
ETH Library

Application exploration regarding a
DPC like architecture

Report

Author(s):
Enzler, Rolf; Sailer, Thomas

Publication date:
2000

Permanent link:
https://doi.org/10.3929/ethz-a-004704198

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004704198
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Application Exploration Regarding a DPC Like

Architecture

Rolf Enzler, Thomas Sailer
Swiss Federal Institute of Technology (ETH)

Electronics Laboratory
CH-8092 Zürich, Switzerland
{enzler,sailer}@ife.ee.ethz.ch

Technical Report

May 2000

Abstract

This report explores applications in the fields of multimedia, cryptography
and telecommunication with regard to the Dynamically Programmable
Cache (DPC) architecture proposed by Nakkar [38]. A set of applica-
tions representing future systems’ requirements are investigated in order
to obtain an application base, which allows deriving a suitable DPC like
architecture. The considered evaluation criteria are operations, granular-
ity, parallelism and data access patterns. Our investigations show that a
DPC like architecture has the potential to significantly speed-up the tar-
geted application classes. We believe, however, that the proposed DPC
architecture is too restrictive to fully exploit its potential, and that it is
therefore worth to investigate several basic systems parameters more in
depth.

1 Introduction

With reconfigurable computing a new computation paradigm has emerged in the
last decade, which intents to fill the gap between conventional microprocessors
and application-specific integrated circuits (ASICs) [22, 29, 52]. All reconfig-
urable systems share the same basic idea: to benefit from reprogrammable logic,
which allows to dynamically adapt the system’s functionality to the require-
ments of the running application. The most popular devices, which actually en-
abled reconfigurable computing, are field-programmable gate arrays (FPGAs),
which were introduced in the mid eighties [23].

Many approaches of reconfigurable systems have been proposed in the re-
cent years. Amongst them are so called hybrids, which combine reconfigurable
hardware with a processor core. One of these approaches is the Dynamically
Programmable Cache (DPC) architecture [37, 38], which intends to integrate
reconfigurable resources into a processor’s data cache.

These report summarises our effort of exploring applications suited for a
DPC like architecture. We have concentrated on the three application areas

• multimedia,
• cryptography, and
• telecommunication,

which will play an important role in future systems like e. g. handhelds, as we
believe one of the most interesting target fields for reconfigurable systems in the
near future.

The evaluation criteria that underlie our investigations are

• operations,
• granularity (bit width),
• parallelism, and
• data access patterns (memory, cache, register).

The goal of the application exploration was to gain insight of the potential
that a DPC like architecture offers for the considered application fields. Fur-
thermore, the investigations should serve as a base for future improvements of
the DPC architecture.

Sections 2, 3 and 4 describe and analyse the most important building blocks
in the fields of multimedia, cryptography and telecommunication, respectively.
Section 5 summarises the results and outlines the gained insights.

2 Multimedia

This section investigates algorithms that are widely used in multimedia applica-
tions, like video and audio compression. An important representative is MPEG
[6, 9, 24, 36]. Figure 1 shows the block diagrams of an MPEG video encoder
and decoder, respectively.

2.1 Motion Estimation

Typically, two consecutive frames of a video sequence are very similar. This
observation is the basis of motion-compensated coding, where a frame is coded
based on its difference from another frame. In practice, frames are divided
into blocks (called macroblocks). For a block in the current frame (called ref-
erence or source block), motion estimation is the process of finding a block in
another frame that best matches its characteristics (according to a given crite-
rion). The motion vector identifies the position of the best block relative to the
reference block. The search for the best matching block is done in a rectangular
area (called search window) around the relative position of the reference block
(Fig. 2). In most video applications, the reference block is 16×16 pixels, and
the search window is 31×31 pixels. For broadcast TV, good performance is
obtained at p = 15 for head-and-shoulders-type video scenes, and at p = 63 for
sporting events [6].

The common matching criteria are the mean absolute error (MAE) or the
mean square error (MSE). Under the MAE criterion, for a displacement vector
(i, j), the distortion between two macroblocks is defined as

D(i, j) =
M−1∑
m=0

N−1∑
n=0

|rm,n − sm+i,n+j | , i, j ∈ [−p, p− 1] , (1)

2

processing

Pre−

Input

p
re

d
ic

ti
v
e

 f
ra

m
e

Output

m
o

ti
o

n
 v

e
c
to

rs

Encoder

VLC

Buffer

DCT
−

+

Compensation

Motion

Estimation

Motion

Memory

Frame

(Q)

Quantizer

Regulator

Memory

Frame

IDCT

−1
Q

(a)

Buffer

0

Motion compensation

Input

step size
O

u
tp

u
t

Buffer
VLC

Decoder Q
−1

IDCT

Previous

Picture Store

Future

Picture Store

M
u

x

1/2

(b)

Figure 1: Block diagram of an MPEG video encoder (a) and decoder (b).

3

MV: Motion Vector

(x,y)

(x,y)

MV

Past Picture

Current Picture

Prediction Error

−+

macroblock

best matching

(a)

M+p−2

M−1

0

i

−p
0 j−p N−1 N+p−2

Motion Vector (i,j)

Search window

[−p,p−1]

Candidate

Block

Reference

Block

(b)

Figure 2: Motion estimation (a) with search window of range [-p,p-1] (b).

4

where r is the reference block and s is a candidate block. The motion vector is
the displacement vector (i, j) which minimises D(i, j). For each macroblock of
the reference picture a motion vector has to be calculated.

Figures 3 and 4 show the dataflow on different levels according (1).

abs abs abs

D(i,j)

Figure 3: Distortion computation be-
tween a reference block and a candi-
date block (inner loop)

...

D(i,j)

...

Motion Vector (i,j)

Comparator

D(i,j)

...

D(i,j)

Figure 4: Motion vector computation
(outer loop)

Operations

• Subtraction (8-bit operands)
• Absolute-value computation (8-bit operands); i. e. some sort of control

structure is needed.
• Addition (8-bit to 16-bit operands)
• Comparison (16-bit operands)

Granularity

• Input (pixel data): 8 bit
• Distortions: 16 bit
• Motion vectors: 2×16 bit

Parallelism

There exists parallelism on different levels of the algorithm:

0. The basic block is the computation of the difference between two pels
(pixel elements), i. e. a “sub-abs-add” operation.

1. The inner loop is the computation of the distortion D(i, j) between the
reference block and a candidate block (Fig. 3).

2. The outer loop is the computation of all distortions D(i, j) between a refer-
ence block and its according candidate blocks merged with the comparison
of the distortions (Fig. 4).

3. The ultimate loop is the computation of the motion vectors for all mac-
roblocks of the reference picture.

5

Data Access

On the different levels the following accesses occur:

0. A pel of the reference block and the according pel of the candidate block
are needed.

1. All pels of the reference block and all pels of the candidate block are
needed. In subsequent executions of the inner loop nearly the same pels
of the candidate block are used again. Therefore, the computation is
sensitive to the data accesses (order of pels in the memory and cache
parameters).

