
Diss. ETHNo. 15538

Computations in Groups

Acting on a Product of Trees:

Normal Subgroup Structures

and Quaternion Lattices

A dissertation submitted to the

Swiss Federal Institute of Technology Zurich

for the degree of

Doctor of Mathematics

presented by

Diego Attilio Rattaggi

Dipl. Math. ETH

born February 22, 1972

citizen ofAscona TI

accepted on the recommendation of

Prof. Dr. Marc Burger, examiner

Prof. Dr. Shahar Mozes, co-examiner

2004





Contents

Abstract 6

Kurzfassung 6

Introduction 7

Acknowledgments 12

1 Preliminaries, notations, definitions 13

1.1 Basic definitions and notations 13

1.2 Square complexes and (2m, 2«)-groups 17

1.3 Projections and quasi-center 19

1.4 Local groups 20

1.5 Irreducibility 23

1.6 Amalgam decompositions 26

1.7 Double cosets 29

1.8 SQ-universal groups 31

1.9 Embeddings 31

1.10 Normal form and applications 32

2 Normal subgroup structure, simplicity 39

2.1 Normal subgroup theorem 41

2.2 A non-residually finite group 55

2.3 Virtually simple groups 59

2.4 Two examples of Wise 62

2.5 Constructing simple groups 64

2.6 A non-simple group without finite quotients 78

2.7 A group which is not virtually torsion-free 81

2.8 Locally primitive, not 2-transitive 82

2.9 Three candidates for simplicity 90

3



4

3 Quaternion lattices in PGL2(Qi,) x PGL2(Q/) 97

3.1 Some notations and preliminaries 98

3.2 Standard case p,l = 1 (mod 4) 105

3.3 Generalization to p,l = 3 (mod 4) 134

3.4 Mixed examples: p = 3, /= 1 (mod 4) 149

3.5 Some conjectures 163

3.6 Construction of anti-tori 169

3.7 A construction for (p, I) = (2,5) 177

4 Miscellanea 181

4.1 Periodic tilings and Z2-subgroups 181

4.2 A criterion for non-linearity 189

4.3 Local groups, irreducibility, abelianization 193

4.4 Graphs associated to a (2m, 2«)-group 200

4.5 Growth of (2w, 2«)-groups 202

4.6 Deficiency of (2m, 2«)-groups 204

A More examples 207

A.l Irreducible (A6, P„)-groups 207

A.2 Amalgam decompositions of Example 2.2 221

A.3 An example illustrating Proposition 2.4 229

A.4 A virtually simple (Ag, Ai4)-group 230

A.5 Supplement to Example 2.58 231

A.6 Some 4-vertex examples 233

A.7 Example r7)23 236

A.8 Example r7)3i 238

A.9 Example r7)23,eo 240

A.10 Example ri3)i7 242

A.ll Amalgam decompositions of Example 3.42 243

A.12 Amalgam decompositions of Example 3.46 248

B GAP-programs 251

B.l Lheory and ideas 251

B.2 Lhe main program 256

B.3 A random program 259

B.4 Computing the local groups 262

B.5 Computing a presentation 265

B.6 A normal form program 267

B.7 Computing Aut(X) 268

B.8 A quaternion lattice program 271



CONTENTS 5

C Some lists 273

Cl Primitive permutation groups 273

C.2 Quasi-primitive permutation groups 274

C.3 Locally 2-transitive (6, 6)-groups 275

C.4 List of (4, 4)-groups 277

C.5 List of (4, 6)-groups 278

C.6 Some abelianized (Ä2m, Mn)-groups 282

C.7 More embeddings of Example 2.39 285

D Miscellanea 289

D.l History of simple groups and free amalgams 289

D.2 Topology of AutCTé) 291

List of Tables 295

List of Figures 297

Bibliography 299

Curriculum Vitae 305



Abstract

Motivated by the work of Burger-Mozes and Wise, we study groups in a class of co-

compact lattices in Aut(72OT) x Aut(72«), the product of automorphism groups oftwo

regular trees. From a geometric viewpoint, these groups are fundamental groups of

certain finite square complexes, and therefore infinite, finitely presented and torsion-

free. We are interested in their normal subgroup structures and construct examples
of such groups without non-trivial normal subgroups of infinite index, groups which

are non-residually finite, groups without proper subgroups of finite index, and simple

groups. Moreover, we generalize a construction of quaternion cocompact lattices in

PGL2(<Qp) x PGL2(Q/), where p, I are two distinct odd prime numbers. To generate

and analyze all these groups, we have written several computer programs with GAP.

Kurzfassung

Motiviert durch Arbeiten von Burger-Mozes und Wise untersuchen wir Gruppen in¬

nerhalb einer Klasse von kokompakten Gittern in kat(T2m) x Aut(72«), dem Produkt

der Automorphismengruppen zweier regulärer Bäume. Diese Gruppen sind aus geo¬

metrischer Sicht Fundamentalgruppen von gewissen endlichen Quadratkomplexen,
und deshalb unendlich, endlich präsentiert und torsionsfrei. Wir interessieren uns

für die Struktur ihrer Normalteiler und konstruieren Beispiele von solchen Gruppen
ohne nicht-triviale Normalteiler von unendlichem Index, Gruppen die nicht residuell

endlich sind, Gruppen ohne echte Untergruppen von endlichem Index, und einfache

Gruppen. Ausserdem verallgemeinern wir eine Konstruktion von quaternionisehen

kokompakten Gittern in PGL^Q^) x PGL2(Q/), wobei p, l zwei verschiedene unge¬

rade Primzahlen sind. Um all diese Gruppen zu erzeugen und analysieren, haben wir

mehrere Computerprogramme mit GAP geschrieben.
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Introduction

Our main goal is to study aspects related to the structure of fundamental groups

of finite square complexes covered by a product of two regular trees of even de¬

grees T2m x 72«. These groups can be seen as cocompact lattices in the product

kat(T2m) x Aut(72«) of automorphism groups of the trees. The original motivation

for Burger, Mozes and Zimmer to study such groups was the expected analogy to

the rich structure theory of irreducible lattices in higher rank semisimple Lie groups,

where one has for example the remarkable (super-)rigidity and arithmeticity results of

Margulis. Note that in the rank one case, a similar analogy to lattices in certain sim¬

ple Lie groups led to the extensive development of the theory of tree lattices by Bass,

Lubotzky and others in the last 15 years. Besides many analogies, there are also some

fascinating new phenomena. We want to mention one of them, since it has a strong

influence on this work. It is the construction by Burger-Mozes of an infinite family of

cocompact lattices in Aut(72OT) x Aut(?2«) (for sufficiently large m and n), which are

the first infinite groups being simultaneously finitely presented, torsion-free and sim¬

ple. Moreover, these groups are CAT(O) and bi-automatic, have finite cohomological

dimension, and are decomposable as amalgamated free products of finitely generated
non-abelian free groups, hence are very interesting objects from many different view¬

points of infinite group theory.

We proceed now with an outline of the chapters and explain our main results and

methods. Chapter 1 serves as a preparation for the following three main chapters. Af¬

ter giving some general preliminaries, we define a certain class of finite 2-dimensional

cell complexes, called (2m, 2«)-complexes. Under different names, they have al¬

ready been used by Burger-Mozes and Wise for many interesting constructions. These

(2m, 2«)-complexes X have only one vertex, and the 2-cells are squares with bound¬

ary consisting of alternating horizontal and vertical edges, such that the universal cover

ofX is the product of two regular trees T^ x 72«. Equivalently, the link of the single
vertex in X is the complete bipartite graph K2m,2n induced by the subdivision of the

edges in the 1-skeleton into m horizontal and n vertical geometric loops. We call the

fundamental group T = Jt\(X) a (2m, 2«)-group. By construction, it is an infinite,

finitely presented, torsion-free group, and a cocompact lattice in Aut(72OT) x Aut(72«),

where the group Aut(T') is equipped with some natural topology. Moreover, T acts

freely and transitively on the vertices of T^ x 72«. Following Burger-Mozes, we
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associate to T certain finite permutation groups. They describe the local actions of

vertex stabilizers, if one projects T to a factor of Aut(72OT) x Aut(72«). These lo¬

cal groups can be easily read off from the complex X and play an important role in

constructing groups T with interesting properties. Having in mind some analogy to

lattices in higher rank semisimple Lie groups, it is not surprising that irreducibility is

another important notion. We recall the definition for irreducible lattices in a product
of trees and some criteria proposed by Burger-Mozes. In the remaining sections of

Chapter 1, we discuss some other useful properties of (2m, 2«)-groups, for example
the existence of amalgam decompositions, the behaviour under embeddings, or nor¬

mal forms associated to a word in T. This has some applications to the structure of

centralizers.

Groups acting on a product of trees are a rich source for examples of interest¬

ing infinite groups. The highlight was certainly the construction of finitely presented
torsion-free simple groups by Burger-Mozes some years ago, thereby answering sev¬

eral long-standing open questions in group theory. These groups occur as index 4

subgroups of certain (2m, 2«)-groups. Unfortunately, since m and n have to be quite

big in the given constructions, the presentations of those simple groups turn out to be

very large; any of them would require more than 360000 relators. Therefore, one aim

at the beginning of this work was to understand the construction ofBurger-Mozes, and

then to construct smaller finitely presented torsion-free simple groups, refining their

methods or developing new methods. This is done in Chapter 2. Since finite index

subgroups of (2m, 2«)-groups are already finitely presented and torsion-free, the dif¬

ficult part is to find simple ones. The most natural strategy to prove that an infinite

group is simple, is to show that (I) there are no non-trivial normal subgroups of infinite

index, and (II) there are no proper normal subgroups of finite index. In the context of

irreducible lattices in higher rank semisimple Lie groups, part (I) is true by a famous

result of Margulis. He proved proper quotients T/N to be finite by showing that they
are at the same time amenable and satisfy Kazhdan's property (T). This ingenious

proof has been successfully adapted by Burger-Mozes to a class of irreducible lattices

in products of trees, having highly transitive local groups, and we have constructed

many explicit examples where this "normal subgroup theorem" applies. A necessary

condition for part (II) is that the group is non-residually finite, i.e. the intersection

of all finite index subgroups is not the trivial group. We know of two sources for

non-residually finite (2m, 2«)-groups. One is a sufficient critérium of Burger-Mozes,
the other is a concrete example of Wise. However, Wise's example has non-trivial

normal subgroups of infinite index, and also all non-residually finite groups coming
from the Burger-Mozes criterion have non-trivial normal subgroups of infinite index

by construction. Since subgroups of residually finite groups are again residually finite,

we follow the strategy of Burger-Mozes to inject a non-residually finite group into a

group satisfying the normal subgroup theorem. The it\-injection is obtained geomet¬

rically, using an appropriate embedding of the corresponding finite square complexes.
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Now, such a non-residually finite group G without non-trivial infinite index normal

subgroups has a subgroup H of finite index satisfying condition (II), namely the inter¬

section of all finite index subgroups of G. If one can moreover guarantee that H still

satisfies the normal subgroup theorem, then H is a simple group. Nevertheless, a ma¬

jor problem in general is to determine explicitly this simple subgroup H, given G. We

were able to do this in some examples by taking an appropriate embedding of Wise's

non-residually finite (8, 6)-group and using the fact that an explicit non-trivial element

is known, which belongs to any finite index subgroup. This idea of construction led to

a finitely presented torsion-free simple subgroup ofindex 4 of a (10, 10)-group, and to

many more simple groups. Along the way, we have constructed new small (2m, 2ri)-

groups without non-trivial normal subgroups of infinite index, and new non-residually
finite examples. They can be used as building blocks to improve lower bounds on

m and n in several theorems of Burger-Mozes about infinite families of groups with

interesting normal subgroup structures. By a slight variation of the above construction

of simple groups, we also have produced a group with non-trivial normal subgroups of

infinite index, but without proper finite index subgroups. Moreover, using an idea of

Wise, we give an example of a finitely presented group which is not virtually torsion-

free. The search for all these groups has been enormously simplified, and even made

possible to some extent, by several GAP-programs we have written, in particular one

which generates all (2m, 2«)-groups for given m, n e N. The same program can

also be used to generate all possible embeddings of a given (2m, 2«)-group. We have

written many more programs related to (2m, 2«)-group, for example one which com¬

putes local groups. They are described in Appendix B. In the remaining sections of

Chapter 2, we study on the one hand an example which almost satisfies the normal

subgroup theorem, give ideas how to construct and how not to construct an explicit

proper infinite quotient, and on the other hand we present several other groups that

are candidates for being finitely presented torsion-free simple groups, including some

very small ones. According to several computer experiments, it seems reasonable to

hope that some ofthem indeed are simple, but proofs appear to be challenging.

Let p,l = 1 (mod 4) be two distinct prime numbers. Using a construction based

on the multiplication of Hamilton quaternions, Mozes has associated to any such pair

(p, I) a cocompact lattice Fpj in PGL^Q^) x PGL2(Q/), which is moreover an irre¬

ducible (p + 1, / + l)-group, induced by the actions ofPGL^Q^) and PGL2(Q/) on

their Bruhat-Tits trees Tp+\ and 7/+i, respectively. Mozes originally used the groups

rpj to define certain tiling systems, so-called two-dimensional subshifts offinite type,

and to study a resulting dynamical system. Later, the group r 13,17 appears as a build¬

ing block in the construction of a non-residually finite (196, 324)-group and in a con¬

struction of an infinite family of finitely presented torsion-free virtually simple groups

by Burger-Mozes. In Chapter 3, we first recall the definition of Fpj. The fact that Fpj
is a (p+1, /+ l)-group can almost be deduced from an old result ofDickson about the

existence and uniqueness of the factorization of integer quaternions. Inspired by the
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construction and properties of a certain cocompact lattice in SO3OR) x PGL^Q^) in

Lubotzky's book, which was used there to generate Ramanujan graphs and to solve the

Banach-Ruziewicz problem, we prove that Fpj is a normal subgroup of index 4 of the

group (modulo its center) of invertible elements in the Hamilton quaternion algebra
over the ring Z[l/p, 1//] < Q. The same idea using overrings gives explicit realiza¬

tions of Fpj as a subgroup of SÛ3(Q) and PGL2(C). Moreover, we explicitly define

for each odd prime number q different from p and /, a homomorphism from Fpj to the

finite group PGL2(Z/gZ) and determine its image. Recently, Kimberley-Robertson
have formulated a very simple conjecture for the abelianization of the groups rpj,
based on computations in many examples. We do not know how to prove this conjec¬

ture, but can express it in terms of the number of commuting quaternions in certain

generating sets. This could shed some light on the hidden nature of this conjecture.
The general assumption p, I = 1 (mod 4) is made to guarantee the existence of a

square root of — 1 in the fields Q^ and Q/, respectively, which is needed in the explicit
definition of Fpj. However, by adapting several parts in the definition of Tpj, we

are able to generalize it to the case of prime numbers p, I = 3 (mod 4) and to the

mixed case p
= 3 (mod 4), / = 1 (mod 4). Those new groups, also called Tpj, are

subgroups of PGL2(<Qp) x PGL2(Q/), and we prove that they are (p +1, / + l)-group,
too. In some subcases for p and /, there is a second possible definition of Tpj, which

leads to a different but similar group. The Kimberley-Robertson conjecture can be

extended to all these generalized groups. They have a certain normal subgroup of in¬

dex 4, a cocompact lattice in PSL2(Q/)) x PSL2(Q/). It seems that the abelianization

of this subgroup does not depend on p and /, provided that p, I > 5. Let now T be any

(2m, 2«)-group. We say that the horizontal element a e F and the vertical element

b e T generate the anti-torus (a, b) in T, if a and b have no commuting non-trivial

powers. This notion was introduced by Wise, and essentially used in his constructions

of the first examples of non-residually finite groups in the following three important
classes: finitely presented small cancellation groups, automatic groups, and groups

acting properly discontinuously and cocompactly on CAT(0)-spaces. Only few exam¬

ples and no general criterion for the existence of anti-tori are known. We observe that

in a commutative transitive (2m, 2«)-group, a and b generate an anti-torus if and only
if they do not commute, in particular either (a, b) is isomorphic to the abelian group

Z x Z, or (a, b) is an anti-torus. Then we prove that the groups Fpj are commutative

transitive, using a similar property for integer quaternions, and we therefore get plenty
of anti-tori. Combining this with results on centralizers for general (2m, 2«)-groups,
we get some interesting statements on commuting elements and anti-tori in rpj, as

well as for integer quaternions after a transformation from Fpj back to H(Z). We also

discuss the existence oifree anti-tori in Tpj, related to free subgroups in the group of

invertible rational quaternions, and to free subgroups of S03(Q). As a corollary, we

can prove that certain pairs of integer quaternions, for example 1 + 2/ and 1 + 4k, do

not generate a free group. All results and constructions of groups Fpj in this chapter
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are illustrated by many examples and very explicit computations.
In Chapter 4, we discuss miscellaneous topics related to (2m, 2«)-groups T. First,

we naturally associate to T a finite set of unit squares, so-called Wang tiles, and prove

that there always exists a doubly periodic tiling of the Euclidean plane with these

tiles. As a consequence, T has a subgroup isomorphic to Z x Z. This is not clear

in general for groups acting cocompactly and properly discontinuously on a CAT(O)-

space. In a second section, we illustrate a result of Burger-Mozes by constructing
certain examples of irreducible non-linear (2m, 2«)-groups. Then, we study possible
connections between irreducibility, finite abelianization, and transitivity properties of

the local groups, illustrated for small groups T. In a further section, we recall Mozes'

definition of two infinite families of finite regular graphs associated to T. In the case

of the groups Tpj, these graphs are Ramanujan. Afterwards, we compute the growth
of T. Although (2m, 2«)-groups can be algebraically very different, from a geometric

viewpoint they all look the same, and therefore this computation is easy. Finally, we

show that any (2m, 2«)-group T is efficient and has deficiency m +n — mn.

Appendix A is a big reservoir of supplementary examples. In addition, we de¬

scribe explicit amalgam decompositions for several important examples of the pre¬

ceding chapters.

Appendix B contains the ideas and the GAP-code for the main computer programs

which led to the constructions of most examples in this work.

In Appendix C, we first compile some known lists of finite (quasi-)primitive per¬

mutation groups and then give classifications of (2m, 2«)-groups with respect to cer¬

tain easily computable properties. It can be seen that even for small m and n there is

an enormous diversity of such groups.

Starting with the question of Kuros in 1944 on the existence of finitely generated
infinite simple groups, we list in Appendix D in chronological order some important

developments in the area of finitely presented simple groups and amalgams of free

groups. The second part of this appendix is devoted to a review of the topology of the

group of automorphisms of a regular tree.
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Chapter 1

Preliminaries, notations, definitions

In Section 1.1, we fix some general notations and provide some basic definitions,

mainly concerning groups and graphs, for the convenience of the reader. Most terms

should be standard and well-known. In Sections 1.2 to 1.10, we introduce some termi¬

nology and several concepts which will be extensively used in the subsequent chapters.

Many ideas have been taken from the work of Burger-Mozes ([16, 17]), to some ex¬

tent with modified notations. Most statements in these sections are reformulations or

direct consequences of results given in [16, 17] or Wise's Ph.D. thesis ([68]), only a

few results are new.

1.1 Basic definitions and notations

We divide this section into subsections on numbers, groups, permutation groups,

graphs, groups acting on trees and lattices.

Numbers

We denote by N, N0 := N U {0}, Z, Q, R and Qp (where p is a prime number)
the positive integer, non-negative integer, integer, rational, real and /?-adic numbers,

respectively.

Groups

The trivial group as well as the identity element in a group are denoted by "1". In the

following, let G be a group, S c G a subset, H < G a subgroup, N < G a normal

subgroup, g, gi, g2, g3 e G elements and ieNa positive integer. Note that all the

signs C, <, < do not exclude equality here, and elsewhere in this work.

We write G/N for the quotient group, Gk for the direct product G x
...

x G of k

copies of G and G*k for the free product G *
...

* G of k copies of G. The finitely

13



14 CHAPTER 1. PRELIMINARIES, NOTATIONS, DEFINITIONS

generated free group isomorphic to Z*k is denoted by F^.

Let (S)g be the subgroup of G generated by the set S, and let ((S))g be the normal

closure of S in G, i.e. the smallest normal subgroup of G containing S. For a finite

subset S = {gi,..., gk), we usually drop the brackets and write (gi,..., gk)o or

{{gi,..., g)t))G- Also the subscript "G" is often omitted if the ambient group G is

evident. We denote by [gi,g2] '= gig2g]~1g2~1 tne commutator of gi and g2. A

group G is called commutative transitive, if [gi, g2] = [g2, gs\ = L gi, g2, g3 7^ L

always implies [gi, g3] = 1, i.e. if the relation of commutativity is transitive on the

non-trivial elements of G. The expressions [gi, g2], where gi, g2 e G, generate the

commutator subgroup [G, G]. We write Gab := G/[G, G] for the abelianization

of G. A group G is perfect if G = [G, G], it is simple if 1 and G are the only normal

subgroups of G and it is residuallyfinite if the intersection of all normal subgroups of

finite index of G is the trivial group 1. We denote by 2(G) or ZG the center of G,
i.e. the normal subgroup {x e G : xg = gx for all g e G}, by Zo(g) the centralizer

{x e G : xg = gx} of g and by Nq(H) the normalizer {x e G : xHx~l = H}

of H. A subgroup i/ is called proper, if H ^ G, the quotient G/jV is called proper if

G/W 7^ G. We write [G : H] for the index of H in G, and |G| for the order (if it is

finite). A group is torsion-free if any non-trivial element has infinite order. We say that

G has virtually some property (P), or is virtually (P), if G has a subgroup offinite index

with this property (P). The groups of automorphisms, inner automorphisms and outer

automorphisms of G are denoted by Aut(G), Inn(G) and Out(G) = Aut(G)/Inn(G),

respectively. For a finitely generated group G, let d(G) be the minimal number of

generators of G. If we write

G = (xi, ...,xk\ri,...,n), G = (xi, ...,xk\ri = l,...,n = l)

orG = (xi,...,Xk\S), where S = {n,..., r{\ is a finite set of freely reduced words

in Fk = (xi, ..., Xk), then the three expressions arefinite presentations of G, and we

have G = Fk/((S))Fk.
Let Z« := Z/nZ = {0 + nZ, 1 + nZ, ..., (n — 1) + nZ} be the cyclic group of

order n (not to confuse with "w-adic integers" which will never appear in this work).
We write Dn for the dihedral group of order 2n.

Permutation groups

A very good introduction to permutation groups is the book of Dixon-Mortimer [25].
Let Q. be a non-empty set. The group of all bijections of Q. under composition of

mappings is denoted by Sym(£2). If n e N, we write S„ := Sym({l, ... ,n\) for the

symmetric group on n letters and An for the alternating group, the index 2 subgroup
of S„ consisting of even permutations. Let G be a permutation group, i.e. a subgroup
G < Sym(£2). The degree of G < Sym(£2) is the cardinality of the set Q,. For

k e N, the permutation group G is said to be k-transitive if for every pair (a>i, ..., &>&),
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(£1,..., %k) of ^-tuples of distinct points in Q., there exists an element g e G such

that g(coi) = £1, ..., g(cok) = %k- Let G < Sym(ß) be a transitive (i.e. 1-transitive,

according to the definition above) permutation group. A non-empty subset A c ß is

called a block for G, if for each g e G either g(A) = A, or g(A) n A is the empty

set 0. We say that G is primitive if it has no non-trivial blocks on £2, i.e. no blocks

except £2 itself and the one-element subsets {co} of ß. See Appendix C. 1 for a list of all

finite primitive permutation groups of even degree up to 14. A non-trivial permutation

group G < Sym(ß) of a set Q, is called quasi-primitive, if every non-trivial normal

subgroup of G (in particular G itself) acts transitively on Q.. See Appendix C.2 for a

list of all quasi-primitive subgroups of £2«, which are not 2-transitive, n < 8. Observe

that primitive groups are quasi-primitive, and that quasi-primitive groups are transitive

by definition.

Two permutation groups G < Sym(ß) and H < Sym(ß') are called permutation

isomorphic if there exists a bijection / : Q, -> Q,' and an isomorphism of groups

fy : G -> FL such that the following diagram commutes for each g e G

f

Graphs

For the definition of a graph, we follow the viewpoint of Serre ([64, Section 2.1]): A

graph X is a pair of sets (V(X), E(X)), consisting of the vertex set V(X) ^ 0 and

the edge set E(X), equipped with origin and terminus maps o, t : E(X) -> V(X)

and an inverse map
—

: E(X) -> E(X) such that for each edge e e E(X) we have

ë 7^ e, ë = e and o(e) = t(ë). An edge e e E(X) is called a /oop if o(e) = t(e). A

geometric edge is a set {e, ë}, consisting of an edge e e £'(X) and its inverse edge ë.

Let xi, X2 e L(X) be two vertices and let k e N be a number. A path (of length &

firomxi to X2) in the graph X is a sequence (ei, ..., e^) of edges such that o(e{) = xi,

t(ek) = x2 and t(el) = o(e1+i) for each I < i < k. The path is without backtracking
or reduced if always e1+i ^ e~t. The graph X is said to be connected if given any two

vertices xi, X2 e V(X), there is a path from xi to X2. Two distinct vertices xi and X2

are neighbours, if there is a path of length 1 from xi to X2. A circuit (of length k) is a

path (ei, ..., e/t) without backtracking such that t(ei), ..., t(e^) are distinct vertices

and t(ek) = o(ei). Note that a circuit of length 1 is a loop. A tree is a connected graph
without circuits. The valency of a vertex x e V(X) is the number of edges e e E(X)

such that o(e) = x. A graph is called k-regular if each vertex has valency k. We

denote by Ti the ^-regular tree. It has infinitely many vertices if t > 2. There is an

obvious distance function (the combinatorial distance) on the set of vertices V(Ti),

such that neighbours have distance 1. For a vertex x e Ti and a number k e N,

/
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let S(x, k) be the ^-sphere, i.e. the set of vertices in Tt of combinatorial distance k

from x. A geodesic ray in Tt is an infinite sequence (ei, e2, ...) of edges ex e E(Ti)

such that for each i e N we have t(e,) = o(el+i) and eï+i ^ ëj. Two geodesic rays

are said to be equivalent if their intersection (as set of edges) is infinite. The boundary
at infinity dooT is defined as the set of equivalence classes of geodesic rays.

Let m, n e N. The complete bipartite graph X = Kmn is a graph where V(X) is

divided into two disjoint subsets Vi (X) and V2(X) of cardinality m and n respectively,
such that for each e e E(X) the origin o(e) and the terminus t(e) are in different sets

Vt (X) and such that given any two vertices xi e Vi (X), X2 e V2(X), there is a unique

edge e e £'(X) from xi to X2.

Groups acting on trees

An automorphism 0 of a graph X is a pair of bijective maps <pi : V(X) -> L(X),

02 : £(^0 -> £(^0 such that for each edge e e £'(X) we have <pi(o(e)) = o(<p2(e)),

(pi(t(e)) = t((p2(e)) and 02 00 = 02(e). The group of automorphism of Xis denoted

by Aut(X). Note that an element 0 of Aut(T) is already determined by the bijection

01 : V(T) -> V(Tt), so we usually understand an element in A\xt(Tt) as a bijective

map on the vertices V(Tt) which respects the edges. We endow the set A\xt(Tt) with

the topology ofpointwise convergence. See Appendix D.2 for a precise definition.

Informally, two elements in Aut(Tt) are close with respect to this topology, if they do

the same on a large set of vertices of Tt. It is well-known that A\xt(Tt) is a locally

compact, totally disconnected, second countable, metrizable Hausdorff space and a

topological group (see Proposition D. 1 for elementary proofs of these facts).
A group G acts on the regular tree Tt if there is a homomorphism G -> Aut(7"£).

Let H < Aut(7^) be a subgroup, x e V(Tt) a vertex and S a subset of vertices of Tt.

We write H(S) to denote the pointwise stabilizer

H(S) := Stabh (S) = {h e H : h(x) = x for each x e S},

and use the notation H(x) := H({x}). We say that H is locally transitive, locally

quasi-primitive, locallyprimitive, or locally 2-transitive, if for each vertex x e V(Tt)

the stabilizer H(x) induces a transitive, quasi-primitive, primitive, or 2-transitive per¬

mutation group, respectively, on the 1-sphere S(x, 1) (equivalently, on the set of edges
with origin x). Moreover, we call H locally oo-transitive, if H(x) acts transitively on

S(x, k) for each k e N and each vertex x of Tt.

We recall now the definition of the universal group U(F) from [16, Section 3.2]
or [17, Chapter 5]. Let t > 3 and write here Ex for the set of edges in Tt with

origin x e V(Tt). A legal edge coloring is a map / : E(Tt) —? II, ... ,1} such that

i(e) = i(ë) for each e e E(Tt), and such that the restriction /' \ex : Ex —r {1,..., V\

is bijective for each x e V(Tt). Given a permutation group F < St, the group

U(F) := {g e Aut(7£) :iogo(i l^)"1 e F for each x e V(Tt)}
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is up to conjugation in Aut(Tt) independent of the legal edge coloring /', and is called

the universal group. See [16, Section 3.2] for some properties of U(F).

Lattices

Let G be any locally compact group. A subgroup T < G is called a lattice if it is

discrete and G/ T carries a finite G-invariant measure. If moreover G/ T is compact

then T is a cocompact lattice. Our main examples for G will be G = Aut(7"£) with the

topology mentioned above and G = Aut(72OT) x Aut(72«) with the product topology.
Note that a subgroup H < Aut(7"£) is discrete if and only if the stabilizer H(x) is

finite for each vertex x e V(Tt), see Proposition D.2 for a proof.

1.2 Square complexes and (2m, 2«)-groups

On an intuitive level, a square complex is a 2-dimensional cell complex, such that

the 2-cells are "squares". We want to study square complexes which have additional

quite restrictive properties. They are called 1-vertex VH-T-square complexes in [17]
or complete squared VH-complexes with one vertex in [68]. We will just call them

(2m, 2«)-complexes to emphasize the parameters m and n. Before giving the precise

definition, we need some preparation. Fix two numbers m, n e N and let ({x}, E) be

the graph with one vertex x and m+n geometric loops. We use the following notation

for the edges: E = £« u Ev, where

Eh := {«i, ...,am,a~l, ...,a~1}, Ev := {bu ...,bn,b~l, ...,b~1}

and
_1

stands here for the inverse map
—

in a graph. The advantage of this notation

will become clear when we define corresponding groups and _1 will be the inversion

in the group. We call any set {a,, a~1}, i = 1, ..., m, a horizontalgeometric loop and

{b,, b~1}, j = 1, ... ,n, a vertical geometric loop. A square is an expression aba'V

such that {a, a'} c Eh, {b, b'} c Ev. We visualize it as a 2-dimensional cell with

oriented boundary as in Figure 1.1 (left hand side).

V v a b

X
ai

^

bi i r ^

4 i—— «

ai

v b2

Figure 1.1: The squares aba'b' and aib2 aibi
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See the right hand side of Figure 1.1 for an explicit example of a square. If it does not

matter where to start to read offthe edges ofthe boundary, or ifwe identify squares that

are reflected along an edge, then we are automatically led to the following definition.

A geometric square is a set

{aba'b', a'b'ab, a~l b'~l a'~l b~l, a'-lb-la-lb'-1} =: [aba'b'],

where {a, a'} c Eh, [b,b'} c Ev. Note that

[aba'b'] = [a'b'ab] = [a~lb'~la'~lb~l] = [a'^b^a^b'-1].

Any ofthe four squares in the set {aba'b', a'b'ab, a~lb'~la'~lb~l, a'~lb~la~lb'~1}
represents the geometric square [aba'b']. Given a non-empty set S of geometric

squares, the link Lk(S) is defined as the graph with vertex set E = Eh u Ev and

an edge set, where each square aba'b' represented in S contributes an edge s such that

o(s) = a, t(s) = b'~l, and its inverse s to this edge set of Lk(S). In other words,
each geometric square [aba'b'] in S contributes four geometric edges to Lk(S), cor¬

responding to the four "corners" in any of the four squares representing [aba'b']. A

(2m, 2n)-complex is a set X consisting of exactly mn geometric squares such that the

link Lk(X) is the complete bipartite graph K2m^n (where the bipartite structure is in¬

duced by the decomposition E = EhU Ev). This link condition means that given any

a e Eh and b e Ev, there are unique a' e Eh and V e Ev such that [aba'b'] e X.

Note that this definition automatically excludes geometric squares of the form [abab]

(so-called projective planes) in a (2m, 2«)-complex X.

We usually think of X as a finite 2-dimensional cell complex which is built by

attaching mn squares of the form aba'b' to the 1-skeleton ({x}, E), according to the

labels a, b, a', V in the squares. By the link condition, the universal covering space

X of X is the product of two regular trees T2m x 72«. In fact, both conditions are

equivalent, see [17, Proposition 1.1] or [68, Theorem II. 1.10]. By construction, the

fundamental group T := 7ti(X, x) < Aut(72OT x 72«) of a (2m, 2«)-complex X is

a finitely presented torsion-free cocompact lattice, acting freely and transitively on

the vertices of T2m x 72«. The decomposition Eh u Ev of E guarantees that T does

not interchange the factors of T^ x 72«, i.e. T is in fact a subgroup of the direct

product Aut(72OT) x Aut(72«) < Aut(72OT x 72«). Such a group T will be called a

(2m, 2n)-group. A finite presentation of T can be directly read off from X:

T = (ai, ... ,am,bi, ... ,bn \ aba'b' = 1, if [aba'b'] e X).

Note that all four representatives of a geometric square [aba'b'] e X give the same

relation in T, in particular we get a presentation of T with m + n generators and only
mn relators. We write Rm.„ for such a set of mn relators. This presentation is optimal
in some sense, see Section 4.6. If we give explicit examples of (2m, 2«)-groups T,

we usually specify only the set Rm.n, since it completely determines T. Observe that

(ai,..., am)r and (bi,..., bn)r are free subgroups of T, see Corollary 1.11(1).
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Given a (2m, 2//)-group T by its presentation (ai, ..., am, bi, ..., b„ | Rm.„), we

can always define the surjective homomorphism of groups

r^zi
a, k> (1 +2Z, 0 + 2Z), i = l,...,m

bj k> (0 + 2Z, 1 +2Z), j = l,...,n.

Obviously, the kernel ofthis homomorphism is a normal subgroup of T of index 4. We

always denote this subgroup by To. Geometrically, it can be seen as the fundamental

group of a corresponding finite square complex Xq with 4 vertices, a 4-fold regular

covering space of X.

We define an automorphism of a (2m, 2//)-complex X as a graph automorphism
ofthe 1-skeleton ({x}, E) which induces a permutation on the set ofgeometric squares

ofX The group of all such maps is denoted by Aut(X).

1.3 Projections and quasi-center

Let T be a (2m, 2//)-group. Since T is a subgroup of Aut(72OT) x Aut(72«), we have

two canonical projections, the homomorphisms of groups

prj : T -> Aut(72OT) and pr2 : T -> Aut(72«).

We define the two groups H, := pr, (r), /' = 1, 2, where the closure of pr, (r) is taken

with respect to the topology of Aut(7^) described in Section 1.1 or Appendix D.2. Let

QZ(H, ):={heH1: ZHi (h) is open in H,}

be the quasi-center of H,. See [16] for some properties and examples of this group.

Recall that T acts freely on the vertices of T2m x 72«, but in general, it is possi¬
ble that non-trivial elements of T act trivially on (exactly) one factor of 72m x ?2«-

Therefore, we define the group

Ai := pri(r n (Hi x {1})) = pri(r n (Aut(T2m) x {l})) < Aut(T2m)

and similarly

A2 := pr2(r n ({1} x H2)) = pr2(r n ({1} x Aut(72«))) < Aut(72«).

Observe that

A, = pr,(ker(pr3_J) = ker(pr3_J < F

and note that A, < QZ(Ht), since every discrete normal subgroup of H, is contained

in QZ(Ht), as explained in [16]. In particular, we conclude that QZ(Ht) = 1 implies
an isomorphism F = pr3-ï (r) and in this case we can naturally see T as a subgroup
of Aut(72m), if * = 2, or as a subgroup of Aut(72«), if/ = 1.
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1.4 Local groups

Let X be a (2m, 2/z)-complex and F its fundamental group. We turn now to the def¬

inition of their finite "local groups" Ph and Pv, which will play a major role in the

construction of interesting examples. Let Ev
' be the set of reduced paths of combi¬

natorial length k e N in the vertical 1-skeleton Xv := ({x}, Ev) of X. We identify
elements in Ev with freely reduced words of length k in the fundamental group

7ti(Xv ', x) = (bi,... ,b„) = F„. The set Eh is defined analogously and identified

with the set of reduced words of length k in the free group (ai, ... ,am) = Fm. Note

that EV'=EV and Eh
'
= Eh.

There is a family of homomorphisms

Ph] ' Fm = («l, • • •, am) -> Sym(£<*}) = S2«.(2«- \k-\

and a family of homomorphisms

pf} : E„ = (bi, ..., b„) -> Sym(£f}) = ^-(^-l)*-1 •

We denote their images by

Pu<*> := im(pf) = (p(hk)(ai), ..., pf (am))

Phik) := im(pf ) = Uk\bi), ..., pfHbn)) •

If k = 1, we omit the superscript "(1)" and simply write

ph : {ai, ..., am) -» (ph(ai), ..., ph(am)) = Pv < Sym(Ev) = S2n ,

where for the isomorphism Sym(Ev) = ^2« we always use the explicit identification

Ev = {l,...,2n}

bj **J

b~l o 2w + 1 - 7 ,

j = 1, ..., n, and

pv : {bi, ..., b„) -» {pv(bi), ..., pv(b„)) = Ph < Sym(Eh) = S2m ,

via the identification (for /' = I, ... ,m)

Eh = {I,...,2m}

at ^> /'

a~ *» 2m + 1 — /'.
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Now, it is time to give the definition of ph and pv . First, we take k = 1. The

two homomorphisms p« and pv are explicitly constructed as follows: each geometric

square [aba'b'] ofX defines

ph(a)(b' ) = b

Ph(a')(b-1) = b'

Pv(b)(a~l) = a'

Pv(b')(a'~l) = a,

as visualized in Figure 1.2.

V v Ph(a) a b V v Ph(A a b V v Pv(b)

a'

-4-

Ab

a a a

b'v

a'

ov(b') A b

a

Figure 1.2: Visualizing the definition of p«, pv

By the link condition in X, these 4mn expressions (going through all mn geometric

squares of X) indeed uniquely determine p« and pv. If k > 2, the homomorphisms

ph and pv are defined in a similar way, see [17, Chapter 1]. We give an inductive

definition of ph ,
the homomorphism pv can be defined analogously: Let a e Eh

and b = V b" e Ev\ where we write a dot for the concatenation of paths and where

b' eEv,b" eEik~l). Then

p(hk)(a)(b) := Ph(a)(b') p(hk~[) (pv(b')(a)) (b"),(*-i)

see Figure 1.3 for an illustration.

Starting with a (2m, 2/z)-complex X, the finite permutation groups Py and Ph
can be effectively computed, see Appendix B.4 for an implementation in GAP ([29])
for k = 1 and k = 2. These groups describe the local actions of the projections of F

on ^-spheres in 72« and T2m, respectively. More precisely, let xv be any vertex in 72«

and let S(xv, k) be the ^-sphere around xv, then the two groups

Pf> < Sym(£f ) and H2(xv)/H2(S(xv,k)) < $ym(S(xv,k))

are permutation isomorphic (see [17, Chapter 1]). The analogous statement holds for

P, and Hi (xh)/Hi (S(xh,k)), where x„ is any vertex in T2m.
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Va Ak-1)
A p{h~l> (pv(b')(a)) (b")

b' A A ph(a)(b')

a

(k)
Figure 1.3: Inductive definition of ph ,

k > 2

Taking this identification for k = 2

Hi(xh)/Hi(S(xh, 2)) < Sym(S(xh, 2)),

we define the subgroup

p(2) ^

rh

Kh := Stabp(2)(S(x«, 1)U%,1))<P,
(2)
«

'

where _y« is any neighbouring vertex of x„ in T2m. In our applications, the definition

of Kh will be independent of the choice of yh (up to permutation isomorphism). See

Appendix B.4 for the GAP-program ([29]) computing^« ifm = 3. Analogously, one

defines the group Kv < Py
(2)

For each k e N, there is a commutative diagram

(ai,...,am)P-^lp(^<Sym(E(Ji+1))

P^k) < Sym(Eik))

• (*+!)where pk is the homomorphism restricting the action of Py on the (k + l)-sphere

S(xv,k
+

Note that

S(xv, k
+

1) to the ^-sphere S(xv, k). In particular, the order |P„ I divides |P„ I

p| kerpf} = Ai and f] kerpf} = A2 .

keN keN
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Lemma 1.1. Let F = {ai, ... ,am, bi, ..., b„ | Rm.„) be a (2m, 2n)-group.

(la) Let A c (ai, ... ,am). Iffor each a e A andb e Ev we have ph(a)(b) = b and

pv(b)(a) e A, then A c Ai.

(lb) Let B c (bi, ..., bn). Iffor each b e B and a e Eh we have pv(b)(a) = a and

Ph(a)(b) e B, then B c A2.

Proof The assumptions made in (la) directly imply

A C p| kerpf} = Ai.

keN

(lb) follows similarly. D

Because ofthe importance ofthe local groups Ph and Pv in our study of X, we will

sometimes call X a (Ph, Pv)-complex and the corresponding fundamental group F a

(Ph, Pvhgroup.

1.5 Irreducibility

An important notion in the theory of lattices in higher rank semisimple Lie groups is

"irreducibility". In our situation, we adopt the generalized definition given in [17]. A

(2m, 2//)-group F is called reducible if prj(r) < Aut(72OT) is discrete. Otherwise, F

is called irreducible. A (2m, 2/z)-complex X is said to be reducible (irreducible) if

and only if F = 7ti(X, x) is reducible (irreducible).

Remarks. (1) Recall that a subgroup of Aut(7^) is discrete if and only if its vertex

stabilizers are all finite, see Proposition D.2 for a proof.

(2) It is shown in [17, Proposition 1.2] that pri(r) < Aut(72OT) is discrete if and

only if pr2(r) < Aut(72«) is discrete.

(3) Note that pri (r) is never dense in Aut(72OT), i.e. Hi <* Aut(72OT), in contrast to

the behaviour of "irreducible" lattices in higher rank semisimple Lie groups.

(4) In terms of orders of the local groups Ph and Pv
,
the group F is reducible if

and only if the set {| Ph \ }keN is bounded, if and only if {| Py '\ }keN is bounded.

In geometric terms, the (2m, 2/z)-complex X is reducible if and only if X admits

a finite covering which is a product of two graphs (see [17, Chapter 1]). Therefore, a

reducible (2m, 2//)-group F is virtually a direct product of two finitely generated free

groups, in particular F is residually finite. As a consequence, a non-residually finite

(2m, 2//)-group F has to be irreducible. In general, no algorithm is known to deter¬

mine whether a given F is reducible or not. However, a useful sufficient criterion for
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irreducibility, based on the Thompson-Wielandt theorem (see e.g. [16, Theorem 2.1.1]
for a formulation of this theorem), is presented in [17, Proposition 1.3].

We will strongly use the criteria (1) and (2), divided into (la), (lb), (2a) and (2b),
of the following proposition which is based on results in [16, 17]. The third criterion,
i.e. part (3a) and (3b), will only be used in Theorem 2.27, where (1) does not apply.

Proposition 1.2. Let F = (ai, ..., am, bi, ..., bn \ Rm.„) be a (2m, 2n)-group.

(la) Suppose that m > 3 and Ph = A2m- Then F is irreducible ifand only if

P
(2)1

>-2m I
i2m I

2m

2m
(2m)\ ((2m - 1)!

2m

(lb) Suppose that Pv = Ä2n, n > 3. Then F is irreducible ifand only if

\P,(2)| \A2n\
A2n\\2n (2n)\ /(2//-l)!x2w
2n

(2a) The group F is reducible ifand only if \Pl '\

(2b) The group F is reducible ifand only if \ P»
(*+i) i

\Pft I for some keN.

\Py | for some keN.

(3 a) Let Ph < S2m be transitive and suppose that for each keN there exist

freely reduced words b e (bi, ..., bn) and a e (fli, ..., am) with \a\ = k

such that pv '(b)(a) = a, and pv(b) acts transitively on Eh \ {a"~ }, where

b := ph (a)(b) and a = a' a" is the decomposition ofa with a' e Eh~ ,

a" e Eh (see Figure 1.4). Then prj(r) is locally oo-transitive, in particular F

is irreducible.

Figure 1.4: Notations in Proposition 1.2(3a)
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(3b) Let Pv < S2n be transitive and suppose thatfor each keN there existfreely
reduced words a e (a\, ..., am) and b e (bi, ..., bn) with \b\ = k such that

ph '(a)(b) = b, and such that Ph(à) acts transitively on Ev \ {b"~ }, where

à := pilal)(b)(a) andb = V b" with V e E(k~X), b" e Ev. Then pr2(r) is

locally oo-transitive, in particular F is irreducible.

Proof. We only prove part a) of each statement, since part b) is completely analogous.

(la) The statement follows directly from [16, Proposition 3.3.1].

(2a) Obviously, \Ph \ = \P[h\ \ for some k e N is a necessary condition, since

{\Ph WkeN is bounded for a reducible F. We want to prove now, that it is also

sufficient for the reducibility of F. It is enough to show \Ph \ = \Ph \-

First observe that for all vertices x« e T^ we have

Hi(S(xh,k+l)) = Hi(S(xh,k)) < Hi(xh), (1.1)

since

1 = I^Vl^l = \Hi(S(xh,k))/Hi(S(xh,k+l))\ .

Assume now that
,p(*+2), ,p(*+l),

\rh I > \rh I •

It follows that there is an element g e Hi (S(xh ,k+l))\H\ (S(xh ,k + 2)). But

then, for at least one neighbouring vertex yh of x«,

geHi(S(yh,k))\Hi(S(yh,k+l)),

contradicting equation (1.1).

(3a) We have to show that pri(r)(x«) acts transitively on S(xh, k) for each keN.

This is done by induction on k using the identification (see [17, Chapter 1])

(bi, ...,bn) = {yeF: prj(y)(x«) = x«}.

For k = 1, the statement is obvious since Ph is transitive by assumption. To

prove the induction step k -> k + 1, note that pri(r)(x«) acts by induction

hypothesis transitively on S(xh, k), hence we have at most 2m — 1 orbits in

S(xh, k + 1 ). But now, the assumptions, in particular the transitivity of pv (b) on

Eh \ W~ }, exactly guarantee that there is in fact only one orbit.

Since Ph is transitive for each k > 1, the set {\Ph \}teN is not bounded and

therefore F is irreducible.

D
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Remark. Observe that Proposition 1.2(la) cannot be generalized to the case where

Ph = A4 (i.e. to m = 2), because there are for example irreducible (A4, ^4io)-groups
such that

\P
(2),

324 < \A4\ 972

(cf. Appendix C.6).

1.6 Amalgam decompositions

Let A, B, C be groups. By writing an expression of the form A *c B, we mean that

there is given a commutative diagram of injective group homomorphisms

C B

>A JB

A > A *c B
JA

(in particular C can be seen as a subgroup of A and B via the injections i& and iß,

respectively), and the group A *c B is uniquely determined by the following universal

property: Given any group G and any homomorphisms j'A : A -> G, j'B : B -> G

such that j'A o iji = j'B o iB, there is a unique homomorphism p : A *c B -> G such

that the following diagram commutes:

C B

IA JB

A * A*c B
JA

Ja

The group A *c B is called the amalgamatedfree product of the groups A and B

amalgamating the "subgroup" C, or simply an amalgam.
In most of our examples of amalgams, the three groups A, B,C will be finitely

generated non-abelian free groups, i.e. we will have amalgams of the form Fk *f„ Fi

for some k,l,m > 2. Moreover, /^(Fm) and /ß(Fm) will have finite index in Fk and

F[, respectively, where Ia ' Fm -> Fk, iß ' Fm -> Fi denote the given injective

homomorphisms. Note that k, l, m are then related by the index formulae (see e.g.

[49, Proposition 1.3.9])

[Fk Fm]
m — 1 m — 1

and [Fi : Fm]
1 7-1
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IfFk is generated by ai,..., ak, Fi by bx,..., bi and Fm by cx,..., cm, then Fk *f„ Fi

has the finite presentation

{ai, ...,ak,bi, ...,bi | iA(ci) = iß(ci), ..., iA(cm) = iß(Cm))

and is torsion-free (this follows from [49, Theorem IV.2.7]).
A (2m, 2//)-group F splits by a result of Wise ([68, Theorem 1.1.18]) in two ways

as a fundamental group of a finite graph of finitely generated free groups (using the

terminology of the Bass-Serre theory). We are mainly interested in amalgamated free

products of free groups, i.e. fundamental groups of edges of free groups. This case

happens if the local groups are transitive:

Proposition 1.3. Let F be a (2m, 2n)-group.

(la) If Ph < S2m is a transitive permutation group, then F can be written as an

amalgamatedfree product offinitely generatedfree groups asfollows:

[ = Pn *Fi-2m+2mn Tl-m+mn •

We call it the vertical decomposition ofF.

(lb) IfPv < <$2« is transitive, then we have a horizontal decomposition

1 = Tm *Fi_2n+2mn ^1-n+mn •

Proof. The two statements follow directly from [68, Theorem 1.1.18] after a vertical

subdivision of the cell complex X in (la), and a horizontal subdivision of X in (lb).
D

Note that the indices in the inclusions of the splitting in Proposition 1.3 (la) are

Y"n r\—2m+2mn\ — -"^ and Y^\—m-\-mn r\—2m+2mn\ — -^
•

The tree on which F naturally acts is the first barycentric subdivision of 72OT, the

"bi-regular" tree of valencies 2 and 2m. Note that Fn is identified with the free sub¬

group (bi, ..., bn) of T. Furthermore, the second factor Fi_m+mn is the fundamental

group of a graph with m vertices (one for each geometric edge {a,, a~ }) and mn ge¬

ometric edges (one for each geometric square in X). Finally, the amalgamated group

Fi_2m+2mn is the fundamental group of a graph having 2m vertices (one for each edge
in Eh) and 2mn geometric edges (one for each geometric square in the vertically sub¬

divided complex X'). The two injections in the amalgamated free product are induced

by immersions (i.e. local injections, see [68, Definition 1.1.16]) in X'. Analogous
statements hold for the second splitting of F.

The following proposition describes amalgam decompositions for the important

subgroup Tq < T.
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Proposition 1.4. Let F = {ai, ..., am, b\, ..., b„ | Rm.n) be a (2m, 2n)-group. We
(2)

denote by F„ the subgroup ofFn = (b\, ..., bn) of index 2 consisting of elements
(2) (2)

with even length. Analogously we define F^ <\Fm = (a\, ... ,am). Ifpv (F„ ) < S2m

is transitive (which holds iffor example Ph is a quasi-primitive permutation group

and m > 2), then there is an amalgam decomposition of Fq, the so-called vertical

decomposition of To,

To = -T2M-1 *F\-4m+4mn c2n-\ •

(2)
Similarly ifPh(Fm ) < <$2« is transitive (which holds iffor example Pv is quasi-

primitive and n > 2), then we get a horizontal decomposition

Fq = r2m-\ *Fi-4n+4mn I12m-I

In particular, ifm=n>2 and Ph, Pv both are quasi-primitive, then we have two

decompositions ofFo as

Fln-t *Fn
n2

^2«-l •

(2m—l)z

Proof Again, this can be immediately deduced from the more general result of Wise

[68, Theorem 1.1.18]. Note that the indices are

[F2n-\ ' Fi-4m+4mn] = 2m and [F2m-i ' ^i-4«+4«] = 2n.

(2)
To see why pv(F„ ') is transitive if Ph < S2m (m > 2) is quasi-primitive, first

(2)
observe that in general pv(F„ ) is a normal subgroup of Ph = Pv(F„) of index at

(2) (2)
most [F„ : F„ ] = 2. If we assume that Ph is quasi-primitive, then pv(F„ ') is trivial

(2)
or transitive, but pv(F„ ) = 1 would imply \Ph\ =2 and m = 1. D

We call a (2m, 2//)-group F horizontally directed, if at is not in the same orbit

as a~ in the natural action of Ph on Eh for all /' e {1, ..., m). The term vertically
directed can be defined analogously. These definitions are equivalent to those given
in [68, Definition 1.1.10]. We formulate in Proposition 1.5 another interesting special
case of [68, Theorem 1.1.18] concerning HNN-extensions. In general, if a group G is

given by a presentation (S \ R), and A, B are isomorphic subgroups of G, then the

HNN-extension (Higman-Neumann-Neumann extension) of G with associated sub¬

groups A and B via the isomorphism <p : A —>- B is the group with presentation

{S, t | R, t~lat = 4)(a), if a e A).

Proposition 1.5. Let F = (a\, ... ,am,b\, ... ,bn \ Rm.„) be a (2m, 2n)-group.

(la) IfF is horizontally directedand Ph has exactly two orbits in its natural action on

Eh, then F is a HNN-extension ofthefree group F„ = (bi, ..., b„) associating

subgroups Fi_m+mn ofindex m.



1.7. DOUBLE COSETS 29

(lb) If F is vertically directed and Pv has exactly two orbits in its natural action on

Ev, then F is a HNN-extension ofthefree group Fm = (a\, ..., am ) associating

subgroups Fi -n+mn ofindex n.

Remark. Horizontally (or vertically) directed (2m, 2//)-groups F have an infinite

abelianization Fah, in particular they have a proper infinite quotient. To see this,
let &i be the orbit of ai under the natural action of Ph on Eh. Define a surjective

homomorphism r -> Z by mapping all b\, ..., bn to the trivial element 0 in Z, and

all elements in &i to the generator 1 of Z. If both a, and a~ are not in 0\, then we

map a, to 0 e Z, /' =2,... ,m.

1.7 Double cosets

Given a group G and a subgroup H < G, the corresponding set of double cosets is

defined as

H\G/H := {HgH : g e G},

where HgH := {//ig//2 : h\,h2 e H] is as usual. The cardinalities of the two sets

of double cosets corresponding to the two amalgam decompositions of a (2m, 2n)-

group T are related to transitivity properties of its local groups, as seen in the following

proposition (as always, similar statements can be made for Pv).

Proposition 1.6. Let F be a (2m, 2n)-group. Suppose that Ph < S2m is transitive.

Then there is a bijection between the set of orbits of the diagonal action of Ph on

{1, ..., 2m} x {1, ..., 2m} and the set Fi-2m+2mn\F„/Fi-2m+2mn ofdouble cosets,

where

[ = Pn *Fi-2m+2mn Tl-m+mn

is the vertical decomposition given by Proposition 1.3(1a). In particular, the number

\Fi_2m+2mn\Fn /Fi_2m+2mn I is the rank of Ph (in the terminology of[25, p.67]) and

can be easily computed knowing thefinite group Ph, but without knowing the explicit

amalgam decomposition, for example using the GAP-command ([29])

1 + Size(OrbitLengths(Ph,

Arrangements ( [1. . 2*m] , 2) , OnTuples) ) ;

where Ph describes the group Ph. Another consequence is that

\fl—2m+2mn \"nI "\—2m-\-2mn I — -^
»

ifand only ifPh is a 2-transitive permutation group.
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Proof. We define B := F„ and C := Fi_2m+2mn- Let T2rm be the bi-regular Bass-

Serre tree on which the amalgam F = B *c Fi_m+m„ naturally acts and let x„ be the

vertex of 7^ra such that B = Stabr(x«). Denote by Q. the set of edges in 7^m with

origin x« and let co e Q. be the edge such that Stab r (ft») = C. Note that

\Q\ = [B :C] = [F„ : Fi_2m+2mn] = 2m
.

By construction, the action of f« on {I, ... ,2m} = Eh is equivalent (permutation

isomorphic) to the action of B on Q.. We want to define a bijection

(p : {Orbits of 5 rx Q x £2} —> C\B/C .

Let (o>i, C02) e Q. x Q,. We denote by [(ft»i, (02)] its 5-orbit under the diagonal left ac¬

tion, in particular [(coi, (02)] = [(bcoi, bco2)] for each b e B. Since B acts transitively
on Q., we can choose bi,b2 e B such that co = £ift»i = b2C02. Now we define

<P ([(001,002)]) := Côiô^C e C\B/C .

We first show that <p is independent of the choice of bi, Ô2. Take bi,t>2 e B such that

&» = èi&»i = 02<^2- Then bjbr^a) = b1co1 = co, (i = 1,2), hence ôjô"1 e C, i.e.

Côi = Cb\ and b^ C = t>2 C which implies

Cbib~lC = Cbib~lC.

Next we show that <p is independent of the representative of [(ft»i, 002)]. Any rep¬

resentative of [(coi, 002)] has the form (bcoi, bco2) for some b e B. But then

00 = bib~l(bcoi) = b2b~l(bco2)

and

<p ([(bcoi, bco2)}) = Cbib-l(b2b-l)-lC = Cbib~lC .

This proves that <p is well-defined.

Note that cp([(co, bco)]) = CbC for each b e B, hence <p is surjective. To show the

injectivity of <p, assume that

(p([(coi,co2)]) =Cbib~lC = Cb~ib~lC = (p ([(coi, C02)]) ,

such that &» = bicoi = b2Ct>2 = bicoi = b~2O02- The assumption Cbib^ C = Cbib^ C

implies that there is some c e C such that

cbib~l e bib~lC

b2b-1cbib-1 e C

t>2b~[ cbib^ co = co

cbib^co = bib^co,
hence

[((01,(02)] = [(co, bib~lco)] = [(ceo, cbib~lco)] = [(co, b~ib~lco)] = [(coi,co2)].

D
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1.8 SQ-universal groups

A countable group G is called SQ-universal, if every countable group can be em¬

bedded in a quotient of G. According to [56], this term was suggested by Graham

Higman. The following result of Ilya Rips is mentioned in the book of Bass-Lubotzky

[3, Section 9.15].

Proposition 1.7. (Rips) Let G = A *c B be an amalgam such that C ^ B and

\C\A/C\ > 3. Then G is SQ-universal.

There seems to be no published proof of this proposition, but the main idea is

explained in [3, p. 149]: "Rips' explanation uses Small Cancellation Theory, as in

[62]. Explicitly, let CaC and Ca'C be distinct non-trivial double cosets in C\A/C
and b e B \C. Consider words in G of the form

w = amba'"'lba"2ba'"'2ba"3ba'^b

When the exponents n,, n\ are suitably large one can apply Small Cancellation Theory
to conclude that adding the relation w = 1 does not kill G, whence G is not simple."

Corollary 1.8. Let F be a (2m, 2n)-group. Ifthe local group Ph < S2m is transitive,

but not 2-transitive, or ifPv < £2« is transitive, but not 2-transitive, then the group F

is SQ-universal, in particular it has "many" normal subgroups ofinfinite index.

Proof. Combine Proposition 1.3, 1.6 and 1.7. D

1.9 Embeddings

The constructions of many interesting groups in the subsequent chapters will be based

on certain embedding techniques. In the following proposition, we give some ele¬

mentary general consequences for the case that a (2m, 2/z)-complex is embedded in a

"bigger" complex, using the following definition: Let X be a (2m, 2/z)-complex and

let 7 be a (2m, 2//)-complex, where m > m and h > n. We say that X is embedded

in 7, if the mn geometric squares of 7 contain all mn geometric squares ofX

Proposition 1.9. Let m > m and h > n. Suppose that the (2m, 2n)-complex X is

embedded in the (2m, 2h)-complex 7. Then

(1) Thefundamentalgroups inject: jtiX < jtiY.

(2) The order \ P(k) (X) \ divides \ P(k) (Y) \ and the order \ P$k) (X) \ divides \ P^k) (Y) \

for each keN.

(3 ) IfX is irreducible, then also Y is irreducible. The converse is not true in general.
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Proof. (1) See [9, Proposition 11.4.14(1)].

(2) To take into account the two involved complexes X, 7, we write here Ph (X),

P{hk\Y), P?\X), P!,k)(Y), pVtX, pvJ instead of P(k\ P(k), pv. We prove now

that \Ph(X)\ divides \Ph(Y)\. The other statements are proved similarly. Let G

be the subgroup of S2m

G := (pvj(bi),..., pvj(bn))s2ih

and A the subset of {1, ..., 2m} with 2m elements

A := {1, ..., m} u {2m -m + 1, ..., 2m}.

Because of the embedding assumption and the link conditions in X and 7, the

set A is G-invariant and the restriction of G to A is permutation isomorphic to

Ph(X) = {pv,x(bi),..., Pv,x(bn))s2m

via the inclusion

{l,...,2*w}-> {I,...,2m}

i i-> i

2m + 1 — /' i-> 2m + 1 — /',

/' = 1,..., m, hence \G\ = \Ph(X)\ I, where / is the order of the pointwise
stabilizer of A in G (cf. [25, p. 17]). The claim follows now, since G is obviously
a subgroup of

(Pvj(bi), ..., Pvj(bn), ..., Pvj(bh))s2ih = Ph(Y).

(3) The set {\Ph (X)|}^gn is unbounded since X is irreducible by assumption,

hence by part (2) also {\Ph (7)|}^gn is unbounded, i.e. 7 is irreducible, too.

To see that the converse is not true in general, we can take for example any

irreducible (2m, 2//)-complex 7 having a pair of commuting generators {a,, bj}
(hence having an embedded reducible (2, 2)-complex). An explicit example is

described in Example 2.2, where ai&i = b\a\.

D

1.10 Normal form and applications

Due to the link condition in a (2m, 2/z)-complex X, every element y e F = Jti(X)

can be brought in a unique normal form, where "the a's are followed by the è's".

The idea is to successively replace length 2 subwords of y of the form ba by a'b', if

[a'b'a~lb~l] is a geometric square in X. Analogously, there is a unique normal form,
where "the è's are followed by the a's". Here is the precise statement ofBridson-Wise:
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Proposition 1.10. (Bridson-Wise [10, Normal Form Lemma 4.3]) Let y be any el¬

ement in a (2m, 2n)-group F = (ai, ..., am, b\, ..., bn \ Rm.„). Then y can be

written as

y =oaoh= o'ho'a

where oa, o'a are freely reduced words in the subgroup {a\, ... ,am)r and ab, o'h are

freely reduced words in (b\, ..., bn)r. The words oa,o'a,o\,, o'h are uniquely deter¬

mined by y. Moreover, \aa\ = \a'a\ and \ob\ = \a'b\, where \ \ is the word length with

respect to the standardgenerators {ai, ..., am, b\, ..., bn}±l.

Proof. See [10]. For an implementation of the algorithm in GAP ([29]) to compute

the two normal forms of a given element in F, see Appendix B.6. D

If y = oao\, = o'ho'a as in Proposition 1.10, then we call oao\, the ab-normalform
and o'ho'a the ba-normalform of y. The length of y is by definition

\y\ := \oa\ + \crb\ = \a'b\ + |or^|.

Note that 111 =0. It takes at most k2/4 switches to bring a word of length k from its

èa-normal form to its aè-normal form.

Proposition 1.10 has direct consequences for the structure of a (2m, 2//)-group:

Corollary 1.11. Let F = (a\, ..., am, b\, ..., bn \ Rm.„) be a (2m, 2n)-group. Then

( 1 ) The two groups (a\, ... ,am)r and (b\, ..., b„ ) r arefree subgroups ofF ofrank

m andn, respectively.

(2) The group F is virtually abelian or contains a non-abelianfree subgroup.

(3) The center ZF is trivial ifm, n > 2.

(4) The group F is residuallyfinite ifand only ifAut(F) is residuallyfinite.

Proof. (1) This follows directly from the uniqueness of the normal forms described

in Proposition 1.10.

(2) If m > 2 or n > 2, then F contains a non-abelian free subgroup by part (1). If

m = n = 1, then either

r = (a\, bi | ai^i = b\a\) = Z

is abelian, or

T = (ai,bi | a\b\a\ = b\),

which has the abelian group (a\, b\)r = Z2 as a subgroup of index 2.
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(3) Assume that there is an element y e ZF \ {1} and let

y=a^...a^b^...b«\

a^\
...,

cfi^ e Eh, b^l\
...,

b^ e Ev, be its aè-normal form, where we can

assume without loss of generality that k > I and / > 0. Take any element

ae£«\{a(1),a(1)-1}^0.

Then, we have

aa
...

cF>bV>
...

6(/) = a(1)
...

<&>&»
...

b^a
.

The left hand side of this equation is already in aè-normal form, hence by

uniqueness ofthe aè-normal form, we can conclude from the right hand side that

a = a^\ but this is a contradiction to the choice of a, and it follows ZF = 1.

(4) By a result of Baumslag ([5], or see [49, Theorem IV.4.8]) the group Aut(r) is

residually finite, if F is a finitely generated residually finite group. For the other

direction, first note that ifm = 1, then

Ph < ^2m-{2m-\)k-1 = ^2 ,

hence \Ph \ < 2 for each keN, and F is reducible. The same holds if// = 1.

In particular, F is residually finite, if m = 1 or n = 1. Assume now that F is

non-residually finite. Then m,n > 2, and by part (3) we have ZF = 1, hence

T = Inn(r) < Aut(r) and Aut(r) is non-residually finite.

D

Remark. The group Z x F„ is a (2, 2//)-group with a non-trivial (infinite) center

(Z x {l}ifw >2, Zx Zif/7 = 1).

