Diss. ETH Nr. 15624

Synthese, Struktur und analytische Detailstudien neuer stickstoffhaltiger Silicate und Aluminosilicate

zur Erlangung des Titels Doktor der Naturwissenschaften

der

Eidgenössischen Technischen Hochschule Zürich

vorgelegt von Frank Ottinger Dipl. Chem., Universität Karlsruhe (TH)

> geboren am 27. März 1975 deutscher Staatsangehöriger

Angenommen auf Antrag von Prof. Dr. R. Nesper, Referent Prof. Dr. D. Günther, Koreferent

Zürich, 2004

Für meine Familie

Folgende Konferenzbeiträge aus dieser Dissertation wurden bereits veröffentlicht:

Synthesis and Structure of Ca₂₈Si₁₆N₄₀

F. Ottinger, R. Nesper 8th European Conference of Solid State Chemistry, Oslo, P201 (2001)

Synthesis and Structure of a new Calciumnitridosilicate

F. Ottinger, R. Nesper *Chimia*, **55**, 620 (2001)

Crystal Structure of CaSiN₂

F. Ottinger, R. Nesper *Chimia*, **56**, 398 (2002)

Synthesis and Structure of CaSiN₂

F. Ottinger, D. Günther, R. Nesper Acta Cryst. A, 58, C337 (2002)

Synthesis and Crystal Structures of the first Nitridoaluminosilicates

F. Ottinger, D. Günther, R. Nesper SGK/SSCr Newsletter, **60**, 17 (2003)

New Nitridosilicates, Nitridoaluminosilicates and Sialons -Syntheses and Crystal Structures

F. Ottinger, R. Nesper 9th European Conference of Solid State Chemistry, Stuttgart, P65 (2003)

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Synthese und Strukturaufklärung neuer Nitridosilicate, Nitridoaluminosilicate, Sione und Sialone. Der Einbau von Stickstoff in Silicate bietet weitreichende strukturelle Variationsmöglichkeiten, zu denen es bei reinen Oxosilicaten keine Analoga gibt. Während der Großteil der bereits bekannten Verbindungen in diesen Systemen über eine Reaktion von Siliciumdiimid mit den entsprechenden Metallen darstellbar ist, eröffnet sich durch den Einsatz des hochreaktiven Subnitrids Ca₂N ein neuer Synthesezugang zu stickstoffhaltigen Silicaten und Aluminosilicaten.

Ein Hauptaugenmerk der Untersuchungen lag auf der Aufklärung des neu entdeckten Synthesezugangs durch den kooperativen Einsatz zahlreicher Analysemethoden. So können erstmals röntgenographisch untersuchte Einkristalle mittels Single-Spot-LA-ICP-MS quantitativ analysiert werden. Im Laufe der Untersuchungen gelang durch die Verwendung einer Mikrosonde und einer gerasterten LA-ICP-MS der Nachweis von Einschlüssen im Einkristall. Bei diesen, am Einkristall kristallographisch nicht nachweisbaren Verunreinigungen handelt es sich sehr wahrscheinlich um kokristallisierte Oxosilicate und röntgenamorphe, glasartige Phasen. Anhand von Röntgenpulveraufnahmen lassen sich neben den kristallisierten Silicaten in den Produktmischungen immer große Anteile eines röntgenamorphen Materials nachweisen. Es ist deswegen davon auszugehen, daß die Kristallisation dieser neuartigen Verbindungen aus einer Schmelze heraus erfolgt, die u.a. glasartige Phasen enthält.

Basierend auf dieser Synthesemethode gelang die erstmalige Synthese und strukturelle Charakterisierung von CaSiN₂, Ca₅Si₂N₆, Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$), Ca₇NbSi₂N₉, Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$), CaSiAlN₃, Ca₅Si₂Al₂N₈, Ca₄SiAl₃N₇ und Ca₁₅Si₁₈Al₂O₁₂N₂₈ (siehe Tabelle 0.1). CaSiN₂, Ca₅Si₂N₆ und CaSiAlN₃ liegen in Varianten bereits bekannter Strukturtypen vor. Alle anderen gefundenen Verbindungen und Phasen kristallisieren in bislang nicht bekannten Strukturtypen. Bei Ca₅Si₂N₆ und Ca₇NbSi₂N₉ handelt es sich um Oligosilicate mit isolierten Anionen und bei Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$) um ein Cyclosilicat mit Sechserringen. Eine gewellte Anionenschicht liegt in dem Phyllosilicat $Ca_7Si_{4-x}Al_xO_xN_{10-x}$ ($0 \le x \le 0.5$) vor, während es sich bei allen anderen gefundenen Verbindungen um Tectosilicate mit dreidimensionaler Gerüststruktur handelt.

	Raum-	Gitterkonstanten	Strukturtyp	Silicat-	Verknüpf
	gruppe	[pm]		typ	typen N ^[x]
CaSiN ₂	Pbca	a=513.0, b=1022.4	aufgefüllter	Tecto-	N ^[2]
		c=1481.9,	Cristobalit		
$Ca_5Si_2N_6$	C2/c	a=983.6, b=605.2	homotyp zu	Oligo-	N ^[1] , N ^[2]
		c=1275.7, β = 100.2°	$Ba_5Si_2N_6$	(Di-)	
$Ca_7Si_{4-x}Al_xO_xN_{10-x}$	$P2_{1}/c$	a=591.3, b=2034	eigener	Phyllo-	N ^[1] , N ^[2]
$(0 \le x \le 0.5)$		c=951.8, β = 105.61°		(Mono-)	
$Ca_7NbSi_2N_9$	$P2_1/m$	a=605.1, b=994.6	eigener	Oligo-	N ^[1] , N ^[2]
		c=899.7, β = 92.10°		(Tri-)	
$Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_{x}O_{96}N_{48}$	$Pa\overline{3}$	a=1514.6	eigener	Cyclo-	N ^[1] , N ^[2]
$(0 \le x \le 9)$				(Hexa-)	
CaSiAlN ₃	$Cmc2_1$	a=985.1, b=565.4	aufgefüllter	Tecto-	N ^[2] , N ^[3]
		c=507.1	Wurtzit		
$Ca_5Si_2Al_2N_8$	Pbcn	a=925.5, b=614.0	eigener	Tecto-	$N^{[1]}, N^{[2]}$
		c=1557.8			N ^[3]
Ca ₄ SiAl ₃ N ₇	$P\overline{1}$	a=585.7, α=77.97°	eigener	Tecto-	N ^[2] , N ^[3]
		b=815.9, β=77.07°			
		c=1305, γ=82.18°			
$Ca_{15}Si_{18}Al_2O_{12}N_{28}$	$Pa\overline{3}$	a=1548.0	eigener	Tecto-	N ^[2] , N ^[3]
					$N^{[4]}$

Tab. 0.1:Übersicht über alle in dieser Arbeit strukturell charakterisiertenNitridosilicate, Nitridoaluminosilicate, Sione und Sialone.

Da Si⁴⁺ und Al³⁺ bzw. O²⁻ und N³⁻ sehr ähnlichen Atomformfaktoren haben, ist eine eindeutige Differenzierung zwischen diesen Atomen basierend auf Röntgendaten nicht immer zweifelsfrei möglich. Eine solche Differenzierung kann deshalb bei Ca₄SiAl₃N₇, Ca₁₅Si₁₈Al₂O₁₂N₂₈, Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) als auch bei Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$) nicht allein anhand der Verfeinerung auf der Basis von Röntgenbeugungsexperimenten erfolgen. Erst die Berechnung von Madelungfaktoren, Gitterenergien und Punktpotentialen erlaubt das Aufstellen einer plausiblen Si/Al- bzw. O/N-Verteilung für diese Verbindungen. Die Zuordnung in Si⁴⁺ und Al³⁺ gelingt in Ca₅Si₂Al₂N₈ anhand der sehr unterschiedlichen Si-N und Al-N Bindungsabstände. In CaSiAlN₃ hingegen liegt nur eine kristallographische Lage für das mit Si⁴⁺ und Al³⁺ mischbesetzte Tetraederzentrum vor.

Der bei Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) auftretende sehr kurze Si-Si-Abstand zweier Siliciumatome und die sehr langen Nb-N-Abstände in Ca₇NbSi₂N₉ werden mit einer Berechnung der Elektronen-Lokalisierungs-Funktion ELF auf LMTO- und Hückel-Niveau untersucht. Dabei kann im ersten Fall keine Bindung auf einer Achse Si-Si lokalisiert werden, im zweiten Fall lässt sich eine schwache Nb-N-Bindung erkennen.

Die Strukturen von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$) und $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ lassen sich in der Raumgruppe $Pa\overline{3}$ verfeinern und sind aufgrund ihrer komplexen Struktur nur schwer zu visualisieren. Durch die Anwendung der Schoen'schen Gyroidfläche *G* gelingt es, die Struktur zu veranschaulichen. So trennt diese chirale Periodische Knotenfläche (PNS) die anionischen Ringe bzw. Tetraedernetzwerke voneinander ab. Im Falle von $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ liegen die Ca-Kationen auf der Gyroidfläche und diese stellt somit den graphischen Mittelwert des Abstands zwischen den Ca^{2+} -Kationen und den Tetraederzentren Al^{3+} und Si^{4+} dar.

Abstract

This thesis is concerned with the synthesis and structural characterisation of new nitridosilicates, nitridoaluminosilicates, sions and sialons. The integration of nitrogen in silicates offers a much wider structural complexity compared to the well-known oxosilicates. The majority of known compounds in these systems can be accessed by reaction of silicon diimide with the corresponding metals. The use of the highly reactive subnitride Ca_2N opens a new synthetic path to nitrogen containing silicates and aluminosilicates.

One main focus of these investigations was lead on the exploration of the discovered synthetic path by cooperative use of different analytical methods. By using Single-Spot LA-ICP-MS the chemical composition of X-ray investigated single crystals was analyzed quantitatively. The cooperative use of a microprobe and a raster LA-ICP-MS lead to the discovery of inclusions in single crystals of $Ca_5Si_2Al_2N_8$. These impurities have not been detected by standard X-ray examination methods. It is very likely that these impurities consist of either cocrystallised oxosilicates or amorphous, vitreous phases. X-ray powder diffraction data indicates the existence of a significant fraction of an X-ray amorphous material besides crystalline silicates. One can further assume that the crystallisation of these new compounds proceeds out of a vitreous melt.

Based on this synthetic method, the synthesis and structural characterisation of CaSiN₂, Ca₅Si₂N₆, Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$), Ca₇NbSi₂N₉, Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$), CaSiAlN₃, Ca₅Si₂Al₂N₈, Ca₄SiAl₃N₇ and Ca₁₅Si₁₈Al₂O₁₂N₂₈ (see table 0.1) succeeded for the first time. CaSiN₂, Ca₅Si₂N₆ and CaSiAlN₃ crystallise as variants of already well-known structure types. All other compounds and phases crystallise in so far unknown structure types. Ca₅Si₂N₆ and Ca₇NbSi₂N₉ belong to the group of oligosilicates with isolated anions whereas Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$) with sechser rings can be classified as a cyclosilicate. Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) is a phyllosilicate containing a puckered anionic layer structure, while all other compounds contain three dimensional framework structures and are therefore classified as tectosilicates.

	Space	Lattice constants	Structure	Silicate	Linkage
	group	[pm]	type	group	type N ^[x]
CaSiN ₂	Pbca	a=513.0, b=1022.4	filled	Tecto-	N ^[2]
		c=1481.9,	Cristobalite		
$Ca_5Si_2N_6$	C2/c	a=983.6, b=605.2	homotypic	Oligo-	$N^{[1]}, N^{[2]}$
		c=1275.7, β = 100.2°	to $Ba_5Si_2N_6$	(Di-)	
$Ca_7Si_{4-x}Al_xO_xN_{10-x}$	$P2_{1}/c$	a=591.3, b=2034	own	Phyllo-	$N^{[1]}, N^{[2]}$
$(0 \le x \le 0.5)$		c=951.8, β = 105.61°		(Mono-)	
Ca ₇ NbSi ₂ N ₉	$P2_1/m$	a=605.1, b=994.6	own	Oligo-	$N^{[1]}, N^{[2]}$
		c=899.7, β = 92.10°		(Tri-)	
$Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$	$Pa\overline{3}$	a=1514.6	own	Cyclo-	$N^{[1]}, N^{[2]}$
$(0 \le x \le 9)$				(Hexa-)	
CaSiAlN ₃	$Cmc2_1$	a=985.1, b=565.4	filled	Tecto-	N ^[2] , N ^[3]
		c=507.1	Wurtzite		
$Ca_5Si_2Al_2N_8$	Pbcn	a=925.5, b=614.0	own	Tecto-	N ^[1] , N ^[2]
		c=1557.8			N ^[3]
Ca ₄ SiAl ₃ N ₇	$P\overline{1}$	a=585.7, α=77.97°	own	Tecto-	N ^[2] , N ^[3]
		b=815.9, β=77.07°			
		c=1305, γ=82.18°			
$Ca_{15}Si_{18}Al_2O_{12}N_{28}$	$Pa\overline{3}$	a=1548.0	own	Tecto-	$N^{[2]}, N^{[3]}$
					$N^{[4]}$

Tab. 0.1:Summary of all structurally characterised new nitridosilicates,
nitridoaluminosilicates, sions and sialons covered in this thesis.

Since Si⁴⁺ and Al³⁺ or O²⁻ and N³ have similar atomic form factors, a clear differentiation between these atoms is very difficult and sometimes impossible based on X-ray data only. Such a differentiation does not succeed for Ca₄SiAl₃N₇, Ca₁₅Si₁₈Al₂O₁₂N₂₈, Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) and Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$) on the basis of X-ray diffraction experiments. The computation of Madelung factors, lattice energies and point potentials permits the generation of a plausible Si/Al or O/N distribution for these compounds. The allocation in Si⁴⁺ and Al³⁺ succeeds in Ca₅Si₂Al₂N₈ on the basis of Si-N and Al-N bond distances. There is only one crystallographic site for the mixed occupied tetrahedron center present in CaSiAlN₃, however.

The very short Si-Si-distance in Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) and the very long Nb-N-distance in Ca₇NbSi₂N₉ were examined with a computation of the Electron Localization Funktion ELF based on LMTO or Extended Hückel calculations. No bond can be located on an axis Si-Si in Ca₇Si_{4-x}Al_xO_xN_{10-x} ($0 \le x \le 0.5$) while there is a weak bond between Nb and N in the case of Ca₇NbSi₂N₉.

The structures of $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$) and $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ can be refined in the space group $Pa\overline{3}$ and are very difficult to visualise due to their complicated structures. The visualisation of these structures succeeds by the appliance of Schoens' Gyroidal Surface *G*. This chiral Periodic Nodal Surface (PNS) separates the anionic rings or the anionic framework structures from the cations. The cations are located on the gyroidal surface in case of $Ca_{15}Si_{18}Al_2O_{12}N_{28}$. This surface represents thus the graphic average of the distance between the Ca^{2+} -cations and the tetraederon centres Al^{3+} and Si^{4+} .

1	Ein	eitung	1
2	Exp	erimentelle Vorgehensweise	7
-	2.1	Präparation	7
	2.1.1	Arbeitstechnik	7
	2.1.2	Ampullenmaterial	8
	2.1.3	Öfen	8
	2.2	Analysenverfahren	9
	2.2.1	Quantitative O ₂ -/N ₂ -Analytik	9
	2.2.2	LA-ICP-MS	9
	2.2.3	Mikrosonde	10
	2.3	Röntgenographische Untersuchungsmethoden	11
	2.3.1	Pulverproben	11
	2.3.2	Röntgenbeugung am Einkristall	12
	2.4	Theoretische Untersuchungsmethoden	14
3	Unt	ersuchungen zum Verständnis der Reaktionsabläufe	. 15
-	3.1	Einfluss der Ausgangsstoffe	15
	3.1.1	Stolperfallen durch verunreinigte Ausgangsstoffe	15
	3.1.2	Reaktionsführung	16
	3.1.3	Zersetzung von Ca ₃ N ₂	17
	3.1.4	Synthese von Ca_3N_2 bzw. Ca_2N	19
-	3.2	Reaktionsablauf	23
-	3.3	Quantitative Analytik an Nitridoaluminosilicaten	27
	3.3.1	Quantitative O/N-Analytik	27
	3.3.2		
		LA-ICP-MS an $Ca_5Si_2Al_2N_8$	27
	3.3.3	LA-ICP-MS an $Ca_5Si_2Al_2N_8$ LA-ICP-MS an $Ca_4SiAl_3N_7$	27 32
	3.3.3 3.3.4	LA-ICP-MS an $Ca_5Si_2Al_2N_8$ LA-ICP-MS an $Ca_4SiAl_3N_7$ Mikrosonde an $Ca_5Si_2Al_2N_8$	27 32 36
	3.3.3 3.3.4 3.3.5	$\label{eq:LA-ICP-MS an Ca_5Si_2Al_2N_8} \\ LA-ICP-MS an Ca_4SiAl_3N_7 \\ Mikrosonde an Ca_5Si_2Al_2N_8 \\ Scanning-LA-ICP-MS an Ca_5Si_2Al_2N_8 \\ \end{tabular}$	27 32 36 41

4	Syste	eme Ca-Si-N und M-Ca-Si-N	45
Z	l.1 (CaSiN ₂	46
	4.1.1	Synthese von CaSiN ₂	46
	4.1.2	Kristallstruktur von CaSiN2	48
	4.1.3	Theoretische Untersuchungen	53
2	.2 ($Ca_5Si_2N_6$	54
	4.2.1	Synthese von Ca ₅ Si ₂ N ₆	54
	4.2.2	Kristallstruktur von Ca5Si2N6	57
	4.2.3	Theoretische Untersuchungen	63
2	.3 ($Ca_7Si_{4-x}Al_xO_xN_{10-x} (0 \le x \le 0.5)$	64
	4.3.1	Synthese von Ca ₇ Si ₄ N ₁₀ und Ca ₇ Si _{4-x} Al _x O _x N _{10-x}	64
	4.3.2	Kristallstruktur von Ca7Si4N10 und Ca7Si4-xAlxOxN10-x	67
	4.3.3	Untersuchungen zur Zusammensetzung von $Ca_7Si_{4-x}Al_xO_xN_{10-x}$	
	4.3.4	Theoretische Untersuchungen	
Z	4.4 (Ca ₇ NbSi ₂ N ₉	82
	4.4.1	Synthese von Ca7NbSi2N9	82
	4.4.2	Kristallstruktur von Ca7NbSi2N9	84
	4.4.3	Theoretische Untersuchungen	90
5	Syste	em M-Si-O-N	
5	5.1 ($Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48} \ (0 \le x \le 9)$	
	5.1.1	Synthese von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$)	
	5.1.2	Kristallstruktur von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$)	
	5.1.3	Theoretische Untersuchungen	110
6	Das	System Ca-Si-Al-N	112
6	5.1 (CaSiAlN ₃	112
	6.1.1	Synthese von CaSiAlN ₃	112
	6.1.2	Kristallstruktur von CaSiAlN ₃	115
	6.1.3	Theoretische Untersuchungen an CaSiAlN ₃	119

Ć	5.2	$Ca_5Si_2Al_2N_8\ldots$	120
	6.2.1	Synthese von $Ca_5Si_2Al_2N_8$	120
	6.2.2	Kristallstruktur von Ca5Si2Al2N8	123
	6.2.3	Theoretische Untersuchungen zu $Ca_5Si_2Al_2N_8$	131
Ċ	5.3	$Ca_4SiAl_3N_7 \ldots \ldots$	133
	6.3.1	Synthese von Ca ₄ SiAl ₃ N ₇	133
	6.3.2	Kristallstruktur von Ca4SiAl3N7	136
	6.3.3	Theoretische Untersuchungen	148
7	Syst	tem M-Si-Al-O-N 1	151
7	Syst 7.1	tem M-Si-Al-O-N	1 51 151
7	Sys 7.1 7.1.1	tem M-Si-Al-O-N	1 51 151 151
7	Sys 7.1 7.1.1 7.1.2	tem M-Si-Al-O-N	151 151 151 152
7	Syst 7.1 7.1.1 7.1.2 7.1.3	tem M-Si-Al-O-N 1 $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ Synthese von $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ Kristallstruktur von $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ Theoretische Untersuchungen	51 151 151 152 165
7 T	Syst 7.1 7.1.1 7.1.2 7.1.3 teratu	tem M-Si-Al-O-N	151 151 152 165

1 Einleitung

Oxosilicate sind nicht nur die artenreichste Klasse der Mineralien, sondern auch geologisch und technisch außerordentlich bedeutsam. Über 80 % der Erdkruste bestehen aus Oxosilicaten; Glas, Porzellan, Email, Tonwaren, Zement u. Wasserglas sind technisch wichtige, aus Oxosilicaten bestehende Produkte; Zeolithe u. Feldspäte sind Beispiele für technisch wichtige Oxosilicat-Mineralien.^[1] Zurzeit sind ungefähr 1000 in der Natur vorkommenden Oxosilicat-Mineralien bekannt, jedes Jahr kommen im Schnitt etwa zehn weitere hinzu. Darüber hinaus gibt es noch einmal mehrere hundert weitere synthetische Oxosilicate. Diese große Vielfalt an chemischer Zusammensetzung geht einher mit einer außerordentlichen Vielfalt unterschiedlicher Strukturen.^{[2],[3]} Nitridosilicate bilden eine noch relativ neue Verbindungsfamilie, die bedeutende strukturelle Erweiterungen zu den Oxosilicate aufweist. Zu den weitreichenden Variationsmöglichkeiten der Nitridosilicate auf terminale O^[1]- und einfach verbrückende O^[2]- Verknüpfungen zu Silicium beschränkt sind, bieten Nitridosilicate die Möglichkeit, sowohl N^[1]-, N^[2]- als auch N^[3]- und N^[4]-Verknüpfungen zum Silicium einzugehen.^[3]

Außer der Stammverbindung der Nitridosilicate, dem Si₃N₄, sind keine natürlich vorkommenden Nitridosilicate bekannt.

Wegen ihrer außergewöhnlich hohen chemischen und thermischen Widerstandsfähigkeit sowie ihrer großen Härte sind sowohl die Nitridosilicate als auch die Oxonitridosilicate (Sione) und Oxonitridoaluminosilicate (Sialone) schon seit einiger Zeit von besonderem Interesse für die Entwicklung neuartiger Materialien.

Trotz dieser weitreichenden Variationsmöglichkeiten sind bis dato nur die Strukturen von gut zwei Dutzend Nitridosilicaten in den Systemen **M-Si-N** hinreichend gut aufgeklärt. Tabelle 1.1 gibt einen Überblick über alle bereits strukturell charakterisierten ternären und quaternären Nitridosilicate.

	Raum-	Gitterkonstanten	Strukturtyp	Verknüpf	Synthese-	Ref.
	gruppe	[pm]		typen N ^[x]	zugang	
Ca ₂ Si ₅ N ₈	Сс	a=1435.2, b=561.0	Ca ₂ Si ₅ N ₈	N ^[2] , N ^[3]	(Gl. 5)	[4]
		c=968.9, $\beta = 112.06^{\circ}$				
$M_2Si_5N_8$	$Pmn2_1$	a=571.0, b=682.2	Sr ₂ Si ₅ N ₈	N ^[2] , N ^[3]	(Gl. 5)	[5],[6]
(M=Sr,Ba,Eu)		c=934.1 (M=Sr)				
BaSi ₇ N ₁₀	Pc	a=678.3, b=671.3	$BaSi_7N_{10}$	N ^[2] , N ^[3]	(Gl. 5)	[7]
		c=963.3, β = 106.27°				
Ba ₅ Si ₂ N ₆	P2 ₁ 2 ₁ 2 ₁	a=615.9, b=1030.5	Ba ₅ Si ₂ N ₆	N ^[1] , N ^[2]	(Gl. 4)	[8]
		c=1529.2				
$Ln_3Si_6N_{11}$	P4bm	a=1018.9, c=483.7	Ce ₃ Si ₆ N ₁₁	N ^[2] , N ^[3]	(Gl. 3)	[9],[10]
(Ln=La-Nd,Sm)		(Ln=La)				
LnSi ₃ N ₅	P2 ₁ 2 ₁ 2 ₁	a=785.3, b=1126.4	LnSi ₃ N ₅	N ^[2] , N ^[3]	(Gl. 3)	[10],[11]
(Ln=La-Nd)		c=481.7 (Ln=La)				
MYbSi ₄ N ₇	P6 ₃ mc	a=603.1, c=982.0	MYbSi ₄ N ₇	N ^[2] , N ^[4]	(Gl. 5)	[6],[12]
(M=Sr,Ba,Eu)		(M=Ba)				
MSiN ₂	$Pna2_1$	a=527.9, b=647.6	Wurtzit	N ^[2]	(Gl. 1,2)	[13]-[19]
(M=Be,Mg,Mn,Zn)		c=499.2 (M=Mg)				
MSi ₂ N ₃	$Cmc2_1$	a=922.2, b=529.6	verz. Wurtzit,	N ^[2] , N ^[3]	(Gl. 5)	[20],[21]
(M=Li,Na)		c=478.0 (M=Li)	isotyp zu Li ₂ SiO ₃			
$Ba_2Nd_7Si_{11}N_{23}$	Cmmm	a=1096.2, b=2304.6	$Ba_2Nd_7Si_{11}N_{23}$	$N^{[1]}, N^{[2]}$	(Gl. 5)	[22]
		c=964.9				
$Er_{6.33}Si_{11}N_{21},$	P31c	a=989.8, c=1078.7	$Er_{6.33}Si_{11}N_{21}$	N ^[1] , N ^[2] ,	(Gl. 5)	[23],[24]
$Dy_{033}Sm_6Si_{11}N_{21}$				$N^{[3]}, N^{[4]}$		

Tab. 1.1:	Übersicht	über	alle	bisher	strukturell	charakterisierten	ternären	und
quaternären Nitridosilicate								

Der synthetische Zugang erfolgt über sehr verschiedene Reaktionswege. So kann z.B. MgSiN₂ über eine Umsetzung der binären Nitride erhalten werden (Gl. 1); MnSiN₂ hingegen aus metallischem Mn, Si₃N₄ und Ammoniak (Gl. 2) sowie LnSi₃N₅ mittels Azotierung einer zweiphasigen Legierung der Zusammensetzung "LnSi₃" (Gl. 3). Bei der Umsetzung der Metalle mit NaN₃ wird N₂ in situ erzeugt (Gl. 4). Den bisher bedeutendsten synthetischen Zugang stellt die von *Schnick et al.* gefundene Umsetzung von Siliciumdiimid mit den entsprechenden Metallen in einem Hochfrequenzofen dar (Gl. 5).

$$Mg_{3}N_{2} + Si_{3}N_{4} \qquad \qquad \underbrace{1200^{\circ}C}_{N_{2}} \rightarrow 3 MgSiN_{2} \qquad (Gl. 1)$$

 $3 \operatorname{Mn} + \operatorname{Si}_{3}\operatorname{N}_{4} + 2 \operatorname{NH}_{3} \xrightarrow{1050^{\circ}\text{C}} 3 \operatorname{Mn}\operatorname{SiN}_{2} + 3 \operatorname{H}_{2}$ (Gl. 2)

$$2 , LnSi_3" + 5 N_2 \xrightarrow{1500^{\circ}C} 2 LnSi_3N_5 \qquad (Gl. 3)$$

$$5 \operatorname{Ba} + 2 \operatorname{Si} + 4 \operatorname{Na} + 2 \operatorname{NaN}_3 \xrightarrow{750^{\circ}\mathrm{C}} \operatorname{Ba}_5 \operatorname{Si}_2 \operatorname{N}_6 + 6 \operatorname{Na}$$
(Gl. 4)

$$2 M + 5 Si(NH)_2 \xrightarrow{1500-} M_2 Si_5 N_8 + N_2 + 5 H_2$$
(Gl. 5)

Nitridoaluminate bieten ähnlich große strukturelle Variationsmöglichkeiten wie die Nitridosilicate. Natürlich vorkommende Nitridoaluminate sind nicht bekannt. Im System **M-AI-N** konnten bislang nur sieben ternäre Nitridoaluminate strukturell charakterisiert werden (siehe Tabelle 1.2), obwohl schon seit einiger Zeit umfangreiche Untersuchungen an ternären Nitridometallaten gemacht worden sind.^[25] Von quaternären Nitridoaluminaten existieren keine gesicherten strukturellen Daten.

Tab. 1.2: Übersicht über alle bisher strukturell charakterisierten ternären Nitridoaluminate

	Raum-	Gitterkonstanten	Strukturtyp	Verknüpfungs-	Synthese-	Ref.
	gruppe	[pm]		typen N ^[x]	zugang	
Li ₃ AlN ₂	$Ia\overline{3}$	a=946.1	Li ₃ BN ₂	N ^[2]	(Gl. 6)	[26]
α -Ca ₃ Al ₂ N ₄	$P2_{1}/c$	a=957.2, b=580.2	α -Ca ₃ Al ₂ N ₄	$N^{[1]}, N^{[2]}, N^{[3]}$	(Gl. 7)	[27]
		c=956.3, β=111.62°				
β-Ca ₃ Al ₂ N ₄	C2/c	a=1060.6, b=826.0	Ca ₃ Al ₂ As ₄	N ^[2]	(Gl. 7)	[27]
		c=551.7, β=92.1°				
γ-Ca ₃ Al ₂ N ₄	$P2_{1}2_{1}2_{1}$	a=582.6, b=1069.1	γ -Ca ₃ Al ₂ N ₄	$N^{[1]}, N^{[2]}, N^{[3]}$	(Gl. 7)	[27]
		c=1585.4				
M ₃ Al ₂ N ₄	$Pmn2_1$	a=590.1, b=1005.0	$Sr_2Si_5N_8$	N ^[2] , N ^[3]	(Gl. 7)	[28],[29]
(M=Sr,Ba)		c=958.0 (M=Sr)				
Ca ₃ AlN ₃	$P2_{1}/c$	a=693.7, b=614.9	Ca ₃ AlN ₃	$N^{[1]}, N^{[2]}$	(Gl. 7)	[29]
		c=987.1, β=94.01°				

Der Zugang zu Nitridoaluminaten erfolgt bisher auf zwei Arten. Die Umsetzung von Li_3N mit Al führte zur Synthese von Li_3AlN_2 (Gl. 6). Den bislang erfolgreichsten Synthesezugang stellt die Umsetzung der Metalle in einer N₂-Atmosphäre dar (Gl. 7).

$$Li_{3}N + Al \qquad \xrightarrow{750^{\circ}C} Li_{3}AlN_{2} \qquad (Gl. 6)$$

$$3 \operatorname{Ca} + 2 \operatorname{Al} \qquad \xrightarrow{1200^{\circ} \operatorname{C}} \operatorname{Ca_3Al_2N_4}$$
(Gl. 7)

Es ist darauf hinzuweisen, daß bei (Gl. 7) immer mehrphasige Produkte anfallen. Im angegebenen Beispiel finden die Autoren neben α -, β - und γ -Ca₃Al₂N₄ noch große Mengen binärer Metallnitride als Nebenprodukte.

Das System **M-Si-Al-N** kann als Bindeglied zwischen den Nitridosilicaten und Nitridoaluminaten angesehen werden. Bis jetzt ist aber in der Gruppe der Nitridoaluminosilicate keine einzige Verbindung strukturell charakterisiert worden (natürlich vorkommende Mineralien dieser Zusammensetzung sind ebenfalls nicht bekannt). Über eine Verbindung mit der Zusammensetzung CaSiAlN₃ wurde zwar bereits berichtet, eine strukturelle Charakterisierung gelang allerdings bisher nicht.^[30]

Die Sione (Systeme M-Si-O-N) stellen formell das Bindeglied dar zwischen den oxidischen Silicaten einerseits und den Nitridosilicaten andererseits. Das Mineral Sinoit Si₂N₂O ist das einzige bekannte natürliche Mineral, welches zu dieser Klasse gehört. Sinoit wurde bislang nur in extraterrestrischem Material wie Sternenstaub oder Meteoriten nachgewiesen.^[31]

Auch in dieser Verbindungsklasse konnten bislang nur wenige Verbindungen im Labor hergestellt und strukturell charakterisiert werden (siehe Tabelle 1.3).

	Raum-	Gitterkonstanten	Strukturtyp	Ref.
	gruppe	[pm]		
$Er_6[Si_{11}N_{20}]O$	P31c	a=977.3, c=1059.7	$Er_{6.33}Si_{11}N_{21}$	[23]
$M_2Si_3O_3N_4,$	$P\overline{4}2_1m$	a=768.9, c=499.6	Melilith	[32]
(M=Y, Sm)		(M=Sm)		
$Ce_{16}Si_{15}O_6N_{32}$	$Pa\overline{3}$	a=1540.4	Defektvariante des	[33]
			Perowskit-Typs	
$Sm_2Si_3O_3N_4$	$P\overline{4}2_1m$	a=761.4, c=491.5	Melilith	[34]
				[35]
Ce ₄ [Si ₄ O ₄ N ₆]O	<i>P</i> 2 ₁ 3	a=1033.7	Ce ₄ [Si ₄ O ₄ N ₆]O	[55]

Tab. 1.3:ÜbersichtüberallestrukturellcharakterisiertenSione

Natürlich vorkommende Sialone (Oxonitridoaluminosilicate) sind nicht bekannt. Dennoch sind Sialone ebenfalls wegen ihrer außergewöhnlichen Materialeigenschaften z.B. einer großen Härte, einer hohen thermischen und chemischen Beständigkeit seit Beginn der 70er Jahre im Blickpunkt der keramischen Grundlagenforschung.

Trotz intensiver Bemühungen konnten seitdem aber nur wenige Sialone strukturell charakterisiert werden. Vor sechs Jahren gelang erstmals die Gewinnung und Charakterisierung von Einkristallen im System M-Si-Al-O-N. Eine kristallographische Differenzierung der O- und N- bzw. Al- und Si-Atome gelingt bisher nur in seltenen Einzelfällen. Die sehr ähnlichen Atomformfaktoren von Silicium und Aluminium bzw. Sauerstoff und Stickstoff machen eine Unterscheidung dieser Elemente basierend auf Röntgenpulverdaten Einkristall-Röntgenbeugungsdaten oder zu einer äußerst anspruchsvollen Aufgabe. So konnten Strukturen auch hier nur in einigen wenigen Fällen bestimmt werden. Bei einer statistischen Verteilung von Al- und Si- bzw. N- und O-Atomen oder nur geringen Anteilen einer Atomsorte auf einer Lage der anderen, muss deswegen mit Strukturmodellen gearbeitet werden, z.B. solche die berechnete Madelungfaktoren und Punktpotentiale berücksichtigen.

Alle Strukturtypen der bereits bekannten quinären Sialone sind in Tabelle 1.4 angegeben und leiten sich entweder von bekannten Sialonen oder ternären Nitridosilicaten ab. Tab. 1.4:Übersicht über alle zur Zeit strukturell charakterisierten quinären Sialone
(ohne Nitratgruppen enthaltende Sodalithe).[R]kennzeichnet
Verbindungen, deren Strukturen aus Pulverdaten bestimmt und mit der
Rietveld-Methode verfeinert wurden.

		Raum-	Gitterkonstanten	Strukturtyp	Ref.
		gruppe	[pm]		
SrSiAl ₂ O ₃ N ₂		$P2_{1}2_{1}2_{1}$	a=492.0, b=789.7	LnSi ₃ N ₅	[36]
			c=1134.9	(JEM-Phase)	
$Ln_2Si_{2.5}Al_{0.5}O_{3.5}N_{3.5}$		$P\overline{4} 2_1 m$	a=779.2, c=506.9	CaNaAlSi ₂ O ₇	[34]
(Ln=Ce-Nd,Sm,Gd)			(Ln=Ce)	(Melilith, M-Phase)	
Nd ₃ Si ₅ AlON ₁₀		P4bm	a=1007.8, c=486.3	$Ln_3Si_6N_{11}$	[37]
$Nd_7Si_8Al_3ON_{20}$		P31c	a=1004.3, c=1095.0	$Er_6Si_{11}N_{20}O$	[24]
$Ln_3Si_3Al_3O_{12}N_2$		Pbcn	a=797.4, c=487.3	La ₃ Ga ₅ SiO ₁₄	[38]
(Ln=La,Nd)	[R]			(U-Phase)	
LaSi5Al2ON9		Pbcn	a=943.0, b=976.9	Ähnlichkeiten	[39]
	[R]		c=893.9	mit JEM-Phase	
$M_2Si_{12\text{-}x}Al_xO_{2\text{+}x}N_{16\text{-}x}$		Imm2	a=828.9, b=957.6	Sialon, S-Phase	[40],[41]
(M=Sr,Ba,Ba/Eu; $x \approx 2$)	[R]		c=491.6		

2 Experimentelle Vorgehensweise

2.1 Präparation

2.1.1 Arbeitstechnik

Da der überwiegende Teil der verwendeten Substanzen luft- und feuchtigkeitsempfindlich ist, wurden alle Versuche unter Inertbedingungen durchgeführt. Die Handhabung von Edukten und Produkten erfolgte in Handschuhkästen (Fa. BRAUN) unter hochreinem Argon (6.0), welches zusätzlich über eine Reinigungsstrecke getrocknet (H₂O < 0.1 ppm) und von Sauerstoffresten (O₂ < 0.1 ppm) befreit wurde. Die Ausgangsstoffe wurden vor der Umsetzung in einem Achatmörser fein vermahlen und unter 150 bar Druck zu einer Tablette gepresst (Durchmesser: 13 mm, Dicke: ≤ 1 mm). In Tabelle 2.1 sind alle bei den Synthesen verwendeten Ausgangsstoffe verzeichnet.

Edukt	Hersteller	Reinheit	Form
N ₂	PanGas	99.999 %	Gas
Ca	Alfa/Johnson-Matthey	99.5 %	Stücke
Al	Aldrich	99.99+ %	Scheiben
Si	Aldrich	99.9999 %	Stücke
Eu	Alfa/Johnson-Matthey	99.9 %	Stangen
Nb	Alfa/Johnson-Matthey	99.99 %	Pulver
AlN	Aldrich	98.0+%	Pulver
Al_2O_3	Alfa/Johnson-Matthey	99.997 %	Pulver
Ca ₃ N ₂	Alfa/Johnson-Matthey	99.9 %	Pulver
CaO	Strem	99.95 %	Pulver
CaSi ₂	Fluka	95.0 %	Pulver
CeCl ₃	Alfa/Johnson-Matthey	99.9 %	Pulver
NaN ₃	Aldrich	99.99 %	Pulver
α -Si ₃ N ₄	Aldrich	99.9+ %	Pulver
	1		

Tab. 2.1: Übersicht über die bei den Synthesen verwendeten Ausgangsstoffe

2.1.2 Ampullenmaterialien

Sämtliche Synthesen wurden in Niob- oder Tantalampullen durchgeführt, da diese hinsichtlich ihrer thermischen (Smp. 2477°C bzw. 2996°C) und chemischen Eigenschaften am geeignetsten erschienen. Soweit bislang bekannt, existieren keine binären Verbindungen zwischen Niob und Tantal sowie Alkali- und Erdalkalimetallen; zudem sind die gegenseitigen Löslichkeiten als gering einzustufen.^{[42],[43]} Obwohl binäre Verbindungen von Aluminium als auch von Silicium mit Niob oder Tantal bekannt sind, konnten diese nie in den Reaktionsprodukten nachgewiesen werden.

Als Ampullen dienten 30 - 70 mm lange Rohrstücke ($\emptyset = 10$ mm, d = 0.5 mm, Fa. PLANSEE), die an den Enden zusammengepresst und bei ca. 400 mbar Argon-Druck im Lichtbogen gasdicht verschweißt wurden. Beim Verschweißen wurden die Ampullen zusätzlich über einen Kupferblock mit Wasser gekühlt. Bei Ansätzen mit NaN₃ wurden bis zu 12 cm lange Ampullen verwendet, um eine thermische Zersetzung bei Temperaturen größer 300°C bzw. eine explosionsartige Zersetzung des Azids zu vermeiden.

Zusätzlich wurden bei allen Umsetzungen große, einseitig offene Aussenampullen aus Niob (\emptyset = 18 mm, d = 0.5 mm, Fa. PLANSEE) eingesetzt, um die Reaktionsampullen aus Niob bzw. Tantal vor unerwünschten Nebenreaktionen mit dem äusseren Korundrohr zu schützen.

2.1.3 Öfen

Umsetzungen unterhalb 1080°C erfolgten innerhalb von Quarz-Schlenkrohren in Rohröfen (Fa. HERAEUS). Synthesen zwischen 1080°C und 1650°C konnten innerhalb von Korundrohren in Hochtemperaturöfen (Fa. GERO) durchgeführt werden. Synthesen im Lichtbogenofen bis ca. 4000°C (MAM 1, Fa. JOHANNA OTTO) erfolgten unter Argonatmosphäre in einem Handschuhkasten auf einer wassergekühlten Kupferplatte.

2.2 Analysenverfahren

2.2.1 Quantitative O₂-/N₂-Analytik

Zur quantitativen Bestimmung der leichten Elemente Stickstoff und Sauerstoff stand die Trägergas-Heißextraktions-Methode (TGH) am Max-Planck-Institut für chemische Physik fester Stoffe in Dresden zur Verfügung. Die Messungen wurden auf einer TC 436 DR (Fa. LECO) durchgeführt. Hierzu wurden jeweils etwa 20 mg der Proben in Zinnkapseln (0.4 ml, ~165 mg, Fa. LECO) eingewogen und verschlossen. Zur Messung der Proben wurden diese in einem Hochfrequenz-Ofen quantitativ in die Gasphase überführt. Stickstoff wird dabei über die Wärmeleitfähigkeit, Sauerstoff IRspektroskopisch als CO₂ bestimmt.

Bei 20 mg Einwaage lagen die Nachweisgrenzen für O₂ bzw. N₂ jeweils bei 0.1 Gew.-%.

2.2.2 LA-ICP-MS

Röntgenographisch untersuchte Einkristalle wurden mittels der in der anorganischen Chemie noch wenig bekannten Laser Ablation - Inductively Coupled Plasma -Mass Spectrometry (LA-ICP-MS) analysiert, wobei ein 193 nm ArF Excimerlaser zum Probenabtrag benutzt wurde.^[44] Das durch den Laserstrahl von der Probe abgetragene resultierende Aerosol wurde im induktiv gekoppelten Plasma angeregt und ionisiert. Für die Einkristalle wurde ein Laserstahldurchmesser (Krater) von 60 µm und eine Repetitionsrate von 10 Hz verwendet. Bei diesem sogenannten Single-Spot-Drilling erfolgt der Probenabtrag bis zur vollständigen Durchdringung der Einkristalle. Die aus dieser Methode resultierenden Nachweisgrenzen für die Isotope ⁷Li, ¹¹B, ²³Na, ^{25,26}Mg, ²⁷Al, ^{28,29,30}Si, ^{35,37}Cl, ³⁹K, ⁴²⁻⁴⁴Ca, ⁵³Cr, ⁵⁵Mn, ^{54,56,57}Fe, ⁷²Ge, ⁸⁸Sr, ⁹⁰Zr, ⁹³Nb, ¹⁵³Eu, ¹⁷⁸Hf und ¹⁸¹Ta liegen im Bereich von ng/g und sind in ^[45] zusammengefasst. Die natürlichen Isotopenverhältnisse der Elemente sind in allen abgedruckten Messwerten bereits berücksichtigt.