2. The pels of the reference block stay the same. All pels of the search
window are needed. In subsequent computations of the outer loop many
pels of the search window are the same. Therefore, the computation is
sensitive to the data accesses.

3. All pels of the reference and the current frame are needed.

Enhancements

• Sub-pel motion estimation is possible. The additional required operations
in the basic block are additions and right shifts.

• If instead of the MAE criterion the MSE criterion is used, the absolute-
value operation in the basic block is substituted by the squaring operation.

• To reduce the computational requirements, 1-bit motion estimation seems
to be valuable [6]. In that case, the operations for the MAE criterion are
reduced to the EXOR of a bit sequence and summing up the number of
1’s in the result.

2.2 DCT/IDCT

DCT-based image coding is the basis for all the image and video compression
standards. The basic computation in a DCT-based system is the transforma-
tion of an 8×8 image block from the spatial domain to the DCT domain. An
important property of the 2D DCT and IDCT transforms is separability, i. e.
the 8×8 2D DCT can be obtained by first performing eight 1D DCTs on the
rows followed by a matrix transposition and eight 1D DCTs on the columns.
An 8-point 1D DCT is given by

yi =
8∑

k=1

cikxk , i = 1, 2, . . . , 8 , (2)

where yi denotes the output elements, xk denotes the input data, and cik denotes
the DCT coefficients [6].

Operations

There exist several DCT algorithms [5, 6, 28, 47], which highly depend on
the target architecture. Therefore, the operations vary between the different
algorithms.

• Multiplication (maybe bit-serial)

6

• Addition (maybe bit-serial)
• Subtraction (maybe bit-serial)
• Shift
• Maybe 4-product MAC (using conventional arithmetic or serial distributed

arithmetic [47])
• Maybe look-up table (LUT)
• Matrix transposition

Granularity

From an ASIC implementation example [47]:

• Input: 8 bit
• Internal: 12 bit
• DCT coefficients: 10 bit
• Output: 12 bit

Parallelism

• MAC operation
• 8-point 1D DCT (e. g. four adders, four subtracters, eight 4-product MACs)
• 8×8 2D DCT is composed of (i) eight 8-point 1D DCTs, (ii) matrix trans-

position, (iii) eight 8-point 1D DCTs.

Data Access

• The eight coefficients stay always the same and are continuously used.
• For an 8-point 1D DCT eight data values are needed.
• For the 2D DCT all data values of the 8×8 matrix are needed.

2.3 Entropy Coding (RLC, VLC)

Run-length coding (RLC) and variable-length coding (VLC) are both lossless
compression techniques.

The RLC encoder compresses an input stream by representing consecutive
zeros by their run-length. The RLC decoder reverses the process by generating
the appropriate number of zeros between two nonzero data. In hardware, an
RLC coder can easily be implemented using a counter, registers, and some logic
[6]. In a software implementation, the most common operations are compare
and accumulates [37].

Operations

• 1-bit compare
• Counter

Granularity

• 1 bit

7

Parallelism

• None

Data Access

• Forward data flow

The VLC encoder maps input data of fixed length into codewords of vari-
able length, concatenates them together, and segments them into 16-bit words.
Compression is achieved by assigning short codewords to input symbols of high
probability and long codewords to input symbols of low probability. The map-
ping process can be performed either through table-look ups or bit-serially by
tracing a Huffman encoding tree. The Huffman coding tables are designed based
on the statistics of the input source [6].

VLC decoding is much harder, because codewords have variable length, and
the receiver has no prior knowledge of the boundaries between two consecutive
codewords.

Operations

• Bit-wise merging of output data
• Maybe barrel shifter
• Maybe 4-bit adder
• Maybe MUX, i. e. control structures
• Maybe shift/compares

Granularity

• Input: 8 - 16 bit
• Output: 16 bit

Parallelism

• None

Data Access

• VLC tables (codeword table, code-length table)
• Data is continuously processed.

2.4 Audio compression

This subsection investigates MPEG audio encoding/decoding as described in
[6]. Figure 5 shows the block diagram of an MPEG audio encoder.

8

Subband Filtering

Input

O
ut

pu
t

bit allocation

scale factors

Psychoacoustic Model
S

ca
le

r32

32

2H

32H

1H

Quantizer, Coder

M
ul

tip
le

xe
r

Quantizer, Coder

Quantizer, Coder

Bit Allocation Calculator
Masking Threshold and

32

Figure 5: Block diagram of an MPEG audio encoder.

Operations

• Subband analysis/synthesis filtering:

– Windowing (multiplications with coefficients)
– Partial summations (additions)
– Matrixing (MACs)
– Maybe DCT

• Psychoacoustic model:

– 1024-point FFT

Granularity

• Audio samples: 16 - 20 bit
• Internal: up to 24 bit, or floating-point

Parallelism

• Windowing
• Partial summations
• Matrixing

Data Access

• Coefficients
• Matrixing values
• Data: 512 input audio samples for 32 output subband samples (encoding)

9

2.5 Video and Audio Compression – Summary

Table 1 shows an overview of generic operations in video processing. Based
on the content of Table 1 and an analysis of the processing pipeline in video
compression, [6] concludes the following:

• Input data and coefficients have usually 8- to 16-bit precision.
• There is no need for floating-point operations.
• The multiply-accumulate (MAC) operation is very common. However,

most of the multiplications are with constants.
• Saturation arithmetic, where a result is clipped (operation clip()) to the

maximum or minimum value of a predefined range, is common in many
operations (such as colour transformation).

Function Operations

Colour transformation, prepro-
cessing, and post-processing

∑
cixi, clip(), 1

2 (xi + xj), 1
4

∑4
i=1 xi

DCT, IDCT ax + b,
∑

cixi

Quantisation xi

ci

Dequantisation xici

Huffman coding (VLC) data shifts, comparisons
Motion estimation/compen-

∑
|xi − yi| or

∑
(xi − yi)2,

sation min(a, b), xi + cxj

Table 1: Generic operations in video compression [6]

Table 2 shows the most common arithmetic operations in Layer II MPEG au-
dio decoding. [6] outlines that similar analysis of other audio coding algorithms
show that multiplication and addition are the most common operations and con-
cludes that general-purpose DSPs are ideally suited for audio processing. Since
audio samples have 16-bit precision, encoders should use either floating-point
or 24-bit precision.

Function Operations
Degrouping y = c mod a, c = c

d

Dequantisation y = (x + a)b
Denormalisation y = ax
Matrixing y = ax + b, y =

∑
i xici

Windowing y = xa, y =
∑

i wi

Table 2: Arithmetic operations in MPEG audio decoding [6]

3 Cryptography

3.1 DES (Data Encryption Standard)

The DES algorithm possesses an iterative structure. Data is passed through
the Feistel network 16 times, each time with a different subkey from the key

10

transformation (Fig. 6 and 7) [42].