Using Proposition 1.10, we are able to compute certain centralizers of generators,

and their normalizers. The sufficient conditions in part (1) ofthe following proposition
can easily be checked by hand, given a (2m, 2//)-group F. If they are satisfied, also

part (2) applies.

Proposition 1.12. Let F = (a\, ..., am, b\, ..., bn \ Rm.„) be a (2m, 2n)-group.

(la) Assume that there is an element at e {ai, ... ,am} such that ph(al)(b) ^ b for
all b e Ev (i.e. Rm.„ has no relator representing a geometric square oftheform
[atbab~l], where a e Eh, b e Ev). Then Z^(al) = (a}) = Z.

(lb) Assume that there is an element bj e [bi, ..., b„} such that pv(bj)(a) ^ afor
alla e Eh (i.e. Rm.„ has no relator representing a geometric square oftheform

[a~1bJab], where a e Eh, b e Ev). Then Zp(bj) = (bj) = Z.
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(2a) Assume that Zr(at) = (a,) for some at e {ai, ... ,am}. Then the normalizer of

{at) isNr({a,)) = Zr(al) = {a,).

(2b) Assume that Zr(bj) = (bj)for some bj e [bi, ..., b„}. Then the normalizer of

(bJ)isNr((bJ)) = Zr(bJ) = (bJ).

Proof. We prove (lb) and (2b), the proofs of (la) and (2a) are similar.

(lb) Obviously, (bj) < Zr(bj). We have to show Zp(bj) < (bj). Let

y=a^...a^b^...b^eZr(bJ)

be in aè-normal form, a^\ ...,
cfi^ e Eh, b^l\

...,
b^ e Ev, k, I > 0. Then

a{lK..a^b{lK..b^bJ=bJa{lK..a^b^...b{l\

Assume first that k > 1. The aè-normal form of ybj starts with a^
...

a^k\

Bringing also bjO,^ ...
a^b^

...
b^ to this normal form, we must have in a

first step bjO,^ = a^b for some b e Ev, i.e. pv(bj)(a^) = a^\ which is

impossible by assumption, hence k = 0. This means y = b^
...

b^ and

b{lK..b^bJ=bJb^...b{l\

By uniqueness of the aè-normal form of

bJ=b®-1...bW-1bJb<1\..bV

we have/= 0 or M1),...,^ e {b}, b~1} and hence y = è(1) ...è(/) e (bj).

(2b) Obviously, we have {bj ) < Nr((bj)). It remains to show that Nr((bj)) < (bj).
Let y e Nr((bj)), then in particular y~lbjy e (bj), i.e. b} is conjugate to a

power of itself, hence by a result of Bridson-Haefliger (see Proposition 2.13)
we conclude y~xb3y e {bj7 b~1}. If y~lbjy = bj, then y e Zr(bj) = (bj)
and we are done. So from now on let us suppose that y~lb,y = b~ (we
will see in the proof that this case is in fact not possible under the assumption

Zr(ô7) = (ô7)),then

Y~2bjY2 = Y~\y~%Y)Y = y-lb-ly = {y~%Y)~l = (O"1
j

i.e. y2 e Zr(bj) = (bj) (which however does not directly imply y e (bj) in

general). Let

y=a(1\..a^b(1\..b(!\

k, I > 0, be the aè-normal form of y. We first assume that k > 1, in particular

]/^l. Then

y2 = aœ ...

a^bW
...

è(/)a(1)
...

a^b^
...

b® = V (1.2)
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for some s e Z \ {0} (we know that s /0, since y / 1 and F is torsion-

free). Note that it follows / > 1, otherwise we would have the contradiction

(a^.. .a^)2 = bs The expression b^ ...
b^a^

..
.cfi^ is in èa-normal

form, let ä^>... ä^b^
...

b^ be its aè-normal form, i.e.

b{l\..b^a{l\..a^ = ~a{k\..ä^b^...b{l\ (1.3)

Then, putting (1.3) into (1.2) gives

y2=a^...a^ä^...ä^b^...b^b^...b^ = bsJ. (1.4)

The right hand side bs of equation (1.4) is in aè-normal form, hence the a's on

the left hand side have to cancel (i.e. ä^ = cfi^
,...,

ä^ = a^
,
because

a^
...

cfi^ and ä^
...
ä^ are freely reduced words in (a\, ..., am)), so we

have

bW...b«W1K..aW=aW-1...aW-1bW...bW (1.5)

from equation (1.3) and

y2 = b^...b^b^...b^ = bsJ (1.6)

from equation (1.4). Moreover, since b^
...

b^ and b^
...

b^ are freely re¬

duced words in (ei, ..., bn), we conclude from equation (1.6) that s is even,

b^...b^=b^...b^b) (1.7)

and

bV>...b® = btJbV-\..bV>-\ (1.8)

where t = s/2 and 0 < r < / is the number of cancellations in

UlK..b^b{lK..b{l\

i.e. b^b^ = 1, ...,
b{l-r+^b{r^ = 1. Note that \t\ = / - r > 1, in particular

also the right hand sides of (1.7) and (1.8) are in normal form. First, we assume

r > 1. Putting (1.7) and (1.8) into (1.5), we get

b
... bVb'jaV .

..a^ = a«"1
.. .aW'h'jbV-1 ...

b^~\ (1.9)

Since both sides of equation (1.9) are in normal form, we have (looking at the

right ends)

bfa{l) .
..a{k) = wk(a)b{l)~l (1.10)

and (looking at the left ends)

a{k)~l
.

..a{l)~lb±l = bwwk(a), (1.11)
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where Wk(a) and ibk(a) are freely reduced words of length k in (a\, ..., am),

and the sign of b} in (1.10) and (1.11) is according to the sign of t, i.e. we have

b,,\ft is positive, and b~l, \ft is negative. Now, equation (1.11) gives

a(D ...a^=bfw-kx(a)b^-\ (1.12)

Putting (1.12) into (1.10) gives

bf2w^(a)b^~l = wk(a)b^~\ (1.13)

i.e. the contradiction b = Wk(a)wk(a) e (a\, ..., am). Thus, we have to

study the remaining case r = 0, i.e. \t\ = I = \s\/2 and

y =am ...a^b'j.
Then equation (1.5) or (1.9) is

jyi../^/»"1.../"1*;, (i.i4)

which is equivalent to

fl(t)_1...fl(1)"V =bt1a{lK..a^b)-t. (1.15)
J J J

The equation y~lb,y = b~l is equivalent to

b-'a^'1 ...a^~lb1a{lK..a^bt1 = b~l. (1.16)
J J J J

Putting (1.15) into (1.16) gives

or equivalently

bj'b'jaW . ..a^b^'a . ..a^b'j = bj1 (1.17)

a^...a^b)-t = b-l-ta^~l...a^~\ (1.18)

which is a contradiction, since both sides of the equation are in normal form,
but t = s/2 t^ 0 and hence

\b)~l\ = \\-t\ï 1-1 -t\ = \b~l~l\.

This means that the case k > 1 is impossible. It remains to consider the case

k = 0, i.e. y = b^
...

b^ for some / > 0. But then, y~lb,y = b~l gives a

non-trivial relation in the free group (b\, ..., b„).

D

Remark. The assumptions made in Proposition 1.12(la),(lb) are sufficient but not

necessary, as shown in Theorem 2.3(10).
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Chapter 2

Normal subgroup structure, simplicity

The main goal of this chapter is to construct explicit examples of finitely presented
torsion-free simple groups (Section 2.5). We choose a step-by-step approach by which

we explain the main ingredients of the proof and produce other interesting groups,

e.g. a non-residually finite (non-simple) group. In a first step, we apply the important
"normal subgroup theorem" of Burger-Mozes and thus get in Section 2.1 for exam¬

ple an (As, ^6)-group without non-trivial normal subgroups of infinite index. The

same holds for an (As, Mi2)-group and an (As, ASL3(2))-group constructed in that

section. We believe that these three groups are non-residually finite and have a sim¬

ple subgroup of index 4, but a proof seems to be hard. Instead ofthat, we construct in

Section 2.2 a non-residually finite (4, 12)-group, applying another criterion ofBurger-
Mozes. This group has non-trivial normal subgroups of infinite index by construction,
but we can embed it as a subgroup for example in an (As, ^4iô)-group where the nor¬

mal subgroup theorem applies. Consequently, this (6, 16)-group is virtually simple

(Section 2.3). We think that it has a simple subgroup of index 4, but again it is not

clear how to prove it. We evade this problem by taking another non-residually finite

group (Section 2.4) constructed by Wise, using completely different ideas than those

used in the Burger-Mozes criterion. Explicitly knowing a non-trivial element in the

intersection of all finite index normal subgroups of Wise's (8, 6)-group, we are able

to prove that this group can be embedded for example in an (Aiq, ^4io)-group which

has a simple subgroup of index 4 (Section 2.5). We give other examples of virtu¬

ally simple (2m, 2//)-groups where the simple subgroup has index 4, among those an

(Mi2, ^8)-group, or where the simple subgroup has index bigger than 4, like another

(Aio, ^4io)-group which has a simple subgroup of index 40. A slight variation ofthese

techniques leads in Section 2.6 to an index 4 subgroup of a (10, 10)-group which has

non-trivial normal subgroups of infinite index but no proper finite index subgroups.

Following Wise, we construct in Section 2.7 a finitely presented group which is not

virtually torsion-free, i.e. each finite index subgroup has a non-trivial element of finite

order. In Section 2.8, we study what can happen if we replace in the normal subgroup
theorem the 2-transitivity condition for the local group Pv by the slightly weaker con-

39
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dition that Pv is primitive. Comparing an (As, i3l))-group, where Pv is primitive but

not 2-transitive, with the (A2m, ^2«)-groups constructed before, we observe that they
seem to share the properties on the finite index normal subgroups but not on the in¬

finite index normal subgroups. We discuss several ideas how to construct an explicit
non-trivial normal subgroup of infinite index. Finally, we give in Section 2.9 smaller

candidates for being finitely presented torsion-free simple groups; "smaller" in the

sense that they have very short presentations. The example of Proposition 2.78 has a

presentation with two generators and only three relations.

See Table 2.1 for an overview of some properties of several irreducible examples
constructed in this chapter. The groups in Example 2.2, 2.30, 2.43 and the groups in

Example 2.26, 2.52, 2.58, respectively, seem to have the same properties in the list.

They are completely proved for Example 2.43 and Example 2.52. We have included

in the table an example of Chapter 3 which has no non-trivial normal subgroups of

infinite index, but behaves completely differently than the examples in Chapter 2, for

example it is linear, hence residually finite. The following abbreviations are used in

the table: "tr", "prim", "q-prim", "Y" and "N" stand for "transitive", "primitive",

"quasi-primitive", "yes" and "no", respectively. Moreover, the (2m, 2//)-groups are

always called F, and T* denotes the normal subgroup of F

r* := p| N,

where "f.i." stands for "finite index".

Example F 2.2 2.30 2.43 2.26 2.52 2.58 3.26

Ph 2-tr 2-tr 2-tr 2-tr tr 2-tr 2-tr

Pv 2-tr 2-tr 2-tr q-prim 2-tr prim 2-tr

irreducible Y Y Y Y Y Y Y

not linear Y Y Y Y Y Y N

To perfect Y Y Y Y Y Y N

r0 = [r, n Y Y Y Y Y Y N

non-residually finite Y? Y Y Y Y Y? N

all proper quotients finite Y Y Y N N N Y

H2(F;R) = 0 Y Y Y N N N Y

r* = r0 Y? Y? Y Y? Y Y? N

To simple Y? Y? Y N N N N

Table 2.1 : Subgroup properties for some examples of Chapter 2
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2.1 Normal subgroup theorem

We construct examples of (2m, 2//)-groups without non-trivial normal subgroups of

infinite index, applying the crucial "normal subgroup theorem" due to Burger-Mozes

(see [15, Theorem 4], [17, Theorem 4.1, Corollary 5.1, Corollary 5.3]). Here is an

adapted special version of it:

Proposition 2.1. (Burger-Mozes, see [17, Chapter 4 and 5]) Let F be an irreducible

(2m, 2n)-group such that Ph, Pv are 2-transitive, and StabpÄ({l}), Stabpt)({l}) are

non-abelian simple groups. Then any non-trivial normal subgroup of F has finite
index in F.

Proof. Combine [17, Corollary 5.1, Proposition 5.2, Corollary 5.3]. D

Concretely, we will apply Proposition 2.1 to irreducible (2m, 2//)-groups such that

(Ph, Pv) belongs to the set

{(A2m, A2„), (A2m,Mi2), (A2m, ASL3(2)), (Mu, A2„), (ASL3(2), A2„)},

where 2m > 6, 2n > 6, M12 < £12 and ASL3(2) < ^8. In particular, we will

construct in this section two (As, ^4ô)-groups (Example 2.2 and Example 2.15), an

(As, Mi2)-group (Example 2.18) and an (As, ASL3(2))-group (Example 2.21) with¬

out non-trivial normal subgroups of infinite index. See [16, Section 3.3] for a list of

finite permutation groups satisfying the assumptions made on the local groups Ph and

Pv in Proposition 2.1.

Note that the smallest groups without non-trivial normal subgroups of infinite in¬

dex appearing in [15, 16, 17], are an (^30, ^3s)-group ([17, Theorem 6.3]) and a

certain (14, 18)-group (see also Example 3.26), to which Proposition 2.1 does not

apply but the more general original result [17, Theorem 4.1].
All examples of (2m, 2//)-groups will be given only in terms of the set of mn

relators Rm.n. The corresponding presentation of F is

(a\, ..., am, bi, ..., b„ \ Rm.„),

and it determines the groups Ph, Pv, To, H\, H2, A\, A2 and the complex X as

explained in Chapter 1.

Example: (A6, ^46)-group

We give a first small example to which Proposition 2.1 can be applied.
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Example 2.2.

R

3-3

aibiax bx , a^a^ b3 , aib^,a2b2 ,

-i„-i U-l -U-l
aib3 a3 b2, a2bia3 b2 , 02^2^3 b3 ,

02^300 b\, a2b~, «3^2, #2^1
ÛU

£,

*3 "1, "2^3 "3«^> "^^1 "3 <^i

Theorem 2.3. Ze^ T £e the (6, 6)-group defined by R3.3 in Example 2.2. Then

(1) A = As, Pv = A6.

(2) F is irreducible.

(3) Any non-trivial normal subgroup ofF hasfinite index.

(4) [r, T] = r0 andF0 is perfect.

(5) F is not linear over anyfield.

(6) F can be decomposed in two ways as an amalgamatedfree product offinitely

generatedfree groups F = F3 *^13 Fq. Its subgroup To has two amalgam

decompositions F$ *p25 F5.

(7) F=Wl(F)<Hl=Wl(F),i = l,2.

(8) H^(F; W) = 0, i.e. the second bounded cohomology of F with M-coefficients
vanishes.

(9) Aut(X) = Z2 andOut(F) ^ 1.

(10) We have Zr(at) = Nr((at)) = (a,), ifat e {«2, 03} and

Zr(bj) = Nr((bj)) = (bj), ifbj e {b2, b3}.

Proof. (1) We only list the generators of Ph and Pv. It can easily be checked for

example with GAP ([29]), that these permutations indeed generate As.

pv(bi) = (2,3)(4,5),

pv(b2) = (1,5,4,2,3),

Pv(h) = (2, 3, 5, 4, 6), generating Ph = A6.

ph(ai) = (2,3)(4,5),

ph(a2) = (I, 6, 3, 2)(4, 5),

P«(«3) = (1, 4, 5, 6)(2, 3), generating Pv = A6.
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(2) We compute \Ph{)\ = 360 • 606 and apply Proposition 1.2(la).

(3) We apply Proposition 2.1 or [17, Corollary 5.3], using the facts that Ph and Pv

are 2-transitive (in fact 4-transitive), that the stabilizers

Stabil}) = ((2, 3)(4, 5), (2, 3, 5, 4, 6)} = A5 ,

StabP„({l}) = ((2, 3)(4, 5), (2, 4, 5), (4, 5, 6)} = A5

are non-abelian simple groups and that F is irreducible by part (2).

(4) These are easy computations using GAP ([29]). To see by hand that To is

perfect, one first computes a presentation of To by the Reidemeister-Schreier

method (see e.g. [49, Section II.4]) and then adds commutators to the relators to

simplify the presentation.

(5) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

(6) Use Proposition 1.3 and Proposition 1.4. Explicit amalgam decompositions of F

and To are described in Appendix A.2.

(7) By [16, Proposition 3.1.2, 1)], the quasi-center QZ(H,) is trivial for /' = 1, 2,

hence the homomorphism pr3_, is injective, which shows that F = pr3_,(r).
The group Hl is by [16, Proposition 3.3.1] isomorphic to the universal group

U(As), which is not torsion-free, thus pr, (r) = r/ff,.

(8) We have noticed in the proof of part (7) that H, = U(As), i = 1,2. Hence,

by [16, Chapter 3], Hi and H2 act transitively on the boundary at infinity 9
00 Té

of their corresponding trees T2m = Té and 72« = To, respectively. The claim

follows now from [14, Corollary 26]. As pointed out there, this result has some

applications to T-actions on the circle S1 (see [14, Corollary 22]).

(9) Checking all of the 266! = 46080 candidates (using the GAP-program of Ap¬

pendix B.7), we have found exactly one non-trivial automorphism given by

a, \-> a~
,

i = 1, 2, 3, bi \-> b~^ ,
b2 \-> £3, £3 i-> Ô2. It fixes seven of

nine geometric squares. The two non-trivially permuted geometric squares ofX

are ^bia^b^1] and [a2b3a3lbi]. Note that this automorphism induces a non-

trivial element in the group of outer automorphisms Out(r) = Aut(r)/Inn(r),
since it has order 2 but Inn(r) = T is torsion-free (the isomorphism Inn(r) = F

holds because Inn(r) = F/ZF and ZF = 1 by Corollary 1.11(3)).

(10) The statements Zrfe) = Nr(((i2Ï) = («2), Zr(a3) = Nr(((i3)) = («3),

Nr((b2)) = (b2) andNr((b3)) = (b3) follow from Proposition 1.12. We prove

Zr(b3) = (£3). Similarly, one can prove Zp^) = (^2)- Let

y =a{l) ...a{k)b{l) ...b{l) e Zr(b3)
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be in aè-normal form, such that a^\
...,

cfi^ e Eh, b^\
...,

b^ e Ev and

k, I > 0. Then

a<U
...

fl(*)j(D
... b^b3 = ô3a(1) • • •

a^b^
...

b®
.

Assume first that k = 1, thus

a^b^...b^b3=b3a^b^...b«\

The aè-normal form of a^b^... b^b3 starts with a^\ Bringing also the

right hand side b3a^b^ ...
b^ to this normal form, we must have in a first

step b3a^ = a^b for some b e Ev. Checking all elements in .R3.3, the only

possibility is a^ = a\, b = Ô2, hence

aibm ...b(l)b3 =aib2b{l) ...b{l)

or equivalently
b^...b^b3 = b2b^...b^,

but this gives a non-trivial relation in the free group (b\, Ô2, b3).

Assume now that k > 2. As in the case k = 1, we conclude a^ = ai and

b3a^ = aib2, i.e.

aia^ ...
cP>bV>... b^b3 = aib2a^ ...

a^b^
...

b®

hence

a<2>... a^b^
... b^b3 = b2a ...

a^b
...

b^
.

The aè-normal form of the left hand side of the last equation starts with a^2\

Bringing the right hand side to this normal form, we must have b2cf^ = cf^b

for some b e Ev. Here, the only possibility is a^ = ax~l, b = b3, but this

contradicts the fact that a^cfà
...
a® = aiax~ ...

a^ is freely reduced.

It follows that k = 0, and we conclude y e (b3) exactly as in the proof of

Proposition 1.12(lb).

Note that Zv(ax) = Zr(bx) = (ax, bx)T = Z2.

D

The (6, 6)-group F of Example 2.2 can be used to simplify certain constructions

of infinite families made in [17], see also Proposition 2.29.

Proposition 2.4. (See [17, Theorem 6.3]for the same statement but with lower bounds

m > 15, n > 19) For every m > 7 andn > 7, there exists a torsion-free cocompact

lattice A < U(A2m) x U(A2n) with dense projections. Any non-trivial normal sub¬

group N < A is offinite index in A.
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Proof. We follow the proof of [17, Theorem 6.3]. The only difference is that we

can replace the (PSL2(13), PSL2(17))-complex ^X = ^13,17 used there (see also

Example 3.26 and Proposition 3.27 for a description ofthat (14, 18)-complex) by our

(As, ^6)-complex X of Example 2.2. An illustration of this construction is given in

Appendix A.3 for the smallest values m = 7, n = 7 of Proposition 2.4. D

We believe that apart from having no non-trivial normal subgroups of infinite in¬

dex, the group F of Example 2.2 also has only very few normal subgroups of finite

index. More precisely, we think that F is non-residually finite, virtually simple, and

that its subgroup To is simple.

Conjecture 2.5. Let F be the (6, 6)-group defined in Example 2.2. Then Fq is a

finitelypresented torsion-free simple group.

The following elementary lemmas lead to Proposition 2.10 which could be useful

in a proof of Conj ecture 2.5.

Lemma 2.6. Let G be a group andH < G a subgroup offinite index. Then there is a

group N < H such that N < G and [G : N] < [G : H]\ < 00, in particular

a/<g l%g

Proof. (Probably due to Hall Jr. [31]) Let k he the finite index [G : H] and write G as

a disjoint finite union of left cosets

k

G = [_\glH.
i=\

Left multiplication g,H i-> ggiH induces a homomorphism <p : G -> Sk such that

N := kevcj) < H and [G : N] < \Sk\ = [G : H]\ < 00. Note that

N=r\gHg-\
geG

D

Lemma 2.7. Let G be a group andH <G a normal subgroup offinite index. Assume

that there is an element h e H such that ((hk))o > Hfor each keN. Then every

proper normal subgroup ofH has infinite index.

Proof. Let N < H he a normal subgroup of finite index. By Lemma 2.6, there is a

group M < N such that M < G and [G : M] < 00. Looking at the left cosets of the

form hkM, k e N, we see that at least two of them are equal, in particular h1 e M for

some /' e N, thus ((//'}}g < M. By assumption, we have H < ((h1))g, hence H < M

andM = N = H. D
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Lemma 2.8. Let G be a group and let H, M be two subgroups ofG such that M has

finite index in G. Then [H : (M n H)] < [G : M] < oo.

Proof. Let k he the finite index [G : M] and write

k

G = [_\Mgi.
i=\

Then, intersecting with H, we get

k

H = G n H = \_\(Mgi n H).

i=\

Fix /' e {1,..., k}. If Mgj n H ^ 0, take any element mgt = h e Mgt n H. Then

Mgi n H = Mmgi n # = M// n # = M// nHh = (Mn H)h and we are done. D

Lemma 2.9. Ze^ G be a group and H < G a subgroup offinite index. Then

In particular, H is residuallyfinite ifand only ifG is residuallyfinite.

Proof.

f)N= hm= hm= n^.
N%H a/<H a/<G N%G

where the first and third equalities follow from Lemma 2.6. The inclusion "5" in the

second equality is obvious, whereas "ç" in the second equality directly follows from

Lemma 2.8. D

Proposition 2.10. Suppose that F satisfies the assumptions of the normal subgroup
theorem (Proposition 2.1). Let H < F be a non-trivial normal subgroup of F and

assume that there is an element h e H such that ((hk))r > H holdsfor each keN.

Then H is afinitelypresented torsion-free simple group.

Proof. First note that by assumption H has finite index in F. By Lemma 2.7

H=Ç]N
N<H

and hence by Lemma 2.9

H= Ç]N.
N<\r

In particular, F is non-residually finite and [17, Corollary 5.4] shows that H is simple.
It is obvious that H is finitely presented and torsion-free, since it is a finite index

subgroup of the finitely presented torsion-free group F. D
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Corollary 2.11. Let F be as in Example 2.2. Assume that there is an element yç, e To

such that {{yk))r = Fq for each keN Then To is afinitely presented torsion-free

simple group.

Proof. This follows directly from Proposition 2.10 using the fact (see Theorem 2.3(3))
that any non-trivial normal subgroup of F has finite index. D

One step towards the proof of Conjecture 2.5 (or an application of Corollary 2.11)
could be the following proposition.

Proposition 2.12. For F as defined in Example 2.2, we have ((a^ })r = f"ofor
each k e No

Proof. We first prove two auxiliary results: The first one says that for each k e No

b3-ib2a6l(l+2k)b-ib3=a-6(l+2k\

Since ax and a2 are claimed to be conjugate, we only have to show it for

k = 0, i.e. b3 b2a\b2 b3 = a2 .
But this follows bringing the left hand side of the

equation to its ao-normal form.

The second result needed is the following: For each k eNç,

u u ,_i S(l+2k)u ,-1,-1 -1 6{l+2k)u u

ci2b3b2b3 ax b3b2 b3 a2 =

a2 02O1 .

This proof is by induction on k. Ifk = 0,

ci2b3b2b3 axb3b2 b3 a2 = a2b2bx

again follows by computing the aè-normal form ofthe left hand side. For the induction

step k —>- k + 1, we get

a2b3b2b3la6l{l+2{k+l))b3b2lb3la2l
u u t-1 12 6(1+2£)t .-U-l -1

=

«2030203 ax ax b3b2 b3 a2

= a2 «203020^" öj b3b2 b3 a2 (using 03020^" al = a2 03020^" )

= a^a2 0201 (by the induction hypothesis)

= a26(1+2(*+1))o2oi

as required. Now we are ready to prove the proposition. Since a2 e To, one inclusion

is obvious:

K(1+2V<r0.
For the other inclusion we have by our first auxiliary result

-6(1+2*) „6(1+2*) „

a2 e {{al ))r,
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and by the second one

hence together

a,
.6(1+2*)

b2bx e ((a
.6(1+2*),

Mi e K(1+2*>))r • (2.1)

Next, we observe that b2 e ((o20i))r since

(axa2 ^oi^aj )(a\b2bxax ) = b2
.

Moreover, axa3 e {{by)r < ((0201 }}r, since

(aia2 °i ci2ax )(ax a2 b\a2ax) = axa3 .

It is easy to check that To is generated (as a subgroup of F) by {axa3l, b2} and we

conclude that

r0 = (axa3l, b2)r < ((o2oi))r (2<1} ((aïil+2k)))r

D

Remark. A calculation with MAGNUS ([50]) shows, that moreover

K))r [(a24))r = F0.

See Table 2.2 for the orders of some quotients of F, illustrating that Conjecture 2.5

could be reasonable.

r/{{wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ax, Ü2, a3 2 4 2 4 2 4 2 4 2 4 2 4

bx,b2,b3 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.2: Some orders of F/((wk))r in Example 2.2

In order to prove that To has no proper finite index subgroups, it could be useful to

have a non-trivial element y e F such that yh and yl are conjugate for some k, I e Z,

where \k\ ^ \l\. As an illustration, we mention that Bhattacharjee has constructed

in [7] an amalgam without non-trivial finite quotients, essentially using in the proof
that there is a non-trivial element a such that a2 and a5 are conjugate. However, this

technique is not possible for (2m, 2//)-groups by the following proposition which is a

special case of a result of Bridson-Haefliger ([9]):

Proposition 2.13. (Bridson-Haefliger [9]) Let F be a (2m, 2n)-group and let y e F

be a non-trivial element. Then yk can only be conjugate toylif\k\ = |/|.
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Proof. (Sketch, following Bridson-Haefliger [9]) Assume that y
k and y1 are conjugate

for some k, I e Z. Then by [9, Proposition 11.6.2(2)], yk and yl have the same

translation length, and by [9, Theorem 11.6.8(1)] we have \k\ = \l\, using the fact that

the element y acts as a hyperbolic isometry on the CAT(0)-space T2m x ?2«- D

By results of Wiegold-Wilson given in [67], the observation that To has no proper

subgroups of small index is somehow reflected in the next proposition on the slow

growth of the number of generators of direct powers. Recall that we denote by d(G)
the minimal number of elements needed to generate the group G and by Gk the direct

product of k copies of G.

Proposition 2.14. Let F be the group ofExample 2.2 and I a positive even integer.

Suppose that ((w))r0 = Fq for all words w e Fq ofeven length 2, 4, ...,
21. Let

b(l) := -\{w e r0 :2< |iü| </}|.

Then d(T%) < 3 for each k < b(l).

Proof. (Adapted from [67, Proof of Theorem 4.2]) Since w ^ w~l and \w\ = |u>_1|
for any non-trivial element w e F, we can choose a subset

S = {yx, ...,yb(i)} C r0

of cardinality b(l) such that S n S~l = 0, and 2 < \yt\ < / for all yt e S. It

follows that \yn y~ | e {2,4, ..., 21} whenever yn, y,2 are different elements of S.

By assumption ((yny~ }}r0 = To. Note that To is generated by two elements, for

example by {a\, 020j }. We want to show by induction that Fq is for each k < b(l)

generated by the element (yx,..., yk) and the diagonal subgroup of Fq (which is for

example generated by the two diagonal elements (a\,..., af) and (o20j ,..., 020j )

in Tq). For k = 1, this is obviously true. We assume that 2 < k < b(l) is fixed

and that ro~ is generated by its diagonal subgroup and (yx,..., yt-i)- Let H he

the subgroup of Tq generated by the diagonal subgroup of Tq and (yi,..., yk). Our

goal is to show that H = Tq. If we think ro~ embedded in Tq as a subgroup

Tq_1 x {1} < Tq_1 x r0 = Tq, then for any y e F0 the group H contains by

assumption k — 1 elements of the form

(y, 1,..., 1, *),... , (1,..., l,y, *),

where "*" are certain elements in To we do not have to care about. By construction,
H also contains the element

(ny*"1, • • •, Yh-iYk1, i) = (y\, , n) • (y*-1. • • •. y*"1) •
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Computing the k — 1 commutators

[(y, l,...,l, *), (yiyt-1, • • •, y*-iyt"\ !)].

[(1, ...,\,y, *), (yxyk \
..., n-iYk \ 1)],

we see that H contains the k — 1 elements

([y, yiyT1], L • • •, l), • • • , (L • • •, L [y, yt-iyT1], l) •

For j = 1,..., k — I, let Nj be the subgroup of To

Nj :=([y,yjyi"1]:yero><r0.

Then Nj is a normal subgroup of To, since for each g e Fq

giy, YjYkX}g~X = teY, YjYk1} \S> YjYk~lTl e N} .

Note that YjY^Nj e Z(F0/Nj), by definition of Nj. Since ((y^-1)}^ = To, we

have ((YjY^Nj^ro/Nj = F0/Nj and Z(F0/Nj) = F0/Nj, i.e. F0/Nj is abelian. But

then Nj = To, because To is perfect. In particular, To is generated by the elements

[y, yj Yfrl] and H contains therefore the y'-th direct factor of Tq. Since

(l,...,l,y) = (y,...,y)-(y-1,l,...,l)-...-(l,...,l,y-1,l),

H also contains the k-th direct factor of Tq, therefore H = Fq and Tq is generated by
three elements. D

Remark. We have used GAP ([29]) to check that ((w))r0 = To, whenever w e To has

length 2, 4, or 6. Note that o(2) = 30, o(4) = 1230, o(6) = 42480, o(8) = 1354980.

Another example of an (A6, ^46)-group

In most of our main examples (e.g. Example 2.2, 2.18, 2.21, 2.26, 2.30, 2.33, 2.43,

2.46, 2.52 and 2.58) of this chapter, we always have [r, F] = To, where in addition

To is perfect. The next example is different in this regard (see also Appendix C.6 for

more such groups), but it shares many other properties with Example 2.2.

Example 2.15.

R3-3 :--

axbxa, o9 ,

axb2 a20j .

axb2a7 bx, axb3a, b3,

a2bxa3lb3l, a2b2a3lb3,

ci2b3a3 02, ö2°3 a3 b\, a3bxa3b2
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Theorem 2.16. Let F be the (6, 6)-group defined in Example 2.15.

(1) The statements ofTheorem 2.3(l)-(3) and (5)-(8) also holdfor this F.

(2) [r, T] is notperfect, ofindex 32 in F, and To is notperfect either.

Proof. (1) We can use the same arguments as in the proof of Theorem 2.3, of course

with different generators of Ph and Pv :

p„(oi) = (l,5,4,3,2),

p„(o2) = (2,6,5,4,3),

p„(o3) = (2, 3)(4, 5),

p«(ai) = (l,5,6,2)(3,4),

p«(a2) = (L5,3)(2,6,4),

p«(a3) = (1,3,5)(2,4,6).

(2) It is easy to check that [r, F] is the kernel of the surjective homomorphism

ai i-> (1 + 2Z, 0 + 2Z, 0 + 8Z)

a2 i-> (1 + 2Z, 0 + 2Z, 6 + 8Z)

a3 k> (0 + 2Z, 0 + 2Z, 1 + 8Z)

oi ^ (0 + 2Z, 1 + 2Z, 3 + 8Z)

02 ^ (0 + 2Z, 1 + 2Z, 3 + 8Z)

03 ^ (1 + 2Z, 1 + 2Z, 0 + 8Z).

Note that the commutator subgroup of [r, F] has index 6 in [r, F] and that

((a2))r is a perfect normal subgroup of F of index 192. See Table 2.3 for the

orders of some other quotients. Moreover, [ro, To] has index 64 = 4 • 16 in F,

more precisely Tq* = Zi6.

D

Conjecture 2.17. Let F be the (As, As)-group defined in Example 2.15. Then F is

non-residuallyfinite such that

Ç]N = [[F, F], [F, F}} = ((a2k}}r

V<ir

for each keN, and this subgroup ofindex 192 is simple.
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F/((wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ax 48 192 48 192 48 192 48 192 48 192 48 192

a2 8 16 24 32 8 48 8 64 24 16 8 96

a3 4 24 4 48 4 24 4 96 4 24 4 48

bX,b2 4 8 12 16 4 24 4 32 12 8 4 48

b3 16 96 16 192 16 96 16 192 16 96 16 192

Table 2.3: Some orders of F/((wk))r in Example 2.15

Example: (A6, Mi2)-group

The famous group M12 was discovered by Emile Mathieu in 1861. It can be de¬

scribed as a 5-transitive subgroup of ^12 of order 95040 and belongs together with the

other Mathieu groups Mxx, M22, A/23 and M24 to the list of 26 sporadic finite simple

groups. With the exception of symmetric and alternating groups, M12 and M24 are the

only finite 5-transitive groups. See [25] for the relation to Steiner systems and more

background information on Mathieu groups.

Example 2.18.

axbxa2 b2 , axb2al~1bl~1, axb3a\xb3x,

axb4ax~ b^ ,
axb5a~xb~x, axbsa\xb~lx,

axb1~1a2b2, a2bxa2b3l, a2b3a2b~x,

0204a3~ bj , a2b5a2bs, a2b~xa2b2x,

a2bjxa3b4, a3bxa3 b2 , a3b2a3xb~x,

a3b3a3b~x, a3b5a~xb~x, a3b6a3b~x

Theorem 2.19. Let F be the (6, l2)-group ofExample 2.18. Then

(1) Ph=As,Pv=MX2.

(2) Any non-trivial normal subgroup ofF hasfinite index.

(3) F is not linear over anyfield, in particular irreducible.

(4) [r, T] = r0 andF0 is perfect.
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Proof. (I) We compute

p„(oi) = (2,6,5),

pv(b2) = (1,2, 5),

pv(b3) = (2, 5)(3, 4),

pv(b4) = (2,5,4),

pv(b5) = (2,3, 5),

pv(bs) = (2,5)(3,4),

p«(ai) = (l,2)(5,6)(7,8)(ll,12),

ph(a2) = (1, 2, 7, 5, 4, 3)(6, 11, 12, 10, 9, 8),

p«(a3) = (1, 2)(3, 6)(4, 5)(7, 10)(8, 9)(11, 12).

Observe that Pv = M12 is already generated by Ph(ai) =' <? and p«(«2) =: r,

since
o 9 9 ^

p«(a3) = err crrcrr err errerr cr
.

As a by-product, we get the following short finite presentation ofM12 with two

generators and six relators:

M12 = {a, x I a2, r6, (at)5, (arar5)4, (at2)6, (arar4)5).

(2) We apply Proposition 2.1 or [17, Corollary 5.3], using the fact that the stabilizer

Stabpu({l}) is the group generated by the three permutations

(2,8, 10, 12,5)(3,4,7,6,9),

(2,3,6,9)(5,10,7,12),

(5,8)(6,7)(9,10)(11,12),

which is isomorphic to the non-abelian simple group Mn of order 7920.

(3) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

(4) This is a short computation.
D

Conjecture 2.20. Let F be the group defined in Example 2.18. Then its subgroup To

is simple.

Remark. By analyzing many (4, 12)-groups, we have observed that Pv = M12 can

be generated in several ways by {ph(ai), P«(«2)}- We have found seven different cycle
structures for {ph(ai), P«(«2)} generating M12. They are listed in Table 2.4:
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Ph(ai) Phifli)

(3,4)(5,6)(7,8)(9,10) (1,7,5,3,2)(6,12,11,10,8)

(3,4)(5,6)(7,8)(9,10) (1,6,5,9,3,2)(4,8,7,12,11,10)

(3,6,5,4X7,8,9,10) (1, 4, 2)(3, 8,6)(5,10, 7X9,11,12)

(3,6,5,4X7,8,9,10) (1,6,3,2)(4,8)(5,9)(7, 12, 11,10)

(3,6,5,4X7,8,9,10) (1,7,3,2)(6,12,11,10)

(3,6,5,4X7,8,9,10) (1,9,6,3,2)(4,12,11,10,7)

(3,6,5,4X7,8,9,10) (1,5,9,6,3,2)(4,8,12,11,10,7)

Table 2.4: Several pairs which generate M12

Example: (A6, ASL3(2))-group

See [25, p.55] for the definition of the affine special linear group ASL3(2). It can be

realized as a non-simple 3-transitive subgroup of A% of order 1344.

Example 2.21.

R

3-4

axbxaxxbxx, axb2alxb2x, axb3alxb4x,

axb4a2 b3 , axb4 a2 b3, a2bxa2 b2 ,

020200
b\, ö203a9

04,
«209 a3o.

i3 u[, i*2u3l*2 4' "Zu2 '-l5uX

a3bxa3b3x, a3b2a3b^x, a3b3a3b4

Theorem 2.22. Let F be the (6, %)-group defined in Example 2.21. Then

(1) Ph=As, PV=ASL3{2)<S*.

(2) Any non-trivial normal subgroup ofF hasfinite index.

(3) F is not linear over anyfield, in particular irreducible.

(4) [r, T] = r0 andr0 is perfect.

Proof. (1) We compute

p„(oi) = (2,4,3),

p„(o2) = (3,5,4),

p„(o3) = (l,2)(3,4),

p„(o4) = (3,4)(5,6),
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pÄ(ai) = (3,4)(5,6),

P«(«2) = (1,7, 8, 2)(3,4,6,5),

p«(a3) = (1,7, 5, 3)(2,8,6,4).

(2) Note that

StabP„({l}) = ((3, 4)(5, 6), (3, 5, 7)(4, 6, 8), (2, 7, 6, 3)(4, 8)} = PSL3(2)

is a non-abelian simple group. The statement follows now either from Propo¬
sition 2.1, or from [16, Proposition 3.3.3] together with [17, Theorem 4.1], or

directly from [17, Corollary 5.3].

(3) The claim is a consequence of [17, Theorem 1.4], see also Proposition 4.4 in

Section 4.2.

(4) This is a short computation.
D

Conjecture 2.23. Let F be the group defined in Example 2.21. Then its subgroup To

is simple.

Question 2.24. Let F be a (2m, 2n)-group such that any non-trivial normal subgroup

ofF hasfinite index. Assume that A < F is a non-trivialperfect normal subgroup (of

finite index). Is A simple?

2.2 A non-residually finite group

Non-residually finite (2m, 2//)-groups have been constructed by Burger-Mozes in [15,

16, 17] for 2m = 196 = 142, 2n = 324 = 182 and independently by Wise in [68]
for 2m = 8, 2n = 6 using completely different techniques. See Example 2.39 in

Section 2.4 for the non-residually finite example of Wise. We present in this section

an irreducible (A4, i3l))-group F with Pv < SX2 quasi-primitive but such that the

quasi-center QZ(H2) is not trivial. Applying a result of Burger-Mozes ([17]), this

shows that F is non-residually finite (Example 2.26).
We first restate a special case of the critérium for non-residual finiteness taken

from [17, Section 2.1] and adapted to our situation:

Proposition 2.25. (Burger-Mozes, [17, Proposition 2.1, Corollary 2.3J) Let F be an

irreducible (2m,2n)-group. If Pv < £2« is a quasi-primitive permutation group and

A2 7^ 1, then F is non-residuallyfinite. (Similarly, if Ph < S2m is a quasi-primitive

permutation group and Kx ^ 1, then F is non-residuallyfinite.)
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Example 2.26.

R

2-6

-U-l -U-l
axbxal bl , axb2a2 b3 ,

axb3ax~xb4x, axb4al~xbjx,

axb5a1 xb6x, axbsax b2 ,

axb~, «203, ö20ia9 os ,

a2b2a2b3 , a2b4a2 o4,

a2bsa2 oj~ , a2bsa2 bs

Theorem 2.27. Let F be the (4, l2)-group defined in Example 2.26. Then

(1) Ph = A4, Pv = PSL2(5) < SX2, |PU| = 60.

(2) T is irreducible.

(3) Pv is quasi-primitive, but notprimitive.

(4) A2 7^ 1, in particular QZ(H2) 7^ 1.

(5) r is non-residuallyfinite.

(6) [F, F] = To is perfect, but not simple.

Proof. (1) We compute

Pv(bx) = (),

p„(o2) = (2,4,3),

pv(b3) = (1,2, 3),

pv(b4) = (),

P«(*5) = 0,

Pv(bs) = (),

pÄ(ai) = (2,6,5,4,3)(7,8,9, 10, 11),

p«(a2) = (1, 5)(2, 3)(4, 9)(6, 7)(8, 12)(10, 11).

(2) Figure 2.1 shows that we can apply Proposition 1.2(3a) using the fact that

axbx = bxax and that pv(b3) = (1, 2, 3) acts transitively on the set

{1,2,3} = Eh\ {ax~1} = {ax,a2, a~x}.
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Ol A

a
k-3

a2 ax ax

AÔ1 Ao< A 04 A03

fl, 02 ^1 ^1

Figure 2.1 : Illustration to the proof of Theorem 2.27(2)

Note that the irreducibility criterion [17, Proposition 1.3] cannot be applied here,
since Pv is not primitive and Kh is a 3-group (\Kh\ = 27).

(3) The group Pv is quasi-primitive, since it is simple and transitive. It has the non-

trivial blocks {1, 12}, {5, 8}, {4, 9}, {3, 10}, {2, 11}, {6, 7}, and is therefore not

primitive.

(4) The set B := {b\, b\, b\, b\, b\, b\}±x is a subset of A2 by Lemma l.l(lb),
since for each b e B and a e Eh we have pv(b)(a) = a and ph(a)(b) e B.

(5) We can apply Proposition 2.25.

(6) The first part of the statement is an easy computation. The group To is not

simple, since To n QZ(H2) is a non-trivial normal subgroup of To of infinite

index, using part (4).
D

See Table 2.5 for the orders of some quotients of F. The infinite quotients in this

list, denoted by "00", correspond to elements in A2.

F/((wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ax, Ü2 2 4 2 4 2 4 2 4 2 4 2 4

bx,...,b6 2 4 00 4 2 00 2 4 00 4 2 00

Table 2.5: Some orders of F/((wk))r in Example 2.26

Conjecture 2.28. Let F be the group defined in Example 2.26. Then

f]N = F0.
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Note that by [17, Proposition 2.1], we have

p| #>({l}x[Ä,(oo),A2])^l,

N<r

where H2 is the intersection of all closed finite index subgroups of H2 < Aut(7i2),

but we do not know how to determine explicitly a non-trivial element in H2 .

Substituting the non-residually finite (196, 324)-group 7tx(AX3:Xj M AX3:Xj) of

Burger-Mozes ([17]) by the non-residually finite (4, 12)-group of Example 2.26, we

can simplify some constructions made in [17]:

Proposition 2.29. ( 1 ) (See [17, Theorem 6.4]for the same statement but with lower

bounds m > 109, n > 175. Note that the number 150 in [17, Theorem 6.4] is

a misprint and has to be replaced by 115) For every m > 9 andn > 13, there

exists a torsion-free cocompact lattice A < U(A2m ) x ^(^2«) which is virtually

simple and has dense projections.

(2) (cf. [17, Theorem 6.5]) Any (2m, 2n)-group injectsfor any even natural num¬

bers k > 4, / > 4 in a virtually simple (A4m+X4+k, A4n+22+i)-group.

(3) (cf. [17, Theorem 6.5]) Any (2m, 2n)-group such that F\ < A2m and Pv < ^2«

are evenpermutation groups, injectsfor any even natural numbers k > 4, / > 4

in a virtually simple (A2m+u+k, A2„+22+l)-grouP-

Proof. (1) We essentially imitate the proof of [17, Theorem 6.4], but replace the

(14, 18)-complex ^X = AX3rXq (which is also described in Example 3.26)

by the (As, ^6)-complex of Example 2.2, and replace the (196, 324)-complex
(y>X = AX3rXq M AX3>Xj by the non-residually finite (4, 12)-complex of Ex¬

ample 2.26. Note that we use in the proof that PSL2(5) < £12 is even, i.e. a

subgroup of AX2.

(2) We embed the given corresponding (2m, 2//)-complex by [17, Proposition 6.2]
in a (4m, 4//)-complex Y with even local permutation groups. Then we apply

[17, Proposition 6.1] to the case where ^X is the (As, ^6)-complex of Exam¬

ple 2.2, (XX is the non-residually finite (4, 12)-complex of Example 2.26 and

<?>X=Y.

(3) Same proof as in part (2), but without embedding the given (2m, 2//)-complex
in a (4m, 4//)-complex, since the local groups are already even by assumption.

D
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2.3 Virtually simple groups

We embed in this section the non-residually finite (4, 12)-group F of Example 2.26

into an (As, ^4iô)-group (Example 2.30), into an (^8, ^4i4)-group (described in Ex¬

ample A.26), and into an (ASL3(2), y4i4)-group (Example 2.33). All three examples
turn out to be virtually simple by results of Burger-Mozes. Therefore, their minimal

normal subgroup of finite index (in other words, the normal subgroup of maximal fi¬

nite index) is a finitely presented torsion-free simple group. We believe that this index

is 4 in our three given examples.

A virtually simple (Ae, ^4i6)-group

Example 2.30.

R3.1

-U-l U-l -U-l
axbxax Oj , axb2a2 b3 , axb3ax o4 ,

0104a, be
,

axbsa, ofi ,
axbsa, o9 ,

-U_a-i
axb1a2bi , axb9,a2b9l, axb& a2b7 ,

axbj a3 07, axb2 «203, a2bxa2 bj ,

U-i
«202020^ , 0204«? 04, 0205«? #i ,2 u\

a2bsa2xbs, a2bja3bjX, a3bxa3xb%,

a3b2a3 02, a3b3a3 b^ , a3b4a3 bx,

a3b5a~xb3, a3b6a3xb6, a3b%a~xb5

Theorem 2.31. Let F be the (6, l6)-group ofExample 2.30. Then

(1) Ph = As, Pv = AX6.

(2) F is non-residuallyfinite.

(3) F is a finitely presented torsion-free virtually simple group, in particular the

minimal normal subgroup offinite index in F

is afinitelypresented torsion-free simple group.
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(4) We have amalgam decompositions

F% *f43 F22 = T = F3 *f33 FXj

and

Aut(7'6) > Fi5 *f85 Fis = F0 = F5 *Ff55 F5 < Aut(7"i6) •

(5) [r, T] = To and Fo is perfect.

Proof. (1) We compute

Pv(bi) = pv(b4) = Pv(bs) = pv(bs) = 0,

p„(o2) = (2,6,5),

pv(b3) = (1,2,5),

pv(bi) = (\, 5, 3)(2, 4, 6),

pu(o8) = (l,5)(2,6),

Ph(ai) = (2, 6, 5, 4, 3)(7, 9, 8)(11, 12, 13, 14, 15),

Ph(a2) = (1, 5)(2, 3)(4, 13)(6, 11)(8, 10, 9)(12, 16)(14, 15),

Ph(a3) = (1, 13, 14, 5, 9)(2, 15)(3, 12, 8, 16, 4)(6, 11).

(2) The embedding of the (A4, PSL2(5) < ^^-complex of Example 2.26 into X

(indicated by the twelve underlined relators in i?3.s) induces a nx-injection by

Proposition 1.9(1). Since the (4, 12)-group of Example 2.26 is non-residually

finite, T is also non-residually finite.

(3) Apply [17, Corollary 5.4].

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
D

Conjecture 2.32. Let F be the (6, l6)-group ofExample 2.30. Then To is afinitely

presented torsion-free simple group. Equivalently,

Ç]N = F0.
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A virtually simple (A%, v4i4)-group

See Appendix A.4 for the definition of a finitely presented, non-residually finite,

torsion-free, virtually simple (A%, y4i4)-group. It behaves as the (As, ^4iô)-group of

Example 2.30.

Remark. It seems to be impossible to embed the (4, 12)-complex X ofExample 2.26

into a virtually simple (As, ^4i4)-complex. However, it seems to be easy to embed X

into a virtually simple (A2m, ^2«)-complex, if m > 3, n > 8 or if m > 4, n > 1.

A virtually simple (ASL3(2), ^i4)-group

Example 2.33.

axbxax Oj , axb2a2 b3 , axb3ax 1o41,
1

axb4ax b5

a\bsa\xb1x, axbsax~ b2 , axbqa2 bj , axbjXa3b7,

axb~xa2b3, a2bxa2xbjx, a2b2a2b3x, «204«^" 04,

0205^2" oj~ , a2b6a2xbs, a2b1a~xb~x, 03010404,

a3b2a3 b3 ,
a3b3a~xb~x, a3040407, a3b5a4b~x,

a3b6a4b~x, a3bj «401, a3b~xa4b5, a3bjxa4b6,

a3b^xa4bjx, a3b3 «402, a3bl~xa4b^x, 0403040^"

Theorem 2.34. Let F be the (8, l4)-group defined in Example 2.33. Then

(1) Ph = ASL3(2) < Sg, Pv = AX4.

(2) F is non-residuallyfinite.

(3) F is afinitelypresented torsion-free virtually simple group.

(4) There are amalgam decompositions

Fq *f49 F25 = r = F4 *f43 F22

and

Aut(Tg) > FX3 *Fg7 FX3 = r0 = Fq *Fg5 Fq < Aut(7î4).

(5) [r, T] = r0 andF0 is perfect.
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Proof. (1) We compute

Pv(bX) = pv(b4) = Pv(bs) = pv(bs) = (3, 5)(4, 6),

pv(b2) = (2, 8, 7)(3, 4, 5),

pv(b3) = (l, 2, 7)(4, 6, 5),

p„(o7) = (1,2, 4, 6)(3, 8, 7, 5),

pÄ(oi) = (2,6,5,4,3)(9, 10, 11,12, 13),

p«(o2) = (1, 5)(2, 3)(4, 11)(6, 9)(10, 14)(12, 13),

Ph(a3) = (1, 6, 5, 11)(2, 3)(4, 14, 8)(9, 10)(12, 13),

Ph(a4) = (1, 11, 7)(2, 3)(4, 10, 9, 14)(5, 6)(12, 13).

(2) The embedding of the (A4, PSL2(5) < 5i2)-complex of Example 2.26 into the

(8, 14)-complex X (indicated by the twelve underlined relators in ^4.7) induces

a 7Ti-injection by Proposition 1.9(1).

(3) Apply [17, Corollary 5.3] (cf. Example 2.21 for the role of ASL3(2)).

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
D

Conjecture 2.35. Let F be the (8, 14)—group defined in Example 2.33. Then the sub¬

group Tq is afinitelypresented torsion-free simple group.

2.4 Two examples of Wise

We recall in this section two interesting groups of Wise ([68]).

Example 2.36. (See [68, Section II. 2.1], the transitionfrom Wise's notations to ours

is given by x i-> ax, y i-> 02, a i-> bx, b i-> 02, c i-> b3.)

axb2a1~xb1~x, a2b2a2xb1~x,

2-3 = \ axb3a2 b3 , axbxa2 b2 ,

R

ü^oiOj o3 , a2b3ax b2

Theorem 2.37. (Wise [68]) The (4, 6)-group F ofExample 2.36 is irreducible and

not (bx, 02, b3)-separable.
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Proof. See [68]. Let G be a group and H < G a subgroup. Recall that G is said to be

H-separable, if for each element g e G\H, there is a homomorphism \// : G -> Q
onto a finite group Q such that ^jf(g) £ ir(H). It is shown in [68, Corollary II.4.4] that

ty(axa2 ) e i[f((bx, 02, b3)) for every homomorphism ^ : F -> Q with finite Q. D

Remark. The proof of Theorem 2.37 given in [68] is based on the fact that the two

elements 02, o3 have no commuting non-trivial powers (this phenomenon is called

anti-torus and is proved in [68, Proposition II.3.8]. Much more about anti-tori can be

found in Section 3.6). Note however, that (02, o3) is not a free subgroup of F since we

have for example the non-trivial relation b3 a2 b2a2b3 020302 = 1 in F.

Using the separability property of the (4, 6)-group F described in Theorem 2.37

and the following lemma of Long-Niblo ([44]), a doubling of F along its subgroup

(bx, 02, o3) (geometrically, doubling X along its vertical 1-skeleton ({x}, Ev)) leads

to the non-residually finite (8, 6)-group of Example 2.39. (By a double or a doubling
of a group G along a subgroup H, we mean the amalgamated free product G *H=a G,
where G °-> H is an isomorphic copy of G °-> H.)

Lemma 2.38. (Long-Niblo, see [44, Lemma, p.211]) Let 8 : G -> G be an automor¬

phism ofa residuallyfinite group G. Then G is F\x(8)-separable, where

Fix(8):={geG:8(g)=g}

is the subgroup ofelementsfixed by the homomorphism 8.

More precisely, if8 : G -> G is an automorphism and G is notF\x(8)-separable,
then

x~x8(x) ef]JV,

where x e G \ Fix(ö) is any element such that \//(x) e \//(Fix(9)) for all homomor¬

phisms i\r : G —> Q ontofinite groups Q.

Proof. See [44]. Note that the same result is true for endomorphisms 8 : G —>- G of

finitely generated residually finite groups G, see [68, Theorem II.5.2]. D

Example 2.39. (See [68, Section II. 5], where this example is called D)

R43:--

0102«!
U-l -U-l U-l -U-l

0202^2 °i > axb3a2 b3 , axbxa2 b2 ,

a2bxax b3 , a2b3al b2 , a3b2a3 bx , 0402^4 bx ,

-U-l -U-l U-l -U-l
a3b3a4 b3 , a3bxa4 b2 , a4bxa3 b3 , a4b3a3 b2

The six underlined relators are the relators of Example 2.36 which is embedded in

Example 2.39.
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Theorem 2.40. (Wise [68, Main Theorem II. 5.5]) The (8, 6)-group F ofExample 2.39

is non-residuallyfinite.

Proof. By [68], we have for example

a2ax~ a3a4 e [j N.

D

2.5 Constructing simple groups

Using an appropriate embedding of Wise's non-residually finite group described in

Example 2.39 above, we construct in this section a virtually simple (^4io, ^4io)-group

(Example 2.43). Moreover, we are able to prove in Theorem 2.45 that its index 4

subgroup To is a simple group. Therefore, we get an explicit description of a finitely

presented torsion-free simple group in Aut(Tlo) x Aut(Tio), which moreover has the

form F9 *f81 F9.

At first, we give two very elementary but crucial lemmas used in the proof of

Theorem 2.45.

Lemma 2.41. Let G be a group, H < G a non-residuallyfinite subgroup of G and

h e H an element such that

l^he p| M.

M<H

Then

he p| N,

in particular G is also non-residuallyfinite.

Proof. Let N < G he any normal subgroup of finite index in G. Obviously,

Nr\H<Gr\H = H.

Moreover

[H :(Nn H)] <[G:N]

is finite by Lemma 2.8, hence

heNHH<N

and we are done. D
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Lemma 2.42. Let G be a non-residuallyfinite group andg e G an element such that

l^ge p N.

N<G

Moreover, assume that the normal subgroup ((g)) g hasfinite index in G Then

((g))G= p N.

}/<G

Proof By assumption, ((g)) g is a normal subgroup of G of finite index, hence

((g))G^ p N.

N<G

The other inclusion follows directly from

ge p N < G,

N<G

by definition of the normal closure of g. D

Now, we are ready to describe one of our main examples:

Example 2.43. Let R5.5 be the set of25 relators

axbxa2 b2 , axb2ax~ oj~ , axb3a2 b3 , «104020^ , axb^a^ 04,

axbj a3b4 , axb4 a3bs, axb3 a2 02, axb~^ a2 b3, 0202^2" °T >

0204^2" 05, «205040^ , a3bxa4 b2 , a3b2a3 oj~ , a3b3a4 b3 ,

a304ö405, a3bj «404, a3b3 a4 02, a3b~^ a4 b3, 0402^4" oj~ ,

a4bj aj" b4 , a$bxa^ b3, a^a^ bj , a^b3a^ oj~ , «504«^" b2

Proposition 2.44. Let F be the (10, I0)-group ofExample 2.43. Then

(1) Ph = Axo, Pv = Axo.

(2) F is non-residuallyfinite.

(3) F is afinitelypresented torsion-free virtually simple group.
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(4) There are two amalgam decompositions

F = F5 *f41 F2X

and two amalgam decompositions

r0 = F9 *Fgl F9 < Aut(Tîo) •

(5) [r, T] = To and Fq is perfect.

(6) The number of generators d(Fk) grows linearly to infinity for k -> oo, but

d(FkQ) < 3 for all keN.

(7) Zr(a5) = Nr((a5)) = (a5).

(8) bx e Zr(aj), in particular F is not commutative transitive.

Proof. (1) We compute

p„(oi) = (7,8)(9, 10),

pv(b2) = (I, 2)(3, 4),

pv(b3) = (1,2)(3,4)(7,8)(9, 10),

pv(b4) = (1,8, 4, 5)(2, 7, 3, 10),

pv(b5) = (1,9, 4, 8)(3, 10, 6, 7),

p«(ai) = (l,2)(4,6,7,5)(8, 10,9),

p«(a2) = (l,2,3)(4,5,7,6)(9, 10),

p«(a3) = (l,2)(4,5,7,6)(8, 10,9),

p«(a4) = (l,2,3)(4,6,7,5)(9, 10),

p«(a5) = (1,3, 10, 8)(2,4,6,9, 7, 5).

(2) The embedding ofthe non-residually finite (8, 6)-complex ofExample 2.39 into

the (10, 10)-complex X, indicated by the twelve (single or double) underlined

relators in Rs.s, induces a nx-injection by Proposition 1.9(1). The six relators

coming from Example 2.36 (which is embedded in Example 2.39) are doubly
underlined.

(3) Apply [17, Corollary 5.4].

(4) We use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.
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(6) We apply results of Wiegold-Wilson ([67]). First note that d(F) = 2, since for

example F = (ax, 04}, and that d(Fo) = 2, since To = (a2, 050J"1} (this can be

easily checked with GAP ([29])). By [67, Theorem 2.2], we have d(Fk) = 2k,
\fk > 18. However, using the simplicity of To which is shown in the following
Theorem 2.45, the result [67, Theorem 4.3] implies rf(rj) < d(F0) + 1 = 3 for

all keN.

(7) This follows from Proposition 1.12.

(8) We compute ajbx = bxaj. Obviously, as and aj commute. Part (7) shows that

as and bx do not commute and we conclude that F is not commutative transitive.

D

Theorem 2.45. Let F be the (10, I0)-group ofExample 2.43. Then the subgroup To

is afinitelypresented torsion-free simple group.

Proof. Using Proposition 2.44, we "only" have to show that

r0= p N.

Take w := fl^aj" a3a^ e To. Then by Theorem 2.40 and Lemma 2.41 we have

w e P N,

hence by Lemma 2.42, using the fact that every non-trivial normal subgroup of F has

finite index in F (applying Proposition 2.1), we have

((w))r= p N.

A computer algebra system like GAP ([29]) immediately checks that

[r : ((w))r] = \(ax,... ,a5,bx,... ,b5 \ R5.5,w}\ =4.

Since [r : To] = 4 and w e To, we conclude that

P N=((w))r = F0.

Alternatively and more explicitly, one proves ((w))r = To by checking that

r0 = (axa~x,b3b~x,b3b~x)
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axa2
x
= (o205Ujo5 xb2 x)(bsw xb5 x) e ((w))r

b3b~x = (b-xbsw-xb-xbx)(bxbswb-xb-x) e »r

Ms"1 = (b1-xb-xwb4bx)(bsb-xw-xb4b;x) e ((w))r .

D

A finite presentation of the simple group To is given as follows: We take the 37

generators sx,..., s3q and the 100 relators of Table 2.6.

*24*34, *10*23*33, *11*24*35, *12*19*37, *13*27*31,

*18*20*36, *17*20*32, *16*24*29, 514524*30, *1*10*24*33,

5i5i2524*32, *1*13*21*36, *2*26*34, *2*10*25*33, *2*11*26*35,

*2*12*21*32, *2*18*21*31, *2*16*26*29, *2*14*26*30, *3*10*26*33,

*3*18*27*36, *4*27*30, *4*10*27*37, *4*11*27*33, *4*12*27*34,

55510^19533, *5*34, *5*11*19*35, *5*13*24*36, *5*17*22*37,

555i2525532, *5*18*25*31, *5*15*19*30, *5*16*19*28, *6*19*34,

565i85i9536, *6*12*26*37, *7*10*21*33, *7*20*34, *7*11*21*35,

*7*18*26*36, *7*17*26*32, *7*15*21*30, *7*16*21*28, *8*21*34,

585i2522*32, *9*16*22*33, *9*13*22*34, *9*22*35, *9*10*22*36,

*6*15*28, *5*14*29, *6*16*30, *1*18*31, *9*12*32,

*2*17*37, *2*13*36, *6*10*35, *6*11*33, 565i45i9529,

565i35i953i, 535i75i9532, *8*15*20*28, *7*14*20*29, *8*16*20*30,

53*13*20*31, *3*12*20*37, *8*10*20*35, *8*11*20*33, *8*14*21*29,

*9*17*21*37, *9*11*22*28, *9*18*22*29, *9*14*22*30, *9*15*22*31,

5i5i4523529, *15*23*28, *1*16*23*30, *6*17*23*32, *4*18*23*36,

*7*13*23*31, *7*12*23*37, *1*11*23*34, *1*23*35, *1*15*24*28,

5i5i7524*37, *8*18*24*31, *3*14*25*29, *2*15*25*28, *3*16*25*30,

*8*17*25*37, *8*13*25*36, *3*11*25*34, *3*25*35, *3*15*26*28,

*4*13*26*31, 545i4527*35, *4*15*27*32, *4*16*27*28, *4*17*27*29

Table 2.6: Relators of the simple group of Theorem 2.45

Of course, this presentation can be slightly simplified, for example using the iden¬

tities 55 = 524 = s34 Applying the GAP-command ([29])

SimplifiedFpGroup(G);

we get a presentation of To with 3 generators and 66 relators of lengths between 18

and 113. Note that the deficiency of To is —63, cf. Section 4.6.
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Remark. The smallest finitely presented torsion-free simple group coming from the

construction given in [17, Section 6.5] either has amalgam decompositions

Aut(748) > ^7919 *F38oo65 ^7919 = ^47 *F36432i ^47 < Aut(7792o) ,

if we take k = 3,1 = 44, Ph = As, Pv = ^88, or has amalgam decompositions

Aut(74g) > ^8279 *F397345 ^8279 = ^47 *F38088l ^47 < Aut(7g28o) ,

if we take k = 3, / = 45 and Y = As,%9, using the notation of [17]. Observe that both

groups need more than 360000 relators in any finite presentation. Also the smallest

candidate for being a finitely presented torsion-free simple group in the construction

leading to [17, Theorem 6.4] has complicated amalgam decompositions

Aut(7218) > ^349 *F75865 ^349 = ^217 *F756oi ^217 < Aut^so) ,

needing more than 75000 relators. Obviously, it would be an enormous work to write

down a presentation of such a group.

More simple groups

Using exactly the same ideas as in Theorem 2.45, we embed now the non-residually
finite (8, 6)-complex ofExample 2.39 into several (2m, 2//)-complexes with virtually

simple fundamental groups F. See the following list (Table 2.7) for examples with

(2m, 2//) e {(10, 10), (10, 12), (12, 8), (12, 10), (12, 12)}.

As before, the group

r*:= p N=((a2a-Xa3a-X))r

is finitely presented, torsion-free and simple. In the list, we use the following notation:

In the third column, [2, 2] stands for Z^ etc. and in the last column, for example

(9, 81, 9) means an amalgam decomposition Fg *^81 Fg. Note that To and F* always
have two amalgam decompositions, a horizontal and a vertical one. Since T* < To

is a subgroup, the index [r : T*] is a multiple of 4. In most (but not all) examples
listed below, we have [r, T] = T*, in particular for these examples | Fab | = [r : T*]
and [r, T] is simple. In all examples (in particular for those with F* <* [F, F]), we

compute that T* is the group

(([ax,a2], [ax, bx], [ax, b2], [ax, o3], [a2, bx],

[a2, b2], [a2, o3], [oi, o2], [bx, o3], [o2, o3]))r .

