(A), n > 4

otherwise.

Lemma 40. ^4 G(x)-bi-mvariant function tp on G is spherical with respect to the com¬

pact subgroup G(x) if and only if we have

Agkg') = <p{g)<p{g')
G(x)

for every g, g' E G.
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Proof. See for example Proposition 1.3 in [Far], page 319, or Theorem 10 in [Gaal],

page 451. D

Lemma 41. The function g i— y>\(g) = Pd(x,gx)(X) is spherical and all spherical func¬

tions of G are of this form. In other words, a G(x)-bi-mvariant function tp on G is

spherical if and only if it satisfies following conditions:

>(0) = 1

0(1) = A

0(n) = ^X<p(n-l)-^-l<p(n-2), n>2

if G acts transitively on X and

'm = i

0(2) = A

otherwise, where X is some complex number.

Proof. Let tp be a G(a;)-bi-invariant function. Pick g, g' E G and set m = d(x, gx) as

well as n = d(x,g'x). Since ip(gkg') = ip(g'~xk~xg~x), we can suppose m > n. We

compute

G(x)

ip(gkg') dk = / ip(d(g xx,kg'x)) dk

G(x)

/ ip(d(g~xx,khg'x)) dkdh
G{x)/G{TX n) JG{TX n)

Lp(d(g~xx, kg'x)) dkdh

G{x)/G{Txn) JG{Txn)

m(G(TC)„)) Y^ lfi{d(g~1x,z))
zesx

m-\-n

\s, I / y
\Sx,k H SgX>n\ <fi(k)

k=m—n

n

\S:
—r Y \Sx,-n+2k n Sgx>n\ (p(m - n + 2k).

k=0

This gives

ip(gkg') dk
d-\( 1

G(x)
d \(d-iy

-(p(m — n)

n—l
d-1

+ J2
(d _ l)n+i-k^m ~n + 2k) + tp(m + n)
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if G acts transitively on x, and

/
Jg(x)

ip(gkg') dk =
r -_1( '

r \((r-l)(s -d)!
,ip(m
>

n)

f-i
s —

l)(s-

2

D)î+I
_j0(m -n + 4/- 2)

+

(r --l)((r

r - 2

-1)(, -I))2
j-0(m — n + 4/)

s-2
+

(r-l)(s--1)^n + n —2) + 0(m + n) J

otherwise.

We have to show that cp\ is spherical. Since for every natural number i the function

V?a(*) = P«(A) = x(0«)) we have, using above computations,

<P\(9)<P\(g') = ^\(m)^x(n) = x(0m)x(0m) = x(0 * 4>n) = / p(gkg'),
Jg(x)

hence ip>\ is spherical by Lemma 40.

In the other sense, if tp is spherical, using above formulas with n = k, we see that

(p(k) = Pk(X) for every natural number k, where A = 0(1).

Therefore all spherical functions of G with respect to the compact subgroup G(x) are

given in a unique manner by cp\ with A G C. We shall now give another characterisation

of those spherical functions.

For the vertices y ^ z, we define the open compact subsets Oy(z) = Te(oo) of the

boundary T(oo) of the tree T, where e G o~x(z) such that d(y,t(e)) < d(y,o(e)).
We have for every vertex y and for every natural number n, the equality T(oo) =

LLesyn°!/(*)- Since \SvÀ = ^=ï(a- l)ra"[fl(6- l)[fl, if n > 1, and [S^l = 1 (where a

is the degree of y, b E {r, s} \ {a} and [a] denotes the entire part of a £l), the only

G(y)-invariant Borel probability measure ßy on T(oo) satisfies [iy(Oy(z)) = 3^(a —

l)[fl—(6- l)"[f], iîn = d(y,z) > 1.

Let e G T(oo) and y a vertex. We write ey E e the unique infinite chain with o(ey(0)) = y

representing the end e. If y and z are two vertices, there exists a unique relative number

k such that ty(n + k) = ez(n) for n > \(d(y, z) — k). This number k defines a function

k(y,z,t) = k.
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Pick now a vertex y, a g E G, e G T(oo) and set A; = A;(a;, ga:, e). Observe that

Oy(o(ey(n + k))j = Ogy(o(egy(n))i
for n > \(d(y,gy) — k). Therefore

ß9y{oy(o(ey(n + k))yj = ß9y(Ogy(o(egy(n)))

= ^^I(a_l)[f]-(6_l)-[f]
a

(where a is the degree of y, b E {r, s} \ {a}) while

„y(oy(o(ey(n + k)))) = £zi(a- l)W-»-*(6- l)-m,

and hence for n > \(d(y, gy) — k) we have

ß9y(0y(a(ey(n + k)))) = (a- 1)^]-W(6_ l)^-^ßy(0y(o(ey(n +k)))).
Since the set of Oy(o(ey(n+k))) form a base of neighbourhood of e, and observing that if

G has two orbits on X, A; is an even number, we get the formula for the Radon-Nikodim

derivate

dßav (d — l)k if G acts transitively on X and

"(e) =

d^v 1 ((r- l)(s- l))2 else.

In fact, one observes that we can write in both cases -^-(t) = ((r — l)(s — l))2. We

shall hence set a = ^J(r — l)(s — 1).

Set for g E G and e G T(oo), the number

For fixed g, the function e i— Py(g, e) takes only finitely many values, because for all

e G T(oo), we have —d(y,gy) < k(y,gy,e) < d(y,gy). This function is eventually (for

fixed g) a linear combination of characteristic functions of the sets Oy(z) and is therefore

integrable.

Lemma 42. For every v E C with Re(z/) > 0; set

{\(id — X)v + (d — l)x~u) if G acts transitively on X

^(((r-l)(s-l)y+((r-l)(s-l))l-" + s-2) else,

then the function M + iR — C, v i— Aai(z/) îs surjective and for every g EG we have

<P\*(i>)(9)= (Px(g,e)Y dßx(e).
Jt(oo)
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Proof Set if)x „(g) = JT{oo) (Px(g, t))v dfix(t)

The function g i— Px(g,e) is obviously G(a;)-right-mvanant, hence the function tpXJ/

is also G(a;)-right-mvanant Let h E G(x) and g E G, then, since A;(a;, hgx, e) =

k(hx, hgx, hh~xe) = k(x, gx, h~xe), we have also Px(hg, e) = Px(g, h~xe) and finally

ijjxv(hg)= (Px(hg,e)Y dßx(e)
Jt(qo)

(Px(g, h~xt))v dfix(t) = if)x v(g),
T(oo)

because dßx is G (a;)-invariant Therefore tpx v
is G (x)-bi-invariant

Pick g E G, g j^ id, and set m = d(x,gx) We want to compute tpxv(m) = tpxv(g) It

is easy to see that if A; G {0,1, , m} and y G Sx m f) Sgx 2k, then for all e G Ox(y), the

number A;(a;, gx, e) = m — 2k Hence

m

%e) = E E ((f - W* - x))f"V^),
fc=o i/gSj mns912fc

where 1# is the characteristic function of the subset E of T(oo), and

m—1

ipxv(m)
fe=i

+ (d-l)(m"1)îy)
if G acts transitively on X and

(m-2fc)iH-fc-l^

m -i

2
i

ijx „(m) = r— (oT» + ((s - 2)c?v + (r-2)(s- 1)) (J]
«=i

CK
(m-40^+2i-2>

+ (s - 2)a{m-2){x~u) + am{x~u)\

else, where a = ^f(r — l)(s — 1) A calculus shows then that

'Vw(o) = i

4>xu(l) = Aa;(z/)

^ ./(w) = d^ïK(v)4>x v(n - 1) - dèïV'x vin -2), n>2

if G acts transitively on X and

'Vw(o) = i

Vw(2) = Aa;(z/)

U»M = r{s-^f(tir2)^ ^n - 2) - (^rfe-î)^ ,(n - 4), n>4

otherwise By Lemma 41 we have tpxv = ¥>\x(v) D
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Recall that we are interested to study the positive definite spherical functions of G with

respect to the subgroup G(x). Since the spherical functions cp\ of G are characterized

by A, we want to know for which A the function cp\ is positive definite.

First we observe that if cp\ is positive definite, since cp\ is G(x)-bi-invariant and since

g~x E G(x)gG(x), for every g E G, we have cpx(g) = V)x(g~X) = <P\(g), i.e. <p\(g) E R

and in particular A G 1R. Moreover we have 0 < ip>x(gg~x) + <p\(g) + ¥>\(g~x) + y>\(id),

and hence <p>x(g) > —1, as well as 0 < ip>x(gg~x) — <p\(g) — ¥>\(g~x) + y>\(id), and hence

^Px(g) < 1- Therefore A has to be between —1 and 1.

We further observe that the map v i— X(v) is a bijection between the set v E ({|} +

i[0, ^]) U ((-oo, |) + i {0, ^}) and R, where a = ^(r-l)(s-l) and k is the

number of orbits of G on X.

We shall now show that tp\{v) is positive definite if and only ifz/G ({2}+^[0, ^TäD LJ

([0, |) + z {0, ^T^})- In the case where G acts transitively on X this corresponds to the

interval [—1,1]; in the other case this corresponds to the interval [— r(â-i)~ , 1].

Suppose G has has two orbits on X. The equation ip\(ri) = r^~_jw~_1T 'ip\(n — 2) —

(r_1)1(g_1)0A(n-4) has the solution 0A(2n) = Aßfn+Bß22n where ß\ = ^(r(s-l)X-(s-

2)+VÄ) and/?! = 2^(r(s-l)A-(s-2)-v/Ä) with A = (r(s-l)A-(s-2))2-4a2. The

constants A and £> are determined by the initial conditions tpXtV(0) = 1 and tpXtV(2) =

X(u). We have A = ^((2o;2 - r(s - 1))A + (s - 2) + y/K) and B = 1 - A. Suppose

now — 1 < A < —+
yZ._i)~ It is easy to check that then A > 0 Further we have

— 1 < ß\ < 1 and ß2 < — 1. This means that for such A the sequence tpx(n) is not

bounded and that therefore cp\ cannot be positive definite.

Hence for tp\{v) being positive definite, we must have v E ({§} + ^[0, ^7^0 LJ ([0, \) +

l ' k, In a I I
'

We show now that this condition is sufficient.

