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Summary 

 

The theme of this doctoral thesis is the modelling of structural disorder phenomena from 

decagonal Al-Co-Ni quasicrystals by an analysis of full diffuse X-ray scattering data as a 

function of temperature. The motivation for this study is to reveal the complex ordering 

principles of decagonal Al-Co-Ni quasicrystals and, consequently, to understand the driving 

force for the formation and stability of these materials. 

 

For the first time, the 3D difference Patterson (autocorrelation) function of a disordered 

quasicrystal (Edagawa-phase) has been analysed. A new technique, the punch-and-fill 

method has been developed to seperate diffuse scattering and Bragg reflections. Its potential 

and limits are discussed in detail. The calculated difference Patterson maps are interpreted in 

terms of inter-cluster correlations as a function of temperature. Both, at high and low 

temperatures, clusters decorate the vertices of the same quasiperiodic covering. At high 

temperatures, medium-range inter-cluster correlations are present, whereas at low 

temperatures, the ordering between the clusters becomes less concise. Qualitatively, the 

Patterson maps may be interpreted by inter-cluster correlations, which take place mainly 

inside pentagonal superclusters below 1120 K, and inside larger decagonal superclusters at 

1120 K. The pentagonal supercluster consists of five Gummelt clusters at the corners of a 

star-centered pentagon with 20 Å edge length; the decagonal supercluster is composed of 

one central Gummelt cluster edge-joiningly surrounded by a ring of ten further overlapping 

Gummelt clusters. 

 

The hydrodynamic theory of phasonic and phononic disorder has been applied successfully 

to describe the short-range, disordered structure of the Edagawa-phase. Moreover, model 

calculations demonstrate that the main features of diffuse scattering can equally well be 

described by phasonic disorder and fivefold orientational disorder of clusters. The 

calculations allow to distinguish the different cluster types published so far and the best 

agreement with experimental data could be achieved with the mirror-symmetric Abe-cluster. 

Modelling of phasonic diffuse scattering associated with the S1 and S2 superstructure 

reflections indicates disorder of superclusters. The former show basically inter-cluster 

correlations inside quasiperiodic layers, while the latter exhibit intra- and inter-cluster 

correlations, both between adjacent and inside quasiperiodic layers. The feasibility, potential 

and limits of the Patterson method in combination with the punch-and-fill method employed is 

shown on the example of a phasonic disordered rhombic Penrose tiling. A variation of the 
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elastic constants within the framework of the hydrodynamic theory does not change 

qualitatively the way phasonic disorder is realized in the local quasicrystalline structure. For 

the same model system it is also shown that phasonic fluctuations of the atomic surfaces 

give average clusters in the cut-space, which correspond to fivefold orientationally disordered 

clusters, i.e. phasons induce fivefold orientational disorder of clusters. 

 

A Patterson analysis of the diffuse interlayers from the Edagawa-phase showed that the main 

unit for correlated displacements along the periodic direction is a disordered structure motif 

(cluster) with a diameter of 15 Å, the fine structure of which does hardly change as a 

function of temperature. At 1120 K, the displacements of the clusters are uncorrelated along 

quasiperiodic directions, while at lower temperatures 42 Å-sized superclusters of a well-

defined shape are formed. The spatial distribution but not the internal structure of the 

superclusters differs significantly at 1070 K and 300 K. 
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Zusammenfassung 

 

In der vorliegenden Arbeit werden Modellrechnungen von strukturellen Fehlordnungs-

phänomenen an dekagonalen Quasikristallen präsentiert. Als Ausgangsbasis diente die 

Analyse von diffusen Streuphänomenen als Funktion der Temperatur. Die Motivation für 

diese komplexen Untersuchungen liegt darin, Verständnis für die Grundprinzipien, die für die 

Bildung und Stabilität dieser Materialien verantwortlich sind, zu erlangen. 

 

Zum ersten Mal wurde die 3D Pattersonfunktion (Autokorrelationsfunction) der Differenz-

struktur eines fehlgeordneten Quasikristals (Edagawa-phase) untersucht. Zu diesem Zweck 

wurde eine neue Methode, die punch-and-fill Methode, entwickelt, die es erlaubt diffuse 

Streuung aus 3D Streudaten zu separieren. Möglichkeiten und Grenzen der Methode werden 

aufgezeigt und eingehend diskutiert. Die berechneten Pattersonkarten der Differenzstruktur 

werden durch Interclusterkorrelationen interpretiert, die sich als Funktion der Temperatur 

ändern. Es zeigt sich, dass Cluster die Eckpunkte der ein und derselben quasiperiodischen 

Überdeckung dekorieren und zwar über den ganzen untersuchten Temperaturbereich. Bei 

hohen Temperaturen bilden sich ausgeprägte mittelreichweitige Interclusterkorrelationen aus; 

bei tieferen Temperaturen dagegen nimmt die Ordnung zwischen den Clustern deutlich ab. 

Qualitiativ können die Pattersonkarten in der Art und Weise interpretiert werden, dass sich 

Interclusterkorrelationen bei Temperaturen unter 1120 K, vorwiegend innerhalb pentagonaler 

Supercluster ausbilden, bei Temperaturen über 1120 K dagegen vorwiegend innerhalb der 

grösseren dekagonalen Supercluster. Der pentagonale Supercluster besteht aus jeweils fünf 

Gummelt-Clustern an den Ecken eines sternförmigen Pentagons mit 20 Å Kantenlänge. Der 

dekagonale Supercluster lässt sich durch einen zentralen Gummelt-Cluster beschreiben, der 

von einem Ring bestehend aus zehn sich überlappenden Gummelt-Clustern umgeben ist. 

 

Die hydrodynamische Theorie von phasonischer und phononischer Fehlordnung ist erfolg-

reich angewendet worden um die kurzreichweitige, fehlgeordnete Struktur der Edagawa-

Phase zu beschreiben. Die Rechnungen zeigen, dass die Hauptmerkmale der diffusen 

Streuung gleichermassen durch phasonische Fehlordnung wie auch durch eine fünffache 

Cluster-Orientierungsfehlordnung beschrieben werden können. Die Empfindlichkeit der 

berechneten diffusen Streuintensitäten auf die verwendeten Clustertypen erlaubt zudem die 

zahlreichen, in der Literatur vorgeschlagenen Clustertypen voneinander zu unterscheiden. 

Die beste Übereinstimmung mit experimentellen Daten konnte mit dem spiegel-

symmetrischen Abe-Cluster erzielt werden. Modellrechungen phasonischer Fehlordnung 
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anhand der S1 und S2 Überstrukturreflexe deuten auf unterschiedlich korrelierte Fehl-

ordnungsphänomene der Superclustern hin. Die phasonisch diffuse Streuung assoziert mit 

den S1 Satelliten zeigt vorwiegend Interclusterkorrelationen auf, die sich innerhalb quasi-

periodischer Ebenen erstrecken; die phasonisch diffuse Streuung der S2 Satelliten dagegen 

sowohl Intra- wie auch Interclusterkorrelationen, die sich sowohl zwischen benachbarten, als 

auch innerhalb der quasiperiodischen Ebenen formieren. Machbarkeit, Potenzial und 

Grenzen der Pattersonanalyse in Kombination mit der eingesetzen punch-and-fill Methode ist 

anhand eines Beispiels, einer phasonisch fehlgeordneten, rhombischen Penrose-

Parkettierung, aufgezeigt. Es zeigte sich auch, dass eine Variation der elastischen 

Konstanten im Rahmen der hydrodynamischen Theorie die Art und Weise wie sich 

phasonische Fehlordnung in der lokalen quasiperiodischen Struktur manifestiert, nur 

unmassgeblich beeinflusst. Anhand desselben Modellsystems konnte desweiteren aufgezeigt 

werden, dass phasonische Fluktuationen der atomaren Hyperflächen gemittelte Cluster im 

Schnittraum ergeben, die fünffach orientierungsfehlgeordneten Clustern entsprechen. Dies 

deutet auf eine Induzierung von fünffacher Cluster-Orientierungsfehlordnung durch 

Phasonen hin. 

 

Die Pattersonanalyse der diffusen Zwischenschichten der Edagawa-phase zeigte, dass die 

fundamentalen Baueinheiten für korrelierte Verschiebungen entlang der periodischen Achse 

einem fehlgeordneten Strukturmotiv (Cluster) zuzuordnen sind, das einen Durchmesser von 

15 Å aufzeigt. Die Feinstruktur dieses Clusters bleibt über den ganzen untersuchten 

Temperaturbereich hin unverändert. Bei 1120 K sind Verschiebungen der Cluster entlang 

quasiperiodischer Richtungen unkorreliert, wogegen sich bei niederen Temperaturen 42 Å 

grosse Supercluster ausbilden, die eine wohl definierte Form besitzen. Die räumliche 

Verteilung dieser Supercluster unterschiedet sich klar zwischen 1070 K und 300 K, ihre 

Feinstruktur dagegen bleibt weitgehend unverändert. 
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1 Introduction 

 

One of the main discoveries in solid-state physics in the eighties has been the discovery of 

quasicrystals in 1982 by Shechtman [Shechtman, 1984]. Since then, the field of quasicrystal 

research has experienced an enormous growth. The number of publications on quasicrystals 

has exceeded 8000. From the beginning on, the field has been multidisciplinary; 

mathematicians, experimental and theoretical physicists, crystallographers, material 

scientists and chemists have worked together to get a better understanding of this form of 

matter. 

 

Inspired by the growing numbers and varieties of quasicrystals, the International Union of 

Crystallography has redefined the term crystal to mean 'any solid having an essentially 

discrete diffraction pattern'. Thereby the essential attribute of crystallinity has been shifted 

from direct space to reciprocal space. The quasicrystalline state is most probably a third form 

of solid matter beside the 3D periodic crystalline and the amorphous state. Quasicrystals 

possess long-range aperiodic order and crystallographically forbidden rotational symmetries, 

e.g. five-, eight-, ten- or twelvefold. These symmetries forbid a 3D periodic structure and do 

instead enforce quasiperiodicity. Quasicrystals can be classified in three groups, one-

dimensional (Fibonacci phases; quasiperiodic stacking of periodic layers), two-dimensional 

(pentagonal, decagonal, octagonal and dodecagonal phases; periodic stacking of 

quasiperiodic layers) and three-dimensional quasicrystals (icosahedral phases). Nowadays, 

both metastable and thermodynamically stable phases are known and several quasicrystals 

can be synthesized with a degree of perfection comparable to that of silicon. 

 

Before the actual synthesis of quasicrystals took place, several theoretical works already 

existed. In 1974 Penrose described a tiling consisting of two different unit tiles 

[Penrose, 1974]. These tiles cover a plane without gaps and without repeating patterns, 

simply by imposing a set of matching rules for how the tile edges are allowed to be joined. 

The resulting tiling has local fivefold symmetry and can be used to describe the structure of 

quasicrystals. Several other concepts such as cluster-coverings and irrational cuts through 

higher-dimensional space have been developed for the same task. Nevertheless, not a single 

quasicrystal structure is known with the same reliability that is normal in standard structure 

analysis. 
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What makes quasicrystal structure analysis so demanding is that it requires the 

determination of both, short-range and long-range order. The former mainly refers to the 

atomic arrangement inside a cluster, while the latter refers to the ordering of the clusters 

themselves. An aggravating circumstance is the inherent disorder that is present in most 

quasicrystals. Disorder in quasicrystals has an exceptional position because the 

thermodynamical stability region of quasicrystals is at high temperatures (typically over 

1000 K). This ensures a role to entropy as a stabilizing factor. The additional degrees of 

freedom from the higher-dimensional description of quasicrystals lead to disorder 

phenomena specific to quasicrystals, e.g. phasonic disorder. 

 

Despite twenty years of intensive research on quasicrystals, fundamental questions are still 

open: What is the driving force for the formation and stability of quasicrystals? Does strict 

quasiperiodic order really exist in quasicrystals? Why have only quasicrystals been observed 

with five-, eight-, ten- and twelvefold rotational symmetries? These considerations point out 

that the exact knowledge of the evolution of structural order and disorder in quasicrystals as 

a function of temperature will be a key to the understanding of real quasicrystals. 

 

The focus of this work concentrates on the modelling of structural disorder in decagonal 

Al-Co-Ni (Edagawa-phase, [Edagawa, 1994]). The system Al-Co-Ni has been in the focus of 

decagonal quasicrystal research in the last ten years. It is an excellent model system: the 

phase diagram is well known, large single crystals can be easily grown and several structural 

modifications of the decagonal phases have been found as a function of temperature and 

composition. Diffraction data from most Al-Co-Ni quasicrystals show diffuse scattering in 

addition to Bragg reflections. The Edagawa-phase shows an extraordinary richness of 

complex scattering including one-, two- and three-dimensional diffuse scattering. The 

reciprocal space sections perpendicular to the periodic axis are all sharp along the tenfold 

axis. Even numbered layers contain Bragg reflections as well as diffuse scattering and are 

named 'Bragg layers'. They reflect the 4 Å periodic average structure. The odd numbered 

layers, which show diffuse scattering only, are referred to as 'diffuse interlayers' and they 

represent the 8 Å superstructure. 

 

Most structural investigations of disordered materials are done by the use of diffractometric 

methods. Diffuse scattering from X-ray diffraction measurements of single crystals are most 

commonly used for the investigation of structural disorder phenomena. By an analysis 

thereof, one obtains typically structural information on a length scale of a few hundred Å. 

Usually, these investigations do not include the analysis of diffuse scattering, which 

originates from structural defects such as point defects, dislocations, grain and phase 
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boundaries, precipitates, etc. The diffuse scattering thereof can hardly be measured. The 

reason for this is on the one hand due to the low concentrations of these defects compared to 

the concentration of atoms, which leads to very weak diffuse scattering intensities. On the 

other hand, the microscopic dimensions of these defects often lead to high-frequent 

scattering, which can only be resolved in high-resolution diffraction measurements. Thus, the 

observed diffuse scattering intensities mainly originate from structural disorder phenomena 

and not from structural defects. 

 

The thesis is organized as follows: §2 gives an introduction into diffuse scattering from 

disordered materials. §3 shows a reprint of the article, in which the punch-and-fill method is 

described and which includes the interpretation of the difference Patterson maps in terms of 

inter-cluster correlations. §4 includes two articles, which deal with the modelling of structural 

disorder phenomena of decagonal Al-Co-Ni quasicrystals. These calculations deal with the 

diffuse scattering inside the Bragg layers. §5 includes a reprint of the article, which deals with 

the study of the diffuse interlayers. §6 gives an outlook onto some possibilities to optimise the 

punch-and-fill method. Moreover, a growth model for decagonal Al-Co-Ni is discussed, which 

may allow the modelling of the 3D disordered structure of the Edagawa-phase. 
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2 Analysis of disordered materials 

 

Structural research has traditionally played an important role in solid state physics since the 

determination of the arrangements of atoms in space is the prerequisite to subsequently 

determine the different physical properties. Investigation of structurally disordered materials 

is complicated and often leads to relatively imprecise results. Nevertheless, both the 

fundamental aspect and the ever wider industrial applications give structurally disordered 

materials a role that cannot be overlooked. Several books have been published focusing on 

studies of disordered materials [Cowley, 1995; Nield, Keen, 2001; Ossi, 2002; 

Welberry, 2004]. 

 

2.1 Experimental techniques 

 

The main experimental techniques used in structural investigations of disordered materials 

are diffraction experiments (X-ray, neutron, electron), absorption spectroscopies (extended 

X-ray absorption fine structure, EXAFS; X-ray absorption near edge structure, XANES), 

Mössbauer spectroscopy and vibrational spectroscopies (infrared, IR; Raman). 

Diffractometric methods are the are most common technique and most diffuse scattering 

studies have involved single crystal measurements using X-ray diffraction. 

 

The basic principles of X-ray, neutron and electron diffraction are the same. X-ray diffraction 

is commonly used in structural analysis and can be used to study all types of disorder except 

for magnetic disorder. Data correction to study diffuse scattering from X-ray diffraction is a 

general problem since diffuse scattering phenomena are mostly weak and often have a broad 

distribution in reciprocal space. The intensity of synchrotron sources allows the use of 

relatively small samples (several microns) and facilitates fast measurements of diffuse 

scattering. Anomalous dispersion can be used to contrast between atomic species near to 

each other in the periodic table. Modern X-ray instrumentation also offers extremely high 

signal to noise ratio and high resolution, which is important when diffuse features around or 

even peaking under Bragg reflections are investigated. 

 

The lower intensity of neutron sources means that samples need to be larger (  cubic 

centimeter). The limited availability of experimental sources compared to the other methods 

is an additional disadvantage. However, for neutron diffraction it is easier to obtain data on an 
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absolute scale and data correction is generally well understood. One advantage of neutron 

diffraction is that the scattering length of the atoms does not show a systematic dependence 

on their atomic number and that it does not decrease with increasing diffraction vector (in the 

same way as the X-ray form-factor). This allows to study atomic species, which are near to 

each other in the periodic table and also to study atomic species with low atomic weights. 

Neutrons have similar energies to the energies of lattice vibrations. This can be used to 

probe the energy change in the sample as a result of neutron-lattice interactions. This allows 

measurements of dynamic disorder, such as phononic disorder, and one can separate 

between scattering of static and dynamic origin. The last advantage of neutron scattering is 

the possibility to measure diffuse scattering, which arises from disordered magnetic 

structures. In many cases X-rays and neutrons can be used interchangeably. Diffractometric 

methods often provide enough information for the determination of short-range and, together 

with the development of structural models, medium-range order. 

 

The main advantage of electron diffraction is that it can be used to study very small single 

crystals. Since the averaging is done over a smaller volume than for neutrons and X-rays, it 

can sometimes provide more insight into the underlying structure, e.g. in a heterogenous 

structure. Multiple scattering significantly takes place in electron diffraction, which differs from 

X-ray and neutron diffraction. Consequently, the diffuse scattering in electron diffraction 

patterns may have a different appearance compared to the X-ray or neutron patterns. 

Multiple scattering effects can result in a transfer of diffraction intensity from one region of the 

pattern to another often simplifying the appearance of diffuse scattering. 

 

EXAFS is a technique to specifically examine the chemical short-range structure and 

provides detailed information on the average local environment around a given atom. Both, 

conventional diffraction and EXAFS, give us information on the atomic pair-correlations, 

whereas XANES gives us information on multi-site interactions. Mössbauer spectroscopy 

provides spatially averaged information on the nearest neighbour configurations of an atom. 