If [r : T*] > | Fab I, we give the non-abelian quotient F/ Y*.
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Ex r
T^ab

r/r*
T^ab T* = ((a2ax xa3a4x))r

2.43 (AX0,AX0) [2 2] 4 (9, 81, 9) = (9, 81, 9)

(AX0,AX0) [2 2,2] 8 (17, 161, 17) = (17, 161, 17)

(AX0,AX0) [2 4] 8 (17, 161, 17) = (17, 161, 17)

(AX0,AX0) [2 6] 12 (25,241,25) = (25,241,25)

(AX0,AX0) [2 2,4] 16 (33,321,33) = (33,321,33)

(AX0,AX0) [2 8] 16 (33,321,33) = (33,321,33)

(AX0,AX0) [2 10] 20 (41,401,41) = (41,401,41)

(AX0,AX0) [2 2,6] 24 (49,481,49) = (49,481,49)

(AX0,AX0) [2 12] 24 (49,481,49) = (49,481,49)

(AX0,AX0) [2 2,8] 32 (65,641,65) = (65,641,65)

2.50 (AX0,AX0) [2 20] 40 (81,801,81) = (81,801,81)

(^10,^12) [2 2] 4 (11, 101, 11) = (9, 97, 9)

2.48 (^10,^12) [2 2] £6 4 (31,301,31) = (25,289,25)

(^10,^12) [2 2,2] 8 (21,201,21) = (17, 193, 17)

(^10,^12) [2 2,2] S3 x Z2 8 (61,601,61) = (49,577,49)

(^10,^12) [2 4] 8 (21,201,21) = (17, 193, 17)

2m = 12

(-412,-48) [2 2] 4 (7, 73, 7) = (11, 81, 11)

0412, 40 [2 4] 8 (13, 145, 13) = (21, 161,21)

2.46 (MX2, A^ [2 2] 4 (7, 73, 7) = (11, 81, 11)

(AX2,AX0) [2 2] 4 (9, 97, 9) = (11, 101, 11)

(AX2,AX0) [2 2] £6 4 (25,289,25) = (31,301,31)

(AX2,AX0) [2 2] Z>5 X ^2 4 (41,481,41) = (51,501,51)

(AX2,AX0) [2 2,2] 8 (17, 193, 17) = (21,201,21)

(AX2,AX0) [2 4] 8 (17, 193, 17) = (21,201,21)

(AX2,AX0) [2 2,2] L>4 X Z2 8 (33,385,33) = (41,401,41)

(AX2,AX0) [2 6] 12 (25,289,25) = (31,301,31)

(AX2,AX0) [2 8] 16 (33,385,33) = (41,401,41)

(AX2,AX0) [2 10] 20 (41,481,41) = (51,501,51)

(AX2,AX0) [2 2,6] 24 (49,577,49) = (61,601,61)

(MX2, ^10) [2 2] 4 (9, 97, 9) = (11, 101, 11)

{Au, Au) [2 2] 4 (11, 121, 11) = (11, 121, 11)

(AX2, AX2) [2 2,2] 8 (21,241,21) = (21,241,21)

(AX2, AX2) [2 6] 12 (31,361,31) = (31,361,31)

Table 2.7: Many simple groups F*
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Three more examples appearing in Table 2.7 (namely Example 2.46, Example 2.48

and Example 2.50) will be described now. We have chosen these three examples for

the following reasons:

• In Example 2.46, Ph = M12, the fascinating Mathieu group.

• In Example 2.48, T* < [r, F].

• In Example 2.50, [r : F*] = 40 is the largest such index in Table 2.7.

Here is the description of a (Mi2, 4)-group:

Example 2.46.

axbxa2 b2 , axb2ax~ oj~ , axb3a2 b3 , «1040304,

R6-4

axb, «204 , axb^, a9 02, axb, a9 b3

U-l -U-l
«2040504, a3bxa4 b2 , a3b2a3 bl

a3bA xaA xbA x, a3b^ xaA xb2, a3b, xaA xb3;A ^A „A

«V«404 asbA , asbxa6 02, «502^5 o

a5b2xa~xb~x, a5b~xa~xbx, a6b3a~xb~x

a2b2a2 Xblx,

U-l
a3b3aA b3 ,

a4b2aAxb1 x,

a5b3a5 xb3x,

a6b4a6 xb3

Theorem 2.47. Let F be the (12, %)-group defined in Example 2.46. Then

(1) Ph = MX2, Pv = A%.

(2) F is non-residuallyfinite.

(3) F is afinitelypresented torsion-free virtually simple group.

(4) There are amalgam decompositions

F4 *f37 FX9 = F=F6 *f41 F2X

and

Aut(712) > Fq *Fj3 Fq = To = Fxx *f81 Fxx < Aut(7'8).

(5) [r, T] = To and Fq is perfect.

(6) To is afinitelypresented torsion-free simple group.
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Proof. (1) We compute

p„(oi) = (5,6)(7,8)(9, 10)(H,12),

p„(o2) = (l,2)(3,4)(5,6)(7,8),

p„(o3) = (1,2)(3,4)(9, 10)(H,12),

p„(o4) = (1,11, 5,9,10)(2, 12,3,4,8),

Ph(ax) = ph(a3) = (1, 2)(4, 5)(6, 8, 7),

Ph(a2) = Ph(a4) = (1, 2, 3)(4, 5)(7, 8),

p«(a5) = (l,7)(4,5),

p«(a6) = (2,8)(3,5,6,4).

(2) The embedding of the non-residually finite (8, 6)-complex of Example 2.39

into the (12, 8)-complex X (indicated by the twelve underlined relators in Rsa)
induces a nx-injection by Proposition 1.9(1).

(3) We use [17, Corollary 5.3] and conclude as in [17, Corollary 5.4].

(4) Use Proposition 1.3 and Proposition 1.4.

(5) These are easy computations.

(6) The proof is in the same spirit as the proof of Theorem 2.45.

D

Our next example is an (AXq, ^4i2)-group F with a simple subgroup F* of index 12

such that F/ F* is non-abelian:

Example 2.48. Let Rs.s be the set ofrelators

axbxa2 b2 , axb2ax~ oj~ , axb3a2 b3 , «104020^ , axbsa2bj ,

axbsa4 04, axb^ «400, axbj a2 bs, axb4 a4 b^ , axb3 a2 02,

axblxa2xb3, a2b2a2xblx, a2b4a3xb6x, a2b6a3xbAx, a2b6xa3b6,

a3bxa4xb2x, a3b2a3xb^x, a3b3a^xb3x, a3b4a5bs, a3b5a4xb4x,

a3bjx a4x bjx, a3b3~xaA~xb2, a3b~^xa4xb3, a^a^b^1, a^^asbj1,

asbxa^ oj~ , «502aJ" 02, asb3a^ bs, «5 04aJ" b3 , asbsa^ bs
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Theorem 2.49. Let F be the (10, l2)-group defined in Example 2.48 and let

T* := p N.

Then

(1) Ph = Aw, Pv = AX2.

(2) The group F* isfinitely presented, torsion-free and simple.

(3) Thefinite index subgroups of F and the normal subgroups of F are completely
known (and explicitly described below).

Proof. (1) We compute

Pv(b\) = (7, 8)(9, 10),

Pvih) = (;i,2)(3,4),

Pv(b3) = (;i,2)(3,4)(7,8)(9,10),

Pv(b4) = (I, 9, 8, 5, 7, 10,2,3,4),

Pv(bs) = (;i,9,10,2)(3,4,6)(7,8),

Pv(bs) = (;i,4,10,7)(2,3,9,8),

Ph(a\) = (;i,2)(6,9)(10, 12, 11),

ph(a2) = (:i,2,3)(4,6)(H,12),

P«(«3) = <:i,2)(4,5,8)(7,9)(10, 12, 11),

PhiflA) = <:i, 2, 3)(4,7)(5, 9,8)(11,12),

Ph(as) = (:2,11)(3,4,8)(5,10,9)(6,7).

(2) Same proof as in the previous theorems.

(3) We have used GAP ([29]) for the computations. Look at the following diagram

(Figure 2.2), which describes all subgroups of F of finite index (r has no non-

trivial normal subgroups of infinite index by Proposition 2.1).

Here are some explanations: iVi, N2, N3, N4 are normal subgroups of F. The

subgroups Hi, H2, H3 are not normal. The index in F is given on the left hand

side of the diagram. All arrows are inclusions. The subgroups of F are defined

as follows:

Ni := ker(r - S2), a, ^ (), b} ^ (1, 2)

N2 := ker(r -^ S2), a, ^ (1, 2), ô, ^ ()

N3 := ker(r -* S2), a, ^ (1, 2), b, ^ (1, 2).
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12

Figure 2.2: Subgroups of Example 2.48

N4 := ker(r -» S3)

aua2^(l,2)(3,5)(4,6)

a3,a4,a5 i-> (1, 3)(2, 4)(5, 6)

oi,o2,o3,o4,o5 i-> 0

o6^(l,4,5)(2,3,6).

We have

Hi := (ai,a5a~x,bi)

H2 := (ai,a5a3x,b2b~x)
H3 := (a5a~x, bxa~x, b2a~x).

ry r* = d6, f/n4 = s3, hx/f* =
z2
2 '

NX/F* = S3, N2/F*=Z6, N3/F* = S3,

[F,F] = [NX,NX] = [N3,N3] = F0,

[r0, r0] = [N2, n2] = [JV4, iv4] = [Hx, Hi] = [Ä2, h2] = [#3, #3] = r*

The following commutators are not in T*:

[aua3], [ai,a4], [ai,a5], [ai,b6],

[a2,a3], [a2,a4], [a2,a5], [a2, b6], [a3, b6], [a4,b6], [a5,b6].
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i7<K))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ai, ..., as 2 12 2 12 2 12 2 12 2 12 2 12

01, ...,o5 6 12 6 12 6 12 6 12 6 12 6 12

bs 2 4 6 4 2 12 2 4 6 4 2 12

Table 2.8: Some orders of r/((to*»r in Example 2.48

In addition, see Table 2.8 for the orders of some quotients of F.

Here is an example of an (A 10, ^4io)-group with a simple subgroup of index 40:

Example 2.50. Let Rs.s be the set

axbxa2 b2 , axb2ax~ oj~ , axb3a2 b3 , «1040304, axbsax~ bj ,

D

-U u-l -U-l U-l; -U-l
axbA «204 , axb3 a2 02, axbx a2 b3, «202^2 °i , a2°4a4°4,

«205^2 o5 , «205 a5 05, a3oi«4 o2 , a302ö3 Oj , a3b3aA b3 ,

a3bsa4b4~x, a3bjxa4bjx, a3bA~xa4bs, a3b3~xaA~xb2, a3b\xa^xb3,

a4°2a4~ °i~ , asbxa^ b3 , 0502«^" o^ , asb3a^ 04, «504«^" 01

Theorem 2.51. Ze^ T oe ^//e (10, I0)-group ofExample 2.50 and define

T* := p N.

Then

(1) Ph = ^10, Pu = Axo.

(2) T* /5 afinitelypresented torsion-free simple group.

(3) Allfinite index subgroups ofF are normal. They are visualized in thefollowing

diagram (Figure 2.3), where all arrows are inclusions.
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40 r*

Figure 2.3: Subgroups of Example 2.50

Proof. (1) We compute

pv(bx) = (7, 8)(9, 10),

pv(b2) = (I, 2)(3, 4),

pv(b3) = (1,2)(3,4)(7,8)(9, 10),

pv(b4) = (1,9, 4, 8)(2, 10,3,7),

pv(bs) = (2, 5)(3,7)(4,8)(6, 9),

p«(«i) = (l,2)(4,7)(8, 10,9),

p«(a2) = (1, 2, 3)(4,7)(9, 10),

p«(a3) = (1,2)(4, 5, 6, 7)(8, 10,9),

pÄ(a4) = (1,2,3)(4,5, 6,7)(9,10),

p«(a5) = (1, 7, 3)(4, 8, 10).

(2) We apply the same strategy as in the previous theorems.
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(3) Using GAP ([29]), we have computed

Nx = ((a\,axbx))r F/Nx = z2

N2 = ((bi))r F/N2 = z2

N3 = ((«i))r F/N3 = z2

N4 = ((aio4})r F/N4 = z4

N5 = ((ai*5»r r/N5 = z4

Ns = ((«i))r = r0 r/Ns = I?2

Nq = ((al b5i))r F/Nq = z5

N% = ((a4i))r f/n% = Z2 X Z4

N9 = ((a2a~x))r F/N9 = ^10

Nxo = ((a2xb~x))r F/Nxo = ^10

Nxx = ((al°,axbx))r r/Nn = ^10

Nn = ((«i ))r r/NX2 = Z2 x Z10

NX3 = ((ai*i))r F/NX3 = ^20

NX4 = ((b5a~x))r r/NX4 = ^20

(aia2~

a
20 \

lbf))r

f/ r* = z2 x z20

See Table 2.9 for the orders of some quotients of F :

Table 2.9: Some orders of r/((to*»r in Example 2.50

D

r/((wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12 20

w = ax,..., as 2 4 2 8 10 4 2 8 2 20 2 8 40

01, ...,o5 2 4 2 8 10 4 2 8 2 20 2 8 40

See Appendix C.7 for a long list of other embeddings of the non-residually finite

(8, 6)-complex of Example 2.39 into (10, 10)-complexes X such that Ph and Pv are

both primitive permutation groups.
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2.6 A non-simple group without finite quotients

We use an embedding of the non-residually finite (8, 6)-complex of Example 2.39

into a (10, 10)-complex to get a non-simple group To < Aut(Tio) x Aut(Tio) without

proper subgroups of finite index.

Example 2.52. Let Rs.s be the set ofrelators

axbxa2 b2 , axb2ax~ oj~ , axb3a2 b3 , axb4axbs, axbj a2bj ,

axb^ a^ b^ , axb3 a2 02, axb~^ a2 b3, «202^2" °T > a2°4a2°5,

«20^ a3 b^ , a3bxa^ b2 , a3b2a3 oj~ , a3b3a^ b3 , a3bsa4bA~ ,

a3b~xa~xb~x, a3b~xa4b5, a3b3xa~xb2, a3b~xa~xb3, a^a^b^1,

a4bj asbj , 0501^504, 0502«^ 03, asb3a^ 02, cisb^ asb^

Proposition 2.53. Let F be the (10, I0)-group defined in Example 2.52. Then

(1) Ph < SXo is transitive, but not quasi-primitive; Pv = SXo.

(2) [F, F] = To andF0 is perfect.

(3) There are two amalgam decompositions

F = F5 *f41 F2X

and two amalgam decompositions

r0 = F9 *Fgl F9 < Aut(Tîo) •

(4) T is non-residuallyfinite, in particular not linear over anyfield and irreducible.

Proof. (1) We compute

pv(01) = (5, 6)(7, 8)(9, 10),

p„(o2) = (l,2)(3,4),

pv(b3) = (1,2)(3,4)(7,8)(9, 10),

pv(b4) = (1,4, 8, 9, 2, 3, 7, 10)(5, 6),

pv(bs) = (1, 9, 2, 10)(3, 5, 7)(4, 6, 8).
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These permutations generate a transitive group Ph < SXq of order 3840 which

is not quasi-primitive, since Ph has a normal subgroup of order 2 generated by
the element (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) = pv(bx)pv(b2).

p«(«i) = (l,2)(4,7,5,6)(8, 10,9),

pÄ(a2) = (1,2,3)(4,7, 5,6)(9,10),

p«(a3) = (l,2)(4,5,6,7)(8, 10,9),

pÄ(a4) = (1,2,3)(4,5, 6,7)(9,10),

p«(a5) = (l,7)(2,8)(3,9)(4, 10)(5, 6).

(2) These are easy computations.

(3) We use Proposition 1.3 and Proposition 1.4. To apply Proposition 1.4, the only
(2)

thing to check is that pv(F„ ') < S2m is transitive, but here we have

Ph = (Pv(b2), Pv(bxb2), pv(bxb4), pv(b25)),

in particular pv(F„ ') = pv(F„) = Ph in the notation of Proposition 1.4.

(4) We use the fact that the non-residually finite (8, 6)-complex of Example 2.39

embeds into the (10, 10)-complex X, see the twelve underlined relators in Rs.5.

D

Theorem 2.54. Let F be the (10, I0)-group defined in Example 2.52. Then

(1) The subgroup To has noproper subgroups offinite index.

(2) To is not simple.

Proof. (1) By construction, the non-residually finite complex of Example 2.39 is

embedded into X. Take w := a2a1~xa3a4~x and

r* := f]N.

As in Theorem 2.45, we observe that ((w))r = To, in particular ((w))r > T*.

Since w e T*, using Theorem 2.40 and Lemma 2.41, we conclude that

Mr = r* = r0.

Assume now that M is a finite index subgroup of To. Then M also has finite

index in F and therefore

M>pz=p# = r* = r0,

fi fi

using Lemma 2.6, hence M = Fq.
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(2) QZ(HX) fi To is a non-trivial normal subgroup of infinite index in To. More

precisely, let A he the set

A := {(axa~x)2, (a~xax)2, (a3a~x)2, (a~xa3)2, aA5}±x .

Then A c Ai n To < QZ(HX) n To, since for each a e A and b e Ev we have

Ph(a)(b) = o and pv(b)(a) e A, using Lemma 1.1 (la).

Note that we have \F%i \F9/F^,X | = 3 for the vertical amalgam decomposition of

To = F9 *fs1 F9 (more than 2 by Proposition 1.6, since Ph is not 2-transitive),
and To is therefore even SQ-universal, according to Proposition 1.7.

D

Remarks, (see Appendix D.l for much more history)

(1) Higman's group

H = (a, b, c,d | b ab = a
,
c be = b ,d cd = c ,a da = d )

introduced in [34], has no proper subgroup of finite index. There is another

similarity to the group To of Example 2.52: Using small cancellation theory,

Schupp proved in [62] that H is SQ-universal. By the way, H was used to show

the existence of a finitely generated infinite simple group (one takes the quotient
ofH by a maximal normal subgroup of H), thus answering a question posed by
Kuros ([42]).

(2) Bhattacharjee has constructed in [7] an amalgam F3 *f13 F3 without non-trivial

finite quotients. It is not clear if it has proper infinite quotients.

(3) In [68], Wise gave a construction of a square complex, whose fundamental

group has no non-trivial finite quotients.

As usual, we give in Table 2.10 orders of some quotients of the group F defined in

Example 2.52. The infinite quotients in the table correspond to elements in Ai.

r/((wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ax, ..., a4 2 4 2 4 2 4 2 4 2 4 2 4

as 2 4 2 oo 2 4 2 oo 2 4 2 oo

bx,...,b5 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.10: Some orders of F/((wk))r in Example 2.52
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2.7 A group which is not virtually torsion-free

Using an idea of Wise ([68, Section II.6]), we construct a finitely presented infinite

quotient Q of an (8, 8)-group such that Q is not virtually torsion-free, i.e. each sub¬

group of Q of finite index has non-trivial elements of finite order.

Lemma 2.55. (Wise, cf. [68, Easy Lemma II.6.1]) Let G be a non-residually finite

group andg e G a non-trivial element such that

gt C\N
/<G

and assume that g ^ ((g"))g for some n > 2 (equivalently: ((g"))o ^ ((g))g)- Then

the quotient G/((g"))o is non-residuallyfinite and not virtually torsion-free.

Proof, (cf. [68,ProofofEasyLemmaII.6.1])Let// < G/((gn))o =' ßbeasubgroup
of finite index (say of index k). Let ty = (j) o n he the composition homomorphism

f : G -^» Q —> Sk,

where tt is the canonical projection and <p is induced by left multiplication on left

cosets in Q/H, i.e. (p(q)(q1H) := qqtH (cf. proof of Lemma 2.6). Since ker xfs < G

and [G : ker\J/] < \Sk\ = k\ is finite, we have g e ker^, hence

Jt(g)=g((g"))Geker4><H.

By assumption g g ((gn))c, which implies g((gn))c 7^ Iß- We conclude that Q is

non-residually finite.

H is not torsion-free, since (g((gn))G)n = ((g"))o = 1//- d

Example 2.56.

R4.4 :-

axbxa7 b

2 u2 , axb2ax Oj , axb3a2 b3 , axb4a2 04,

-U-U-l -U-l U-l; -U-l
axbA a2 bA , axb3 a2 02, axbx a2 b3, «202^2 °i ,

a3oia4 o2 , a302ö3 bx , a3b3aA b3 , a3o4a3 04,

-U-l; -U-l U-l -U-l
a3b3 aA b2, a3bx aA b3, a4b2aA bx , a4o4a4 bA



82 CHAPTER 2. NORMAL SUBGROUP STRUCTURE, SLMPLICITY

Theorem 2.57. Let F be the (8, %)-group defined in Example 2.56 and let w be the

element a2ax a3aA .
Then Q := F/((w))r is non-residuallyfinite and not virtually

torsion-free. More precisely, the element

w((w2))re p N <Q

has order 2 in Q.

Proof. The non-residually finite (8, 6)-complex of Example 2.39 embeds into the

(8, 8)-complex of Example 2.56 and induces a 7Ti-injection by Proposition 1.9(1),
in particular

we P N

by Lemma 2.41. Note that w ^ Ai, since p«(u>)(°4) = b^x ^ 04 (see Figure 2.4).

ax «2 a3 aA

-- -«- -- -«-

04 a v 04 a 04 v 04 v 04

«2 a\ aT> aA

Figure 2.4: Illustrating p«(u>)(»4) = b^ in Example 2.56

However, by Lemma 1.1 (la), the set

A := {w2, (axa2 o^ûu" )2, (axa2 a3a^ )2, (a2ax~ a4a3 )2}

is a subset of Ai, since for each a e A and o e Ev we have ph(a)(b) = b and

pv(b)(a) e A. Using w2 e Ax < F, we conclude that ((w2))r < Ax and therefore

w $l ((w2))r- Now apply Lemma 2.55 to the quotient F/((w2))r-

Remark. Let T be a (2m, 2//)-group such that every non-trivial normal subgroup of F

has finite index, for example by Proposition 2.1. Then every quotient of F is either

torsion-free (if the quotient is T/l = F) or finite, in particular virtually torsion-free.

2.8 Locally primitive, not 2-transitive

To guarantee that an irreducible (2m, 2//)-group has no non-trivial normal subgroup
of infinite index, it is required in Proposition 2.1 that both local groups Ph and Pv

are 2-transitive. We construct now an irreducible (As, /,l))-group, where Pv < SXo

is primitive, but not 2-transitive. All primitive permutation groups are 2-transitive in

degree 2, 4, 6, 8, 12 and 14, see Table C.l.
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Example 2.58.

R

axbxax~ b2 , axb2a2 b3 , axb3a2 bx,

axb4a2 bj , axbsa2 bs, axbj a2 b^ ,

3.5 := i axb~xa2b~x, axb~xa~xb3, axb2xa2b4,

a2bxa3xb2, a2b2a3xbx, a3bxa3b2,

a3b3a3xb3x, a3b4a3b^x, a3b5a3xb5

Theorem 2.59. Let F be the (6, I0)-group defined in Example 2.58. Then

(1) Ph = As; Pv = Ss < SXo is primitive, not 2-transitive.

(2) There are two amalgam decompositions ofF:

F5 *f25 FX3 = F= F3 *f21 Fxx .

There is a vertical decomposition ofFç,

To = F9 *f49 F9 ,

acting locally like As (butpossibly not effectively) on the tree T2m = Ts, and a

horizontal decomposition

To = Fs *f41 ^5 < Aut(Tîo),

where the (effective) action on 7io is locally like Ss < SXo, in particular locally

primitive, but not locally 2-transitive.

(3) Hfr(F; W) is infinite dimensional as M-vector space (cf. Theorem 2.3(8)).

(4) F is SQ-universal, in particular not virtually simple.

(5) [F, F] = To and Fq is perfect.

(6) F is not linear over anyfield, in particular irreducible.

Proof. (1) We compute

p„(oi) = (l,5,4,3,2),

p„(o2) = (2,6,5,4,3),

Pv(b3) = Pv(bs) = (I, 2)(5, 6),

pv(b4) = (1,2, 6, 5)(3, 4),
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ph(ax) = (1,1,9, 10,3,2X4,6,5),

p«(a2) = (1,8,9)(2,4, 10)(5,6,7),

p«(a3) = (l,9)(2, 10)(5,6).

(2)
The action of Pv on the sphere S(xv, 2) has two orbits of size 60 and 30,

(2)
respectively. Observe that in general the action of Pv on S(xv, 2) is transitive

if and only if Pv is a 2-transitive permutation group. Note that Pv acts like £5

on the set of 2-element subsets of {1, 2, 3, 4, 5}.

(2) Use Proposition 1.3 and Proposition 1.4. The explicit horizontal decomposition
of To can be found in Appendix A. 5.

(3) In the horizontal amalgam decomposition F = F3 *p21 Fxx we have

\F2i\F3/F2i\ = 3 and \Fu/F2i\ =2.

See Proposition 1.6 for an easy method to compute \F2i\F3/F2i\. Now we

apply a result of Fujiwara ([28, Theorem 1.1]), which states that H^(A *c5;t)
is an infinite dimensional R-vector space if \C\A/C\ > 3 and \B/C\ > 2.

Note that the assumptions of Fujiwara's theorem are not fulfilled in the two

(F3 *fu /^-decompositions of Example 2.2, since |-Fi3\F3/.Fi3| = 2 due to

the 2-transitivity of/3« and Pv in Example 2.2.

(4) Apply Proposition 1.7 to F = F3 *f21 Fh. Observe that F does not satisfy the

assumptions ofthe normal subgroup theorem [17, Theorem 4.1], since H2 is not

locally 2-transitive and consequently not locally oo-transitive.

(5) This is a short computation.

(6) It follows from [17, Theorem 1.4], see also Proposition 4.4 in Section 4.2.

D

Proposition 2.60. Let F be as in Example 2.58. Then

<<«i»r = To, if ke {2 + 61,4 + 61}, I e N0 .

Moreover, ((àf))r = ((aX2))r = ((ax*))r = F0.

Proof. For the first part, we only give the idea of the proof, which is essentially the

same as in the proof of Proposition 2.12: show that ((0405^ = To and ((b2))r = To,

then show that for / e No

a-k(b-xb3a\b3xbs) =

We have checked the second part of the proposition with MAGNUS ([50]). D
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Conjecture 2.61. The group F ofExample 2.58 is non-residuallyfinite and

f]N = F0.

See Table 2.11 for the orders of some quotients of F.

F/((wk))r k= 1 2 3 4 5 6 7 8 9 10 11 12

w = ax, Ü2, a3 2 4 2 4 2 4 2 4 2 4 2 4

bx,...,b5 2 4 2 4 2 4 2 4 2 4 2 4

Table 2.11: Some orders of F/((wk))r in Example 2.58

We also would like to construct an explicit non-trivial infinite index normal sub¬

group of T, for example given as normal closure of one element or of several elements,
but we did not manage to do this. What follows is a mix of ideas to achieve this goal, a

possible application to Kazhdan's property (T), and some remarks on SQ-universality.

Conjecture 2.62. Let F be the group defined in Example 2.58 andxv a vertex in TXo.

Then every orbit ofthe H2(xv)-action on 9<x)7io is uncountable.

"Proof". Studying the orbits of the local action of H2 on finite spheres S(xv, k), we

believe that the orbit of any boundary point co e 3oo7io under the H2(xv)-action
contains the uncountable boundary at infinity 3oo7i0;4,7 of a certain infinite subtree

7io;4,7 C 7io. This subtree contains S(xv, 1) and the valency of any vertex yv ^ xv is

either 4 or 7 (depending on co), but constant on finite spheres S(xv, k).
More precisely, we imagine reduced paths in 7"io originating at xv to be labelled by

freely reduced words in the free group (bx, ..., 05}. Using the explicit isomorphism
Ev = {1,..., 10} described in Section 1.4, we identify the sphere S(xv, k) with the

set of ^-tuples

{(ex, ...,ek)e{l,..., 10, : et + e1+x ^ 11 for each i e {1,..., k - 1}}.

For each k > 2, we define an equivalence relation ~k on S(xv, k) as follows. First,

~2 gives a partition of S(xv, 2) into two equivalence classes consisting of 30 and

60 elements, respectively. The equivalence class with 30 elements is the set {(1, 3),

(1, 5), (1, 9), (2, 6), (2, 7), (2, 10), (3, 4), (3, 5), (3, 6), (4, 1), (4, 4), (4, 9), (5, 2),

(5, 8), (5, 9), (6, 1), (6, 8), (6, 10), (7, 3), (7, 7), (7, 8), (8, 2), (8, 4), (8, 10), (9, 1),

(9, 3), (9, 6), (10, 2), (10, 5), (10, 7)}. For k > 3 we define

(ex,...,ek) ~k (f,...,fk) :^=> (el7el+x) ~2 (fi,fi+x)Vi e {1,..., k - 1}.

Note that we have 2k~x equivalence classes on S(xv, k) with respect to ~&, where the

number of elements in each class is 10 • 6J 3h~x~J for some j e {0,..., k — 1}. We

have checked that the /^(x^-action induces exactly the equivalence relation ~k on

S(xv,k) fork = 2,3,4. D
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As a "corollary" of Conjecture 2.62, we have

Conjecture 2.63. Let F be the group ofExample 2.58. Then QZ(//2) = 1.

"Proof". If Conjecture 2.62 holds, then we follow verbatim the proof of [16, Propo¬
sition 3.1.2, 1)]: Let S c 3<x)7io be the set of fixed points of hyperbolic elements

in QZ(//2). Then S is countable, since QZ(//2) is countable, which follows directly
from the fact that QZ(//2) is discrete (see [16, Proposition 1.2.1, 2)]). Moreover, S is

//2-invariant, since QZ(//2) is a normal subgroup of H2. We could conclude by Con¬

jecture 2.62 that S is empty, in other words QZ(//2) has no hyperbolic elements. On

the other hand, QZ(//2) acts by [16, Proposition 1.2.1, 2)] freely on the vertices of 7"io

(in particular, there are no elliptic elements in QZ(//2) \ {1}), hence |QZ(//2)| < 2.

But then, QZ(//2) Q Z(H2) = 1. D

See the subsequent Table 2.12 to check that small powers of 01,..., 05 are not in

the group A2 < QZ(//2) (see also Appendix A.5 for a computation of \pv (w)\ for

all words w of length 2 and k < 5).

pik)(w) k= 1 2 3 4 5

w = 01, 02 5 10 100 600 3000

b3 2 10 50 100 1000

04 4 8 40 200 1000

bs 2 4 20 40 1200

Table 2.12: Order of pv\w) in Example 2.58

For instance, it follows from this table that b\ ^ A2, if 1 < j < 3000, using the

following general lemma.

Lemma 2.64. Let F = (ax, ..., am, bx, ..., o« | Rm.„) be a (2m, 2n)-group and

b e (bx, ..., b„) an element such that bJ e A2 for some j e N. Then \pv (b)\ < j

for each keN.

Proof. Fix any keN. Using the identification

A2 = p kerpf>

keN

we get

hence \pv (b)\ < j. D
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Ph (w) k= 1 2 3 4

w = ax 6 12 72 432

a2 3 6 12 72

a3 2 4 8 16

Table 2.13: Order of p{h'(w) in Example 2.58

Compare Table 2.12 to Table 2.13, where we already know that QZ(HX) is trivial

by [16, Proposition 3.1.2, 1)].

Conjecture 2.63 implies another conjecture:

Conjecture 2.65. Let F be the group ofExample 2.58 and let N < F be a non-trivial

normal subgroup ofinfinite index. Then F/N is an infinite group havingproperty (T)

ofKazhdan.

"Proof". We know that QZ(HX) = 1 (see [16, Proposition 3.1.2, 1)]) and assume

that QZ(ZZ2) = 1 (see Conjecture 2.63). For 1 ^ N < T and / = 1, 2, we have

1 t^ pr,(iV) < H,. By [16, Proposition 1.2.1] HJpr^N) is compact. We can apply

[17, Proposition 3.1] to conclude that F/N has property (T).
Note that there are uncountably many non-isomorphic infinite quotients F/N,

since F is SQ-universal by Theorem 2.59(4) (see [56], the proof is based on the

fact that there are uncountably many non-isomorphic finitely generated groups, but

each quotient F/N, being countable, has only countably many finitely generated sub¬

groups). D

A homomorphism of B. H. Neumann

Proposition 2.66. (Neumann, see [55]) Let A, B, C be groups, Ia : C -> A and

iß ' C -> B two injective homomorphisms and assume that A ^ 1. Then there is a

surjective homomorphism

p : A *c B -» P < Sym(^4 x B),

suchthat P ^ 1. Inparticular, ifp is not injective, we get a non-trivialproper quotient
P = (A *c B)/kev p ofA *c B, and ifp is injective, then A *c B < Sym(^4 x B).

Proof, (cf. [55]) We fix right coset representatives Sa '= {«i = 1, «2, «3, • • •} and

Sb '= {b\ = 1, Ô2, o3,...} of C in A and B, respectively, i.e.

A = \_\ Ca, and B = \_\ Cbj .
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We will define two homomorphisms

Pa: A -> Sym(^ x B) and pB : B -> Sym(^ x B)

as follows. Let (x,y) e A x B, then pA(a)(x,y) := (ax,y). Obviously, pa is a

homomorphism:

pA(aa)(x,y) = (aàx,y) = pA(a)(äx,y) = pA(a)pA(ä)(x,y).

To define pß(b)(x, y), note that with respect to the chosen (fixed) right coset repre¬

sentatives, we have unique decompositions

x = cxax, y = cyby, bcxby = czbz (cx, cy, cz eC, axeSA, by, bz e SB).

Now we define pß(b)(x, y) := (czax, cybz) and check that pb is a homomorphism:

pB(bb)(x,y) = (ctax, cybt),

where bbcxby = ctbt (ct e C,bt e Sb) is the unique decomposition. We have

pB(b)(x,y) = (crax, cybr),

where bcxby = crbr (cr e C,br e Sb) is the unique decomposition. Hence,

pB(b)pB(b)(x,y) = pB(b)(crax, cybr) = (ctax, cybt) = pB(bb)(x,y),

since bcrbr = bbcxby = ctbt. Let c e C, then

pB(c)(x,y) = (ccxax, cyby) = (cx,y) = pA(c)(x,y),

in other words, pa ° ïa = Pb ° iß- By the universal property of A *c B, the desired

homomorphism p : A *c B -» P exists (see the following diagram), where the group

P < Sym(^ x B) is generated by {pa(A), Pb(B)} Q Sym(AxB). Obviously,/3 ^ 1,

since A ^ 1 (by assumption) and p^(a)(l^, 1#) = (a, 1#).

D

Question 2.67. Let F be the group defined in Example 2.58. Is there an amalgam

decomposition A*cBofF (or ofits subgroup Tq) such that the homomorphism p of

Proposition 2.66 is not injective?



2.8. LOCALLYPRLMITIVE, NOT 2-TRANSITIVE 89

A result of Lyndon

Perhaps useful in the construction of infinite quotients of amalgamated free products
could be the following proposition of Lyndon:

Proposition 2.68. (Lyndon [48, Proposition 1.3]) Let G = A*cB be an amalgamated

free product. Let Na < A, Nb < B be normal subgroups such that Na C\C = Nb H C.

Then

G/N = A/NA *c/nc B/Nb ,

where Nc := NA nC = NB nC andN := ((Na UNb))g-

Proof. See [48] or [22]. D

Blocking pairs

One method to prove the SQ-universality of an amalgamated free product is a criterion

of Schupp ([62]) using the notion of a blocking pair. The following definition is taken

from [62]: Let C < A he groups. A pair {xi, X2} of distinct elements in A \ C is called

a blockingpair for C < A if

i) xfx* éC\{l}, for all/, / = l,2;e,8 = ±l.
1 J

ii) x^cx) i C, if c e C \ {1}; /, j = 1, 2; e, 8 = ±1.

Proposition 2.69. (1) (Schupp [62]) If there is a blocking pair for C < A or a

blockingpairfor C < B, then the amalgam A *c B is SQ-universal.

(2) If there is a blockingpairfor C < A, then \C\A/C\ > 3.

(3) Let F be a (2m, 2n)-group. Suppose that Ph < S2m is transitive. Then there is

no blockingpairfor C < B and no blockingpairfor C < A, where

B *c A := P„ *F^2m+2mn ^1-m+mn = F

is the vertical decomposition given by Proposition 1.3(1a).

Proof. (1) See [62], the proof uses small cancellation theory.

(2) Let {xi, X2} be a blocking pair for C < A. Obviously CxiC /C/ CX2C.

Assume that CxiC = CX2C, thus there exist ci,C2 e C such that xi = C1X2C2.

If ci = 1 and C2 = 1, then xi = X2, a contradiction. If ci ^ 1, then we get the

contradiction xj"^1X2 = c^x e C. If C2 ^ 1, thenx2C2X1~1 = cj"1 e C, again
a contradiction to the blocking pair assumption.
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(3) By part (2), there is no blocking pair for C < A, since

\C\A/C\ < \A/C\ =2<3.

Let xi be in a blocking pair for C < B. Let o be a non-trivial element in

ker(p„ : (bi, ... ,bn) -» Ph). Since [B : C] = 2m is finite, there is an integer
ieN such that bk e C. Let c := bk, then c e kerp„ \ {1} fixes the 1-sphere
around the vertex "5" in the corresponding Bass-Serre tree (see Figure 2.5), in

particular c fixes the edge "Cxi", hence Cxic = Cxi, but then xxcxx~ e C is a

contradiction to the assumption that xi is in a blocking pair for C < B.

Figure 2.5: Illustration in the proof of Proposition 2.69(3)

D

2.9 Three candidates for simplicity

So far, we have presented many simple groups and many candidates. In this section,

we give three more candidates for simplicity coming from three different construc¬

tions. The third one (Example 2.77) has very small finite presentations and is therefore

particularly suitable for computer experiments.

A non-linear (4, 6)-group

Let T be the (4, 6)-group defined by

R

2-3 •
=

axbxax xb2 x,

axb3a~xbx,

ax
o9 a9 oq

aio2a2 Xblx,

axb~xa2b3,

J2 "2 u3 ' albXa2 02

Some properties of F will be described in Section 4.2, in particular F is not linear.

Question 2.70. Let F be as above. Is To simple?
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Embedding the (4, 6)-group of Wise

Recall Wise's (4, 6)-group of Example 2.36:

axb2a\xb\x, a2b2a2xb1~x,

R

2-3 = \ axb3a2 b3 , axbxa2 o2 ,

ci2bXax b3 , a2b3ax~ b2

Lemma 2.71. Let F be the group defined in Example 2.36 and let 8 : F -> F,

y i-> b3yb3 be the conjugation by b3. Then Fix(ö) = (o3).

Proof. Note that Fix(ö) = {y e F : b3yb3 = y} is the centralizer of 03 in F. The

statement follows now from Proposition 1.12(lb). D

Proposition 2.72. Let F be the (4, 6)-group defined in Example 2.36 and let S be the

subset

S:=f)(b3)((b?))r \ (bs) cf.

keN

(1) IfS is non-empty, then F is not (b3)-separable.

(2) Ifye Sfor some y eF, then F is non-residuallyfinite such that

y-1e(y) = [y-x,b3]e f] N.

V<ir

(3) Ifaxa2 e S, then the index 4 subgroup fo of the (A%, A%)-group F which is

given by

R4.4 :--

-U-l U-l
axbxa2 b2 , axb2al bl , axb3a2 b3 , axb4a4 04,

-U u-l -U-l U-l; -U-l
axb4 «204 , axb3 a2 02, axbx a2 b3, «202^2 °i ,

a2b4a3b4, a3bxa3b2, a3b3a7xb7x, a3bVxa7xb3,
'4 "4

a3b3 a4 b2 , a3b2 a4 b4 , a3bx a^Oj , 0401^402

is a finitely presented torsion-free simple group isomorphic to an amalgam of
theform Fq *p49 Fq.
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Proof. (1) Let y he an element in S, let iff : F -> Q he a homomorphism onto a

finite group Q and let k he the order of ip~(b3) in 2. Then b3 e ker(ip-) and ^
can be written as a composition

r^>r/((of))r^>r/((o5))r^>0.

Hence

VKy) = f3f2(y((bf))r) e f3f2((b3)((bf))r) = f3((b3)((bk))r) = f((b3))

and T is not (03}-separable.

(2) It follows from Lemma 2.38, using part (1) of this proposition and Lemma 2.71.

(3) Using part (2) of this proposition, the claim follows as in Section 2.5, because

the (4, 6)-complex corresponding to F embeds into the (8, 8)-complex corre¬

sponding to f, and (([ûçtff \ °3]))f has index 4 in F.

D

Lemma 2.73. Let F be the group ofExample 2.36. Then [F, F] = ((axa2 }}p and

r/[r, T] = (ax, bx \ axbx = bxax) = 1?.

Proof. The inclusion [r, F] > ((axa2 }}r follows from axa2 = [ax, b3 ] e [F, F].

Let N < F he any normal subgroup containing axa2 ,
for example N = ((axa2 }}r.

Then axN = a2N, hence

a2bxN = axbxN = 02^2^ = b2axN = a2b3N,

and

02ö2^V = axbxN = a2bxN = b3axN = 03^2N,

which implies bxN = 02JV = b3N. Moreover, bxaxN = axb2N = axbxN, in

particular, the group F/N is generated by {axN, bxN} and abelian, therefore [r, F] is

a subgroup of iV. D

Lemma 2.74. Let F be the (4, 6)-group defined in Example 2.36. Then

(([a2a~x, b3]))r = ((axa~x))r .

Proof. We have checked the statement using MAGNUS ([50]). The inclusion

(([a2a~x, b3]))r < ((axa~x))r

is obvious, since \a2ax~ , 03] e \F, F] = ((axa2 ))r by Lemma 2.73. D
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Conjecture 2.75. Let F be the group ofExample 2.36. Thenfor each keN

axa2x e(b3)((bf))T,

in particular Proposition 2.72 can be applied.

Conjecture 2.76. Let F be the group ofExample 2.36. Then

P # = [r,n.

Remarks. Let F he the group of Example 2.36. Then

(1) W3))r Ï ((bJ3))r, if/ Ï j and/, j e N, since (F/((b'3))r)ab = ZxZ„

(2) It follows from Lemma 2.73 that axa~x e ((ôf»r if and only if F/((bf))r is

abelian. Using MAGNUS ([50]), we see that F/((bl))r is not abelian, in other

wordsaxa2x ^ ((b^))r-

(3) Ifk < 10, then the number of subgroups of index k is the same for the group F

and the group I?.

A 4-vertex construction

A (2m, 2«)-group F is never simple, since To is a normal subgroup of index 4. How¬

ever, we have conjectured To to be simple in Example 2.2, 2.18, 2.21, 2.30, A.26

and 2.33, and proved it to be simple in Example 2.43 and in many more examples listed

in Table 2.7. The corresponding square complex Xq has 4 vertices and 7^ x 72« as

universal covering space. In this section, we directly construct a 4-vertex square com¬

plex 7, which is not a 4-fold covering of a (2m, 2/2)-complex. Its universal covering

space Y is T3 x T4. Observe that due to this more general construction, the valencies

of the regular trees in Y are not necessarily even. As a consequence, the number of

geometric squares in Y is only 12 (this is small, compared to the 36 geometric squares

ofXq in Example 2.2 or the 100 geometric squares of Xq in Example 2.43) and we get

therefore relatively short presentations of JtxY. The construction of 7 is done in such

a way that 7 is irreducible, all the "local groups" are at least 2-transitive and 7Ti7 is

perfect. This seems to give some reasons to hope that 7Ti7 is a simple group.

Note that we have introduced the local groups and the notion of link in Section 1.2

only for (2m, 2/2)-complexes, but they can also be defined similarly, now depending
on the vertices, for more general square complexes, see [17, Chapter 1]. In the fol¬

lowing, we denote these local groups by Ph{k)(a), Pvk)(a), Ph{k)(ß), Pvk)(ß), Ph{k\y),
Pvk)(y), PhH.^), Pvk)(8), and the links by Lk(a), Lk(ß), Lk(y), Lk(8), where a, ß,

y, 8 are the four vertices of 7 and keN.
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dx a iL b2 d3 A a b3 t/4 a

dx a A bx d3 a a o2 d2 a a b3 t/4 Ai

d3 a iL Ol t/4 iL iL b2 d2 iL iL 03 ö?l iL

a3 a3 a3 a3

Figure 2.6: The 4-vertex square complex 7 of Example 2.77

Example 2.77. Let Y be the 4-vertex square complex illustrated in Figure 2.6.

Proposition 2.78. Let Y be the 2-dimensional cell complex ofFigure 2.6 with four
vertices a, ß, y and 8. Then

(1) The links are Lk(a) = Lk(ß) = Lk(y) = Lk(8) = K3<4 (complete bipartite

graph), the universal covering space ofYisY = T3xT4.

(2) We have local groups

Ph(a) = Ph(8) = S3
, Ph(ß) = Ph(y) = S3

Pv(a) = Pv(ß) = S4 , Pv(y) = Pv(8) = S4 .

(3) The complex Y is irreducible.

(4) Thefundamentalgroup nxY is a perfect group.

(5) There are amalgam decompositions F3 *p7 F3 = jtxY = F2 *f5 ^2-
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Proof. (1) It can be directly read off from Figure 2.6.

(2) This follows from the definitions (see [17, Chapter 1]) and Figure 2.6. Note

that for example Ph(ot) and Ph(ß) could a priori be different, since a and ß are

not in the same connected component of the vertical 1-skeleton of 7. For an

example where indeed Ph(ot) ¥ Ph(ß), see Example A.29.

(3) We compute

|Pu(2)(a)| = \P{v2)(ß)\ = \P{v2)(y)\ = \Pf\8)\ =24-64.

The claim follows now from an obvious generalization of [17, Proposition 1.3]
to the case where the horizontal 1-skeleton is not connected.

(4) This follows directly from any of the explicit presentations of 7Ti7 given in the

proof of part (5).

(5) We give three presentations of 7Ti7 and the corresponding isomorphisms be¬

tween them. If we choose the vertex a as base point and the edges ax, bx, dx as

"spanning tree" in the 1-skeleton of 7, we immediately get the following finite

presentation of nx(Y, a):

7tx(Y, a) = (a2, a3, b2, b3, o4, c2, c3, d2, d3, d4 \

b2 = d2, b3 = d3, b4 = d4c2,

a2 = c2, a2b2 = d3c2, a2b3 = d2c3, a2b4 = d4,

a3 = d3c3, a3b2 = d4c3, a3b3 = d2c2, a3b4 = c3),

and after replacing C2, 6?2, d3 by «2, 02 and b3, respectively, we get

7tx(Y, a) = (a2, a3, b2, b3, b4, c3, d4 \

04 = d4a2, a2b2 = b3a2, a2b3 = b2c3, a2b4 = d4,

a3 = b3c3, a3b2 = d4c3, a3b3 = b2a2, a3b4 = c3).

Using the GAP-commands ([29])

GG := SimplifiedFpGroup(G); and RelatorsOfFpGroup(GG);

where G describes the group 7Ti(7, a) as given above, and writing «2, b3 as x

and y, respectively, we get a presentation of 7Ti7 with two generators x, y and

three relators

xy x~ y~ xyx~ y~ x
,

_2 —2 2 —1—222—1

xyx y x yxy x y x y

— 1 —1—2 2—1—2 2 —12
x yxy x yx y x y xy x y.
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The two decompositions of itx Y as amalgamated free products of free groups

follow from [68, Theorem 1.1.18].

F3 *Fl F3 = (b2, b3, b4, d2, d3, d4\d2 = b2, d3 = b3, d\ = bj,

d4d3d4 = 04020^ ,

d4d22d~x = b4b3b4xb3b4x,

ö?4ö?2~ d4d2d4 = 040^" 020^ b3b4 ,

ö?4ö?2~ d3d2d4 = 040^" b4 b3b4 ).

F2 *f5 F2 = (a2, a3, c2, c3\a2= c2, a\ = c3c~xc3c2c3,

a3xa2a32 = c3x c2c3x c2c3x,

a3a2a3 = c3c2 c3 , a3a2a3 = c3c2 c3).

Isomorphisms between these three groups are given as follows:

T4 -r\ F2 *f5 F2 *—? Jtx(Y, a) ^^> F3 *p7 F3 r\ T3

J407«2 < > «2 < >
Ü4b4

a3 <—> a3 <—> ö?2^4
U „-1

a2 a3c3 C2 <—> 02 <—> 02

a3c~x <—> 03 <—> 03

a3 c3 <—> 04 <—> 04

C2 <—> C2 <—> d4b~4
c3 <—> c3 <—> d2 d4 0403

a2 a3c3 C2 <—> ö?2 <—> d2

a3c3 <—> d3 <—> d3

Cl2Cl3 c3 <—> t/4 <—> ö?4 .

D

Question 2.79. Let Y be as in Example 2.77.

(1) Is it true that nx Y does not have proper subgroups offinite index?

(2) Is 7txY a non-residuallyfinite group?

(3) Does every non-trivial normal subgroup ofnx Y havefinite index?

(4) Is 7tx Y a simple group?

Remark. We have checked with GAP ([29]) that ((wk))7tlY = nxY', where w is any

generator of nx (7, a) in the first presentation given in the proof ofProposition 2.78(5),
and& = 1,..., 8.



Chapter 3

Quaternion lattices in

PGL2(QP) x PGL2(Q/)

In Section 3.1, we provide some concepts which will be used throughout this chap¬

ter, in particular we study Hamilton quaternion algebras over commutative rings.
To any pair of distinct prime numbers p, I = 1 (mod 4), Mozes has associated a

(p + 1,1 + l)-group Fpj < PGL2(<Qp) x PGL2(Q/). There is a strong interplay
between properties of quaternions and the group Fpj, for example Fpj turns out to

be commutative transitive. We recall the definition of Fpj in Section 3.2 and prove

that it is a normal subgroup of index 4 of the group of invertible elements of the

Hamilton quaternion algebra over the ring Z[l/p, 1 //], modulo its center, adapting
some ideas from Lubotzky's book [45]. These ideas are also useful to realize Fpj
as a subgroup of S03(Q) or PGL2(C), and to construct homomorphisms onto finite

groups PGL2(Z?) or PSL2(Z?) for each odd prime number q different from p and /.

These and other results are illustrated by concrete examples. In Section 3.3 and 3.4,

we generalize and adapt the construction of Fpj to the other cases of prime num¬

bers p, I = 3 (mod 4) and p = 3 (mod 4), / = 1 (mod 4), prove that these groups

are also (p + 1,1 + l)-groups, and again give many examples. In total, we have

made computations in 130 examples. They lead to some conjectures in Section 3.5,

in particular about the abelianization of Fpj, generalizing a conjecture of Kimberley-
Robertson given for the classical case. It also seems that the abelianization of the

subgroup (Fpj)q is independent ofp and /, except ifp = 3 or / = 3. The notion of an

anti-torus was introduced by Wise, and only very few examples are known. We give
in Section 3.6 an easy criterion for the existence of anti-tori in commutative transi¬

tive (2m, 2«)-groups and combine it with earlier results on centralizers. In particular,
these results can be applied to the groups Fpj, and can therefore also be expressed
in terms of integer quaternions. It turns out that the groups Fpj have many anti-tori.

Then we study relations between free anti-tori in Fpj, free subgroups of S03(Q) and

quaternions generating a free group. As an application, we prove for example that

97
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the two quaternions 1 + 2/ and 1 + 4k do not generate a free group, which is quite

surprising. In Section 3.7, we give a different construction for p = 2, / = 5, also

based on quaternion multiplication.

3.1 Some notations and preliminaries

At first, we define quaternions over a commutative ring, following [23, Section 2.5]:
Let Rhea commutative ring with unit. Then the Hamilton quaternion algebra over R,

denoted by H(/?), is the associative unital algebra defined as follows:

• M(R) = {xo + xxi + X2J + x3k : xq, xx, X2, x3 e R} is the free R-module with

basis 1, /', j, k.

• 1 = 1 4- 0/: + Oj: + Ok is the multiplicative unit.

• i2 =j2 = k2 = -l.

• ij = -ji = k, Jk = ~kJ = U ki = ~ik = j-

This gives the multiplication rule in M(R)

(xq + xxi+x2j + x3k)(yo + yxi + y2j + y^k)

= xQyQ - xxyx - x2y2 - x3y3

+ (x0yx + xxy0 + x2y3 - x3y2) i

+ (xoy2 -xxy3+ x2yo + x3yx) j

+ (xoy3 +xxy2- x2yx + x3y0) k.

For a quaternion x = xo + xxi + X2J + x3k e EI(/?), let x := xo — xxi — X2J — x3k he

its conjugate, |x|2 := xx = xx = Xq + x2 + x2 + x3 e R its norm, and ÏR(x) := xq

its "R-part". Note that \xy\2 = \x\2\y\2.
We divide quaternions x = xo + xxi + X2J + x3k e H(Z) with odd norm |x|2 into

eight classes (and say that these quaternions have type oq, ox, 02, o3, eo, ex, e2 or e3)

according to Table 3.1.

This terminology of types is not standard, but useful to simplify some definitions

and statements. Moreover, we say that x has type o if it has type oq, ox, 02 or o3. Note

that x has type o if and only if |x |2 = 1 (mod 4). Finally, we say that x has type e if

it has type eo, ex, e2 or e3, which happens if and only if |x|2 = 3 (mod 4).
If R is a ring with unit (denoted by 1), let U(R) he the group of (left and right)

invertible elements in R, i.e. elements x e R such that there are yx, y2 e R satisfying

yxx = xy2 = 1. Observe that then yx = y2. This element is uniquely determined by
x e U(R) and is usually written as x~x.

The following elementary lemmas characterize invertible and central elements in

the Hamilton quaternion algebra M(R).
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X Xo xi X2 X3

type o0 odd even even even

ox even odd even even

e>2 even even odd even

o3 even even even odd

eo even odd odd odd

eX odd even odd odd

e2 odd odd even odd

e3 odd odd odd even

Table 3.1: Types of integer quaternions x with odd norm |x|2.

Lemma 3.1. Let R be a commutative ring with unit. Then

U(U(R)) ={x e U(R) :\x\2e U(R)}.

Proof. "d" Takex"1 = (Ixl2)"1^
"ç"Letx e U(U(R)) and y := x"1, then 1 = \xy\2 = \x\2\y\2 = \y\2\x\2, and it

follows |x |2 6 U(R). D

Lemma 3.2. Let Rbe a commutative ring with unit and let x = xq + xxi: + X2J + x3k,

y = yo + y\i' + yij + y3k e W(R). Then xy = yx ifand only if the following three

equations hold:

2(x2y3 - x3y2) = 0

2(x3^i - xxy3) = 0

2(xxy2 -x2yx) = 0.

Proof. This is an elementary computation. We only use the multiplication rule for

quaternions in M(R). D

Lemma 3.3. Let R be a commutative ring with unit.

(1) The central elements in M(R) are

{x e U(R) : xy = yx, Vy e M(R)} = {x e U(R) : x = x}.

(2) ZU(U(R)) = {x e U(U(R)) : x = x}.

Proof. (1) Letx = xq + xxi: +X2J +x3k e M(R). The condition x = x is equivalent
to the condition

2xi = 2x2 = 2x3 = 0
,
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thus if x = x, then xy = yx for each y e M(R) by Lemma 3.2. Conversely,

suppose that xy = yx for each y e M(R). Taking y = /' gives xi = ix, which

is

—xi + xo/' + x3y — X2& = —xi + xo/' — x3y + X2&,

hence 2x2 = 0, 2x3 = 0. Moreover, takings = j, we conclude in a similar way

2xi = 2x3 = 0 and get x = x.

(2) We can use the same proof as in part (1), since /'(—/') = j(—j) = 1, which

shows that/', j e U(M(R)).

D

Remark. If R is a subring of C with unit, then

{x e M(R) : xy = yx, Vy e M(R)} = {x e U(R) : x = dt(x)}

and

ZU(U(R)) = {x e U(U(R)) : x = dt(x)} = U(U(R)) n Zf/(H(C)).

However, for example the case R = Z2 is different, since H(Z2) is commutative and

ZU(U(Z2)) = U(U(Z2)) ^ {x 6 f/(H(Z2)) : x = dt(x)} = {1}.

The following lemma, especially part (3), will be very useful in Section 3.2.

Lemma 3.4. Let Rbe a commutative ring with unit and let x = xo + xxi + X2J + x3k,

y = yo +yu -\-y2j +y?,k andz = zq +zxi +Z2J +z3k be three quaternions in M(R).
Then

(1) xy = —yx ifand only ifthefollowingfour equations hold:

2(x0yo - xxyx - x2y2 - x3y3) = 0

2(x0>'i + xxyo) = 0

2(x0>'2 + x2>'o) = 0

2(x0>'3 + x3y0) = 0
.

(2) Suppose that R is a subring ofR with unit, xo 7^ 0 andxy = —yx. Then y = 0.

(3) Let R be a subring of'C with unit, x ^ xq, xy = yx andxz = zx. Thenyz = zy,

in particular U(M(C)) is commutative transitive on non-central elements.

Proof. (1) This is an elementary computations using the multiplication rule for

quaternions in M(R).
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(2) Using part (1), we have xo^o -- xxyx -- x2y2 - x3y3 -
= 0 and

-xxyo
y\ =

XQ
y2 =

-x2yo

XQ
, ys

-x3yo

XQ

It follows

,

x\yo x2y0 x2y0

x0yo +
-*— + -J— + -J—

= 0
,

XO Xo Xo

and therefore _yo|x |2 = 0. Since |x|2 > x2, > 0, we conclude yo = 0 which

implies yx = 0, y2 = 0 and y3 = 0, in other words y = 0.

(3) By Lemma 3.2, we have to prove _y2Z3 = y3Z2, y^\ = y\zj, and _yiZ2 = yiz\-

We only prove here _yiZ2 = yiz\, the other two computations are completely

analogous: If X2 = 0, then using the assumption xy = yx and Lemma 3.2,

we have xxy2 = X2yx = 0 and x3_y2 = X2.y3 = 0. This implies y2 = 0

(otherwise xi = x3 = 0 and x = xo). Moreover, using xz = zx, we have

X1Z2 = X2Z1 = 0 and x3Z2 = X2Z3 = 0, which implies Z2 = 0. So, we conclude

' uiau .*-2 -/- v, until yXL2
—

~

using x2>'i = xxy2 and x2zi = xiz2.

that_yiZ2 = 0 = ^zi. Assume now that X2 7^ 0, then 1^2
= —^2^2 = ^2^1,

-*2

D

Remark. The statement of Lemma 3.4(2) is not true in H(C). Take for example
x = 1 + ici, y = /'c + /', where /'c denotes the imaginary unit in C, and check that

xy = —yx = 0.

Throughout this chapter, letp,l he two distinct odd prime numbers. Then the ring

Z[l/p, 1//] := {0} U {tprls :r,s,teZ; t ^ 0; t is relatively prime to p and /}

is a subring of Q, containing Z. Note that with this definition, any non-zero element

in ZVl/p, 1//] uniquely determines a triple (t, r, s) having the properties required in

the definition, and vice versa. Of course ZVl/p, 1//] could also be defined as

{-^-:teZ;r,seNo}.
prls

Let (f) he the Legendre symbol. This means that (f) := 1, if p is a quadratic

residue modulo /, i.e. if the equation x2 =

p (mod /) has an integer solution, and

(f) := —1, otherwise. See Table 3.2 for some small examples, where "+" and "—"

stand for 1 and — 1, respectively. The definition of the Legendre symbol can be gener¬

alized to non-prime numbers, but we do not need it here.

Let K he a field, K* = K \ {0} = U(K) the group of invertible elements and

GL2(K) the group of invertible (2 x 2)-matrices with coefficients in K. We denote

by PGL2(K) the quotient group

PGL2(K) = GL2(K)/ l(X0 M:àg/:x|= GL2(K)/ZGL2(K).
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(f) 1 = 3 5 7 11 13 17 19 23 29 31 37 41 43 47

p =

3 — — + + — — + — — + — — +

5 — — + — — + — + + — + — —

7 + — — — — + — + + + — — +

11 — + + — — + — — — + — + —

13 + — — — + — + + — — — + —

17 — — — — + + + +

19 + + — — — + — — + — — — —

23 — — + + + — + + — — + + —

29 — + + — + — — + — — — — —

31 + + — + — — — + — — + + —

37 + — + + + — +

41 — + + — + + + —

43 + — + — + + + — — — — + —

47 — — — + — + + + — + + — +

Table 3.2: Legendre symbol (f) for small distinct odd prime numbers p, I

If A is a matrix in GL2(K), we write

À 0
[A] := A

0 À
:lelx e PGL2(K)

for the image of A under the quotient map GL2(K) -> PGL2(K). We denote by

SL2(K) the kernel of the determinant map det : GL2(K) -> K* and by PSL2(K) the

quotient group

PSL2(iO = SL2(K)/
° ):,2

= 1
0

' SL2(K)/ZSL2(K).

The group PSL2(K) can be seen as a (normal) subgroup ofPGL2(K) via the injective

homomorphism

9 : PSL2(iO - PGL2(iO

:e2 = l\^[A],
6 0

0

where A e SL2(K) < GL2(K).

For q a prime number, we write GL2(t7), PGL2(t7), SL2(t7), PSL2(t7) instead of

GL2(Zq), PGL2(Zq), SL2(Z?), PSL2(Z?). Recall that Zq stands for the finite ring

(field) Z/qZ and not for the "g-adic integers".
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Lemma 3.5. Let K be afieldandB e GL2(K). Then [B] e 9(PSL2(K)) = PSL2(K)

ifand only if det B e (K*)2 := {A2 : À e K*}.

Proof. By definition, [B] e 9(PSL2(K)) if and only if there is a matrix A e SL2(K)

such that [A] = [B] e PGL2(K), i.e. if and only if there is a matrix A e SL2(K) and

an element Aelx such that

To prove the statement of the lemma, we first assume that [B] e 9(PSL2(K)). Then

(with A and X as above)

detB = det .4 • IT2 = IT2 e (K*)2 .

To show the other direction, assume that det B = X2 for some X e K*. If we choose

A - B ( X~l °

then A e SL2(K), since det^4 = X2 X~2 = 1, and we have

À"1 0
B"A-'

0 A"'

D

From now on, we will see PSL2(/C) as a subgroup of PGL2(K) without mention

of the homomorphism 9.

Lemma 3.6. Let p, I be two distinct oddprime numbers. Then p + IZ e (Zf)2 ifand

only if(f) = 1.

Proof. We have the following equivalences:

p+IZe (Zx)2 ^^ 3 x + /Z e Zx such that (x + IZ)2 = p + IZ

<==> 3x e {1,...,/- 1} such that x2 + IZ = p + IZ

•<==> 3xe{l,...,/— 1} such that x =

p (mod /)

<^=> 3 x e Z such that x2 = p (mod /)

D

The next lemma gives a selection of results about the decomposability of prime
numbers as certain sums of squares of integers. They are all well-known in number

theory.
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Lemma 3.7. Let p be an oddprime number.

(1) (Fermât, Euler) p is a sum oftwo squares ifand only ifp = 1 (mod 4).

(2) (Gauss) Assume that p
= 3 (mod 4). Then p is a sum of three squares ifand

only ifp = 3 (mod 8). More generally, an odd natural number s is a sum of
three squares ifand only ifs ^ 7 (mod 8).

(3 ) (Jacobi) There are exactly 8 (p +1 ) representations ofp as a sum offour squares

p = Xq + x2 + x| + x2; xq, xx,X2, x3 e Z. For each such representation, three

integers in {xo, xx, X2, x3} are even, ifp = 1 (mod 4), and three integers are

odd, ifp = 3 (mod 4). Itfollows thatfor p = 1 (mod 4)

|{x Ei(Z) : \x\2 =p}\ =8(p + l),

\{x e H(Z) : |x|2 = p, x has type oo}\ = 2(p + 1),

\{x e HI(Z) : |x| = p, x has type oq, ^(x) > 0}| = p + 1.

Let p he an odd prime number. The following lemma applies for example to

the finite field Zp, the field of p-aà\c numbers Qp and algebraically closed fields of

characteristic different from 2 like C, but not to Z2 or subfields of R.

Lemma 3.8. (see [23, Proposition 2.5.2]) Let K be afield ofcharacteristic different

from 2, and assume that there exist c,d e K such that c2 + d2 + 1 =0. Then M(K)
is isomorphic to the algebra M2(K) o/(2x 2)-matrices over K. An isomorphism of

algebras is given by the map

U(K) -» M2(K)

. ,
/ x0 + xxc + x3d -xxd + x2+x3c\

xq + xxi + x2j + x3k h^
.

y —xia — X2 + X3C xo — xic — x3d J

In particular, ifc2 + l =0 in K, i.e. ifwe can choose d = 0, then the isomorphism
above is given by

U(K) -+ M2(K)

( X0+X1C X2+X3C \
xo + xxi + x2j + x3k \->

,

\ —X2 + X3C Xq — XXC J

Proof See [23, Proof of Proposition 2.5.2]. D

Note that the determinant of the image of x

,
/ X0+X1C + X36? —xxd + X2 + x3c\

\ —xxd — X2 + x3c xo — xxc — x3d J

equals Xq
— x2(c2 + d2) + x| — x2(c2 + d2) = \x\2, i.e. the norm of x.
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3.2 Standard case p, l = 1 (mod 4)

The following construction of the group Fpj is taken from [54], see also [53], [17]
and [41]. Let p, I = 1 (mod 4) be two distinct prime numbers. We first define the

map iff (a monoid homomorphism, as we will see):

f : H(Z) \ {0} -> PGL2(Qi,) x PGL2(Q/)

x i->
xq + xxip x2 + x3ip
-X2 ~\~ X31 p Xq — XX1 p

xo + xxii x2 + x3ii

-x2 + x3ii xq - xxii

where x = xq + xxi + X2J + x3k, and /'„ e Qp, U e Q/ satisfy the conditions

/'J + l 0 and if + 1 = 0.