Weiterhin muss beachtet werden, daß die Isotope nicht direkt nachgewiesen werden, sondern nur die entsprechenden Massen. So wurde auf die Messung z.B. der Masse 40 verzichtet, da keine eindeutige Aussage getroffen werden kann, weil eine Unterscheidung von ⁴⁰Ca und dem ⁴⁰Ar aus dem Trägergas nicht möglich ist (isobare Interferenz).

Da die LA-ICP-MS ein Relativverfahren ist, wurde mittels Referenzmaterial (NIST 610) extern kalibriert. Basierend auf der Ca-Konzentration (interner Standard) können quantitative Konzentrationsverhältnisse von Ca, Si und Al ermittelt werden. Die Elemente O und N (ebenso H und C) sind allerdings über diese Methode nicht bestimmbar, da die Anregung in einem atmosphärischen ICP erfolgt.

2.2.3 Mikrosonde

Für Untersuchungen mit der Mikrosonde (EPMA, Electron Probe Micro Analysis) werden ausgewählte Einkristalle im Handschuhkasten in einen 3-Loch Plexiglasträger mit einem Einkomponentenkunstharz eingebettet. Dieses Harz auf Methacrylatbasis (Technovit 2000 LC, Fa. HASLAB) härtet auch unter Luftausschluss unter Argonatmosphäre innerhalb von 20 Minuten durch die Bestrahlung mit sichtbarem Licht aus.

So eingebettete Proben müssen oberflächlich angeschliffen und mit Kohlenstoff bis zur Ausbildung einer etwa 20 nm dicken Kohlenstoffschicht bedampft werden.

Die Mikrosondenuntersuchungen wurden auf einem Gerät des Typs JXA 8200 der Firma JEOL durchgeführt, das mit fünf WDS- und einem EDS-Spektrometer ausgestattet ist. Die Messung wird bei einer Beschleunigungsspannung von 15 kV bzw. einer Stromstärke von 15 nA durchgeführt. Silicium wird auf einem TAP-, Aluminium auf einem TAP(H)- und Calcium auf einem PET(H)-Kristall analysiert. Stickstoff wird über die Differenz zu 100 % berechnet.

Es werden ϕ - ρ -z Matrixkorrekturen sowie Untergrund- und Totzeitkorrekturen durchgeführt. Als Standards kommen für Calcium CaCO₃- (Calcit), für Silicium SiO₂- (Quarz) und für Aluminium Al₂O₃-Proben zum Einsatz.

2.3 Röntgenographische Untersuchungsmethoden

2.3.1 Pulverproben

Nach der Reaktion wurden die Ampullen in einem Handschuhkasten geöffnet. Zur Charakterisierung mittels Röntgenpulveraufnahmen wurden die Proben unter Inertgasbedingungen in einem Achatmörser gemahlen und üblicherweise in Glaskapillaren (MARK-Röhrchen, Länge = 80 mm, Durchmesser = 0.1 - 0.5 mm, Glas Nr. 14, Fa. HILGENBERG) eingeschmolzen. Bei nicht luft- und wasserempfindlichen, stark absorbierenden Proben wird auf die Flachbettmethode zurückgegriffen. Die Pulverdiffraktogramme wurden auf einem Pulverdiffraktometer (STADI P2, Germanium Monochromator; CuK_{α 1} = 1.54056 Å; PSD Detektor mit 2 θ_{eff} ~ 40°, Fa. STOE) mit Debye-Scherrer Geometrie aufgenommen. Bei komplizierten Strukturen und Substanzgemischen erfolgten die Messungen mit einem hochauflösenden, linearen PSD Detektor mit 2 θ_{eff} ~ 7° (Schrittweite = 0.5°, 700 s/Schritt) um die Qualität der Daten zu verbessern.

Messungen mit dem PSD Detektor mit $2\theta_{eff} \sim 40^{\circ}$ sind im Falle der untersuchten Verbindungen in den Systemen Ca-Si-N, Ca-Si-O-N, Ca-Si-Al-N oder Ca-Si-Al-O-N wegen ihres hohen Untergrundverlaufs wenig aussagekräftig; dieser ist vermutlich auf in der Probe vorhandene röntgenamorphe Anteile zurückzuführen. Eine Differenzierung der nur sehr schwachen und meist sehr breiten Reflexen gelingt erst durch hochaufgelöste Langzeitmessungen. Datenverarbeitung und Erzeugung von berechneten Pulverdiffraktogrammen werden mit den Programmen COMPARIS und WinXPOW (Fa. STOE) durchgeführt.^{[46],[47]}

2.3.2 Röntgenbeugung am Einkristall

Die Auswahl geeigneter Einkristalle erfolgte zunächst im Handschuhkasten unter dem Lichtmikroskop. Beurteilung der Güte und Selektion der meist transparenten und farbigen Kristalle erfolgte unter polarisiertem Licht. Die Einkristalle wurden mit einem in Schlifffett getauchten Markröhrchen aufgenommen und in einem zweiten Markröhrchen eingeschmolzen. Einkristalluntersuchungen konnten entweder auf einem automatischen Vierkreis-Diffraktometer (STADI 4, Fa. STOE), einem Image Plate Diffraktometer (IPDS, Fa. STOE) oder einem mit einem CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) durchgeführt werden (alle mit Graphit-Monochromator und MoK_{α} = 0.71073 Å). Zur Absorptionskorrektur, Strukturaufklärung und anschließenden graphischen Auswertung wurden folgende Programme verwendet:

- SAINT Datenreduktion ^[48]
- SADABS empirische Absorptionskorrektur^[49]
- XRED, XSHAPE

numerische Absorptionskorrektur^{[50],[51]}

- SHELXTL Zellreduktion, Ermittlung der systematischen Auslöschungen, Berechnung des internen R-Wertes eines Datensatzes über die Mittelung symmetrie-äquivalenter Reflexe, Strukturlösung und -verfeinerung^[52]
- ORTEP, ATOMS, DIAMOND, COLTURE, CERIUS²
 - Programme zur Darstellung der Kristallstrukturen^{[53]-[57]}
- STRUCTURE TIDY

Programm zur Standardisierung der Ortsparameter in Kristallstrukturen^[58]

- STRUKTURErzeugung von Strukturmodellen^[56]
- KVEXPOL Programm zur Berechnung von konvexen Polyedern, Bindungsordnungssummen und effektiver Koordinationszahlen ECoN^[59]

• STRUCTURE

Programm zur Generierung von Periodischen Knotenflächen (PNS)^[60]

Die Definitionen der bei den Strukturverfeinerungen angegebenen Gütefaktoren sind in Tabelle 2.2 angegeben:

Tab. 2.2: Formeln, die zur Berechnung der Gütefaktoren benutzt werden

Gütefaktor	$\mathbf{R}_{1} = \frac{\Sigma(\mathbf{F}_{0} - \mathbf{F}_{c})}{\Sigma \mathbf{F}_{0}}$
Gewichteter Gütefaktor	$w\mathbf{R}_{2} = \sqrt{\frac{\sum (w(\mathbf{F}_{0}^{2} - \mathbf{F}_{c}^{2})^{2})}{\sum w(\mathbf{F}_{0}^{2})^{2}}}$
	$w = \frac{1}{\sigma^2(\mathbf{F}_0^2) + (\mathbf{g} \cdot \mathbf{P})^2 + \mathbf{k} \cdot \mathbf{P}}$
	k, g = Wichtungsfaktoren
Goodness of Fit	$GooF = \sqrt{\frac{\sum (w(F_0^2 - F_c^2)^2)}{(n - p)}}$
	n = Anzahl der Reflexe
	p = Anzahl der Parameter
Gütefaktor des Datensatzes	$\mathbf{R}_{\text{int}} = \frac{\Sigma \left \mathbf{F}_0^2 - \overline{\mathbf{F}}_0^2 \right }{\Sigma \mathbf{F}_0^2}$
Standardabweichung der Daten	$\mathbf{R}_{\sigma} = \frac{\Sigma \sigma(\mathbf{F}_0^2)}{\Sigma \mathbf{F}_0^2}$

2.4 Theoretische Untersuchungsmethoden

Die in der vorliegenden Arbeit durchgeführten quantenmechanischen Untersuchungen stützen sich im Wesentlichen auf zwei Methoden: dem Extended Hückel Molekülorbital (EHMO)- und dem Linear Muffin Tin Orbital (LMTO)-Verfahren.^{[61]-[63]} Beide erlauben einen detaillierten Einblick in die elektronischen Strukturen von Festkörpern. Zustandsdichten (Density Of States, DOS) und Bandstrukturen wurden aus Dichtematrizen ermittelt. Folgende Programme wurden für die Berechnungen und die graphische Darstellung verwendet:

- MEHMACC Extended Hückel Rechnungen^[64]
- EHPC Extended Hückel Properties Calculations ^[65]
- TB-LMTO Programmpaket für LMTO-Rechnungen ^[66]
- COLTURE Darstellung von Strukturen und 3D-ELF Isoflächen^[56]

Zusätzlich wurde das Programm MADKUG für die Berechnung von Madelungfaktoren, Gitterenergien und Punktpotentialen verwendet.^[67] Das Programm KVEXPOL wurde für die Berechnung effektiver Ionenradien, effektiver Koordinationszahlen und zum Auffinden von Lücken in Kristallstrukturen eingesetzt.^[59]

3 Untersuchungen zum Verständnis der Reaktionsabläufe

3.1 Einfluss der Ausgangsstoffe

3.1.1 Stolperfallen durch verunreinigte Ausgangsstoffe

Bei Vorversuchen zu Beginn der Untersuchungen in den Systemen Ca-Si-N oder Ca-Si-Al-N wurde käuflich erworbenes Ca₃N₂ und CaSi₂ verwendet (siehe Tab. 2.1). Dabei gelang zum ersten Mal die Synthese von orangefarbenen bzw. farblosen, transparenten Kristallen, deren Zusammensetzung aufgrund der Strukturanalyse zunächst als "Ca₇Si₄N₁₀" bzw. "CaSi₂N₃" angenommen wurde. Im Falle von "CaSi₂N₃" hätte diese Verbindung wegen eines Überschuss-Elektrons metallisch glänzend erscheinen müssen. Aufgrund der Elektroneutralitätsbedingung hätten freie Elektronen im System zum Ladungsausgleich vorhanden sein müssen gemäss "Ca²⁺(Si⁴⁺)₂(N³⁻)₃e⁻". Dem widerspricht die farblose und transparente Erscheinung der Einkristalle. Ouantitative Analysen an röntgenographisch untersuchten Einkristallen von "Ca7Si4N10" bzw. "CaSi2N3e" mittels LA-ICP-MS ergaben die Zusammensetzungen Ca₇Si_{4-x}Al_xN_{10-x}O_x (mit $x \cong 0.5$) bzw. CaSiAlN₃. In beiden Verbindungen können die leichten Elemente N und O, wie schon erwähnt, nicht über LA-ICP-MS nachgewiesen werden. Für einen Einbau anderer Verunreinigungen (Elemente ab Li ohne C, N oder O) finden sich weder über die kristallographischen Daten noch über die Analysen mittels LA-ICP-MS bzw. EDX Anhaltspunkte.

Im Falle von Ca₇Si_{4-x}Al_xN_{10-x}O_x ($0 \le x \le 0.5$) ergibt sich der Sauerstoffgehalt aus der Elektroneutralitätsbedingung. Natürlich stellt sich mit den Ergebnissen der quantitativen Analysen die Frage nach der Aluminium bzw. Sauerstoffquelle. Quantitative Analysen an Pulverpresslingen von käuflich erworbenem Ca₃N₂ und CaSi₂ durch LA-ICP-MS ergaben eine Verunreinigung durch Aluminium von 0.6 respektive 1.9 Massenprozent. Zusätzlich konnte in CaSi₂ eine bedeutende Verunreinigung von 1.7 Massenprozent Eisen nachgewiesen werden. Der Sauerstoffgehalt des käuflichen CaSi₂ kann über die TGH-Methode mit 2.19 Gew.-% beziffert werden. Die Anwesenheit von CaO- oder CaOH-Spuren im käuflichen Ca₃N₂ ist sehr wahrscheinlich, da das Nitrid sehr reaktiv gegenüber Feuchtigkeitsspuren ist (Einfluss der Lagerdauer!), wobei sich unter Ammoniakabspaltung das Hydroxid bildet.

Über die TGH-Methode lässt sich im kommerziell verfügbaren Ca₃N₂ ein Sauerstoffgehalt von beachtlichen 13.88 Gew.-% ermitteln. Der Stickstoffgehalt dieses "Calciumnitrids" beträgt nur noch 10.71 statt der erwarteten 18.88 Gew.-%.

In späteren Synthesen wurde deswegen auf den Einsatz der käuflichen Edukte verzichtet und stattdessen ausschließlich frisch synthetisiertes Ca₃N₂ eingesetzt. Wie sich im weiteren Verlauf der Untersuchungen herausstellte, ist ein zwingender Einsatz eines Calciumsilicids als Siliciumquelle nicht notwendig, da die Zersetzung von Ca₃N₂ in Anwesenheit von Si zur Bildung binärer Calciumsilicide führt. Im weiteren Verlauf der Untersuchungen in Form hochreiner Si-Stücke (99.9999%) verwandt.

Niob- oder Tantaloxide konnten in den Pulverdiffraktogrammen nie nachgewiesen werden. Wasserstoff ist bei den Synthesetemperaturen in der Lage durch Niob bzw. Tantal hindurch zu diffundieren.^[68]

3.1.2 Reaktionsführung

Es wurde beobachtet, daß bei Synthesen in den Systemen Ca-Si-N oder Ca-Si-Al-N ausgehend von Ca₃N₂ und Si (und Al) nur dann ternäre Nitridosilicate bzw. quaternäre Nitridoaluminosilicate erfolgreich dargestellt werden konnten, wenn die Niobampullen bei der Umsetzung oberflächlich blau angelaufen waren. Die Korundrohre, welche die Reaktionsampullen enthalten, wurden dabei während der Reaktion kontinuierlich evakuiert.

Die in einigen Fällen die blau angelaufenen Ampullen lassen den Schluss zu, daß die gesinterten Korundrohre bei hohen Temperaturen nicht vollkommen gasdicht sind und die eindringende Luft mit den Niobampullen reagiert. Wenn unter Argonüberdruck gearbeitet wird, kann nicht ausgeschlossen werden, daß Sauerstoffspuren im Hausargon zur Reaktion mit der Niobampulle führen.

Ein Einfluss von Sauerstoff durch die teilweise zu den Reaktionsmischungen zugesetzten Oxide (z.B. Al₂O₃ oder CaO) erscheint nicht plausibel, da es auch ohne

Zusatz von Oxiden zum Reaktionsgemisch zu einer äußerlichen Blaufärbung der Niobbzw. Tantalampullen kommt.

Die oberflächliche blaue Schicht von Niob- bzw. Tantaloxiden blättert beim Öffnen der Ampullen leicht ab; diese sind im Querschnitt metallisch glänzend, aber mechanisch sehr spröde. Aus diesem Grund wurden die Reaktionsampullen bei späteren Umsetzungen in große, einseitig offene Aussenampullen aus Niob gegeben, um die Reaktionsampullen aus Niob bzw. Tantal vor unerwünschten Nebenreaktionen mit dem Korundrohr zu schützen.

Wie sich im späteren Verlauf der Untersuchungen herausstellte, können Ca₂N bzw. Ca₃N₂ unter gewissen Umständen mit dem Niob des Ampullenmaterials zu Ca₇NbSi₂N₉ reagieren. Bei den später gemachten Umsetzungen wurden deswegen Tantalampullen bzw. Molybdäntiegel als Reaktionsbehälter eingesetzt.

Während der Reaktion entstandene Löcher in Ampullen lassen sich leicht durch die Reaktionsprodukte an der Austrittsstelle visuell identifizieren. Außerdem wurden die Ampullen vor und nach der Reaktion gewogen, um eventuelle Lecks durch den dabei auftretenden Gewichtsverlust detektieren zu können.

3.1.3 Zersetzung von Ca₃N₂

Die Niobampullen sind nach der Reaktion aufgebläht, was auf einen hohen Stickstoff-Partialdruck $p(N_2)$ während der Umsetzung hindeutet. Wegen des Verschweissens der Reaktionsampullen liegt vor Beginn der Reaktion ein Argoninnendruck von ca. 400 mbar vor. Die Zersetzung von Ca₃N₂ in das sehr reaktive Subnitrid Ca₂N und N₂ erfolgt nach Gleichung 8.^[69]

$$4 \operatorname{Ca}_{3} \operatorname{N}_{2} \xrightarrow{} 6 \operatorname{Ca}_{2} \operatorname{N} + 1 \operatorname{N}_{2} \tag{Gl. 8}$$

Es ist anzunehmen, daß der Stickstoffpartialdruck in der Ampulle einen Gleichgewichtswert erreicht, von dem ab keine weitere Zersetzung von Ca_3N_2 zum Subnitrid stattfindet. Der gebildete Stickstoffüberdruck in der Ampulle kann nur sehr langsam wieder abgebaut werden, eine Reaktion mit Si zu Si₃N₄ oder zu ternären Nitridosilicaten wurde unter diesen Bedingungen nicht beobachtet. In Anwesenheit von Aluminium lässt sich die Bildung von wenig AlN nachweisen. Dieses AlN reagiert allerdings nicht weiter unter Bildung von Nitridoaluminosilicaten. Reaktionszeiten von weniger als 20 h führten nie zu der Bildung von Nitridosilicaten und -aluminosilicaten. Nachweisen lassen sich in dem Fall Calcium, Calciumsilicide und AlN.

Wenn die Konzentration des Subnitrids in der Reaktionsmischung durch den hohen Stickstoffpartialdruck p(N₂) auf einem niedrigen Niveau verbleibt, kann erst durch Erniedrigung von $p(N_2)$ weiteres Ca_2N gebildet werden. Durch eine zunehmende Alterung der Niobampullen und Bildung von Mikrorissen in der Ampullenwand bei langen Reaktionszeiten und -temperaturen (40 h bei 1400°C) kann p(N₂) wieder erniedrigt werden und damit die Bildung von weiterm Ca2N erfolgen. Die Konzentration von nicht umgesetzten Ca₂N in der Reaktionsmischung ist dabei immer so gering, daß es sich auch im Pulverdiffraktogramm von Intermediaten nicht nachweisen lässt (Nachweisgrenze). Eine weitere Möglichkeit wäre, daß Silicium direkt mit Ca₃N₂ zu calciumreichen Siliciden und N₂ abreagiert, so daß es erst gar nicht zu einer Bildung von Ca₂N kommt. Die Alterung der Ampulle und die damit verbundene Bildung von Mikrorissen in der Ampullenwand führen nicht zum Eindringen von Sauerstoff in die Ampulle. Eine Sauerstoff-Analyse in den unter solchen Umständen erhaltenen Proben über die TGH-Methode zeigt, daß die Sauerstoffgehalte nur knapp über der Nachweisgrenze liegen. Bei nicht kontinuierlich evakuierten Korundrohren und oberflächlich oxidierten Ampullen ist die übliche Größenordnung des Sauerstoffanteils der Probe bei 0.3 Gew.-%.

Setzt man statt Ca_3N_2 ausschließlich das Subnitrid Ca_2N oder Mischungen von Ca_2N und Ca_3N_2 als Stickstoffquellen ein, so erhält man bereits bei deutlich moderateren Reaktionsbedingungen (z.B. 40 h bei 1050°C) die gewünschten Nitridosilicate. Die zuverlässigsten Reproduktionen der entsprechenden Synthesen gelangen durch den Einsatz von Mischungen aus Ca_3N_2 und Ca_2N .

Die jeweiligen detaillierten Reaktionsvorschriften sind bei den entsprechenden Verbindungen aufgeführt.

3.1.4 Synthese von Ca₃N₂ bzw. Ca₂N

Ca₃N₂ bzw. das erst kürzlich strukturell identifizierte, hochreaktive Subnitrid Ca₂N reagieren mit Wasser nahezu explosionsartig zu CaOH und Ammoniakgas.^[70] Infolge dieser außerordentlichen Reaktivität beider Verbindungen musste bei der Synthese in hohem Masse Wert auf eine inerte Umgebung gelegt werden. Um eine Reaktion mit Wasserspuren zu vermeiden, wurde auf eine lange Lagerzeit des Ca₃N₂ verzichtet und die hergestellten Mengen von jeweils ca. 6 g innerhalb zweier Wochen verbraucht.

Käuflich erworbenes Calcium (das Gleiche gilt für das gegenüber feuchter Luft noch Europium) reaktivere wurde vor Gebrauch unter Hochvakuum (Anfangsdruck $\approx 1.10^{-6}$ mbar) sublimiert, da oberflächliche Verunreinigungen wie z.B. CaO, CaOH und Ca₃N₂ typisch sind (siehe Tabelle 2.1). Mit der TGH-Methode kann für das käuflich erworbene Calcium ein Sauerstoffgehalt von 0.19 Gew.-% sowie ein Stickstoffgehalt von 0.05 Gew.-% ermittelt werden. Die Sublimation des Calciums erfolgte dabei nach unten stehendem Temperaturschema (Abbildung 3.1). Man erhält das Metall als glänzende Scheibe, die sich leicht an einem Stück vom Sublimationsfinger ablösen lässt. Die Metallscheiben bestehen aus kristallinen Calciumnadeln.

Abb. 3.1: Temperaturprogramm zur Destillation von Calcium- bzw. Europiummetall

Für die Herstellung von β -Ca₃N₂ wurde frisch sublimiertes Calciummetall (siehe oben) und Stickstoff (6.0) eingesetzt. Der Stickstoff wurde zusätzlich über Oxisorb-Patronen (Fa. MESSER-GRIESHEIM) von Sauerstoff- und Wasserspuren befreit. Die Reaktion erfolgte in einer offenen Niobschale in einem Quarzrohr. Die Niobschale wurde aus einem aufgeschnittenen, gereinigten und entsprechend gefalzten Stück Nb-Rohr gefertigt. Als weiterer Sauerstoffgetter wurde ein Stück Zirkoniumblech direkt vor der Niobschale in das Quarzrohr eingebracht. Die Reaktion findet unter strömendem Stickstoff nach dem unten angegebenen Temperaturschema statt (Abbildung 3.2). Die Farbe des gebildeten Nitrids ist dabei von der Temperatur abhängig. Oberflächlich ist das erhaltene Ca₃N₂ hellviolett, im Volumen dunkelviolett gefärbt.

Das Pulverdiffraktogramm belegt eine phasenreine Synthese von β -Ca₃N₂ (siehe Abbildung 3.3).

Abb. 3.2: Temperaturprogramm zur Synthese von β -Ca₃N₂ aus den Elementen

Abb. 3.3: Pulverdiffraktogramm von Ca₃N₂ (oben) und Vergleich mit dem berechneten Pulverdiffraktogramme aus den von Reckeweg und DiSalvo bestimmten Strukturdaten (unten)^[71]

Drei Proben mit je ca. 20 mg des Nitrids wurden in Zinnkapseln verschlossen und mit der TGH-Methode auf deren Sauerstoffgehalt analysiert. So wurde für frisch hergestelltes Ca_3N_2 (mit sublimiertem Calcium) keine Sauerstoffverunreinigung nachgewiesen (Messwert unterhalb der Nachweisgrenze).

Für die Herstellung von grünem, metallisch glänzenden Ca_2N wurde jeweils ca. 1.0 g frisch hergestelltes Ca_3N_2 zu einer Tablette gepresst (150 bar) und in eine Niobampulle von ca. 5.0 cm Länge unter Argonatmosphäre verschweißt. Die Zersetzung von Ca_3N_2 zu Ca_2N findet nach dem in Abbildung 3.4 angegebenen Temperaturschema statt. So hergestelltes Subnitrid wurde sofort wieder für die Synthese eingesetzt, um eine Verunreinigung durch Zersetzungsprodukte, die während der Lagerung entstehen können, zu vermeiden.

Abb. 3.4: Temperaturprogramm zur Darstellung von grünem, metallisch glänzenden Ca₂N aus Ca₃N₂ in einer mit Argon gefüllten, verschlossenen Niobampulle.

Das Pulverdiffraktogramm belegt eine phasenreine Synthese von Ca₂N (Abbildung 3.5). Zum Vergleich wurden die berechneten Pulverdaten auf Basis der von Blake et al. bestimmten Einkristallstruktur herangezogen.^[70]

Abb. 3.5: Pulverdiffraktogramm von Ca₂N (oben) und Vergleich mit den berechneten Pulverdaten auf Basis der von Blake et al. bestimmten Strukturdaten (unten)^[70]

Frisch hergestelltes Ca₂N wurde ebenfalls mit der TGH-Methode auf dessen Sauerstoffgehalt hin untersucht und auch hier lagen die Messwerte für Sauerstoff unterhalb der Nachweisgrenze.

3.2 Reaktionsablauf

Aus Pulverdaten vorzeitig abgebrochener Umsetzungen (< 20 h) von Ca₃N₂ oder Ca₂N mit Si und Al kann geschlossen werden, daß in einer Schmelze mit bisher unbekannter Zusammensetzung, neben Calcium oder calciumreichen Siliciden wie z.B. Ca₂Si, Ca₅Si₃ oder CaSi noch AlN und das Subnitrid Ca₂N auskristallisieren. Des Weiteren liegen in der Probe große Mengen eines bisher nicht näher charakterisierten, röntgenamorphen Materials vor. Da über das Phasendiagramm im System Ca-Si-Al-N, außer den hier vorliegenden Daten keine weiteren Informationen vorliegen, kann über die möglichen Kristallisationsvorgänge bei dieser Reaktion nur gemutmaßt werden. Aufgrund der allen Silicaten zugrunde liegenden tetraedrischen Baueinheiten kann davon ausgegangen werden, daß sich analog zu den Oxosilicaten während der Reaktion auch Gläser bilden können.

Bei Pulverdiffraktogrammen erfolgreicher Synthesen von Nitridoaluminosilicaten (d.h. von kristallisierten Proben) beobachtet man immer einen hohen Untergrundverlauf des gemessenen Diffraktogramms. Die Pulverdiffraktogramme in den Abbildungen 3.6 und 3.7 zeigen, daß solche glasartige, röntgenamorphe Verbindungen vorliegen müssen. Für so aufgenommene Diffraktogramme wurde eine Glaskapillare mit einem Außendurchmesser von 0.1 mm verwendet, wobei die gleiche Probe zunächst auf einem Pulverdiffraktometer mit einem gebogenen PSD und anschließend auf einem Pulverdiffraktometer mit einem linearen PSD untersucht wurde.

Abb. 3.6: Pulverdiffraktogramm der Syntheseprodukte aus Ca₂N, Ca₃N₂, Al und Si.
 Die Pulveraufnahme erfolgte mit dem gebogenen PSD, die Gesamtbelichtungszeit betrug 30 Minuten.

Abb. 3.7: Pulverdiffraktogramm der Syntheseprodukte aus Ca₂N, Ca₃N₂, Al und Si.
 Die Pulveraufnahme erfolgte mit dem linearen PSD, die Gesamtbelichtungszeit betrug 24 Stunden.

Nur die Messung hochauflösender Pulverdiffraktogramme mit dem linearen PSD ermöglicht überhaupt eine Auswertung der Pulveraufnahmen. Eine Differenzierung der bis dahin nur sehr schwachen und meist sehr breiten, schlecht definierten Reflexe gelingt erst durch solche hochaufgelösten Langzeitmessungen. Die röntgenamorphen Anteile, die sich durch den hohen beobachteten Untergrund der Messung teilweise herausmitteln, deuten auf das Vorliegen von glasartigen Verbindungen hin. Eine direkte Charakterisierung einer solchen glasartigen Vorläufersubstanz gelang bisher noch nicht, doch es ist anzunehmen, daß es sich um interessante Materialien handelt.

Silicate in den Systemen (M-)Si-O, (M-)Si-Al-O, (M-)Si-Al-O-N und (M-)Si-N sind für ihre glasbildenden Eigenschaften bekannt. Aufgrund der engen Verwandtschaft der Nitridoaluminosilicate mit diesen Silicaten wäre auch in den hier untersuchten Systemen die Existenz glasartiger Verbindungen zu erwarten. (für eine Einführung zu Sialongläsern siehe z.B.^[72]).

Bei Erreichen des Erweichungspunktes des Glases könnte es dann zu einer Kristallisation von beispielsweise Ca₅Si₂Al₂N₈ ausgehend von der glasartigen Vorläufersubstanz kommen. Da die Temperatur dieses Erweichungspunktes nicht bekannt ist, muss davon ausgegangen werden, daß (weit) oberhalb dieser Temperatur gearbeitet wird. Da es sich beim glasigen Zustand um einen metastabilen Zustand handelt, der in den beständigen, energieärmeren kristallinen Zustand überzugehen versucht, kristallisieren Gläser erst bei längerem Tempern auf Temperaturen unterhalb ihres Erweichungspunktes. Zudem ist die Kristallisation von Gläsern ein sehr langsamer Prozess; teilweise reicht ein langes Stehenlassen von Gläsern bei Raumtemperatur zur Kristallisation unter gleichzeitiger Trübung aus. Untersuchungen mittels DTA zur Bestimmung des Erweichungspunktes der Gläser bzw. der kristallinen quaternären Nitridoaluminosilicate blieben wegen der sehr niedrigen Geschwindigkeit dieses Prozesses ohne Ergebnis. Ein weiterer Hinweis für die Kristallisation eines Glases sind die notwendigen langen Reaktionszeiten. Reaktionszeiten von weniger als 20 h führten nie zur Bildung von kristallinen Silicaten. Die schnelle Reaktion mit Ca₂N kann zur Bildung von Gläsern führen, die eventuell als Vorstufe zur Bildung von stickstoffhaltigen Silicaten und Aluminosilicaten dienen. Ob es sich dabei um Zwischenzustände in Form neuartiger Glaskeramiken handelt, muss noch weiter untersucht werden.

Vorteilhaft für die Gewinnung von Einkristallen guter Qualität aus Gläsern ist aber das Arbeiten knapp oberhalb dieser Temperatur und ein langsames Abkühlen unter diese Temperatur ("Unterkühlung"). Bei zu schneller Abkühlung kann es zum "Mitreißen" von Matrixkomponenten bei der Kristallisation von Ca₅Si₂Al₂N₈ kommen.

Anhand der untersuchten Einkristalle konnte ein signifikanter Einfluss durch diese gelösten Verunreinigungen oder Einschlüsse kristallographisch nicht festgestellt werden. Die Gütefaktoren der kristallographisch untersuchten Einkristalle von z.B. Ca₅Si₂Al₂N₈ lagen immer im Bereich von sehr guten 1.5 und 3.0 %.

Ein Nachweis solcher optisch z. T. nicht sichtbaren Einschlüsse gelingt aber durch Untersuchungen mit der Mikrosonde (siehe nachfolgende Kapitel).

3.3 Quantitative Analytik an Nitridoaluminosilicaten

3.3.1 Quantitative O/N-Analytik

Für O/N-Analysen mit der TGH-Methode wurden drei etwa 25 mg schwere Proben der in eine metallische Matrix aus Ca₅Si₃ eingebetteten Kristalle von Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ in Zinnkapseln gefüllt und analysiert. Die Synthese gelang bei dieser Probe durch die Umsetzung von Ca₃N₂ mit Al und Si im Verhältnis 4:2:2. Es ist ein Massenanteil an Sauerstoff von 0.82 Gew.-% nachweisbar. Der Sauerstoff scheint dabei zumindest teilweise in Form von CaO in der metallischen Matrix als Verunreinigung vorhanden zu sein. Im entsprechenden Pulverdiffraktogramm liegen zwei der drei Hauptpeaks von CaO genau unter den beiden Hauptpeaks von Ca₅Si₃, lediglich der Peak bei 53.85° 20 weißt auf die Existenz von CaO hin. Eine Sauerstoffmassenanteil von 0.82 Gew.-% entspricht einem CaO-Anteil von 2.2 mg auf 75.5 mg Probeneinwaage. Somit lässt sich CaO gerade noch mittels Pulverdiffraktometrie nachweisen (Nachweisgrenze). Eine Beimischung von wenig Sauerstoff in Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ kann dennoch nicht ganz ausgeschlossen werden. Die Summenformeln der beiden Nitridoaluminosilicate spiegeln dann eine entsprechende Phasenbreite gemäß Ca₅Si_{2-x}Al_{2+x}N_{8-x}O_x und Ca₄Si_{1-x}Al_{3+x}N_{7-x}O_x wider. Der Ladungsausgleich ist für jede dieser möglichen Zusammensetzungen gewährleistet. Die Pulverdiffraktogramme solcher variabel zusammengesetzten Phasen unterscheiden sich nicht signifikant und können anhand dieser nicht voneinander unterschieden werden.

3.3.2 LA-ICP-MS an Ca₅Si₂Al₂N₈

Eine LA-ICP-MS Analyse wurde zunächst an dem Einkristall von Ca₅Si₂Al₂N₈ durchgeführt, dessen Strukturdaten im Kapitel 6.2.2 angegeben sind. Die Ergebnisse dieser Untersuchung werden in Tabelle 3.1 gezeigt. In jeder in Tabelle 3.1 angegebenen Zeile "Ablation" werden die Ergebnisse der Probenablation an einem Punkt des Kristalls wiedergegeben ("Single-Spot-Drilling"). Für den Probenabtrag bis zur kompletten Durchdringung des Kristalls wurden Laserstahldurchmesser (Krater) von 60 µm und eine Repetitionsrate von 10 Hz verwendet.

Tab. 3.1: Ergebnisse der LA-ICP-MS Analysen an einem Einkristall von Ca₅Si₂Al₂N₈ mit Ca als interner Standard, NIST 610 als externer Standard, alle Konzentrationen in ppm.

Isotope	⁷ Li	²³ Na	²⁵ Mg	²⁷ AI	²⁸ Si	²⁹ Si	³⁰ Si	³⁵ CI
Ablation 1	46	88	10	136800	96800	98000	99100	29
Ablation 2	26	106	7	133400	98600	98400	98900	57
Ablation 3	115	506	10	134800	95000	93600	93000	47
Ablation 4	4	1	8	137900	100700	99600	100600	45
Ablation 5	14	36	7	134300	103800	102200	99500	50
Average	41	147	8	135400	99000	98400	98300	46
Stdev	44	204	1	1800	3400	3100	2900	10

Isotope	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁵⁷ Fe	⁸⁸ Sr	⁹³ Nb	¹⁵³ Eu
Ablation 1	474200	456100	403900	123	45	101	1
Ablation 2	474200	461300	459300	135	46	85	1
Ablation 3	474200	452100	413200	113	41	47	1
Ablation 4	474200	491000	470000	100	44	44	1
Ablation 5	474200	461100	468100	123	45	91	1
Average	474200	464300	442900	119	44	74	1
Stdev		15400	31800	14	2	26	0

Die Massenwerte sind bei Ca₅Si₂Al₂N₈ mit M = 422.62 auf die Masse 42 normiert (Konzentration Ca = 47.42 Gew.-%). Ca wurde als interner Standard gewählt, weil es das Element ist, das kristallographisch in dieser Verbindung als einziges zweifelsfrei quantitativ zugeordnet werden kann (Problematik Al/Si). Die durch den Ersatz von Al durch Si und von N durch O mögliche Phasenbreite gemäß Ca₅Si_{2-x}Al_{2+x}O_xN_{8-x} mit $0 \le x \le 0.6$ führt zu einer Veränderung der vorhandenen Massenverteilung (siehe Tabelle 3.2). Der Nachweis von entsprechenden Phasen mit $0.6 \le x \le 2$ gelang bisher nicht. Es kann dennoch auf Ca normiert werden, da sich die Änderung des Massenanteils von Ca auch bei einem signifikanten Ersatz von Al durch Si und den Einbau von Sauerstoff in einem sehr engen Rahmen bewegt. Selbst bei x = 0.6 verändert sich der Massenanteil von Ca nur von 47.42 auf 47.36 Massenprozent. Der so

gemachte Fehler in der Normierung ist kleiner als die Präzision der Methode und kann deshalb vernachlässigt werden.

	Summenformel	M [a/mol]	Massenanteil						
	Summennormen	w [g/moi]	Ca	Si	AI	0	N		
x = 0	Ca ₅ Si ₂ Al ₂ N ₈	422.58	47.42	13.30	12.77	0	26.52		
x = 0.1	Ca ₅ Si _{1.9} Al _{2.1} O _{0.1} N _{7.9}	422.67	47.41	12.63	13.41	0.38	26.18		
x = 0.2	Ca ₅ Si _{1.8} Al _{2.2} O _{0.2} N _{7.8}	422.76	47.40	11.96	14.04	0.76	25.84		
x = 0.3	Ca ₅ Si _{1.7} Al _{2.3} O _{0.3} N _{7.7}	422.84	47.39	11.29	14.68	1.14	25.51		
x = 0.4	Ca ₅ Si _{1.6} Al _{2.4} O _{0.4} N _{7.6}	422.93	47.38	10.63	15.31	1.51	25.17		
x = 0.5	Ca ₅ Si _{1.5} Al _{2.5} O _{0.5} N _{7.5}	423.02	47.37	9.96	15.95	1.89	24.83		
x = 0.6	Ca ₅ Si _{1.4} Al _{2.6} O _{0.6} N _{7.4}	423.11	47.36	9.20	16.58	2.27	24.50		

Tab. 3.2: Änderung der Massenverteilung in $Ca_5Si_{2-x}Al_{2+x}O_xN_{8-x}$ mit $0 \le x \le 0.6$

Bei dieser Analyse wurden mögliche Verunreinigungen auf den Isotopen ⁷Li, ¹¹B, ²³Na, ²⁵Mg, ²⁷Al, ²⁸Si, ²⁹Si, ³⁰Si, ³⁵Cl, ³⁹K, ⁴²Ca, ⁴³Ca, ⁴⁴Ca, ⁵³Cr, ⁵⁴Fe, ⁵⁵Mn, ⁵⁶Fe, ⁵⁷Fe, ⁷²Ge, ⁸⁸Sr, ⁹⁰Zr, ⁹³Nb, ¹⁵³Eu, ¹⁷⁸Hf und ¹⁸¹Ta untersucht und gemessen. Die in Tabelle 3.1 nicht aufgeführten Isotope konnten nicht nachgewiesen werden. Das ubiquitär als Verunreinigung vorkommende Natrium wurde mit einem Massenanteil von 147 ppm bei stark schwankenden Messwerten nachgewiesen. Li, Mg, Cl, Fe, Sr, Nb und Eu sind als Verunreinigung mit einem maximalen Anteil von ca. 100 ppm (1 - 119 ppm) im Kristall vorhanden. Somit kann auf eine Zusammensetzung der Probe ausschließlich aus den Metall- bzw. Halbmetallkomponenten Al, Si und Ca geschlossen werden.

Die nachgewiesenen absoluten Mengen an Al und Si stehen im Widerspruch zu den Erwartungswerten: Die Summe der beiden Isotope sollte bei 26.06 Gew.-% liegen. Stattdessen liegt der Summenwert für die beiden Isotope nur bei 23.43 Gew.-%. Diese Diskrepanz von absolut 2.63 % oder relativ 11.2 % kann durch keine der gefundenen Verunreinigungen erklärt werden. Die Konzentration für Al liegt mit 13.54 ± 0.18 Gew.-% etwas über dem Erwartungswert von theoretisch 12.77 Gew.-%. Die Konzentration von Si liegt mit 9.89 ± 0.34 Gew.-% signifikant unter dem erwarteten Wert von 13.29 Gew.-%.

Diese beiden Messwerte stellen allerdings die größte gefundene Abweichung in einer ganzen Serie von Messungen an insgesamt 12 Einkristallen dar. Alle Einkristalle wurden vor der Analyse röntgenographisch auf deren Zusammensetzung untersucht. In Tabelle 3.3 sind die Konzentrationen für Al und Si aus diesen 12 Analysen zusammengefasst.

Tab. 3.3: LA-ICP-MS: Konzentrationsbestimmungen anhand von 12 Einkristallen von Ca₅Si₂Al₂N₈ mit Ca als interner Standard, NIST 610 oder BCR 2G als externer Standard. Messwerte in Gew.-%. Dargestellt sind die Konzentrationen für Al und Si, deren Summe und die absolute Differenz zum Erwartungswert von 26.06 %.

	AI	Si	Σ Al+Si	abs. Diff.
Kristall 1	12.05	10.57	22.62	3.44
Kristall 2	11.58	10.73	22.31	3.75
Kristall 3	11.16	10.00	21.16	4.90
Kristall 4	12.08	9.65	21.73	4.33
Kristall 5	12.29	10.85	23.14	2.92
Kristall 6	12.34	10.72	23.06	3.00
Kristall 7	11.59	10.24	21.83	4.23
Kristall 8	12.14	10.30	22.44	3.62
Kristall 9	13.54	9.89	23.43	2.63
Kristall 10	12.61	10.60	23.21	2.85
Kristall 11	10.82	10.51	21.33	4.73
Kristall 12	11.48	9.66	21.14	4.92
Average	11.97	10.31	22.28	3.78
Stdev	0.72	0.42	1.14	1.14

Die Konzentrationen liegen für Al bei 11.97 ± 0.72 Gew.-% und für Si bei 10.31 ± 0.42 Gew.-%. Die mittlere Abweichung vom Summenwert beider Konzentrationswerte für beide Elemente liegt bei 3.78 %. Hier handelt es sich um eine signifikante Differenz, da die gefundene Standardabweichung von 1.12 Gew.-% nicht in der Lage ist, diese Differenz zu erklären. In allen 12 Untersuchungen konnten zudem keine Verunreinigungen gefunden werden, die für die Massendifferenz als Erklärung dienen könnten. Lediglich an einem Kristall konnte eine leicht erhöhte Konzentration

für Nb von 0.13 Gew.-% nachgewiesen werden, was z.B. durch Niobeinschlüsse im Kristall erklärt werden kann. Ein Einbau von signifikanten Mengen Nb^{3+} in die Kristallstruktur von $Ca_5Si_2Al_2N_8$ kann anhand der kristallographischen Daten nicht belegt werden und wird deswegen ausgeschlossen.

Wahrscheinlich handelt es sich bei diesem mit Niob angereicherten Kristall um ein nahe an der Ampullenwand gewachsenes Exemplar. Bei genauer Betrachtung des Kristalls unter dem Lichtmikroskop lassen sich kleine metallische Einschlüsse im sonst gelben und transparenten Kristall erkennen. Schaut man sich das dazugehörige zeitaufgelöste Signal der Ablation durch den Kristall an, so lassen sich Maximas im ⁹³Nb-Signal am Anfang und am Ende (oberflächlich anhaftendes Nb) sowie in der Mitte des Kristalls (Keim) nachweisen. Der entsprechende Signalwert (Counts per Second) steigt in diesen Bereichen um den Faktor 50 an.