Write K, the linear space of continuous functions on T(oo) taking a finite number of

values. This space is spanned by the characteristic functions of the sets Ox(y) with

y E X. Further let fCn be the subspace of K, spanned by the characteristic functions of

the sets Ox(y) with y E Sx>n. Obviously {Ox(y) \ y E Sx>n} is a basis of fCn and we have

Kn C /Cn+i and K = \JnKn.

For / G K and g E G define

Kx,\x(»)(g)f(£) = Px(g,eYf(g 1e).
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Observe that the identity Px(gh,e) = Px(g,e)Pgx(gh,e) = Px(g,e)Px(h, g xe) which

follows directly from the definition of Px(g, e) as Radon-Nikodym derivate, implies that

nx,\x(v)(gh)f = KX}xx(u)(g)(^x,xx(u)(h)f).

Suppose v E {I} + i[0, -^^]- Then we have

\K\(v)(g)f(t)\ dßx(e) = / Px(g,e) \f(g 1e)| dßx(e)

Pg-ix(id,g~xe)\f(g~xe)\2 dßx(e) = / \f(e)\2 Pg-ix(id,e) dßx(ge)

= I \f(e)\2 Pg-ix(id,e)dßg-ix(e) = / \f(e)\2 dßx(e)

Therefore irx>\x(v) is a unitary representation of G in the Hilbert-space HXtxx(v) =

L2(T(oo), fix) and <Pxx(v)(g) = (l>7I'Xtxx(v)(g)l) is therefore positive definite.

Now suppose v E [0, \) + i {0, ^}.

For e, e' G T(oo) with e/e' and y E X we define the number

(e, e')y = max {n E N | ey(n) = e^(n)} .

If n > (e, e')^, we have 2(e, e')^ = d(y, ey(n)) + d(y, e^(n)) — d(ey(n), e'(n)). Moreover,

if g E G and n > max {(e, e')y, d(y, gy)}, then

2(#e, pe')j/ = d(y, (ge)y(n)) + d(y, (ge')y(n)) - d((ge)y(n), (ge')y(n))
= d(g~xy, eg-iy(n)) - d(y, eg-iy(n)) + d(g~xy, e'g-iy(n))
- d(y, e'g-iyin)) + d(y, eg-iy(n)) + d(y, eg-iy(n))
- d(tg-iy(n), t'g-iy(n)) = 2(e, t')y - k(y, g~xy, e) - k(y, g~xy, t')

Further we have

(e,e/)y = EÂ:( E 1o,(,)(e)loî/(,)(e/)- E K^O^K^)^'))-
fc=o ^eSj, fc z'sSj, fc+i

Let g E G\ {id} and e G T(oo). Set m = d(a;, (/a;), take ö E T(oo) with £(m) = (/a; and
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set yk = o(öx(k)) for every k > 0. Using the calculus for (e, e')x above, we have

Ja2^*lox{gx)(e')dßx(e')
CO

J>2to( Y, ßx{Ox(y)nOx(gx))lox{y)(e)
y&sx,k

- E ti*(°*(y)n0*(gx))1ox(y)(t)/

m—j.

J2a2kvßx(Ox(gx))(lox{yk)(e) - l0x(yk+1)(e)^
k=0

oo

+ ^2 a2kv(jj,x(Ox(yk)) - ßx(Ox(yk+i))jl0x(gx)(e)

and

fc=o y&sx,k

y&sx,k+i
m—\

k=r

m—\

m—l

= J2^2kvßx(Ox(gx)) Y, io^)
k=0 y&Sx,mC\Sgx2(m-k)

00
, r.-2l-m

2(2l+m)vn
+ Y^(aW+m)^ (r_2)

r
1=0

-2l-m
_

o.

i
„2(2l+l+m)vui b z \ -I t \

+ « —T"—lJlo^)(e)
r s — 1.

m—1
_.

k=0 !/6SIimnSgI|2(m-fe)

r — 1 tr — 2
+ (s — 'l)cfy" ^ja""K""

^

1=0

_. m— 1

f — t
_ Y^

^
2fc, V^ -. / \

+ ^(J—T
+

(*

" 2)^-1))am(2^1) E«2^1^)^)

-CK

r — —

k=0 y&Sx,m<~\Sgx2(m-k)

r_l r=f + (s - 2)a2^-1)
,0 t.

i

' -1- r-l V / „m(2v—l)-i t \
+
—

! _ 0,2(2,-1)
a '^(gx)^)

r r
i r=2 , /„

_

ou2(!/-i)

/a^«'>-l(e<) *.(0 = ^1 I=LtL_L__1(e)

For f E KL and e G T(oo), we define

r 1
_ 0,2(2^-1) /<

4,/(e)
= —

5 , x „, ^ / a^'^/fe') d/ix(e').' J W
r-l ^f + (s - 2)o;2^-1) J

J K ' P V '

We want to know for which v the relation (/, f')xv = f
'

IXyVf(t)f'(t) dßx(t) defines an

inner product on fC.
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A function (kernel) -0 : E x E — C is called a conditionally negative definite kernel if -0

is hermitian (i.e. tp(a, b) = -0(6, a)) and if for all b\,..., bn E E and Ai,..., Xn E C with

ELi Xk = 0, we have Y^=i E"=i KX3^(bt, b3) < 0.

In [H; V] Chapter 5 & 6 we find following facts:

Lemma 43. (^SchoenbergJ Let 0 : E x E — C be a kernel which is zero on the

diagonal. Following properties are equivalent:

1. the kernel 0 is conditionally negative definite.

2. For every t > 0, the real kernel e~f^ is positive definite.

Proof. Cf. [H; V], Theorem 16, page 66. D

Lemma 44. For every tree T, the function "distance" is a negative definite kernel on

the set of vertices ofT.

Proof. Cf. [H; V], Proposition 2, page 69. D

We shall now prove that the function (/,/') i— (f,f')xu = J' Ix,vf(^)f(^) dfj,x(e) is a

inner product on K, if v E [0, \) + i {0, ^-^}-

The only thing which is not obvious and which we shall show, is that (/, f)x v
> 0 if

/ t^ 0. Since K, = {Jn K,n, it is enough to show it on fCm with m > 0.

Take y, z E Sx>m. We have

f r 1 - a2{2v~x)
(^-Ox{y)Aox{z))xv= / hl0x{y)(t)lox{z)(t) dßx(t)

r-l ^ + (s- 2)a2^-1)

-,
m—\

T — 1

(Va_mSa2to E Vx{Ox(y')nOx(z))
k=o y'esx mnsy 2(m-fc)

r_l r=f + (s - 2)a2^-1) ,„ t. ,
x

+
-V

•

i-a^-i) *m{2v-l)^{OM^Ox(z)))
r 1 - a2^-1)

-1 ^f + (s - 2)a2^-1)

f~ Q-wtQ,(2m-dfa,2:)),r
~

Q-m

+

r x_ 0,2(2,-1)
"

r

a °y>z

I in,2wM>-l) /
1 "

-vlna d(y,z) , r

r v rf| + (,_ 2)^,-1)e
+ (W
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(y, z) » i,(y, z) = r_2 ,

,a „.^..e-^'^'

By the preceding two lemmas, the kernel

1 _ o,2(2Re(,)-l)

% + (s
-

2)o;2(ReH-1)'

is positive definite if 0 < Re(z/) < \. Moreover if / = Efc=i ^kXox\yk) ^ 0 with

yi,...,yn E Sx>m, then

r — 1

î=l J = l î=l

Letz/G[0,i) + *{0,-^}.

Then we have

1
n n n

(/, />,,„ = r—a~2m^ (£EW(*> a) + E m2) > °-

K\{v)(g)f^x{v)(g)f)xv= / Ivn\(y)(g)f(e)n\(y)(g)f(e)dtix(e)

= CV / / a"2(e'e')-a(1-")fc("'^'e'V(/j"1e0a(1"")fc("'fl"'e)7(^^^(e/)^(e)

= a / t av2{9e>9e')xa{x-v)k{x>9X>9e>)f(e')a{x-^^

= Cv f ! av2{ge>9eJ)*a{x-v)k{9~lx>x^

= CV I J a^(äe,ge%a-(l-v)k(x,g-^x,e>) f^a-(l-v)k(x,g-^x,e)J^

ak{x'9~lx'e,)ak{x'9~lx'e)dßx(e')dßx(e)

= CV f /av(2fee^)Œ+fe(x'ff"lx,e,)+fe(a:'ff"la:'e))/(e/)7(ê)^x(e/)d/ix(e)

= Cv J J a»2^fie')Jlx)dßxie')dßxie)

\J ' J )x,v

where a = —

r52+(,_2)a2(,-1)
•

Therefore x^a*^) is a unitary representation of G in the completion HXtxx(v) of /C with

respect to the inner product (., .)x<v. Moreover g ^ (pxx(v)(g) = (l,Tix,xx{v)(g)^)XtV and

hence is positive definite.

Lemma 45. Take v such that av ^ ±1, then the set {Px(g, )v \ g E G} spans fC.

Proof. For y E X, y ^ x and e G T(oo), we write P(y, e) = j^-(e). We have

(Qj-fe^.î/.e)^

jf ^^ y) jg even

-1
ra—a k(x<y<e\ if d(x, y) is odd.
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If n = d(x, y) > 1, we shall write P(y,t) = Cna k(~x'y'e"1 where Cn = 1 if n is even and

Cn = (ra^y-) if n is odd. We have P(x,.) = It(co)-

Since for every vertex y we have lox(y) = J2y'es ns i
^-ox(y'), it is enough to show

that for every m > 1 and y E Sx>2(m-i), the function lox(y) is a linear combination of

elements in the set {P(y, -Y \ \d(x, y) E {0,1,..., m.}}.