The assumption p, I = 1 (mod 4) guarantees the existence of such elements ip, U.

Note that iff is not injective, but (for x, y e H(Z) \ {0}) we have ifr(x) = \j/(y) if and

only ify = Xx for some X e Qx. Moreover,

x0 + xxip x2 + x3ip \ / y0+ yxip y2 + y3ip
-x2 + x3ip x0 - xxip J \ -y2 + y3ip y0 - y\ip

Zq + ZXip Z2+ Z3ip
-Z2 + Z3ip Zq — ZXip

where zq, zx, Z2, z3 are determined by the quaternion multiplication

zo + zi/ + z2j + z3k = (xo + xxi + x2j + x3k)(y0 + yxi + y2J + y^k),

in particular ij/(xy) = \J/(x)\J/(y) and

ker(V0 := {x e M(Z) \ {0} :f(x) = 1pgl2(Q^xPGL2(Qo}
= {x e H(Z) \ {0} : x = x}

= H(Z) n ZU(U(Q)),

where

lpGL2(Q^)xPGL2(Q0 =

1 0

0 1

1 0

0 1

This implies that ij/(x)
1
= ij/(x) if x e H(Z) \ {0}, since

— — 9

\J/(x)\J/(x) = \J/(xx) = xff(\x\ )

and |x|2 e ker(\J/). Finally, let

Fpj := {^(x) :x e H(Z) has type o0, l^l2 = PrT; r,s e N0}

= {f(x) :x e H(Z) has type o0, dt(x) > 0, |x|2 =prls; r,s e N0}

he our desired subgroup of PGL2(QP) x PGL2(Q/).
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Mozes has proved the following result:

Proposition 3.9. (Mozes, [54, Section 3J) Ifp, 1=1 (mod 4) are two distinctprime

numbers, then

Fpj < PGL2(Qi,) x PGL2(Q/) < Aut(Tp+x) x Aut(Tl+x)

is a (p + 1,1+ X)-group.

See for example [45, Section 5.3] or [64] for the description of the tree (the
"Bruhat-Tits building") Tp+X corresponding to PGL2(Q/)) and its action on Tp+X.

The fact that Fpj is a (p + 1, / + l)-group is mainly based on a factorization

property for integer quaternions, first proved by Dickson ([24]). However, it does not

follow that Fpj is torsion-free; this is shown in [54, Proposition 3.6]. It is also known

that the groups Fpj are irreducible (see Corollary 3.59(3)).
See [40] for an alternative proof that Fpj is a (p + 1, / + l)-group.

Proposition 3.10. (Dickson [24, Theorem 8J) Let x e HI(Z) be ofodd norm and let

\x\2 = px ... pr be theprime decomposition of \x \2, where thefactors pL are arranged
in an arbitrary but definite order. Then x can be decomposed as x = x^K

..
x^ such

that x^ e HI(Z) and \x^\2 = pL, i = l,...,r. This decomposition is uniquely
determined up to multiplication ofthefactors x^ with a unit ±1, ±/', ±j, ±k e HI(Z)

(ifthere is noprime number dividing x; this is somehow missing in Dickson's original

statement, as noted and corrected by Kimberley [40]).

Before applying Proposition 3.10, we define the two subsets of Fpj

Eh := {f(x) : x e H(Z) has type oq, \x\2 = p)

= {fix) :x e1(Z) has type o0, 9t(x) > 0, |x|2 = p],

Ev :={f(y):ye H(Z) has type o0, \y\2 = l)

= {f(y):ye H(Z) has type o0, dt(y) > 0, \y\2 = 1}.

If f(x) e Eh then also f(x) = ^(x)-1 e Eh. By Lemma 3.7(3), the set Eh has

exactly p + 1 elements. For these reasons, we write

Eh = {ax, ...,a_E±i}±1
2

and similarly

Ev = {bx,...,b1±1}±x.
2

As probably expected, all these definitions of Eh, Ev, ax,..., aE±i, bx,..., bi+i will
2 2

be compatible with the original ones for general (2m, 2«)-groups given in Section 1.2

(here, we have 2m = p + 1 and 2n = I + 1).
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Corollary 3.11. Let p, I = 1 (mod 4) be distinct oddprime numbers and recall that

Fpj = {f(x) : x e H(Z) has type o0, |x|2 = prls; r,s e No}.

(1) Let x e H(Z) be oftype oq such that \x\2 = pi. Then there are integer quater¬

nions y,y,z,z e H(Z) of type oq such that \y\2 = \y\2 = p, \z\2 = |z|2 = /

andyz = x = zy. The quaternions y, y, z,z are uniquely determined by x up

to sign.

(2) Let a e Eh, b e Ev. Then there are unique elements à e Eh, b e Ev such that

ab = bà in Fpj.

(3) The group Fp / is generated by {ax, ..., aP+\ ,bx, ..., bi+i}.
2 2

(4) Let {ax, ..., ap+i_, aP+\, ..., ÖT} be the set ofquaternions
2 2

{x e H(Z) : x has type oq, îft(x) > 0, |x| = p)

and let x e H(Z) be oftype oq such that \x \2 = pr for some r e No- Then there

is a unique representation

x = ±pn wrAax, ...,ap+i, aP+\, ..., ÖT[),
2 2

where rx,r2 e No, 2ri + r2 = r and

wn(ax,..., ap+i, ap+i,..., ÖT)

denotes a reducedword oflength r2 in

{ax, ..., ap+i, aP+\, ...,cëï}
2 2

(reduced means here that there are no subwords oftheform ala^ or c^at).

(5) There are two non-abelianfree groups

(ax, ...,a£±i)r„, =/7£±i and (bx, ...,bi±\)rpl = Fm.
2^2 2-^2

Proof We define a map u : {x e H(Z) : x has type o} —>- {1, /', j, k} by

u(x) :-

1, if x has type oo

/', ifx has type oi

j, ifx has type 02

k, if x has type o3 .

Note that u(\) = 1, u(i) = /', u(j) = j, u(k) = k and that xw(x) always has type oq.
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(1) By Proposition 3.10 there are y, z e H(Z) such that \y\2 = p, \z\2 = / and

x = yz. Since p, I = 1 (mod 4), the quaternions y and z have type o. They
have both the same type since x = yz has type oo. If j) and z have type oo,

we take y := y, z := z and are done. If y and z have type ox, 02 or o3, we

take_y := —yu(y), z := u(z)z and get yz = —j)w(y)w(z)z = —y(— \)z = x.

The uniqueness ofy and z up to sign follows from the uniqueness statement in

Proposition 3.10. Analogously, one proves x = zy.

(2) The given elements a and o uniquely determine y, z e H(Z) of type oo such

that 910) > 0, 9t(z) > 0, [y|2 = /?, |z|2 = / and f(y) = a, f(z) = b. It

follows that yz has type oo and |_yz|2 = pi. By part (1), there are y,ze H(Z)

of type oo such that \y\2 = p, \z\2 = / and yz = zy. Moreover, y,z are

uniquely determined up to sign. In particular, there are unique y, z e H(Z) of

type 00 such that \y\2 = p, \z\2 = I, $i(y) > 0, 9t(z) > 0 and zy e {yz, —yz}.
Now take b := f(z) e Ev and à := f(y) e Eh. The claim follows, since

ab = f(y)f(z) = f(yz) = f(-yz) = f(zy) = f(z)f(y) = ba.

(3) Fix any element x e H(Z) of type oo such that |x|2 e {prls : r,s e No} and

îft(x) > 0. We may assume that r > 0 or 5 > 0. By Proposition 3.10, there is a

decomposition

x=y{X\..y^z{X\..z^

such that y{X),..., y{r) e M(Z) have norm p, and z(X\
...,

z^ e H(Z) have

norm /. Note that the quaternions y^x\ ..., y^r\ z^x\
...,

z^ all have type o,

since p, I = 1 (mod 4). Our goal is to have a decomposition

x=y(XK..y^z(XK..z^

such that y(x\ ..., y^ and z^x\
...,

z^ have norm p and /, respectively, and

are moreover of type oq. To achieve this, we define the following algorithm:

yW = y«)
yM = u(y(l~V)yM ,

i = 2,... ,/

y(0 = j)(()//(y(()), i = l,... ,r

y(r) = y^u(y^), if 5 > 1

y(r) = y{r), if 5 = 0

id) = w(y(r))z(D ,
if r > 1

f(D = z{X), if r = 0

~ZM = w(5(K-i))z(K), K = 2, .. .,5

W = z(Kh(z(^), K = 1, . . .,5

zis) = z^)
.



3.2. STANDARD CASE P,L = l (MOD 4) 109

By construction, y^x\ ..., y^r x\ z^,
...,

z^ ^ have type oo and

l_p(0|2 = |_p(0|2 = |y0|2 = jP> t = i,...,r>

|z(*)|2 = |z«|2 = |zM|2=/, K = l,...,S.

Moreover,

x=yv2y3)...yr)^(i)...^)

= ii/D/zO/1)) //(y(1V2) y3> .. .y^zW ...
z«

= ±j)(D

= ±j)(D

= ±yW ...y^z ...

z{s-Y) u(z(s-^)z^
•

v

'

= ±y(XK..y^z(XK..z(sK

It follows that also y^ and z^ have type oq. After replacing those y^ and

z(K) satisfying 9ft(j)(()) < 0 and ïft(z^) < 0 by —y^ and —z^\ respectively,
we can assume that moreover

$t(y{X)) > 0, ..., îft(yir)) > 0, 9ft(z(1)) > 0, ..., îft(zis)) > 0

and still x = ±y .. .y<r)zW ...
z(s). But now,

f(x) = t(±y{X).. .y(r)z(X)... z(s)) = t(y{X))... f(y(r))f(z(X))... f(z(s)),

where ifr(y^),..., ^(y^) e Eh and xfr(z^),..., \j/(z^) e Ev, and we are

done.

A shorter proof of part (3) would be to generalize part (4) as in Theorem 3.30(1)
and apply it as in Theorem 3.30(2).

(4) See [46, Corollary 3.2] or [45, Corollary 2.1.10]. The existence proof is based

on Proposition 3.10, the uniqueness follows from a counting argument; we will

reproduce it in a more general context in Theorem 3.30.

...y{r)u(fr))zm ...z
(s)

-.zW
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(5) The first isomorphism (ax, ...,
a£±i)rvl = FP+\ is implied by the uniqueness

2
V

2

statement of part (4), using

Eh = f({ax, ...,a£±1,crEJT, ..., 07}).
2 2

The second isomorphism (bx,..., bi_$±}rpl = Fi±i follows analogously

D

To summarize, we can see Fpj as a (p + 1, / + l)-group with a finite presentation

Tp,/ = (aX, , a£±i, oi, ..., bij± \ Rp+i i+i),
2 2 2 2

where the £^— • 4p relators in R^+i i+i come from Corollary 3 11(2), and as the

subgroup of PGL2(Qi,) x PGL2(Q/)2

Fpj = {ijf(x) : x e H(Z) has type o0, |x|2 = prls; r,s e N0}.

For certain important subsets or subgroups of Fpj, we thus get the following charac¬

terizations

±i
{ax,...,a£±1} ={f(x)

2

{bx,...,bl±1}±x ={f(y)
2

Fpm = (ax, ..., apm) = {ij/(x)
2 2

Fi+i = (bx, ..., bi+i) = {f(y)
2 2

x e H(Z) has type oo, |x| = p)

y e H(Z) has type o0, \y\2 = 1}

x e H(Z) has type o0, |x|2 = pr ; r e N0}

y e H(Z) has type o0, \y^ = T; se N0}

and

(Fpj)o = {^(x) : x e H(Z) has type o0, |x|2 = p2rl2s; r,s e N0}

< PSL2(Q^) x PSL2(Q/).

We can see PSL2(Qi,) as a subgroup of PGL2(Qi,) of index 4 = |QX/(QX)2| With

the identification from above, we have

{ai,..., a£±i}±1 c PGL2(Q^) x PSL2(Q/) < PGL2(Q^) x PGL2(Q/)
2

if and only if (j) = 1, and

{oi,..., oai}±1 c PSL2(Q^) x PGL2(Q/) < PGL2(Q^) x PGL2(Q/)

if and only if (-) = 1 This follows from Lemma 3 5 (and Hensel's Lemma), see also

[16, p 134] Note that our assumption p, I = 1 (mod 4) implies (f) = (-) by the

famous law of quadratic reciprocity, see e g [23, Theorem 2 3 2 (iii)]
The following theorem is motivated by Lubotzky's book [45], and some parts are

obvious generalizations of results appearing there, nevertheless, we try to give very

detailed proofs here
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Theorem 3.12. Let p, 1=1 (mod 4) be two distinctprime numbers. Let Gpj be the

group U(U(Z[l/p, 1//])). Then

(1) The group Fpj is (isomorphic to) a normal subgroup ofGpj/ZGpj ofindex 4

such that (Gpj/ZGpj)/ Fpj = Z\.

(2) The group Fpj can be realized as a rational matrix group. Moreprecisely, there

is a chain ofsubgroups

Tp,i < S03(Q) < S03(M) < PGL2(C),

in particular Fpj is residuallyfinite.

(3) Ifq is an oddprime number differentfrom p and I, then there is a non-trivial

homomorphism x : Fpj -> PGL2O7).

(4) Let x : Fpj -> PGL2O7) be the homomorphism constructed inpart (3), where q

is an oddprime number differentfrom p and I. Then its image is

z(rpj) = \PSL^h '/(f) = (?) = >

lPGL2(g), else.

Moreover, x(a2) e x((bx, ..., bi+i)).
1

2

Proof (1) To simplify the notation, we write Gp := U(M(Qp)). Since

ZGpj = Gpj n ZGp = Gpj n ZGi,

and ZVl/p, 1//] is a subring of Q^ and Q/ (which implies Gpj c Gp and

Gpj C Gi), there is an injective diagonal homomorphism

Gpj/ZGpj -> Gp/ZGp x Gi/ZGi

xZGpj \-r (xZGp, xZGi).

The isomorphism H(Q/)) —>- A^Q^) ofLemma 3.8 (with i2 + 1 = 0) induces

an isomorphism

Gp = U(U(Qp)) -+ U(M2(Qp)) = GL2(QP)

and consequently an isomorphism

Gp/ZGp -+ PGL2(Q^) = GL2(Qi,)/ZGL2(Qi,)

x0 + xxip x2 + x3ip \

-x2+x3ip x0-xxip J
xZGp i-^
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Let p he the injective composition homomorphism

Gpj/ZGpj ^ Gp/ZGp x Gi/ZGi — PGL2(Qi,) x PGL2(Q/),

explicitly given by mapping xZGpj e Gpj/ZGpj to

f(x)
xq + xxip x2 + x3ip
-X2 ~\~ X3lp Xq — XXlp

Xo + X\U X2 + x3ii

-x2 + x3ii xq - xxii

where x = xo + xxi + X2J + x3k e Gpj and xfr is the natural extension of xfs
from H(Z) \ {0} to U(Z[l/p, 1//]) \ {0}.'

Note that

U(Z[l/p, 1//]) = {±prT : r, s e Z},

hence by Lemma 3.1

Gpj = {x e U(Z[l/p, 1//]) : |x|2 = fT; r,seZ)

and by Lemma 3.3(2)

ZGpj = {x e U(Z[l/p, 1//]) : x = x = ±prls; r, s e Z}.

Now let x e H(Z) be an integer quaternion such that |x|2 = prls for some

r, s e N0, then x e Gpj and f(x) = f(x) = p(xZGpj) e p(Gpj/ZGpj),
hence Fpj < p(Gpj/ZGpj) = Gpj/ZGpj.

Note that each element in Gpj/ZGpj has a representative xZGpj such that

x e H(Z) and |x |2 = prF; r,s e No, by multiplying with large enough positive

powers of p and /, however Fpj ^ p(Gpj/ZGpj) since x must have type oo

in the definition of Fpj. More precisely, we can write

p(Gpj/ZGpj)=goFpjUgxFpjUg2FpjUg3Fpj < PGL2(Qi,) x PGL2(Q/)

where for each i e {0, 1, 2, 3} we choose any element gL = ij/(x), such that

x = xo + xxi + X2J + x3k e H(Z) has type o( and norm |x |2 = prls; r, s e No.

For example, the simplest choice is to take r = s = 0 (i.e. |x|2 = 1) and

consequently

£o := f(f)

gi = f(i)

g2 = f(j)

1 0

0 1

/,

0

0 1

-1 0

y î o Y \
> A » i AI )

Y \(il Ml
1

> \° --'/ ).

0 1

-1 0
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g3 := M = ([( .« 'g )
To see the decomposition of p(Gpj/ZGpj) given above, we first observe that

prls = 1 (mod 4), since p, I = 1 (mod 4). Therefore, each decomposition of

|x |2 = prF as a sum of four squares is a sum of squares of three even numbers

and one odd number (cf. Lemma 3.7(3)). If we take the quaternion multipli¬
cation on the four classes of quaternions of type oq, ox, 02 and o3 respectively,
then we get a group structure, where the class of type oo quaternions is the

identity element. The group is isomorphic to Z\, as it is seen in the following

multiplication table.

type 00 type oi type o2 type 03

type 00 type 00 type oi type o2 type 03

type oi type oi type 00 type 03 type o2

type o2 type o2 type 03 type 00 type oi

type o3 type 03 type o2 type oi type 00

Table 3.3: Multiplication table for quaternions of type o

Because of ^r(xy) = ip-(x)ip-(y), this group structure carries over to the cosets

{goFpJ, g\Tp,l, g2^p,l, g3^p,l}

in p(Gpj/ZGpj) and we are done. To summarize, we have shown that

TP,i < {fix) : x e H(Z), |x|2 = prT; r,se N0}

= p(Gpj/ZGpj)
= Gpj/ZGpj.

(2) If G is a group, we denote here by G/Z the quotient group G/ZG of G by its

center ZG. We study the following diagram of group homomorphisms:

rP,i Gpj/Z ». U(U(Q))/Z U(U(R))/Z > U(U(C))/Z

S03(Q) S03(K) PGL2(C)

The homomorphisms in the top line are all injective: the first of them is de¬

scribed in part (1) of this theorem. The other three homomorphisms are induced

by the natural injective group homomorphisms (which are induced themselves

by the chain of the corresponding subrings Z[l/p, I/IT) c QclC C)

U(U(Z[l/p, 1/7])) ^ £/(H(Q)) ^ £/(H(R)) ^ U(U(Q), (3.1)

0 /'/

/'/ 0
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since

ZU(U(Z[l/p, l/l])) c Z£/(H(Q)) c ZU(U(W)) c ZU(U(Q). (3.2)

Assertion (3.2) follows directly from (3.1) using the fact, see Lemma 3.3(2),

ZU(U(R)) = U(U(R)) n {x 6 U(U(Q) : x = x},

which holds if R e {ZYl/p, l/l], Q, R, Q.

The homomorphisms

Gpj/Z — U(U(Q))/Z — U(U(W))/Z — U(U(C))/Z

are injective, since (3.1) directly implies

U(U(RX)) n ZU(U(R2)) < ZU(U(RX)),

whenever (RX,R2) e {(ZYl/p, l/l], Q), (Q, R), (R, C)}. In fact, the equality

U(U(RX)) n ZU(U(R2)) = ZU(K(RX)) holds by (3.2).

To get U(U(Q))/Z = S03(Q), first note that £/(H(Q)) = H(Q) \ {0}. Now

define û : U(U(Q)) -+ S03(Q) by mapping x to the (3 x 3)-matrix

1
/ Xq + X2 — x| — X2 2(XlX2 — X0X3) 2(XlX3 + X0X2)

r- I 2(XlX2 + X0X3) Xq
— X2 + x| — X2 2(X2X3 — X0X1)

"Y* 1 OOOO
1 '

\ 2(XiX3 — X0X2) 2(X2X3+XoXi) Xq
—

Xj
—

X2 + X|

where x = xo + xxi + X2J + x3k e U(M(Q)). Note that this is the matrix

which represents the Q-linear map Q3 —>- Q3, y i-^- xyx~x with respect to

the standard basis of Q3, where y = (yx,y2, y?)T e Q3 is identified with the

"purely imaginary" quaternionyxi -\-y2j +y?,k e H(Q). It is well-known that û

is a surjective group homomorphism. Even the restricted map

#|H(Z)\{0}:H(Z)\{0}^SO3(Q)

is surjective, since û(ax) = û(x), if a e Qx and x e f/(EI(Q)). For an

elementary proof of the surjectivity of ^|h(Z)\{0}, see [43]. Moreover, it is easy

to check by solving a system of equations that

ker(#) = {x e H(Q) \ {0} : x = x} = ZU(U(Q)).

Seeing û(x) as Q-linear map y i->- xyx~x as described above, it is even very

easy to determine the kernel:

ker(#) = {x e U(B.(Q)) : xyx~x = y, Vy e H(Q) such that 9ft(y) = 0}

= {x e U(B.(Q)) : xy = yx, Vy e H(Q) such that dt(y) = 0}

= {x e £/(H(Q)) : x = x}.
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Observe that ifx e U(U(Q)) \ ZU(U(Q)), then the axis of the rotation û(x) is

the line (xx, X2, x3)T • Q, and the rotation angle co satisfies

2 2 2 2

cos CO = —

Equivalently,

Ixl2

CO Xo
cos —

2 vW

To prove U(U(W))/Z = S03(R), replace Q by R above.

The isomorphism £/(H(C))/Z = PGL2(C) follows from Lemma 3.8.

Note that the injective composition homomorphism Fpj -> S03(Q) can be

explicitly constructed as follows: if y e Fpj is given as y = f(x), where

x = xo + xxi + X2J + x3k e H(Z) has type oo and |x|2 = prls; r,s e No, then

the image of y in S03(Q) is û(x), independent of the possible choice of x. In

the same way, the image of y = f(x) in PGL2(C) is

X0 + Xi/C x2 + x3/c

-x2 + x3/c x0 - Xi/C

By a result of Malcev ([51]), finitely generated linear groups (over a field of

characteristic zero) are residually finite.

(3) Let q he an odd prime number different from p, I and let

Gq,pJ := U(M(Z[l/p, l/n/qZYl/p, 1//])).

As in the proof of part (2), we denote by G/Z the quotient G/ZG of a group G

by its center ZG. We want to define the desired homomorphism

x : Fpj -+ PGL2(q)

as composition of the homomorphisms

rP,i ^ Gpj/Z -+ Gq,pj/Z ^> U(U(Zq))/Z ^> PGL2(<7).

We describe now separately these four homomorphisms.

The injection Fpj ^ Gpj/Z is given by part (1) of this theorem.

The unital (quotient) ring homomorphism

Z[l/p, l/l] -+ ZYl/p, l/n/qZYl/p, l/l]
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extends to a unital ring homomorphism

U(Z[l/p, l/l]) -> U(Z[l/p, l/n/qZYl/p, l/l])

mapping 1, /', j, k,to 1, /', j, k, respectively (see [23, Section 2.5]), and induces

a group homomorphism of the invertible elements Gpj -> Gq,pj. Since

ZGpj = {x e Gpj : x = x}

by Lemma 3.3(2), it is not difficult to see that the image of ZGpj under the

homomorphism Gpj -> Gq>pj is contained in ZGq>pj. This gives the second

homomorphism

Gpj/Z —> Gq^pj/Z .

Now we attack the third one Gq,pj/Z —^> U(M(Zq))/Z. The map

0 : Zq -> ZYl/p, l/n/qZYl/p, l/l]

v + qZh^ v + qZ[l/p, l/l],

v e Z, is an isomorphism of rings (even of fields, since q is a prime number),
and <p~x therefore induces isomorphisms

U(Z[l/p, l/n/qZYl/p, l/l]) A W(Zq),

Gq,pj = U(U(Z[l/p, l/l]/qZ[l/p, l/l])) A U(U(Zq))

and finally an isomorphism Gq>pj/Z -> U(M(Zq))/Z. The only non-trivial

thing to check is the surjectivity of <p: First, we have

0(0 + qZ) = 0 + qZ[l/p, l/l].

Now, take any element

tprT + qZYl/p, l/l] e Z[l/p, l/n/qZYl/p, l/l],

where t e Z \ {0} is relatively prime to p and /. To simplify matters, we assume

that r, s < 0 (if r, s > 0, then (p~x(tprls + qZYl/p, l/l]) = tprF + qZ; in

the cases r > 0, 5 < 0 and r < 0, 5 > 0 the proofs are similar to the proof for

the case r, s < 0 given now). Then gcd(p~rl~s, q) is 1 and therefore obviously
divides t, hence (see e.g. [36, Proposition 3.3.1]) there is an integer u such that

p~rl~su = t (mod q), i.e. t — p~rl~su e qZ and

tprF -u= prF(t - p-Tsu) e qZYl/p, l/l].
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This implies

tprF + qZYl/p, l/l] = u + qZYl/p, l/l] = (ß(u + qZ).

The isomorphism U(M(Zq))/Z = PGL2O7) follows from Lemma 3.8, since

there exist elements c and d in the field Zq such that c2 + d2 + 1 = 0 in Zq, see

[23, Proposition 2.5.3].

Therefore, if y e Fpj is given by y = f(xo + xxi + X27 + x3k) (where
we require as in the definition of Fpj that x e H(Z) has type oo and norm

|x |2 = prF; r,s e No), and we have chosen c,d e Z such that c2 + d2 + 1 =0

(mod q), then r = xcj ' Fpj -> PGL2O7) is explicitly constructed as

?c,d(y)
xo + xic + x3d + qZ

-xxd — X2 + x3c + qZ

-xxd + X2 + x3c + qZ

Xq — xxc — x3d + qZ

y h->
xo + xxc + qZ X2 + x3c + qZ

-X2 + x3c + qZ Xq — xxc + qZ

If for example q
= 1 (mod 4), we can choose d = 0 and c e {I, ... ,q — 1},

such that c2 + 1 = 0 (mod q), and r = rC)o then simplifies to

What happens if we take q = 21

The group G2,^,/ = £/(HI(Z2)) = Z\ is abelian, hence

G2,Pj/Z = U(U(Z2))/Z = 1 ^ PGL2(2) = ^3 .

Note that the field Z2 is excluded in the assumptions of Lemma 3.8.

(4) At first, we show that x(FpJ) < PSL2(q) if and only if (|) = (L) = 1. The

group Fpj is generated by the set {ax,..., ap±\_, bx,..., bi+i}, hence we have

x(Fpj) < PSL2(q) if and only if

{x(ax),..., x(aP+i ),x(bx),..., r(bi±i)} c PSL2(^).
2 2

Since the elements x(ax),..., x(a£±i) are represented by matrices in GL2(g)
2

with determinant/» +qZ e Zq and x(bx), ..., x(bi±i) are represented by matri-
2

ces in GL2O7) with determinant I + qZ e Zq, the condition x(Fpj) < PSL2(g)
is by Lemma 3.5 equivalent to the condition {p + qZ, I + qZ} c (Zx)2. But

this is equivalent to (-) = (-) = 1 by Lemma 3.6.

By [45, Lemma 7.4.2] or [46, Proposition 3.3], we have

PSL2O2O < x((ax, ...,aP+\)) and PSL2O2O < x((bx, ..., bi+i)),
2 2
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in particular PSL2O7) < x(Fpj) < PGL2O7).

This determines the image of r, since [PGL2O7) : PSL2O7)] = 2.

Exactly as above, we can show that

r((oi,..., bw )) =
FSL2(q) '

lf

)f
= l

-

[VGL2(q), if (0 = -l.

Since the element x(a2) = x(ax)2 is represented by a matrix in GL2O7) with de¬

terminant (p + qZ)2 = p2 +qZ e Zq, we have x(a2) e PSL2O7) by Lemma 3.5

and consequently x(a2) e x((bx,..., bi+i)).
2

D

See Table 3.4 for some information about groups U(M(R))/ZU(M(R)), where R

is a commutative ring with unit, p, I = 1 (mod 4) are distinct prime numbers and q

is an odd prime number.

R U(U(R))/ZU(U(R))

m/p, 1//] contains Fpj as index 4 subgroup

Z[l/p] important in [45], virtually FP+\
2

z Z\
%q PGL2(<7)

z2 1

Q S03(Q)
R S03(R)

C PGL2(C)

Qq PGL2(Q(?)

Table 3.4: The group U(U(R))/ZU(U(R)) for some rings R

The following result is also mentioned in [59, Example 5.12] and [30, Proposi¬
tion 3.2, Proof of Theorem 4.1]. It is a very special case of Proposition 4.2(3), where

we prove that all (2m, 2«)-groups contain Z2-subgroups.

Proposition 3.13. The group Fpj contains a subgroup isomorphic to Z2.

Proof. By Lemma 3.7(1), we can choose x = xo+xxi,y = yo+yxi e H(Z) suchthat

xo,.yo are odd, xi,_yi are even and non-zero, |x|2 = Xq+x2 = p, \y\2 = y2+y2 = I.

Obviously, we have xy = yx, hence ïJ/(x)\J/(y) = \J/(y)\J/(x), where ij/(x), xff(y) are

non-trivial. The subgroup (ij/(x), xff(y)} of Fpj is isomorphic to Z2 by the following

general lemma. D
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Lemma 3.14. Let F = (ax, ... ,am,bx, ... ,bn \ Rm.„) be a (2m, 2n)-group and let

a e (ax, ... ,am), b e (bx, ... ,bn) be two non-trivial elements. Ifa and b commute,

then (a, b) = Z2.

Proof. Since F is torsion-free, the subgroup (a, b) is a finitely generated abelian

torsion-free quotient of Z2. Using a, b ^ 1 and the uniqueness of the ao-normal

forms (see Proposition 1.10) of powers of a and o, we conclude that (a, b) is not

cyclic, but itself isomorphic to Z2. D

Kimberley-Robertson have computed presentations of Fpj for many pairs (p, I).

They conjecture for the abelianization FaK
pv

Conjecture 3.15. (Kimberley-Robertson [41, Section 6J) Let p, I = 1 (mod 4) be

two distinctprime numbers and let

,

/p - 1 / - 1

r:=gcd(^-,—,6

Then

r^ab ~

lp,l-

Z2 x Z^ , if r = I

Z3xZ2, ifr=2

Z2 x Z3 x Z^ , if r =3

Z2 x Z3 x Zg , if r = 6
.

Note that the smallest pairs (p, I) such that r = 1, 2, 3, 6 are (5, 13), (17, 41),

(13, 37) and (73, 97), respectively. Conjecture 3.15 is equivalent to the following

conjecture (see Section 3.5 for generalizations of Conjecture 3.16):

Conjecture 3.16. Let p, 1=1 (mod 4) be two distinctprime numbers.

Ifp, 1=1 (mod 8), then

rab _
JZ3 x Z3 x Z2

, if p,l =1 (mod 3)
pJ

~

j Z3 x Z2
,

else
.

Ifp = 5 (mod 8) or I = 5 (mod 8), then

F
ab _ j Z2 x Z3 x Z3

, if p,l =1 (mod 3)
p' ' Z2 x Z^ ,

else.

Proofofthe equivalence ofConjecture 3.15 and Conjecture 3.16. First, observe that

r e {1, 2, 3, 6} in Conjecture 3.15 and that all possibilities for (p, I) are treated in

the four cases of Conjecture 3.16.

Ifr = 6, then(p-l)/4 = 65and(/-l)/4 = 6r for some 5, t e N, i.e. p = 245+ 1

and / = 24^ + 1. It follows p,l =\ (mod 8) and p,l =\ (mod 3).
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If r = 3, then (p — l)/4 = 35 and (/ — l)/4 = 3t, where 5 or * is odd (otherwise r

would be 6). Consequently, we have p = 12s + 1 and / = I2t + 1, in particular

p, I = 1 (mod 3). If 5 is odd, then p = 5 (mod 8). If t is odd, then / = 5 (mod 8).

If r = 2, then (p - l)/4 = 25 and (/ - l)/4 = It, i.e. p = 85 + 1 and / = St + 1,

hence p, I = 1 (mod 8). Moreover, 5^0 (mod 3) or t ^ 0 (mod 3) (otherwise r

would be 6). In the first case, we have p ^ 1 (mod 3), in the second case / # 1

(mod 3).
If r = 1, then (p - l)/4 = 25 - 1 or (/ - l)/4 = 2* - 1 (otherwise r would

be even), hence p = 85 — 3 or / = 8* — 3, i.e. p = 5 (mod 8) or / = 5 (mod 8).

Moreover: (p - l)/4 = 35 + 1 or (p - l)/4 = 35 + 2 or (/ - l)/4 = 3t + 1 or

(/ — l)/4 = 35 + 2 for some 5, t e No (otherwise r would be a multiple of 3), hence

p = 125 + 5 or p = 125 + 9 or / = 12* + 5 or / = 12* + 9, in particular p ^ 1

(mod 3)or/# 1 (mod 3). D

The structure of Fan , also seems to depend only on the number of commuting

quaternions whose i/f-images generate Fpj. To make this precise, if / = 1 (mod 4) is

a prime number, let 7/ c HI(Z) be any set of cardinality l-^-, such that (\[f(Yi)) = F1+1
z

2

and each element Y' e 7/ has type oo and satisfies ïft(y) > 0, \y\2 = I. We think of

7/ = {f~X(bx), ..., ^(bw)} and Yp = {f~x(ax), ..., ^(a^)}, where

Tp,/ = (ax, ..., aP+]_, bx, ..., bi+x \ /?£+]_ 1+1).
2 2 2

'

2

Then, let

cpj := |{(x,>0 :x eYp, y e Yu xy = yx}\.

Note that the definition of cpj is independent of the explicit choice of elements in Yp
and 7/. Obviously,

.

\p + \ l+l
cv 1 < mm { ,p'

j 2 2

Moreover, cpj > 3, since Yp contains by Lemma 3.7(1) elements of the form xo~\-xxi,

xq + X2J, xo + x3k and 7/ contains elements of the form y§ +yxi,yo+ y2J, yo + Y^,
and for example xo + xxi commutes with yo + yxi.

Conjecture 3.17. Let p, 1=1 (mod 4) be two distinctprime numbers, and

p-l l-l
r = gcd

as in Conjecture 3.15. Then

p,l

'3 (mod 12), ifr = l

9 (mod 12), ifr=2

7 (mod 12), ifr = 3

k

1 (mod 12), ifr = 6.
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We have checked Conjecture 3.17 for all possible p,l < 1000. The following
values for cpj appear in this range:

Cpj e

{3, 15, 27, 39, 51, 63, 75, 87, 99}, if r = 1

{9,21,33,45,57,69,81,93, 105,117, 129, 153}, if r = 2

{7, 19,31,43,55,67,79,91, 103,115, 127, 151}, if r = 3

{37, 49, 61, 73, 85, 97, 109, 121, 133}, if r = 6
.

See Table 3.5 for the frequencies of the values of cpj, where p, I = 1 (mod 4) are

prime numbers such that/» < I < 1000.

CP,1 3 15 27 39 51 63 75

# 1242 449 143 56 34 17 7

87 99

5 2 1955

Cpj 9 21 33 45 57 69 81

# 178 158 84 57 40 21 8

93 105 117 129 141 153

9 12 5 2 1 575

CP,1 7 19 31 43 55 67 79

# 236 130 79 42 18 8 12

91 103 115 127 139 151

6 1 4 2 1 539

Cpj 1 13 25 37 49 61 73

# 26 15 15 16

85 97 109 121 133

7 4 3 2 3 91

3160

Table 3.5: cpj and its frequency, p < I < 1000

Combining Conjecture 3.17 with Conjecture 3.15, we get another conjecture:

Conjecture 3.18. Let p, 1=1 (mod 4) be two distinctprime numbers, then

Z2 x Z\, if Cpj = 3 (mod 12)

ab ~ ILi^ X ÄJo
, if Cpj = 9 (mod 12)

pj
~

Z2 X Z3 X Z^ , if cpj = 7 (mod 12)

Z3 x Z3 x Z2
, if Cpj = 1 (mod 12)
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Now, we want to prove that the groups Fpj are commutative transitive. This has

for example applications to centralizers of powers of elements, and a nice application
which allows to detect "anti-tori" in Fpj (see Proposition 3.53 in Section 3.6).

Lemma 3.19. Let p, 1 = 1 (mod 4) be two distinctprime numbers. Let x, y e HI(Z)
be of type oo such that \x\2, \y\2 e {prF : r, s e No}. Then xy = yx ifand only if

f(x)f(y) = f(y)f(x).

Proof. Obviously xy = yx implies ïJ/(x)\J/(y) = \J/(y)\J/(x). Assume now that

^j/(x)^j/(y) = ^j/(y)^j/(x). Then ty(xy) = ^(yx) and xy = Xyx for some X e Qx.

Taking the norm | - |2 of x_y = Xyx, we conclude \X\2 = X2 = 1, hence X = 1 or

X = — 1. If X = 1, then xy = yx and we are done. The case X = — 1 is impossible
since xy = —yx together with ^(x) ^ 0 implies by Lemma 3.4(2) the contradiction

y = 0. D

Proposition 3.20. Let p,l = 1 (mod 4) be two distinct prime numbers. Then Fpj

is commutative transitive, i.e. the relation ofcommutativity is transitive on the set of
non-trivial elements ofFpj.

Equivalently, this means that ifx,y, z e HI(Z) are oftype oq such that

x^m(x),y^m(y),z^m(z),

|x|2, \y\2, \z\2e{prls :r,seN0},

^j/(x)^j/(y) = ^j/(y)^j/(x) and tJ/(x)tJ/(z) = tJ/(z)tJ/(x) ,

then also ^j/(y)^j/(z) = ^j/(z)^j/(y).

Proof. Note that for x of type oo we have x ^ %i(x), if and only if ij/(x) ^ 1. By
Lemma 3.19, we have xy = yx and xz = zx. Moreover, again by Lemma 3.19,

ïj/(y)ij/(z) = \J/(z)\J/(y) if and only if yz = zy. But>'z = zy follows now directly by
Lemma 3.4(3). D

Corollary 3.21. Let p, 1=1 (mod 4) be two distinctprime numbers, F = Fpj and

y eF a non-trivial element.

(1) IfkeN, then Zr(yk) = Zr(y).

(2) The centralizer Zp(y) is abelian.

(3) The center ZF is trivial.

Proof. (I) Since y and yk commute, the statement follows from Proposition 3.20,

using the fact that F is torsion-free.

(2) Again, this is a direct consequence of Proposition 3.20.
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(3) Of course, the statement follows from the more general result Corollary 1.11(3)
for (2m, 2«)-groups. Here, it follows directly from Proposition 3.20, since the

existence of a non-trivial element in ZF would imply that F is abelian.

D

Using the following result of Mozes ([54]) together with Proposition 1.12 about

centralizers, we give some applications to number theory, illustrated for two concrete

examples in Proposition 3.23:

Proposition 3.22. (Mozes [54, Proposition 3.15]) Let p, I = 1 (mod 4) be two dis¬

tinctprime numbers,

T = Fpj = (ax, ..., a2+i, oi, ..., bi+x | Rp+i i+\ )
2 2 2

'

2

and let z e HI(Z) be of type oq such that z ^ $i(z) and \z\2 = F for some s e N.

Take cx, C2, c3 e Z relatively prime such that c := cxi + C2j + c3k e HI(Z) commutes

with z. Then there exists a non-trivial element a e (ax, ..., a£+^} c F commuting
2

with \//(z) ifand only ifthere are integers x, y e Z such that

gcd(x, y) = gcd(x, pi) = gcd(y, pi) = 1

andx2 + 4\c\2y2 e {prF :r,s e N}.

Proposition 3.23. (1) There are no pairs ofintegers x, y e Z such that

gcd(x,>0 = gcd(x, 65) = gcd(y, 65) = 1

and

x2 + l2y2 e {5r13s : r, s e N}.

(2) There are no pairs x, y e Z such that

gcd(x,y) = gcd(x, 221) = gcd(y, 221) = 1

and

x2 + &y2 e {I3rl7s :r,s e N}.

Proof. (1) For oi = f(l +2/ +2j +2k) e F5>X3 =: r we have Zr(bx) = (bx), see

Proposition 3.29(7) below. In particular, bx does not commute with any element

in (ax, Ü2, a3) \ {1}. The statement follows now by Proposition 3.22, taking
c = i + j + k.

(2) Proposition 3.27(4) below shows that Zr(b^) = (04}, where

04 = V(3 + 2/+ 27) e ri3)i7 =: T
.

Taking c = i + j, we can again apply Proposition 3.22.

D
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The results on centralizers in Fpj used in the proof of the preceding proposition
can also be applied to give statements about non-commuting quaternions. We first

illustrate it again for (p, I) e {(5, 13), (13, 17)} and generalize it in Proposition 3.25.

Proposition 3.24. (1) Let y = 1 + 2/ + 2j + 2k. Then there is no x e H(Z),

x ^ ^(x), oftype oo such that |x|2 e {5r : r e N} andxy = yx.

(2) Let y = 3 + 2/ + 2j. Then there is nox e H(Z), x ^ ÏH(x), oftype oq such that

|x|2 e {13r : r e N} andxy = yx.

Proof. (I) Let F = F^,X3 and bx = ^r(y) e F. Assume that x e H(Z) is of type oo

such that |x|2 e {5r : r e N} and xy = yx, where x ^ ïft(x). This implies

iff(x) e (ax,a2,a3) \ {1} and ij/(x) e Zr(bx), contradicting Zr(bx) = (bx)

(which holds by Proposition 3.29(7)).

(2) Same proof as in part (1) taking p = 13, / = 17, 04 = xff(y) e F = FX3:Xj and

using Zp(o4) = (04} (which holds by Proposition 3.27(4)).
D

Proposition 3.25. Let p, I = 1 (mod 4) be two distinctprime numbers and

T = Fpj = (ax,..., ajp+\, 01,..., bi+x \ R^+i 1+1).
2 2 2

'

2

Assume that pv(bj)(a) ^ a for some bj e {bx, ..., bi+i) and all elements a e Eh-

Let y e HI(Z) be of type oo such that \y\2 = I and bj = \//(y). Then there is no

x e H(Z), x ^ ÏH(x), oftype oo such that |x|2 e {pr : r e N} andxy = yx.

Proof. As in the proof of Proposition 3.24 the claim follows directly from the fact

Zr(bj) = (bj) which is a consequence of Proposition 1.12(lb). D

Now, we want to study the two examples ri3>i7 and F5^3.

Example: p = 13,/ = 17

Using the explicit identification

ax -
= f(l+2i+2j + 2k), ax = ^(1 -2/ -2j -2k),

a2 --= if(l+2i+2j-2k), a~ = f(l -2/ -2j +2k),

a3 --= ijf(l+2i -2j + 2k), a~ = f(l -2i +2j -2k),

«4 == ijf(l-2i+2j + 2k), a~ = f(l+2i -2j -2k),

as -
= f(3+2i), a^ = f(3-2i),

a6 --= f(3+2j), a~ = f(3-2j),

aq -
= f(3+2k), aj = f(3-2k),
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= f(l-4i),

= f(l-4j),

= f(l-4k),

= f(3-2i-2j),

= f(3-2i+2j),

= f(3 -2/ -2k),

= f(3-2i+2k),

b-x=f(3-2j-2k),

b~x =f(3-2j+2k),

we get the example F = Fx3:Xj. The corresponding (14, 18)-complex X is denoted

by <Ai3,i7 in [17] and essentially used there in the construction of finitely presented
torsion-free (virtually) simple groups, see [17, Theorem 6.4].

Example 3.26. Let Rj.g = /?£+^ i+]_ be the set of63 relators
2

'

2

bx=f(l+4i),

b2 = f(l+4j),

b3 = f(l+4k),

b4 = f(3+2i+2j),

b5 = f(3+2i-2j),

b6 = f(3+2i+2k),

b7 = f(3+2i -2k),

b% = f(3+2j+2k),

b9 = ijf(3+2j -2k),

/?7.'

axbxa3b3, 01020201, axb3aA,b2,

a-]b3a1xb3x, ajbjajb6x, ajbgajb^1

(The complete set of relators can be found in Appendix A. 10.)

Proposition 3.27. Let F = FX3tXj be the (14, l%)-group defined in Example 3.26

(actually in Appendix A. 10). Then

(1) Ph = PSL2(13) < SX4, Pv = PSL2(17) < ,Si8.

(2) Fab = Z2 x z3, [r, F]ab = Z3 x z36, rf = Z2 x Z3 x z2.

(3) Any non-trivial normal subgroup ofF hasfinite index.

(4) Zr(b) = Nr((b)) = (b), ifb e {04,..., 09}.

Zr(a) = Nr(M) = (a), ifa e {ax,a2, a3, a4}.

(5) Let V be the subgroup ofU(U(Q))

V := (1 + 2/ + 2j +2k,3+ 2/, 1 + 4j, 3 + 2/ + 2j).

Then F = V/ZV.
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Proof. (I) We compute

Pv(bX) = 'X

Pvifo) = (1,

Pv(b3) = (1,

Pv(b4) = (1,

Pv(bs) = (1,

Pv(be) = (1,

Pv(bi) = (1,

Pvifa) = (1,

Pv(bg) = (1,

Ph(aX) = (1,

Ph(ci2) = (1,

Ph(a?>) = (1,

Ph(a4) = (1,

Ph(as) = (2,

Ph(ae) = (1,

Ph(ai) = (1,

8, 13)(2, 9, 4)(3, 6, 14)(7,12,11),

10, 11)(2,7, 14)(3,4,8)(5, 13, 12),

9, 12)(2, 3,10)(4,5, 14)(6, 11,13),

4,8,3,13,5, 10)(2, 11,7, 12, 14,6,9),

8, 13, 4,9,6, 3)(2, 12,5, 10, 11,14,7),

2,9,4, 12,7, 8)(3, 13, 6, 11,14,5, 10),

4,5, 10,2, 12, 9)(3, 6, 14, 13,8,7, 11),

3,10,2, 11,6, 9)(4, 12,5, 13,14,7,8),

10, 11, 3,8,7, 2)(4, 13,6,9, 12, 14,5),

5, 17, 3, 12, 18, 2, 9, 16)(4, 14, 15, 6, 7, 13, 8, 10, 11),

6, 3, 2, 14, 18, 16, 11, 17)(4, 5, 15, 9, 8, 10, 7, 13, 12),

7, 16, 17, 15, 18, 3, 8, 2)(4, 14, 10, 11, 9, 6, 12, 13, 5),

3, 10, 17, 18, 13, 16, 2, 4)(5, 8, 9, 11, 12, 6, 7, 14, 15),

8, 3, 10, 17, 11, 16, 9)(4, 14, 6, 12, 5, 15, 7, 13),

7, 16, 13, 18, 12, 3, 6)(4, 5, 9, 11, 14, 15, 8, 10),

4, 2, 14, 18, 15, 17, 5)(6, 7, 8, 9, 12, 13, 10, 11).

(2) We use GAP ([29]).

(3) We can apply [17, Theorem 4.1] using the results described in [17, Section 2.4]
and [16, Section 1.8]. Note that

PSL2(Qi3) ^Hx< PGL2(Qi3) and PSL2(Qi7) ^ H2 < PGL2(Qi7),

in particular

[PGL2(Qi3) : Hx] = [Hx : PSL2(Qi3)] = 2

and

[PGL2(Qi7) : H2] = [H2 : PSL2(Qi7)] = 2
.

(4) This follows from Proposition 1.12.

(5) Let \j/ : V —>- PGL2(QP) x PGL2(Q/) be the map which sends the quaternion
x = xq + xxi + X2J + x3k e V to

x0 + x\ip x2 + x3ip
-X2 + X3/„ Xq — X\l p

Xo+Xl/'/ X2+X3/'/

-X2 + X3// X0 - xxii
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It is a group homomorphism such that xfr(x) = xff(x),ifx e H(Z) fl V. We have

f(V) = (ir(l + 2/ + 2j + 2k), ir(3 + 2/), f(\ + 4j), ir(3 + 2/ + 2y)>

= (^(1 + 2/ + 2j + 2/t), ^(3 + 2/), VO + 4y), VK3 + 2/ + 2y)>

= (ax,a5,b2,b4) < F
.

In fact, GAP ([29]) shows that [r : (ax, as, 02, 04}] = 1, in other words

(ax,a5,b2,b4) = F
.

Therefore F = \{r(V) = V/kev(\j/). We claim that ker(i/>) = ZV. On the one

hand, we have

ker(V0 = {x eV :x=x} = Vn ZU(U(Q)) < ZV.

On the other hand, ifx = xo + xxi + X2J + x3k e V < f/(EI(Q)) commutes

both with 3 + 2/ e V and 1 + 4j e V, then x=x/0, hence x e ker(^) and

in particular ZV < ker(^).
D

Note that the only commuting pairs among the standard generators of FX3:Xj are

{a5, bx}, {a6, b2} and {a7, o3}.

Example: p = 5, / = 13

Our second example is F = Ts^, using the identi

ax =f(l +2/),

a2 = f(l+2j),

a3 = f(l+2k),

bx =f(l+2i+2j + 2k),

b2 = f(l+2i+2j -2k),

b3 = jjr(l+2i -2j + 2k),

b4 = f(l -2/ +2j + 2k),

05 = f(3+2i),

b6 = f(3+2j),

b7 = ijf(3+2k),

a,

a0

ÜU

fication

^(1-27),

^(1-27),

tfr(l-2*),

f(l -2/ -2j -2k),

f(l -2/ -2j + 2k),

f(l -2i +2j -2k),

^(1+2/ -2j -2k),

f(3-2i),

f(3-2j),

f(3 -2k).



128 CHAPTER 3. QUATERNIONLATTICES INPGL2(Qp ) x PGL2 (Qp )

Example 3.28.

R

3-7

axbxa3b^ , 0102^207, axb3a2 bj ,

axb4axb1~ , axbsa1~ bj ,
axb^a3b3,

axbqa2 b^ , axbj «201, axb^ a3 02,

axb^ a3 bß, axb3 axb2 , «202^ bj ,

«2°3a20i~ , ci2b4a3bs, a2b^a3 b3 ,

a2b6a2xb^x, a2bjxa3bx, a2b^xa2b2x,

a3b2a3b^x, a3b7a3xbjX, a3b^xa3b3x

Proposition 3.29. Let F = Tsb be the (6, l4)-group defined in Example 3.28 and

let G = 7J(H(Z[l/5, l/l3]))/ZU(U(Z[l/5, 1/13])). Then

(Y) Ph = PGL2(5) < S6, Pv = PGL2(13) < SX4.

(2) Fab = Z2 x z3, [r, F]ab = Z3 x z36, rf = Z2 x Z3 x z2.

(3) There arefinite quotients

F/((b\, b\, (axa2f, (oio5)3})r = PGL2(3) = Ät,

such that ((b\, b\, (axa2f, (bxb5)3))f = Z2 x Z32.

F/((a\, (axa2f, (axbx)7, (bxb5)7, (axbxb5)6))r = PGL2(7),

such that ((orf, (axa2f, (aioi)7, (Ms)7, (axbxb5)6))f = Z22 x ZX4 x Z56.

r/((b4x, (0105)3, (ai«2)5, (axbxb5)5))r = PGL2(11),

F/((b92, o58, (ai«2)9, (axa3f, (b2b6f, (axbxb5)2))r = PGL2(17),

r/((aJ,a25,a35,o20}}r=PGL2(19),

r/((o42, o3, o3, (b4b5)xx))r = PGL2(23),

F/((a\\ b\, b], o7, (aioi)3))r = PSL2(29).

(4) We get afinite presentation ofG by adding to the presentation

(ax,a2,a3,bx, ..., 07 | R3.7)
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ofF two new generators i, j and the relations/relators

i2, f, [ijl

[ax, /], a2i = ia~x, a3i = ia~x, axj = ja~x, [a2, j], a3j = ja~x,

bxi = ib^x, 02/ = ib3, b3i = z'02, [05, /'], b^i = ib^x, bji = ibjX,

b\j =Jb3X, b2j =jb4, b4j =jb2, b5j = jb~x, [o6, j], b7j =jbjX,

and F is then the kernel ofthe homomorphism

G^Z2

i i-> (1 + 2Z, 0 + 2Z)

j k> (0 + 2Z, 1 + 2Z)

ax, a2, a3 i-> (0 + 2Z, 0 + 2Z)

01,..., 07^ (0 + 2Z, 0 + 2Z).

(5) For a group H we use the notation H := [//, //], //(2) := [//(1), //(1)].
There is a chain ofnormal subgroups ofG

n\
64

n\
I6 m 12

n\
8

a\
4 4 4

r(2) < g(2) < rj1} < r(1) < g(1) < r0 < r < g

such that

G/F = F/F0 = r0/G(1) = Z\ , G(1)/ T(1) = Z3
, T(1)/ F(0X) = Z22 x Z3 ,

Qab c^ %6 ancj qjYq = Z2. It follows for example that F^ is a normal

subgroup ofG ofindex 6291456 = 3 • 221.

(6) T < S03(Q) (illustrating Theorem 3.12(2)).

(7) Zr(b) = Nr((b)) = (b), ifb e {bx, b2, b3, b4}.

Proof. (1) We compute

Pv(b\) = ^1, 6, 3, 4, 2, 5),

Pvih) = ^1, 6, 2, 5, 4, 3),

Pv(b3) = ^1, 6, 5, 2, 3, 4),

Pv(b4) = ^1, 2, 5, 3, 4, 6),

Pv(bs) = 3,3,5,4),

Pv(be) = ^1, 4, 6, 3),

Pv(bi) = ^1, 2, 6, 5),

Ph(aX) = (1,4,7,3,13,9,11,14,8,2,12,6),

Ph(ci2) = (1,3,5,2, 11,8, 12, 14, 10,4, 13,7),

Ph(a?>) = (1,2,6,4, 12, 10, 13, 14,9,3, 11,5).
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(2) We use GAP ([29]).

(3) We have used quotpic ([58]) to compute the abelianizations

((o3, b\, (axa2f, (bxbs?))f = Z2 x Z32

and

((a\, (axa2f, (axbx)7
,
(bxb5)7, (axbxb5)6))f = Z22 x ZX4 x Z56 .

The other statements about the finite quotients of the group F are computed by
GAP ([29]).

To illustrate Theorem 3.12(3) and (4), the homomorphism t2,3 : F -» PGL2(7)

with kernel

{{al (axa2)3, (axbx)7, (bxb5)7, (axbxb5)6))r

is given by

ax i->

a2 \->

a3 \->

bx \->

b2 \->

b3 \->

b4 \->

05 \->

b6 \->

07 \->

5 + 7Z 1 + 7Z

1 + 7Z 4 + 7Z

1 + 7Z 2 + 7Z

5 + 7Z 1 + 7Z

0 + 7Z 4 + 7Z

4 + 7Z 2 + 7Z

4 + 7Z

3 + 7Z

6 + 7Z

2 + 7Z

4 + 7Z

0 + 7Z

3 + 7Z

1 +7Z

0 + 7Z

1 +7Z

3 + 7Z

5 + 7Z

2 + 7Z

4 + 7Z

0 + 7Z

5 + 7Z

6 + 7Z

3 + 7Z

3 + 7Z

5 + 7Z

5 + 7Z

6 + 7Z

1 +7Z

6 + 7Z

2 + 7Z

3 + 7Z

4 + 7Z

4 + 7Z
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We observe that this homomorphism t2)3 : F -> PGL2(7) corresponds to the

permutation representation in Sg found by quotpic ([58]):

oriH> (1,5,7,2,4,6,3,8),

a2^ (1,5,6,4,8,3,7,2),

a3^ (1,5,3,8,2,7,6,4),

oi^(2,6,4,3,8,7),

o2^ (1,5,4,6,8,3),

03^(1,5,2,7,4,6),

04^ (1,5,8,3,2,7),

05^(1,6,7,8,4,5,3,2),

b6^ (1,3,6,2,8,5,7,4),

07^(1,7,3,4,2,5,6,8).

For q = 29, we have Ti2)o(0 = PSL2(29) < PGL2(29), given by

ax \->

Ü2 i->

a3 i->

bi \->

b2 \->

b3 \->

b4 \->

bs \->

be \->

bi \->

25 + 29Z 0 + 29Z

0 + 29Z 6 + 29Z

1 + 29Z 2 + 29Z

27 + 29Z 1 + 29Z

1 + 29Z 24 + 29Z

24 + 29Z 1 + 29Z

25 + 29Z

22 + 29Z

25 + 29Z

3+29Z

25 + 29Z

26 + 29Z

6 + 29Z

22 + 29Z

27 + 29Z

0 + 29Z

3+29Z

27 + 29Z

3+29Z

24 + 29Z

26 + 29Z

6 + 29Z

7 + 29Z

6 + 29Z

22 + 29Z

6 + 29Z

26 + 29Z

25 + 29Z

0 + 29Z

8 + 29Z

2 + 29Z

3+29Z

24 + 29Z

3+29Z
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and kernel ((a\4, b\, b\, b76, (axbx)3))r- The choice c = 17, d = 0 gives another

homomorphism

Ti7,o : r -» PSL2(29)

with kernel ker(Ti7,o) = ker(ri2,o)-

Note that q = 29 is the smallest odd prime number such that (-) = (—) = 1,

see Table 3.2 (other numbers with this property are for example 61 and 79).

(4) This follows from Theorem 3.12(1). Observe that the generators /' and j in the

given presentation correspond to

6 PGL2(Q5) x PGL2(Qi3)f(i) = ( )
< is o y

V 0 "'s ). >

A ° -/-i3 )]
and

f(j) = ( [( -ï ;): > [( -? i )] ) 6 PGL2(Q5) x PGL2(Qi3),

respectively. Note that it would be enough to add the relations/relators

i2, f, [ijl

[ax, /], axj = ja~x, [a2, j], a3j = ja~x,

bxi =ib~x, [05,7], b6i =ib~x, bxj = jb~x

in order to get a presentation of the group G.

(5) We have used GAP ([29]), quotpic ([58]) and the presentation of G given in

part (4).

(6) The injective group homomorphism F —> S03

by

of Theorem 3.12(2) is given

1 0 0

ax \-> | 0 -3/5 -4/5
0 4/5 -3/5

-3/5 0 4/5

a2 \-> | 0 1 0

-4/5 0 -3/5

-3/5 -4/5 0

a3 \-> | 4/5 -3/5 0

0 0 1
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(7) This follows from Proposition 1.12.

D

See Table 3.6 for the index [r : U] and the abelianization Uab, where U is of the

form U = (a,,bj), at e {ax,a2, a3}, bj e {bx, b2, b3, b4, b5, b6, o7} and F = F5,X3 is

the (6, 14)-group defined in Example 3.28:

bx,b2,b3,b4 bs be bi

ax 16, [16, 32] oo, [0, 0] 96, [16, 32] 96, [16, 32]

a2 16, [16, 32] 96, [16, 32] oo, [0, 0] 96, [16, 32]

a3 16, [16, 32] 96, [16, 32] 96, [16, 32] oo, [0, 0]

Table 3.6: Index [r : U] and group U ,
where U = (at,b}) in Example 3.28

Observe that (ax, 05} = («2, be) = (a3, 07} = Z2 in F^,X3.
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3.3 Generalization to p, I = 3 (mod 4)

The main goal of this section is to generalize the construction of Fpj of Section 3.2

to the case where p = 3 (mod 4) and 1 = 3 (mod 4) are distinct prime numbers.

Before giving the ultimate definitions, we discuss some possible approaches. If we

just naively define F as set

{f(x) :x e H(Z) has type e0, \x\2 =prF; r,s e N0},

then we have several problems:

(1) The condition "x has type eo" is not preserved under quaternion multiplication

(for example (/' +j +k)2 = —3 has type oo), so we better define F just as group

generated by ax,..., aP+\ ,bx,..., bi+±, where
2 2

{ax,..., ap+j_} = {ip-(x) : x eW(Z) has type eo, \x\ = p)
2

{oi,..., ow }±1 = {f(y) : y e H(Z) has type e0, \y\2 = 1}
2

or (as will be explained in (3))

{ax,..., ap+j_} = {ip-(x) : x eW(Z) has type ex, \x\ = p)
2

{oi,...,*^1 ={^0):^6H(Z)hastypeei, \y\2 = 1},
2

i.e. we get

T = {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type eo, if |x|2 = 3 (mod 4),

x has type oo, if |x| = 1 (mod 4)}

= {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type eo, ifr + 5 is odd,

x has type oq, ifr + 5 is even},

or

T = {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type ei, if|x| =3 (mod 4),

x has type oo, if |x|2 = 1 (mod 4)}

= {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type ex, ifr+s is odd,

x has type oo, if r + 5 is even}

for a suitable map tfr, see (2) below.
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(2) What is a good definition for ^? Since now p, I = 3 (mod 4), there are no

elements ip e Qp, ii e Q/ anymore such that i2 + 1 = 0 and if + 1=0. We

have two possibilities to generalize the map tfr of Section 3.2: Either we define

f : H(Z) \ {0} -> PGL2(Kp) x PGL2(K,),

where x = xq + xxi + X2J + x3k is mapped to

x0 + xxip x2 + x3ip
-x2 + x3ip xo - xxip

x0 + xxii x2 + x3//

-x2 + x3/'/ x0 - xxii

and Kp, Ki are quadratic extensions of Q^ and Q/, respectively, containing
elements ip e Kp, ii e Ki such that i2 + 1 = 0 and if + 1 = 0, or we define

f : H(Z) \ {0} -> PGL2(QJ x PGL2(Q/),

x i->
x0 + xic^ + x3dp -xxdp + x2 + x3cp \

XXdp — X2 + X3Cp Xq — XiCp
— x3dp J

X0 +XlQ +x3di

-xxdi - x2 + x3c/

-xi<i/ + x2 + x3ci

xq -xxci - x3di

where c„, d„ e Q„, c/, di e Q/ are elements satisfying

cZp+dZp + l 0 and ci + di + 1 = 0.

Such elements exist since the equation x2 + y2 + 1 = 0 has solutions in

Zp and Z/ (see [23, Proposition 2.5.3]) and then applying Hensel's Lemma.

Both constructions of ^ are equivalent in the sense that they will give the

same defining relations, hence isomorphic groups F. This mainly follows from

ir(xy) = \J/(x)\J/(y) for both \J/. Therefore, we can always choose any of those

two definitions of ^ in the following constructions. In practice, we will choose

the second one, since we prefer to be inside PGL2(QP) x PGL2(Q/) as in the

classical case of Section 3.2.

(3) If p = 3 (mod 8), then p can be written as a sum of (0 and) three odd squares

(by Lemma 3.7(2),(3)). So if we take for example one generator ax := ij/(x)
such that x = 0 + xxi + X27 + x3k and |x|2 = x? + x\ + x2 = p, then

ax = ^r(x) = ip-(-x) = ip~(x) = ip~(x)
x

a
1 '

i.e. a2 = 1 in F, in particular the group F is not torsion-free and therefore

certainly no (p + 1, / + l)-group.



13 6 CHAPTER 3. QUATERNIONLATTICES INPGL2(Qp ) x PGL2 (Qp )

We can easily avoid this problem by changing the type from eo to ex whenever

p
= 3 (mod 8) or/ = 3 (mod 8):

{ax,..., ap+j_} = {ip-(x) : x eW(Z) has type ex, \x\ = p)
2

{oi,..., ow }±1 = {f(y) : y e H(Z) has type ex, \y\2 = 1}.
2

In the remaining case p,l = 1 (mod 8), we essentially (we could replace ex by

e2 or e3) have two possibilities: Either we again take

{ax,..., ap+j_}±x = {ip-(x) : x e H(Z) has type ex, \x\2 = p)
2

{oi,..., ow }±1 = {f(y) : y e H(Z) has type ex, \y\2 = 1},
2

or we take

{ax,..., ap+j_} = {ip-(x) : x e H(Z) has typeeo, |x| = p)
2

{oi,..., ow }±1 = {f(y) : y e H(Z) has type e0, \y\2 = 1}.
2

These two constructions give different groups (we have different abelianizations

in our examples, see the list in Section 3.5), but the groups are quite similar (its
intersection has index 2 in both groups).

We always avoid type-mixing constructions, since ifx has type eL, |x|2 = p

and y has type eK ^ eL, \y\2 = I, then |xi;|2 = pi = 1 (mod 4). Hence, by
Lemma 3.7(2), |xi;|2 can be written as a sum of three squares (one odd and two

even squares). By the following multiplication table (Table 3.7), xy has type

oi, 02 or o3, in particular ïft(xy) is even, so it can happen that ïft(xy) = 0, but

then xy = —xy, hence (x^)2 = xy(-xy) e Z and (^(x^))2 is the identity in F

which implies that F is not torsion-free.

oo oX 02 o3 eo eX e2 e3

oo oo oX 02 o3 eo eX e2 e3

oX oX oo o3 02 eX eo e3 e2

e>2 e»2 o3 oo oX e2 e3 eo eX

o3 o3 e»2 oX oo e3 e2 eX eo

eo eo eX e2 e3 oo oX 02 o3

eX eX eo e3 e2 oX oo o3 02

e2 e2 e3 eo eX 02 o3 oo oX

e3 e3 e2 eX eo o3 02 oX oo

Table 3.7: Multiplication table of quaternion types
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After those preliminary considerations, we give now the final definitions for f and

the group Fpj for this section: Let p, I = 3 (mod 4) be distinct prime numbers, and

f : H(Z) \ {0} -> PGL2(Qi,) x PGL2(Q/),

mapping the quaternion x = xo + xxi + X2J + x3k to

xo + xxcp + x3dp —xxdp + X2 + x3cp

-xxdp — X2 + x3cp xo — xxcp
— x3dp

xo + x\Ci + x3di —xxdi + X2 + x3c/

-x\di — X2 + x3c/ xo — x\Ci — x3di

ci,di e Qi are elements such thatwhere cv,dv e tp,

c2 + dl + 1 = 0 and c2 + S + 1 = 0
.