Um Interferenzen zu erkennen, wurden für Ca und Si jeweils drei Isotope gemessen. Anhand der Isotopenverhältnisse (innerhalb der Präzision der Methode) konnte nachgewiesen werden, daß ein solcher Einfluss nicht vorlag. Zu hohe Konzentrationen bei den Isotopen ⁴²Ca, ⁴³Ca oder ⁴⁴Ca können z.B. durch mögliche Interferenzen aus ¹⁴N¹⁴N¹⁴N- bzw. ²⁸Si¹⁴N-, ²⁹Si¹⁴N- oder ²⁸Si¹⁶O-Clustern entstehen. Weiterhin weisen EDX-Analysen gleichfalls nur auf O/N, Al, Si und Ca hin.

Die kristallographischen Daten zu diesem und anderen röntgenographisch untersuchten Einkristallen von Ca₅Si₂Al₂N₈ weisen weder auf eine Unterbesetzung einer der Schweratomlagen noch auf eventuelle Mischbesetzungen durch Kohlenstoff hin, welcher weder mittels LA-ICP-MS noch über EDX nachgewiesen werden kann. Sämtliche thermischen Auslenkungsparameter der Strukturbestimmung bewegen sich im typischen Bereich solcher Verbindungen. Röntgenamorphe Einschlüsse lassen sich so ebenfalls nicht nachweisen. Die Anwesenheit von Wasserstoff kann aufgrund der Synthesebedingungen gänzlich ausgeschlossen werden.^[68]

3.3.3 LA-ICP-MS an Ca₄SiAl₃N₇

Um die in Kapitel 3.3.2 erhaltenen Ergebnisse besser verstehen zu können, wurden Einkristalle von Ca₄SiAl₃N₇ ebenfalls mittels LA-ICP-MS analysiert, da für das System Ca-Si-Al-N bislang keine Standards für diese Analysenmethode existieren. Die Ergebnisse einer an einem röntgenographisch untersuchten Einkristall von Ca₄SiAl₃N₇ durchgeführten LA-ICP-MS Analysen sind in Tabelle 3.4 wiedergegeben. In jeder in Tabelle 3.4 angegebenen Zeile "Ablation" werden die Ergebnisse der Probenablation an einem Punkt des Kristalls wiedergegeben ("Single-Spot-Drilling" Analyse). Für den Probenabtrag bis zur kompletten Durchdringung des Kristalls wurden Laserstahldurchmesser (Krater) von 60 µm und eine Repetitionsrate von 10 Hz verwendet,

Tab. 3.4: Ergebnisse der LA-ICP-MS Analysen an einem Einkristall von Ca₄SiAl₃N₇ mit Ca als interner Standard, NIST 610 als externer Standard, alle Messwerte in ppm.

Isotope	⁷ Li	²³ Na	²⁷ AI	²⁸ Si	²⁹ Si	³⁰ Si	³⁵ CI
Ablation 1	1	2	231400	48100	42000	39900	42
Ablation 2	36	1	231700	46600	45200	42500	43
Ablation 3	4	27	220400	41900	39000	37700	51
Ablation 4	3	2	214400	43700	39100	38700	52
Ablation 5	59	13	212300	47000	44500	42900	50
Average	21	9	222000	45400	42000	40400	48
Stdev	26	11	9200	2600	2900	2300	5

Isotope	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁵⁷ Fe	⁸⁸ Sr	⁹⁰ Zr	⁹³ Nb	¹⁵³ Eu	¹⁸¹ Ta
Ablation 1	436300	429600	377900	100	25	1	11000	1	8
Ablation 2	436300	449100	437800	97	24	1	11400	1	7
Ablation 3	436300	417100	374300	103	24	2	22700	1	17
Ablation 4	436300	421500	372700	105	25	1	23100	1	17
Ablation 5	436300	423100	375900	104	24	1	11700	1	9
Average	436300	428092	387700	102	24	1	16000	1	12
Stdev		12600	28000	3	1	0	6300	0	5

Die Massenwerte sind bei Ca₄SiAl₃N₇ mit M = 367.42 auf die Masse 42 normiert (Konzentration ⁴²Ca = 43.63 Gew.-%). Auch hier wurde Ca als interner Standard gewählt, weil es dasjenige Element ist, das kristallographisch in dieser Verbindung als einziges zweifelsfrei zugeordnet werden kann (Problematik Al/Si). Desgleichen gilt wiederum, daß die durch den Ersatz von Al durch Si und von N durch O mögliche Phasenbreite gemäß Ca₄Si_{1-x}Al_{3+x}O_xN_{7-x} zwar zu einer Veränderung der vorhandenen Massenverteilung führt, der so gemachte Fehler in der Normierung aber wie auch bei Ca₅Si_{2-x}Al_{2+x}O_xN_{8-x} vernachlässigt werden kann (siehe Kapitel 3.3.2).

Bei dieser Analyse wurden mögliche Verunreinigungen auf den Isotopen ⁷Li, ¹¹B, ²³Na, ²⁵Mg, ²⁷Al, ²⁸Si, ²⁹Si, ³⁰Si, ³⁵Cl, ³⁹K, ⁴²Ca, ⁴³Ca, ⁴⁴Ca, ⁵³Cr, ⁵⁴Fe, ⁵⁵Mn, ⁵⁶Fe, ⁵⁷Fe, ⁷²Ge, ⁸⁸Sr, ⁹⁰Zr, ⁹³Nb, ¹⁵³Eu, ¹⁷⁸Hf und ¹⁸¹Ta untersucht und gemessen. Die in Tabelle 3.4 nicht aufgeführten Isotope konnten nicht nachgewiesen werden. Das ubiquitär als Verunreinigung vorkommende Natrium wurde mit einem Massenanteil von 9 ppm knapp oberhalb der Nachweisgrenze gefunden. ⁷Li, ³⁵Cl, ⁵⁷Fe, ⁸⁸Sr, ⁹⁰Zr, ¹⁵³Eu und ¹⁸¹Ta sind als Verunreinigung mit einem maximalen Anteil von ca. 100 ppm (1 – 102 ppm) im Kristall vorhanden.

Eine Verunreinigung dieses Einkristalls mit 1.3 Gew.-% Nb ist wahrscheinlich auf das Wachstum dieses Kristalls in der Nähe der Ampullenwand zurückzuführen. Hinweise auf den Einbau von Niob in die Kristallstruktur von Ca₄SiAl₃N₇ liegen anhand der kristallographischen Daten nicht vor. Dennoch ist es denkbar, das geringe Mengen an Nb³⁺ auf den durch Al³⁺ und Si⁴⁺-Kationen besetzten Lagen enthalten ist. Ein Anteil von 1.3 Gew.-% entspricht ca. 0.06 Nb pro Formeleinheit. Weitere, mittels LA-ICP-MS analysierte Einkristalle von Ca₄SiAl₃N₇ weisen keine über der Nachweisgrenze liegende Verunreinigung durch Nb auf.

Die nachgewiesene absolute Menge an Al und Si steht wie auch schon bei $Ca_5Si_2Al_2N_8$ im Widerspruch zu den Erwartungswerten: Die Summe der beiden Isotope sollte bei 29.68 Gew.-% liegen, stattdessen ist der Summenwert für die beiden Isotope nur bei 26.75 Gew.-%. Diese Diskrepanz von absolut 2.93 % oder relativ 9.9 % kann durch keine der gefundenen Verunreinigungen erklärt werden. Die Konzentration des Aluminiums liegt mit 22.21 ± 0.91 Gew.-% im Rahmen der Standardabweichung beim theoretischen Erwartungswert von 22.02 Gew.-%. Die Konzentration von Si hingegen

liegt mit 4.54 ± 0.26 Gew.-% deutlich unter dem erwarteten Wert von 7.65 Gew.-%.

Bei der quantitativen Analyse eines zweiten Einkristalls von $Ca_4SiAl_3N_7$ ist die gemessene Konzentration für die Summe aus Al und Si ebenfalls deutlich tiefer als die erwarteten Werte. Die Konzentrationen für Al bzw. Si liegen bei 20.08 ± 1.99 Gew.-% bzw. 4.50 ± 0.31 Gew.-%. Die Abweichung vom Summenwert beider Elemente beträgt absolut 5.10 %, wobei auf die große Standardabweichung des Messwerts für Al hingewiesen werden soll. Die relativen Standardabweichungen der Konzentrationen für Si zeigen eine etwas geringere Schwankungsbreite, was auf eine homogenere Verteilung des Siliciums in den Einkristallen von Ca₄SiAl₃N₇ hindeutet.

Um Interferenzen zu erkennen, wurden für Ca und Si jeweils drei Isotope gemessen. Anhand der Isotopenverhältnisse (innerhalb der Präzision der Methode) konnte nachgewiesen werden, daß ein solcher Einfluss hier ebenfalls nicht vorlag. Zu hohe Konzentrationen bei den Isotopen ⁴²Ca, ⁴³Ca oder ⁴⁴Ca können z.B. durch mögliche Interferenzen aus ¹⁴N¹⁴N¹⁴N- bzw. ²⁸Si¹⁴N-, ²⁹Si¹⁴N- oder ²⁸Si¹⁶O-Clustern entstehen. Zudem weisen EDX-Analysen nur auf O/N, Al, Si und Ca hin.

Die kristallographischen Daten zu diesem und anderen röntgenographisch untersuchten Einkristallen weisen weder auf eine Unterbesetzung einer der Schweratomlagen noch auf eventuelle Mischbesetzungen durch Kohlenstoff hin, welcher weder über eine LA-ICP-MS noch über EDX nachgewiesen werden konnte. Sämtliche thermischen Auslenkungsparameter der Strukturbestimmung bewegen sich im typischen Bereich solcher Verbindungen. Die Anwesenheit von Wasserstoff kann aufgrund der Synthesebedingungen gänzlich ausgeschlossen werden.^[68] Aufgrund der in diesem und dem vorhergehenden Kapitel beschriebenen analytischen Daten lassen sich nun zwei Theorien zur Erklärung der gefundenen Diskrepanz der Al- und Si-Konzentrationen aufstellen:

- Die LA-ICP-MS ist als Analysemethode für Systeme Ca-Si-Al-N nicht einsetzbar; geeignete Vergleichsubstanzen zur Standardisierung in diesem System sind nicht vorhanden.
- Es treten bisher nicht n\u00e4her identifizierte Ph\u00e4nomene in Einkristallen von Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ auf, die r\u00f6ntgenographisch nicht erfasst werden k\u00f6nnen und zur Messung niedriger als erwarteter Konzentrationen f\u00fcr Si und Al f\u00fchren.

Um die Aussagekraft der durchgeführten Analysen an Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ besser einschätzen zu können, wurden deswegen Vergleichsmessungen an einem natürlich vorkommenden Mineral durchgeführt. Bei Grossular Ca₃Si₃Al₂O₁₂ handelt es sich um ein Nesosilicat mit einer vergleichbaren Zusammensetzung (natürlich vorkommende Nitridosilicate bzw. Nitridoaluminosilicate sind, wie bereits erwähnt, nicht bekannt). Analytisch eindeutig charakterisierte Nitridoaluminosilicate stehen als Vergleichsmaterial ebenfalls nicht zur Verfügung. Im Falle von Grossular stimmen die bestimmten Konzentrationen für Al als auch für Si mit der Stöchiometrie der Probe sehr gut überein (Abweichung Σ [Al+Si] \leq 1 Gew.-%). Dieses Ausschlussverfahren zeigt auf, daß die beobachteten Abweichungen der untersuchten Nitridoaluminosilicate signifikant sind.

Aufgrund der Tatsache, daß mit der LA-ICP-MS und den vorliegenden Strukturdaten zwei Analyseverfahren zu unterschiedlichen Resultaten führten, war der Einsatz einer weiteren Methode zur direkten Festkörperanalytik notwendig. Hierbei wurde die sogenannte Mikrosonde (EPMA) herangezogen, da es sich um den Nachweis von Hauptgruppenelementen handelt. Vorteile sind eine bessere räumliche Auflösung (10 statt 60 µm) als bei den Untersuchungen mittels LA-ICP-MS und eine elementspezifische Kalibration.

3.3.4 Mikrosonde an Ca₅Si₂Al₂N₈

Einige Kristalle von Ca₅Si₂Al₂N₈ wurden wie in Kapitel 2.2.3 beschrieben unter Argonatmosphäre in ein Harz auf Methacrylatbasis eingebettet. Die so eingebetteten Kristalle wurden anschließend vorsichtig mit einem sehr feinen Schleifpapier (2000er Körnung) angeschliffen, um eine möglichst glatte Oberfläche zu erhalten. Trotz dieser trockenen Schleifmethode lässt es sich nicht vermeiden, daß die Kristalle zum Teil auseinander brechen. Bei einer genauen Betrachtung von gelben, transparenten Einkristallen von Ca₅Si₂Al₂N₈ unter dem Lichtmikroskop lassen sich kleine rote, transparente Einschlüsse in den Kristallen erkennen. Zur Analyse mit der Mikrosonde wurden nur möglichst große, unzerbrochene Kristalle herangezogen. Ein so untersuchter Kristall ist in Abbildung 3.8 dargestellt.

Die in das Methacrylatharz (dunkelgrau) eingebetteten, angeschliffenen Einkristalle lassen sich im lichtmikroskopischen Bild als hellgraue Bereiche erkennen. Die Oberflächen der Einkristalle sind trotz der Verwendung eines sehr feinen Schleifpapiers von kleinen Furchen überzogen. Oberflächenrauigkeiten von wenigen Mikrometern haben allerdings keinen Einfluss auf die Konzentrationsbestimmungen.

In Abbildung 3.9 ist der gleiche Bereich dargestellt wie in Abbildung 3.8, allerdings unter Verwendung von rückgestreuten Elektronen. Unterschiede in der Zusammensetzung lassen sich so durch das Auftreten hellerer oder dunklere Grautöne erkennen. Der weiß umrahmte Bereich in Abbildung 3.9 zeigt dabei eine besonders starke Häufung von Bereichen unterschiedlicher Zusammensetzung und ist in Abbildung 3.10 3x vergrößert dargestellt.

Abb. 3.8: Lichtmikroskopisches Bild von in Methacrylatharz eingebetteten Kristallen von Ca₅Si₂Al₂N₈

Abb. 3.9: Elektronenmikroskopisches Bild von in Methacrylatharz eingebetteten Kristallen von Ca₅Si₂Al₂N₈ unter Verwendung rückgestreuter Elektronen. Zusammensetzungsunterschiede lassen sich durch andere Grautöne erkennen.

Abb. 3.10: Aus Abbildung 3.9 umrandeter Bereich 3x vergrössert. Gekennzeichnet sind die unterschiedlichen Bereiche der Kristalle.

In dieser vergrößerten Darstellung in Abbildung 3.10 lassen sich insgesamt drei unterschiedliche, analytisch relevante Bereiche identifizieren. Die Bereiche lassen sich in einen mittelgrauen homogenen, einen hellen Al-freien und einen dunkelgrauen, Ca-, Si- und Al-armen Bereich einteilen. Die am Rand des Kristalls auftretenden hellgrauen Bereich bestehen aus mit Kristallabrieb gefüllten Hohlräumen, die jedoch nicht weiter untersucht wurden.

In Tabelle 3.5 sind die Ergebnisse der Elementanalyse des homogenen, mittelgrauen, in Abbildung 3.10 dargestellten Bereiches wiedergegeben. Es fällt auf, daß die Al-Messwerte mit durchschnittlich 13.2 Massenprozent fast 1.5 Gew.-% über dem in Tabelle 3.3 dargestellten Wert liegt, während sich die Si-Konzentrationen im bekannten Rahmen bewegen. Dementsprechend liegt auch der Summenwert aus Al und Si um fast 1.5 Gew.-% höher. Tab. 3.5: Elementanalyse mit der Mikrosonde des mittelgrauen, homogenen Bereichs in Abbildung 3.10. Dargestellt sind die Konzentrationen für Ca, Al und Si in Massenprozent, sowie deren Summe und die absolute Differenz zum Erwartungswert von 26.06 %.

	Са	AI	Si	Σ Al+Si	abs. Diff.
Spot 1	44.80	13.17	10.46	23.63	2.43
Spot 2	44.79	12.88	10.63	23.51	2.55
Spot 3	45.24	13.48	10.18	23.66	2.40
Spot 4	45.49	13.44	10.67	24.11	1.95
Spot 5	43.77	12.83	10.50	23.33	2.73
Spot 6	45.73	13.60	10.57	24.17	1.89
Average	44.97	13.23	10.50	23.74	2.32
Norm	47.42	13.95	11.07	25.02	1.04
Stdev	0.73	0.34	0.19	0.53	0.53

Da aber auch der Wert für Ca zu tief bestimmt wurde, werden sämtliche so gefundenen Messwerte mit dem Faktor 1.0544 multipliziert. Der Messwert für Ca wird damit auf den Erwartungswert von 47.42 Massenprozent angehoben, die Werte für Al und Si steigen entsprechend mit an (Zeile "Norm").

Die aus der Analyse des homogenen, mittelgrauen Bereichs resultierende durchschnittliche Summenformel dieses Bereichs liegt damit bei Ca₅Si_{1.7}Al_{2.2}O_xN_{8-x} (x \cong 0.25), wobei die Werte für Sauerstoff und Stickstoff basierend auf der Elektroneutralitätsbedingung nur abgeschätzt werden können. Die Konzentrationen für Ca, Al und Si über den ganzen, unter rückstreuenden Elektronen homogen erscheinenden Bereich des Kristalls deutet auf eine homogene Elementverteilung hin, weswegen eine eindeutige Aussage zur Massenbalance Al/Si möglich ist. Die Summe der Werte für Al und Si liegt mit 25.02 ± 0.53 Gew.-% schon sehr nahe am erwarten Wert von 26.06 Gew.-%.

Zwei weitere, auf die gleiche Weise analysierte Einkristalle ergeben eine mittlere Zusammensetzung von $Ca_5Si_{1.7}Al_{2.2}O_xN_{8-x}$ (x $\cong 0.25$) bzw. $Ca_5Si_{1.5}Al_{2.4}O_xN_{8-x}$ (x $\cong 0.45$).

Tab. 3.6: Elementanalyse mit der Mikrosonde des hellen (Spot 7 und 8) bzw. dunklen (Spot 9-11) Bereichs in Abbildung 3.10. Dargestellt sind die Messwerte f
ür Ca, Al und Si in Massenprozent.

	Са	AI	Si
Spot 7	52.32	0.09	35.74
Spot 8	52.52	0.11	34.03
Spot 9	37.92	5.84	6.12
Spot 10	38.54	6.29	5.88
Spot 11	42.68	7.19	5.89

Über die tatsächliche Zusammensetzung der unter rückgestreuten Elektronen hell bzw. dunkelgrau erscheinenden Bereiche kann nur spekuliert werden. In Tabelle 3.6 sind die Ergebnisse der Elementanalyse des hellen (Spot 7 und 8) bzw. dunklen (Spot 9-11) Bereichs in Abbildung 3.10 dargestellten Bereichs wiedergegeben. So sind die hellen Bereiche (Spot 7 und 8) praktisch frei von Aluminium, während Ca und Si dort im Massenverhältnis von ungefähr 1.5:1 vorkommen. Eine Zuordnung zu einem bekannten Oxo- oder Nitridosilicat gelang nicht. Die Differenz der auf 100 % normierten Massenanteile lässt auschliessen, daß es sich um ein reines Calciumsilicid handelt.

Bei dem unter rückgestreuten Elektronen dunkel erscheinenden Bereich (Spot 9-11) handelt es sich um die lichtmikroskopisch roten, transparenten Bereiche, die weder mit Ca₅Si₂Al₂N₈ oder Ca₄SiAl₃N₇ noch CaSiAlN₃ vereinbar sind. Ob es sich bei diesem oder dem oben erwähnten hellen Bereich eventuell um glasartige, röntgenamorphe Verbindungen oder eine bisher unbekannte Verbindung im System Ca-Si-Al-N handelt, kann noch nicht abschließend entschieden werden (siehe auch Kapitel 3.2).

3.3.5 Scanning-LA-ICP-MS an Ca₅Si₂AI₂N₈

Um den Einfluss der aus den Mikrosondenmessungen nachweisbaren An- und Abreicherungen von Ca, Al und Si weiter zu untersuchen, wurde eine LA-ICP-MS Analyse im Scanning Mode durchgeführt. Im Vordergrund der Untersuchungen stand, inwieweit die mit der Mikrosonde gefundenen Einschlüsse, die in Kapitel 3.3.2 und 3.3.3 bestimmten Abweichungen der Si- bzw. Al-Konzentrationen erklären können.

Dabei erfolgt ein kontinuierliches Monitoring der Elementzusammensetzung über verschiedene Probenbereiche. Im Gegensatz zum Single-Spot-Verfahren wird hier die Probe unter dem Laser bewegt. Es kommt ein 193 nm Argonfluoridlaser mit einer räumlichen Auflösung von 30 µm zum Einsatz. So kommt es im Vergleich zum Single-Spot-Verfahren durch das viermal kleinere Probenvolumen zu einer entsprechenden Erhöhung der Auflösung der Analyse.

Es wurde die gleichen, in Kapitel 3.3.4 analysierten Kristalle von Ca₅Si₂Al₂N₈ mittels Scanning-LA-ICP-MS und Single-Spot-LA-ICP-MS untersucht. Da der oberflächlich aufgebrachte Kohlenstoff durch die Bildung von z.B. ¹²C¹⁶O den Messwert für das Isotop ²⁸Si erhöhen kann, musste dieser vorher abgeschliffen werden, um eine Verfälschung der Konzentrationsmesswerte durch Interferenzen zu verhindern.

Die in Abbildung 3.11 markierten Probenbereiche wurden mit dem Laser gescannt und die Konzentration von Ca, Al und Si für die entsprechenden Bereiche ermittelt.

Die Ergebnisse der Scanning-LA-ICP-MS entlang dieser Linien sind in Tabelle 3.7 wiedergegeben.

- Abb. 3.11: Elektronenmikroskopisches Bild von in Methacrylatharz eingebetteten Kristallen von Ca₅Si₂Al₂N₈ unter Verwendung rückgestreuter Elektronen. Eingezeichnet sind Linien, entlang denen gerastert wurde (3, 4, 7-9) bzw. die Bereiche, bei denen die Analyse an einem Punkt erfolgte (b3-b8)
- Tab. 3.7: Ergebnisse der Scanning-LA-ICP-MS entlang der in Abbildung 3.11 gezeichneten Linien 3, 4 und 7-9. Ca₅Si₂Al₂N₈ mit Ca als interner Standard, NIST 610 als externer Standard, alle Messwerte in ppm.

Isotope	⁷ Li	¹¹ B	²⁵ Mg	²⁷ AI	²⁹ Si	³⁰ Si	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁵⁷ Fe	⁸⁸ Sr	⁹³ Nb
Raster 3	0	1	32	134300	113300	105400	474200	477900	471500	484	48	269
Raster 4	5	1	90	137600	114800	107200	474200	475200	471700	499	51	223
Raster 7	1	1	39	139800	116500	111300	474200	475500	469800	471	47	135
Raster 8	0	2	33	147200	99900	97700	474200	474000	466700	451	51	202
Raster 9	1	1	18	143200	117300	111800	474200	474300	475600	444	46	154
Average	1	1	42	140420	112360	106680	474200	475380	471060	470	49	197
Stdev	2	0	28	5000	7100	5700		1500	3200	23	3	54

Über alle gerasterten Bereiche erhält man so einen Summenwert für Al + Si von 25.28 ± 1.31 Gew.-%, der unter Berücksichtigung der Standardabweichung dem Erwartungswert von 26.06 Gew.-% entspricht. Die mit Raster 3 und Raster 4 bezeichneten Linien weisen wegen des Probenabtrags über homogene als auch Al-freie Bereiche eine etwas kleinere Konzentration für Al auf.

Dennoch zeigen selbst die Resultate der Raster 3 und 4, daß die auf diesem Weg erhaltenen Konzentrationen die Probe repräsentativer widerspiegeln, als die mit 60 µm räumlicher Auflösung durchgeführten Single-Spot-Analysen. Dies lässt sich massgeblich aus den unterschiedlichen zur Analyse herangezogenen Massenverhältnissen (Einschluss / homogener Einkristall) erklären, die für das Single-Spot- und Scanning-Verfahren bis zu einer Grössenordnung voneinander abweichen können.

Wendet man bei dem oben mit der Scanning-LA-ICP-MS untersuchten Kristall das Single-Spot-Drilling-Verfahren an, so erhält man wiederum zu tiefe Summenwerte für AI + Si, da die Konzentrationen über die verschiedenen, unterschiedlich zusammengesetzten Bereiche des Kristalls gemittelt werden. Tabelle 3.8 gibt die so ermittelten Messwerte wieder. Für den Probenabtrag wurden Laserstahldurchmesser (Krater) von 30 µm und eine Repetitionsrate von 10 Hz verwendet, bis der Kristall komplett durchdrungen war.

Tab. 3.8: Ergebnisse der nach der "Singe-Spot-Drilling"-Methode durchgeführten LA-ICP-MS. Es wurde die in Abbildung 3.11 gezeichneten Bereichen b3-b9 untersucht. Ca₅Si₂Al₂N₈ mit ⁴²Ca als interner Standard, NIST 610 als externer Standard, alle Messwerte in ppm.

Isotope	⁷ Li	¹¹ B	²⁵ Mg	²⁷ AI	²⁹ Si	³⁰ Si	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁵⁷ Fe	⁸⁸ Sr	⁹³ Nb
b3	0	1	12	128300	109500	104400	474200	481500	476800	432	52	254
b4	0	1	8	131900	109000	107300	474200	530500	480400	460	47	282
b5	0	1	2	131000	106100	108400	474200	475700	477900	424	43	139
b6	0	1	11	127000	108400	102500	474200	463500	462800	455	56	130
b7	0	1	6	133200	106000	106000	474200	475000	476000	448	66	223
b8	1	2	8	123600	113200	106700	474200	485200	472700	428	89	99
Average	0	1	8	129167	108700	108700	474200	485233	474433	441	59	188
Stdev	0	0	3	3600	2700	2100		23400	6200	5	17	75

3.3.6 Zusammenfassung der Analytik an Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇

Abschliessend lässt sich sagen, daß erst durch die Kombination von drei unterschiedlichen Festkörperanalyseverfahren die chemische Zusammensetzung der Kristalle von Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ schlüssig aufgeklärt werden konnte.

Die Anwendung von Single-Spot-LA-ICP-MS Analysen mit einer räumlichen Auflösung von 60 μ m ist für die Analyse dieser Kristalle weniger geeignet, da bei dieser Auflösung die vorhandenen Inhomogenitäten die bestimmten Konzentrationen dominieren und verändern. Die Tatsache, daß diese Methode aufgrund der Inhomogenitäten stets zu niedrige Konzentrationen für Al und Si liefert, konnte erst durch den Einsatz einer Mikrosonde mit einer räumlichen Auflösung von 10 μ m aufgeklärt werden. Die Scanning-LA-ICP-MS mit einer höheren Auflösung als die Single-Spot-LA-ICP-MS ermöglicht dann eine repräsentative quantitative Analyse der durch die Mikrosonde identifizierten homogenen Bereiche in Einkristallen von Ca₅Si₂Al₂N₈.

Trotz der hervorragenden Gütefaktoren (1.5-3.0%) der röntgenographisch untersuchten Einkristalle von Ca₅Si₂Al₂N₈ und Ca₄SiAl₃N₇ lassen sich keinerlei Hinweise auf diese Zusammensetzungsunterschiede nachweisen. Es ist deswegen davon auszugehen, daß es sich bei diesen Verunreinigungen um nicht regelmässig ausgerichtete Bereiche von Oxo- oder Nitridosilicaten oder röntgenamorphe Gläser handelt.

4 Die Systeme Ca-Si-N und M-Ca-Si-N

Im System Ca-Si-N konnte mit $Ca_2Si_5N_8$ bislang nur eine Verbindung strukturell charakterisiert werden (siehe Tabelle 1.1).^[4] Von Phasen der Zusammensetzung CaSiN₂, Ca₄SiN₄ und Ca₅Si₂N₆ sind zwar Röntgenpulverdaten vorhanden, eine weitergehende strukturelle Aufklärung gelang bisher noch nicht.^[73]

Ca₂Si₅N₈ liegt in einem eigenen Strukturtyp mit einer kovalent aufgebauten Raumnetzstruktur vor. Gemäß ${}^{3}_{\infty}[(Si_{5}^{[4]}N_{4}^{[3]}N_{4}^{[2]})^{4-}]$ handelt es sich um ein Tectosilicat, bei dem in gleicher Anzahl jeweils kovalent an zwei bzw. drei Silicium gebundene Stickstoffatome vorliegen. Senkrecht zur a-Achse finden sich Schichten aus kondensierten Dreier-Ringen. Unter Ausbildung von Dreier-Ringen verknüpfen weitere [SiN₄]-Tetraeder diese Schichten zu der dreidimensionalen Raumnetzstruktur. Durch diese Anordnung (Abbildung 4.1) ergeben sich zwischen den Schichten entlang der *b*-Achse verlaufende röhrenartige Hohlräume, in denen sich die Ca²⁺-Kationen befinden.

In den Systemen M-Ca-Si-N sind bisher noch keine Verbindungen bekannt.

Abb. 4.1: Darstellung der anionischen Gerüststruktur von Ca₂Si₅N₈. Die Ca-Atome sind schwarz, die SiN₄-Tetraeder sind als geschlossene Polyeder gezeichnet, Blickrichtung [010].

4.1 CaSiN₂

4.1.1 Synthese von CaSiN₂

Die Synthese von CaSiN₂ gelang zum ersten Mal durch die Umsetzung einer Mischung aus 445 mg Ca₃N₂ (3.0 mmol) und 193 mg CaSi₂ (2.0 mmol). Sowohl Ca₃N₂ als auch CaSi₂ wurden nicht selbst hergestellt, stattdessen wurden diese von den Firmen Alfa/Johnson-Mathey bzw. Fluka bezogen. Die Substanzen werden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgt die Umsetzung nach folgendem Temperaturprogramm:

Abb. 4.2: Temperaturprogramm zur erstmaligen Synthese von CaSiN₂ aus Ca₃N₂ und CaSi₂

Reproduzierbare Synthesen von mikrokristallinem $CaSiN_2$ gelingen durch die Umsetzung von Ca_2N und Si im Verhältnis 2:1 in geschlossenen Niob- oder Tantalampullen. Dazu werden 280 mg Ca_2N und 42 mg Si miteinander in einem Achatmörser vermahlen, unter 150 bar Druck zu einer Tablette gepresst und in eine Niob- oder Tantalampulle verschweißt. Die Herstellung von Ca_2N erfolgte dabei nach der in Kapitel 3.1.4 beschriebenen Methode. Die Substanzen wurden nach dem in Abbildung 4.3 angegebenen Temperaturprogramm erhitzt.

Abb. 4.3: Temperatur programm zur reproduzierbaren Synthese von CaSiN₂ aus Ca₂N und Si

 $CaSiN_2$ kristallisiert in Form von transparenten, farblosen Polyedern. Neben $CaSiN_2$ findet man bei dieser Synthese noch Kristalle von $Ca_5Si_2N_6$ eingebettet in eine metallische Matrix aus Ca_2Si und Ca (siehe Abbildung 4.4).

 Abb. 4.4: Ausschnitt aus dem Pulverdiffraktogramm der Umsetzung von Ca₂N und Si und Vergleich mit den berechneten Strichdiagrammen von CaSiN₂, Ca₅Si₂N₆ sowie Ca₅Si₃ ^[74] und Ca (von oben nach unten)

4.1.2 Kristallstruktur von CaSiN₂

Farblose Einkristalle von CaSiN₂ können aufgrund ihres unregelmäßigen Habitus und ihrer Transparenz unter einem Lichtmikroskop mit Polarisationsfilter identifiziert werden. Die Kristalle sind dabei genauso wie das bei dieser Synthese als Nebenprodukt anfallende Ca₅Si₂N₆ in eine metallische Matrix aus Ca₂Si und Ca eingebettet.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von CaSiN₂ sind in den Tabellen 4.1, 4.2, 4.3 und 4.4 angegeben. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen $0.20 \cdot 0.20 \cdot 0.10 \text{ mm}^3$. Die Analyse der systematischen Auslöschungen führte ausschließlich zu der zentrosymmetrischen Raumgruppe *Pbca*. Die Positionen der Calcium-, Aluminium- und Siliciumatome werden mit Hilfe der Direkten Methoden gefunden, während die der Stickstoffatome über eine Differenzfourieranalyse lokalisiert wurden. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0615 und wR₂ = 0.1834. Eine empirische Absorptionskorrektur mit Hilfe des Programms SADABS führte zu einer Verbesserung des internen R-Wertes von 0.0850 auf 0.0746 sowie der Gütefaktoren auf R = 0.0311 und wR₂ = 0.0814.

Der im Pulverdiffraktogramm in Abbildung 4.4 sichtbare Hauptreflex (mit einem "*" markiert) bei etwa 34.2° 2Θ und einige sehr kleine Nebenreflexe können weder CaSiN₂ noch Ca₅Si₂N₆, Ca₂Si oder Ca zugeordnet werden.

Durch Strukturanalysen an dunkel-orangefarbenen, optisch transparenten Einkristallen aus dieser und anderen Proben kann eine weitere Phase von kubischem "CaSiN₂" identifiziert werden. Eine schlüssige Strukturverfeinerung an dieser kubischen Phase von "CaSiN₂" mit a=1484.8 pm in der Raumgruppe F $\overline{4}$ 3m gelang bisher noch nicht abschließend; die Reflexlagen dieser neuen Verbindung passen jedoch sehr gut auf die nicht erklärten Peaks in Abbildung 4.4 und stimmen gut mit dem ICSD-Eintrag Nr. 40-1151 überein.

Eine kubische Hochtemperaturphase von $CaSiN_2$ mit a=1486.4 pm und einer *F*-Zentrierung wird in der ICSD-Datenbank bereits unter ICSD Eintrag Nr. 40-1151 erwähnt, strukturell konnte diese aber ebenfalls nicht aufgeklärt werden.

Tab. 4.1:	Kristallographische	Daten	und	Angaben	zur	Strukturbestimmung	von
	CaSiN ₂						

Zusammensetzung	CaSiN ₂
Formelgewicht [gmol ⁻¹]	96.19
Kristallgröße [mm]	0.20 x 0.20 x 0.10
Kristallform	Polyeder
Farbe	farblos, transparent
Gitterkonstanten [pm]	a = 513.0(1)
	b = 1022.4(1)
	c = 1481.9(2)
Zellvolumen [10 ⁶ ·pm ³]	777.2(2)
Formeleinheiten pro Zelle	16
Raumgruppe	<i>Pbca</i> (Nr. 61)
Dichte ρ_{calc} [g/cm ³]	3.288
μ [mm ⁻¹]	3.374
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	3°< 2⊖ <23°
hkl-Bereich	$-5 \le h \le 5; -11 \le k \le 11; -16 \le l \le 16$
Anzahl gemessener Reflexe	4612
Anzahl unabhängiger Reflexe	539 R _{int} =0.0746
Reflexe mit $ F ^2 > 2\sigma(F ^2)$	369
Strukturbestimmung	Ca und Si aus direkten Methoden
	N aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	74
Restelektronendichte [eÅ-3]	0.45 / -0.34
R-Werte für $ F ^2 > 2\sigma(F ^2)$	$R1 = 0.0311, WR_2 = 0.0785$
R-Werte für alle Reflexe	$R1 = 0.0519, wR_2 = 0.0814$
GOOF für alle Reflexe	1.154

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 4.2: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für CaSiN₂. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	x/a	y/b	z/c	U _{iso}	Besetzungs-
	Lage					faktor
Cal	8 <i>c</i>	0.2422(3)	0.0095(1)	0.0650(1)	15(1)	1
Ca2	8 <i>c</i>	0.3416(2)	0.2730(1)	0.1873(1)	14(1)	1
Si1	8 <i>c</i>	0.2291(3)	0.0161(2)	0.3123(1)	9(1)	1
Si2	8 <i>c</i>	0.3127(3)	0.2695(2)	0.4373(1)	10(1)	1
N1	8 <i>c</i>	0.0942(9)	0.4773(4)	0.2155(3)	12(1)	1
N2	8 <i>c</i>	0.146 (1)	0.2774(5)	0.0346(4)	17(2)	1
N3	8 <i>c</i>	0.193 (1)	0.4268(5)	0.4083(3)	12(1)	1
N4	8 <i>c</i>	0.279 (1)	0.1789(5)	0.3381(3)	16(1)	1

Tab. 4.3: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für CaSiN₂. Die Parameter U_{ij} sind definiert für $exp[-2\pi^{2}(U_{11}h^{2}a^{*2} + ... + 2U_{23}klb^{*}c^{*})].$

Atom	U ₁₁	U ₂₂	U ₃₃	U_{12}	U ₁₃	U ₂₃
Ca1	16(1)	18(1)	12(1)	3(1)	-2(1)	-3(1)
Ca2	15(1)	17(1)	10(1)	0(1)	-1(1)	4(1)
Si1	7(1)	11(1)	7(1)	-1(1)	1(1)	1(1)
Si2	10(1)	11(1)	9(1)	-2(1)	0(1)	1(1)
N1	5(3)	18(3)	13(3)	-2(2)	2(2)	1(2)
N2	15(3)	21(3)	17(4)	-2(3)	6(2)	-2(3)
N3	6(3)	13(3)	16(3)	-1(3)	2(2)	0(2)
N4	21(3)	14(3)	11(3)	-2(2)	-3(2)	-1(2)

Aton	1 - Paar	d	Atom	- Paar	d	Ator	n - Paar	d
Ca1	- N1	240.6(5)	Si1	- N4	172.7(5)	N1	- Si1	174.3(5)
	- N3	242.0(5)		- N3	173.7(5)		- Si1	175.5(5)
	- N3	242.5(5)		- N1	174.3(5)			
	- N2	248.3(5)		- N1	175.5(5)	N2	- Si2	174.4(5)
	- N2	281.9(5)					- Si2	176.1(5)
			Si2	- N2	174.4(5)			
Ca2	- N4	245.5(5)		- N4	174.6(5)	N3	- Si1	173.7(5)
	- N4	247.0(5)		- N2	176.1(5)		- Si2	177.5(5)
	- N2	247.7(5)		- N3	177.5(5)			
	- N1	247.9(5)				N4	- Si1	172.7(5)
	- N3	278.0(5)					- Si2	174.6(5)
	- N1	284.8(5)						

Tab. 4.4: Atomabstände (Standardabweichungen) [pm] für CaSiN₂

CaSiN₂ ist aus einem dreidimensionalen Netzwerk isotyp zu KGaO₂ aufgebaut und kristallisiert damit in einer verzerrten Ordnungsvariante des Cristobalit-Typs.^[75] Das anionische Raumnetzwerk lässt sich Gemäß ${}^{3}_{\infty}[(Si_{2}^{[4]}N_{4}^{[2]})^{2-}]$ beschreiben, wobei sich die Ca²⁺-Kationen in den Lücken des Gerüsts befinden (siehe Abbildung 4.5). Diese sind in röhrenartigen Hohlräumen angeordnet, die entlang der *a*-Achse verlaufen. Dieses Raumnetzwerk besteht ausschließlich aus kondensierten [Si₆N₆]-Sechserringen, welche wiederum aus eckenverknüpften [SiN₄]-Tetraedern zusammengesetzt sind.

 Abb. 4.5: Darstellung der Kristallstruktur von CaSiN₂ in Blickrichtung [100] (leicht gekippt). Die Ca-Atome sind schwarz, [SiN₄]-Tetraeder als geschlossene Polyeder gezeichnet.

Der Ca-N-Abstand beträgt zwischen 240.6 pm und 284.8 pm, wobei Ca1 durch fünf Stickstoffatome quadratisch-pyramidal und Ca2 durch sechs Stickstoffatome verzerrt oktaedrisch koordiniert wird. In der Struktur von CaSiN₂ finden sich ausschließlich zweifach verbrückende Stickstoffatome N^[2]. Die Si-N^[2]-Abstände liegen zwischen 172.7 pm und 177.5 pm und damit im üblichen Bereich bekannter Nitridosilicate.^[76]

Rechnungen zu den effektiven Koordinationszahlen belegen die fünffache Koordination von Ca1 sowie die sechsfache Koordination von Ca2 (siehe Kapitel 4.1.3).

4.1.3 Theoretische Untersuchungen

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium kommt eine Konstanz der ^NMEFIR- und ^NECoN-Werte zum Tragen. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 4.5 sind die Ergebnisse der Berechnungen abgebildet.

Tab. 4.5: N	MEFIR- und ^N	ECoN-Berechnungen	an $CaSiN_2$	(37 Zyklen)
-------------	-------------------------	-------------------	--------------	-------------

Atom	^N MEFIR(pm)	^N ECoN
Ca1	107.9	4.929
Ca2	117.2	6.132
Si1	31.1	3.998
Si2	31.9	3.992
N1	143.7	11.603
N2	143.6	11.415
N3	144.0	11.773
N4	141.9	10.506

Die Ergebnisse der ^NECoN-Berechnungen bestätigen die Koordinationszahlen der Kationen: Mit einem ^NECoN-Wert von 4.929 ist Ca1 fünffach, Ca2 mit einem ^NECoN-Wert von 6.132 etwas mehr als sechsfach koordiniert. Die Siliciumatome sind nahezu perfekt vierfach koordiniert, die Stickstoffatome haben mit ^NECoN-Werten zwischen 11.415 und 11.773 Werte nahe an 12. Sie liegen damit nahezu in einer kubisch dichtesten Kugelpackung vor.

4.2 Ca₅Si₂N₆

4.2.1 Synthese von Ca₅Si₂N₆

Bei einer Umsetzung von 500 mg Ca₃N₂ (3.38 mmol) mit 71 mg CaO (1.26 mmol), 46 mg Al (1.69 mmol) und 48 mg Si (1.69 mmol) konnte neben Einkristallen von Ca₇Si_{4-x}Al_xO_{10-x}N_x und Ca₅Al₂Si₂N₈ erstmals auch farblose, transparente Plättchen von Ca₅Si₂N₆ nachgewiesen und identifiziert werden. Die Herstellung von Ca₃N₂ erfolgt dabei wie in Kapitel 3.1.4 beschrieben. Die Ausgangsstoffe wurden für diese Synthese gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt.

Die Synthese von phasenreinem, mikrokristallinem $Ca_5Si_2N_6$ gelang durch die Umsetzung von 113 mg Ca_3N_2 (0.76 mmol), 72 mg Ca_2N (0.76 mmol) und 36 mg Si_3N_4 (0.25 mmol). Die Substanzen wurden innig miteinander vermahlen, unter 150 bar Druck zu einer Tablette gepresst und in einen Molybdäntiegel gefüllt. Dieser Tiegel wurde mit einem Molybdändeckel verschlossen und in eine Niobampulle eingeschweißt. Die Herstellung von Ca_3N_2 und Ca_2N erfolgte wie in Kapitel 3.1.4 beschrieben. Die Reaktionsampulle wurde in einem kontinuierlich evakuierten Korundrohr nach dem in Abbildung 4.6 angegeben Temperaturschema erhitzt.

