Doctoral Thesis

Bi-functionality of the PhaF protein of Pseudomonas putida in the polyhydroxyalkanoate production process

Author(s):
Sierro, Nicolas Joseph Marie

Publication Date:
2005

Permanent Link:
https://doi.org/10.3929/ethz-a-004924840

Rights / License:
In Copyright - Non-Commercial Use Permitted
Bi-functionality of the PhaF protein of *Pseudomonas putida* in the polyhydroxyalkanoate production process

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
for the degree of
Doctor of Natural Sciences

presented by
NICOLAS JOSEPH MARIE SIENRO
Dipl. Natw. ETH
born February 9, 1974
citizen of Sion (VS) and Hérémence (VS)

accepted on the recommendation of
Prof. Dr. B. Witholt, examiner
Prof. Dr. Y. Poirier, co-examiner
Dr. J. B. van Beilen, co-examiner
Dr. M. Zinn, co-examiner

2005
Summary

Polyhydroxyalkanoates (PHAs) are bacterial polyesters accumulated as discrete granules and used as a storage material for carbon and reducing equivalents. In *Pseudomonas putida* GPO1, PHAs are synthesized when the carbon source is present in excess and another nutrient such as nitrogen is limiting growth. The recovery of PHA from bacterial cells yields a material with properties similar to common plastics. These properties depend among others on the carbon source used for synthesis. Due to their bacterial origin, PHAs are degraded by a wide range of microorganisms. Typical degradation rates for a piece of polyhydroxybutyrate range from a few months in anaerobic sewage to several years in seawater.

The *pha* gene cluster is responsible for the accumulation of polyhydroxyalkanoates in *Pseudomonas putida* GPO1. It includes genes coding for the two polymerases PhaCl and PhaC2, for the PhaZ depolymerase, as well as for the PhaD regulatory protein and the PhaF and PhaI phasins. All these proteins, with the exception of PhaD, are found on the PHA granule surface. Furthermore, evidence of the existence of promoters upstream of the *phaCl*, *phaF* and *phaI* genes was found.

The discovery of the PhaF and PhaI phasins being recent, not much is know about these proteins. The granule-bound PhaF phasin consists of two domains, one of them being homologous to histone H1-like proteins and thus potentially able to bind DNA. To investigate this possibility, experiments were carried out using PHA granules harboring PhaF on their surface and free phasins released from PHA granules. These assays were carried out using DIG and radioactively labeled DNA. While no DNA binding could be observed with free PhaF phasins, it was shown that native PHA granules, harboring PhaF phasins, bind any DNA fragment in the presence of magnesium, regardless of its size, sequence or origin, thereby supporting a model in which PhaF is able to bind DNA. Calculations showed that the ratio of base pairs per PhaF phasin molecule varies from 0.5 to 53.1, presumably depending on the amount of active PhaF on the PHA granule surface.

To better understand the role of the PhaF and PhaI phasins, knockouts were generated. In the *phaF* knockout, no changes regarding the PHA granule size or number could be identified, whereas in the *phaI* knockout, a decreased PHA accumulation was observed. This phenotype resembles that obtained with the *phaD* knockout, which is missing PhaI on the
surface of the PHA granules. Additionally, in the phal knockout, the PhaF phasin was not visible on the PHA granule surface.

Before studying the influence of the PhaF and PhaI phasins and that of the PhaD regulatory proteins on the promoters of the pha gene cluster, the existence of the Pc2 promoter upstream of the PhaC2 polymerase gene was established. Furthermore, the Pcl promoter located upstream of the PhaCl polymerase gene was better characterized. A shortened version of the Pcl promoter used in previous experiments was created by removing a fragment of DNA where no significant secondary structure and no recognition site could be identified. Comparing the activities of the original and the shortened version showed a four fold lower activity for the shorter promoter.