-P
• -~p

Then, we define the group

Fpj = {f(x) :x eU(Z), \x\2 =prT;r,s e N0,

x has type ex, ifr+s is odd,

x has type oq, if r + 5 is even}

= {f(x) :x eH(Z), |x|2 =prT;r,s e N0,

x has type ei, if|x|2 = 3 (mod 4),

x has type oo, if |x| = 1 (mod 4)},

±1
= {fix) :x eH(Z) has type ei, |x|2

, aP+\}~
2

,bi+i}±x ={f(y):yeU(Z)hastypeex, \y\2
2

with subsets

Eh := {ax,

Ev := {bx,

In the subcase p,l = 1 (mod 8), we additionally define the group

Fpj,eo = {f(x) :x e H(Z), \x\2 =prls;r,se N0,

x has type eo, ifr + 5 is odd,

x has type oq, if r + 5 is even}

= {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

/}.

x has type eo, if |x|

x has type oq, if |x|2

3 (mod 4),

1 (mod 4)},

with corresponding subsets

i±i
Eh := {ax,..., ap+i)

= {f(x) : x e H(Z) has type eo, \x\ = p}

Ev := {bx, ...,bi±\]
2

±1
{f(y):ye H(Z) has type e0, \y\2 = 1}.
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Our next goal is to prove that Fpj and Fpj<eo are (p + 1, / + l)-groups.

Theorem 3.30. Let F be either the group Fpj, where p, I = 3 (mod 4), or let F be

the group Tpj>eo, where p,l = 1 (mod 8). In thefirst case, let

{ax, ..., «£+]_, «£+]_, ..., ai} = {x e HI(Z) oftype ex : |x| = p, ^(x) > 0}
2 2

{ßi, , ßm, ßi±i, , ßi] = {ye H(Z) oftype ex : \y\z = l, dt(y) > 0}
2 2

Eh = f({ax, ...,aP+1,cTP~TT, ..., ÖT}) = {ax, ...,a£±i}±1
2

±1
Ev = f{{ß\, ••-, ßi+i,ßi+i, ..., ßX}) = {bx, ..., bi+i}

In the second case, we take the same definitions, but replace ex by eo.

A word in {ax, ...,
a 2+1, ceP+\, ..., oil} is called reduced, if it has no subword

2 2

of the form a} «7 or Wloil. A reduced word in {ßx, ..., ßi+±, ßi+i, ..., ßx} is defined
2 2

analogously. Then in both cases thefollowing statements hold.

(I) Any quaternion x e HI(Z) such that \x\2 = prls; r, s e No, can be uniquely

expressed in theform
x = eprilSlwr2(a)wS2(ß),

where

• se HI(Z) is a unit, i.e. s e {±1, +/', ±7, ±k}

• 7*1, 7*2, 5i, 52 e No such that 2rx + r2 = r and 2sx + 52 = 5

• wr2 (a) is a reducedword in {ax, ...,
a2+1, aP+i, ..., en} oflength r2

2 2

• ws? (ß) is a reducedword in {ßx, ..., ßi+x, ßi+±, ..., ßx} oflength 52.
22

(2) The group F is generated by the set {ax, ..., a^+i, bx, ..., bi+i), i.e. by the set
2 2

{f(ax), ..., f(ap+i_), f(ßx), ..., t(ßm.)}.
2 2

(3) To any pair a e Eh, b e Ev, there are unique elements a e Eh, b e Ev such

that ba = ab.

(4) The group F is torsion-free.

(5) The group F is a (p + 1, / + Y)-group.

Proof. (Y) We follow the strategy of the proof of [45, Lemma 2.1.9], see also the

proof of [23, Theorem 2.6.13].

Existence: By Proposition 3.10, we can write

x=y(X\..y^z(X\..z^
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such that y{l),z{^ e H(Z), \y^\2 = p and |zw|2 = /, where i = 1, ...,/

and /c = 1, ...,
5. Observe that all quaternions _y^, z^ have type e by the

assumption/?, / = 3 (mod 4). Multiplyingy(l\ z^> with suitable units, we can

achieve that x has the form

x = s/x\..y^z^...z^,

such that s e H(Z) is a unit, >-((), zw e H(Z) have type ex, and 9t(>W) > 0,

ïft(z^) > 0; or we can achieve that y^l\ z^ have type eo instead of type ex.

We get the desired expression if we replace all subwords

y(<y<+D = ^(07/0

by P = Iy^ I2, and all subwords

r(K)r(K+D = Z«7>I

by/= |zW|2.

Uniqueness: We adapt the counting argument given in [45, Lemma 2.1.9]. The

number of reduced words wr2(a) is

(p + l)pr2~x ,
if r2 > 1

1, if 7-2 = 0.

Similarly as in [45], it follows that the number of expressions

spnlSlwr2(a)wS2(ß)

is

8(l+p + ---+pr)(l+! + +Is) = 8 J2 d>

d\prls

which is also the number of quaternions x e H(Z), such that |x|2 = prF by the

Jacobi Theorem (see for example [45, Theorem 2.1.8] for a formulation and a

proof of the Jacobi Theorem).

(2) Let x e HI(Z) be a quaternion of norm |x|2 = prls; r,s e No. By part (1), we

can write

x = spnlSl Wr2(a)U)s2(ß) .

Assume that we are in the first case F = Fpj. Ifx has type ex and r + 5 is odd,
then

r2 + 52 = r + 5 - 2(ri + sx)
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is odd. By Table 3.7, the quaternion wr2(a)wS2(ß) has type ex, hence s has

type oo, i.e. s e {—1, 1} and it follows

f(x) = f(±pnlSlwr2(a)wS2(ß)) = f(wr2(a)wS2(ß)).

Ifx has type oo and/- +5 is even, then 7*2 + 52 is even, wr2(a)wS2(ß) has type oq,

again e e {—1, 1} and ij/(x) = \J/(wr2(a)wS2(ß)).

The proof in the second case F = Fpjteo is completely analogous, we only have

to substitute ex by eo everywhere.

(3) Write a = \J/(a) and b = \J/(ß) for some

a e {ax,..., a^+i, a^+i, ...,ax) and ß e {ßx,..., ßi+]_, ßi+]_,..., ßx).
2 2 2 2

The quaternion ßa has type oo and norm \ßa\2 = pi. By part (1), it can be

expressed as ßa = saß with a uniquely determined unit s and uniquely deter¬

mined quaternions

à e {ax,..., aP+\, aP+\, ...,ax) and ß e {ßx,..., ßi+]_, ßi+]_,..., ßx).
2 2 2 2

Since äß has type oo, the unit s also has type oo, i.e. s e {—1,1} and we

conclude

ba = \J/(ß)\J/(a) = ijf(ßa) = ijf(säß) = iff(äß) = ij/(a)ij/(ß) =: ab.

(4) We adapt the proof given in [54, Proposition 3.6]. Let ij/(x) be a non-trivial

element in F. Assume that ip-(x)k = 1 for some keN. Then there is an

element /x e Q^ such that

xq + xiCp + x3dp —xxdp + X2 + x3cp \
_

( P 0

-XXdp — X2 + X3Cp Xq — XXCp
— X3dp J \ 0 ß

hence /x = À\ = Xk2, where Ai, À2 are the two eigenvalues

6 GL2(Q„),

,2 v2 v2
Ài)2 = x0 ± y -x\

-

x|
-

x|

of the matrix

x0 + xic^ + x3dp -xxdp + x2 + x3cp

-xxdp — X2 + x3cp xo — xxcp
— x3dp

using the identity c2 + d2 + 1 = 0 in Q^. We write

v := x2 + x2 + x2 e N, Ai = xq + sf~^v and À2 = xq — sf~^v .
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By construction of Fpj and Fpjteo, there are only three possible types for the

quaternion x.

Case 1 : x has type oq, in particular xo is odd and v is positive even.

Case 2: x has type ex, and again xo is odd and v is positive even.

Case 3: x has type eo such that |x|2 = 7 (mod 8), in particular xo is non-zero

even and v is positive odd.

We will use the following facts which hold in all three cases:

v ^ 0, x0 7^ 0, 3xq - v ^ 0, Xq-u^0 and x2, - 3v ^ 0.

They follow directly looking at the parity. Since A4/À2 belongs to a quadratic
extension of Q, and (M/^2)k = 1, we can conclude that k e {1,2,3,4, 6}. But

k 7^ 1, since Ai — À2 = 2^—v 7^ 0

k 7^ 2, since À2 Ào 4x0-7^ 7^ 0

k 7^ 3, since À3 — À3, = 2a/—ü (3xq — v) 7^ 0

& 7^ 4, since À\ — X2 = 8xoa/^v (Xq — v) 7^ 0

ceÀ^ - X| = 4xoV^v (x2 - 3v)(3x2 - v) ^ 0
.

It follows that \jr(x)k 7^ 1 and T is torsion-free.

(5) By part (2), the group F is generated by its subset

{ax, .. .,aP+\, bx, ..., bi+j_},
~T~ 2

and by part (3) there are (p + 1)(/ + 1) relators of the form aba~xb~x, where

a, à e Eh and b,b e Ev. These (p + 1)(/ + 1) relators are represented by

exactly (p + 1)(/ + l)/4 relators aba~xb~x (geometric squares [aba~xb~x]), if

and only if the four squares

-U-l -1 A-l;; s-1; -U-l-äba b
,
a b ab, a bab

,
ab à b

are always distinct, i.e. if and only if there are no a e Eh, b e Ev such that

abab = 1. We want to exclude such "projective planes", so let us assume that

abab = 1 for some a e Eh, b e Ev. Since F is torsion-free by part (4), it

follows that ab = 1, hence ifr (aß) = 1 for some

a e {ax,..., aP+\, aP+\, ...,ax] and ß e {ßx,..., ßi+±, ßi+±,..., ßx].
~T~ 2 22

This implies (looking at the two eigenvalues Ai, À2 of part (4) which have to

be equal here) that aß = ^(aß) e Z, contradicting \aß\2 = pi. We conclude

that T is a quotient of a (p + 1,1 + l)-group

(ax, ..., ag+i, 01, ..., bi±± I /?£+]_ 1+1).
2 2 2

'

2
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This quotient is not proper (i.e. F is exactly this (p + 1,1 + l)-group), if and

only if any non-trivial relation which holds in F is a consequence of the square

relations ba = ab of part (3). So we assume that w is any relator in F, i.e. any

word in the generators

{ax, . . . , aP+\ ,bx, ...,
bi+i}

2 2

which represents the identity in F. Then, gradually using part (3), i.e. replacing

every ba by the corresponding ab, and cancelling all subwords of the form

ata~x, a~xa,, bjbj1, b~xbj ,

either w cancels to 1, which means that w is a consequence of the defining
relators in /?£+!.z±i and we are done, or w is represented by an element in F

2 2

of the form a^
...
a^b^

... b^s\ where (r, s) ^ (0, 0), such that a

and b^
...
o^ are freely reduced words in (ax, ..., aP+\ ) and (bx, ..., bi+j_)

2 2

respectively. Therefore,

f(a{X) ...a(r)ß(X) ...ß(s)) = l

for some

and

a(1),
...,

a(r) e {ax, ..., ap+i, ap+i, ... ,ax)
2 2

ßm,..., ß(s) e {ßx,..., ßm,7J77T, • • •, Ti),
2 2

where a^
...
a^ and ß^ ... ß^ are reduced words. This implies

a^...a^ß^...ß(s)=ma(X)...a^ß(XK..ß^)=:xoeZ.

Taking the norm of the last expression, we get prF = Xq, hence r, s are even

and

x0 = ±pr/2ls/2,

which contradicts the uniqueness statement of part (1) for the quaternion

a ...a^ß{XK..ß^ = ±fl2lsl2.

D

In both constructions of F = Fpj and F = Fpj,e{), we have

r0 = {f(x):xe M(Z) has type o0, |x|2 =p2rl2s;r,s e N0}

< PSL2(Q^) x PSL2(Q/)

as in Section 3.2. Note that in the case p, I = 1 (mod 8), the common subgroup To

has index 2 in Fpj fl Fpj>eo.
We describe now (or in Appendix A) several explicit examples for the three cases

p, I = 7 (mod 8), p, I = 3 (mod 8) and p = 3 (mod 8), / = 7 (mod 8), where the

first case is again divided into the type ex and type eo subcase:
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Case p,l = 1 (mod 8), type e\

Let p,l = 1 (mod 8) be distinct prime numbers. Here, we take {ax, ..., ap+j_} to be
2

the set

{^r(x) : x = xo + xxi + X2J + x3k e HI(Z) has type ex, xq, xx > 0, |x| = p},

and take {bx,..., bi+±} to be the set
2

{f(y) :y =y0+yxi + y2j + y3k e H(Z) has type ex, y0,yx > 0, \y\2 = 1}.

See Appendix A. 7 for the explicit definition ofthe group F = T723. It has for example
the following properties:

Ph = PSL2(7) < S», Pv = PGL2(23) < S24.

Fab = Z2 x Z\, \F, F]ab = Z3 x Z\ x Z64, Yf = Z2 x Z3 x Z\.

In Appendix A.8 is the explicit definition of F = F-],3X. We have computed

Ph = PGL2(7) < S», Pv = PSL2(31) < ^32-

Fab = Z2 x Z3 x Z\, \F, F]ab = Z\ x Z\ x Z64, Fa0b = Z2 x Z3 x Z\.

Case p,l = 1 (mod 8), type <?0

Again, let p,l = 1 (mod 8) be distinct prime numbers, but now we take

{ax,.. .,ap+j_}±x = {\[f(x) : x e H(Z) has type eo, |x|2 = />}
2

and

{oi,..., ow }±1 = WO) : y e M(Z) has type e0, \y\2 = 1}.
2

As an example, the group F = r7)23,eo is explicitly defined in Appendix A.9, and we

have

Ph = PSL2(7) < Si, Pv = PGL2(23) < S24.

Fab = Z\ x Z4, [r, F]ab = Z3 x Z4 x Z26, Yf = Z2 x Z3 x Z\.

Note that (r7)23,eo)aè 7^ (Fit2'i)ah, in particular the groups r7)23,e0 and T7)23 are not

isomorphic.
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Case p, I = 3 (mod 8)

Let p, I = 3 (mod 8) be distinct prime numbers. We give the example r3>n, taking

ax =f(\+j+k),

a2 = f(l +j -k),

bx=f(l+j + 3k),

b2 = fd+j-3k),

b3 = f(l+3j+k),

b4 = Tjf(l+3j-k),

b5 = f(3+j+k),

b6 = f(3+j -k),

a,

a0

f(l-j-k),

f(l-j+k),

f(l-j-3k),

f(l-j + 3k),

f(l-3j-k),

f(l-3j+k),

f(3-j-k),

f(3-j+k).

Example 3.31.

R2-6 :--

axbxaxb6

axb3axb6,

axb2axbA ,

axb4a2 b3 ,

-U-i
axbsaïlbjl, axb3 a2 b4,

axb2 Ö20J" , axb~^ a2b2 ,

a2bxa2b3x, a2b2a2bjx,

a2b4a2bs, a2b6a2xb6x

Proposition 3.32. Let F = F3XX be the (4, l2)-group defined in Example 3.31. Then

(1) Ph = PGL2(3) = S4, Pv = PSL2(11) < ^12.

(2) Fab = Z2 x Z2, [r, F]ab = Z\ x Z64, Fab = Z2 x Z2.

Proof. (Y) We compute

pv(bx) = pv(b2) = (1,3,2,4),

pv(b3) = (1,2,3,4),

pv(b4) = (1,4,3,2),

pv(bs) = (2,3),

pv(b6) = (1,4),
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Ph(ax) = (1,11,9, 10, 6)(2, 12,7,3,4),

pÄ(a2) = (1,11,8,4,3)(2, 12, 10,9,5).

(2) GAP ([29]).
D

See Table 3.8 for the index [r : U], the abelianization Uab and the structure

of the quotient F/U (if U is normal in F), where U = (a,, bj), a, e {ax, «2} and

bj e {01, ...,o6}.

bx,b3 02,04 bs be

ax 2, [8, 8], Z2 8, [8,32],- 00, [0,0],- 2, [8, 8], Z2

a2 8, [8,32],- 2, [8, 8], Z2 2, [8, 8], Z2 00, [0, 0], -

Table 3.8: [r : U], Uab and r/U in Example 3.31, where U = {a„b.

Case p
= 3 (mod 8), / = 7 (mod 8)

Let p
= 3 (mod 8), / = 7 (mod 8) be prime numbers, We construct the group r3j

as follows:

ax =tJ/(1+j +k),

a2 = f(l +j -k),

ax =f(l-j-k),

a~x =Tjf(l-j+k),

bx = f(l +2/ +j+k),

b2 = f(l+2i +j -k),

b3 = f(l+2i-j+k),

04 = ^(1+2/ -j-k),

b-x = f(l-2i-j-k),

b~x = f(\-2i-j +k),

b3x = f(\-2i+j -k),

b~x = f(l-2i+j+k).

Example 3.33.

R

2-4

axbxa2 b2 , a^a^ b3,

axb3a2 o4 , axb4axbx ,

axbdxa2b2, axb^xa2bx,

Ö203a209 , «204a, bx
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Proposition 3.34. Let F = F3j be the (4, %)-group defined in Example 3.33. Then

(Y) Ph = PSL2(3) = A4, Pv = PGL2(7) < S*

(2) Fab = Z2 x Z2, [r, F]ab = Z\ x Zi6, Fab = Z2 x Z2.

(3) We have a quotient F/((a\, b\, (aioi)5, (oi02)5))r = PGL2(5) = Ss, such that

((al b\, (axbx)5, (oi02)5))fè = Z2 x Z20, and quotients

F/((a\, (axbx)X2, (bxb2)5))r = PGL2(11),

F/((a\, (axbx)u, (bxb2)3))r = PGL2(13).

(4) The group U(U(Z[l/3, l/7]))/ZU(U(Z[l/3, 1/7])) has a presentation with

generators ax, «2, bx, 02, o3, b4, i, j and relators

R2.4, axiaxi~x, axja~xj~x, bxib~xi~x, bxjb3j~x, i2, j2, [i,j].

(5) (U(U(Z[l/3, l/7]))/Zrj(H(Z[l/3, l/l])))ab = Z\.

(6) (f7(H(Z[l/3, l/7]))/ZU(U(Z[l/3, 1/7])))/T0 = Z\.

(1) Aut(X) = D4.

(8) (a2a2,b~xb3b4b~x) =Z2.

Proof. (Y) We compute

Pv(bX) == (1, 4, 3),

Pv(b2) == (1, 2, 3),

Pv(b3) == (2, 4, 3),

Pv(b4) == (1, 2, 4),

Ph(ax) ~-= (1, 4, 3,7, 5, 8, 6, 2),

Ph(ci2) == (1, 5, 6,7, 8, 4, 2, 3).

(2) GAP ([29]).

(3) Let q be an odd prime number distinct from p and /, and choose c,d e Z

such that c2 + d2 + 1 = 0 (mod q), then we can define exactly as described in

Theorem 3.12(3) a homomorphism r = xc,d ' Fpj —>- PGL2O7) by

/ xo + xxc + x3d + qZ —xxd + X2+x3c + qZ\
c'

\
—xxd — X2 + X3C + qZ xq — xxc — x3d + qZ J '

where y = ijf(xo + xxi + X27 + x3k).
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For q = 5we have To,2 : r3-

ax i->

a2 i->

PGL2(5)givenby

3 + 5Z 1 + 5Z

4 + 5Z 4 + 5Z

4 + 5Z 1 + 5Z

4 + 5Z 3 + 5Z

bx i->

b2 i->

b3 h>

b4 i->

3 + 5Z 2 + 5Z

0 + 5Z 4 + 5Z

4 + 5Z 2 + 5Z

0 + 5Z 3 + 5Z

3 + 5Z 0 + 5Z

2 + 5Z 4 + 5Z

4 + 5Z 0 + 5Z

2 + 5Z 3 + 5Z

We have used quotpic ([58]) to show that

((a\,b\, (axbx)5,(bxb2)5))f = Z2*Z

In the same way tij3 : r3j -» PGL2(11) is defined by

ax i->

and r0,5 : r3)7

a2 i->

bx i->

b2 i->

b3 i->

b4 i->

PGL2(13) by

ax \->

a2 \->

4 + 11Z 2+ HZ

0 + 11Z 9+ HZ

9 + 11Z 0+ HZ

9 + 11Z 4+ HZ

6 + 11Z 7+ HZ

5 + 11Z 7+ HZ

0 + 11Z 5 + HZ

3 + 11Z 2+ HZ

6 + 11Z 5 + HZ

7 + 11Z 7+ HZ

'

0 + 11Z 3 + HZ

^

5 + 11Z 2+ HZ

6+ 13Z 1 + 13Z

12+ 13Z 9+ 13Z

9+ 13Z 1 + 13Z

12+ 13Z 6+ 13Z
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bx i->

b2 i->

b3 i->

b4 i->

6+ 13Z

2+ 13Z

9+ 13Z

2+ 13Z

6+ 13Z

4+ 13Z

9+ 13Z

4+ 13Z

4+ 13Z

9+ 13Z

4+ 13Z

6+ 13Z

2+ 13Z

9+ 13Z

2+ 13Z

6+ 13Z

(4) Same idea as in Proposition 3.29(4) using that the group

U(M(Z[l/p, l/l]))/ZU(M(Z[l/p, l/l]))

can be described as

{f(x) : x e H(Z), |x|2 = prT; r,se N0}

(5) and (6) follow from part (4) using GAP ([29]).

(7) GAP ([29]). The group Aut(X) is generated by the two automorphisms

(ax,a2,bx,b2,b3,b4) i-> (ax,a~x,b~x,b~x,b~x,b~x),

(ax,a2,bx,b2,b3,b4) i-> (a2,a~x, b2, b4, bx, b3).

(8) This follows from Lemma 3.14, since the two elements a2a2 = tJ/(1 + 8/ — 4j)

and o2 xb3b4bx x
= ^(41 - 24/ + 12/') commute.

D

See Table 3.9 for the index [r : U], the abelianization Uab and the structure of the

quotient F/U, where U = (a,, bj), a, e {ax, «2}, bj e {bx, 02, b3, b4}.

bx,b4 02,03

ax 4, [8, 16], Z4 2, [8, 8], Z2

a2 2, [8, 8], Z2 4, [8, 16], Z4

TabTable 3.9: [r : U], Uab and F/U in Example 3.33, where U = (a„bj
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3.4 Mixed examples: p
= 3, / = 1 (mod 4)

Let p = 3 (mod 4), / = 1 (mod 4) be two prime numbers. Similarly as in Section 3.2

or Section 3.3, we define a map

f : H(Z) \ {0} -> PGL2(Qi,) x PGL2(Q/),

which sends x = xo + xxi + X2J + x3k to

Xq + XXCp + X3dp —XXdp + X2 + X3Cp

-X\dp — X2 + X3Cp Xo

x0 + xxii x2 + x3/'/

-x2 + x3z'/ x0 - xxii

xxc. X3Üp

where cp,dp e Qp, ii e Q/ are elements such that c2 + d2 + 1 = 0 and if + 1=0.

Then we construct groups Fpj generated by

{ax,..., ap+j_} = {ip-(x) : x e H(Z) has type ex, \x\
2

{bx, ...,bi+i}
2

±1
{f (y) : y e H(Z) has type o0, \yY

P)

/},

that is

rP,i = W(x) :x e H(Z), |x|2 = prls; r, s e N0,

x has type ex, if |x |2 = 3 (mod 4),

x has type oo, if|x| =1 (mod 4)}

= {f(x) :x eI(Z), |x|2=///5;r,J6N0,
x has type ex, ifr is odd,

x has type oq, ifr is even},

and, in the subcase p = 1 (mod 8), / = 1 (mod 8), also groups Fpj>eo generated by

{ax,..., ap+j_}±x = {ip-(x) : x e H(Z) has type eo, \x\2 = p)
2

{oi,..., o1±i}±1 = {f(y) : y e M(Z) has type o0, |^|2 = /},
2

i.e. r^/^o is defined as

{^(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type eo, if |x|2 = 7 (mod 8),

x has type oo, if |x|2 = 1 (mod 8)}

= {f(x) :x eH(Z), |x|2 = prls; r, s e N0,

x has type eo, if/- is odd,

x has type oq, ifr is even}.
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Note that for both constructions F = Fpj and F = Fpjtf,0 we have

r0 = {f(x):xe H(Z) has type o0, |x|2 =p2rl2s;r,s e N0}

< PSL2(Qi,) x PSL2(Q/)

as in Section 3.2 and 3.3.

Theorem 3.35. Let F be either the group Fpj, where p
= 3 (mod 4), I = 1 (mod 4),

or let F be the group Fpjte0, where p = 1 (mod 8), / = 1 (mod 8). Then F is a

(p + 1,1 + l)-group.

Proof. It is easy to adapt the proof of Theorem 3.30. D

Now, we give some explicit constructions of Fpj for the two cases p = 1 (mod 8)

and p = 3 (mod 8). Moreover, we illustrate the type eo construction in the subcase

p
= 1 (mod 8), / = 1 (mod 8), and explain why this restriction makes sense to avoid

torsion in the group.

Case p
= 1 (mod 8), type e\

Let p = 1 (mod 8), / = 1 (mod 4) be prime numbers,

{ax,..., ap+i) = {^/(x) : x e H(Z) has type ex, îft(x) > 0, îft(ix) < 0, |x| = p)
2

{bx,..., bw }±1 = {f(y) : y e M(Z) has type o0, 9t(y) > 0, \y\2 = 1}.

We study two examples: the group r7>5 is generated by

ax =f(l +2/ +j+k),

a2 = f(l +2/ +j -k),

a3 = f(l +2/ -j+k),

a4 = ty(l + 2/ — j — k),

a,

a0

a0

a.

f(l-2i-j-k),

f(l -2/ -j+k),

f(l -2i+j-k),

f(l -2i+j+k),

bx=f(l+2i), b-l=f(l-2i),

b2 = f(l+2j), b~x =f(l-2j),

b3 = f(l+2k), b3x =f(l-2k).

Example 3.36.

aioi^o^"1, axb2a4b2 , axb3a^ 02, axb3 a4b3,

R43:-- axb2xa2bx, axbxxa4bxx, «202^3 xb3 x, a2b3a4bx,

a2b3 a3b3, «202 a302, ö2°i a3°i , a3bxa4b2
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Proposition 3.37. Let F = Tjts be the (8, 6)-group defined in Example 3.36. Then

(1) Ph = PGL2(7) < Si, Pv = PGL2(5) < S6.

(2) Fab = Z2 x Z2, [r, F]ab = Z3 x Z2 x Zi6, F^ = Z2 x Z3 x Z2.

(3) Aut(X) = S4.

Proof. (1) We compute

p„(oi) = (l,5,2,6,4,8,3,7),

Pl)(o2) = (l,5,3,7,6,2,8,4),

pv(b3) = (1,6, 2, 3, 7, 4, 8, 5),

Ph(a\) = (1,6,5,3),

Phifli) = (1,6,3,2),

Ph («3) = (1,6,4,5),

ph(a4) = (1,6,2,4).

(2) and (3) are computed with GAP ([29]). The group Aut(X) is generated by the

two automorphisms

(ax,a2,a3,a4,bx,b2,b3) i-> (ax,a3,a4,a2, 03, bx, b2),

(ax,a2, a3, a4, bx, b2, b3) i-> (a2, a~x,ax,a~x, bx, b~x, b~x).

D

See Table 3.10 for the index [r : U], the abelianization Uab and the structure of

the quotient F/U, where U = (a,, bj), a, e {ax,a2, a3, a4), bj e {bx, 02, 03}.

bx b2, 03

ax,a2,a3,a4 4, [8, 16], Z4 2, [8, 8], Z2

rabTable3.10: [r : U], Uab and F/U in Example 3.36, where U = (a„bj)

Our second example is the group F-]tX3:

ax =f(l +2/ +j+k),

a2 = f(l +2/ + j -k),

a3 = f(l +2/ -j+k),

a4 = ty(l + 2/ — j — k),

a~x = f(l -2/ - j -k),

a~x = ^(1 -2/ -j+k),

a~x = f(l -2/ + j -k),

a~x =f(l -2/ +j+k),
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oi =f(l+2i+2j + 2k),

b2 = f(l+2i+2j -2k),

b3 = f(l+2i-2j + 2k),

b4 = f(l -2/ +2j + 2k),

b5 = f(3+2i),

b6 = f(3+2j),

bn = f(3+2k),

Example 3.38.

Ra-i---

axbxaxb5 ,

axb5a2b6,

axb2a4b3

-U-l

b~x =f(l -2/ -2/ -2k),

b~x =f(l -2/ -2j +2k),

b~x =f(l -2i+2j -2k),

b~x =f(l+2i-2j -2k),

b~x =f(3-2i),

b~x=f(3-2j),

b~x =f(3 -2k).

axb3al b2 , axb4a4bx ,

U-U-l
axbea2 b3 , axbja3bs, axb7 a3 o4 ,

-U-U-l -U-U-l -U-l,
axb6 a4 o7 , axb4 a2 o6 , axb2 a3 bj, axbl a4b4,

a2bxa2xb4, a2b2a2bjx, a2b3a4~xb7, a2b5a4bjX,

-U-i -U-U-i
a2bja3 o6 , «207 a4 bl , «204 a3bx, ö203 a3b2 ,

a2b2xa3b3x, a3b3a3bjx, a3b4a3xbx, a3b6a4~xb2,

a3b^ a4bs, a3b~^ a4 b^ , a4b2a4 b3 , a4bj a4b4

Proposition 3.39. Let F = Fj>X3 be the (8, l4)-group defined in Example 3.38. Then

(Y) Ph = PGL2(7) < Si, Pv = PGL2(13) < SX4.

(2) Fab = Z2 x Z3 x Z2, [r, F]ab = Z\ x Z2 x Zi6, Fab = Z2 x Z3 x Z2.

Proof. (Y) We compute

p„(oi) = (l,5,6,2,4,8),

p„(o2) = (2,6,8,4,3,7),

pv(b3) = (1,2, 6, 3, 7, 5),

pv(b4) = (1,3, 7, 8, 4, 5),

pv(bs) = (1,8, 2, 7, 4, 5, 3, 6),

p„(o6) = (1,2, 3, 4, 6, 5, 8, 7),

p„(o7) = (1,4, 2, 5, 7, 6, 8, 3),
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(2) GAP ([29]).

ph(ax) = (1, 4, 8, 13, 12, 2, 3, 6, 11, 14, 10, 7, 9, 5),

ph(a2) = (I, 8, 3, 13, 10, 6, 7, 5, 2, 12, 9, 4, 14, 11),

Ph(a3) = (1, 11, 7, 2, 12, 10, 9, 8, 5, 3, 13, 6, 14, 4),

pÄ(04) = (1, 4, 10, 8, 6, 5, 11, 14, 7, 12, 13, 3, 2, 9).

D

Case p
= 1 (mod 8), type e0; / = 1 (mod 8)

Let p = 1 (mod 8), / = 1 (mod 8) be prime numbers,

{ax,... ,ap+i}±x = {f(x) : x e H(Z) has type eo, ^OO > 0, |x|2 = p]

and

{bx, ...,bi+\_}
2

±1
{f(y):ye H(Z) has type o0, 9t(» > 0, [y|2 = /}.

Note that we have two major restrictions in this type eo case. Firstly, we exclude the

case p
= 3 (mod 8) for the same reasons explained in Section 3.3. Secondly, we

exclude the case p = 1 (mod 8), / = 5 (mod 8). To motivate it, observe that ifx has

type eo, \x\2 = p = 1 (mod 8) and y has type oo, \y\2 = / = 1 (mod 8), then xy has

type eo such that |x_y|2 = pi = 1 (mod 8), in particular ïft(xy) ^ 0 by Lemma 3.7(2).

However, ifx has type eo, |x|2 = p = 7 (mod 8) and y has type oq, \y\2 = I = 5

(mod 8), then xy has type eo such that |x_y|2 = pi = 3 (mod 8) and it can happen
that ïft(xy) = 0. But this means that xy = —xy, hence (xy)2 = xy(-xy) e Z. As a

consequence, \j/((xy)2) is the identity in F and F is therefore not torsion-free (we say

that x, y generate a projective plane). We will give an example for this phenomenon
later in this section (see Example 3.42).

First, we look at the (8, 18)-group r7)i7jeo having the following generators:

ax = f(2 + i +j+k),

a2 = f(2 + i + j - k),

a3 = f(2 + i - j +k),

a4 = f(2 -i + j +k),

bx = f(l+4i),

b2 = f(l+4j),

b3 = f(l+4k),

a.

a0

<x,

a.

f(2-i-j-k),

f(2-i-j+k),

f(2-i+j -k),

f(2 + i-j-k),

f(\-4i),

f(l-4j),

f(\-4k),
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b4 = f(3+2i+2j),

bs = f(3+2i-2j),

be = f(3+2i+2k),

b1 = f(3+2i-2k),

H = f(3+2j+2k),

b9 = f(3+2j -2k),

Example 3.40.

^4-9 ''-

axbxa2b4,

axb5a4b~x,

axb2a4h,

axb6a3bx,

b~x = f(3-2i-2j),

b~x = f(3-2i+2j),

b~x = f(3 -2/ -2k),

b~x = f(3 -2i+2k),

b-x = f(3-2j-2k),

b~x = f(3-2j +2k).

axb3a3b6, axb4a2b2,

axbqa3 b2 , axbia4b3,

-U-U-i
axbga3b4 , axb9 a4 bx , axb% a3b5 , axb7 a20g

axb6 «209 , axb5 a2 b3 . axb4 a4bj, axb3 a-, bs

-U-l u-l
axb2 a3 b7 , axbx a4 09, a20ia4 07, a2bea3 b4

«207a,, lb
l4 b3

U u-l
a2b6 ci4b2

a2bia3bx x,

a2b5 xa4 xbgx.

-U-l
a2bga3 02, 02*7 Vci3 lbs

a2b4xa4xbi, a2b3xa3xb9

«202 a4be, ö2°i a3°8 ' a3b4a4b3 , a3b$a4 bx,

a3bia~xb~x, a3b9a~xb~x, a3b~xa4b~x, a3b~xa~xb5

Proposition 3.41. Let F = r7i7)eo be the (8, l%)-group defined in Example 3.40.

Then

(1) Ph = PGL2(7) < Si, Pv = PGL2(17) < ^18.

(2) Fab = Z\x Z4, \F, F]ab = Z3 x Z4 x Z26, Ff = Z2 x Z3 x Z2.

Proof. (Y) We compute

p„(oi) = (l,4,3,7,5,8,2,6),

pv(b2) = (1,3, 2, 5, 6, 8, 4, 7),

pv(b3) = (1,2, 4, 6, 7, 8, 3, 5),

pv(b4) = (1,6, 4, 8, 2, 3, 5, 7),
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Pv(bs)

Pv(be)

Pv(bi)

Pv(bi)

Pv(bg)

Ph(aX)

Ph(ci2)

Ph(a?>)

Ph(a4)

1,6,5,7,8,4,3,2),

1,5,2,8,3,4,7,6),

1,3,4,2,8,6,7,5),

1,7,3,8,4,2,6,5),

1,7,6,5,8,3,2,4),

1, 10, 18, 6, 5, 11, 2, 7, 17, 4, 9, 13, 3, 14, 16, 8, 12, 15),

1, 8, 18, 4, 6, 10, 16, 5, 3, 7, 11, 15, 2, 13, 17, 9, 14, 12),

1, 11, 18, 5, 7, 9, 3, 4, 16, 6, 8, 14, 17, 12, 2, 10, 15, 13),

1, 14, 13, 11, 3, 15, 16, 12, 10, 5, 2, 6, 17, 8, 4, 7, 18, 9).

(2) GAP ([29]).
D

We illustrate now, why the type eo construction does not work in the excluded case

p
= 1 (mod 8), / = 5 (mod 8). Take the smallest case p = 1,1 = 5: if for example

ax = f(2 + i + j + k) and bx = f(l+ 2i), then

9t((2 + i+j+k)(l+ 2i)) = m(5i + 3j - k) = 0,

axbx = f(2 + i +j + k)f(l + 2i) = f(5i + 3j - k),

(axbxf = VK(5z' + 3y - k)2) = ^(-35) = lr ,

i.e. we have a projective plane, F is not torsion-free and therefore no (8, 6)-group.

Nevertheless, we can do some computations: If we take

ax = f(2 + i +j+k),

a2 = f(2 + i + j - k),

a3 = f(2 + i - j +k),

a4 = f(2 -i + j +k),

bx = f(l+2i),

b2 = f(l+2j),

b3 = f(l+2k),

a,

a0

a-.

aA

f(2-i-j-k),

f(2-i-j+k),

f(2-i+j -k),

f(2 + i-j-k),

f(\-2i),

f(l-2j),

f(\-2k),

then we get a group F with generators ax, «2, a3, a4, bx, 02, o3 and the following 18

(not 12 !) relators, where the twelve projective planes are printed bold:



156 CHAPTER 3. QUATERNIONLATTICES INPGL2(Qp) x PGL2(Qp)

Example 3.42.

aibiaibi, aib2aib2, aib3aib3,

axb3 a4b2 , axb2 ß^oj" , axb1~ a3b3 ,

a2bia2bi, a2b2a2b2, a2b3a4xbl~x,

a2b3"1a2b3"1, a2b~xa3xb3, a3bia3bi,

a3b3a3b3, a^^b^1, a3bl~xa4xb2,

a4b2a4b2, a4b3a4b3, a4bj~ a4bj~

Note that also here, if Eh := {ax, «2, a3, a4}±x and Ev := {bx, 02, b3}±x, then

given any a e Eh, b e Ev, there are unique à e Eh, b e Ev such that ab = bä

by an analogon of Theorem 3.30(3). However, in strong contrast to what happens in

(2m, 2//)-groups, we sometimes have à = a~x and b = b~x, i.e. abab = 1.

Proposition 3.43. Let F be the group with generators ax, «2, a3, a4, bx, 02, b3 andthe

relators ofExample 3.42. Let To be the kernel ofthe homomorphism

r^z2

or, i-> (1 + 2Z, 0 + 2Z)

bj ^ (0 + 2Z, 1 + 2Z),

generalizing the definition ofthe subgroup To ofa (2m, 2n)-group F. Then

^ab ab
(I) Fab = Z\ x Z4, [r, F]ab = Z3 x Z4 x Z

2 -pab

16'
V
0 Z2 X Z3 X Zn

(2) T has the (vertical) amalgam decomposition

F = F3*Fu(Z*X2*F3).

(3) To has the (vertical) amalgam decomposition

To = Fs *p33 Fs
,

in particular To is torsion-free and F is virtually torsion-free.

Proof. (Y) This follow from computations with GAP ([29]).

(2) and (3): See Appendix A. 11 for the explicit amalgam decompositions and the

isomorphisms to F and To, respectively.
D
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Remark. Taking an obvious generalized definition of Ph, pv, Ph, Pv, we get

Pv(b\) = (1,7,2,4,5,6,3,8),

Pv(b2) = (1,5,4,3,6,7,2,8),

Pv(b3) = (1,6,3,2,7,5,4,8),

Ph(a\) = (1,5,2,4,3,6),

Ph(ci2) = (1,3,4,5,2,6),

Ph(a3) = (1,4,3,2,5,6),

Ph(a4) = (1,6,4,3,5,2),

generating Ph = PGL2(7) < Si and Pv = PGL2(5) < Se, respectively.

We can take the six relators of F in Example 3.42 which are not projective planes
and embed them in a (PGL2(7), PGL2(5))-group as follows:

Example 3.44.

RA:

axbxa4 b\, axb2a3 02, axb3a2 b3, axb3 a4b2 ,

axb2 Ö20J" , axb~^ a3b3 , a2bxa3bx, «2020402,

a2b3a4xb1 \ a2b7xalixb3, a3b3a4b3, a3b,xaAxb2

Proposition 3.45. Let F be the (8, 6)-group defined in Example 3.44. Then

(I) Ph = PGL2(7) < Si, Pv = PGL2(5) < S6.

^ab -\ab Z3 x Z\, F?b -(2) FaD = Z"2 x %\, [F, F] - ^ ~ ^9, x
0

isomorphic to the group Fjts ofExample 3.36.

Proof. (1) We compute

Z3, 7/7 particular F is not

Pv(b\) = (1,7,3,8,5,6,2,4),

Pvih) = (1,5,2,8,6,7,4,3),

Pv(b3) = (1,6,4,8,7,5,3,2),

Ph(aX) = (1,5,2,4,3,6),

Ph(ci2) = (1,3,4,5,2,6),

Ph(a?>) = (1,4,3,2,5,6),

Ph(a4) = (1,6,4,3,5,2).

(2) GAP ([29]).
D
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Case p
= 3 (mod 8)

Let p = 3 (mod 8), / = 1 (mod 4) be prime numbers. The example r3>5 is given by

ax = f(l+j+k),

a2 = f(l + j -k),

a,

an

f(l-j-k),

f(l-j+k),

bx = f(l+2i),

b2 = f(l+2j),

b3 = f(l+2k),

b~x =f(l-2i),

b2x=f(l-2j),
b~x = f(l - 2k).

Example 3.46.

R

2-3

axbxa2b2, axb2a2b, x,

axb3a2 bx, axb3 axb2 ,

axb~^ a2 b3, «203020^"

See Appendix B.8 for the GAP-program ([29]) constructing T35.

Proposition 3.47. Let F = T35 be the (4, 6)-group defined in Example 3.46 and let

G = rj(H(Z[l/3, l/5]))/ZU(U(Z[l/3, 1/5])). Then

(1) Ph = PGL2(3) = S4, Pv = PGL2(5) < .Sg.

(2) Fab = Z2 x Z2, [r, F]ab = Z\ x Zi6, Fab = Z2 x Z2.

(3) There arefinite quotients

F/((a\, (axbx)\ (bxb2)3))r = PGL2(7),

such that ((al (axbx)7, (bxb2?))f = ZX4 x Z26.

r/((a5,a25,o6,(aioi)3)}r=PSL2(ll),
such that ((a\, a\, b\, (axbxf))f = Z2 x Z22 x Z244.

F/((a\,a12,(axbx)A))T=PGL2(l3).

(4) The group G has a presentation with generators ax, «2, bx, 02, 03, /', j and 13

re/a7or5

R2.3, axiaxi x, axja2xj x, [bx,i], bxjbxj x, i2, j2, [i,j].
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(5) As in Proposition 3.29(5), we use for a group H the notation H^ := [H, H]

andH^ := [H^x\ H^]. Then there is a chain ofnormal subgroups ofG

r<*> % G(2) = r(D 3 r(D I, G(D = r0 < r < G

such that

G/F = F/Fo = Z22, G(1)/ r(1) = Z2 x z4, r(1)/ rj1} = Z22 x z4

andGab = G/Fo = Z\.
Note that G^ = To is the kernel ofthe homomorphism

G^Z\
ax, a2 k> (1 + 2Z, 0 + 2Z, 0 + 2Z, 0 + 2Z)

b\, b2, o3 ^ (0 + 2Z, 1 + 2Z, 0 + 2Z, 0 + 2Z)

/' i-> (0 + 2Z, 0 + 2Z, 1 + 2Z, 0 + 2Z)

j k> (0 + 2Z, 0 + 2Z, 0 + 2Z, 1 + 2Z).

(6) Aut(X) = D4.

(7) F is commutative transitive.

(8) Ifa e {ax, a2}±x andb e {bx, 02, b3}±x, then (a, 0} is an "anti-torus" in F.

(9) (ax,bx)^F2.

(io) r < so3(

(11) Zr(a,) = Nr((a,)) = (a,), ifa, e {ax,a2}, and

Zr(bj) = Nr((bj)) = (bj), ifb3 e {bx, b2, 03}.

(12) T has amalgam decompositions F3 *p9 F5 = F = F2 *p7 F4.

Proof. (Y) We compute

p„(oi) = (l,3,4,2),

Pv(b2) = (1,4,2,3),

pv(b3) = (1,4,3,2),

ph(ax) = (1,2,4,6,3,5),

Ph(a2) = (1,4, 5,6,2,3).

(2) GAP ([29]).
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(3) Let q be an odd prime number distinct from p and /, and choose c, d e Z

such that c2 + d2 + 1 = 0 (mod q), then we can define exactly as described in

Theorem 3.12(3) a homomorphism r = rC:j : Fpj -> PGL2O7) by

*c,d(y)
xo + xxc + x3d + qZ

-xxd — X2 + x3c + qZ

—xxd + X2 + X3C + qZ

Xq — xxc — x3d + qZ

where y = \J/(xo + xxi + X2J + x3k) e Fpj.

For q = 7 we have T2,3 : r3)5 -» PGL2(7) given by
" '

4 + 7Z 3 + 7Z

1 + 7Z 5 + 7Z

5 + 7Z 6 + 7Z

4 + 7Z 4 + 7Z

ax 1-^

a2 \->

bx \->

b2 \->

03 \->

In the same way tij3 : T3.5 -

ax \->

a2 h+

5 + 7Z 1 + 7Z

1 + 7Z 4 + 7Z

1 + 7Z 2 + 7Z

5 + 7Z 1 + 7Z

0 + 7Z 4 + 7Z

4 + 7Z 2 + 7Z

PSL2(11) is defined by

4+ HZ

0+ HZ

9+ HZ

9+ HZ

2+ HZ

9+ HZ

0+ HZ

4+ HZ

bx 1-^ [(
02 1-^ :(
03 H-> [(

and r0)5 : r3)5 -» PGL2(13) by

ax \-> .(
a2 \-> "(

3 + HZ

5 + HZ

1 + HZ

9+ HZ

7+ HZ

2+ HZ

5 + HZ

10+ HZ

2+ HZ

1 + HZ

2+ HZ

6+ HZ

6+13Z 1 + 13Z

12+13Z 9+13Z

9+13Z 1 + 13Z

12+13Z 6+13Z
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3 + 13Z y
1 + 13Z )

2+ 13Z y
1 + 13Z )
o + i3z y
4+13Z/

'

We have used quotpic ([58]) to show that

((af,(axbx)1,(bxb2)3))arb=ZX4xZ256

and

((al a\, b\, (axbxf))f = Z2 x Z22 x Z24 .

(4) Same idea as in Proposition 3.29(4) using the isomorphism between

U(U(Z[l/p, l/l]))/ZU(U(Z[l/p, l/l]))

and

{f(x) : x e H(Z), |x|2 = prls; r,s e N0}.

(5) We have used GAP ([29]), quotpic ([58]) and the presentation of G given in

part (4).

(6) GAP ([29]). The group Aut(X) is generated by the two automorphisms

(ax,a2,bx,b2,b3) i-> (ax,a~x, b~x, b3, b2),

(ax,a2,bx,b2,b3) i-> (a2,a~x, bx, b~x, b2).

(7) We can adapt Lemma 3.19 and Proposition 3.20, using Lemma 3.4(2). This can

be done, since ij/(x) e F implies that x has type ei or oo, in particular ^(x) ^ 0.

(8) See Section 3.6 for the definition of an anti-torus in F. The statement is an

application of Proposition 3.53 in Section 3.6 using part (7) of this proposition
and an adaption of Lemma 3.19.

(9) We have bxa3b2axb1~ ax~ b\~ ax~ = 1 in F and yx3y2xy~xx~3y~2x~x = 1,

where x = 1 + j + k, y = 1 + 2/. There seems to be no smaller non-trivial

freely reduced relation in (x,^) than the one of length 14 given above. The

statement can also be deduced from Table 3.12.

bx \->

b2 \->

b3 \->

1 + 13Z

3 + 13Z

1 + 13Z

11 + 13Z

11 + 13Z

0+ 13Z
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(10) A generalization of Theorem 3.12(2) gives an injective group homomorphism
T -» S03(Q), defined by

-1

2

-2

1

ax i-> -

3

oi h->

b2 i->

b3 \->

(11) This follows from Proposition 1.12.

(12) Use Proposition 1.3. The explicit amalgam decompositions of F are described

in Appendix A.12.

D

See Table 3.11 for the orders of some F/((wk))r, and see Table 3.12 for the index

[r : U], the abelianization Uab and the structure of the quotient F/U (if U is normal

in T), where U = (a, b), a e{ax, a2, ü2, a2}, b e {bx, b2, 02, b\, b3, b2}.

F/((wk))r k= 1 2 3 4 5 6

w = ax, a2 8 64 8 512 10560 64

bX,b2,b3 16 128 16 1024 109440 168960

Table 3.11: Some orders of F/ ((w )) r in Example 3.46

bX 02,03 bi
o2 o2

o2, o3

ax,a2 4, [8, 16], Z4 2, [8, 8], Z2 16, [8,64],- 88, [8,32],-
2 2

Cl-I
y

Clr\ 16, [16,32],- 8, [16,16],- 896, [32, 64], - 352, [32, 32], -

Table 3.12: [f : U], Uab and F/U in Example 3.46, where U = (a, b)
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3.5 Some conjectures

Based on computations in the 130 examples described in the following list, we give
some conjectures afterwards. In this list, "G" and "S" in the column Ph stand for

PGL2(p) and PSL2(p), respectively. Similarly, "G" and "S" in the column Pv stand

for PGL2(/) and PSL2(/), respectively. Finally, "+" and "-" stand for 1 and -1.

p I types Ex. *> (£)> Pv, (j) T^ab
[r, F]ab r^ab

1
0

Case p, / = 1 (mod 4)

5 13 (oo, oo) 3.28 G, -, G, - 2,43 3, 163 2 3 82

5 17 (oo, Oq) G, -, G, - 2,43 3, 163 2 3 82

5 29 (oq, oq) s, +, s, + 2,43 3, 163 2 3 82

5 37 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82

5 41 (oo, oo) s, +, s, + 2,43 3, 163 2 3 82

5 53 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

5 61 (oq, oq) s, +, s, + 2,43 3, 163 2 3 82

5 73 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82

5 89 (oq, oq) s, +, s, + 2,43 3, 163 2 3 82

5 97 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

13 17 (oo, oo) 3.26 s, +, s, + 2,43 3, 163 2 3 82

13 29 (oo, oo) s, +, s, + 2,43 3, 163 2 3 82

13 37 (oq, oq) G, -, G, - 2,3,43 22, 163 2 3 82

13 41 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

13 53 (oo, oo) s, +, s, + 2,43 3, 163 2 3 82

13 61 (oo, oo) s, +, s, + 2,3,43 22, 163 2 3 82

13 73 (oq, oq) G, -, G, - 2,3,43 22, 163 2 3 82

13 89 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82

13 97 (oo, oo) G, -, G, - 2,3,43 22, 163 2 3 82

17 29 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

17 37 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

17 41 (oo, oo) G, -, G, - 2^,82 3, 162, 64 2 3 82

17 53 (oo, oo) s, +, s, + 2,43 3, 163 2 3 82

17 61 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

29 37 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

29 41 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82

29 53 (oq, oq) s, +, s, + 2,43 3, 163 2 3 82

29 61 (oq, oq) G, -, G, - 2,43 3, 163 2 3 82

29 73 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82

29 89 (oo, oo) G, -, G, - 2,43 3, 163 2 3 82
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29 97 (oo, o0) G, -, G, - 2,43 3, 163 2,3,82
37 41 (oo, o0) s, +, s, + 2,43 3, 163 2,3,82
37 53 (oo, o0) s, +, s, + 2,43 3, 163 2,3,82
37 61 (oo, o0) G, -, G, - 2, 3,43 22, 163 2,3,82
37 73 (oo, o0) s, +, s, + 2, 3,43 22, 163 2,3,82
37 89 (oo, o0) G, -, G, - 2,43 3, 163 2,3,82
41 53 (oo, o0) G, -, G, - 2,43 3, 163 2,3,82
41 61 (oo, o0) s, +, s, + 2,43 3, 163 2,3,82
73 97 (oo, o0) s, +, s, + 23,3,82 ? 2,3,82

Case p, I = 7 (mod 8)

7 23 (ei.ei) A.31 S, +, G, - 2, 82 3,82,64 2, 3, 82

7 31 (ei.ei) A.32 G, -, S, + 2, 3,82 22,82, 64 2, 3, 82

7 47 (ei.ei) G, -, S, + 2, 82 3,82,64 2, 3, 82

23 31 (ei.ei) S, +, G, - 2, 82 3,82,64 2, 3, 82

23 47 (ei.ei) S, +, G, - 2, 82 3,82,64 2, 3, 82

31 47 (ei.ei) S, +, G, - 2, 82 3,82,64 2, 3, 82

Casep,l = 1 (mod 8)

7 23 (eo, eo) A.33 S, +, G, - 23,4 3,4, 162 2,3,82
7 31 (eo, eo) G, -, S, + 23,3,4 22,4, 162 2, 3, 82

7 47 (eo, eo) G, -, S, + 23,4 3,4, 162 2,3,82
23 31 (eo, eo) S, +, G, - 23,4 3,4, 162 2,3,82
23 47 (eo, eo) S, +, G, - 23,4 3,4, 162 2,3,82
31 47 (eo, eo) S, +, G, - 23,4 3,4, 162 2,3,82

Case p, I = 3 (mod 8)

3 11 (e\,ex) 3.31 G, -, S, + 2,82 82,64 2,82
3 19 (eX,ex) S, +, G, - 2,82 82,64 2,82
3 43 (e\,ex) S, +, G, - 2,82 82,64 2,82
3 59 (e\,ex) G, -, S, + 2,82 82,64 2,82

11 19 (eX,ex) G, -, S, + 2, 82 3,82,64 2, 3, 82

11 43 (eX,ex) G, -, S, + 2, 82 3,82,64 2, 3, 82

11 59 (e\,ex) S, +, G, - 2, 82 3,82,64 2, 3, 82

19 43 (e\,ex) S, +, G, - 2, 3,82 22,82, 64 2, 3, 82

19 59 (eX,ex) G, -, S, + 2, 82 3,82,64 2, 3, 82

Case p = 3 (mod 8), / = 7 (mod 8)

3 7 (e\,ex) 3.33 S, +, G, - 2,42 82,16 2,82
3 23 (eX,ex) G, -, S, + 2,42 82, 16 2,82
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3 31 (e\ e\) S, +, G, - 2,42 82, 16 2,82
3 47 (e\ e\) G, -, S, + 2,42 82, 16 2,82

11 7 (ex e\) G, -, S, + 2,42 3,82, 16 2,3,82
11 23 (ex e\) S, +, G, - 2,42 3,82, 16 2,3,82
11 31 (e\ e\) S, +, G, - 2,42 3,82, 16 2,3,82
11 47 (ex e\) S, +, G, - 2,42 3,82, 16 2,3,82
19 7 (ex e\) S, +, G, - 2, 3,42 22,82, 16 2, 3, 82

19 23 (e\ e\) S, +, G, - 2,42 3,82, 16 2,3,82
19 31 (e\ e\) G, -, S, + 2, 3,42 22,82, 16 2, 3, 82

19 47 (ex e\) S, +, G, - 2,42 3,82, 16 2,3,82
43 7 (ex e\) G, -, S, + 2, 3,42 22,82, 16 2, 3, 82

43 23 (e\ e\) S, +, G, - 2,42 3,82, 16 2,3,82
43 31 (e\ e\) S, +, G, - 2, 3,42 22,82, 16 2, 3, 82

43 47 (ex e\) S, +, G, - 2,42 3,82, 16 2,3,82

Case p = l (mod 8), / = 1 (mod 4)

7 5 (ex oo) 3.36 G, -, G, - 2, 42 3,82, 16 2, 3,82
7 13 (e\ oo) 3.38 G, -, G, - 2, 3,42 22,82, 16 2, 3, 82

7 17 (ex oo) G, -, G, - 2, 82 3,82,64 2, 3, 82

7 29 (ex oo) s, +, s, + 2, 42 3,82, 16 2, 3,82
7 37 (e\ oo) s, +, s, + 2, 3,42 22,82, 16 2, 3, 82

7 41 (e\ oo) G, -, G, - 2, 82 3,82,64 2, 3, 82

7 73 (ex oo) G, -, G, - 2, 3,82 22,82, 64 2, 3, 82

23 5 (ex oo) G, -, G, - 2, 42 3,82, 16 2, 3,82
23 13 (e\ oo) s, +, s, + 2, 42 3,82, 16 2, 3,82
23 17 (e\ oo) G, -, G, - 2, 82 3,82,64 2, 3, 82

23 29 (ex oo) s, +, s, + 2, 42 3,82, 16 2, 3,82
23 37 (e\ oo) G, -, G, - 2, 42 3,82, 16 2, 3,82
23 41 (e\ oo) s, +, s, + 2, 82 3,82,64 2, 3, 82

23 73 (ex oo) s, +, s, + 2, 82 3,82,64 2, 3, 82

31 5 (ex oo) s, +, s, + 2, 42 3,82, 16 2, 3,82
31 13 (e\ oo) G, -, G, - 2, 3,42 22,82, 16 2, 3, 82

31 17 (e\ oo) G, -, G, - 2, 82 3,82,64 2, 3, 82

31 29 (ex oo) G, -, G, - 2, 42 3,82, 16 2, 3,82
31 37 (ex oo) G, -, G, - 2, 3,42 22,82, 16 2, 3, 82

31 41 (e\ oo) s, +, s, + 2, 82 3,82,64 2, 3, 82

Case p = l (mod 8), / = 1 (mod 8)

7 17 (eo, oo) 3.40 G, -, G, - 23,4 3,4, 162 2,3,82
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23 17 (eo, oq) G, -, G, - 23,4 3,4, 162 2,3,82
31 17 (eo, o0) G, -, G, - 23,4 3,4, 162 2,3,82
7 41 (eo, oq) G, -, G, - 23,4 3,4, 162 2,3,82

23 41 (eo, oq) s, +, s, + 23,4 3,4, 162 2,3,82
31 41 (eo, o0) s, +, s, + 23,4 3,4, 162 2,3,82
7 73 (eo, oq) G, -, G, - 23,3,4 22, 4,162 2,3,82

Case/» = 3 (mod 8), / = 1 (mod 4)

3 5 (e\ oo) 3.46 G, -, G, - 2,42 82, 16 2, 82

3 13 (e\ oo) s, +, s, + 2,42 82, 16 2, 82

3 17 (ex oo) G, -, G, - 2, 82 82,64 2, 82

3 29 (ex oo) G, -, G, - 2,42 82, 16 2, 82

3 37 (e\ oo) s, +, s, + 2,42 82, 16 2, 82

3 41 (e\ oo) G, -, G, - 2, 82 82,64 2, 82

3 73 (ex oo) s, +, s, + 2, 82 82,64 2, 82

11 5 (e\ oo) s, +, s, + 2,42 3,82, 16 2, 3,82
11 13 (e\ oo) G, -, G, - 2,42 3,82, 16 2, 3,82
11 17 (ex oo) G, -, G, - 2, 82 3,82,64 2, 3,82
11 29 (ex oo) G, -, G, - 2,42 3,82, 16 2, 3,82
11 37 (e\ oo) s, +, s, + 2,42 3,82, 16 2, 3,82
11 41 (e\ oo) G, -, G, - 2, 82 3,82,64 2, 3,82
11 73 (ex oo) G, -, G, - 2, 82 3,82,64 2, 3,82
19 5 (ex oo) s, +, s, + 2,42 3,82, 16 2, 3,82
19 13 (e\ oo) G, -, G, - 2,3,42 22, 82,16 2, 3,82
19 17 (ex oo) s, +, s, + 2, 82 3,82,64 2, 3,82
19 29 (ex oo) G, -, G, - 2,42 3,82, 16 2, 3,82
19 37 (e\ oo) G, -, G, - 2,3,42 22, 82,16 2, 3,82
19 41 (e\ oo) G, -, G, - 2, 82 3,82,64 2, 3,82
19 73 (ex oo) s, +, s, + 2,3,82 22, 82, 64 2, 3,82
43 5 (ex oo) G, -, G, - 2,42 3,82, 16 2, 3,82
43 13 (e\ oo) s, +, s, + 2,3,42 22, 82,16 2, 3,82
43 17 (e\ oo) s, +, s, + 2, 82 3,82,64 2, 3,82
43 29 (ex oo) G, -, G, - 2,42 3,82, 16 2, 3,82
43 37 (e\ oo) G, -, G, - 2,3,42 22, 82,16 2, 3,82
43 41 (e\ oo) s, +, s, + 2, 82 3,82,64 2, 3,82

Table 3.13: List of properties of some Fpj
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Conjecture 3.48. Let p, I be two odd distinct prime numbers and F = Fpj as in

Section 3.2, 3.3 or 3.4.

(Y) (cf. Conjecture 3.16) Assume that p, 1=1 (mod 4) (as in Section 3.2).

Ifp, 1=1 (mod 8), then

^ab -\ab\ (Z2 x Z3 x Zg, Z2 x Z26 x Z64) if p, I = 1 (mod 3)
(FaD, [F, F]aD) - , ,

. .

(Z2 x Zg, Z3 x Zj6 x Z64)

Ifp = 5 (mod 8) or I = 5 (mod 8), then

else.

^ab -\ab\
73 n/2(Z2 x Z3 x Z3, Zz2

x Z36) if p,l=l (mod 3)
(rao [r r]a0) _ '

(Z2 x Z3, Z3 x Z36) e/5e.

(2) Assume that p, 1 = 3 (mod 4) (as in Section 3.3).

If p (mod 8) = / (mod 8), then

(Fab, \F, F]ab) =
(Z2 x Z3 x Z2, Z2 x Z2 x Z64) if p,l =1 (mod 3)

(Z2 x Zg, Zg x Z64) if p = 3 or I = 3

(Z2 x Zg, Z3 x Z? x Z64) e/5e
.

Ifp (mod 8) ^ I (mod 8), then

(Fab, \F, F]ab) =
(Z2 x Z3 x Z2, Z2 x Z2 x Zi6) if p,l=\ (mod 3)

16

(Z2 x Z2,, Z3 x Z? x Ziô)

(Z2 x Z?, Zg x Ziô) if p = 3 or I = 3

else.

(3) Assume that p = 3 (mod 4) andl = 1 (mod 4) (as in Section 3.4).

IfI = 1 (mod 8), then

(Fab, [r, rfè)
(Z2 x Z3 x Z|, Z2, x Z| x Z64) if p, I = 1 (mod 3)

(Z2 x Zg, Zg x Z64) if p = 3

(Z2 x Zg, Z3 x Zg x Z64) e/*5e
.

IfI = 5 (mod 8), then

(Fab, [r, rfè)
(Z2 x Z3 x Z2, Z2, x Z| x Ziô) if p, I = 1 (mod 3)

(Z2 x Z2, Zg x Ziô) if p = 3

(Z2 x Z2,, Z3 x Zg x Ziô) e/5e
.
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Conjecture 3.49. Let F = Fpj^0 be as in Section 3.3 or 3.4, then

b b f(Z3 x Z3 x Z4, Z2 x Z4 x Z26) if p,l=l (mod 3)

I (Z3, x Z4, Z3 x Z4 x Z26) e/5e.

Conjecture 3.50. Let F be any group Fpj or Fpj>e{) ofChapter 3, then

rab ~ |z2 x Z|, if p = 3 or 1 = 3

I Z2 x Z3 x Zg ,
e/*5e.

Remark. Note that in all cases of Chapter 3

r0 = {f(x) :x eH(Z) has type o0, |x|2 =p2rl2s;r,s eN0).

Conjecture 3.51. Let F be any Fpj or Fpj>eo ofChapter 3, and let k e N. Then

(1)

„
|PSL2(/>), if (I) = 1

*

\PGL2(p), //(£) = -!

and

(2)

and

p
„ |PSL2(/), // (f) = 1

V

(PGL2(/), if ($) = -!.

\p(k)\
_

ip, I
.

„3(*-l)

\rh \ — \rh\ P

\p{k)\ _ ip I ./3(*-l)

(3) As a consequence ofpart (1) and (2):

y{k)
\p3k-2(p2-l)/2, //(£) = !

pW
—

)r Kr " ' J vp
M /„ I — i il o 1

.
/ ;

and

h '

V*"2^-!), //(I)

ip«, /3^-2(/2-i)/2, //(f) = l

1 u ' {/3^2(/2-l), //(f) = -l.

Conjecture 3.52. Let F be any group Fpj or Fpj>eo ofChapter 3, then

\Kh\ = p and \KV\ = I
.

Remark. We have checked that the Conjectures 3.48(2),(3), 3.49, 3.50, 3.51(1), and

Conjecture 3.51(2) for k = 2 are true for all 130 examples in Table 3.13. The only

uncertainty in Conjecture 3.48(1) among those examples is the case (p, I) = (73, 97),

where we are not able to compute [r, F]ab.
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3.6 Construction of anti-tori

Let r = (ax,...,am,bx,...,bn \ Rm.n) be a (2m, 2/?)-group. Let a e (ax, ..., am),
b e (bx,..., bn) be two elements. The subgroup (a, b) < F is called an anti-torus

in T, if a and o have no commuting non-trivial powers, i.e. if arbs ^ bsar for all

r, s e Z \ {0}. If (a, b) = /% then (a, b) is called afree anti-torus in F. Obviously, a

free anti-torus is an anti-torus.