It is a nuclear spectroscopy based on the emission of -rays associated with any transition 

between nuclear energy levels. Vibrational spectroscopies are used to obtain information on 

the molecular structure of organic and inorganic compounds (stretching, bending and torsion 

of a molecule). In general, the IR and Raman spectra of a system are complementary to each 

other. Both Mössbauer and vibrational spectroscopies supply us with indirect structural 

information. 
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2.2 Diffuse scattering from 3D periodic crystals 

 

The diffuse contribution to scattering data from crystalline materials, whether using X-ray, 

neutron or electron diffraction, arises from the deviation of the system under study from 

perfect order. Thus, disorder can be defined as the deviation from perfect order. Scattering 

experiments from all real crystals will display diffuse features in addition to Bragg reflections, 

since equilibrium defects (e.g. thermal vacancies) and dynamical deviations (e.g. thermal 

vibrations) are always present, even at thermodynamical equilibrium. Bragg scattering 

contains information on the averaged structure only. Any structural disorder is implied in the 

averaged structure via partially occupied sites and the atomic displacement parameters. In 

fact, Bragg scattering only contains single-site information, while diffuse scattering contains 

information on real pair-correlations. Detailed information on static, dynamic and orientational 

disorder can only be obtained by an analysis of diffuse scattering. Static disorder covers for 

example displacive disorder, substitutional disorder, stacking faults and other planar faults; 

dynamic disorder is disorder that changes with time or temperature, such as phononic 

disorder; orientational disorder is present when molecules on equivalent sites in different unit 

cells have different orientations (can be both static and dynamic). This variability makes the 

analysis of diffuse scattering far from straightforward, and many different methods have been 

developed to analyse specific disorder phenomena. 

 

Diffuse scattering can be elastic, quasi-elastic and inelastic in nature. In the case of elastic 

scattering, the incident beam does not change its energy during the scattering process. This 

is the case for diffuse scattering from static disorder phenomena. Quasi-elastic and inelastic 

scattering results when the energy of the beam changes during the scattering process. This 

type of diffuse scattering is due to dynamic disorder. Diffuse scattering measurements in 

which no energy discrimination is used, effectively integrate over all intensities, i.e. the 

distinction between elastic and inelastic scattering is lost. The observed intensity is then a 

time average of the instantanteous intensities. This time averaging can be considered 

equivalent to an averaging over space [see Cowley, 1995]. Usually the region of a 

homogeneous sample, which reflects coherently is limited in size to be very much smaller 

than the total illuminated size. The reason for this behaviour is on the one hand due to the 

size of the mosaic grains of the crystal and on the other hand due to the limitations on the 

coherence of the incident beam. The lateral coherence of the beam is in the order of several 

hundred Å and is limited by the divergence of the beam. The coherence of the beam in the 

direction of propagation is limited by the monochromaticity and is typically in the order of 

about 1 micron for X-rays. Thus, the total diffracted intensity corresponds to the incoherent 
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summation of the scattering intensities from a large number of independent but statistically 

equivalent regions. This is the same as the incoherent summation of the scattering intensities 

from any one region at different times. In time, any one region may take all the possible 

configurations of the atoms present and for a large number of independent regions, all 

possible configurations are represented at any time. 

 

Provided that the kinematical theory of diffraction applies, the diffraction pattern of any object 

is the Fourier transform of the pair-correlation function. Information on multi-site interactions 

between atoms or arrangements of atoms do not directly contribute to the diffraction patterns 

[see Welberry, 1986]. However, their effects are felt indirectly, for example in the constraints 

that are imposed on the two-site interactions and the way in which these decay with distance. 

Two-site and multi-site interactions are not independent from each other since the need to 

densely fill the space with atoms restricts the possible atomic arrangements. Multi-site 

occupational correlations can result in distinctive diffraction effects when additional relaxation 

displacements are considered. However, if a system has properties that stem from multi-site 

interactions there is no simple way in which these can be related to the observed intensities. 

The diffuse scattering from such a system arises from pair-correlations, which are indirectly 

generated from the fundamental multi-site interactions. 

 

2.3 Diffuse scattering from quasicrystals 

 

Everything said in the previous section on diffuse scattering from 3D periodic crystals is also 

true for quasicrystals. The physical properties of a crystal are determined by two factors: the 

chemical constituents and the crystal structure. In quasicrystals, the structure appears to be 

dominant, and the study of structure-property relations is not only of academic interest, but of 

importance in applications. The analysis of real structures encloses the study of order, 

disorder and defects. Several books have been published that focus on studies of 

quasicrystals and include chapters on disorder or defects [Janot, 1994; Nield, Keen, 2001; 

Ossi, 2002; Stadnik, 1998; Suck, Schreiber, Häussler, 2002; Trebin, 2003]. 

 

Decagonal quasicrystals can basically be described in two reasonable ways. In the first 

approach, they are described in terms of a higher-dimensional space, in which the 

quasicrystalline structure is periodic [see Stadnik, 1998]. This periodic space is composed of 

two orthogonal subspaces: the parallel-space and the perpendicular-space. Atomic surfaces, 

extended along the perpendicular-space, decorate the higher-dimensional lattice. For perfect 
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quasicrystals, all the measured scattering may be expressed as a sum of -functions, which 

cover the complete space. Any diffuse scattering is intermixed with these peaks since the 

experimental resolution allows to detect only the most intense peaks. In this description, 

diffuse scattering can occur due to fluctuations in the sizes and shapes of the atomic 

surfaces. A new type of displacive disorder occurs in quasicrystals if displacements along 

directions of the perpendicular-space are considered. This so called phasonic disorder leads 

to correlated flips of atoms or groups of atoms in the 3D structure. In the simplest case, such 

a phason mode corresponds simply to an atomic jump from one position to a nearby one with 

similar symmetry. The problem with this higher-dimensional approach is that it tends to 

ignore the fact that the quasicrystal itself is a three-dimensional object. 

 

The second approach used to describe quasicrystals is with a tiling model, in which a 

quasiperiodic arrangement of atoms is made up by two or more tiles decorated with atomic 

clusters. Closely related periodic structures (approximants) exist with similar atomic clusters. 

A Perfect quasiperiodic tiling is determined by local matching rules, which are strictly fulfilled. 

If these matching rules are violated, disorder arises, either towards a more random or 

towards a more periodic tiling [see Trebin, 2003]. In the random tiling model, violation of the 

strict matching rules leads to diffuse scattering in the diffraction patterns. Both, the higher-

dimensional description and the tiling model, lead to sharp Bragg reflections, unless there is 

phasonic disorder. 

 

2.4 Modelling techniques 

 

It is becoming increasingly common for scientists to adopt computer simulations methods to 

investigate crystalline systems. It is often not possible to apply established theoretical 

descriptions to disordered systems analytically, and it quickly becomes a complex task to 

rigorously describe the interactions between atoms as the material becomes increasingly 

disordered. Nevertheless, computer simulations can be used to bridge the gap between 

theory and experiment. They can be used to check the validity of analytical parameters in 

terms of atom positions and correlations. This is especially true in the case of structural 

disorder where a more complete picture may be obtained from a computer simulation than 

from an analytical treatment that relies on a number of possibly inappropriate approximations. 

Nowadays, model systems can be simulated that closely represent the physical system of 

interest. 
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The analysis of diffuse scattering using model calculations of disordered structures involves 

the comparison of calculated diffuse scattering from the model structure with the 

experimental diffuse scattering. This approach does not give a unique solution of the 

problem. However, with the incorporation of chemical knowledge into the construction of the 

disordered structure model both chemically and physically meaningful solutions can be 

found. In the following, some simulation techniques to study disordered materials are briefly 

characterized. The techniques used in the present study are described in article III. 

 

Molecular dynamics (MD) simulations are particularly suited to the study of dynamic disorder 

and are not an entirely appropriate method to study static disorder. The MD method is 

versatile and the following thermodynamical properties may be calculated: diffusion 

coefficients, lattice vibrations, phonon density of states and energy maps. The structural 

configurations, which are obtained from the MD calculations, allow to extract structural 

parameters such as pair-correlation functions, structure factors and average density maps. 

 

Monte Carlo (MC) simulations have been applied to many areas in science and shown to be 

extremely versatile. It is a powerful tool whenever the disordered system can be described by 

a set of interaction potentials. MC simulations start with the description of a set of potentials, 

which the system is then constrained to. From the potentials one obtains the structure and 

subsequently the structure factors. MC simulations were successfully applied by Welberry 

and co-workers to study diffuse scattering from single crystal X-ray data [e.g. Proffen and 

Welberry, 1998]. 

 

Reverse Monte Carlo (RMC) modelling uses the experimental intensities to deduce the 

structure, i.e. the MC simulation is operated in reverse. The strength and weakness of RMC 

lies in the fact that no interatomic potentials are imposed in the structural modelling. The 

definition of structural constraints is important, not to say essential in RMC modelling. 

Arbitrary, physically and chemically unreasonable, structural models may be obtained, which 

perfectly reproduce the experimental diffraction pattern. The earliest RMC modelling of 

crystalline systems used powdered samples [Keen, 1990] and after that, diffuse scattering 

from single crystal X-ray and neutron data was analysed [e.g. Proffen and Welberry, 1997a, 

1997b]. 
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3 Patterson analysis of diffuse X-ray scattering data 

 

3.1 Article I 

 

This section contains a reprint of the article: 

 

M. Kobas, Th. Weber and W. Steurer: Structural disorder in decagonal Al-Co-Ni. 

Part A. Patterson analysis of diffuse X-ray scattering data. Phys. Rev. B, submitted. 

 

Additional figures concerning this article are depicted in the appendix. 
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Structural disorder in decagonal Al-Co-Ni.

Part A: Patterson analysis of diffuse X-ray scattering data.

Miroslav Kobas1, Thomas Weber1, and Walter Steurer1,2

1
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For the first time, the three-dimensional (3D) difference Patterson (autocorrelation) function

of a disordered quasicrystal (Edagawa-phase) has been analysed. 3D diffuse X-ray diffraction

data were collected in-situ at 300 K, 1070 K and 1120 K. A new method, the punch-and-fill

technique, has been developed for separating diffuse scattering and Bragg reflections. Its

potential and limits are discussed in detail. The difference Patterson maps are interpreted in

terms of inter-cluster correlations as a function of temperature. Both at high and low

temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At high

temperatures, medium-range inter-cluster correlations are present, whereas at low

temperatures, the ordering between the clusters becomes less pronounced. Qualitatively, the

Patterson maps may be interpreted by inter-cluster correlations that take place mainly inside

pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at

1120 K. The results of our diffraction study are published in two parts. Part A focuses on the

3D Patterson analysis based on experimental data, part B reports modelling of structural

disorder in decagonal Al-Co-Ni.

61.44.Br, 61.43.Bn, 61.10.Nz

I. INTRODUCTION

Real crystals can be perfect but never ideal. An ideal crystal is a fictitious infinite

mathematical object. A crystal is perfect if it is in its thermodynamic equilibrium state. At any

given finite temperature equilibrium defects (e.g. thermal vacancies) and dynamical
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deviations (e.g. thermal vibrations) from the ideal structure are present. In quite a few cases,

the entropic contribution by structural disorder decreases the free energy of a crystal by an

amount to stabilize this structure against another one with lower enthalpy. Disorder is

favorable if the energy landscape allows alternative structural arrangements at low energy

costs. The study of equilibrium disorder, therefore, can give valuable insight into the

structural factors governing the stability of a crystal.

Everything said is also true for quasicrystals. Quasicrystals, at least the known ones, are

binary or ternary intermetallic phases, many of them stable. There is some experimental

evidence that they are electronically stabilized in the same way as Hume-Rothery phases are.

Indeed, most quasicrystals have been discovered based on this hypothesis by searching phase

diagrams for compounds with particular valence electron concentration.1 However, there are

still open questions concerning stability and structure. There are two fundamentally different

approaches. The one says that quasicrystals are built up of energetically very favorable

clusters (quasi-unit-cell approach). The lowest total energy can be achieved by maximization

of the cluster density. Jeong and Steinhardt2 showed that for clusters with fivefold symmetry

the Penrose tiling (Gummelt decagon-covering) fulfills this condition. Consequently, strictly

ordered quasicrystals could be stable down to 0 K, i.e. they would be a ground state of matter.

With rising temperature, local deviations from the quasiperiodic structure would increase

mainly by phasonic and phononic disorder.

The other approach [related to the random tiling model3] says that quasicrystals are high-

temperature phases stabilized by configurational entropy, again mainly from phasonic

disorder. Quasiperiodicity would provide maximum structural flexibility for disorder under

the constraint of structures locally favoring non-crystallographic symmetry. The structure

would be quasiperiodic on average only. Lowering the temperature would increase local

deviations (phason strain) from the average quasiperiodicity (nuclei of periodic approximant

structures are formed) until the transformation into a periodic low-temperature structure takes

place. This is just an opposite behaviour of the first approach.

From these considerations it becomes clear that it is crucial to know the evolution of

structural order, i.e. of short- and long-range correlations in quasicrystals as a function of

temperature. A Patterson analysis of the diffraction intensites is a powerful tool to obtain this

kind of information. By a Patterson analysis of Bragg scattering, one obtains the distance



17

vectors between the maxima of the electron densities. A Patterson analysis of diffuse

scattering yields real pair-correlations between structural building units, for short Patterson

vectors, and thus, a direct access to local interactions in the structure is achieved. The

temperature dependent investigation of diffuse diffraction phenomena of quasicrystals will

therefore be a key technique in answering the question whether or not quasicrystals are a

ground state of matter4,5.

The present article reports part A of our study of structural ordering phenomena of decagonal

Al-Co-Ni (Edagawa-phase6) as a function of temperature. It mainly deals with the Patterson

analysis of experimental diffuse scattering. A new method is presented that allows the

removal of Bragg reflections from the full 3D diffraction data set. Part B focuses on the

modelling of structural disorder. Phasonic diffuse scattering (PDS) and thermal diffuse

scattering (TDS) have been simulated on a model system, a vertex decorated rhombic Penrose

tiling, as well as based on synchrotron diffraction data of the Edagawa-phase. Both parts,

A and B, only deal with the diffuse scattering in the Bragg layers related to the average 4 Å

period along the tenfold axis of the basic structure and not that originating from the 8 Å

superstructure.

II. PREVIOUS WORK

A huge amount of work has already been invested in the study of stability, structure and

ordering of decagonal Al-Co-Ni [for a recent review see Steurer7]. This phase has become

the model system for decagonal quasicrystals for several reasons: it shows an exceptionally

broad stability range with a wealth of different structural ordering states as a function of

composition and/or temperature; the full power of electron-microscopy and of surface

imaging methods can be applied due to the short translation period along the periodic axis

(2-4 atomic layers); it can be easily grown in centimeter-sized single crystals of excellent

quality, which makes it well-suitable for the study of all kinds of physical properties. In the

following, previous diffuse-scattering studies on the Edagawa-phase are briefly reviewed. For

a general review on diffuse scattering in quasicrystals see Steurer and Frey4.



18

The Edagawa-phase (superstructure type I)
6,8 is a twofold superstructure along the periodic

and a fivefold superstructure in lateral direction of the basic decagonal phase with a

periodicity of 4 Å along the tenfold axis. First temperature dependent studies on decagonal

Al70Co13Ni17 were performed with powder X-ray diffraction and HRTEM on quenched

samples.9 In-situ high-temperature studies on single-crystals were carried out by X-ray

diffractometry.10 Both experiments showed that first and second order satellites behave

different as a function of temperature: second order satellites (S2) start to lose intensity

between 970 and 1020K and vanish almost completely between 1070 and 1120K, while first

order satellites (S1) preserve about 40% of the original intensity even at 1170K. Indexing of

the satellite reflections here and in the following is after Edagawa6. The index h5  refers to the

8 Å superstructure. Around 1190K, S1 satellites also disappear accompanied by a strong

reduction of diffuse scattering in the interlayers and the Bragg layers.5,10 The diffuse intensity

is fully recovered when cooled down to 300 K proving the reversibility of the underlying

ordering process. Both the correlation lengths along the tenfold axis (beyond experimental

resolution) and perpendicular to it (approximately 20 to 40 Å) decrease with temperature.10

Recently, Kobas et al.
11 performed simulations of disorder phenomena on decagonal

Al70Co12Ni18. Model calculations of structural disorder in 3D and phasonic diffuse scattering

in 5D were presented. It was found that the overall diffuse intensity distribution of the

experimental pattern can be well reproduced by an orientationally disordered Abe-cluster12 as

well as by PDS & TDS.

III. EXPERIMENTAL

The diffraction experiments on single crystals with nominal composition Al70Co12Ni18

[prepared by Lemster13] were performed at the Swiss-Norwegian Beamlines (SNBL) at the

European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The experimental

setup was as follows: MarResearch 345 imaging plate detector, crystal-detector distance

260.0 mm, exposure time 20 s per frame, step-scan increment at 300 K  =0.25º and at

higher temperatures  =0.5º, wavelength =0.7 Å, using a high temperature in-situ furnace

under helium atmosphere.5,14,15 The decagonally-prismatic shaped crystal was clamped in a

bundle of Al2O3 fibres as described in Schreuer et al.
14 and oriented with its long-axis
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approximately perpendicular to the rotation axis. 720 frames were collected at 300 K, out of

which the first 690 were used, because the crystal had slightly moved at the end of the

measurement. 471 frames were collected at 1070 K and 360 frames were measured at 1120 K,

1145 K and 1170 K. Undistorted reciprocal-space sections were reconstructed using the

program Xcavate.16,17 They were calculated on a square grid of size 2135x2135 pixels

whereas reciprocal space covers ±0.8 Å-1. Crystal orientation and instrumental corrections

were determined using the program XDS.18,19,20 The reconstructed layers were integrated over

± 0.0025 Å-1 perpendicular to the sections in order to minimize resolution effects. They were

corrected for polarisation effects but neither absorption nor Lorentz corrections were applied.

This is assumed to be the reason for the deviations from strict decagonal symmetry, which are

apparent in some, reconstructed layers. The extent in reciprocal space recorded by the

imaging plate (±0.8 Å-1) determines also the resolution of the Patterson maps (1.25 Å).

IV. DIFFRACTOGRAPHY

A. Introductory remarks on some particularities of quasicrystals

Provided the kinematical theory of diffraction applies, the Bragg reflection pattern of a

disordered 3D periodic structure is related to the square of the Fourier transform of the

average structure. The same is true for a decagonal structure with the only difference that it is

the 5D  average structure in the higher-dimensional description that has to be Fourier

transformed and that the result has to be projected upon 3D reciprocal space. The diffuse

scattering is related to the square of the Fourier transform of the differences from the average

structure. The full width at half maximum (FWHM) of the features in the structured diffuse

scattering is inversely proportional to the correlation lengths of the disordered structure.

What kind of disorder is typical for decagonal quasicrystals? Their structure can be described

in terms of cluster-decorated tilings or coverings.21 In case of decagonal Al-Co-Ni, this

columnar cluster has a decagonal shape but its symmetry is lower, probably just mirror

symmetry. Frey et al. discussed various types of static and dynamic disorder that exist in

decagonal quasicrystals.22 Some possible types of disorder can be:
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• Phason flips of individual atoms due to perpendicular space fluctuations. The

frequency of flips increases with temperature.23 Atoms jump between two energy

minima of a double-well potential. The minima have almost the same energy and are

usually less than 1 Å apart.

• Phason flips of larger units like sub-clusters or clusters. The virtually large jump

distances of up to 10 Å or more result from correlated simple phason flips of only a

subset of atoms [see e.g., Fig. 7(a) of Steurer et al.
24].