For n > 1, take a vertex y„ with d(x, yn) = n, write an the index of y. We have

Ep(^-r = ^+i E E a^-^lcW)

= c:+i( y E «"^-^'^lo.^)
2/'eSa;]n+i\syn,i y&sXin+1nsyriil

+ E K^-^'"'»^)
?/'eS'i:,n+inS'j/nil

+ E ^-^'^lo^))
y&{sx,n+insynA)\{y'}

= Cvn+i ( Y c?a^-W^)(an - l)l0x{yl)
y'&SX,n+l\Syn,l

+ Y K(ra+1)leW) + (an - l)a^-xh0x{y/)]
y'£SX,n+l<~îSy„,l

çV
(OL (On 1) /£,vav(n-d(yn,yn))i

n-\-l \ /~iy \ n

a

Ox(yn)

+ Y, CZa^-^'^lox{y/))
y'Sx,n\{yn}

v(n^a2v(an - l)l0x{yn) + a^n-x\a2» + (an - 1))10x(Wb))
= av(an - l)^P(yn, -Y + GZ+la^-x\(an - 2)(1 - 0^))lOx(yn)

= KnP(yn,.) + Lnl0x(y„)

with Kn = au(an - l)%i and Ln = Cvn+lav{n-x)((an - 2)(1 - a2v)), and for n = 0 we

have

YP(y,-T = c»i E E «^-^»lo^)
yeA^i yes1!:,! y'ssx,i

= Cl((r - 1) + ^)It(co) = K0P(y0, )v + ^olo^o)

with Ko = Ci ((r — 1) + o^), T0 = 0 and y0 x.



2 3 CLASSIFICATION OF THE REPRESENTATIONS 43

Fmaly

E p^r= Y E p^r
y&Sx 2m<~ïSy2(m jj2 y'&Sx2m lnSy2(m y

1 SeSi JiiHSy j

= E {K2m-iP(y', ) + L2m_il0x(y>)]
y'eSx2m lnS'j/2(m 1)

1

= E2m_iK2{jn_i)P(y2{jn_i), )

+ (K2m_lL2(m_l) + L2m_l)l0x(y2(m 1})

hence

iox(y2(m 1})
= (K2m-iL2{m_i) + L2m_i) ( Y piy->Y

y&sx 2mr\Sy2(m 1}
a

— K2m_iK2{jn_i)P(y2{:m_i), Y)

D

The space of G(a;)-mvanant vectors T~txxx/V\ = CI, because for h E G(x) we have

TTai \x(v)f(t) = f(h~1e) = /(e) for all e G T(oo) if and only if / is constant, since G(a;)

acts transitively on T(oo)

Moreover, if z/ G ({±}+*[0, ^])u((0, ±)-H {0, -£-}), the vector 1 is cyclic mHxXx{v)

because {xa; ak(,)(5')1 = Px(g, Y \ g E G} spans /C which is dense in Hx xx{v) Hence

(kx \x(y),Ux Xx(v)) is spherical (irreducible) if v E ({|}+*[0, -^])u((0, \)+i {0, ^})

We observe that the spherical representation (irxi,T~Cxi) corresponding to A = 1 is the

trivial character of G in C

If G acts transitively on X the spherical representation (ttx _i, Hx _i) corresponding

to A = —1 is the character g i— (—l)d(x a%) \ye have to show that (—l)d(x ahx) _

(—l^Os^—l^OM Let C) e' ç T(oo) such that efla; passes through x and e^, passes

through ghx Then 2(e, e')^ = d(x,gx) + d(ghx,gx) — d(x,ghx) and (—i)dO ste)
=

(—l)6^ gx)+d(ghx gx)-2(e e')gx _ (-^\d(xgx)(-^\d(xhx)

The inner tensor producta _i ®-kx x\g (ie the restriction to the diagonal subgroup G <

G x G of the tensor product i\x _i ® i\x x) of the spherical representaions (ttx _i, Hx _i)

and (7TX\,?{X\) satisfies nx _i ® x^ x\c(g) = (—l)d^xgxS)Tix \(g) and acts on the space

H = C ® Hx x — 7~LX a Obviously 7iG^') = Tij.^ and the non trivial G(a;)-mvanant

vectors are cyclic Therefore i\x _i®i\x x\g is irreducible and hence x^ _i®i\x x\g = ^x -x

Now let x and y be two edges with respective degrees a and b Then all the constructions

and formulas above are also valid by replacing r by a respectively b and s by r + s — a
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respectively r + s — b. In particular we have the representations (nXtxx(v),7~(-x,xx(v)) and

(^y,xy{v),'Hy,Xy{v)) which are spherical (irreducible) for every v E ({§} + i[0, ^^]) U

((o,è) + *{o,^}).

But (irXtXx(v),T-CXtxx(v)) and (nytxy(v),'Hy,Xy(v)) are indeed equivalent: Let Tx>y>v : K - /C

be the linear operator defined by (Tx,y,vf)(t) = (^2-(e))î'/(e) for every e G T(oo).

Moreover T^^ is a intertwining of x^a^,) and iry,\y{v), because for every g E G and

e G T(oo) we have

%,M*)(0)(Tw/)(e) = Py(g,eY(—^(g-xe)y' f(g~Xt)

= (^Y^-^Yfig-'e)
= (^(e))^(^(e))7(^1e)

a/iy "A*sj/

= ^*)y)i>(^r)Aa;(I/)(s,)/)(e).

Therefore T^^ is a multiple of an isometry intertwining x^a^,) and TTy,xy(v) (cf. for

example [Gaal], Proposition 10, Chapter IV, Section 3, p. 160).

Considering the bijection

A I)
r

x n> ,,
1. r x i N r

2 + (a — 2)(r + s — a — 1)
n

a short computation shows that

Xy[K {X)'-b(a~^T)X+b(r + s-b-lY
which proves the last statement of Theorem 2.



Chapter 3

The Universal Group U{F)

In this chapter we shall study an example of group which has the independence property:

the universal group U(F) of the homogeneous tree T of finite degree d > 3 as defined

by Marc Burger and Shahar Mozes in [B; M].

Let T = (X, Y) be the homogeneous tree with degree d, d> 3.

We call legal colouring ofT the map i : Y — {1,..., d} with following properties:

1. for each edge e, i(e) = i(e)

2. for each vertex x, the restriction to the set t~x(x) of the map i is a bijection.

Now, let F be a permutation group of the set {1,..., d}, and let i be a legal colouring

of the tree T.

Definition 46. We define the set

U(i)(F) = {g E aut (T) | For every x E X, i o g o (^-i^))"1 G FJ .

As it is easily seen, this set is a closed subgroup of aut (T).

If F = Perm {1,..., d}, then U{i)(F) = aut (T).

If F is trivial, then U^)(F) is the free product of d copies of the group of ordre 2.

Indeed the homogeneous tree of degree d is the Cayley graph T of the free product

G of d copies of the group of ordre 2, which has the presentation (si,... ,Sd \ s2 =

e,\/i). The set of vertices of the Cayley graph r is X' = G and the set of edges

is Y' = {(gi,g2) \ gi,g2 E G,g^xg2 E {si,... ,sd}}. The group G acts on T by left

45
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multiplication. Now let i : Y — {1,..., d} be such that st((fll,fl2)) = gVxg2- Then i is a

legal colouring of V which is invariant for the action of G. Therefore, using Lemma 49

on page 47, we have G = U^)(F).

In Section 3.1 we shall study some properties of the universal group and in Section 3.2

we shall study the nature of the maximal compact subgroups in the case where F is

transitive. Further we shall see that all closed edge transitive automorphism groups on

T which have the independence property are universal groups with a permutation group

F acting transitively on {1,..., d}. Precisely, we shall show this (cf. Lemma 58):

Proposition 47. Let G be a closed edge-transitive automorphism group of the d-regular

tree T which has the independence property. Set

F = {<j)oho<j)-l\ hEG(x)},

where x is some vertex and 0 : t~x(x) — {1,..., d} some bijection. Then there exists a

legal colouring i such that G = U^)(F).

Finally, in Sections 3.3 and 3.4 we show following result:

Theorem 3. For transitive permutation group F with non trivial stabilizer group T\

fixing 1 G {1,..., d}, the three following conditions are equivalent:

1. the stabilizer group T\ is perfect and equal to its normalizer,

2. the vertex stabilizing subgroup U(F)(x) of the universal group U(F) is topologically

finitely generated,

3. for every real positive number M, the group U(F) has finitely many equivalence

classes of super cuspidal representations with formal degree less than M.

The equivalence between the first two statements has first been announced in [Mozes],

p. 574.

3.1 Some Properties

Proposition 48. The group U^)(F) has the independence property.
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Proof Take an element h of the stabilizer U^)(F)(e) of an edge e of T. Since the group

G = aut (T) has the independence property, there exist h\ E G(Te) and h2 E G(Te) such

that h = hih2. For every edge e of Te we have h\(e) = h(e) and h2(e) = e. Therefore, if

x is an interior vertex of the subtree Te, then to hi o (tlt-i^)) G F and iofo2o (t^-i^)
is the itentity on t~x(x) and hence is also an element of F. By a similar argument, if x

is an interior vertex of the subtree Te, then ioh2o (i\t-i(x)) E F and tohio (i\t-^(x))
is the identity on t~x(x) and hence is also an element of F. Finally, hi E U^)(F)(Te)

and h2 E U^)(F)(Te), which shows that U^)(F) has the independence property. D

We write Txn respectively Ten, where x E X,e E Y and n is a natural number, the

minimal subtree containing the vertices at distance less or equal n from x respectively

e.

Following lemma can be found in [B, M] and in [B, M, Z].

Lemma 49. For any two legal colourings i\ and i2 and two vertices x\ and x2 of T,

there exists a unique automorphism g E aut (T) such that x2 = gx\ and i2 = i\ o g

Proof Define for every natural number n the compact subset

Gn= {g E aut (T) | x2 = gxx and l2\tx1 „='i° gWxin}

Clearly, G\ = [g E aut (T) | x2 = gx\ and i2\t-~±{Xl) = i\ ° g\t-1{Xl)\ is not an empty set.

Now suppose n > 1 and assume as induction hypothesis, that Gn is nonempty. Pick

g E Gn and chose for any terminal edge e of TXl n
an element he E G(Te) such that

Logohe\t-i(t(e)) = t2|t-i(t(e)). We have, as follows, go]\ehe E Gn+i, and hence Gn+i ^ 0.