Abb. 4.6: Temperaturprogramm zur Synthese von mikrokristallinem und phasenreinem Ca₅Si₂N₆ aus Ca₂N, Ca₃N₂ und Si

Abb. 4.7: Pulverdiffraktogramm von phasenreinem Ca₅Si₂N₆ aus der Synthese mit Ca₂N, Ca₃N₂ und Si₃N₄ und Vergleich mit dem dazugehörigen berechneten Strichdiagramm

Im Pulverdiffraktogramm der Syntheseprodukte (siehe Abbildung 4.7) lässt sich ausschließlich $Ca_5Si_2N_6$ nachweisen. In der ICSD Datenbank existiert ein Eintrag zu $Ca_5Si_2N_6$ (ICSD Eintrag Nr. 21-160), der aber nicht mit den hier gemessenen Pulverdaten übereinstimmt (siehe Abbildung 4.8). Eine Indizierung des in der Datenbank vorhandenen Eintrags gelingt nicht, weitere Informationen über die Kristallstruktur oder Symmetrie dieses Eintrags sind nicht vorhanden. Eventuell existieren damit neben der hier beschriebenen Variante von $Ca_5Si_2N_6$ noch weitere homöotype Varianten von $Ca_5Si_2N_6$ bzw. das Diagramm in der ICSD enthält ein Phasengemisch.

 Abb. 4.8: Berechnetes Strichdiagramm von Ca₅Si₂N₆ (oben) aus der vorliegenden Strukturanalyse sowie das Strichdiagramm von Ca₅Si₂N₆ aus der ICSD-Datenbank (unten) (ICSD Eintrag Nr. 21-160).

Die Synthese von Einkristallen von $Ca_5Si_2N_6$ mit Kantenlängen, die sich im Bereich mehrerer 100 µm bis maximal 1 mm bewegen, gelingt durch die Umsetzung von Ca_3N_2 und Si im molaren Verhältnis 2:1. Die Substanzen werden dazu miteinander in einem Achatmörser verrieben, zu einer Tablette gepresst und in einer verschweißten Niobampulle nach folgendem Temperaturprogramm erhitzt:

Abb. 4.9: Temperaturprogramm zur Synthese großer Einkristalle von Ca₅Si₂N₆ aus Ca₃N₂ und Si

Die Niobampulle wird während der Umsetzung im Korundrohr nicht kontinuierlich evakuiert. Stattdessen wird das Korundrohr nur zu Beginn der Umsetzung evakuiert, im weiteren Verlauf der Umsetzung wird die Vakuumpumpe vom Korundrohr getrennt. Die oberflächlich blau angelaufene und spröde Niobampulle enthält nach der Reaktion große farblose, unregelmäßige, transparente Einkristalle von Ca₅Si₂N₆. Diese Kristalle sind in eine Matrix aus metallischem Ca, Ca₂Si und Ca₅Si₃ eingebettet. Die Matrix dient als Flussmittel und ermöglicht das Wachstum großer Kristalle.
4.2.2 Kristallstruktur von Ca₅Si₂N₆

Einkristalle von $Ca_5Si_2N_6$ können aufgrund ihres unregelmäßigen Habitus und ihrer Transparenz unter einem Lichtmikroskop mit Polarisationsfilter identifiziert werden. Die Gewinnung von Einkristallen von $Ca_5Si_2N_6$ in einer Größenordnung von mehreren 100 µm gelingt durch die Umsetzung von Ca_3N_2 , Ca_2N und Si im stöchiometrischen Verhältnis 1:1:1. Die Kristalle sind dabei in eine metallische Matrix aus Ca, Ca_2Si und Ca_5Si_3 eingebettet.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von Ca₅Si₂N₆ sind in den Tabellen 4.6, 4.7, 4.8 und 4.9 angegeben. Die Datensammlung erfolgte auf einem mit Flächendetektor ausgestattetem Diffraktometer (IPDS, Fa. STOE) an einem transparenten und farblosen Einkristall mit den Abmessungen 0.15.0.09.0.08 mm³. Die Analyse der systematischen Auslöschungen führte zu den Raumgruppen Cc (Nr. 9) und C2/c (Nr. 15). Ein sinnvolles Modell der Kristallstruktur von Ca₅Si₂N₆ konnte nur in der zentrosymmetrischen Raumgruppe C2/c gefunden werden. Die Positionen der Calcium- und Siliciumatome wurden mit Hilfe der Direkten Methoden ermittelt, während die der Stickstoffatome über eine Differenzfourieranalyse Verfeinerung der lokalisiert wurden. Nach Ortsund aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0271 und $wR_2 = 0.0728$. Eine numerische Absorptionskorrektur wurde mit Hilfe der Programme XRED und XSHAPE durchgeführt. Damit konnte eine Verbesserung des internen R-Wertes von 0.0620 auf 0.0614 sowie der Gütefaktoren auf R = 0.0251 und $wR_2 = 0.0679$ erreicht werden.

Zusammensetzung	Ca ₅ Si ₂ N ₆
Formelgewicht [gmol ⁻¹]	340.64
Kristallgröße [mm]	0.15 x 0.09 x 0.08
Kristallform	unregelmässiges Polyeder
Farbe	farblos, transparent
Gitterkonstanten [pm]	a = 983.6(2)
	$b = 605.2(1), \beta = 100.20(3)$
	c = 1275.7(3)
Zellvolumen [10 ⁶ ·pm ³]	747.4(3)
Formeleinheiten pro Zelle	4
Raumgruppe	C2/c (Nr. 15)
Dichte ρ_{calc} [g/cm ³]	3.0272
μ [mm ⁻¹]	3.85
Datensammlung	STOE IPDS Flächendetektor
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d = 60.00 mm, 150 Aufnahmen
	3 Min/Aufnahme, Schwenkwinkel 2.0°
Temperatur	293 (2) K
Thetabereich	$3.3^\circ < \Theta < 28.0^\circ$
hkl-Bereich	$-12 \le h \le 12; \ -7 \le k \le 7; \ -16 \le l \le 16$
Anzahl gemessener Reflexe	5054
Anzahl unabhängiger Reflexe	847 R _{int.} =0.0614
Reflexe mit $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	809
Strukturbestimmung	Ca und Si aus direkten Methoden
	N aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	XRED/XSHAPE (numerisch)
Anzahl Parameter	60
Restelektronendichte [eÅ ⁻³]	0.51 / -0.60
R-Werte für $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	$R1 = 0.0251, WR_2 = 0.0636$
R-Werte für alle Reflexe	$R1 = 0.0277, WR_2 = 0.0679$
GOOF für alle Reflexe	1.300

Tab. 4.6: Kristallographische Daten und Angaben zur Strukturbestimmung von $Ca_5Si_2N_6$

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 4.7: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen)
[pm²·10] und Besetzungsfaktoren für Ca₅Si₂N₆. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	Х	У	Z	U _{iso}	Besetzungs-
	Lage					faktor
Cal	4 <i>e</i>	0	0.6171(2)	$^{1}/_{4}$	9(1)	1
Ca2	8f	0.0648(1)	0.2600(1)	0.4993(1)	9(1)	1
Ca3	8f	0.1532(1)	0.0847(1)	0.2162(1)	6(1)	1
Si1	8f	0.2768(1)	0.3702(1)	0.0760(1)	4(1)	1
N1	8f	0.1512(3)	0.4587(5)	0.1478(2)	6(1)	1
N2	8f	0.2761(3)	0.0690(5)	0.0625(2)	7(1)	1
N3	8f	0.4409(3)	0.4565(5)	0.1276(2)	6(1)	1

Tab. 4.8: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ca₅Si₂N₆. Die Parameter U_{ij} sind definiert für exp[- $2\pi^2(U_{11}h^2a^{*2} + ... + 2U_{23}klb^*c^*)$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ca1	9(1)	7(1)	13(1)	0	9(1)	0
Ca2	11(1)	10(1)	7(1)	-2(1)	3(1)	-3(1)
Ca3	4(1)	8(1)	5(1)	2(1)	0(1)	-1(1)
Si1	3(1)	6(1)	3(1)	0(1)	1(1)	0(1)
N1	5(1)	10(1)	5(1)	-2(1)	2(1)	1(1)
N2	7(1)	8(2)	5(1)	0(1)	0(1)	2(1)
N3	6(1)	7(1)	5(1)	-1(1)	1(1)	-1(1)

Atom	- Paar	d	n	Atom	ı - Paar	d	n	Atom	- Paar	d n
Ca1	- N1	235.9(3)	2	Ca3	- N3	232.5(3)		N1	- Si1	174.7(3)
	- N3	258.3(3)	2		- N1	242.4(3)				
	- N2	296.5(3)	2		- N3	246.7(3)		N2	- Si1	178.9(3)
					- N2	247.3(3)			- Si1	183.1(3)
Ca2	- N3	244.2(3)			- N1	248.0(3)				
	- N3	256.7(3)						N3	- Si1	171.3(3)
	- N1	257.7(3)		Si1	- N3	171.3(3)				
	- N2	264.7(3)			- N1	174.7(3)				
	- N1	284.0(3)			- N2	178.9(3)				
	- N2	288.8(3)			- N2	183.1(3)				
					- Si1	240.7(1)				

Tab. 4.9: Atomabstände (Standardabweichungen) [pm] für Ca₅Si₂N₆. n bezeichnet die Zahl der entsprechenden Abstände.

Gemäß ${}_{2}^{0}[(Si_{2}^{[4]}N_{4}^{[1]}N_{2}^{[2]})^{10-}]$ handelt es sich bei Ca₅Si₂N₆ um ein Disilicat aus der Familie der Oligosilicate, bei dem zwei $[SiN_{4}]$ -Tetraeder durch eine gemeinsame Kante miteinander verknüpft sind und so isolierte $[Si_{2}N_{6}]^{10-}$ -Anionen bilden (siehe Abbildung 4.10). Dieser Anionentyp konnte zum ersten Mal bereits bei Ba₅Si₂N₆ nachgewiesen werden.^[8] Ca₅Si₂N₆ und Ba₅Si₂N₆ sind homotyp zueinander, in beiden Verbindungen liegen ausschließlich isolierte $[Si_{2}N_{6}]^{10-}$ -Anionen vor. Ba₅Si₂N₆ kristallisiert im Gegensatz zu Ca₅Si₂N₆ nicht in einem monoklinen System in *C*2/*c*, sondern orthorhombisch in der Raumgruppe *P*2₁2₁2₁ (Nr. 19). Die Struktur und damit auch die Verknüpfungsart von Li₅SiN₃ konnte bislang nicht geklärt werden.^[78] Es ist anzunehmen, daß in "Li₁₀Si₂N₆" ebenfalls isolierte $[Si_{2}N_{6}]^{10-}$ -Anionen vorliegen.

Die interatomaren Abstände zwischen den Stickstoff- und den Ca-Atomen betragen zwischen 232.5 pm bis 296.5 pm. Die Ca²⁺-Ionen werden dabei von fünf (Ca3) oder von sechs (Ca1, Ca2) Stickstoffatomen koordiniert. Das von fünf Stickstoffatomen koordinierte Ca3 wird noch zusätzlich von Si1 im Abstand von 290.4 pm umgeben. Ca1 ist damit trigonal prismatisch, Ca2 oktaedrisch und Ca3 quadratisch pyramidal koordiniert.

Abb. 4.10: Perspektivische Darstellung der Kristallstruktur von Ca₅Si₂N₆. Die Ca-Atome sind schwarz, die SiN₄-Tetraeder sind als geschlossene Polyeder gezeichnet. Blickrichtung [010].

Die Bindungslängen Si-N^[1] zu den terminalen Stickstoffatomen liegen in Ca₅Si₂N₆ bei 171.3 pm bzw. 174.7 pm. Mit 174 pm und 176 pm bewegen sich die Abstände zu den terminalen Stickstoffatomen im Ba₅Si₂N₆ ein wenig über den hier gefundenen. Das gleich gilt für die Bindungslängen Si-N^[2] zu den verbrückenden Stickstoffatomen: Diese liegen mit 178.9 pm und 183.1 pm etwas unter den entsprechenden Abständen von Ba₅Si₂N₆ mit 181 pm und 184 pm.

Mit 240.7 pm ist der Si-Si-Abstand in der $[Si_2N_6]$ -Einheit in Ca₅Si₂N₆ deutlich kürzer als der Si-Si-Abstand in Ba₅Si₂N₆, der dort 255.6 pm beträgt (siehe Abbildung 4.11). In Ca₇Si₄N₁₀ wird in der $[Si_2N_6]$ -Einheit ein noch kürzerer Si-Si-Abstand von 236.1 pm gefunden (siehe Kapitel 4.3.2). Der Si-N-Si-Winkel innerhalb der $[Si_2N_6]$ -Einheit ist mit 83.3° deutlich kleiner als bei den in Ba₅Si₂N₆ oder BaSi₇N₁₀ vorkommenden $[Si_2N_6]$ -Einheiten mit nahezu 90°.^{[7],[8]} Begründet werden kann diese Abweichung von 90° mit dem kurzen Si-Si-Abstand, der zu einer Verzerrung der Si-N-Si-N-Einheit führt.

Abb. 4.11: Bindungsverhältnisse im [Si₂N₆]¹⁰⁻-Anion in Ca₅Si₂N₆, Abstände in pm. Symmetrie-äquivalente Bindungsabstände und -winkel sind der Übersichtlichkeit halber nicht aufgeführt.

Die Abstände Si-N^[1] (172.7 pm bis 176.1 pm) entsprechen nahezu den Werten der terminalen Atome in $Ba_5Si_2N_6$ (174 - 176 pm). So findet man z.B. in $Ca_5Al_2Si_2N_8$ einen Si-N^[1]-Abstand von 172.5 pm (siehe Kapitel 6.2.2.).

Während in den beiden anderen Nitridosilicaten, die diese kantenverknüpfte $[Si_2N_6]$ -Einheit enthalten, die Si-Si-Abstände 255.6 pm (Ba₅Si₂N₆, isolierte $[Si_2N_6]^{10}$ -Einheit) bzw. 250.6 pm (BaSi₇N₁₀, verknüpfte $[Si_2N_6]$ -Einheit) betragen, liegt der Si-Si-Abstand in Ca₇Si₄N₁₀ mit 236.1 pm bereits im Bereich der Si-Si-Einfachbindung im elementaren Si von 235.2 pm.^[79] Der hier vorliegende Si-Si-Abstand ist mit 240.7 pm deutlich unter dem in Ba₅Si₂N₆ gefundenen. Die Si-N-Abstände bewegen sich in der $[Si_2N_6]$ -Einheit mit 178.9 pm bis 183.1 pm im Rahmen der bekannten Werte für Ba₅Si₂N₆ und BaSi₇N₁₀.

4.2.3 Theoretische Untersuchungen

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium kommt eine Konstanz der ^NMEFIR- und ^NECoN-Werte zum Tragen. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 4.10 sind die Ergebnisse der Berechnungen angegeben.

Tab. 4.10: ^NMEFIR- und ^NECoN-Berechnungen an Ca₅Si₂N₆ (38 Zyklen)

Atom	^N MEFIR(pm)	^N ECoN
Ca1	104.8	4.422
Ca2	119.5	5.921
Ca3	100.5	5.034
Si1	31.5	3.990
N1	143.5	9.038
N2	148.8	10.561
N3	141.0	9.729

Die Ergebnisse der ^NECoN-Berechnungen bestätigen im Grossen und Ganzen die Koordinationszahlen der Kationen: Mit einem ^NECoN-Wert von 4.422 ist Ca1 eher vierfach, Ca2 mit einem ^NECoN-Wert von 5.921 sechsfach und Ca3 mit einem ^NECoN-Wert von 5.034 fünffach koordiniert. Die zwei mit 296.5 pm weit von Ca1 entfernten Stickstoffatome N2 scheinen demnach praktisch keine Rolle für die Koordination von Ca1 zu spielen. Das Siliciumatom ist fast perfekt vierfach umgeben und die Stickstoffatome liegen mit ^NECoN-Werten zwischen 9.038 und 10.561 nicht in einer quasi-dichtesten Kugelpackung vor.

4.3 $Ca_7Si_{4-x}AI_xO_xN_{10-x}$ ($0 \le x \le 0.5$)

4.3.1 Synthese von Ca₇Si₄N₁₀ und Ca₇Si_{4-x}AI_xO_xN_{10-x}

Die Synthese der Stammverbindung $Ca_7Si_4N_{10}$ mit x = 0 gelang durch die Umsetzung von 183 mg Ca_2N (1.94 mmol) mit 288 mg Ca_3N_2 (1.94 mmol) und 164 mg Si (5.84 mmol). Die Herstellung von Ca_2N und Ca_3N_2 erfolgte dabei wie in Kapitel 3.1.4 beschrieben. Die Substanzen wurden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgte die Umsetzung nach dem in Abbildung 4.12 beschriebenen Temperaturprogramm:

Abb. 4.12: Temperatur programm zur Synthese von $Ca_7Si_4N_{10}$ aus Ca_2N , Ca_3N_2 und Si

Im Pulverdiffraktogramm (siehe Abbildungen 4.13 und 4.14) der so hergestellten Stammverbindung findet sich neben $Ca_7Si_4N_{10}$ noch $Ca_5Si_3^{[74]}$ und Ca_2Si (ICSD Eintrag Nr. 3-798).

Abb. 4.13: Pulverdiffraktogramm der Syntheseprodukte aus Ca₂N, Ca₃N₂ und Si

Abb. 4.14: Ausschnitt aus dem in Abbildung 4.13 gezeigten Pulverdiffraktogramm und Vergleich mit den berechneten Strichdiagrammen von Ca₇Si₄N₁₀ und Ca₅Si₃ sowie Ca₂Si (von oben nach unten)

Die Synthese von Ca₇Si_{4-x}Al_xO_xN_{10-x} (x \leq 0.5) wurde zum ersten Mal durch die Umsetzung einer Mischung aus 312 mg käuflich erworbenem Ca₃N₂ (2.1 mmol) und 97 mg käuflich erworbenem CaSi₂ (1.0 mmol) durchgeführt. Im weiteren Verlauf der Synthesen gelang es, dieses Sialon durch ein Mischung aus 582 mg selbst hergestelltem Ca₃N₂ (3.9 mmol), 40 mg Al₂O₃ (0.39 mmol) und 77 mg Si (2.7 mmol) zu synthetisieren. Die Substanzen wurden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in einer Niobampulle verschweißt. In einem evakuieren Korundrohr erfolgte die Umsetzung nach folgendem Temperaturprogramm:

Abb. 4.15: Temperatur programm zur Synthese von $Ca_7Si_{4-x}Al_xO_xN_{10-x}$ aus Ca_3N_2 , Al_2O_3 und Si

Die dabei benötigte lange Haltezeit von 38 h bei 1400°C kann über die Zersetzung von Ca_3N_2 in die reaktivere Verbindung Ca_2N erklärt werden (siehe Kapitel 3.1.3). Kürzere Haltezeiten bei 1400°C führen beim Einsatz von ausschließlich Ca_3N_2 als Stickstoffquelle nie zu einer erfolgreichen Synthese von $Ca_7Si_{4-x}Al_xO_xN_{10-x}$.

 $Ca_7Si_{4-x}Al_xO_xN_{10-x}$ (x ≤ 0.5) zersetzt sich im Laufe von ca. acht Stunden an (feuchter) Luft, in Wasser in einigen Minuten und in verdünnter Salzsäure in wenigen Sekunden.

4.3.2 Kristallstruktur von Ca₇Si₄N₁₀ und Ca₇Si_{4-x}Al_xO_xN_{10-x}

Einkristalle von Ca₇Si₄N₁₀ bzw. von Ca₇Si_{4-x}Al_xO_xN_{10-x} können aufgrund ihres regelmäßigen Habitus und ihrer Transparenz unter einem Lichtmikroskop mit Polarisationsfilter leicht identifiziert werden. Ca₇Si₄N₁₀ kristallisiert in Form von transparenten, farblosen Stäbchen und Ca₇Si_{4-x}Al_xO_xN_{10-x} in Form von transparenten, gelb oder orange gefärbten Stäbchen. Die Kristalle sind dabei in eine metallische Matrix eingebettet. Im Pulverdiffraktogramm lässt sich bei Ca₇Si_{4-x}Al_xO_xN_{10-x} kann neben Ca₂Si als Matrixkomponente identifizieren, im Falle von Ca₇Si_{4-x}Al_xO_xN_{10-x} kann neben Ca₂Si noch CaO nachgewiesen werden.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von $Ca_7Si_{4-x}Al_xO_xN_{10-x}$ mit $x \cong 0.5$ sind in den Tabellen 4.11, 4.12, 4.13 und 4.14 angegeben. Auf den Abdruck der kristallographischen Daten der Stammverbindung $Ca_7Si_4N_{10}$ wurde verzichtet, da sich die Gitterparameter, die Atomkoordinaten und die Auslenkungsparameter nur im Rahmen der Messungenauigkeit von den hier abgedruckten unterscheiden. Der Einbau von wenig Al^{3+} und O^{2-} hat keinen signifikanten Einfluss auf die kristallographischen Daten.

Die Datensammlung erfolgte auf einem mit Flächendetektor ausgestattetem Diffraktometer (CCD, Fa. Siemens) an einem transparenten, orange gefärbten Einkristall mit den Abmessungen $0.50 \cdot 0.10 \cdot 0.10 \text{ mm}^3$. Die Analyse der systematischen Auslöschungen führte ausschließlich zu der zentrosymmetrischen Raumgruppe $P2_1/c$ (Nr. 14). Die Positionen der Calcium-, Aluminium- und Siliciumatome wurden mit Hilfe der Direkten Methoden gefunden, während die der Stickstoff- bzw. Sauerstoffatome über eine Differenzfourieranalyse lokalisiert werden konnten. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0437 und wR₂ = 0.0516. Eine empirische Absorptionskorrektur mit Hilfe des Programms SADABS führte zu einer Verbesserung des internen R-Wertes von 0.0610 auf 0.0410 sowie der Gütefaktoren auf R = 0.0265 und wR₂ = 0.0485.

Гаb. 4.11:	Kristallographische	Daten	und	Angaben	zur	Strukturbestimmung	von
	$Ca_7Si_{4-x}Al_xN_{10-x}O_x$ ($\mathbf{x} \cong 0.5$)				

Zusammensetzung	$Ca_7Si_{4\text{-}x}Al_xO_xN_{10\text{-}x} \text{ mit } x \cong 0.5$
Formelgewicht [gmol ⁻¹]	$533.42 (x \approx 0.5)$
Kristallgröße [mm]	0.50 x 0.10 x 0.10
Kristallform	Stäbchen
Farbe	gelb, transparent
Gitterkonstanten [pm]	a = 591.3(4)
	$b = 2034(1), \beta = 105.61(2)$
	c = 951.8(6)
Zellvolumen [10 ⁶ ·pm ³]	1102.3(1)
Formeleinheiten pro Zelle	4
Raumgruppe	$P2_1/c$ (Nr. 14)
Dichte ρ_{calc} [g/cm ³]	3.212
μ [mm ⁻¹]	3.80
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	2°< 2⊖ <61°
hkl-Bereich	$-8 \le h \le 8; -29 \le k \le 28; -13 \le l \le 12$
Anzahl gemessener Reflexe	10813
Anzahl unabhängiger Reflexe	3369 R _{int.} =0.0377
Reflexe mit $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	2630
Strukturbestimmung	Ca, Si und Al aus direkten Methoden
	N und O aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	190
Restelektronendichte [eÅ ⁻³]	0.49 / -0.48
R-Werte für $ F ^2 > 2\sigma(F ^2)$	$R1 = 0.0265, WR_2 = 0.0485$
R-Werte für alle Reflexe	$R1 = 0.0437, WR_2 = 0.0516$
GOOF für alle Reflexe	0.994

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

-

Tab.4.12:Atomkoordinaten,Auslenkungsparameter(Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für Ca₇Si_{4-x}Al_xN_{10-x}O_x (x \cong 0.5). U_{iso} istdefiniert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	X	у	Z	U _{iso}	Besetzungs-
	Lage		-			faktor
Cal	4 <i>e</i>	0.0466(1)	0.2184(1)	0.0589(1)	9(1)	1
Ca2	4 <i>e</i>	0.1337(1)	0.5613(1)	0.6142(1)	8(1)	1
Ca3	4 <i>e</i>	0.1442(1)	0.6398(1)	0.1259(1)	10(1)	1
Ca4	4 <i>e</i>	0.4608(1)	0.4271(1)	0.0246(1)	10(1)	1
Ca5	4 <i>e</i>	0.5070(1)	0.1483(1)	0.0145(1)	8(1)	1
Ca6	4 <i>e</i>	0.6399(1)	0.0020(1)	0.1669(1)	10(1)	1
Ca7	4 <i>e</i>	0.7011(1)	0.2989(1)	0.2090(1)	10(1)	1
Si1	4 <i>e</i>	0.0570(1)	0.5224(1)	0.9004(1)	7(1)	1
Si2	4 <i>e</i>	0.1821(1)	0.0845(1)	0.1807(1)	7(1)	1
Si3	4 <i>e</i>	0.2213(1)	0.3477(1)	0.1975(1)	8(1)	1
Si4	4 <i>e</i>	0.3697(1)	0.2135(1)	0.3833(1)	7(1)	1
N1	4 <i>e</i>	0.0387(1)	0.8967(1)	0.3416(2)	10(1)	1
N2	4 <i>e</i>	0.1090(3)	0.6129(1)	0.3744(2)	9(1)	1
N3	4 <i>e</i>	0.1652(3)	0.2797(1)	0.3063(2)	10(1)	1
N4	4 <i>e</i>	0.2040(3)	0.5178(1)	0.0853(2)	8(1)	1
N5	4 <i>e</i>	0.2152(3)	0.0218(1)	0.3101(2)	10(1)	1
N6	4 <i>e</i>	0.2596(3)	0.3190(1)	0.0262(2)	10(1)	1
N7	4 <i>e</i>	0.2686(3)	0.0495(1)	0.0366(2)	8(1)	1
N8	4 <i>e</i>	0.3393(3)	0.7413(1)	0.0463(2)	10(1)	1
N9	4 <i>e</i>	0.3760(3)	0.1515(1)	0.2520(2)	10(1)	1
N10	4 <i>e</i>	0.4826(3)	0.3898(1)	0.2761(2)	6(1)	1

Tab. 4.13: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ca₇Si_{4-x}Al_xN_{10-x}O_x (x \cong 0.5). Die Parameter U_{ij} sind definiert für exp[-2 π^2 (U₁₁h²a^{*2} + ... + 2U₂₃klb*c*)].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cal	9(1)	8(1)	10(1)	0	3(1)	0
Ca2	9(1)	9(1)	7(1)	0	2(1)	-1(1)
Ca3	12(1)	9(1)	8(1)	0	3(1)	0
Ca4	10(1)	9(1)	11(1)	2(1)	4(1)	0
Ca5	8(1)	8(1)	8(1)	0	3(1)	0
Ca6	10(1)	12(1)	7(1)	0	1(1)	2(1)
Ca7	12(1)	10(1)	9(1)	-1(1)	3(1)	2(1)
Si1	8(1)	7(1)	6(1)	-1(1)	2(1)	0
Si2	8(1)	7(1)	6(1)	0	3(1)	0
Si3	9(1)	8(1)	7(1)	0	2(1)	0
Si4	7(1)	7(1)	6(1)	0	2(1)	0
N1	12(1)	9(1)	10(1)	0	4(1)	0
N2	8(1)	11(1)	8(1)	0	2(1)	-1(1)
N3	11(1)	9(1)	10(1)	0	2(1)	0
N4	8(1)	10(1)	7(1)	0	2(1)	-1(1)
N5	11(1)	10(1)	9(1)	1(1)	4(1)	-2(1)
N6	14(1)	8(1)	8(1)	1(1)	4(1)	-1(1)
N7	9(1)	8(1)	7(1)	0	3(1)	1(1)
N8	8(1)	11(1)	10(1)	1(1)	2(1)	0
N9	11(1)	10(1)	11(1)	-2(1)	4(1)	-2(1)
N10	6(1)	5(1)	7(1)	-1(1)	2(1)	-1(1)

Tab. 4.14:	Atomabstände	(Standardabweichungen)	[pm]	für	Ca ₇ Si _{4-x} Al _x N _{10-x} O _x
	(x ≅ 0.5).				

Atom	-	Paar	d	Atom	-	Paar	d	Atom	-	Paar	d
Cal	-	N8	237.7(2)	Ca6	-	N4	231.2(2)	Si4	-	N8	176.3(2)
	-	N6	246.6(2)		-	N7	238.9(2)		-	N9	178.3(2)
	-	N2	248.3(2)		-	N7	241.4(2)		-	N6	178.5(2)
	-	N3	258.8(2)		-	N10	249.7(2)		-	N3	182.6(2)
	-	N9	266.3(2)		-	N2	278.6(2)				
	-	N3	268.0(2)								
Ca2	-	N7	243.7(2)	Ca7	-	N10	243.6(2)	N1	-	Si1	173.1(2)
	-	N10	244.0(2)		-	N8	251.4(2)		-	Si3	178.5(2)
	-	N5	246.6(2)		-	N1	263.7(2)				
	-	N2	248.1(2)		-	N8	267.4(2)	N2	-	Si2	175.6(2)
	-	N1	252.6(2)		-	N3	267.8(2)				
	-	N7	256.4(2)		-	N6	275.0(2)	N3	-	Si3	181.2(2)
									-	Si4	182.6(2)
Ca3	-	N2	249.0(2)	Si1	-	N5	168.9(2)				
	-	N4	254.9(2)		-	N1	173.1(2)	N4	-	Si1	174.4(2)
	-	N6	257.1(2)		-	N4	174.4(2)		-	Si1	178.5(2)
	-	N8	257.6(2)		-	N4	178.5(2)				
	-	N1	271.3(2)		-	Si1	236.1(2)	N5	-	Si1	168.9(2)
	-	N9	277.2(2)						-	Si2	174.7(2)
Ca4	-	N5	240.0(2)	Si2	-	N7	174.0(2)	N6	-	Si4	178.5(2)
	-	N10	248.1(2)		-	N5	174.7(2)		-	Si3	180.3(2)
	-	N6	250.2(2)		-	N2	175.6(2)				
	-	N4	255.3(2)		-	N9	179.3(2)	N7	-	Si2	174.0(2)
	-	N4	271.9(2)								
	-	N5	286.9(2)					N8	-	Si4	176.3(2)
		210	224 5/22	G.3		110	174.0/2)	10		0.1	170.0(0)
Cas	-	N2	234.5(2)	\$13	-	N 10	174.8(2)	N9	-	S14	178.2(2)
	-	N10	236.5(2)		-	NI	178.5(2)		-	812	179.3(2)
	-	N7	249.5(2)		-	N6	180.3(2)	3.74.0		G : 2	184.0.0
	-	N8	254.7(2)		-	N3	181.2(2)	N10	-	S 13	174.8(2)
	-	N9	258.1(2)								
	-	N3	282.9(2)								

Ca₇Si₄N₁₀ liegt in einem bisher unbekannten Strukturtyp vor und ist aus einem zweidimensionalen Netzwerk (siehe Abbildung 4.16) aus kanten- und eckenverknüpften [SiN₄]-Tetraedern aufgebaut. Die gewellten Schichten lassen sich gemäß ${}^{2}_{\infty}[(Si_{4}^{[1]}N_{4}^{[1]}N_{6}^{[2]})^{14-}]$ beschreiben, wobei sich die Ca²⁺-Kationen zwischen den Ebenen befinden. Diese Schichten, die sich in der *bc*-Ebene erstrecken, setzen sich aus einem Zwölfer- und zwei Fünferringen zusammen,^[80] wobei die Fünferringe durch zwei kantenverknüpfte [SiN₄]-Tetraeder miteinander verbunden sind (siehe Abbildung 4.17). Der Kondensationsgrad, der durch das molare Verhältnis von Tetraederzentren zu Tetraederecken definiert wird, liegt bei (Al/Si):N = 4:10 = 0.4. Nur in zwei anderen ternären Nitridosilicaten ist ein noch niedrigerer Vernetzungsgrad bekannt: Während in Ba₅Si₂N₆ nur isolierte [Si₂N₆]¹⁰⁻-Anionen vorkommen,^[8] ist die Struktur und damit auch die Verknüpfungsart von Li₅SiN₃^[78] bislang unbekannt. Es kann jedoch angenommen werden, daß in "Li₁₀Si₂N₆" ebenfalls isolierte [Si₂N₆]¹⁰⁻-Anionen vorliegen.

Die zwischen den Schichten liegenden Ca^{2+} -Ionen sind jeweils durch fünf (überkappt tetraedrisch) bzw. sechs (verzerrt oktaedrisch) N-Atome der Si-N-Schichten koordiniert (Ca-N: 231.2 pm bis 286.9 pm). Die Bindungslängen Si-N^[2] liegen im Bereich von 168.9 pm bis zu 182.6 pm (siehe Abbildung 4.17). Diese zum Teil extrem langen Si-N^[2]-Bindungen können durch die sehr starre kantenverknüpfte [Si₂N₆]-Einheit erklärt werden. Vier so miteinander verbundene Fünfer-Ringe zwingen damit den Zwölfer-Ring zur Wellung (siehe Abbildung 4.16) und führen so zur Schwächung der Si-N^[2]-Bindungen. Die Si-N^[2]-Si-Bindungswinkel außerhalb der [Si₂N₆]-Einheit sind im üblichen Bereich für Nitridosilicate (126-164°). Mit 84° ist der Si-N-Si-Winkel innerhalb der [Si₂N₆]-Einheit jedoch deutlich kleiner als bei den in Ba₅Si₂N₆ oder BaSi₇N₁₀ vorkommenden [Si₂N₆]-Einheiten mit nahezu 90°.^{[7],[8]}

Abb. 4.16: Darstellung der anionischen Gerüststruktur von Ca₇Si₄N₁₀. Die Ca-Atome sind schwarz, die SiN₄-Tetraeder sind als geschlossene Polyeder gezeichnet. Blickrichtung [100] oben, Blickrichtung [001] unten.

Die Abstände Si-N^[1] (174.0 pm bis 176.3 pm) entsprechen den Werten der terminalen Atome in $Ba_5Si_2N_6$ (174 - 176 pm). Die Abstände Si-N^[1] in $Ca_5Si_2N_6$ sind mit 171.3 pm bzw. 174.7 pm ein wenig kürzer. Weitere ternäre Nitridosilicate mit terminalen N-Atomen sind nicht bekannt.

Während in den beiden anderen Nitridosilicaten, die diese kantenverknüpfte $[Si_2N_6]$ -Einheit enthalten, die Si-Si-Abstände 255.6 pm (Ba₅Si₂N₆, isolierte $[Si_2N_6]^{10}$ -Einheit) bzw. 250.6 pm (BaSi₇N₁₀, verknüpfte $[Si_2N_6]$ -Einheit) betragen, liegt der Si-Si-Abstand in Ca₇Si₄N₁₀ mit 236.1 pm bereits im Bereich der Si-Si-Einfachbindung im elementaren Si von 235.2 pm.^[79] Durch eine Untersuchung der elektronischen Verhältnisse dieser Einheit kann eine Si-Si-Bindung in dieser Einheit ausgeschlossen werden (siehe Kapitel 4.3.2). Die Si-N^[2]-Abstände sind in der $[Si_2N_6]$ -Einheit mit 168.9 pm bis 178.4 pm im Rahmen der bekannten Werte für Ba₅Si₂N₆ und BaSi₇N₁₀.

Abb. 4.17: Darstellung der Bindungsverhältnisse in der anionischen Schichtstruktur von Ca₇Si_{4-x}Al_xN_{10-x}O_x. Alle Abstände in pm, symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht aufgeführt.

Aufgrund der sehr ähnlichen Atomformfaktoren von Al³⁺ und Si⁴⁺ und von O²⁻ und N³⁻ ist eine Unterscheidung dieser Elemente auf der Basis der vorliegenden Röntgendaten bei Ca₇Si_{4-x}Al_xO_xN_{10-x} (mit x \cong 0.5) nicht möglich. Bei x \cong 0.5 kann eine

der vier 4e-Lagen maximal mit 50% Al³⁺ besetzt sein, was einem Unterschied von einem halben Elektron auf dieser Lage entsprechen würde. Die Verteilung des Al³⁺ kann allerdings genauso gut zu gleichen Anteilen auf mehr als eine Lage bzw. auf alle Lagen statistisch verteilt sein. Zudem ist hier eine Zuordnung der vier kristallographischen Lagen der Tetraederzentren in Al³⁺ und Si⁴⁺ durch eine Betrachtung der Bindungslängen zum Stickstoff (Sauerstoff) nicht eindeutig möglich.

Eine Möglichkeit, Al^{3+} und Si^{4+} voneinander zu unterscheiden, besteht prinzipiell durch Neutronenbeugung an entsprechend dimensionierten Einkristallen (Kantenlängen ≥ 2 mm). Wegen der nur geringen Unterschiede im Neutroneneinfangquerschnitt dieser Elemente ist eine Differenzierung aufgrund der kristallographischen Daten wahrscheinlich nur im Idealfall einer 50%-igen Besetzung einer einzigen der Tetraederlagen möglich. Geringe Beimischungen von Al^{3+} - auf Si^{4+} - und von O^{2-} - auf N³⁻-Lagen lassen sich durch den nur geringen Unterschied der Neutroneneinfangquerschnitte dieser Atomkerne nicht mehr zufriedenstellend auflösen. Die Zucht entsprechend dimensionierter Einkristalle gelang mit den hier untersuchten Synthesemethoden bisher nicht. Für eine Neutronenbeugung an einer gepulverten Probe sind die Unterschiede ebenfalls nicht signifikant genug, um mit der Rietveld-Methode eine verlässliche Zuordnung in Al^{3+} und Si^{4+} zu ermöglichen.

4.3.3 Untersuchungen zur Zusammensetzung von Ca₇Si_{4-x}Al_xO_xN_{10-x}

Eine signifikante Verunreinigung der beiden Ausgangssubstanzen mit Aluminium (0.6 bzw. 1.9 Gew.-%, siehe Kapitel 3.1.1) erklärt den durch eine LA-ICP-MS Analyse bestätigten Einbau von ²⁷Al in die Struktur der röntgenographisch untersuchten Einkristalle von Ca₇Si_{4-x}Al_xO_xN_{10-x}. Eine LA-ICP-MS Analyse wurde an genau dem Einkristall durchgeführt, dessen Strukturdaten im Kapitel 4.3.2 angegeben sind. Die Ergebnisse dieser Untersuchung sind in Tabelle 4.15 wiedergegeben.

Die Massenwerte sind bei Ca₇Si_{4-x}Al_xO_xN_{10-x} auf die Stammverbindung Ca₇Si₄N₁₀ mit M = 532.97 und der Masse 42 normiert (Konzentration ⁴²Ca = 52.64 Gew.-%). Ca wurde als interner Standard gewählt, weil Calcium dasjenige Element ist, das kristallographisch in dieser Verbindung als einziges zweifelsfrei zugeordnet werden kann (Problematik Al/Si, O/N). Für die gemäss Ca₇Si_{4-x}Al_xO_xN_{10-x} vorhandene Phasenbreite kann der Normierungswert für Ca bei 52.64 Gew.-% belassen werden, da für x = 0.5 die Molmasse mit M = 533.42 nahezu dem Wert der Stammverbindung Ca₇Si₄N₁₀ entspricht. Eine signifikante Verfälschung des Messwertes für ²⁷Al und ²⁹Si über die Gesamtmolmasse findet deswegen nicht statt (Abweichung < 0.1 %, vergleiche auch Kapitel 3.3.2).

Tab. 4.15: Ergebnisse der LA-ICP-MS Analyse an einem Einkristall von Ca₇Si_{4-x}Al_xO_xN_{10-x} mit Ca als interner Standard, NIST 610 als externer Standard, alle Messwerte in ppm.

Isotope	⁷ Li	²³ Na	²⁵ Mg	²⁷ AI	²⁹ Si	³⁰ Si	³⁵ CI	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁵⁷ Fe	⁸⁸ Sr	⁹³ Nb
Ablation 1	1	1	134	31500	136300	129800	236	526400	494200	482200	25	109	125
Ablation 2	1	1	165	26200	162000	15020	220	526400	514300	490500	24	110	284
Ablation 3	5	2	162	20900	137200	130000	206	526400	488500	487400	53	107	265
Ablation 4	1	1	147	29200	151600	145000	335	526400	527700	484300	14	123	245
Ablation 5	1	1	151	23700	150300	142300	188	526400	517500	491400	21	118	261
Average	2	1	152	26300	147500	139500	237	526400	508400	487100	27	113	236
Stdev	2	1	13	4200	10800	9100	58		16400	3900	15	7	64

Bei dieser Analyse wurden mögliche Verunreinigungen auf den Isotopen ⁷Li, ¹¹B, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³⁰Si, ³⁵Cl, ³⁷Cl, ³⁹K, ⁴²Ca, ⁴³Ca, ⁴⁴Ca, ⁵⁷Fe, ⁸⁸Sr, ⁹³Nb, und ¹⁵³Eu untersucht. Die in Tabelle 4.15 nicht aufgeführten Isotope konnten nicht nachgewiesen werden. Das ubiquitär als Verunreinigung vorkommende Natrium konnte mit einem Massenanteil von 1 ppm nicht mehr nachgewiesen werden (Nachweisgrenze). Li, Mg, Cl, Fe, Sr, und Nb sind als Verunreinigung mit einem maximalen Anteil von ca. 250 ppm (1 - 236 ppm) im Kristall vorhanden. Somit kann auf eine Zusammensetzung der Probe ausschließlich aus Al, Si und Ca geschlossen werden.

Die nachgewiesenen Konzentrationen von Al und Si stehen im Widerspruch zu den Erwartungswerten: Die Summe der beiden Elemente sollte bei 21.06 Gew.-% liegen. Stattdessen liegt der Summenwert für diese nur bei 17.38 Gew.-%. Diese Diskrepanz von absolut 3.68 % oder relativ 21.1 % kann durch keine der im Kristall nachgewiesenen Verunreinigungen erklärt werden.

Um Interferenzen zu erkennen, wurden für Ca und Si jeweils drei Isotope gemessen. Anhand der Isotopenverhältnisse (innerhalb der Präzision der Methode) konnte nachgewiesen werden, daß ein solcher Einfluss hier ebenfalls nicht vorlag. Zu hohe Konzentrationen bei den Isotopen ⁴²Ca, ⁴³Ca oder ⁴⁴Ca können z.B. durch mögliche Interferenzen aus ¹⁴N¹⁴N¹⁴N- bzw. ²⁸Si¹⁴N-, ²⁹Si¹⁴N- oder ²⁸Si¹⁶O-Clustern entstehen. Zudem weisen EDX-Analysen nur auf O/N, Al, Si und Ca hin (O/N kann nicht nachgewiesen werden).