• Random-tiling-like disorder.3 If the matching or overlapping rules are relaxed or

completely omitted, randomized tilings or coverings are formed, which may have

average structures close or equal to quasiperiodic structures.25

Equilibrium random fluctuations of quasiperiodic structures under conservation of a strictly

quasiperiodic average structure take place at high temperatures. In a diffraction experiment

this would be reflected in PDS. The decagonally shaped 20 Å clusters forming the structure

of decagonal Al-Co-Ni may also be orientationally disordered since their actual symmetry is

lower than decagonal. They may also be translationally disordered along their periodic axis,

i.e. neighbouring clusters may be shifted by a multiple of layers (preferably by multiples of

two layers) without losing registry. The last two disorder models also apply to sub-clusters or

super-clusters of the basic 20 Å cluster.

B. Structure factor calculations

The Edagawa-phase can geometrically be described as a layer structure with the sequence

A, B, A’, B’ of the four different quasiperiodic layers per 8 Å translation period along the

decagonal axis. Physically more reasonable is the description as quasiperiodic packing21 of

partly interpenetrating columnar clusters ( 20 Å in diameter) with the same layer sequence

A, B, A’, B’ along their periodic axis.
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Fourier transformation of each layer gives the complex layer form factors f (A) , f (B) ,

f (A’) , f (B’) . Then, the structure factor for a stack of equidistant layers with period

...ABA’B’... along the tenfold axis reads

F(h5 ) = f (A) + f (B) e2 ih5 0.25 + f (A’) e2 ih5 0.5 + f (B’) e2 ih5 0.75 . (1)

By simplification the expressions for the individual reciprocal-space layers give

F(h5 = 4n) = f (A + A’) + f (B + B’) , (2)

F(h5 = 4n +1) = f (A A’) + i f (B B’) , (3)

F(h5 = 4n + 2) = f (A + A’) f (B + B’) , (4)

F(h5 = 4n + 3) = f (A A’) i f (B B’) , (5)

with  n . f (A + A’)  is the Fourier transform of the superposition of layer A with A’,

f (A A’)  is the Fourier transform of the difference between layer A and A’ and so on.

Assuming flat layers and point scatterer at rest, the structure factor is repeating with a period

of four reciprocal-space layers.

Even numbered reciprocal-space layers include only information on the superposition of

layers A , B , A’, B’, whereby the odd numbered layers comprise information about their

differences. The average over the scattering intensities of the even numbered layers is

obtained as f (A + A’)
2
+ f (B + B’)

2
 and over the odd numbered layers as

f (A A’)
2
+ f (B B’)

2
.

C. Experimental low- and high-temperature X-ray data

In the following, both Bragg and diffuse X-ray diffraction phenomena are described of

decagonal Al70Co12Ni18 at 300 K, 1120 K and 1170 K. The h1h2h2h1h5  reciprocal-space

section [Fig. 1] shows both Bragg reflections as well as diffuse scattering arranged in lines,

which are all sharp along the (vertical) periodic direction. Even numbered layers contain

Bragg reflections as well as diffuse scattering and will be referred to as Bragg layers later on.
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They are subject of the present study. The odd numbered layers show diffuse scattering only

and will be referred to as diffuse interlayers. Between 300 K and 1070 K, no significant

variation of the diffraction features is observed. At 1120 K [Fig. 1(b)], however, the diffuse

interlayers get broadened along the periodic direction. Up to 1170 K no further significant

changes are seen. These observations are in accordance with the studies of Frey et al., who

also developed a tentative scenario of the related structural ordering process taking place

during cooling from high temperature.26

In direct space, these observations can be explained in terms of the cluster model. At 300 K,

the four-layer periodicity ( 8 Å) within each cluster is perfectly fulfilled with a correlation

length along the tenfold axis beyond the experimental resolution. At 1120 K, the correlation

length of the four-layer period strongly decreases while that of the averaged two-layer period

...(A+A’)(B+B’)… remains almost unchanged. Within the quasiperiodic layers, the former

breaks down to approximately one cluster diameter ( 20 Å) while the long-range order of the

averaged 4 Å structure does not change as indicated by the Bragg reflections.

FIG. 1. The h1h2h2h1h5  layer parallel to the periodic axis recorded at (a) 300 K and at (b) 1120 K. A

sequence of layers can be recognized, which are sharp along the periodic axis and smeared out
perpendicular to it. The index h5 refers to the 8 Å superstructure. Even numbered layers contain Bragg
reflections and diffuse scattering while odd numbered layers only show diffuse scattering. Powder rings
come from the alumina sample holder. At 1120 K, the odd numbered layers get clearly broadened and
loose intensity. The broadening of the even numbered layers is due to the larger step-scan increment of
the scan-technique.
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The Laue symmetry of the total diffraction pattern as well as of just the set of Bragg

reflections is 10/mmm [Fig. 2]. Most of the diffuse intensity is positively correlated to the

Bragg intensities, i.e. strong diffuse scattering can be found around strong Bragg reflections

only. At ambient temperature, the diffuse intensity consists of essentially 2D features, but also

some weak, streak-like (i.e. almost 1D) intensities interconnecting main and satellite

reflections can be observed. At higher temperatures streak-like diffuse scattering is

dominating. Sequences of four reciprocal-space layers repeat themselves in a good

approximation. Every other layer shows an essentially complementary intensity distribution

[Fig. 2]. Strong intensities in one layer mostly correspond to very weak intensities at

corresponding positions in the other layer. The reverse is not true: there are several regions,

which show reduced intensities in both layers. This behaviour can be explained by Eqs. (2, 4).

Strong intensities in one layer and weak ones in the other layer can be explained due to

opposite phases of f (A + A’)  and f (B + B’) . Weak intensities in both layers may be obtained

with small values for both f (A + A’)  and f (B + B’) . This kind of information can be used to

obtain relative phases of f (A + A’)  and f (B + B’) .

A common feature of all reciprocal layers is that the overall (i.e. low-frequency) intensity

distribution of the diffraction patterns are almost unchanged during temperature evolution

[Fig. 2(a) compared to Fig. 2(b) and Fig. 2(c) compared to Fig. 2(d)]. In contrast to that, the

particular shapes of the diffuse phenomena, i.e. the high-frequency contributions to the

diffuse intensities change drastically. With increasing temperature, first the intensities of S1

reflections clearly decrease, while those of S2 reflections increase. At the same time main

reflections with large perpendicular space components of the diffraction vectors strongly

increase their intensities [cf. Steurer et al.
5]. At 1070 K, the diffuse intensities look alike those

at 300 K. However, some precursor effects from the high-temperature regime are observable.

At 1120 K, the broad diffuse features disappear almost completely and condense into

relatively narrow streaks of different lengths [Fig. 2(c,d)]. They interconnect positions of

main and S1 satellite reflections. Going to even higher temperatures, no significant variations

can be observed compared to 1120 K. Despite all changes in the appearance of the diffuse

intensities inside the quasiperiodic layers, their profiles along the tenfold axis do not change

as a function of temperature indicating preservation of the long-range correlation of the

average 4 Å periodicity up to high temperatures as long as differences between A and A' as

well as B and B' are ignored.
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FIG. 2. The h1h2h3h40 layer at (a) 300 K, at (b) 1120 K, the h1h2h3h42 layer at (c) 300 K and at (d) 1120 K.
The extent of the reciprocal-space patterns is ±0.8 Å-1. The overall intensity distribution of the diffraction
pattern are almost unchanged during temperature evolution. In contrast to that, the particular shapes of
the diffuse phenomena, i.e. the high-frequency contributions change drastically. The streaks at 1120 K
interconnect positions of main and first order satellite reflections [indexing of the satellite reflections is
after Edagawa6].

In direct space, these observations can be interpreted mainly by a variation of the correlation

lengths with temperature. Structural changes must be related to a reorganisation of clusters or

super-clusters. The evolution of streak-like scattering at higher temperatures can be explained

by the formation of correlations between these big structural units.
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V. PATTERSON ANALYSIS OF DIFFUSE SCATTERING

In this chapter, the punch-and-fill method is presented, which is our first approach to the

development of a method that allows seperation of diffuse and Bragg scattering from full 3D

diffraction data. The method is not restricted to quasicrystals. It follows the derivation of the

mathematical formulation of the method, the influence of chosen parameters and the

application of the method to the experimental diffraction data. All following representations

using five indices (for example h1h2h3h4h5) refer to the D-basis, whereas representations using

three indices (for example J(h,k,l) ) refer to the parallel-space part of the V-basis [see Steurer

et al.
27].

A. The punch-and-fill method

Structural disorder phenomena cause deviations from an averaged structure (Bragg reflections

only) and contribute to the intensity distribution in reciprocal-space in terms of (continuous)

diffuse scattering. The electron density distribution of a disordered structure can be written as

(r) = aver (r) + (r) . (6)

aver (r)  is the electron density distribution of the averaged structure and (r)  represents the

deviation therefrom. If an average periodic lattice of a real, disordered structure can be

defined meaningfully, the total diffracted intensity J(r*)  can be obtained as28

J r*( ) = F(r*)
2
= Faver (r

*) + F(r*)
2
= Faver (r

*)
2
+ F(r*)

2
. (7)

F(r*)  is the Fourier transform of (r) , Faver (r
*)  is the Fourier transform of aver (r)  and

F(r*)  is the Fourier transform of (r) . The Patterson (autocorrelation) function P(r) is

obtained by Fourier transformation of J(r*) . The basic idea of the punch-and-fill method

concerns the elimination of Faver (r
*)

2
 from the total diffracted intensity.
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The reciprocal lattice function, which consists of a series of -functions with their centers at

the positions of Bragg reflections, can be written as

g(r*) = (
R*

r* R*) . (8)

The corresponding direct lattice is obtained by Fourier transformation and gives

G(r) = (
R

r R) . (9)

Here r*(h,k,l)  and r(x, y, z) denote position vectors and R*  and R  projected 5D-lattice

vectors in 3D reciprocal and direct space respectively. Further, a window-function w(r*)  is

defined as a function with w(r*) = 1  inside a certain region in reciprocal-space and w(r*) = 0

elsewhere. The aim of the window-function is to mask the Bragg intensities. W (r)  is the

Fourier transform of the window-function. The punch-function, which removes the Bragg

intensities in reciprocal-space, is now defined as (for non-overlapping windows)

s(r*) = 1 g(r*) w(r*) , (10)

Fourier transformation of s(r*)  gives

S(r) = (r) G(r) W (r) . (11)

Here  denotes convolution. Note that from the definition of the punch-function s(r*) , the

size of the window-function is static. In reciprocal space, s(r*)  has the value 0 at and around

the positions of Bragg reflections and 1 elsewhere. In direct space, the interpretation of S(r)

is not straightforward. The Fourier transformed window-function W (r)  is clearly defined and

has a broad distribution in direct space if w(r*)  is narrow in reciprocal-space. The accessible

region both in parallel and perpendicular reciprocal-space of g(r*)  is limited by the

experiment. Thus, the reciprocal lattice 
 
g(r*) = g(r*,r* )  corresponds to a cutout of the 5D
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infinite lattice, which can be expressed as 
 
g(r*,r* ) = w(r*,r* ) g (r*,r* ) . The window-

function 
 
w(r*,r* )  is limited in parallel space by the maximum diffraction angle and in

perpendicular space through the observable diffraction intensities. Thus, g(r*) , G(r)  and

S(r) are well defined. Figure 3 shows line scans in horizontal direction of S(r)  [Fig. 3(a)] and

P(r)  [Fig. 3(b)] calculated from the h1h2h3h40 diffraction pattern at 300 K. S(r)  shows a

strong origin peak, which is more than three orders of magnitude stronger than any of the

subsidiary maxima. Minima (maxima) in S(r)  correspond mostly to maxima (minima) in

P(r) ; they show an opposite sign behaviour. Note that P(r)  shows both positive and

negative values since J(0) is not accessible. These observations are equally valid for all three

examined temperature regimes.

The multiplication of the scattering intensity with the punch-function gives

Jp (r
*) = J(r*) s(r*) = J(r*) J(r*) [g(r*) w(r*)] . (12)

Jp (r
*)  represents the punched intensity distribution in reciprocal-space. Note that all Bragg

reflections were punched equally by a window-function of size 9x9 pixels. Visual

examination of the punched diffraction pattern sourced that this size allows to neglect effects

like peak broadening or peak shifts, which appear in the case of phason strained crystals. In

figure 4, the h1h2h3h40 diffraction pattern at 1070 K is shown before and after punching

[Fig. 4(a,b)]. Except for a few strong Bragg reflections that have not been punched

completely, most of the Bragg intensities have been removed. The insets show line scans

through the broadest Bragg reflection. The maximum residual pixel intensities are below ten

percent of the Bragg peak intensity, while most other peaks have been punched completely.

For comparison, Létoublon et al.
29 have measured diffuse scattering from icosahedral

Al-Pd-Mn quasicrystals on an absolute scale and have shown that PDS under certain Bragg

reflections peaks with intensities that reach up to ten percent of the corresponding Bragg

intensity. The influence of the remaining Bragg intensities onto the Patterson function will be

addressed in paragraph C of this chapter.
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FIG. 3. Horizontal line scans calculated from the h1h2h3h40 diffraction layer at 300 K shown for S(r)  (a),

P(r)  (b), Pp (r)  (c) and Ppf (r)  (d). S(r)  shows a strong origin peak, which is more than two orders of

magnitude stronger than any of the subsidiary maxima. Minima (maxima) in S(r)  mostly correspond to

maxima (minima) in P(r) . The scan of Pp (r)  shows basically the same distribution at short Patterson

vectors as the scan of P(r) , indicating that the distribution of Pp (r)  is mainly controlled by the origin

peak of S(r)  and not by the subsidiary maxima of S(r) . At longer Patterson vectors, the peaks in Pp (r)
become negative, defining the region that is biased by S(r) . However, these peaks become again positive

in Ppf (r) .
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FIG. 4. The h1h2h3h40 diffraction pattern at 1070 K is shown before (a) and after punching (b) and after
punching-and-filling (c). Line scans of these patterns in the direction of the black-and-white dashed line
are shown in the insets. The corresponding Patterson maps (PM) are shown in (d-f) respectively. Negative
peaks are darker, positive peaks are brighter than the zero level background. The patterns in (d, e) show
basically the same distribution of Patterson peaks up to 40 Å, which means that punching does not
significantly influence short Patterson vectors. The influence of the punch-function onto the Patterson
function becomes strong at Patterson vectors >50 Å, where the sign of the distribution in (e) turns
negative (black peaks). Filling up the punched Bragg reflections by the fill-function moves the region
dominated by the punch-function to Patterson vectors >120 Å (f). For Patterson peaks up to 60 Å, the
pattern in (f) resembles the one in (d). Relative scaling of the intensities in the patterns (d), (e), (f) is 5:1:1.
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Punching the Bragg reflections mainly removes the high-frequency part of scattering

intensity. The low-frequency part, which mostly corresponds to the overall distribution of

diffuse scattering, is hardly affected by this procedure. If the Bragg intensities are punched

completely, Jp (r
*)  describes the distribution of diffuse scattering correctly at all positions in

reciprocal-space except for the diffuse scattering beneath the Bragg intensities. Thus, the size

of w(r*)  is best chosen such that the punch-function cuts completely the strongest Bragg

reflections. Fourier transformation of Jp (r
*)  gives

Pp (r) = P(r) S(r) = P(r) P(r) [G(r) W (r)] . (13)

What is now the influence of the punch-function in Patterson space? The horizontal line scan

of Pp (r)  in Fig. 3(c) shows basically the same distribution at short Patterson vectors as the

line scan of P(r)  [Fig. 3(b)]. Thus, the distribution of Pp (r)  is mainly controlled by the

origin peak of S(r)  [see Fig. 3(a)] and not by the subsidiary maxima of S(r) . At longer

Patterson vectors, the algebraic sign of the peaks in Pp (r)  turns negative, defining the region

that is biased by S(r) . The Patterson maps (PMs) of the h1h2h3h40 diffraction pattern at

1070 K before and after punching are illustrated in Fig. 4(d, e). Negative peaks are darker,

positive peaks are brighter than the zero level background. Apparently, both patterns show

basically the same distribution of Patterson peaks up to 40 Å and the region biased by S(r)

becomes strong at Patterson vectors >50 Å [Fig. 4(e)]. In the case of a narrow window-

function w(r*) , this transition is visible at long Patterson vectors, in the case of a broad

w(r*) , the transition moves to shorter vectors. The distinguished similarity between P(r)  and

Pp (r)  [Fig. 4(d, e)] at short Patterson vectors can be explained to be due to a positive

correlation between Bragg and diffuse scattering, as it is the case for our examined

quasicrystal (see paragraph C of chapter V).

Filling up each punched region in reciprocal-space with a function t(r*) , one obtains the

following expression for the punched-and-filled scattering intensity Jpf (r
*)

J(r*) Jpf (r
*) = J(r*) J(r*) [g(r*) w(r*)]+ t(r*) [g(r*) w(r*)] . (14)
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In our studies, the fill-function t(r*)  was defined such that the average value of the

surrounding pixel intensities around a punched region is assigned to the pixels inside the

punched region. Thus, the punched regions are filled dynamically up to a certain threshold,

the value of which depends on the intensity distribution around the punched region.

Consequently, Jpf (r
*)  approximates the distribution of diffuse scattering, whereby the slope

of the curve beneath the positions of Bragg reflections is set constant to a certain threshold

value. This is an approximation to the real diffuse scattering distribution J(r*) = F(r*)
2

[see Eq. (7)]. Note that the correct slope of the curve beneath positions of Bragg reflections in

J(r*)  is unknown, and thus a constant curve serves as an approximation. The punched-and-

filled intensity distribution of h1h2h3h40 at 1070 K is shown in Fig. 4(c). From the definition

of t(r*)  above, the Bragg reflections are not filled up to their maximum residual intensities

but to an average value calculated from the intensities of the pixels around them. Fourier

transformation of Jpf (r
*)  gives

P(r) Ppf (r) = P(r) P(r) [G(r) W (r)]+ T (r) [G(r) W (r)] . (15)

Ppf (r)  serves as an approximation to the Patterson function of the difference structure P(r) .

Note the similarities between the second and the third term in Eq. (15) and their opposite sign.

The fill term T (r) [G(r) W (r)]  (Patterson function of the diffuse scattering beneath the

Bragg reflections) is a subset of P(r)  (Patterson function of the total diffracted intensity).

The horizontal line scan of Ppf (r)  in Fig. 3(d) shows basically the same distribution as the

line scan of Pp (r)  [Fig. 3(c)], except for the longer Patterson vectors, which become positive

again (like in P(r) ). The two-dimensional Patterson map (PMs) of the h1h2h3h40 diffraction

pattern at 1070 K after punching-and-filling is depicted in Fig. 4(f). The region dominated by

S(r)  is clearly apparent at Patterson vectors larger than 120 Å. The pattern in (f) shows

basically the same distribution of Patterson peaks up to 60 Å as the PM depicted in (d).