Operations

• Permutations (32-, 48-bit)
• Expansion (32→48-bit)
• EXORs (32-, 48-bit)
• Combinational logic (S-boxes, 6→4-bit)
• Left-rotations (28-bit) for key transformation

Granularity

• Operands: 4, 6, 28, 48, 56, 64 bit
• Permutations and expansion require access to single bits.

Parallelism

• The DES computation sequence for encoding a 64-bit data value does not
have much inherent parallelism, unless the computation of the eight S-
boxes. What is anyway interesting for a DPC like architecture is the mix
of operations that are needed (permutations, EXOR, rotations, etc.), that
do not map well onto a general-purpose processor.

Data Access

• The key is needed during the whole encryption process. However, dur-
ing the 16 rounds of the encoding process for one data value the key is
continuously left-shifted.

• The encoded data value is processed straightforward.
• If tables (e. g. the S-boxes) are stored in the memory instead of being

realized in combinational logic, they are accessed very frequently.

3.2 RSA

RSA (named after its inventors Rivest, Shamir and Adleman) gets its security
from the difficulty of factoring large numbers. The public and private keys are
functions of a pair of large prime numbers (100 to 200 digits or even larger). Re-
covering the plaintext from the public key and the ciphertext is conjectured to
be equivalent to factoring the product of the two numbers. The RSA algorithm
is a de facto standard in much of the world. RSA is used in PGP (Pretty Good
Privacy) for key management and digital signatures (with keys up to 2047 bits)
[42].

Encryption is performed by computing

C = Me (mod n) , (3)

where M is the plaintext such that 0 ≤ M < n. The number C is the ciphertext
from which the plaintext M can be computed by

M = Cd (mod n) , (4)

11

R0

L1 R1

L15 R15

IP−1

initial
permutation

output

c1c2 · · · c64

64

64

irregular swap

K16

R16

K2

48

32 32

inverse
permutation

(a) twisted ladder

input

64

K1

m1m2 · · · m64

64

IP

L0

32
f

f

L16

f

K1

f

K2

f

K3

f

K4

f

K16

IP−1

input

L0

L16

R16

output

R2

f

R16

L15

R0

L1

L3

L16

IP

R0

L0

R1

L2

R3

R15

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki)

(b) untwisted ladder

Figure 6: DES computation structure

12

S1 S2 S3 S4 S5 S6 S7 S8

permutation

f(Ri−1,Ki) = P (S(E(Ri−1)⊕Ki))

4

Ri−1 Ki

8× 4 bits

8× 6 bits

substitution

P

32

32

expansion

32

48

48

48

6

E

Figure 7: DES inner f function

where e and n are the public key, and d is the private decryption key (see
Table 3).

Public Key:
n product of the two primes p and q
e relatively prime to (p− 1)(q − 1)
Private Key:
d e−1 mod ((p− 1)(q − 1))

Table 3: RSA keys

Operations

• Modular exponentiation

– Bit scanning of the exponent e
– Modular multiplication

∗ MAC
∗ Addition
∗ Shift
∗ Maybe EXOR and AND
∗ Maybe subtraction
∗ Some sort of control

– Modular squaring

13

∗ Addition
∗ Shift
∗ Maybe EXOR and AND
∗ Maybe subtraction
∗ Some sort of control

• Modular inverse (Euclidean algorithm), just once

However, several algorithms have been proposed for the modular exponentiation
and modular multiplication operations [26, 27, 42].

Granularity

• p, q: arbitrary, but large (see modulus n)
• n: 512 – 2048 bit
• e: rather “small”, usually not more than 32 bit (3, 17, and 216 + 1 are

common choices)
• d: large, approximately like n

• Granularity of the operations is arbitrary; e. g. word-width of the proces-
sor.

Parallelism

• Inherent parallelism of the operations
• Multiplication and squaring operations (in the RL binary method)

Data Access

• n, e or d, respectively, are needed throughout the computation.
• Data is processed straightforward.

3.3 IDEA (International Data Encryption Algorithm)

IDEA is a block-cipher that operates on 64-bit plaintext blocks [11, 42, 57, 58].
The key is 128 bits long. The same algorithm is used for both encryption and
decryption (Fig. 8). IDEA is used in PGP for data encryption.

Operations

• Bit-wise EXOR (16-bit)
• Addition modulo 216

• Multiplication modulo 216 + 1 [57]
• Shift

Granularity

• All operations work on 16-bit sub-blocks
• 16-bit subkeys

Parallelism

• Some parallelism: 2 to 4 operations (see Fig. 8), but partly sequential
execution

14

� � � � �� � �
� � � � 	 �

one
round

7 more
rounds

output
transfor-
mation

Y2 Y3 Y4Y1

4
(1)Z

X2 X3 X4X1

3
(1)Z2

(1)Z1
(1)Z

6
(1)Z

5
(1)Z

4
(9)Z3

(9)Z2
(9)Z1

(9)Z

: multiplication modulo 2 +1 of 16-bit integers
16

: addition modulo 2 of 16-bit integers
16

: bitwise XOR of 16-bit subblocks

Figure 8: IDEA computation structure

15

Data Access

• 128-bit key
• 8 identical (but sequential) rounds
• Data is continuously processed.

3.4 Twofish

Twofish is one of the five final candidates1 for the new Advanced Encryption
Standard (AES)2, which is planned to be completed in summer 2001.

Twofish is a 128-bit block cipher that accepts a variable-length key up to 256
bits [39, 43]. The cipher is a 16-round Feistel network with a bijective F function
made up of four key-dependent 8-by-8-bit S-boxes, a fixed 4-by-4 maximum
distance separable matrix over GF(28), a pseudo-Hadamard transform (PHT),
bit-wise rotations, and a carefully designed key schedule (Fig. 9 and 10).

Operations

• EXOR (32, 8, 4 bit)
• Left rotation (1, 8, 9 bit)
• Right rotation (1 bit) on 32-, 4-bit values
• Addition modulo 232

• Multiplication in GF (28)
• 8-bit permutation
• Swap

Granularity

• 128, 64, 32, 8, 4 bit
• Defined key length: 128, 192 or 256 bit

Parallelism

• 16 sequential rounds
• A single F function consists of two g and two h functions in parallel.
• Permutations q0, q1 (maybe combinational logic)
• Input and output whitening

Data Access

• 4 8×8-bit S-boxes (key-dependent),
• 4×4 MDS matrix
• 0kB, 1kB or 4kB table for S-boxes and MDS matrix (depending on keying

option)
• Key (derived are 40 subkeys), 160 bytes

1The four other candidates are MARS, RC6, Rijndael and Serpent.
2An effort by the U.S. National Institute of Standards and Technology (NIST). For further

information see http://www.nist.gov/aes/.