Study of the pha promoters activity in P. putida GPo1 and the phaD, phaF and phal knockouts in various media using β-galactosidase reporters showed that PhaF requires the presence of PhaD, PhaF and PhaI to be active at a high level. Furthermore, PhaI is a strong repressor for Pcl, Pc2 and Pi and an activator for Pf, while PhaD is an activator for both phasins.
Résumé

Les polyhydroxyalkanoates (PHAs) sont des polyesters bactériens accumulés sous forme de granules et utilisés comme moyen de stockage pour le carbone et les équivalents de réduction. Dans Pseudomonas putida GPo1, les PHAs sont synthétisés lorsque la source de carbone est présente en excès et qu'un autre élément nutritif tel que l'azote limite la croissance. La récupération du PHA à partir des cellules bactériennes produit une matière dont les propriétés sont similaires aux plastiques communs. Ces propriétés dépendent entre autre de la source de carbone utilisée au cours de la synthèse. En raison de leurs origines bactériennes, les PHAs sont dégradés par une vaste gamme de microorganismes. Les taux de dégradation habituels pour un morceau de polyhydroxybutyrate varie de quelques mois dans un milieu anaérobie à plusieurs années dans l'eau de mer.

Le groupe de gènes pha est responsable de l'accumulation de polyhydroxyalkanoates dans Pseudomonas putida GPo1. Il comprend les gènes codant les deux polymerases PhaC1 et PhaC2, la dépolymerase PhaZ, ainsi que la protéine régulatrice PhaD et les phasines PhaF et PhaI. Toutes ces protéines, à l'exception de PhaD, sont présentes à la surface des granules de PHA. De plus, des preuves de l'existence de promoteurs en amont des gènes phaC1, phaF et phaI ont été trouvées.

La découverte des phasines PhaF et PhaI étant récente, peu de choses sont connues à leur sujet. La phasine PhaF, qui est attachée aux granules, consiste en deux domaines, l'un d'eux étant homologue aux protéines de la famille de l'histone H1 et donc potentiellement capable de se lier à l'ADN. Afin d'examiner cette possibilité, des expériences ont été faites avec des granules présentant des phasines PhaF à leur surface ainsi qu'avec des phasines libres provenant de celles-ci. Ces expériences ont été faites en utilisant de l'ADN marqué à la digoxygénine ou radioactivement. Alors qu'aucun attachement à de l'ADN n'a pu être observé avec des phasines PhaF libres, il a été démontré que des granules de PHA présentant PhaF lient n'importe quel fragment d'ADN en présence de magnésium, indépendamment de sa taille, de sa séquence ou de son origine, soutenant ainsi un modèle selon lequel PhaF est capable de lier l'ADN. Des calculs ont montré que le nombre de paires de bases par molécule de phasine PhaF varie de 0.5 à 53.1, probablement en fonction de la quantité de PhaF actives à la surface des granules de PHA.
Afin de mieux comprendre le rôle des phasines PhaF et PhaI, des mutants ont été générés. Dans le mutant dépourvu de phaF, aucun changement concernant la taille ou la quantité des granules n’a été identifié, alors que dans le mutant dépourvu de phaI, une diminution de l’accumulation de PHA a été observée. Ce phénotype ressemble à celui obtenu avec le mutant dépourvu de phaD, à qui il manque PhaI à la surface des granules. De plus, dans le mutant dépourvu de phaI, la phasine PhaF n’était pas visible à la surface des granules de PHA.

Avant d’étudier l’influence des phasines PhaF et PhaI et celle de la protéine régulatrice PhaD sur les promoteurs du groupe de gènes pha, l’existence d’un promoteur en amont du gène de la polymerase PhaC2 a été établie. De plus, le promoteur Pcl situé en amont du gène de la polymerase PhaC1 a été mieux caractérisé. Une version courte du promoteur Pcl utilisé dans des expériences antérieures a été créée en ôtant un fragment d’ADN dans lequel aucune structure secondaire significative et aucun site de reconnaissance n’ont pu être identifiés. La comparaison des activités résultant de l’expression de la version originale et raccourcie ont montré une activité quatre fois inférieure pour le promoteur raccourci.

L’étude de l’activité des promoteurs du groupe pha dans P. putida GPo1 et les mutants dépourvus de phaD, phaF et phaI dans différents milieux à l’aide de rapporteurs utilisant la β-galactosidase a montré que PhaF nécessite la présence de PhaD, PhaF et PhaI pour être actif à un niveau élevé. De plus, PhaI est un fort répresseur pour Pcl, Pc2 et Pi et un activateur pour Pf, alors que PhaD est un activateur pour les deux phasines.