Vectors between 60 Å and 100 Å in Fig. 4(f) show a star-like distribution of Patterson

peaks, which is not observable in the PM of Fig. 4(d). The origin of this distribution is

addressed in paragraph C of this chapter.
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B. Dependence of the punch-and-fill method on the observed reciprocal space density

The set of all Bragg diffraction vectors R*  of a decagonal quasicrystal forms a  -module

 

M *
= {R*

= hiai
*

i=1

5

hi }  of rank 5 in 3D  physical space.30 This means that Bragg

reflections densely fill reciprocal space. Due to experimental limitations, however, Bragg

reflections can only be observed for a subset of this  -module. One limit is set by the

maximum diffraction angle max , the other by the minimum detectable intensity (sensitivity

of the detection system). The Bragg reflection intensity falls off drastically with increasing

perpendicular-space component of the diffraction vectors

 

d* = { hiai
*

0

0

0

cos(6 i / 5)

sin(6 i / 5)

i=0

4

2

hi } . (16)

Thus, by varying d* , the density of the punch-function [Eq. (10)] can be triggered. For our

synchrotron datasets, a punch-function, dense enough to punch even the weakest observable

Bragg reflections, would lead to a very 'pitted' diffraction pattern. Thereby, almost all diffuse

scattering information would be lost. Therefore, the maximum value d ,max
*  has to be chosen

carefully.

Our study on the influence of the punch-density onto the Patterson function Ppf (r)  [Eq. (15)]

shows the following: hardly any observable differences can be found for vectors up to 110 Å

for a wide variation of the punch-density. Since Patterson vectors of the difference structure

larger than 110 Å are not accessible by the proposed method and our dataset, the influence of

the punch-density is negligible. In our calculations, d ,max
*  was set to 1.4 Å-1  for all examined

temperature regimes, which corresponds to the maximal value for non-overlapping windows

of size 9x9 pixels.
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C. Evaluation of experimental diffraction data

The scattering intensity in any reciprocal-space region affected by parasitic scattering from

the sample environment (sample holder, high temperature in-situ furnace) has been set to zero

as well as the blind areas originating from the rotation-method employed and from the beam

stop. Then, the data has been averaged under mm-symmetry in the following way: symmetry

equivalent positions are averaged if both positions have an intensity-value different from zero.

Otherwise, the position with zero intensity receives the intensity-value of the other position.

After this averaging process, the positions of the Bragg reflections have been determined by

overlaying a  -module with d ,max
*

= 1.4 Å-1 . Subsequently, the Bragg reflections have been

punched withw(r*)  being fixed to a square of 9x9 pixels. The punched regions have been

refilled by assigning to them the average value of the pixel intensities surrounding the

punched region.

The resulting diffraction patterns served now as a basis for the calculation of the Patterson

function of the difference structure, which is defined as

P(x, y, z) = J(h,k,l)e2 i(hx+ ky+ lz )

lkh

. (17)

Therewith, the projected PMs, the one at z = 0  and at z = 0.25  have been calculated from the

Bragg layers {hkl | 3 l 3} . All PMs depicted in the article have been smoothed by

convoluting the PMs twice with a pyramidal matrix according to

Psmooth (x, y, z) =

1 1 1

1 2 1

1 1 1

1 1 1

1 2 1

1 1 1

P(x, y, z) . (18)

This procedure, well known from multi-dimensional digital image processing, minimizes

truncation effects from the Fourier transformation. Back transformation of the smoothed PMs

shows that the extent in reciprocal-space in directions perpendicular to the periodic axis is

reduced to approximately ±0.5 Å-1, resulting in an effective resolution of 2.0 Å in the PMs.

Thus, smoothing influences the direct neighbourhood of Patterson peaks but not their global
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distribution in Patterson space. In some exceptional cases, smoothing can change the

algebraic sign of Patterson peaks. This happens if weak, positive (negative) peaks are

surrounded by strong, negative (positive) peaks. In such a case, the weak peak may change its

algebraic sign after smoothing. Despite of the reduction of the resolution in Patterson space,

smoothing is a useful tool to minimize truncation effects and thus prevents the interpretation

of effects, which have been introduced artificially.

To estimate the influence of artifacts originating from the width of the window-function,

Fourier filters were applied to the PMs. Figure 5 shows the projected PM at 300 K. The

region of this PM containing information not biased by the punch-function amounts to

110 Å. Beyond this range, the PMs are clearly biased by S(r) . By applying Fourier filters to

the projected PMs of Fig. 5 it becomes obvious that Patterson peaks in the range between

63 Å and 120 Å [Fig. 5(c)], which show a star-like distribution, result from remaining

high-frequency contributions in the corresponding diffraction pattern [Fig. 5(d)]. These

contributions are caused by weak Bragg reflections that have not been punched at all and by

Bragg reflections that have not been punched completely. Former is limited by the chosen

punch-density, latter by the fixed size of the window-function. Arrows in Fig. 5 mark some

partly punched Bragg reflections. By Fourier filtering it is also shown that in the range below

63 Å, the Patterson peaks [Fig. 5(e)] nicely reproduce the experimental diffuse scattering

[Fig. 5(f)]. This observation is equally valid for all three examined temperature regimes. Line

scans in the insets show that the spiky relicts in the diffraction patterns, which have been

introduced by punching-and-filling have their origin in Patterson vectors larger than 110 Å.

To summarize, only Patterson vectors smaller than 63 Å reflect reliable information on

structural disorder.
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FIG. 5. Projected PM at 300 K (a) and the corresponding zeroth layer diffraction pattern (b). The region
of this PM beyond 110 Å is dominated by the punch-function. The application of Fourier filters shows
that Patterson peaks in between 63 Å and 120 Å (c) result in high-frequency contributions to the
diffraction pattern (d). These contributions are caused by weak Bragg reflections that have not been
punched at all and by Bragg reflections that have not been punched completely. Fourier filtering also
shows that Patterson vectors smaller than 63 Å (e) nicely reproduce the experimental diffuse scattering
(f). Line scans in direction of the black-and-white dashed line show that the spiky relicts in the diffraction
patterns, which have been introduced by punching-and-filling have its origin at Patterson vectors larger
than 110 Å. The intensities in the patterns (a), (c), (e) are on the same scale.
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VI. RESULTS AND DISCUSSION

By Patterson analysis of diffuse scattering data one obtains all inter-atomic vectors of the

difference structure between the disordered structure and the average structure. Positive

(negative) peaks mean that the corresponding inter-atomic vectors of the real structure occur

more (less) frequently than in the average structure or the atoms connected by the vectors

have higher (lower) scattering power than the averaged ones.

Figure 6 shows the projected difference PMs based on 300 K, 1070 K and at 1120 K data.

Throughout these three investigated temperature regimes, a disordered structure motif (DSM)

with 20 Å diameter can be identified, which does hardly change its fine structure as a

function of temperature. This corresponds in size to the clusters reported in literature

[for an overview see Steurer, Ref. 7]. Simulations of disorder phenomena explaining this fine

structure will be presented in part B , while the present discussion is focusing on the

distribution function of these DSMs.

The projected PM at 300 K [Fig. 6(a)] shows that the strongest Patterson peaks can be found

within a range of 23 Å. At 1070 K [Fig. 6(b)], the distribution is similar to the one at 300 K,

but with one significant difference. The Patterson vector at 20 Å has grown considerably in

intensity (see scan in the inset), which means that inter-cluster correlations between direct

neighbours of clusters are formed. At 1120 K [Fig. 6(c)], the correlations within the 63 Å

range increase significantly. Remarkably strong is the increase in intensity of the Patterson

peak at 32 Å (see scan in the inset). This means that inter-cluster correlations between

second neighbours of clusters are significantly formed. The pronounced formation of inter-

cluster correlations at 1120 K is also obvious from the presence of diffuse streaks in the

diffraction patterns [see Fig. 2(b,d)]. Careful inspection of the projected PMs suggests that the

complete patterns may be explained by the same DSM arranged at certain translation vectors

[Fig. 6(a-c)]. Translation vectors are defined such that they point to Patterson peaks, which

are surrounded by a similar pattern to the one around the origin peak. In horizontal and

symmetry equivalent directions, the following sequence of translation vectors can be

identified: 23 Å, 38 Å, 61 Å, which roughly corresponds to 
 
{23 n | n 0} . In vertical

and symmetry equivalent directions: 20 Å, 32 Å, 52 Å is obtained, which is

approximately 
 
{20 n | n 0} .
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FIG. 6. Projected difference PMs (a) 300 K, at (b) 1070 K and at (c) 1120 K. Throughout these three
temperatures, a disordered structure motif (DSM) with 20 Å diameter can be identified, which fine
structure does hardly change as a function of temperature. At higher temperatures, an increase of the
correlation lengths between the DSMs is observable. Line scans in the direction of the black dashed line
are shown in the insets. They show the considerable increase in intensity of the Patterson vector at 20 Å
at 1070K and of the Patterson vector at 32 Å at 1120 K. Arrows point to the prominent translation
vector at 32 Å of the DSMs. Relative scaling of the intensities in the patterns (a), (b), (c) is 2:3:4.

These two sequences can also be identified in a quasiperiodic covering constructed of

overlapping Gummelt decagons21 [Fig. 7]. The distances between centers of decagons, which

are aligned along a line mostly corresponds to one of the above sequences. The distance

between two edge-sharing Gummelt decagons is 20 Å and the centers of the decagons in this
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direction are separated according to 
 
{20 n | n 0} . The distance between two corner-

sharing decagons (connected by a tie) amounts to 23 Å and the centers of the decagons in

this direction are separated according to 
 
{23 n | n 0} . This means that the translation

vectors can be related to the centers of the Gummelt decagons.

FIG. 7. Quasiperiodic covering constructed of Gummelt decagons21. -scaled sequences of distances
observed in the projected difference PMs are drawn in. The distance between two edge-sharing Gummelt
decagons is 20 Å (found in the pentagonal supercluster PSC), and between two corner-sharing decagons
(connected by a tie) it amounts to 23 Å (found in the decagonal supercluster DSC). Arrows mark inter-
cluster vectors that appear in the PSC and DSC.
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The PMs as a function of temperature may be explained as follows: both at high and low

temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At high

temperatures, medium-range inter-cluster correlations are present, whereas at low

temperatures, the ordering between the clusters becomes less pronounced. A possible disorder

phenomenon that fulfills these requirements is described in Part B of our study. It is about

phasonic induced cluster orientational disorder.

 Qualitatively, the PMs may be interpreted by inter-cluster correlations that take place mainly

inside pentagonal superclusters (PSC) below 1120 K, and inside decagonal superclusters

(DSC) at 1120 K. Inter-cluster vectors that appear in the PSC (20, 32 Å) and DSC

(20, 23, 32, 38 Å) are depicted in Fig. 7. These distance vectors are in accordance with the

strong Patterson peaks found at the positions of translation vectors (see above). Figure 8

schematically illustrates the structure of the two types of superclusters. The PSC is composed

of five Gummelt clusters at the corners of a star-centered pentagon with 20 Å edge length;

the DSC consists of one central Gummelt cluster edge-joiningly surrounded by a ring of ten

further overlapping Gummelt clusters. The PSCs appear in two orientations, which differ by

36º. The DSC can also be considered as being composed of five interpenetrating PSCs

centered at the corners of a pentagon with 23 Å edge length.

FIG. 8. Schematical illustration of the two types of superclusters. The PSC consists of five Gummelt
clusters at the corners of a star-centered pentagon with 20 Å edge length; the DSC is composed of one
central Gummelt cluster edge-joiningly surrounded by a ring of ten further overlapping Gummelt clusters.
The DSC can also be imagined as being composed of 5 PSCs centered at the corners of a pentagon with

23 Å edge length. Pentagon vertices of PMs calculated from S1 and S2 satellite reflections are drawn as
gray dashed lines. The pentagon vertices from S1 reflections can be found inside the PSC and from S2
reflections inside the DSC. In the former case, the vertices are located at the centers of the outer Gummelt
decagons, while in the latter case, the vertices are located at the corners of the stars.
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The difference PMs at z = 0  [Fig. 9] comprise information about Patterson vectors located

inside the quasiperiodic planes. The PMs at z = 1 / 4  [Fig. 10] are composed of Patterson

peaks on vectors pointing towards adjacent quasiperiodic layers. The PMs at z = 0  and

z = 1 / 4  have the following points in common with the projected PMs: they show an increase

in correlation lengths with increasing temperature and the strong Patterson peaks, which were

found at the positions of translation vectors identified in the projected PMs, can also be found

in these PMs. Major parts of the PMs at z = 0  and z = 1 / 4  are complementary, alike the

reciprocal layers h1h2h3h40 and h1h2h3h42 [see Fig. 2]. Note the remarkable weaker intensities

of the Patterson peaks at the positions of translation vectors in the PMs at z = 1 / 4  [Fig. 10]

in comparison to ones in the PMs at z = 0 [Fig. 9]. This means that inter-cluster correlations

between adjacent quasiperiodic layers are less pronounced than inter-cluster correlations

inside quasiperiodic layers. Note the origin peak in the PM at z = 1 / 4  at 300 K [Fig. 10(a)],

which has become negative by smoothing. This may be understood by the effect described in

paragraph C of chapter V, e.g. weak peaks, which are surrounded by strong peaks, may

change their algebraic sign after smoothing.

From the investigations of Steurer et al.
5 on the superstructure of decagonal Al70Co12Ni18, we

know that the superstructure ordering takes place along the long and short diagonals,

respectively, of a Gummelt decagon [see Fig. 7]. The ordering causing the S1 reflections is

along the short diagonal, while the ordering of the S2 reflections is along the long diagonal of

a fat Penrose rhomb. The pentagon vertices of the PMs calculated from S1 and S2 satellite

reflections [see Steurer, Ref. 5] are drawn in Fig. 8. The pentagon vertices of the PM of S1

reflections can be found inside the PSC [fat dashed lines inside PSC of Fig. 8], while the ones

of S2 reflections can be found inside the DSC [fat dashed lines inside DSC of Fig. 8]. In the

case of the PSC, the vertices are located at the centers of the outer Gummelt decagons, while

in the case of the DSC, the vertices are located at the centers of the stars. Note that in a certain

temperature range, the intensities of S1 reflections decrease with increasing temperature while

those of S2 reflections increase and that streaks interconnecting main and S1 reflections

appear at 1120K. This may be explained as follows: at low temperatures, inter-cluster

correlations take place predominantly in the smaller PSCs. With increasing temperature,

bigger structural units are formed, the DSCs, which now govern the PMs. The formation of

DSCs, which are composed of five interpenetrating PSCs, takes place on cost of the

superstructure ordering formed by the PSCs. Thus, the S1 reflections loose intensity, while

the superstructure ordering of the DSCs becomes more pronounced, i.e. the S2 reflections
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grow in intensity. For a detailed understanding of the mechanism forming the superstructures,

more studies will be necessary on the complex ordering phenomena in decagonal

Al70Co12Ni18.

FIG. 9. Difference PMs at z = 0  at (a) 300 K, at (b) 1070 K and at (c) 1120 K. They reflect correlated
disorder of the DSMs perpendicular to the tenfold axis. At 1120 K, the correlations between the DSMs
become much more pronounced. Full arrows point to the prominent translation vector at 32 Å. Relative
scaling of the intensities in the patterns (a), (b), (c) is 1:2:2.
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FIG. 10. Difference PMs at z = 1 / 4  at (a) 300 K, at (b) 1070 K and at (c) 1120 K. They reflect correlated
disorder of the DSMs between two adjacent layers. Full arrows point to the prominent translation vectors
at 32 Å. In contrast to the PMs at z = 0  [Fig. 9], the Patterson vectors at the positions of translation
vectors are much weaker, but still positive. They show a slight increase in intensity at higher
temperatures. Relative scaling of the intensities in the patterns (a), (b), (c) is 3:4:4.
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VII. CONCLUSIONS

Area detectors in combination with reciprocal-space reconstruction software allow 3D

sampling and evaluation of X-ray intensity data. This is the prerequisite of quantitatively

solving the structure of disordered complex materials such as quasicrystals. In the present

study, the focus was on the application of the Patterson analysis to diffuse scattering. This

powerful tool allows to obtain model-free structural information of the difference structure.

The first hurdle to be taken was the reduction of the contribution from the Bragg reflections to

the Patterson maps. Thus, Patterson maps were obtained, which are related to disorder only.

The punch-and-fill method was shown to perform this task reasonably well. The Patterson

maps based on punched-and-filled intensity data were interpreted in terms of inter-cluster

correlations as a function of temperature. At high temperatures, medium-range inter-cluster

correlations are present, whereas at low temperatures, inter-cluster correlations become less

pronounced. The reduction of ordering between the clusters takes place without an observable

change in the topology of the structure, i.e. the arrangement of the cluster centers.
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Fig. 1: These figures show the complete scans in horizontal and vertical direction of the 
h1h2h3h40 diffraction patterns at the examined temperatures [cf. to Fig. 4(a-c) of 
article I]. (a, b; g, h; m, n) show the scans of the total diffracted intensity at 
300 K, 1020 K and 1120 K, respectively. (c, d; i, j; o, p) depict scans of the 
punched and (e, f; k, l; q, r) scans of the punched-and-filled scattering intensity, 
respectively. Except for some strong Bragg peaks that have not been punched 
completely, most of the Bragg intensities have been removed. Dashed lines in 
(a, b; g, h; m, n) indicate the maximal remained intensity after punching. 
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Fig. 2: This figure corresponds to Fig. 10 of article I, with the difference that the present 
PMs have not been smoothed. One can clearly recognize the higher resolution 
in the present PMs, which correspond to 1.25 Å. The direct neighbourhoods of 
the Patterson peaks in the present case look slightly different to the ones in 
Fig. 10 of article I, but the global distribution of the Patterson vectors is the 
same. Note the origin peak at 300 K (a), which has been smoothed out in 
Fig. 10(a) of article I. The intensities in the patterns (a), (b), (c) are on the same 
scale. 
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4 Modelling structural disorder of the Bragg layers 

 

4.1 Article II 

 

This section contains a reprint of the article: 

 

M. Kobas, Th. Weber and W. Steurer: Modelling Disorder of Decagonal Al-Co-Ni 

Quasicrystals. Ferroelectrics, 305, 185-188 (2004). 
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The question whether quasicrystals exist only on global average or also on a local
scale entails the question about their stabilization. A detailed model of the real structure
and temperature dependent structural changes should provide insight into this problem.
Simulations of disordered structures on different scales (ranging from sub-clusters to
clusters with 6–20

�

A diameter) and in different dimensions (structural disorder in 3D and
phasonic diffuse scattering (PDS) in 5D) were performed for decagonal Al70Co12Ni18.
A good reproduction of the experimental diffuse scattering has been achieved.

Keywords Quasicrystal; disorder; modelling

1. Introduction

One of the most challenging and still unsolved questions about quasicrystals concerns their
stabilization. Energetic stabilization, i.e. optimum packing of cluster with non-
crystallographic symmetry and low energy, would be reflected in PDS decreasing with tem-
perature. In the case of entropic stabilization, the temperature dependence of PDS would
be different.