16

��
����
�����	

���
�����

��

� �� �� � � � �� �� �� ��� � � �� �� �� ��� �� �� �

� � � �� �� � � � � � � � �� ��� �� �� �� � � ��� �� �

���������������������������������

���������������������������������

� ���� ��� �������������������� ���� �

� � � �� �� � � � � � � � �� ��� �� �� �� � � ��� �� �

���������������������������������

���������������������������������

����� �
����� �
����� �

���

�

�
�

� � � � � � � �

� � � � ! � " #�$�%
&'#%�� #�(

����
)*	%
	&*$

��%$�%
&'#%�� #�(

+++,

����� -
����� �
����� �
����� �

���

� !./0

� !./1

2
����� -

�

 3��, �#%	4

5 3��, �#%	4

666�

+++�

Figure 9: Twofish computation structure

17

���

���

��

��

��

��

���

�

���

�

���

�

���

�

	

	 �	 �

�

�

�

� � �

� � �

� � �

� � �

����� �

���� ����

�

	 �

�
 � �

�
 �

� �

Figure 10: Twofish inner F function (128-bit key)

18

3.5 Elliptic Curve Cryptosystems

At a high level, elliptic curve cryptosystems are analogs of existing public-key
cryptosystems in which modular arithmetic is replaced by operations defined
over elliptic curves [2, 3, 8, 30, 31, 32, 33, 46]. In the literature, elliptic curve
cryptosystems have appeared that are analogs either to RSA or to discrete
logarithm based systems.

Just as in all public-key cryptosystems, the security of elliptic curve cryp-
tosystems relies on the underlying hard mathematical problems. It turns out
that elliptic curve analogs of RSA are mainly of academic interest and offer
no practical advantage over ordinary RSA, since their security is based on the
same underlying problem as RSA, namely integer factorisation. The situation is
quite different with elliptic curve variants of discrete logarithm based systems.
The security of such systems depends on the following hard problem: Given two
points G and Y on an elliptic curve such that Y = kG, i. e. Y is G added to
itself k times, find the integer k. This problem is commonly referred to as the
”elliptic curve discrete logarithm problem.”

Currently, it appears that elliptic curve cryptosystems with a 160-bit key
offer the same security as RSA and discrete logarithm based systems with a
1024-bit key. The smaller key sizes result in smaller system parameters and
hence in improved performance and eased memory requirements. Therefore,
elliptic curve cryptosystems are especially useful in applications with limited
memory, bandwidth, or computational power.

Establishing the system parameters of a cryptosystem involves selecting an
underlying finite field and a representation for the elements in the finite field.
Then an elliptic curve has to be chosen together with a point on the curve called
the generator.

The addition operation in an elliptic curve is the counterpart to modular
multiplication in common public-key cryptosystems (e. g. RSA), and multiple
addition is the counterpart to modular exponentiation. However, the elliptic
curve operations are quite complicated, more complicated in fact than the op-
erations required for RSA.

Table 4 shows an example of an elliptic curve in the finite field F2m with the
according addition formula.

For the following considerations we assume that the field F2m is represented
in terms of a normal basis, i. e. a basis over F2 of the form{

θ, θ2, θ22
, . . . , θ2m−1

}
. (5)

Operations

• Elliptic addition/subtraction3: Q = O + P

– Field inversion (several field multiplications)
– Field multiplication (rather complex operation)
– Field addition (EXOR)
– Field squaring (one-bit cyclic shift)

• Elliptic doubling: Q = 2P

3to subtract the point P = (x, y) one adds the point −P = (x, x + y)

19

Finite field F2m

Elliptic curve E y2 + xy = x3 + ax2 + b, b 6= 0

Addition formula P = (x0, y0), Q = (x1, y1), P + Q = (x2, y2)

if P 6= Q (elliptic addition):
λ =

(
y0+y1
x0+x1

)
x2 = λ2 + λ + x0 + x1 + a
y2 = (x1 + x2)λ + x2 + y1

if P = Q (elliptic doubling):
λ =

(
x1 + y1

x1

)
x2 = λ2 + λ + a
y2 = x2

1 + (λ + 1) x2

some special cases have to be considered.

Table 4: Standard elliptic curve over F2m with the according addition formula.
Actually, there exists a faster algorithm [33], but it does not fit well with hard-
ware implementations of normal bases [46].

– Field inversion (several field multiplications)
– Field multiplication (rather complex operation)
– Field addition (EXOR)
– Field squaring (one-bit cyclic shift)

• Elliptic scalar multiplication: Q = nP (addition-subtraction method)

– Nonadjacent form (NAF) of the coefficient n (bit operations, control)
– Elliptic doubling
– Elliptic addition, subtraction

Granularity

• Operands: ≥ 160 bit

Parallelism

• Inherent parallelism of the operations
• Implementation depends heavily on the chosen parameters (field, basis,

elliptic curve).

4 Telecommunication

Software Defined Radio is a hot topic for third generation (3G) mobile systems
[7, 10, 34, 35, 48, 49, 50, 51, 53, 54]. On one hand, the industry seems unable

20

to agree on a single standard, on the other hand, service providers want to
customise the air interface to their needs.

In this section, we identify the most computationally demanding building
blocks for receivers for wireless communication systems. Transmitters are not
considered; they usually are much less computationally demanding, and often
their building blocks are the same or very similar to those of the receiver (e. g.
IFFT/FFT in OFDM transmitters/receivers).

There are two modulation schemes that are popular in emerging digital
wireless communication schemes:

- OFDM (Orthogonal Frequency Division Multiplex)
- DSSS (Direct Sequence Spread Spectrum)

The former is used in broadcast type applications (e. g. DAB4, DVB-T5)
and very high speed indoor wireless data networks with limited coverage (e. g.
WAND6). The latter is used extensively in cellular voice and data networks (e. g.
IS-957 [17], UMTS UTRA8 [1, 12, 13, 40, 41]).

4.1 FFT

The Fast Fourier Transform is by far the computationally most expensive task
for OFDM demodulation. Table 5 shows the FFT sizes of important air inter-
faces [16, 20].

Standard FFT Size
WAND 16
DAB 2048
DVB-T 2048 or 8192

Table 5: FFT sizes for various wireless standards

The basic radix-2 FFT algorithms perform n
2 log2(n) “butterfly” calcula-

tions. Each butterfly consists of two complex adds and one complex multipli-
cation. Higher radix FFT algorithms exist, their advantage is lower memory
bandwidth.

Synchronisation can be achieved either by periodically transmitting a se-
quence of synchronisation symbols, or by transmitting “pilot carriers” and hy-
pothesis testing.