Therefore nra>i Gn 7^ 0- But nra>i Gn = {g E aut (T) | x2 = gx\ and 62 = ^1° g}, and

we have shown the existence of an automorphism g E aut (T) such that x2 = gx\ and

l2 = ii o g.

Now, let <7i and g2 be automorphisms belonging to nra>i Gn. Then we have

I ( I ^ I I

^îk-i^i)
-

\%At-1{x2)) °i2\t-\xi)
-

g2\t-HX1)

Suppose n > 1. If we assume that gi\rx
n

= g2\rx n, then, for every terminal edge e of

T
±
X\ m

I
_

( I \~l I

/Jllt-l^e))
-

(*l|i-i(i(ffie))J 0^2|t-l(t(e))

('I A"1 I I
-

(H\t-l(t(g2e)))
O

t2|t-i(t(e))
-

S^li-i^e)),

and hence ^iIt^ n+1
= g2\rxi n+1-

This proves the umcity. D
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Proposition 50. The group U^)(F) acts transitively on the set of vertices ofT.

Proof. Let x\ and x2 be two vertices. By the preceding lemma, there exists an auto¬

morphism g E aut (T) such that x2 = gx\ and i = i o g. If a; is any vertex of T, then

t\t-i(x) = to g\t-i(x} and thus to go (i\t-i(x)) is the identity and, hence, element of the

group F. Therefore g E U^)(F). D

Proposition 51. The group U^)(F) acts minimaly on T.

Proof. Since U^)(F) acts transitively on the set of vertices, there exists no U^)(F)-

invariant proper subtree of T. Now, obviously, U^)({id}) < U^)(F) and U^)({id})

acts also transitively on the set of vertices and contains therefore an inversion (The

automorphism g with go(e) = t(e) for some edge e.). Hence U^)({id}), and eventually

f/(t)(F), does not fix any end of T. D

Proposition 52. For any two legal colourings i\ and i2 and vertex x ofT, the groups

f/(tl)(F) and f/(t2)(F) are conjugated in aut (T) by an automorphism fixing x.

Proof. By the preceding lemma we have an automorphism g fixing x and satisfying

t-2 = i\ ° g- And obviously, we have also U(t2)(F) = g~xU^il)(F)g. D

Therefore the nature of the universal group U^)(F) depends only on the permutation

group F and not on the colouring i. Therefore we shall write in the following U(F)

instead of U^)(F).

If G is a subgroup of aut (T) and x a vertex of the tree T, we write G(x) the group of

permutations on t~x(x) induced by the stabilizer G(x).

Since U(F) acts transitively on the vertices, the stabilizers of a vertex are all conjugated

in U(F). Therefore we have for every vertex x, (U(F)^(x) ~ F

Proposition 53. The universal group U(F) acts transitively on the edges ofT if and

only if the permutation group F acts transitively on the set {I,... ,d}.

Proof. If U(F) acts transitively on the edges of T, then, for each vertex x, the group

(U(F)^(x) ~ F acts transitively.

If F acts transitively on the set {1,..., d}, then, for every vertex x, the stabilizer group

(U(F))(x) acts transitively on t~x(x). Let e\ and e2 be two edges. Since U(F) acts

transitively on the vertices ofT, there exists g E U(F) such that o(e2) = go(ei). Further,
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as we have seen, there exists a h E (U(F)^j (o(e2)) such that e2 = h(g(e\)) = h o g(ei).

Therefore U(F) acts transitively on the edges of T. D

By Proposition 6, we have following fact:

Proposition 54. If the permutation group F acts transitively, then the group U(F) is

unimodular.

As corrollary of Proposition 15 we have also the proposition

Proposition 55. The group U(F) acts transitively on the boundary ofT, if and only

if the permutation group F is 2-transitive.

Following lemma can also be found in [B; M]:

Lemma 56. Let G be a group of automorphisms ofTd acting transitively on the edges.

Set F = {(f) o ho 0_1 | h E G(x)}, where x is some vertex and 0 : t~x(x) — {1, 2,..., d}

a bijectwn. Then there exists a legal colouring i such that G is a subgroup ofU^)(F).

Proof. We construct the colouring i on the edges of Tx>n by induction over n .
If n = 1,

set for each edge e of Tx>i, i(e) = 0(e) if e G t~x(x) and i(e) = 0(e) if e G o~x(x). If

n > 1, take a terminal edge / of Tx>n. By induction hypothesis, i is defined on Tx>n

and by transitivity of the action of G on the edges, one can take r/f E G such that

Vff = 4>~l ° t(/)- Hence nft(f) = x and 0 o nf(f) = i(f). Set for e G t~x(t(f)),

i(e) = i(e) = 0 o rjf(e), which defines i on Tx>n+i.

Now, if h E G and y a vertex, take an edge / between x and y such that t(f) = y. Then

i o h o {i\t-i(x) ) = 0 o rjhf oho r]Jx o 0_1 g F, because rjhf oho r]Jx E G(x). Therefore

G is a subgroup of U^)(F). D

Since the universal group U(F) is closed and has the independence property, it has also

Tits' property (P). Using 4.5 in [Tits], p.198, we get for the subgroup U(F)+ generated

by the edge stabilizing elements of U(F), the following proposition (cf. also [B; M],

Proposition 3.2.1.)

Proposition 57. 1. The group U(F)+ is trivial or simple.

2. The group U(F)+ is of finite index in U(F) if and only if F < Permi,..., d is

transitive and generated by its point stabilizers; m this case, U(F)+ = U(F) n

(aut (T))+ and is of index 2 in U(F).
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3.2 The Maximal Compact Subgroups as Projective

Limit

We shall use the notion of wreath product for our further investigations. For doing this,

let us quickly recall that for two finite groups X and B, where X is acting on a set O,

the wreath product of X with B, sometimes written B I X, is the semi-direct product

Bn x X on which the composition law is defined by (f,x) (g,y) := (fgx,xy) for all

(/, x), (g, y) E Bn x X, where gx : lo ^ g(x~XLo) and fg : lo ^ f (to) g (to).

It is easy to see that for example for all / G Bn and x,y E X, (fx)y = fyx. If we

write lx and 1# the neutral element of X respectively of B as well as 1 : to i— Iß the

neutral element of Bn and f~x : lo i— (f(uj)) ,
the inverse element of / G Bn, then

the neutral element of Bn x X is (1, lx) and the inverse element of (/, x) E Bn x X is

if,x)~x = (/"il, a:"1)- (Observe that (fx-i)~x = (f~x)x-i =: f~\.)

If moreover the group B acts on a set O, then there exists a natural action of B I X on

the set O x O defined by (/, x)(9, lo) = (f(xLo)9, xto) for every (f, x) E B I X and every

(9, lo) E O x O. Indeed, for (/, x),(g,y) E B\X and (9, lo) E O x O, one has

(f,x)((g,y)(0,u)) = (f,x)(g(yu)9,yu) = (f(x(yu))g(yu)9,x(yu))
= (f(,(,xy)u)gx((xy)u)9, (xy)u)
= {fgx((xy)u)9,(xy)u) = (fgx,xy)(9,u)

= ((f,x)-(g,y))(9,Lo).

In this section we shall prove the following lemma.

Lemma 58. Let G be a closed edge-transitive automorphism group of the d-regular tree

T which has the independence property. Let a be an edge or a vertex ofT. Set

F = {0o/io0-1 | hEG(x)},

where x is some vertex and 0 : t~x(x) — {1, 2,..., d} a bijectwn. We write B for the

stabilizer m F of I E {I,... ,d} and D = {2, 3,..., d}, and we define recursively

if a is an edge,

or if a is a vertex,

and for n > 1,

Ac = {1,2},

A0 = {1},

A„+i = {2,...,d} x An;

Ai = Dx A0,

Ai = {l,...,d},
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as well as the following groups:

if a is an edge, G(0) = Perm({l, 2}), G(1) = BA° x G(0)

or if a is a vertex G^0' = (e), G^1' = F,

and for n > 1, G(ra+1) = BAn x G(ra),

with their respective action as described before. The projections pn : G^ra+1') — G^n\

(f, h) i— /i define a projective system G^ <—- G^ <—-••• o/ groups.

Then we have:

1. for every natural number n the group Gn := G(Tatn)/G(Ta>n) is isomorphic to G^

(Where Ta,n is the minimal subree of T containing the vertices at distance n of

a.),

2. the a stabilizing subgroup G (a) ofG is isomorphic to the projective limit lim^_ G^n\

and

3. there exists a legal colouring i such that G = U^)(F).

Proof. Let G be an automorphism group of the d-regular tree T.

In the following, the letter a denotes a fixed edge or a fixed vetex of the tree T. We

write for every natural positive number n the quotient group

Gn = G (Ia,n)/G(l a^n)

These groups can be considered as automorphism groups of Ta)„. Together with the

restriction homomorphisms Rn : Gra+i — Gn, they constitute a projective system Gi <-—-

G2 <—^- • • • and one verifies easily that, if G is closed in aut (T), its projective limit is

limG„ = Gia).

Now assume that the group G acts transitively on the edges of the tree T and let i

be the legal colouring and U(F) = U^)(F), with F = {0 o h o 0_1 | h E G(x)}, as in

Lemma 56. Then G is a subgroup of U(F).

If a is an edge, we can assume i(a) = 1. We shall now build for every positive natural

number n an injective homomorphism cpn : Gn — G^a\ such that cpn ° Rn = Pn ° Wi-i-

For this, consider first for each natural number n the set Ea>n of the terminal edges

of Tatn (Observe that Eao is the empty set if a is a vertex and equal to {a, a} if a
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is an edge.). For every e G Ea>n+i, we write Pn(e) the unique edge in Ea>n satisfying

t(Pn(e)) = o(e). This gives us surjective maps

Pn ' Ea>n+i —> Ea>n, n > 0.

On the other side, we define the projections

x„ : Ara+i — An, (k, 5) i— ö for n > 1.

Using the group G and especially the fact that F acts transitively, we define inductively

on n bijections 0„ : Ea>n — An:

{1
if e = a

if a is an edge
2 if e = a

0i (e) = i(e), if a is a vertex

0«+i(e) = (rPn(e) ° t(e), V>n(-Pn(e))), where re E F such that re o t(e) = 1.