A definition in a much more general context is given by Bridson-Wise. We quote

from [10, Definition 9.1]: "Let X be a compact non-positively curved space with

universal cover p : X -> X. Suppose that there is an isometrically embedded plane in

X which contains an axis for each of 8, 8' e nx(X, xq) and that xo e p~xxq lies in the

intersection of these axes. If 8 and 8' do not have powers that commute, then gp{<5, 8'}
is called an anti-torus. If gp{<5, 8'} is free then it is called afree anti-torus"

The first example of a (non-free) anti-torus was given by Wise [68] (it is («2, b3)
in Example 2.36). It was used to construct interesting non-residually finite groups. An

existence theorem for free anti-tori (in a class not including (2m, 2/?)-groups) appears

in [10, Proposition 9.2], but no explicit example of a free anti-torus is given there or

elsewhere, as far as we know.

The construction of Fpj in Chapter 3, based on the non-commutativity of quater¬

nion multiplication, can be used to generate many anti-tori. Before giving examples,
we will first state some general criteria for the existence of anti-tori in commutative

transitive (2m, 2/?)-groups.

Proposition 3.53. Let F = (ax, ... ,am,bx, ... ,bn \ Rm.„) be a commutative tran¬

sitive (2m, 2n)-group and let a e (ax, ... ,am), b e (bx, ... ,bn) be two elements.

Then (a, b) is an anti-torus in F ifand only ifa andb do not commute in F.

Proof. Assume first that (a, b) is no anti-torus in F, i.e. arbs = bsar for some r, 5^0.

Obviously, a commutes with ar, and o commutes with bs. Using the assumption that F

is commutative transitive, we conclude that a and o commute in F. The other direction

follows immediately from the definition of an anti-torus. D

Corollary 3.54. Let F = (ax, ..., am, bx, ..., b„ \ Rm.„) be a commutative transi¬

tive (2m, 2n)-group and let a e (ax, ... ,am), b e (bx, ..., b„) be two non-trivial

elements. Then either (a, b) = Z2 or (a, b) is an anti-torus in F.

Proof. Ifa and o do not commute, then (a, b) is an anti-torus in F by Proposition 3.53.

Ifa^l and J/l commute, then we apply Lemma 3.14 to show that (a, b) = Z2.

D

Corollary 3.55. Let F = (ax, ... ,am, bx, ..., b„ \ Rm.„) be a commutative transitive

(2m, 2n)-group. Then F has an anti-torus ifand only if(m,n) ^ (1, 1).
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Proof. Any (2, 2)-group is virtually abelian, hence has no anti-torus. For the other

direction, assume that (m, n) ^ (1, 1). There are elements a e Eh and b e Ev which

do not commute; otherwise the (2m, 2/?)-group F would be

(ax, ...,am)x (bx, ..., bn) = Fm x Fn ,

which is not commutative transitive if (m, n) ^ (1, 1). By Proposition 3.53, (a, b) is

an anti-torus in F. D

Wise ([68]) showed that reducible (2m, 2/?)-groups never have anti-tori:

Proposition 3.56. (Wise [68, Section II.4]) Let F = (ax, ... ,am,bx, ... ,bn \ Rm.n)
be a (2m, 2n)-group. If F has an anti-torus, then it is irreducible.

Proof. Let (a, b) be an anti-torus in F, where a e (ax, ..., am), b e (bx, ..., bn).

Suppose that F is reducible. Then by [17, Proposition 1.2], the subgroup Ai x A2

has finite index in F, in particular [(ax, ..., am) : Ax] and [(bx, ... ,bn) : A2] are

finite. It follows that ar e Ax, ¥ e A2 for some r,s e N. But then ar¥ = ¥ar, a

contradiction. D

Corollary 3.57. A commutative transitive (2m, 2n)-group is irreducible ifand only if

(777,77)^(1,1).

Proof Any (2, 2)-group is reducible. If (m,n) ^ (1, 1), then we apply a combination

of Corollary 3.55 and Proposition 3.56. D

Corollary 3.58. Let F = (ax, ..., am, bx, ..., b„ \ Rm.„) be a commutative transitive

(2m, 2n)-group and let b e (bx, ...,bn) be an element such that Zp(b) = (b). Then

(a, b) is an anti-torus in F for each a e (ax, ..., am ) \ {1}.

Proof. The assumption Zr(b) = (b) implies that è/1 and that o does not commute

with any element a e (ax, ..., am) \ {1}. Now apply Proposition 3.53. D

The groups Fpj of Section 3.2 are commutative transitive by Proposition 3.20.

Therefore, we can restate the preceding results for Fpj:

Corollary 3.59. Let F = Fp / = (ax, ..., ap+j_, bx, ..., bi+± \ Rp+i 1+1) be as in
2 2 2

'

2

Section 3.2 andlet a e (ax, ..., aP+\ ), b e (bx, ..., bi+±) be two elements. Then
2 2

(1) (a, b) is an anti-torus in F ifand only ifa and b do not commute in F.

(2) Ifa, b ^ I, then either (a, b) = Z2 or (a, b) is an anti-torus in F.

(3) The group F has an anti-torus and is irreducible.

(4) IfZr(b) = (b) and a ^ I, then (a, b) is an anti-torus in F.
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We can also restate Proposition 3.53 for Fpj in terms of quaternions:

Proposition 3.60. Let \// and F = Fpj be as in Section 3.2. Assume thatx, y e HI(Z)
have type oq, \x\2 = pr, \y\2 = Is for somer, s e Nandxy ^ yx. Then (\//(x), \//(y))
is an anti-torus in F.

Proof. By Lemma 3.19, ij/(x) and ^jf(y) do not commute, hence (ij/(x), xff(y)} is an

anti-torus in F by Proposition 3.53. D

Proposition 3.60 can be applied for example to Fstn and FX3>Xj or to any other

group Fpj of Section 3.2, illustrating Corollary 3.59(3):

Corollary 3.61. Let \// be as in Section 3.2. Then

(1) The group (\//(I + 2i), \//(I + 4k)) is an anti-torus in Fs,n-

(2) The group (\//(3 + 2i), \//(I + 4k)) is an anti-torus in FX3>Xj.

(3) Fix two distinct prime numbers p, I = 1 (mod 4). Choose by Lemma 3.7(1)
two quaternions x = xq + xxi, y = yo + y3k e HI(Z) such that xq, yo are odd,

xx, y3 are non-zero even numbers and \x\2 = x^+x2 = p, \y\2 = y2, + y3 = I.

Then (\//(x), \//(y)) is an anti-torus in Fpj.

Proof. (1) We apply Proposition 3.60, taking x = 1 + 2/', y = 1 + 4k, p = 5,

/= 17,/- = 1,5 = 1.

(2) We apply Proposition 3.60, taking x = 3 + 2/', _y = I + 4k, p = 13,1 = 17,

r = 1, 5 = 1.

(3) We apply Proposition 3.60, taking r = 1, 5 = 1 and using the fact that xo + xxi

and yo + y3k do not commute.

D

Proposition 3.62. There are distinctprime numbers p, I = 1 (mod 4), a group

T = Fpj = (ax, ..., a2+i, oi, ..., bi+i \ Rp+i i+\ )
2 2 2

'

2

as in Section 3.2, and an element b e (bx, ..., bi+i), such that (a, b) is an anti-torus
2

//7 F for each a e (ax, ..., a^} \ {1}.
2

We give two different proofs of Proposition 3.62:

FirstproofofProposition 3.62. We choose p = 5, / = 13 and

ô = ôi = ^(l+ 2/ + 2j + 2k) e F5tX3 .

By Proposition 3.29(7), we have Zp(/3) = (b) and apply now Corollary 3.58. D
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SecondproofofProposition 3.62. We take p = 5,1 = 29,

b = f(3+2j+ 4k) e r5)29 and c= j +2k e H(Z).

Assume that there is a non-trivial element a e (ax, ü2, a3) < Ts^ç commuting with

some power ¥, t e N. Note that

¥ = f((3 + 2j + 4k)1) = f(xo + kj + 2kk)

for some xo, I/O, depending on t. Then, applying Proposition 3.22 to the power

z = (3 +2j + 4k)1, there are x, y e Z such that

gcd(x, y) = gcd(x, pi) = gcd(y, pi) = 1

and x2 + 4 • 5y2 = 5r29s for some r, s e N. But this implies x2 = 5(5r"129's - 4y2),
contradicting gcd(x, 5 • 29) = 1. (What we use here is that such a decomposition
x2 + 4 • |c|2_y2 = prF implies gcd(|c|2, pi) = 1, as already noted in [54].) D

Proposition 3.63. There are distinctprime numbers p, I = 1 (mod 4), a group

T = Fpj = (ax, ..., a2+i, oi, ..., bi+i \ Rp+i i+\ )
2 2 2

'

2

as in Section 3.2, and elements a e (ax, ..., ap+i ) \ {1}, o e (bx, ..., bi+i ) \ {1} such
2 2

that (a, bj ) is an anti-torus in F for all bj e {bx, ..., bi+±}, but (a, b) is no anti-torus

in F, in particular Zp(a) ^ (a).

Proof. We take p = 29, / = 41, a = f(3 + 4/ + 2j) and

b = VK-31 + 24/ + 127) = f(l + 6/ - 2k)f(l + 6/ + 2k),

which implies ab = ba. It is easy to check that a does not commute with any generator

bj e {bx, ..., 021}, in particular (a, bj) is an anti-torus in F by Proposition 3.53. D

Also note the following easy corollary of Proposition 3.13, see Corollary 4.3 for a

generalization to all (2m, 2/7)-groups:

Corollary 3.64. Let p, I = 1 (mod 4) be distinctprime numbers and

T = Fpj = (ax,..., a2+j_, 01,..., bi+x \ Rp+i_ i+\ )
2 2 2

'

2

as in Section 3.2. Then there are always non-trivial elements a e (ax, ..., ap+j_) and
2

b e (bx, ..., bi+x) such that (a, b) is no anti-torus in F.
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Free anti-tori

The following proposition gives sufficient conditions to generate free anti-tori in the

groups Fpj of Section 3.2:

Proposition 3.65. Let p, I = 1 (mod 4) be two distinct prime numbers and let i\r
and Fpj be as in Section 3.2. Moreover, let x,y e HI(Z) be of type oq, such that

\x\2 = pr, \y\2 = Is for some r, s e N. Suppose thatx, y generate afree subgroup F2

in the multiplicative group f/(EI(Q)) = HI(Q) \ {0} (or equivalently in the subgroup

U(U(Z[l/p, l/l])) < U(U(Q))). Then (f(x), f(y)) is afree anti-torus in Fpj.

Proof. Extending \J/ from the integer to the rational quaternions, let

f : U(U(Q)) -> PGL2(Qi,) x PGL2(Q/)

be the map which sends the quaternion x = xq + xxi + X2J + x3k to

x0 + xxip x2 + x3ip
-X2 + X3l p Xq — XXl p 1

xo + xxii x2 + x3ii

-x2 + x3ii xq - xxii

where x0, xx,x2, x3 e Q, x ^ 0. Recall that £/(H(Q)) = H(Q) \ {0} equipped with

quaternion multiplication is a non-abelian group, ^ is a group homomorphism such

that

ker(V0 = ZU(U(Q)) = {x e H(Q) \ {0} : x = x},

and VKx) = ijf(x), if x e H(Z) \ {0}. Now, fix two integer quaternions x and y

satisfying the assumptions made in the proposition. We restrict ^ to the free subgroup

F2 = (x,y)<U(U(Q)):

f\(x,y) (x,y) = F2 -» (f(x),f(y)) = (f(x),f(y)) < Fpj.

We have

ker(ïr\{Xiy}) = (x,y) n ZU(U(Q)) < Z((x,y)) = ZF2 = {1},

in particular T^ I(x>>,) is an isomorphism, i.e. (ij/(x), xff(y)} = F2.

By construction, ij/(x) is an element in

(ax,..., ap+i) = {ty(x) : x e M(Z) has type oo, |x|2 = pr ; r e No} < Fp /,
2

and ijf(y) an element in

(bx,...,bl±1) = {f(y):ye H(Z) has type o0, \y\2 = Is ; 5 e N0} < Fpj ,

2

where the (p+l, /+l)-groupr„ / is generated by ax,..., aP+\ ,bx,..., bi+j_ as usual.
22

This shows that (ijf(x), \[f(y)) is a free anti-torus in Fp /. D
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For example, if (3 + 2/, 1 + 4k) = F2 < U(U(Q)), then Proposition 3.65 would

give an explicit free anti-torus (iJ/(3 + 2i), \J/(l + 4k)) in r^n. (However, we guess

that this group is not free.)

Question 3.66. Is (3 + 2/, 1 + 4k) = F2?

More generally:

Problem 3.67. Let p,l be distinct oddprime numbers. Construct a pair x, y e HI(Z)
such that (x,y) = F2 < U(M(Q)), where \x\2 = pr, \y\2 = Is for some r, s e N.

The anti-tori constructed in Corollary 3.61(1) and Proposition 3.47(8) are not free:

Proposition 3.68. (1) Let i\r be as in Section 3.2, x = l+2i, y = l+4k, a = tJ/(x)
andb = ^j/(y). Then the anti-torus (a,b) inFs,Xi is notfree.

(2) Let i\r be as in Section 3.4, x = 1 + j + k, y = 1 + 2/, a = ^(x), b = ^(y).
Then the anti-torus (a, b) in F3s is notfree.

Proof. (1) In r5> 17, we have found the relation

a3b2ab-xa2b-xa2b-xa-4b-2a-xba-2b-xa-*b-xab2

ab~xa~2ba~xb~2a~2b~2a3ba~2b2a2b2ab~xa2ba~xb~2

a~xba^ba2b~xab2a4ba~2ba~2ba~xb~2a~5b~xa = 1.

To get this relation of length 106, we have used the GAP-command ([29])

PrésentâtionSubgroupMtc(G,U) ;

where G and U describe F and its subgroup (a, b), respectively. This command

gives 514 relations of lengths between 106 and 5270 and of total length 536176.

The relation in f/(EI(Q)) corresponding to the relation in Ts^ given above is

09 19 19 1 A 9 1 9 1 S 1 9
x y xy x y x y x y x yx y x y xy

—1—2 —1—2—2—23 —2222 —12 —1—2
xy x yx y x y x yx y x y xy x yx y

x yx yx y xy x yx yx yx y x y x = 1,

in particular (x, y) ^ F2. Note that GAP ([29]) can also be used to show that

[r5 n : (a, b)] = 32 and (a, b)ab = ZX6 x Z64 .
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Moreover, (a, b) = (x, y)/Z(x, y), where Z(x,y) ^ 1, since e.g.

i 9 R 3 1 4 9 1 9 1 9 1 4 9 1

xy xy x yx y xyx y xy x y x y x y x y

9 i o i 9 i 9 i 9 9 9 9 i 9 9
x _y x y xy xy x yx y x y x y x y

1 9 1 9 1 g 9 1 9 A 9 9 1 9

x_y x _yx _y x yx yx y xy x yx yx yx y

_4_1_1_132 —12—12—1—4—2—1 —2—1

X^X^X^X^X^X^X^X^X^

_8 -1 2 -1 -2 -1 -2 -2-2 5 2 -12 -1
x y xy xy x yx y x y x y xy x y

A 9 i 9 i 9 i a 9 1 9 1 Q 1 9
x y xy x y x y x y x yx y x y xy

xy~xx~2yx~xy~2x~2y~2x2y~x =

—g
e Z(x,^) \{1}.

(2) See Proposition 3.47(9). Recall that the subgroups (a1 ,¥), t e N, are never

abelian, and that [r3)5 : (a, b)] = 4. Also note that [r3)5 : (a2, b2)] = 896

is finite, using GAP ([29]). In particular (a2, b2) is not free by the following

general remark.

D

Remark. If (a, b) isafree subgroup ina (2m, 2/7)-group F, then the index [r : (a, b)]
is infinite. Otherwise, F would be virtually free, but this is impossible since being

virtually free is a quasi-isometry invariant (see e.g. [32, IV.50]), and using the facts

that (2m, 2/7)-groups are all quasi-isometric (to F2 x F2), if m,n > 2 (see Propo¬
sition 4.25(4)), and that there are (2m, 2/7)-groups which obviously are not virtually

free, e.g. the virtually simple groups constructed in Chapter 2. Anyway, it is known

that finitely generated, torsion-free, virtually free groups are free ([65]).

The following interesting general question of Wise appears in Bestvina's problem
list "Questions in Geometric Group Theory" ([6]):

Question 3.69. (Wise [6, Question 2.7J) "Let G act properly discontinuously and

cocompactly on a CAT(O) space (or let G be automatic). Consider two elements a, b

ofG. Does there exist n > 0 such that either the subgroup (a", b") isfree or (a", b")
is abelian?"

Question 3.70. Let F = T35 be the group ofExample 3.46 and ax = tJ/(1 + j + k),

bx = f(l+2i).

(Y) Is the index \F : (a3, o3}] infinite?

(2) Is (a\,b\) free?



176 CHAPTER 3. QUATERNIONLATTICES INPGL2(Qp ) x PGL2 (Qp )

Free subgroups of £/(HI(Q)) also induce free subgroups in SÛ3(Q) < SO3OR)

via the group homomorphism û : U(M(Q)) -> SÛ3(Q), which maps the quaternion
x = xq + xxi + X2J + x3k e U(M(Q)) to the (3 x 3)-matrix

1
/ Xq + Xj

—

X2
—

X3 2(XiX2 — X0X3) 2(XiX3 + X0X2)

2(XlX2 + X0X3) Xq — X2 + x| — X2 2(X2X3—XqXi)
1 1? . u i _ _,

X I 9 9 9 9
X 2(XlX3 — X0X2) 2(X2X3 + X0X1) Xq

—

Xj
—

X2 + x|

see Section 3.2. The proof is similar to a part of the proof of Proposition 3.65: First

remember that

ker(#) = ZU(U(Q)) = {x e H(Q) \ {0} : x = x}.

Assume now that F2 = (x,y) < U(U(Q)). Then

&\{x,y) : (x,y) -» (û(x),û(y)) < S03(Q)

is bijective, since it is surjective and

ker(û\{x,y}) = (x,y)nZU(U(Q)) < Z((x,y)) = ZF2 = {1},

in particular (û(x), û(y)) = F2.

Note that if

Tp,/ = (ax, ..., a£±j_, 01, ..., bi+x \ R^+x 1+1)
2 2 2

'

2

is the group of Section 3.2, then both free subgroups (ax, ... ,aP+\) and (bx, ..., bi+i )
2 2

of Fpj induce free subgroups of SÛ3(Q) via the homomorphism û (we can combine

Corollary 1.11(1) and Theorem 3.12(2), cf. [45, Corollary 2.1.11]). For example,

taking p = 5 and any distinct prime number 1 = 1 (mod 4), the subgroup

(û(l+2i),û(l+2j),û(l+2k))

-3/5 0 4/5 \ / -3/5 -4/5 0

0 1 0
, 4/5 -3/5 0

-4/5 0 -3/5 / \ 0 0 1

of SÛ3(Q) is isomorphic to F3.

However, by Proposition 3.68, the following two subgroups of SÛ3(Q) are not

free:

(#(1+27), #(1+4*))

(û(l+j+k),û(l+2i))

(ax,a2,a3

1

0

0

0 0

-3/5 -4/5

4/5 -3/5
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We can use the explicit amalgam decompositions of Fpj to construct two integer

quaternions x and .y generating a non-abelian free group in f/(EI(Q)) such that |x |2 and

\y\2 are not both powers of the same prime number (cf. Problem 3.67). We illustrate

this with an example:

Proposition 3.71. Let \// be as in Section 3.4, x = 1 +2/ +2/ +4k ofnorm \x\2 = 52,

y = 3 - 2/ + j - k ofnorm \y\2 = 3 5. Then (x,y)=F2< U(U(Q)).

Proof. We have

f(x) = f(l+ 2i)f(l + 2j) = bxb2e r3)5

and

f(y) = f(l + j + k)f(l - 2k) = axb3x e r3)5.

By the vertical amalgam decomposition of F3^ given in Appendix A. 12

F2 = (sx,s4) = (bxb2, axb~x) = (f(x), f(y)) < F3>5 ,

hence (x,y) = F2 < f/(H(Q)). D

3.7 A construction for (p, /) = (2, 5)

Let x = xo + xxi + X2J + x3k e H(Z). Motivated by the three identities ([24])

(1 + z')(x0 + xxi + x2j + x3k) = (xq + xxi - x3j + x2k)(l + i)

(1 + j)(x0 + xxi + x2j + x3k) = (xo + x3i + x2j - xxk)(l + j)

(1 + /f)(x0 + xxi + x2j + x3k) = (xq - x2i + xxj + x3k)(l + k)

we identify

ax = l +i, ax = 1 — /,

a2 = 1 + j, a2 = 1 -j,

a3 = 1 + k, a3 = 1 — k,

oi = 1 + 2/, o"1 = 1 - 27,

02 = 1+27, o2-1 = l-27-,

03 = 1 + 2k, b~x = l- 2k,

and get the following (6, 6)-group:
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Example 3.72. Let F be the group (ax, «2, a3, bx, 02, b3 \ R3.3), where

R

3-3

'1 bl '

-U-l
axbxal b

-U. _a.„-U-i

axb2al ¥

a2bxa2lb3, a2b2a2lb~2 ,

axb3a, o2,

-U-i
a2b3a2 b\ ,

a3bxa3 b2 , a3b2a3 bx, a3b3a3 bU-l
3

Note that there is no map ^ involved in this construction, in particular F behaves

completely differently than the groups Fpj constructed before, e.g. F is reducible,

(1 + i)4 = —4, but a\ ^ lr; 1 + / and 1 + 2j do not commute, but (ax, 02} is no

anti-torus.

Proposition 3.73. Let F be the (6, 6)-group defined in Example 3.72. Then

(1) Ph = l,Pv = S4< S6.

(2) F is reducible.

(3) Ai x A2 = F49 x F3 and [F : Ai x A2] = 24.

Proof. (1) We compute

Pv(b\) = P„ (o2) = pv(b3) = (),

ph(ax) = (2,4,5,3),

Phißi) = (1,3,6,4),

Phlfli) = (1,5,6,2).

(2) This follows from the subsequent Lemma 3.74(1).

(3) Apply Lemma 3.74(3).
D

(ax, ..., am, b\, ..., bn \ Rm.„) be a (2m, 2n)-group suchLemma 3.74. Let F

that Ph = 1. Then

(Y) F is reducible and P^ = I for all k e N.

(2) Ai = hex Ph and A2 = ker pv = (bx, ..., b„) for all k e N.

(3) A] x A2 = F(m-X)\pv\+X x F„ has index \PV\ in F.

Proof. (1) To prove that F is reducible, it is enough by Proposition 1.2(2a) to show

that P,
(2) ^(2)

1. Let o e Ev, a = à à e Eh ', where à, à e Eh, â ^ à
.
Then

pv(b)(â) = à and pv(ph(â)(b))(a) = à, i.e. pv (b)(a) = a. See Figure 3.1 for

an illustration of this fact. The proof of Proposition 1.2(2a) shows that P-t
for all keN.

(k)
1
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a

a

ph(a)(b)

--

o

a

a

(2)
Figure 3.1: Illustrating P,)= 1 in Lemma 3.74

(2) Since ker pf+1) < ker pf} for all keN, and

Ai = nkerpf\

we always have Ai < ker ph.

Conversely, ker ph < Ax follows from Lemma 1.1 (la) using Pf, = I.

To show the second part, observe that kerp„ = (bx,..., b„) for all k e N,

since P^' = l for all keN. This implies

A2 = p| kerpf} = kerpf} = (bx,..., b„) for all k e N.

keN

(3) This follows from [(ax, ..., am) : Ax] = \PV\, which is a direct consequence of

part (2) and Pv = (ax, ..., am)/kexph.
D
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Chapter 4

Miscellanea

This chapter consists of six independent sections which we briefly describe now.

Given any (2m, 2/7)-group F, we construct in Section 4.1 doubly periodic tilings of

the Euclidean plane, where the tiles are the 4mn squares corresponding to F. It follows

that T always has free abelian subgroups Z2. We apply a criterion of Burger-Mozes
in Section 4.2 to prove that certain (2m, 2/7)-groups are not linear. In Section 4.3, we

investigate possible relations between reducibility, transitivity properties of the local

groups, and finiteness of the abelianization of a (2m, 2/7)-group. Following Mozes,

we associate in Section 4.4 to any (2m, 2/7)-group two infinite families of finite regu¬

lar graphs. In Section 4.5, we show that any (2m, 2/7)-group is quasi-isometric to the

group F2 x F2, if /t/, 77 > 2, and compute its growth series. We prove in Section 4.6

that (2m, 2/?)-groups are efficient and compute their deficiency.

4.1 Periodic tilings and Z2-subgroups

For the moment, let X be a locally compact complete CAT(0)-space and F a properly
discontinuous and cocompact group of isometries. Then, in this general context, it

is an open question if certain free abelian subgroups of F exist. We quote from an

article ofBallmann [1, Question 2.3]: "Is hyperbolicity equivalentto the non-existence

of a subgroup of F isomorphic to Z2? More generally, does F contain a subgroup

isomorphic to Zk ifX contains a /t-flat? By the work of Bangert and Schroeder [2] the

answer is positive in the case of compact, real analytic Riemannian manifolds. Except
for this, the answers to these questions are completely open, even in the case where X

is a geodesically complete and piecewise Euclidean complex of dimension two!"

We will give in Proposition 4.2(3) an elementary proof that (2m, 2/?)-groups al¬

ways contain a Z2-subgroup. The idea of this proof (and the fact that this result holds)
was explained to me by Guyan Robertson.

Let T = (ax,..., am, bx,..., bn \ Rm.n) be a (2m, 2/?)-group and let T(F) be

the "tile set" consisting of the 4mn squares which represent a geometric square in the

181
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corresponding (2m, 2/7)-complex X.

T(F):= (J {aba'¥,a'¥ab,a-xb'-xa'-xb-x,a'-xb-xa-x¥-x}.
aba'b'eRm „

It is easy to check that the definition of T(F) only depends on the group F, but not

on the choice of the relators in Rm.n. Recall that the four squares aba'b', a'b'ab,
a~x¥~xa'~xb~x and a'~xb~xa~x¥~x represent the same geometric square [aba'b'].
We always visualize them in the Euclidean plane as in Figure 4.1.

A b bv A ¥ b A v ¥ b'ii

Figure 4.1 : Tiles in T(F) induced by the geometric square [aba'b']

Moreover, we assume that each edge of such an element in T(F) has length 1. Unit

squares like this are usually called Wang tiles (named after Hao Wang [66]). We define

"south-", "east-", "north-" and "west-functions"

S, E,N,W: T(F) ^EhuEv

as follows:

S(aba'¥) := a, E(aba'¥) := b, N(aba'b') := a' X, W(aba'b') :=¥
X

.

A tiling (of the Euclidean plane) is a map / : Z2 -> T(F). We are only interested in

valid tilings, i.e. tilings where all edges match. To be precise, this means that for each

point (x,y) e Z2

S(f(x,y)) = N(f(x,y-l)) and W(f(x,y)) = E(f(x-l,y)).

A valid tiling f : Z2 -> T(F) is said to satisfy the adjacency condition (AC) if for

each (x,y) e Z2

S(f(x,y))^N(f(x-l,y-Y))-x

W(f(x,y))^E(f(x-l,y-Y))-x

i.e. the two situations illustrated in Figure 4.2 are nowhere allowed in the plane.

(AC)
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a

a

Figure 4.2: Violating (AC)

Note that (AC) is equivalent to the conditions

S(f(x - l,y))~x ± S(f(x,y)) ± S(f(x + l,y))~x

N(f(x - l,y))~x £ N(f(x,y)) ± N(f(x + l,y))~x

E(f(x,y - l))~x £ E(f(x, y)) ^ E(f(x, y + l))~x

W(f(x,y-Y)TX Ï W(f(x,y)) ± W(f(x,y + Y))~x

for each (x,y) e Z2 and it requires that any word consisting of consecutive horizontal

or consecutive vertical edges in the tiling / is freely reduced, where the words of

edges are seen as elements in the free groups (ax,..., am) < F or (bx,..., bn) < F,

respectively.
We say that a valid tiling f :Z2 -> T(F) satisfies the condition (AC/) for some

fixed j e Z, if for each /' e Z

S(f(i,i +j)) Ï N(f(i -1,7-1 +j))~x

W(f(i,i +j)) Ï E(f(i -1,/-1 +j))-x.
J

Note that if (AC/) holds in a valid tiling f : Z2 -> T(F) for each j e Z, then also

(AC) holds for /.
A valid tiling / : Z2 - T(F) is called periodic with period (à, b) eZ2\ {(0, 0)},

if f(x, y) = f(x + à, y + b) for each (x, y) e Z2. Observe that if (à, b) is a period

of/then sois (—à, —b).
The following lemma guarantees the unique extension of any T(r)-valued map /

on the main diagonal in Z2 to a valid tiling of the whole plane satisfying (AC), pro¬

vided / satisfies the inequalities of condition (ACo).

Lemma 4.1. Let F be a (2m, 2n)-group and f : {(/', /') : i e Z} —> T(F) a map such

thatfor each i e Z

S(f(i, /)) ^ N(f(i -1,7- I))"1 and W(f(i, /)) ^ E(f(i -1,7- l))"1 .

Then f uniquely extends to a valid tiling Z2 —> T(F). Moreover, this valid tiling

satisfies (AC).
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Proof. The existence and uniqueness ofa valid tiling Z2 -> T(F) extending the given

map / follows directly from the link condition in the (2m, 2/?)-group F. We call this

extension again /. By assumption, this / satisfies (ACo). If n e No, we prove now

that condition (AC„) implies condition (AC„+i). In the same way, one can prove that

(AC_W) implies (AC_„_i). By induction, we conclude that f :Z2 -> T(F) satisfies

condition (AC).
Fix any /' e Z and assume that (AC„) holds. To show (ACM+i), we have to prove

that

S(f(i, 7 + 77 + 1)) ^ N(f(i -1,7+ Z/))"1

W(f(i, 7 + 77 + 1)) ^ E(f(i -1,7+ Z/))"1 .

Assume first that

N(f(i -1,7+ z/))"1 = S(f(i, i+n + Y)) (= N(f(i, i + 77))) .

Since W(f(i, i + n)) = E(f(i — 1,7+ /?)), it follows from the link condition in F

that

S(f(i, i + 77)) = S(f(i -1,7+ Z/))"1 = N(f(i - 1, / + 77 - l))"1
,

contradicting (AC„). Similarly, assume that

W(f(i, 7 + 77 + 1)) = E(f(i -1,7+ Z/))"1 (= W(f(i, i + n))'1) .

Then S(f(i, i +n + l)) = N(f(i, i + n)) implies

E(f(i, i + 77)) = E(f(i, i+n + Y))~x = W(f(i + 1, / + 77 + I))"1
,

again contradicting (AC„). D

Proposition 4.2. Fix a (2m, 2n)-group F = (ax, ..., am, bx, ..., b„ \ Rm.„) and the

corresponding tile set T(F) defined as above. Then

(1) There is a periodic valid tiling f : Z2 —> T(F) satisfying (AC).

(2) There is a valid tiling f : Z2 —> T(F) satisfying (AC), and a number à e N

such that f(x,y) = f(x + à, y) = f(x, y + a) for each (x, y) e Z, i.e. f has

the two periods (a, 0) and (0, a) and therefore is doubly periodic.

(3) There are commuting elements a e (ax, ..., am) < F, b e (bx, ..., b„) < F

such that

0 < \a\ = \b\ < 64m2n2,

in particular (a, b) is a subgroup ofF isomorphic to Z2.
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Proof. (I) Given F, our goal is to construct a valid tiling f :Z2 -> T(F), such that

f(x, y) = f(x +2, y + 2) for each (x, y) e Z2. Fix any square

t := aba'b' e T(F)

and define / periodic along the diagonal {(/', /') : /' e Z} as follows. If a ^ a'

and o t^ ¥, then we define f(i,i) = t for each i eZ.Ifa = a', then we define

f(2i, 2/) = t, f(2i + 1, 2/ + 1) = a"1^-1«"1*-1 e T(r), / e Z
.

Note that [a~x¥~xa~xb~x] = [t]. If o = ¥, then we define

f(2i, 2/) = t, f(2i + 1, 2/ + 1) = a'-1*-1«-1*-1 e T(r), / e Z
.

Also here, [a'~xb~xa~xb~x] = [t]. See Figure 4.3 for an illustration of these

three cases.

a ^ a', b ^ ¥ a = a' b = ¥

Figure 4.3: Definition of /(/', /') in Proposition 4.2

Now we can apply Lemma 4.1 to the map / : {(/', /') : /' e Z} -> T(F). The

obtained unique extension f : Z2 -> T(F) satisfies (AC) and is obviously

periodic with period (2, 2) (in the first case where a ^ a' and o ^ ¥, there is in

fact a smaller period (1, 1)).

(2) We use an idea probably going back to Robinson ([60]). It was explained to

me by Guyan Robertson. Let / : Z2 -> T(F) be the periodic valid tiling with

period (2, 2) satisfying (AC) obtained in part (1). Since |T(r)| = 4mn is finite,

we have

\{(f(i, -/), f(i + 1, -/ + 1)) : / 6 Z}| < \T(F) x T(F)\ = (4mn)2 < oo,

in particular there are /' ^ j, such that \j — i \ < (4mn)2 and

/('", -0 = /0", -j) and /(/ + 1, -/ + 1) = f(j + 1, -j + Y).



186 CHAPTER 4. MISCELLANEA

It follows that

fix,y) = fix + j -i,y + i - j)

for each (x,y) e Z2. Now, we compute

/(*, y) = fix +j-i,y + i- j) = fix + 2j - 27, y + 2/ - 2j)

= f(x,y + 4/ - 4j) = f(x,y + 4j - 4i)

and

fix, y) = fix +j-i,y + i- j) = fix + 2j - 27, y + 2/ - 2j)

= fix + 4j - 47, y) = fix + 4/ - 4j, y).

Note that 0 < \4j - 4/'| < 4(4t777?)2 = 64m2n2.

(3) We use the doubly periodic valid tiling f : Z2 -> TiF) satisfying (AC) of

part (2), i.e.

f(x,y) = fix +ä,y) = fix, y + a)

for each (x, y) e Z, where à > 0. Since any closed edge-path (i.e. any circuit)
in this tiling describes a relator in the group F, we obviously have two commut¬

ing elements a e (ax,..., am), b e (bx,... ,bn) corresponding to the periods

(à, 0) and (0, a). Because of condition (AC), a and o are freely reduced and

we therefore have \a\ = \b\ = à e N. The upper bound 64t7727?2 for the length
of \a\ and \b\ can be obtained by the explicit construction in (2). The statement

(a, b) = Z2 follows from Lemma 3.14.

D

Remark. The set TYF) is a reflection-closed 4-way deterministic tile set (using the

terminology of [38]), but TYF) is never aperiodic by Proposition 4.2(1).

We want to illustrate the constructions made in the proof of Proposition 4.2 with a

concrete example and take the group F = F3^ of Example 3.46 with five generators

ax,ü2,bx,b2, b3 and the six relators in /?2-3

axbxa2b2, axb2a2b1~ , axb3a2 bx, axb3 axb2 , axb^ a2 b3, «203020^" .

This defines the tile set

^(^3,5) ={«1010202, 02020101, ax~ b2 a2 oj~ , a2 oj~ ax~ b2 }

U {«102020]" , «20]~ «1^2, cix~ bxa2 b2 , a2 b2 ax~ bx)

U {axb3a2 bx, a2 bxaxb3, ax~ oj~ «20^ , «20^ ax~ oj~ }

U {axb3 axb2 , axb2 axb3 , ax~ 02öf 03, ax~ b3ax~ 02}

U {axb1~ a2 03, a2 b3axb1~ , ax~ b3 «201, a2bxax~ b3 }

U {«2030209" , a2b2 «2°3, a2 °2a2~ ^3~ ' a2 ^3 a2 ^2}
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In Figure 4 4, we recognize a finite part of a periodic valid tiling/ : Z2 -> 7^35)

satisfying (AC) induced by t = axbxa2b2 e T(F3:s), with periods

(1, 1), (-2, 2), (4, 0), (0, 4) e Z(l, 1) + Z(-2, 2)

and commuting elements axa2axa2x, b2~xb1~xb3xbx, generating the free abelian group

IS axa2axa2 , b2 bx b3 bx) < F3^ .

Note that the two generators axa2axa2x and b2~xbl~xb3~xbx of Z2 correspond to the

two commuting quaternions 5 + 4/ + 67 — 2k and — 11 — 12/ — I87 + 6k of norm 34

and 54, respectively

1 ' bl \

«2

' b2 - 1

«2

' b3 1 1 bx \

«2

' b2 1 kftj

1

a2

fh2 \> Àibi *

a2

r b3 J * bi 1

a2

fb2 à

ai

ibi
* r b3

À

ai

i bi ,) r b3^\ ' * bi ^

a2

fb2^ À

ai

ibi ^

a2

r b3
* rh

\

a2

' b3 1 f bi * ' b2 V a

ai

ibi J

a2

r b3 J

ai

f bi * r b2

w

«2

w

«2

w

«2

Figure 4 4 Illustration of Proposition 4 2 taking Example 3 46 and t = «1010202

However, recall that (ax, bx) is an anti-torus in Ts^ (see Proposition 3 47(8)), in

particular there are also valid non-periodic tilings of the Euclidean plane using the tile

set r(r3>5)
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See Figure 4.5 for an illustration of a finite part of the non-periodic valid tiling
determined by (ax, bx). Note that all 24 squares of 7^3^) appear in this picture. To

illustrate this, we have equipped the tiles with numbers from 1 to 24.
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Figure 4.5: A non-periodic tiling in Example 3.46

Corollary 4.3. Let F = (ax, ... ,am,bx, ... ,bn \ Rm.„) be a (2m, 2n)-group. Then

there are always non-trivial elements a e (ax, ... ,am) andb e (bx, ... ,bn) such that

(a, b) is no anti-torus.

Proof. This follows directly from Proposition 4.2(3). D
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4.2 A criterion for non-linearity

Applying a criterion of Burger-Mozes ([17]), we give here examples of very small

irreducible non-linear (2m, 2/?)-groups F, where both Ph and Pv are primitive but not

alternating groups.

Proposition 4.4. (Burger-Mozes, [17, Proposition 1.3, Theorem 1.4]) Let F be a

(2m, 2n)-group such that Ph and Pv are primitive permutation groups. If either Kh
or Kv is not a p-group, then F is irreducible and not linear over anyfield.

Remark. There is no (2, 2)-, (2, 4)- and (4, 4)-group satisfying the assumptions of

Proposition 4.4.

Remark. If tt? > 3 and F is an irreducible (A2m, /,«)-group, i.e. if

in (2) I
_ ,A ,(\^2m\\2m

by Proposition 1.2(1 a), then Kh is not a/»-group, since \Kh\ = \A2m-\\2m~X

We apply now Proposition 4.4 to a (4, 6)-group which is moreover a candidate for

having a simple subgroup of index 4.

Example 4.5.

axbxax~ b2 , axb2a2 oj~ ,

R

2-3 axb3a2 bx, axb3 «203,

axbj
a9 Oo , a2bxa7 022 2 3

' W£V {Wry

Proposition 4.6. Let F be the (4, 6)-group defined in Example 4.5. Then

(1) Ph = PGL2(3) = S4, Pv = S6.

(2) \KV\ = 12441600000 = 214 • 35 • 55.

(3) T is irreducible and not linear over anyfield.

(4) [F, T] = To andFo is perfect.

(5) ZT(b3)=NT((b3)) = (b3).

(6) Aut(X) = Z2.
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Proof. (I) We compute

pv(bx) = (1,2),

Pv(b2) = (3,4),

pv(b3) = (1,2,4,3),

ph(ax) = (I, 2)(3, 5, 6),

Ph(a2) = (1,4,2,6, 5).

(2) GAP ([29]).

(3) Apply Proposition 4.4, using part (1) and (2).

(4) It is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we see that Aut(X) is generated by

(ax,a2,bx,b2,b3) i-> (a~x,a~x, b2, bx, b3).

Conjecture 4.7. The (4, 6)-group F ofExample 4.5 is non-residuallyfinite and

f]N = F0.

D

Example 4.8.

R%:

axbxax~ b2 , axb2ax~ b3 ,

axb3a1 oi, axb~, «20,

*2 uli «1^3 "2^1

a2bxa2b2x, a2b2a2b3

Proposition 4.9. Let F be the (4, 6)-group defined in Example 4.8. Then

(1) Ph = PGL2(3) = S4, Pv = PGL2(5) < .Sg.

(2) \KV\ = 50000 = 24-55.

(3) T is irreducible and not linear over anyfield.

(4) [r, r] = To, Ff = Z2, r/[r0, r0] = D4 and[F0, To] is perfect.

(5) Zr(al) = Nriia,)) = (a,), ifa, e {ax,a2}.

(6) Aut(X) = Z2.
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Proof. (I) We compute

p„(oi) = (l,3,2),

p„(o2) = (2,3),

p„(o3) = (2,4,3),

ph(ax) = (1,4, 5,6,3,2),

pÄ(a2) = (l,4,2)(3,6,5).

(2) GAP ([29]).

(3) Apply Proposition 4.4.

(4) This is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), we have checked that the group Aut(X) is generated by the

permutation

(ax,a2,bx,b2,b3) i-> (ax,a~x, b~x, b~x, b~x)

of order 2.

D

Conjecture 4.10. Let F be the (4, 6)-group defined in Example 4.8. Then F is non-

residuallyfinite such that

p| # = [r0, r0].

Question 4.11. Let F be the (4, 6)-group defined in Example 4.8. Is the index 8

subgroup [To, To] simple?

We also apply Proposition 4.4 to a (6, 6)-group:

Example 4.12.

axbxax~ b2 , axb2a2 b3 , axb3a2 bx,

3.3 := ^ axb3 a3 b3, axb2 a2 oj~ , a2bxa2 b2 ,

a2b3a3 b3 ,
a3bxa3b2, ci3b2 a3b~^

R
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Proposition 4.13. Let F be the (6, 6)-group defined in Example 4.12. Then

(1) Ph = PSL2(5) < S6, Pv = PSL2(5) < S6.

(2) \KV\ = 100000 = 25 • 55.

(3) T /'s irreducible and not linear over anyfield.

(4) [F, T] = To andFo is perfect.

(5) ZT(b3)=NT((b3)) = (b3).

(6) Aut(X) = Z2.

Proof. (1) We compute

p„(oi) = (l,2)(3,4),

pu(*2) = (3,4)(5,6),

pv(b3) = (I, 2, 3)(4, 6, 5),

Ph(a\) = (1,5,6,3,2),

Ph(a2) = (1,4,5,6,2),

Ph(a3) = (I, 5)(2, 6).

(2) GAP ([29]).

(3) Apply Proposition 4.4.

(4) This is an easy computation.

(5) This follows from Proposition 1.12.

(6) Using GAP ([29]), Aut(X) is generated by the two automorphisms

(ax,a2,a3,bx,b2,b3) i-> (a2,ax,a3, b~x, b~x, b~x),

(ax,a2,a3,bx,b2,b3) \-> (a~x, a~x, a~x, b2, bx, b~x).

D

Conjecture 4.14. Let F be the (6, 6)-group defined in Example 4.12. Then F is non-

residuallyfinite such that

f]N = F0.

V<ir

Question 4.15. Let F be the (6, 6)-group defined in Example 4.12. Is the subgroup To

simple?
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4.3 Local groups, irreducibility, abelianization

Two naive attempts to characterize irreducibility for (2ttt, 2Tr)-groups F could be as

follows: T is irreducible if and only if its abelianization is finite; F is irreducible if

and only if the local groups Ph and Pv are transitive. Both turn out to be false by small

counter-examples given in Proposition 4.16. By [17, Proposition 1.2], any reducible

(2ttt, 2Tr)-group satisfies Aj / 1 and A2 ^ 1. We give in Proposition 4.16(6) also

an irreducible example with this property. Finally, we show that it is not enough to

(2)

compute for example Ph and Ph, in order to decide by Proposition 1.2(2) that F is

reducible, even if it is reducible.

Proposition 4.16. There exist examples of (2m, 2n)-groups which are

(1) reducible such that their local groups Ph and Pv are transitive.

(2) irreducible such that Ph and Pv are not transitive.

(3) reducible andhavefinite abelianization.

(4) irreducible and have infinite abelianization.

(5) irreducible such that Pv is transitive and A2 7^ 1.

(6) irreducible such that Ax, A2 7^ 1.

(2),
(7) reducible but \Ph\ < |/\ | and \PV\ < \Py

)(2),

(8) reducible but IP^ \ < |,P,(4)|

Proof. (I) Take

R2-2 :--

axbxa2 bx, axb2a2 b2,

a2bxa2b2axbj axbi

Then, we have

pv(bx) = (1,4,3,2),

pv(b2) = (1,4,3,2),

ph(ax) = (1,3,2,4),

Ph(a2) = (1,4,2,3)

for the corresponding (4, 4)-group.

It is reducible, since \P,
(2),

\Ph\
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(2) Embed any irreducible (2m, 2Tr)-complex into a (2ttt + 2, 2tt + 2)-complex Y

by adding the ttt Y- tt Y- 1 geometric squares (geometric tori)

[aibn+ia^b'^], ..., [ambn+xa~x b'^],

[am+xbxam+lbl ],..., [am+xbnam+lbn ],

[am+xbn+xam+lbn+l]

and apply Proposition 1.9(3) to show that Y is irreducible. See the example
described in part (6) for an explicit realization of this idea.

(3) Taking

R

2-2

axbxax b\, axb2axb2 ,

a2bxa2bl~x, a2b2a2xb2
)(2),

we have \Ph\ = \Ph I =4, which shows that the corresponding (4, 4)-group F

is reducible. A simple computation gives Fab = Z\ of order 16.

(4) Take the subsequent Example 4.18.

Note that ifwe add to the non-residually finite (4, 12)-complex ofExample 2.26

the two geometric tori \axb-]a~^xb^x\ and [a2bja2xbjX], then we even get a non-

72
J2-residually finite (4, 14)-group F having an infinite abelianization Fab = Z x Z2

(5) We take the (6, 4)-group F given by

R

3-2 •
=

axbxax b2 , axb2a3bl , axb2 a3 bx,

a2bxa3bx, 020202»]" , 02^2" a3°2~

Then

p„(oi) = (l,4,2,5,3),

p„(o2) = (2,4,6,3,5),

pÄ(ai) = (l,2)(3,4),

Ph(ci2) = Ph(a?>) = (1, 2, 3, 4),

in particular Pv = D4 < S4 is transitive. Moreover, we compute Ph

and \P,
(2),

360 • 606. By Proposition 1.2(la), F is irreducible. Using
Lemma l.l(lb), B := {(bxb2)3, (b2bx)3, (oio2)-3, (o2oi)"3} is a subset of A2,

since for each b e B and a e Eh we have pv(b)(a) = a and ph(a)(b) e B.
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(6) Embedding the irreducible (6, 4)-complexjust described in the proofofpart (5),
we construct an irreducible (8, 6)-group such that Ai 7^ 1 7^ A2.

^4-3 ''-

axbxax~ b2 , axb2a3bl~ , axb3ax~ b3 , axb2 a3 bx,

a2bxa3bx, 020202°]" , a2b3a2 b3 , a2b2 a3b2 ,

a3b3a3 b3 , a4bxa^ oj~ , a4b2a^ b2 , a4b3a^ b3

It is irreducible by Proposition 1.9(3) and we have a4 e Ax,b3 e A2, applying
Lemma 1.1. Note that Ph and Pv are not transitive, since

pv(bx) = (1,6,2,7,3),

p„(o2) = (2,6,8,3,7),

Pv(b3) = 0,

ph(ax) = (I, 2)(5, 6),

Phi<*2) = Ph(a?>) = (1, 2, 5, 6),

ph(a4) = ().

(7) For the (4, 6)-group given by

axbxax~ oj~ , axb2ax~ b3 ,

2.3 := \ axb3a~xb2, a2bxa~xb2x,

a2b2a2xbx, a2b3a2b3x

compute \Ph\ = 2, \Ph{2)\ = 4, \PV\ = 24, |PU(2)| = 48. It is reducible by

R

we

Proposition 1.2(2b), since \Py\ = 48. Note that \P(hi]\ = \PhW\ = 8

(8) Take the (4, 6)-group defined by

axbxa\xb\x, axb2al~xb2,

R23 :-- axb3axb3 , a2bxa2b2 ,

a2b2a2b3x, a2b3a2bl

We compute \Ph\ 4. \P,
(2), P^\ = 16, \P

(4) 1 32. Note that

\Ph \ =32 and \PV\ = \Pv \ =24, in particular the (4, 6)-group is reducible

by Proposition 1.2(2).

D
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Question 4.17. (I) Is there a reducible (Ph, Pv)-group F such that Ph is transitive

and Pv is 2-transitive?

(2) Does there exist a reducible (Ph, Pv)-group F such that Ph is transitive and Pv

is primitive?

(3) Is there a reducible (Ph, Pv)-group F such that Ph is transitive and Pv is quasi-

primitive?

(4) Is there a (2m, 2n)-group F such that Ph and Pv are transitive and Fab is

infinite?

The (6, 6)-group in the following example not only illustrates Proposition 4.16(4),
but has other interesting properties.

Example 4.18.

axbxax~ oj~ , axb2ax~ b3 , axb3a2 b2 ,

R3.3 := { axb3xa2b2, a2bxa3~xbl~x, a2b3a2b2x,

a20J~ a3 oi, a3b2a3 b2 , a3b3a3 b3

Proposition 4.19. Let F be the (6, 6)-group defined in Example 4.18. Then

(1) Ph = Aß, Pv = Z2 < Se and F is irreducible.

(2) H2(xv) is apro-2 group, where xv is any vertex ofT2„.

(3) A2 7^ 1, in particular QZ(H2) 7^ 1.

(4) We have

(ax,a2, a3) = pr2((ax,a2, a3))

= pr2((ax,a2,a3))(xv)

= pr2(r)(xu) < Aut(T2n)(xv).

This group stabilizes pointwise a bi-infinite geodesic in 72« = Té through the

vertex xv.

(5) Fab = Z2 x Z2, in particular it is an infinite group.

Proof. (1) We compute

p„(oi) = (2,3)(4,5),

pv(b2) = (1,2,5),

pv(b3) = (2,6,5),



4.3. LOCAL GROUPS, IRREDUCIBILITY, ABELIANIZATION 197

pÄ(ai) = (2,3)(4,5),

pÄ(a2) = (2,3)(4,5),

Ph(a3) = ().

To see that F is irreducible, compute \Ph \ = 360 • 606.

(2) This follows directly from the subsequent Proposition 4.20.

(3) Using Lemma 1.1 (lb), the set {o2, b\, b3} is a subset of A2. Note that A2 is

a normal subgroup of (bx, ..., bn) of infinite index, since F is irreducible. In

particular, A2 is a non-finitely generated free normal subgroup of F.

(4) The map pr2 : F -> Aut(72«) is injective because we know that QZ(HX) = 1

by [16, Proposition 3.1.2, 1)]. This gives the first claimed isomorphism. The

two other isomorphisms are based on the identification

(ax,a2, a3) = {y e F : pr2(y)(xu) = xv}

proved in [17, Chapter 1]. Since ph(a)(bx) = bx for each a e Eh, the bi-infinite

geodesic (b\)kai through xv is fixed.

(5) This is an easy computation.
D

Proposition 4.20. Let F be a (Ph, Pv)-group such that \PV\ = 2. Then H2(xv) is a

pro-2 group (an infinite group ifand only if F is irreducible).

Proof. Consider the following commutative diagram, where pk, k e N, is the obvious

restriction map.

(ai,...,am)P-^lp(k+xUSym(Eik+X))

< Sym(Eik))
>(*)

We want to show that Py is a 2-group for each keN. Since \PV\ = 2 and

Pj = P(v fker(pk), it is enough to show that ker(pk) is a 2-group (or trivial). This

follows, if any element o e ker(/7^) has order 1 or 2 in P„ \ Given o e ker(/7^),
write o = ph

'
(a) for an appropriate element a in (ax, ... ,am). Let b be any el¬

ement in Ev \ Decompose b = b' b", such that V e Ev', b" e Ev and define

à := pv(b')(a) (see Figure 4.6). Then

a2(b) = p(hk+l)(a2)(b> b") = b' ph(d2)(b") = b' b" = b,

where the second equation uses the commutativity of the diagram above and the third

equation follows from the assumption \PV\=2. D
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b",

V*

i .

a à

,b<

a a

Figure 4.6: Illustration in the proof of Proposition 4.20

The following conjecture is true at least for k < 6, because we have computed

|PU(2)| = 4, |PU(3)| = 16, |PU(4)| = 32, |PU(5)| = 128, |PU(6)| = 256.

Conjecture 4.21. For F defined in Example 4.18 and I e N

23l~x
, ifk = 2l

if k = 21-I.
|p(*)|

,3/-2

A very natural question is to ask if there is a criterion in terms of properties of

the local groups Ph and Pv to decide whether a given (2m, 2T?)-group is reducible or

not. The answer to this question is "no" as shown in the first part of the following

proposition.

Proposition 4.22. (1) In general, it is not possible to determine whether a given

(2m, 2n)-group is reducible or irreducible only by knowing its local groups Ph

and Pv.

(2) There exist (2/tt, 2n)-groups Fx and T2 having isomorphic local groups, but

different local transitivity properties. More precisely, there are examples such

that PV(F\) and PhiF2) are transitive, PhiFx) and PviF2) are not transitive,

although PhiFx) = PhiF2) andPviFx) = PviF2).

Proof. (1) The idea is to find two (2ttt, 2T?)-groups Ti and T2 with permutation

isomorphic local groups such that Fx is irreducible but T2 is reducible. We

take the (6, 6)-group of Example 4.18 as Fx, and T2 as (6, 6)-group defined as

follows:

R

3-3

axbxax bx ,

axb3xa2b2,

a2bx xa3 xbx,

i i i i

axb2ax b3 , axb3a2 b2 ,

a2bxa3xb7x, a2b3a2b?x,

a3b2a3 xb3x, a3b3a3 xb2x
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Note that it has seven (of nine) defining relators in common with those ofExam¬

ple 4.18. The two different relators are underlined. They can be obtained from

the corresponding two relators a3b2a3xb2x and a3b3a3xb3x in Example 4.18

by a single "surgery" operation indicated in Figure 4.7. For a more general

description of surgery techniques in square complexes, see [17, Section 6.2.2].

a3 a3

b2

b3

i 02 b3 l L

a3 a3

a3 a3

i*3 b2 i L

iL 02

b3

a3 a3

Figure 4.7: "Surgery" on Example 4.18 (on the left)

We compute for T2 :

pvibX) = (2, 3)(4, 5),

p„(o2) = (1,2, 5),

p„(o3) = (2,6,5),

Phici\) = Phici2) = Phia3) = (2, 3)(4, 5),

in particular it follows that Ph = A^ and Pv = Z2 < S^. Moreover, we have

360 = \Ph\, hence T2 is reducible by Proposition 1.2(2a). Observe\P
(2),

that \Pi
«1 2 for all keN.

(2) The reason for this phenomenon is that the local groups are isomorphic, but not

permutation isomorphic. Let the (4, 6)-group Fx be defined by

R%:

U-l
axbxax b2 , axb2a2 b3 ,

axb3a1 o,
,

axb~, a7 bx,

axb~, a-, 03, a2bxa~, 02
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Then

pvibx) = (1,2),

Pvib2) = i3,4),

pvib3) = il,2)i3,4),

Phiax) = il,3,2)i4,5,6),

Phia2) = H,3,2,6,4,5),

hence Ph = Z22 < S4 is not transitive, Pv = Z2 x A4 < Ss is transitive.

Define the (4, 6)-group T2 by

R

2-3

U-l
ai/3ia2 o2

axb3a2b3,

axb7 a7 o,
.

aio2a2 o2,

aio^" a2o^~ ,

ajo, a9 01

We compute

pu(oi) = (l,2)(3,4),

p„(o2) = (l,2)(3,4),

p„(o3) = (l,3)(2,4),

pÄ(ai) = (l,5,2)(3,4),

pÄ(a2) = (2,5,6)(3,4)

and see that Ph = Z\ < S4 is transitive, but Pv = Z2 x A4 < Ss is not

transitive.

D

4.4 Graphs associated to a (2m, 2«)-group

Following an idea ofMozes ([52]), we associate to any (2/tt, 2T?)-group F two infinite

families of finite regular graphs (X^(r))^GN and (7^(r))^GN. The vertex set of X^iF)
<k) (k)

is identified with the set Eh and the vertex set of YkiF) is identified with Ev .
Two

vertices a, à e Eh' are connected in XtiF) by an edge if and only if pvib)ia) = à

holds for some b e Ev. In this case, b and b~x are edges in X^iF) such that o(/3) = a,

tib) = à and b = b~x. Similarly, two vertices b,b e Ev' are connected in YkiF) by
an edge if and only if pvia)ib) = b for some a e Eh.

See Figure 4.8 and 4.9 for a visualization of 71^3^) and X2iF3^), respectively,
where T35 is the (4, 6)-group of Example 3.46.



4.4. GRAPHS ASSOCIATED TO A i2M,2N)-GROUP 201

o"1 O]

b3X b3

Figure 4.8: The graph 7] ^35)

We list now some obvious general properties of the graph XkiF) (the properties
of Y^F) are analogous):

• XkiF) has exactly 2/77(2/7? — l)k~x vertices.

• XkiF) is 2t7-regular.

• Xk(F) is connected if and only if Ph
' is transitive on Eh '.

• XkiF) is connected for each keN if and only if prj(r) is locally oo-transitive.

• If Xk(F) is not connected, then XiiF) is not connected for each I > k.

• If Xk(F) has no loops, then XiiF) has no loops for each I > k.

Less obvious is the following result of Mozes:

Proposition 4.23. (Mozes, [52, Theorem, p.323]) IfF = Fpj is as in Section 3.2, then

iXkiF))k&n and (YkiF))k&n are Ramanujan graphs, i.e. for every keN and every

eigenvalue X of the adjacency matrix of XkiF), either X = ±il + I) or \X\ < 2a/7,
andfor every eigenvalue X ofthe adjacency matrix ofYkiF), either X = ±ip + I) or

\x\ < 2V7i.

Problem 4.24. Construct other (2/tt, 2n)-groups F such that the graphs iXkiF))ke^
and iYkiF))keN are Ramanujan graphs.
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ax a2

Figure 4.9: Geometric realization 0^X2^3,5)

4.5 Growth of (2m, 2«)-groups

Let T be a finitely generated group and S a finite subset generating F. Following [32],

we define the word length isiy) of an element y e F \ {1} with respect to S:

isiy) :=min{/ : y = sx ...s,; sx,...,s} e SUS~X}, (and£s(l) := 0),

for k e No the growthfunction

k^ßiF,S;k):=\{y e F : lsiy) < k}\,

the corresponding growth series

(X)

BiF,S;z):=J^ßiF,S;k)zk,
k=0

the spherical growthfunction

k^aiF,S;k):=\{y eF:lsiy)=k}\,

and the corresponding spherical growth series

(X)

E(r, S; z) := J>(r, S; k)zk = (1 - z)BiF, S; z).

Observe that a(r, S; k) = ßiF, S; k) -ßiF,S;k- l), ifk e N.
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Proposition 4.25. Let F = (ax, ... ,am, bx, ..., b„ | Rm.„) be a (2m, 2n)-group and

S := {ax, ..., am, bx, ..., bn} the set ofstandardgenerators ofF.

(1) The Cayley graph of(F, S) can be identified with the l-skeleton of the product

of regular trees T2m x 72«, in particular the growth functions of (F, S) only

depend on m andn.

(2) The spherical growth series is

ViF,S;z)
(TT7-(TT7-l){±f)(T7-(T7-l)l±f)

l+z l+z

1 - (2ttt - l)z 1 - (2t7 - l)z

= 1 Y- (2ttt Y- 2t?)z Y- (4ttt2 Y- 4t?2 Y- 4tt7t? - 2m - 2n)z2 + 0(z3).

(3) If im, n) ^ il, 1), then F is ofexponential growth. Ifm = n = I, then F is of

polynomial growth.

(4) Ifm, tt > 2, then F is quasi-isometric to F2 x F2.

Proof. (1) See [9, Section I.8A.2] for an explicit identification. Observe that the

product T2m x 72« is the universal covering space of the "Cayley complex" of

([9, Section I.8A.2]), which is exactly our (2ttt, 2T?)-complex X

(2) By part (1) we have £(r, S; z) = S(FfflxF„, S; z). Note that

l+z
£(Z,{l};z)

1

The claim follows now from the behaviour of the spherical growth series with

respect to taking free and direct products (see [32, Proposition VI.A.4]). As an

intermediate step, we have for example

1 +z
E(Fm, {ax, ...,am};z)

1 - (2ttt - \)z

(3) If (ttt , tt) t^ ( 1, 1 ), then the statement follows from the obvious fact that Fm x Fn

contains a non-abelian free subgroup (namely Fm x {1} if tt? > 2, or {1} x Fn

if 7? > 2). If tt? = t? = 1, then F is virtually abelian, hence is of polynomial

growth.

(4) The group Fm x Fn is isomorphic to a finite index subgroup of F2 x F2 (the
index is (tt? — 1)(t? — 1)), hence the groups are quasi-isometric by part (1). (Note
that for t, I' > 3, the tree Tt is quasi-isometric to Ty, see [9, Exercise 1.8.20(2)].
This is a more general result than (4), since t, I' are allowed to be odd.)

D
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Example. Let T be a (6, 6)-group. Then

E(r, S;z) = l + 12z + 96z2 + 660z3 + 4200z4 + 25500z5 + 0(z6)

B(T, S;z) = l + I3z + 109z2 + 769z3 + 4969z4 + 30469z5 + 0(z6).

4.6 Deficiency of (2m, 2«)-groups

Let G be a finitely presented group. The deficiency of a finite presentation P of G is

the number of generators minus the number of relations in P. The deficiency def(G)
of the group G is the maximum of the deficiency of P taken over all possible finite

presentations of G. It is well-known (see [27, Lemma 1.2]) that

def(G) < rank(//i(G; Z)) - d(H2(G; Z)), (4.1)

where d(H2(G; Z)) denotes the minimal number of generators of the second homo¬

logy group of G with integer coefficients. The group G is called efficient if equality
holds in (4.1).

Proposition 4.26. Let F be a (2m, 2n)-group. Then F is efficient and

def(T) = m + n — mn
.

Proof. Since F has the finite presentation (ax, ... ,am,bx, ... ,bn \ Rm.„), we have

def(r) > TT? + 77 — 7777?
.

On the other hand

def(r) < rank(//](r; Z)) - d(H2(F; Z))

= rank(//](r; Z)) - vank(H2(F; Z))

= i-x(H

= 777 Y" 7? — 77777
.

The inequality is (4.1), and the equalities above are described in [41, Section 6], where

X(F) is the Euler characteristic of the (2/77, 2Tî)-complex X (or the alternating sums

of the ranks of the homology groups of F, which is the same here). D

Remark. The deficiency def(r) for a (2tt?, 2Tî)-group F is attained by its standard

presentation

(ax, ..., am, oi, ..., b„ | Rm.„)

as well as by the natural presentations of their amalgams (provided they exist, see

Proposition 1.3)

Pfl *Fi-2m+2mn ^i-m+mn aim tm *Fi_2n+2mn ^X-n+mn
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Similarly as in Proposition 4.26, one can prove that the deficiency of To is

def(r0) = 4/7 Y- 4/77 - 4TT7T7 - 3
.

Remark. There are non-efficient torsion-free groups, see [47].
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Appendix A

More examples

A.l Irreducible (A6, Pv)-groups

In Appendix C.l, we will give a list of all primitive permutation groups in £2«, where

tt < 7. There are 33 different such groups (up to isomorphism). Our goal now is to

construct for each such primitive group Pv an irreducible (As, /,l))-group. We already
have constructed an (As, ^6)-group in Example 2.2, an (As, M]2)-group in Exam¬

ple 2.18, an (As, ASL3(2))-group in Example 2.21 and an (As, S5 < ,S'io)-group in

Example 2.58. There are no (As, ^-groups and no (As, ^4)-groups, and we have

not found an (As, As < -S'io)-group or an (As, Mxx < /S^-group. In this section,

we construct the 25 remaining (As, /,l))-groups and give the generators of the local

groups Ph = As and Pv. All these examples are irreducible by Proposition 1.2(la),

since we always have \P,
(2),

360 • 606.

Example A.l. (As, S4)-group:

R32 '

axbxax b2 , a]/32a2 bx, axb2 ü^Oj ,

a20iao oi, 020200 02, a3bxa3b2

p„(oi) = (l,5,4,3,2),

p„(o2) = (2,6,5,4,3),

p„(ai) = (l,3,4,2),

p„(a2) = (l,3,2,4),

p„(a3) = (l,4,2,3).

207
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Example A.2. (As, PSL2(5))-group:

axbxax~ b~( , axb2a2 b3 , axb3axb2 ,

R3.3 := { axb~xa3xb2, a2bxa3b~x, a2b2a3b2,

ci2b3a3b,
, a2Oo a3b~,

, «20, a3bx

p„(oi) = (2,4)(3,5),

pv(b2) = (I, 6, 5, 3)(2, 4),

pv(b3) = (I,2,4,6)(3,5),

Ph(ax) = (2,3)(4,5),

Ph(a2) = (1,3,4, 5,2),

p„(a3) = (2,3,4,6, 5).