The former method is used when synchronisation has to be achieved fast,
such as in high speed data networks. Synchronisation can be detected using a
matched filter to the sync symbols (i. e. convolution).

The latter method is used when synchronisation time does not matter, but
overhead due to synchronisation should be kept low. Synchronisation works by
running the demodulator as if it was synchronised for some time. After that, it

4Digital Audio Broadcast
5Terrestrial Digital Video Broadcast
6Wireless ATM Network Demonstrator
7also known as N-CDMA
8Universal Mobile Telecommunications System UMTS Terrestrial Radio Access, also known

as 3G mobile telecommunications, IMT-2000

21

decides if it really is synchronised and if not, advances one time-step and repeats
that procedure.

Operations

• n log2(n) complex additions
• n

2 log2(n) complex multiplications

Granularity

• 6 – 16 bit

Parallelism

• There are n
2 butterflies per stage; in the extreme, they can be executed in

parallel.

Data Access

• Input/output data array (the computation is usually performed in place)
• LUT for the twiddle factors (ei2π k

N)

4.2 Despreading

Despreading is done in DSSS receivers to reduce the large signal bandwidth to
approximately the user data rate. The key problem here is to achieve synchro-
nisation as quickly as possible.

Parameter IS-95 UMTS UTRA GPS (C/A)
Chip rate 1.2288M 4.096M (opt.

8.192M or
16.384M)

1.023M

Spreading code M-Sequence Gold (opt.
Kasami)

Gold

Channelisation
code

Walsh (H64) OVSF not applicable

Typ. # of
Despreaders
(RAKE fingers)

4 4–5

Synch code length 215 28 210 − 1
Inner code Convolutional,

K=9, rate 1
2

Convolutional,
K=9, rate 1

3

not applicable

Interleaver 48–384
√

not applicable
Outer code none Reed Solomon not applicable

Table 6: DSSS parameters of important air interfaces

One basic despreading unit (one RAKE finger) computes the following op-
eration:

22

dk =
n−1∑
m=0

ckn+m × skn+m , (6)

where dk denotes the despreaded samples, sk the chip samples, and ck the
scrambling code samples. ck can be ±1.

Each despreader usually calculates (6) twice with chip samples taken at
slightly different times (e. g. 1

4 chips apart) to obtain time tracking information.
The scrambling code ck may be the combination of a scrambling code and

a channelisation code [14]. The following algorithms are used to generate the
scrambling and channelisation codes:

• M-Sequences
• Gold codes
• Kasami codes
• Walsh codes
• Orthogonal Variable Spreading Factor (OVSF) codes

M-Sequences can be generated using a linear feedback shift register (LFSR).
It consists of flip-flops and EXOR gates. Both Gold codes and Kasami codes are
families of codes constructed by exoring two LFSRs. Walsh codes are the rows

of a Hadamard matrix and can be constructed recursively: H2 =
(

1 1
1 −1

)
and

H2N =
(

HN HN

HN −HN

)
. OVSF is a variation on the Walsh theme.

In the GPS case, there is usually one despreader per satellite tracked, and
a couple of despreaders to find new satellites. In the cellular terminal case,
about three despreaders receive and combine the three strongest propagation
components, and one despreader looks for new propagation components and
new base stations.

During initial synchronisation search, worst case about four times the syn-
chronisation code length hypotheses need to be tested. Testing one such hypoth-
esis means running one RAKE finger for some time and then compare its output
against a threshold. The number of samples to be processed before making the
decision determines the false alarm/miss probabilities. So it is desirable to have
a high number of RAKE fingers to speed up the synchronisation process.

Operations

• Add/subtract
• Shift registers/EXOR gates

Granularity

• PN code generation: 1 bit
• Input samples: ≈ 2 – 8 bit

23

Parallelism

• RAKE fingers are independent.
• One RAKE finger could be split into multiple parts that could be executed

in parallel. There is some additional complexity in determining where to
start the PN generator for each part.

Data Access

• Input sample memory

4.3 Interleaver

Interleaving is used to spread burst errors over a long interval to make them
more tractable for the error correcting codes.

The interleaver is often regular; it writes data to a matrix row-wise and reads
the data back column-wise.

Operations

• Memory writes/reads
• Address generators; since one matrix dimension is often a power of 2,

address generators can usually simply be counters with some permutation
of their output lines.

Granularity

• 1 – 8 bit

4.4 Convolutional Codes

Convolutional codes are often used just after the demodulator, because they can
easily use soft decisions.

There are two main algorithms for decoding convolutional codes, namely the
Viterbi Algorithm and the Sequential Decoding Algorithm.

The latter follows the most promising path first. If the metric increase starts
to fall short of the expectation, it backs off and tries other paths. This algorithm
can deal with long constraint length codes easily, but the main disadvantage is
that its execution time is not predictable. It is therefore very seldom used in
practice.

The Viterbi Algorithm (VA) on the other hand is very popular. It has
constant runtime independent on the received symbols. Its complexity (number
of nodes) is 2k−1, where k is the constraint length.

Two paths emanate from each node at time n to two nodes at time n + 1.
For each of those paths, the metric has to be updated, i. e. a value has to be
added to the metric accumulator. The value is a function of the received symbol
and the expected symbol along the path. At each node at time n+1, two paths
merge. The VA has to select the one with the higher metric, and it has to record
this decision. The primitive operation of the VA is therefore the update of two
metric accumulators and the selection of the one with the higher number. This
operation is called “Add Compare Select” (ACS). Many DSPs have instruction

24

set extensions containing an ACS primitive. The VA executes an ACS operation
for each receiver symbol for each of the 2k−1 nodes.

The output of the VA is the ACS decisions along the surviving path. The
surviving path is the path ending at the toor node (node 0) at the end of the
message.

In continuous mode, every few received symbols the highest metric node is
determined, and the decisions along its path up to about 5 constraint lengths
in the past are output.

For every path, the VA needs to somehow store the past decisions. One
possibility is to keep a shift register containing the past decisions at every node.
Another possibility is to store a “back pointer” to a node at time k at every
note at time k + 1.

D D

Q1

Q0

I S0 S1

Figure 11: Convolutional Code Encoder

00

11

10

01

00

11

10

01

0000

01

000/00
1/11

0/101/01

1/10
0/01

1/000/
11

0/00
1/11

0/101/01

1/10
0/01

1/000/
11

11

10

01

00

10

00

data bits
(example: 4 bits)

S1S0
I/Q1Q0

0/00

1/11

0/00

1/11

0/10

1/01

0/01

0/10

0/
11

0/00

0/
11

0/00

startup phase tail bits

Figure 12: Trellis Diagram

Figure 11 shows an example Convolutional Code Encoder. It is a rate R = 1
2

constraint length K = 3 code with x2+1 and x2+x+1 as generating polynomials.
Figure 12 shows the corresponding Trellis diagram. From the Trellis diagram
one can see that the smallest possible detour from the all zero path has 1 nonzero
information bit and 5 nonzero channel bits along its way, this is a measure for
the error correcting capabilities of the code.