By construction, 0„ o P„ = nn o 0ra+i for every n. Further we notice that for n > 1

(n > 0 if a is an edge) the inverse map 0"ji(&, 6) = (tlt-i^1^)))" ° r^1(5)(fc)-

Now, for each h E Gn, set tpn(h) = 0„ o /j, o 0"1. We have then for (/, h) E Gn+i and

(k,8) EAn+i,

cpn+l(h)(k, 6) = 4>n+l oho (t|t-lW-i(5)))_1 O ^^ (fc)

= (TRn(h)^(5) °L°ho (t|t-iW-i(5)))_1 O T-i^fc), ^n(ßnW))
= (/*(<*)*, VÄW))

where we have set

fh(S) = TRn(h)^\5) °L°ho (4-1(^(5)))
_1

° ^1(5) •

Since i o h o (^If-i^-1^))) G F, for all £ G A„, it follows /^ G BAn and hence

tpn+i(h) E BAn x G^ = G^n+l\ Therefore we have built for each n a homomorphism

^Pn ' Gn — G^ which is clearly injective.

Moreover we have

((Pn ° Vn+l)(h)) O X„ = P„(^n+l(/i)) ° X„ = X„ O (/?„+i(/i)

= X„ o 0ra+1 ofto 0-j1 = 0„ o P„ o /i o 0-j1

= 0„ O P„(/l) O P„ O 0-j1 = 0„ O P„(/i) O 0-1 O Tin

= LPn(Rn(h)) O X„ = (((/?„ O Rn)(h)) O 7T„;
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and since x„ is surjective, pn ° y?n+i = <Pn ° Rn-

Now, we suppose moreover, that G has the independence property. Then, the homo-

morphisms ipn are isomorphisms. Indeed:

If a is an edge, </?0 is clearly a isomorphism.

If a is a vertex, the homomorphism tp\ is an isomorphism between G(a) and F, as

Lemma 56 shows. Therefore the subgroup B is the image by tp\ of the subgroup

{h E Gi | he = e}, where e is an edge with o(e) = a and i(e) = 1.

Hence by the independence property of G, we have for every edge e the equalities among

sets

|rt(e) oioho (6|f-i(f(e)))_1 o r'^ | h E G(Te)j
= |rt(e) Oioho (l\t-l{t{e))Yl ° \(e] I h e Gie)} = B-

Now if a is an edge or a vetex, for appropriate n and for (/, n) E G^ra+1') = BAn x G^,

if we take as induction hypothesis, that there exists an element h E Gn with cpn(h) = n

and if we pick a corresponding h! E Gn+i with Rn(h') = h, then we can choose for every

6 E An a hs E G(Tes) such that h5\t-i{t{es)) = h'~l o i\t-i{t{he5)) ° rt"7^ei) o f(ipn(h)6cp) o

n(/.e«) ° t|t-i(t(/.-ie«)) and it is easy to see that (pn+1(h' Y\5eAn ResTa,n+i(,h5)) = (f,n)

(Where RjesTan+1(hs) means the restriction to Ta^n+i of the map hg.)

Therefore we have shown the first two statements of the lemma.

To prove the last statement, it is enough to show that U^)(F) < G This is easily done

since we have now seen that U^)(F)(x) = G(x) for every vertex x. So, if u E U^)(F),

take h E G with h(ux) = x (G is transitive on the vertices). Therefore k := hu E

U^)(F)(x) = G(x) and u = h~lk E G

D

3.3 Topologically Finite Generation of the Maximal

Compact Subgroups

Let F < Sd be a transitive permutation group acting on {1,2,... ,d} and F$ the stabi¬

lizing group in F of ö E {1,..., d}. Suppose that F§ is not trivial. We shall show the

following proposition:



54 CHAPTER 3. THE UNIVERSAL GROUP U(F)

Proposition 59. Let x be a vertex of the tree T. The group U(F)(x) is topologically

finitely generated if and only if F§ is perfect and equal to its normalizer.

For the proof, we shall begin with following remark:

For a finite group G and k a natural number, set

Pfc(G) = TT^fc \{(xi,...,xk) E Gk | (xi,...,xk) = G}\ .

|G |

For a surjective homomorphism of finite groups x : Y -» X, define

(r/x(k) = Y \y
: M]k+l

M<Y maximal,
^ '

TT{M)=X

|G(M)|
^ \Y : M]k+l

'

C(M) M<Y maximal,
L J

tt(M)=X

where G(M) is the set of conjugates of M.

We have the lemma:

Lemma 60.

Pk(Y)>(l-(Y/x(k-l))pk(X).

Proof. The reader has certainly already noticed that Pk(G) is the probability with which

a A;-uple (x\,..., xk) E Gk generates the group G. Now pick (x\,..., xk) E Xk such that

(xi,..., xk) = X and choose (y1,...,yk) E Yk with n(yt) = xt. Then, if {y1,..., yk) ^

Y, there exists a maximal (proper) subgroup M in Y containing yi,..., yk
- we have

x(M) = X. Therefore pk(Y) > Q-pkiX), where Q is
.
But the probability for y1,..., yk

\M\k

\Y\k

them to be in any of such maximal subgroups is smaller than or equal to

to be all in a fixed such maximal subgroup M is '—'-, and hence the probability for

M<Y M maximal, I I C(M) M<Y maximal, I I C(M) M<Y maximal,
^ J

tt(M)=X tt(M)=X tt(M)=X

= (Y/x(k-l).

Therefore the probability pk(Y) that yi,...,yk generate Y, i.e. the probability that

yi,... ,yk are not all in a maximal (proper) subgroup M of Y, satisfies pkiY) > (l —

(r/x(k - 1)) > (1 - (Y/x(k - l))pk(X). U

So we obtain:
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Proposition 61. //... <— Fn-i <— Fn <—
... is an inverse system of finite groups Fn

and if for some n > 0 the product n^Li(l ~~ (Fn+1/Fn(v)) > 0, then the projective limit

lim^_ Fn is topologically finitely generated.

Maximal Subgroups in Bn x X

We shall now study maximal subgroups in a wreath product Y = Bn x X, where X

and B are finite groups and X acts on the finite set O, in order to give an estimation of

the Zeta function.

Let O = Ti U
...

U Lt be the partition into X-orbits. A normal subgroup U < Bn is

said standard if U = Yli=i P% *> where Ut are normal subgroups of B. Such a standard

group is clearly also a normal subgroup of Y. A subgroup M of F is called clean if it

does not contain any non-trivial standard subgroup.

We notice that, given a subgroup M of Y = Bn x X, there is a unique maximal standard

U < Bn, contained in M. Thus, M is the inverse image of a clean M' < Y/U, and M

is maximal if and only if M' is maximal in Y/U = Bn/U x X. Therefore we begin to

study maximal clean subgroups in Y = Bn x X.

Proposition 62. Let Y = Bn x X with B perfect. Let M be a maximal clean subgroup

of Y such that its canonical projection onto X is X. Then one of the following holds.

1. The action of X on O is transitive.

(a) Up to conjugacy M = Tn x X where T is a non-normal maximal subgroup

ofB.

(b) We have MP\Bn = (e), the group B is simple (non-abehan) and, if we write

M° the intersection of all conjugates of M, then we have either

i. the subgroup M° contains the centrahzer Cx(Bn) m X of Bn, or

n. the quotient Cx(Bn)/(M° P\Cx(Bn)) is isomorph to Bn, and via this

isomorphism, the X-action by conjugation acts transitively on the factors

of'Bn.

(c) The group B admits a unique minimal normal subgroup N; the subgroup N

is non-abehan, M is the normalizer of M n Nn, prUJ(M n Bn) = B and

pru(M n Nn) = N for all lo Eft.
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(d) The group B is the direct product Ni x N2 of simple non-abehan groups Ni ~

N2; M is the normalizer m Y of M n Bn, the projections prLÜ(M n Bn) = B

for every lo EÜ, and M
'

n JVf* = M n N? = (e).

2. The action of X on O is not transitive.

Then B is simple, MV\BU = (e) andprBLr(MnBn) = Bu for all i = {I,... ,t}.

Proof. Let for alh G {1,..., t} be Tt := prBLt (MnBn). Then M normalizes Tx x... xTt.

We distinguish the following cases:

I. SomeTt^5L';

II. For alH G {1,..., t}, we have Tt = BL\

I. SomeT^T^.

Without lost of generality, assume Tx ^ BLl. Then M n Bn C Tx x BL2 x
...

x BLt, M

normalizes Ti x BL2 x
...

x BLt and hence we have M E (Txx BL2 x
...

x BLt) x X ^ Y.

Since M is maximal, M contains T\ x BL2 x
...

x BLt, and hence t = 1 since M is clean.

Thus X is transitive on O.

Let for every lo E O, Su = prUJ(M f] Bn). Since prx(M) = X, all S^ are conjugate in B

to a fixed T < B. As we are interested in maximal subgroups up to conjugacy, we may

assume T = prLÜ(M n Bn) and we have therefore M Ç Tn x X.

There are three subcases:

(a) T is not normal in B;

(b) T is normal in B but not equal to B;

(c) T = B.

(a) T is not normal in B.

As before, M normalizes Tn in Y, and since T is not normal in B, the normalizer of

Tn in Y is not all Y; i.e. we have M Ç NY(Tn) Ç A^(Tn) x X ^ Y as well as

M ETn x X Ç A^(Tn) x X ^ Y. Hence, by maximality of M, M = Tn x X where T

is maximal and not normal in B. This leads to case la of the proposition.

(b) T is normal in B but not equal to B.
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Take an normal strict subgroup N of B containing T. Then M Ç Nn x X ^ Y and

thus, by maximality, M contains Nn. Since M is clean, N = (e). On the other hand,

Nn contains M P\Bn, thus M P\Bn = (e) as well as T. The group B is therefore simple.