From these considerations it becomes clear that it is of crucial importance to know
short- and long-range correlations in quasicrystals as a function of temperature. Struc-
ture analysis based on Bragg reflections results in the space- and time-averaged structure.
Detailed information about local order in disordered structures can be obtained from an
analysis of diffuse diffraction intensities. Temperature dependent investigations of diffuse
phenomena from quasicrystals will therefore be a key in answering the question whether
entropy or energy is the driving force for stabilization of quasicrystals [1].

In the present study, we focus on X-ray scattering phenomena from a decagonal qua-
sicrystal with nominal composition Al70Co12Ni18 recorded at various temperatures from
300 K up to 1170 K. The melting temperature is approximately 1400 K. The diffraction
experiments were performed at SNBL/ESRF [1] and reciprocal space sections were recon-
structed using the program Xcavate [2]. The examined quasicrystal, the so-called Edagawa-
phase [3], shows an extraordinary richness of complex scattering. The view perpendicular
to the tenfold axis shows a sequence of layers that are sharp along the periodic direction.
Integral layers contain Bragg reflections as well as diffuse scattering and are called ‘Bragg
layers.’ They are the subject of the present study. Half-integral layers only show diffuse
scattering and are discussed by Weber et al. [4].
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Zürich, Switzerland. E-mail: miroslav.kobas@mat.ethz.ch
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At first glance, the diffuse intensities of the ’Bragg layers’ consist of broad diffuse
features. A more detailed view reveals superimposed fine structure.

In the following, three different approaches are reported. Two of them are based on
concrete structural models. The third method uses an abstract concept describing disorder
in higher-dimensional space.

2. Simulation Techniques

In the first approach, the ‘molecular’ form factors of about 6 Å-sized sub-clusters have been
calculated. In the second approach, local disorder phenomena of about 20 Å-sized clusters
were simulated. These structural modelling techniques are performed in three dimensions.
The main goal is to identify essential structural building units of the quasicrystal structure.
The size of the simulated models allows a reproduction of the experimental broad diffuse
intensity distribution, which corresponds to a correlation length of ≤20 Å .

In the third approach, disorder related to thermal diffuse scattering (TDS) and PDS from
the Edagawa-phase has been simulated in a five-dimensional approach [5]. This approach
is capable to describe complex disorder in three dimensions by a few parameters in higher-
dimensional space. The goal of this approach is to evaluate the importance of TDS and PDS
and to explore the elastic properties of the investigated quasicrystal.

3. Models of Disorder

The ‘molecular’ form factors of several sub-clusters have been calculated. Two of them, the
so-called P sub-cluster [6] and a slightly modified S sub-cluster [6], are in good agreement
with experimental data (Figs. 1b–2b). The P sub-cluster [6] is an essential building unit
of the Abe-cluster [7] and some other proposed clusters for decagonal Al-Co-Ni [8]. The
‘molecular’ form factors of these sub-clusters are shown in Figs. 1a–2a.

FIGURE 1 (a) Comparison between experimental and simulated diffraction pattern. The
upper left corner shows the experimental h1h2h3h40-layer (RT), the upper right corner
represents the ‘molecular’ form factor of the modified S sub-cluster [6], the lower right
corner shows the diffuse intensity of an orientational disorder of the Abe-Cluster [7] and
the lower left corner displays calculated TDS and PDS of the Edagawa-phase. (b) Structure
of the modified S sub-cluster [6].
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FIGURE 2 (a) Comparison between the experimental h1h2h3h41-layer (RT) and the simu-
lated diffraction pattern. The ‘molecular’ form factor in the upper right corner comes from
the P sub-cluster [6]. Lower sections correspond to Fig. 1a. (b) Structure of the P sub-cluster
[6].

Various kinds of disorder (substitutional, displacive, orientational, size-effect-like) have
been simulated with numerous variations of clusters reported in literature [7–9]. Best results
have been obtained by a random orientational disorder of n · 72◦, n ∈ {0, 1, 2, . . .} of the
Abe-cluster [7] (Figs. 1a–2a).

Simulation of TDS and PDS does not require an atomic structural model but experi-
mental Bragg intensities and elastic constants of the investigated quasicrystal. A decagonal
quasicrystal can be characterized by five phononic elastic constants, three phasonic elastic
constants and one phonon-phason coupling term [10]. The calculations were performed
using experimentally determined phononic elastic constants [11]. For the examined Bragg
layers, the number of independent phasonic elastic constants reduces to one. The phasonic
elastic constant k1 has been determined by trial and error to 0.0189, the phonon-phason
coupling constant r to 0.1. Both the shape of the diffuse features and the overall distribution
of intensity are sensitive to a change of the elastic constants. Calculated TDS and PDS are
shown in Figs. 1a–2a.

4. Results and Discussion

The ‘molecular’ form factors of the simulated sub-clusters resemble the overall distribution
of diffuse and Bragg scattering (Figs. 1a–2a). This is surprising since the atomic structure
of the sub-clusters is simple and very small in size. It supports the theory that such building
units are essential for both the average quasicrystal structure as well as for the disordered
one.

The diffuse scattering of the orientationally disordered Abe-cluster [7] reproduces not
only the overall diffuse intensity distribution of the experimental pattern, but also some fine
structure details. An alternative description of this kind of orientational disorder is obtained
by correlated substitutional and displacive disorder, which are frequently reported to be
plausible disorder phenomena for decagonal Al70Co12Ni18 [1, 12].

The simulated TDS and PDS of the Edagawa-phase is in good agreement with the
experimental diffraction pattern. Not only the overall diffuse intensity distribution is nicely
reproduced, but also several fine structure details. It can be stated that TDS and PDS
constitute the major part of the experimental diffuse intensities inside the ‘Bragg layers.’
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In a next step, the three approaches will be combined by translating the results from the
higher-dimensional simulations into three-dimensional structural information.
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Switzerland and

2
MNF, University of Zurich, Switzerland

The hydrodynamic theory of phasonic and phononic disorder is applied successfully to

describe the short-range, disordered structure of a decagonal Al71.5Co14.6Ni13.9 quasicrystal

(Edagawa-phase, superstructure type I). Moreover, model calculations demonstrate that the

main features of diffuse scattering can be equally well described by phasonic disorder and

fivefold orientational disorder of clusters. The calculations allow to distinguish the different

cluster types published so far and the best agreement with experimental data could be

achieved with the mirror-symmetric Abe-cluster. Modelling of phason diffuse scattering

associated with the S1 and S2 superstructure reflections indicate disorder of superclusters.

The former show basically inter-cluster correlations inside quasiperiodic layers, while the

latter exhibit intra- and inter-cluster correlations, both between adjacent and inside

quasiperiodic layers. The feasibility, potential and limits of the Patterson method in

combination with the punch-and-fill method employed is shown on the example of a phasonic

disordered rhombic Penrose tiling. A variation of the elastic constants does not change

qualitatively the way phasonic disorder is realized in the local quasicrystalline structure. For

the same model system it is also shown that phasonic fluctuations of the atomic surfaces yield

average clusters in the cut-space, which correspond to fivefold orientationally disordered

clusters.

61.44.Br, 61.43.Bn, 61.10.Nz
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I. INTRODUCTION

Diffuse scattering in quasicrystals is primarily associated with phasonic diffuse scattering

(PDS) [for a review on diffuse scattering of quasicrystals see Steurer and Frey1]. The

quantitative description of phasonic diffuse scattering is based on the hydrodynamic theory

using the elastic properties of a fictitious higher-dimensional hypercrystal. In particular, the

distortion of the hypercrystal along perpendicular-space directions is responsible for phasonic

disorder. One of the main tasks of this study was to explore the applicability of the

hydrodynamic theory of PDS on decagonal quasicrystals and to check whether or not

phasonic disorder is capable to describe the disordered structure of decagonal Al-Co-Ni.

Other types of disorder phenomena for decagonal quasicrystals are known [see Frey et al.
2]

but a careful examination of this phenomena is beyond the scope of this paper. Although PDS

has often been used to describe disorder of quasicrystals, it is quite unclear, however, what

PDS means in terms of 3D structural disorder. Therefore, one of the tasks of this study was to

explore the three-dimensional structural meaning of PDS. In the focus, however, was the

modelling of structural disorder phenomena of decagonal Al-Co-Ni quasicrystals. Phasonic

diffuse scattering and thermal diffuse scattering (TDS) have been calculated for a model

system, a decorated rhombic Penrose tiling (RPT) as well as for synchrotron diffraction data

taken on decagonal Al71.5Co14.6Ni13.9, a superstructure of type I [Edagawa-phase
3]. The

modelling of disorder on the scale of clusters allowed to distinguish between different cluster

types suggested in literature.

In the following, we will briefly review theoretical work on PDS and then present current

cluster models employed in our disorder model calculations.
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II. PREVIOUS WORK

A. Theoretical work on PDS

Within the framework of the hydrodynamic theory, Jaric and Nelson4 developed a theory of

diffuse scattering from icosahedral quasicrystals due to spatially fluctuating thermal and

quenched strains. This approach was extended such that it could be used also for decorated

quasilattices.5,6,7 Lei et al. discussed both quenched and thermal phasons and phonons in the

case of decagonal quasicrystals.5 Ishii8 pointed out that anisotropic diffuse scattering of

phasonic origin in decagonal quasicrystals may only be expected in the case of strong

phonon-phason coupling.

Yang et al.
9
 and Hu et al.

10 investigated point groups and elastic properties of pentagonal and

decagonal quasicrystals. The number of independent second-order elastic constants of Laue

class 10/mmm has been determined: five elastic constants are associated with the phonon

field, three with the phason field and one with the phonon-phason coupling. Phasonic elastic

constants from geometrical random-tilings have been calculated by Monte Carlo

simulations11,12,13. Zhu and Henley14 have estimated the phonon-phason coupling constant

from relaxation simulations of an icosahedral quasicrystal model. A similar method has been

applied to a simple decagonal quasicrystal model and the full set of elastic constants has been

calculated.15

The hydrodynamic theory for quasicrystals predicts that the phonon displacement field

relaxes rapidly via phonon-modes, whereas the phason displacement field relaxes diffusively

with much longer relaxation times.16 At higher temperatures, the hydrodynamic theory treats

phasons analogous to phonons, i.e. thermal excitations, and they are described in a unified

way. At lower temperatures, however, atomic diffusion is very sluggish and phonons will

equilibrate in the presence of a quenched phason displacement field.4,7,17 In this case phonons

and phasons have to be treated separately.
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B. Cluster models

A large number of cluster models for fundamental building units of decagonal Al-Co-Ni has

been proposed [for a review see Steurer18]. In the present work, the following most reasonable

models were used for modelling structural diffuse scattering phenomena:

• Abe-cluster19,20: d-Al72Co8Ni20 (Ni-rich basic phase), periodicity 4 Å, columnar

cluster with 20 Å diameter, mirror symmetry, forces a strictly quasiperiodic tiling.

• Hiraga-cluster21,22,23: d-Al70Co15Ni15, periodicity 4 Å, diameter 20 Å, pentagonal

symmetry [Ref. 21, 22]. d-Al72Co8Ni20, diameter 32 Å, pentagonal symmetry

[Ref. 23]. Cluster model for the Edagawa-phase: four-layer structure with sequence

A, B, A’, B’, periodicity 8 Å, layers A and A’ are flat, layers B and B’ are puckered,

layers A and A’ act as mirror planes between layers B and B’, diameter of 32 Å,

pentagonal symmetry [Ref. 23].

• Ritsch-cluster24,25: d-Al72.5Co20Ni7.5 (Co-rich basic phase), periodicity 4 Å, diameter

20 Å, pentagonal symmetry.

• Saitoh-cluster26: d-Al72Co8Ni20 (Ni-rich basic phase), periodicity 4 Å, diameter

20 Å, mirror symmetry, consists of pentagonally shaped sub-clusters (P sub-cluster)

and star-like shaped (S sub-cluster).

• Steinhardt-cluster27,28: d-Al72Co8Ni20 (Ni-rich basic phase), periodicity 4 Å, diameter

20 Å, mirror symmetry, Gummelt cluster-covering29 introduced that favours strict

quasiperiodic tiling.

• Steurer-cluster30: d-Al70Co15Ni15, periodicity 4 Å, diameter 20 Å, 105 screw axis,

layer A shows pentagonal symmetry, layer B mirror symmetry.

• Yan-cluster31,32,33,34: d-Al72Co8Ni20 (Ni-rich basic phase), periodicity 4 Å, diameter

20 Å, substitutional disorder between transition metal (TM) atoms and Al in the core

region of the cluster lowering the symmetry from pentagonal to mirror symmetry.

Such a disordered model favours a random tiling structure [Ref. 31]. Slight

modification based on P sub-clusters [Ref. 32-34].

All but the cluster-model of Steurer30, which has been derived by X-ray single-crystal

structure analysis, are based on electron microscopy (EM) studies. The cluster of Hiraga21-23

and Ritsch24,25 exhibit 5m symmetry, all other models show mirror symmetry only.
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III. EXPERIMENTAL

Alloys in the ternary system Al-Co-Ni with the nominal composition Al72.5Co14Ni13.5 were

prepared by Lemster35 by producing compacts (pressure of 30 kN applied for 1 min, weight

5 g) of high-purity elements under argon atmosphere (Mbraun glove box 150 B-G, PanGas Ar

99.9998%). The stoichiometric formula Al71.5Co14.6Ni13.9 was determined by electron

microprobe X-ray analyser with the wavelength dispersive method (CAMECA SX50,

± 0.1 at.%). The compacts were melted twice in an arc furnace with water-cooled copper-

crucible (Degussa VOLiO) for homogenisation. Afterwards they were put in an alumina

crucible with top cover and were remelted in a high vacuum furnace (PVA MOV 64) under

the following temperature conditions: heating up from 300 K to 1470 K in 1 h, holding the

temperature for 15 min, then cooling down with a rate of 0.5 K/min to 1120 K, holding the

temperature for 4 h and subsequently cooling down to ambient temperature by switching off

the high-vacuum furnace. The ingots of the different compacts were crushed and single-

crystals selected. The quality of the crystals was studied with X-ray photographic techniques.

The X-ray data collection of the Bragg reflection dataset (d-Al71.5Co14.6Ni13.9) was performed

at the four-circle diffractometer beamline D3 at the synchrotron source Hasylab

(  = 0.56000 Å, 3º  2   140º, 15474 reflections measured, therefrom 7058 main

reflections, 4214 first order satellite reflections S1 and 4202 second order satellite reflections

S2).36 Indexing of the satellite reflections here and in the following is after Edagawa3. The

quasicrystal parameters a = 3.7805(5) Å and c = 4.0816(5) Å are defined such that the

reciprocal parameters a*  and c*  correspond to the physical reciprocal-space lengths of the

(10000) and (00001) reflections in the standard embedding, respectively [see Steurer,

Ref. 30].

The experimental details on the image plate datasets of the Edagawa-phase (d-Al70Co12Ni18)

are described in part A of our study.
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IV. MODELLING PDS & TDS OF A RHOMBIC PENROSE TILING

A RPT has been constructed from its four-dimensional representation in the standard

embedding as described in Cervellino et al.
37. The centers of the atomic surfaces (AS) of the

RPT occupy the positions {(
p

5
,
p

5
,
p

5
,
p

5
)D p = 1,..., 4}  on the body diagonal of the four-

dimensional unit-cell (subscript D denotes D-basis). The ASs consist of four pentagons of

radius 
2a

5 2
 at p = 1,4  and of radius 

2a

5
at p = 2,3 , where =

1+ 5

2
 is the golden mean

and a = 3.757Å is the quasicrystal parameter. Throughout this paper, the ‘radius’ of a regular

polygon is defined as its centre-to-vertex distance. Orientation of the ASs are according to

Steurer et al.
38. The ASs at p = 1,4  are decorated with Ni-atoms, the ones at p = 2,3  with

Al-atoms. The atomic scattering factors are taken from Maslen et al.
39. Both the anisotropic

atomic displacement parameters and the anisotropic phasonic parameters are set to zero for

the calculation of the diffraction patterns of the RPT. The atomic configurations in parallel-

space are obtained through a cut of the four-dimensional embedding-space by the two-

dimensional parallel-space.

A. Methodology: PDS & TDS calculations

For the calculation of PDS & TDS of a two-dimensional diffraction pattern, one has to solve

the following expression for every single Bragg reflection [details on the theory can be found

in Ref. 5-7]:

 

J(R*
+ o*) =

kBT

(2 )3
Javer (R

*) (R*,R* )V A 1(o*) (R*,R* )V . (1)

 
J(R*

+ o*)  is the diffuse intensity at offset 
 
o*  from a particular Bragg reflection

 
RD
*
= (R*,R* )V  (subscript D  denotes D-basis, and V  stands for the V-basis), kB  is the

Boltzmann constant, T  is the temperature, 
 
Javer (R

*)  is the Bragg scattering intensity of a
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particular reflection and 
 
A(o*)  is the hydrodynamic matrix. 

 
A(o*)  includes information on

the elastic properties of the quasicrystal and, therefore, is also a function of the phononic

elastic constants Cijkl , of the phasonic elastic constants Kijkl  and of the phonon-phason

coupling constants Rijkl . Note that Eq. 1 is valid in the case of simultaneously thermalized

phonons and phasons (T Tq , with Tq  being the phason-quenching temperature). In the case

of quenched phasons (T < Tq ), Eq. 1 can still be written in the same form but 
 
A(o*)  has to be

replaced by an effective hydrodynamic matrix 
 
Aeff (o

*) . 
 
Aeff (o

*)  is associated with Cijkl ,

Kijkl , Rijkl  at temperature T  but also with those at temperature Tq . Thus, the effectively

needed input for the calculation of PDS & TDS are the elastic constants of the considered

quasicrystal and the Bragg scattering intensities.

In order to keep computing time reasonable, 
 
J(R*

+ o*)  is calculated up to an offset 
 
o* ,

which is set dynamical for each Bragg reflection. The maximal offset 
 
o ,max
*  for each

reflection is chosen such that 
 
J(R*

+ o ,max
* ) 0.0001 J(R*) . This means that the

calculated diffuse intensity at 
 
o ,max
*  for each reflection drops to about 0.0001 of the diffuse

intensity maximum in the pixel closest to the position of the corresponding Bragg reflection.

For the calculation of the Patterson function based on diffuse intensity data only, the diffuse

scattering was punched around the location of each measured Bragg reflection by a small

window-function. For details on the punch-and-fill method refer to part A of this study. In

contrast to the punch-function used in Part A (window-function of size 9x9 pixels), the punch-

function used for the PDS & TDS calculation is 3x3 pixels only. Its influence in Patterson-

space is significant at Patterson vectors larger than 100 Å. In the case of the PDS & TDS

calculation, the punched regions are not filled by the fill-function, as it was done for the

calculations in part A. Although the Bragg reflections are not included, punching the diffuse

diffraction pattern is necessary in the present case. Otherwise 'numerical singularities', which

are due to sampling effects of the PDS & TDS pattern, would control the Patterson maps (PM)

of the diffuse scattering. Apparently, equation 1 shows a singularity at the position of each the

Bragg reflection: if 
 
o*  approaches 0, 

 
J(R*

+ o* 0)  tends toward . This is due to the
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fact that intensities are calculated on discrete pixel positions (  appears if a Bragg position

falls exactly on a discrete pixel position). This is in contrast to the experiment, where the

scattering information is integrated over the area of one pixel, which results in a finite value.