25

Operations

• “AddCompareSelect”
• Path backtracking

Granularity

• Path metric for every symbol: up to about 4 bit
• Path metric accumulator: 8 – 16 bit

Parallelism

• Nodes at time k are independent and can be executed in parallel.

Data Access

• Metric accumulators
• Path storage
• Input symbol storage

4.5 Block Codes

To decode block codes, the received symbols (bits, as block codes are almost
always fed with hard decision data) are written as a vector. This received signal
vector is then multiplied with a matrix to produce the syndrome vector. If the
syndrome vector is the zero vector, the received codeword was error free. If
not, a mapping procedure is carried out to map the syndrome vector to the
most likely error vector. The error vector is then subtracted from the received
codeword vector to obtain the most likely correct codeword.

The mapping procedure may be carried out algorithmically (e. g. Berlekamp-
Massey for Reed Solomon codes) or using a look-up table (e. g. Meggitt Decoder
for BCH codes).

In the Reed Solomon case, the syndrome vector can be computed by an
FFT. The syndrome vector is then a subvector of the FFT output vector.

Note however that Block codes use arithmetic structures other than the ring
of the natural numbers 〈Z,+, ·〉 or the ring of the natural numbers modulo m
〈Zm,⊕,�〉. A field is required, and a popular choice is the Galois Field GF (28).

Operations

• Additions in GF(q)
• Multiplications in GF(q)

Granularity

• ≈ 4 – 8 bit

Parallelism

• Matrix vector multiplication may be executed row-wise.

26

Data Access

• Input vector
• Parity check matrix

4.6 Fractional Sample Delays

Fractional sample delays are required to synchronise the receiver precisely to
the transmitter clock.

One solution for this problem is to have a FIR (lowpass) filter with a set of
m coefficient arrays spaced at 1/m samples, and then choosing the coefficient
array that produces the nearest sample.

Another solution is to have multiple FIR filters and then sum their outputs,
each filter output weighted with a different power of µ, the fractional sample
delay. This is called “Farrow Structure”.

Operations

• Convolution (multiplication and addition)
• Polynomial (multiplication and addition)

Granularity

• 4 – 12 bit

Parallelism

• Farrow structure: every constituent convolver is independent.

Data Access

• Past samples
• Filter coefficients

4.7 Finite Field Arithmetic

Finite Field Arithmetic is used heavily in cryptography and forward error cor-
recting (FEC) codes. By far the most important finite fields are the GF(2m)
extension fields of GF(2). GF(2≤8) are the most used Galois fields in practice.

Given a primitive polynomial p(x) in GF(2m), and α a root of p(x), i. e.
p(α) = 0, numbers in GF(2m) (i. e. members of the set) may be represented in
different ways [25, 44].

GF (2m) = {0, α0, α1, · · · , α2m−2} (7)

Equation (7) shows the exponential form or power representation. Multi-
plication, division and inversion is simple using this representation (addition,
subtraction and negation modulo 2m − 1, since α2m−1 = 1), but addition is not
possible. 0 needs to be special cased. Conversions to other bases (see below)
usually require a “log table” and an “antilog table”, which can be quite big
(255×8 bits for GF(28), each).

27

GF (2m) = {A|A = am−1α
m−1 + am−2α

m−2 + · · ·+ a1α + a0,

where ai ∈ GF (2), 0 ≤ i ≤ m− 1}
(8)

{1, α, α2, · · · , αm−1} (9)

Since the primitive polynomial p(x) is monic, of degree m, and p(α) = 0,
αm =

∑m−1
i=0 aiα

i. Therefore, every element of GF(2m) can be represented by a
polynomial with a degree less than m and coefficients in GF(2) (8). Equation (9)
is called the standard base representation (SBR). Addition using the SBR is easy
(digit-wise using an EXOR gate, no “carry chain”), but multiplication is more
tedious. Formally, it is a multiplication of two polynomials modulo p(x), i. e.
c(x) = a(x)b(x) mod p(x). In principle, it is similar to integer multiplication,
but requires an additional modulo reduction step.

{1, α2, α4, α8, · · · , α2m−1
} (10)

Another base used is the normal base representation (NBR), Equation (10).
Squaring using the NBR is easy (cyclic left shift, since squaring in GF(2m) is a
linear operation, (a⊕ b)2 = a2⊕ a⊗ b⊕ a⊗ b⊕ b2 = a2⊕ b2), but multiplication
is more tedious than using the SBR. Some proposed multipliers use two repre-
sentations and switch back and forth between the two representations, but that
is only feasible if α can be chosen suitably. In the general case, base conversion
is not worth the effort.

Useful operation primitives are D = A ⊗ B ⊕ C, which can be used to
compose matrix multiplications, and D = A ⊗ B2 ⊕ C, which can be used for
exponentiations, divisions and inversions.

To decompose these operations (D = A⊗B⊕C and D = A⊗B2⊕C) further,
a(α)α mod p(α), a(α)α2 mod p(α) and a(α) + bic(α) need to be computed.
The latter is simply a combination of an AND and an XOR gate for every digit.
a(α)α and a(α)α2 is simply a left by one or two digits, respectively. mod p(α)
is also a combination of AND and XOR gates.

Various regular structures can be found in literature [25, 44, 55, 56] for com-
puting multiplications, divisions and exponentiations in GF(2m) in hardware.

[15] proposes a combined 17×17 bit integer multiplier/GF(2≤8) multiplier,
where the GF(2m) part does not significantly slow down nor increase in size the
integer part.

As an example we consider arithmetic operations the Galois field GF(24)
using standard basis representation and the primitive polynomial p(x) = x4+x+
1. Figure 13 shows the addition circuitry. Figure 15 shows the αa(α) mod p(α)
building block, and Fig. 14 the conditional sum building block. These two
building blocks may be combined to form a circuit that calculates S = A⊗B⊕C.
Note that A is fed into the circuit in parallel while B is fed serially. If the
αa(α) mod p(α) blocks are replaced with α2a(α) mod p(α) blocks, the circuit
calculates S = A⊗B2 ⊕ C.