Since B is perfect, B is simple non-abelian and hence the centralizer CY(Bn) = Cx(Bn)

is the kernel of the X-action on O. Let p : Y — Y/M° be the canonical projection. Then

Y/M° acts primitively and faithfully on Y/M. Then, either p(Cx(Bn)) = (e), that is

M° contains Cx(Bn) and we are in the case l(b)i, or (e) ^ p(Cx(Bn)) = p(CY(Bn)) C

CY/M°(p(Bn)). Since M n Bn = (e), the projection p(Bn) ~ Bn and is a normal

regular subgroup of Y/M°, and therefore minimal. The centralizer Gy/m° (p(Bn)) is not

trivial, and is hence also minimal regular. Thus p(CY(Bn)) = Cy/m°(p(Bn)) and are

isomorph to P'n' and the y/M°-conjugation permutes transitively the simple factors.

Thus Cx(Bn)/(M° n Cx(Bn)) is isomorph to B^ and the X-action by conjugation

permutes transitively the simple factors. We are therefore in the case l(b)ii of the

proposition.

(c) T = B.

This subcase and the case

II. For alH G {1,..., t}, we have T% = Bu

will be treated by analyzing the situation where M < Bn x X is maximal, clean and

such that prx(M) = X and pru(M n Bn) = B for all lo E Q.

As before, O = Ti U
...

U Lt is the partition into X-orbits of O and B is perfect.

Let A be a non trivial minimal normal subgroup of B. Then

(A) if for some i E {1,... ,t}, the intersection M n NLl is trivial, the group B is a

direct product T x N, where T is the projection onto the first factor, the P-factor,

ofMnfßx Al^l"1).

(B) the subgroup N is not abelian, and

To prove the point (A), we observe that since M is maximal and clean, Bn = (M n

Bn) NL\ and thus B x N^'1 = (M n (B x A^l-1)) • NL\ Projecting it onto

the first factor, we get B = T N. Since M n NLl is trivial, T n N = 0. Moreover

Mn(B x N^-1) < M n Bn, and thus T < B an finally B = T x N.

To prove the point (B), we assume that N is abelian, and see first that N is not

central in B. Indeed, we have Bn = (M n Bn) Nn; if now N is central in B, then
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Bn = ^n Bn^ = [MnBn,MnBn]E Mn Bn which is a contradiction.

Then we show that M° n NLl is trivial: Since A is a minimal normal and, as assumed,

abelian subgroup of B, it is a Fp-vector space. The P-conjugation on A gives an

irreducible representation of B, which is non-trivial since A is not central in B. The

BLl-action on NLl is therefore a direct sum of \Lt\ — 1 irreducible and inequivalent

representations of BL\ Thus, any BLl -invariant subspace is a sum of factors of NLl. In

particular, if M° n NLl is non-trivial, it contains a A-factor. But M° n NLl is normal

in Y, thus M° contains NL\ This contradicts the assumption that M is clean.

Then we show that M n NLl is trivial: Since M° n ALt is trivial, the F-action on Y/M

is primitive, and NLl acts faithfully on Y/M. So NLl acts transitively and faithfully.

Being abelian, it must act regularly. Thus M n ALt is trivial.

Finally, we apply point (A) and get that B = T x N with A abelian, which contradicts

the assumption that B is perfect. This proves point (B).

Now we have two cases.

First: There exist a non-trivial normal minimal subgroup A of B and a i E {1,..., t}

with M Pi NLl non-trivial.

We first observe that M n NLl is not normal in Y. Indeed, for some lo E L%, prUJ(M n

NLl) j£ (e) but prLÜ(M n NLl) <\ prLÜ(M n Bn) = B and, since A is minimal normal, we

get prLÜ(M n NLl) = N. Applying M-conjugation and using prx(M) = X, we get the

latter equality for all lo E L%. But if now M n NLl is normal in Y, it is normal in NLl.

But A is non-abelian and product of simple factors, which, together with above, leads

to the contradiction that M contains NLl. Thus, M is the normalizer in Y of M n NLl.

This normalizer obviously contains all BLi for j ^ i, and since M is clean, this forces

t to be 1, that is, the action of X on O is transitive. Therefore M is the normalizer in

Y of M n Nn and pru(M n Nn) = N for all to E O. If now A' is another non-trivial

minimal normal subgroup of B, then N'n centralizes Nn and hence M contains N'n.

Since M is clean, this shows that A' is trivial, and we are in case lc.

Second: For any non-trivial minimal normal subgroup A of B and for any i E {1,..., t},

the intersection M n NLl is trivial.

It follows then from point (A) that any such minimal normal subgroup A of B is a

direct factor of B, in particular simple. Hence B is a direct product of simple non-

abelian groups Ni,... ,Nm. Now assume m > 2. Then, since N^1,..., N^1 act all

faithfully transitively on Y/M, they act also regularly, which forces m = 2. Now,
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Nf1, A2Ll, A^2, A2L2 ..., N^, A2Lt act faithfully transitively on Y/M, which forces t = 1,

and hence A acts transitively on O. Thus we are in case Id.

Finally, if m = 1, B is simple, and since M P\NLl = M P\BLl = (e), we must have t > 2.

Thus, we are in the situation II. and hence in case 2 of the proposition.

This proves the proposition. D

Estimation of the Zeta Function

We have still Y = Bn x X and, since we have treated now the maximal clean subgroups

of Y, we define the relative Zeta function

C* (n)= V
l

=
V lC{M)l

W/xV'IJ Z^ \Y : M]7! ^ \Y:MY
M<Y maximal, cleail, C(M) M<Y maximal, clean,

prx(M)=X prx(M)=X

We first begin by estimating (y/xiv)- We have

Cr/xiv) = Wa)(v) + W(bMv) + WßMW

+ Z(lc)(r]) + Z(ld)(r]) + Z(2)(r]),

where Tl(x)(n) is the sum over the subgroups M corresponding to the case x of propo¬

sition 62.

Case la:

The sum is over M = Tn x X with T a maximal non normal subgroup of B. Thus

Wa)iv) = Cv/xiv) = Y [Y :Tnx X]<>
= ^

[B : T]\n^'
C(T)

L J

C(T)
T<B maximal, T<B maximal,

So, if Gi is the number of maximal subgroups in B and rii the lower bound on their

indices, we get

Wa)(v)<Cin-mv = Ci(^
ni

\n\

Case l(b)i:

Here we do not have an estimate in the general case; we shall study it in the next

subsection.

Cases l(b)ii and Id can be treated together by considering the following situation: let G

be a finite group containing Ji x J2 where Ji ~ J2 ~ SN are minimal normal and non-

abelian, and we are looking at maximal subgroups M of G with M n Ji = M n J2 = (e)
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and the M-action by conjugation is transitive on the factors S of J\ x J2. So Mf](Ji x J2)

is the graph of an isomorphism 0 : J\ — J2, and M is the normalizer in G of MC\(J\ x,J2).

Thus 0 determines M. Now 0 is of the form ip(bi,..., &a?) = (y?i(&<r(i)), • •

•, <PN(bo-(N))),
where tp% is an automorphism of S and <r a permutation of {1,..., A}. But, since M acts

transitively on the simple factors of J\ x J2, the permutation a is completely determined

by a(I). Thus, there are at most [aut (S)\ N such isomorphisms 0.

Now to the case l(b)n: Let n2iY) be the number of subgroups U of the centralizer

Cx(Bn) in X of Bn such that [/ is normal in Y and the A-action by conjugation on

Cx(Bn)/U ~ Plnl is transitive. Then

W/A) V W
^io>ut(TT)||n|

^,0, /|aut(P)|Vn|
Y>(l(b)ii)(n)

< n2(Y) |0| =

w2(Y) |0|

We shall give an estimation of n2(F) in the next subsection.

In case Id, with the notation used in the proposition, we have

T,(ld)(r})<\Ü\ ,„,|0,„
= |0|

Now we turn to the case lc:

\Ni\Mv \ |Ai

M is determined by MDNn as being its normalizer. Now A ~ Sr where S is simple non-

abelian. Let Q' = OU.. .UO the disjoint union of r copies of O
,
so that Nn ~ Sn

.
Since

pr^(M HBn) = B for all lo E O, M acts transitively on O'. Now M n Nn = M n Sn'

is a product T>i x
...

x Ds of subdiagonals corresponding to a bloc decomposition

O' = Oi U
...

U Os for the transitive M-action. Let n = |0'|; we have s < n and s

divides n, thus s < ^. There are at most () possibilities for Oi. By transitivitiy this

determines then the bloc decomposition. Such a partition being fixed, there are then

[aut (S)\n~s such products Dx x
...

x Ds, each with index [^l-5 in Sn
. Finally we get

Y(1A(^< V" (U\ laut iS) I"'"
^ nnf laut (S)\S\2_(n /[aut (S) |

where A ~ 5"" and 77 is chosen such that n^M < 1-

Now the estimation of Tl(2)(n):

Again, M is the normalizer in Y of M n Pn, and since in this case B is simple M n

Pn = T>i x
...

x Ds a product of subdiagonals corresponding to a bloc decomposition

O = Oi U
...

U Os. Now assume that there is a A; G {1,..., s} such that O^ =
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Oi U
...

U Ofc and O^2-1 = 0&+i U
...

U Os = Ln U
...

U L%s_k are A-invariant. Then

M n Bn C (T>i x
...

x Ds) (BLn x
...

x BL*°-*) hence (BLn x ...x BL*°-*) M ^Y,

which implies that M contains BLli x
...

x B l°-k. But this is not possible since M is

clean. Therefore X acts transitively on the set of blocs {Oi,..., Os}. Moreover, since

prBLl (M n Bn) = BLl, we have \Qt n L3 \ < 1 for all i, j and hence by transitivity of X

on the blocs, \Q% n Tj| = 1 for all i and j.

Thus |Tj| = s and \Qt\ = t for all i and j. Now, there are at most s* possibilities for Oi,

which then determines the partition. For each partition we get [aut (£>)[' l|_
x

...
x

[aut (£>)[' s'~
subdiagonal subgroups, each of index |B|' l|_

... \B\' a'~
.
Thus

U2)(n)

<
AdUtiB)fnl~S

M^;w ^
s

|5|(ini-S)^
'

where O = Ti U
...

U Lt, t > 2, and s = \Lt\ for all i.