Anhand der kristallographischen Daten sind für Mischbesetzungen der Schweratomlagen mit Kohlenstoff (kann nicht mittels LA-ICP-MS nachgewiesen werden) oder Unterbesetzungen der Schweratomlagen keinerlei Hinweise zu finden. Sämtliche thermischen Auslenkungsparameter der Strukturlösung bewegen sich im typischen Bereich solcher Verbindungen. Die Anwesenheit von Wasserstoff kann aufgrund der Synthesebedingungen gänzlich ausgeschlossen werden.^[68]

Die Anwendung einer Single-Spot-LA-ICP-MS Analyse mit einer räumlichen Auflösung von 60 µm ist für die Analyse dieser Kristalle nicht geeignet, da bei dieser Auflösung die vorhandenen Inhomogenitäten nicht berücksichtigt werden können (siehe Kapitel 3.3.5). Trotz der guten Gütefaktoren (2.7 - 4.0 %) der röntgenographisch untersuchten Einkristalle von Ca₇Si_{4-x}Al_xO_xN_{10-x} lassen sich keinerlei Hinweise auf diese Zusammensetzungsunterschiede nachweisen. Es ist deswegen davon auszugehen, daß es sich bei diesen Verunreinigungen um nicht regelmässig ausgerichtete Bereiche von Oxo- oder Nitridosilicaten oder röntgenamorphe Gläser handelt. Eine bessere Erfassung des Al-und O-Anteils "x" in Ca₇Si_{4-x}Al_xO_xN_{10-x} kann z.B. durch die Anwendung der höher auflösenden Scanning-LA-ICP-MS erreicht werden (siehe Kapitel 3.3.5).

4.3.4 Theoretische Untersuchungen

MAPLE-Rechnungen mit dem Programm MADKUG können zur Angabe einer realistischen Verteilung der Al³⁺-/ Si⁴⁺- bzw. O²⁻-/N³⁻-Lagen zu Rate gezogen werden. Dabei werden zunächst alle vier kristallographischen Lagen der Tetraederzentren mit der gleichen Ladung von + 3.875 besetzt. Der Wert von + 3.875 stellt den mittleren Wert der Ladungen aller Al³⁺-/Si⁴⁺-Lagen für Ca₇Si_{4-x}Al_xO_xN_{10-x} mit x = 0.5 dar $\left(\frac{3.5\cdot4^{\oplus}+0.5\cdot3^{\oplus}}{4}\right)$. Ein resultierendes weniger negatives Potential auf einer der vier Al³⁺-/ Si⁴⁺-Lagen lässt eine entsprechende Zuordnung durch Al³⁺ zu. Analog werden alle zehn kristallographischen O²⁻-/N³⁻-Lagen mit der gleichen Ladung von - 2.95 besetzt. Die Calcium-Lagen werden jeweils mit einer Ladung von + 2.0 besetzt. Ein resultierendes kleineres positives Potential auf einer der O²⁻-/N³⁻-Lagen lässt eine entsprechende Zuordnung durch Al³⁺-/Si⁴⁺-Lagen lässt eine entsprechende zuordnung von + 2.0 besetzt. Ein resultierendes kleineres positives Potential auf einer der O²⁻-/N³⁻-Lagen lässt eine entsprechende Zuordnung durch Al³⁺-/Si⁴⁺-Lagen lässt eine O²⁻-/N³⁻-Lagen lässt eine entsprechende Zuordnung durch O²⁻ zu. Die Potentialwerte der Al³⁺-/Si⁴⁺-Lagen und der O²⁻-/N³⁻-Lagen aus der MAPLE-Rechnung sind in Tabelle 4.16 zusammengefasst.

Tab. 4.16: MAPLE-Potentialwerte für Ca₇Si_{3.5}Al_{0.5}O_{0.5}N_{9.5}.

Si1	Si2	Si3	Si4						
-3.27	-3.52	-3.33	-3.34						
N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
2.57	2.20	2.49	2.61	2.57	2.26	2.16	2.26	2.47	2.23

Eine eindeutige Zuordnung von Al^{3+} auf eine der Siliciumlagen ist trotz der MAPLE-Rechnungen nicht möglich, da sich die Potentialwerte für Si1, Si3 und Si4 in einem sehr engen Bereich (-3.27 bis -3.34) bewegen. Eine Al^{3+} -/Si⁴⁺-Mischbesetzung auf allen drei Lagen erscheint daher wahrscheinlich. Die Lage Si2 ist wegen ihres Potentialwerts von -3.52 wohl nur wenig oder gar nicht mit Al^{3+} besetzt.

Die gleiche Situation findet sich für die mit O^{2-} und N^{3-} gemischt besetzten Lagen. Die Potentialwerte für N7, N2, N10 und N6 erlauben am ehesten eine gemischte Besetzung, während alle anderen Werte der Stickstofflagen deutlich darüber liegen. Eine Besetzung mit O^{2-} scheint für N1, N3, N4, N5, N8 und N9 daher wenig wahrscheinlich.

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium kommt eine Konstanz der ^NMEFIR- und ^NECoN-Werte zum Tragen. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 4.17 sind die Ergebnisse der Berechnungen angegeben.

Atom	^N MEFIR(pm)	^N ECoN	Atom	^N MEFIR(pm)	^N ECoN
Cal	105.2	5.905	N1	148.9	12.309
Ca2	104.8	6.111	N2	145.4	9.513
Ca3	115.1	6.046	N3	152.2	11.771
Ca4	116.6	6.929	N4	142.5	11.746
Ca5	101.6	5.543	N5	139.9	11.197
Ca6	99.1	4.600	N6	143.1	11.947
Ca7	113.2	5.829	N7	144.4	9.952
Si1	29.9	3.952	N8	146.0	9.945
Si2	30.8	3.994	N9	150.7	11.735
Si3	31.5	3.975	N10	144.1	11.022
Si4	30.8	3.984			

Tab. 4.17: ^NMEFIR- und ^NECoN-Berechnungen an Ca₇Si₄N₁₀ (38 Zyklen)

Die Ergebnisse der ^NECoN-Berechnungen bestätigen im Wesentlichen die Koordinationszahlen der Kationen: Mit ^NECoN-Wert von 5.829 bis 6.111 sind Ca1, Ca2, Ca3 und Ca7 sechsfach und Ca4 mit einem ^NECoN-Wert von 6.929 siebenfach koordiniert. Ca5 ist mit einem ^NECoN-Wert von 5.543 weniger als sechsfach, Ca6 mit einem ^NECoN-Wert von 4.600 weniger als fünffach koordiniert. Die Siliciumatome sind fast perfekt vierfach koordiniert, die Stickstoffatome lassen sich in zwei Gruppen klassifizieren: Mit ^NECoN-Werten zwischen 11.022 und 12.309 liegen die Atome N1, N3, N4, N5, N6, N9 und N10 ähnlich wie in einer dichtesten Kugelpackung vor. Die Atome N2, N7 und N8 weisen mit ^NECoN-Werten zwischen 9.513 und 9.952 deutlich kleinere Koordinationszahlen auf.

Der sehr kurze Si-Si-Abstand in der [Si₂N₆]-Einheit von nur 236.1 pm machte eine genauere Untersuchung der elektronischen Verhältnisse dieser Einheit notwendig. Die Si-Si-Abstände in anderen bekannten [Si₂N₆]-Einheiten in Ba₅Si₂N₆ und BaSi₇N₁₀ sind dagegen deutlich länger (255.6 pm bzw. 250.6 pm). ^{[7],[8]} Weil sich dieser Abstand schon im Bereich einer Si-Si-Einfachbindung bewegt,^[79] war die Frage nach der Elektronenlokalisierung von Bedeutung.

ELF-Rechnungen auf Basis der LMTO-Methode führen schließlich zu einem sehr anschaulichen Bild der Elektronenverteilung. Die Rechnung kann dabei nur für die Stammverbindung Ca₇Si₄N₁₀ mit der LMTO-Methode durchgeführt werden, da diese, wie die meisten anderen quantenchemischen Methoden auch, keine Mischbesetzungen zulässt. Rechnungen an der mit Aluminium mischbesetzten Verbindung könnten durch eine Vervielfachung der Elementarzelle mit vollbesetzten Al- bzw. Si-Lagen erreicht werden, allerdings verunmöglicht die Größe der dann gebildeten Superzelle die Rechnung mit dieser Methode. Eine signifikante Änderung der elektronischen Verhältnisse durch eine geringe Beimischung von Aluminium und Sauerstoff wird nicht erwartet.

In Abbildung 4.18 ist die Isofläche der Elektronen-Lokalisierungs-Funktion mit einem Wert von 0.82 für die $[Si_2N_6]$ -Einheit dargestellt. Hohe ELF-Werte treten bevorzugt im Bereich von Bindungen und einsamen Elektronenpaaren auf. Von daher ist die ELF ein nützliches Werkzeug, um die entsprechenden Bindungsverhältnisse zu veranschaulichen.

 Abb. 4.18: Dargestellt ist die Isofläche der ELF mit einem Wert von 0.82 für die in Ca₇Si₄N₁₀ auftretende [Si₂N₆]-Einheit. Die Si-Atome sind gelb, die N-Atome rot gezeichnet.

Entlang einer Linie Si-Si sind für diesen und andere Isowerte keine Elektronen lokalisiert. Stattdessen sind sowohl die Bindungselektronen entlang der Si-N-Bindung als auch die freien Elektronenpaare des Stickstoffs zu erkennen. Die Bindungselektronen der Si-N-Bindung sind ein wenig von der zu erwarteten Lage entlang der Achsenmitte verschoben. Diese so genannte "Bananenbindung" ist wegen des sehr kurzen Si-Si-Abstands und des kleinen Bindungswinkels verständlich. Die freien Elektronenpaare des zweifach verbrückenden Stickstoffs sind in ihrer charakteristischen Hufeisenform senkrecht zur Si-N-Si-Ebene lokalisiert.

4.4 Ca₇NbSi₂N₉

4.4.1 Synthese von Ca₇NbSi₂N₉

Bei Umsetzungen von Ca_2N mit Si im Verhältnis 2:1 in Niobampullen konnte zum ersten Mal neben $Ca_5Si_2N_6$ auch orange, transparente trapezförmige Plättchen von $Ca_7NbSi_2N_9$ nachgewiesen werden. Das Subnitrid Ca_2N ist so reaktiv, daß es auch mit dem Niob der Ampullenwand reagierte. Beim Einsatz von Ca_2N in Tantalampullen konnte unter gleichen Synthesebedingungen kein entsprechendes quaternäres Tantalnitridosilicat nachgewiesen werden.

Die gezielte Synthese von $Ca_7NbSi_2N_9$ gelingt durch die Umsetzung von 444 mg Ca_3N_2 (3.11 mmol), 110 mg Ca_2N (1.17 mmol), 108 mg Nb (1.17 mmol) und 109 mg Si_3N_4 (0.77 mmol) im Verhältnis 8:3:2:3. Die Herstellung von Ca_3N_2 und Ca_2N erfolgte dabei wie in Kapitel 3.1.4 beschrieben. Alle Substanzen werden gemischt, in einem Achatmörser fein miteinander vermahlen und unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgt die Umsetzung nach folgendem Temperaturprogramm:

Abb. 4.19: Temperaturprogramm zur Synthese von Ca₇NbSi₂N₉ aus Ca₂N, Ca₃N₂, Nb und Si₃N₄

Neben Ca₇NbSi₂N₉ lassen sich in dieser Synthese noch Ca₅Si₃ und Ca als Nebenprodukte in den Pulverdiffraktogrammen (siehe Abbildungen 4.20 und 4.21) nachweisen. Ca₅Si₃ und Ca bilden unter Synthesebedingungen eine metallische Matrix, die als Flussmittel die Bildung großer Kristalle ermöglicht.

Die Pulverdaten geben Hinweis darauf, daß noch mindestens eine weitere, bislang nicht identifizierte Phase bei dieser Reaktion entsteht, da nicht alle Reflexe bekannten Verbindungen zugeordnet werden können. Diese Reflexe sind in Abbildung 4.20 mit einem "|" markiert.

Abb. 4.20: Pulverdiffraktogramm der Syntheseprodukte aus Ca₃N₂, Ca₂N, Nb und Si₃N₄

Abb. 4.21: Ausschnitt aus dem in Abbildung 4.20 gezeigten Pulverdiffraktogramm und Vergleich mit dem berechneten Strichdiagramm von Ca₇NbSi₂N₉, sowie Ca₅Si₃ und Ca (von oben nach unten).

4.4.2 Kristallstruktur von Ca₇NbSi₂N₉

Einkristalle von Ca₇NbSi₂N₉ können aufgrund ihres plättchen- oder trapezförmigen Habitus, ihrer dunkelorangen Farbe sowie ihrer Transparenz unter einem Lichtmikroskop mit Polarisationsfilter identifiziert werden. Die Kristalle werden stets eingebettet in einer Matrix aus metallischem Ca₅Si₃ und Ca gefunden.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von Ca₇NbSi₂N₉ sind in den Tabellen 4.18, 4.19, 4.20 und 4.21 aufgeführt. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen 0.14·0.14·0.06 mm³. Die Analyse der systematischen Auslöschungen führte zu den Raumgruppen $P2_1$ (Nr. 4) und $P2_1$ /m (Nr. 11). Ein sinnvolles Strukturmodell wurde in der zentrosymmetrische Raumgruppe $P2_1$ /m gefunden, wobei die Positionen der Niob-, Calcium- und Siliciumatome mit Hilfe der Direkten Methoden gefunden wurden und die der Stickstoffatome über eine Differenzfourieranalyse. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0430 und wR₂ = 0.1534. Eine empirische Absorptionskorrektur wurde mit Hilfe des Programms SADABS angewandt. Damit konnte eine Verbesserung des internen R-Wertes von 0.1050 auf 0.0946 sowie der Gütefaktoren auf R = 0.0415 und wR₂ = 0.1129 erreicht werden.

Tab. 4.18:	Kristallographische	Daten	und	Angaben	zur	Strukturbestimmung	von
	Ca7NbSi2N9						

Zusammensetzung	$Ca_7NbSi_2N_9$
Formelgewicht [gmol ⁻¹]	555.74
Kristallgröße [mm]	0.14 x 0.14 x 0.06
Kristallform	trapezförmiges Plättchen
Farbe	dunkelorange, transparent
Gitterkonstanten [pm]	a = 605.1(1)
	$b = 994.6(2), \beta = 92.10(1)$
	c = 899.7(2)
Zellvolumen [10 ⁶ ·pm ³]	541.07(2)
Formeleinheiten pro Zelle	2
Raumgruppe	$P2_{1}/m$ (Nr. 11)
Dichte ρ_{calc} [g/cm ³]	3.411
μ [mm ⁻¹]	4.64
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	$2.3^\circ < \Theta < 33.9^\circ$
hkl-Bereich	$-9 \le h \le 9; -14 \le k \le 15; -13 \le l \le 13$
Anzahl gemessener Reflexe	8387
Anzahl unabhängiger Reflexe	2137 R _{int.} =0.0519
Reflexe mit $ F ^2 > 2\sigma(F ^2)$	1583
Strukturbestimmung	Ca und Si aus direkten Methoden
	N aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	97
Restelektronendichte [eÅ-3]	3.11 / -1.37
R-Werte für $ F ^2 > 2\sigma(F ^2)$	$R1 = 0.0415, WR_2 = 0.1078$
R-Werte für alle Reflexe	$R1 = 0.0639, WR_2 = 0.1129$
GOOF für alle Reflexe	1.022

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 4.19: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen)
[pm²·10] und Besetzungsfaktoren für Ca₇NbSi₂N₉. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	х	у	Z	U _{iso}	Besetzungs-
	Lage					faktor
Nb1	2 <i>e</i>	0.2785(1)	$^{1}/_{4}$	0.5615(1)	8(1)	1
Cal	4 <i>f</i>	0.0701(1)	0.0781(1)	0.1696(1)	7(1)	1
Ca2	4 <i>f</i>	0.2497(1)	0.5780(1)	0.5053(1)	6(1)	1
Ca3	4 <i>f</i>	0.5695(1)	0.5567(1)	0.1654(1)	10(1)	1
Ca4	2 <i>e</i>	0.9097(2)	$^{1}/_{4}$	0.8007(4)	6(1)	1
Si1	2 <i>e</i>	0.4593(2)	$^{1}/_{4}$	0.2773(1)	4(2)	1
Si2	2e	0.6764(2)	$^{1}/_{4}$	0.0620(1)	4(2)	1
N1	4 <i>f</i>	0.1135(5)	0.0984(3)	0.6586(1)	9(3)	1
N2	4 <i>f</i>	0.2320(5)	0.6016(3)	0.0180(4)	7(4)	1
N3	4 <i>f</i>	0.3664(5)	0.1101(3)	0.3682(4)	8(4)	1
N4	2 <i>e</i>	0.3801(7)	$^{1}/_{4}$	0.0845(4)	6(5)	1
N5	2 <i>e</i>	0.5579(8)	$^{1}/_{4}$	0.6669(4)	8(5)	1
N6	2 <i>e</i>	0.7533(8)	$^{1}/_{4}$	0.2593(4)	6(5)	1

Tab. 4.20: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ca₇NbSi₂N₉. Die Parameter U_{ij} sind definiert für exp[- $2\pi^2(U_{11}h^2a^{*2} + ... + 2U_{23}klb^*c^*)$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Nb1	7(1)	7(1)	8(1)	0	2(1)	0
Ca1	7(1)	6(1)	7(1)	0(1)	0(1)	0(1)
Ca2	7(1)	6(1)	6(1)	0(1)	1(1)	-1(1)
Ca3	7(1)	12(1)	9(1)	-4(1)	-2(1)	2(1)
Ca4	7(1)	3(1)	7(1)	0	5(1)	0
Si1	5(1)	4(1)	4(1)	0	1(1)	0
Si2	6(1)	4(1)	4(1)	0	0(1)	0
N1	10(2)	9(2)	9(2)	-2(1)	-1(1)	1(1)
N2	7(1)	4(1)	10(2)	1(1)	1(1)	0(1)
N3	7(1)	7(2)	9(1)	1(1)	0(1)	-1(1)
N4	4(2)	9(2)	6(2)	0	1(2)	0
N5	11(2)	5(2)	7(2)	0	0(2)	0
N6	7(2)	7(2)	1(2)	0	-1(2)	0

Atom	-	Paar	d	n	Atom		Paar	d	n	Atom	- Paar	d	n
Nb1	-	N5	190.8(5)		Ca3	-	N2	243.5(3)		Si2	- N2	174.1(3)	2
	-	N1	202.4(4)	2		-	N1	247.7(3)			- N4	181.1(5)	
	-	N3	230.5(3)	2		-	N5	257.9(3)			- N6	181.9(5)	
	-	Si1	281.8(2)			-	N2	260.6(3)			- Si1	237.9(2)	
						-	N3	278.4(4)					
Ca1	-	N2	245.3(3)			-	N4	298.3(3)		N1	- Nb1	202.4(4)	
	-	N2	247.3(3)			-	Si2	314.3(1)					
	-	N3	250.5(3)							N2	- Si2	174.1(3)	
	-	N1	261.4(3)		Ca4	-	N1	235.4(3)	2				
	-	N4	267.1(3)			-	N2	238.3(3)	2	N3	- Si1	171.9(3)	
	-	N6	271.3(3)			-	N5	240.7(4)			- Nb1	230.5(3)	
	-	Sil	304.0(2)			-	Si2	278.6(2)					
										N4	- Si1	178.3(5)	
Ca2	-	N3	236.3(3)		Si1	-	N3	171.9(3)	2		- Si2	181.1(5)	
	-	N1	239.7(3)			-	N4	178.3(5)					
	-	N3	256.9(3)			-	N6	179.2(5)		N5	- Nb1	190.8(5)	
	-	N1	260.9(3)			-	Si2	237.9(2)					
	-	N5	261.1(4)							N6	- Si1	179.2(5)	
	-	N6	272.3(4)								- Si2	181.9(5)	
	-	Sil	309.9(2)										

Tab. 4.21: Atomabstände(Standardabweichungen)[pm]fürCa7NbSi2N9.n bezeichnet die Zahl der entsprechenden Abstände.

 $Ca_7NbSi_2N_9$ liegt in einem bisher unbekannten Strukturtyp vor. Gemäß ${}_2^0[(Nb_1^{[5]}Si_2^{[4]}N_5^{[1]}N_4^{[2]})^{14-}]$ handelt es sich genauso wie bei $Ca_5Si_2N_6$ um ein Disilicat aus der Familie der Oligosilicate, bei dem zwei [SiN₄]-Tetraeder durch eine Kante miteinander verknüpft sind. Im Unterschied zu $Ca_5Si_2N_6$, bei dem isolierte [Si₂N₆]¹⁰⁻-Anionen vorliegen, ist bei $Ca_7NbSi_2N_9$ die [Si₂N₆]-Einheit zusätzlich mit einer [NbN₅]-Einheit über eine gemeinsame Kante verknüpft. Ein solches Pseudotrisilicat wurde in der Familie der Silicate bislang nicht beobachtet.

Das zentrale Nb-Atom in der [NbN₅]-Einheit ist verzerrt quadratisch-pyramidal von Stickstoffatomen umgeben. Eine vergleichbare Bindungssituation für Niob findet man in La₃Nb₂N₆, in dem eckenverknüpfte Schichten aus quadratisch-pyramidalen [NbN₅]-Einheiten vorkommen.^[81] Während in La₃Nb₂N₆ regelmäßige [NbN₅]-Einheiten mit einem apikalen Nb-N-Abstand von 195.5 pm und vier Nb-N-Abständen zur Grundfläche von 206.2 pm auftreten, ist die Bindungssituation in der $[NbN_5]$ -Einheit in Ca₇NbSi₂N₉ aufgrund der Verzerrung komplizierter. Die Bindungsverhältnisse in der $[NbSi_2N_9]^{14}$ -Einheit sind in Abbildung 4.22 dargestellt.

Abb. 4.22: Interatomare Abstände (pm) und Winkel in der [NbSi₂N₉]¹⁴-Einheit in Ca₇NbSi₂N₉. Symmetrie-äquivalente Bindungsabstände und -winkel sind der Übersichtlichkeit halber nicht aufgeführt.

Die [NbN₅]-Einheit weißt in Ca₇NbSi₂N₉ keine quadratische sondern eine rechteckige Grundfläche auf. Mit 190.8 pm liegt der apikale Nb1-N5-Abstand unter dem in La₃Nb₂N₆ gefundenen von 195.5 pm. Der Abstand Nb1-N1 liegt mit 202.4 pm etwas unter dem in La₃Nb₂N₆ gefundenen von 206.2 pm, der Abstand Nb1-N3 mit 230.5 pm deutlich über den bisher gefundenen Nb-N-Bindungsabständen. Der Bindungsabstand Si1-N3 mit 171.9 pm deutet eher auf einen terminalen Charakter des N3-Atoms als auf eine zweifach verbrückende Situation hin. Folgerichtig ist der Winkel N3-Si1-N3 ist mit 108.1° kleiner als in der in Ca₅Si₂N₆ gefundenen [Si₂N₆]¹⁰⁻-Einheit (siehe Abbildung 4.23) mit 114.3°. Ein kleinerer Winkel deutet ebenfalls eher auf einen verbrückenden Charakter hin.

Mit ELF-Rechnungen auf Extended Hückel-Niveau wurde untersucht, ob auf der Bindungsachse Nb1-N3 tatsächlich noch Bindungselektronen lokalisiert sind und damit eine Bindung vorhanden ist (siehe Kapitel 4.4.3). Basierend auf den Ergebnissen der ELF-Rechnung kann man hier von einer, wenn auch schwachen Nb-N-Bindung ausgehen.

Abb. 4.23: Bindungsverhältnisse im [Si₂N₆]¹⁰⁻-Anion in Ca₅Si₂N₆, Abstände in pm. Symmetrie-äquivalente Bindungsabstände und -winkel sind der Übersichtlichkeit halber nicht aufgeführt.

Die Si-N^[2]-Abstände im zentralen Si₂N₂-Ring bewegen sich bei Ca₇NbSi₂N₉ mit 178.3 pm bis 181.9 pm im gleichen Bereich mit den in Ca₅Si₂N₆ gefundenen von 178.9 pm und 183.1 pm. Im Vergleich zur der in Ca₅Si₂N₆ gefundenen $[Si_2N_6]^{10}$ -Einheit ist der Abstand der beiden Si-Atome zueinander mit 237.9 pm um 2.8 pm kürzer.

Ca1, Ca2 und Ca3 werden verzerrt oktaedrisch von Stickstoffatomen koordiniert und die Abstände Ca-N variieren dabei von 236.3 pm bis 298.3 pm. Ca4 wird von fünf Stickstoffatomen im Abstand von 235.4 pm bis 240.7 pm verzerrt quadratischpyramidal koordiniert. Im Abstand von 278.6 pm ist noch ein Silicium-Atom benachbart.

Um eine bessere Vorstellung von den realen Koordinationen zu bekommen, wurden Rechnungen zur effektiven Koordinationszahl ECoN durchgeführt (siehe Kapitel 4.4.3).

4.4.3 Theoretische Untersuchungen

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium kommt eine Konstanz der ^NMEFIR- und ^NECoN-Werte zum Tragen. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 4.22 sind die Ergebnisse der Berechnungen abgebildet.

Tab. 4.22: ^N MEFIR- und ^N ECoN-Berechnungen an Ca ₇ NbSi ₂ N ₉ (35 Zvkl	- und ^N ECoN-Berechnungen an Ca ₇ NbSi ₂ N ₉ (35 Zvklen)
--	--

Atom	^N MEFIR(pm)	^N ECoN
Nb1	41.4	3.396
Cal	105.2	5.885
Ca2	96.0	5.518
Ca3	102.5	5.076
Ca4	83.3	5.082
Si1	24.4	3.983
Si2	28.3	3.988
N1	157.1	11.112
N2	149.1	10.815
N3	149.6	11.091
N4	149.6	9.942
N5	163.6	13.293
N6	151.3	10.974

Die Ergebnisse der ^NECoN-Berechnungen spiegeln ein anderes Bild der Koordination des Nb⁵⁺-Kations wieder: Es ist mit einer ^NECoN von 3.396 sogar weniger als vierfach koordiniert. Ca1 und Ca2 sind mit ^NECoN-Werten von 5.885 und 5.518 nahezu sechsfach koordiniert, Ca3 und Ca4 kommen mit ^NECoN-Werten von 5.076 und 5.082 nur auf eine fünffache Koordination. Si1 und Si2 sind, wie auch bei anderen Untersuchungen zur ECoN (siehe z.B. Kapitel 6.3.3), fast ideal vierfach von Stickstoff koordiniert. Bei den Stickstoffatomen mit ^NECoN-Werten von 9.942 bis 13.293 lässt sich kein eindeutiger Trend ablesen. Im Gegensatz zu den bei $Ca_5Si_2N_6$ auftretenden effektiven Koordinationszahlen des Stickstoffs zwischen 9.038 und 10.561 treten höhere ^NECoNs beim Stickstoff auf.

ELF-Rechnungen auf Basis der Extended Hückel-Methode führen hier zu einem sehr anschaulichen Bild der Elektronenverteilung. In Abbildung 4.24 ist die Isofläche der ELF mit einem Wert von 0.85 für die $[Si_2N_6]$ -Einheit dargestellt. Hohe ELF-Werte treten bevorzugt im Bereich von Bindungen und einsamen Elektronenpaaren auf. Von daher ist die ELF ein sehr nützliches Werkzeug, um die entsprechenden Bindungsverhältnisse zu veranschaulichen.

Abb. 4.24: Dargestellt ist die Isofläche der ELF mit einem Wert von 0.85 für Ca₇NbSi₂N₉ für die [NbN₅]-Einheit (rechts) und für ein Fragment der [Si-N-Si-N]-Gruppe (links). Das Nb-Atom ist blau, das Si-Atom ist gelb gezeigt, die N-Atome rot gezeichnet.

Die dreidimensionale Elektronen-Lokalisierungs-Funktion wird dabei nicht für die ganze Elementarzelle berechnet, sondern nur für eine Hälfte der Elementarzelle. Ausgehend vom Ursprung wird die Elementarzelle in *b*-Richtung halbiert. Eine solche Hälfte enthält bereits eine komplette [NbSi₂N₉]¹⁴⁻-Einheit. Die dreidimensionale ELF wird dann in jeder der drei Raumrichtungen mit einer Unterteilung von 40 Schnitten berechnet. Das "Ausfransen" der Isoflächen könnte mit einer höheren Zahl an Schnitten und einem entsprechend größeren Rechenaufwand noch weiter reduziert werden. Diese Kosmetik ändert aber nichts mehr an der Kernaussage der Rechnung. Auf eine weitere Erhöhung der Zahl der Schnitte wurde deswegen verzichtet.

Zunächst einmal lassen sich die freien Elektronenpaare des zweifach verbrückenden Stickstoffs mit ihrer charakteristischen Hufeisenform gut erkennen. Die freien Elektronenpaare der terminalen Stickstoffatome sind dagegen in einem nahezu kugelförmigen Bereich lokalisiert.

Die Bindungselektronen der Si1-N3-Bindung sind ein wenig von der zu erwarteten Lage entlang der Achsenmitte verschoben. Die benachbarten N3-Nb1-Bindungen zeigen eine geringere, deutlich zum Stickstoff verschobene Lokalisierung der Elektronen. Aufgrund des sehr langen N3-Nb1-Bindungsabstands von 230.5 pm sind die Bindungselektronen zum N3 verschoben. Trotzdem kann hier von einer, wenn auch schwachen, Nb-N-Bindung die Rede sein. Erheblich größer sind die Isoflächen der entsprechenden Nb1-N5- und Nb1-N1-Bindungselektronen (190.8 bzw. 202.4 pm). Diese Bindungselektronen sind zwar ebenfalls deutlich in Richtung Stickstoff verschoben, aber weniger stark als bei der deutlich längeren N3-Nb1-Bindung. Zudem sind die Isoflächen der Bindungselektronen größer, was für einen stärker bindenden Charakter dieser Wechselwirkungen spricht.
5 System M-Si-O-N

In den Systemen M-Si-O-N sind bislang alle strukturell geklärten Verbindungen Varianten von bereits bekannten Strukturtypen. Eine Übersicht über die bekannten quaternären Sione gibt Tabelle 1.3 in Kapitel 1.

 $Ce_{16}(Si_{15}\Box_1)O_6N_{32}\Box_{10}$ kristallisiert in einer verzerrten Defektvariante des Perowskit-Typs ABX₃ mit einer $4 \times 4 \times 4$ -Überstruktur. Während bei Oxosilicaten Koordinationszahlen des Siliciums größer als vier nur sehr selten auftreten,^[3] treten in $Ce_{16}Si_{15}O_6N_{32}$ zum ersten Mal neben [SiN₄]-Tetraedern auch [SiN₆]-Oktaeder auf.^[33]

 $Ce_4[Si_4O_4N_6]O$ enthält komplexe Kationen $[Ce_4O]^{10+}$, die von einer hyperbolisch gewellten Schichtstruktur $[Si_4O_4N_6]^{10-}$ aus eckenverknüpften $[SiON_3]$ -Tetraedern eingehüllt sind. Die hyperbolisch gewellte Topologie der Schicht kann mit Hilfe der periodischen Knotenfläche (PNS) FYxxx dargestellt werden (siehe Abbildung 5.1).^[35]

Abb. 5.1: Kristallstruktur von Ce₄[Si₄O₄N₆]O in zwei Ansichten mit der PNS FYxxx (gold/graue Fläche). Die [Ce₄O]¹⁰⁺-Kationen sind rot als geschlossene Tetraeder gezeichnet. Silicium ist gelb, Stickstoff grün, Sauerstoff blau und Cer rot gezeichnet. Links dargestellt ist die Sicht entlang [001], rechts entlang [111].

5.1 $Ce_{23+x}Ca_{37.5-x}Si_{48-x}AI_xO_{96}N_{48}$ ($0 \le x \le 9$)

5.1.1 Synthese von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}AI_xO_{96}N_{48}$ ($0 \le x \le 9$)

Bei der Umsetzung von Presslingen aus CeCl₃, Ca₃N₂, Si und Al bei 1400°C in einer verschweißten Niobampulle entstanden unter anderem gelbe, würfelförmige Kristalle von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ ($0 \le x \le 9$). Des Weiteren ließen sich noch orangefarbene Stäbchen von Ca₃[SiO₄]Cl₂ ^[82] sowie rote Plättchen von CeCaAlO₄ identifizieren. Nicht eindeutig geklärt werden konnte die Zusammensetzung einer weiteren gelben und transparenten Substanz, die würfelförmig kristallisiert. Die kristallographischen Daten deuten darauf hin, daß es sich um ein gemischtes Ce/Ca-Oxosilicat handelt.

Der sehr große Sauerstoffgehalt der Probe kann nicht mehr nur durch eine oxidische Verunreinigung des CeCl₃ erklärt werden. Es ist davon auszugehen, daß während der Synthese Sauerstoff durch Risse in der oxidierten Reaktionsampulle zur Reaktionsmischung gelangte.

Für diese Synthesen wurden 300 mg Ca_3N_2 , 500 mg $CeCl_3$, 55 mg Al und 57 mg Silicium im molaren Verhältnis 1:1:1:1 miteinander in einem Achatmörser vermahlen, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. Die Herstellung von Ca_3N_2 erfolgt dabei nach der in Kapitel 3.1.4 beschriebenen Methode. Die Substanzen wurden nach dem in Abbildung 5.2 angegebenen Temperaturprogramm erhitzt.

Sämtliche bei dieser Umsetzung hergestellten Substanzen sind luft- und wasserstabil.

Abb. 5.2: Temperatur programm zur Synthese von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ $(0 \le x \le 9)$ aus CeCl₃, Ca₃N₂, Al und Si

Wegen der starken Absorption von Cerverbindungen konnte ein aussagekräftiges Pulverdiffraktogramm nur über eine 24-stündige Flachbettaufnahme gewonnen werden.

Abb. 5.3: Pulverdiffraktogramm der Syntheseprodukte aus der Umsetzung von CeCl₃, Ca₃N₂, Al und Si im molaren Verhältnis 1:1:1:1

Abb. 5.4: Ausschnitt aus dem in Abbildung 5.3 gezeigten Pulverdiffraktogramm und Vergleich mit dem berechneten Strichdiagrammen von $Ce_{27.1}Ca_{33.4}Si_{43.9}Al_{4.1}O_{96}N_{48}$ ($0 \le x \le 9$), CeCaAlO₄ und Ca₃[SiO₄]Cl₂ (von oben nach unten). Für die Erläuterung von "+" und "*" siehe Text.

Im Pulverdiffraktogramm der Syntheseprodukte (siehe Abbildungen 5.3 und 5.4) der Umsetzung von CeCl₃, Ca₃N₂, Al und Si im molaren Verhältnis 1:1:1:1 lassen sich neben Ce_{27.1}Ca_{33.4}Si_{43.9}Al_{4.1}O₉₆N₄₈, CeCaAlO₄ und Ca₃[SiO₄]Cl₂ noch mindestens zwei weitere Phasen nachweisen: Eine kubische Verbindung bei der es sich um das schon oben erwähnte gemischte Ce/Ca-Oxosilicat handelt und eine weitere, noch gänzlich unbekannte Phase. Die Reflexe der kubischen Phase sind in Abbildung 5.4 mit einem "+" markiert, die der unbekannte Phase mit einem "*".

5.1.2 Kristallstruktur von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$)

Eine eindeutige Identifikation von Einkristallen von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$) konnte trotz ihres regelmäßigen würfelförmigen Habitus, ihrer gelben Farbe sowie ihrer Transparenz nicht erfolgen. Wegen der simultanen Präsenz einer zweiten Verbindung mit gleichem Kristallhabitus und gleicher Farbe, konnten Einkristalle von $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ ($0 \le x \le 9$) erst während der Datensammlung auf dem Diffraktometer anhand der Gitterkonstanten eindeutig identifiziert werden. Bei Einkristallen und Zwillingen mit kubischer Symmetrie kann unter Anwendung von polarisiertem Licht keine Auslöschung beobachtet werden.

Die Kristalle sind ausserdem mit orangefarbenen Stäbchen von Ca₃[SiO₄]Cl₂ ^[82] sowie roten Plättchen von CeCaAlO₄ vergesellschaftet. Die Ergebnisse der Strukturbestimmung, kristallographische Daten und Angaben zur Strukturbestimmung von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ mit x \cong 4.1 sind in den Tabellen 5.1, 5.2, 5.3 und 5.4 aufgeführt. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen 0.16·0.16·0.16 mm³. Die Analyse der systematischen Auslöschungen führte zu den Raumgruppen P2₁3 (Nr. 198) und P4₂32 (Nr. 208).

Eine sinnvolles Modell der Kristallstruktur von $Ce_{23+x}Ca_{37.5-x}Si_{48}O_{96}N_{48}$ mit $x \cong 4.1$ gelang zunächst nur in der azentrischen Raumgruppe $P2_13$. Die Positionen der Cer-, Calcium- und Siliciumatome wurden mit Hilfe direkter Methoden die der Stickstoff- und Sauerstoffatome über eine Differenzfourieranalyse lokalisiert. Nach Verfeinerung der Orts- und der anisotropen Auslenkungsparameter für Ce, Ca und Si waren die Gütefaktoren immer noch sehr schlecht (R = 0.2341 und wR₂ = 0.5501).

Tatsächlich muss die Verfeinerung als Zwillingsverfeinerung unter Anwendung der Matrix (0 1 0, 1 0 0, 0 0 -1) unter Einführung einer Spiegelebene durchgeführt werden. Die beiden Zwillingsindividuen liegen hier in einem Volumenverhältnis von 7:3 vor. Der Gütefaktor R1 verbessert sich durch die Anwendung des Zwillingsgesetzes von 0.2341 auf 0.0241. Trotz des so erhaltenen hervorragenden R-Werts von R = 0.0241 finden sich einige Ungereimtheiten in der verfeinerten Struktur: So fallen die stark unterschiedlichen thermischen Auslenkungsparameter der Schweratome Ce, Ca und Si auf. Weiterhin unbefriedigend ist, daß die anisotrope Verfeinerung der leichten Atome O und N zu physikalisch unsinnigen negativ definierten Auslenkungsparametern führt. Grund für diese Ungereimtheiten sind die sehr zahlreich auftretenden starken paarweisen Korrelationen der Atome untereinander mit Werten sehr nahe bei 1. All diese Gründe sprechen für eine Verfeinerung in einer falschen Raumgruppe. Eine Beschreibung der Struktur in der aufgrund der Auslöschungsbedingungen ebenfalls möglichen Raumgruppe $P4_232$ (Nr. 208) ist ausgeschlossen, wenn die gefundenen, chemisch sinnvollen Strukturelemente erhalten bleiben sollen.

Eine detaillierte Analyse der in $P2_13$ (Nr. 198) verfeinerten Struktur deutet jedoch auf das Vorhandensein eines weiteren Symmetriezentrums hin, das durch Aufstieg in die zentrosymmetrische Übergruppe $Pa\overline{3}$ (Nr. 205) eingeführt werden kann.

Die Verzwilligung des Kristalls täuscht dabei eine Durchbrechung der Auslöschungsbedingungen für die Raumgruppe $Pa\overline{3}$ vor (siehe Abbildung 5.5). Alle Durchbrechungen der Auslöschungsbedingungen für die Reflexklassen 0kl (k = 2n), h0l (l = 2n) und hk0 (h = 2n) in der Raumgruppe $Pa\overline{3}$ können aber durch die Annahme eines verzwillingten Kristalls erklärt werden. Das Zwillingselement ist eine Spiegelebene senkrecht zu [hk0]. Durch die Spiegelebene erfolgt der Übergang von der Laue-Gruppe m $\overline{3}$ zu m $\overline{3}$ m. In Abbildung 5.5 ist ein Schnitt durch den reziproken Raum in der Schicht [hk0] dargestellt.

Abb. 5.5: Schnitt im reziproken Raum in der Schicht [hk0] mit den senkrecht dazu liegenden Spiegelebenen (Diagonallinien)

Bei der so durchgeführten Verfeinerung treten keine Korrelations-Matrixelemente größer als -0.78 auf und eine physikalisch sinnvolle anisotrope Verfeinerung aller Lagen ist möglich. Die Atomlagen Ce2/Ca2 und Ce3/Ca3 weisen Mischbesetzungen im Verhältnis 0.25/0.75 bzw. 0.54/0.46 auf. Ca5 wurde isotrop als unterbesetzte Ca-Lage mit festgehaltenem thermischem Auslenkungsparameter angepasst. Eine gleichzeitige Verfeinerung des isotropen Auslenkungsparameters und des Besetzungsfaktors war wegen großer Korrelations-Matrixelemente nicht möglich, weshalb der U_{iso}-Wert auf den gleichen Wert wie für Ca4 festgehalten wurde (siehe Tabelle 5.2).

Eine empirische Absorptionskorrektur wurde mit Hilfe des Programms SADABS durchgeführt. Damit konnte eine Verbesserung des internen R-Wertes von 0.0713 auf 0.0519 sowie der Gütefaktoren von R = 0.0265 auf R = 0.0229 und von $wR_2 = 0.1032$ auf $wR_2 = 0.0551$ erreicht werden.

Die kristallographisch ermittelte Zusammensetzung entspricht der Summenformel $Ce_{27.1\pm0.1}Ca_{33.4\pm0.1}Si_{48}O_{96}N_{48}$, bei der jedoch wegen zu vieler positiver Ladungen (Kationen) im Rahmen der Standardabweichungen keine Elektroneutralität erreicht werden kann (340.1 positive Ladungen zu 336.0 negative Ladungen).

Mittels semiquantitativer EDX-Analysen an Kristalliten dieser Verbindung wurden Ce:Ca-Verhältnisse im Bereich von 1.1:1 bis 0.7:1 gefunden. Die stark unterschiedlichen Ce:Ca-Verhältnisse weisen auf eine Phasenbreite hin. Neben Ce, Ca und Si lassen sich mit der EDX-Analyse keine weiteren Elemente nachweisen. Allerdings kann die Anwesenheit von wenig Al trotzdem nicht ausgeschlossen werden, da die Bestimmung von Al neben viel Si mit der EDX-Analyse nur schlecht möglich ist. Der Nachweis von Sauerstoff und Stickstoff ist wie bereits erwähnt gar nicht möglich.

Eine Möglichkeit der Ladungsreduktion ist der Einbau von Al³⁺ auf den Si⁴⁺-Lagen. Kristallographisch ist eine Mischbesetzung möglich, kann aber nicht nachgewiesen werden. Werden die Lagen Si1 und Si2 entsprechend mit Al so mischbesetzt, daß der Ladungsausgleich des Systems erzwungen wird, bleiben erwartungsgemäß die Gütefaktoren unverändert bei R = 0.0229 und wR₂ = 0.0549. Beide Lagen sind dann zu etwa 90 % mit Si besetzt. Diese Mischbesetzung der Lagen führt nur zu einer Änderung der dort lokalisierten Elektronen von etwa 1 %. Unter Berücksichtigung der Ladung der Kationen handelt es sich nur um eine Änderung in der Elektronenzahl von 10.0 auf 9.9. Ein solch geringer Unterschied kann natürlich allein auf Röntgendaten nicht abgestützt werden; er liegt im Bereich der Standardabweichungen. In den Tabellen zu den kristallographischen Daten sind die Lagen Si1 und Si2 deswegen nicht als mischbesetzte Lagen aufgeführt.