Example A.3. (As, PGL2(5))-group:

axbxax~ b~( , axb2a~( b3 , axb3a2 02,

R

3-3 axb3 «202 , a2oia3 bx , a2o2a3 bx,

ci2b3a3b3, a2Oj a3 02, a3b2a3b3

pv(bx) = (2,3)(4,5),

pv(b2) = (1,5,4,3,2),

pv(b3) = (2,6,5,3,4),

ph(ax) = (2,4,5,3),

ph(a2) = (2,4,3,5,6),

p„(a3) = (l,5,4,3,2).
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Example A.4. (As, Ss)-group:

axbxax~ b~( , axb2a~( b2 , axb3a2 b3 ,

R3-3 :-- axb3 a3 b3, a2oja2 o2 , a202fl3 o3 ,

a2b3a3 oi, a2b2 a3b~( ,
a3bxa3b2

pv(bx) = (2,4,3),

p„(o2) = (3,5,4),

pv(b3) = (I, 2, 3)(4, 6, 5),

Ph(ax) = (),

Phiai) = (1,5,6,3,2),

p„(a3) = (l,4,5)(2,6).

Example A.5. (As, AGLx(8))-group:

axbxa2 b~( , axb2a2 b3 , axb3a2 b^ ,

R

3-4

aj04a2 b4, axb4 a2 o2, axb3 a3b2 ,

axb2 a2 oi, axb~( a2 b3, a2b3a3 02,

a3bxa~, bA , «302^303,
a3b4a^,

o.
l3 u\

pv(bx) = (I, 2)(5, 6),

pv(b2) = (I, 4, 3, 2)(5, 6),

pv(b3) = (I, 2)(3, 6, 5, 4),

pv(b4) = (I, 2)(5, 6),

Ph(ax) = (2,6, 8,7, 5,4,3),

Ph(a2) = (1,2, 4, 5,6,7,3),

p„(a3) = (l,4)(2,6)(3,7)(5,8).
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Example A.6. (A6, AFLx(8))-group:

R

3-4

aioia2 o3 , a]02ö203, aio3a2 1o41,

aj04a2 04, axb4 a2 o2, axb3 a3b2 ,

axb2 a2 bx, axbx a2 bx , a2o2 a3 b3 ,

a3bxa3 Oj , a3b3a3 o4 , a3b4a3 o2

pu(oi) = (l,2)(5,6),

pv(b2) = (1,4,5,6,2),

pv(b3) = (1,2,3,6,5),

pv(b4) = (I, 2)(5, 6),

p„(ai) = (1,8, 7,5,4,3)(2,6),

p„(a2) = (l,2,4,5,6,8)(3,7),

p„(a3) = (2,5,6)(3,7,4).

Example A.7. (A6, PSL2(7))-group:

axbxa2 oj~ , axb2a2 bx, axb3a2 b3 ,

R

3-4

axb4a2 04, axb4 a2 o2, axb3 a3b2 ,

axb2 a2 b4 , axb1~ a2 b3, a2b3a3 02,

a3bxa3 04, a3b2a3b3, a3b4a3 bx

pv(bx) = (I, 2)(5, 6),

pv(b2) = (I, 4, 3, 2)(5, 6),

pv(b3) = (I,2)(3,6,5,4),

pv(b4) = (I, 2)(5, 6),

p„(ai) = (2,6,8)(4,7,5),

p„(a2) = (l,7,3)(2,4,5),

p„(a3) = (l,5)(2,6)(3,7)(4,8).
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Example A.8. (As,PGL2(7))-group:

axbxa2 b3 , axb2a2 bx, axb3a2 b4 ,

R

3-4 •
=

axb4a2 b4, axb4 a2 o2, axb3 a3b2 ,

axb2 a2 b3, axb1~ a3 b^ , a2bxa3 bx,

a2b3a3xb2, a3b2a3b3, a3b4a~xb~x

Pv(bx) = (1,3,2)(4,6,5),

Pvibi) = (1,4,3,2)(5,6),

Pv(b3) = (1,2)(3,6,5,4),

Pv(b4) = (1,2)(5,6),

Ph(a\) = (1,8,2,6,7,5,4,3),

Ph(ci2) = (1,7,3,2,4,5,6,8),

Ph(ci3) = (1,8)(2,6)(3,7).

Example A.9. (As, A%)-group:

axbxax~ op, axb2al~lb2~l, axb3ax~Yb3Y,

R

3-4

axb4a2 o4 , axb4 a2 b4, a2oia3 o2 ,

a2b2a3xb2, a2b3a3bx, a2b3xa2bl~x,

a2b2 a3 b3, a3b3a3 b4 , a3b4a3 bx

pv(bx) = (2,5,4),

pv(b2) = (2, 3)(4, 5),

pv(b3) = (2,5,3),

pv(b4) = (I, 2)(5, 6),

Ph(a\) = 0,

p„(a2) = (1,6,7,2X3, 8),

p„(a3) = (l,5,6)(2,7,8,4,3).
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Example A.10. (As, S%)-group:

axbxax~ oj~ , axb2ax~ è2, axb3ax~ b3 ,

R

3-4 •
=

axb4a2 b4 , axb4 a2 b4, a2/3]a3 b2 ,

a2b2a3xb2, a2b3a3bx, a2b3xa2blx,

«209 a, 03, a3b3a~, bA ,
a3b4a^, bx

pv(bx) = (2,5,4),

pv(b2) = (2,3)(4,5),

pv(b3) = (2,5,3),

pv(b4) = (I, 2)(5, 6),

Ph(ax) = (2,7),

p„(a2) = (l,6,7,2)(3,8),

p„(a3) = (l,5,6)(2,7,8,4,3).

Example A.ll. (As, PSL2(9))-group:

axbxax~ oj~ , axb2a3 b3 , axb3ax~ b2 ,

R3-5 :=

axb4ax b5 , axb$a2 b4 , axb5 a204,

axb2xa3xb3, a2bxa2b2x, a2b2a2b3,

a2bsa2bx , a2b4 a2b3 , a3bxa3bx ,

a3b3a3 b2 , a3b4a3 b5 , a3b$a3 b4

pv(bx) = (2, 5)(3, 4),

pv(b2) = (2, 5)(4, 6),

pv(b3) = (I, 3)(2, 5),

pv(b4) = (1,2,5),

pv(b5) = (2,6,5),

p„(ai) = (2,3)(4,5)(6,7)(8,9),

p„(a2) = (l,5,4,8,2)(3,7,6, 10,9),

p„(a3) = (2,3)(4,5)(6,7)(8,9).
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Example A.12. iAs, Ss < SXo)-group

i-xb2axbxa, o9 , ai02ai 05, axb3a, 03,

0104«]" oi, axb$a2 b4 , axbj a204,

/?3-5 := ^ a2bxa3 b3, «202^ o^ ,
a2b3a3bx,

a2b5a2bl~x, a2b4xa2b3x, a3b2a3xb4x,

a3b3a3 b2 , a3b4a3 bx, a3b^a3 05

pv(bx) = (2,5,4), pv(b2) = (),

pv(b3) = (2,5,3),

pv(b4) = (1,2,5),

pv(h) = (2,6,5),

ph(ax) = (1,1,6,2)(3,%)(4,5,9, 10),

pÄ(a2) = 0,5, 4,8)(3,7,6, 10),

pÄ(a3) = (l,7,9,8)(2,3, 10,4)(5,6).

Example A.13. (A6, PGL2(9))-group:

axbxax~ b2 , axb2ax~ oj~ , axb3ax~ 03,

axb4ax~ bj , axb$a2 b4 , axbj a204,

3.5 := \ a2bxa3 b3, a^a^ b2 , a2b3a3bx,

a2b5a2b~x, a2b4xa2b3x, a3b2a~xb5,

R

-U-l
a3b3a3 b2 , a3b4a3 bx, a3b$a3 b

pv(bx) = (2,5,4), pv(b2) = (),

pv(b3) = (2,5,3),

pv(b4) = (1,2,5),

pv(b5) = (2,6,5),

p/Xai) = (l,2)(3,8)(4,5)(6,7)(9, 10),

pÄ(a2) = (l,5,4,8)(3,7,6, 10),

pÄ(a3) = (l,7,6,2,3,10,4,5,9,8).

U-l
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Example A.14. (As, MXo)-group:

axbxax op, axb2al~lb3~l, axb3ax~lb2l,

R3-5 :--

axb4a, be
, axb$a7 bA ,

axbc «204,

a2oia3 Xb2x, a2o2a2o3, a2bsa2bx x,

a2b4xa2b3x, a2b2xa3bx, a3b2a3xb5x,

U-i -U-i
a3b3a3b3 , a3b4a3 bx , a3b5a3 b4

pv(bx) = (2,5,4), pv(b2) = (2,3,5),

pv(b3) = (2,5)(3,4),

pv(b4) = (1,2,5), pv(b5) = (2,6,5),

Ph(ax) = (2, 3)(4,5)(6,7)(8, 9),

ph(a2) = (I,5,4,%,2)(3,1,6, 10,9),

pÄ(a3) = (l,4,5,2)(6,9, 10,7).

Example A.15. (As, PFL2(9))-group:

R3-5 :=

-U-l
axb3ax xb2x,axbxax O], axb2ax xb3

axb4ax bj , axb$a2 b4 , axbj a204,

,.-U-i
a2bxa3 b2 ,

a2b2a2b3, a2bsa2bx ,

(*2b4 a2b3 , a202~ a3bx, a3b2a3 04,

U-i
a3b3a3b3 , a3b4a3 05, a3b$a3 bx

pv(bx) = (2,5,4),

pv(b2) = (2,3,5),

pv(b3) = (2,5)(3,4),

pv(b4) = (1,2,5),

pv(b5) = (2,6,5),

pÄ(ai) = (l,10)(2,3)(4,5)(6,7)(8,9),

pÄ(a2) = (l,5,4,8,2)(3,7,6, 10,9),

pÄ(a3) = (l,5,7,2)(4,9, 10,6).
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Example A.16. (As, AXo)-group:

axbxaxx bxx, axb2ax xb4x, axb3a2 b3 ,

axb4axx b2x, axbsax bj , axb3 a2 03,

a2bxa3xbxx, a2b2a3xb2, a2b4a3 bj ,

a2b5a2b4x, a2b~xa3b4, a2b2 a3 bx,

a2bxxa3xb2x, a3b3a~xb~x, a3b^a3 b3

pv(bx) = pv(b2) = (2,3)(4,5),

pv(b3) = (I, 2)(5, 6),

pv(b4) = (2,5,4),

pv(h) = (2,3,5),

Ph(ax) = (2,4)(l,9),

Phia2) = (2, 10, 9)(4, 5)(6, 7),

ph(a3) = (l, 2, 9)(3, 5, 4)(6, 7, 8).

Example A.17. (As, SXo)-group:

axbxaxx bxx, axb2ax xb4, axb3a2 b3 ,

axb4axx b2x, axbsax~xbjx, axb3 a2 03,

a2bxa3xbxx, a2b2a3xb2, a2b4a3 bj ,

a2b5a2b4x, a2b~xa3b4, a202~ a3 O],

a2bxxa3xb2x, a3b3a~xb~x, a3b^a3 b3

Pv(bx) == pv(b2) = (2,3)(4,5),

Pv(b3) == (1,2)(5,6),

Pv(b4) == (2,5,4),

Pv(b5) == (2,3,5),

Ph(ax) == (2,4,9,7),

Ph (a2) == (2, 10, 9)(4, 5)(6, 7),

Ph(a3) == (1, 2, 9)(3, 5,4)(6,7,8).
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Example A.18. (A6, PSL2(1 \))-group:

axbxa3 b2 , axb2axxbxx, axb3a~xb~x,

axb4ax b3 ,
axb5a~xb~x, axbsa~xb~x,

axbxxa2b2, a2bxa2b3x, a2b3a2b~x,

a2b4a~xb4x, a2b5a2bs, a2b~xa2b2x,

a2bxxa3b2, a3bxa3b3x, a3b3a3bjx,

a3b4a3xb4x, a3b5a3b6, a3b^xa3b2x

pv(bx) = (2, 6, 4, 3, 5), pv(b2) = (1, 3, 4, 2, 5),

Pv(b3) = pv(b5) = pv(b6) = (2, 5)(3, 4),

pv(b4) = 0,

Phiax) = il, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),

Ph(a2) = Ph(a3) = (1, 2, 7, 5, 3)(6, 11, 12, 10, 8).

Example A. 19. (As, PGL2(1 l))-group:

axbxaxxb2x, axb2ax xb4x, axb3a~xbx,

axb4a~xb~x, axbsaxxb3x, axbsa~xb~x,

axb3xa3bxx, a2bxa2b2, a2b3a2bjx,

a2b4a2xb4x, a2b5a2bs, a2b~xa2b2x,

a2bxxa3b3x, a3bxa3b2, a3b3a3b^x,

a3b4a~xb~x, a3b5a3b6, a3b~xa3b~x

pv(bx) = (1,4,3,5,2),

Pv(b2) = Pv(b5) = Pv(bs) = (2, 5)(3, 4),

pv(b3) = (2,4,3,6,5), pv(b4) = Q,

ph(ax) = (1,10, 8, 7, 9, 11,12,3,5,6,4,2),

Ph(a2) = Phiai) = (1, 10, 8, 6, 11)(2, 7, 5, 3, 12).
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Example A.20. (As, AX2)-group:

axbxa3 bx , axb2a3 bx, axb3ax o7
,

axb4ax b3 , axbsax~ o7
, axbsax o7

,

R

3-6 •
=

axb2 a3 b2 , axbx a2o2, a2bxa2b3 ,

a2b3a2bjx, a2b4a2xb4x, a2o5a2o6,

a2b6xa2b2x, a2bxxa3xb2, a3b3a3b3x,

a3b4a3xb4x, a3b5a3b5x, a3b6a3b6x

pv(bx) = (1, 3)(2, 6, 4, 5), pv(b2) = (1, 3, 2, 5)(4, 6),

Pvih) = Pv(b5) = Pv(bs) = (2, 5)(3, 4), pv(b4) = (),

Ph(ax) = (2, 11, 12)(3, 4)(5, 6)(7, 8)(9, 10),

pÄ(a2) = (l,2,7,5,3)(6, 11,12, 10,8),

Phia3) = (1,11,2).

Example A.21. (As, SX2)-group:

axbxax 02, axb2a3bx , axb3ax b4 ,

axb4ax b3 , axbsax~ b^ , axbsax bj ,

axb^ aZ oi, «2010207 , «2030207 ,

R

3-6

-U-l U u-l
a2b4a2 b4 , a2b5a2bs, a2b6 a2b2 ,

a2b, a3b2, a3bxa3b^ , a3b3a3br ,

-U-i U u-l
a3b4a3 b4 , a3b5a3b6, a3b6 a3b2

pv(bx) = (1, 4, 3, 5, 2), pv(b2) = (2, 5, 6, 3, 4),

Pv(h) = Pv(b5) = Pv(bs) = (2, 5)(3, 4), pv(b4) = (),

Ph(ax) = (1, 2, 12, 11)(3, 4)(5, 6)(7, 8)(9, 10),

Ph(a2) = Phiai) = (1, 2, 7, 5, 3)(6, 11, 12, 10, 8).



218 APPENDIX A. MORE EXAMPLES

Example A.22. (A6, PSL2(l3))-group:

axbxax b2 , axb2a3bx x, axb3ax xb4

axb4ax o7
,

axb5a~xb~x, axbsax o7

axbqax bj , axb2 a2 oi, a2bxa2bjX,

a2b3a2b^x, a2b4a2xb4x, a2b5a2bs,

a2b1a2b3x, a2b~xa2b2x, a2bxxa3b2,

a3bxa3b~x, a3b3a3b~x, a3b4a3 o7

a3b5a3b6, a3b7a3b~x, a3b~xa3b~

pv(bx) = (1, 4, 3, 5, 2), pv(b2) = (2, 5, 6, 3, 4),

Pv(b3) = pv(b5) = pv(b6) = pvih) = (2, 5)(3, 4), pv(b4) = (),

ph(ax) = (1, 2)(3, 4)(5, 6)(9, 10)(11, 12)(13, 14),

Phiai) = Phiaï) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10).

Example A.23. (A6, PGL2(l3))-group:

axbxax b2 , axb2a3bxx, axb3ax xb7,

axb4a~xb~x, axbsaxxbs, axbsax b4

axb7a~xb3, axb2 a2 O], a2bxa2bjX,

a2b3a2b~x, a2b4a~xb4x, a2b5a2bs,

a2b1a2b3x, a2b~xa2b2x, a2bxxa3b2,

a3bxa3bjX, a3b3a3bjx,
i

a3b4a3 b4

a3b5a3b6, a3b7a3b3x, a3b^xa3b2

(1,4,3,5,2), pXo2) = (2,5,6,3,4),

Pvibs) = Pvibs) = Pvih) = (2, 5)(3, 4), pvib4) = (),

(1, 2)(3, 8)(4, 6)(5, 10)(7, 12)(9, 11)(13, 14),

Phia3) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10).

R

3-7 •
=

Pvih)

Pvibi)

Phiax)

Phiai)
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Example A.24. (As, AX4)-group:

axbxaxxb2x, axb2a3bx x, axb3ax xb4

axb4ax o7
,

axb5a~xb~x, axbsax o7

axbjaxxbjX, axb2 a2 oi, a2bxa2bjX,

a2b3a2bjx, a2b4a2xb4x, a2b5a2bs,

a2b7a2b3x, a2b~xa2b2x, a2bxxa3b2,

a3bxa3b~x, a3b3a3b~x, a3b4a3 o7

a3b5a3b6, a3b7a3b~x, a3b~xa3b~

pv(bx) = (1,4,3,5,2),

pv(b2) = (2, 5,6,3,4),

pv(b3) = (2,5)(3,4),

pv(b4) = 0,

pv(b5) = (2, 5)(3, 4),

pv(bs) = (2,5)(3,4),

pv(b7) = (2, 5)(3, 4),

ph(ax) = (1, 2)(3, 4)(5, 6)(9, 10)(11, 12)(13, 14),

ph(a2) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10),

pÄ(a3) = (l,2,9,5,3)(6, 13,14, 12, 10).
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Example A.25. (As, SX4)-group:

axbxaxxb2x, axb2a3bx x, axb3ax xb4

axb4ax o7
,

axb5a~xb~x, axbsax o7

axbqax 07, axb2 a2 oi, a2bxa2bjX,

a2b3a2bjx, a2b4a2xb4x, a2b5a2bs,

a2b1a2b3x, a2b~xa2b2x, a2bxxa3b2,

a3bxa3b~x, a3b3a3b~x, a3b4a3 o7

a3b5a3b6, a3b7a3b~x, a3b~xa3b~

pv(bx) = (1,4,3,5,2),

pv(b2) = (2,5,6,3,4),

pv(b3) = (2, 5)(3, 4),

pv(b4) = 0,

pvib5) = (2, 5)(3, 4),

pv(b6) = (2,5)(3,4),

pv(b1) = (2,5)(3,4),

ph(ax) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14),

ph(a2) = (1, 2, 9, 5, 3, 7)(6, 13, 14, 8, 12, 10),

p/Xa3) = (1,2,9,5,3)(6, 13,14, 12, 10).
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A.2 Amalgam decompositions of Example 2.2

Vertical decomposition

We first give the vertical decomposition of the (6, 6)-group F of Example 2 2

F = F3y * („6)^ (VS) F) ',

where the factors are defined as follows

F3(v'b) = (bi, b2, b3), F^v's) = (sx,s2, s3, s4, s5, s6, s7).

The injective homomorphism/7^' ^> F3 is given by the description of FX3 as

a subgroup of F3 of index 6

Fx(v3b) = (bx,b3,b2b3xb2, b2xb3xb\, b2xbxb\, b2xb-xxb\, b2bx2b2x, b2b3bxxb2x,

b\bxxb2x, b23bxxb2x, b2bxb23b22, b22b3xbxb3b\, b22b3xb2b3b22),

the inclusion FX3'S' ^ Fj"'s' by

r?U>,s) , -1 -1 -1 -1 -1

FX3
= (s\, s2, s6, s4 s3, s5 s3, s7 s3, s7s3 , s5s3 ,

The identification

s4s3 x, s3 xs6s3 x, s2, s3 xsxs3, s3 xs2s3)

M3
^ ^

M3

O] < > SX

b3 <—> s2

b2b3xb2 <—> s6

i 19 1

o2 o3 o2 <—> s4 s3

o2 bxb2 <—> s5 s3

b2 o7 b2 <—> Sj s3

b2bx b2 <—> sjs3

o203o7 o7 <—> sss3

b2bx b2 <—> s4s3

o7 o7 o7 <—> s3 sss3

b2bxb3b2 <—> s3

o2 o3 bxb3b2 <—> s3 sxs3

02 03 02030| < > S3 S2S3
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in the amalgam leads to a finite presentation of F with 10 generators

{01, o2, 03, sx,s2, s3, s4, s5, s6, s7}

and 13 relations

01 = sx, 03 = 52, b2b3xb2 = s6, b2xb3xb\ = s4xs3, b2xbxb\ = s7>xs3,

b2Xbxxb2 =SjXs3, b2bx2b2x = sjs3x, b2b3bxxb2x = sss3x,

b2bxxb2x = s4s3x, b23bxxb2x = s3xsss3x, b2bxb\b\ = s2,

02 o3 bxb3b2 = s3 sxs3, b2 b3 o20302 = s3 S2S3 .

Horizontal decomposition

In a similar way, we can describe the horizontal decomposition of

?(h,a)
= ^3 *F(ha)^F(hu) r1

(h,u)

13
—'

13

by a finite presentation with generators

{ax,a2, a3, ux, u2, u3, u4, u5, u6,7/7},

and relations

4 —3—13 —3 —1 —2 —1
ax=ux, a3 = u$uj, a2a3 = uju5 , a3axa3 = u$uxu5 , a3axa3 = U2U5 ,

—2 —1—12—1 2—1 3

a3a2a3 = u3 u5 , a3axa3 = u$u4, a3a2a3 = 7/57/6, a3a2axa2 = 7/57/2,

a\a2a3a2 = u^u^ , a\a\ = u\, a2 a3a2 a3 = u4uj , a2 axa2 a3 = u3uj

Isomorphisms

We recall the set of relators R3 3 of Example 2 2

R33--

axbxax bx , axb2ax b3 , axb3a2b2 ,

axb~, a, 02, a20iao o9 , 020200 Oo
,

a2b3a3 bx, «203 «302, «2°] a3 bx
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Explicit isomorphisms between the three given finite presentations of F are

r(«) <—> (ax, ...,b3\R33) <—> r(h)

s3b22,K1
b3b2s~

b2S4

[b2

xb\
sx =--bi

b2

S2 =-b3

S3

s4

S5

ss

Si

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

ax

a2

a3

bX

b2

b3

axb3b\
axb\b2

axb3b~xb2

b2b3xb2
axb3bxb2

a3axa3bx

axa2 o7

«2 a3a2 Ci

ajb-1
(bxa2a3a2)

x

a2b\~x

a^

<—>

<—>

<—>

<—>

<—>

<—>

ux

<—>

<—>

<—>

<—>

<—>

<—>

ax

a2

a3

t/7 a2
-1 2

a2w5 a3
2 -1

a2u5 a3

u2

u3

u4

Us

Us

Uq

where

and

<v)

<h)

F-
(v,b)

* p(v b) ^ p(v s)
M3 —M3

K
(v,s)

r(h,a) r(h,u)
b3 *F(ha)^F(hu) r7

Observe that with this identification, the abelianization map F -

given by

ax,a2, a3 i-> (1 Y- 2Z, 0 Y- 2Z)

01,02,03 ^ (0 + 2Z, 1 +2Z)

sx,s2,s6^ (0 + 2Z, 1 +2Z)

s3, s4, ss, sj i-> (1 + 2Z, 1 + 2Z)

ux k> (1 4-2Z, 0 4-2Z)

t/2, u3, u4, us, us, uj i-> (1 4- 2Z, 1 4- 2Z).

^ab Z\ is now
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Local action on trees

The vertical amalgam decomposition of F described above gives a natural action of F

on the first barycentric subdivision T6' ofT2m = Ts. See [64, Chapter 4] for the general

theory about amalgams and their action on the corresponding tree. Let P be the vertex

of T6' stabilized by F3
'
= (bx, 02, b3). The local action of F = prj(r) < Aut(72OT)

on S(xh, I) in Ts, i.e. the homomorphism pv : (bx, 02, 03} -» Ph < S2m determined

in the proof of Theorem 2.3(1), can be reconstructed by the action of F3 on the

set of edges of T6' originating at P. These edges are labelled by right cosets FX3 'g,,

i = 1,..., 6, g, e F3 ', such that

iY'M = LR'V
1=1

The group F3 = (bx, />2, b3) acts by right multiplication on the set of right cosets

{F{X3'b)gl}l=x,...,s- If we choose gx = 1, g2 = b2bxb2, g3 = (b2bx)2, g4 = b2bx,

gs = °2, g6 = 02^103 and make the identification FX3 'gt *» /' for /' = 1, ..., 6, then

we exactly get back our homomorphism pv:

pv(bx) = (2, 3)(4, 5),

pv(b2) = (1,5,4,2,3),

pv(b3) = (2,3,5,4,6),

generating Ph = As. In the same way, we compute the action of F3
'a)
= (ax, «2, a3)

by right multiplication on right cosets

r3
=

rX3 U rX3 a2aX U rX3 a2 U rX3 a3 U rX3 a3aX U rX3 Ü2

and recover ph : (ax, a2, a3) -» Pv < S2n = Ss:

ph(ax) = (2, 3)(4, 5),

ph(a2) = (I,6,3,2)(4,5),

ph(a3) = (I,4,5,6)(2,3),

generating Pv = As.

Vertical decompositions of r0

The cell complex Xq of Example 2.2 corresponding to the subgroup To < T is given

by the 4 • 9 = 36 geometric squares illustrated on the next two pages.
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a2,ß a2,ß Ö2(i

Figure A. 1 : Complex Xq of Example 2.2, part I
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S ai,s y
- '

—m

öl A öl A

-0

61,5

a ai>a ß

ai,s
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vbX,Y b3,s

-m
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-O
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02,5

02,/S

02,5
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02,5

'La-

-©
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vb3,y *2,c

-O

^*l,y *3,5' v*2,y
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02,5
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-fl
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-O

-H

-O

03,,

al,y
—4 H

a3,/ Ö3,a

'1,5 v*l,y *2,5

-O

a\,Y
—4 H

Vb^y 03,5

"O

a\,Y
—4 H

vb2,Y

-O

al,

ai,y
—^—g

aX,f a2,a

b3,a ^b2,ß bx,s

-O

a2,y
—^ m

vb2,Y b2,s

-©

a2,y
—^ a

v*3,y

-O

Ö3J

*3,

a2,y
—^ O

a3,
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—*—S

-o

a3,
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—* 5

A 6l,/S Ô3,ai AÔ2,/S *l,a-

-©

vi

-©

i.y

Ö3./3 a3,a «3,/3

Figure A.2: Complex Xq of Example 2.2, part II
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The amalgam decompositions of To are

r5 *F(v r) ^F(v q) r5 = 1 o = ^5 *F(ht)^F(hw) r5

where

F{5v'r) = (rx,r2, r3, r4, r5) , F^'q) = (qx, q2, q3, q4, qs) .

The inclusion F25'r °->- F5v'r) is defined by

T7(«,r) , -1 -1 -1 -1 -1 -1 -1

^25
= ^2, rs,r3, rir5r3 rx , rir4r3 rx , rxr3rx , rx r5rx, rx r3rx,

rxxr4rx, r~xr2rxX, r~xr~xr4, r~xr5rxr4, r~xr~xr2r4, r4rxr~x,

r4r2r4X, r4r5r~x, r4r~xr4, r4r3r2rx, r4r3r4r~xr4x, r4r3r5r3xr4x,
r4r3rxr~xr~x, r4rxr4, rxr3r\, rxr3r2r~xr4x, r4r3rxr4)

and the other inclusion F25 ^-> F^v'q by

F2iv5'q) = (qx, q5, q4, qiq^q^, <tiqi>q^, qiq^q^1, ^^V2' qilqilqAq2,

q2Xq3Xqsq2, q2XqXq2X, q3~1q5~1q3, q3Xq2Xq3, q3XqXq3,

q3q2qxlq3l, q3qslqx~lq3l, q3qiq3l, q3q4lq3, q3qmqmq2,

q3qmq3q4]qx][q3l, q3qiq4qsq4lqxlq3l, q3qiq4q2q4lqxlq3l,

q3qiq3, q\q3q2, q2qiq4lqxlq3l, q3qiqjq3)

We obtain a finite presentation for the vertical decomposition of To with generators

{rx,r2, r3, r4, r5, qx, q2, q3, q4, qs}

and 25 relations

r2 = qi, r5 = qs, r3 = q4, rxrsr3Xr~x = q2q4q2X, rxr4r~xr~x = q2q3q2X,

rir3rxX = q2q5~1q2~1' rxlr5rl = q^q^qi, rxXr3rx = q2Xq3Xq4q2,
r~Xr4rx = q2Xq3Xqsq2, rxXr2r~X = q~Xqxq~X, r~Xr~Xr4 = q3Xq^q3,

r4Xr5rxr4 = q~xq~xq3, r~xrxxr2r4 = q3~XqXq3, r4rxr~x = q3q2qx~Xq3~X,

r4r2r4X = q3q5~1qx1q31, r4rsr4X = q3qxq3X, r4r~Xr4 = q3q^Xq3,

r4r3r2rx = q3qXq4qXq3q2, r4r3r4r~xr~x = q3qxq4q3q4Xqx~Xq3~X,

r4r3r5r~Xr4X = q3qXq4qsq4lqxlq3~l, r4r3rxr~Xr~X = q3qXq4q2q4lqxlq3~l,

r24rxr4 = q3qxq2, rxr3r\ = q\q3q2, rxr3r2r3Xr~x = q2qiq4lqx~lq3~l,

r4r\rxr4 = q3qxqjq3 .
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Horizontal decompositions of To

The horizontal decomposition of To is given by the generators {wi,... ,ws,h,... ,ts}

and 25 relations

2 2 —1—1 —1 —1
U>]U>5 = ^4, U>]U>4 = Î2t5, W3 = t3, WiW3Wx = ^3^2 ' "M^i = ht2 ,

WlU)2 = t2h, w4 WlW4 = t^ t2ts, w4 w3 W4 = t^ tits, U>7 U)SW4 = t^ t3ts,

U>7 W2 W4 = t^ t4ts, U>]U>7 = t2tx t2tx , U)2WX U)2WX~ = titsht2 ,

WlW2 W4 W2 = t2tx , W2W3U)2WX~ = tlt3tlt2 , U)2WsW2Wx = tlt4tlt2 ,

u)]U)7 w3wj = t2t4 tst4 , wsw4 wswx = t4t2t4t2 , w5wx~ = t4t2 ,

WsU)2WsWx~ = t4tit4t2 , U>]U>7 U)x U>7 = ^4~ t3t4 ,

— 1 —1 —2 —1 —2 —1 —2 —3 2 2

Wx W5 Wx = t2 tlt2 , Wx W2WX = t2 , WXW4WX = t2tst2,

WXW3WX = t2t3t2, Wx = t2t4t2 .

Isomorphisms

Explicit isomorphisms between the two amalgams of To described above, and To as a

subgroup of T are given as follows

,(«)
<—>

F

v

<—>
,(ä)

^2

^3

rs

q\

q4

r4

qs

q2

q3
i

rxr4q3

_

riq2~l
qxXq2Xrxr3r2

q~xr4
q2~lrir3

rxq2xq3x
rxr4q~xq~x

q~xrx
q3Xr4r~x

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

b2bxX
b3bxX
bXb3

bXb2

*?
axa3 b2bx
axa^ by

a2a7

a3ax
a2

axa2

axa3

a3a2b2 o7

a2a7 o7

axa3b3 o7

aja2o7

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

<—>

wxt2

W4t~c

li

Ws

U>2U>4

t3

t5 W4

w2 wxt2

t2 tx U)2W4

WX

w2

w3

w4

Ws

h

t2

t4

ts,



A3 ANEXAMPLE ILLUSTRATTNGPROPOSITION2 4 229

using the notation

-(")
_

T7(V'r)
3 ^25 =^25 3

(v,q) i(h) 7(h,t)
3 ^25 =^25 3

(h,w)

A.3 An example illustrating Proposition 2.4

In the notation of the proof of [17, Proposition 6 1] we have tt = 0, ^X is the

(As, ^ôXcomplex X of Example 2 2 and k = t = 4 Let Ck,i be the (4, 4)-complex

given by

{a4b4a^ o7
, a4b4 a7 05, «40507 o7

, a4bj a7 04}

and C4,4 (a disjoint copy of Ck,i) be given by

{asbsaj o7
, asb^ o7 07, asbqa^ o7

, «6o7 o7 00}.

We choose (°h := ai, ^b := oj, oj := a4, a~2 := «5, oj := 04, o2 := 05, 2Y := «6,

a2 := a-], oj := 06 and o2 := 07 The surgery operations which are described in the

proof of [17, Proposition 6 1] lead to the irreducible 0414, ^4]4)-complex given by the

following set Rj 7 (the relators of the embedded Example 2 2 are underlined)

axbxax bx , axb2ax b3 , axb3a2b2 , axb4a7 b4 , axbsax b5

-U-i
axbsa5 b

a2bxa3 b2

a2b6a2 xb6 x

a3bsa3 o7

a4b3a4 o7

a4bj a7 04

0507^7 o7

asb5a^xbxx

ajbxaj o7

axbqax b7

1 u-l

a2o2a3 o3

a207a2 o7

a3o6a3 xb6x

a4b4a^ o7

a4o7 a7 05

a6oia6 ^5
1

asbsaj bj

«702a7 o2

U-i -U-i
axb6 a5 bs, axb4 a7 b4, axb3 a3 o2

a203a3 O], a204ö2 o4 , a2osa2 o5

02^3" «3^2, «20" ût" o~
, a3b4a3 o7

U-i
a3bqa3 b7 , a4bia4 lb7

«40507 o7

0501^7 o7

asb2a^xb2x

asbjaj o7

ajb3aj o7

U-i

a4o6a4 o6

ö502a5 o2

asb3ar_ lb
6 V

«607 #7 °6

ajbsaj o7

Ö402a7 o7

a4bqa4 o7

0503^7 o7

a6o4a6 1o41

ö606 a7 07
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and local groups determined by

pv(bi) = ph(ai) = (2,3)(l2, 13),

pv(b2) = (1,13, 12, 2, 3),

pv(b3) = (2, 3, 13, 12, 14),

P«(tf4) = Pä(o4) = (1, 7)(4, 5)(8, 14)(10, 11),

pl)(o5) = pÄ(a5) = (4,5)(10, 11),

P«(*6) = Pates) = (1, 5)(6, 7)(8, 9)(10, 14),

Pv (bi) = Ph (ai) = (6, 7) (8, 9),

pÄ(a2) = (1,14,3,2)(12, 13),

Ph(a3) = (1,12, 13,14)(2,3).

A.4 A virtually simple (A^, ^4i4)-group

Example A.26.

R4.j :-

axbxa, o,
, axb2a7 o^ ,

axb3a, bA

ll u4

axbsax o6 , axbsax b2 , axbqa2 o7 ,

axb4ax b5 ,

axb7 a3b7,

axb2 a203, a2bxa2 o7
, a2o2a2o7 , a2b4a2 b4,

a2bsa2 o7
, a2bsa2 bs, a207a7 o7

, a3bxa4b3 ,

a3b2a4bx ,
a3b3a4b2, a3b4a3 bs, a3bsa4b4,

a3b6a3xb^x, a3bjXa4b3, a3bjxa4xb4x, a3b3xa4b7,

a3b2 a4b2 , a3bx a4bx, a4bsa4 o7
, a4bj a4b4

pv(bX) = (3, 5)(4, 6),

pv(b2) = (2, 8, 7)(3,5)(4, 6),

pv(b3) = (l, 2, 7)(3,5)(4, 6),

p„(o4) = (3,4, 5),

p„(o5) = (4,5,6),

P«(oe) = 0,

p„(o7) = (1,2, 4, 6)(3, 8, 7, 5),
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pÄ(«i) = (2,6,5,4,3)(9, 10, 11,12, 13),

ph(a2) = (1, 5)(2, 3)(4, 11)(6, 9)(10, 14)(12, 13),

ph(a3) = (1,2, 13,3)(4, 10)(5, 11)(8, 12),

ph(a4) = (2, 13, 14, 12)(3, 7)(4, 10)(5, 11).

A.5 Supplement to Example 2.58

Let T be the (6, 10)-group defined in Example 2.58. We first give a finite presentation
of the horizontal decomposition To = Fs *f41 Fs in Example 2.58 with generators

{51, 52, 53, 54, 55, Ul,U2, U3, U4, Us}

and 41 relations

57 s3s4 s3 = u4 UlU4U3

57 S2S3 S4SX~ = U3 UiU3UiU3Ui

57 545357 53 = w7 uxu3u4 u3uxu4ux u3 ux u3

53515357 53 = w7 w7 T/2T/7 w7 w7 u3

57 5457 5]53 = w7 uxu3uxu4 w7 W2W3

53525357 53 = w7 w7 w7 w7 w7 w7 u3

57 525^57 53 = T/7 T/7 U2U4U~X~ T/7 T/7 W3

— 1 2—2 —1—1 —1—1—1

53 54525453 54 53 = U3 U5 UXU4UX U3 Ux U3

57 525357 53 = w7 W2W4W3

5457 57 57 57 53 = w7 uxu3uxu4 ux u4 ux u3

57 57 545357 53 = w7 uxu4ux u3 ux u3

57 5453~ 5453" Sx~ = U3 UXU3UXU3U4
—13—2 —1 —1—1—1

54 5354 53 = U5 U3UXU4UX U3 Ux U3

s3 s2s3 s4 s3 = u3 uxu3uxuj U4UXU3

—13—2 —1—1—1

55 5354 53 = U2U3UXU4UX U3 Ux U3

S3 S5 5354~ 53 = U3 Ul U5 U4UX u3 UX u3

57 5457 545357 53 = T/7 U2UXU4U~X~ u3 ux u3

-12—2—1—1—1 —1 —1—2—1—1

5453 54 55 54 53 = U3 UXU3UXU4 Ux U$ Ux U3
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sx xs4 xs3s4 xs3
-12-2-1-1

J3 J4,>3 ^4 ^4

53" S4SXS2

s3 s4 S3S4 s3

—12—1 2—2
53 5453 5]545354 53

53 5453 5j 53

s3s~xs3s~2s3
—12—2

53 5453 5253

-1 2

53 5452

s~x s~x s3s~x S3

,r\^-i ,3,-2,

53 5453 545l5354 53

—12—2—1 —1

5g S4S3 S4 5]54 53

53"1545i5354"153
-1 2 -2

53 5]5354 53

-12-1 2

5g 545g 5253

525|57253
-1 2-1-12

5g 545g 54525 j

53 54 5j
—12—2—1 —1

53 5453 54 5254 53

u3 U4U3

-1 -2 -1

uxu3uxu4 ux u3 u4

T/7 U4UXU3

ux u3 u4ux u3 ux u3

uxu3uxu7 uxu4u7 t/7 t/7 u3

uxu3uxu4 ux u4 u3

T/7 T/7 T/7 T/7 T/7 T/3

uxu3uxu4 T/7 T/7 T/3

T/]T/3T/]T/3T/5

uxu3u7 u4

T/5 T/4T/3

T/7 U4UXU3

2 -1 -1 -1

UXU3UXU3UXU4UX T/3 T/j T/3

-1 -2 -1

UXU3UXU4 T/, T/, T/3

T/1T/3T/4T/3

Ux U4UX T/3 T/j T/3

2

T/]T/3T/]T/4T/iT/3

UXU3UXU4UX T/3 T/j T/3

T/1T/3T/1T/2T/4T/1T/3

T/1T/3T/1T/3T/2

T/1T/3T/2T/4

-1 -2 -1

T/3 UXU3UXU4 Ux U2UX T/3 .

In the following table, we have computed | pv (w) |, if | w \ = 2 and k < 5. Observe

that if b, b e {bx,..., bs}±x, then

\pik)(bb)\ = \pik\bb)\ = \pik\bb)-x\ = \pf\bb)-x\ .

lf\pf)iw)\ Pv
(k+l)

iw)\ for some k and w in the table, then we have printed

bold the number I pv (w) I
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Pv (w) k= 1 2 3 4 5

w = b2 5 5 50 300 1500

bXb2 3 15 75 150 2250

bXb3 5 10 150 900 9000

bXb4 3 15 30 450 4500

0105 5 30 300 900 5400

bxb~[ 5 15 450 4500 4500

oio"1 5 15 150 900 1800

bib3x 5 25 50 500 3000

bib2x 3 9 54 54 1620

b2

u2 5 5 50 300 1500

b2b3 5 25 50 500 3000

b2b4 5 15 150 900 1800

b2b5 5 30 300 900 5400

b2b7x 5 15 450 4500 4500

b2b4[ 3 15 30 450 4500

b2b3~[ 5 10 150 900 9000

b2

u3 1 5 25 50 500

b3b4 2 6 90 180 2700

0305 1 30 30 450 4500

b3b7x 1 30 30 450 4500

b3b4[ 2 20 60 600 1800

b2

°4 2 4 20 100 500

0405 2 10 20 600 6000

b4b7[ 2 10 20 600 6000

H 1 2 10 20 600

Table A.l: Orders of some pv '(w) in Example 2.58

A.6 Some 4-vertex examples

We give now several examples in a certain class of 4-vertex square complexes. In all

examples, the complex will be denoted by 7.

The 1-skeleton of 7 is illustrated in Figure A.3, and a typical geometric square

of 7 is illustrated in Figure A.4, i.e. we always have four vertices a, ß,y,S, horizontal

edges ai, «2, a3 (oriented from a to ß), cj, C2, c3 (oriented from S to y), and vertical

edges bi, ... ,bs (oriented from ß to y), di, ..., ds (oriented from a to 8).
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Figure A.3: The 1-skeleton of 7

a
at

ß

Figure A.4: A typical geometric square of 7

Each of the 18 geometric squares is of the form atbj = dic^ (see Figure A.4), and

the universal covering space 7 is T3 x Ts. By construction of the 1-skeleton and the

geometric squares of 7, we have for each keN:

P^(a) = Ph{k)(8), Ph{k)(ß) = Ph{k)(y), P^(a) = P^(ß), Pik)iy) = P<;k)i8).

Example A.27. ((1, As), reducible)
Let Y be given by its geometric squares

axbx = dxcx, axb2 = d2CX, axb3 = d3cx,

axb4 = d4cx, axbs = dscx, axbs = dscx,

a2bi =dic2, a2b2 = d2c2, a2b3 = d3c2,

a2b4 = d5c2, a2b5 = d6c2, a2b6 = d4c2,

a3bi = d2c3, a3b2 = d3c3, a3b3 = d4c3,

a3b4 = dic3, a3b5 = d6c3, a3b6 = d5c3.

Then

Ph(a) = 1, Phiß) = 1, Pvia) = As, Pv(y) = As,

Ph(2\a) = 1, Ph(2\ß) = 1, Pi2)(a) = As, Pi2)(y) = A6.
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Example A.28. ((Z2, As), irreducible)
Let Y be given by its geometric squares

axbx = dxcx, axb2 = d2CX, axb3 = d3cx,

axb4 = d4cx, axbs = dscx, axbs = dscx,

a2bx =dxc2, a2b2 = d2c2, a2b3 = d3c2,

a2b4 = d5c2, a2b5 = d6c2, a2b6 = d4c3,

a3bx = d2c3, a3b2 = d3c3, a3b3 = d5c3,

a3b4 = d6c3, a3b5 = dxc3, a3b6 = d4c2.

Then

Ph(a) = Z2, Phiß) = la, Pv(a) = A6, Pv(y) = A6,

\Phi2)(a)\ = 4, \P{2)(ß)\ = 4, \P^2)(a)\ = 360 • 606, \P^(y)\ = 360

Example A.29. (PÄ(a) ^ Phiß), \Ph{2)ioi)\ = \Phi<x)\, irreducible)
Let Y be given by its geometric squares

axbx = dxcx, axb2 = d2CX, axb3 = d3cx,

axb4 = d4cx, axbs = dsC2, axbs = dsc3,

a2bx =dxc2, a2b2 = d3c2, a2b3 = d4c2,

a2b4 = d6c2, a2b5 = d2c3, a2b6 = d5cx,

a3bx = d3c3, a3b2 = dxc3, a3b3 = d5c3,

a3b4 = d4c3, a3b5 = d6cx, a3b6 = d2c2.

Then

\Phia)\ = 6, \Phiß)\ = 3, Pv(a) = A6, Pv(y) = A6,

\Phi2)(a)\ = 6, \P{2)(ß)\ = 24, |Pu(2)(a)| = 360 • 606, \P^(y)\ = 360

Example A.30. (Ph(a) ± Ph(ß), Pv(ot) 7= Pviy))
Let Y be given by its geometric squares

axbx = dxcx, axb2 = d2CX, axb3 = d3cx,

axb4 = d4C2, axbs = dsC2, axbs = dsc3,

a2bx =dxc2, a2b2 = d3c2, a2b3 = d4c3,

a2b4 = d5c3, a2b5 = d6cx, a2b6 = d2c2,

a3bx = d2c3, a3b2 = d3c3, a3b3 = d6c2,

a3b4 = d4cx, a3bs = dxc3, a3bs = dscx.

Then \Ph(a)\ = 3, \Phiß)\ = 6, |Pu(a)| = 360, \Pviy)\ = 120.
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A.7 Example T7 23

Example A.31.

axbxa3 o7
, axb2a4 xb5, axb3a2b%, axb4a2b7,

axbsa3 b7
, axbsa2xb7x, axbna~xb\l, axb^a~xbX2,

axbga4xb4, axbXQa3 bg , axbxxa3b2, axbX2a3b3,

axbX2xa~xb2x, axbxxxa2xbg, axbXQ a4bxx , axbg a3 bXQ,

axb7 a4b~7 ,
axb7xa~xbxx, axb7xa2xbs, axb~xa4xb~x,

axb3 a4bx , axb2 a2 oi, axb7 a4b3 ,
a2bxa4bg,

a2b3a3xbxx, a20404010, a2bsa3xbx, a209«7 o7
,

a2bXQa2xb1, a2bi2a4xbxxx, a2b7xa3xb8, a2bxxxa4xbX2,

a2b~xa3bX2, a2b~xa4xb6, a2o7 a3 o7
,

a2b7xa3b~x,

a2b~xa3b~x
, a2b3xa7xb2, a2b2xa3b4x, a2b7xa3xbxx,

a3b4a~xb~x, a3b5a4bi, a3b6a4b2, a3b%a~xb~x,

a3bXQa4 bX2 , a3bna3xb6, a3b7xa4xb%, «40507 09
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Generators of F-j^ '

ax = f(l +2t +j+k),

a2 = f (I +2t + j -k),

a3 = fil +2t -j+k),

a4 = fil + 2t — j — k),

bx = f(l+2i+3j + 3k),

b2 = f(l+2i+3j -3k),

b3 = f(l +2i -3j -3k),

b4 = f(l +2i -3j + 3k),

b5 = f(3+2i+j + 3k),

b6 = f(3+2i+j -3k),

b7 = f(3+2i -j + 3k),

b% = f(3+2i-j-3k),

bg = f(3+2i +3j +k),

bXQ = f(3+2i -3j +k),

bxx =f(3+2i+3j-k),

bX2 = f(3+2i-3j-k),

ax = f(l — 2t — j — k),

a2 = f(l — 2t — j + k),

a3 = f(l — 2t + j — k),

a~x =f(l -2i + j +k),

K = f(l~-2t -3j -3k),

b2
{
=f(l--Ii -3j +3k),

K [=f(l--2i +3j +3k),

K
{
=f(l--Ii +3j -3k),

K [=f(3--Ii - j -3k),

K [=f(3--2t - j + 3k),

K [=f(3--2i+j -3k),

K [=f(3--2i+j + 3k),

bg [=f(3--Ii -3j -k),

Ko[=f(3--2i +3j -k),

Ki[=f(3--2t -3j +k),

bÏ2[=f(3--2i +3j +k).
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A.8 Example r7>31

Example A.32.

axbxa~xb~x, axb2a3xbxx, axb3axbX4, axb4a4bx,

axb5a4bs, axb6axb~x, axb7a4xb~x, axb%a~xb7x,

axbgaxxbgX, axbX0a4xb3x, axbxxa4bX4, axbX2a2xbxx,

axbX3axbxx, axbX4a~xb~x, axbXsa4bXQ, ciibisa4 bX3 ,

axbxxa2xb7, axbX3a4 o]6, axbxxa4xb2, axbXQa3 bX2,

axb~xa~xbXs, axbjXa3b7x, axb7xa~xbxx, axb7xa3bjX,

axb~xa~xbs, axb3 a2 b4, axb2xa2bxx, axbxxa2b2x,

a2bxa3xbX2, a2b2a3b3, a2b4a2bX3, a2b5a2b7x,

a2bsa~xb3x, a2b1a3bs, a2b9a3bX6, a2oioa2 o10 ,

a2bxxa4xbgX, a2bX2a3xb7x, a2bX3a3bX2, a2bX4a2bxxx,

a2oi5a3 o14 , a2b~xa4xbx, a2o14a3 ois, a2bgXa3xb8,

a2b~xa4b~x, a2bjXa3xb2, a2b~xa4b~x, a2b7xa4xb1,

a2b4xa3xbg, a2b~xa4xbX3, a3bxa3b~x, a3b2a4xb~x,

a3b5a4xbX4, a3b%a3bX3, a3bxxa3xbxx, a3bX3a~xb~x,

a3bX5a3b~x, a3b~xa4xbXQ, a3b~xa4b~x, a3b~xa4b~x,

a4b2a4b~x, a4b7a4bX4, a4bX2a4 bX2 , a4bXsa4bg
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Generators of T73]:

ai = f(l +2i +j+k),

a2 = f(l +2i + j -k),

a3 = fil +2i -j+k),

a4 = fil + 2t — j — k),

bi = fil+2i+j + 5k),

b2 = f(l+2i+j-5k),

b3 = f(l +2i - j + 5k),

b4 = f(l +2i - j - 5k),

bs = f(l+2i + 5j+k),

b6 = f(l+2i + 5j-k),

b7 = f(l +2i -5j +k),

H = f(l+2i-5j-k),

bg = f(5 + 2i +j+k),

biQ = f(5 + 2i+j-k),

bn = f(5 + 2i -j+k),

bi2 = f(5 + 2i- j -k),

bX3 = f(3+2i +3j + 3k),

bX4 = f(3 +2i +3j -3k),

bX5 = f(3+2i -3j + 3k),

bX6 = f(3+2i-3j-3k),

a~ =f(l -Ii - j -k),

a2x = f(l -2i - j + k),

a~x =f(l-2i+j- k),

a4l =ti^-2i+j+ k),

K = f(l--2/ - j -5k),

b2 = f(l--Ii - j + 5k),

K = f(l--Ii + j -5k),

K = f(l--Ii + j + 5k),

K = f(l--Ii -5j -k),

K = f(l--Ii -5j +k),

b7 = f(l--Ii + 5j -k),

b% = f(l--Ii + 5j +k),

bg [=f(5--2i -j -k),

b~o[=f(5--Ii -j+k),

bXX[=f(5--Ii + j -k),

h~2[=f(5--Ii +j+k),

h~3[=f(3--Ii -3j -3k),

bX4[=f(3--Ii -3j +3k),

bX5[=f(3--Ii +3j -3k),

bXs[=f(3--Ii +3j +3k).
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A.9 Example r7>23,eo

Example A.33.

axbxa3bg, axb2axxb72, axb3a3 b2 ,
axb4a3bXQ,

axb5a2bx, axbsa2b2, axbja2xb7x, axb^a~xb~x,

axbga4bs, axbxoaxxb7x, axbxxa4 o10 , axbX2a4b%,

axbX2 a3 on, axbxxa2xbgX, axbgXa~xbxxx, axb7 a3 o7
,

axb7xa~xbn, axb7 a3 o7
,

axb~xa~xb3, axb~xa4xbxx,

axb7 a4 o7
, a2b3a2 o7

, a2bsa2xbX2, a2bsa3xbxxx,

a2b1a3xbxx, a2b%a3b7x, a2bX0a2xbx, a2bX2a3bgX,

a2bX2a4xb3, a2bxxa4xb2, a2o9 a4bXQ, a2b~xa4b~x,

a2b7xa4b~x, a2b~xa3b~x, a2b~xa3b~x, a2o7 a4b4,

a3bxa~xb6, a3b2a4b~x, a3b3a~xb~x, a3b4a~xb~x,

a3b6a4b7x, a3b%a~xbg, a3bxxa~xb~x, a3bX2 a4bXQ ,

a3bX0 a4bX2 , a4b2a4xb5, a4bna7xb7l, a4bga4 b4



A.9. EXAMPLE F7,23,e0

Generators of Fjt23, e0-

ax -
= f(2 + i +j+k), ax = f(2-i- j -k),

a2 --= f(2 + i + j -k), a~ = f(2-i- j+k),

a3 --= f(2 + i -j+k), a~ = f(2-i+j-k),

a4 -
= f(2-i +j+k), a~ = f(2 + i- j-k),

bi--= fi2 + i+3j + 3k), bX = f(2-i -3j -3k),

b2~-= f(2 + i+3j-3k), b~ = f(2-i -3j + 3k),

b3~-= f(2 + i-3j-3k), b3~ = f(2-i+3j + 3k),

b4~-= f(2 + i -3j + 3k), b4 = f(2-i +3j -3k),

bs~-= f(2 + 3i+j + 3k), b~s = f(2-3i - j -3k),

bs~-= f(2 + 3i+j-3k), b~s = f(2-3i - j + 3k),

bi~-= f(2-3i+j -3k), bï
1
=^(2 + 3t-7+3tc),

b%~-= f(2-3i+j + 3k), b~,
1
= ^(2 + 3/ - j -3k),

bg~-= f(2 + 3i+3j+k), bg
1
= f(2-3i -3j -k),

bXQ --= f(2 + 3i -3j +k), b~o
1
= f(2-3i +3j -k),

bXX~-= f(2-3i-3j+k), bXX
1
=f(2 + 3i+3j-k),

bX2 -= f(2-3i+3j+k), b~2
1
= f(2 + 3i -3j -k).
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A.IO Example Ti3 n

axbxa3b3, axb2a2bx, axb3a4b2,

aib4a6h, axbsaqbxx, axbsasb4,

axb7a~xb~x, axb%a7bs, axbga$b2 ,

axbg a3 o7
,

axb7 a2 bg, axb7 asb3 ,

axb~xa~xb~x, axb7xa~xb4x, axb4 a3 05,

axb3xasbgX, axb2xa7b7x, axb~xa6b7,

a2b2a3xb3x, a2b3a6b7x, a2b4a5b7,

a2b5a4b4x, a2b6asb7x, a207«7 bg,

a2b9a6b4, a2bgXa4b~x, a2b~xa5b3,

a2b~xa3b7x, a2o7 a7 o7
, a2b4xa3b~x,

a2b3xa4xbx, a2b2xash, a2bxxajXb5,

a3bxa4xb2x, a3b2a5b~x, a3b5a5b6,

a3b6a7bgX, a3b7a7xb~x, a3bsa5b~x,

a3bgXa~xbs, a3b7xa4bg, a3b~xa4b7,

a3b~xa7b2, a3b~xa7xb~x, a3b~xa7b4,

a4bxa7b4 , a4b4a7b2 ,
a4b%asb7x,

a4bg a7 o7
, a4bj a7b%, a4b7xa6bx,

a4b7 a7 bj , a4b3 asbs, a4b2 a7 bg,

asbxa7xbxx, a5b~xa5b7x, a5b7xa5b4x,

a6b2a7xb2x, a6b5a6b4x, asbg asb% ,

a7b3a7 o7
,

a7b7a7b~x, a7bga7b7
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A.ll Amalgam decompositions of Example 3.42

We first give the vertical decomposition of the group F of Example 3.42:

where

F=F3(b)*F^F(s}(Zf2*F3(s)),

F3ib) = (oi,o2,o3),

Z2 * F3yj = (sx, ..., sX2, sX3, sX4, sX5 I sx = ...
= sX2 = 1}.

The subgroup FX1' < F3 of index 8 is given by

F$> = (b~xb2, b~xb3, b2bxb3x, b2b2bx, bxb\bx, bxb3xb2bx,

bxxb2xbxb2b2x, bxxb2xb3xb2, b3b\, b2b2, b3b2xb\,

b3bxxb2b2, b3bxxb3b2b2, b3bx2b2b2, bxxb3xb2b2x,
bxb~xb3x, 01030103-1},

the index 2 subgroup FX7' < Z212 * F3 by

F$ = (sxs2, sxs3, sX3, s4sx, s5sx, s6sx, SXSX4SX,

SXSX5SX, S7SX, S%SX, SgSX, SX0SX, SXXSX,

Sl2Sl, SlSl3Sl, Sl5, Su) .

The identification in F is

FW +^ Fis)
rxl * r rxl

b~xb2 <—> sxs2

b~xb3 <—> sxs3

b2bxb3x <—> sX3

0]020] <—> S4SX

bxb2bx <—> sssx

bxb3xb2bx <—> s6sx

bx b2 bxb2b\ <—> S1S14S1

bx b2 O3 O] < > 5151551

b3b\ <—> s7sx

b\b\ <—> s$si
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b3b2 bx <—> sgsi

b3b\xb22b\ <—> 5io5i

b3b~xb3b2b2 <—> 5]i5]

03072020] < > 51251

o7 o7 020] < > 5l5l35l

0]o7 o7 <—> 5i5

bxb3bxb3 <—> sX4 .

Recall the presentation of F given in Section 3.4:

T = (ax,a2,a3,a4,bx,b2,b3 \ R),

where

aibiaibi, aib2aib2, aib3aib3,

1 1

axb3 a4b2 , axb2xa2b~x, aio"1^"1,

a2bia2bi, a2b2a2b2, a2b3a7xbxx,

aib^^ib^1, a202~ a3 b3, a3bia3bi,

a3b3a3b3, a3b7 a3b7 , a3b~xa4xb2,

a4b2a4b2, a4b3a4b3, a4b7 a4b7

The isomorphism to the amalgam described above is

F3(b) *F(b)^F(s) (Z212 * F3(s)) *^+ F = (ax,a2, a3, a4, bx, b2, b3 \ R)

51 <—> axbx

52 <—> axb2

53 <—> axb3

s4 <—> axb2 o7

55 <—> axb2 o7

56 <—> axb2 b3bx

57 <—> axbx o7

5g <—> axbx o7
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sg <—> axbx è2è3

5io <—> axbx b2 bxb3

sxx <—> axb7 o7 o7 bxb3

512 <—> axbx b2 bxb3

513 <—> b2bxb~x

514 <—> bxb3bxb3

515 <—> 0]o7 o7

sxbx <—> ax

o7 s4bx <—> «2

o725go3 <—> a3

o7 0]o7 5]0O3o7 <—> a4

bx <—> oj

b2 <—> b2

b3 <—> b3 .

We describe now the (vertical) amalgam decomposition of the subgroup F

To = /f} *F(r)^F(q) F{5q)
,3 ^33 =^33 3

where

F{p = (rx,r2,r3,r4,r5),

Flq) = (qi,q2,q3,q4,qs),

F3a = ^3~lr5, r~xr5, r5rxr5, r4rxr5, r~xrxr5, rxr4r2r5, rxr3r2r5,

rir2r5, r2r2, r2r3r5, r2rx~xr5, r7xr~2r~x, r7xr~xr2xr3x,

r7xrxxr5r3x, r~xr3rxr5, r~xr2r3rxr5, r~xr7xr3rxr5,

r2r4r5r2r5, r2r4rxr5r2r5, r2r4r3xr5r2r5, rx~xr3~2rxr5,

rx~Xr3xr~xr3xrxr5, r7xr3xr7xr3xrxr5, r2r4r2rxx,

rxxr3xr5r4xr2x, r7xrxxr3r~xr3rxr5, r~xr~xr4r~x,

rrlr5~lri_1' r7xr~xrxr3rxr5, r7xr~xr4r5, r5_1r2r5r2r5,

r3^2_1' r5lrxlr3r7xr5r2r5),
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F-33}
= (q2, q\, q4lq$l, q4lqxlqïl, q4lq3q$l, q3xqxxq4x,

q3lq2lq4l, q3xqsq4x, qïlq31^ qïlq2lq3l, qïlq4q3l,

qsq2q4q^lq4, qsq2q3q^xq4, qsq2q^xq4, q~^x q^x q~sX qw~sX

q4xq2~xq3xq4q$x, q4xq^xqiq4q7,x, q7,xq3q7,xq3q4x,

q$xq3q4xq3q4x, qïxq3q2q3q4x, q^q^qsqiq^vT1*

q4xq2~xq3qiq2~xq$x, q4xq^xqwiq^Qï1 ^ <hx<à^

q4xq2Xq~xq3~xq5> qsqiqï'W^s"1, q^q^q^q^

q4xq2~xq4xq3, q24q^x, qsq2qsq3x, q3qiq3q4x,

q4xqsqiqs, qsq2qxxq3q4x),

F{r) +^ F(q)
^33 ^ ^ ^33

r3xr5

r4Xr5

r5rxr5

r4rir5

r~xrxr5

rxr4r2r5

rxr3r2r5

rxr2r5

r2rj

r2r3r5

r2rxxr5

r5lrï2r3~l

r7xrxxr2xr3x

<—> q2

<—> qx

^^ q4

^^ q4

^^ q4

^^q3

^q3

^^q3

^^ qï

^^ qï

^^ qï

?5

qxxqïx

q3qïx

qxxq4x

^2"V4"1

qsq4
x

q~X

q2Xq3X

q4q3

<—> qmq4qs </4

-i

t% r
i,.-i

r5r3

r~ r3rxr5

r~xr2r3rxr5

rx~Xr4xr3rxr5

r2r4r5r2r5

r2r4rxr5r2r5

<—> qsq2q3q5 q4

<—> qmq^xq4
^^ q~4

^^ q4

^^ q4

^^ qs

^^ qs

q2XqsXq4qs

q2Xq3Xq4qs

q2Xqxq4qsX

q3qsXq3q4x

q3q4xq3q4x



A.ll. AMALGAMDECOMPOSITIONS OF EXAMPLE 3.42

r2r4r3xr5r2r5 <—> q7,X q3q2q3q4X

r~Xr32rxr5 <—> q4Xq2Xq5qXq2Xq^X

rxxr3xr2xr3xrxr5 <—> ^"V^^i^Vs"1

rxXr3Xr~Xr3Xrxr5 <—> q4Xq~Xq4qxq2Xq7x

r2r4r2rxX <—> q^Xq3

rxXr3Xr5r4xr2X <—> q~xq~xq~][q~xq5

r^Xr~xr3r7xr3rxr5 <—> qsq2qxX q2q4q^X

rxXr3xr4r~x <—> ^"V^s'V

/T1/"5~1/T1 ^^q4lq2l(i4l(te

r^Xr2Xrxr3rxrs <—> qjq7x

r7xr~xr4r5 <—> q5q2qsq3~X
r7xr2rsr2rs <—> q3qXq3q4X

r3r~X <—> q4xq5qiq5

r^Xrxxr3r~xrsr2rs <—> qsq2qx~Xq3q4X

The isomorphism is

F5r) v>~f<*> F5q) ^ r0 < r
3 ^33 =^33 3

rx <—>
b2b, x

'i

r2 <—> b3b~x

r3 <—> bxb3

r4 <—> bxb2

r5 ^^ b\

qx <—> o7 bx

q2 <—> b~xbx

q3 <—> axa2b3b2

q4 <—> axa2 o7

qs <—> axa3 o7 o7
.
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A.12 Amalgam decompositions of Example 3.46

We describe the amalgam decompositions of the group Ts^

ro» Ä (ax,...,b3\R23) <=+ r<Ä>

5403 <—> ax <—> ax

0]5207 < > «2 < > «2

oj <—> bx <—> t/7 «2«]

02 < > 02 < > a\u2 a2

03 < > 03 < > «2T/7 «2

5i <—> bxb2

s2 <—> axb3b2

axb7xb2

where

53 <—>

54 <—> axb3
55 <—> axbxb2

2

axa2 o7 <—> ux

a2axbx <—> T/2

ax «2 <—> u3

ax a2 axbx <—> u4 ,

p(u) _ F(v,b) F(v,s)
—

3 *p(vb)^F(vs) r^ ,

1 — r2 *F(ha)^F(hu) r4

F3(v'b) = (oi,o2,o3),

F^v's) = (51,52,53,54,55},

F9(v'b) = (b~Xbx, b2b\, b3b\, bxb2, b~Xb3bx, bxXb2, b~2b3b2, bx3b2, bx2b2bx),
T7(v,s) 1 -I -I -I -I -I 2 -l\
Fg

=

(S3S2 , S4S2 , S4 S2 ,5], 5552 , 5255, S2, 5253, 525]52 } ,

F2'a) = (ai,a2),

F\ = (ui,u2,u3,u4),

-^(h,a) ; 2 -1 -1 -2 -1 -2 -2 2 -1 \

7
= (axa2 , ax a2 , a2axa2ax , ax a2, aia2 ai, aia2, aia2 axa2)

r(h,u) , —1 —1 —1 2 \

Pj
= (UiU3U2 , U4U2 , T/2T/1 , T/3, T/], T/1T/4, T/]T/2) ,
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F(v>V ^% FM

o7 bx <—> s3s2

02»l < > S4S2

b3b\ <—> s4xs2x
bxb2 <—> 5]

o7 b3bx <—> 5557

bx b2 < > 5255

O] 0302 <—> s2

b~3b2 <—> s2s3

bx2b2bX < > 5251571
,

p(h,a) <

-

^ p(h,u)

a\a2 <—> uxu3u2

a7 a2 <—> u4u2

a2aja2a7 <—> t/2t/7

ax a2 <—> T/3

axa2 ax <—> u\
2

axa2 <—> uxu4

axa2 axa2 <—> uxU2

and

R2.3 •--

axbxa2b2, axb2a2bxx,

axb3a2 bx, axb3 axb2 ,

axbx a2 03, a203a2o2
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Appendix B

GAP-programs

In this appendix, we present and describe the GAP-programs ([29]), which led to the

construction of most groups in this work.