Later we shall only need following crude estimate: since for natural numbers s* < 2st,

y

=

-L-!-, fort>2.Thuschoosingnwith

^jÀ?,

we have |0| — s = ts — s > y
=

'-j-,
fort>2.Thuschoosingnwith

a"BL '
< 1, we get

E(a)(î7)< 4
|aut(P)|\ 2

151" ;

Estimation for the Cases l(b)i and l(b)ii

We shall now give an estimation for n2iY) of the case l(b)n and for the case l(b)i, for

which we had no general result, in the special case where Y is one of the groups G^ of

the projective system G^ <— G^ <—...<— G^ <—
... as given in Lemma 58. Recall, we

have a transitive permutation group F on the set {1,..., d} and set B < F the stabilizer

of 1. We write D := {2, 3,..., d} and have Ai = T>x{l,2}, respectively Ai = {1,..., d}.

Further we define G^ = B^1'2^ x Perm({l, 2}), respectively G*-1-1 = F acting on Ai and

recursively, for n > 1, G^n+1^ = BAn x G^ acting on the set Ara+i = Dn x Ax.

In the following we assume that B is perfect and equal to its normalizer. Write D =

W\ U
...

U Wr the decomposition of D into P-orbits Note that the condition for B of

being equal to its normalizer is equivalent to the statement that for all i, \Wt\ > 2.

The G^-orbits on An are given by Wïn_1 x.. .xl^0x{l, 2} for all choices of (i0,..., in-i) G

{1,..., r}n, respectively Wtn_1x...xWtlx A\ for all choices of (i\,..., in-i) E {1,..., r}

and thus there are rn respectively rn~l orbits.

n—1
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Here we fix a notation: If a group H acts on a set E and if F Ç E, then we write

H(F) = {h E G \hf = f, for all / G F} in analogy to the notation used earlier.

Given an G^-orbit On = W^'^ x...x W^ x {1, 2}, respectively On = W^'^ x...x

W^ x Ai in An, we compute the Ora+i fixing subgroup G(ra+1)(Ora+i) of G^^:

G^+l\On+l) = {(f,g) E BA- x GW I g\0n = id, f(p) E B(W^),VP E On)
= (B(W{n))°n x BAn\°n) x G{n)(On)

and we have G«(Oi) = B(W^)w(0)x^^ x ß^1)^1'2}, respectively G«(Oi) =

GW(Ai) = (e) (and hence G^(02) = B(W^)Al).

We study now the case l(b)n of the proposition 62:

We write the set of fixed points

FPn(On) = {pEAn\On\pis fixed by G(n)(On)}

and we have FPx(Oi) = A, FP2(02) C A2 \ 02. For n > 3, we have An \ On =

((D \ W{n~l)) x On-i) U(D x (An-i \ On-i))- Since B has no fixed point in D, one

dets FPm(On) C (D \ W^-^) x On-i for n > 3. We observe also that FPm(On) is

G^-invariant and thus consists of at most r, respectively (r — 1) orbits.

Lemma 63. Let H = (Hl 1
x

...
x Hl l) x A, where L% are A-orbits, and let N be

a normal subgroup of G with simple non-abehan quotient G. Then, either N contains

(TTf1 x
...

x Hi1) and A/prA(N) ~ C, or N = (H^1 x...xf/l-x...x H?1) x A with

\Lt\ = I, U a normal subgroup of Ht and HJU ~ G.

Proof. If prA(N) ^ A, then, A/prA(N) being a non-trivial quotient of G, the subgroup

A contains H^x.. .xH^1. l(prA(N) = A,then(H^1x...xH[Jl)/(H^1x...xH[JlnN) ~

G, and since G is simple non-abelian, there exists i E {1,..., /} and a normal subgroup

U of Ht with HJU ~ C, and An(TT1Ll x
...

x H?1) = H^x...x h\LA~1 x(/l-x...x H^1.
But A is normal in G, so \Lt\ — 1 = 0. D

Lemma 64. Let C be a simple non-abehan quotient of B, S a set and U C G^m+l\Om+i)

such that U is normal m G(m+l\ G(m+1)(0TO+i)/£7 ~ Cs, the G^^-conjugation act¬

ing transitively on simple factors of Gs, and \S\ > \Om\. Then either U contains

B(W(~m^)°m x BAm\°m, or there is an G^-orbit S' m FPm (\S'\ = \S\) and a normal

subgroup Ux of B with B/Ux ~ C, such that U = (B(W^)° x Uxs' x BA^°uS'^) x

G^(Om).
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Proof. Since \S\ > |0TO|, we have U = C\seS Ns where Ns are some normal subgroup of

Q(m+1) (Qm+1>j with quotient C, and the G^+^-action by conjugation permutes tran¬

sitively the set {Ns \ s E S}. From the preceeding lemma, we have, either Ns contains

B(W(~m^)°m x BAm\°m for some and hence every s - thus U contains B(W(~m^)°m x

BA\°, or Ns = (B(W^)°m xUsx ßA-\(0-u{s») x G^m\Om) with s E FPm(Om)

and we are done, or Ns = (B(W{m))°m\{s} x Us x BAmX-°m) x G{m)(Om). But then the

G(m+1)-action by conjugation shows that U = (Ylse0mUs x BAm\°m) x G^(Om) and

B(W^)/Ul ~ G. But this is not possible since \S\ > \Om\. D

Now, let U be a subgroup of G^aS)(On) which is normal in G^ and is such that

G^ (On)/U ~ G'°n' with transitive G^-action on simple factors of G'°nL As before,

G is simple non-abelian. Let m < n be maximal such that prG(n)^G(m)(U) = G^mS)(Om),

and set U' = prG(n)^G(m+i)(U). Then U = pr~l(U') and U' = (B(W^)°m x U/ x

BAm\(omus')^ x GW(0m) where y c FPm(Om) is an G^-orbit satisfying \S'\ = \On\.

Now S' = W x Om-i for some W E {Wi,... ,Wr} and thus \W\ |Om_i| = |0„|.

Therefore \On\ = \Om.i\\W{m-^\ .. .\W{n^\ > |Om_i| • 2n - m + 2. Since \On\ <

(d - 1) |Om_i|, we have 2" < ^-, i.e. m > n - £-\ = n - G\.

Let G2 be the number of normal subgroups of B. We have following result:

Lemma 65. Let C% = rj^2-C2, then for all n and all G^-orbits On m An, there are at

most G3 subgroups U m G^aS)(On), which are normal m G^ and such that G^aS)(On)/U

is isomorph to a product of \On\ simple non-abehan groups where the G^-action by

conjugation acts transitively on factors.

|aut(£)|VAw|
\B\V J

Therefore ni(G(ra+1)) < G3 and

Z(l(b)ii)(n)<C3\An

Now we treat the case 1(b)v.

Let B{l) := B/B(W^). Then the group G(n) := G^/G^(On) is described inductively

by G(1) = B°] x Perm({l, 2}), respectively G(1) = F and GM = B^) x G(m_1) acting

on W{m~V x Om_i = Om.

Let C be some simple non-abelian quotient of B. We need to bound the number of

sections of G in C°n x G ; that is, the number of homomorphisms (p : G —

C°n x G
,
x i— (cp(x),x). For k < n we write a(k) the number of such sections

G{k) -^C°h xG{k).
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Such a section 0 : G(n) = B^ x G( 1}
- G°" x (B^) x G( 1}),(a;,y) ^

((p(x,y),(x,y)) is determined by </>U(n-i) and 0| on_1. First, </>U(n-i) can be seen as

(n-l)

a homomorphism G — (G0-1 x
...

x G0-1) x G
,
where the lll^"--1)] factors

of C0"-1 are not permuted. Hence <j)\—(n-i) is determined by |lU("'~1')| sections G —

G°n_1 x G
, thus, by at most a(n— 1)1 I possibilities for </>L(n-i). Now, we may

assume </>U(n-i) fixed. Using the isomorphism C°n x B,~\ ~ Cw x B,~\, the ho¬

momorphism <£| on_! is given by B?^X -> C^"-15 x B?^X,y (-> (<£|on_i|(y), • •

•, <My)),
(n-l)

—(ri—1)
where we see, using the action of G by conjugation, that (f>t are all determined by

0L(n-i) and 0i. This means that we have to bound Hom(B, ^A, Cw x £>(„_!)).
Let A'i be an upper bound on the cardinality of the set of all subgroups of Cw x

G X t>(n-l) < \B\ ,
weB(n-\), for all n and simple quotient G of £>. (Since

get K\ < 2'-0' .) But £>, and hence all B^, are perfect, therefore any homomorphism

(f) : B,~\ — Cw
n

x i?(„_i) factorizes via projection on B,1^,. Thus, if K2 is a con¬

stant bigger than Rom(B?^),Cw(n
1}
x B{n-i)) ,

then there are at most C^1')^
possibilities for <f>\ on_1. All in all we get

On
a(n)<a(n-l)\ II \K2,

where K\ and K2 are absolute constants.

We remark here that C^;1') = 1 if |0ra_i| < Kx.

We shall use the cruder estimate

a(n) < a(n - 1) lw(n_1) I |0„_i \K, forall n > 2,

where K is an absolute constant.

Now let r% := \W^\, for i E {l,...,n}. From the last inequality we get inductively

a(n)<:a(l)n \Un-i\ \Un-2\ |<A_3| •.. .• |0"i| — ayiy
n L't(n-

1), with lnt(n-l) = Krn-\- .-r2ln |6\| + .. . + A>„_ir„_2m |0„_3| + A'r„_i In |0„_2| +

UTln|0„_i| i.e. ^g^ = K(1^ + ... + l^ii). Since for x > 1, lna; < 2yft, we

have *L
i
< 2if V^T-,

.

*1/2, and since for all i, the number \Wt\ > 2, |G\| > 2*, thus
l^n—1| — '' 1

\Ot\ '

n,0 i
< 4if for all n. We have the corollary:

Corollary 66. There is an absolute constant K such that the number of sections of

G(n) - C°" x G(n) is bounded by K\°»\.

Under the same hypothesis than at the begining of this section we show now following

proposition.



3.3. TOPOLOGICALLY FINITE GENERATION 65

Proposition 67. Given À g]0, 1[; there is n > 2, such that for any natural number n,

This leads to:

Corollary 68. Let F be a transitive permutation group of the set {1,..., d} and B =

Stabil) perfect and self normalizing, then the projective limit limG^' is topologically

finitely generated.