Der Einbau von O²⁻ zum Ladungsausgleich auf die nur zu einem Achtel durch Ca besetzte Lage Ca5 kann wegen ihrer Umgebung mit Sauerstoff ausgeschlossen werden.

Eine weitere Möglichkeit zum Ladungsausgleich besteht über eine Verschiebung der Ce/Ca-Verhältnisse der beiden mischbesetzten Ce/Ca-Lagen. Das hat allerdings sehr kleine thermische Auslenkungsparameter auf den Lagen Ce/Ca2 und Ce3/Ca3 sowie einer Verschlechterung der Gütefaktoren auf R = 0.0321 und $wR_2 = 0.0816$ zur Folge. Diese Lösung scheint im Vergleich zur obigen wenig wahrscheinlich.

Es kann dennoch davon ausgegangen werden, daß die unterschiedlichen Ce/Ca-Verhältnisse bei den via EDX analysierten Kristalliten durch einen Einbau von Al auf den Si-Lagen ausgeglichen werden. Die Phasenbreite kann somit am besten als $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{24}N_{12}$ ($0 \le x \le 9$) beschrieben werden. Der Ladungsausgleich ist damit für jede dieser möglichen Zusammensetzungen gewährleistet.

Die Phase wird als Sion klassifiziert, da die Stammverbindung mit x = 0 kein Al aufweist. Es soll ausdrücklich darauf hingewiesen werden, daß die vorliegende Strukturbestimmung plausibelste von allen geprüften Modellen ist. Auch wenn damit sämtliche Beobachtungen (z. B. thermische Auslenkungsparameter, Elektroneutralität, Bindungsverhältnisse, Abstände, nachweisbare Elemente) erklärt werden, lässt sich für x keine genauere Aussage treffen.

Eine quantitative Analyse der chemischen Zusammensetzung z.B. über eine LA-ICP-MS konnte nicht durchgeführt werden, da die Konzentration aller so nachweisbaren Elemente Ce, Ca, Si und Al variabel sein kann. Somit fehlt der zwingend notwendige interne Standard zum Vergleich der Massenverhältnisse.

Alle terminal an Si gebundenen Atome wurden als Sauerstoffatomlagen verfeinert, alle verbrückenden Atome zwischen zwei Siliciumatomen wurden als Stickstoffatome angepasst.

Die so getroffenen Zuordnungen von Stickstoff und Sauerstoff konnten durch MAPLE-Rechnungen bestätigt werden (siehe Kapitel 5.1.3).

Tab. 5.1:	Kristallographische	Daten	und	Angaben	zur	Strukturbestimmung	von
	Ce _{23+x} Ca _{37.5-x} Si _{48-x} A	1 _x O ₉₆ N2	₁₈ mit	$x \cong 4.1$			

Zusammensetzung	$Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ (x \cong 4.1)
Formelgewicht [gmol ⁻¹]	8688.17
Kristallgröße [mm]	0.16 x 0.16 x 0.16
Kristallform	regelmäßiger Würfel
Farbe	gelb, transparent
Gitterkonstanten [pm]	a = 1514.6(2)
Zellvolumen [10 ⁶ ·pm ³]	3474.8(6)
Formeleinheiten pro Zelle	1
Raumgruppe	<i>Pa</i> 3 (Nr. 205)
Dichte ρ_{calc} [g/cm ³]	4.152
μ [mm ⁻¹]	10.432
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=3.0 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	$1.3^\circ < \Theta < 34.0^\circ$
hkl-Bereich	$-23 \le h \le 23; -22 \le k \le 23; -23 \le l \le 23$
Anzahl gemessener Reflexe	54603
Anzahl unabhängiger Reflexe	2431 R _{int} =0.0519
Reflexe mit $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	2223
Strukturbestimmung	Ce, Ca und Si bzw. Al aus direkten Methoden
	N und O aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	103
Restelektronendichte [eÅ-3]	1.76 / -1.10
R-Werte für $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	$R1 = 0.0229, WR_2 = 0.0540$
R-Werte für alle Reflexe	$R1 = 0.0284, WR_2 = 0.0549$
GOOF für alle Reflexe	1.090

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 5.2: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ mit $x \cong 4.1$. U_{iso} ist definiert als $^{1}/_{3}$ der Spur des orthogonalisierten U_{ij} .

Atom	Wyckoff-	х	У	Z	U iso	Besetzungs-
	Lage					faktor
Cel	8 <i>c</i>	0.1319(1)	0.1319(1)	0.1319(1)	11(1)	1
Ce2/Ca2	24 <i>d</i>	0.0989(1)	0.3845(1)	0.1167(1)	10(1)	0.251/0.749(2)
Ce3/Ca3	24 <i>d</i>	0.1421(1)	0.3462(1)	0.3593(1)	11(1)	0.545/0.455(2)
Ca4	4 <i>a</i>	0	0	0	12(1)	1
Ca5	8 <i>c</i>	0.2465(7)	0.2465(7)	0.2465(7)	12(*)	0.066(3)
Si1	24 <i>d</i>	0.2418(1)	0.4805(1)	0.4816(1)	8(1)	1
Si2	24 <i>d</i>	0.2587(1)	0.4968(1)	0.2641(1)	8(1)	1
01	24 <i>d</i>	0.0184(2)	0.1632(2)	0.4799(2)	13(1)	1
O2	24 <i>d</i>	0.0386(2)	0.3462(2)	0.4839(2)	14(1)	1
O3	24 <i>d</i>	0.0854(2)	0.2130(2)	0.2798(2)	14(1)	1
O4	24 <i>d</i>	0.2164(2)	0.4034(2)	0.2259(2)	13(1)	1
N1	24 <i>d</i>	0.0012(2)	0.2425(2)	0.1310(2)	10(1)	1
N2	24 <i>d</i>	0.0078(2)	0.3724(2)	0.2706(2)	10(1)	1
					(*)	siehe Text

Tab. 5.3: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ mit x \cong 4.1. Die Parameter U_{ij} sind definiert für exp[-2 π^2 (U₁₁h²a^{*2} + ... + 2U₂₃klb*c*)].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cel	11(1)	11(1)	11(1)	1(1)	1(1)	1(1)
Ce2/Ca2	11(1)	9(1)	10(1)	0(1)	2(1)	-1(1)
Ce3/Ca3	11(1)	13(1)	9(1)	1(1)	-2(1)	-2(1)
Ca4	12(1)	12(1)	12(1)	-2(1)	-2(1)	-2(1)
Si1	7(1)	8(1)	7(1)	1(1)	0(1)	0(1)
Si2	7(1)	9(1)	9(1)	-1(1)	1(1)	-1(1)
01	13(1)	17(1)	11(1)	-2(1)	0(1)	4(1)
O2	14(1)	15(1)	13(1)	1(1)	4(1)	-2(1)
O3	18(1)	10(1)	14(1)	2(1)	-4(1)	1(1)
O4	13(1)	14(1)	12(1)	-3(1)	2(1)	-4(1)
N1	13(1)	12(1)	6(1)	-1(1)	-2(1)	0(1)
N2	13(1)	4(1)	12(1)	0(1)	-2(1)	0(1)

Tab. 5.4:Atomabstände(Standardabweichungen)[pm]für $Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO_{96}N_{48}$ mit $x \cong 4.1.$ nbezeichnetdieZahlderentsprechendenAbstände.

Atom	- Paar	d	n	Atom	- Paar	d	n	Atom	- Paar	d n
Ce1	- N1	259.3(3)	3	Ca4	- O6	241.3(3)	6	01	- Si1	165.6(3)
	- 03	265.0(3)	3							
	- O2	267.2(3)	3	Ca5	- O4	244.0(8)	3	O2	- Si1	167.8(3)
					- O3	254(1)	3			
Ce2/Ca2	- 01	229.2(2)						O3	- Si2	165.5(3)
	- 03	239.3(2)		Si1	- O1	165.6(3)				
	- O4	244.7(2)			- O2	167.8(3)		O4	- Si1	165.6(3)
	- 01	245.7(3)			- N1	171.4(3)				
	- 01	251.1(3)			- N2	171.5(3)		N1	- Si2	170.5(3)
	- N1	262.0(3)							- Si1	171.4(3)
	- N2	271.6(3)		Si2	- O3	165.5(3)				
					- O4	165.6(3)		N2	- Si2	170.8(3)
Ce3/Ca3	- 05	243.4(3)			- N1	170.5(3)			- Si1	171.5(3)
	- N1	245.4(2)			- N2	170.8(3)				
	- N2	246.9(3)								
	- N2	247.1(3)								
	- 06	250.2(3)								
	- 08	265.5(3)								

Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ enthält als erstes Sion ringförmige Si₆(O,N)₁₈- ${}^{0}_{6}[(Si_{6}^{[4]}O_{12}^{[1]}N_{6}^{[2]})^{18-}]$ Baueinheiten. Gemäß liegen dabei Sechserringe aus eckenverknüpften [SiO2N2]-Tetraedern vor. Nach der oben eingeführten Annahme treten die Sauerstoffatome immer terminal auf und die Verknüpfung der Tetraeder erfolgt über die Stickstoffatome. Die Spitzen der Tetraeder dieses Cyclosilicates zeigen dabei abwechselnd nach oben bzw. unten entsprechend einer UDUDUD-Konfiguration.^[3]

Der in Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ vorkommende Sechserring ist in Abbildung 5.6 mit den Bindungsabständen dargestellt.

Abb. 5.6: Darstellung der Bindungsverhältnisse des Sechserrings in der Kristallstruktur von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈. Alle Abstände in pm, symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht angegeben.

Die aus strukturchemischen Überlegungen getroffene Zuordnung der N- und O-Atomlagen wird durch die beobachteten Bindungsabstände bestätigt; erwartungsgemäß findet man deutlich kürzere Si-O^[1]- als Si-N^[2]-Bindungsabstände: Die Si-O^[1]-Bindungsabstände im Sechserring liegen zwischen 165.5 pm und 167.8 pm und die Si-N^[2]-Bindungsabstände zwischen 170.5 pm und 171.5 pm. Damit sind sämtliche Abstände im üblichen Rahmen.^{[3],[84]}

Die [CaO₆]-Oktaeder können als Bindeglied zwischen den Sechserringen angesehen werden. Jede Ecke des [CaO₆]-Oktaeders ist dabei mit einem Sechserring verknüpft, wobei es zu einer kreisähnlichen Anordnung der Sechserringe kommt (siehe Abbildung 5.7).

Abb. 5.7: Perspektivische Sicht entlang [111]. Koordination der Sechserringe um ein zentrales [CaO₆]-Oktaeder in der Kristallstruktur von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈. Der Übersichtlichkeit halber sind nur die Si-N-Grundgerüste der Ringe sowie die geschlossenen [CaO₆]-Oktaeder gezeichnet.

Alle Ringe sind mit drei [CaO₆]-Oktaedern verknüpft. Grund dafür ist die Lage des zentralen Ca-Atoms auf der Wyckoff-Lage *4*a.

Der Ca-O-Abstand in den regelmäßigen [CaO₆]-Oktaedern beträgt 241.3 pm (6x) und ist vergleichbar mit dem Ca-O-Abstand im Calciumoxid von 240.0 pm. Abbildung 5.8 zeigt die Anordnung der Sechserringe in der Elementarzelle.

Abb. 5.8: Anordnung der Sechserringe in der Kristallstruktur von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈. Der Übersichtlichkeit halber ist nur ein Teil der aus [SiO₂N₂]-Tetraedern bestehenden Sechserringe gezeichnet. Sicht entlang [111].

Wie auch bei $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ liegen in $Ce_{23+x}Ca_{37,5-x}Si_{48-x}Al_xO_{96}N_{48}$ die Ca-Atome auf der Schoen'schen Gyroidfläche $G^{[84]}$ (für Details zur Gyroidfläche siehe Kapitel 7.1.2). Die Sechserringe sind in den Kanälen der Gyroidfläche lokalisiert, die [CaO₆]-Oktaeder, welche die Sechserringe verbinden, werden hingegen von der Fläche durchschnitten. Drei Ecken des [CaO₆]-Oktaeders liegen somit auf einer Seite der Gyroidfläche, die restlichen drei Ecken auf der anderen Seite. Der Übersichtlichkeit halber sind in Abbildung 5.9 nur die Si-Si-Grundgerüste der Ringe sowie die geschlossenen [CaO₆]-Oktaeder gezeichnet. Die unterschiedliche Farbwahl für die Gyroidfläche G (hell- bzw. dunkelblau) soll deren zwei Seiten verdeutlichen.

Abb. 5.9: Kristallstruktur von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ und die Schoen´sche Gyroidfläche G. Der Übersichtlichkeit halber sind nur die Si-Si-Grundgerüste der Ringe sowie die geschlossenen [CaO₆]-Oktaeder gezeichnet. Die Sechserringe sind gelb, die [CaO₆]-Oktaeder hellblau als geschlossene Polyeder gezeichnet.

Eine Verknüpfung der Si-Zentren der Sechserringe miteinander lässt die sesselartige Konfiguration der Ringe erkennen.

Im Gegensatz zu $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ sind hier nicht alle Kationen auf der Fläche lokalisiert. Sämtliche Cer-haltigen Kationenpositionen befinden sich in der Nähe, aber nicht genau auf der Fläche. Für eine vollständige Darstellung der Kristallstruktur von $Ce_{23+x}Ca_{37,5-x}Si_{48-x}Al_xO_{96}N_{48}$ siehe Abbildung 5.10.

Abb. 5.10: Kristallstruktur von Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ und die Schoen´sche Gyroidfläche. Die [SiN₂O₂]-Tetraeder sind gelb, die [CaO₆]-Oktaeder hellblau als geschlossene Polyeder gezeichnet. Reine Ce-Positionen sind dunkelblau, gemischte Ce/Ca-Positionen violett, Stickstoff grau und Sauerstoff rot gezeichnet.

Die Koordinationszahlen der anderen Kationenlagen variieren zwischen sechs und neun. Ce1 ist neunfach durch ein dreifach überkapptes Oktaeder, Ce2/Ca2 siebenfach durch ein einfach überkapptes Oktaeder, Ce3/Ca3 sechsfach durch eine einfach überkappte quadratische Pyramide und Ca5 sechsfach durch ein verzerrtes Oktaeder koordiniert. Ein genaueres Bild der Koordinationszahlen aller Atome liefern Berechnungen der effektiven Koordinationszahl ECoN (siehe Kapitel 5.1.3).

5.1.3 Theoretische Untersuchungen

MAPLE-Rechnungen mit dem Programm MADKUG wurden wiederum zur Überprüfung der Verteilung der O²⁻-/N³⁻-Lagen zu Rate gezogen werden. Hierfür werden zunächst alle sechs kristallographischen Lagen der Sauerstoff- oder Stickstoffatome mit der gleichen Ladung von -2.33 besetzt. Der Wert von -2.33 stellt den mittleren Wert der Ladungen aller O²⁻-/N³⁻-Lagen unter Berücksichtigung ihrer Gewichtung für Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ dar $\left(\frac{96\cdot2^{-}+48\cdot3^{-}}{144}\right)$. Ein relativ kleines positives Potential auf einer der sechs Anionen-Lagen lässt eine Besetzung durch N³⁻ vermuten. Die reinen Cer- bzw. Ca-Lagen werden mit einer Ladung von + 3.00 bzw. + 2.00 angesetzt, die gemischt besetzten Lagen Ce2/Ca2 und Ce3/Ca3 mit + 2.25 und + 2.54 entsprechend ihrem Ce-/Ca-Verhältnis. Die Potentialwerte der der O²⁻-/N³⁻-Lagen aus der MAPLE-Rechnung sind in Tabelle 5.5 zusammengefasst.

Tab. 5.5: MAPLE-Potential werte für Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈

01	O2	03	O4	N1	N2
1.81	1.90	1.82	1.91	2.40	2.40

Die MAPLE-Rechnungen bestätigen die Zuordnung von Sauerstoff auf die Lagen O1 bis O4 sowie Stickstoff auf den Lagen N1 und N2. Es kann ein deutlicher Unterschied in den Potentialwerten beobachtet werden, mit Werten zwischen 1.81 und 1.91 liegen die Werte für die Sauerstofflagen deutlich unter denen für Stickstoff mit Werten von 2.40.

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, wurden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium gilt die Konstanz der ^NMEFIR- und ^NECoN-Werte. Gleichsinnig geladene Nachbarn werden mit dieser

Methode berücksichtigt. In Tabelle 5.6 sind die Ergebnisse der Berechnungen abgebildet.

Atom	^N MEFIR(pm)	^N ECoN	Atom	^N MEFIR(pm)	^N ECoN
Cel	124.7	9.296	01	138.9	8.655
Ce2/Ca2	106.3	6.470	O2	143.2	9.643
Ce3/Ca3	112.7	7.004	03	137.2	9.759
Ca4	98.1	6.002	04	136.8	9.636
Ca5	115.9	6.929	N1	140.3	11.617
Si1	27.5	3.976	N2	143.3	11.318
Si2	28.7	3.997			

Tab. 5.6: ^NMEFIR- und ^NECoN-Berechnungen an Ce_{23+x}Ca_{37.5-x}Si_{48-x}Al_xO₉₆N₄₈ (32 Zyklen)

Die Ergebnisse der ^NECoN-Berechnungen spiegeln ein ähnliches Bild der Koordination der Kationen wieder: Ce1 ist neunfach und Ca4 sechsfach koordiniert. Ce2/Ca2 ist mit einer ^NECoN von 6.47 kaum höher als Ca4 koordiniert, während Ce3/Ca3 mit ^NECoN von 7.00 im Mittelbereich liegt. Ca5 ist mit ^NECoN von 6.929 ganz ähnlich umgeben.

^NECoN-Werten nur knapp unter 4.0 für die Siliciumatome zeigen eine sehr gute Übereinstimmung der Rechnung mit der chemischen Bewertung der Verbindung.

Die den Sauerstoffatomen zugeordneten Lagen (^NECoN = 8.655) unterscheiden sich von denen mit Stickstoffatomen besetzen (^NECoN > 11)durch ihre wesentlich kleineren effektiven Koordinationszahlen. Die effektiven Ionenradien der Sauerstoffatome sind erwartungsgemäß kleiner als die der Stickstoffatome.

6 Das System Ca-Si-Al-N

Im System Ca-Si-Al-N wurde über eine Verbindung der Zusammensetzung CaSiAlN₃ bereits berichtet, eine detaillierte strukturelle Charakterisierung gelang allerdings nicht.^[30] Diese Untersuchung wurde an Mischungen aus Si₃N₄, AlN und CaO durchgeführt, die bei 1500°C für eine Stunde heiß gepresst worden sind. Den Autoren gelang es bei dieser Methode nicht, einkristalline Proben herzustellen. Die vorhandenen Pulverdaten erlauben eine orthorhombische Indizierung mit einer *C*-Zentrierung und a = 562.9 pm, b = 958.4 pm und c = 498.6 pm (ICSD Eintrag Nr. 39-747).

Weitere Verbindungen sind im System Ca-Si-Al-N bislang nicht bekannt.

6.1 CaSiAIN₃

6.1.1 Synthese von CaSiAIN₃

Die Synthese von CaSiAlN₃ gelang zum ersten Mal durch die Umsetzung einer Mischung aus 624 mg Ca₃N₂ (4.0 mmol) und 194 mg CaSi₂ (2.0 mmol). Sowohl Ca₃N₂ als auch CaSi₂ wurden nicht selbst hergestellt, stattdessen wurden diese von den Firmen Alfa/Johnson-Mathey bzw. Fluka bezogen. Nur durch eine vorhandene Verunreinigung der Ausgangsubstanzen mit Al (siehe Kapitel 3.1.1) kam es zur Bildung von CaSiAlN₃.

Die Substanzen wurden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgte die Umsetzung nach dem in Abbildung 6.1 dargestellten Temperaturprogramm:

Abb. 6.1: Temperaturprogramm zur Synthese von CaSiAlN₃ aus Ca₃N₂ und CaSi₂

Unter Verwendung anderer Ausgangsstoffe führte eine Umsetzung der drei binären Nitride Ca_2N , Si_3N_4 und AlN zu einer reproduzierbaren Bildung von mikrokristallinem CaSiAlN₃. Die Herstellung des Subnitrids erfolgte dabei nach der in Kapitel 3.1.4 beschriebenen Methode. Es werden 142 mg Ca_2N (1.5 mmol), 106 mg Si_3N_4 (0.75 mmol) und 243 mg AlN (0.25 mmol) miteinander vermahlen, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgte die Umsetzung ebenfalls nach dem in Abbildung 6.1 dargestellten Temperaturprogramm.

CaSiAlN₃ kristallisiert in Form von transparenten, farblosen Stäbchen. Die Verbindung zersetzt sich auch im Laufe mehrerer Stunden nicht in Königwasser und gehört damit zu den chemisch am widerstandsfähigsten Verbindungen aller bekannten Oxo- und Nitridosilicate. Messungen der Vickers-Härte an CaSiAlN₃ scheiterten bislang an der nicht ausreichenden Größe der Kristalle. Mit seinem hohen Kondensationsgrad von Si/Al:N von 0.666 sollte ein Vickers-Härte im Bereich von ca. 30 GPa resultieren. Das SiAlON Sr₃Pr₁₀Si₁₈Al₁₂O₁₈N₃₆ mit einem Kondensationsgrad von 0.555 weißt bereits eine Vickers-Härte von 22.0 GPa auf.^[85] Es liegt damit im Bereich sehr harter polykristalliner α -SiAlON(e) und von α -Al₂O₃. Im Pulverdiffraktogramm lassen sich alle Reflexe entweder CaSiAlN₃ oder dem nur in geringen Mengen vorhandenen CaO zuordnen (siehe Abbildung 6.2). Der so nachgewiesene Sauerstoff ist über eine Verunreinigung des käuflichen AlN eingeschleppt worden.

Abb. 6.2: Pulverdiffraktogramm aus der Umsetzung von Ca₂N mit AlN und Si₃N₄ und das berechnete Strichdiagramm von CaSiAlN₃ sowie CaO (ICSD-Eintrag Nr. 37-1497)

Bei dem in der ICSD-Datenbank eingetragenen CaSiAlN₃ (ICSD Eintrag Nr. 39-747) handelt es sich genauso wie bei dem hier untersuchten CaSiAlN₃ um eine orthorhombische *C*-zentrierte Elementarzelle. Allerdings sind im Vergleich zum Datenbankeintrag die Werte der Achsen a = 562.9 pm (985.1) und b = 958.4 pm (565.4) gegeneinander vertauscht und weisen im Falle der längsten Achse einen erheblichen Längenunterschied auf. Auch die Werte für die *c*-Richtung unterscheiden sich signifikant mit c = 498.6 pm (507.1). Dies ist auch aus dem Vergleich der beiden Pulverdiffraktogramme von CaSiAlN₃ ersichtlich (siehe Abbildung 6.3). Allerdings wird die Qualität des Eintrags für CaSiAlN₃ wegen der aus Untersuchungen mit einer Mikrosonde nur ungenau bestimmten Gitterkonstanten angezweifelt.

6.1.2 Kristallstruktur von CaSiAIN₃

Farblose Einkristalle von CaSiAlN₃ können aufgrund ihres stäbchenförmigen Habitus und ihrer Transparenz unter dem Lichtmikroskop mit Polarisationsfilter leicht aus der metallischen Matrix isoliert werden. Anhaftende metallische Verunreinigungen an der Oberfläche der Kristalle lassen sich manuell entfernen.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von CaSiAlN₃ sind in den Tabellen 6.1, 6.2, 6.3 und 6.4 angegeben. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen $0.40 \cdot 0.05 \cdot 0.05 \text{ mm}^3$. Die Analyse der systematischen Auslöschungen führte zu den Raumgruppen *Cmc2*₁ (Nr. 36), *Cmcm* (Nr. 63) und *Ama*₂ (Nr. 40). Ein sinnvolles Modell für die Kristallstruktur von CaSiAlN₃ kann nur in der Raumgruppe *Cmc2*₁ gefunden werden. Die Positionen der Calcium-, Aluminium- und Siliciumatome wurden mit Hilfe der Direkten Methoden gefunden, während die der Stickstoffatome über Differenzfourieranalyse lokalisiert wurden. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter und einer empirischen Absorptionskorrektur mit Hilfe des Programms SADABS führte zu einem internen R-Wertes von 0.0478 sowie zu Gütefaktoren R = 0.0285 und wR₂ = 0.0632.

Die Lage Si1/Al1 wurde gemischt besetzt verfeinert (siehe auch Kapitel 3.1.1). Aus den so verfeinerten Daten resultierte für diese Lage ein Si/Al-Verhältnis von etwa 1:1 mit einer Standardabweichung von 10 Prozent (siehe Tabelle 6.2). Unter Beachtung der gleichen Elektronenzahlen (neun Elektronen) für eine mit Al³⁺ oder Si⁴⁺ besetzten Lage,

ist ein solcher Wert für die Standardabweichung nicht unerwartet, da hier nur der geringe Unterschied der Atomformfaktoren berücksichtigt ist.

Tab. 6.1: Kristallographische Daten zur	Strukturbestimmung von CaSiAlN ₃
---	---

Zusammensetzung	CaSiAlN ₃
Formelgewicht [gmol ⁻¹]	137.18
Kristallgröße [mm]	0.40 x 0.05 x 0.05
Kristallform	Stäbchen
Farbe	farblos, transparent
Gitterkonstanten [pm]	a = 985.1(5)
	b = 565.4(3)
	c = 507.1(2)
Zellvolumen [10 ⁶ ·pm ³]	282.2(2)
Formeleinheiten pro Zelle	4
Raumgruppe	<i>Cmc</i> 2 ₁ (Nr. 36)
Dichte ρ_{calc} [g/cm ³]	3.226
μ [mm ⁻¹]	2.67
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	4°< 2⊖ <31°
hkl-Bereich	$-13 \le h \le 13; -7 \le k \le 7; -6 \le l \le 7$
Anzahl gemessener Reflexe	1516
Anzahl unabhängiger Reflexe	434 R _{int.} =0.0478
Reflexe mit $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	395
Strukturbestimmung	Ca, Si und Al aus direkten Methoden
	N aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	32
Restelektronendichte [eÅ-3]	0.54 / -0.63
R-Werte für $ F ^2 > 2\sigma(F ^2)$	$R1 = 0.0285, WR_2 = 0.0632$
R-Werte für alle Reflexe	$R1 = 0.0306, WR_2 = 0.0637$
Flackparameter	0.35(7)
GOOF für alle Reflexe	1.004

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 6.2: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für CaSiAlN₃. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

	Wyckoff-					Besetzungs-
Atom	Lage	x/a	y/b	z/c	U _{iso}	faktor
Ca1	4a	0	0.3125(1)	0.5086(1)	12(1)	1
Si1/A11	8 b	0.1745(1)	0.1583(1)	0.0360(2)	8(1)	50/50(10)
N1	8b	0.2135(3)	0.1265(5)	0.3873(6)	12(1)	1
N2	4 <i>a</i>	0	0.2450(5)	0.0001(9)	12(1)	1

Tab. 6.3: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für CaSiAlN₃. Die Parameter U_{ij} sind definiert für exp[- $2\pi^2(U_{11}h^2a^{*2} + ... + 2U_{23}klb^*c^*)$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ca1	12(1)	14(1)	11(1)	-1(1)	0	0
Si1/A11	8(1)	6(1)	9(1)	1(1)	0(1)	0(1)
N1	12(1)	9(1)	14(1)	1(1)	1(1)	-1(1)
N2	12(2)	15(2)	9(2)	5(2)	0	0

Tab. 6.4:Atomabstände (Standardabweichungen) [pm] für CaSiAlN₃. n bezeichnet
die Zahl der entsprechenden Abstände.

Atom	- Paar	d	n	Atom	-	Paar	d	n	Atom		Paar	d	n
Ca1	- N1	243.0(3)	2	Si1/A11	-	N2	179.7	7(1)	N1	-	Si1/Al1	180.7(3)	
	- N2	250.3(3)			-	N1	180.7	7(3)		-	Sil/All	181.9(3)	
	- N2	252.0(5)			-	N1	181.9	9(3)		-	Si1/Al1	183.1(4)	
	- N2	260.9(5)			-	N1	183.1	(4)					
	- Si1/Al1	307.6(2)							N2	-	Si1/Al1	179.7(1)	2

CaSiAlN₃ ist aus einem dreidimensionalen Netzwerk isotyp zu LiSi₂N₃ bzw. NaSi₂N₃ aufgebaut und kristallisiert in einer verzerrten Ordnungsvariante des Wurtzit-Typs.^{[20],[21]} Dabei bilden die Stickstoffatome in CaSiAlN₃ eine quasi hexagonal dichteste Kugelpackung in der geordnet ein Drittel der Tetraederlücken durch Silicium oder Aluminium und ein Sechstel der Tetraederlücken durch Ca²⁺ besetzt sind. Das anionische Raumnetzwerk lässt sich gemäß ${}^{3}_{\infty}[(Si^{[4]}_{0.5}Al^{[4]}_{0.5}N^{[2]}_{1}N^{[3]}_{2})^{2-}]$ beschreiben, wobei sich die Ca²⁺-Kationen in Hohlräumen des Gerüsts befinden (siehe Abbildung 6.4). Dieses Raumnetzwerk besteht aus Schichten kondensierter, eckenverknüpfter [Si₃Al₃N₆]-Sechserringe senkrecht zu [001], die entlang [001] versetzt miteinander kondensiert sind.

Abb. 6.4: Darstellung der Kristallstruktur von CaSiAlN₃ in Blickrichtung [001]..
 Die Ca-Atome sind schwarz, die gemischten [Al_{0.5}Si_{0.5}N₄]-Tetraeder sind als geschlossene Polyeder gezeichnet.

Die Ca²⁺-Kationen befinden sich in den Zentren der Sechserringe und füllen die Ordnungsvariante des Wurtzit-Typs auf. Der Ca-N-Abstand beträgt dabei zwischen 243.0 pm und 260.8 pm, wobei Ca1 von einer trigonalen Bipyramide aus Stickstoffatomen umgeben ist. Ein exakteres Bild der Koordinationszahlen aller Atome liefern Berechnungen der effektiven Koordinationszahl ^NECoN (siehe Kapitel 6.1.3).

Der Abstand Si/Al-N1^[3] liegt mit 180.7 bis 183.2 pm zwischen den typischen Werten von Si-N^[3]- und Al-N^[3]-Bindungen. Das gleiche gilt für den Si/Al-N1^[2]- Abstand von 179.0 pm. Erwartungsgemäß sind die Si/Al-N-Abstände der dreifach verknüpften Stickstoffatome größer als die der zweifach verknüpften.

6.1.3 Theoretische Untersuchungen an CaSiAIN₃

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium kommt eine Konstanz der ^NMEFIR- und ^NECoN-Werte zum Tragen. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 6.5 sind die Ergebnisse der Berechnungen abgebildet.

Tab. 6.5: ^NMEFIR- und ^NECoN-Berechnungen an CaSiAlN₃ (38 Zyklen)

Atom	^N MEFIR(pm)	^N ECoN
Cal	101.3	5.294
Si1/Al1	32.8	3.971
N1	147.2	13.137
N2	152.2	11.827

So ist Ca1 mit einer ECoN von 5.294 etwas mehr als fünffach koordiniert, Der ^NECoN-Wert von knapp unter 4.0 für die gemischt besetzte Si/Al-Lage zeigt eine hervorragende Übereinstimmung der Rechnung mit der Realität. Die Stickstoffatome sind im Schnitt zwölffach koordiniert und befinden sich damit in einer dichtesten Kugelpackung.

6.2 $Ca_5Si_2AI_2N_8$

6.2.1 Synthese von Ca₅Si₂Al₂N₈

Die Synthese von $Ca_5Si_2Al_2N_8$ gelang zum ersten Mal durch die Umsetzung einer Mischung aus 550 mg Ca_3N_2 (3.71 mmol), 72.9 mg Si (2.60 mmol) und 18.9 mg Al_2O_3 (0.19 mmol). Das Ca_3N_2 wird dabei nach der in 3.1.4 angegebenen Methode hergestellt. Die Substanzen werden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgte die Umsetzung nach folgendem Temperaturprogramm:

Abb. 6.5: Temperaturprogramm zur Synthese von Ca₅Si₂Al₂N₈ aus Ca₃N₂, Al₂O₃ und Si

Neben Ca₅Si₂Al₂N₈ lassen sich in der ersten Synthese noch Ca₂Si und CaO nachweisen. Zusätzlich lässt sich im späteren Verlauf der Untersuchungen Ca₇NbSi₂N₉ (siehe Kapitel 4.4) im Pulverdiffraktogramm als Nebenprodukt identifizieren. Diese unerwartete Reaktion mit dem Ampullenmaterial kann durch einen Wechsel zu Tantalampullen oder Molydäntiegeln als Reaktionsbehälter vermieden werden.

Da die Reaktion aus den in Kapitel 3.1.3. angegebenen Gründen von Ca_3N_2 , Al_2O_3 und Si zu $Ca_5Si_2Al_2N_8$ nicht verlässlich reproduziert werden kann, musste das Reaktionsschema dementsprechend verändert werden. Eine zuverlässige Reproduktion von Ca₅Si₂Al₂N₈ gelingt durch die Umsetzung von Ca₃N₂, Al und Si in geschlossenen Tantalampullen in einem nicht kontinuierlich evakuierten Korundrohr. Dazu werden 392 mg Ca₃N₂ (2.65 mmol), 35.7 mg Al (1.32 mmol) und 37.2 mg Si (1.32 mmol) gemischt, im Achatmörser verrieben und unter 150 bar Druck zu einer Tablette gepresst. Das Korundrohr wird vor der Umsetzung evakuiert und kurz nach Beginn der Heizphase von der Vakuumpumpe getrennt.

Wie schon in Kapitel 3.1.3 ausgeführt, erniedrigt sich durch eine zunehmende Alterung der Niobampullen und der Bildung von Mikrorissen in der Ampullenwand bei langen Reaktionszeiten und -temperaturen der Stickstoffpartialdruck $p(N_2)$.

Wie groß dieser Partialdruck ist, konnte bislang nicht geklärt werden. Eine Vervielfachung des Reaktionsraumes (geschlossene Reaktionsampulle unter Argon) oder die Durchführung der Umsetzung von Ca₃N₂, Al und Si in einer offenen Ampulle mit $p(N_2) = 1$ atm führte zur Bildung von metallischem Material (Variation der Ampullengröße) bzw. von Ca₅Si₂N₆ ($p(N_2) = 1$ atm). Ein Auswiegen des N₂-Verlusts scheitert an der Gewichtszunahme der Reaktionsampulle durch die Bildung einer oberflächlichen Oxid- und Nitridschicht.

Abb. 6.6: Temperaturprogramm zur Synthese von Ca₅Si₂Al₂N₈ aus Ca₃N₂, Al und Si in einer geschlossenen Tantalampulle in einem nicht kontinuierlich evakuierten Korundrohr.

Ca₅Si₂Al₂N₈ kristallisiert in Form von transparenten, gelb gefärbten, verzerrten Oktaedern. Die Kristalle sind dabei in eine metallisch glänzende Matrix aus Ca₅Si₃ eingebettet. Ca₅Si₂Al₂N₈ zersetzt sich in Gegenwart von feuchter Luft im Laufe mehrerer Stunden, in Wasser innerhalb weniger Minuten.

Abb. 6.7: Pulverdiffraktogramm der Syntheseprodukte aus Ca₃N₂, Al und Si

Abb. 6.8: Ausschnitt aus dem in Abbildung 6.7 gezeigten Pulverdiffraktogramm und Vergleich mit den berechneten Strichdiagrammen von Ca₅Si₂Al₂N₈, Ca₄SiAl₃N₇ und Ca₅Si₃^[74] (von oben nach unten)

Im in den Abbildungen 6.7 und 6.8 gezeigten Pulverdiffraktogramm lassen sich alle Reflexe Ca₅Si₂Al₂N₈, Ca₄SiAl₃N₇ oder Ca₅Si₃^[74] zuweisen. Die mit einem "*" markierten Reflexe gehören wahrscheinlich zu Ca₇NbSi₂N₉, mit abschließender Sicherheit kann das wegen der Vielzahl der auftretenden Reflexe und deren daraus resultierenden Überlappungen aber nicht gesagt werden.

6.2.2 Kristallstruktur von Ca₅Si₂Al₂N₈

Gelbe Einkristalle von Ca₅Si₂Al₂N₈ können aufgrund ihres regelmäßigen Habitus und ihrer Transparenz unter dem Lichtmikroskop mit Polarisationsfilter leicht isoliert werden. Anhaftende metallische Verunreinigungen an der Oberfläche der Kristalle lassen sich manuell entfernen.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von $Ca_5Si_2Al_2N_8$ sind in den Tabellen 6.6, 6.7, 6.8 und 6.9 angegeben. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen 0.20 \cdot 0.20 \cdot 0.20 mm³. Die Analyse der systematischen Auslöschungen führte ausschließlich zu der zentrosymmetrischen Raumgruppe *Pbcn* (Nr. 60). Die Positionen der Calcium-, Aluminium- und Siliciumatome werden mit Hilfe der Direkten Methoden gefunden, während die der Stickstoffatome über eine Differenzfourieranalyse lokalisiert werden konnten. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0195 und wR₂ = 0.0821. Eine empirische Absorptionskorrektur mit Hilfe des Programms SADABS führte zu einer Verbesserung des internen R-Wertes von 0.0519 auf 0.0262 sowie der Gütefaktoren auf R = 0.0161 und wR₂ = 0.0453.

Zusammensetzung	Ca ₅ Si ₂ Al ₂ N ₈
Formelgewicht [gmol ⁻¹]	422.62
Kristallgröße [mm]	0.20 x 0.20 x 0.20
Kristallform	Oktaeder
Farbe	gelb, transparent
Gitterkonstanten [pm]	a = 925.5(2)
	b = 614.0(1)
	c = 1557.8(3)
Zellvolumen [10 ⁶ ·pm ³]	885.2(3)
Formeleinheiten pro Zelle	4
Raumgruppe	<i>Pbcn</i> (Nr. 60)
Dichte ρ_{calc} [g/cm ³]	3.171
μ[mm ⁻¹]	3.47
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären o-Scan
$\Delta \omega$, Belichtungszeit	$\Delta \omega = 0.20^{\circ}, t = 20s$
Thetabereich	3°< 2Θ <34°
hkl-Bereich	$-14 \le h \le 14; -9 \le k \le 9; -23 \le l \le 23$
Anzahl gemessener Reflexe	12396
Anzahl unabhängiger Reflexe	1715 R _{int} =0.0262
Reflexe mit $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	1539
Strukturbestimmung	Ca, Si und Al aus direkten Methoden
	N aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	78
Restelektronendichte [eÅ ⁻³]	0.34 / -0.57
R-Werte für $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	$R1 = 0.0161, WR_2 = 0.0453$
R-Werte für alle Reflexe	$R1 = 0.0200, WR_2 = 0.0459$
GOOF für alle Reflexe	1.131

Tab. 6.6: Kristallographische Daten und Angaben zur Strukturbestimmung von $Ca_5Si_2Al_2N_8$

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 6.7: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen) [pm²·10] und Besetzungsfaktoren für Ca₅Si₂Al₂N₈. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	x/a	y/b	z/c	U _{iso}	Besetzungs-	
	Lage					faktor	
Cal	8 <i>d</i>	0.3582(1)	0.1281(1)	0.4250(1)	10(1)	1	
Ca2	4c	0	0.3643(1)	$^{1}/_{4}$	12(1)	1	
Ca3	8 <i>d</i>	0.3016(1)	0.1733(1)	0.1025(1)	9(1)	1	
Al1	8 <i>d</i>	0.3553(1)	0.4119(1)	0.2627(1)	6(1)	1	
Si1	8 <i>d</i>	0.0049(1)	0.0942(1)	0.0710(1)	7(1)	1	
N1	8 <i>d</i>	0.0462(1)	0.3630(2)	0.0917(1)	10(1)	1	
N2	8 <i>d</i>	0.1432(1)	0.0134(2)	0.4955(1)	10(1)	1	
N3	8 <i>d</i>	0.2712(1)	0.1414(2)	0.2673(1)	11(1)	1	
N4	8 <i>d</i>	0.4817(1)	0.4248(2)	0.1625(1)	10(1)	1	

Tab. 6.8: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ca₅Si₂Al₂N₈. Die Parameter U_{ij} sind definiert für exp[- $2\pi^2(U_{11}h^2a^{*2} + ... + 2U_{23}klb^*c^*)$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ca1	9(1)	9(1)	11(1)	0	2(1)	0
Ca2	15(1)	13(1)	9(1)	0	1(1)	0
Ca3	9(1)	8(1)	10(1)	-1(1)	-1(1)	0
Al1	6(1)	6(1)	6(1)	0	0	0
Si1	8(1)	8(1)	7(1)	0	0	0
N1	9(1)	9(1)	11(1)	1(1)	0	0
N2	9(1)	10(1)	10(1)	1(1)	1(1)	0
N3	12(1)	12(1)	10(1)	0	0	-2(1)
N4	10(1)	11(1)	8(1)	0	-1(1)	-1(1)

Aton	1 - Paar	d	n	Atom -	Paar	d	n	Atom	-	Paar		d	n
Ca1	- N2	237.9(1)		Al1 -	N3	183.3(1)		N1	-	Si1	17	2.5(1))
	- N1	239.6(1)		-	N3	183.6(1)			-	Ca3	23	7.5(1))
	- N3	258.6(1)		-	N4	190.8(1)			-	Ca1	23	9.6(1))
	- N2	260.8(1)		-	N4	195.2(1)			-	Ca2	25	0.2(1))
	- N4	271.5(1)		-	Al1	270.8(1)			-	Ca3	26	4.1(1))
	- N1	274.4(1)		-	Ca3	293.7(1)			-	Cal	27	4.4(1))
	- All	307.1(1)		-	Ca1	307.1(1)							
	- Si1	311.1(1)		-	Ca2	309.0(1)		N2	-	Si1	17	8.8(1))
	- Si1	316.8(1)		-	Ca3	330.4(1)			-	Si1	18	6.0(1))
				-	Ca2	330.7(1)			-	Ca1	23	7.9(1))
Ca2	- N1	250.2(1)	2						-	Ca3	24	9.8(1))
	- N3	273.0(1)	2	Sil -	N1	172.5(1)			-	Ca3	25	9.6(1))
	- N3	287.1(1)	2	-	N4	176.9(1)			-	Cal	26	0.8(1))
	- N4	302.8(1)	2	-	N2	178.8(1)							
	- Al1	309.0(1)	2	-	N2	186.0(1)		N3	-	A11	18	3.3(1))
	- Si1	324.5(1)	2	-	Sil	245.0(1)			-	A11	18	3.6(1))
				-	Ca3	283.1(1)			-	Cal	25	8.7(1))
Ca3	- N1	237.5(1)		-	Ca1	311.1(1)			-	Ca3	25	9.1(1))
	- N4	245.8(1)		-	Ca1	316.8(1)			-	Ca2	27	3.0(1))
	- N2	249.8(1)		-	Ca3	318.2(1)			-	Ca2	28	7.1(1))
	- N3	259.1(1)											
	- N2	259.6(1)						N4	-	Si1	17	6.9(1))
	- N1	264.1(1)							-	A11	19	0.8(1))
	- Si1	283.1(1)							-	A11	19	5.2(1))
	- Al1	293.7(1)							-	Ca3	24	5.8(1))
									-	Ca1	27	1.5(1))
									-	Ca2	30	2.8(1))

Eine vorhandene Phasenbreite gemäss $Ca_5Si_{2-x}Al_{2+x}O_xN_{8-x}$ wurde bereits in Kapitel 3.3.2 diskutiert. Anhand der vorliegenden kristallographischen Daten kann der partielle Ersatz von N durch O und Al durch Si nicht nachgewiesen werden. Deswegen soll hier ausschließlich die Struktur der Stammverbindung $Ca_5Si_2Al_2N_8$ mit x = 0 diskutiert werden. Signifikanten Änderungen in der Struktur werden für $Ca_5Si_{2-x}Al_{2+x}O_xN_{8-x}$ mit $x \ge 0$ nicht erwartet.