All following results of the PDS & TDS calculations are based on the theory of thermalized

phonons and phasons. Only minor differences in the diffraction patterns and PMs can be

observed in the case of quenched phasons. Chernikov et al.
40 has determined the full set of

phononic elastic constants for a decagonal Al-Co-Ni quasicrystal with resonant ultrasound

spectroscopy at ambient temperature. Thus, for a decagonal quasicrystal with point group

10/mmm, one ends up with only 4 parameters for the thermalized case but still with 13 for the

quenched case.

B. Dependence on the perpendicular-space component of diffraction vectors

What is the influence of a limitation of the perpendicular-space component of the diffraction

vectors [see Eq. 16, part A] on the diffuse scattering (PDS & TDS) and the corresponding

Patterson function? PDS & TDS of a RPT is calculated for two datasets with a maximal

parallel-space component of 
 
d ,max

*
= 2.5 Å 1  and maximal perpendicular-space components of

d ,max
*

= 2 Å 1  and d ,max
*

= 5 Å 1 , respectively. Zoomed sections of the calculated diffuse

patterns are shown in Fig. 1(a, b), respectively, the corresponding PMs are depicted in Fig.

1(c, d). Note that all PMs depicted in this article have been smoothed to minimize truncation

effects from the Fourier transformation (see part A for more details). All Bragg reflections

stronger than 1 ppm of the intensity of the second strongest reflection are included in the

calculations ( J(0)  excluded). This restriction gives a dataset comparable to what can be

measured employing synchrotron radiation (dynamic range of 106 ). In the case of

d ,max
*

= 2 Å 1 , the datasets results in 17'300 Bragg reflections, in the case of d ,max
*

= 5 Å 1 ,

one obtains 98'350 reflections. The phononic elastic constants Cijkl  were taken from

Chernikov40, the phasonic elastic constants were set to K1 = 0.02 , K4 = 0.4  and the phonon-

phason coupling constant to R = 0.1. The diffraction patterns were calculated on a square grid

of size 4001x4001 pixels.
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FIG. 1. Influence of a limitation of the perpendicular-space component of the diffraction vectors in
reciprocal- and Patterson-space. Zoomed sections of calculated PDS & TDS of a RPT is shown for two

datasets with a maximal perpendicular-space component of d ,max
*

= 2 Å 1
 (a) and d ,max

*
= 5 Å 1

 (b).

The corresponding PMs are shown in (c, d), respectively. Diffuse ‘streaks’ in (b) evolve because of the
superposition of PDS from weak Bragg reflections with high perpendicular-space components. The PMs
of both datasets are almost equivalent for short Patterson vectors and do only differ in fine structure
details. Relative scaling of the intensities in the patterns (c), (d) is 1:2.

Comparing the diffuse scattering of the two datasets [Fig. 1(a, b)], one can see a remarkable
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difference. The additional Bragg reflections in Fig. 1(b) evolve a streak-like pattern of diffuse

scattering and clearly change the appearance of the whole pattern. Thus, streak-like diffuse

scattering of quasicrystals may result from the superposition of PDS from the infinite number

of unobservable weak Bragg reflections with high perpendicular-space components of the

diffraction vectors. Note that for Bragg reflections with high perpendicular-space

components, the corresponding PDS intensities may be by far stronger than the sharp Bragg

intensities. Taking a closer look at the PMs of the two datasets [Fig. 1(c, d)] one can see

hardly any difference between them. In particular for short Patterson vectors, both patterns

look very similar. This corroborates the assumption, that the Patterson vectors in Fig. 1(c, d)

originate from PDS & TDS and are not governed by perpendicular-space truncation errors.

C. Case studies

What is the influence of a variation of the elastic properties on the PDS & TDS calculations of

a RPT? Five datasets with different elastic parameters are examined (see Tab. I). The number

of sampling points is identical in all cases, namely 4001x4001 pixels, as well as the maximal

parallel-space component of 
 
d ,max

*
= 2.5 Å 1  and the maximal perpendicular-space component

d ,max
*

= 2 Å 1 . The case of pure PDS is realized by stiffening the RPT in parallel-space, the

case of pure TDS by stiffening it in perpendicular-space.

Zoomed sections of the diffraction patterns of the five cases are shown in Fig. 2(a-e). The

overall distribution of diffuse scattering looks very similar in the cases (a-d) but differs from

the case of pure TDS [Fig. 2(e)]. Usually, TDS is described by a function, which is zero at the

origin of reciprocal-space, then increases to a maximum that is roughly proportional to the

square of the diffraction vector and finally decreases slowly because of the atomic factor

[for details on TDS, see, e.g., Cowley et al.41]. Note, that in the present study, TDS  is

calculated from a higher-dimensional approach developed within the framework of the

hydrodynamic theory4-7. Although the overall distribution of the diffuse scattering in

Fig. 2(a-d) is very similar, the fine structure changes significantly.
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TABLE I. Details on elastic constants for the PDS & TDS calculations. Units are in 1012 dyn/cm2.

R > 0

Fig. 3(a, f)

R = 0

Fig. 3(b, g)

R < 0

Fig. 3(c, h)

pure PDS

Fig. 3(d, i)

pure TDS

Fig. 3(e, j)

C11 2.34315 2.34315 2.34315 1 106 2.34315

C13 0.66625 0.66625 0.66625 1 106 0.66625

C33 2.32215 2.32215 2.32215 1 106 2.32215

C44 0.70190 0.70190 0.70190 1 106 0.70190

C66 0.88455 0.88455 0.88455 1 106 0.88455

K1 0.02 0.0189 0.0189 0.0189 1 106

K4 0.4 0.4 0.4 0.4 1 106

R 0.1 0.0 -0.12 0.0 0.0

Taking a look at the PMs [Fig. 2(f-j)] one can hardly see any difference for the first four cases

(f-i). This can be explained with the respective diffraction patterns. Significant differences in

Fig. 2(a-d) can only be seen in the fine structure, this means in the high-frequency

contributions to the diffuse scattering. Since high-frequency contributions in reciprocal-space

predominantly contribute to longer vectors in Patterson-space, the striking similarity of the

four PMs in Fig. 2(f-i) is not surprising. This has a great influence on investigations of local

disorder phenomena from quasicrystals, which are due to phasonic disorder. Thus, the values

for Kijkl  and Rijkl  may result quite arbitrarily from experimental studies. In contrast to the

PMs of Fig. 2(f-i), the Patterson function of TDS [Fig. 2(j)] shows uniformly distributed

positive Patterson peaks, each with a negative 'halo' around them. The absence of certain

Patterson vectors in the PMs of the first four cases [see arrows in Fig. 2(f-i)] means that the

structure at these vectors corresponds to the average structure and thus, these vectors are not

influenced by phasonic disorder. Consequently, the RPT is not uniformly disordered by

phasons such as it is in the case of TDS. Note that the integrated diffuse intensity from the

pure TDS case is at least one order of magnitude smaller than for the other cases.
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FIG. 2. Influence of a variation of the elastic parameters on the PDS & TDS calculations of a RPT in
reciprocal- and Patterson-space (see Tab. I). Zoomed sections of the diffraction patterns of the five cases
examined are shown in (a-e), the corresponding PMs in (f-j). The overall distribution of diffuse scattering
looks very similar in the cases (a-d) but the fine structure changes significantly. Hardly any differences
can be observed in the PMs of the first four cases (f-i). Arrows indicate absent Patterson vectors in the
cases (f-i). Relative scaling of the intensities in the patterns (f)-(j) is 80:40:160:40:1.
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V. MODELLING PDS & TDS BASED ON EXPERIMENTAL DATA

PDS &  TDS is calculated based on synchrotron diffraction data of d-Al71.5Co14.6Ni13.9

(see chapter III for experimental details). The results are compared with the patterns of the

Edagawa-phase from part A of our study. For best comparison, the data of d-Al71.5Co14.6Ni13.9

has been matched in the following points to the ones from the Edagawa-phase. The extent in

reciprocal-space is limited to ±0.8 Å-1; the PMs are calculated from Bragg layers

{hkl | 3 l 3}  and calculations are performed on a square grid of size 2137x2137 pixels.

The maximal perpendicular-space component of the d-Al71.5Co14.6Ni13.9 data is

d ,max
*

= 2.5 Å 1  and the elastic constants necessary for the PDS & TDS calculations are set

equal to the ones in paragraph B of chapter IV. Again, all Bragg reflections stronger than

1 ppm of the intensity of the second strongest reflection are included in the calculations

( J(0)  excluded).

Fig. 3(a, d) show the punched-and-filled diffraction patterns at 1120 K from the Edagawa-

phase ( h5 = 0  and h5 = 2 , respectively, with index h5  referring to the 8Å superstructure).

The original diffraction patterns are depicted in Fig. 3(b, e) and calculated PDS & TDS based

on d-Al71.5Co14.6Ni13.9 data in Fig. 3(c, f). Note that the punched-and-filled patterns

[Fig. 3(a, d)] represent the extracted diffuse scattering from the original patterns [Fig. 3(b, e)]

(for details on the punch-and-fill method, see part A of our study). The calculated PDS & TDS

patterns of d-Al71.5Co14.6Ni13.9 show a good agreement with the overall distribution of diffuse

scattering from the Edagawa-phase. Differences are present in the fine structure of diffuse

scattering (see zoomed sections) and in the diffuse streaks in the patterns of the Edagawa-

phase. These deviations are partly caused by the fact that not all reflections observable on the

image plate patterns (Edagawa-phase) have been measured by the single counter method

(d-Al71.5Co14.6Ni13.9). Nevertheless, the diffuse scattering differs mostly in the fine structure,

i.e. high-frequency part of the scattering intensity, which hardly affects short Patterson

vectors.
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FIG. 3. Comparison of experimental and calculated diffraction patterns. (a, d) show the punched-and-

filled diffraction patterns at 1120 K from the Edagawa-phase
2 at h5 = 0  and h5 = 2 , respectively, (b, e)

the original diffraction patterns and (c, f) calculated PDS & TDS of the d-Al71.5Co14.6Ni13.9 dataset. Zoomed

sections in the insets show differences between the experimental and calculated patterns. The index h5
refers to the 8Å superstructure.
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Figure 4(a, c, e) shows the projected PM as well as the PMs at z = 0  and z = 0.25  of the

punched-and-filled distribution of diffuse scattering from the Edagawa-phase at 1120 K. The

PMs of calculated PDS & TDS of the d-Al71.5Co14.6Ni13.9 dataset are depicted in Fig. 4(b, d, f),

respectively. The correspondence between experiment and simulation is excellent.

Consequently, structural disorder of the Edagawa-phase for correlation lenghts up to 60 Å

can be described by phasonic disorder. The results do equally well apply to the datasets

collected at 300 K and 1070 K but with the difference that the correlation lengths in these

patterns are smaller (see part A of our study). Note that the accessible region in the PMs of the

Edagawa-phase extends to about 60 Å (see part A  of our study). Beyond this limit,

information on the difference structure is no more accessible by our dataset and the punch-

and-fill method. Noticeable differences between experiment and simulation can only be

observed in the PMs at z = 0.25 . There, the punched-and-filled PM of the Edagawa-phase

shows additional positive Patterson peaks with regard to the PM of PDS & TDS [see arrows

in Fig. 4(e, f)]. These peaks may be due to disorder phenomena of the Edagawa-phase, which

are not described by phasonic disorder or due to some structural differences between

d-Al71.5Co14.6Ni13.9 (single counter data) and d-Al70Co12Ni18 (image plate data).
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FIG. 4. Projected PM (a), the PMs at z = 0  (c) and z = 0.25  (e) of the punched-and-filled distribution of
diffuse scattering from the Edagawa-phase at 1120 K in comparison with the Patterson function of
calculated PDS & TDS of the d-Al71.5Co14.6Ni13.9 dataset (b, d, f), respectively. The punched-and-filled PM

of the Edagawa-phase shows additional positive Patterson peaks with regard to the PM of PDS & TDS (see
arrows in (e, f)). Relative scaling of the intensities in the patterns (a), (c), (e) is 1:10:10 and in (b), (d), (f) it
is 1:5:10.
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VI. MODELLING DISORDER ON THE SCALE OF CLUSTERS

In the following calculations of structural disorder phenomena, a Patterson function approach

is used, in which correlations between structural building units (e.g. clusters) are ignored. As

a consequence, inter-cluster Patterson vectors from the disordered structure are the same as

the corresponding inter-cluster Patterson vectors from the average structure. Thus, the

Patterson function from the difference structure only shows intra-cluster Patterson vectors.

Consequently, the structural model can be limited to the size of a single columnar cluster.

This approach is described in more detail by Cowley40.

Given a number m of different cluster configurations, the diffuse intensity may then be

written in the form

Idiffuse(r
*) =

1

m
Fi (r

*) Faver (r
*)

2

i=1

m

, (2)

as long as the probabilities for each cluster configuration m is the same. Fi (r
*)  are the Fourier

transforms of i (r) , which represent the electron density distributions of the different cluster

configurations. In all following calculations of local disorder phenomena, the diffuse

scattering resulting from a specific disorder phenomenon has been calculated according to

Eq. 2. Note that since no inter-cluster correlations are included in the approach, the PMs

calculated therefrom do not show Patterson vectors longer than the diameter of a single

columnar cluster!

Various kinds of disorder phenomena of about 20-32 Å-sized clusters have been simulated

with the goal to identify local disorder phenomena of clusters and their sub-units. We have

investigated the following models of disorder: substitutional disorder between TM and Al,

occupational disorder of Al, displacive disorder of whole clusters along the periodic axis with

displacements of 2 Å and 4 Å, different local environments around Co and Ni, orientational

disorder of clusters or sub-units therein, size-effect like distortions between Co and Ni and

also combinations of these disorder phenomena. The simulations have been performed on the

most reasonable cluster models reported in literature (see paragraph B of chapter II). Due to
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the lack of cluster-models for the Edagawa-phase (four-layer structure), we predominantly

used two-layer structure models to model disorder phenomena, which describe the diffuse

intensities inside the Bragg layers of the Edagawa-phase. Thus, the two-layer cluster must

result from the projection of the four-layer structure with sequence A, B, A’, B’ onto a two-

layer structure with sequence (A+A’), (B+B’). This projection allows the use of two-layer

cluster-models, which are chemically not reasonable, e.g. have too short atomic distances or

atomic sites with mixed occupancy in contrast to the underlying four-layer model.

Best results are obtained with the cluster-model of Abe20. It shows mirror symmetry and a

pseudo 105-screw axis along the periodic axis (rotation of 180º and translation of 2 Å).

Latter symmetry operator is fulfilled by a bigger part of the cluster, although disagreement is

present in the central part of the cluster and the P sub-clusters26, which are sub-units of the

Abe-cluster.

Best agreement between the experimental diffraction patterns of the Edagawa-phase from

part A and calculated diffuse scattering is obtained for a fivefold orientationally disordered

Abe-cluster20. For best comparison, the data of the present calculations have been matched to

the ones from the Edagawa-phase, as described in chapter V. Fig. 5(a, d) shows the punched-

and-filled diffraction patterns at 300 K of the Edagawa-phase (h5 = 0  and h5 = 2 ,

respectively). The original diffraction patterns are depicted in Fig. 5(b, e) and calculated

diffuse scattering from fivefold orientational disorder of the Abe-cluster is shown in

Fig. 5(c, f). The calculated diffuse scattering is in good agreement with the overall

distribution of diffuse scattering from the Edagawa-phase, both at h5 = 0  and h5 = 2 . Note,

that the size of the cluster ( 20 Å in diameter) limits the smallest width of a calculated diffuse

feature to about 0.05 Å-1. The application of fivefold orientational disorder on clusters with

5m symmetry, like the clusters proposed by Hiraga21-23 and Ritsch24,25, does not produce any

diffuse scattering at all.
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FIG. 5. Comparison of experimental and calculated diffraction patterns. (a, d) show the punched-and-

filled diffraction patterns at 300 K from the Edagawa-phase at h5 = 0  and h5 = 2 , respectively, (b, e) the

original diffraction patterns and (c, f) calculated diffuse scattering from fivefold orientational disorder of
the Abe-cluster. Note that the size of the cluster (  20 Å in diameter) limits the smallest width of a
calculated diffuse feature to about 0.05 Å-1.

Figure 6(a, c, e) shows the projected PM as well as the PMs at z = 0  and z = 0.25  of the

punched-and-filled distribution of diffuse scattering from the Edagawa-phase at 300 K. The

Patterson function of calculated diffuse scattering from the fivefold orientationally disordered

Abe-cluster is depicted in Fig. 6(b, d, f). The correspondence between experiment and

simulation is very good, although minor differences can be spotted in the PMs. These results
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do equally well apply to the datasets collected at 1070 K and 1120 K of the Edagawa-phase.

As described in the previous paragraph, the Patterson function of calculated diffuse scattering

does only extend up to Patterson vectors close to 20 Å (diameter of a cluster). Note that the

PMs (up to 20 Å) of diffuse scattering from the Edagawa-phase are almost equally well

described by PDS or fivefold orientational disorder of the Abe-cluster [compare Fig. 4, 6].

This is a strong indication that fivefold orientational disorder of clusters is the short-range 3D

structural representation of 5D phasonic disorder. Orientational disorder of clusters can be

induced by phasons as will be shown in an upcoming section.

Fivefold orientational disorder of the Abe-cluster produces several local disorder phenomena,

which are illustrated in Fig. 7. These are flips of Al-atoms on a scale of 1 Å (label 1),

substitutional disorder between TM and Al (label 2), occupational disorder of TM or Al

(label 3, 4) and split-positions between TM and Al (label 5). The pentagons in the centre of

layer A (label 6) and B (label 7) differ in orientation by 36º and have a different chemical

composition. The pentagon in layer A contains only TM atoms, whereas the pentagon in layer

B is composed both of TM and Al. The former pentagon would give only little contrast

variation in high-resolution transmission electron microscopy (HRTEM) images whereby the

latter would show pseudo-fivefold symmetry. Fivefold orientational disorder of the

Abe-cluster has also some remarkable consequences on the symmetry of the cluster. Not only

does the symmetry of the average cluster increase from m  to 5m , but also the pseudo

105-screw axis turns almost into a real 105-screw axis. These observations are partly in

accordance with the findings of Hiraga23, who described the average cluster of the Ni-rich

basic phase by a 32 Å cluster having 5m symmetry and a 105-screw axis along the periodic

direction.
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FIG. 6. Projected PM (a), the PMs at z = 0  (c) and z = 0.25  (e) of the punched-and-filled distribution of
diffuse scattering from the Edagawa-phase at 300 K in comparison with the Patterson function of
calculated diffuse scattering from the fivefold orientationally disordered Abe-cluster (b, d, f), respectively.
Relative scaling of the intensities in the patterns (a), (c), (e) is 1:10:10 and in (b), (d), (f) it is 1:3:3.
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FIG. 7. Local disorder phenomena induced in the Abe-cluster by a rotation of 72º. The left part shows the
effects on the A layer, the right part on the B layer. Observable local disorder phenomena are flips of Al-
atoms (label 1), substitutional disorder between TM and Al (label 2), occupational disorder of TM or Al
(label 3, 4) and split-positions between TM and Al (label 5). The pentagons in the centre of layer A (label
6) and B (label 7) differ in orientation by 36º and have a different chemical composition.