Proof. Pick À G (0,1) and D such that Cg(+1)/g()(-C)) -~
^2" f°r all n. Then Yln(^ ~

cG(^)/GwP))>nr=i(i-A2")>o. d

Now we prove the proposition.

Let M be a maximal subgroup of G^n+1^ = BAn x G^n\ where An = U*=1Tj and

prG(n)(M) = G^n\ If U is a maximal normal standard subgroup of BAn contained in

M, then:

1. There exist i E {I,... ,t} and a strict normal subgroup Ut of B such that U =

BLl x
...

x U% l

x
...

x BLt and M is the inverse image of a clean maximal subgroup

in (B/U/j
l

x G^n\ Using the results obtained so far, the contribution is bounded by

a(r7)'Lt', where a(n) — 0 for n — oo, and a(n) is a function which only depends on the

permutation group F. Letting m be the number of normal subgroups of B, t := rn~l

and \L%\ > 2n~l, we get that the sum of the contributions of 1., for all i E {1,... ,t} and

a strict normal subgroup Ut of B, is bounded by

n — 1 / \2n
mr a(n) .

2. There is a subset P of {1,..., t} and a strict normal subgroup Ut of B such tuaXB/Ut

is isomorph to a simple group G and U = YÏkép BLl 'xYijepPj3 F°r fixed P and U, the

contribution is bounded by b(r])^^eP'L:i. Again, b(rj) — 0 for 77 — 00. Thus the total

contribution coming from #. is bounded by:

t

Y rn)p\b(ri)^r\L>\ <Y (mb(i1))T'^LA < \\(l + (mb(r]))lL]l
PC{1, ,t} PC{1, ,t} *=1

|P|>2 |P|>2

I /" I 9n

< eE*=i («%))' _ 1 < ^"^(nibiv)) _ l

<2rn-l(mb(n))2n,



66 CHAPTER 3. THE UNIVERSAL GROUP U(F)

for n big enough. Summing up everything we get the proposition.

Concerning the reciprocal implication of Proposition 59, we already know that if B is

not perfect, lim^_ G^ is not topologically finitely generated. Assume now that B is not

self normalizing, or which is equivalent, that there exist a B-fixed point a E {2,... ,d}.

Then, for all natural number n, G^ := kev(G^ —» G^) has a fixed point, say an E An.

So g[+1) = BA- x Gg = B x (T?A-\{«n} x g[}). Thus g[+1) -^ B x G^, which

shows that G^ admits Bn as quotient. Thus, again lim^_ G^ is not topologically

finitely generated.

3.4 Super Cuspidal Representations of U(F)

We have seen that U(F) has the independence property and acts minimaly on T. If

moreover, for each i E {1,..., d} the î-fixing subgroup Ft of F is non trivial, then by

Lemma 32, page 23, since F% ~ U(F)(Te) for some edge e, every complete subtree S

which is neither a point nor an edge is non degenerate. Therefore, by Theorem 1, for

each such S, U(F) has a super cuspidal representation, and two of such representa¬

tions are equivalent if and only if the two corresponding subtrees are isomorphic by an

automorphim laying in U(F).

Proposition 69. Let F be a permutation group of {1,2,..., d} with transitive action

and such that T\ is not trivial. Then for every real positive number M, the group U(F)

has finitely many equivalence classes of super cuspidal representations with formal degree

less than M, if and only if T\ is perfect and equal to its normalizer.

Proof. Suppose that Ti is not equal to its normalizer. It is easy to see that hence T\

fixes a point. Then, fixing an edge e, one can build, using the fact that U(F) has the

independence property, a doubly infinite chain c such that U(F)(e) = U(F)(c). Let

S be the minimal complete subtree containing c and for all natural numbers k > 2

set Sk = Te,k n S and ck = Te>k n c. We have U(F)(e) = U(F)(ck.l) = U(F)(c) Ç

U(F)(Sk) Ç U(F)(e). Therefore the subgroup U(F)(ck_i) has index at most 2 in

U(F)(Sk). The subtree Sk has exactly two maximal proper complete subtrees S\ and

<Sf. Thus, by the independence property, we have (see Lemma 10, p. 10)

U(F)(ck_1) = J] U(F)(FCk_uy)
ySsom(cfc_i)

~C/(F)(Tei)x/T'xC/(F)(Te2),
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where e\ and e2 are the terminal edges of S\ respectively S\ which are not terminal

edges of Sk and where

H'= J] U(F)(FCk_uy).
ySsom(cfc_2)

By the preceding remarks,

U(F)(Te1)/(U(F)(Sk) n U(F)(Tei)) ~ U(F)(Te2)/(U(F)(Sk) n U(F)(Te2))

~ Fi.

Set

H = U(F)(ck.1)/U(F)(Sk);

this is a normal subgroup of

Q(Sk) = U(F)(Sk)/U(F)(Sk)

with index at most 2 and which we identify to

F1xH'/(U(F)(Sk)nH')xF1.

In accordance with this identification, set

7T = 7Ti <g> 7t' <g> 7T2

((g) represents the (outer) tensor product), where i\\ and 7r2 are non-trivial irreducible

representations of T\ and it' is the trivial representation of H'. Take a non-degenerate

irreducible sub-representation lo of ind^ (n). Then

dim lo < lQ(Sk) : H] dim n < 2 dim tti dim i\2

< 2 |Ti|2.

Therefore for all T > 1 the representation

jU(F)T(Sk, to) = ind-AJ
(to o ps

)
V «j )

U(F)(Sk)
V * kJ

is cuspidal with formal dimension

1 2
. |2

d = —, r- dim LO < —, r- | Ti I .

m(u(F)(Sk)j m(u(F)(e)j
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Suppose that Ti is not perfect. Then it has a non trivial character. Let x be a such.

Set Qn = U(F)(Ta>n)/U(F)(Ta>n), the automorphism group of Ta>n induced by U(F)(a),

where a is a fixed vertex. Since F is transitive, we know by Lemma 58 that for n > 1,

Qn+i = Fx "

x Qn for the action of Qn on An, where An denotes the set of terminal

edges of the subtree Ta>n. As Qk+\ = Flk x Qk and |Afc| = d(d — l)fc_1, the map

(f,s) i— Lo(f,s) = riseA x(/(^)) is a non trivial character of Qk+i- Therefore the

formal degree of the super cuspidal representation T(Ta^k+\, lo) is d = m(y(L/^.

To show the reverse sense of the statement, let us suppose that T\ is perfect and equal

to its normalizer, i.e. that it does not fix any point and has no non-trivial characters.

Let S be a complete finite subtree. Recall that for an edge or a vertex a and a natural

number m, we write Ta>m the minimal subtree containing the vertices at distance m of

a; these subtrees are complete, as it is obvious to see.

Let Tatk be the minimal one among all Ta)TO's containing S. It is enough to show that

for k > 2 the cuspidal representation n of G = U(F) with minimal subtree S has formal

degree greater equal m(G°(a;))

Let x\,..., xn be the terminal vertices of S which are also terminal vertices of Ta^k, and

associate to each of them the maximal complete subtree St of S for which xt is not a

terminal vertex. If A% denotes the group ps(G(St)) = G(St)/G(S), then we have for

every i E {1,..., n}, A% = Ti.

Let 7T be a super cuspidal representation of G = U(F) with minimal subtree S. By

Theorem 1, the representation ti is induced from a non degenerate irreducible represen¬

tation lo of Q(S), i.e. -K = ind~,a) (indGÄl (toops)). The restriction Res^lX...x^n(o;)

of lo on the normal subgroup A\ x
...

x An has irreducible factors which are tensor

products p\ ® ... ® pn, where p% are irreducible representations of At. Since the repre¬

sentation lo is non degenerate, there exists for every i at least one of these factors in

which the corresponding pt is non trivial and hence, since T\ ~ Ai has no non trivial

characters, is of dimension at least 2. Therefore dimo; = dim(ResAlX...xAn(Lo)) > 2n

and dim(indG/m (to ops)j > 2n[G(a) : G(S)] and finally

2n
dim TT > —- ~[G(a) : G(S)].

m (G(a)

Let us examine the index [G(a) : G(S)].

We write A^ for the terminal vertices of the subtree Ta^k and fix a; G {x\,..., xn}- Let
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Ox = G(S)x be the orbit by G(S) and Qx = G(a)x the orbit by G(a) of x. We have the

inclusions Ox Ç G(a)x = Qx Ç Ak.

Define the distance of a vertex s to a set of vertices E by

d(s,E) = min{d(s,T;) | e G E}.

For I E {0,... ,k} we consider now the set {z E Qx \ d (z, Ox) = 21} .

Let l\,... ,lr E {0,1,... ,k} be such that {z E Qx \ d (z, Ox) = 2lt} is not empty (notice

that r > 1, since d (x, Ox) = 0.). Pick zt E {z E Qx \ d (z, Ox) = 21} and gt E G (a) with

g%x = z%. Then we have G(a)x = Qx D UI=i G(S)zt = UI=i G(S)gtx, which implies the

inclusion G(a) D UI=i G(S)gt. Therefore

[G(a) : G(S)] > r > 1.

On the other hand, suppose I E {0,1,... ,k} such that {z E Qx \ d (z, Ox) = 21} is empty.

Since T\ does not fix any point, the set {y E Qx \ d (y, x) = 21} is non empty. Therefore

we can take a z E Qx such that d (z, x) = 21. We have d (z, Ox) < 21 which means that

there exists a y E Ox with d (z, y) < 21.

But it is clear (see figure) that in this case

d (x, y) = 21. Therefore we have found for

each I E {0,1,..., &}\{/i,..., lr}, a vertex

y E Ox with d (x, y) = 21, and hence the

orbit Ox, which is a subset of {x\,..., xn},

has at least k + 1 — r elements, i.e. n >

k + 1 — r.

Finally, we have, since 1 < r < k,

2n
dini7r >

m I G(a)
[G(a) : G(S)} >

m I G(a)
(k + 1 — r)r >

k

m(G(x))'

This proves the proposition. D
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