Ca₅Si₂Al₂N₈ liegt in einem bisher noch nicht bekannten Strukturtyp vor und ist aus einem dreidimensionalen Netzwerk (siehe Abbildung 6.11) aus kanten- und eckenverknüpften [*T*N₄]-Tetraedern mit *T* = Al, Si aufgebaut. Dieses Anionengerüst enthält ausschließlich [*T*₂N₆]-Baueinheiten, in denen zwei [*T*N₄]-Tetraeder über eine gemeinsame Kante miteinander verknüpft sind. Somit lässt sich das Raumnetz zunächst gemäß $_{\infty}^{3}$ [(*T*₄^[4]N₂^[1]N₄^[2]N₂^[3])¹⁰⁻] beschreiben, wobei sich die Ca²⁺-Kationen in den Lücken des Gerüsts befinden. Für *T* ergibt sich eine mittlere Ladung von + 3.5, welches dann eine Zuordnung in eine Al- und eine Si-Lage ermöglicht.

Aufgrund der sehr ähnlichen Atomformfaktoren von Al³⁺ und Si⁴⁺ ist eine Unterscheidung der entsprechenden Elemente auf der Basis von Röntgenmethoden sehr schwierig. Eine eindeutige Zuordnung der zwei kristallographischen Lagen der Tetraederzentren in Al³⁺ und Si⁴⁺ gelingt hier durch eine genaue Betrachtung der Bindungsverhältnisse. Die deutlich unterschiedlichen Abstände von 245.0 pm bzw. 270.8 pm der Tetraederzentren in den dimeren [T_2N_6]-Einheiten zueinander, erlauben eine Zuordnung in [Si₂N₆]- und [Al₂N₆]-Einheiten. Während in Ba₅Si₂N₆ und BaSi₇N₁₀ Si-Si-Abstände von 250.6 pm bzw. 255.6 pm gefunden wurden, erlauben die längeren Al-N-Bindungen größere Abstände zwischen den Al³⁺-Zentren.^{[7],[8]} So wurden in Ca₃AlN₃ und α -Ca₃Al₂N₄ Al-Al-Abstände von 269.1 pm und 277.6 pm gefunden.^{[27],[29]} In den [Al₂N₆]-Einheiten findet man Al-N-Abstände zwischen 183.3 pm und 195.2 pm, in den [Si₂N₆]-Einheiten Si-N-Abstände von 172.5 pm bis 186.0 pm (siehe Abbildung 6.9).

Abb. 6.9: Interatomare Abstände (pm) und Winkel in den [Al₂N₆]- und [Si₂N₆]-Einheiten in Ca₅Si₂Al₂N₈.

Der terminale Si1-N1^[1]-Abstand liegt mit 172.5 pm in der gleichen Größenordnung wie in Ca₅Si₂N₆, in dem Si-N-Abstände von 171.3 pm und 174.7 pm.

Während man in der [Al₂N₆]-Einheit einen N4-Al1-N4-Winkel von 90.7° findet, weist die [Si₂N₆]-Einheit einen N2-Si1-N2-Winkel von 93.6° auf. Die [Al₂N₆]-Einheiten sind dabei senkrecht zu [001] über N3 in eckenverknüpften Schichten angeordnet, wobei die enthaltenen [AlN₄]-Tetraeder Sechserringe bilden (siehe Abbildung 6.10). Detailliert sich das anionische Netzwerk lässt somit als ${}^{3}_{\infty}[2(Si^{[4]}N^{[1]}_{1/1}N^{[2]}_{2/2}N^{[3]}_{1/3})^{3-}2(Al^{[4]}N^{[2]}_{2/2}N^{[3]}_{2/3})^{2-}] \quad beschreiben. \quad Die \quad Ca^{2+}-Kationen \quad werden \quad Werden \quad Werden \quad Werden \quad Ca^{2+}-Kationen \quad Werden \quad We$ durch Stickstoff verzerrt oktaedrisch (Ca1, Ca3) bzw. achtfach durch ein zweifach überkapptes Oktaeder (Ca2) koordiniert. Die interatomaren Abstände zwischen den Stickstoff- und den Ca-Atomen liegen zwischen 237.5 pm und 287.1 pm. Ein genaueres Bild der Koordinationszahlen aller Atome liefern Berechnungen der effektiven Koordinationszahl ECoN (siehe Kapitel 6.2.3).
Die $[Al_2N_6]$ -Baueinheiten sind über eine Eckenverknüpfung mit anderen $[Al_2N_6]$ -Baueinheiten verbunden und spannen so in der *ab*-Ebene eine ausschließlich aus $[Al_2N_6]$ -Baueinheiten bestehende Schicht auf (siehe Abbildung 6.10).

Abb. 6.10: Ausschnitt aus der anionischen Gerüststruktur von Ca₅Si₂Al₂N₈ in Blickrichtung [001]. Dargestellt ist eine Schicht, die entlang der *ab*-Ebene aus eckenverknüpften [Al₂N₆]-Einheiten aufgebaut ist. Der Übersicht halber wurden die Ca-Atome bzw. die Querverknüpfung der Schichten durch die [Si₂N₆]-Einheiten weggelassen.

Abb. 6.11: Darstellung der anionischen Gerüststruktur von Ca₅Si₂Al₂N₈ in Blickrichtung [010] (oben) bzw. [001] (unten). Die [AlN₄]-Tetraeder sind hell, die SiN₄-Tetraeder dunkel als geschlossene Polyeder gezeichnet. Der Übersicht halber wurden die Ca-Atome (schwarz) unten weggelassen.

Die $[Al_2N_6]$ -Schichten sind dabei durch $[Si_2N_6]$ -Baueinheiten miteinander querverknüpft. Die $[Al_2N_6]$ -Schichten kommen nicht direkt übereinander zu liegen, sondern sind um 108.2 pm gegeneinander in *b*-Richtung verschoben. Somit sind die $[Al_2N_6]$ -Schichten in einer ABA-Abfolge in *c*-Richtung übereinander gestapelt. Der Abstand zweier $[Al_2N_6]$ -Schichten zueinander (gemessen als Abstand zweier $N4^{[3]}$) beträgt 506.3 pm in der *c*-Richtung.

Der Kondensationsgrad, der durch das molare Verhältnis von Tetraederzentren zu Tetraederecken definiert wird, liegt bei (Al/Si):N = 1:2. Bei einem so niedrigen Kondensationsgrad wurde bisher noch kein Auftreten eines dreifach verbrückenden Stickstoffatoms N^[3] beobachtet. Überraschenderweise zersetzt sich Ca₅Si₂Al₂N₈ trotz seiner dreidimensionalen Gerüststruktur im Laufe weniger Minuten in Wasser. Ternäre Nitridosilicate hingegen sind bei diesem Kondensationsgrad deutlich widerstandsfähiger gegenüber Wasser und Säuren. So ist zum Beispiel Ba₂Nd₇Si₁₁N₂₃ mit einem Kondensationsgrad von 0.57 stabil gegenüber heißen Säuren oder Basen.^[12] Es kann allgemein beobachtet werden, daß Nitridoaluminate und Nitridoaluminosilicate chemisch im Vergleich zu Nitridosilicaten deutlich weniger resistent gegenüber der Einwirkung von Wasser oder Säuren/Basen sind.

6.2.3 Theoretische Untersuchungen zu Ca₅Si₂Al₂N₈

MAPLE-Rechnungen mit dem Programm MADKUG werden zur Überprüfung der der Al³⁺-/ Si⁴⁺-Lagen zu Rate gezogen. Dabei werden die beiden kristallographischen Lagen der Tetraederzentren Al³⁺ und Si⁴⁺ mit der gleichen Ladung von + 3.5 besetzt. Der Wert von + 3.5 stellt den mittleren Wert der Ladungen der beiden Aluminium- und Siliciumlagen dar. Die Ladungen aller anderen Lagen werden mit + 2.0 für Calcium und - 3.0 für Stickstoff besetzt. Ein relativ kleiner negatives Potential auf einer der beiden Kationen-Lagen lässt eine Besetzung durch Al³⁺ vermuten. Für die Al³⁺-Lage findet man einen Potentialwert von - 2.86, für die Si⁴⁺-Lage - 3.19. Somit bestätigt diese

Rechnung die korrekte Zuordnung der Al³⁺- und der Si⁴⁺-Lagen basierend auf den kristallographischen Daten.

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, wurden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium gilt die Konstanz der ^NMEFIR- und ^NECoN-Wert. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 6.10 sind die Ergebnisse der Berechnungen abgebildet.

Tab. 6.10: ^NMEFIR- und ^NECoN-Berechnungen an Ca₅Si₂Al₂N₈ (52 Zyklen)

Atom	^N MEFIR(pm)	^N ECoN
Ca1	103.6	5.491
Ca2	118.0	7.050
Ca3	103.0	6.050
Al1	32.1	3.757
Si1	29.8	3.864
N1	148.0	10.370
N2	146.2	11.473
N3	157.8	12.705
N4	150.4	13.358

Die Ergebnisse der ^NECoN-Berechnungen spiegeln ein etwas anderes Bild der Koordination der Ca²⁺-Kationen wieder: So ist Ca1 mit ^NECoN von 5.491 deutlich weniger als sechsfach koordiniert, Ca3 ist mit 6.050 hingegen nahezu sechsfach koordiniert. Ca2 kommt mit ^NECoN = 7.050 auf eine effektive Koordinationszahl von etwas mehr als sieben, eine achtfache Koordination wird nicht erreicht. Diese für Ca²⁺ große Koordinationszahl spiegelt sich auch in dem großen effektiven Ionenradius von 118.0 pm für Ca2 wider.

^NECoN-Werten nur knapp unter 4.0 für die Aluminiumatome und das Siliciumatom zeigen eine hervorragende Übereinstimmung der Rechnung mit der Realität. Die Stickstoffatome sind im Schnitt zwölffach koordiniert und befinden sich damit in einer dichtesten Kugelpackung.

6.3 Ca₄SiAl₃N₇

6.3.1 Synthese von Ca₄SiAl₃N₇

Die Synthese von $Ca_4SiAl_3N_7$ gelang zum ersten Mal durch die Umsetzung einer Mischung aus 500 mg Ca_3N_2 (3.37 mmol), 45.5 mg Al (0.17 mmol) und 47.0 mg Si (1.67 mmol). Das Ca_3N_2 wurde dabei nach der in 3.1.4 angegebenen Methode hergestellt. Die Substanzen wurden gemischt, im Achatmörser verrieben, unter 150 bar Druck zu einer Tablette gepresst und in eine Niobampulle verschweißt. In einem kontinuierlich evakuierten Korundrohr erfolgte die Umsetzung nach folgendem Temperaturprogramm:

Abb. 6.12: Temperatur programm zur Synthese von $Ca_4Al_3SiN_7$ aus Ca_3N_2 , Al und Si

Neben Ca₄SiAl₃N₇ lässt sich in dieser ersten Synthese noch CaSi₂ und CaO nachweisen. Da die Reaktion aus den in Kapitel 3.1.1 angegebenen Gründen von Ca₃N₂, Al und Si zu Ca₄SiAl₃N₇ nicht verlässlich reproduziert werden kann, musste das Reaktionsschema dementsprechend verändert werden.

Eine zuverlässige Reproduktion von $Ca_4SiAl_3N_7$ gelingt durch die Umsetzung von Ca_3N_2 , Ca_2N , Al und Si in geschlossenen Tantalampullen in einem nicht kontinuierlich evakuierten Korundrohr. Dazu wurden 449 mg Ca_3N_2 (3.03 mmol), 57 mg Ca_2N

(0.6 mmol), 33 mg Al (1.21 mmol) und 68 mg Si (2.42 mmol) gemischt, im Achatmörser verrieben und unter 150 bar Druck zu einer Tablette gepresst. Die Reaktionsampulle wurde in einem kontinuierlich evakuierten Korundrohr nach dem in Abbildung 6.13 angegeben Temperaturschema erhitzt.

Abb. 6.13: Temperaturprogramm zur Synthese von Ca₄Al₃SiN₇ aus Ca₂N, Ca₃N₂, Al und Si in einer geschlossenen Tantalampulle in einem kontinuierlich evakuierten Korundrohr.

Ca₄SiAl₃N₇ kristallisiert in Form von transparenten, orange gefärbten Plättchen. Die Kristalle sind dabei in eine metallisch glänzende Matrix aus Ca, Ca₂Si und Ca₅Si₃ eingebettet. Ca₄SiAl₃N₇ zersetzt sich wie Ca₅Si₂Al₂N₈ in Gegenwart von feuchter Luft im Laufe mehrerer Stunden, in Wasser innerhalb weniger Minuten.

Abb. 6.14: Pulverdiffraktogramm der Syntheseprodukte aus Ca₂N, Ca₃N₂, Al und Si

Abb. 6.15: Ausschnitt aus dem in Abbildung 6.14 gezeigten Pulverdiffraktogramm und Vergleich mit dem berechneten Strichdiagramm von Ca₄SiAl₃N₇ sowie Ca₂Si, Ca und Ca₅Si₃ (von oben nach unten)

Im Pulverdiffraktogramm (siehe Abbildungen 6.14 und 6.15) lassen sich alle Reflexe neben $Ca_4SiAl_3N_7$ noch Ca_2Si (ICSD Eintrag Nr. 28-235), Ca (ICSD Eintrag Nr. 23-430) und $Ca_5Si_3^{[74]}$ zuordnen. Durch den hohen beobachteten Untergrund der Messung kann auf röntgenamorphe Anteile in der Probe geschlossen werden. Ob es sich dabei um glasartige Nitridoaluminosilicate handelt, kann noch nicht entschieden werden. Die Identifikation solcher glasartigen Verbindungen gelang bisher nicht.

6.3.2 Kristallstruktur von Ca₄SiAl₃N₇

Einkristalle von Ca₄Al₃SiN₇ können aufgrund ihres regelmäßigen Habitus und ihrer Transparenz unter dem Lichtmikroskop mit Polarisationsfilter leicht aus der metallischen Matrix isoliert werden. Anhaftende Verunreinigungen dieser Matrix an der Oberfläche der Kristalle lassen sich manuell entfernen.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von Ca₄SiAl₃N₇ sind in den Tabellen 6.11, 6.12, 6.13 und 6.14 angegeben. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen 0.20·0.20·0.04 mm³. Die Analyse der systematischen Auslöschungen führt zu den Raumgruppen *P*1 und *P* $\overline{1}$. Ein sinnvolles Modell der Kristallstruktur von Ca₄SiAl₃N₇ konnte nur in der zentrosymmetrischen Raumgruppe *P* $\overline{1}$ gefunden werden. Die Lösung erfolgte mit Hilfe der Direkten Methoden und lieferte die Positionen der Calcium-, Aluminium-, Silicium-und auch die der Stickstoffatome. Nach Verfeinerung der Orts- und aller anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0376 und wR₂ = 0.1163. Eine empirische Absorptionskorrektur mit Hilfe des Programms SADABS führte zu einer weiteren Verbesserung des internen R-Wertes von 0.0796 auf 0.0474 sowie der Gütefaktoren auf R = 0.0327 und wR₂ = 0.0748.

Zusammensetzung	Ca ₄ SiAl ₃ N ₇
Formelgewicht [gmol ⁻¹]	367.42
Kristallgröße [mm]	0.20 x 0.20 x 0.04
Kristallform	Plättchen
Farbe	orange, transparent
Gitterkonstanten [pm]	$a = 585.7(4)$ $\alpha = 77.97(2)$
	$b = 815.9(6) \beta = 77.07(2)$
	$c = 1305 (1) \gamma = 82.18(2)$
Zellvolumen [10 ⁶ ·pm ³]	591.2(7)
Formeleinheiten pro Zelle	3
Raumgruppe	$P\overline{1}$ (Nr. 2)
Dichte ρ_{calc} [g/cm ³]	3.092
μ[mm ⁻¹]	3.19
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=31.01 mm, Hemisphären ω-Scan
$\Delta \omega$, Belichtungszeit	$\Delta \omega = 0.20^\circ$, t=20s
Thetabereich	2°<2Θ<34°
hkl-Bereich	$-9 \le h \le 8; -12 \le k \le 12; -20 \le l \le 20$
Anzahl gemessener Reflexe	8923
Anzahl unabhängiger Reflexe	4210 R _{int.} =0.0474
Reflexe mit $ F ^2 > 2\sigma(F ^2)$	2869
Strukturbestimmung	Ca, Si, Al und N aus direkten Methoden
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	207
Restelektronendichte [eÅ ⁻³]	0.94 / -0.77
R-Werte für $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	$R1 = 0.0327, WR_2 = 0.0734$
R-Werte für alle Reflexe	$R1 = 0.0495, WR_2 = 0.0748$
GOOF für alle Reflexe	0.899

Tab. 6.11: Kristallographische Daten und Angaben zur Strukturbestimmung von Ca4SiAl₃N₇

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 6.12: Atomkoordinaten, Auslenkungsparameter (Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für Ca₄SiAl₃N₇. U_{iso} ist definiert als ¹/₃ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	x/a	y/b	z/c	U _{iso}	Besetzungs-
	Lage					faktor
Cal	2 <i>i</i>	0.0950(1)	0.0431(1)	0.6527(1)	11(1)	1
Ca2	2 <i>i</i>	0.1164(1)	0.2893(1)	0.9855(1)	14(1)	1
Ca3	2 <i>i</i>	0.2953(1)	0.4008(1)	0.4613(1)	11(1)	1
Ca4	2 <i>i</i>	0.5017(1)	0.2555(1)	0.7114(1)	16(1)	1
Ca5	2 <i>i</i>	0.6028(1)	0.0652(1)	0.0987(1)	15(1)	1
Ca6	2 <i>i</i>	0.7603(1)	0.3447(1)	0.2199(1)	13(1)	1
A11	2 <i>i</i>	0.0050(2)	0.5969(1)	0.3007(1)	4(1)	1
A12	2 <i>i</i>	0.1799(2)	0.7234(1)	0.5296(1)	8(1)	1
A13	2 <i>i</i>	0.2511(2)	0.2261(1)	0.2573(1)	8(1)	1
Al4	2 <i>i</i>	0.3944(1)	0.5707(1)	0.0847(1)	2(1)	1
A15	2 <i>i</i>	0.3994(2)	0.0630(1)	0.4190(1)	8(1)	1
Si1	2 <i>i</i>	0.1192(2)	0.9236(1)	0.1224(1)	8(1)	1
N1	2 <i>i</i>	0.0961(4)	0.2160(3)	0.7913(2)	11(1)	1
N2	2 <i>i</i>	0.1017(5)	0.1677(3)	0.4039(2)	12(1)	1
N3	2 <i>i</i>	0.1167(4)	0.6790(3)	0.4028(2)	10(1)	1
N4	2 <i>i</i>	0.1297(5)	0.1213(3)	0.1721(2)	14(1)	1
N5	2 <i>i</i>	0.2402(5)	0.4605(3)	0.2222(2)	20(1)	1
N6	2 <i>i</i>	0.2641(5)	0.5197(3)	0.6255(2)	11(1)	1
N7	2 <i>i</i>	0.4187(5)	0.8025(3)	0.0927(2)	13(1)	1
N8	2 <i>i</i>	0.5425(5)	0.1099(3)	0.2778(2)	12(1)	1
N9	2 <i>i</i>	0.5480(4)	0.1547(3)	0.5100(2)	12(1)	1
N10	2 <i>i</i>	0.7060(4)	0.4454(3)	0.0428(2)	11(1)	1
N11	1a	0	0	0	10(1)	1

Tab. 6.13: Koeffizienten	der	anisotropen	Auslenkungsparameter	(Standard-
abweichungen)	[pm ² ·	10] für Ca ₄ SiA	l ₃ N ₇ . Die Parameter U _{ij} s	ind definiert
für $exp[-2\pi^2(U_1)]$	$_{1}h^{2}a^{*2}$	$^{2} + + 2U_{23}$ klt	D*C*)].	

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cal	10(1)	11(1)	14(1)	-4(1)	-1(1)	-1(1)
Ca2	15(1)	12(1)	14(1)	-4(1)	-1(1)	-4(1)
Ca3	11(1)	10(1)	14(1)	-5(1)	-4(1)	0(1)
Ca4	9(1)	23(1)	13(1)	-2(1)	0(1)	-2(1)
Ca5	12(1)	24(1)	11(1)	-10(1)	2(1)	-4(1)
Ca6	17(1)	13(1)	10(1)	-4(1)	-2(1)	-3(1)
Al1	3(1)	6(1)	5(1)	-4(1)	0(1)	-1(1)
A12	7(1)	10(1)	8(1)	-4(1)	0(1)	-1(1)
A13	7(1)	11(1)	7(1)	-3(1)	0(1)	-1(1)
A14	2(1)	3(1)	1(1)	-2(1)	0(1)	-1(1)
A15	7(1)	9(1)	7(1)	-3(1)	-1(1)	-1(1)
Si1	8(1)	10(1)	7(1)	-3(1)	0(1)	-2(2)
N1	8(1)	13(1)	9(1)	-2(1)	1(1)	-3(1)
N2	12(1)	11(1)	14(1)	-4(1)	-2(1)	-1(1)
N3	10(1)	11(1)	8(1)	-3(1)	-2(1)	-1(1)
N4	13(1)	17(1)	10(1)	-3(1)	0(1)	-1(1)
N5	24(2)	15(1)	17(2)	-2(1)	4(1)	-1(1)
N6	11(1)	12(1)	10(1)	-6(1)	-1(1)	-1(1)
N7	13(1)	13(1)	12(1)	-4(1)	1(1)	-3(1)
N8	10(1)	17(1)	10(1)	-3(1)	-2(1)	-2(1)
N9	10(1)	12(1)	15(1)	-2(1)	-4(1)	-3(1)
N10	11(1)	14(1)	11(1)	-4(1)	-2(1)	-2(1)
N11	11(2)	11(2)	9(2)	-4(1)	-2(2)	-2(1)

Aton	n - Paar	d r	Atom	ı - Paar	d	n Aton	ı - Paar	d n
Ca1	- N3	248.1(3)	Ca6	- N8	234.5(3)	N1	- Si1	184.0(3)
	- N2	250.6(3)		- N10	236.3(3)		- Al1	185.0(3)
	- N1	251.9(3)		- N6	246.4(3)			
	- N8	256.0(3)		- N4	268.2(3)	N2	- A15	186.7(3)
	- N4	257.2(3)		- Al4	301.8(2)		- Al2	188.3(3)
	- A15	296.5(2)		- N5	305.9(3)		- A13	190.8(3)
	- Si1	297.6(3)						
	- N9	301.3(2)	A11	- N1	185.0(3)	N3	- Al1	187.9(3)
				- N3	187.9(3)		- Al2	189.0(3)
Ca2	- N10	245.2(3)		- N5	190.1(3)			
	- N11	250.3(2)		- N6	191.4(3)	N4	- A13	184.1(3)
	- N4	254.5(3)					- Si1	187.2(3)
	- N10	259.3(3)	Al2	- N2	188.3(3)			
	- N7	274.5(3)		- N3	189.0(3)	N5	- A13	186.7(3)
	- N3	275.2(3)		- N9	190.9(3)		- All	190.1(3)
				- N6	191.4(3)		- Al4	191.5(3)
Ca3	- N9	238.8(3)						
	- N3	241.3(3)	A13	- N4	184.1(3)	N6	- All	191.4(3)
	- N6	249.2(3)		- N5	186.7(3)		- A12	193.8(3)
	- N2	265.1(3)		- N8	188.2(3)			
	- N6	268.4(3)		- N2	190.8(3)	N7	- Si1	189.4(3)
	- N3	272.5(3)					- Al4	194.2(3)
			Al4	- N5	191.5(3)			
Ca4	- N1	240.6(3)		- N10	191.9(3)	N8	- A15	183.1(3)
	- N3	245.0(3)		- N7	194.2(3)		- A13	188.2(3)
	- N6	259.2(3)		- N10	198.8(3)			
	- N7	263.5(3)				N9	- A15	184.4(3)
	- N9	286.0(3)	A15	- N8	183.1(3)		- Al2	190.1(3)
	- N9	299.9(3)		- N9	184.4(3)		- A15	193.2(3)
				- N2	186.7(3)			
Ca5	- N8	238.2(3)		- N9	193.3(3)	N10	- Al4	191.9(3)
	- N11	244.1(2)					- Al4	198.8(3)
	- N7	253.0(3)	Si1	- N1	184.0(3)			
	- N7	254.9(3)		- N11	184.2(1)	N11	- Si1	184.2(1) 2
	- N4	273,1(3)		- N4	187.2(3)			
	- Al4	295.7(3)		- N7	189.4(3)			

Eine mögliche Phasenbreite gemäss $Ca_4Si_{1-x}Al_{3+x}O_xN_{7-x}$ wurde bereits in Kapitel 3.3.1 diskutiert. Anhand der vorliegenden kristallographischen Daten kann der partielle Ersatz von N durch O und Al durch Si nicht nachgewiesen werden. Deswegen soll hier ausschließlich die Struktur der Stammverbindung $Ca_4Si_1Al_3N_7$ mit x = 0 diskutiert werden. Signifikante Änderungen in der Struktur werden für $Ca_5Si_{1-x}Al_{3+x}O_xN_{7-x}$ mit $x \ge 0$ nicht erwartet.

Ca₄SiAl₃N₇ liegt in einem bisher unbekannten Strukturtyp vor. Ca₄SiAl₃N₇ ist dabei aus einem dreidimensionalen Netzwerk (siehe Abbildung 6.21) aus kanten- und eckenverknüpften [TN₄]-Tetraedern mit T = Al, Si aufgebaut. Somit lässt sich das Raumnetzwerk zunächst gemäß ${}^{3}_{\infty}[(T_{4}^{[4]}N_{1}^{[1]}N_{7}^{[2]}N_{3}^{[3]})^{8-}]$ beschreiben, wobei sich die Ca²⁺-Kationen in den Lücken des Gerüsts befinden. Für T ergibt sich eine mittlere Ladung von + 3.25. Daraus kann gefolgert werden, daß in Ca₄SiAl₃N₇ mindestens eine mischbesetzte Al³⁺-/Si⁴⁺-Lage und eine reine Si⁴⁺-Lage vorhanden sein muss. Wiederum ist eine Unterscheidung der entsprechenden Elemente auf der Basis von Röntgenmethoden praktisch nicht möglich. Eine eindeutige Zuordnung der sechs kristallographischen Lagen der Tetraederzentren in Al³⁺ und Si⁴⁺ durch eine genaue Betrachtung der Bindungsverhältnisse gelingt hier nicht. Zur Angabe einer realistischen Verteilung von Al³⁺ und Si⁴⁺ wurde eine MAPLE-Rechnung mit dem Programm MADKUG zu Rate gezogen (siehe Kapitel 6.3.3).

In der Beschreibung der strukturellen Eigenschaften von Ca₄SiAl₃N₇ wird für die Lage Si1 eine Besetzung ausschließlich durch Silicium angenommen, bei den verbleibenden Al-Lagen konnte die Verteilung des restlichen Siliciums nicht eindeutig geklärt werden. Basierend auf MAPLE-Rechnungen kann gefolgert werden, daß es sich bei den Lagen Al1 und Al4 wahrscheinlich nicht um reine Aluminiumlagen handelt. Wie groß der tatsächliche Anteil an Silicium auf diesen beiden Lagen ist, konnte bislang nicht eindeutig geklärt werden.

Weiterer Beleg für diese Zuordnung sind die sehr kleinen thermischen Auslenkungsparameter U_{iso} von Al1 und Al4, die mit 40 pm² bzw. 20 pm² deutlich kleiner sind, als die der anderen Aluminiumlagen, bei denen der Parameter jeweils einen Wert von 80 pm² erreicht. Führt man die Verfeinerung der Al1- und Al4-Lagen nicht mit Aluminium sondern mit Silicium durch, so findet man thermische Auslenkungsparameter von 80 pm² bzw. 60 pm². Eine Verfeinerung der Struktur von $Ca_4SiAl_3N_7$ mit einer Beimischung von Silicium auf die Lagen Al1 und Al4 führt nicht zu sinnvollen Ergebnissen, da sich die Zahl der auf diesen Lagen lokalisierten Elektronen durch eine Al³⁺/Si⁴⁺-Mischbesetzung nicht ändert.

Abb. 6.16: Bindungsverhältnisse in der anionischen Gerüststruktur von Ca₄SiAl₃N₇
 in Blickrichtung [100]. Der Übersicht halber werden die Ca-Atome bzw.
 die Bindungsabstände weggelassen (siehe Tabelle 6.14).

Eine Veranschaulichung der komplizierten Bindungsverhältnisse in $Ca_4SiAl_3N_7$ gelingt am besten durch eine Zerlegung in einzelne Baueinheiten. So sind in Abbildung 6.17 die Bindungsverhältnisse der kantenverknüpften [Al₄N₁₀]-Einheit dargestellt. Diese [Al₄N₁₀]-Einheit ist dabei in ein dreidimensionales Netzwerk aus [AlN₄]-, gemischten $[Al_{1-x}Si_xN_4]$ - und $[SiN_4]$ -Tetraedern eingebunden. Sie ist einem Ausschnitt aus den unendlichen Ketten aus kantenverknüpften Tetraedern im SiS₂ strukturell sehr ähnlich.^[86] Bei ternären Nitridoaluminaten konnten in Ca₆Al₂N₆ $[Al_2N_6]^{12}$ -Dimere aus kantenverknüpften Tetraedern nachgewiesen werden, die zur $[Si_2N_6]^{10}$ -Einheit in $M_5Si_2N_6$ (M = Ca, Ba) homolog sind.^[29] In $M_3Al_2N_4$ (M = Sr, Ba) hingegen konnten unendliche Ketten aus kantenverknüpften [AlN₄]-Tetraedern analog zum SiS₂ identifiziert werden.^{[27],[28]}

 Abb. 6.17: Interatomare Abstände in der anionischen Gerüststruktur von Ca₄SiAl₃N₇. Dargestellt ist die kantenverknüpfte [Al₄N₁₀]-Einheit, Abstände in pm, symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht aufgeführt.

Als Vergleich werden hier die unendlichen, kantenverknüpften Tetraederketten herangezogen, die in $Sr_3Al_2N_4$ vorliegen. Im $Sr_3Al_2N_4$ finden *Kniep et al.* Al-N-Abstände zwischen 188.5 pm und 195.8 pm und Al-Al-Abstände von 255.4 pm. Da die kantenverknüpfte [Al₄N₁₀]-Einheit in Ca₄SiAl₃N₇ in ein dreidimensionales Netzwerk einbettet ist, finden sich hier zum Teil wesentlich kürzere Al-N-Abstände zwischen 183.1 pm bis 193.3 pm. Die Al-Al-Abstände pendeln mit 251.4 pm und 260.6 pm um den in Sr₃Al₂N₄ gefundenen Wert. Im Ba₃Al₂N₄ findet sich ein Al-Al-Abstand von 256.1 pm. Neben der linearen $[Al_4N_{10}]$ -Einheit kann in Ca₄SiAl₃N₇ noch eine weitere markante Baueinheit identifiziert werden: Vier $[AlN_4]$ -Tetraeder sind über gemeinsame Ecken zu einem $[Al_4N_{12}]$ -Vierer-Ring miteinander verbunden (siehe Abbildung 6.18). Solche Vierer-Ringe konnten bei den Nitridoaluminaten bisher nur in α -Ca₃Al₂N₄ nachgewiesen werden.^[27] Im Ring treten dort Al-N-Abstände zwischen 187.3 pm und 197.6 pm auf, in Ca₄SiAl₃N₇ findet man für diese Baueinheit Al-N-Abstände zwischen 187.9 pm und 193.8 pm.

Abb. 6.18: Interatomare Abstände in der anionischen Gerüststruktur von Ca₄SiAl₃N₇. Dargestellt ist der [Al₄N₁₂]-Vierer-Ring. Abstände in pm, symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht aufgeführt.

Die kantenverknüpften $[Al_4N_{10}]$ -Einheiten werden über die $[Al_4N_{12}]$ -Vierer-Ringe miteinander verbunden und spannen so ein dreidimensionales Netzwerk auf (siehe Abbildung 6.19). Diese dreidimensionalen Baueinheiten werden wiederum durch $[SiN_4]$ - bzw. $[Al_{1-x}Si_xN_4]$ -Tetraeder miteinander quervernetzt. Die Bindungsverhältnisse in diesem "Silicium-Block" sind in Abbildung 6.20 dargestellt.

Abb. 6.19: Bindungsverhältnisse in der anionischen Gerüststruktur von Ca₄SiAl₃N₇.
Dargestellt ist die Querverknüpfung der [Al₄N₁₀]-Ketten mit den [Al₄N₄]-Vierer-Ringen aus zwei verschiedenen Blickrichtungen.
Gemischte [Al_{1-x}Si_xN₄]-Tetraeder sind hellgrün, die [AlN₄]-Tetraeder dunkelgrün als geschlossene Polyeder gezeichnet.

 Abb. 6.20: Bindungsverhältnisse in der anionischen Gerüststruktur von Ca₄SiAl₃N₇. Links dargestellt ist der "Silicium-Block", rechts ein Ausschnitt mit den interatomaren Abständen in pm. Die [SiN₄]-Tetraeder sind gelb, gemischte [Al_{1-x}Si_xN₄]-Tetraeder hellgrün gezeichnet.

Die Si-N^[2]-Abstände im $[SiN_4]$ -Tetraeder liegen mit 184.0 pm bis 189.4 pm deutlich über den sonst gefundenen Si-N^[2]-Abständen bei ternären und quaternären Nitridosilicaten von ca. 170 pm bis 180 pm. Im Ca₅Si₂Al₂N₈ finden sich Si-N^[2]-Abstände von 178.8 pm und 186.0 pm, die damit ebenfalls über den bei Nitridosilicaten gefundenen Abständen liegen (siehe Kapitel 6.2.2)

Die Al-N-Abstände im "Silicium-Block" liegen mit 191.5 pm bis 198.8 pm bei einem Vergleich mit den in ternären Nitridoaluminaten gefundenen Al-N-Abständen in der gleichen Größenordnung.

Eine Übersicht über die Gesamtstruktur von Ca₄SiAl₃N₇ mit allen miteinander verbunden Baueinheiten gibt Abbildung 6.21.

 Abb. 6.21: Projektion der Struktur von Ca₄SiAl₃N₇ entlang der kristallographischen *a*-Richtung. Die [SiN₄]-Tetraeder sind gelb, die gemischten [Al_{1-x}Si_xN₄]-Tetraeder hellgrün, die [AlN₄]-Tetraeder dunkelgrün als geschlossene Polyeder gezeichnet.

Die Ca²⁺-Kationen werden im Falle von Ca2, Ca3 und Ca4 durch Stickstoff verzerrt oktaedrisch koordiniert. Die Ca-N-Abstände bewegen sich dabei zwischen 238.8 pm und 299.9 pm. Ungewöhnlich ist die Koordination von Ca1, Ca5 und Ca6: Ca1 wird von fünf Stickstoffatomen im Abstand zwischen 248.1 pm bis 257.2 pm in einer verzerrt quadratisch pyramidalen Anordnung koordiniert. Ein sechstes Stickstoffatom folgt erst in einem Abstand von 301.3 pm. Zwischen den fünf "inneren" und dem einen "äußeren" Stickstoffatom liegen allerdings noch ein Al-Kation bei 296.5 pm und ein Si-Kation bei 297.6 pm. Es ist davon auszugehen, daß Ca1 tatsächlich in einer fünffachen Koordination durch Stickstoff vorliegt, eine Koordination durch Al³⁺ oder Si⁴⁺ erscheint wenig wahrscheinlich.

Den gleichen Fall findet man bei Ca5: Es ist ebenfalls von fünf Stickstoffatomen in einem Abstand zwischen 238.2 pm und 273.1 pm verzerrt quadratisch pyramidal koordiniert. Ein sechstes Stickstoffatom folgt in einem Abstand von 301.5 pm, ein Al^{3+} -Kation folgt bei 295.6 pm und ein Si⁴⁺-Kation folgt nach 296.9 pm Abstand.

Ca6 hingegen ist von nur vier Stickstoffatomen tetraedrisch in einem Abstand von 234.5 pm bis 268.2 pm koordiniert. Im Abstand von 301.8 pm folgt ein Al-Kation, zwei weitere Stickstoffatome folgen dann in einem Abstand von 306.1 pm und 308.8 pm.

Koordinationszahlen kleiner als sechs sind für Ca²⁺-Kationen im Festkörper sehr ungewöhnlich, wegen des starren anionischen Gerüsts werden in Ca₄SiAl₃N₇ drei der sechs Ca²⁺-Kationen jedoch in eine vierfache bzw. zwei fünffache Koordination gezwungen.

Rechnungen zu den effektiven Koordinationszahlen belegen die vierfache Koordination von Ca6 sowie die fünffache Koordination von Ca5 (siehe Kapitel 6.3.3). Ca1 hingegen besitzt eine effektive Koordinationszahl von mehr als 6, Ca4 dagegen nur eine von 5.080.

Der Kondensationsgrad, der durch das molare Verhältnis von Tetraederzentren zu Tetraederecken definiert wird, liegt bei (Al/Si):N = 4:7. Überraschenderweise zersetzt sich auch Ca₄SiAl₃N₇ trotz seiner dreidimensionalen Gerüststruktur im Laufe weniger Minuten in Wasser, während CaSiAlN₃ mit einem nur wenig höheren Kondensationsgrad stabil gegen Königswasser ist. Das bereits in Kapitel 6.2 erwähnte Ca₅Si₂Al₂N₈ mit einem etwas niedrigeren Kondensationsgrad ist ebenfalls nicht hydrolysestabil.

6.3.3 Theoretische Untersuchungen

MAPLE-Rechnungen mit dem Programm MADKUG wurden wiederum zur Angabe einer realistischen Verteilung der Al³⁺-/Si⁴⁺-Lagen zu Rate gezogen werden. Hierfür wurden zunächst alle sechs kristallographischen Lagen der Tetraederzentren mit der gleichen Ladung von + 3.25 besetzt. Der Wert von + 3.25 stellt den mittleren Wert der Ladungen aller Al³⁺-/Si⁴⁺-Lagen unter Berücksichtigung ihrer Gewichtung für Ca₄SiAl₃N₇ dar $\left(\frac{3\cdot 4^{\oplus} + 9\cdot 3^{\oplus}}{12}\right)$. Ein relativ größeres negatives Potential auf einer der sechs Kationen-Lagen lässt eine Besetzung durch Si⁴⁺ vermuten. Die Calcium-Lagen werden jeweils mit einer Ladung von + 2.0 angesetzt, die Stickstofflagen mit - 3.0. Die Potentialwerte der Kationen-Lagen aus der MAPLE-Rechnung sind in Tabelle 6.15 zusammengefasst.

Tab. 6.15: MAPLE-Potentialwerte für Ca₄SiAl₃N₇

A11	A12	A13	Al4	A15	Si1
-2.82	-2.62	-2.72	-2.80	-2.51	-3.08

Eine eindeutige Zuordnung der Si-Verteilung auf die Aluminiumlagen ist trotz der MAPLE-Rechnungen nicht möglich, da sich die Potentialwerte für Al1 und Al4 in einem sehr engen Bereich von - 2.80 und - 2.82 bewegen. Es ist anzunehmen, daß es sich bei der Si1-Lage um eine reine Si⁴⁺-Lage handelt, während dies bei Al1 und Al4 anhand der MAPLE-Daten nicht ohne weiteres gesagt werden kann. Eventuell liegt in Ca₄SiAl₃N₇ neben einer vollbesetzten Si⁴⁺-Lage nicht nur eine im Verhältnis 50:50 mischbesetzte Al³⁺-/Si⁴⁺-Lage vor, sondern zwei im Verhältnis 0.75:0.25 mischbesetzte Al³⁺-/Si⁴⁺-Lagen. Eine Auflösung einer solchen Mischbesetzung ist anhand der kristallographischen Daten nicht möglich.

Nicht auszuschließen ist eine Al³⁺-/Si⁴⁺-Mischbesetzung aller Al-Lagen mit unterschiedlichen Anteilen von Si.

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu bekommen, werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium gilt die Konstanz der ^NMEFIR- und ^NECoN-Werte. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 6.16 sind die Ergebnisse der Berechnungen abgebildet.

Atom	^N MEFIR(pm)	^N ECoN	Atom	^N MEFIR(pm)	^N ECoN
Cal	105.5	6.123	N1	151.3	12.465
Ca2	103.4	5.805	N2	153.7	13.298
Ca3	99.0	5.958	N3	152.0	12.561
Ca4	100.8	5.080	N4	157.2	12.812
Ca5	97.9	5.357	N5	159.8	12.698
Ca6	89.9	4.179	N6	159.8	13.258
Al1	32.9	3.999	N7	162.6	13.640
A12	35.5	4.000	N8	151.5	11.912
A13	31.5	3.948	N9	154.8	13.045
Al4	35.3	3.957	N10	155.8	10.950
A15	33.1	3.992	N11	145.9	12.451
Si1	31.9	3.968			

Tab. 6.16: ^NMEFIR- und ^NECoN-Berechnungen an Ca₄SiAl₃N₇ (23 Zyklen)

Die Ergebnisse der ECoN-Berechnungen spiegeln ein etwas anderes Bild der Koordination der Ca²⁺-Kationen wieder: So ist Ca1 mit ^NECoN = 6.123 mehr als sechsfach koordiniert, Ca4 hingegen mit 5.080 wegen seiner großen Distanz zu den "äußeren" Stickstoffatomen seiner Koordinationsphäre nur ein wenig mehr als fünffach koordiniert. Ca6 besitzt eine effektive Koordinationszahl von 4.179 und ist damit nahezu tetraedrisch koordiniert. Diese für Ca²⁺ sehr kleine Koordinationszahl spiegelt sich auch in dem sehr kleinen effektiven Ionenradius von 89.9 pm für Ca6 wider.