Operations

• D = A⊗B ⊕ C and D = A⊗B2 ⊕ C in GF(2≤8)
• AND, XOR gates

28

b0
a0

b1
a1

b2
a2

b3
a3

c1

c0

c2

c3

Figure 13: Addition in
GF(24) using standard base
representation

b

a3a2a1a0

c0

c1

c2

c3

c0

c1

c2

c3

Figure 14: Conditional Sum circuitry in GF(24)
using standard base representation

a0

a1

a2

a3

p3p2p1p0

0

a0

a1

a2

a3

Figure 15: Multiplication by α in GF(24) using standard base representation

29

multiply by alpha

Aout
Pin

Ain

B

C

A

S

P

b3b2b1b0

Ain
Cout

bin

Cin

multiply by alpha

Aout
Pin

Ain

conditional add

Ain
Cout

bin

Cin

conditional add

multiply by alpha

Aout
Pin

Ain

conditional add

Ain
Cout

bin

Cin

conditional add

Ain
Cout

bin

Cin

Figure 16: Multiply-Add in GF(24) using standard base representation

Granularity

• Up to 8 bit

5 Summary and Conclusions

Based on our application exploration we derive the following conclusions:

Operations Besides the common addition, subtraction and multiplication op-
erations especially EXOR, shift, rotation, MAC, permutations, and oper-
ations in Galois fields are widely used. Many of these operations are not
well supported by general-purpose processors.

Granularity The granularity, i. e. the operands’ bit widths, varies between the
different algorithms. Surprisingly, less algorithms than we expected re-
quire 1-bit operations, especially if we do not count e. g. EXORs as 1-bit
operations (EXORs need access to single bits of the operands, but work
mostly on words, e. g. on 8-bit data). Therefore, a 1-bit computation ar-
chitecture does not seem mandatory. Multi-bit computation units seem
to be an interesting trade-off (e. g. 4-bit or 8-bit).
With the connection structure between the computation units, the situa-
tion is different. If we consider multi-bit computation units, it would be
the most natural just to connect the units with buses of the same bit-
width. We state that especially shift and permutation operations do not
map well on such an architecture. Therefore, we believe that a connec-
tion scheme that allows an arbitrary bit access between the computation
units is better suited for the targeted applications. From this observation
we conclude furthermore that architectures like for example MorphoSys
[21, 45], which is composed of an 8-bit ALU array, do not suite many of
our targeted applications. However, since the requirements of the appli-
cations are quite diverse, the architecture will always be a trade-off and

30

therefore different approaches are conceivable.

Parallelism The applications show inherent parallelism on various levels, fine
grain (operation level) and course grain (function level). That observa-
tion lets us conclude that there is potential to significantly speed-up the
targeted application classes. To exploit parallelism, often a sort of control
structure is required.

Data access Data access seems to be one of the most critical parts of the archi-
tecture. Some of the investigated algorithms access the data values quite
irregularly (e. g. FFT). We are therefore concerned that an architecture
like DPC, whose concept targets a forward direction computation flow like
it is typical for systolic arrays, could significantly suffer.

Recapitulating, we believe that there is potential to significantly speed-up
the targeted application classes. The proposed DPC architecture seems to be
too restrictive, we believe that some very basic system parameters have to be
investigated more deeply:

• Composition of the DPC unit

– Logic block structure
– Interconnect
– Memory interface (between logic blocks and memory lines)
– System interface (to the processor core; memory hierarchy)

• Location of the DPC unit in the system’s memory hierarchy

– Cache (as proposed by the DPC architecture)
– On-chip memory (as many DSP have it)
– Off-chip memory
– Co-processor

• Embedding the DPC unit into the system

References

[1] Fumiyuki Adachi, Mamoru Sawahashi, and Hirohito Suda. Wideband DS-
CDMA for next-generation mobile communications systems. IEEE Com-
munications Magazine, 36(9):56ff, September 1998.

[2] G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone. Arithmetic
operations in GF(2m). Journal of Cryptology, 6(1):3–13, 1993.

[3] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. An
implementation for a fast public-key cryptosystem. Journal of Cryptology,
3(2):63–79, 1991.

[4] Arinc Research Corporation. Navstar GPS Space Segment/Navigation User
Interfaces, 1993.

[5] N. W. Bergmann, Y. Y. Chung, and B. K. Gunther. Efficient implementa-
tion of the DCT on custom computers. In Proceedings of the IEEE Sym-
posium on FPGAs for Custom Computing Machines (FCCM’97), pages
244–245, 1997.

31

[6] V. Bhaskaran and K. Konstantinides. Image and Video Compression Stan-
dards: Algorithms and Architectures. Kluwer Academic Publishers, 2nd
edition, 1997.

[7] David B. Chester. Digital IF filter technology for 3G systems: An intro-
duction. IEEE Communications Magazine, 37(2):102ff, February 1999.

[8] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation
using mixed coordinates. In Advances in Cryptology - ASIACRYPT’98,
Proceedings, volume 1514 of Lecture Notes in Computer Science, pages 51–
65. Springer, 1998.

[9] R. Cook, J. Jean, and J.-S. Chen. Accelerating an MPEG-2 encoder uti-
lizing reconfigurable computing. In CERC/VIUF/IEEE Computer Society
Workshop on 21st Century Electronic Systems Design: Breakthroughs in
Quality and Productivity, 1997.

[10] Mark Cummings and Shinichiro Haruyama. FPGA in the software radio.
IEEE Communications Magazine, 37(2):108ff, February 1999.

[11] A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaeslin, and
W. Fichtner. VINCI: VLSI implementation of the new secret-key block
cipher IDEA. In Proceedings of the IEEE Custom Integrated Circuits Con-
ference (CICC’93), pages 15.5.1–15.5.4, 1993.

[12] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjö, M. Persson, and
C. Roobol. WCDMA—the radio interface for future mobile multi-
media communications. IEEE Transactions on Vehicular Technology,
47(4):1105ff, November 1998.

[13] Erik Dahlman, Björn Gudmundson, Mats Nilsson, and Johan Sköld.
UMTS/IMT-2000 based on wideband CDMA. IEEE Communications
Magazine, 36(9):70ff, September 1998.

[14] Esmael H. Dinan and Bijan Jabbari. Spreading codes for direct sequence
CDMA and wideband CDMA cellular network. IEEE Communications
Magazine, 36(9):48ff, September 1998.

[15] Wolfram Drescher and Gerhard Fettweis. VLSI architectures for multipli-
cation in gf(2m) for application tailored digital signal processing. In IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol-
ume 1, 1997.

[16] EBU/CENELEC/ETSI JTC. ETS 300 401: Radio broadcasting systems;
Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers.
European Telecommunication Standards Institute (ETSI), 2nd edition,
May 1997.

[17] Electronics Industry Association (EIA)/Telephone Industry Association
(TIA). Interim Standard 95, 1992.

[18] European Telecommunication Standards Institute (ETSI). ETS 300 421:
Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for 11/12 GHz satellite services, v1.1.2 edition, August 1997.

32

[19] European Telecommunication Standards Institute (ETSI). ETS 300 429:
Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for cable systems, v1.2.1 edition, April 1997.

[20] European Telecommunication Standards Institute (ETSI). ETS 300 744:
Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television, v1.1.2 edition, August 1997.