VII. DISCUSSION

A. Cluster symmetry

EM studies on decagonal Al-Co-Ni quasicrystals significantly differ in the symmetry of the

fundamental columnar clusters derived from them. Cluster models having mirror symmetry

compete against cluster models showing 5m symmetry. Possibly, fivefold orientational

disorder plays an important role in the appearance of symmetry on HRTEM or high-angle

annular dark-field scanning transmission electron microscopy (HAADF-STEM) images.

HRTEM and HAADF-STEM are techniques, in which time and space averaging takes place
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over different scales. If we assume that the real cluster possesses mirror symmetry, then the

average structure of the fivefold orientationally disordered cluster would have 5m symmetry.

How this could look like is illustrated schematically in Fig. 8, which shows a superposition of

the Hiraga-cluster23 and the average structure of the fivefold orientationally disordered

Abe-cluster20. Both models are used to describe the structure of the Ni-rich basic phase. The

agreement between the two models is remarkable. Almost all atomic sites of the

Hiraga-cluster coincide with the atomic sites of the averaged Abe-cluster. Nevertheless, minor

differences between both models can be found. The averaged Abe-cluster shows mixed

TM/Al occupancy, while the Hiraga-cluster contains either TM [Fig. 8, label 1] or Al

(label 2). Furthermore, the averaged Abe-cluster shows Al split positions (label 3) and split

positions between mixed atomic sites and Al (label 4). Note that the averaged Abe-cluster

shows a 105-screw axis, while the not averaged cluster possesses a pseudo 105-screw axis

only.

FIG. 8. A superposition of the Hiraga-cluster23 and the average structure of the fivefold orientationally
disordered Abe-cluster20. The Hiraga-cluster has 5m symmetry, while the original Abe-cluster shows
mirror symmetry only. Almost all atomic sites of the Hiraga-cluster coincide with the atomic sites of the
averaged Abe-cluster. The averaged Abe-cluster shows mixed TM/Al occupancy, while the Hiraga-cluster
contains either TM (label 1) or Al (label 2). Furthermore, the averaged Abe-cluster shows Al split
positions (label 3) and split positions between mixed atomic sites and Al (label 4).
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B. 3D structural representation of PDS

How can PDS, which is well defined in five-dimensional space, be described in three

dimensions? This question is a central topic in diffuse scattering studies of quasicrystals,

which has not yet been satisfactorily answered. We show that PDS produces local disorder

phenomena, which can equivalently be described by fivefold orientational disorder of clusters

(up to the diameter of a columnar cluster). Model calculations using only main reflections

from the complete d-Al71.5Co14.6Ni13.9 dataset (extent in reciprocal-space up to ±1.5 Å-1, the

PMs are calculated from Bragg layers {hkl | 6 l 6} ) are compared with results from

fivefold orientational disorder of the Abe-cluster20 (same constraints as above). The large

extent in reciprocal-space results in an atomic resolution ( 1 Å) of the difference PMs. This

corresponds almost to the doubled resolution ( 2 Å) of the PMs depicted in Fig. 4, 6. All

calculations have been performed on a square grid of size 2401x2401 pixels and the elastic

constants for the PDS & TDS calculations are equal to the ones described in paragraph B of

chapter IV.

Figure 9(a, c, e) shows the projected PM as well as the PMs at z = 0  and z = 0.25  of the

average structure of d-Al71.5Co14.6Ni13.9. The Patterson function of the average structure of the

fivefold orientationally disordered Abe-cluster is depicted in Fig. 9(b, d, f), respectively. The

PM s of the average structure of d-Al71.5Co14.6Ni13.9 have been calculated by Fourier

transformation of the corresponding reciprocal layers, which have been generated by

convoluting the Bragg reflections with two-dimensional Gaussian functions. This procedure is

necessary, since the Bragg patterns, which consist of -functions with Laue symmetry

10/mmm, cannot otherwise be mapped on a quadratic grid. The agreement between the

patterns is excellent indicating that the local average structure of d-Al71.5Co14.6Ni13.9

corresponds to the average structure of the fivefold orientationally disordered Abe-cluster.

Note that the Abe-cluster has been derived from EM investigations, from which one only

obtains the projected structure. Thus, information like the patterns in Fig. 9(c-f) are not

directly accessible by EM investigations. Good agreement with the PMs of the average

structure of d-Al71.5Co14.6Ni13.9 has also been obtained by computing the average structures of

fivefold orientationally disordered clusters of Abe19, Steinhardt27-28, Yan31-34 and Hiraga23.

Nevertheless, a better agreement was obtained with the cluster of Abe20.



80

FIG. 9. Projected PM  (a), the PM s at z = 0  (c) and z = 0.25  (e) of the average structure of the
d-Al71.5Co14.6Ni13.9 dataset calculated from main reflections in comparison with the Patterson function of
the average structure of the fivefold orientationally disordered Abe-cluster (b, d, f), respectively. The local
average structure of d-Al71.5Co14.6Ni13.9 corresponds to the average structure of the fivefold orientationally
disordered Abe-cluster. Relative scaling of the intensities in the patterns in (a), (c), (e) is 1:2:2 and in
(b), (d), (f) it is 1:4:3.
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Figure. 10(a, c, e) shows the projected PM as well as the PMs at z = 0  and z = 0.25  of

calculated PDS & TDS from the d-Al71.5Co14.6Ni13.9 dataset. They are compared with the PMs

of diffuse scattering resulting from the fivefold orientationally disordered Abe-cluster

(b, d, f), respectively. Excellent agreement between the two models of disorder is obtained.

The difference structure of the fivefold orientationally disordered Abe-cluster clearly

corresponds to the local difference structure of the 3D description of phasonic disorder of d-

Al71.5Co14.6Ni13.9. Concerning the clusters of Abe19, Steinhardt27-28 and Yan31-34, the agreement

of the difference PMs is less distinct than for the cluster of Abe20, but still good. The cluster

of Hiraga23 does not show any diffuse scattering caused by a fivefold orientational disorder,

because of its symmetry. These observations indicate that PDS in decagonal quasicrystals can

generally be described as fivefold orientational disorder of clusters. In the present study, this

has been shown for decagonal quasicrystals, the quasiperiodic patterns of which may be

described by a RPT and the clusters of which are mirror symmetric. Nothing can be said for

other types of quasicrystals.
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FIG. 10. Projected PM  (a), the PMs at z = 0  (c) and z = 0.25  (e) of calculated PDS &  TDS of the
d-Al71.5Co14.6Ni13.9 dataset calculated from main reflections in comparison with the Patterson function of
calculated diffuse scattering from the fivefold orientationally disordered Abe-cluster (b, d, f), respectively.
The difference structure of the fivefold orientationally disordered Abe-cluster corresponds to the local
difference structure of phason disordered d-Al71.5Co14.6Ni13.9. Relative scaling of the intensities in the
patterns (a), (c), (e) is 1:3:3 and in (b), (d), (f) it is 1:5:6.
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C. Average structure modifications induced by phasonic fluctuations

What kind of influence do phasons and phonons have on the higher-dimensional description

of quasicrystals? Phonons in normal crystals smear out the probability density of atoms in the

average structure. In quasicrystals their influence is similar, but here phonons broaden the ASs

only in parallel-space, which leads to displacive disorder in the cut-space. By cut-space we

mean the atomic configurations in parallel-space, which are obtained through a cut of the

higher-dimensional embedding-space by the parallel-space. Phasons are responsible for the

broadening of the ASs in perpendicular-space, which causes substitutional disorder and split

positions in the cut-space. The phonon-phason coupling term couples phasonic and phononic

fluctuations of the ASs. Consequently, in the case of a strong coupling term, phononic

fluctuations induce phasonic disorder and vice versa. An interesting question concerns the

modifications that the average structure in the cut-space undergoes if phasonic fluctuations of

the ASs are introduced.

To answer this question we have constructed RPTs (as described in chapter IV) with slightly

different radii of the ASs. The radii of the six considered cases are the following:

{(0.36 + i 0.04)
a
2
| i = 0,1,2,3,4,5}  and {(0.36 + i 0.04)

a
| i = 0,1,2,3,4,5}  for the ASs

at p = 1,4  and at p = 2,3 , respectively. An RPT in the standard embedding has ASs with

radii 0.4
a
2

 and 0.4
a

, respectively. The cut-spaces of the six cases are shown in Fig.

11(a-f), respectively. The average structure of the highlighted cluster changes significantly

with increasing radii of the ASs, i.e. increasing amount of phasonic disorder. Note that the

considered datasets are cutouts of 5D infinite lattices. This fact leads to perpendicular-space

truncation errors, which give rise to additional atomic positions in the cut-spaces of (a-f). The

structure in (a) is well described by a hexagon-boat-star tiling (HBS), while the structure in

(b) follows an idealized tie-and-navette tiling. Closer inspection of the highlighted cluster in

(c) reveals an ordering, which can be described by a fivefold orientational disorder of the

cluster from (a). Further increase of the ASs leads to an increasing number of clusters, which

are best described by fivefold orientational disorder (d-f). Thus, the formation of average

clusters, which correspond to fivefold orientationally disordered clusters, naturally evolves by
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introducing phasonic fluctuations of the ASs, i.e. phasons induce orientational disorder of

clusters.

FIG. 11. Influence of phasonic fluctuations of the ASs of a RPT on the atomic configurations in parallel-
space (modelled by radii fluctuations of the ASs). The average structures with increasing radii are shown
in (a-f), respectively. The structure in (a) is well described by a hexagon-boat-star tiling, while the
structure in (b) follows an idealized tie-and-navette tiling. The structure in (c) can be described by fivefold
orientational disorder of the cluster from (a). Further increase of the ASs leads to an increasing number of
clusters, which are best described by a fivefold orientationally disordered clusters (d-f). A small section of
the underlying RPT is depicted in (a-f).
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D. Structural disorder of the quasiperiodic superstructure

The structure of the quasiperiodic superstructure of the Edagawa-phase is still an unsolved

question. Several models based on EM studies have been proposed. They have some kind of

ordering between the fundamental columnar clusters in common.42,43 None of the studies

published so far deal with the structural disorder associated with the superstructure ordering.

Our calculations of PDS & TDS based on the d-Al71.5Co14.6Ni13.9 dataset (including main and

satellite reflections) in chapter V have shown a good agreement with the PMs of the

Edagawa-phase. On the basis of these calculations we studied the structural disorder

associated with the superstructure ordering only.

PDS &  TDS is calculated based on S1 and S2 satellite reflections of the complete

d-Al71.5Co14.6Ni13.9 dataset (extent in reciprocal-space up to ±1.5 Å-1, the PMs are calculated

from Bragg layers {hkl | 6 l 6} ). All calculations have been performed on a square grid

of size 2401x2401 pixels with elastic constants for the PDS & TDS calculations equal to the

ones in paragraph B of chapter IV. Figure 12(a, c, e) shows the projected PM as well as the

PM s at z = 0  and z = 0.25  of PDS &  TDS calculated only from S1 reflections of the

d-Al71.5Co14.6Ni13.9 dataset. They are compared with the difference PMs calculated from the

S2 reflections only (b, d, f), respectively. The PMs show a correspondence between maxima

in one pattern and minima in the other pattern (see arrows in Fig. 12(a-d)). As described in

part A, these strong Patterson peaks may be related to translation vectors, which correspond to

inter-cluster vectors between centers of the Gummelt decagons in the corresponding

quasiperiodic covering. The fine structure around these Patterson peaks is due to inter-cluster

correlations. The projected PM of the S2 reflections is strongly structured, indicating the

presence of both intra- and inter-cluster correlations, whereas the pattern of the S1 reflections

mainly shows inter-cluster correlations. The correlations inside quasiperiodic planes of S1

and S2 reflections show similar correlation lengths of the underlying disorder phenomena

[Fig. 12(c, d)]. However, the correlations between adjacent quasiperiodic layers [Fig. 12(e, f)]

show a remarkable difference in the pattern of the S1 and S2 reflections. The PM at z = 0.25

calculated from S1 reflections does hardly show any correlations in contrast to the pattern of

the S2 reflections. The latter shows a strongly structured pattern both at small and long

Patterson vectors. Note that the S1 and S2 reflections of the Edagawa-phase exhibit a

different temperature dependence, as reported in part A. In a certain temperature range, the
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intensities of S1 reflections decrease with increasing temperature, while those of S2

reflections increase. Streaks interconnecting main and S1 reflections appear at 1120K. The

present observations support this temperature dependence of the satellite reflections. Thus, the

decrease in intensity of the S1 reflections can be explained by a re-ordering of the clusters.

This re-ordering may correspond to the formation of decagonal superclusters (DSC), which

are composed of five interpenetrating pentagonal superclusters (PSC), as reported in part A.

Consequently, this re-ordering takes place on cost of the superstructure ordering formed by

the PSCs.

To summarize, the structural disorder associated with the S1 reflections shows basically inter-

cluster correlations only inside quasiperiodic layers. On the contrary, the S2 reflections are

related to both intra- and inter-cluster correlations between adjacent and inside quasiperiodic

layers.
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FIG. 12. Projected PM (a), the PMs at z = 0  (c) and z = 0.25  (e) of PDS & TDS calculated from S1
reflections [indexing after Edagawa2] of the d-Al71.5Co14.6Ni13.9 dataset in comparison with PMs calculated
from S2 reflections (b, d, f), respectively. Strong maxima in one pattern often correspond to minima in the
other pattern (see arrows). (b) is strongly structured, indicating the presence of both intra- and inter-
cluster correlations, whereby (a) mainly shows inter-cluster correlations. Correlations between adjacent
quasiperiodic layers (e, f) differ significantly. (e) shows hardly any correlations in contrast to the (f) which
is strongly structured both at small and long Patterson vectors. Relative scaling of the intensities in the
patterns (a)-(f) is 5:5:70:20:50:8.
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E. Sensitivity of diffuse scattering intensities on cluster variations

Modelling disorder phenomena in quasicrystals can be used as a powerful tool for the

selection of correct structure-models. Small changes in cluster models also produce only

small changes in the average structure of these clusters. If the atoms, which are affected by

these small changes are involved in disorder, such small changes can have a great influence

on the diffuse scattering intensities. Thus, a selection of correct structure-models based only

on the study of the average structures becomes very difficult and studying the diffuse

scattering can be extremely helpful in this case. Figure 13 shows a comparison of diffraction

patterns of average structures and diffuse scattering for different cluster-models. Zoomed

sections of the cluster form factors of the average structures of fivefold orientationally

disordered clusters are shown in Fig. 13(a-d) for the structure models of Abe20, Abe19,

Steinhardt27 and Steurer30, respectively. These patterns are governed by Bragg intensities

only. Zoomed sections of the corresponding diffuse diffraction intensities of fivefold

orientationally disordered clusters are shown in Fig. 13(e-h), respectively. The atomic

configurations of the first three clusters are very similar but that the differences to the cluster

of Steurer are more pronounced. Indeed, the diffraction patterns of the average structures

reflect this coherency. Just by focusing on the diffraction patterns of the average structures,

one cannot distinguish between the clusters of Abe19,20 and Steinhardt27. But taking into

account the diffuse scattering, all four models can be distinguished.
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FIG. 13. Comparison of diffraction patterns of the cluster-models of Abe20, Abe19, Steinhardt27 and
Steurer30. The cluster form factors of the average structures of fivefold orientationally disordered clusters
are shown in (a-d), respectively. The corresponding diffuse diffraction intensities of fivefold
orientationally disordered clusters in (e-h), respectively. The patterns in (a-d) and in (e-h) are on the same
scale, respectively.

VIII. CONCLUSIONS

One of the aims of this study was to explore the structural implications of phasonic disorder

on the example of a rhombic Penrose tiling. It results that the local difference structure is

quite indifferent to variations in Kijkl  and Rijkl  but depends on the type of disorder (e.g. PDS,

TDS). For the same model system it was also shown that phasonic fluctuations of the ASs give

average clusters in the cut-space that correspond to fivefold orientationally disordered

clusters. The hydrodynamic theory of PDS & TDS was applied successfully to describe the

short-range, disordered structure of the Edagawa-phase. High-frequency contributions to

diffuse scattering, i.e. the fine structure of diffuse scattering, give information on long-range

correlations, while low-frequency contributions, i.e. the overall distribution of diffuse

scattering, govern the short-range correlations. The former correlations in the disordered

structure of the Edagawa-phase have been reproduced inadequately by PDS, but the latter
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correlations were described excellently. Nevertheless, this does not mean that the underlying,

physical disorder phenomena may be of a different kind. It has been shown that phasonic

disorder and fivefold orientational disorder of the Abe-cluster can be used equivalently to

describe the short-range, disordered structure of the Edagawa-phase. Compared thereto,

disorder phenomena like domains, strains, dislocations, etc. may therefore play a minor role

for the description of the local structure of decagonal Al-Co-Ni quasicrystals. The sensitivity

of the diffuse intensity distribution to the kind of cluster model employed in the calculations

allows to distinguish between different cluster types suggested in literature. Investigations on

the structural disorder associated with the quasiperiodic superstructure ordering have shown

that the PMs calculated only from PDS & TDS from S1 and S2 reflections behave differently.