^NECoN-Werten bei oder knapp unter 4.0 für die Aluminiumatome und das Siliciumatom zeigen eine hervorragende Übereinstimmung der Rechnung mit der Realität. Die Stickstoffatome sind im Schnitt zwölffach koordiniert und befinden sich damit in einer dichtesten Kugelpackung.

7 System M-Si-Al-O-N

In den Systemen M-Si-Al-O-N sind bislang alle strukturell eindeutig geklärten Verbindungen Varianten von bereits bekannten Sialonen oder ternären Nitridosilicaten. Eine Übersicht über alle bereits bekannten quinären Sialone gibt Tabelle 1.4 in Kapitel 1.

Das Hauptproblem bei Strukturbestimmungen von Kristallen in dieser Verbindungsklasse ist die schwierige, z. T. beinahe unmögliche Unterscheidung von Si und Al bzw. N und O mit Hilfe kristallographischer Daten aufgrund der sehr ähnlichen Atomformfaktoren von Si und Al bzw. von N und O. Für die hier vorgestellte Verbindung stellt die Strukturbestimmung das plausibelste gefundene Modell dar.

7.1 Ca₁₅Si₁₈Al₂O₁₂N₂₈

7.1.1 Synthese von $Ca_{15}Si_{18}AI_2O_{12}N_{28}$

Bei Umsetzung eines Presslings aus Ca₃(BN₂)₂ mit CaSi₂ im Verhältnis 2:1 konnten schwach gelbe, transparente und regelmäßige Oktaeder von Ca₁₅Si₁₈Al₂O₁₂N₂₈ identifiziert werden. Der Pressling wurde zunächst im Lichtbogenofen aufgeschmolzen und anschließend bei einer relativen Stromstärke von 6 Skalenteilen (Skalierung zur absoluten Stromstärke ist nicht bekannt) für etwa eine Minute getempert. Der so erhaltene silberne Regulus wird in eine Niobampulle gegeben und für 50 h bei 1250°C getempert. Nach der Umsetzung ist der Regulus im Inneren schwarz gefärbt. Die Oktaeder sind in der metallischen Matrix eingebettet.

Das bei dieser Synthese verwendete Nitridoborat $Ca_3(BN_2)_2$ wurde aus kommerziell verfügbarem Ca_3N_2 und BN hergestellt. Bei $CaSi_2$ handelt es sich ebenfalls um das kommerziell verfügbare Produkt. Beide Ausgangssubstanzen sind mit Aluminium und Sauerstoff verunreinigt (siehe Kapitel 3.1.1)

Eine Reproduktion dieser Synthese ausgehend von Reinsubstanzen steht noch aus.

7.1.2 Kristallstruktur von Ca₁₅Si₁₈Al₂O₁₂N₂₈

Einkristalle von Ca₁₅Si₁₈Al₂O₁₂N₂₈ können aufgrund ihres regelmäßigen oktaedrischen Habitus, ihrer blassgelben Farbe sowie ihrer Transparenz unter einem Lichtmikroskop mit Polarisationsfilter identifiziert werden. Die Kristalle sind in der Regel in eine metallisch glänzende Matrix unbekannter Zusammensetzung eingebettet. Pulverdiffraktogramme konnten mangels isolierbarer Substanz nicht gemessen werden.

Alle kristallographischen Daten und Angaben zur Strukturbestimmung von $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ sind in den Tabellen 7.1, 7.2, 7.3 und 7.4 angegeben. Die Datensammlung erfolgte auf einem mit CCD-Detektor ausgestattetem Diffraktometer (Fa. SIEMENS) an einem Einkristall mit den Abmessungen 0.15·0.15·0.15 mm³. Die Analyse der systematischen Auslöschungen führte ausschließlich zu der Raumgruppe $Pa\overline{3}$ (Nr. 205). Die Positionen der Calcium-, Silicium- und Aluminiumatome wurden mit Hilfe der Direkten Methoden gefunden, die der Stickstoff- und Sauerstoffatome über eine Differenzfourieranalyse. Nach Verfeinerung der Orts- und der anisotropen Auslenkungsparameter betrugen die Gütefaktoren R = 0.0646 und wR₂ = 0.2203. Eine empirische Absorptionskorrektur wurde mit Hilfe des Programms SADABS durchgeführt. Damit konnte eine Verbesserung des internen R-Wertes von 0.0841 auf 0.0352 sowie der Gütefaktoren auf R = 0.0476 und wR₂ = 0.1214 erreicht werden.

Die Lage N7 wurde zunächst voll mit Stickstoff besetzt verfeinert und resultiert in einem Auslenkungsparameter von 18 (1). Eine Besetzung mit Stickstoff erscheint allerdings wegen der isolierten Lage nicht wahrscheinlich. Seine Koordination durch ein Aluminium- und sieben Stickstoffatome in einem Abstand zwischen 270.5 pm und 296.7 pm deutet eher auf eine Kationen- als auf eine Anionenlage hin. Isolierte Stickstoffanionen wurden bei Nitridosilicaten, Nitridoaluminosilicaten, Sionen oder Sialonen bisher nicht beobachtet.

Wird der Besetzungsfaktor für die Lage Ca5 auf 0.50 entsprechend einer Halbbesetzung festgehalten, so erhält man einen sehr große Auslenkungsparameter U_{iso} von 77 (4). Dieser lässt sich allerdings über die nur sehr schwache Koordination des Calciums auf dieser Lage erklären. Ähnlich große Auslenkungsparameter treten

beispielsweise bei sehr schwach koordinierten Alkali- oder Erdalkalikationen in grossen Käfigen von Zeolitstrukturen auf.

Weiterhin spricht der mit der Halbbesetzung erreichte Ladungsausgleich für den Einbau eines zweiwertigen Kations. Gegen ein alternative Vollbesetzung der Lage mit einem einwertigen Kation wie z. B. Na⁺ spricht der daraus resultierende noch größere Auslenkungsparameter von 89 (4). Ebenso gibt es keinerlei Hinweise auf eine Verunreinigung der Ausgangssubstanzen mit Natrium oder anderen einwertigen Metallen (siehe Kapitel 3.1.1).

Die Lage O2 wurde isotrop verfeinert, da eine anisotrope Verfeinerung zu einem physikalisch unsinnigen negativ definierten Auslenkungsellipsoiden führte.

Anhand der vorliegenden kristallographischen Daten konnten sowohl Al von Si als auch O von N unterschieden werden. Eine Besetzung der Lage Al1 mit Silicium führte zu einer Erhöhung des Auslenkungsparameters von 18 (1) auf 24 (1). Die dazugehörigen langen Bindungsabstände sprechen ebenfalls eher für Al als für Si Besetzung. Besetzt man die Lagen O1 und O2 mit Stickstoff, so kommt es zu einer Verkleinerung der Auslenkungsparameter von 12 (1) bzw. 21 (2) auf 0 bzw. 7 (2). Die sehr kurzen Bindungsabstände sprechen ebenfalls für eine Besetzung mit Sauerstoff.

Die so getroffenen Zuordnungen konnten durch MAPLE-Rechnungen bestätigt werden (siehe Kapitel 7.1.3).

Tab. 7.1:	Kristallographische	Daten	und	Angaben	zur	Strukturbestimmung	von
	$Ca_{15}Si_{18}Al_2O_{12}N_{28}$						

Zusammensetzung	$Ca_{15}Si_{18}Al_2O_{12}N_{28}$
Formelgewicht [gmol ⁻¹]	1745.06
Kristallgröße [mm]	0.15 x 0.15 x 0.15
Kristallform	regelmäßiger Oktaeder
Farbe	farblos, transparent
Gitterkonstanten [pm]	a = 1548.0(2)
Zellvolumen [10 ⁶ ·pm ³]	3709.5(7)
Formeleinheiten pro Zelle	4
Raumgruppe	$Pa\overline{3}$ (Nr. 205)
Dichte ρ_{calc} [g/cm ³]	3.125
μ [mm ⁻¹]	2.839
Datensammlung	Siemens Plattform CCD
Monochromator, Wellenlänge	Graphit, $MoK_{\alpha} = 0.71073 \text{ Å}$
Detektorabstand, Messmethode	d=3.0 mm, Hemisphären @-Scan
$\Delta \omega$, Belichtungszeit	Δω=0.20°, t=20s
Thetabereich	$2.3^\circ < \Theta < 25.0^\circ$
hkl-Bereich	$0 \le h \le 18; \ 0 \le k \le 13; \ 0 \le l \le 18$
Anzahl gemessener Reflexe	1282
Anzahl unabhängiger Reflexe	644 R _{int} =0.0352
Reflexe mit $ F ^2 > 2\sigma(F ^2)$	507
Strukturbestimmung	Ca, Si und Al aus direkten Methoden
	N und O aus Differenzfourieranalyse
Verfeinerung	SHELXL-97, kleinste Fehlerquadrate,
	vollständige Matrix
Absorptionskorrektur	SADABS (empirisch)
Anzahl Parameter	111
Restelektronendichte [eÅ-3]	0.38 / -0.77
R-Werte für $ \mathbf{F} ^2 > 2\sigma(\mathbf{F} ^2)$	$R1 = 0.0476, WR_2 = 0.1214$
R-Werte für alle Reflexe	$R1 = 0.0688, wR_2 = 0.1261$
GOOF für alle Reflexe	1.582

Die Definitionen der Gütefaktoren sind in Kapitel 2.3.2, Tabelle 2.2 aufgelistet

Tab. 7.2:Atomkoordinaten,Auslenkungsparameter(Standardabweichungen) $[pm^2 \cdot 10]$ und Besetzungsfaktoren für Ca₁₅Si₁₈Al₂O₁₂N₂₈. U_{iso} ist definiertals $^{1}/_{3}$ der Spur des orthogonalisierten U_{ij}.

Atom	Wyckoff-	Х	У	Z	U _{iso}	Besetzungs-
	Lage					faktor
Ca1	24d	0.1044(1)	0.1614(1)	0.3736(1)	11(1)	1
Ca2	24d	0.1108(1)	0.3913(1)	0.3409(1)	19(1)	1
Ca3	4a	0	0	0	23(1)	1
Ca4	4b	¹ / ₂	$^{1}/_{2}$	$^{1}/_{2}$	15(1)	1
Ca5	8 <i>c</i>	0.2968(5)	0.2968(5)	0.2968(5)	77(4)	0.5
Si1	24d	0.0206(2)	0.2626(2)	0.2110(2)	11(1)	1
Si2	24 <i>d</i>	0.0351(2)	0.0813(2)	0.1945(2)	11(1)	1
Si3	24d	0.3132(1)	0.4608(1)	0.4348(2)	8(1)	1
A11	8 <i>c</i>	0.1958(2)	0.1958(2)	0.1958(2)	18(1)	1
01	24 <i>d</i>	0.0549(4)	0.4711(4)	0.1530(4)	18(1)	1
O2	24 <i>d</i>	0.0213(4)	0.3569(4)	0.4628(4)	21(2)	1
N1	24d	0.0214(4)	0.2700(4)	0.0954(5)	13(2)	1
N2	24 <i>d</i>	0.1275(4)	0.2713(5)	0.2424(4)	13(2)	1
N3	24 <i>d</i>	0.1645(4)	0.2576(5)	0.4805(5)	23(2)	1
N4	24 <i>d</i>	0.2464(5)	0.4672(5)	0.3485(5)	20(2)	1
N5	8 <i>c</i>	0.1194(5)	0.1194(5)	0.1194(5)	17(3)	1
N6	8 <i>c</i>	0.4079(4)	0.4079(4)	0.4079(4)	11(3)	1

Tab. 7.3: Koeffizienten der anisotropen Auslenkungsparameter (Standardabweichungen) [pm²·10] für Ca₁₅Si₁₈Al₂O₁₂N₂₈. Die Parameter U_{ij} sind definiert für exp[- $2\pi^2(U_{11}h^2a^{*2} + ... + 2U_{23}klb^*c^*)$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cal	13(1)	11(1)	10(1)	1(1)	1(1)	0(1)
Ca2	20(1)	16(1)	22(1)	-4(1)	2(1)	-6(1)
Ca3	23(1)	23(1)	23(1)	8(1)	8(1)	8(1)
Ca4	15(1)	15(1)	15(1)	0(1)	0(1)	0(1)
Ca5	77(4)	77(4)	77(4)	42(5)	42(5)	42(5)
Si1	13(1)	12(1)	10(1)	0(1)	3(1)	4(1)
Si2	10(1)	12(1)	12(1)	3(1)	1(1)	1(1)
Si3	10(1)	7(1)	9(1)	1(1)	0(1)	1(1)
A11	18(1)	18(1)	18(1)	3(1)	3(1)	3(1)
01	12(3)	15(3)	27(3)	-6(3)	4(3)	-4(3)
N1	15(4)	9(4)	16(4)	-8(3)	0(3)	9(3)
N2	12(3)	24(4)	4(3)	-2(3)	-2(3)	8(3)
N3	10(4)	30(5)	31(4)	-22(4)	13(4)	-16(3)
N4	16(4)	24(4)	21(4)	8(4)	-6(4)	-9(3)
N5	17(3)	17(3)	17(3)	0(3)	0(3)	0(3)
N6	11(3)	11(3)	11(3)	3(3)	3(3)	3(3)

Aton	n - Paar	d	n	Atom -	Paar	d	n	Aton	n -	Paar	d	n
Ca1	- 01	234.6(6)		Sil -	N4	169.8(7)		01	-	Si3	164.6(6)	
	- 01	235.7(6)		-	N3	171.1(7)						
	- N3	241.2(7)		-	N2	173.0(7)		O2	-	Si2	165.9(6)	
	- N2	267.3(7)		-	N1	179.4(7)						
	- N1	270.0(7)						N1	-	Si3	173.2(7)	
	- N2	271.1(7)		Si2 -	O2	165.9(6)			-	Si2	175.9(7)	
	- N3	279.5(9)		-	N3	171.0(7)			-	Si1	179.4(7)	
				-	• N1	175.9(7)						
Ca2	- O2	232.5(7)		-	N5	184.5(4)		N2	-	Si1	173.0(7)	
	- O2	240.0(6)							-	Al1	173.4(7)	
	- N4	241.0(7)		Si3 -	01	164.6(6)						
	- N2	241.6(7)		-	• N4	169.3(7)		N3	-	Si2	171.0(7)	
	- N4	268.5(8)		-	N6	173.0(2)			-	Si1	171.1(7)	
	- N3	310.5(9)		-	• N1	173.2(7)						
								N4	-	Si3	169.3(7)	
Ca3	- O2	231.3(6)	6	All -	N2	173.4(7)	3		-	Si1	169.8(7)	
				-	N5	205 (1)						
Ca4	- N6	248 (1)	2					N5	-	Si2	184.5(4)	3
	- 01	255.6(6)	6						-	Al1	205 (1)	
Ca5	- All	270.7(15)						N6	-	Si3	173.0(2)	3
	- N2	278.1(13)	3									
	- N4	286.4(10)	3									
	- N6	297.9(18)									 	

 $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ tritt mit einem neuen Strukturtyp auf. Gemäß ${}_{\infty}^{3}[(Si_{3}^{[4]}Al_{1}^{[4]}O_{2}^{[1]}N_{3}^{[3]}N_{2}^{[3]}N_{1}^{[4]})^{30-}]$ handelt es sich dabei um ein Tectosilicat mit dreidimensionaler Gerüststruktur. Diese anionische Gerüststruktur ist wiederum aus zwei identischen dreidimensionalen Netzwerken eckenverknüpfter [SiN₄]-, [SiON₃]sowie [AlN₄]-Tetraeder aufgebaut.

Sämtliche, zwischen den Netzwerken liegende Calciumkationen sind dabei im Rahmen der Ortsungenauigkeit der Atomkoordinaten auf einer Schoen'schen Gyroidfläche *G* angeordnet. Diese periodische Knotenfläche (PNS) trennt die beiden identischen, aus [SiN₄]-, [SiON₃]- sowie [AlN₄]-Tetraedern bestehenden Netzwerke vom jeweils anderen.^[84] Die Gyroidfläche stellt somit den graphischen Mittelwert des größtmöglichen Abstands zwischen den Ca²⁺-Kationen und den Tetraederzentren Al³⁺ und Si⁴⁺ dar. Die bereits weiter vorne diskutierte Lage Ca5 ist ebenfalls auf der Gyroidfläche lokalisiert und liefert damit ein weiteres mögliches Argument für die richtige Zuordnung dieser Lage mit Calcium.

Mit der Gyroidfläche lässt sich die räumliche Trennung der beiden Netzwerke voneinander, aber auch insgesamt die Struktur von Ca₁₅Si₁₈Al₂O₁₂N₂₈ sehr gut veranschaulichen. Ohne Zuhilfenahme der Gyroidfläche ist die komplexe Struktur dagegen nur sehr schwierig zu verstehen (siehe Abbildung 7.1). Die auf der Gyroide liegenden Kationen bilden eine "hyberbolische" Ladungshaut zwischen den komplexen interpenetrierenden Teilgerüsten (siehe Abbildungen 7.2 und 7.3).

Abb. 7.1: Darstellung der Kristallstruktur von Ca₁₅Si₁₈Al₂O₁₂N₂₈ in Blickrichtung [111]. Ca-Atome sind hellblau, [AlN₄]-Tetraeder hellgrün, [SiN₄]- und [SiON₃]-Tetraeder gelb als geschlossene Polyeder gezeichnet. O-Atome sind rot, N-Atome orange dargestellt.

Abb. 7.2: Darstellung der Schoen'schen Gyroidfläche G sowie der darauf lokalisierten Ca²⁺-Kationen. Die zwei verschiedenen Seiten der Fläche sind hell- bzw. dunkelblau gefärbt.

Abb. 7.3: Darstellung der Kristallstruktur von Ca₁₅Si₁₈Al₂O₁₂N₂₈ in Blickrichtung [111] und der Schoen'schen Gyroidfläche. Ca-Atome sind hellblau, [AlN₄]-Tetraeder hellgrün, [SiN₄]- und [SiON₃]-Tetraeder gelb als geschlossene Polyeder gezeichnet. O-Atome sind rot, N-Atome orange dargestellt.

In MYbSi₄N₇ (mit M = Sr, Ba, Eu) konnte erstmal ein Stickstoffatom N^[4] nachgewiesen werden, das vier Si-Tetraederzentren kovalent miteinander verknüpft.^{[6],[12]} Ca₁₅Si₁₈Al₂O₁₂N₂₈ ist damit erst der zweite Strukturtyp innerhalb der Silicate, in dem ein vierfach verbrückendes Stickstoffatom auftritt. Die in der [(SiN₄)₃(SiON₃)₃(AlN₄)]-Gruppe vorkommende sternförmige [N^[4](SiO^[1]N₃^[2])₃(AlN₄^[2])]-Einheit ist mitsamt den dazugehörigen Bindungsabständen in Abbildung 7.4 dargestellt.

Abb. 7.4: Bindungsverhältnisse und Abstände in der [(SiN₄)₃(SiON₃)₃(AlN₄)] Gruppe in Ca₁₅Si₁₈Al₂O₁₂N₂₈. Symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht aufgeführt.

In dieser Arbeit kann nun erstmals ein solch vierfachverknüpftes $N^{[4]}$ -Atom mit Bindungen zu drei Si- und einem Al-Tetraederzentrum nachgewiesen werden (siehe Abbildung 7.4). Die $N^{[4]}$ -Si-Bindungslängen betragen in BaYbSi₄N₇ 188.7 pm (1x) und 196.2 pm (3x). Damit liegt kein regelmäßiges [NSi₄]-, sondern ein einseitig abgeflachter Tetraeder vor. In Ca₁₅Si₁₈Al₂O₁₂N₂₈ tritt nun der umgekehrte Fall auf: in Richtung des Al1-Atoms beträgt der Bindungsabstand $N^{[4]}$ -Al1 204.9 pm (1x) und die Bindungsabstände $N^{[4]}$ -Si2 184.5 pm. Sämtliche in der $[N^{[4]}(SiO^{[11]}N_3^{[21]})_3(AlN_4^{[21]})]$ -Einheit gefundenen Si-O^[1]-, Si-N^[2]- und Al-N^[2]-Abstände liegen in einem strukturchemisch sinnvollen Rahmen.^[83]

 Abb. 7.5: Bindungsverhältnisse und Abstände in der [(SiN₄)₂(SiON₃)₃]-Gruppe in Ca₁₅Si₁₈Al₂O₁₂N₂₈. Symmetrie-äquivalente Bindungsabstände sind der Übersichtlichkeit halber nicht aufgeführt.

Neben der $[(SiN_4)_3(SiON_3)_3(AlN_4)]$ -Gruppe lässt sich im anionischen Netzwerk von Ca₁₅Si₁₈Al₂O₁₂N₂₈ noch eine $[(SiN_4)_2(SiON_3)_3]$ -Gruppe identifizieren (siehe Abbildung 7.5). Alle in dieser $[(SiN_4)_2(SiON_3)_3]$ -Gruppe gefundenen Si-O^[1]-, Si-N^[2]- und Si-N^[3]- Abstände liegen in einem strukturchemisch sinnvollen Rahmen.^[83]

Das charakteristische Netzwerk in $Ca_{15}Si_{18}Al_2O_{12}N_{28}$ wird durch die $[(SiN_4)_3(SiON_3)_3(AlN_4)]$ -Gruppe als Knoten und die $[(SiN_4)_2(SiON_3)_3]$ -Gruppe als Strangstück aufgebaut. Eine schematische Übersicht über ein solches Netzwerk gibt Abbildung 7.6. Zu seiner besseren Visualisierung werden die jeweils zentralen Stickstoffatome N5 und N6 der vorne genannten Baugruppen miteinander verbunden.

Abb. 7.6: Schematische Struktur eines der in Ca₁₅Si₁₈Al₂O₁₂N₂₈ auftretenden Tetraedernetzwerke. Verbunden sind die Stickstoffzentren N5 und N6 der [(SiN₄)₃(SiON₃)₃(AlN₄)]- und der [(SiN₄)₂(SiON₃)₃]-Gruppe.

Die auf der Gyroidfläche liegenden Ca²⁺-Kationen zeigen fünf- bis achtfache Koordinationssphären. So ist Ca1 durch ein einfach überkapptes, verzerrtes Oktaeder aus zwei O- und fünf N-Atomen koordiniert. Ca2 wird von zwei O- und drei N-Atomen quadratisch-pyramidal, Ca3 durch sechs O-Atome verzerrt oktaedrisch und Ca4 durch zwei N- und sechs O-Atome verzerrt würfelförmig koordiniert. Ca5 ist durch ein Alund sieben Stickstoffatome in Form eines unregelmäßigen Polyeders achtfach
koordiniert. Ein anderes Bild der Koordinationszahlen der Ca-Atome liefern Berechnungen der effektiven Koordinationszahl ECoN (siehe Kapitel 7.1.3).

7.1.3 Theoretische Untersuchungen

Für MAPLE-Rechnungen mit dem Programm MADKUG wurden zunächst alle vier kristallographischen Lagen der Tetraederzentren mit der gleichen Ladung von + 3.90 besetzt. Der Wert von + 3.90 stellt den mittleren Wert der Ladungen aller Al³⁺-/Si⁴⁺- Lagen unter Berücksichtigung ihrer Gewichtung für Ca₁₅Si₁₈Al₂O₁₂N₂₈ dar $\left(\frac{72\cdot4^{\oplus}+8\cdot3^{\oplus}}{80}\right)$. Ein relativ schwach negatives Potential auf einer der vier Al³⁺-/Si⁴⁺-Lagen lässt eine entsprechende Zuordnung durch Al³⁺ plausibel erscheinen. Die acht kristallographischen Lagen für O²⁻ bzw. N³⁻ werden mit einer mittleren Ladung von - 2.70 belegt $\left(\frac{48\cdot2^{-}+112\cdot3^{-}}{160}\right)$. Ein daraus resultierendes relativ kleines positives Potential lässt auf eine Besetzung mit dem geringer geladenen O²⁻ schließen.

Die Calcium-Lagen werden jeweils mit einer Ladung von + 2.00 versehen mit Ausnahme der Lage Ca5: Bei dieser muss aufgrund der Halbbesetzung eine Ladung von + 1.00 eingesetzt werden. Die Potentialwerte der Al³⁺-/ Si⁴⁺-Lagen sowie der O²⁻-/N³⁻-Lagen aus der MAPLE-Rechnung sind in Tabelle 7.5 zusammengefasst.

Si1	Si2	Si3	Al1				
-3.13	-3.19	-3.45	-2.69				
01	O2	N1	N2	N3	N4	N5	N6
1.89	1.89	2.82	2.71	2.50	2.47	3.13	2.74

Tab. 7.5:	MAPLE-Potentialwerte für	Ca ₁₅ Si	$_{18}Al_2C$	$V_{12}N_{28}$
-----------	--------------------------	---------------------	--------------	----------------

Die MAPLE-Rechnungen bestätigen die Zuordnung von Aluminium auf die Lage All und nicht Sil bis Si3. Dies geht aus dem deutlich kleineren negativen Potential auf der Position All hervor (siehe Tabelle 7.5). Genauso bestätigt wird die Zuordnung von Sauerstoff auf die Lagen O1 und O2 sowie Stickstoff auf die Lagen N1 bis N6. Auch hier ist ein Unterschied in den Potentialwerten zu beobachten: Mit 1.89 liegen die Werte für die Sauerstoffpositionen deutlich unter denen für Stickstoff mit Werten ab 2.47 und größer.

Um einen Eindruck der tatsächlichen Koordinationsphäre aller in der Struktur vorkommender Atome zu erhalten werden mit dem Programm KVEXPOL die gemittelten, effektiven Koordinationszahlen ^NECoN und die gemittelten, effektiven Ionenradien ^NMEFIR nach ^[77] berechnet. Als Abbruchkriterium wird eine Konstanz der ^NMEFIR- und ^NECoN-Werte genutzt. Gleichsinnig geladene Nachbarn werden mit dieser Methode berücksichtigt. In Tabelle 7.6 sind die Ergebnisse der Berechnungen abgebildet.

Atom	^N MEFIR(pm)	^N ECoN	Atom	^N MEFIR(pm)	^N ECoN
Cal	108.6	6.014	01	137.8	9.427
Ca2	97.9	4.717	02	144.2	10.474
Ca3	87.5	6.052	N1	143.7	13.253
Ca4	116.9	8.146	N2	142.9	11.710
Ca5	146.5	7.933	N3	142.7	10.658
Si1	29.9	3.943	N4	143.5	11.510
Si2	28.4	3.870	N5	150.6	15.383
Si3	29.5	3.932	N6	136.1	13.742
A11	32.7	3.596			

Tab. 7.6: ^NMEFIR- und ^NECoN-Berechnungen an Ca₁₅Si₁₈Al₂O₁₂N₂₈ (26 Zyklen)

Die Ergebnisse der ^NECoN-Berechnungen zeigen sehr unterschiedliche Koordinationen: Ca3 ist sechsfach koordiniert ebenso wie Ca1. Ca2 ist mit einer ^NECoN 4.717 sogar deutlich weniger als fünffach koordiniert. Ca4 und Ca5 besitzt effektive Koordinationszahlen von 8.146 und 7.933 und ist damit nahezu achtfach koordiniert. Der für Ca3 sehr kleine effektive Ionenradius von 87.5 pm ist aufgrund der sehr regelmäßigen Koordination durch alle sechs Sauerstoffatome O2 im gleichen Abstand nicht weiter verwunderlich. Die extrem schwache Koordination des Ca5 spiegelt sich auch in seinem sehr großen effektiven Ionenradius wieder.

^NECoN-Werten knapp unter 4.0 für die die Siliciumatome zeigen eine gute Übereinstimmung der Rechnung mit der Realität. Für All findet man mit 3.596 erwartungsgemäß eine effektive Koordinationszahl deutlich kleiner als vier. Grund dafür ist der sehr lange Abstand Al1-N5 von 204.9 pm.

Bei den Stickstoffatomen fällt die Koordination des Atoms N5 auf. Wegen seines vierfach verbrückenden Charakters ist die effektive Koordinationszahl mit 15.383 außergewöhnlich groß und damit größer als in der dichtesten Kugelpackung, bei der maximal 12 erreicht werden kann.

Literaturverzeichnis

- [1] M. Regitz, J. Falbe, *RÖMPP Lexikon Chemie*, 10. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland
- [2] F. Liebau, Angew. Chem. 111, 1845 (1999); Angew. Chem. Int. Ed. Engl. 38, 1733 (1999)
- [3] Die nach den Elementsymbolen hochgestellten Ziffern in eckigen Klammern bezeichnen die Zahl der jeweils an N-Atome gebundene Si-Atome und umgekehrt (Koordinationszahlen). F. Liebau, *Structural Chemistry of Silicates*, Springer Verlag, Berlin, Deutschland (1985)
- [4] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 621, 1037 (1995)
- [5] T. Schlieper, W. Milius, W. Schnick, Z. Anorg. Allg. Chem. 621, 1380 (1995)
- [6] H. Huppertz, W. Schnick, Acta Cryst. C53, 1751 (1997)
- [7] H. Huppertz, W. Schnick, *Chem. Eur. J.* **3**, 249 (1997)
- [8] H. Yamane, F. J. DiSalvo, J. Alloys Comp. 240, 33 (1996)
- [9] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 621, 1535 (1995)
- [10] M. Woike, W. Jeitschko, *Inorg. Chem.* **34**, 5105 (1995)
- [11] Z. Inoue, M. Mitomo, N. Ii, J. Mater. Sci. 15, 2915, (1980)
- [12] H. Huppertz, W. Schnick, Z. Anorg. Allg. Chem. 623, 212 (1997)
- [13] P. Eckerlin, A. Rabenau, H. Nortmann, Z. Anorg. Allg. Chem. 353, 113 (1967)
- [14] P. Eckerlin, Z. Anorg. Allg. Chem. **353**, 225 (1967)
- [15] J. David, Y. Laurent, J. Lang, Bull. Soc. Fr. Mineral. Crystallogr. 93, 153 (1970)
- [16] M. Maunaye, R. Marchand, J. Guyader, Y. Laurent, J. Lang, Bull. Soc. Fr. Mineral. Crystallogr. 94, 561 (1971)
- [17] M. Wintenberger, R. Marchand, M. Maunaye, *Solid. State Commun.* 21, 733 (1977)
- [18] M. Wintenberger, F. Tcheou, J. David, J. Lang, Z. Naturforsch. 35b, 604 (1980)

- [19] T. Endo, Y. Sato, H. Takizawa, M. Shimada, J. Mater. Sci. Lett. 11, 424 (1992)
- [20] M. Orth, W. Schnick, Z. Anorg. Allg. Chem. 625, 1426 (1999)
- [21] H. Jacobs, H. Mengis, Eur. J. Solid State Inorg. Chem. 30, 45 (1993)
- [22] H. Huppertz, W. Schnick, Angew. Chem. 109, 2765 (1997)
- [23] M. Woike, W. Jeitschko, J. Solid State Chem. 129, 312 (1997)
- [24] K. Köllisch, H. H. Höppe, H. Huppertz, M. Orth, W. Schnick, Z. Anorg. Allg. Chem. 627, 1371 (2001)
- [25] R. Niewa, F. J. DiSalvo, Chem. Mater. 10, 2733, (1998)
- [26] R. Juza, F. Hund, Z. Anorg. Allg. Chem. 257, 13 (1948)
- [27] M. Ludwig, J. Jäger, R. Niewa, R. Kniep, *Inorg. Chem.* **39**, 5909 (2000)
- [28] W. Blase, G. Cordier, M. Ludwig, R. Kniep, Z. Naturforsch. 49b, 501 (1994)
- [29] M. Ludwig, R. Niewa, R. Kniep, Z. Naturforsch. 54b, 461 (1999)
- [30] Z. Huang, W. Sun, D. Yan, J. Mater. Sci. Lett. 4, 255 (1985)
- [31] M. Wada, A. Inoue, S. Okutani, E. Sakamoto, K. Takahashi, M. Okano, K. Izumo, T. Katou, H. Kumagal, M. Nishida, Y. Tendow, M. Shima, H. Yabuki, A. Okada, S. Yabuki, H. Nakatani, Y. Chiba, N. Tazima, S. Moriuchi, R. Sakamoto, K. Fujitake, S. Abe, K. Aral, I. Urabe, K. Yamasaki, I. Aoyama, F. Tohyama, *Rep. Inst. Phys. Chem. Res.* 59, 1 (1983)
- [32] P. L. Wang, P. E. Werner, L. Giao, R. K. Harris, D. P. Thompson, J. Mater. Chem. 7, 2127 (1997)
- [33] K. Köllisch, W. Schnick, Angew. Chem. 111, 368 (1999); Angew. Chem. Int.
 Ed. 38, 357 (1999)
- [34] R. Lauterbach, W. Schnick, Z. Anorg. Allg. Chem. 625, 429 (1999)
- [35] E. Irran, K. Köllisch, S. Leoni, R. Nesper, P. F. Henry, M. T. Weller, W. Schnick, *Chem. Eur. J.* 6, 2714 (2000)
- [36] R. Lauterbach, W. Schnick, Z. Anorg. Allg. Chem. 624, 1154 (1998)
- [37] R. Lauterbach, W. Schnick, Z. Anorg. Allg. Chem. 626, 56 (2000)
- [38] P. O. Käll, J. Grins, P. O. Olsson, K. Liddell, P. Korgul, D. P. Thompson, J. Mater. Chem. 1, 239 (1991)
- [39] J. Grins, Z. Shen, M. Nygren, T. Ekström, J. Mater. Chem. 5, 2001 (1995)

- [40] Z. Shen, J. Grins, S. Esmaeilzadeh, H. Ehrenberg, J. Mater. Chem. 9, 1019 (1999)
- [41] S. Esmaeilzadeh, J. Grins, Z. Shen, M. Edén, M. Thiaux, Chem. Mater. 16, 2113 (2004)
- [42] P. Villars, L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Second Edition, ASM International (1991)
- [43] T. B. Massalski, *Binary Alloy Phase Diagrams*, Second Edition, ASM International (1992)
- [44] D. Günther, R. Frischknecht, C. A. Heinrich, H. J. Kahlert, J. Anal. At. Spectrom., 12, 939 (1997)
- [45] D. Günther, C. A. Heinrich, J. Anal. At. Spectrom., 14, 1363 (1999)
- [46] A. Piotto Piotto, R. Nesper, COMPARIS, Version 2.03, Laboratorium für Anorganische Chemie, ETH Zürich (2003)
- [47] Visual X^{pow} Software Package for STOE Powder Diffraction System, Version 1.06, Darmstadt, Deutschland (1999)
- [48] Siemens Analytical X-Ray Systems Inc., Madison, USA
- [49] G. M. Sheldrick, Universität Göttingen, Deutschland
- [50] Data Reduction Program, Version 1.07, STOE GmbH, Darmstadt, Deutschland (1996)
- [51] Crystal Optimisation for Numerical Absorption Correction, Version 1.01,STOE GmbH, Darmstadt, Deutschland (1996)
- [52] SHELXTL program package, Version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA (1997)
- [53] L. J. Farrugia, J. Appl. Crystallogr. 30, 565, (1997)
- [54] E. Dowty, *ATOMS*, Version 5.1, (2000)
- [55] K. Brandenburg, *DIAMOND*, Version 2.1e, Crystal Impact GbR, (2001)
- [56] P. Hofmann, R. Nesper, COLTURE 3-D Color Graphics Program, Laboratorium f
 ür Anorganische Chemie, ETH Z
 ürich (1995)
- [57] MSI, *Cerius*², Version 4.2, Accelrys Inc., San Diego, USA (2000)
- [58] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 20, 139 (1987)

- [59] R. Nesper, B. Neukäter, H. G. von Schnering, KVEXPOL, A Program for the Calculation of the void positions in crystal structures, Universität Münster, ETH Zürich (1991)
- [60] S. Leoni, PhD Thesis No. 12783, ETH Zürich (1998)
- [61] O. K. Andersen, *Phys. Rev.* B12, 3060 (1975)
- [62] O. K. Andersen, O. Jepsen, D. Glötzel, *Highlights of Condensed Matter Theory*, North-Holland, Amsterdam, Niederlande (1985)
- [63] H. L. Skriver, *The LMTO Method*, *Muffin-Tin Orbitals and Electronic Structure*, Springer Verlag, Berlin, Deutschland (1984)
- [64] U. Häussermann, S. Wengert, R. Nesper, T. F. Fässler, *MEHMACC*, ETH Zürich (1997)
- [65] M.-H. Whangbo, M. Evain, T. Hughbanks, M. Kertesz, S. Wijeyesekera, C. Wilker, C. Zheng, R. Hoffmann, EHMACC, Extended Hückel Molecular and Crystal Calculations; EHPC, Extended Hückel Property Calculations.
- [66] G. Krier, O. Jepsen, A. Burckhardt, O. K. Andersen, TB-LMTO-ASA Program, Version 46, MPI Stuttgart, Deutschland
- [67] R. Nesper, G. Roch, B. Neukäter, H. G. von Schnering, *MADKUG*, A Program for the Calculation of Lattice Energies, Madelung Factors and Point Potentials, Universität Münster, ETH Zürich (1993)
- [68] E. A. Leon-Escamilla, J. D. Corbett, J. Alloys Compd. 265, 104 (1998)
- [69] D. H. Gregory, A. Bowman, C. F. Baker, D. P. Weston, J. Mater. Chem. 10, 1635 (2000)
- [70] C. F. Baker, M. G. Barker, A. J. Blake, *Acta Cryst.* E57, i6 (2001)
- [71] O. Reckeweg, F. J. DiSalvo, Z. Anorg. Allg. Chem. 627, 371 (2001)
- [72] S. Hampshire, *Key Eng. Mat.* **237**, 239 (2003)
- [73] Y. Laurent, Rev. Chim. Miner. 5, 1019 (1968)
- [74] B. Eisenmann, H. Schäfer, Z. Naturf. B29, 460 (1974)
- [75] H. P. Müller, R. Hoppe, Z. Anorg. Allg. Chem. 611, 73 (1992)
- [76] H. Huppertz, W. Schnick, Chem. Eur. J. 3, 679 (1997)
- [77] R. Hoppe, Z. Kristallogr. 150, 23 (1979)

- [78] R. Juza, H. H. Weber, E. Meyer-Simon, Z. Anorg. Allg. Chem. 273, 48 (1953)
- [79] N. Wiberg, *Lehrbuch der anorganischen Chemie*, 101. Auflage, deGruyter, Berlin, Deutschland (1995)
- [80] Die Terminologie "Fünfer"- bzw. "Zwölfer"-Ring geht auf Liebau zurück und ist von den deutschen Zahlwörtern fünf bzw. zwölf abgeleitet. Ein "Fünfer"-Ring ist kein fünf- sondern ein zehnzähliger Ring, der aus fünf Tetraederzentren (Si/Al) und fünf elektronegativen Atomen (N/O) zusammengesetzt ist. Eine analoge Terminologie existiert für "Dreier", "Vierer", "Sechser"-Ringe usw.^[3]
- [81] L. Cario, Z. A. Gál, T. P. Braun, F. J. DiSalvo, B. Blaschkowski, H. J. Meyer, J. Solid State Chem. 162, 90 (2001)
- [82] R. Czaya, G. Bissert, Acta Cryst. B27, 747 (1971)
- [83] H. Huppertz, W. Schnick, Chem. Eur. J. 3, 679 (1997)
- [84] A. H. Schoen, NASA Tech. Note. D-5541, Washington D. C. (1970)
- [85] W. Schnick, Int. J. Inorg. Mater. 3, 1267 (2001)
- [86] J. Peters, B. Krebs, Acta Cryst. **B38**, 1270 (1982)

Dank

- Ich danke Herrn Prof. Dr. R. Nesper f
 ür die Themenstellung, die gew
 ährte wissenschaftliche Freiheit, seine Unterst
 ützung und sein stetes Interesse an dieser Arbeit.
- Herrn Prof. Dr. D. Günther und seinen Mitarbeitern danke ich für die zahllosen durchgeführten Analysen mit der LA-ICP-MS Methode und der fruchtbaren Zusammenarbeit, die sich daraus ergab. Zusätzlich danke ich Prof. Dr. D. Günther für die Übernahme des Korreferats.
- Herrn Dr. E. Reusser vom Institut für Mineralogie/Petrographie der ETH danke ich für die Analyse meiner Kristalle mit der Mikrosonde.
- Frau Dr. G. Aufferman vom Max-Planck-Institut f
 ür chemische Physik fester Stoffe in Dresden, Deutschland und Herrn Dr. J. Haberecht danke ich f
 ür die Durchf
 ührung der quantitativen N/O-Analytik.
- Herrn Dr. M. Wörle danke ich für die detaillierte Einweisung zur Durchführung und Auswertung von Einkristallmessungen und der endlosen Hilfsbereitschaft zur Lösung von Strukturproblemen.
- Herrn Dr. F. Krumeich danke ich für die Durchführung der EDX-Analysen.
- Herrn C. Mensing danke ich für die stete technische Unterstützung bei UNIXund sonstigen Computerproblemen.
- Ich bedanke mich bei meinen Praktikanten A. Steinlin, I. Kieltzsch und C. Dauth sowie meinem Diplomanden C. Sulmoni für ihre tatkräftige Unterstützung

- Ich danke dem Labor H106 mit seinen Mitgliedern C. Kubata, U. Wiki, M. Reinoso und M. Armbruster für zahllose fachliche und private Diskussionen.
- Ich danke Dr. J. Haberecht, M. Stalder, und Dr. F. Bieri für die stets verfügbare Ablenkung in Form von Dartspielen oder Siedlerabenden
- Frau B. Gross und Frau Dr. A. Zürn danke ich für die Hilfestellung bei Periodischen Knotenflächen.
- Frau Dr. B. Hellermann danke ich für die Erledigung der administrativen Aufgaben.
- Dem Rest der Gruppe Nesper möchte ich für die freundliche und kollegiale Atmosphäre danken.

Curriculum vitae

Persönliche Daten:

Name:	Frank Ottinger
Geburtsdatum:	27.03.1975
Geburtsort:	Memmingen/Allgäu
Nationalität:	deutsch
Eltern:	Marianne Ottinger geb. Wagner
	Rolf Ottinger
Schulbesuche:	
1981-1985	Grundschule Stuttgart-Büsnau
1985-1994	Fanny-Leicht-Gymnasium Stuttgart-Vaihingen
Usehashulaushildurau	
Hoenschulausondung.	
Okt. 1994 - Jan. 2000	Studium der Chemie an der Universität
	Karlsruhe (TH) mit Abschluss Diplomchemiker
Jul. 1999 - Jan. 2000	Diplomarbeit am Institut für Anorganische und
	Analytische Chemie bei Prof. Dr. Hg. Schnöckel
	Thema: Reaktionen von Al ^I Br-Lösungen
Apr. 2000 - Jun. 2004	Dissertation am Laboratorium für Anorganische Chemie
	an der Eidgenössischen Technischen Hochschule Zürich
	unter der Leitung von Prof. Dr. R. Nesper
Apr. 2000 - Jun. 2004	Assistent im Praktikum für Agrikulturchemie,
	Praktikum für Anorganische Chemie II sowie
	Betreuung von Diplomarbeiten