[21] Guangming Lu, H. Singh, Ming-hau Lee, N. Bagherzadeh, F. Kurdahi, and
E. M. C. Filho. The MorphoSys parallel reconfigurable system. In Euro-
Par’99, Parallel Processing, volume 1685 of Lecture Notes in Computer
Science. Springer, 1999.

[22] S. Hauck. The future of reconfigurable systems. In Canadian Conference
on Field Programmable Devices (FPD’98), 1998.

[23] S. Hauck. The roles of FPGA’s in reprogrammable systems. Proceedings
of the IEEE, 86(4):615–638, April 1998.

[24] E. Iwata and K. Olukotun. Exploiting coarse-grain parallelism in the
MPEG-2 algorithm. Technical Report CSL-TR-98-771, Stanford Univer-
sity, Computer Systems Lab, September 1998.

[25] Surendra K. Jain, Leilei Song, and Keshab K. Parhi. Efficient semisystolic
architectures for finite-field arithmetic. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 6(1):101–113, March 1998.

[26] Ç. K. Koç. High-speed RSA implementation. Technical Report 201, Version
2.0, RSA Laboratories, November 1994.

[27] Ç. K. Koç. RSA hardware implementation. Technical Report 801, Version
1.0, RSA Laboratories, August 1995.

[28] D. Lau, A. Schneider, M. D. Ercegovac, and J. Villasenor. FPGA-based
structures for on-line FFT and DCT. In Proceedings of the IEEE Sym-
posium on FPGAs for Custom Computing Machines (FCCM’99), pages
266–267, 1999.

[29] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling,
R. Hartenstein, O. Mencer, J. Morris, K. Palem, V. K. Prasanna, and
H. A. E. Spaanenburg. Seeking solutions in configurable computing. IEEE
Computer, 30(12):38–43, December 1997.

[30] A. Menezes. Elliptic curve cryptosystems. CryptoBytes, 1(2):1–4, 1995.

[31] A. Menezes and S. Vanstone. The implementation of elliptic curve cryp-
tosystems. In Advances in Cryptology – AUSCRYPT’90, volume 453 of
Lecture Notes in Computer Science, pages 2–13, 1990.

[32] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

[33] A. J. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and their
implementation. Journal of Cryptology, 6(4):209–224, 1993.

33

[34] J. Mitola III. Software radio architecture: A mathematical perspective.
IEEE Journal on Selected Areas in Communications, 17(4):514ff, April
1999.

[35] Joseph Mitola III. Technical challenges in the globalization of software
radio. IEEE Communications Magazine, 37(2):84ff, February 1999.

[36] Moving Picture Experts Group (MPEG). http://www.cselt.it/mpeg/.

[37] M. Nakkar. Evaluation of Dynamically Programmable Cache Machine with
Low Power Field Programmable Gate Arrays (FPGAs) and 3-Dimensional
Multi-Chip-Module Package. PhD thesis, North Carolina State University,
Department of Electrical and Computer Engineering, 1999.

[38] M. Nakkar, J. Harding, D. Schwartz, P. Franzon, and T. Conte. Dynam-
ically programmable cache. In Configurable Computing: Technology and
Applications, volume 3526 of Proceedings of SPIE, pages 218–226. SPIE,
1998.

[39] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback.
Status report on the first round of the development of the Advanced En-
cryption Standard. Technical report, National Institute of Standards and
Technology (NIST), August 1999.

[40] Tero Ojanperä and Ramjee Prasad. An overview of air interface multiple
access for IMT-2000/UMTS. IEEE Communications Magazine, 36(9):82ff,
September 1998.

[41] A. Samukic. UMTS universal mobile telecommunications system: Develop-
ment of standards for the third generation. IEEE Transactions on Vehicular
Technology, 47(4):1099ff, November 1998.

[42] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, 2nd edition, 1996.

[43] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall. Twofish: A
128-bit block cipher. Technical report, Counterpane Systems, June 1998.
http://www.counterpane.com/twofish.html.

[44] Shyue-Win Wei. VLSI architectures for computing exponentiations, multi-
plicative inverses, and divisions in GF(2m). IEEE Transactions on Circuits
and Systems–II: Analog and Digital Signal Processing, 44(10):847–855, Oc-
tober 1997.

[45] H. Singh, Ming-hau Lee, Guangming Lu, F. J. Kurdahi, N. Bagherzadeh,
and E. M. C. Filho. MorphoSys: A reconfigurable architecture for multi-
media applications. In Proceedings of the PACT’98 Workshop on Recon-
figurable Computing, pages 34–39, 1998.

[46] J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic
curves. In Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture
Notes in Computer Science, pages 357–371. Springer, 1997.

34

[47] D. W. Trainor, J. P. Heron, and R. F. Woods. Implementation of the 2D
DCT using a Xilinx XC6264 FPGA. In Proceedings of the IEEE Workshop
on Signal Processing Systems (SiPS’97), pages 541–550, 1997.

[48] Hiroshi Tsurumi and Yasuo Suzuki. Broadband RF stage architecture for
software defined radio in handheld terminal applications. IEEE Commu-
nications Magazine, 37(2):90ff, February 1999.

[49] Thierry Turletti and David Tennenhouse. Complexity of a software GSM
base station. IEEE Communications Magazine, 37(2):113ff, February 1999.

[50] Walter H. W. Tuttlebee. Software defined radio: Facets of a developing
technology. IEEE Personal Communications, 6(2):38ff, April 1999.

[51] Walter H. W. Tuttlebee. Software radio technology: A european perspec-
tive. IEEE Communications Magazine, 37(2):118ff, February 1999.

[52] J. Villasenor and W. H. Mangione-Smith. Configurable computing. Scien-
tific American, pages 66–71, June 1997.

[53] R. H. Walden. Analog-to-digital converter survey and analysis. IEEE
Journal on Selected Areas in Communications, 17(4):539ff, April 1999.

[54] Robert H. Walden. Performance trends for analog-to-digital converters.
IEEE Communications Magazine, 37(2):96ff, February 1999.

[55] Charles C. Wang, T. K. Truong, Howard M. Shao, Leslie J. Deutsch, Jim K.
Omura, and Irving S. Reed. VLSI architectures for computing multipli-
cations and inverses in GF(2m). IEEE Transactions on Computers, C-
34(8):709–717, August 1985.

[56] C.-S. Yeh, Irving S. Reed, and T. K. Truong. Systolic multipliers for finite
fields GF(2m). IEEE Transactions on Computers, C-33(4):357–360, April
1984.

[57] R. Zimmermann. Efficient VLSI implementation of modulo (2n±1) addition
and multiplication. In Proceedings of the IEEE Symposium on Computer
Arithmetic, pages 158–166, 1999.

[58] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and
W. Fichtner. A 177 Mbit/s VLSI implementation of the International Data
Encryption Algorithm. IEEE Journal of Solid-State Circuits, 29(3):303–
307, March 1994.

35