B.l Theory and ideas

Our strategy to generate and analyze (2ttt, 2Tî)-groups F with GAP ([29]) can be

resumed as follows:

Step 1: Describe a (2ttt, 2Tî)-complex X in a way which is manageable for a

computer. We write X as a pair of integer valued (2ttt x 2Tî)-matrices (lists of lists) A

and B.

Step 2: Given "small" ttt, tt, generate all pairs of matrices (A, B) corresponding
to a (2ttt, 2Tî)-complex. Given "large" ttt, tt, generate randomly many pairs (A, B)

corresponding to a (2ttt, 2Tî)-complex.

Step 3: Starting from a constructed pair (A, B) describing X, provide additional

programs which compute the local groups Ph ,
Py (for keN small) and a finite

presentation of F = nx (X). Then apply the powerful GAP-tools for finite permutation

groups to look for examples with interesting local groups and/or use GAP-commands

like

Abelianlnvariants() ;

and

LowIndexSubgroupsFpGroup();

to get some information on the (normal) subgroup structure of the infinite group F.

Following these three steps, we have for instance immediately found an irreducible

(As, ^6)-group T with [r, F] = To and To perfect (see Example 2.2).

We explain now each of the three steps in detail:

251
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Step 1

We want to define for given ttt, tt e N an injective map

(pm,n : 0C2m,2n -> Mat(2TTT, 2tt, {1, ..., 2ttt}) X Mat(2TTT, 2tt, {1, ..., 2tt})

X»<pmi„iX) = iA,B)

where X2m,2n denotes the set of (2ttt, 2Tî)-complexes and X e X2m,2n is given as

usual by its ttttt geometric squares, and where Mat(2Trr, 2tt, {1, ..., 2ttt}) denotes the

set of (2ttt x 2Tî)-matrices with entries in {1,..., 2ttt}. Recall that each geometric

square [aba'b'] ofX can be represented by four squares of the form

aba'b', a'b'ab, a~xb'~xa'~xb~x, a'~xb~xa~xb'~x.

To define the map (pm,n, note that at least one of these four expressions has one of the

five types (I)-(V) illustrated in Figure B. 1, for suitable

i, k e {1,..., ttt} and j, I e {1,..., tt} .

It is easy to check that each geometric square has a unique type.

(I) (II) (III) (IV)

ajbjakb^ a1bJakxbi a1bJakxblx a^^akb^

Figure B. 1 : Possible types of a geometric square

We now define the map (pm,„ for each possible type of geometric squares, using
the following notation for the "inverses":

1 := 2m + 1 - t, k := 2m + 1 - k, j := 2n + 1 - j, I := 2n + I - I.

Type (I) (alb]akbi)

Am :--

An --

k B, I

: i Bm := j

k

- i

ü = J

il =
l
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Type (II) (a, bJakbl )

lkl

%' -

k Bv :=/

i Bkl = j

k Bj, = j

i Bi: :=/

Type (III) (a^ja, bi)

lkj

lil •-

lkl

k B,

i Bt

k B-u

ï B

v

kj
-Z

kl

J

j

Type (IV) (aibja7xb7x)

lkj -

lkl

k B,

i Bt

k B

1 B

u

kj
-

il

kl •-

J

j

Type(y)(a1b-Xakb7x)
'j

lkl

hi •-

%

k B

1 Bt

k B-u

i B

'j

ki •-

h

-l

j

j

= /.

Thus, each geometric square of X defines exactly four entries in A and in B which

describe the corresponding four geometric edges in the link Lk(X). In case of type (I)
and (V), two choices are possible, since we have the equalities for geometric squares

[atbjafrbi] = [a^bia^j] and [alb~xaiib7x] = {a^bj1 atb~x\ respectively, but the given
definition of(pm,„ is independent of this choice. This proves that (pm,„ is well-defined.

We illustrate this definition in Table B.l in the case of Example 2.2 given by its

nine relators

R3-3 :--

axbxax~ o7
, axb2ax~ o7

, axb3a2b2 ,

axb3 a3 02, a2bxa3 o7
, «202^7 o7

,

a2b3a3 oi, «2o7 a3b2, a2b7 a3 o7
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geometric square representative type ^-entries B-entries

[axbxax~ o7 ] aioia7 o7 (IV) AXX = 1,^16 = 1 511 = 1,516=6

A6X = 6, Ass = 6 Bsi = 1, Bss = 6

[axb2axxb3x] Ö102Ö] o3 (IV) ^12 = 1,^15 = 1 B12 = 3, Bis = 4

A63 = 6, A64 = 6 Bs3 = 2, Bs4 = 5

[axb3a2b2 ] axb3a2b2 (II) ^13 = 5, A25 = 6 B13 = 2, B25 = 4

A62 = 2, A54 = 1 Bs2 = 3, B54 = 5

[axb7 a7 b{\ a3b3ax xb? x
(IV) ^33 = 1, AX4 = 3 B33 = 2, Bi4 = 5

A42 = 6, A65 = 4 B42 = 3, Bss = 4

[a2bxa3 o7 ] a2oia3 o2 (IV) ^21 = 3, A36 = 2 £21 = 2, B36 = 5

A52 = 4, A45 = 5 B52 = 1, /?45 = 6

[a2b2a3xb3x] a2b2a3 xb3
x

(IV) A22 = 3, A35 = 2 /?22 = ^' ^35 = 4

A53 = 4, ^44 = 5 ^53 = 2, .644 = 5

[a2b3a3xbx] a2b3a3 oj (HI) ^23 = 3, ^34 = 2 /?23 = 6' ^34 = 1

A56 = 4, A4X = 5 B56 = 3, B4i = 4

[a2b3xa3b2] a3b2a2b3
x

(II) A32 = 5, A24 = 4 £32 = 3, B24 = 5

^43 = 2, ^55 = 3 B43 = 2, B55 = 4

\a2b\~ a3 b~7 ] a3bxa2 oj (HI) A3X = 2, A26 = 3 £31 = 6, B2s = 1

A46 = 5, A5X = 4 B46 = 1, B5i = 6

Table B. 1 : Definition of A and B in Example 2.2

1 \

3

2

5

4

6/

6\

1

5

1

3

6/

Hence, we get

and

B

( 1 1 5 3 1

3 3 3 4 6

2 5 1 2 2

5 6 2 5 5

4 4 4 1 3

U 2 6 6 4

/ 1 3 2 5 4

2 3 6 5 4

6 3 2 1 4

4 3 2 5 6

6 1 2 5 4

I 1 3 2 5 4
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See Table B.2 for a more compact notation.

<P3,3iX) 1 fa oj 2«é2 3 ^ 03 4 fa b~x 5 fa b~x 6 fa b~x

1 fa ax

2^a2

3^a3

1/1 1/3 5/2

3/2 3/3 3/6

2/6 5/3 1/2

3/5 1/4 1/6

4/5 6/4 3/1

2/1 2/4 2/5

4 fa a3x
5 fa a2x
6 fa ax

x

5/4 6/3 2/2

4/6 4/1 4/2

6/1 2/3 6/2

5/5 5/6 5/1

1/5 3/4 4/3

6/5 4/4 6/6

Table B.2: Compact notation of A and B in Example 2.2

Note that given (A, B) e im(^m>M), we can uniquely and easily reconstruct the

(2ttt, 2Tî)-complex X = (p~xn((A, B)) (this reflects the injectivity of cpm,„).

Remark. By construction of(pm,n, there are bijections between the following sets:

{(Alj,Blj)}l =h,^2m,j=l,...,2n = {1, ...,2m} X {1, ..., 2tt} ,

{1, ...,2m} = {AlJ}l=i,...,2m for any j e{l,...,2n},

{1, ...,2n} = {BlJ}j=i^„an for any i e {1, ...,2m},

in particular each column of A is a permutation of {1, ...,2m}, and each row of B is

a permutation of {1, ..., 2tt}.

Step 2

The idea of Step 2 for small ttt, tt (for example "small" could mean ttttt < 10) is to start

with (2ttt x 2Tî)-matrices A and B consisting of 0-entries and "fill" them recursively
with one geometric square (four non-zero entries in A and B) in each recursion step.

This is done systematically, i.e. going through all potential geometric squares S. Of

course, S has to satisfy several conditions, e.g. we want all potential new positions
in A (and B) coming from S to be free (i.e. zeroes), and all potential new pairs of

entries (Aaß, Baß) coming from S are required to be new. If the candidate S does

not satisfy these conditions, we try the next one. The conditions guarantee that at

the end a "full" (i.e. without zero entries) pair of matrices (A, B) indeed describes a

(2ttt, 2Tî)-complex X, in particular having a complete bipartite link Lk(X) as required
in the link condition.
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B.2 The main program

Our main GAP-program ([29]) looks as follows: (comments in GAP start with the

character #)

all := function(xl, x2, yl, y2)

# generates the list

# [[xl,yl] , . . ., [xl,y2] , . . ., [x2,yl] , . . ., [x2,y2]]

local w, k, i, j;

W : = [ ] ;

k := 1;

for i in [xl..x2] do

for j in [yl..y2] do

w[k] := [i, j] ;

k := k+1;

Od;

Od;

return w;

end;

test := function(M, N, q, r, s, t, cM, cN)

# checks candidate aqbra~xb7
if (s = cM+l-q and t = cN+l-r) or

M[s] [cN+l-r] <> 0 or

M[cM-q+l] [t] <> 0 or

M[cM+l-s] [cN+l-t] <> 0 or

# M[q][r] <> 0 is tested in test2

ForAny(all(1,cM,1,cN),

v -> ( [M[v[l]] [v[2]] ,N[v[l]] [v[2]]] in

[[s,t], [q,cN+l-t], [cM+l-s,r], [cM+l-q,cN+l-r]]))

then

return false;

else

return true;

fi;

end;

part := function(x, y, z)

# we assume y <= z

# generates [[1,1],..., [1,7.] , ... , [x-1,1] , . . . , [x-1, z] ,

# [x,l] , . . ., [x,y-l] ]

local w, k, il, i2, j;
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W : = [ ] ;

k := 1;

for il in [1..X-1] do

for i2 in [1. . z] do

w[k] := [il,i2];

k := k+1;

Od;

Od;

for j in [l..y-l] do

w[k] := [x, j] ;

k := k+1;

Od;

return w;

end;

test2 := function(A, x, y, z)

# returns true if (x,y) is

# the first "free" position in A

if A[x] [y] = 0 and

ForAll (part (x,y, z) ,
v -> A[v[l]] [v[2]] <> 0)

then

return true;

else

return false;

fi;

end;

full := function(A)

# returns true if matrix A contains no 0

if ForAny(A, x -> 0 in x) then

return false;

else

return true;

fi;

end;

main := function(A, B)

# main program

local CA, CB, i, j, k, 1, AA, BB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A)[2]; # = DimensionsMat(B)[2]
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for i in [1..CA/2] do

for j in [1..cB] do

if test2(A,i,j,cB) then

# (i,j) is first free position in A

for k in [1..CA] do

for 1 in [1..cB] do

if test(A,B,i,j,k,1,cA,cB) then

# tests if ajbja^bf1 is ok

AA := StructuralCopy(A);

BB := StructuralCopy(B);

AA[i] [j] := k;

BB[i] [j] := 1;

AA[k] [cB-j+1] := i;

BB [k] [CB-j+1] := CB+I-I;

AA[cA+l-i][1] := cA+l-k;

BB[cA+l-i][1] := j;

AA[cA+l-k] [CB+I-I] := CA+l-i;

BB[CA+l-k] [CB+I-I] := cB+l-j;
if full(AA) then

# (AA,BB) now describes a (cA,cB)-complex

# now we can check for conditions on AA, BB,

# e.g. if conditions(AA,BB) then

# Print(AA, " ", BB, "\n"); fi;

else

main(AA, BB); # recursive step

fi;

fi;

Od;

Od;

fi;

Od;

Od;

end;

# can be applied as follows:

# for example main(NullMat(4, 6), NullMat(4, 6));

# generates now all (4,6)-complexes,

# or use main(C,D); for an embedding, where C, D describe

# any partial complex, i.e. some given geometric squares

This procedure can a priori also be applied for large integers ttt, tt (for example if

TTTTT > 10), but the time required to finish (that is to generate all (2m, 2Tî)-complexes)
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grows very rapidly with increasing ttt and tt. One reason for this is that the filling

process needs ttttt recursion steps for each (2ttt, 2Tî)-complex but another reason is

that the number of different (2ttt, 2Tî)-complexes becomes very large soon. This is

illustrated in Table B.3. Observe that the number of non-isomorphic corresponding
fundamental groups is much smaller, but unknown in general, even for (4, 4)-groups.

Kimberley ([40]) has counted the number of "BM relations" for

(ttt, tt) e {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 2), (2, 3)}.

They coincide with those in Table B.3. The number 541 for (4, 4)-complexes also

appears in [41, Section 7].

TTT TT TTTTT #X

1 1 3

2 2 15

3 3 105

4 4 945

5 5 10395

6 6 135135

7 7 2027025

8 8 34459425

2 2 4 541

2 3 6 35235

2 4 8 3690009

2 5 10 570847095

3 3 9 27712191

Table B.3: Number of (2ttt, 2Tî)-complexes generated by our programs

Therefore, to get a better "distribution" of the examples for large ttt and tt, we

also have written a program which randomly generates many (2ttt, 2Tî)-complexes for

fixed ttt, tt e N.

B.3 A random program

# the functions full(), all(), test(), part(), test2()

# are defined as before

Ma := function(m, n)

# generates (m x n)-matrix A, A[i] [j] = i

local i, j, w;
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w := NullMat(m,n);

for i in [1..m] do

for j in [1..n] do

W [ i ] [ j ] : = i ;

Od;

Od;

return w;

end;

Mb := function(m, n)

# generates (m x n)-matrix A, A[i] [j] = j
local i, j, w;

w := NullMat(m,n);

for i in [1..m] do

for j in [1..n] do

W [ i ] [ j ] : = j ;

Od;

Od;

return w;

end;

OUt := [ ];

rdm := function(A, B, p)

local cA, cB, i, j, k, 1, AA, BB, kl, pp, Z;

Z := 0;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A) [2] ;

for i in [1..CA/2] do

for j in [1..cB] do

if test2(A,i,j,cB) then

repeat kl := Random(p); # p:available edges in link

z := z+1; # z counts number of attempts,

# here we set the maximal number to 30, but it

# can be chosen larger or smaller if needed

until test(A,B,i,j,kl[1],kl[2],cA,cB) or z = 30;

AA := StructuralCopy(A);

BB := StructuralCopy(B);
if z < 30 then # test ok

AA[i] [j] := kl[l] ;

BB[i] [j] := kl[2] ;
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= i;

= cB+l-kl[2];

= CA+l-kl [1] ;

= j;

AA[kl [1] ] [CB-j+1]

BB[kl [1] ] [CB-j+1]

AA[cA+l-i] [kl [2] ]

BB[CA+l-i][kl[2]]

AA[cA+l-kl[1]][CB+l-kl[2]] := CA+l-i;

BB[CA+l-kl[1]][CB+l-kl[2]] := cB+l-j;

pp := StructuralCopy(p);

RemoveSet(pp,kl);

RemoveSet(pp,[i,cB+l-kl[2]]);

RemoveSet(pp,[cA+l-kl[1],j]);

RemoveSet(pp,[cA+l-i,cB+1-j]);

# removes used edges in link

if full(AA) then

out := StructuralCopy([AA,BB,cA,cB]);

else

rdm(AA, BB, pp);

fi;

fi;

fi;

Od;

Od;

return out¬

end;

sic := function(aa,bb)

local res;

repeat out := [Ma(aa,bb),Mb(aa,bb),aa,bb]; res :=

rdm(NullMat(aa, bb), NullMat(aa, bb), all(1,aa,l,bb));

until

# conditions(res[1],res[2]); whatever we want to check

Print(res [1] ,"\n",res [2] , "\n");

end;

# e.g. sic(6,6); generates now randomly a (6,6)-complex

# satisfying additional conditions

One nice feature of both programs is that we can start with any k given geometric

squares (where 0 < k < mn) and generate all (or randomly some, respectively)

(2ttt, 2Tî)-complexes containing these k geometric squares. This was very useful in

Chapter 2, where we have embedded for instance non-residually finite examples in

virtually simple (2ttt, 2Tî)-groups.
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B.4 Computing the local groups

Step 3

We have written programs which compute the local groups Ph and Pv for k small

enough. Here are the programs for k = 1 and k = 2. The programs for k > 3 become

more complicated with increasing k, but we do not need any new ideas. Moreover, we

give the program to compute the group Kh for ttt = 3.

PhPerm := function(j, cA, A)

# generates permutation in Pf, induced by b}, i.e. pv(bj)
local v, i;

V : = [ ] ;

for i in [1..cA] do

v[i] := CA+l-A[cA-i + l] [j] ;

Od;

return PermList(v);

end;

Ph := function(A)

# generates Ph as a permutation group

local p, j, cA, CB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A) [2] ;

P : = [ ] ;

for j in [1..CB/2] do

p[j] := PhPerm ( j , cA,A) ;

od;

return Group(p,0 ) ;

end;

PvPerm := function(i, cA, cB, B)

# generates permutation in Pv induced by a,, i.e. Ph(a,)

local w, j;

W : = [ ] ;

for j in [1..cB] do

w[j] := B[cA-i + l] [j] ;

Od;

return PermList(w);

end;
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Pv := function(B)

# generates Pv

local p, i, cA, CB;

cA := DimensionsMat(B)[1];

cB := DimensionsMat(B) [2] ;

P : = [ ] ;

for i in [1..CA/2] do

p[i] := PvPerm(i, cA, cB,B) ;

od;

return Group(p,() ) ;

end;

indx := function(v, x)

# returns index of first appearance of x

# in vector v

local i;

i := 1;

while v[i] <> x do

i : = i +1 ;

Od;

return i;

end;

s2 := function(c)

# generates points in 2-sphere

# of c-regular tree

local v, k, i, j;

V : = [ ] ;

k := 1;

for i in [1. . c] do

for j in [1..c] do

if i+j <> c+1 then

# exclude reducible paths

v[k] := [i,j];

k := k+1;

fi;

Od;

Od;

return v;

end;
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vPerm2i := function(i, cA, cB, A, B)

# generates i-th permutation in Py
'

local w, j;

W : = [ ] ;

for j in [1..cB*(cB-1)] do

w[j] := indx(s2(cB), [B [cA+l-i] [s2 (cB) [ j ] [1] ] ,

B[A[cA+l-i] [S2 (CB) [j] [1] ] ] [S2 (CB) [j] [2] ] ] ) ;

Od;

return PermList(w);

end;

P2v := function(A, B)
(2)

# generates Pv

local i, p, cA, CB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A) [2] ;

P : = [ ] ;

for i in [1..CA/2] do

p[i] := vPerm2i(i, cA, cB, A, B) ;

od;

return Group(p,() ) ;

end;

hPerm2j := function(j, cA, cB, A, B)

# generates j-th permutation in P^'
local w, i;

W : = [ ] ;

for i in [1..cA*(cA-1)] do

w[i] := indx(s2(cA), [cA+l-A [cA+l-s2 (cA) [i] [1] ]

CA+1-A[CA+1-S2 (CA) [i] [2]] [B [CA+1-S2 (CA) [i] [1]]

Od;

return PermList(w);

end;

P2h := function(A, B)
(2)

# generates Ph
local j, p, cA, CB;

cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];

P : = [ ] ;

for j in [1..CB/2] do

p[j] := hPerm2j(j, cA, cB, A, B) ;

[j],

[j]]]);
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Od;

return Group(p,0 ) ;

end;

Kh6 := function(A, B)

# generates Kh for m = 3

return Stabilizer(Stabilizer(Stabilizer(

Stabilizer(Stabilizer(Stabilizer(P2h(A, B)

[1, 2, 3, 4, 5], OnTuples),

[6, 7, i

[11, 12,

[16, 17,

[21, 22,

[26, 27,

9,

13,

18,

23,

10]

14,

19,

24,

28, 29,

Onsets),

15], Onsets;

20], Onsets;

25], Onsets;

30], Onsets;

end;

B.5 Computing a presentation

A finite presentation for F is obtained as follows (illustrated for ttt = tt = 3):

F := FreeGroupP'al", "a2", "a3", "bl", "b2", "b3");

# free group generated by ai, «2, a3, bi, &2, b3

al = F.l

a2 = F.2

a3 = F.3

bl = F.4

b2 = F.5

b3 = F.6

NL6a := function(i)

# bijection {I, ... ,2m} —> Eh

local V;

if i=l then v := al;

elif i = 2 then v := a2 ;

elif i=3 then v := a3;

elif i=4 then v := a3~-l;

elif i=5 then v := a2"-l;

elif i=6 then v := al"-l;

fi;

return v;

end;



266 APPENDIX B. GAP-PROGRAMS

NL6b := function(j)

# bijection {I, ... ,2n} —t Ev

local V;

if j=l then v := bl;

elif j=2 then v := b2;

elif j=3 then v := b3;

elif j=4 then v := b3~-l;

elif j=5 then v := b2~-l;

elif j=6 then v := bl"-l;

fi;

return v;

end;

relation6 := function(A, B)

# generates mn relators of F

local i, j, rel, cA, cB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A) [2] ;

rel := [ ] ;

for i in [1..CA/2] do

for j in [1..cB] do

if not NL6a(i) *NL6b(j ) *

NL6a(cA+l-A[i] [j] ) *NL6b(cB+l-B [i] [j]) in rel

and not NL6a(cA+l-A[i][j])*NL6b(cB+l-B[i][j])*

NL6a(i) *NL6b(j ) in rel

and not NL6a(cA+l-A[i][j])~-l*NL6b(j)~-l*

NL6a(i)~-l*NL6b(cB+l-B[i] [j])~-l in rel then

Add(rel,NL6a(i) *NL6b(j) *

NL6a(cA+l-A[i] [j] ) *NL6b(cB+l-B[i] [j]));

fi;

Od;

Od;

return rel;

end;

G := F / relationö(A,B); # definition of F

# e.g. Abelianlnvariants(G); computes now Fab

# LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 8);

# computes all subgroups of low index

# (here of index < 8), only reasonable for small index
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B.6 A normal form program

Very useful for other investigations are programs which bring a word of F in ab

in èa-normal form, see Proposition 1.10 (again illustrated for ttt = tt = 3):

# F, al, a2, a3, bl, b2, b3, NL6a(), NL6b()

# as in Appendix B.5

LN6a := function(w)

# bijection Eh -> {I, ... ,2m},

# inverse of NL6a

local i;

if w=al then i := 1;

elif w=a2 then i := 2;

elif w=a3 then i := 3;

elif w=a3~-l then i := 4;

elif w=a2~-l then i := 5;

elif w=al~-l then i := 6;

fi;

return i;

end;

LN6b := function(w)

# bijection Ev -> {I, ... ,2n},

# inverse of NL6b

local j;
if w=bl then j := 1;

elif w=b2 then j := 2;

elif w=b3 then j := 3;

elif w=b3~-l then j := 4;

elif w=b2~-l then j := 5;

elif w=bl~-l then j := 6;

fi;

return j;

end;

SetA6 := [al, a2, a3, a3~-l, a2^-l, al^-1];

# Eh

SetB6 := [bl, b2, b3, b3~-l, b2^-l, bl^-1];

# Ev
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nfab := function(A,B,w)

# brings word w in aè-normal form

local i;

for i in [1..Length(w)-1] do

if Subword(w,i,i) in SetB6 and

Subword(w,i+l,i+l) in SetA6 then

return nfab(A,B,SubstitutedWord(w,i,i+l,

(NL6b(B[LN6a(Subword(w,i+l,i+l)~-l)]

[LN6b(Subword(w,i,i)~-l)])*

NL6a(A[LN6a(Subword(w,i+l,i+l)~-l)]

[LN6b(Subword(w,i,i)~-l)]))~-l));

fi;

Od;

return w;

end;

nfba := function(A,B,w)

# brings word w in èa-normal form

local i;

for i in [1..Length(w)-1] do

if Subword(w,i,i) in SetA6 and

Subword(w,i+l,i+l) in SetB6 then

return nfba(A,B,SubstitutedWord(w,i,i+l,

NL6b(B[LN6a(Subword(w,i,i))]

[LN6b(Subword(w,i+l,i+l))])*

NL6a(A[LN6a(Subword(w,i,i))]

[LN6b(Subword(w,i+l,i+l))])));

fi;

Od;

return w;

end;

B.7 Computing Aut(X)

The following program generates all elements of Aut(X), where X is described by the

matrices A and B (again illustrated for ttt = tt = 3).

# F, al, a2, a3, bl, b2, b3, NL6a(), NL6b()

# as in Appendix B.5
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relation := function(A, B)

local i, j, k, rel, rel2, cA, cB;

cA := DimensionsMat(A)[1];

cB := DimensionsMat(A) [2] ;

rel := [ ] ;

rel2 := [ ] ;

for i in [1..cA] do

for j in [1..cB] do

rel [cB*(i-1)+j] := NL6a(i) *NL6b(j) *

NL6a(cA+l-A[i] [j] ) *NL6b(cB+l-B[i] [j]);

Od;

Od;

for k in [l..cA*cB] do

rel2 [k] := Subword(rel[k] ,2,4)*Subword(rel[k] ,1,1);

od;

return Union(rel,rel2);

end;

LN := function(w,kl,k2,k3,k4,k5,k6,c)

local n;

if w=al then n := kl;

elif w=a2 then n := k2;

elif w=a3 then n := k3;

elif w=bl then n := k4;

elif w=b2 then n := k5;

elif w=b3 then n := k6;

elif w=b3"-l then n := c-k6;

elif w=b2"-l then n := c-k5;

elif w=bl~-l then n := c-k4;

elif w=a3~-l then n := c-k3;

elif w=a2"-l then n := c-k2;

elif w=al"-l then n := c-kl;

fi;

return n;

end;

NL := function(z)

local n;

if z=l then n := al;

elif z=2 then n := a2;

elif z=3 then n := a3;
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elif z=4 then n := bl;

elif z=5 then n := b2;

elif z=6 then n := b3;

elif z=7 then n := b3~-l;

elif z=8 then n := b2~-l;

elif z=9 then n := bl"-l;

elif z=10 then n := a3"-l;

elif z=ll then n := a2"-l;

elif z=12 then n := al~-l;

fi;

return n;

end;

permute := function(A,B)

local il, i2, i3, jl, j2, j3, k, PL, L, cA, cB, c;

PL := [ ] ;

L := relation(A,B);

cA := DimensionsMat(A)[1]; cB := DimensionsMat(A)[2];

C := CA + CB;

for il in [1..c] do

for i2 in Difference([1..c], [il, c+l-il]) do

for i3 in Difference([1..c],

[il, c+l-il, i2, c+l-i2]) do

for jl in Difference([1..c],

[il, c+l-il, i2, c+l-i2, i3, c+l-i3]) do

for j2 in Difference([1..c],

[il, c+l-il, i2, c+l-i2,

i3, c+l-i3, jl, c+l-jl]) do

for j3 in Difference([1..c],

[il, c+l-il, i2, c+l-i2, i3, c+l-i3,

jl, c+l-jl, j2, c+l-j2]) do

for k in [l..Size(L)] do

PL[k] : =

NL(LN(Subword(L[k],1,1),il,i2,i3,jl,j2,j3,c+l))*

NL(LN(Subword(L[k],2,2),il,i2,i3,jl,j2,j3,c+l))*

NL(LN(Subword(L[k],3,3),il,i2,i3,jl,j2,j3,c+l))*

NL(LN(Subword(L[k],4,4),il,i2,i3,jl,j2,j3,c+l));

Od;

if Set(PL) = Set(L) then

Print(NL(il)," ",NL(i2)," ",NL(i3)," ",

NL(jl)," ",NL(j2)," ",NL(j3)," "

, "\n"
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fi;

Od;

Od;

Od;

Od;

Od;

Od;

end;

For X as in Example 2.2, i.e. for

/ 1 1 5 3 1

3 3 3 4 6

2 5 12 2

5 6 2 5 5

4 4 4 13

v 6 2 6 6 4

we get (cf. Theorem 2.3(9))

permute(A,B);

al a2 a3 bl b2 b3

al~-l a2~-l a3~-l bl~-l

B.8 A quaternion lattice program

We illustrate the construction of the group Fpj of Chapter 3 for the smallest example

p = 3,1 = 5 (Example 3.46).

psi := function(v,x0,xl,x2,x3)

return[[xO + v*xl*E(4), v*x2 + v*x3*E(4)],

[-v*x2 + v*x3*E(4), xO - v*xl*E(4)]];

end;

# v = -1 gives the conjugate of x

# E(4)~2 = -1

a : = [ ] ; b : = [ ] ;

a[l] := psi(l,l,0,l,l) ; #^0+7+*)
a[2] := psi(l,1,0,1,-1) ; #^(1+7-^)
a[3] := psi(-l,1,0,1,-1) ; #^(1-7+^)
a[4] := psi(-l,l,0,l,l) ; #f(l-j-k)

1 \ / 1 3 2 5 4 6 \

3 2 3 6 5 4 1

2

5
,

B =

6 3 2 14 5

4 3 2 5 6 1

4 6 12 5 4 3

6J v 1 3 2 5 4 6
y

b3 b2
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b[l]

b[2]

b[3]

b[4]

b[5]

b[6]

psi(1,1,2,0,0)

psi(1,1,0,2,0)

psi(1,1,0,0,2)

psi(-1,1,0,0,2

psi(-1,1,0,2,0

psi(-1,1,2,0,0

# VO+2T)
# VK1+27)
# fil + 2k)

# fil-2k)
# VKi-27)
# ir(i-2i)

qAB := function(p,1)

local i, j, k, m, A, B;

A := NullMat(p+1,1+1);

B := NullMat(p+1,1+1);

for i in [l..p+l] do

for j in [1..1+1] do

for k in [1..1+1] do

for m in [l..p+l] do

if a[i]*b[j] = b[k]*a[m] or

a[i]*b[j] = -b[k]*a[m] then

A[i] [j]

B[i] [j]

fi;

Od;

Od;

Od;

Od;

return([A,B]);

end;

= m;

= k;

A := qAB(3,5) [1] ;

B := qAB(3,5) [2] ;

gives

and

B

/3 3 2442\

14 3 13 4

4 2 4 2 11

\ 2 1 1 3 2 3 /

/ 5 1 6 2 3 4 \

3 6 2 14 5

4 3 15 6 2

\ 2 4 5 6 1 3 /



Appendix C

Some lists

C.l Primitive permutation groups

We give a list of all primitive permutation groups G < S2n, where n < 1, including
some information about the groups like its order \G\ or its transitivity on {1, ..., 2tt}.
A comprehensive introduction to permutation groups, including the definitions of the

groups in Table C.l, is given in [25]. See also [13] for a list of all finite primitive

permutation groups up to degree 50.

Group G degree 2tt transitivity(G) order \G\ G < A2„

s2 2 2 2 N

A4 4 2 12 Y

s4 4 4 24 N

PSL2(5) 6 2 60 Y

PGL2(5) 6 3 120 N

As 6 4 360 Y

Ss 6 6 720 N

AGLi(8) 8 2 56 Y

ArLi(8) 8 2 168 Y

PSL2(7) 8 2 168 Y

PGL2(7) 8 3 336 N

ASL3(2) 8 3 1344 Y

^8 8 6 20160 Y

Ss 8 8 40320 N

A5 10 1 60 Y

Ss 10 1 120 N

PSL2(9) 10 2 360 Y

Ss 10 2 720 N

PGL2(9) 10 3 720 N

273
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Mo 10 3 720 Y

prL2(9) 10 3 1440 N

AlQ 10 8 1814400 Y

S10 10 10 3628800 N

PSL2(11) 12 2 660 Y

PGL2(11) 12 3 1320 N

Mu 12 3 7920 Y

Mu 12 5 95040 Y

Au 12 10 239500800 Y

Su 12 12 479001600 N

PSL2(13) 14 2 1092 Y

PGL2(13) 14 3 2184 N

Ai4 14 12 43589145600 Y

Su 14 14 87178291200 N

Table C. 1 : Primitive permutation groups

C.2 Quasi-primitive permutation groups

See Table C.2 for ail quasi-primitive, but not 2-transitive subgroups of 52«, where

tt < 8. Only two ofthem are not primitive. For the primitive groups, we have used the

list in [13] and their notations, in particular the symbol ":" to denote a split extension.

Group G degree 2tt primitive order \G\ G < A2n

As 10 Y 60 Y

Ss 10 Y 120 N

PSL2(5) 12 N 60 Y

PSL2(7) 14 N 168 Y

24:5 16 Y 80 Y

24:D5 16 Y 160 Y

(A4 x Aa) : 2 16 Y 288 Y

(24 : 5) : 4 16 Y 320 Y

24 : 32 : 4 16 Y 576 Y

24 : S3 x S3 16 Y 576 Y

24:^5 16 Y 960 Y

(Sa xS4):2 16 Y 1152 Y

24:S5 16 Y 1920 Y

Table C.2: Quasi-primitive permutation groups
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C.3 Locally 2-transitive (6, 6)-groups

We study (6, 6)-groups such that Ph, Pv are 2-transitive and give a complete list ofthe
(2) (2)

arising 4-tuples (\Ph\, |P„|, \Ph \, \PV |). Without loss of generality, we may assume

that \Ph\ < \PV\ and that \Ph(2)\ < \p!,2)\ if \Ph\ = \PV\. By Table C.l, there are only
four 2-transitive subgroups of Ss: PSL2(5), PGL2(5), As and Ss of order 60, 120, 360

and 720, respectively. Given P, e {Ph, Pv}, the maximal possible value for |.P.^| is

\P.\(\P.\/6)6. If this maximum is attained, the value of | P^2^ | is marked in the list with

the symbol "*" on the right hand side. Observe that in the case P. = As the number

\P^ | is always maximal (this is not very surprising by [16, Proposition 3.3.1]).

\ph\ 1^1
ip(2),

\rh 1
ip(2),
\1 v 1

60 60 937500 937500

60 60 937500 60000000 *

60 120 7500 15000

60 120 937500 60000000

60 120 937500 120000000

60 120 937500 1920000000

60 120 30000000 1875000

60 120 30000000 60000000

60 120 30000000 1920000000

60 120 60000000 * 60000000

60 120 60000000 * 120000000

60 120 60000000 * 7680000000 *

60 360 937500 16796160000000 *

60 360 30000000 16796160000000 *

60 360 60000000 * 16796160000000 *

60 720 7500 1074954240000000

60 720 937500 33592320000000

60 720 937500 1074954240000000

60 720 937500 2149908480000000 *

60 720 1875000 1074954240000000

60 720 30000000 33592320000000

60 720 30000000 1074954240000000

60 720 30000000 2149908480000000 *

60 720 60000000 * 33592320000000

60 720 60000000 * 67184640000000

60 720 60000000 * 1074954240000000

60 720 60000000 * 2149908480000000 *
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120 120 15000 15000

120 120 1875000 60000000

120 120 60000000 60000000

120 120 60000000 1920000000

120 120 60000000 3840000000

120 120 1920000000 1920000000

120 120 1920000000 7680000000 *

120 120 3840000000 7680000000 *

120 360 1875000 16796160000000 *

120 360 60000000 16796160000000 *

120 360 120000000 16796160000000 *

120 360 1920000000 16796160000000 *

120 360 3840000000 16796160000000 *

120 360 7680000000 * 16796160000000 *

120 720 1875000 33592320000000

120 720 1875000 1074954240000000

120 720 60000000 33592320000000

120 720 60000000 67184640000000

120 720 60000000 1074954240000000

120 720 60000000 2149908480000000 *

120 720 120000000 33592320000000

120 720 120000000 1074954240000000

120 720 120000000 2149908480000000 *

120 720 1920000000 33592320000000

120 720 1920000000 67184640000000

120 720 1920000000 1074954240000000

120 720 1920000000 2149908480000000 *

120 720 3840000000 33592320000000

120 720 3840000000 67184640000000

120 720 3840000000 1074954240000000

120 720 3840000000 2149908480000000 *

120 720 7680000000 * 33592320000000

120 720 7680000000 * 1074954240000000

120 720 7680000000 * 2149908480000000 *

360 360 16796160000000 * 16796160000000 *

360 720 16796160000000 * 33592320000000

360 720 16796160000000 * 67184640000000

360 720 16796160000000 * 1074954240000000

360 720 16796160000000 * 2149908480000000 *
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720 720 33592320000000 3359232000000

720 720 33592320000000 67184640000000

720 720 33592320000000 1074954240000000

720 720 33592320000000 2149908480000000 *

720 720 67184640000000 1074954240000000

720 720 67184640000000 2149908480000000 *

720 720 1074954240000000 1074954240000000

720 720 1074954240000000 2149908480000000 *

720 720 2149908480000000 * 2149908480000000 *

Table C.3: Local groups in locally 2-transitive (6, 6)-groups

C.4 List of (4, 4)-groups

In the list below, we classify all (4, 4)-groups by the permutation isomorphism types

of the local groups Ph and Pv, and by Fab (up to interchanging the role of Ph and Pv).
In total, we get 32 different types. Note that there are in fact at least 41 and at most 43

non-isomorphic (4, 4)-groups (see [41, Section 7]).
We use the following notation in Table C.4:

2i : group of order 2, permutation isomorphic to ((1, 2)) < Sa,

22: group of order 2, permutation isomorphic to ((1, 2)(3, 4)),

4i : group of order 4, isomorphic to 1?2, permutation isomorphic to ((1, 2), (3, 4)),

42: as above, but permutation isomorphic to ((1, 2)(3, 4), (1, 3)(2, 4)).

trans(i3.) denotes the transitivity of the group P, e {Ph, Pv} on the set {1, 2, 3, 4}.

"N?" means that F is possibly irreducible.

Ph Pv trans(i^) trans(i3l)) reducible T^ab

1 0 0 Y Z4

2i 0 0 Y Z3 x Z2

22 0 0 Y Z3

22 0 0 Y Z2 x Z2

Z4 0 1 Y Z2 x Z2

4i 0 0 Y Z2 x Z2

42 0 1 Y Z2 x Z2

Da 0 1 Y Z2 x Z2

2\ 2i 0 0 Y Z2 x Z2

2\ 22 0 0 Y Z2 x Z2

2\ 22 0 0 Y Z2 x Z4
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2i 22 0 0 Y Z x Z3

22 22 0 0 Y Z2 x Z2

22 22 0 0 Y Z x Z2 x Z4

2i Z4 0 1 Y Z x Z2

22 Z4 0 1 Y Z X Zg

22 Z4 0 1 Y Z x Z2

2i 4i 0 0 Y Z x Z3

2i 42 0 1 Y Z x Z2 x Z4

22 4i 0 0 Y Z x Z2 x Z4

22 4i 0 0 Y Z2

22 42 0 1 Y Z2 x Z4
2i D4 0 1 Y Z x Z2

2i Da 0 1 Y Z x Z2 x Z4

22 A4 0 2 Y Z x Z2

Z4 Z4 1 1 Y Z4 X Zg

Z4 4i 1 0 Y Z x Z4

4i 4i 0 0 Y Z4

4i £>4 0 1 Y Z x Z2

4i ^4 0 1 Y Z2 x Z4

A ^4 1 2 N? Z2 x Zô

^4 ^4 4 4 N? %

Table C.4: Properties of (4, 4)-groups

C.5 List of (4, 6)-groups

Similarly as in Section C.4, we give a certain classification of (4, 6)-groups, but here

the groups Ph and Pv are classified only up to isomorphism (ttot: up to permutation

isomorphism) and up to their transitivity. Notation: "36" denotes the group of order

36 permutation isomorphic to ((1, 2, 3), (1, 4, 2, 5)(3, 6)) and "72" denotes the group

of order 72 permutation isomorphic to the group ((1, 2, 3), (1, 2), (1, 4)(2, 5)(3, 6)).

"Y?" means that we do not exclude the existence of a reducible example.

Example Ph Pv trans(i^) tvans(Pv) reducible

1 1 0 0 Y

1 z2 0 0 Y

1 z3 0 0 Y

1 z4 0 0 Y
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z2 0 0 Y

s3 0 0 Y

S3 0 1 Y

z6 0 1 Y

Z2 x Z4 0 0 Y

D4 0 0 Y

A4 0 1 Y

Z2 x S3 0 1 Y

S4 0 1 Y

Z2 x Aa 0 1 Y

Z2 x Sa 0 1 Y

z2 1 0 0 Y

z2 z2 0 0 Y

z2 z3 0 0 Y

z2 z4 0 0 Y

z2 z2 0 0 Y

z2 S3 0 0 Y

z2 S3 0 1 Y

z2 z6 0 1 Y

z2 Z2 x Z4 0 0 Y

z2 D4 0 0 Y

z2 Z2 0 0 Y

z2 A4 0 0 Y

z2 A4 0 1 Y

z2 Z2 x S3 0 1 Y

z2 Z3 x S3 0 1 Y

z2 S4 0 1 Y

z2 Z2 x Aa 0 0 Y

z2 Z2 x Aa 0 1 Y

z2 36 0 1 Y

z2 S3 x S3 0 0 Y

z2 Z2 x Sa 0 1 Y

z2 PSL2(5) 0 2 Y

z2 PGL2(5) 0 3 Y

z2 As 0 4 Y

z2 Ss 0 6 Y

z4 1 1 0 Y

z4 z2 1 0 Y

z4 z4 1 0 Y



280 APPENDIX C SOME LISTS

Z4 Z2 1 0 Y

Z4 S3 1 0 Y

z4 Z2 x Z4 1 0 Y

z4 D4 1 0 Y

z4 Z2 1 0 Y

z4 S3XS3 1 0 Y

A 1 0 0 Y

I2 1 1 0 Y

A. z2 0 0 Y

A. z2 1 0 Y

A. z3 0 0 Y

A. z4 0 0 Y

A. z4 1 0 Y

A. z2 0 0 Y

A. z2 1 0 Y

A. 4 0 0 Y,N?

A. S3 0 1 Y

A. z6 0 1 Y

A. Z2 x Z4 0 0 Y

A. D4 0 0 Y

A. A4 0 1 Y

z2 A4 1 0 Y

A. Z2 x S3 0 1 Y,N?

z2 S4 0 1 Y,N?

A. Z2 x A4 0 1 Y

A. Z2 x A4 1 0 Y

A. 36 0 1 N?

2.36 A. 4x4 0 0 N?

A. Z2 x S4 0 1 Y,N?

A. PSL2(5) 0 2 N?

A. PGL2(5) 0 3 N?

A Ss 0 6 N

D4 1 0 Y

D4 z2 0 Y

D4 z3 0 Y

D4 z4 0 Y

D4 z2 0 Y

D4 S3 0 Y,N?
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D4 S3 1 Y

D4 Z6 1 Y

D4 Z2 x Z4 0 Y

D4 D4 0 Y

D4 Z3 x Z3 0 N?

D4 A4 0 Y,N?

D4 A4 1 Y

D4 s4 1 Y,N?

D4 Z2 x A4 0 Y,N?

D4 Z2 x A4 1 Y

D4 36 1 N?

D4 S3 x S3 0 N?

D4 Z2 x S4 1 N?

D4 PSL2(5) 2 N?

D4 PGL2(5) 3 N, Y?

D4 As 4 N

D4 Ss 6 N

A4 z2 2 0 Y

A4 Z{ 2 0 Y

A4 S3 2 0 N?

A4 D4 2 0 N?

A4 Z2 x S3 2 1 N?

A4 s4 2 1 N?

A4 36 2 1 N?

A4 S3 x S3 2 0 N?

A4 Z2 x S4 2 1 N?

A4 Ss 2 6 N

s4 z2 4 0 Y

s4 z4 4 0 Y

s4 z\ 4 0 Y

s4 S3 4 0 N, Y?

s4 Z2 x Z4 4 0 Y

s4 D4 4 0 Y,N?

s4 Z3 x Z3 4 0 N?

s4 s4 4 0 N?

s4 s4 4 1 N, Y?

s4 S3 x S3 4 0 N, Y?

s4 Z2 x Sa 4 0 N?

s4 Z2 x Sa 4 1 N, Y?
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Sa PSL2(5) 4 2 N, Y?

Sa 72 4 1 N?

3.46 Sa PGL2(5) 4 3 N

Sa PGL2(5) 4 3 Y?

Sa As 4 4 N

Sa Ss 4 6 N

Table C.5: Properties of (4, 6)-groups

C.6 Some abelianized (A2m, ^2Tî)-gi*oups

We classify some (A2m, ^2«)-groups F by their abelianization Fab and by the size of
(2) (2) (2)

Ph and Pv (we restrict to 2 < ttt < tt and ttt + tt < 8). If Phy is not maximal

(this can only happen if 2ttt = 4), then we give the number 12 • 34/\Ph |. The list is

complete for (2ttt, 2tt) = (6, 6) and (2ttt, 2tt) = (4, 8). There are no (Aa, Aa)- and

(Aa, ^6)-groups.

Example 2ttt 2tt d(2)
Ph max.

d(2)
Pv max. 1 Yab 1 T^ab

4 8 Y Y 4 Z2

4 10 Y Y 4 z2

4 10 3 Y 4 z2

4 10 Y Y 8 Z2 x Z4

4 10 3 Y 8 Z2 x Z4

4 10 Y Y 12 Z2 x Zô

4 10 3 Y 12 Z2 x Zô

4 10 Y Y 16 Z2 x Z4

4 10 Y Y 16 Z2 x Z8

4 10 3 Y 16 Z2 x Z8

4 10 Y Y 24 Z2 x Z12

4 10 Y Y 24 Z2 x Zô

4 10 Y Y 32 Z2 x Z%

4 12 Y Y 4 Z2

4 12 3 Y 4 z2

4 12 Y Y 8 Z2 x Z4

4 12 3 Y 8 Z2 x Z4

4 12 Y Y 8 z\
4 12 3 Y 8 z\
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4 12 Y Y 12 Z2 x Zô

4 12 3 Y 12 Z2 x Zô

4 12 Y Y 16 Z2 x Zg

4 12 3 Y 16 Z2 X Zg

4 12 Y Y 16 Z2 x Z4

4 12 Y Y 20 Z2 x Z10

4 12 Y Y 24 Z2 x Z12

4 12 Y Y 24 Z2 x Zô

4 12 Y Y 28 Z2 x Zia

4 12 Y Y 32 Z2 x Zi6

4 12 3 Y 32 Z2 x Zi6

4 12 Y Y 32 Z2 x Z8

4 12 Y Y 40 Z2 x Z2o

4 12 Y Y 40 Z2 x Z10

4 12 Y Y 48 Z2 x Z24

2.2 6 6 Y Y 4 Z2

6 6 Y Y 8 K
6 6 Y Y 8 Z2 x Z4

6 6 Y Y 16 Z2 x Z8

6 6 Y Y 24 Z2 x Z12

6 6 Y Y 28 Z2 x Z14

2.15 6 6 Y Y 32 Z2 x Z%

6 8 Y Y 4 Z2

6 8 Y Y 8 Z2 x Z4

6 8 Y Y 8 z\
6 8 Y Y 12 Z2 x Zô

6 8 Y Y 16 Z2 x Z8

6 8 Y Y 16 Z\ x Z4

6 8 Y Y 16 Z4

6 8 Y Y 20 Z2 x Z10

6 8 Y Y 24 Z2 x Z12

6 8 Y Y 24 Z2 x Z6

6 8 Y Y 28 Z2 X Z14

6 8 Y Y 32 Z2 x Zi6

6 8 Y Y 32 Z\ x Z8

6 8 Y Y 36 Z2 X Zig

6 8 Y Y 40 Z2 x Z2o

6 8 Y Y 40 Z9 x Zjo
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6 8 Y Y 48 Z2 X Zl2

6 8 Y Y 60 Z2 x Z30

6 8 Y Y 80 Zy x Z20

6 10 Y Y 4 Z2

6 10 Y Y 8 Z2 x Z4

6 10 Y Y 8 z\
6 10 Y Y 12 Z2 x Zô

6 10 Y Y 16 Z2 x Zg

6 10 Y Y 16 Z2

6 10 Y Y 16 Z2 x Z4

6 10 Y Y 20 Z2 x Z10

6 10 Y Y 24 Z2 x Z12

6 10 Y Y 24 Z2 x Z6

6 10 Y Y 28 Z2 X Z14

6 10 Y Y 40 Z2 x Z2o

6 10 Y Y 40 Z\ x Z10

6 10 Y Y 108 Zô x Zig

8 8 Y Y 4 Z2

8 8 Y Y 8 Z2 X Z4

8 8 Y Y 8 ^2
8 8 Y Y 12 Z2 x Zô

8 8 Y Y 16 Z2 x Zg

8 8 Y Y 16 Z2

8 8 Y Y 16 Z\ x Z4

8 8 Y Y 16 Z4

8 8 Y Y 20 Z2 x Z10

8 8 Y Y 24 Z2 x Z12

8 8 Y Y 24 Z2 x Z6

8 8 Y Y 28 Z2 X Z14

Table C.6: Abelianized (Ä2m, ^2«)-groups
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C.7 More embeddings of Example 2.39

We embed the non-residually finite (8, 6)-complex of Example 2.39 into many dif¬

ferent (10, 10)-complexes X such that Ph and Pv are primitive permutation groups.

Let w := a2a7xa3a4x. In all examples F in the subsequent list, the normal subgroup

((w))r has finite index in F, in particular, by Lemma 2.42,

((w))r = f| N.

If two rows are exactly the same, then the quotients F/((w))r are non-isomorphic non-

abelian groups of the same finite order. The (Aiq, ^4io)-groups are precisely those of

Table 2.7.

Ph Pv abelianization Fab Fab and[r : ((w))r]

Ss < Siq Aio [2,2] 4

Ss < Siq Sio [2,2] 4

prL2(9) Aio [2,2] 4

prL2(9) ^10 [2,2] 4

prL2(9) ^10 [2,4] 8

prL2(9) ^10 [2, 2, 2] 8

AlQ Aio [2,2] 4

Aw Aw [2,4] 8

Aw Aw [2, 2, 2] 8

Aw Aw [2,6] 12

Aw Aw [2, 2, 4] 16

Aw Aw [2,8] 16

Aw Aio [2, 10] 20

Aw Aw [2, 12] 24

Aw Aw [2, 2, 6] 24

Aw Aw [2, 2, 8] 32

Aw Aw [2, 20] 40

Aw ^10 [2,2] 4

Aw ^10 [2,4] 8

Aw Sio [2, 2, 2] 8

Aw Sio [2, 2, 2] 8, 16

Aw Sio [2,6] 12

Aw ^10 [2,8] 16

Aw ^10 [4,4] 16

Aw ^10 [2, 2, 4] 16
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Aio Sio [2, 10] 20

Aw Sio [2, 12] 24

Aio Sio [2, 2, 6] 24

Aio Sio [2, 14] 28

Aio Sio [2, 2, 8] 32

Aio Sio [2, 16] 32

Aio Sio [2, 20] 40

Aio Sio [2, 2, 10] 40

Aio Sio [2, 24] 48

S10 Aio [2,2] 4

Sio Aw [2,4] 8

Sio Aw [2, 2, 2] 8

Sio Aw [2, 2, 2] 8, 16

Sio Aw [2, 2, 2] 8, 16

Sio Aw [2,6] 12

Sio Aio [2, 2, 4] 16

Sio Aio [2,8] 16

Sio Aio [4,4] 16

Sio Aio [2, 10] 20

Sio Aio [2, 12] 24

Sio Aio [2, 2, 6] 24

Sio Aio [2, 14] 28

Sio Aio [2, 2, 8] 32

Sio Aio [2, 18] 36

Sio Aio [6,6] 36

Sio Aio [2, 20] 40

Sio Aio [2, 22] 44

Sio Aio [2, 28] 56

Sio Aio [2, 32] 64

Sio Sio [2,2] 4

Sio Sio [2,4] 8

Sio Sio [2, 2, 2] 8

Sio Sio [2, 2, 2] 8, 16

Sio Sio [2, 2, 2] 8, 16

Sio Sio [2,6] 12

Sio Sio [2,8] 16

Sio Sio [2, 2, 4] 16

Sio Sio [2, 2, 4] 16,32

Sio Sio [2, 2, 4] 16,32
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Sio Sio [2, 2, 4] 16,32

Sio Sio [4,4] 16

Sio Sio [2, 10] 20

Sio Sio [2, 12] 24

Sio Sio [2, 2, 6] 24

Sio Sio [2, 2, 6] 24,48

Sio Sio [2, 14] 28

Sio Sio [2, 16] 32

Sio Sio [2, 2, 8] 32

Sio Sio [2, 4, 4] 32

Sio Sio [4,8] 32

Sio Sio [2, 18] 36

Sio Sio [6,6] 36

Sio Sio [2, 20] 40

Sio Sio [2,2,10] 40

Sio Sio [2, 22] 44

Sio Sio [2, 24] 48

Sio Sio [2, 2, 12] 48

Sio Sio [2, 26] 52

Sio Sio [2, 28] 56

Sio Sio [2, 30] 60

Sio Sio [2, 32] 64

Sio Sio [2, 36] 72

Sio Sio [2, 38] 76

Sio Sio [2, 40] 80

Sio Sio [2, 44] 88

Sio Sio [2, 50] 100

Sio Sio [10, 10] 100

Sio Sio [2, 52] 104

Table C.7: Example 2.39 embedded into (10, 10)-groups
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Appendix D

Miscellanea

D.l History of simple groups and free amalgams

We give in this section some history of finitely presented (or finitely generated) infinite

simple groups and amalgams of finitely generated non-abelian free groups.

• Aleksandr G. Kuros 1944 ([42]) He asked for the existence of a finitely gener¬

ated infinite simple group. (This was positively answered in [34].)

• Graham Higman 1951 ([34]) He gave the first existence proof of a finitely gen¬

erated infinite simple group and asked for the existence ofa finitely presented
infinite simple group: "Can an infinite simple group have not only a finite set

of generators, but also a finite set of defining relations?" (This was positively
answered by Richard J. Thompson in 1965.)

• Ruth Camm 1953 ([19]) She constructed uncountably many finitely generated
infinite simple groups of the form F2 *Fœ ^2- These groups are torsion-free,

2-generated, but not finitely presentable (by [4]).

• Richard J. Thompson 1965 (in unpublished notes) He defined two finitely pre¬

sented infinite simple groups G (often called T) and V (often called V). They
are not torsion-free. He also defined a third interesting group P (often called F)
which is torsion-free but not simple. For an introduction to these three groups,

see [20].

• Peter M. Neumann 1973 ([56]) "At one time I had hoped that one might con¬

struct a finitely presented simple group as a generalised free product of two free

groups A, B of finite rank amalgamating finitely generated subgroups H and

K. Joan Landman-Dyer and I showed quite easily that if H has infinite index in

A or K has infinite index in B then such a group G is not simple." For a proof
that G is even SQ-universal under these conditions, see [62, Corollary 2]. For

289
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an alternative proof that G is not simple (again provided [A : H] or [B : K] is

infinite), see [37, Corollary 2]. Then Neumann posed the following problems

(which appeared also in the Kourovka notebook): "Let G = A *h=k B where

A, B are non-abelian free groups of finite rank and \A : H\, \B : K\ are finite,

(a) Can it happen that G is simple? (b) Is G always SQ-universal?" ((a) was

positively answered in [15]; consequently the answer to (b) is "no".)

• Graham Higman 1974 ([35]) He generalized Thompson's group V to an infi¬

nite family of finitely presented infinite simple groups.

• Dragomir Z. Djokovic 1981 ([26]) His finitely presented "simple" group with

bounded torsion turned out to be ttot: simple.

• Elisabeth A. Scott 1984 ([63]) She constructed another family of finitely pre¬

sented infinite simple groups, related to the Higman groups.

• Kenneth S. Brown 1985 ([11]) He generalized the Thompson groups T, V and

established some finiteness properties. In 1989 ([12]), he showed that Thomp¬
son's group V can be written as a ("positively curved, realizable") triangle of

groups with finite vertex groups Ss, Ss, Sj.

• Meenaxi Bhattacharjee 1994 ([7]) She gave a construction of an amalgam

F3 *^13 F3 without non-trivial finite quotients. This group is "nearly simple" in

her terminology, but it is not known whether it has proper infinite quotients, or

it is simple. More examples like this appear in [7, 8].

• Geoffrey Mess (in [57, Problem 5.11 (C)] 1995) "Let X be a finite aspherical

complex. Is there an example of an X with simple fundamental group?" (His

question was positively answered in [15].)

• Daniel T. Wise 1996 ([68]) He constructed a square complex without a non-

trivial finite covering and asked: "Does there exist a CSC with (non-trivial) sim¬

ple 7Ti? I guess that one does exist." (where CSC stands for complete squared

complex; any (2ttî, 2Tî)-complex is CSC). (Again, this was positively answered

in [15].)

• Marc Burger, Shahar Mozes 1997 ([15]) They constructed an infinite family
of finitely presented torsion-free simple groups which are amalgams of finitely

generated non-abelian free groups and thereby solved many open problems
mentioned above (Neumann, Mess, Wise).

• Claas E. Rover 1999 ([61]) He gave a construction of finitely presented infinite

simple groups that contain Grigorchuk groups.
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D.2 Topology of Aut(Ti)

Throughout this section, let Tt be the £-regular tree and G = AxsX(Tt) its group of

automorphisms. We denote by X the countable vertex set of Tt endowed with the

discrete topology. Let X = {xi, X2,...} be a fixed enumeration of X. For subsets

V, W ç X and elements x, v, w e X, we define Gy,w '= {g e G : g(V) ç W}, the

vertex stabilizer Gx := G{x}t{x}, the pointwise stabilizer Gy := C\xeyGx and to sim¬

plify the notation we write Gv,w '= G{v}tw, Gv,w '= G{v}t{w}- We take the product

topology on Y\xex X = Xx = {f : X -> X} and let 0 be the relative topology for

G c Xx. Let tt, : Yixex X —r Xbe the z'-th projection. The product topology guar¬

antees that these maps are continuous. Again, by definition of the product topology,
a subbase for 0 is given by the sets Gv,w, where v e V Q X and W Q X. Since

Gv,w = ^wewGv,w, the family of sets Gv,w, where v,w e X, is another subbase

for 0. This topology 0 is sometimes called topology ofpointwise convergence (or

topology ofsimple convergence), since a sequence (gn)neU in G converges to g e G if

and only if (g„(x)) converges to g(x) in X for all x e X. Since X carries the discrete

topology, this means that for each x e X, there is an integer m such that g„(x) = g(x)
if tt > ttt. Note that 0 is the compact open topology, since this has as subbase the sets

Gytw, where Felis finite, W ç X, and since

n

GytW = [ I U Gv,,w ,

i=l weW

where V = {vi,..., vn}.

Proposition D.I. (G, 0) is a locally compact, totally disconnected, second countable,

metrizable Hausdorffspace. Moreover, it is a topological group, where we take the

usual composition ofelements in the group G.

Proof. Hausdorff: The space Xx is Hausdorff as a product of Hausdorff spaces (see

[39, Theorem III.5]), hence also its subspace G is Hausdorff.

Second countable: This follows immediately since X is countable and the set

{Gv,w ' v, w e X} is a subbase for 0.

Metrizable: Let p be the discrete metric on X, i.e. p(v, w) := 0 if v = w and

p(v, w) := 1 if v t^ w. We define for g, h e G

(X)

d(g, h) := ^p(g(xl),h(xl)).
i=i

Then d is a metric on G which induces 0 (see [18, Theorem 6.20]).

Locally compact: Let v,w e X. If we can show that Gv,w is compact, then any

g e G has a compact neighbourhood. Let (gn)neN be a sequence in Gv,w- By the local

finiteness of Tt, the set {g„(x,) : tt e N} is finite for each i e N. Therefore, there is an
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infinite subset iVi ç N such that the vertices gni (xi) coincide for all «i e Ni. Denote

this common vertex by g(xi). Next, choose an infinite subset N2 - Ni, such that

gn2ix2) coincide for all «2 e N2 and define g(xi) := gn2ix2) («2 e #2)- Continuing
this process ii = 3,4,...) defines an element g e Gv,w- By construction, g is a

cluster point of (gn)neN- This shows that Gv,w is countably compact. But in a metric

space, the notions of countably compactness and compactness are equivalent.
Note that Gx is a profinite group (see [21, Proposition 1.3.5]). Recall that a topo¬

logical group is profinite if and only if it is compact and totally disconnected.

Observe that Xx is not locally compact (this follows from [39, Theorem V. 19]).

Separable: A metric space is separable if and only if it has a countable base (see

[18, Corollary 7.21]).

Totally disconnected: We show that Xx is totally disconnected. Assume that

K c Xx is a connected subset such that zq, #2 e K. Since the projections tt, are

continuous, each image nl (K) is connected in X, i.e. a point. Thus nl (zq) = nl (#2)
for each i and therefore zq = zq. G is totally disconnected as a subspace of Xx.

Topological group: Let V. be the family of sets Gy, where V runs over finite
subsets of X. Note that Gy = r\veyGv,v is open in G. We first show that

Bi :={gU:geG,U e U}

is a base for some topology 0 on G such that (G, 0) (with the usual composition in

the group G) is a topological group and then show that 0 = 0.

The subb&se £1 = {gU : g e G, U e V.} generates a topology 0 on G, in particular,
the family $2 of finite intersections of elements in $1 is a base for 0. Obviously, we

have $1 ç ^82- If we can prove £2 —

<&i, then $1 is a base for 0 as claimed. Let

n

B2 = f]gUl ig,eG,U,eU)
1=1

be any element in £2 and let h e B2. Then g~ h e U, for each i = I,... ,n and

therefore g~xhU1 = U, for each i = I, ... ,n, using that U, = Gy for some finite

V, C X. Thus,

B2 = Ç]hUt =h(Ç}U1)e£i,
1=1 1=1

since n"=1£/2 e K. Recall that the map

4> : G x G —>- G

(gï,g2) H»glg2

is continuous if for each (gi, gi) e G x G and each open neighbourhood C/ of gig2

in G there is an open neighbourhood V of (gi, gi) in G x G such that <p(V) C C/.
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So let igi,gi) e G x G and let Û = \JhlUl (hL e G,Ut e XL) be an open neigh¬
bourhood of gig2 in G, say gig2 = hjUj e hjUj c U with £/, = Gy .

Then

g2lGg2(vJ)g2Uj C Uj. It follows that

(giGgiiVj)) (g2Uj) C gig2Uj = hjUjUj =hjUj CÛ.

Since giGg2(y]) x g2Uj is an open neighbourhood of igi,g2) in G x G, we conclude

that <p is continuous.

The proof of the continuity of the map G -> G, g i-> g-1 is similar. We have to

show that for each g e G and each open neighbourhood U of g there is an open

neighbourhood V ofg such that F-1 c f/:

Let g e G and let £/ = UAff/f (/r( e G,UL e XL) be an open neighbourhood of g~ ,

say g-1 = hjUj e hjUj c U with £/, = Gj^ and define V = Gg-\(y )
e XL. Then

^J7-i^-i c Uj and

(gF)-1cg-1C/7=Ä7«7^=Ä7^/CC/.

Since gF is an open neighbourhood ofg, the map g i->- g~ is continuous and (G, 0)

is a topological group.

We know that {Gv,w ' v, w e X} is a subbase for 0 and

{gf/ : g e G, U = Gy, V c Xfinite}

is a subbase for 0. In fact, 0 = 0, because on one hand Gv,w = gGv for any g e G

such that g(v) = w, and on the other hand

gGy = (j Gv,g(v) •

veV

D

Proposition D.2. Let F be a subgroup of G and define Fx := F fl Gx. Then the

following three statements are equivalent:

i) F is discrete.

ii) Fx isfinitefor all x e X.

Hi) Fx isfinitefor some x e X.

Proof, i) => ii): A discrete subgroup H of a Hausdorff topological group G is closed

in G (see [33, Theorem 5.10]). Applying this theorem, the group F is closed in G and

Fx = F n Gx is closed in Gx, hence compact (since Gx is compact). But Fx is also

discrete (being a subgroup of F), thus finite.
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ii) =>. iü): This is obvious.

iii) =>. i): Write Fx = {yi, ..., y„}. For any y, e Fx \ {1} there is some (large)

integer ttt, such that y, £ F fl Gs(x,m,)- Let ttt be the maximum of the ttt,'s, then

T n Gs{x,m) = {!}• Since Gs(x,m) is open in G, {1} is open in F, and F is discrete

({y} = {y}{l}isopeninr). D

Remark. By Proposition D.2, the full group G is not discrete if t > 3, in particular

{g} is not open in G. However, {g} is closed in G, since

{g} = G\{jGXl,x\{g(Xl)}.
ïgN
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