Former show basically inter-cluster correlations inside quasiperiodic layers, while latter

exhibit intra- and inter-cluster correlations, both between adjacent and inside quasiperiodic

layers. Our calculations indicated that PDS in decagonal quasicrystals can generally be

described as fivefold orientational disorder of clusters. This has been shown for decagonal

quasicrystals the quasiperiodic patterns of which may be described by a RPT and the clusters

of which are mirror symmetric.
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4.3 Appendix 

 

 

Fig. 3: This figure corrresponds to Fig. 1 of article III, with the following difference: 
(a, b) show in addition to the zoomed sections the complete diffraction patterns. 
The PMs depicted in (c, d) cover larger extents (up to 60 Å). Although the 
overall distribution of diffuse scattering in (a, b) are similar, the fine structure 
changes significantly. Especially the evolution of diffuse 'streaks' is striking, 
which arise from the superposition of PDS from weak Bragg reflections with 
high perpendicular-space components. Despite the prominent differences in the 
diffraction patterns (a, b), the PMs look very similar, i.e. the short-range, 
disordered structures of the two RPTs show only minor differences. 
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Fig. 4: This figure corrresponds to Fig. 2 of article III, with the following difference: (a-e) 
show in addition to the zoomed sections the complete diffraction patterns. The 
PMs depicted in (f-j) cover larger extents (up to 60 Å). The complete diffraction 
patterns in (a-d) show a similar overall distribution of diffuse scattering unlike 
their fine structures (see zoomed sections). Hardly any differences can be 
spoted in the PMs of the first four cases (f-i) up to 60 Å. 
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Fig. 5: Projected PM (a), the PMs at z = 0  (c) and z = 0.25  (e) of the average 
structure calculated from S1 reflections of the d-Al71.5Co14.6Ni13.9 dataset in 
comparison with PMs calculated from S2 reflections (b, d, f), respectively 
[cf. to Fig. 12 in article III]. Strong maxima in one pattern often correspond to 
minima in the other pattern (see arrows). (b) is strongly structured, indicating the 
presence of both intra- and inter-cluster correlations, whereas (a) mainly shows 
inter-cluster correlations. Note the remarkable difference in the PMs for 
correlations between adjacent quasiperiodic layers (e, f). (e) shows only long-
range correlations, whereas (f) which is strongly structured both at small and 
long Patterson vectors. Relative scaling of the intensities in the patterns (a)-(f) is 
2:1:20:4:10:3. 
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5 Modelling structural disorder of the diffuse interlayers 

 

5.1 Article IV 

 

This section contains a reprint of the article: 

 

Th. Weber, M. Kobas and W. Steurer: The Disordered 8 Å Superstructure of a Decagonal 

Al70Co12Ni18 Quasicrystal. Ferroelectrics, 305, 213-218 (2004). 
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Diffuse inter-layers from a decagonal quasicrystal with nominal composition
Al70Co12Ni18 were investigated at 1120 K, 1070 K and 300 K. Patterson maps cal-
culated from the inter-layers are interpreted such that the main units for correlated
displacements along a5 are structure motifs (‘clusters’) having a diameter of about
15 Å. At 1120 K, displacements of the clusters are uncorrelated along quasiperiodic
directions, while they form about 42 Å-sized super-clusters at lower temperatures. The
arrangement but not the inner structure of the super-clusters differs significantly at
1070 K and 300 K. Further, a first approach to the atomic structure of the 15 Å cluster
is presented.

Keywords Decagonal quasicrystal; Patterson method; diffuse scattering

1. Introduction

Diffraction patterns from decagonal quasicrystals frequently show a system of diffuse layers
lying halfway between Bragg layers along the periodic axis (for an overview see Frey et al.
[1]). The Bragg layers reflect the 4 Å periodic average structure, while the inter-layers
represent an 8 Å super-structure [2]. The super-structure is (usually) long-range ordered
along the periodic direction and short-range ordered perpendicular thereto. The origin of the
underlying disorder is assumed to come from displacive disorder of columnar clusters along
the periodic direction. Appearance and temperature evolution of diffuse intensities in Bragg-
layers and inter-layers differ significantly [3] and may therefore be discussed independently.
We will show and discuss results from in-situ measurements of an Al70Co12Ni18 quasicrystal
at 1120 K, 1070 K and 300 K. For experimental details see Steurer et al. [3] and Kobas et al.
[4]. Diffuse scattering in the Bragg-layers is discussed in this issue by Kobas et al. [4].

2. Observations

2.1. Experimental

The scattering pattern of the diffuse inter-layers exhibits a strong variation as a function of
temperature (Fig. 1). The diffuse scattering is relatively simple at 1120 K showing broad
diffuse maxima only. After cooling down to 1070 K the diffuse intensities condense into
almost Bragg-peak like maxima. The maxima can be indexed by the same quasiperiodic
lattice as the reflections in the Bragg layers, including main reflections as well as first and
second order satellite reflections. At 300 K the diffraction pattern is similar to 1070 K but
it is more blurred. Despite the fact that the fine structure of the diffuse features is changing
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FIGURE 1 Diffraction patterns from h5 = 1.5 at various temperatures. Calculated intensi-
ties from the atomistic model discussed in section 3 are shown in the lower left corner. The
powder rings in the experimental data are coming from the sample holder.

drastically during temperature evolution, the overall distribution of diffuse intensities is
mostly unaffected by temperature.

2.2. Patterson Maps

Figure 2 shows the temperature dependence of the zero layer Patterson maps (PMs), each
calculated from the first three orders of the corresponding diffuse inter-layers. The PMs
reflect correlated displacements of atoms along the periodic direction. Positive peaks mean
that the corresponding inter-atomic vector of the real structure occurs more often than in
4 Å average structure, negative peaks indicate that the number of inter-atomic vectors is
less frequent than in the average structure. The PM at 1120 K shows significant maxima
for Patterson vectors |p| ≤ 15 Å only. Some minor peaks in the range |p| > 15 Å are also
present, but it is not clear if they are real Patterson maxima or if they are truncation effects.
The PM at 1070 K can be divided into three zones: zone I (|p| ≤ 15 Å) is almost unchanged
compared to 1120 K, zone II (15 Å < |p| ≤ 42 Å) is densely filled with positive and negative
maxima of moderate amplitude including some strong negative peaks at |p| ≈ 23 Å and zone
III (|p| > 42 Å) is characterized by a few, but very intense positive maxima at |p| ≈ 61 Å
and 99 Å. Additionally, a number of positive and negative peaks can be seen in zone III,
which are significantly weaker than those observed in zone II. At 300 K, zones I and II are
very similar compared to 1070 K. The situation in zone III, however, changes significantly.
The strong maxima observed at 1070 K become weaker, but they are still present. At the
same time, new peaks emerge in zone III.
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FIGURE 2 Zero layer Patterson maps calculated from diffuse inter-layers only. Negative
peaks are darker, positive peaks are brighter than the zero level background. The arcs
indicate boundaries between zones I, II and III and the arrows show the prominent peaks
at |p| ≈ 23 Å, 61 Å and 99 Å. The Patterson maps are smoothed to minimize truncation
effects.

3. Discussion

The observations from the PMs may be interpreted as follows: Throughout the temperature
range examined in this work a basic cluster-like arrangement with a diameter of about
15 Å is the main motif for correlated displacements along the periodic direction. From the
temperature dependent behaviour in zone I it is obvious that the fine structure of this cluster
does hardly change as a function of temperature. At 1120 K no spatial correlations between
z-positions of neighbouring clusters are present. Going down to lower temperatures, the
emerging peaks from zone II may be understood to come from a rearrangement of the 15 Å
clusters forming super-clusters with a diameter of about 42 Å. The rather sharp transition
from zone II to zone III indicates that the super-clusters are of a well-defined shape. A
possible explanation for this behaviour would be that frustration effects prohibit a growth
of the super-clusters to a size larger than 42 Å. The strong maxima in zone III may be
interpreted as translation vectors between the super-clusters. At 1070 K the most dominant
distance between two super-clusters is about 61 Å. On the transition to 300 K, the internal
structure of the super-clusters is almost unchanged, but their spatial distribution is reordered
on the cost of the 1070 K arrangement. Obviously, this transition is not complete, since the
strong maxima observed at 1070 K are still present.
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A first approximation to the atomic fine structure of the 15 Å cluster, and therefore
to the diffraction pattern at 1120 K could be found on the basis of the following model.
The disordered motif is assumed to consist of a pentagon with a radius of about 5.4 Å. The
pentagon is present in two orientations, which are separated by a rotation of 18◦ around an
axis passing through the centre of the pentagons. Locally, only one of the two orientations
may be realized. Figure 1 shows the diffuse diffraction pattern that is expected if a 8 Å
periodic sequence is present, consisting of 4 Å separated +9◦ and −9◦ rotated pentagons.
No correlations are assumed to be present along quasiperiodic directions. A reasonable
agreement between observed and calculated data can be observed. Although incomplete,
this model may serve as a first step towards a more sophisticated model of the real atomic
arrangement in the disordered structure. Note that orientational disorder as described by
this model is equivalent to 4 Å displacive disorder along a5.
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6 Outlook 

 

6.1 Optimisation of the punch-and-fill method 

 

The punch-and-fill method introduced in article I can be used to extract diffuse scattering data 

from full 3D diffraction datasets. The total scattering intensity is punched at the positions of 

the Bragg reflections with a window-function of constant size [see article I]. Punching sets the 

scattering intensities at and around the positions of Bragg reflections to 0. Because of the 

constant size of the window-function, tails of strong reflections are not completely removed, 

while diffuse scattering around weak reflections is partially removed. Former leads to spiky 

relicts in the scattering intensity around positions of strong Bragg reflections. It is unclear 

whether these intensities can be attributed to Bragg scattering or to diffuse scattering. This 

fact mainly depends on the considered disorder phenomenon. Létoublon et al. (2001) have 

measured diffuse scattering from icosahedral Al-Pd-Mn quasicrystals on an absolute scale 

and have shown that phasonic diffuse scattering (PDS) peaks under certain Bragg reflections 

with intensities that reach up to ten percent of the corresponding Bragg intensity. Because of 

the uncertainty of the attribution of the spiky relicts in our case, one should try to remove 

them. Despite the constant size of the window-function, it was shown that the punch-and-fill 

method extracts diffuse scattering reasonably well. 

 

The punch-and-fill method may be optimized by removing the spiky relicts in the diffraction 

patterns. Filter functions that are widely used in multi-dimensional digital image processing 

can be applied to perform this task. One possibility is to identify the spiky artifacts that 

correspond to high-frequency contributions in the diffraction patterns with appropriate filters 

(e.g. Laplace filter) and subsequently remove them from the diffraction patterns. Another 

possibility is to smooth the artifacts with appropriate filters (e.g. median filter). However, the 

consequences of the application of such filters onto the Patterson function must be carefully 

analysed. 

 

Another step in optimizing the punch-and-fill method can be achieved by dynamically 

adjusting the size of the window-function to the width of the Bragg reflections. This 

modification minimizes the artifacts, which are caused by incomplete punching of the strong 

Bragg reflections and the removal of diffuse scattering around weak reflections. An 

implementation of these modifications in the developed code is straightforward, but the 
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consequences onto the mathematical formalism of the punch-and-fill method [see article I] 

are complex. A careful analysis of the influence of these changes onto the Patterson function 

would be necessary. 

 

Most possibly the best approach to separate diffuse and Bragg scattering intensities may be 

achieved by fitting the Bragg peaks with two-dimensional profile functions. A highly resolved 

diffraction pattern is a necessary prerequisite in this case. For a subsequent Patterson 

analysis of the data with a fine resolution in Patterson space, one also needs a large extent in 

reciprocal space. This would result in very large datasets, which are both difficult to measure 

and difficult to handle (memory demand). The advantage of such an approach is obvious: 

one would obtain a dataset of diffuse scattering, which correctly describes its distribution 

even at the positions of Bragg reflections. 

 

6.2 Growth model for decagonal Al-Co-Ni 

 

Our model calculations in article III have shown that the disordered structure at small 

Patterson vectors of the Edagawa-phase [Edagawa, 1994] can be described equally well 

both by PDS and fivefold orientational cluster disorder. The PDS approach is based on an 

abstract concept describing disorder in 5D space and does not give an atomic model of a 

corresponding 3D disordered structure. In contrast to that, the calculations of structural 

disorder (cluster orientational disorder) give a picture of the disordered 3D structure but they 

are limited in size to the diameter of a columnar cluster ( 20 Å). In a next step, a 3D structure 

model must be developed including fivefold orientational disorder of the clusters. Basically, 

two approaches are conceivable. In the first approach, a perfect quasiperiodic covering is 

constructed and subsequently the clusters are disordered by fivefold orientational disorder. 

Aggravating circumstances are that the clusters do overlap and thus, the assignment of a 

cluster becomes intricate. In the second approach, it would be possible to use a growth 

model. Starting from a single cluster, the quasiperiodic structure is constructed by adding 

clusters according to some overlap rules. This approach facilitates significantly the 

application of a fivefold orientational disorder to the clusters. A major advantage of this 

approach is that one can study the development of a quasiperiodic superstructure step by 

step with increasing size of the structure model. The model calculations on structural disorder 

associated with the quasiperiodic superstructure ordering [see article III] should allow the 

identification of a forming superstructure. In the following subsections we have applied 

overlap rules to the Abe-cluster [Abe, 2003] and identified the rules that lead to a perfect 

covering, a relaxed one and a relaxed covering with fivefold orientationally disordered 
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clusters. These investigations build up the basis for the simulation of a growth model for 

decagonal Al-Co-Ni that describes the 3D disordered structure of the Edagawa-phase. 

 

Quasiperiodic order, both perfect and random, can either be described in the framework of 

tilings or cluster-coverings. A major advantage of the cluster-covering model is that it is 

based on one single structural building unit (cluster). Gummelt has worked out overlap rules 

for the cluster-covering model that enforce either perfect or random decagon coverings 

[Gummelt 1996, 2000, 2004]. However, atomic decoration of the decagon coverings has a 

major influence on the applicability of the overlap rules. We have applied both, perfect and 

relaxed overlap rules on decagons decorated with the Abe-cluster and explored the 

consequences of introducing fivefold orientational disorder of clusters on the applicability of 

the overlap rules. 

 

Figure 6 shows the application of the perfect overlap rules (a-d) and the relaxed overlap rules 

(e-h) onto the layer A ( z = 0 ) of the Abe-cluster. The index z  refers to the 8 Å super-

structure. Note that type-A overlaps [named after Gummelt, 2000] appear for the overlap 

rules (a-c, e-g) and type-B overlaps for the overlap rules (d, h). First, we will exclude disorder 

and just focus on perfect decagon coverings. We can see, that the Abe-cluster is compatible 

with rule a), c) and d) but not with rule b). The atomic configuration inside the overlap region 

of b) is chemically unreasonable because of too short atomic distances. Rule b) could be 

fulfilled if layer A ( z = 0 ) of the cluster is overlapped with layer B ( z = 0.25 ) but this would 

imply that the average cluster shows a sequence of layers ...(A+B)(A+B)... and thus, the 

periodicity would be reduced to 2 Å. Such a structure would not show any Bragg reflections 

at h5 = 2 , which is not the case for any decagonal Al-Co-Ni quasicrystal found so far. Thus, 

rule b) is forbidden and one can exclude cluster shifts of 2 Å along the periodic axis as a 

possible disorder phenomenon for decagonal Al-Co-Ni quasicrystals. Consequently, the Abe-

cluster could only form a perfect quasiperiodic pattern with overlap rules a), c) and d). But 

since rule d) always enforces rule b) in the case of perfect matching [Gummelt, 1996], one 

ends up only with overlap rules a) and c) for a perfect quasiperiodic pattern constructed with 

the Abe-cluster. In this case, one obtains a tie-and-navette tiling [private communications with 

Gummelt]. Only overlaps of type-A appear in such a structure. 

 

Taking into account the relaxed overlap rules, one can exclude f), g) and h) for the same 

reason as for rule b). Gummelt has shown that rules e) and g) always lead to a contradiction 

concerning the generation of larger patches [Gummelt, 2000, 2004], i.e. structural frustrations 

are the consequence. For random decagon coverings of the Abe-cluster, one ends up with 
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rules a), c), d) and e). Note that rule d) is now allowed, because perfect matching is not 

imperative any more in the case of the relaxed overlap rules. Both overlaps of type-A and 

type-B do appear in the case of a random decagon covering of the Abe-cluster. 

 

Now, how does orientational disorder of clusters influence the applicability of the overlap 

rules? Comparing the atomic configurations in a) and b) [Fig. 6(a, b)], one can see that the 

configuration in b) is obtained by rotating the upper right cluster in a) around 108º (clockwise 

rotation). From a) to e), one must rotate 144º, from a) to f) 252º, from b) to e) 36º, from b) to 

f) 144º; from c) to g) 36º (rotation of the lower right cluster) and from d) to h) 108º. 

Investigations on the atomic configurations obtained by rotations of 36º und multiples 

therefrom have shown the following: rotations of {36º+n 72º n = 0,1,2,3,4}  end up with 

chemically unreasonable configurations, whereby rotations of {n 72º n = 0,1,2,3,4}  give 

reasonable atomic configurations. The latter rotations have been simulated in the calculations 

of fivefold orientational disorder of the Abe-cluster (see article III). The observation that 

rotations of {36º+n 72º n = 0,1,2,3,4}  give chemically unreasonable atomic configurations 

can be explained by the pseudo 105-screw axis of the Abe-cluster. The atomic configurations 

obtained by a shift of the cluster by 2 Å along the periodic direction is very similar to the one 

obtained by rotating the cluster around 36º. Thus, rotations of {36º+n 72º n = 0,1,2,3,4}  

end up in forbidden configurations as in the case for rule b) and one can exclude tenfold 

orientational disorder of the Abe-cluster as a possible disorder phenomenon for the 

Edagawa-phase. All above observations do equally well apply to layer A and layer B of the 

Abe-cluster. 

 

To summarize, when starting from the Abe-cluster, chemically reasonable atomic 

configurations for perfect coverings are obtained with rules a) and c) (only type-A overlaps 

occur). One ends up with a tie-and-navette tiling for the perfect quasiperiodic structure. 

Random coverings can evolve from overlap rules a), c), d) and e) and both type-A and type-B 

overlaps occur. In the case of a random covering including fivefold orientationally disordered 

clusters one ends up with overlap rules a), c), d), e) and cluster rotations of 

{n 72º n = 0,1,2,3,4}  (both type-A and type-B overlaps occur). Note that structural 

frustrations are the consequence of overlaps of kind e) [Gummelt, 2000, 2004]. In the article 

III we have shown that phasonic fluctuations of the atomic surfaces (ASs) in decagonal 

quasicrystals modify structures that are best described by a tie-and-navette tiling to 

structures that are best described by fivefold orientationally disordered clusters. 



 

105

What do the Patterson maps (PMs) look like for a random covering including fivefold 

orientationally disordered clusters constructed with the above described overlap rules? The 

approach used for the calculations of structural disorder (cluster orientational disorder) does 

not include inter-cluster correlations (see article III). Thus, the PMs calculated therefrom do 

not show Patterson vectors longer than the diameter of a single cluster. A structure showing 

the same PMs is obtained by omitting all overlap rules in the cluster-covering model. 

However, the difference PMs of the Edagawa-phase do show correlation lengths longer than 

the diameter of a single cluster [see article I]. These PMs may be explained by a disordered 

structure motif (DSM) that is arranged at certain translation vectors [see article I]. Such a 

structure can be constructed with the above described overlap rules for the random covering 

model including fivefold orientationally disordered clusters. The discrete set of overlap rules 

used to construct such a structure increases the correlation lengths for both, the average and 

the disordered structure, because of information transfer from cluster to cluster. Such a 

model would show PMs with a DSM arranged at certain translation vectors. The DSM 

corresponds in this case to the PM of the fivefold orientationally disordered cluster. 
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Fig. 6: Perfect (a-d) and relaxed (e-f) overlap rules of cluster-coverings applied on 
decagons decorated with the Abe-cluster [Abe, 2003]. Chemically reasonable 
atomic configurations for perfect coverings are obtained with rules a) and c) 
(only type-A overlaps occur). One ends up in a tie-and-navette tiling for the 
perfect quasiperiodic structure. Random coverings are possible with overlap 
rules a), c), d) and e) and cluster rotations of {n 72º n = 0,1,2,3,4}  

(both type-A and type-B overlaps occur). For details see text. 
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